

Water Resources Data Iowa Water Year 2002

Volume 1. Surface Water—Mississippi River Basin

Water-Data Report IA-02-1

U.S. Department of the Interior U.S. Geological Survey

Prepared in cooperation with the lowa Department of Natural Resources (Geological Survey Bureau), lowa Department of Transportation, and with Federal agencies

CALENDAR FOR WATER YEAR 2002

2001

		00	тові	ER					NO	VEM	BER					DE	СЕМ	BER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3							1
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15
21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22
28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29
														30	31					
										2002	2									
		JA	NUA	RY					FEI	BRUA	RY					N	1ARC	Н		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
		1	2	3	4	5						1	2						1	2
6	7	8	9	10	11	12	3	4	5	6	7	8	9	3	4	5	6	7	8	9
13	14	15	16	17	18	19	10	11	12	13	14	15	16	10	11	12	13	14	15	16
20	21	22	23	24	25	26	17	18	19	20	21	22	23	17	18	19	20	21	22	23
27	28	29	30	31			24	25	26	27	28			24	25	26	27	28	29	30
														31						
		1	APRIL	•					I	MAY						J	UNE			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6				1	2	3	4							1
7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8
14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15
21	22		24	25	26	27	19	20	21	22		24	25	16			19			
28	29	30					26	27	28	29	30	31		23	24	25	26	27	28	29
														30						
			JULY						Αl	JGUS	T					SEP1	ЕМВ	ER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3	1	2	3	4	5	6	7
7	8	9	10	11	12	13	4	5	6	7	8	9	10	8	9	10	11	12	13	14
14	15	16	17	18	19	20	11	12	13	14	15	16	17	15	16	17		19	20	21
21	22	23	24	25	26	27	18	19	20	21	22	23	24	22		24	25	26	27	28
28	29	30	31				25	26	27	28	29	30	31	29	30					

Water Resources Data Iowa Water Year 2002

Volume 1. Surface Water—Mississippi River Basin

By G.M. Nalley, J.G. Gorman, R.D. Goodrich, V.E. Miller, M.J. Turco, and S.M. Linhart

Water-Data Report IA-02-1

UNITED STATES DEPARTMENT OF THE INTERIOR

Gale A. Norton, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in Iowa, write to:

Director, Water Resources Programs for the State of Iowa U.S. Geological Survey P.O. Box 1230 Iowa City, Iowa 52244

PREFACE

This volume of the annual hydrologic data report of Iowa is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by local, State, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines.

Personnel in charge of the field units are:

Joseph G. Gorman, Western Field Unit

Robert D. Goodrich, Eastern Field Unit

The data were collected, computed and processed by the following personnel:

K.D Becher	R.L. Kopish	D.J. Schnoebelen
J.F. Cerveny	S.M. Linhart	M.K. Segreto
D.E. Christiansen	G.R. Littin	P.K. Smith
D.T. Conell	J.C. McVay	J.R. Sondag
A.R. Conkling	J. J. Moline	S.R. Strader
A.L. Donnelly	V.E. Miller	S.A. Thul
D.A. Eash	J.F. Nania	M.J. Turco
E.E. Fischer	J.A. Nason	N.J VanderZwan
J.S. Hansen	M.J. Noon	
J.W. Harms	S. A. Rundquist	

This report was prepared in cooperation with the State of Iowa and with other agencies under the general supervision of Greg M. Nalley, Chief Hydrologic Surveillence Section, and Robin G. Middlemis-Brown, Director, Water Resources Programs for the State of Iowa.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

David riightay, David 1201, riimigton, Tri 222	oz 1002, and to the office of management	and Budget, rapernent reduction resp.	ot (0.0.00), 1.401gto, 2.0.2000.
1. AGENCY USE ONLY (Leave blank)	3. REPORT TYPE AND D Annual, 1 Oct. 200		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Water Resources Data, Iowa, Surface Water - Mississippi I			
6. AUTHOR(S) G.M. Nalley, J.G. Gorman, R S.M. Linhart	R.D. Goodrich, V.E. Miller, I	M.J. Turco, and	
7. PERFORMING ORGANIZATION NAME U.S. Geological Survey, Wat P.O. Box 1230 Iowa City, IA 52244		8	B. PERFORMING ORGANIZATION REPORT NUMBER USGS-WRD-IA-02-1
9. SPONSORING / MONITORING AGENC U.S. Geological Survey, Wat P.O. Box 1230 Iowa City, IA 52244		1	0. SPONSORING / MONITORING AGENCY REPORT NUMBER USGS-WRD-IA-02-1
11. SUPPLEMENTARY NOTES Prepared in cooperation with Department of Transportation			al Survey Bureau), Iowa
12a. DISTRIBUTION / AVAILABILITY STA	ATEMENT	[1	2b. DISTRIBUTION CODE
No restrictions on distribution	n. This report may be purch	ased from:	
National Technical Informati Springfield, VA 22161			
streams; stage, and/or content This report volume contains and 7 streams; water quality precipitation record for 7 precipitation	s of lakes and reservoirs; gro discharge records for 95 gag for 1 stream-gaging station;	und water levels and water ing stations; stage or conto sediment records for 10 st	
*Iowa, *Hydrologic data, *Su Lakes, Reservoirs, Chemical			
Water levels, Water analyses		emperatures, bumping sit	es, 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

CONTENTS

	Page
Preface	iii
Surface-water stations, in downstream order, for which records are published in this volume	. vii
Discontinued surface-water discharge or stage-only stations	x
Discontinued surface-water-quality stations	
Introduction	
Cooperation	
Summary of hydrologic conditions	
Surface Water	
Suspended Sediment	
Ground-Water-Level Observation Network	
Surface-Water Quality	
Ground-Water Quality	
Ground-Water Monitoring Network	
Special networks and programs	
Explanation of the records	
Station Identification Numbers	
Downstream Order System	
Latitude-Longitude System	
Numbering System For Wells	
Records of Stage and Water Discharge	
Data Collection and Computation	
Data Presentation	
Identifying Estimated Daily Discharge	
Accuracy of the Records	24
Other Records Available	24
Records of Surface-Water Quality	24
Classification of Records	
Arrangement of Records	25
On-Site Measurements and Sample Collection	
Water Temperature and Specific Conductance	
Sediment	
Laboratory Measurements	
Data Presentation	
Remarks Codes	
Water Quality-Control Data	
Dissolved Trace-Element Concentrations	
Change in National Trends Network Procedures	
Records of Ground-Water Levels	
Data Collection and Computation	
Data Presentation	
Records of Ground-Water Quality	
Data Presentation	
Explanation of Quality of Ground-Water Data Tables	
Access to USGS water data	
Definition of terms	
Publications on Techniques of Water-Resources Investigations of the U.S. Geological Survey	47
Station records, surface water	52
Crest-stage partial-record stations	
Index	. 357

ILLUSTRATIONS

Page

Figure	1. Precipitation record for the National Weather Service's designated Climatological Districts
	for water year 2002
	daily sediment stations in Iowa
	7. Location of wells in the ground-water-level observation network in Iowa, water year 2002
	8. Location of active ground-water-quality monitoring wells in Iowa
	9. Latitude-longitude well number
	10. Local well-numbering system for well 96-20-3 CDBD1
11-	19. Maps showing locations of active continuous-record and crest-stage gaging stations
	11. Mississippi River drainage basin (northeast Iowa)
	12. Turkey River and Maquoketa River drainage basins
	14. Iowa River drainage basin (excluding the Cedar River drainage basin)
	15. Cedar River drainage basin
	16. Skunk River drainage basin
	17. Upper Des Moines River drainage basin
	18. Raccoon River drainage basin
	19. Lower Des Moines River and Fox River drainage basins
	TABLES
Table	1. Monthly and annual precipitation during 2002 water year as a percentage of normal precipitation (1961-90) 5 2. Historical low-water levels measured water year 2002 in wells completed in unconsolidated aquifers 10 3. Historical high-water levels measured water year 2002 in wells completed in bedrock aquifers

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

[Letter after station name designates types of data: (d) discharge, (c) chemical, (p) precipitation, (s) sediment, (t) temperature, (e) elevations, gage heights, or contents]

	Station	
	Number	Page
UPPER MISSISSIPPI RIVER BASIN		
(Map of Mississippi River basin gaging stations—northeast Iowa)		. 52
Mississippi River:		
Upper Iowa River at Bluffton (e)	05387440	. 54
Upper Iowa River at Decorah (e)		
Upper Iowa River near Dorchester (d)		
Bloody Run Creek near Marquette (dtsp)		
Mississippi River at McGregor (dts)		
Mississippi River at Clayton (e)		
(Map of Turkey and Maquoketa River basin gaging stations)		
TURKEY RIVER BASIN		
Turkey River:		
Turkey River near Eldorado (d)	05411850	. 76
Turkey River above French Hollow Creek at Elkader (d)	05412020	. 78
Volga River at Littleport (d)	05412400	. 80
Turkey River at Garber (d)	05412500	. 82
MAQUOKETA RIVER BASIN		
Maquoketa River at Manchester (dts)	05416900	. 84
North Forth Maquoketa River near Fulton (d)	05418400	. 90
Maquoketa River near Maquoketa (dts)	05418500	. 92
(Map of Mississippi and Wapsipinicon River basin gaging stations) .		98
Beaver Slough at Third Street Clinton (d)	05420460	100
Mississippi River at Clinton (dcts)	05420500	102
WAPSIPINICON RIVER BASIN		
Wapsipinicon River near Tripoli (dcp)	05420680	110
Wapsipinicon River at Independence (d)	05421000	116
Wapsipinicon River near De Witt (d)	05422000	118
Crow Creek at Bettendorf (d)	05422470	120
Duck Creek at 110th Avenue, Davenport (d)	05422560	122
Duck Creek at Duck Creek Golf Course, Davenport (d)	05422600	124
(Map of Iowa River basin gaging stations)		126
IOWA RIVER BASIN		
Iowa River near Rowan (dc)		
South Fork Iowa River northeast of New Providence (dcp)	05451210	134
Iowa River at Marshalltown (d)		
Timber Creek near Marshalltown (d)	05451700	142
Richland Creek near Haven (d)	05451900	144
Salt Creek near Elberon (d)		
Walnut Creek near Hartwick (d)	05452200	148
Big Bear Creek at Ladora (d)	05453000	150
Iowa River at Marengo (d)		
Coralville Lake near Coralville (e)		
Iowa River below Coralville Dam near Coralville (d)		
Rapid Creek below Morse (p)		
Rapid Creek near Iowa City (d)	05454000	160
IOWA RIVER BASINContinued		
Clear Creek near Oxford (d)	05454220	162

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

Clear Creek near Coralville (d)	TOBERTIES IN THIS VOLCIVIE		
Clear Creek near Coralville (d)			Page
Iowa River at Iowa City (d)	Clear Creek near Carelville (d)		_
South Branch Ralston Creek at Iowa City (e)			
Old Mans Creek near lowa City (d)			
English River at Kalona (d)	· · · · · · · · · · · · · · · · · · ·		
Iowa River near Lone Tree (d)			
(Map of Cedar River basin gaging stations) 176 CEDAR RIVER BASIN 05457700 178 Little Cedar River near Ionia (d) 05458700 180 Cedar River at Warely (d) 05458800 180 Cedar River at Janesville (d) 05458500 184 West Fork Cedar River at Finchford (d) 05458500 184 West Fork Cedar River at Mason City (d) 05459500 188 Wilnow Creek: Clear Creek: 05460000 190 Shell Rock River at Shell Rock (d) 05460000 190 Shell Rock River at Shell Rock (d) 05460000 190 Shell Rock River at Shell Rock (d) 0546000 190 Shell Rock River at Shell Rock (d) 05463000 192 Beaver Creek at New Hartford (d) 05463000 194 Cedar River at Cedar Falls (e) 05463000 194 Cedar River at Waterloo (d) 05463000 196 Black Hawk Creek at Hudson (d) 0546300 198 Cedar River at Waterloo (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05464500			
CEDAR RIVER BASIN Cedar River at Charles City (d)			
Cedar River at Charles City (d)	, I		170
Little Cedar River near Ionia (d)		05457700	178
Ccdar River at Waverly (d) .05458300 182 Cedar River at Janesville (d) .05458500 186 West Fork Cedar River at Finchford (d) .05458500 186 Shell Rock River: .05459500 188 Willow Creek: Clear Creek: .05460000 190 Shell Rock River at Shell Rock (d) .0546000 192 Beaver Creek at New Hartford (d) .05463000 194 Cedar River at Cedar Falls (e) .05463000 196 Black Hawk Creek at Hudson (d) .05463000 198 Cedar River at Cedar Falls (e) .05463000 198 Cedar River at Waterloo (d) .05463000 200 Wolf Creek near Dysart (d) .05464000 200 Wolf Creek near Dysart (d) .05464202 202 Cedar River at Cedar Rapids (d) .05464500 206 Hoover Creek at National Historic Site at West Branch (d) .05465000 210 Iowa River at Wapello (dts) .05465000 210 SUNK RIVER BASIN .05470000 222 Squaw Creek at Ames (d) .05470000 222	· · · · · · · · · · · · · · · · · · ·		
Cedar River at Janesville (d) .05458500 184 West Fork Cedar River at Finchford (d) .05458900 186 Shell Rock River: Winnebago River at Mason City (d) .05459500 188 Willow Creek: Clear Creek: .05460000 .190 Shell Rock River at Shell Rock (d) .05460000 .192 Beaver Creek at New Hartford (d) .05463000 .194 Cedar River at Cedar Falls (e) .05463050 .196 Black Hawk Creek at Hudson (d) .05463500 .198 Cedar River at Cedar Falls (e) .05463000 .200 Wolf Creek near Dysart (d) .05465300 .198 Cedar River at Cedar Rapids (d) .0546500 .200 Hoover Creek at National Historic Site at West Branch (d) .0546500 .200 Hower Creek at National Historic Site at West Branch (d) .05465000 .210 Jowa River at Wapello (dts) .05465000 .210 Jowa River at Wapello (dts) .0545500 .212 SULNK RIVER BASIN .05470000 .222 South Skunk River near Ames (d) .05470000 .222			
West Fork Cedar River at Finchford (d) 05458900 186 Shell Rock River: Winnebago River at Mason City (d) 05459500 188 Willow Creek: Clear Creek: 05460000 190 Shell Rock River at Shell Rock (d) 05460000 192 Beaver Creek at New Hartford (d) 05463000 192 Beaver Creek at New Hartford (d) 05463050 198 Cedar River at Cedar Falls (e) 05463050 198 Black Hawk Creek at Hudson (d) 05463500 198 Cedar River at Waterloo (d) 05464000 200 Wolf Creek near Dysart (d) 05464220 202 Cedar River at Cedar Rapids (d) 05464220 202 Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 0546500 210 Iowa River at Wapello (dts) (Map of Skunk River basin gaging stations) 222 SKUNK RIVER BASIN (Map of Skunk River basin gaging stations) 222 SQuaw Creek at Ames (d) 05470500 224 South Skunk River beow Squaw Creek near Ames (d) 05470500			
Shell Rock River: Winnebago River at Mason City (d) 05459500 188 Willow Creek: Clear Creek:			
Winnebago River at Mason City (d) 05459500 188 Willow Creek: Clear Creek: Clear Lake (e) 05460000 190 Shell Rock River at Shell Rock (d) 05462000 192 Beaver Creek at New Hartford (d) 05463000 194 Cedar River at Cedar Falls (e) 05463050 196 Black Hawk Creek at Hudson (d) 05463500 198 Cedar River at Waterloo (d) 05464000 200 Wolf Creek near Dysart (d) 05464500 200 Wolf Creek near Dysart (d) 054644500 206 Hoover Creek at National Historic Site at West Branch (d) 05464942 202 Cedar River near Conesville (d) 05465900 210 Iowa River at Wapello (dts) 05465900 210 South Skurk River near Ames (d) 05470000 222 SKUNK RIVER BASIN 05470000 222 South Skunk River near Ames (d) 05470000 222 South Skunk River Pobow Squaw Creek near Ames (d) 05471000 226 South Skunk River at Colfax (dtsp) 05471000 226 South Sku	· · · · · · · · · · · · · · · · · · ·	. 03 130700 .	100
Willow Creek: Clear Creek: Clear Lake at Clear Lake (e) 05460000 190 Shell Rock River at Shell Rock (d) 05462000 192 Beaver Creek at New Hartford (d) 05463000 194 Cedar River at Cedar Falls (e) 05463500 198 Black Hawk Creek at Hudson (d) 05463500 198 Cedar River at Waterloo (d) 05464000 200 Wolf Creek near Dysart (d) 05464220 202 Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05464942 208 Cedar River near Conesville (d) 05465000 210 Iowa River at Wapello (dts) 0546500 212 (Map of Skunk River basin gaging stations) 222 SKUNK RIVER BASIN 05470000 222 South Skunk River near Ames (d) 05470000 224 South Skunk River below Squaw Creek near Ames (d) 0547000 224 South Skunk River at Colfax (ds) 0547100 226 South Skunk River an Extract (dstsp) 0547100 234		05459500	188
Clear Lake at Clear Lake (e)		. 05457500 .	100
Shell Rock River at Shell Rock (d) 05462000 192 Beaver Creek at New Hartford (d) 05463000 194 Cedar River at Cedar Falls (e) 05463050 196 Black Hawk Creek at Hudson (d) 05463500 198 Cedar River at Waterloo (d) 05464000 200 Wolf Creek near Dysart (d) 05464220 202 Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05465000 210 Iowa River near Conesville (d) 05465500 210 Iowa River at Wapello (dts) 05465500 212 SKUNK RIVER BASIN 220 SKUNK RIVER BASIN 05470000 222 Squaw Creek at Ames (d) 05470000 222 Squaw Creek at Ames (d) 05470000 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dsp) 05471000 226 South Skunk River at Colfax (dsp) 05471000 226 South Skunk River at Rolosa (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471200 236		05460000	190
Beaver Creek at New Hartford (d) 05463000 194 Cedar River at Cedar Falls (e) 05463050 196 Black Hawk Creek at Hudson (d) 05463500 198 Cedar River at Waterloo (d) 05464000 200 Wolf Creek near Dysart (d) 05464220 202 Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05465900 210 Iowa River at Wapello (dts) 05465500 212 Iowa River at Wapello (dts) 05465500 212 SKUNK RIVER BASIN (Map of Skunk River basin gaging stations) 222 SKUNK Skunk River near Ames (d) 05470000 222 Squaw Creek at Ames (d) 05470500 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek inear Colfax (dtsp) 05471000 222 South Skunk River at Colfax (d) 05471000 228 South Skunk River at Golfax (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471200 238 North Skunk River near Si	* /		
Cedar River at Cedar Falls (e) 05463050 196 Black Hawk Creek at Hudson (d) 05463500 198 Cedar River at Waterloo (d) 05464000 200 Wolf Creek near Dysart (d) 05464202 202 Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05465000 210 Iowa River at Wapello (dts) 05465000 210 Iowa River at Wapello (dts) 05465500 212 (Map of Skunk River basin gaging stations) 220 SKUNK RIVER BASIN 200 South Skunk River near Ames (d) 05470000 222 Squaw Creek at Ames (d) 05470500 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471000 226 South Skunk River at Colfax (dtsp) 0547100 236 South Skunk River at Golfax (dtsp) 0547100 236 South Skunk River at Olfax (dtsp) 05471200 236 South Skunk River at Golfax (dtsp) 05471200 236			
Black Hawk Creek at Hudson (d)			
Cedar River at Waterloo (d) 05464000 200 Wolf Creek near Dysart (d) 05464220 202 Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05464942 208 Cedar River near Conesville (d) 05465000 210 Iowa River at Wapello (dts) 05465500 212 (Map of Skunk River basin gaging stations) 220 SKUNK RIVER BASIN 05470000 222 Squaw Creek at Ames (d) 05470000 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471040 228 South Skunk River at Colfax (dtsp) 05471040 228 South Skunk River near Oskaloosa (d) 0547100 236 South Skunk River near Oskaloosa (d) 0547100 236 South Skunk River near Oskaloosa (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 236 South Skunk River near Oskaloosa (d) 05471500 234 Gedar Creek near Mt. Pleasant (d) <t< td=""><td></td><td></td><td></td></t<>			
Wolf Creek near Dysart (d) 05464220 202 Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05464902 208 Cedar River near Conesville (d) 05465000 210 Iowa River at Wapello (dts) 05465000 212 (Map of Skunk River basin gaging stations) 220 SKUNK RIVER BASIN 05470000 222 South Skunk River near Ames (d) 05470500 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek at Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471000 226 Squaw Creek near Colfax (dtsp) 05471000 226 Squaw Creek near Colfax (dtsp) 0547100 226 Squaw Creek near Golfax (dtsp) 0547100 226 Squaw Creek near Golfax (dtsp) 0547100 226 Squaw Creek near Golfax (dtsp) 0547100 226 Squaw Creek near Mingo (d) 0547100 226 South Skunk River at Colfax (dtsp) 05471200 236 South Skunk River near Sigourney (d) 05471200			
Cedar River at Cedar Rapids (d) 05464500 206 Hoover Creek at National Historic Site at West Branch (d) 05464942 208 Cedar River near Conesville (d) 05465000 210 Iowa River at Wapello (dts) 05465500 212 (Map of Skunk River basin gaging stations) 220 SKUNK RIVER BASIN 220 South Skunk River near Ames (d) 05470000 222 Squaw Creek at Ames (d) 05470000 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 0547100 226 Squaw Creek near Colfax (dtsp) 05471050 234 Indian Creek near Mingo (d) 05471050 234 South Skunk River at Colfax (dtsp) 05471200 236 South Skunk River near Sigourney (d) 05471200 236 South Skunk River near Sigourney (d) 05471200 236 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473400 246 Mississippi River at Keokuk (d) 054774500 252 <td></td> <td></td> <td></td>			
Hoover Creek at National Historic Site at West Branch (d) 05464942 208 Cedar River near Conesville (d) 05465000 210 Iowa River at Wapello (dts) 05465500 212 (Map of Skunk River basin gaging stations) 220 SKUNK RIVER BASIN 220 SKUNK RIVER BASIN 222 Squaw Creek at Ames (d) 05470500 224 South Skunk River near Ames (d) 05470500 224 South Skunk River bear Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471000 226 Squaw Creek near Colfax (dtsp) 05471040 228 South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Oskaland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississippi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Ceas Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Part Dodge (d) 05480500 260 Boone River near Saylorville (e) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274			
Cedar River near Conesville (d) 05465000 210 Iowa River at Wapello (dts) 05465500 212 (Map of Skunk River basin gaging stations) 220 SKUNK RIVER BASIN 05470000 222 Squaw Creek at Ames (d) 05470500 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471000 226 South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471050 234 South Skunk River near Oskaloosa (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Oskaloosa (d) 05471500 238 North Skunk River at A Quasta (dts) 05471500 238 North Skunk River near Oskaloosa (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473400 244 Skunk River at A Ugusta (dts) 05474000 248 Mississippi River at Keokuk (d) 05474000			
Iowa River at Wapello (dts)			
(Map of Skunk River basin gaging stations) 220 SKUNK RIVER BASIN 05470000 222 Squaw Creek at Ames (d) 05470500 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471040 228 South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississippi River at Keokuk (d) 05474000 246 Mississippi River at Keokuk (d) 0547400 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River near Webster City (d) 0548100 262 Des Moines River near Saylorville (e) <td></td> <td></td> <td></td>			
SKUNK RIVER BASIN 05470000 222 Squaw Creek at Ames (d) 05470500 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471040 228 South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississippi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05481000 260 Des Moines River near Stratford (d) 05481000 260 Des Moines River near Suplorville (e) 05481650 268 Beaver Creek near Grimes (d) <td></td> <td></td> <td></td>			
Squaw Creek at Ames (d) 05470500 224 South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471040 228 South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississippi River at Keokuk (d) 05474000 246 Mississippi River at Humboldt (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Fort Dodge (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 0548100 264 Saylorville Lake near Saylorville (e) 05481650 268 Des Moines River			
South Skunk River below Squaw Creek near Ames (d) 05471000 226 Squaw Creek near Colfax (dtsp) 05471040 228 South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississispip River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 0548100 262 Des Moines River near Stratford (d) 05481630 264 Saylorville Lake near Saylorville (e) 05481650 268 Beaver Creek near Grimes (d) 05481650 268 Be	South Skunk River near Ames (d)	. 05470000	222
Squaw Creek near Colfax (dtsp) 05471040 228 South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississispipi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River near Webster City (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481650 268 Des Moines River near Grimes (d) 05481650 268	Squaw Creek at Ames (d)	. 05470500	224
South Skunk River at Colfax (d) 05471050 234 Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississispipi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Grimes (d) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	South Skunk River below Squaw Creek near Ames (d)	. 05471000	226
Indian Creek near Mingo (d) 05471200 236 South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississispipi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River near Webster City (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Saylorville (e) 05481630 264 Saylorville Lake near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	Squaw Creek near Colfax (dtsp)	. 05471040	228
South Skunk River near Oskaloosa (d) 05471500 238 North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississispipi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Grimes (d) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	South Skunk River at Colfax (d)	. 05471050	234
North Skunk River near Sigourney (d) 05472500 240 Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississispip River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Grimes (d) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	Indian Creek near Mingo (d)	. 05471200	236
Cedar Creek near Oakland Mills (d) 05473400 242 Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississispipi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	South Skunk River near Oskaloosa (d)	. 05471500	238
Big Creek near Mt. Pleasant (d) 05473450 244 Skunk River at Augusta (dts) 05474000 246 Mississippi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	North Skunk River near Sigourney (d)	. 05472500	240
Skunk River at Augusta (dts) 05474000 246 Mississippi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	Cedar Creek near Oakland Mills (d)	. 05473400	242
Mississippi River at Keokuk (d) 05474500 252 (Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	Big Creek near Mt. Pleasant (d)	. 05473450	244
(Map of Des Moines River basin gaging stations) 254 Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	Skunk River at Augusta (dts)	. 05474000	246
Des Moines River at Humboldt (d) 05476750 256 East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	Mississippi River at Keokuk (d)	. 05474500	252
East Fork Des Moines River at Dakota City (d) 05479000 258 Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	(Map of Des Moines River basin gaging stations)		254
Des Moines River at Fort Dodge (d) 05480500 260 Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274			
Boone River near Webster City (d) 05481000 262 Des Moines River near Stratford (d) 05481300 264 Saylorville Lake near Saylorville (e) 05481630 266 Des Moines River near Saylorville (dts) 05481650 268 Beaver Creek near Grimes (d) 05481950 274	East Fork Des Moines River at Dakota City (d)	. 05479000	258
Des Moines River near Stratford (d)	Des Moines River at Fort Dodge (d)	. 05480500	260
Saylorville Lake near Saylorville (e)	Boone River near Webster City (d)	. 05481000	262
Des Moines River near Saylorville (dts)	Des Moines River near Stratford (d)	. 05481300	264
Beaver Creek near Grimes (d)			
Des Moines River at Second Avenue at Des Moines (d)			
	Des Moines River at Second Avenue at Des Moines (d)	. 05482000	276

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

Tebelome III Time Vedevill		
	Station	
	Number	Page
UPPER MISSISSIPPI RIVER BASINContinued		
DES MOINES RIVER BASINContinued		
(Map of Raccoon River basin gaging stations)		278
North Raccoon River near Sac City (d)		
Black Hawk Lake at Lake View (e)		
North Raccoon River near Jefferson (d)	. 05482500	284
Middle Raccoon River near Bayard (d)	. 05483450	286
Lake Panorama at Panora (e)	. 05483470	288
Middle Raccoon River at Panora (d)	. 05483600	290
South Raccoon River at Redfield (d)	. 05484000	292
Raccoon River at Van Meter (d)	. 05484500	294
Raccoon River near West Des Moines (e)	. 05484600	296
Raccoon River at 63rd Street, Des Moines (d)	. 05484650	298
Walnut Creek at Des Moines (d)	. 05484800	300
Raccoon River at Fleur Drive, Des Moines (d)	. 05484900	302
(Map of Lower Des Moines River basin gaging stations)		304
Des Moines River below Raccoon River at Des Moines (d)	. 05485500	306
Fourmile Creek at Des Moines (d)	. 05485640	308
North River near Norwalk (d)	. 05486000	310
Middle River near Indianola (d)	. 05486490	312
South River near Ackworth (d)	. 05487470	314
Des Moines River near Runnels (d)	. 05487500	316
Walnut Creek near Prairie City (dtsp)	. 05487540	318
Walnut Creek near Vandalia (dtsp)	. 05487550	324
White Breast Creek near Dallas (d)		
Lake Red Rock near Pella (e)		
Des Moines River near Pella (d)		
English Creek near Knoxville (d)		
Des Moines River near Tracy (d)		
Cedar Creek near Bussey (d)		
Des Moines River at Ottumwa (d)		
Des Moines River at Keosauqua (d)		
Fox River at Bloomfield (d)	. 05494300	346

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Iowa have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title

Station name	Station number	Drainage area (mi ²)	Period of record
		. ,	
Upper Iowa River near Decorah, Ia. (d)	05388000	568	1913-14; 1919-27, 1933-51
Paint Creek at Waterville, Ia. (d)	05388500	42.8	1952-73
Yellow River at Ion, Ia. (d)	05389000	221	1934-51
Sny Magill Creek near Clayton, Ia. (d)	05411400	27.6	1992-01
Turkey River at Spillville, Ia. (d)	05411600	177	1957-73; 1978-91
Big Springs near Elkader, Ia. (d)	05411950	103	1938; 1982-83; 1988-95
Turkey River at Elkader, Ia. (d)	05412000	891	1932-42
Unnamed Creek near Luana, Ia. (d)	05412056	1.15	1986-92
Silver Creek near Luana, Ia (d)	05412060	4.39	1986-98
Roberts Creek at St. Olaf, Ia. (d)	05412100	70.7	1986-01
Little Maquoketa River near Durango, Ia. (d)	05414500	130	1934-82
Maquoketa River near Manchester, Ia. (d)	05417000	305	1933-73
Maquoketa River near Delhi, Ia. (d)	05417500	347	1933-40
Bear Creek near Monmouth, Ia. (d)	05417700	61.3	1957-76
Maquoketa River above North Fork Maquoketa River near Maquoketa, Ia. (d)	05418000	938	1913-14
North Fork Maquoketa River at Fulton, Ia. (d)	05418450	516	1977-91
Elk River near Almont, Ia. (d)	05420300	55.9	1995-97
Wapsipinicon River near Elma, Ia. (d)	05420560	95.2	1958-92
Wapsipinicon River at Stone City, Ia. (d)	05421500	1,324	1903-14
Crow Creek at Eldridge, Ia. (d)	05422420	2.20	1977-82
Crow Creek at Mt. Joy, Ia. (d)	05422450	6.90	1977-82
Pine Creek near Muscatine, Ia. (d)	05448150	38.9	1975-82
Eagle Lake Inlet near Britt, Ia. (e)	05448285	3.83	1975-80
Eagle Lake Outlet near Britt, Ia. (e)	05448290	11.3	1975-80
West Branch (West Fork) Iowa River near Klemme, Ia. (d)	05448500	112	1948-58
East Branch (East Fork) Iowa River near Klemme, Ia. (d)	05449000	133	1948-76; 1977-95
Iowa River near Iowa Falls, Ia. (d)	05450000	665	1911-14
Upper Pine Lake at Eldora, Ia. (e)	05450500	14.9	1936-70
Lower Pine Lake at Eldora, Ia. (e)	05451000	15.9	1936-70
Iowa River near Belle Plaine, Ia. (d)	05452500	2,455	1939-59
Lake Macbride near Solon, Ia. (e)	05453500	27.0	1937-71
Ralston Creek at Iowa City, Ia. (d)	05455000	3.01	1924-87
Cedar River at Mitchell, Ia. (d)	05457500	826	1933-42
Shell Rock River near Northwood, Ia. (d)	05459000	300	1945-86
Shell Rock River at Marble Rock, Ia. (d)	05460500	1,318	1933-53
Shell Rock River at Greene, Ia. (d)	05461000	1,357	1933-42
Flood Creek near Powersville, Ia (d)	05461390	127	1996-98
Shell Rock River near Clarksville, Ia. (d)	05461500	1,626	1915-27; 1932-34
Fourmile Creek near Lincoln, Ia. (d)	05464130	13.8	1962-67; 1969-74; 1976-80
Half Mile Creek near Gladbrook, Ia. (d)	05464133	1.33	1962-67; 1969-74; 1976-80
Fourmile Creek near Traer, Ia. (d)	05464137	19.5	1962-74; 1975-80
Prairie Creek at Fairfax, Ia. (d)	05464640	178	1966-82
Lake Keomah near Oskaloosa, Ia. (e)	05472000	3.06	1936-71
Skunk River at Coppock, Ia. (d)	05473000	2,916	1913-44
Big Creek near Mount Pleasant, Ia. (d)	05473500	106	1955-79

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS—Continued

Station name	Station number	Drainage area (mi ²)	Period of record
Des Moines River at Estherville (d)	05476500*	1,372	1951-95
East Fork Des Moines River near Burt, Ia. (d)	05478000	462	1951-74
Des Moines River near Fort Dodge, Ia. (d)	05479500	3,753	1911-13
Lizard Creek near Clare, Ia. (d)	05480000	257	1940-82
Des Moines River near Boone, Ia. (d)	05481500	5,511	1920-68
North Raccoon River near Newell, Ia. (d)	05482135*	233	1982-95
Storm Lake at Storm Lake, Ia. (e)	05482140	28.3	1970-75
Big Cedar Creek near Varina, Ia. (d)	05482170	80.0	1960-91
East Fork Hardin Creek near Churdan, Ia. (d)	05483000	24.0	1953-91
Hazelbrush Creek near Maple River, Ia. (d)	05483343	9.22	1990-94
Springbrook Lake near Guthrie Center, Ia. (e)	05483460	5.18	1936-71
Raccoon River at Des Moines, Ia. (e)	05485000	3,628	1902-03
ake Ahquabi near Indianola, Ia. (e)	05487000	4.93	1936-71
White Breast Creek near Knoxville, Ia. (d)	05488000	380	1945-62
South Coal Creek near Bussey, Ia. (d)	05489090	12.9	1977-81
Muchakinock Creek near Eddyville, Ia (d)	05489190	70.2	1975-79
ake Wapello near Drakesville, Ia. (e)	05490000	7.75	1936-71
Sugar Creek near Keokuk, Ia. (d)	05491000	105	1922-31; 1958-73
Fox River at Cantril, Ia. (d)	05494500	161	1940-51
Rock River at Rock Rapids, Ia. (d)	06483270	788	1959-74
Ory Creek at Hawarden, Ia. (d)	06484000	48.4	1948-69
Vest Branch Floyd River near Struble, Ia. (d)	06600300*	108	1955-95
Monona-Harrison Ditch near Blencoe, IA (d)	06602410	4,440	1939-42
Loon Creek near Orleans, Ia. (d)	06603920	31.0	1971-74
Spirit Lake Outlet at Orleans, Ia. (e)	06604100	75.6	1971-74
		73.0 146	1971-74
Milford Creek at Milford, Ia. (d)	06604400	990	1936-42
Little Sioux River at Spencer, Ia. (d)	06605100		
Little Sioux River at Gillett Grove, Ia. (d)	06605600	1,334	1958-73
Little Sioux River near Kennebeck, Ia. (d)	06606700	2,738	1939-69
Odebolt Creek near Arthur, Ia. (d)	06607000	39.3	1957-75
Maple River at Turin, Ia. (d)	06607300	725	1939-41
Little Sioux River near Blencoe, Ia. (d)	06607510	4,440	1939-42
Steer Creek near Magnolia, Ia. (d)	06609200	9.26	1963-69
Chompson Creek near Woodbine, Ia. (d)	06609590	6.97	1963-69
Villow Creek near Logan, Ia. (d)	06609600	129	1972-75
ndian Creek at Council Bluffs, Ia. (d)	06610500	6.92	1954-76
Mosquito Creek near Earling, Ia. (d)	06610520	32.0	1965-79
Vaubonsie Creek near Bartlett, Ia. (d)	06806000	30.4	1946-69
West Nishnabotna River at Harlan, Ia. (d)	06807320	316	1977-82
Vest Nishnabotna River at (near) White Cloud, Ia. (d)	06807500	967	1918-24
Mule Creek near Malvern, Ia. (d)	06808000	10.6	1954-69
pring Valley Creek near Tabor, Ia. (d)	06808200	7.6	1955-64
Davids Creek near Hamlin, Ia. (d)	06809000	26.0	1952-73
Carkio River at Stanton, Ia. (d)	06811840*	49.3	1958-91
arkio River at Blanchard, Ia. (d)	06812000	200	1934-40
Vest Nodaway River at Villisca, Ia. (d)	06816500	342	1918-25
latte River near Diagonal, Ia. (d)	06818750*	217	1969-91
East Fork One Hundred and Two River near Bedford, Ia. (d)	06819190	92.1	1959-83
Elk River near Decatur City, Ia. (d)	06897950*	52.5	1968-94
Weldon River near Leon, Ia. (d)	06898400	104	1959-91
Honey Creek near Russell, Ia. (d)	06903500	13.2	1952-62
Chariton River near Centerville, Ia. (d)	06904000	708	1938-59

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following water-quality stations have been discontinued in Iowa. Continuous daily records of water temperature, specific conductance, or sediment and monthly or periodic samples of chemical quality or biological data were collected and published for the period of record shown for each station.

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record
Upper Iowa River at Decorah, Ia.	05387500	511	Sed. Temp.	1963-68 1963-83
Upper Iowa River near Dorchester, Ia.	05388250	770	Sed., Temp.*, Cond.*	1975-81
Paint Creek at Waterville, Ia.	05388500	42.8	Temp. Sed.	1952-56 1952-57
Unnamed Creek near Luana	05412056	1.15	Chem.	1986-92
Sny Magill Creek near Clayton, Ia.	05411400	27.6	Sed., Temp., Cond.	1992-01
Turkey River at Garber, Ia.	05412500	1,545	Temp.*, Sed.*	1957-62
Mississippi River at Dubuque, Ia.	05414700	81,600	Chem.	1969-73
Elk River near Almont, Ia	05420300	55.9	Sed., Temp., Cond.	1995-97
Mississippi River at Clinton, Ia	05420500	85,600	Sed.	1995-97
Wapsipinicon River near Tripoli, Ia	05420860	343	Chem.	1996-98
Wapsipinicon River at Independence, Ia.	05421000	1,048	Cond.* Temp.*, Sed.*	1968-70 1967-70
Crow Creek at Bettendorf, Ia.	05422470	17.8	Cond.*, Temp.*, Sed.	1978-82
Iowa River near Rowan, Ia.	05449500	429	Temp.*, Sed.* Chem.	1957-62 1996-98
Iowa River at Marshalltown, Ia	05451500	1,532	Temp., Sed.	1988-95
Iowa River at Iowa City, Ia.	05454500	3,271	Chem Temp.*, Sed. Cond.	1906-07; 1944-54 1944-87 1968-87
Ralston Creek at Iowa City, Ia.	05455000	3.01	Cond Sed. Temp.	1968-87 1952-87 1967-87
Flood Creek near Powersville, Ia	05461390	127	Chem.	1996-98
Shell Rock River at Shell Rock, Ia.	05462000	1,746	Temp.*	1953-68
Cedar River at Cedar Falls, Ia	05463050	4,734	Chem.	1975-79; 1984; 1986-1995
Cedar River near (at) Gilbertville, Ia.	05464020	5,234	Chem.	1971; 1975-81
Fourmile Creek near Lincoln, Ia.	05464130	13.78	Chem., Temp., Sed.	1969-74
Half Mile Creek near Gladbrook, Ia.	05464133	1.33	Chem., Temp., Sed.	1969-74
Fourmile Creek near Traer, Ia.	05464137	19.51	Chem., Temp., Sed.	1969-74
Wolf Creek near Dysart, Ia	05464220	299	Chem.	1996-98
Cedar River near Palo, Ia.	05464450	6,380	Chem.	1975-79
Cedar River at Cedar Rapids, Ia.	05464500	6,510	Chem.* Temp.* Sed.	1906-07; 1944-54 1944-54 1943-54
Cedar River near Bertram, Ia.	05464760	6,955	Chem.	1975-81
Iowa River at Wapello, Ia	05465500	12, 499	Chem.	1977-95
Mississippi River at Burlington, Ia.	05469720	114,000	Chem.	1969-73
South Skunk River at Colfax, Ia	05471050	803	Cond.*, Temp.*, Sed.	1989-93
Skunk River at Augusta, Ia	05474000	4,303	Chem.	1977-95
Mississippi River at Keokuk, Ia.	05474500	119,000	Chem.	1974-87
Des Moines River at Fort Dodge, Ia.	05480500	4,190	Chem.	1972-73
Des Moines River at 2nd Avenue at Des Moines, Ia.	05482000	6,245	Chem. Temp.*, Sed.	1954-55 1954-61
East Fork Hardin Creek near Churdan, Ia.	05483000	24.0	Temp.*, Sed.*	1952-57
Hazelbrush Creek near Maple River, Ia	05483343	9.22	Cond., Temp., Sed.	1991-94
Middle Raccoon River near Bayard, Ia.	05483450	375	Cond.*, Temp.*, Sed.	1979-85
Middle Raccoon River at Panora, Ia.	05483600	440	Cond.*, Temp.*, Sed.	1979-85

DISCONTINUED SURFACE-WATER-QUALITY STATIONS—Continued

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record
Raccoon River at Van Meter, Ia	05484500	3,441	Chem. Bio.	1974-79; 1986-94 1974-79
Raccoon River at Des Moines, Ia.	05485000	3,590	Chem., Temp.	1945-47
Des Moines River below Raccoon River at Des Moines, Ia.	05485500	9,879	Chem.* Temp.*, Sed.	1944-45 1944-47
Des Moines River below Des Moines, Ia.	05485520	9,901	Chem.	1971; 1974-81
Middle River near Indianola, Ia.	05486490	503	Temp.*, Sed.	1962-67
White Breast Creek near Dallas, Ia.	05487980	342	Chem. Temp.*, Sed.	1969-73 1967-73
Big Sioux River at Sioux City, Ia.	06485950	9,410	Chem.	1969-73
Missouri River at Sioux City, Ia.	06486000	314,600	Chem.	1972-86
			Sed.	1972-76; 1977-81; 1991-00
Floyd River at James, Ia.	06600500	886	Temp.*, Sed., Cond.*	1968-73
Floyd River at Sioux City, Ia.	06600520	921	Chem.	1969-73
Missouri River at Decatur, Neb.	06601200	316,160	Chem.	1974-81
Spirit Lake near Orleans, Ia.	06604000	75.6	Temp.	1968-75
Little Sioux River at Correctionville, Ia.	06606600	2,500	Chem.* Temp.* Sed.	1954-55 1951-62 1950-62
Little Sioux River near Kennebec, Ia.	06606700	2,738	Temp. Sed.	1951-55 1950-57
Little Sioux River at River Sioux, Ia.	06607513	3,600	Chem.	1969-73
Soldier River near Mondamin, Ia.	06608505	440	Chem.	1970-73
Steer Creek near Magnolia, Ia.	06609200	9.26	Temp., Sed., Cond.	1963-69
Thompson Creek near Woodbine, Ia.	06609590	6.97	Temp., Sed., Cond.	1963-69
Willow Creek near Logan, Ia.	06609600	129	Cond., Temp. Sed.	1972-75 1971-75
Missouri River at Omaha, Nebr.	06610000	322,800	Cond.*	1969-86
Mule Creek near Malvern, Ia.	06808000	10.6	Temp. Sed.	1958-69 1954-69
Davids Creek near Hamlin, Ia.	06809000	26.0	Temp.* Sed.	1952-53; 1965-68 1952-68
East Nishnabotna River at Red Oak, Ia.	06809500	894	Temp.*, Sed., Cond.*	1962-73
Nishnabotna River above Hamburg, Ia.	06810000	2,806	Chem. Temp.*, Cond. Bio.	1979-93 1979-81 1979-81
Nodaway River at Clarinda	06817000	762	Cond.*, Temp.*, Sed.	1976-92
Platte River near Diagonal, Ia.	06818750	217	Chem.	1969-73
Elk Creek near Decatur City, Ia.	06897950	52.5	Bio. Chem.	1970-72 1968-94
Thompson River at Davis City, Ia.	06898000	701	Chem. Temp.*, Sed., Cond.*	1967-73 1968-73
Weldon River near Leon, Ia.	06898400	104	Chem.	1968-73
Chariton River near Chariton, Ia.	06903400	182	Temp.*, Sed., Cond.*	1969-73
Honey Creek near Russell, Ia.	06903500	13.2	Sed.	1952-62
Chariton River near Rathbun, Ia.	06903900	549	Temp.*, Sed.*, Cond.*	1962-69

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled "Water Resources Data - Iowa" as part of the National Water Data System. This report is available in a printable, electronic form on our website.

Water resources data for water year 2002 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 133 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 12 gaging stations; and water levels for 157 ground-water observation wells. Also included are peak-flow data for 91 crest-stage partial-record stations, water-quality data from 89 municipal wells, and precipitation data collected at 6 gaging stations and 1 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they were published in 5-year series. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States, or they may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water is published in official U.S. Geological Survey reports on a State-boundary basis. These official reports carry an identification number consisting of the two-letter State postal abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report IA-02-1." These water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

Additional information for ordering specific reports may be obtained from the Director, Water Resources Programs for the State of Iowa, at the address given on the back of the title page or by telephone, (319) 337-4191.

COOPERATION

The U.S. Geological Survey and organizations in the State of Iowa have had cooperative agreements for the systematic collection of streamflow records since 1914, for ground-water levels since 1935, and for water-quality records since 1943. Organizations that assisted in collecting data through cooperative agreements with the U.S. Geological Survey in Iowa during water year 2002 are:

Iowa Department of Natural Resources (Geological Survey Bureau) Iowa Department of Transportation Iowa Highway Research Board

Iowa State University University of Iowa, Institute of Hydraulic Research University of Iowa, Hygienic Laboratory University of Iowa

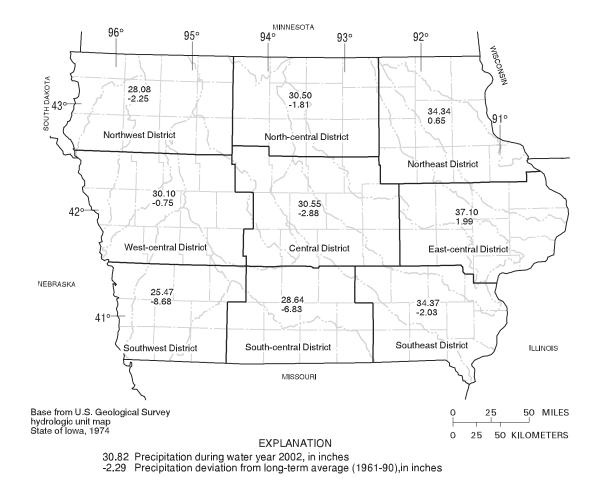
Appanoose County Board of Supervisors
Buchanan County emergency Management
Davis County Board of Supervisors
Freemont County Board of Supervisors
Lake Delhi Recreation Association
Lake Panorama Association
Limestone Bluffs RC&D
Van Buren County Board of Supervisors

City of Waverly

City of Ames City of Bettendorf City of Bloomfield City of Burlington City of Cedar Rapids City of Charles City City of Clear Lake City of Clinton City of Coralville City of Davenport City of Decorah Water Department City of Des Moines City of Fort Dodge City of Des Moines Water Works City of Iowa City City of Marshalltown City of Milford City of Mt. Pleasant City of Ottumwa City of Cedar Falls Ottumwa Water and Hydro Plant City of Sioux City City of Waterloo Water Pollution Control Plant City of West Des Moines

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers in collecting streamflow records for 73 stream gaging stations. Assistance also was furnished by NOAA-National Weather Service, U.S. Department of Commerce, and Biological Resources Division (BRD) of U.S. Geological Survey.

The following organizations aided in collecting records: Milford Municipal Utilities, Central Iowa Energy Cooperative, and Ameren-Union Electric Company.


Organizations that supplied data are acknowledged in the station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

For water year 2002 (October 1, 2001 to September 30, 2002) climatological conditions were well below normal. Recorded precipitation for the year ranged from 1.99 inches greater than normal in the East Central Iowa Climatological District to 8.68 inches less than normal in the Southwest Iowa Climatological District (fig. 1). Precipitation recorded for the State averaged 30.82 inches, which was 2.29 inches below normal, or 93 percent of the normal 33.11 inches for 1961-90 (table 1). Overall, water year 2002 was the 53rd driest and 10th warmest for 129 years of record. [In this summary of hydrologic conditions, all data and statistics pertaining to precipitation and temperature in Iowa were provided by Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, (oral and written commun., 2002)].

Annual runoff for the period of record at index stations 05464500 Cedar River at Cedar Rapids, 05480500 Des Moines River at Fort Dodge, and 06810000 Nishnabotna River above Hamburg are shown in figure 2. The water-year 2002 runoff at Cedar Rapids was 1,908,000 acre-feet, which is 816,000 acre-feet less than the mean annual runoff for the period of record, 2,724,000 acre-feet. The water-year 2002 runoff at Fort Dodge was 659,400 acre-feet, which is 612,600 acre-feet less than the

Figure 1. Precipitation record for the National Weather Service's designated Climatological Districts for water year 2002 (source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 2002)

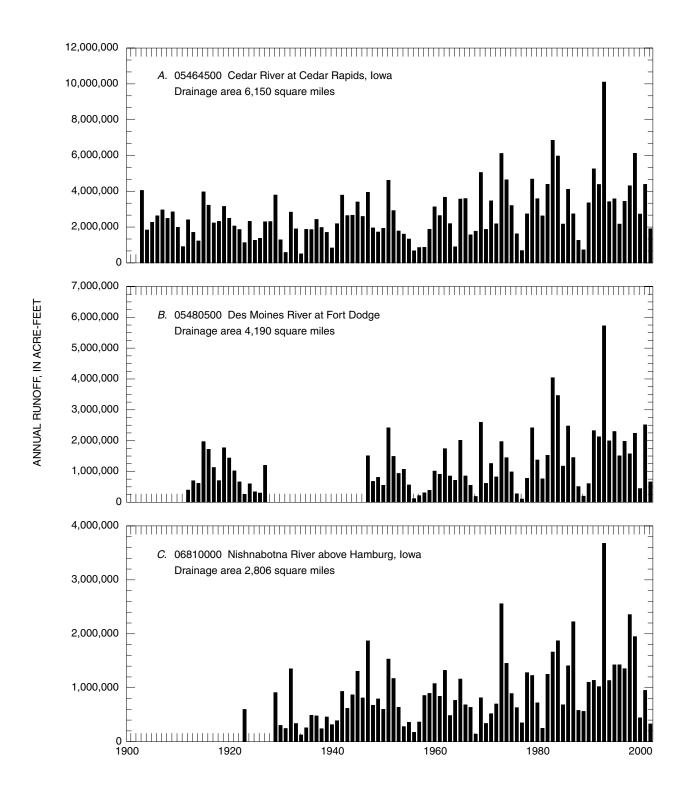
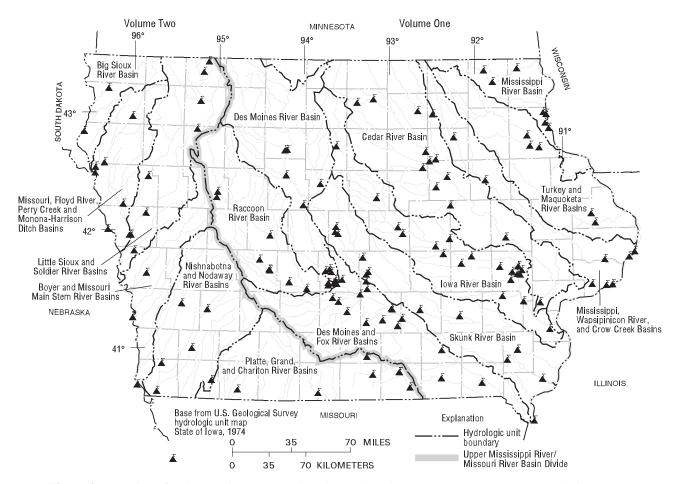


Figure 2. Annual runoff for period of record at index stations.

Table 1. Monthly and annual precipitation during the 2002 water year as a percentage of normal precipitation (1961-90).
[Source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship,
written commun., 2002]

National													
Weather Service Climatological		2001			2002								
District	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Annual
Northwest	50	240	41	37	79	59	99	77	75	66	189	56	92
North-central	62	116	78	35	129	46	107	68	65	125	187	58	94
Northeast	97	77	74	27	151	55	115	99	142	117	130	58	102
West-central	67	164	65	29	89	60	117	109	67	94	198	49	98
Central	100	71	57	39	108	37	119	91	71	128	147	48	91
East-central	148	67	81	47	106	65	133	120	114	159	107	46	106
Southwest	95	65	49	57	92	45	87	108	39	68	130	36	75
South-central	123	30	61	69	68	70	107	135	44	93	93	33	81
Southeast	151	39	72	93	86	75	131	154	117	58	116	21	94
Statewide	100	90	66	49	102	57	114	106	81	102	145	45	93

mean for the period of record, 1,272,000 acre-feet. The water-year 2002 runoff at Hamburg was 328,300 acre-feet, which is 591,500 acre-feet less than the mean for the period of record, 919,800 acre-feet.


The locations of the active continuous-record gaging stations in Iowa for water year 2002 are shown in figure 3. The locations of the active crest-stage gaging stations are shown in figure 4.

Suspended Sediment

Daily suspended-sediment discharge data (hereafter referred to as sediment discharge) were collected at 12 streamflow-gaging stations in Iowa during the 2002 water year. Four stations have 24 years or more of record: 05389500 Mississippi River at McGregor, 05465500 Iowa River at Wapello, 05474000 Skunk River at Augusta, and 05481650 Des Moines River near Saylorville; two stations on the Missouri River have 16 years of record: 06610000 Missouri River at Omaha, Nebraska and 06807000 Missouri River at Nebraska City, Nebraska; one station in northeast Iowa has 11 years of record: 05389400 Bloody Run Creek near Marquette; two sediment stations were established (2001) in northeast/east-central Iowa to monitor sediment movement in the Maquoketa River Basin; 05416900 Maquoketa River at Manchester and 05418500 Maquoketa River near Maquoketa; three stations in central Iowa have 7 years of record: 05471040 Squaw Creek near Colfax, 05487540 Walnut Creek near Prairie City, and 05487550 Walnut Creek near Vandalia. The locations of active sediment and surface water-quality stations are shown in figure 5.

The peak daily sediment discharge on 8 of 12 stations occurred between June 4-13, after significant rain events. Two others peaked August 23-26. Mississippi River at McGregor, which has most of its drainage basin in Minnesota and Wisconsin, had an annual sediment discharge of 1,012,000 tons, which was the eighth lowest sediment discharge in 27 years of record, and 61.4 percent of the average mean sediment discharge (fig. 6).

The sediment station on the Des Moines River near Saylorville in central Iowa is downstream from a major flood-control reservoir (Saylorville Reservoir). The annual sediment discharge at this station for water year 2002 was 48,558 tons. This represents 20.8 percent of the 25-year mean sediment discharge. The mean annual sediment discharge since dam completion is 234,000 tons (fig. 6).

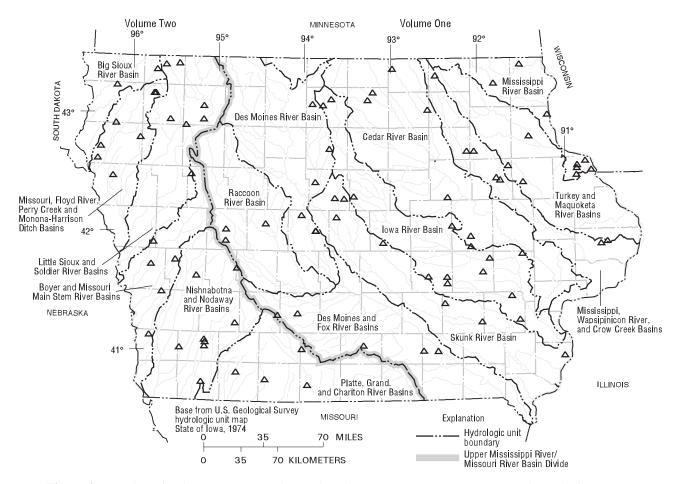


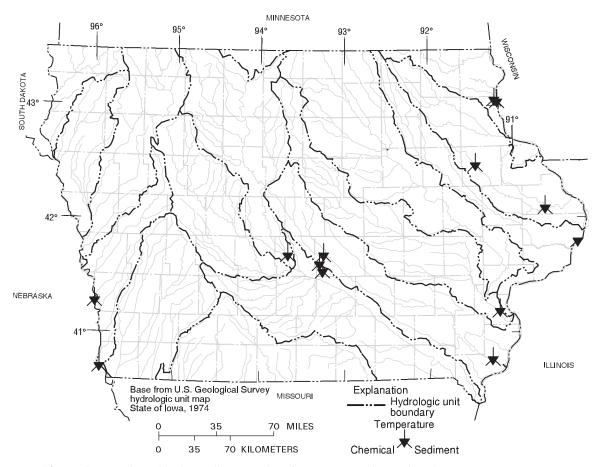
Figure 3. Location of active continuous-record gaging stations in Iowa, water year 2002. [See drainage basin maps in indicated volume for gaging-station identification.]

Sediment discharges for Iowa River at Wapello and Skunk River at Augusta in southeast Iowa were indicative of the below-normal precipitation in central and eastern Iowa. The Iowa River basin drainage includes parts of the Southeast, East-central, Central, Northeast, and North-central Climatological Districts, and drains an area nearly three times as large as the Skunk Basin. These districts had about 97 percent of normal precipitation. Wapello had an annual sediment discharge of 1.33 million tons. This represents 50.4 percent of the 24-year mean sediment discharge of 2.63 million tons (fig. 6). The headwaters of the Skunk River basin are in central Iowa and flow is southeasterly to the confluence with the Mississippi River. A substantial part of the drainage basin is located in the Southeast Climatological District. The annual precipitation for this district was 94 percent of normal for water year 2002. The 2002 annual sediment discharge for Skunk River at Augusta was 1.71 million tons, which is 62.6 percent of the 27-year mean sediment discharge of 2.73 million tons (fig. 6).

The 2002 annual sediment discharge for the small drainage basin in northeast Iowa; Bloody Run Creek near Marquette (05489400) was 589.8 tons with the largest percentage of total yearly runoff occurring in May at 14 percent. The annual runoff was 15.6 percent of the 11-year mean sediment discharge of 3,787 tons.

The annual sediment discharge for the new station in northeast Iowa, Maquoketa River at Manchester (05416900), was 38,590 tons; 85.9 percent of the yearly total was measured in June. The station in east-central Iowa, Maquoketa River near Maquoketa (05418500), had an annual sediment discharge of 1.06 million tons. Fifty-seven percent of the yearly total was measured in June.

Figure 4. Location of active crest-stage gaging stations in Iowa, water year 2002. [See drainage basin maps in indicated volume for gaging-station identification.]


The annual sediment discharge for the three stations located in central Iowa with less than approximately 20 square miles of drainage reflect precipitation patterns on small drainage basins. The annual sediment discharge for Squaw Creek near Colfax (05471040) was 893 tons. Fifty percent of Squaw Creek's annual sediment discharge was measured in June. The annual sediment discharge for Walnut Creek near Prairie City (05487540) was 248.7 tons, while Walnut Creek near Vandalia (05487550) was 3,706 tons of annual sediment discharge. Vandalia has a drainage area approximately three times the size of Prairie City, but had about 6.7 times the amount of sediment discharge of Prairie City.

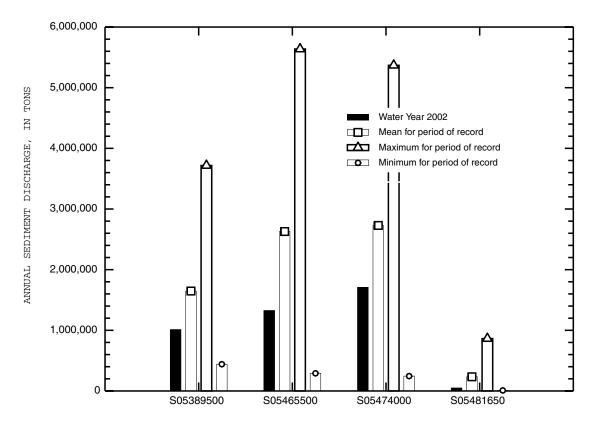
The two Missouri River stations have large drainage areas, which the sediment discharges reflect. The annual sediment discharge at Omaha was 6.76 million tons, which was 33 percent of the 16-year mean of 20.4 million tons. The annual sediment discharge at Nebraska City was 11.2 million tons, which was 36 percent of the 16-year mean of 31.6 million tons.

Ground-Water-Level Observation Network

The ground-water monitoring network in Iowa provides a historical record of the water-level changes in the Nation's most important aquifers. The locations of the 157 wells monitored on a quarterly, monthly, or intermittent basis in Iowa during water year 2002 are shown in figure 7.

In this report, records of water levels are presented for a network of observation wells. However, many other water levels are measured through Federal, State, and local agency cooperative projects and entered into computer storage. Information for

Figure 5. Location of active sediment and surface-water quality stations in Iowa, water year 2002.


specific projects may be obtained from the Director, Water Resources Programs for the State of Iowa, or via the world wide web using the following universal resource locator address: <URL:http://iowa.usgs.gov/>.

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The principal identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from an airline. The water-level measurements in this report are given in feet with reference to land-surface datum. Land-surface datum is a datum plane that is approximately at land surface at each well. The measuring point is the height above or below the land-surface datum and the point where the water level is measured. Both the measuring point and land-surface datum are provided for each well.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement to a depth of water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements

Figure 6. Comparison of annual sediment discharge for water year 2002 with mean, previous maximum, and previous minimum annual sediment discharges for periods of record at four long-term daily sediment stations

may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

Ground-water supplies in Iowa are withdrawn from unconsolidated and bedrock aquifers. There are three types of unconsolidated aquifers: (1) alluvial aquifers, which consist of sand-and-gravel deposits associated with present-day fluvial systems; (2) glacial-drift aquifers, which consist of shallow, discontinuous, permeable lenses of sand and gravel interbedded with less-permeable glacial drift; and (3) buried-channel aquifers. Buried-channel aquifers are formed in areas where coarse sand and gravel were deposited in bedrock valleys and overlain by a thick layer of glacial drift.

Six wells completed in an unconsolidated aquifer recorded a new historical water level during the 2002 water year. No wells recorded a high historical water level. Six wells recorded low historical water levels (table 2).

The five major bedrock-aquifer units in Iowa are the Cambrian-Ordovician, Silurian-Devonian, Mississippian, Pennsylvanian, and Dakota. The Cambrian-Ordovician aquifer system consists of aquifers in sandstone of Early Cambrian age and dolomite and sandstone of Late Cambrian to Early Ordovician age. The Dresbach is the basal aquifer of the Cambrian-Ordovician aquifer system and is present locally in northeastern and east-central Iowa. Overlying the Dresbach aquifer is the more aerially extensive Jordan-St. Peter aquifer. A confining shale unit separates the Jordan-St. Peter aquifer from the Galena aquifer, the uppermost aquifer in the Cambrian-Ordovician aquifer system. Overlying the Cambrian-Ordovician aquifer system is the Silurian-Devonian aquifer, which yields water from fractures in Silurian dolomite and Devonian limestone. Overlying the Silurian-Devonian aquifer is the Mississippian aquifer, which is composed of limestone and dolomite of Mississippian age and underlies about 60 percent of Iowa. Overlying the Mississippian aquifer are discontinuous lenses of sandstone in the Cherokee and Kansas City Groups of Pennsylvanian age, which form small, localized aquifers. The Dakota

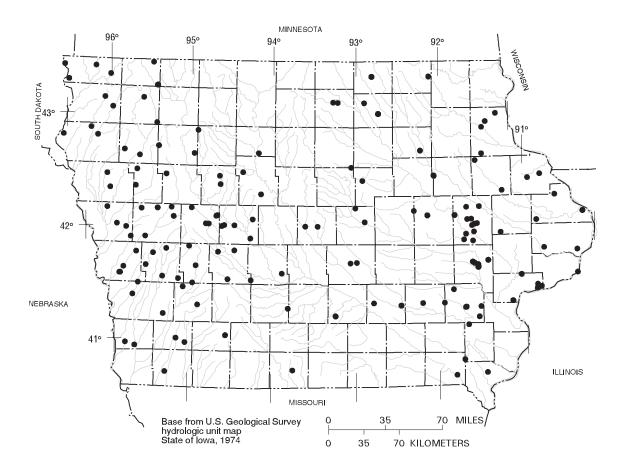


Figure 7. Location of wells in the ground-water-level observation network in Iowa, water year 2002.

Table 2. Historical low water level measured during the 2002 water year in wells completed in unconsolidated aquifers {Water-level measurements in feet below land surface]

County	Well number	Aquifer type	New historical low water level	Date measured	Previous historical low water level	Date measured
Adams	410248094324801	Glacial Drift	8.24	08/14/2002	5.45	11/30/2000
Carroll	420643094403701	Alluvial	68.68	08/14/2002	67.29	08/07/2000
Mills	405641095365101	Buried Channel	175.86	08/14/2002	171.94	11/10/1994
Shelby	413359095182701	Buried-channel	153.32	08/15/2002	153.32	04/12/1990
Shelby	413953095302601	Glacial-drift	20.10	10/29/2001	19.93	08/07/2000
Story	420137093361501	Glacial-drift	79.00	04/29/2002	76.06	08/08/2000

aquifer is the youngest bedrock-aquifer unit in the State and yields water from sandstone of Cretaceous age in northwest and western Iowa.

Thirty-four wells completed in bedrock aquifers recorded new historical water levels during the 2002 water year. Two wells recorded historical high water levels (table 3), and thirty-two wells recorded historical low water levels (table 4).

Table 3. Historical high water level measured during the 2002 water year in wells completed in bedrock aquifers. [Water-level measurements in feet below land surface; readings above land surface indicated by "+"]

			New historical		Previous historical	
County	Well number	Aquifer type	high water level	Date measured	high water level	Date measured
Ida	423107095383201	Mississippian	176.44	02/21/2002	177.06	08/06/2001
Jackson	420842090165703	Cambrian-Ordovician	4.16	05/08/2002	5.19	01/08/1986

Table 4. Historical low water level measured during the 2002 water year in wells completed in bedrock aquifers [Water-level measurements are in feet below land surface]

County	Well number	Aquifer type	New historical low water level	Date measured	Previous historical low water level	Date measured
Appanose	404103092404001	Cambrian-Ordovician	391.40	11/13/2001	389.00	02/08/1999
Audubon	413044094565601	Cretaceous	53.61	08/15/2002	53.55	04/21/1990
Calhoun	422339094375101	Cambrian-Ordovician	305	11/08/2001	296	08/09/2000
Cherokee	424132095480211	Cretaceous	157.60	08/14/2002	156.77	08/07/2000
Cherokee	424348095231601	Cretaceous	196.84	08/14/2002	196.17	11/02/1998
Clayton	425736091260303	Cambrian-Ordovician	185.83	05/24/2002	185.60	02/20/2001
Clinton	414921090450401	Silurian	125	08/13/2002	104	08/09/2001
Crawford	421005095342801	Cretaceous	249.57	08/14/2002	249.05	02/05/1982
Decatur	404422093445602	Cambrian-Ordovician	446.20	05/22/2002	445.22	07/26/2001
Dubuque	422901090471901	Cambrian-Ordovician	249.44	11/14/2001	248.02	05/04/1999
Floyd	430200092435301	Devonian	8.48	02/13/2002	7.40	02/14/2000
Floyd	430200092435303	Devonian	88.68	02/13/2002	83.41	02/14/2001
Floyd	430200092435304	Devonian	94.55	02/13/2002	89.07	02/14/2001
Floyd	430200092435305	Devonian	88.23	02/13/2002	83.13	02/14/2001
Floyd	430200092435306	Devonian	93.63	02/13/2002	88.44	02/06/1996
Floyd	430800092540301	Cambrian-Ordovician	201	04/30/2002	198	08/03/1999
Howard	432158092065801	Cambrian-Ordovician	355	11/07/2001	355	05/09/2000
Ida	422215095390811	Cretaceous	208.66	08/14/2002	208.27	11/20/2000
Jackson	420842090165701	Cambrian-Ordovician	10.92	08/13/2002	3.88	11/04/1982
Johnson	414132091345502	Silurian	261.11	07/09/2002	253.83	07/09/2001
Johnson	414132091345503	Silurian	324	07/09/2002	314	08/28/2001
Johnson	414145091350101	Cambrian-Ordovician	421	09/17/2002	419	08/28/2001

Table 4.	. Historical low water level measured during the 2002 water year in wells completed in bedrock aquifers—Continued
	[Water-level measurements are in feet below land surface]

County	Well number	Aquifer type	New historical low water level	Date measured	Previous historical low water level	Date measured
Lee	404306091270201	Cambrian-Ordovician	273.45	08/12/2002	271.77	08/07/2001
Madison	411727093483001	Mississippian	281.84	05/22/2002	281.43	07/26/2001
Mitchell	432156092484102	Devonian	12.87	02/13/2002	12.44	02/14/2000
Mitchell	432156092484103	Devonian	13.86	02/13/2002	13.32	02/14/2000
Mitchell	432156092484104	Devonian	17.21	02/13/2002	16.52	05/09/2000
Mitchell	432156092484105	Devonian	22.71	02/12/2002	22.16	05/09/2000
Plymouth	425249096125001	Cretaceous	126.30	10/30/2001	125.45	08/08/2000
Shelby	413255095070401	Cretaceous'	43.80	08/15/2002	43.23	12/04/2000
Sioux	430140095573101	Sioux	220.36	08/15/2002	219.57	02/05/1996
Sioux	430913096033201	Sioux	197.86	08/15/2002	196.72	08/08/2000

Surface-Water Quality

Surface-water-quality data was collected in Iowa during water year 2002 at two National Stream-Quality Accounting Network (NASQAN) stations. The NASQAN stations in Iowa are the Mississippi River at Clinton (station number 05420500) and Missouri River at Omaha (06610000). The combined drainage area of the two stations is approximately 408,000 square miles. Land use throughout the two drainage basins is primarily agricultural. Fifteen water samples were collected at Missouri River at Omaha, and thirteen water sample were collected at Mississippi River at Clinton during the 2002 water year.

Nearly all the samples collected at the two stations contained detectable concentrations of agricultural chemicals. Dissolved nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) were common during the 2002 water year, with all samples containing concentrations greater than the detection level of 0.05 mg/L (milligrams per liter).

Nitrate concentrations at Clinton ranged from 0.53 mg/L on August 12 to 2.49 mg/L, on June 7. Nitrate concentrations at Omaha ranged from 0.08 mg/L on Sept. 10 to 1.71 mg/L, on May 13. Nitrate concentrations in water samples did not exceed 10 mg/L, which is the U.S. Environmental Protection Agency (USEPA), Maximum Contaminate Level (MCL) for public drinking water (USEPA), 1990 Maximum contaminant levels, subpart B of part 141, National primary drinking water regulations: U.S.Code of Federal Regulations, Title 40, Parts 100 to 149, revised as of July 1, 1990, p.553-677). Pesticide analyses were completed for 27 water samples collected at the two NASQAN stations. Atrazine and metolachlor, two of the most commonly used herbicides in Iowa, were detected throughout the year at both NASQAN stations. Some of the detections of herbicide concentrations were at very low detection limits and are marked with an "E" code for an estimated value. An "E" code means the compound was detected but that the value is approaching quantifiable limits. Acetochlor was detected ten times at Omaha and ten times at Clinton. The largest herbicide concentration was 7.16 ug/L (micrograms per liter) of atrazine in the water sample collected from the Missouri River on June 12. The largest overall concentration of acetochlor, alachlor, atrazine, cyanazine, and metolachlor in a single event was on the Missouri River on May 13. This water sample had 3.75 ug/L of acetochlor, 0.007 ug/L of alachlor, 4.11 ug/L of atrazine, 0.04 ug/L of cyanazine, and 1.58 ug/L of metolachlor. The only herbicide that exceeded USEPA MCL's (USEPA,1992, Fact sheet: EPA 570/9-91-012FS, December 1992) was atrazine at both sites. The USEPA MCL for atrazine is 3.0 mg/L. The Mississippi River at Clinton had atrazine above the MCL on June 7 with a value of 3.66 mg/L. The Missouri River at Omaha had atrazine above the MCL both on May 13, (4.11) mg/L and June 12, (7.16) mg/L. Herbicide concentrations were generally larger in samples collected during May and June than in samples collected at other times during water year 2002. Water samples collected in September through March had the lowest overall concentrations of the five herbicides during the 2002 water year.

Ground-Water Quality

The Iowa ground-water-quality monitoring program has been operated since 1982 by the U.S. Geological Survey in cooperation with the Iowa Department of Natural Resources, Geological Survey Bureau. The purpose of the program is twofold: (1) provide consistent and representative data describing the chemical water quality of the principal aquifers of the State; and (2) determine possible trends in both water quality and spatial distribution of water quality.

The ground-water-quality monitoring program was initiated to continue a program begun in 1950 by the State Health Department that consisted of periodic, nonspecific sampling of untreated water from municipal supply wells. Each year, approximately 250 wells, primarily municipal supply, were randomly-selected for sampling between April and November. Between 1985 and 1989, the emphasis of the program was on the analysis of nitrate and herbicide concentrations in samples from wells less than 200 feet in depth. Because of the random pattern of sampling both spatially (different wells each year) and seasonally (different times during the year), trends in ground-water quality were difficult to determine from the data. Therefore, in 1990, to provide year-to-year continuity of data and a more statistically sound basis for the study of long-term water-quality trends, a sampling strategy based on a random selection of wells weighted by aquifer vulnerability was implemented. Aquifer vulnerability was determined by the frequency of atrazine detections in water samples collected from wells in the respective aquifers. In 1990 and 1991, a fixed network of 50 wells was selected to be sampled annually, and approximately 200 wells continued to be selected on a rotational basis.

In 1992, the investigation of water-quality trends became the primary focus of the program, and a 10-year work plan was designed to eliminate spatial and seasonal variance, yet allow flexibility within the schedule to address additional data needs. For sampling site selection in 1992, the well inventory was divided into categories based on aquifer type and again on well depth for surficial aquifers, and into categories designated "vulnerable to contamination" and "not vulnerable to contamination" based on the map Groundwater Vulnerability Regions of Iowa (Hoyer, B.E., and Hallberg, G.R., 1991, Special Map Series 11: Iowa Department of Natural Resources, scale 1:500,000) for bedrock aquifers. Vulnerability was determined by the combination and interpretation of factors including geologic and soil data, thickness of Quaternary cover, proximity to agricultural injection wells and sinkholes through which contaminants can be introduced to the aquifer, and evaluation of historical ground water and well contamination. A total of 90 sites were selected for sampling from a well inventory comprising approximately 1,640 public supply wells. From the 90 sites in the fixed network, 45 wells from two surficial aquifer types were selected to be sampled annually. The other 45 wells (from the bedrock aquifers) were selected to be sampled on a rotational schedule based on aquifer vulnerability to contamination. The wells determined to be vulnerable to contamination would be sampled every 2 years and those wells categorized as not vulnerable to contamination would be sampled every 4 years. All 90 wells were sampled in the first 2 years (1992 and 1993) and the sampling rotation began in 1994. In 2001, the sampling rotation was suspended in favor of sampling all 90 wells annually. The sampling effort during the 2002 water year is the eleventh year of this program to determine possible ground-water-quality trends.

Ground-Water Monitoring Network

During the 2002 water year, a total of 89 ground-water samples were collected from municipal wells located throughout the State (fig. 8). These wells were sampled as part of the Iowa ground-water-quality monitoring (GWM) program to determine water-quality trends. Ground-water is found in both surficial and bedrock aquifers. The surficial aquifers include: (1) alluvial aquifers comprising sand and gravel associated with present-day fluvial systems and (2) glacial drift and buried-channel aquifers associated with previous glaciation. The bedrock aquifers include: (1) Cretaceous aquifers comprised of fine-to coarse-grained sandstones of the Dakota Group (2) Mississippian aquifers composed primarily of porous limestones and dolomites (3) Silurian-Devonian aquifers composed of porous and fractured limestones and dolomites; and (4) Cambrian-Ordovician aquifers comprised of sandstones and dolomitic sandstones of the Jordon Formation. Samples were collected during July through early October 2002. All samples were analyzed by the University of Iowa Hygienic Laboratory for common ions, nutrients, and herbicides. All but one sample were analyzed for trace metals. In addition, most samples were analyzed for volatile organic compounds (VOCs) and radio chemistry. However, in a few cases only wells less than 300 feet deep were analyzed for VOCs and only wells deeper than 300 feet were analyzed for radio chemistry. Results for all constituent analyses are published in this report. Discussion of analytical results will be limited to the nitrogen species nitrate and ammonia, and herbicides.

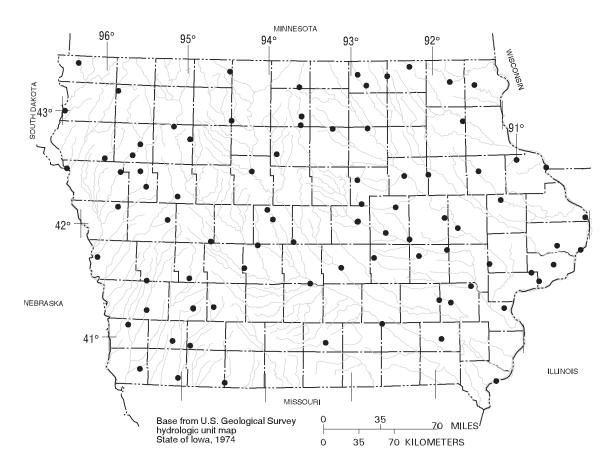


Figure 8. Location of active ground-water-quality monitoring wells in Iowa, water year 2002

A summary of results for nutrient and herbicide analyses are listed by compound in table 5. Nitrate was detected in 38 of the 89 samples and ammonia was detected in 54 of the 89 samples analyzed for these compounds. One or more herbicides were detected in 32 of the 89 samples. The laboratory minimum reporting level (MRL) for ammonia is 0.05 mg/L and nitrate is 0.10 mg/L. The MRL's for the herbicides listed below are 0.05 μ g/L. The MRL is the lowest concentration reliably measured by the laboratory.

Table 5. Summary of nitrogen species and herbicides detected in samples from the Ground-Water-Quality Monitoring project, water year 2002

[μg/L, micrograms per liter; mg/L, milligrams per liter; <, less than detection limit]

Number of samples in Number of which Maximum samples compound concentration Compound detected Median value detected analyzed Acetochlor 89 1 $< 0.05 \, \mu g/L$ $0.22 \,\mu\text{g/L}$ 89 54 0.13mg/L Ammonia 8.5 mg/L Alachlor 89 1 $< 0.05 \, \mu g/L$ $0.30 \,\mu g/L$ 89 17 Atrazine $< 0.05 \, \mu g/L$ $0.40 \,\mu g/L$ 89 0 $< 0.05 \, \mu g/L$ $< 0.10 \,\mu g/L$ Butylate Cyanazine 89 0 $< 0.05 \, \mu g/L$ $< 0.10 \,\mu g/L$ Deethylatrazine 89 6 $< 0.05 \, \mu g/L$ $0.20~\mu g/L$ Deisopropylatrazine 89 1 $< 0.05 \, \mu g/L$ $0.10 \,\mu g/L$ 7 $< 0.05 \, \mu g/L$ Metolachlor 89 $3.6 \mu g/L$ Metribuzin 89 0 $< 0.05 \mu g/L$ $< 0.05 \,\mu g/L$ 38 Nitrate 89 < 0.10 mg/L 19.0 mg/L Prometone 89 2 $< 0.05 \mu g/L$ $0.1 \mu g/L$ 0 Trifluralin 89 $< 0.05 \mu g/L$ $0.10 \,\mu g/L$

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/.

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/nawqa_home.html

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 2002 water year that began October 1, 2001 and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data was collected are shown in figures 3-5, 7, 8. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report was collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations, and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is immediately tributary, is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 05388250, which appears just to the left of the station name, includes the two-digit Part number "05" plus the six-digit downstream-order number "388250." The Part number designates the major river basin; for example, Part "05" is the Mississippi River Basin.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude (fig. 9). The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no additional significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description.

Numbering System For Wells

Each well is identified by means of (1) a 15-digit number that is based on the grid system of latitude and longitude, and (2) a local number that is provided for continuity with older reports and for other use as dictated by local needs. The local well numbers are in accordance with the Bureau of Land Management's system of land subdivision. Each well number is made up of three segments. The first segment indicates the township, the second the range, and the third the section in which the well is

located (fig. 10). The letters after the section number, which are assigned in a counter-clockwise direction (beginning with "A" in the northeast quarter), represent subdivisions of the section. The first letter denotes a 160-acre tract, the second a 40-acre tract, the third a 10-acre tract, and the fourth a 2.5 acre tract. Numbers are added as suffixes to distinguish wells in the same tract. Thus, the number 96-20-3CDBD1 designates the well in the SE 1/4 NW 1/4 SE 1/4 SW 1/4 sec.3, T.96 N., R.20 W.

Latitude and longitude coordinates for wells:

- 2. 414315091252002
- 3. 414316091251901

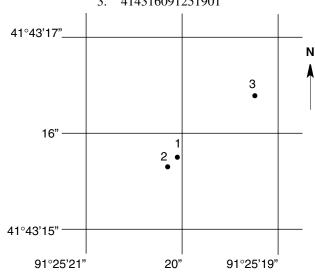


Figure 9. Latitude-longitude well number

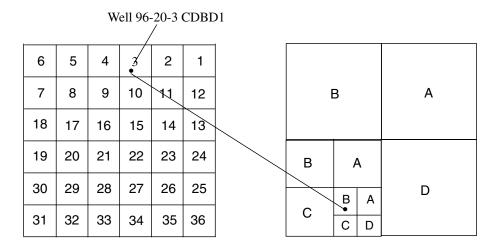


Figure 10. Local well-numbering system for well 96-20-3 CDBD1.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." Location of all complete-record surface water stations which are given in this report are shown in figure 3.

Partial records are obtained through discrete measurements without using a continuous stage-recording device, and generally pertain only to a characteristic of either high, medium or low flow. The location of all active, crest-stage gaging stations are shown in figure 4.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consists of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. This data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consists of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. This data is used with stage-capacity curves or tables to compute lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed using stage-discharge relations.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For these periods, the daily discharges are estimated from the recorded range in stage, discharge computed before and after the missing record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table, and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preference.

The records published for each continuous-record surface-water discharge station (gaging station) consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of

discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given

GAGE.--The type of gage in current use, the datum of the current gage sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Extremes are published only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.-If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWEB [http://water.usgs.gov/nwis/nwis]. Because of the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWEB to ensure the most recent updates. Updates to NWISWEB are currently made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current, and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted, and the information contained in these paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. EXTREMES FOR PERIOD OF RECORD are

now presented only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. No changes have been made to the data presentations of lake contents or reservoir storage.

Data Table of Daily Mean Values

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR PERIOD OF RECORD, BY WATER YEAR (WY)," for unregulated streams for the water years listed in the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams, the first and last water years of the range of years will be given for the post-regulation period.

Summary Statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year, but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "PERIOD OF RECORD," for unregulated streams, will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams, the period selected will be designated as "WATER YEARS ____ - ___," for the post regulation period. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.
- LOWEST ANNUAL MEAN .-- The minimum annual mean discharge occurring for the designated period.
- HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period.
- LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
- Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
- Cubic feet per second per square mile (CSFM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
- Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage

stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description, and are flagged "e" in tables.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft ³/s the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures for more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in various field offices of the Iowa District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near streamgaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data is collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data is collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data is obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 5.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, alkalinity and dissolved oxygen, are made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap.A1-A9.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain the representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors, which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

Water Temperature and Specific Conductance

Water temperatures are measured at most of the water-quality stations. The measurement of temperature and specific conductance is performed during each regular site visit (usually at a six week interval) to streamgaging stations. Records of stream temperature indicate significant thermal characteristics of the stream when analyzed over a long period of record. Large streams have small daily temperature variations, while shallow streams may have a daily range of several degrees and may closely follow the changes in air temperature. Furthermore, some streams may be affected by waste-heat discharge.

Specific conductance can be used as a general indicator of stream quality. This determination is easily made in the field with a portable meter, and the results are very useful as general indicators of dissolved-solids concentration or as a base for extrapolating other analytical data. Records for temperature and specific conductance appear in the section "Analyses of samples collected at miscellaneous sites".

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samples. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily, or in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended-sediment, records of the periodic measurements of the particle-size distribution of the suspended-sediment and bed material are included. Miscellaneous suspended-sediment samples were collected during flood events have been included with the station's water quality data or in the section "Analyses of samples at miscellaneous sites".

Laboratory Measurements

Sediment samples, samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado and the University of Iowa Hygienic Laboratory. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratories are given in TWRI, Book 1, Chap. D2, Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remarks Codes

The following remarks codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
Е	Estimated value
>	Actual value is know to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant
V	Analyte was detected in both the environmental sample and the associated blank

Water Quality-Control Data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are:

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this District are:

Sequential samples - a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Dissolved Trace-Element Concentrations

Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (η g/L). Data above the μ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, Il 61820-7495 (217-333-7873).

Records of Ground-Water Levels

Ground-water level data from a network of observation wells in Iowa are published in this report. This data provides a limited historical record of water-level changes in the State's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 7. Information about the availability of the data in the water-level files and reports of the U.S. Geological Survey may be obtained from the Iowa District Office (see address on back of title page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensures that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are arranged alphabetically by counties. The site identification number, based on latitude and longitude, for a given well is the 15-digit numeric value that appears in the upper left corner of the station description. The secondary identification number is the local well number, an alphanumeric value, derived from the township, range, and section location of the well (fig. 10).

Water-level records are obtained from direct measurements with a chalked steel tape, electric line, airline, or from the graph of a water-level recorder. The water-level measurements in this report are in feet with reference to land-surface datum. Land-surface datum is a plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water-level measurements are reported to the nearest hundredth of a foot. Estimates, indicated by an "e" may be reported in tenths of a foot. Adjustments to the water level recorder chart are indicated by an "a". The error of water-level measurements may be, at most, a few hundredths of a foot.

Data Presentation

Each well record consists of two parts: the station description, and the table of water levels observed during the water year. The description of the well is presented by headings preceding the tabular data. The following explains the information presented under each heading.

LOCATION.--This paragraph follows the well identification number and includes the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic unit number, the distance and direction from a geographic point of reference, and the well owner's name.

AQUIFER.--This entry is the aquifer(s) name (if one exists) and geologic age of the strata open to the well.

WELL CHARACTERISTICS.--This entry describes the well depth, casing diameter, casing depth, opening or screened interval(s), method of construction, and use of water from the well.

INSTRUMENTATION.--This paragraph provides information on the frequency of measurement and the collection method used.

DATUM.--This entry includes the land-surface elevation and the measuring point at the well. The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision depending on the method of determination. The measuring point is described physically and in relation to land surface.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level, and any information not presented in the other parts of the station description but considered useful.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the beginning of publication of water-level records by the U.S. Geological Survey.

REVISED RECORDS.--If any revisions of previously published data were made for water-levels, the Water Data Report in which they appeared and year published would appear here.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels for the period of record, below land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum. For wells equipped with recorders, only abbreviated tables are published. The highest and lowest water levels of the water year and the dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Hydrographs which are representative of hydrologic conditions in the important aquifers in Iowa are included for 20 wells.

Only water-level data from a national network of observation wells are given in this report. This data is intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 7.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites, they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes: one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular

problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

The records of ground-water quality in this report were obtained as a part a statewide ground-water quality monitoring network operated by the Iowa District. All samples were obtained from municipal wells throughout Iowa. This program is conducted in cooperation with the University of Iowa Hygienic Laboratory (UHL) and the Iowa Department of Natural Resources (Geological Survey Bureau). All samples are collected by USGS personnel, field-preserved and submitted to UHL for analysis. Chemical analyses include common constituents (major ions), nutrients, organic compounds, radio nuclides and pesticides. Approximately 10 percent of the samples receive additional analyses for about 90 organic priority pollutants; however, these analyses are not presented in this report, but are on file in the Iowa District Office.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material comprising the casings. The samples collected represent raw water.

Data Presentation

The records of ground-water quality are published in a section titled GROUND-WATER QUALITY DATA immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by county, and are identified by station number. The prime identification number for wells sampled is the 15-digit station number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the station number, date and time of sampling, depth of well, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

Explanation of Quality of Ground-Water Data Tables -- Descriptive Headings

Station number	Local well number	Date	Local well name	County	Sample date	Sample time	Aquifer code	Total depth of well (ft)
411441094401602	075N33W32CDDD	1943	BRIDGEWATER 1	ADAIR	08-11-92	1130	111ALVM	49

STATION NUMBER: 15-digit number based on grid system of latitude and longitude.

LOCAL WELL NUMBER: Refers to the Bureau of Land Management System of land subdivision.

DATE: The date that construction on the well was completed.

LOCAL WELL NAME: Name used by community to identify well.

COUNTY: The name of the county where the well is located.

SAMPLE DATE: Date the well was sampled. SAMPLE TIME: Time the sample was collected.

AQUIFER CODE: Refers to the lithologic unit in which the well is completed. Derived from two digits of the geologic unit, the principal unit which provides the majority of water to the well:

11 - Quaternary33- Mississippian36 - Ordovician21 - Cretaceous34 - Devonian37 - Cambrian

32 - Pennsylvanian 35 - Silurian

The third digit and remaining alphabetic characters refer to the more specific lithologic unit which the well is tapping. The following examples are commonly used units:

CodeGeneralSpecific111ALVMQuaternary(alluvium)

217DKOT Cretaceous (Dakota sandstone)
344CDVL Devonian (Cedar Valley limestone)

DEPTH OF WELL, TOTAL (FT): Total depth of well in feet.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). This data may be accessed at:

http://www.usgs.gov

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape, 3-1/2 inch floppy disk or compact disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.)

The Iowa District maintains a web site highlighting many of the District's activities. Many of the continuous stream gages presented in these reports have near-real-time data available, and all gages have historic data available. This data may be accessed at:

http://ia.water.usgs.gov

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphaterich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acrefeet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date

of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

Aspect is the direction toward which a slope faces with respect to the compass.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each

station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^3$ h cylinder πr^3 h.

pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination

and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent

that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the

result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site:*

http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N}$$
,

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a

sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV—a term that is no longer used.]

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_{o}e^{-\lambda L}$$
,

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. *See NOAA web site:*

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or **low tide** is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the

MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.

Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined

from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter

National Geodetic Vertical Datum of 1929 (NGVD of

1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")

Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.

Open or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or **volatile mass** of a living substance is the difference between the dry mass and ash mass and

represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral.

The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive

carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrecurrences of the specified low flow).

rence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these

datums. See conversion factors and vertical datum page (inside back cover) for identification of the datum used in this report.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-

solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-

weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge

of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (**Species**) **richness** is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta
Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia
Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the

composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology

used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be

scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1–D1. Water temperature—influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2–D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. *Application of drilling, coring, and sampling techniques to test holes and wells*, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3-A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3. chap. A5. 1967. 29 p.
- 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.

- 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Alo. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3–A21 *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3–B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.

- 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4–A1. Some statistical tools in hydrology, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4–B1. Low-flow investigations, by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5, 1993. 243 p.

- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A5,1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7, 2002. 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

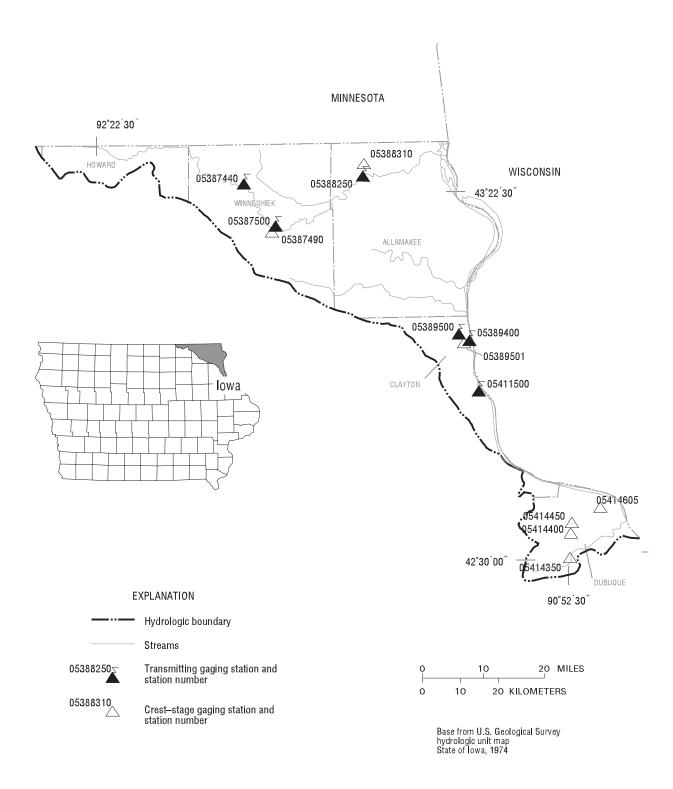
- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge


8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

THIS PAGE IS INTENTIONALLY BLANK

Figure 11. Locations of active continuous-record and crest-stage gaging stations in the Mississippi River drainage basin (northeast Iowa).

Gaging Stat	ions
05387440	Upper Iowa River at Bluffton, IA
05387500	Upper Iowa River at Decorah, IA
05388250	Upper Iowa River near Dorchester, IA
05389400	Bloody Run Creek near Marquette, IA
05389500	Mississippi River at McGregor, IA
05411500	Mississippi River at Clayton, IA
Crest Stage	Gaging Stations
crest stage	daging beacions
05387490	Dry Run Creek near Decorah, IA
05388310	Waterloo Creek near Dorchester, IA
05389501	Mississippi River Tributary at McGregor, IA
05414350	Little Maquoketa River near Graf, IA
05414400	Middle Fork Little Maquoketa River near Rickardsville, IA 351
05414450	North Fork Little Maquoketa River near Rickardsville, IA 351
05414605	Bloody Run Tributary near Sherrill, TA

54 MISSISSIPPI RIVER BASIN

05387440 UPPER IOWA RIVER AT BLUFFTON, IA

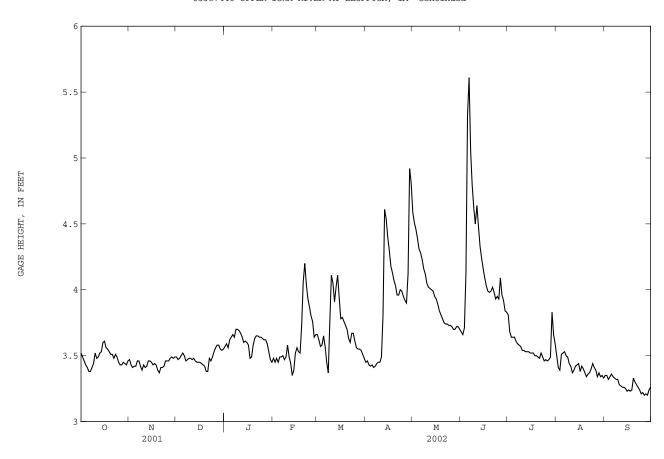
LOCATION.--Lat $43^{\circ}24^{\circ}25^{\circ}$, long $91^{\circ}53^{\circ}56^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec.10, T.99 N., R.9 W., Winneshiek County, Hydrologic Unit 07060002, on left bank 10 ft downstream of bridge on County Highway W20, 0.5 miles upstream of Silver Creek, and 9.3 mi upstream from Decorah.

DRAINAGE AREA. -- 367 mi².

PERIOD OF RECORD.--September 1957 to July 1977; low-flow measurement site: October 20, 1999 to current year.

GAGE.--Water-stage recorder. Datum of gage is 945.50 ft. above NGVD of 1929.

REMARKS.--Records good. U.S. Geological Survey satellite and telephone modem data collection platform at station.


EXTREMES FOR CURRENT WATER YEAR.--Maximum gage height 5.85 ft June 6; minimum gage height 3.16 ft Sept. 24, 28.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of March 27, 1961, discharge 20,200 ft 3 /s; Flood of June 21, 1954, discharge 13,600 ft 3 /s; on basis of peak flow at Decorah gage, downstream 11.0 miles.

GAGE HEIGHT from dcp, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.52	3.47	3.49	3.57	3.48	3.66	3.45	4.59	3.68	3.81	3.50	3.35
2	3.49	3.43	3.47	3.59	3.45	3.62	3.46	4.51	3.66	3.68	3.41	3.35
3	3.46	3.41	3.48	3.56	3.48	3.57	3.43	4.46	3.71	3.64	3.39	3.32
4	3.43	3.42	3.50	3.62	3.45	3.58	3.42	4.39	4.13	3.64	3.51	3.34
5	3.41	3.42	3.52	3.64	3.49	3.65	3.43	4.31	5.32	3.64	3.52	3.36
6	3.38	3.46	3.50	3.66	3.49	3.57	3.41	4.28	5.61	3.61	3.53	3.34
7	3.38	3.46	3.46	3.64	3.50	3.45	3.42	4.23	5.05	3.59	3.50	3.33
8	3.41	3.42	3.47	3.70	3.47	3.37	3.44	4.16	4.79	3.58	3.49	3.32
9	3.44	3.39	3.48	3.70	3.49	3.76	3.45	4.12	4.62	3.57	3.44	3.32
10	3.52	3.43	3.48	3.69	3.58	4.11	3.45	4.05	4.50	3.54	3.42	3.28
11	3.48	3.41	3.47	3.67	3.49	4.05	3.49	4.02	4.64	3.54	3.37	3.27
12	3.49	3.42	3.48	3.64	3.44	3.91	3.81	4.01	4.48	3.53	3.39	3.26
13	3.52	3.46	3.46	3.60	3.35	4.02	4.61	4.00	4.33	3.53	3.42	3.26
14	3.53	3.46	3.45	3.61	3.39	4.11	4.54	3.99	4.24	3.53	3.43	3.25
15	3.60	3.45	3.45	3.60	3.52	3.94	4.40	3.95	4.16	3.52	3.44	3.23
16	3.61	3.43	3.45	3.58	3.56	3.78	4.30	3.93	4.09	3.52	3.38	3.24
17	3.56	3.44	3.44	3.48	3.53	3.79	4.18	3.89	4.03	3.52	3.42	3.23
18	3.55	3.43	3.43	3.49	3.52	3.76	4.13	3.84	3.99	3.50	3.40	3.24
19	3.53	3.39	3.42	3.58	3.73	3.73	4.07	3.81	3.98	3.50	3.37	3.33
20	3.51	3.37	3.38	3.63	4.06	3.70	4.03	3.78	3.99	3.49	3.34	3.30
21	3.51	3.41	3.38	3.65	4.20	3.63	3.96	3.75	4.02	3.48	3.36	3.28
22	3.48	3.41	3.48	3.65	4.04	3.60	3.96	3.74	3.98	3.52	3.37	3.26
23	3.51	3.42	3.46	3.64	3.93	3.67	4.00	3.74	3.93	3.49	3.40	3.24
24	3.49	3.46	3.49	3.64	3.87	3.67	3.99	3.73	3.95	3.46	3.44	3.21
25	3.45	3.46	3.53	3.63	3.80	3.61	3.95	3.73	3.93	3.47	3.41	3.22
26 27 28 29 30 31	3.43 3.45 3.44 3.43 3.46	3.46 3.48 3.49 3.48 3.49	3.56 3.58 3.58 3.55 3.55 3.54	3.62 3.62 3.59 3.53 3.47 3.45	3.76 3.64 3.66 	3.56 3.55 3.55 3.54 3.51 3.48	3.92 3.90 4.12 4.92 4.81	3.72 3.70 3.70 3.72 3.72 3.72	4.09 3.96 3.92 3.84 3.83	3.46 3.47 3.49 3.83 3.66 3.59	3.39 3.34 3.37 3.34 3.35 3.33	3.20 3.21 3.20 3.24 3.26
MEAN	3.48	3.44	3.48	3.60	3.62	3.69	3.92	3.98	4.21	3.56	3.41	3.27
MAX	3.61	3.49	3.58	3.70	4.20	4.11	4.92	4.59	5.61	3.83	3.53	3.36
MIN	3.38	3.37	3.38	3.45	3.35	3.37	3.41	3.70	3.66	3.46	3.33	3.20

05387440 UPPER IOWA RIVER AT BLUFFTON, IA--Continued

56 MISSISSIPPI RIVER BASIN

05387500 UPPER IOWA RIVER AT DECORAH, IA

LOCATION.--Lat $43^{\circ}18'19"$, long $91^{\circ}47'48"$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.16, T.98 N., R.8 W., Winneshiek County, Hydrologic Unit 07060002, on right bank 1,200 ft upstream of bridge on College Street, 0.8 miles downstream from Dry Run Creek Cutoff, and 3.0 miles upstream from Trout Run.

DRAINAGE AREA.--511 mi².

PERIOD OF RECORD.--Discharge records from August 1951 to September 1983; Stage only records from October 20, 1999 to current year.

GAGE.--Water-stage recorder. Datum of gage is 850.00 ft. above NGVD of 1929.

REMARKS.--Records good. U.S. Geological Survey satellite and telephone modem data collection platform at station.

EXTREMES FOR CURRENT WATER YEAR.--Maximum gage height 5.28 ft May 8; minimum gage height 2.64 Dec. 21.

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum flood known, probably since at least 1913, occurred May 29, 1941, at site of former gaging station near Decorah, 4 miles downstream, discharge, $28,500~{
m ft}^3/{
m s}$.

GAGE HEIGHT, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.96 2.95 2.94 2.94 2.95	2.92 2.92 2.91 2.90 2.90	2.93 2.91 2.92 2.91 2.92	 	2.78 2.89 2.87 3.02 3.02	3.11 2.94 2.98 3.08 3.01	2.89 2.89 2.88 2.87 2.86	3.89 3.81 3.76 3.68 3.61	3.05 3.04 3.09 3.52 4.21	3.18 3.15 3.12 3.09 3.07	3.15 3.09 3.05 3.18 3.17	2.87 2.86 2.84 2.83 2.82
6 7 8 9 10	2.93 2.92 2.92 2.94 3.03	2.90 2.90 2.89 2.89 2.89	2.95 2.92 2.90 2.91 2.91	 2.84 2.85 2.87	2.92 2.85 2.85 2.86 2.98	3.05 3.03 3.02 3.17 3.67	2.85 2.85 2.86 2.86 2.86	3.55 3.50 3.69 3.87 3.53	4.72 4.30 4.06 3.92 3.82	3.06 3.04 3.03 3.02 3.01	3.16 3.12 3.07 3.03 3.00	2.83 2.82 2.81 2.80 2.81
11 12 13 14 15	3.00 2.98 3.04 3.07 3.06	2.88 2.88 2.90 2.90 2.88	2.90 2.90 2.90 2.89 2.89	2.88 2.88 2.87 2.87 2.86	3.01 2.95 2.95 2.90 2.93	3.52 3.47 3.46 3.55 3.45	2.89 3.06 3.65 3.77 3.63	3.49 3.46 3.42 3.38 3.34	3.90 3.90 3.73 3.63 3.55	3.01 2.99 2.98 2.96 2.95	2.97 2.99 3.08 3.05 3.00	2.80 2.79 2.79 2.79 2.79
16 17 18 19 20	3.10 3.07 3.04 3.02 3.01	2.87 2.87 2.87 2.87 2.85	2.89 2.88 2.88 2.88 2.87	2.85 3.00 2.95 2.84 2.84	2.99 2.98 2.98 3.05 3.39	3.29 3.18 3.13 3.11 3.08	3.52 3.45 3.39 3.34 3.33	3.31 3.28 3.24 3.21 3.19	3.49 3.43 3.38 3.39 3.38	2.93 2.92 2.93 2.96 2.92	2.97 3.04 3.01 2.95 2.92	2.78 2.78 2.79 2.90 2.88
21 22 23 24 25	3.00 2.99 2.98 2.98 2.97	2.86 2.86 2.86 2.90 2.91	2.88 2.89 2.91 2.81	2.86 2.85 2.85 2.84 2.83	3.47 3.43 3.28 3.23 3.17	3.05 3.02 3.03 3.04 3.01	3.32 3.31 3.31 3.30 3.29	3.17 3.16 3.14 3.11 3.11	3.45 3.43 3.33 3.29 3.25	2.91 3.06 2.93 2.90 2.89	2.91 2.94 3.00 3.04 2.98	2.85 2.83 2.81 2.80 2.80
26 27 28 29 30 31	2.95 2.94 2.93 2.92 2.92 2.93	2.92 2.93 2.93 2.92 2.92	2.89 2.88 2.93	2.85 2.86 2.86 2.85 2.84 2.82	3.15 3.09 3.09 	2.98 2.95 2.94 2.92 2.91 2.90	3.26 3.26 3.39 3.95 4.01	3.09 3.08 3.09 3.10 3.08 3.07	3.44 3.44 3.29 3.24 3.21	2.89 2.95 3.13 4.02 3.42 3.25	2.95 2.93 2.91 2.90 2.88 2.88	2.79 2.79 2.79 2.80 2.80
MEAN MAX MIN	2.98 3.10 2.92	2.89 2.93 2.85			3.04 3.47 2.78	3.13 3.67 2.90	3.24 4.01 2.85	3.37 3.89 3.07	3.56 4.72 3.04	3.05 4.02 2.89	3.01 3.18 2.88	2.81 2.90 2.78

05387500 UPPER IOWA RIVER AT DECORAH, IA--Continued

05388250 UPPER IOWA RIVER NEAR DORCHESTER, IA

LOCATION.--Lat $43^{\circ}25^{\circ}16^{\circ}$, long $91^{\circ}30^{\circ}31^{\circ}$, in $SW^{1}/_{4}$ NW $^{1}/_{4}$ sec.1, T.99 N., R.6 W., Allamakee County, Hydrologic Unit 07060002, on right bank at upstream side of bridge on State Highway 76, 650 ft. upstream from Mineral Creek, 0.5 mi upstream from Bear Creek, 3.5 mi south of Dorchester, and 18.1 mi upstream from mouth.

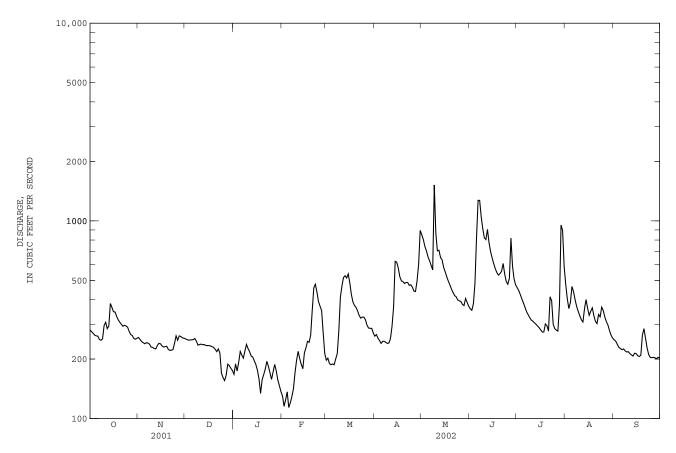
DRAINAGE AREA.--770 mi².

PERIOD OF RECORD.--September 1936 to September 1938 and October 1939 to June 1975(discharge measurements only), October 1938 to September 1939, July 1975 to current year.

GAGE.--Water-stage recorder. Datum of gage is 660.00 ft. above NGVD of 1929. Prior to Jan. 6, 1938, nonrecording gage on old bridge at site 0.2 mi upstream at datum 5.91 ft. higher. Jan. 6, 1938 to Apr. 26, 1948, nonrecording gage at datum 60.00 ft. lower, Apr. 27, 1948 to August 1963, nonrecording gage on old bridge and August 1963 to June 1975 nonrecording gage on new bridge at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite and telephone modem data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of May 30, 1941, reached a stage of 21.8 ft., from flood profile, discharge, 30,400 ${\rm ft^3/s}$ on basis of slope-area determination of peak flow.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	281 275	257 251	253 251	e167 e189	e130 e115	e197 e202	261 266	852 805	359 353	459 444	477 404	250 246
3	270 264	245 242	249 250	e174 e192	e124 e136	e190 e187	255 248	742 705	381 483	e423 e402	360 387	237 229
5	262	239	250	e218	e114	e189	240	657	823	e384	466	226
6 7	261 251	242 241	251 254	e209 e202	e120 e129	e187 e200	246 246	628 595	1270 1270	e365 e347	438 399	223 225
8	249	238	246	e220	e142	e213	243	565	1050	e335	369	220
9 10	253 296	230 229	235 237	e237 e226	e171 e197	e278 e411	240 241	1520 864	911 821	e324 e315	348 331	217 218
11	307	226	238	e218	e219	e469	254	705	804	e311	316	213
12 13	285 294	225 234	236 237	e207 e205	e201 e188	e517 528	293 366	710 653	906 774	305 300	308 359	210 207
14 15	382 365	240 239	234 234	e196 e187	e179 215	514 539	624 618	634 581	698 648	294 288	400 361	214 213
16 17	347 346	233 230	234 233	e175 e158	228 246	487 425	577 521	552 521	606 573	281 274	333 349	208 206
18	329	231	233	e134	243	389	497	495	547	274	363	209
19	316	232	229	e157	264	373	493	474	532	301	331	264
20	307	224	224	e167	352	365	482	452	541	295	310	285
21	300 293	221	218	e178 e195	458 478	350 332	488 488	434 419	556 609	277 413	302	255 228
22 23	293 296	222 223	225 e214	e195 e183	478	332 322	488 472	419	538	395	336 327	228
24	294	240	e170	e170	391	326	475	398	493	300	366	204
25	290	262	e161	e158	370	326	462	394	478	285	352	203
26	276	249	e156	e172	352	316	441	391	512	280	326	204
27 28	266 263	262 260	e166 e188	e188 e174	e271 e213	297 287	439 497	378 373	817 590	277 375	309 297	203 201
29	254	256	e185	e157		286	603	405	508	953	278	204
30	252	255	e180	e147		286	894	387	474	894	264	203
31	255		e175	e137		271		370		589	255	
TOTAL	8979	7178	6844	5697	6683	10259	12470	18072	19925	11759	10821	6636
MEAN MAX	289.6 382	239.3 262	220.8 254	183.8 237	238.7 478	330.9 539	415.7 894	583.0 1520	664.2 1270	379.3 953	349.1 477	221.2 285
MIN	249	221	156	134	114	187	240	370	353	274	255	201
AC-FT	17810	14240	13580	11300	13260	20350	24730	35850	39520	23320	21460	13160
CFSM IN.	0.38 0.43	0.31 0.35	0.29	0.24 0.28	0.31 0.32	0.43 0.50	0.54 0.60	0.76 0.87	0.86 0.96	0.49 0.57	0.45 0.52	0.29 0.32
										0.37	0.32	0.32
STATIS	TICS OF N	MONTHLY MI	EAN DATA	FOR WATER	YEARS 193	39 - 2002,	BY WATER	R YEAR (W	7)			
MEAN	411.8	433.7	349.2	258.5	399.5	994.7	1095	837.3	903.1	682.7	573.9	445.7
MAX (WY)	2045 1987	1476 1983	1421 1983	836 1983	1400 1984	1922 1983	3973 1993	2066 1991	3538 2000	3318 1993	3702 1993	1334 1986
MIN	116	125	99.9	96.7	112	331	225	175	123	92.9	112	77.5
(WY)	1990	1990	1990	1977	1978	2002	1977	1977	1977	1939	1989	1939

05388250 UPPER IOWA RIVER NEAR DORCHESTER, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1939 - 2002
ANNUAL TOTAL	258903	125323	
ANNUAL MEAN	709.3	343.4	618.3
HIGHEST ANNUAL MEAN			1726 1993
LOWEST ANNUAL MEAN			178 1977
HIGHEST DAILY MEAN	8780 Apr 13	1520 May 9	15100 Aug 17 1993
LOWEST DAILY MEAN	86 Jan 9	114 Feb 5a	30 Sep 23 1939
ANNUAL SEVEN-DAY MINIMUM	102 Jan 17	124 Feb 1	49 Sep 20 1939
MAXIMUM PEAK FLOW		2260 May 9	22000 Aug 17 1993
MAXIMUM PEAK STAGE		10.29 May 9	20.00 Aug 17 1993
ANNUAL RUNOFF (AC-FT)	513500	248600	447900
ANNUAL RUNOFF (CFSM)	0.92	0.45	0.80
ANNUAL RUNOFF (INCHES)	12.51	6.05	10.91
10 PERCENT EXCEEDS	1580	579	1330
50 PERCENT EXCEEDS	282	278	364
90 PERCENT EXCEEDS	140	188	142

Ice affected Estimated

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA

LOCATION.--Lat 43°02'27", long 91°12'23", in Basil Giard Claim #1, sec.16, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank 50 ft downstream from State Highway 18 bridge, 1.5 miles upstream from mouth at Mississippi River, and 1.5 miles west of Marquette.

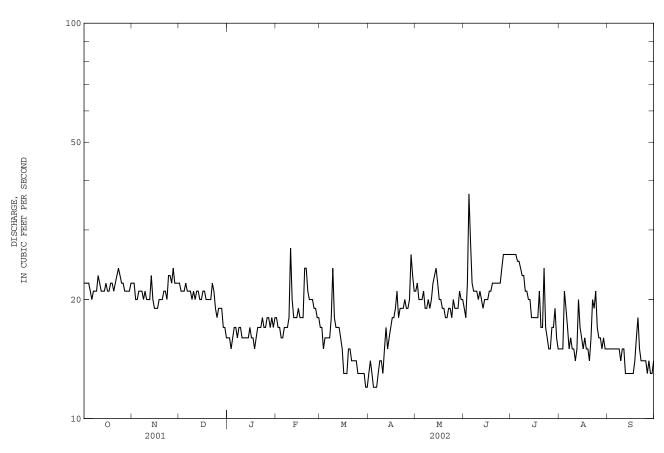
DRAINAGE AREA. -- 34.1 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1991 to current year.

GAGE.--Water-stage recorder. Datum of gage is 624.818 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22 22 22 22 21	22 22 20 20 21	22 21 21 21 22	16 16 15 16 17	18 17 17 16 16	17 17 15 16 16	13 14 13 12 12	21 22 20 20 20	19 18 22 37 28	26 26 26 26 25	15 15 15 21 19	15 15 15 15 15
6 7 8 9 10	20 21 21 21 23	21 21 20 21 20	21 21 21 20 21	17 16 17 17 16	17 17 17 18 27	16 16 18 24 18	12 13 14 14 13	21 19 19 20 19	22 21 21 21 21 20	25 24 23 23 21	17 15 16 15 15	15 15 15 14 15
11 12 13 14 15	22 21 21 21 22	20 20 23 20 19	20 21 21 20 20	16 16 16 16 17	20 18 18 18 19	17 17 17 16 15	15 17 15 16 17	20 22 23 24 22	21 20 19 20 20	21 20 20 18 18	14 15 20 17 16	15 13 13 13
16 17 18 19 20	21 21 22 22 21	19 19 20 20 20	21 21 20 20 20	16 16 15 16 17	18 18 18 24 24	13 13 13 15 15	18 18 19 21 18	20 20 19 19 18	20 21 21 22 22	18 18 18 21 17	15 16 15 15 14	13 13 14 16 18
21 22 23 24 25	22 23 24 23 22	21 21 20 23 23	20 22 21 19 18	17 17 18 17 17	21 20 20 20 20	14 14 14 14 13	19 19 19 20 19	18 19 19 18 20	22 22 22 22 22 24	17 24 17 16 15	16 20 19 21 17	15 14 14 14 14
26 27 28 29 30 31	22 21 21 21 21 21 22	22 24 22 22 22 22	19 19 19 17 17	18 18 17 18 17 18	19 18 18 	13 13 13 13 12 12	19 20 26 23 21	19 19 19 21 20 20	26 26 26 26 26	15 17 17 19 16 15	16 16 15 16 15	13 14 13 13 14
TOTAL MEAN MAX MIN AC-FT CFSM IN.	671 21.65 24 20 1330 0.63 0.73	628 20.93 24 19 1250 0.61 0.68	622 20.06 22 16 1230 0.59 0.68	516 16.65 18 15 1020 0.49 0.56	530 18.93 27 16 1050 0.55 0.58	469 15.13 24 12 930 0.44 0.51	509 16.97 26 12 1010 0.50 0.55	620 20.00 24 18 1230 0.59 0.68	677 22.57 37 18 1340 0.66 0.74	622 20.06 26 15 1230 0.59 0.68	506 16.32 21 14 1000 0.48 0.55	428 14.27 18 13 849 0.42 0.47
STATIST	TICS OF M	MONTHLY ME	EAN DATA	FOR WATER	YEARS 199	92 - 2002,	BY WATER	R YEAR (WY	<u>(</u>)			
MEAN MAX (WY) MIN (WY)	20.80 30.9 1994 14.9 1998	21.68 35.3 1992 13.5 1998	18.07 26.0 1992 11.2 1998	16.17 22.3 1992 9.80 2001	21.69 33.6 1994 11.3 2001	28.58 87.6 1993 15.1 2002	26.85 55.3 1993 15.2 1997	30.22 65.7 1993 17.3 1997	30.82 55.4 1993 16.4 1997	27.50 54.2 1993 15.9 1997	25.84 48.9 1993 12.9 1997	22.62 36.4 1993 13.7 1997

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1992 - 2002
ANNUAL TOTAL	8165.6	6798	
ANNUAL MEAN	22.37	18.62	24.24
HIGHEST ANNUAL MEAN			42.1 1993
LOWEST ANNUAL MEAN			17.2 1997
HIGHEST DAILY MEAN	135 Aug 2	37 Jun 4	550 Mar 31 1993
LOWEST DAILY MEAN	6.8 Jan 20	12 Mar 30a	6.8 Jan 20 2001
ANNUAL SEVEN-DAY MINIMUM	8.3 Jan 20	13 Mar 30	8.3 Jan 20 2001
MAXIMUM PEAK FLOW		55 Jun 4	1820 Feb 18 1997
MAXIMUM PEAK STAGE		4.79 Jun 4	7.68 Feb 18 1997
ANNUAL RUNOFF (AC-FT)	16200	13480	17560
ANNUAL RUNOFF (CFSM)	0.66	0.55	0.71
ANNUAL RUNOFF (INCHES)	8.90	7.41	9.65
10 PERCENT EXCEEDS	31	22	35
50 PERCENT EXCEEDS	21	19	21
90 PERCENT EXCEEDS	11	14	14

a Also Mar. 31 and Apr. 4-6. e Estimated

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- October 1991 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1991 to current year.

WATER TEMPERATURES: October 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1991 to current year.

REMARKS. -- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 670 microsiemens Sept. 27, 1994; minimum daily, 140 microsiemens Oct. 14, 1997.
WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 17, 1998; minimum daily, 0.0°C Jan. 7, 18-21, 1994, Jan. 5,7,8, Feb. 21, 1997.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,780 mg/L Mar. 31, 1993; minimum daily mean, 1 mg/L Oct. 30, 1994.
SEDIMENT LOADS: Maximum daily, 4,500 tons Mar. 31, 1993; minimum daily, 0.08 tons Oct. 30, 1994, Nov. 23-24, 1997, and Dec.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 636 microsiemens June 3; minimum daily, 372 microsiemens Oct. 1. WATER TEMPERATURES: Maximum daily, 25.0°C July 8; minimum daily, 4.0°C Dec. 24, 25, 31. SEDIMENT CONCENTRATIONS: Maximum daily mean, 91 mg/L June 4; minimum daily mean, 6.9 mg/L Sept. 10. SEDIMENT LOADS: Maximum daily, 9.4 tons June 4; minimum daily, 0.32 tons Sept. 10.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	(DEG C)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	MENT, SUS- PENDED (MG/L)	SUS- PENDED	SIEVE DIAM. % FINER THAN .062 MM
OCT						
02 NOV	0900	11.3	21	76	4.2	46
13 JAN	1645	9.1	21	83	4.8	26
09	0815	3.5	17	72	3.2	49
MAR 19	0845	5.6	14	19	.72	61
APR 30	0845	10.4	21	6.0	.34	68
JUN 12	0930	15.4	20	62	3.4	84
JUL 16	0920	14.9	16	33	1.5	62
SEP 05	1335	16.5	15	37	1.5	81

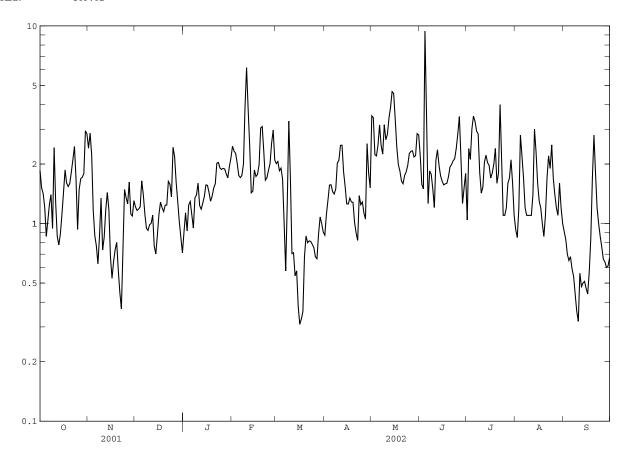
SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

DAY OCT NOV DEC JAN FEB MAR MAY JUL AUG ---------___ ___ ---___ ------___ ---___

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		***************************************		1	DAILY INS	PANTANEOU:	S VALUES	. 2001 10		2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15.0 15.0 14.0 14.0	11.0 10.0 11.0	9.0 10.0 12.0	5.0 5.0 5.0 6.0	6.0 6.0 6.0	6.0 5.0 7.0	5.0 6.0 9.0	11.0 11.0 14.0	14.0 17.0 16.0	23.0 24.0 24.0 21.0 19.0	22.0 21.0 21.0	21.0 21.0 20.0 16.5
6 7 8 9 10	10.0 14.0 15.0 14.0	13.0 11.0 11.0 10.0	10.0 9.0 6.0 7.0	5.0 7.0 8.0 6.0	8.0 8.0 8.0	7.0 7.0 8.0 	10.0 9.0 9.0 13.0 14.0	17.0 17.0 17.0 15.0	17.0 18.0 18.0	25.0 24.0 20.0	21.0 20.0 21.0 21.0	20.0 21.0 19.0
11 12 13 14 15	15.0 15.0 14.0 11.0	9.1 13.0 15.0	7.0 8.0 5.0 6.0	7.0 8.0 7.0	7.0 6.0 7.0 9.0	9.0 9.0 10.0 11.0 16.0	15.0 14.0 19.0	12.0 15.0 16.0	18.0 20.0 20.0 18.0	19.0 20.0 22.0 17.0	20.0 19.0 20.0 20.0	19.0 19.0 19.0
16 17 18 19 20	11.0 11.0 11.0 12.0	14.0 13.0 9.0 9.0	8.0 7.0 5.0 5.0	5.0 6.0 5.0 	9.0 10.0 9.0 8.0	9.0 7.0 10.0	20.0 19.0 18.0 14.0	16.0 15.0 14.0	20.0 21.0 19.0 22.0	14.9 22.0 22.0 21.0	21.0 21.0 20.0	19.0 18.0 20.0 18.0
21 22 23 24 25	12.0 12.0 12.0 9.0	8.0 11.0 11.0	5.0 4.0 4.0	8.0 8.0 7.0 7.0 8.0	8.0 9.0 8.0	6.0 8.0 7.0	9.0 14.0 10.0 12.0	15.0 16.0 15.0 15.0	24.0 24.0 23.0	24.0 22.0 19.0 20.0	20.0 20.0 21.0 	15.0 15.0 16.0
26 27 28 29 30 31	8.0 11.0 10.0	9.0 9.0 9.0 9.0	5.0 5.0 5.0 4.0	 6.0 5.0 6.0 7.0	6.0 8.0 7.0 	8.0 1.0 12.0 11.0	13.0 15.0 15.0	14.0 18.0 19.0 20.0 18.0	24.0 24.0 24.0	19.0 23.0 24.0 24.0	21.0 21.0 20.0 20.0 20.0	16.0 15.0 18.0

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


	MEAN		MEAN		MEAN		MEAN		MEAN		MEAN	
	CONCEN- TRATION	LOAD (TONS/										
DAY	(MG/L)	DAY)										
	OCTO	BER	NOVEMB:	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	H
1	32	1.9	41	2.4	21	1.2	21	0.90	51	2.5	43	2.0
2	26	1.5	49	2.9	20	1.2	26	1.1	51	2.3	45	2.1
3 4	24 21	1.4 1.2	40 21	2.2 1.2	21 21	1.2	22 28	0.92 1.2	49 47	2.3	45 45	1.8 1.9
5	15	0.86	16	0.87	28	1.6	28	1.3	40	1.8	38	1.7
6	19	1.0	14	0.77	24	1.4	24	1.1	38	1.7	23	1.0
7 8	22 24	1.3 1.4	11 16	0.62 0.86	20 17	1.1 0.95	22 30	0.95 1.3	37 43	1.8 2.0	13 25	0.58 1.3
9	16	0.94	24	1.3	17	0.95	31	1.4	43 81	3.9	25 50	3.3
10	39	2.4	13	0.74	18	0.99	37	1.6	84	6.1	36	1.7
11	21	1.3	16	0.85	18	1.0	28	1.2	70	3.8	15	0.70
12 13	15 14	0.86 0.78	21	1.2	20 13	1.1	27 29	1.2	50 30	2.5 1.4	16 12	0.71
13 14	14 15	0.78	23 21	1.4	13	0.77	29 31	1.3	31	1.4	14	0.54 0.58
15	19	1.1	13	0.68	16	0.88	35	1.6	36	1.9	9.5	0.38
16	25	1.4	10	0.53	20	1.1	35	1.6	35	1.7	8.6	0.31
17 18	32 27	1.9 1.6	12 14	0.64 0.74	23 22	1.3	33 32	1.4	37 41	1.8	9.2 9.8	0.33 0.36
19	26	1.5	15	0.74	21	1.1	33	1.4	48	3.0	9.0 17	0.68
20	28	1.6	11	0.58	23	1.2	34	1.5	49	3.1	22	0.87
21	31	1.8	8.0	0.45	23	1.2	35	1.6	40	2.3	21	0.80
22 23	35 38	2.1	6.6 13	0.37 0.74	28 28	1.6 1.6	43 42	2.0	31 32	1.7 1.7	22 22	0.82 0.81
24	27	1.7	24	1.5	26	1.4	40	1.9	35	1.9	21	0.78
25	16	0.93	22	1.4	49	2.4	40	1.9	39	2.0	21	0.75
26	25	1.5	21	1.3	43	2.2	40	1.9	51	2.6	19	0.68
27 28	30 30	1.7 1.7	24 19	1.6 1.1	31 25	1.6 1.3	40 38	1.9 1.8	60 44	3.0 2.1	19 25	0.66 0.89
29	32	1.8	18	1.1	22	1.0	36	1.7			31	1.1
30	52	2.9	22	1.3	19	0.85	41	1.9			30	1.00
31	49	2.8			16	0.71	44	2.1			27	0.91
TOTAI	·	48.26		33.34		37.97		46.37		66.4		32.04

SUSPENDED-SEDIMENT DISCHARGE, IN TONS PER DAY

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

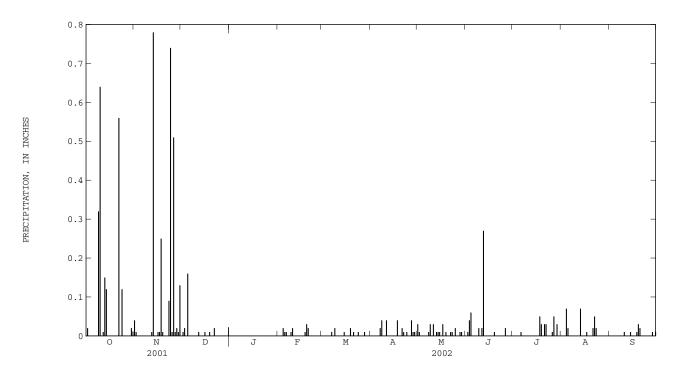
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	IL	MAY		JUNE		JULY		AUGUS	Т	SEPTEM	BER
1 2 3 4 5	25 30 39 46 47	0.87 1.1 1.3 1.6 1.6	61 57 41 41 46	3.5 3.4 2.2 2.2 2.5	43 32 26 91 45	2.2 1.6 1.5 9.4 3.5	15 34 30 43 52	2.4 2.1 3.0 3.5	22 20 29 48 41	0.93 0.85 1.2 2.8 2.2	20 18 16 14 15	0.91 0.83 0.70 0.65 0.68
7 8 9 10	41 39 53 58	1.4 1.5 2.0 2.1	49 44 58 52	2.5 2.2 3.2 2.7	32 32 26 22	1.8 1.8 1.5 1.2	46 46 29 25	2.9 2.8 1.8 1.4	27 24 26 26	1.2 1.1 1.1 1.1	12 9.9 8.2 6.9	0.54 0.44 0.36 0.32
11 12 13 14 15	63 54 44 36 28	2.5 2.5 1.8 1.5	53 58 63 73 75	2.8 3.4 3.9 4.7 4.6	38 44 38 32 30	2.1 2.4 2.0 1.7 1.6	27 38 41 42 40	1.5 2.0 2.2 2.0 2.0	25 31 52 47 35	1.1 1.4 3.0 2.3 1.6	13 11 12 12 11	0.56 0.48 0.50 0.51 0.47
16 17 18 19 20	26 27 25 23 20	1.3 1.3 1.3 1.3	64 46 39 36 34	3.4 2.4 2.0 1.8 1.6	29 28 28 29 32	1.6 1.6 1.6 1.7	34 36 42 42 34	1.7 1.8 2.0 2.4 1.6	30 26 23 20 26	1.3 1.2 1.0 0.86 1.1	10 14 20 34 51	0.44 0.57 0.85 1.7 2.8
21 22 23 24 25	17 16 28 24 25	0.90 0.82 1.4 1.2	32 35 35 40 42	1.6 1.8 1.8 2.0 2.3	34 34 35 40 43	2.0 2.1 2.1 2.4 2.8	40 62 45 27 27	1.8 4.0 2.1 1.1	38 38 34 41 35	1.7 2.2 1.9 2.5 1.7	40 29 24 21 18	1.8 1.2 1.0 0.86 0.76
26 27 28 29 30 31	22 19 35 29 26	1.1 1.1 2.5 1.8 1.5	44 45 42 40 54 53	2.3 2.3 2.2 2.2 2.9 2.8	49 31 18 22 26	3.5 2.2 1.3 1.5 1.8	27 35 34 39 34 26	1.2 1.6 1.7 2.1 1.6	29 26 25 33 27 22	1.4 1.2 1.1 1.6 1.2	16 15 14 14 15	0.66 0.64 0.60 0.61 0.67
TOTA	L	44.29		82.4		65.7		62.8		46.54		23.70
YEAR		589.81										

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- December 1991 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.


REMARKS.--Water years 1992-1995 in files at the District office. Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting.

EXTREME FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.92 in., June 20, 1994.

EXTREME FOR CURRENT YEAR.--Maximum daily accumulation, 0.78 in., Nov. 13.

PRECIPITATION FROM DCP, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.0 0.02 0.0 0.0 0.0	0.04 0.01 0.0 0.0 0.0	0.0 0.01 0.02 0.0 0.16	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.02 0.01	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.03 0.01 0.0 0.0	0.0 0.01 0.04 0.06 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.07 0.02	0.0 0.0 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.32 0.64	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.01 0.0 0.0 0.01 0.02	0.0 0.01 0.0 0.02 0.0	0.0 0.02 0.04 0.0	0.0 0.0 0.01 0.03 0.0	0.0 0.0 0.0 0.02 0.02	0.01 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
11 12 13 14 15	0.0 0.01 0.15 0.12 0.0	0.0 0.01 0.78 0.0	0.0 0.01 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.04 0.0 0.0 0.0 0.0	0.03 0.0 0.01 0.01 0.01	0.02 0.27 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.07 0.0	0.0 0.0 0.0 0.01 0.01
16 17 18 19 20	0.0 0.0 0.0 0.0	0.01 0.01 0.25 0.01 0.0	0.01 0.0 0.0 0.01 0.01	0.0 0.0 0.0 0.0	0.0 0.0 0.01 0.03 0.02	0.0 0.0 0.0 0.02 0.02	0.0 0.0 0.04 0.0	0.0 0.03 0.0 0.01 0.0	0.0 0.0 0.0 0.01 0.01	0.0 0.0 0.05 0.03 0.0	0.0 0.01 0.0 0.0 0.0	0.0 0.0 0.01 0.03 0.02
21 22 23 24 25	0.0 0.56 0.0 0.12 0.0	0.0 0.0 0.09 0.74 0.01	0.0 0.02 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.01 0.0 0.0 0.01 0.01	0.02 0.01 0.0 0.01 0.0	0.0 0.01 0.01 0.0 0.02	0.0 0.0 0.0 0.0	0.03 0.03 0.0 0.0	0.02 0.05 0.02 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0 0.02	0.51 0.01 0.02 0.01 0.13	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.01 0.0 0.0	0.0 0.04 0.01 0.01 0.0	0.0 0.0 0.01 0.01 0.0 0.0	0.02 0.0 0.0 0.0 0.0	0.01 0.05 0.0 0.03 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.01 0.0 0.01
TOTAL MEAN MAX MIN	1.97 0.06 0.64 0.00	2.64 0.09 0.78 0.00	0.24 0.00 0.16 0.00	0.0 0.00 0.00 0.00	0.13 0.00 0.03 0.00	0.09 0.00 0.02 0.00	0.24 0.00 0.04 0.00	0.24 0.00 0.03 0.00	0.45 0.01 0.27 0.00	0.24 0.00 0.05 0.00	0.26 0.00 0.07 0.00	0.10 0.00 0.03 0.00

66 MISSISSIPPI RIVER MAIN STEM

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA

LOCATION.--Lat $43^{\circ}01^{\circ}29^{\circ}$, long $91^{\circ}10^{\circ}21^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.22, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank in city park at east end of Main Street in McGregor, 2.6 mi upstream from Wisconsin River, 4.3 mi downstream from Yellow River, and at mile 633.4 upstream from Ohio River.

DRAINAGE AREA. -- 67,500 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1936 to current year.

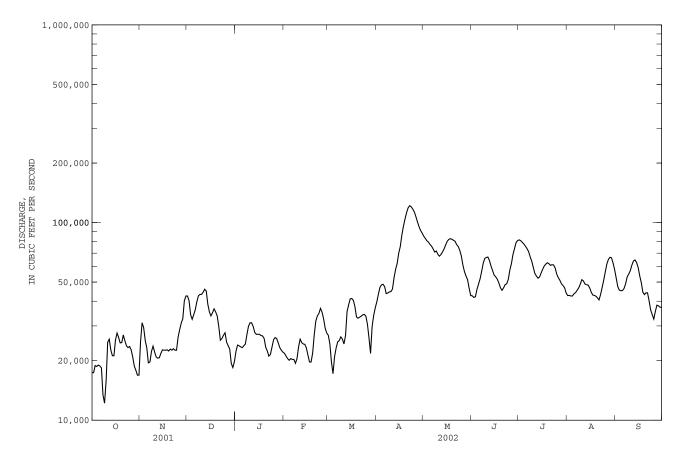
REVISED RECORDS. -- WDR IA-75-1: 1974.

GAGE.--Water-stage recorder. Datum of gage is 604.84 ft above NGVD of 1929. Prior to June 1, 1937, and since June 2, 1939, auxiliary water-stage recorder; June 1, 1937 to June 1, 1939, auxiliary nonrecording gage 14.1 mi upstream in tailwater of dam 9, at datum 5.30 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. U.S. Geological Survey satellite and telephone modem data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1828, that of Apr. 24, 1965.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e17400	24900	42500	e22300	21800	26900	39700	85300	42600	e81700	42700	52300
2	e17400	31100	40200	e24000	e21100	24300	43400	83100	41800	e80900	42800	47400
3	18900	29400	34200	e23800	e20500	e19700	47000	80900	42100	79400	42500	45500
4	18700	25300	32400	e23500	e20100	e17200	48400	79600	45900	77900	42500	45200
5	19000	23200	34200	e23300	e20500	e21000	48700	77500	48800	75900	43600	45300
6	18800	19500	36300	e23800	e20300	e23200	47400	75900	51900	73800	44200	46400
7	e18400	19700	39800	e24300	20300	e24900	43700	73500	56600	71300	45400	49000
8	e13400	22300	42600	e27200	19400	e25300	44000	70900	62200	67100	46700	53100
9	e12200	23700	43300	e29900	20500	e26400	44600	71800	65900	63800	48700	54900
10	e15800	22100	43300	e31100	23500	e25700	44700	69100	66600	59300	51400	57100
11	24800	20900	44400	e31100	25700	e24300	46100	67600	66900	55300	50700	60900
12	25700	20600	46000	e29800	24700	e26800	52500	68900	64200	53600	48900	63900
13	22700	20700	45000	e27800	24300	35500	57900	71000	60100	52300	48500	64700
14	21200	21800	38600	e27200	24200	38400	62000	73600	57100	53000	48300	62900
15	21200	22700	35300	e27200	23200	41100	70000	77100	54200	55600	46800	59300
16	25500	22600	33700	e27200	21300	41300	75600	80400	53100	58000	44500	53800
17	e27600	22600	35000	e26800	19700	40400	86400	82100	51700	60300	43000	49800
18	e26200	22700	36600	e26700	19700	37600	95700	82900	49400	61600	42800	44500
19	e24600	22400	35300	e25900	21900	33300	e104000	82300	46800	62600	42400	43200
20	e24700	22900	33700	e23400	27000	32800	e112000	81300	45400	61900	41600	44100
21	e27000	22600	29800	e22400	31700	33200	e119000	80400	46700	60700	40600	44100
22	25200	23000	25400	e21100	33700	33600	e122000	77400	48500	61200	43200	40200
23	23800	22600	25900	e21500	34700	34100	120000	75700	49000	61000	46900	36200
24	23300	22600	26900	e23400	36800	34300	117000	72400	51500	58800	51100	34200
25	23600	26300	27700	e25500	35200	33600	113000	67800	57400	54800	56200	32500
26 27 28 29 30 31	22700 20900 18800 e17900 e16900 e16900	e28700 e31000 e32600 40200 42500	e24800 e23800 e22900 e19400 e18500 e19800	e26200 25900 24600 23300 22600 22100	32600 29200 27600 	30600 26100 21800 29800 33900 37000	107000 e101000 e95300 e91100 88400	61000 56500 53600 51400 46500 42700	e61800 e68800 e73800 e79200 81100	52600 51000 49000 48000 46800 44000	61600 65100 66700 66300 62300 57700	35500 38200 37900 37300 37200
TOTAL	651200	753200	1037300	784900	701200	934100	2287600	2220200	1691100	1893200	1525700	1416600
MEAN	21010	25110	33460	25320	25040	30130	76250	71620	56370	61070	49220	47220
MAX	27600	42500	46000	31100	36800	41300	122000	85300	81100	81700	66700	64700
MIN	12200	19500	18500	21100	19400	17200	39700	42700	41800	44000	40600	32500
AC-FT	1292000	1494000	2057000	1557000	1391000	1853000	4537000	4404000	3354000	3755000	3026000	2810000
CFSM	0.31	0.37	0.50	0.38	0.37	0.45	1.13	1.06	0.84	0.90	0.73	0.70
IN.	0.36	0.42	0.57	0.43	0.39	0.51	1.26	1.22	0.93	1.04	0.84	0.78
STATIS	STICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 19	36 - 2002	, BY WATE	R YEAR (W	Y)			
MEAN	28430	29340	22430	19460	20250	39360	76230	62330	50080	41590	28540	28940
MAX	114600	64840	59200	35700	48540	103800	164800	138700	112600	142200	84430	72890
(WY)	1987	1983	1992	1983	1984	1983	1965	2001	1993	1993	1993	1986
MIN	9874	10870	9506	7665	9934	13190	27780	18240	13420	11220	10330	10650
(WY)	1937	1938	1937	1940	1940	1940	1990	1977	1988	1988	1964	1940

mississippi river main stem 67

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YE	EAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1936 - 2002
ANNUAL TOTAL	19521500		15896300			
ANNUAL MEAN	53480		43550		37300	
HIGHEST ANNUAL MEAN					64720	1993
LOWEST ANNUAL MEAN					17400	1977
HIGHEST DAILY MEAN	247000 Apr	21	122000	Apr 22	276000	Apr 24 1965
LOWEST DAILY MEAN	12200 Oct	9	12200	Oct 9	6200	Dec 9 1936
ANNUAL SEVEN-DAY MINIMUM	16600 Oct	4	16600	Oct 4	6490	Dec 7 1936
MAXIMUM PEAK FLOW			121000	Apr 22	276000	Apr 24 1965
MAXIMUM PEAK STAGE			17.17	Apr 22	25.38	Apr 24 1965
ANNUAL RUNOFF (AC-FT)	38720000		31530000		27020000	
ANNUAL RUNOFF (CFSM)	0.79		0.65		0.55	
ANNUAL RUNOFF (INCHES)	10.76		8.76		7.51	
10 PERCENT EXCEEDS	110000		75600		75900	
50 PERCENT EXCEEDS	28300		40600		27800	
90 PERCENT EXCEEDS	20200		21100		13300	

e Estimated

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

WATER-OUALITY RECORDS

LOCATION.--Samples collected from right bank dock 1.2 mi upstream from discharge station. Prior to April 1981, and March 7 to Sept. 30, 1997, samples collected at bridge on U.S. Highway 18, 1.2 mi upstream from gage. April 1981 to March 6, 1997, samples collected from right bank dock, 0.3 mi downstream from discharge station.

PERIOD OF RECORD. -- July 1975 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: July 1975 to current year. WATER TEMPERATURES: July 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: July 1975 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 633 microsiemens Nov. 3, 1996; minimum daily, 190 microsiemens Sept. 29, 1980.
WATER TEMPERATURES: Maximum daily, 31.0°C June 28, 2002; minimum daily, 0.0°C on many days during winter periods.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,350 mg/L Mar. 19, 1986; minimum daily mean, 1 mg/L on many days in 1977-92 and

SEDIMENT LOADS: Maximum daily, 363,000 tons Mar. 19, 1986; minimum daily, 31 tons Dec. 25, 1976.

EXEMES FOR CURRENT YEAR.-
SPECIFIC CONDUCTANCE: Maximum daily, 430 microsiemens July 10; minimum daily, 301 microsiemens Apr. 30. WATER TEMPERATURES: Maximum daily, 31.0°C, June 28; minimum daily, 1.0°C Dec. 24.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 58 mg/L Apr. 17; minimum daily mean, 3.2 mg/L Jan. 6, 7.

SEDIMENT LOADS: Maximum daily, 13,400 tons Apr. 17, 18; minimum daily, 206 tons Jan. 6.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			DIS-		SEDI-	SED.
			CHARGE,		MENT,	
			INST.	SEDI-	DIS-	
Date	Time		CUBIC FEET PER SECOND (00061)		CHARGE, SUS- PENDED (T/DAY) (80155)	
		(00010)	(00001)	(00131)	(00133)	(10331)
OCT						
10 NOV	1000	11.0	16500	12	535	97
14	1230	50.0	23200	13	814	97
MAR	1200	4 2	42200	2.0	4440	0.7
25 APR	1300	4.3	43300	38	4440	97
30	1145	11.7	109000	25	7360	96
JUN 11	1730	24.4	75100	4.0	811	81
JUL 16	1340	27.7	57400	30	4650	88
SEP 18	1230		42100	15	1710	99
TO	1230		421UU	TO	1/1U	29

SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	 383 376 376	385 	 	405 401 	 388 323	 392 394	373 393	303 	 374 373 376	388 402 416 	 339	 376 372 369
6 7 8 9 10	 375 371	380 386 382	339 351 352 357	398 400 392	368 	394 	372 374 388 414 403	304 304 310 	 359	 425 426 430	337 340 	 352 346
11 12 13 14 15	382 343	 379 386 388	358 352 	 381 372	421 412 416 	406 401 400 	 386	 329 326 325	346 350 	 423 416	344 350 358	348
16 17 18 19 20	377 373 	 383 383	334 300 348	371 	 372 414 412	 378 408 406	359 328 	 357	417 421 	390 400 	 371 370	352 358 358
21 22 23 24 25	380 380 316	386 	 363 378	392 310 300	 408	 415	312 316 313	362 373 	 394 396	394 378 372	364 	 357 360 364
26 27 28 29 30 31	 380 385	386 388 388 	384 400	358 405 380	400 400 	410 408 	302 301	378 382 384 	390 389 	 355 326 330	356 341 330 	 336

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

				E	AILY INST	'ANTANEOU:	S VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	18.0 18.0 16.0	10.0	 	3.0	 3.0 3.0	 4.0 4.0	5.0 5.0	11.0 	19.0 18.0 18.0	29.0 30.0 30.0 	 28.0	26.0 26.0 26.0
6 7 8 9 10	16.0 15.0	12.0 12.0 10.0	9.0 8.0 7.0 5.0	3.0 3.0 4.0	4.0	4.0	5.0 6.0 6.0 7.0 9.0	15.0 15.0 16.0 	 20.0	30.0 30.0 29.0	27.0 27.0 	 27.0 26.0
11 12 13 14 15	15.0 14.0	11.0 11.0 13.0	5.0 5.0 	 4.0 3.0	4.0 4.0 4.0	5.0 4.0 4.0 	 14.0	12.0 13.0 14.0	22.0 25.0 	 26.0 27.0	28.0 26.0 26.0	25.0
16 17 18 19 20	12.0 11.0 	 11.0 10.0	5.0 6.0 5.0	2.0	5.0 5.0 5.0	7.0 4.0 5.0	15.0 16.0 	 14.0	24.0 25.0 	27.7 28.0 	 25.0 25.0	24.0 24.0 24.0
21 22 23 24 25	12.0 13.0 12.0	9.0 	 1.0 2.0	4.0 3.0 4.0	 6.0	 3.0	10.0 11.0 10.0	15.0 15.0 	28.0 28.0	29.0 29.0 27.0	26.0 	19.0 19.0 19.0
26 27 28 29 30 31	9.0 10.0	9.0 9.0 8.0 	3.0 3.0	4.0 3.0 3.0	5.0 5.0 	4.0 5.0 	 10.0 11.0	18.0 20.0 21.0	30.0 31.0 	 29.0 29.0 29.0	27.0 27.0 26.0 	20.0

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	MEAN											
	CONCEN-	LOAD										
	TRATION	(TONS/										
DAY	(MG/L)	DAY)										
	(, -,	,	(,,	,	(,,	,	(,,	,	(,,	,	(,,	,
	OCTO	BER	NOVEMB	ER	DECEMB:	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1	17	799	27	1840	27	3070	4.2	253	9.6	567	8.5	620
2	18	846	26	2190	27	2900	4.0	259	9.4	536	7.7	505
3	20	1010	24	1880	22	2080	3.8	244	9.2	509	6.9	367
4	22	1090	21	1440	23	2020	3.6	228	9.0	488	6.2	288
5	24	1210	19	1170	26	2390	3.4	214	8.1	448	6.7	380
3	24	1210	10	11/0	20	2330	3.4	214	0.1	440	0.7	300
6	23	1170	17	878	28	2770	3.2	206	7.1	389	6.2	388
7	22	1090	18	972	27	2930	3.2	210	6.3	344	6.3	424
8	21	760	20	1220	25	2850	5.2	382	6.8	357	6.7	458
9	20	659	18	1140	24	2810	6.1	492	8.0	441	7.1	506
10	23	981	15	877	23	2740	7.2	605	11	694	7.2	500
11	26	1710	15	840	16	1960	7.5	630	8.6	600	8.0	525
12	26	1840	16	879	16	1930	6.7	539	6.5	437	8.9	644
13	27	1650	17	939	16	1890	5.9	443	7.6	500	9.8	944
14	27	1570	18	1060	15	1550	5.1	375	8.3	543	11	1110
15	28	1590	20	1200	14	1360	4.3	316	8.7	545	11	1270
16	27	1860	20	1210	14	1250	4.8	353	8.6	497	12	1370
17	23	1710	20	1190	13	1250	6.0	434	7.5	397	13	1420
18	22	1560	19	1180	14	1420	6.8	490	6.4	340	14	1420
19	20	1330	19	1170	13	1230	6.2	434	7.5	443	18	1590
20	19	1270	22	1360	13	1220	5.5	347	7.3	533	18	1620
21	18	1310	21	1300	15	1230	4.8	290	8.4	722	20	1760
22	17	1180	19	1170	17	1180	4.3	245	10	931	22	1970
23	17	1100	19	1150	19	1330	6.1	354	12	1130	24	2190
24	19	1220	20	1230	20	1440	13	821	12	1180	26	2390
25	19	1240	21	1490	13	972	15	1030	9.6	908	28	2550
23	19	1240	21	1430	13	312	13	1030	9.0	300	20	2330
26	19	1160	23	1780	8.0	536	15	1060	9.0	797	26	2150
27	18	1030	30	2510	6.7	431	15	1050	9.7	767	22	1540
28	18	914	28	2460	6.3	389	14	939	9.3	695	21	1220
29	18	870	25	2700	5.9	308	13	820			30	2430
30	22	1000	25	2900	5.5	274	11	648			31	2860
31	25	1140			5.0	267	9.8	587			36	3620
mom: -		27066		42205		40077		15000		16720		41000
TOTAL		37869		43325		49977		15298		16738		41029

SUSPENDED-SEDIMENT DISCHARGE, IN TONS PER DAY

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

			SUSPENDE	ED-SEDIM	ENT, WATER	YEAR OCT	POBER 2001	TO SEPT	EMBER 2002			
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	IL	MAY		JUNE		JULY		AUGUS'	Г	SEPTEM	BER
1 2 3 4 5	42 40 35 29 24	4520 4660 4390 3840 3220	23 23 23 23 23	5250 5160 5030 4940 4810	35 36 37 40 38	4010 4050 4200 4940 5010	17 18 19 20 20	3750 3930 4120 4280 4000	21 20 19 19	2420 2310 2180 2100 2140	16 15 16 21 20	2210 1950 2000 2520 2490
6 7 8 9 10	25 27 26 26 32	3230 3150 3120 3190 3840	24 33 31 32 35	4890 6530 6010 6250 6500	38 39 41 40 38	5320 6000 6800 7160 6910	19 18 17 18 19	3730 3450 3130 3150 3080	19 18 20 22 24	2230 2250 2470 2870 3280	20 20 20 20 22	2500 2640 2860 2980 3320
11 12 13 14 15	36 40 43 47 51	4490 5630 6770 7850 9590	37 40 42 35 35	6830 7450 8020 6990 7230	35 25 24 23 22	6320 4310 3820 3520 3250	21 21 22 22 29	3170 3100 3070 3150 2900	23 22 23 21 20	3150 2950 3050 2710 2530	22 25 27 26 24	3640 4270 4770 4360 3770
16 17 18 19 20	57 58 52 45 38	11600 13400 13400 12600 11500	36 38 38 36 34	7900 8430 8490 8020 7520	22 21 20 22 22	3080 2930 2680 2730 2750	19 19 19 19 18	2950 3090 3130 3150 3080	20 20 20 20 20 20	2400 2320 2310 2290 2240	21 21 20 23 22	3120 2800 2410 2630 2610
21 22 23 24 25	30 24 24 22 21	9610 7890 7790 6900 6400	33 37 41 43 46	7120 7790 8350 8440 8320	23 24 25 26 25	2940 3160 3300 3580 3870	18 18 22 19 22	2990 3030 3550 3060 3300	20 22 25 26 25	2200 2580 3200 3620 3750	21 21 20 23 19	2540 2250 1980 2090 1700
26 27 28 29 30 31	21 21 21 21 23	6070 5710 5400 5170 5440	48 49 45 39 37 35	7870 7480 6480 5460 4620 4070	23 20 18 18 17	3840 3720 3590 3850 3720	26 30 34 38 32 23	3740 4180 4540 4880 4050 2730	23 22 20 19 18 17	3860 3880 3660 3410 3010 2620	18 19 20 20 20	1770 1960 2010 2030 2050
TOTAL	·	200370		208250		125360		107460		85990		80230
YEAR		1011896										
20	000 -	\\\\			\sqrt{M}						M_\(\tau\)	
-	100 0	l N			J F	l M	I A		ı M J		J A	S
		20	01					20	102			

THIS PAGE IS INTENTIONALLY BLANK

72 MISSISSIPPI RIVER MAIN STEM

05411500 MISSISSIPPI RIVER AT CLAYTON, IA

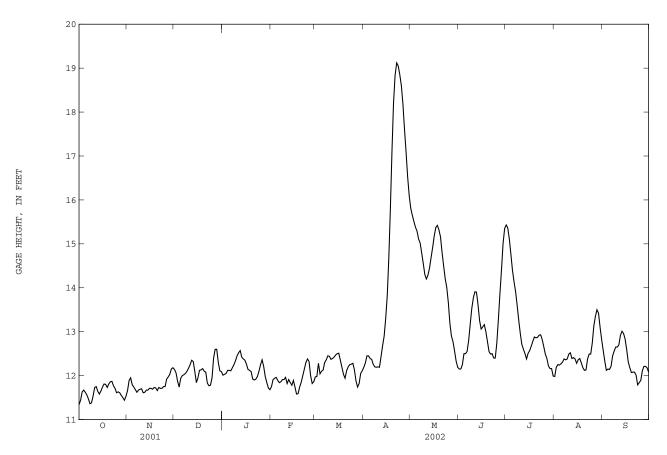
LOCATION.--Lat $42^{\circ}54^{\circ}13^{\circ}$, long $91^{\circ}08^{\circ}45^{\circ}$, $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.1, T.93 N., R.3 W., Clayton County, Hydrologic Unit 07060003, 6 miles below the Wisconsin River.

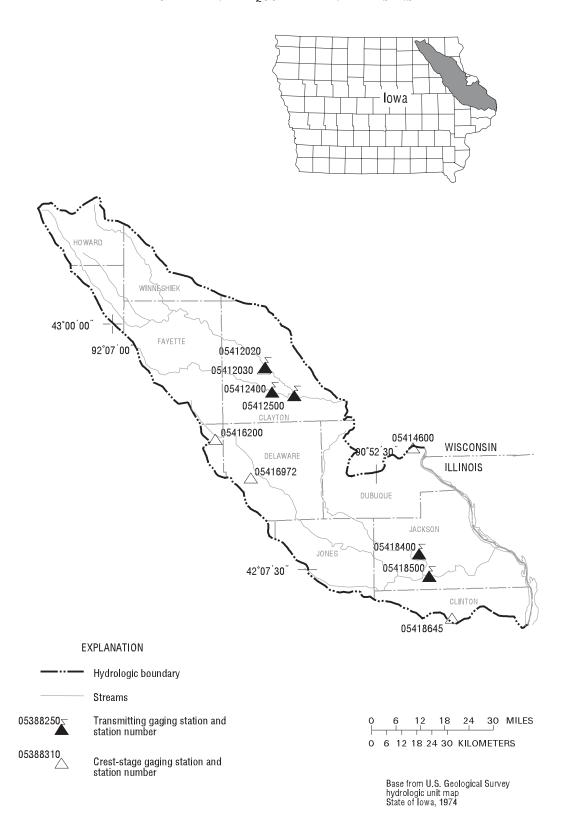
DRAINAGE AREA. -- 79,200 mi².

PERIOD OF RECORD.--April 1930 to June 1936, January 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 602.60 ft above NGVD of 1929.

REMARKS.--Records good. U.S. Geological Survey satellite data collection platform with telephone modem at station.


EXTREMES FOR CURRENT WATER YEAR.--Maximum gage height 19.18 ft Apr. 22; minimum gage height 11.29 ft Oct. 1.


EXTREMES FOR PERIOD OF RECORD.--Maximum gage height 25.48 ft Apr. 20, 2001; minimum gage height 11.16 ft Aug. 21, 1992.

GAGE HEIGHT FROM DCP, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11.34 11.44 11.63 11.67	11.66 11.89 11.95 11.79	12.14 12.06 11.87 11.74 11.94	12.01 12.03 12.05 12.12 12.12	11.75 11.91 11.94 11.96 11.89	11.97 11.98 12.28 12.04 12.10	12.19 12.29 12.45 12.45 12.39	15.81 15.65 15.51 15.38 15.29	12.15 12.15 12.25 12.50 12.50	15.43 15.36 15.11 14.76 14.40	11.98 12.19 12.25 12.24 12.27	12.57 12.33 12.12 12.15 12.14
6 7 8 9 10	11.56 11.47 11.36 11.38 11.54	11.68 11.62 11.67 11.69 11.70	12.00 12.02 12.05 12.10 12.17	12.11 12.18 12.25 12.34 12.45	11.84 11.86 11.91 11.91	12.13 12.30 12.36 12.45 12.44	12.37 12.26 12.20 12.19 12.20	15.11 15.02 14.79 14.55 14.30	12.55 12.80 13.17 13.53 13.77	14.14 13.91 13.60 13.26 12.96	12.31 12.38 12.36 12.38 12.49	12.21 12.45 12.56 12.65 12.65
11 12 13 14 15	11.73 11.75 11.64 11.58 11.65	11.61 11.62 11.67 11.67	12.25 12.35 12.32 12.09 11.84	12.52 12.57 12.42 12.38 12.35	11.82 11.91 11.84 11.78 11.89	12.37 12.39 12.42 12.47 12.50	12.19 12.43 12.68 12.90 13.31	14.20 14.29 14.45 14.69 14.92	13.91 13.90 13.61 13.25 13.06	12.71 12.60 12.50 12.38 12.51	12.52 12.39 12.41 12.38 12.28	12.70 12.92 13.01 12.96 12.83
16 17 18 19 20	11.74 11.81 11.80 11.73 11.81	11.71 11.69 11.73 11.72 11.66	11.95 12.12 12.13 12.16 12.10	12.26 12.14 12.12 12.09 11.92	11.74 11.58 11.59 11.74 11.85	12.51 12.35 12.19 12.03 11.94	13.83 14.70 15.83 17.12 18.22	15.18 15.37 15.42 15.32 15.16	13.11 13.16 13.00 12.78 12.55	12.57 12.67 12.78 12.88 12.86	12.36 12.39 12.29 12.18 12.12	12.59 12.31 12.18 12.07 12.08
21 22 23 24 25	11.86 11.87 11.77 11.71 11.61	11.73 11.71 11.71 11.75 11.75	12.08 11.83 11.77 11.78 11.95	11.90 11.92 11.98 12.10 12.25	12.00 12.15 12.30 12.38 12.32	12.11 12.20 12.25 12.26 12.28	18.84 19.12 19.05 18.85 18.60	14.81 14.50 14.21 14.01 13.67	12.49 12.50 12.40 12.40 12.74	12.87 12.92 12.93 12.82 12.66	12.13 12.38 12.49 12.49 12.74	12.08 12.01 11.79 11.84 11.89
26 27 28 29 30 31	11.63 11.61 11.55 11.50 11.44 11.53	11.92 11.97 12.03 12.15 12.18	12.40 12.60 12.60 12.30 12.11 12.09	12.36 12.21 11.98 11.84 11.72 11.68	12.00 11.82 11.86 	12.13 11.88 11.74 11.82 12.05 12.11	18.18 17.61 17.09 16.53 16.10	13.19 12.90 12.77 12.56 12.33 12.19	13.28 13.87 14.42 15.01 15.35	12.49 12.39 12.22 12.16 12.16 11.99	13.13 13.35 13.50 13.42 13.10 12.82	12.11 12.21 12.21 12.18 12.08
MEAN MAX MIN	11.62 11.87 11.34	11.77 12.18 11.61	12.09 12.60 11.74	12.14 12.57 11.68	11.91 12.38 11.58	12.20 12.51 11.74	14.87 19.12 12.19	14.44 15.81 12.19	13.14 15.35 12.15	13.13 15.43 11.99	12.51 13.50 11.98	12.33 13.01 11.79

05411500 MISSISSIPPI RIVER AT CLAYTON, IA--Continued

Figure 12. Locations of active continuous-record and crest-stage gaging stations in the Turkey River and Maquoketa River drainage basins.

Gaging Stations

05411850 05412020 05412400 05412500 05416900 05418400 05418500	Turkey River near Eldorado, IA	0 2 4 6 2
	Crest Stage Gaging Stations	
05412030 05414600 05416200 05416972 05418645	French Hollow Creek near Elkader, IA	1 1

05411850 TURKEY RIVER NEAR ELDORADO, IA

LOCATION.--Lat $43^{\circ}03^{\circ}15^{\circ}$, long $91^{\circ}48^{\circ}32^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ SE $^{1}/_{4}$ Sec.8, T.95 N., R.8 W., Fayette County, Hydrologic Unit 07060004, on left bank 5 ft. downstream of bridge on County Highway B40, 3.6 miles downstream of confluence with the Little Turkey River, 3.4 upstream of Dry Branch Creek, and 1.4 miles east of Eldorado.

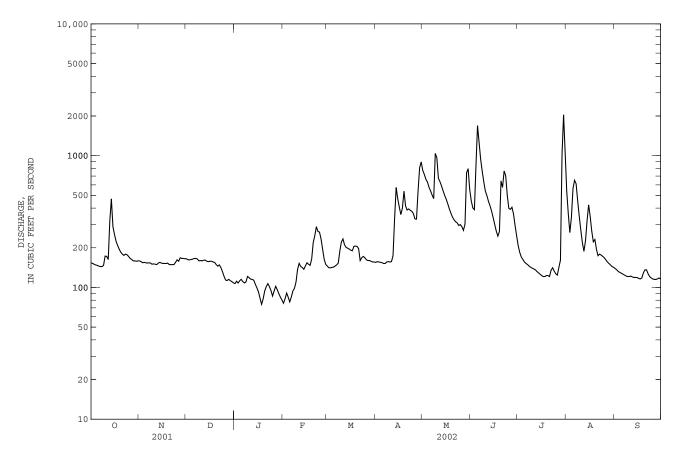
DRAINAGE AREA. -- 641 mi².

PERIOD OF RECORD. -- September 27, 2000 to current year.

GAGE.--Water-stage recorder. Datum of gage is 890.00 ft. above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 15, 1991, gage height 18.78 ft, discharge not determined; flood discharge at downstream site at Garber was 49,900 ft³/s; flood of May 19, 1999 at downstream site at Garber was 53,900 ft³/s, gage height 30.91 ft. This is the highest known flood in the basin.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	154	159	165	e107	e76	e145	155	773	454	207	538	139
2	152	157	162	e112	e82	e141	157	721	401	184	363	136
3	150	154	162	e108	e91	e141	156	662	389	170	261	132
4	148	155	163	e112	e84	e142	155	630	836	163	341	130
5	147	154	164	e115	e78	e142	154	575	1690	156	561	128
6	145	153	166	e111	e85	e146	152	540	1260	152	650	126
7	144	154	166	e108	e94	e148	152	502	939	149	612	124
8	144	153	164	e110	e99	e153	156	472	763	145	455	122
9	147	150	159	e121	e110	e189	157	1040	632	142	347	121
10	173	151	160	e119	e137	e221	156	963	539	140	273	121
11	172	150	159	e116	e152	e234	157	674	497	138	219	122
12	163	149	161	e115	e144	e211	174	634	450	136	188	120
13	320	153	161	e114	e142	e201	331	589	416	132	226	119
14	470	155	158	e106	e137	e198	574	541	379	129	319	119
15	289	153	157	e99	e146	e195	471	499	338	126	423	119
16	252	152	158	e93	154	e192	408	467	300	123	346	117
17	224	152	158	e83	150	e190	357	430	267	121	268	116
18	208	152	156	e75	147	205	401	394	245	121	222	118
19	195	153	155	e82	164	206	537	366	266	123	231	129
20	185	149	149	e94	219	205	416	342	643	123	195	136
21	179	149	145	e102	247	197	387	326	575	121	174	136
22	175	149	e148	e107	289	160	394	315	765	135	179	127
23	179	149	e141	e101	266	168	385	309	705	141	176	121
24	177	155	e132	e95	263	172	378	295	502	133	172	118
25	e172	162	e121	e86	233	168	364	300	398	127	168	116
26 27 28 29 30 31	166 163 159 159 158 159	158 168 166 166 165	e114 e113 e115 e113 e111 e108	e94 e102 e96 e90 e84 e80	195 e163 e150 	162 160 160 158 156	331 330 540 810 896	289 271 303 743 796 554	391 406 361 295 246	124 142 161 1020 2040 1060	162 156 152 148 144 142	115 115 116 118 116
MEAN	188.0	154.8	147.2	101.2	153.5	174.9	339.7	526.3	544.9	260.8	284.2	123.1
MAX	470	168	166	121	289	234	896	1040	1690	2040	650	139
MIN	144	149	108	75	76	141	152	271	245	121	142	115
AC-FT	11560	9210	9050	6220	8520	10750	20210	32360	32430	16030	17480	7320
CFSM	0.29	0.24	0.23	0.16	0.24	0.27	0.53	0.82	0.85	0.41	0.44	0.19
IN.	0.34	0.27	0.26	0.18	0.25	0.31	0.59	0.95	0.95	0.47	0.51	0.21
STATIST	FICS OF M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 200	0 - 2002,	BY WATER	YEAR (WY)			
MEAN	177.4	212.4	134.2	111.9	167.6	528.9	1552	1170	600.5	245.1	217.7	159.6
MAX	188	270	147	123	182	883	2764	1814	656	261	284	196
(WY)	2002	2001	2002	2001	2001	2001	2001	2001	2001	2002	2002	2001
MIN	167	155	121	101	153	175	340	526	545	229	151	123
(WY)	2001	2002	2001	2002	2002	2002	2002	2002	2002	2001	2001	2002

05411850 TURKEY RIVER NEAR ELDORADO, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 2000 - 2002
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	624.1	250.2	439.9 630 2001 250 2002
HIGHEST DAILY MEAN	6970 Apr 12	2040 Jul 30	6970 Apr 12 2001
	70 Jan 2	75 Jan 18a	66 Dec 25 2000
ANNUAL SEVEN-DAY MINIMUM	92 Jan 1	82 Jan 30	79 Dec 28 2000
MAXIMUM PEAK FLOW		2150 Jul 30	7520 Apr 12 2001
MAXIMUM PEAK STAGE	451800	8.43 Jul 30	13.93 Apr 12 2001
ANNUAL RUNOFF (AC-FT)		181200	318700
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	0.97	0.39	0.69
	13.22	5.30	9.32
10 PERCENT EXCEEDS	1530	538	931
50 PERCENT EXCEEDS	175	159	170
90 PERCENT EXCEEDS	140	113	116

a Ice affected. e Estimated.

05412020 TURKEY RIVER ABOVE FRENCH HOLLOW CREEK AT ELKADER, IA

LOCATION.--Lat $42^{\circ}50'36"$, long $91^{\circ}24'04"$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.26, T.93 N., R.05 W., Clayton County, Hydrologic Unit 07060004, on left bank 5 ft. downstream of bridge on State Highway 13, and 100 ft upstream of the mouth of French Hollow Creek.

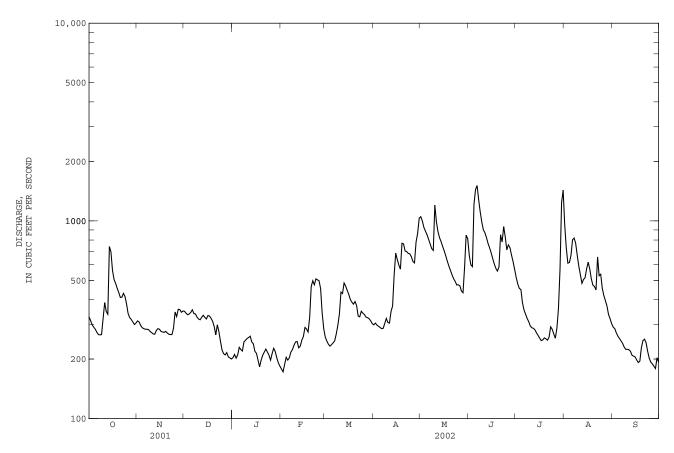
DRAINAGE AREA.--891 mi².

PERIOD OF RECORD.--August 28, 2001 to September 30, 2002.

GAGE.--Water-stage recorder. Datum of gage is 694.93 ft. above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 15, 1991, gage height and discharge not determined; flood discharge at downstream site at Garber was 49,900 ft³/s; flood of May 19, 1999 at downstream site at Garber was 53,900 ft³/s, gage height 30.91 ft. This is the highest known flood in the basin.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	327	312	349	e203	e178	e258	298	1050	670	517	953	290
2	313	308	341	e211	e172	e246	304	1000	600	479	730	285
3	298	296	335	e202	e188	e237	297	927	587	455	611	271
4	290	288	338	e210	e204	e232	293	887	1210	450	616	261
5	283	285	344	e229	e198	e237	289	851	1440	385	668	254
6	273	283	355	e223	e203	e242	285	807	1510	354	802	247
7	266	283	340	e219	e217	e247	286	765	1280	337	819	240
8	265	282	338	244	e223	e268	303	724	1110	321	770	230
9	266	276	326	249	e235	e296	321	709	987	309	670	224
10	321	272	319	254	e244	e338	306	1200	901	294	590	224
11	386	268	316	257	e245	436	304	990	871	288	535	223
12	348	267	325	261	e228	429	348	882	823	286	483	219
13	337	279	333	e244	e232	485	371	822	769	281	505	209
14	742	285	325	e239	e249	468	534	785	730	271	516	207
15	697	283	319	e219	e260	445	686	742	689	263	572	205
16	561	276	332	e214	289	425	638	705	644	255	618	198
17	505	274	330	e198	284	400	597	665	605	248	572	192
18	483	273	321	e183	274	388	570	624	575	250	509	195
19	456	276	310	e198	325	379	771	590	557	256	473	228
20	434	271	292	e209	466	391	765	561	585	253	466	248
21	410	267	265	e217	498	373	704	533	850	249	447	252
22	411	266	298	e225	475	330	699	510	782	258	657	242
23	430	266	e275	e217	509	327	685	494	935	291	528	219
24	414	287	e246	e209	503	349	681	474	830	283	537	202
25	379	346	e222	e198	498	341	658	475	714	268	457	193
26 27 28 29 30 31	339 324 317 308 299 304	328 357 356 345 350	e213 e210 e216 e205 e203 e200	e213 e227 e218 e203 e191 e184	454 e341 e284 	336 326 324 320 312 302	623 613 782 863 1030	469 442 433 581 846 813	756 732 671 622 568	255 286 360 571 1240 1430	419 395 371 336 320 302	189 184 179 203 193
TOTAL	11786	8805	9141	6768	8476	10487	15904	22356	24603	12043	17247	6706
MEAN	380.2	293.5	294.9	218.3	302.7	338.3	530.1	721.2	820.1	388.5	556.4	223.5
MAX	742	357	355	261	509	485	1030	1200	1510	1430	953	290
MIN	265	266	200	183	172	232	285	433	557	248	302	179
AC-FT	23380	17460	18130	13420	16810	20800	31550	44340	48800	23890	34210	13300
CFSM	0.42	0.33	0.33	0.24	0.34	0.37	0.59	0.80	0.91	0.43	0.62	0.25
IN.	0.49	0.36	0.38	0.28	0.35	0.43	0.66	0.92	1.01	0.50	0.71	0.28
STATIST	rics of	MONTHLY ME	AN DATA	FOR WATER	YEARS 200	1 - 2002,	BY WATER	R YEAR (WY	·)			
MEAN	380.2	293.5	294.9	218.3	302.7	338.3	530.1	721.2	820.1	388.5	556.4	223.5
MAX	380	294	295	218	303	338	530	721	820	388	556	224
(WY)	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002
MIN	380	294	295	218	303	338	530	721	820	388	556	224
(WY)	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002

05412020 TURKEY RIVER ABOVE FRENCH HOLLOW CREEK AT ELKADER, IA--Continued

SUMMARY STATISTICS	FOR 2002 WATER YEAR	WATER YEARS 2001 - 2002
ANNUAL TOTAL	154322	
ANNUAL MEAN	422.8	422.8
HIGHEST ANNUAL MEAN		423 2002
LOWEST ANNUAL MEAN		423 2002
HIGHEST DAILY MEAN	1510 Jun 6	1510 Jun 6 2002
LOWEST DAILY MEAN	172 Feb 2a	172 Feb 2 2002a
ANNUAL SEVEN-DAY MINIMUM	188 Jan 30	188 Jan 30 2002
MAXIMUM PEAK FLOW	1630 Jun 5	1630 Jun 5 2002
MAXIMUM PEAK STAGE	7.65 Jun 5	7.65 Jun 5 2002
ANNUAL RUNOFF (AC-FT)	306100	306300
ANNUAL RUNOFF (CFSM)	0.47	0.47
ANNUAL RUNOFF (INCHES)	6.36	6.36
10 PERCENT EXCEEDS	769	769
50 PERCENT EXCEEDS	325	328
90 PERCENT EXCEEDS	212	214

Ice affected Estimated

05412400 VOLGA RIVER AT LITTLEPORT, IA

LOCATION.--Lat $42^{\circ}45^{\circ}15^{\circ}$, long $91^{\circ}22^{\circ}10^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.25, T.92 N., R.5 W., Clayton County, Hydrologic Unit 07060004, on left bank 10 ft. downstream of bridge on County Highway X21, 6 miles upstream of confluence with the Turkey River, and 8.0 miles southeast of Elkader.

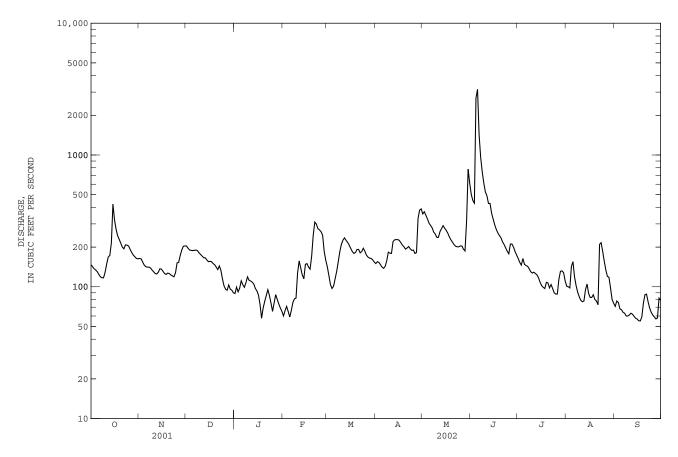
DRAINAGE AREA. -- 348 mi².

PERIOD OF RECORD.--September 1957 to July 1977 as miscellaneous low-flow site. September 19, 1999 to current year.

GAGE.--Water-stage recorder. Datum of gage is 677.00 ft. above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 17, 1999 reached a stage of 25.36 ft, approximate discharge 30,000 cfs. (from indirect measurement at Mederville, 2.5 miles upstream of Littleport)


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	147	164	204	e89	e60	e142	150	357	502	164	101	71
2	142	163	196	e99	e66	e122	155	371	452	153	100	78
3	137	154	190	e91	e71	e104	153	349	431	146	e98	76
4	134	146	189	e98	e65	e97	147	327	2700	164	e143	68
5	130	142	188	e111	e59	e101	141	304	3150	148	e155	67
6	124	141	189	e104	e66	e115	138	292	1430	145	e119	64
7	119	141	190	e99	e76	e131	143	280	962	143	102	63
8	117	139	188	e107	e81	e155	158	260	748	137	91	60
9	117	134	181	e119	e82	e185	183	251	613	130	84	60
10	129	130	176	e112	e127	210	180	237	525	127	79	61
11	149	126	171	e111	e157	226	179	237	491	129	77	63
12	168	125	166	e108	e139	235	220	262	429	126	78	62
13	173	129	166	e105	e123	225	227	276	429	123	95	e60
14	215	137	160	e97	e115	217	228	291	361	117	105	e58
15	424	136	155	e93	148	207	228	278	326	108	89	e57
16	323	131	156	e86	150	195	225	268	295	102	83	e55
17	273	126	155	e74	141	185	216	255	272	99	83	55
18	244	124	150	e58	136	179	207	239	256	97	87	59
19	229	127	147	e69	171	182	201	227	245	108	80	75
20	214	126	141	e77	246	192	193	218	235	107	78	87
21	200	123	135	e86	310	192	197	209	219	98	73	88
22	194	121	144	e95	299	181	202	203	209	104	210	77
23	208	119	e133	e86	276	185	194	201	197	97	216	69
24	207	128	e115	e75	270	196	189	201	186	90	185	64
25	204	152	e101	e65	262	186	190	204	178	88	156	61
26 27 28 29 30 31	192 182 174 169 164 163	153 173 190 203 204	e96 e94 e103 e96 e94 e90	e75 e87 e80 e74 e69 e65	246 e186 e159 	174 168 165 164 160 154	179 182 331 382 390	204 193 187 313 781 610	211 211 200 185 174	88 114 131 132 128 111	134 120 118 98 80 75	59 57 58 82 79
TOTAL	5765	4307	4659	2764	4287	5330	6108	8885	16822	3754	3392	1993
MEAN	186.0	143.6	150.3	89.16	153.1	171.9	203.6	286.6	560.7	121.1	109.4	66.43
MAX	424	204	204	119	310	235	390	781	3150	164	216	88
MIN	117	119	90	58	59	97	138	187	174	88	73	55
AC-FT	11430	8540	9240	5480	8500	10570	12120	17620	33370	7450	6730	3950
CFSM	0.53	0.41	0.43	0.26	0.44	0.49	0.59	0.82	1.61	0.35	0.31	0.19
IN.	0.62	0.46	0.50	0.30	0.46	0.57	0.65	0.95	1.80	0.40	0.36	0.21
STATIST	FICS OF M	MONTHLY ME	EAN DATA	FOR WATER	YEARS 200	0 - 2002,	BY WATER	R YEAR (WY	7)			
MEAN	121.6	123.8	92.35	64.74	138.4	325.8	368.9	412.3	495.6	224.6	126.6	133.3
MAX	186	144	150	89.2	175	649	590	680	628	321	138	246
(WY)	2002	2002	2002	2002	2000	2001	2001	2001	2000	2000	2000	2001
MIN	68.5	101	53.9	43.9	85.5	157	204	270	298	121	109	66.4
(WY)	2001	2000	2001	2000	2001	2000	2002	2000	2001	2002	2002	2002

05412400 VOLGA RIVER AT LITTLEPORT, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YE	EAR FOR 2002 WAT	ER YEAR	WATER YEARS	2000 - 2002
ANNUAL TOTAL	105566	68066			
ANNUAL MEAN	289.2	186.5		218.9	
HIGHEST ANNUAL MEAN				270	2001
LOWEST ANNUAL MEAN				186	2002
HIGHEST DAILY MEAN	2440 Mar	23 3150	Jun 5	3150	Jun 5 2002
LOWEST DAILY MEAN	38 Jan	2 55	Sep 16a	27	Jan 28 2000
ANNUAL SEVEN-DAY MINIMUM	46 Jan	1 58	Sep 12	31	Jan 26 2000
MAXIMUM PEAK FLOW		3810	Jun 4	3810	Jun 4 2002
MAXIMUM PEAK STAGE		13.11	Jun 4	13.11	Jun 4 2002
ANNUAL RUNOFF (AC-FT)	209400	135000		158600	
ANNUAL RUNOFF (CFSM)	0.83	0.54		0.63	
ANNUAL RUNOFF (INCHES)	11.28	7.28		8.55	
10 PERCENT EXCEEDS	744	276		443	
50 PERCENT EXCEEDS	172	147		134	
90 PERCENT EXCEEDS	80	75		61	

a Also Sept. 17. e Estimated

05412500 TURKEY RIVER AT GARBER, IA

LOCATION.--Lat $42^{\circ}44^{\circ}24^{\circ}$, long $91^{\circ}15^{\circ}42^{\circ}$, in SE^{1}_{4} NW $^{1}_{4}$ sec.36, T.92 N., R.4 W., Clayton County, Hydrologic Unit 07060004, on right bank 10 ft. upstream from bridge on county highway C43, 800 ft. upstream from Wayman Creek, 1,000 ft. southeast of Garber, 2,000 ft. downstream from Elk Creek, 1 mi downstream from Volga River, and 21.2 mi upstream from mouth.

DRAINAGE AREA. -- 1,545 mi².

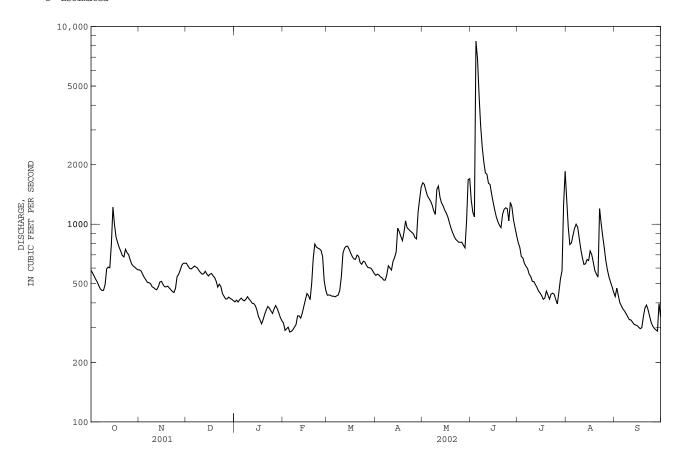
PERIOD OF RECORD.--August 1913 to November 1916, May 1919 to September 1927, April 1929 to September 1930, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1922-25 (M), 1927 (M). WSP 1438: Drainage area; WDR IA-95-1: location.

GAGE.--Water-stage recorder. Datum of gage is 634.46 ft. above NGVD of 1929. Prior to Feb. 7, 1935, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, that of May 17, 1999.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	585	587	634	e405	e316	e438	551	1620	1320	808	1330	431
2	566	580	614	e413	e290	e439	559	1590	1150	765	962	475
3	546	558	598	e404	e296	e437	553	1480	1090	687	789	435
4	526	538	594	e415	e301	e432	541	1390	8440	674	805	400
5	510	524	603	e423	e285	e432	535	1350	6850	632	879	385
6	488	508	614	e414	e287	e429	522	1310	4480	612	952	372
7	470	506	608	e410	e293	e434	521	1250	3140	596	1000	363
8	462	501	600	e418	e301	e438	554	1170	2460	559	967	352
9	463	483	583	e430	e310	e465	616	1120	2070	544	849	340
10	496	478	569	e418	e344	e546	601	1500	1820	514	748	329
11	595	470	559	e409	e344	713	586	1560	1790	513	677	328
12	607	466	562	e398	e335	756	649	1370	1610	495	626	320
13	602	483	578	e397	e355	773	677	1280	1590	479	630	312
14	792	510	560	e387	e384	774	724	1240	1420	459	663	309
15	1220	514	547	e368	e415	745	956	1180	1290	448	655	307
16	992	496	559	e341	446	713	917	1140	1180	435	732	301
17	860	483	563	e328	435	685	868	1090	1090	417	701	296
18	807	482	548	e313	415	667	826	1020	1030	423	641	300
19	763	486	537	e330	500	664	909	958	988	459	582	341
20	729	476	514	e351	671	698	1040	910	961	438	559	377
21	695	466	481	e369	794	688	960	871	1120	418	540	390
22	683	457	497	e384	766	639	942	840	1190	443	1200	369
23	747	451	e483	e376	757	627	924	825	1210	448	1010	342
24	718	475	e445	e364	750	650	910	811	1200	442	869	318
25	702	543	e432	e354	737	644	895	810	1040	416	761	305
26 27 28 29 30 31	661 628 614 606 595 588	558 586 620 634 635	e419 e419 e428 e421 e416 e411	e374 e387 e374 e356 e337 e325	686 e518 e464 	619 604 602 598 581 563	856 843 1150 1340 1540	811 782 759 1040 1680 1700	1290 1220 1050 958 876	395 454 529 582 1250 1850	654 588 541 510 482 453	297 292 288 397 341
TOTAL	20316	15554	16396	11772	12795	18493	24065	36457	56923	18184	23355	10412
MEAN	655.4	518.5	528.9	379.7	457.0	596.5	802.2	1176	1897	586.6	753.4	347.1
MAX	1220	635	634	430	794	774	1540	1700	8440	1850	1330	475
MIN	462	451	411	313	285	429	521	759	876	395	453	288
AC-FT	40300	30850	32520	23350	25380	36680	47730	72310	112900	36070	46320	20650
CFSM	0.42	0.34	0.34	0.25	0.30	0.39	0.52	0.76	1.23	0.38	0.49	0.22
IN.	0.49	0.37	0.39	0.28	0.31	0.45	0.58	0.88	1.37	0.44	0.56	0.25
STATIST	TICS OF M	MONTHLY ME	AN DATA	FOR WATER	YEARS 191	13 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	575.6	615.8	480.6	506.0	821.8	2010	1736	1362	1424	986.7	854.3	638.4
MAX	2527	2834	2889	3306	4265	4832	6382	5176	5316	5772	5119	3011
(WY)	1987	1962	1983	1916	1922	1979	1951	1999	1947	1993	1993	1938
MIN	88.2	92.2	78.5	62.0	60.9	188	288	95.7	103	121	140	108
(WY)	1950	1950	1959	1940	1959	1934	1957	1934	1934	1936	1964	1958

05412500 TURKEY RIVER AT GARBER, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1913 - 2002
ANNUAL TOTAL	484398	264722	
ANNUAL MEAN	1327	725.3	1004
HIGHEST ANNUAL MEAN			2905 1993
LOWEST ANNUAL MEAN			249 1934
HIGHEST DAILY MEAN	9290 Apr 13	8440 Jun 4	43400 May 17 1999
LOWEST DAILY MEAN	140 Jan 2	285 Feb 5a	49 Jan 28 1940
ANNUAL SEVEN-DAY MINIMUM	176 Jan 1	293 Feb 2	51 Jan 25 1940
MAXIMUM PEAK FLOW		13800 Jun 4	53900 May 17 1999
MAXIMUM PEAK STAGE		19.60 Jun 4	30.91 May 17 1999
INSTANTANEOUS LOW FLOW		280 Sep 28	
ANNUAL RUNOFF (AC-FT)	960800	525100	727600
ANNUAL RUNOFF (CFSM)	0.86	0.47	0.65
ANNUAL RUNOFF (INCHES)	11.66	6.37	8.83
10 PERCENT EXCEEDS	3410	1200	2120
50 PERCENT EXCEEDS	597	578	530
90 PERCENT EXCEEDS	280	348	170

Ice affected Estimated

05416900 MAQUOKETA RIVER AT MANCHESTER, IA

LOCATION.--Lat $42^{\circ}28'12"$, long $91^{\circ}26'54"$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.33, T.89 N., R.5 E., Delaware, Hydrologic Unit 07060006, on left bank, 10 feet downstream of east bound bridge of Highway 20, 1.5 miles upstream of Sand Creek, and 1.5 miles downstream of dam in Manchester.

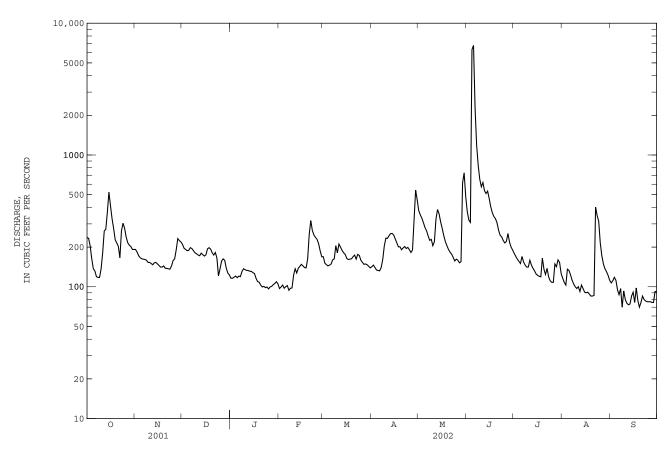
DRAINAGE AREA. -- 275 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD.--April 26, 2000 to September 30, 2002 (discontinued).

GAGE.--Water-stage recorder. Datum of gage is 895.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	237	192	210	e116	e97	e169	142	377	372	179	116	107
2	233	183	196	e116	e100	e151	146	351	321	170	108	111
3	e204	172	192	e118	e103	e147	140	331	308	162	103	118
4	e164	166	188	e120	e97	e144	134	306	6300	156	136	112
5	e137	163	189	e117	e100	e146	133	281	6790	150	133	95
6	e132	162	198	e120	e102	e149	132	266	2250	170	123	87
7	e119	161	195	e119	e94	160	140	243	1180	154	112	97
8	e118	159	188	e130	e97	163	162	225	833	146	105	70
9	e118	153	181	137	e98	205	205	229	653	141	100	93
10	e137	153	178	135	e122	181	234	205	574	141	97	80
11	e181	150	174	133	e137	211	233	220	e618	159	100	75
12	e265	147	172	133	e127	200	244	326	536	146	92	73
13	e274	152	180	131	e138	189	253	386	510	138	103	74
14	e369	153	175	131	e143	181	254	357	532	132	97	85
15	e523	149	171	128	148	176	247	310	468	125	91	91
16	e411	145	175	126	144	164	230	277	405	122	90	76
17	e328	141	194	e116	140	161	215	244	365	120	91	98
18	e277	141	198	e109	139	162	201	220	341	119	88	79
19	e227	144	193	e108	163	163	201	205	e329	165	85	70
20	e215	138	181	e103	250	169	191	192	e306	136	85	76
21	e203	138	174	e100	318	174	197	183	e269	124	86	85
22	e166	137	182	e101	267	162	202	177	e246	138	402	80
23	265	136	e166	e99	247	176	195	167	e239	119	347	78
24	304	144	e121	e100	237	173	199	157	e224	111	314	77
25	278	158	e137	e96	229	159	191	162	215	108	215	77
26 27 28 29 30 31	239 216 207 202 192 192	163 191 232 224 219	e157 e163 e159 e138 e127 e123	e100 e101 e104 e106 e109 e105	212 e187 e169 	153 148 149 147 143 139	182 190 320 541 457	159 152 155 614 732 485	221 254 218 200 190	108 149 142 160 153 126	172 149 137 130 122 112	77 76 76 92 92
TOTAL	7133	4866	5375	3567	4405	5114	6511	8694	26267	4369	4241	2577
MEAN	230.1	162.2	173.4	115.1	157.3	165.0	217.0	280.5	875.6	140.9	136.8	85.90
MAX	523	232	210	137	318	211	541	732	6790	179	402	118
MIN	118	136	121	96	94	139	132	152	190	108	85	70
AC-FT	14150	9650	10660	7080	8740	10140	12910	17240	52100	8670	8410	5110
CFSM	0.84	0.59	0.63	0.42	0.57	0.60	0.79	1.02	3.18	0.51	0.50	0.31
IN.	0.96	0.66	0.73	0.48	0.60	0.69	0.88	1.18	3.55	0.59	0.57	0.35
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 200	0 - 2002,	BY WATER	YEAR (WY)			
MEAN	153.8	134.1	108.4	83.53	136.2	405.0	345.7	397.8	769.0	241.1	162.0	159.9
MAX	230	162	173	115	157	645	474	473	1005	382	210	302
(WY)	2002	2002	2002	2002	2002	2001	2001	2001	2000	2000	2001	2001
MIN	77.5	106	43.4	52.0	115	165	217	280	427	141	137	85.9
(WY)	2001	2001	2001	2001	2001	2002	2002	2002	2001	2002	2002	2002

05416900 MAQUOKETA RIVER AT MANCHESTER, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 2000 - 2002
ANNUAL TOTAL	105704	83119	
ANNUAL MEAN	289.6	227.7	244.4
HIGHEST ANNUAL MEAN			261 2001
LOWEST ANNUAL MEAN			228 2002
HIGHEST DAILY MEAN	1840 Mar 23	6790 Jun 5	6790 Jun 5 2002
LOWEST DAILY MEAN	38 Jan 9	70 Sep 8a	32 Dec 5 2000
ANNUAL SEVEN-DAY MINIMUM	43 Jan 7	77 Sep 22	39 Dec 21 2000
MAXIMUM PEAK FLOW		10800 Jun 4	10800 Jun 4 2002
MAXIMUM PEAK STAGE		18.35 Jun 4	18.35 Jun 4 2002
ANNUAL RUNOFF (AC-FT)	209700	164900	177000
ANNUAL RUNOFF (CFSM)	1.05	0.83	0.89
ANNUAL RUNOFF (INCHES)	14.30	11.24	12.07
10 PERCENT EXCEEDS	577	319	541
50 PERCENT EXCEEDS	192	159	162
90 PERCENT EXCEEDS	72	97	76

Also Sept. 19. Estimated

05416900 MAOUOKETA RIVER AT MANCHESTER, IA--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD. -- April 26, 2000 to September 30, 2002 (discontinued).

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: April 26, 2000 to September 30, 2002 (discontinued).
WATER TEMPERATURES: April 26, 2000 to September 30, 2002 (discontinued).
SUSPENDED-SEDIMENT DISCHARGE: April 26, 2000 to September 30, 2002 (discontinued).

REMARKS.--During periods of ice effect, sediment samples are collected in open water channel. Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD. --

REMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 596 microsiemens Mar. 5, 2002; minimum daily, 162 microsiemens June 4, 2002.
WATER TEMPERATURES: Maximum daily, 31.0 C Aug. 7, 8, 2001; minimum daily, 0.0 C Dec. 12, many days in winter.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,340 mg/L May 13, 2000; minimum daily mean, 2 mg/L Jan. 16, 2001.
SEDIMENT LOADS: Maximum daily, 18,900 tons June 4, 2002; minimum daily, 0.38 tons Jan. 16, 2001.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum daily, 596 microsiemens Mar. 5; minimum daily, 162 microsiemens June 4. WATER TEMPERATURES: Maximum daily, 26.5 C July 3, 9; minimum daily, 0.0 C many days in winter. SEDIMENT CONCENTRATIONS: Maximum daily mean, 976 mg/L June 4; minimum daily mean, 3.8 mg/L Jan. 25. SEDIMENT LOADS: Maximum daily, 18,900 tons June 4; minimum daily, 1.2 tons Jan. 25.

SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								537	515			
2	468	442			558			491		525		
3				525						448		535
4			537				538		162			549
5		473			471	596	543		234			549
6		530			580	550	525					
7					550	561		534			539	
8				543	535			532		511	448	
9				551			540			531		525
10				547			521					538
11				542		529	531		493			560
12			551		519	531		473	529		514	
13		516	549		518	533					518	
14					526	523		532				
15			553		534	536		543		504	534	
16							524	527		518		538
17				580						517		
18				590			540		529			547
19			553		527	441	540	498			536	
20					515	550		540			541	
21					517	534	538	468				
22	463		548	567						498	488	
23				572						534		543
24				563					527			559
25				577		491	524		515	478		
26					467	484	540			562		539
27					542	548					525	
28		539			526	543		501	501			
29			486	495		540	504	300				
30	475			551			521			511		521
31	475			547								

maquoketa river basin 87

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

05416900 MAQUOKETA RIVER AT MANCHESTER, IA--Continued

	WATER TEMPERATURE, IN (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15.5 	12.0 10.0	 14.5 	0.0	1.5 0.0	 1.0	 7.5 7.5	13.0 12.5 	17.8 16.5 16.5	25.5 26.5 	 	23.0 23.0 24.0
6 7 8 9 10	 	 	 	10.5 3.0 1.5	1.5 3.0 3.0 	0.5 1.5 	7.0 8.5 11.0 11.0	20.0 20.5 	 	25.5 26.5	23.5 23.5 	24.0 21.5
11 12 13 14 15	 	11.5 	4.5 2.0 4.5	3.0	3.0 3.5 5.0 3.5	2.5 5.5 7.0 5.0 4.0	15.0 	11.0 15.5 16.0	19.5 21.0 	23.5	20.0 18.0	19.5
16 17 18 19 20	 	 	 3.5	1.0 0.0 	 7.0 4.0	 5.8 8.5	21.5 21.0 3 	15.5 19.5 	20.0	25.5 25.0 	 21.5 21.0	19.5 19.0
21 22 23 24 25	10.8	 	3.5	3.0 3.5 3.0 1.0	2.5	2.0 1.0	9.0 12.0	15.5 	 26.0	25.5 23.5	22.0 	14.0 14.5
26 27 28 29 30 31	 8.5 10.0	1.5 	 0.0 	 1.0 0.0	3.5 0.0 2.5 	6.5 9.0 11.0 11.5	9.0 12.0 13.5	20.5 18.5	25.0 	24.5 26.0	23.5	16.5 18.0

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	DECEMB:	ER	JANUA	RY	FEBRUA	RY	MARCI	Н
1 2 3 4 5	11 8.0 6.0 6.1 6.1	7.0 5.0 3.8 3.9 3.9	20 21 19 17 15	11.0 10.0 8.8 7.7 6.7	14 12 11 23 25	8.2 6.2 5.5 12.0 13.0	18 13 8.8 15 17	7.3 5.0 3.3 5.8 6.3	5.9 8.3 11 14 16	1.9 2.5 3.5 4.0 4.9	31 27 23 19 15	15.0 11.0 9.7 7.9 7.0
6 7 8 9 10	6.2 6.2 6.3 6.3	3.9 3.9 4.2 4.6 5.4	11 12 20 19 15	4.9 5.3 8.7 8.0 6.4	23 20 16 13 9.3	12.0 10.0 8.4 6.5 4.5	16 15 11 5.4 5.1	6.2 5.7 3.9 2.0 1.8	7.1 5.7 8.2 11 14	2.3 1.8 2.5 3.4 6.0	11 5.9 8.1 13 11	5.2 2.6 3.6 7.0 5.5
11 12 13 14 15	6.4 6.9 7.7 8.5 9.4	5.4 5.3 6.4 9.0 14.0	14 12 9.6 11 15	5.7 4.6 3.9 4.5 6.1	7.0 7.2 9.9 7.8 4.8	3.3 3.4 4.8 3.7 2.2	9.2 8.9 7.9 6.9 5.9	3.3 3.2 2.8 2.4 2.1	17 19 10 9.1 8.4	8.6 9.2 4.3 3.7 3.3	9.4 15 17 20 13	5.3 8.2 8.4 9.7 6.1
16 17 18 19 20	10 12 17 23 29	17.0 22.0 36.0 59.0 89.0	14 13 11 9.7 8.4	5.6 4.9 4.3 3.8 3.2	6.4 8.6 10 14 14	3.0 4.5 5.4 7.2 7.1	4.9 4.3 5.0 5.3 5.5	1.7 1.4 1.6 1.8 1.9	8.7 9.3 11 15 20	3.4 3.5 3.9 6.7 14.0	15 18 21 22 18	6.4 7.8 9.2 9.5 8.3
21 22 23 24 25	30 24 15 15	91.0 45.0 11.0 12.0 11.0	9.7 12 13 14 14	3.6 4.3 4.7 5.4 6.0	14 13 14 14 15	6.5 6.8 6.4 7.5	5.7 6.3 10 7.3 3.8	1.9 2.1 3.4 2.4 1.2	26 26 25 23 22	22.0 19.0 16.0 15.0 14.0	12 9.8 9.5 9.2	5.7 4.3 4.5 4.3 5.6
26 27 28 29 30 31	14 14 14 13 13	9.0 8.1 7.6 7.2 7.0 9.5	14 14 15 17 16	6.2 7.2 9.4 10.0 9.7	14 13 12 12 17 22	7.1 6.4 5.6 5.0 7.2 9.1	5.8 8.4 10 8.5 7.1 4.8	1.9 2.7 3.3 2.7 2.2 1.5	21 15 29 	12.0 7.8 16.0 	32 20 14 15 15	13.0 8.1 5.5 6.1 5.9
TOTA	L	527.1		190.6		205.0		94.8		215.2		221.8

SUSPENDED-SEDIMENT DISCHARGE, IN TONS PER DAY

05416900 MAQUOKETA RIVER AT MANCHESTER, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			DODI LIND	DD DDDIII	LIVI, WIIILIN	Thin oc	TODER ZOOT	TO DELL	IIIDDIK Z00Z			
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	IL	MAY		JUNE		JULY		AUGUS'	г	SEPTEM	BER
1 2 3 4 5	14 13 12 11	5.2 5.0 4.5 4.0 4.1	41 32 30 28 26	42.0 30.0 27.0 23.0 19.0		51.0 39.0 77.0 18900 10100	26 26 25 29 35	13.0 12.0 11.0 12.0 14.0	26 23 24 26 24	7.7 6.4 6.1 8.9 8.2	19 19 20 19 17	5.5 5.9 6.5 6.0 4.6
6 7 8 9 10	17 16 15 22 35	6.0 6.0 6.5 12.0 22.0	24 21 21 23 22	17.0 14.0 13.0 14.0	262 205 167 151 135	1620 659 377 267 211	39 37 34 28 27	18.0 15.0 13.0 11.0	23 21 21 21 20	7.2 6.1 6.0 5.6 5.3	17 18 19 19 16	4.2 4.9 3.8 5.2 3.7
11 12 13 14 15	42 42 40 39 38	26.0 28.0 28.0 27.0 25.0	26 34 38 27 24	16.0 30.0 39.0 26.0 20.0	115 74 59 54 49	192 108 81.0 78.0 63.0	26	12.0 10.0 8.9 8.3 7.6	20 20 20 21 22	5.3 4.8 5.6 5.4 5.4	13 13 12 15	2.9 2.7 2.6 3.6 3.9
16 17 18 19 20	36 38 41 46 31	23.0 22.0 22.0 25.0 16.0	23 23 22 21 21	18.0 15.0 13.0 12.0 11.0	45 40 35 32 30	49.0 39.0 32.0 29.0 25.0	20 19 20 25 25	6.2 7.3 7.5 13.0 11.0	21 19 18 16 17	5.1 4.8 4.3 3.8 4.1	15 17 13 11 12	3.3 4.5 2.7 2.0 2.3
21 22 23 24 25	16 15 17 19 21	8.4 8.2 9.1 10.0 11.0	21 20 19 19 22	10.0 9.5 8.7 8.0 9.5	28 26 24 23 29	21.0 17.0 16.0 14.0 17.0	26 30 27 29 31	10.0 13.0 10.0 10.0	25 77 82 68 49	6.2 86.0 78.0 58.0 29.0	10 8.3 7.1 6.3 7.8	2.3 1.8 1.5 1.3
26 27 28 29 30 31	18 27 38 49 62	8.8 14.0 34.0 72.0 77.0	22 21 31 557 354 118	9.1 8.7 13.0 1130 738 156	31 29 27 27 27	18.0 20.0 16.0 14.0 14.0	28 29 31 33 35 29	10.0 13.0 14.0 16.0 14.0 9.4	39 31 27 24 22 20	19.0 13.0 10.0 8.6 7.4 6.2	8.0 8.0 8.1 12 12	1.6 1.6 1.6 3.0 3.0
TOTAI		569.8				33164.0		351.2		437.5		100.1
YEAR		38588.6										
100,	000		1		1	1	ı	1		1	ı	
50,	000											
20,	000 –											
10,	000											
5	000											
2	000											
1	000											
	500 -								$\ \ $			
:	200								$\ \cdot \ $			
	100	Λ						1	$\parallel \mid \downarrow$			٨
	50 -							Λ,				
	20 - /					Λ _Λ	\bigcap	1 \		// v	٨	
	10	$\mathcal{N}_{\mathcal{N}}$	\mathcal{M}	mΛ.	Λ	11/1	Λ Λ	W	\bigvee	\ \	M/V	
	5	νV	√ `W	, ,M'		J V ¹	VV				. ~	√ \ _M \
	2 -		V	. (/	\sqrt{W}	ľ						ν h
	1 0	N 20			J F	I	A I		1 1 J		J A	S

THIS PAGE IS INTENTIONALLY BLANK

05418400 NORTH FORK MAQUOKETA RIVER NEAR FULTON, IA

LOCATION.--Lat $42^{\circ}09^{\circ}52^{\circ}$, long $90^{\circ}40^{\circ}44^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.16, T.85 N., R.2 E., Jackson County, Hydrologic Unit 07060006, on right downstream bank at County Highway E17, 0.25 mile upstream from Prairie Creek, and 7.0 mi northeast of Maquoketa.

DRAINAGE AREA. -- 505 mi².

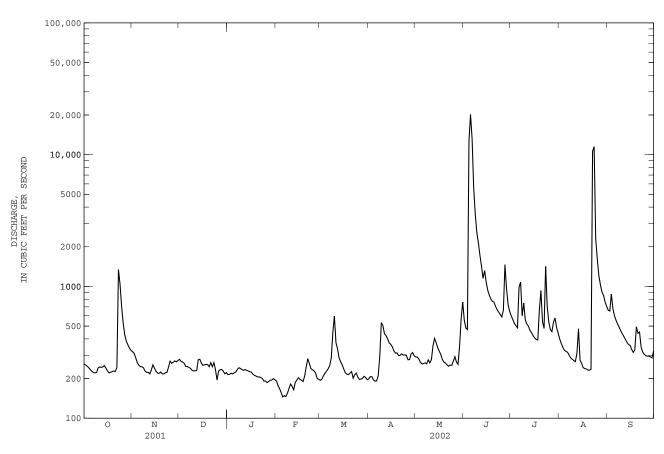
PERIOD OF RECORD.--April 29, 1998 to current year.

GAGE.--Water-stage recorder. Datum of gage is 679.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood, Aug. 18, 1981, reached a stage of 17.26 ft, discharge, 10,700 ${\rm ft}^3/{\rm s}$, at site and datum 3.5 miles downstream, in use prior to Oct. 1, 1991.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	258	320	280	e214	e191	e194	199	291	556	599	399	660
2	254	311	270	e215	e176	e198	207	291	484	561	369	651
3	248	288	267	e220	e167	e210	206	281	471	525	345	876
4	242	265	261	e217	e156	e220	195	265	e12600	504	328	678
5	234	253	247	e221	e145	e228	191	258	e20200	486	321	599
6	227	246	247	e224	e148	e237	192	260	e13200	985	317	553
7	222	246	243	e234	e146	e250	210	263	e5690	1080	301	518
8	221	241	239	e242	e155	286	295	259	e3570	600	287	489
9	222	228	231	e238	e169	447	533	277	e2580	748	280	461
10	241	223	229	e234	e182	597	504	263	e2150	557	274	437
11	245	223	229	e231	e174	375	438	278	e1730	518	269	417
12	243	217	230	e234	e164	336	424	353	1430	499	311	396
13	245	232	278	e230	e187	287	401	404	1150	465	477	376
14	251	254	280	e229	e195	268	373	375	1320	445	276	362
15	240	240	262	e225	203	254	364	343	1080	423	261	357
16	228	227	252	e223	197	236	349	323	937	407	e242	332
17	221	220	254	e215	194	221	325	304	858	396	e238	316
18	223	219	256	e211	190	216	312	279	802	393	e236	331
19	226	224	255	e209	209	214	313	267	771	665	e232	494
20	228	217	246	e205	246	220	299	262	759	932	e231	441
21	226	217	264	e206	283	226	300	254	705	540	e235	451
22	243	221	246	e204	260	201	308	248	666	481	10600	348
23	1340	223	264	e200	238	214	301	253	638	1420	11500	318
24	1040	244	e234	e191	233	220	303	252	612	708	2300	306
25	708	271	e195	e191	229	205	300	271	587	539	1620	298
26 27 28 29 30 31	530 431 385 361 341 327	261 266 272 268 274	e228 e233 e234 e227 e217 e222	e186 e190 e194 e195 e200 e196	220 e200 e198 	197 198 201 208 203 196	278 278 307 315 298	293 267 256 352 565 761	662 1460 966 727 648	471 454 534 576 488 442	1210 1030 907 856 763 705	296 296 292 287 324
TOTAL	10651	7411	7620	6624	5455	7763	9318	9668	80009	18441	37720	12960
MEAN	343.6	247.0	245.8	213.7	194.8	250.4	310.6	311.9	2667	594.9	1217	432.0
MAX	1340	320	280	242	283	597	533	761	20200	1420	11500	876
MIN	221	217	195	186	145	194	191	248	471	393	231	287
AC-FT	21130	14700	15110	13140	10820	15400	18480	19180	158700	36580	74820	25710
CFSM	0.68	0.49	0.49	0.42	0.39	0.50	0.62	0.62	5.28	1.18	2.41	0.86
IN.	0.78	0.55	0.56	0.49	0.40	0.57	0.69	0.71	5.89	1.36	2.78	0.95
		MONTHLY ME										
MEAN	321.7	263.7	176.9	138.7	382.9	397.5	507.2	567.3	1213	459.7	484.4	310.9
MAX	490	388	246	214	549	800	857	1179	2667	595	1217	432
(WY)	1999	1999	2002	2002	2001	2001	1999	1999	2002	2002	2002	2002
MIN	199	182	64.5	85.3	195	223	311	312	528	268	241	241
(WY)	2001	2001	2001	2000	2002	2000	2002	2002	2001	2001	2000	2000

maquoketa river basin 91

05418400 NORTH FORK MAQUOKETA RIVER NEAR FULTON, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEND	DAR YEAR	FOR 2002 WAT	ER YE	AR	WATER YEARS	S 1998 - 2002
ANNUAL TOTAL	141258		213640				
ANNUAL MEAN	387.0		585.3			445.8	
HIGHEST ANNUAL MEAN						585	2002
LOWEST ANNUAL MEAN						320	2000
HIGHEST DAILY MEAN	1920	Mar 13	20200	Jun	5	20200	Jun 5 2002
LOWEST DAILY MEAN	72	Jan 1	145	Feb	5	44	Dec 5 2000
ANNUAL SEVEN-DAY MINIMUM	88	Jan 1	155	Feb	3	56	Dec 21 2000
MAXIMUM PEAK FLOW			22600	Jun	5	22600	Jun 5 2002
MAXIMUM PEAK STAGE			19.87	Jun	5	19.87	Jun 5 2002
ANNUAL RUNOFF (AC-FT)	280200		423800			323000	
ANNUAL RUNOFF (CFSM)	0.77		1.16			0.88	
ANNUAL RUNOFF (INCHES)	10.41		15.74			11.99	
10 PERCENT EXCEEDS	698		752			731	
50 PERCENT EXCEEDS	274		268			292	
90 PERCENT EXCEEDS	180		200			160	

e Estimated

05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA

LOCATION.--Lat $42^{\circ}05^{\circ}00^{\circ}$, long $90^{\circ}37^{\circ}58^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.17, T.84 N., R.3 E., Jackson County, Hydrologic Unit 07060006, on right downstream bank at State Highway 62 bridge, 900 ft. upstream from Prairie Creek, 2.0 mi northeast of Maquoketa, 2.2 mi downstream from North Fork, and 26.7 mi upstream from mouth.

DRAINAGE AREA. -- 1,553 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1913 to current year. Prior to October 1939, published as "below North Fork near Maquoketa". Monthly discharge only for some periods, published in WSP 1308.

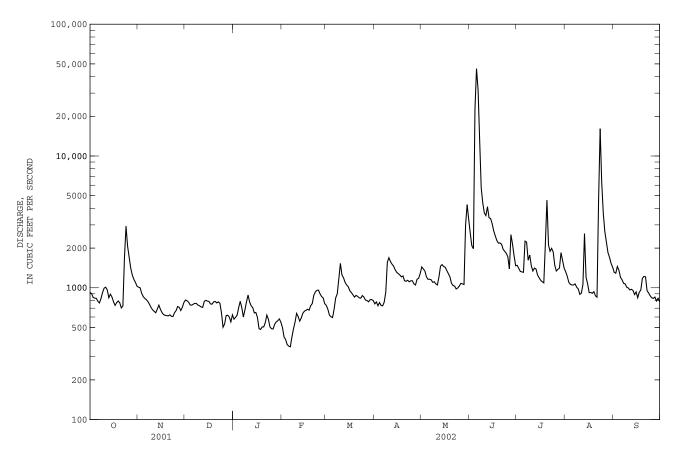
REVISED RECORDS.--WSP 405: 1914. WSP 1438: Drainage area. WSP 1508: 1914-17, 1919-25, 1926 (M), 1929, 1933-34 (M), 1943.

GAGE.--Water-stage recorder. Datum of gage is 625.96 ft. above NGVD of 1929. Prior to July 14, 1924, nonrecording gage, and July 15, 1924 to Sept. 30, 1972, recording gage at site 300 ft. upstream from State Highway 62 bridge at datum 10.00 ft. higher. On Aug. 3, 1995 the gage was moved to the current location.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation caused by power plant 4 mi upstream of station. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood, probably in 1903, reached a stage of 23.5 ft., discharge, 43,000 ft.3/s, at datum in use prior to Oct. 1, 1972.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	921	1010	807	e577	e498	e736	755	1440	2590	1480	1320	1310
2	904	1000	797	e596	e422	e687	781	1390	2080	1400	1220	1290
3	845	909	777	e619	e405	e619	730	1340	1980	1330	1100	1450
4 5	834	857	740	e708	e371	e603	773 735	1210	22700	1320	1060	1360
5	831	830	738	e789	e361	e594	/35	1160	45900	1310	1050	1200
6	790	812	751	e705	e356	690	729	1160	31600	2260	1050	1150
7	767	785	762	e600	e422	838	777	1150	13200	2220	1070	1080
8	828	749	759	e681	e487	900	927	1100	5730	1620	1010	1070
9	920	708	739	e782	e547	1170	1560	1110	4390	1770	982	1010
10	994	680	729	e881	e639	1530	1690	1070	3690	1470	891	996
11	1010	662	715	e779	e605	1250	1580	1050	3530	1340	909	962
12	965	646	710	e729	e558	1190	1510	1210	4120	1410	1060	974
13	840	690	788	e706	e590	1100	1460	1460	3400	1390	2580	954
14	894	738	802	e645	e641	1050	1370	1500	3350	1250	1200	888
15	852	685	793	e649	e664	1020	1310	1450	3060	1190	1070	931
16	784	648	787	e595	e674	950	1280	1430	2700	1140	918	841
17	735	626	754	e490	687	920	1250	1350	2470	1110	921	924
18	770	618	751	e482	676	885	1210	1280	2280	1090	908	963
19	794	615	782	e504	731	849	1230	1210	2180	2170	935	1180
20	769	611	787	e504	758	875	1130	1080	2190	4610	869	1220
21	703	623	767	e544	876	861	1120	1040	2140	2110	849	1210
22	728	608	782	e621	930	839	1140	1030	1960	1890	4550	950
23	1690	605	e763	e576	956	833	1110	979	1890	1990	16100	913
24	2930	647	e645	e504	960	873	1130	996	1830	1870	6320	868
25	2070	671	e502	e488	899	851	1130	1030	1720	1480	3690	839
26	1710	721	e531	e487	858	807	1070	1080	1390	1340	2670	830
27	1410	710	e615	e528	837	800	1050	1070	2530	1380	2220	850
28	1250	672	e619	e551	e755	e782	1160	1060	2140	1410	1850	794
29	1160	711	e600	e562		812	1180	2990	1750	1850	1700	833
30	1100	774	e551	e580		813	1280	4280	1470	1610	1530	785
31	1030		e623	e547		799		3300		1410	1430	
TOTAL	32828	21621	22266	19009	18163	27526	34157	44005	181960	51220	65032	30625
MEAN	1059	720.7	718.3	613.2	648.7	887.9	1139	1420	6065	1652	2098	1021
MAX	2930	1010	807	881	960	1530	1690	4280	45900	4610	16100	1450
MIN	703	605	502	482	356	594	729	979	1390	1090	849	785
AC-FT	65110	42890	44160	37700	36030	54600	67750	87280	360900	101600	129000	60740
CFSM	0.68	0.46	0.46	0.39	0.42	0.57	0.73	0.91	3.91	1.06	1.35	0.66
IN.	0.79	0.52	0.53	0.46	0.44	0.66	0.82	1.05	4.36	1.23	1.56	0.73
STATIST	TICS OF M	ONTHLY ME	AN DATA I	OR WATER	YEARS 191	4 - 2002,	BY WATER	YEAR (W	Y)			
MEAN	736.8	787.1	652.9	679.2	1103	1846	1389	1266	1548	1079	846.1	883.1
MAX	2486	4983	2397	2851	4161	4798	4843	4267	6670	8835	3340	3074
(WY)	1987	1962	1983	1960	1971	1993	1973	1974	1947	1993	1924	1981
MIN	210	198	168	150	196	241	305	198	170	177	227	182
(WY)	1957	1959	2001	1940	1936	1934	1934	1934	1934	1936	1958	1958

93 MAQUOKETA RIVER BASIN

05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YE	AR	WATER YEARS	1914	-	2002
ANNUAL TOTAL	475268		548412						
ANNUAL MEAN	1302		1502			1067			
HIGHEST ANNUAL MEAN						2874			1993
LOWEST ANNUAL MEAN						306			1958
HIGHEST DAILY MEAN	5390	Mar 16	45900	Jun	5	45900	Jun	5	2002
LOWEST DAILY MEAN	200	Jan 1	356	Feb	6	105	Feb	11	1936
ANNUAL SEVEN-DAY MINIMUM	254	Jan 1	403	Feb	2	105	Feb	11	1936
MAXIMUM PEAK FLOW			47900	Jun	5	48000	Jun	27	1944
MAXIMUM PEAK STAGE			34.09	Jun	5	24.70	Jun	27	1944a
ANNUAL RUNOFF (AC-FT)	942700		1088000			772900			
ANNUAL RUNOFF (CFSM)	0.84		0.97			0.69			
ANNUAL RUNOFF (INCHES)	11.38	1	13.14			9.33			
10 PERCENT EXCEEDS	2430		2120			2010			
50 PERCENT EXCEEDS	916		927			660			
90 PERCENT EXCEEDS	551		605			300			

a Datum in use prior to Oct. 1, 1972. e Estimated

94 MAQUOKETA RIVER BASIN

05418500 MAOUOKETA RIVER NEAR MAOUOKETA, IA--Continued

WATER OUALITY RECORDS

PERIOD OF RECORD.--April 1978 to December 1981; October 1994 to September 30, 1997; April 13, 2000 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: April 1978 to December 1981; October 1994 to September 30, 1997; April 13, 2000 to current year. WATER TEMPERATURES: April 1978 to December 1981; October 1994 to September 30, 1997; April 13, 2000 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1978 to December 1981; October 1994 to September 30, 1997; April 13, 2000 to current

REMARKS.--During periods of ice effect, sediment samples are collected in open water channel. Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.-

SPECIFIC CONDUCTANCE: Maximum daily, 625 microsiemens Mar. 2, 1995; minimum daily, 160 microsiemens June 16, 1981. WATER TEMPERATURES: Maximum daily, 30.5 C July 12, 1995; minimum daily, 0.0 C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 14,700 mg/L June 13, 1981; minimum daily mean, 12 mg/L Feb. 7, 8, 1981. SEDIMENT LOADS: Maximum daily, 361,000 tons Aug. 31, 1981; minimum daily, 9.4 tons Feb. 8, 1981.

THEMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 607 microsiemens Aug. 19; minimum daily, 186 microsiemens June 5.
WATER TEMPERATURES: Maximum daily, 29.0 C July 1-3, Aug. 1; minimum daily, 1.2 C Mar. 7.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,550 mg/L Aug. 22; minimum daily mean, 63 mg/L Sept. 24.
SEDIMENT LOADS: Maximum daily, 255,000 tons June 5; minimum daily, 67.2 tons Feb. 5.

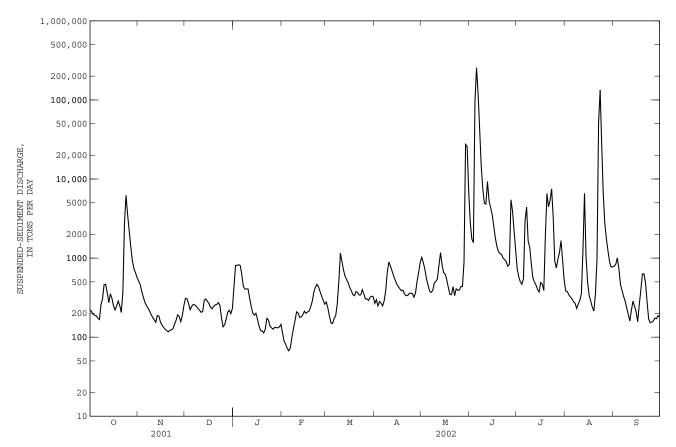
SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										598	549	
2										539	594	
3									535	532		490
4												515
5									186	568	564	544
5									100	200	204	244
6								592	274		583	
7						528		577	401	358	543	
8										528	590	
9								587	530	522		
10									556	533		
11									561			535
12							531		499	598		
13								559	539		301	492
14								568	551	587	427	
15								601		597		
								001		33.		
16								585		536	499	551
17									586			
18								581		544		
19									576	535	607	
20								451	565		480	
21								442	570		488	
22								552		530	237	
23								449		375		589
24	340							470	511	441		
25									482	537		
26									482		502	
27								475	444		532	
28								546	490			
29								311		545	563	
30								349		522	503	
31								503		553		

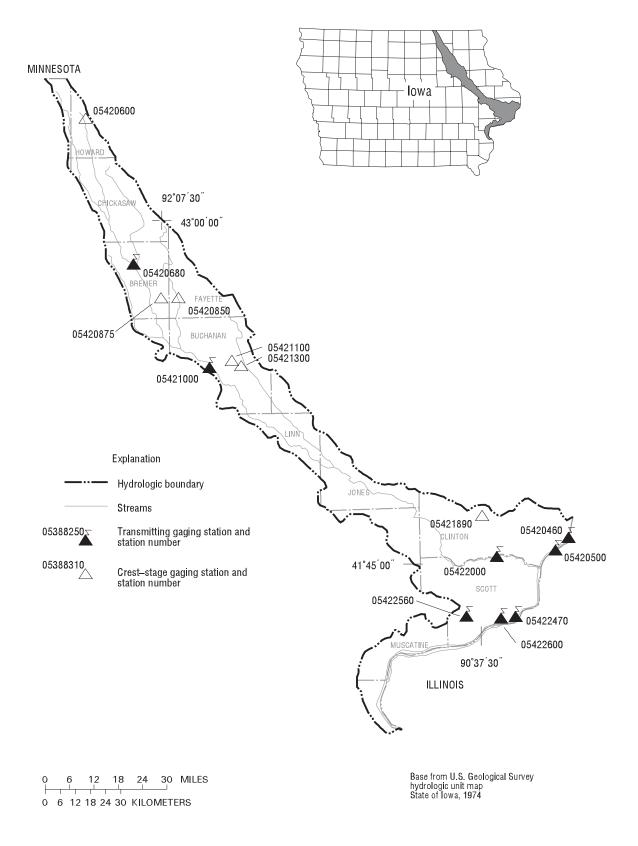
maquoketa river basin 95

05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

				Ε	AILY INST	CANTANEOUS	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										29.0	29.0	
2										29.0	28.5	
3									18.5	29.0		24.5
4												22.0
5									17.5	28.5	25.5	20.5
6								21.5	18.0		26.0	
7						1.2		20.0	19.5	25.0	25.5	
8										27.0	25.5	
9								16.5	20.0	27.0		
10									22.5	25.5		
11									22.0			23.0
12							13.5		22.5	24.0		
13								14.5	21.0		22.0	21.5
14								16.5	19.5	26.0		
15								17.0		26.5		
16								16.5		27.0	23.0	21.5
17									20.5			
18								16.0		26.0		
19									20.5	27.0	24.0	
20								14.5	24.0		23.5	
21								15.0	25.0		25.5	
22								18.0		26.5	24.0	
23								18.5		24.5		16.5
24	11.9							18.5	27.0	24.5		
25									27.0	25.0		
26									25.3		24.5	
27								20.0	24.5		24.5	
28								23.0	25.0			
29								19.5		25.0	25.0	
30								21.5		26.5	23.5	
31								21.5		28.0		


SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO:	BER	NOVEMB:	ER	DECEMB:	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1	89	221	189	515	142	310	278	433	85	114	140	278
2	86	211	172	467	141	304	501	807	78	88.9	126	234
3	85	194	156	383	126	264	484	809	75	81.9	110	184
4	84	189	140	324	111	222	431	824	72	72.1	93	151
5	83	186	124	277	123	245	377	803	69	67.2	93	149
6	82	174	115	252	128	260	323	615	76	73.1	92	172
7	81	167	111	234	124	255	269	436	87	99.1	83	187
8	114	257	106	215	120	245	220	405	98	129	108	263
9	124	306	102	194	115	230	193	407	110	162	159	506
10	173	465	97	178	111	219	171	407	121	209	277	1150
11	169	463	93	166	107	206	148	311	123	201	266	904
12	140	366	88	154	110	211	125	246	118	178	219	704
13	121	274	101	188	137	292	106	202	113	180	198	590
14	146	353	93	185	140	304	109	190	111	192	188	534
15	134	309	84	155	133	284	114	200	119	213	177	486
16	117	248	81	142	125	266	105	169	110	200	166	425
17	111	221	78	133	117	239	104	138	112	208	155	385
18	120	249	76	126	112	228	93	121	116	213	144	344
19	133	285	73	121	116	245	88	120	122	241	145	334
20	121	251	71	117	121	256	83	113	139	284	160	378
21	108	206	73	122	125	259	86	126	155	368	158	367
22	186	377	75	124	130	274	103	173	168	425	150	340
23	557	2750	78	128	123	253	106	165	180	466	152	343
24	783	6220	83	145	101	176	102	139	168	435	169	398
25	638	3580	91	164	100	135	99	131	155	377	153	351
26 27 28 29 30 31	482 370 279 238 221 205	2240 1420 941 745 656 573	98 95 87 98 120	191 183 157 188 252	100 102 124 135 133 138	143 169 207 219 198 232	96 93 89 86 86 98	126 133 132 131 135 145	143 130 128 	331 294 261 	139 141 138 145 149 149	304 305 291 320 330 323
TOTA	L	25097		6180		7350		9292		6163.3		12030


05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEA CON TRA (MG	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)
		APRIL	MA	Y	JUI	NE	JUI	LY	AUG	JST	SEPTI	EMBER
1	131	268	263	1020	404	2830	182	727	107	382	220	786
2	141	298	233	877	309	1740	153	577	115	376	240	839
3	126	248	198	717	293	1570	139	499	116	344	252	998
4	135	283	170	553	1330	94900	131	466	112	321	194	725
5	135	269	145	455	2060	255000	156	549	108	306	141	463
6	125	248	122	383	1380	121000	439	2940	98	280	124	389
7	137	289	119	368	1190	42500	745	4390	93	269	111	327
8	156	395	130	389	937	14700	370	1640	84	231	97	286
9	159	671	161	484	637	7590	285	1370	99	262	84	233
10	196	894	175	506	496	4960	213	852	121	290	71	193
11	185	789	191	545	504	4820	157	566	144	353	61	160
12	168	688	248	812	830	9240	130	497	392	1220	82	221
13	156	596	295	1170	575	5320	122	457	914	6580	109	286
14	147	529	202	818	482	4360	118	400	299	1020	100	245
15	139	472	167	654	429	3560	116	373	171	494	82	209
16	131	438	162	625	349	2550	160	491	136	336	68	157
17	126	409	144	527	271	1810	155	468	115	286	101	257
18	123	386	123	423	230	1410	133	391	97	238	146	391
19	123	393	107	347	204	1210	285	1910	84	214	191	627
20	119	350	119	345	193	1140	541	6540	150	351	188	633
21	115	334	155	435	192	1110	793	4450	415	987	146	489
22	114	337	120	335	190	1000	1060	5370	3550	50900	105	280
23	119	354	154	408	186	951	1400	7490	3120	133000	67	170
24	118	361	145	391	182	898	624	3290	1440	27000	63	152
25	116	356	141	393	170	789	227	916	635	6460	67	155
26 27 28 29 30 31	111 127 162 205 255	320 361 507 654 880	149 152 307 2980 2210 766	436 438 882 27400 25800 6940	237 779 665 464 319	836 5450 3930 2220 1270	208 258 307 333 216 139	754 965 1170 1660 943 530	369 290 245 195 185 200	2710 1750 1240 902 768 777	70 74 77 81 82	161 174 171 187 180
TOTAL YEAR		13377 1060861.3		75876		600664		53641		240647		10544

THIS PAGE IS INTENTIONALLY BLANK

Figure 13. Locations of active continuous-record and crest-stage gaging stations in the Mississippi River, Wapsipinicon River, and Crow Creek drainage basins.

Gaging Stations

05420460 Beaver Slough at 3rd Street at Clinton, IA	· · · · · · · · · · · · · · · · · · ·	104 112 118 120 122 124
Crest Stage Gaging Stations		
05420600 Little Wapsipinicon River Tributary near Riceville, IA	 	352 352 352 352
05421890 Silver Creek at Welton, IA		352

05420460 BEAVER SLOUGH AT THIRD STREET CLINTON, IA

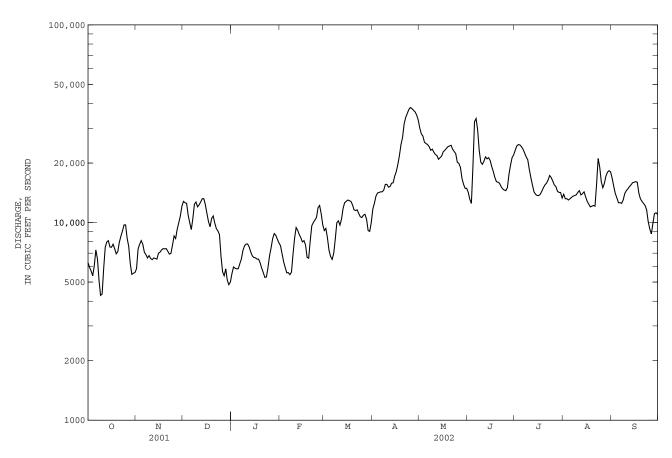
LOCATION.--Lat $41^{\circ}49^{\circ}38^{\circ}$, long $90^{\circ}11^{\circ}25^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.18, T.81 N., R.7 E., Clinton County, Hydrologic Unit 07080101, at river end of 3rd street, at downstream end of ADM repair dock, 10.3 miles upstream from Wapsipinicon River, 4.8 miles upstream from Camanche gage, 5.9 miles downstream from Lock and Dam 13, and at mile 516.6 upstream from Ohio River.

DRAINAGE AREA.--85,600 mi², approximately, at Fulton-Lyons Bridge at Clinton.

PERIOD OF RECORD. -- October 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 562.68 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. U.S. Geological Survey satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6260	5840	12800	e5530	7640	9110	11700	30100	14200	23200	13900	16700
2	5930	7360	12600	e5960	6950	9340	12500	28100	13100	24400	13200	15200
3	5680	7770	12500	e5870	e6340	8370	13600	27400	12500	24800	13200	14000
4	5380	8100	10900	e5830	e5930	7240	14100	25500	19400	e24700	13000	13300
5	6050	7770	9980	e5840	e5570	6740	14200	25100	32400	e24200	13200	12600
6 7 8 9 10	7270 6560 5130 4280 4350	7080 6880 6620 6810 6580	9220 10500 12400 12700 12000	e6190 e6540 e7230 e7620 e7780	e5580 e5450 e5610 6900 8330	6510 6970 8230 9980 10200	14300 14300 14600 15600	24800 24200 23200 23500 22700	33600 29400 23200 20200 19700	e23500 e22500 e21500 20800 18600	13400 13600 13700 13800 14200	12600 12500 13000 14000 14500
11	5860	6490	12300	e7790	9430	9710	15100	22100	20400	16900	14500	14800
12	7500	6620	12700	e7520	9130	10400	15200	21800	21500	15500	13800	15200
13	7980	6580	13200	e7090	8690	11800	15800	20900	21000	14300	14000	15500
14	8100	6530	13200	e6780	8370	12600	15900	21300	21300	13900	14300	15900
15	7520	6990	12300	e6650	7980	12800	17200	21700	20600	13700	13500	16000
16	7500	7080	11100	e6630	8100	13000	18100	22800	19200	13700	12800	16100
17	7770	7270	10100	e6530	7700	12900	19700	23200	18100	13900	12400	16000
18	7380	7380	9520	e6530	6670	12800	21800	23700	16900	14400	12000	14100
19	6950	7360	10500	e6250	6600	12300	24800	24200	16100	15000	12100	13200
20	7110	7380	10800	e5870	8070	11600	26900	24400	16000	15500	12200	12800
21	7940	7150	9940	e5580	9640	11500	31500	24600	15800	15800	12100	12500
22	8530	6920	9320	e5280	10000	11600	34000	23500	15200	16400	15600	12200
23	9060	6990	9080	e5300	10300	11100	35600	22900	14800	17300	21100	11600
24	9730	7700	8690	e5910	10600	10700	37300	22300	14600	16900	19100	10100
25	9730	8560	e6720	e6790	11900	10600	38200	20200	14500	16200	16100	9290
26 27 28 29 30 31	8330 7570 6190 5470 5540 5590	8300 9270 9980 10800 12100	e5630 e5380 e5830 e5110 e4850 e5010	e7450 8300 8790 8620 8230 7890	12200 11100 9730 	10900 11000 10400 9110 9020 9980	37700 37000 36300 35000 33100	19900 19000 16700 15600 14900 14900	15000 17500 19500 21300 22000	15500 15200 14400 14200 14200 13300	15000 15800 17200 18000 18300 18000	8760 9910 11100 11200 11000
TOTAL	214240	228260	306880	210170	230510	318510	686700	695200	579000	544400	453100	395660
MEAN	6911	7609	9899	6780	8232	10270	22890	22430	19300	17560	14620	13190
MAX	9730	12100	13200	8790	12200	13000	38200	30100	33600	24800	21100	16700
MIN	4280	5840	4850	5280	5450	6510	11700	14900	12500	13300	12000	8760
AC-FT	424900	452800	608700	416900	457200	631800	1362000	1379000	1148000	1080000	898700	784800
CFSM	0.08	0.09	0.12	0.08	0.10	0.12	0.27	0.26	0.23	0.21	0.17	0.15
IN.	0.09	0.10	0.13	0.09	0.10	0.14	0.30	0.30	0.25	0.24	0.20	0.17
				FOR WATER						0.21	0.20	0.1.
MEAN	10400	12010	9645	9053	10230	14770	28680	26080	20950	19820	13880	11500
MAX	15960	18320	11680	12780	14510	19900	43980	42580	35240	49690	28330	21640
(WY)	1996	1996	1997	1995	1994	1995	1997	2001	1993	1993	1993	1993
MIN	5760	7609	6070	6780	8101	9474	10350	11590	13010	11950	8520	6083
(WY)	2001	2002	2001	2002	2000	2001	2000	2000	1997	1995	2001	1996

05420460 BEAVER SLOUGH AT THIRD STREET CLINTON, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	S 1993 - 2002
ANNUAL TOTAL	5701400		4862630			
ANNUAL MEAN	15620		13320		15600	
HIGHEST ANNUAL MEAN					23060	1993
LOWEST ANNUAL MEAN					10720	2000
HIGHEST DAILY MEAN	61600	Apr 23	38200	Apr 25	61600	Apr 23 2001
LOWEST DAILY MEAN	4280	Oct 9	4280	Oct 9	3560	Oct 20 2000
ANNUAL SEVEN-DAY MINIMUM	5500	Dec 25	5330	Dec 26	4330	Dec 21 1999
MAXIMUM PEAK FLOW			38600	Apr 25		
MAXIMUM PEAK STAGE			20.30	Apr 26		
ANNUAL RUNOFF (AC-FT)	11310000		9645000		11300000	
ANNUAL RUNOFF (CFSM)	0.18		0.16		0.18	
ANNUAL RUNOFF (INCHES)	2.48		2.11		2.48	
10 PERCENT EXCEEDS	35100		23200		28000	
50 PERCENT EXCEEDS	9450		12300		12500	
90 PERCENT EXCEEDS	6530		6260		7240	

e Estimated

05420500 MISSISSIPPI RIVER AT CLINTON, IA

(National stream-quality accounting network station)

LOCATION.--Lat $41^{\circ}46^{\circ}50^{\circ}$, long $90^{\circ}15^{\circ}07^{\circ}$, in $NW^{1}/_{4}$ sec.34, T.81 N., R.6 E., Clinton County, Hydrologic Unit 07080101, on right bank at end of Eighth Avenue in Camanche, 5.0 mi upstream from Wapsipinicon River, 6.4 mi downstream from Clinton, 10.6 mi downstream from Lock and Dam 13, and at mile 511.8 upstream from Ohio River.

DRAINAGE AREA.--85,600 mi^2 , approximately, at Fulton-Lyons Bridge at Clinton.

WATER-DISCHARGE RECORDS

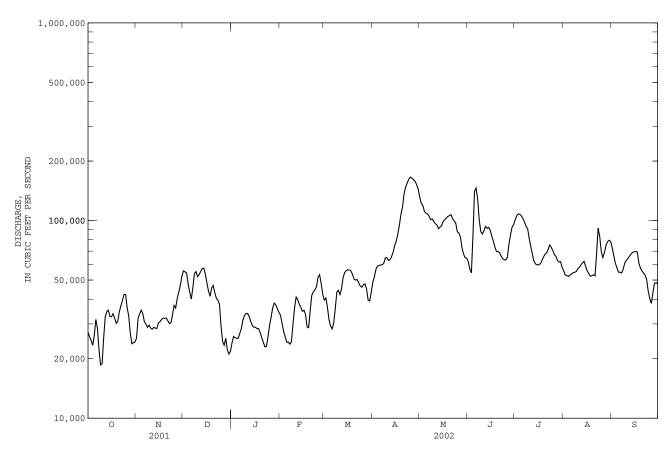
PERIOD OF RECORD.--June to August 1873 (fragmentary), October 1873 to current year (October 1932 to September 1939, published as "at Le Claire") (June 1873 to December 1932 published in the Iowa State Planning Board report "Stream-flow records of Iowa, 1873-1932").

REVISED RECORDS. -- WDR IA-75-1: 1974.

GAGE.--Water-stage recorder. Datum of gage is 562.68 ft above NGVD of 1929. June 6, 1969 to Sept. 16, 1988, water-stage recorder at site 400 ft upstream at same datum. Auxiliary water-stage recorder at Lock and Dam 13 since Oct. 1, 1958. See WSP 1728 for history of changes prior to Oct. 1, 1955.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1828, that of Apr. 28, 1965.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27200	25400	55600	e24000	33200	39600	48800	131000	61900	101000	55700	72800
2	25800	32000	55000	e25900	30200	40600	51900	122000	56900	106000	53000	66300
3	24700	33800	54300	e25500	e27500	36400	56700	119000	54400	108000	52700	60800
4	23400	35200	47600	e25300	e25800	31500	58800	111000	84300	e107000	52200	57700
5	26300	33800	43400	e25400	e24200	29300	59200	109000	141000	e105000	52800	54800
6	31600	30800	40100	e26900	e24300	28300	59600	108000	146000	e102000	53800	54800
7	28500	29900	45700	e28400	e23700	30300	59700	105000	128000	e97800	54400	54300
8	22300	28800	53900	e31400	e24400	35800	60800	101000	101000	e93400	54800	56700
9	18600	29600	55200	e33100	30000	43400	64800	102000	87900	90500	55200	60900
10	18900	28600	52000	e33800	36200	44400	64900	98700	85500	80700	57000	62900
11	25500	28200	53300	e33900	41000	42200	62800	96300	88600	73600	57900	64200
12	32600	28800	55200	e32700	39700	45100	63400	94800	93400	67400	59800	66100
13	34700	28600	57200	e30800	37800	51300	65700	90900	91200	62200	61000	67600
14	35200	28400	57400	e29500	36400	54600	69300	92700	92400	60300	62200	69000
15	32700	30400	53400	e28900	34700	55700	74800	94200	89500	59700	58700	69400
16	32600	30800	48300	e28800	35200	56400	78800	99000	83400	59700	55600	69800
17	33800	31600	43900	e28400	33500	56200	85700	101000	78700	60400	54000	69400
18	32100	32100	41400	e28400	29000	55700	95000	103000	73400	62500	52300	61100
19	30200	32000	45600	e27200	28700	53400	108000	105000	69800	65200	52600	57500
20	30900	32100	46900	e25500	35100	50600	117000	106000	69600	67500	53200	55600
21	34500	31100	43200	e24300	41900	50000	137000	107000	68800	68600	52500	54300
22	37100	30100	40500	e23000	43600	50300	148000	102000	66100	71200	67800	53000
23	39400	30400	39500	e23000	44600	48400	155000	99700	64200	75200	91600	50300
24	42300	33500	37800	e25700	46200	46600	162000	97000	63300	73300	83200	43900
25	42300	37200	e29200	e29500	51600	46000	166000	87700	63200	70600	69900	40400
26 27 28 29 30 31	36200 32900 26900 23800 24100 24300	36100 40300 43400 47100 52400	e24500 e23400 e25300 e22200 e21100 e21800	e32400 36100 38200 37500 35800 34300	53200 48100 42300 	47300 47800 45100 39600 39200 43400	164000 161000 158000 152000 144000	86500 82400 72800 67700 64900 64600	65100 76000 84700 92600 95500	67300 66000 62800 61700 61900 57800	65000 68700 74800 78100 79500 78300	38100 43100 48100 48500 47900
TOTAL	931400	992500	1333900	913600	1002100	1384500	2952700	3021900	2516400	2366300	1918300	1719300
MEAN	30050	33080	43030	29470	35790	44660	98420	97480	83880	76330	61880	57310
MAX	42300	52400	57400	38200	53200	56400	166000	131000	146000	108000	91600	72800
MIN	18600	25400	21100	23000	23700	28300	48800	64600	54400	57800	52200	38100
AC-FT	1847000	1969000	2646000	1812000	1988000	2746000	5857000	5994000	4991000	4694000	3805000	3410000
CFSM	0.35	0.39	0.50	0.34	0.42	0.52	1.15	1.14	0.98	0.89	0.72	0.67
IN.	0.40	0.43	0.58	0.40	0.44	0.60	1.28	1.31	1.09	1.03	0.83	0.75
STATIS	STICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 18	74 - 2002	, BY WATE	R YEAR (W	Y)			
MEAN	40620	39230	27980	25840	28260	50550	90080	82460	69400	56210	37970	38150
MAX	203600	146800	73590	54100	65680	127500	175900	212400	182100	198900	113400	92380
(WY)	1882	1882	1882	1973	1966	1973	1997	1888	1892	1993	1993	1938
MIN	13490	13760	11120	11390	14000	17600	26040	23190	15420	14690	12460	13870
(WY)	1934	1934	1934	1890	1893	1934	1931	1977	1988	1988	1936	1933

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAS	TER YEAR	WATER YEARS	1874 - 2002
ANNUAL TOTAL	24788500		21052900			
ANNUAL MEAN	67910		57680		48940	
HIGHEST ANNUAL MEAN					94690	1882
LOWEST ANNUAL MEAN					18870	1934
HIGHEST DAILY MEAN	268000	Apr 23	166000	Apr 25	307000	Apr 28 1965
LOWEST DAILY MEAN	18600	Oct 9	18600	Oct 9	6500	Dec 25 1933
ANNUAL SEVEN-DAY MINIMUM	23900	Dec 25	23200	Dec 26	7430	Dec 24 1933
MAXIMUM PEAK FLOW			168000	Apr 25		
MAXIMUM PEAK STAGE			17.42	Apr 26	24.65	Apr 28 1965
ANNUAL RUNOFF (AC-FT)	49170000		41760000		35450000	
ANNUAL RUNOFF (CFSM)	0.79)	0.67		0.57	
ANNUAL RUNOFF (INCHES)	10.77	7	9.15		7.77	
10 PERCENT EXCEEDS	152000		101000		95200	
50 PERCENT EXCEEDS	41100		53000		37600	
90 PERCENT EXCEEDS	28400		27200		19000	

e Estimated

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

WATER QUALITY RECORDS

PERIOD OF RECORD.--October 1974 to September 1987, October 1994 to current year.

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 17 NOV	1300	35400	404	7.9	11.3		19	10.1	92	751	180	42.3	18.7
28	1100	43800	413	8.3	6.9		13	10.8	89	751	180	42.0	17.9
FEB 20	1015	37900	389	8.6	3.5	2.7	12	14.9	112	729	180	41.6	17.9
MAR 18	1015	56100	379	8.9	3.0	6.5	18	15.2	113	751	170	40.9	17.5
APR 16 25	1030 1200	84000 163000	379 259	8.9 7.7	14.9 11.4	24.0 13.0	33 52	12.0 9.2	119 84	748 754	170 100	39.6 25.3	16.3 9.66
MAY 07 21 JUN	1100 1040	106000 108000	267 268	8.2 8.1	15.2 14.0	15.0 17.0	36 31	10.0 10.0	99 98	747 757	120 120	28.7 27.7	11.1 11.2
07 24 JUL	1210 1120	132000 65800	277 364	7.5 7.7	18.5 25.5		600 18	6.2 7.4	67 90	752 759	120 170	29.5 40.0	12.1 16.8
18 AUG	1000	66200	408	8.0	27.4		16	8.5	106	750	180	44.3	17.5
12 SEP	1015	32700	339	8.1	26.2	27.0	20	8.2	101	746	150	36.6	14.9
11	1030	43800	353	7.9	23.8	20.0	34	7.1	84	750	160	37.7	15.0
Date	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 17	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS CO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 17 NOV 28	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (TONS PER AC-FT) (70303)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 17 NOV 28 FEB 20	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (TONS PER AC-FT) (70303)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 17 NOV 28 FEB 20 MAR 18	DIS- SOLVED (MG/L AS NA) (00930) 9.78	AD- SORP- TION RATIO (00931)	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.51	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.2	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 7.42 6.06	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (TONS PER AC-FT) (70303)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25	DIS- SOLVED (MG/L AS NA) (00930) 9.78 10.8	AD-SORP-TION RATIO (00931)	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.51 2.19 2.04	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 140 124 144	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 167 150	DIS- SOLVED (MG/L AS SO4) (00945) 22.6 21.2 26.4	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.2 18.5	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 7.42 6.06 6.17	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 240 244 238	DIS- SOLVED (TONS PER AC-FT) (70303)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .98 1.10
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07	DIS- SOLVED (MG/L AS NA) (00930) 9.78 10.8 11.4 11.6	AD- SORP- TION RATIO (00931) .3 .4 .4 .4	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.51 2.19 2.04 2.31 2.71	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 140 124 144 144 133	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 3 4 7	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 167 150 168 167 147	DIS- SOLVED (MG/L AS SO4) (00945) 22.6 21.2 26.4 23.2 25.6	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.2 18.5 17.6 17.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .2 .1	DIS- SOLVED (MG/L AS SIO2) (00955) 7.42 6.06 6.17 6.63 2.62	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 240 244 238 236 231	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .32 .32	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .98 1.10 1.46 1.42
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07 24	DIS- SOLVED (MG/L AS NA) (00930) 9.78 10.8 11.4 11.6 14.5 8.25 6.45	AD- SORP- TION RATIO (00931) .3 .4 .4 .4 .5 .4	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.51 2.19 2.04 2.31 2.71 2.79	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 140 124 144 144 144 133 87 45	BONATE WATER DIS IT FIELD MG/L AS C03 (00452) 2 0 3 4 7 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 167 150 168 167 147 105	DIS- SOLVED (MG/L AS SO4) (00945) 22.6 21.2 26.4 23.2 25.6 18.6 20.8	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.2 18.5 17.6 17.3 22.2 12.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .2 .1 .1 .2 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 7.42 6.06 6.17 6.63 2.62 7.90 4.91	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 240 244 238 236 231 161 150	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .32 .32 .32	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .98 1.10 1.46 1.42 .94 .96 .66
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07 24 JUL 18	DIS- SOLVED (MG/L AS NA) (00930) 9.78 10.8 11.4 11.6 14.5 8.25 6.45 6.69 5.04	AD-SORP-TION RATIO (00931) .3 .4 .4 .4 .5 .4 .3 .3	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.51 2.19 2.04 2.31 2.71 2.79 2.25 2.12	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 140 124 144 144 144 133 87 45 86	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 3 4 7 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 167 150 168 167 147 105 54 104 112	DIS- SOLVED (MG/L AS SO4) (00945) 22.6 21.2 26.4 23.2 25.6 18.6 20.8 21.8	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.2 18.5 17.6 17.3 22.2 12.2 11.7 8.82	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .2 .1 .1 .2 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 7.42 6.06 6.17 6.63 2.62 7.90 4.91 3.56 4.75	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 240 244 238 236 231 161 150 175	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .32 .32 .32 .22 .20 .24	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .98 1.10 1.46 1.42 .94 .96 .66 .65 2.49
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07 JUL	DIS- SOLVED (MG/L AS NA) (00930) 9.78 10.8 11.4 11.6 14.5 8.25 6.45 6.69 5.04 8.93	AD-SORP-TION RATIO (00931) .3 .4 .4 .4 .5 .4 .3 .3 .3	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.51 2.19 2.04 2.31 2.71 2.79 2.25 2.12	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 140 124 144 144 144 183 87 45 86 93 108	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 3 4 7 0 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 167 150 168 167 147 105 54 104 112 130	DIS- SOLVED (MG/L AS SO4) (00945) 22.6 21.2 26.4 23.2 25.6 18.6 20.8 21.8	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.2 18.5 17.6 17.3 22.2 11.2 11.7 8.82 13.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .1 .2 .1 .1 .2 E.1 .1	DIS- SOLVED (MG/L AS SIO2) (00955) 7.42 6.06 6.17 6.63 2.62 7.90 4.91 3.56 4.75 5.51	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 240 244 238 236 231 161 150 175	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .32 .32 .32 .32 .32 .32	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .98 1.10 1.46 1.42 .94 .96 .66 .65 2.49 2.04

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

Date	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)
OCT 17 NOV	E.007	E.04	.66	.059	.072	.135	33	3150	99	1.1	1	37	<.06
28	E.007	.06	.67	.041	.053	.096	20	2370	99	.7			
FEB 20	.013	<.04	.87	<.007	.007	.080	20	2050	93	.4			
MAR 18 APR	.016	<.04	1.2	<.007	.013	.135	30	4540	98	.4	2	30	<.06
16 25	.013	<.04 <.04	1.3 1.2	<.007 <.007	.018 .051	.190 .22	73 103	16600 45300	98 96	.8	2	31	 <.06
MAY 07 21	.034 E.006	<.04 <.04	.96 .99	.013 .018	.028	.168 .164	83 64	23800 18700	99 98	.7			
JUN 07 24	.032	<.04 <.04	2.5 .77	<.007 .067	.123	.80 .143	557 35	199000 6220	96 98	1.4 1.1			
JUL 18	.038	<.04	.81	.095	.111	.165	29	5180	99	1.8			
AUG 12	.010	E.03	1.1	.101	.119	.19	37	3270	98	2.3	2	38	<.06
SEP 11	.016	<.04	.99	.066	.099	.17	75	8870	99	1.7			
Date	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
OCT	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)
OCT 17 NOV	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CO)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)
OCT 17 NOV 28 FEB	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) <10	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130) 3.5	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8
OCT 17 NOV 28 FEB 20	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) <10 E9	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130) 3.5 2.9	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) .4 E.2	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8 70.2
OCT 17 NOV 28 FEB 20 MAR 18 APR	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040) 1.3 1.1	DIS- SOLVED (UG/L AS FE) (01046) <10 E9 31	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130) 3.5 2.9 3.7	NESE, DIS- SOLVED (UG/L AS MN) (01056) 1.0 4.7	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.0	DIS- SOLVED (UG/L AS NI) (01065) 1.73 1.48	NIUM, DIS- SOLVED (UG/L AS SE) (01145) .4 E.2 <.3	DIS- SOLVED (UG/L AS AG) (01075) <1 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8 70.2 97.4 76.4
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) <10 E9	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130) 3.5 2.9	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) .4 E.2	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8 70.2
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .23 .24	DIS- SOLVED (UG/L AS CU) (01040) 1.3 1.1	DIS- SOLVED (UG/L AS FE) (01046) <10 E9 31 45	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130) 3.5 2.9 3.7 3.9	NESE, DIS- SOLVED (UG/L AS MN) (01056) 1.0 4.7	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.08	DIS- SOLVED (UG/L AS NI) (01065) 1.73 1.48	NIUM, DIS- SOLVED (UG/L AS SE) (01145) .4 E.2 <.3 E.2 E.2	DIS- SOLVED (UG/L AS AG) (01075) <1 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8 70.2 97.4 76.4 84.1
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07 24	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .23 .24	DIS- SOLVED (UG/L AS CU) (01040) 1.3 1.1 1.6	DIS- SOLVED (UG/L AS FE) (01046) <10 E9 31 45 24 56	DIS- SOLVED (UG/L AS PB) (01049) <.08 .09 .10	DIS- SOLVED (UG/L AS LI) (01130) 3.5 2.9 3.7 3.9 3.8 2.7	NESE, DIS- SOLVED (UG/L AS MN) (01056) 1.0 4.7 9.2	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.0886	DIS- SOLVED (UG/L AS NI) (01065) 1.73 1.48 1.03	NIUM, DIS- SOLVED (UG/L AS SE) (01145) .4 E.2 <.3 E.2 E.2 E.3	DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8 70.2 97.4 76.4 84.1 58.9 56.7
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07 24 JUL 18	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .23 .24 .20	DIS- SOLVED (UG/L AS CU) (01040) 1.3 1.1 1.6	DIS- SOLVED (UG/L AS FE) (01046) <10 E9 31 45 24 56 62 55	DIS- SOLVED (UG/L AS PB) (01049) <.08 .09 .10	DIS- SOLVED (UG/L AS LI) (01130) 3.5 2.9 3.7 3.9 3.8 2.7 2.9 3.2	NESE, DIS- SOLVED (UG/L AS MN) (01056) 1.0 4.7 9.2	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.086	DIS- SOLVED (UG/L AS NI) (01065) 1.73 1.48 1.03	NIUM, DIS- SOLVED (UG/L AS SE) (01145) .4 E.2 <.3 E.2 E.2 E.3 E.3 E.2	DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8 70.2 97.4 76.4 84.1 58.9 56.7 60.5
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07 24	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .232420	DIS- SOLVED (UG/L AS CU) (01040) 1.3 1.1 1.6 	DIS- SOLVED (UG/L AS FE) (01046) <10 E9 31 45 24 56 62 55 E8 14	DIS- SOLVED (UG/L AS PB) (01049) <.08 .09 .10	DIS- SOLVED (UG/L AS LI) (01130) 3.5 2.9 3.7 3.9 3.8 2.7 2.9 3.2	NESE, DIS- SOLVED (UG/L AS MN) (01056) 1.0 4.7 9.2	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.086	DIS- SOLVED (UG/L AS NI) (01065) 1.73 1.48 1.03	NIUM, DTS- SOLVED (UG/L AS SE) (01145) .4 E.2 <.3 E.2 E.3 E.3 E.3 E.3 E.7	DIS- SOLVED (UG/L AS AG) (01075) <1 <1 <1 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 72.8 70.2 97.4 76.4 84.1 58.9 56.7 60.5 56.0 84.4

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

Date	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	PRO- METON, WATER, DISS, REC (UG/L) (04037)
OCT 17	1.6	3	.81		8.2	.39	5.2	2.0	.11				
NOV 28	1.2			E.026	8.2	.36	4.8	1.2		<.010	<.002	<.011	M
FEB 20	.5			E.026	8.4	.39	5.7	2.7		<.010	<.002	.005	<.01
MAR 18	E.1	2	.79	E.015	8.6	.35	5.7	3.5	.11	<.010	<.002	<.005	<.01
APR 16 25	1.8 1.8	2	 .56	E.013 E.009	8.9 8.0	.39 .47	7.2	5.9 4.2	 .14	<.010 <.010	<.002 <.002	.008	E.01 <.01
MAY 07 21	2.0 1.5			E.015 E.018	7.7 8.1	.53 .49	13.0 8.9	3.9 3.3		<.010 <.010	<.002 <.002	.005	<.01 <.01
JUN 07	4.2			E.308	8.1	1.0	6.2	15.2		<.010	<.002	.055	<.01
24 JUL	1.9			E.071	7.9	.62	7.9	1.6		<.010	<.002	.009	M
18 AUG	2.9			E.090	8.2	.60	8.1	1.4		<.010	<.002	.012	E.01
12 SEP	3.5	2	.86	E.035	8.4	.59	16.8	2.7	.14	<.010	<.002	.007	E.01
11	2.8			E.038	7.8	.51	9.6	2.9		<.010	<.002	.006	E.01
Date	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	FONOFOS WATER DISS REC (UG/L) (04095)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	P,P' DDE DISSOLV (UG/L) (34653)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	LINDANE DIS- SOLVED (UG/L) (39341)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	MALA- THION, DIS- SOLVED (UG/L) (39532)	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)
Date OCT 17	ZINE, WATER, DISS, REC (UG/L)	WATER DISS REC (UG/L)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	BHC DIS- SOLVED (UG/L)	DDE DISSOLV (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)	LACHLOR WATER DISSOLV (UG/L)	THION, DIS- SOLVED (UG/L)	THION, DIS- SOLVED (UG/L)	AZINON, DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)
OCT 17 NOV 28	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER DISS REC (UG/L) (04095)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	BHC DIS- SOLVED (UG/L)	DDE DISSOLV (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)	LACHLOR WATER DISSOLV (UG/L)	THION, DIS- SOLVED (UG/L)	THION, DIS- SOLVED (UG/L)	AZINON, DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)
OCT 17 NOV 28 FEB 20	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER DISS REC (UG/L) (04095)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	BHC DIS- SOLVED (UG/L) (34253)	DDE DISSOLV (UG/L) (34653)	PYRIFOS DIS- SOLVED (UG/L) (38933)	DIS- SOLVED (UG/L) (39341)	ELDRIN DIS- SOLVED (UG/L) (39381)	LACHLOR WATER DISSOLV (UG/L) (39415)	THION, DIS- SOLVED (UG/L) (39532)	THION, DIS- SOLVED (UG/L) (39542)	AZINON, DIS- SOLVED (UG/L) (39572)	ZINE, WATER, DISS, REC (UG/L) (39632)
OCT 17 NOV 28 FEB 20 MAR 18	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER DISS REC (UG/L) (04095)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 170	BHC DIS- SOLVED (UG/L) (34253)	DDE DISSOLV (UG/L) (34653) <.003	PYRIFOS DIS- SOLVED (UG/L) (38933)	DIS- SOLVED (UG/L) (39341)	ELDRIN DIS- SOLVED (UG/L) (39381)	LACHLOR WATER DISSOLV (UG/L) (39415)	THION, DIS- SOLVED (UG/L) (39532) <.027	THION, DIS- SOLVED (UG/L) (39542) <.007	AZINON, DIS- SOLVED (UG/L) (39572)	ZINE, WATER, DISS, REC (UG/L) (39632)
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25	ZINE, WATER, DISS, REC (UG/L) (04041) <.018	WATER DISS REC (UG/L) (04095)	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 170 165 158	BHC DIS- SOLVED (UG/L) (34253) <.005	DDE DISSOLV (UG/L) (34653) <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	DIS- SOLVED (UG/L) (39341) <.004	ELDRIN DIS- SOLVED (UG/L) (39381) <.005	LACHLOR WATER DISSOLV (UG/L) (39415) E.007	THION, DIS- SOLVED (UG/L) (39532) <.027 <.027	THION, DIS- SOLVED (UG/L) (39542) <.007 <.010	AZINON, DIS- SOLVED (UG/L) (39572) <.005	ZINE, WATER, DISS, REC (UG/L) (39632)
OCT 17 NOV 28 FEB 20 MAR 18 APR 25 MAY 07 21	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018	WATER DISS REC (UG/L) (04095) <.003 <.003 <.003	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 170 165 158 155 145	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004	ELDRIN DTS- SOLVED (UG/L) (39381) <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) E.007 E.011 E.011	THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027	THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) .051 .037 .035
OCT 17 NOV 28 FEB 20 MAR 18 25 MAY 07 21 JUN 07 24	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018	WATER DISS REC (UG/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 170 165 158 155 145 91 97	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004	ELDRIN DTS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) E.007 E.011 .046 .046	THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027	THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010	AZIMON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) .051 .037 .035 .032 .038
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018	WATER DISS REC (UG/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 170 165 158 155 145 91 97 97 106	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ELDRIN DTS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) E.007 E.011 .046 .046 .023 .027	THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027	THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	AZIMON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) .051 .037 .035 .032 .038 .035 .094
OCT 17 NOV 28 FEB 20 MAR 18 APR 16 25 MAY 07 21 JUN 07 24 JUL 18	ZINE, WATTER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018	WATER DISS REC (UG/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 170 165 158 155 145 91 97 97 106 129	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	DIS- SOLVED (UG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ELDRIN DTS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	LACHLOR WATER DISSOLV (UG/L) (39415) E.007 E.011 E.011 .046 .046 .023 .027 1.70 .163	THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027	THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) .051 .037 .035 .032 .038 .035 .094

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

Date	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)
OCT 17 NOV													
28	<.002	.006	<.006	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	<.02
FEB 20	<.004	<.006	<.006	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02
MAR 18 APR	<.004	<.006	<.006	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02
16 25 MAY	<.004 <.004	.009 .011	<.006 <.006	<.006 <.006	<.009 <.009	<.009 <.009	<.011 <.011	<.034 <.034	<.035 <.035	<.006 <.006	<.002 <.002	<.004 <.004	<.02 <.02
07 21	<.004	.020	<.006 <.006	<.006 <.006	<.009 <.009	<.009 <.009	<.011 <.011	<.034 <.034	<.035 <.035	<.006 <.006	<.002 E.001	<.004 <.004	<.02 <.02
JUN 07 24	.084	1.78 .177	<.015 <.006	<.006 <.006	<.009 <.009	<.009 <.009	<.011 <.011	<.034 <.034	<.035 <.035	<.006 <.006	<.002 <.002	<.004 <.004	<.02 <.02
JUL 18	<.011	.056	<.006	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02
AUG 12	<.004	.009	<.006	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02
SEP 11	<.004	.007	<.006	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02
Date	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)
OCT 17													
NOV 28	<.002	<.005	<.010	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010
FEB 20	<.002	<.005	<.010	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022
MAR 18	<.002	<.005	<.010	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022
APR 16 25	<.002	<.005											<.022
MAY	<.002	<.005	<.010 <.010	<.020 <.020	<.02 <.02	<.004 <.004	<.02 <.02	<.002 <.002	<.011 <.011	<.041 <.041	<.005 <.005	<.003 <.003	<.022
MAY 07 21 JUN			<.010 <.010 <.010 <.010										<.022 <.022 <.022 <.022
07 21 JUN 07 24	<.002 <.002	<.005 <.005	<.010 <.010	<.020 <.020	<.02 <.02	<.004 <.004	<.02 <.02	<.002 <.002	<.011 <.011	<.041 <.041	<.005 <.005	<.003 <.003	<.022 <.022
07 21 JUN 07	<.002 <.002 <.002 <.002	<.005 <.005 <.005 <.005	<.010 <.010 <.010 <.010	<.020 <.020 <.020 E.104	<.02 <.02 <.02 <.02	<.004 <.004 <.004 <.004	<.02 <.02 <.02 <.02	<.002 <.002 <.002 <.002	<.011 <.011 <.011 <.011	<.041 <.041 <.041 <.041	<.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003	<.022 <.022 <.022 <.022
07 21 JUN 07 24 JUL 18	<.002 <.002 <.002 <.002 <.002 <.002	<.005 <.005 <.005 <.005 <.005 <.005	<.010 <.010 <.010 <.010 <.010	<.020 <.020 <.020 E.104 <.020	<.02 <.02 <.02 <.02 <.02 <.02	<.004 <.004 <.004 <.004 <.004	<.02 <.02 <.02 <.02 <.02 <.02	<.002 <.002 <.002 <.002 <.002	<.011 <.011 <.011 <.011 <.011 <.011	<.041 <.041 <.041 <.041 <.041	<.005 <.005 <.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003 <.003 <.003	<.022 <.022 <.022 <.022 <.022 <.022

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

Date	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	BORON, DIS- SOLVED (UG/L AS B) (01020)
OCT								
17					413			26
NOV								
28	<.007	<.02	<.050	<.006	410	92.3	103	23
FEB 20	<.007	<.02	<.050	<.006	403	117	108	2.4
MAR	1.007	1.02	1.050	<.000	403	117	100	24
18	<.007	<.02	<.050	<.006	396	119	115	30
APR								
16	<.007	<.02	<.050	<.006	385	111	90.6	26
25	<.007	<.02	<.050	<.006	262	145	100	19
MAY 07	<.007	<.02	<.050	<.006	271	114	114	15
21	<.007	<.02	<.050	<.006	276	107	104	16
JUN								
07	<.007	<.02	<.050	<.006	286	119	110	20
24	<.007	<.02	<.050	<.006	362	102	96.4	25
JUL	. 007	<.02	<.050	<.006	386	112	94.5	34
18 AUG	<.007	<.02	<.050	<.006	386	112	94.5	34
12	<.007	<.02	<.050	<.006	331	108	115	35
SEP				. ,			-	
11	<.007	<.02	<.050	<.006	339	111	97.3	27

THIS PAGE IS INTENTIONALLY BLANK

05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA

LOCATION.--Lat $42^{\circ}50^{\circ}10^{\circ}$, long $92^{\circ}15^{\circ}26^{\circ}$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 27, T.93 N., R.12 W., Bremer County, Hydrologic Unit 07080102, on left downstream bank 40 ft from bridge on State Highway 93, 1.0 mile upstream of the mouth of the East Fork of the Wapsipinicon River, and 2.0 miles north of Tripoli.

DRAINAGE AREA. -- 343 mi².

WATER DISCHARGE RECORDS

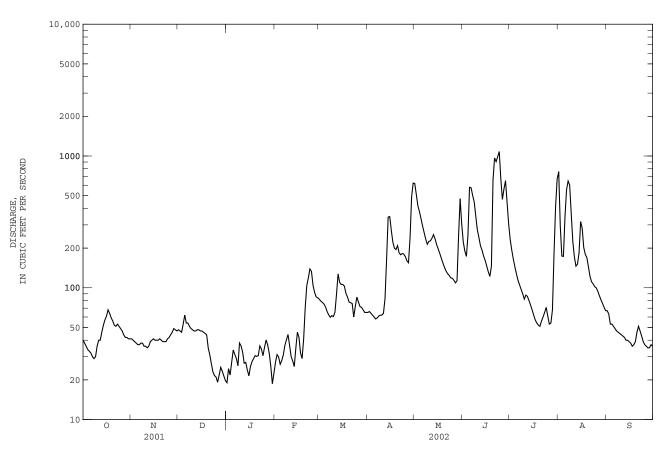
PERIOD OF RECORD.--September 1957 to July 1977 (operated as a partial-record low flow measurement site). Discharge records April 1996 to September 1998 and October 1, 2000 to September 30, 2001. Stage-only records May 13 to September 30, 2000.

REVISIONS. -- WDR-IA-98-1: 1997 (M)

GAGE.--Water stage recorder. Datum of gage is 1,000 ft above NGVD of 1929, from map.

REMARKS.--Records good except for those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 1, 1969, discharge about 18,900 ${\rm ft}^3/{\rm s}$, gage height 17.26 ft: Flood of May 17, 1999, discharge 3,900 ${\rm ft}^3/{\rm s}$, gage height 14.39 ft; Flood of July 21, 1999, discharge 19,400 ${\rm ft}^3/{\rm s}$, gage height 18.50 ft.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	40	41	48	e19	e27	e82	65	618	223	232	760	67
3	38 36	40 39	47 46	e24 e22	e31 e30	e79 e77	66 64	509 419	190 173	193 165	293 174	63 53
4	34	38	53	e27	e26	e75	62	378	250	144	173	53
5	33	37	62	e34	e28	e71	60	335	579	127	345	51
6	32	37	54	e31	e31	e66	58	294	574	114	552	49
7 8	30 29	38 38	54 51	e29 e26	e37 e40	e62 e60	59 61	262 234	502 448	105 97	646 601	47 46
9	30	36	49	e38	e44	e61	62	214	349	90	366	45
10	36	36	48	e36	e37	e60	62	225	275	82	225	44
11	40	35	47	e32	e30	e65	64	227	241	88	172	43
12	40	36	47	e27	e28	e89	83	238	208	86	146	42 40
13 14	46 52	39 40	48 48	e27 e24	e25 e35	e127 110	164 344	253 235	193 174	80 74	151 184	40
15	57	41	47	e21	46	106	347	212	161	68	318	39
16	61	40	47	e25	42	106	274	197	146	62	283	38
17	68	40	46	e28	32	103	222	182	132	57	202	36
18 19	64 59	40 41	45 44	e29 e31	29 41	91 85	200 195	167 154	122 146	54 52	179 169	37 39
20	56	40	e35	e30	71	78	209	143	654	51	144	46
21	52	39	e31	e31	104	77	184	134	966	56	122	51
22	51	39	e27	e36	119	76	178	128	906	60	111	47
23	53 51	39	e23	e34 e31	139 133	60 72	182 180	124	988	65 71	107 102	43 39
24 25	49	41 42	e22 e21	e31	104	7 <i>2</i> 85	172	119 118	1080 673	61	102	39
26	47	44	e19	e40	92	78	160	114	468	53	94	36
27	44	46	e22	e37	e85	72	155	109	561	54	87	35
28	42	49	e25	e32	e84	71	241	113	650	68	81	35
29	42	48	e23	e25		68	491	248	445	182	76	37
30 31	41 41	47 	e21 e20	e19 e22		65 65	623	474 305	306 	411 668	71 67	36
TOTAL	1394	1206	1220	902	1570	2442	5287	7482	12783	3770	7101	1314
MEAN	44.97	40.20	39.35	29.10	56.07	78.77	176.2	241.4	426.1	121.6	229.1	43.80
MAX	68	49	62	40	139	127	623	618	1080	668	760	67
MIN	29	35	19	19	25	60	58	109	122	51	67	35
AC-FT CFSM	2760 0.13	2390 0.12	2420 0.11	1790 0.08	3110 0.16	4840 0.23	10490 0.51	14840 0.70	25360 1.23	7480 0.35	14080 0.66	2610 0.13
IN.	0.15	0.13	0.13	0.10	0.17	0.26	0.57	0.80	1.37	0.41	0.76	0.14
STATIST	TICS OF M	IONTHLY ME	AN DATA I	FOR WATER	YEARS 199	6 - 2002,	BY WATER	R YEAR (WY	7)			
MEAN	168.1	86.43	56.14	56.73	160.1	566.4	767.1	407.0	579.1	196.3	98.38	67.65
MAX	407	114	84.5	77.0	275	1354	1648	816	1172	517	229	128
(WY)	1998	2001	1997	1997	1998	1997	2001	2001	1998	1998	2002	1997
MIN	27.1	40.2	39.4	29.1	56.1	78.8	176	174	188	69.2	36.0	25.3
(WY)	1997	2002	2002	2002	2002	2002	2002	1996	1997	2001	2001	1996

05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1996 - 2002
ANNUAL TOTAL	106441		46471			
ANNUAL MEAN	291.6		127.3		268.2	
HIGHEST ANNUAL MEAN					367	1998
LOWEST ANNUAL MEAN					127	2002
HIGHEST DAILY MEAN	3830	Apr 14	1080	Jun 24	3830	Apr 14 2001
LOWEST DAILY MEAN	19	Dec 26	19	Dec 26	16	Oct 7 1996
ANNUAL SEVEN-DAY MINIMUM	22	Dec 25	21	Dec 26	18	Oct 5 1996
MAXIMUM PEAK FLOW			1120	Jun 24	4730	Jun 29 1998
MAXIMUM PEAK STAGE			11.62	Jun 24	14.91	Jun 29 1998
INSTANTANEOUS LOW FLOW					14	Oct 7 1996
ANNUAL RUNOFF (AC-FT)	211100		92180		194300	
ANNUAL RUNOFF (CFSM)	0.84		0.37		0.78	
ANNUAL RUNOFF (INCHES)	11.44		5.00		10.53	
10 PERCENT EXCEEDS	843		298		721	
50 PERCENT EXCEEDS	62		61		90	
90 PERCENT EXCEEDS	34		30		37	

e Estimated

05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--January 2001 to current year.

Date	Time	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	GAGE HEIGHT (FEET) (00065)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SAMPLE TREAT- MENT (CODES) (00115)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)
OCT													
03 NOV	0944	15.4	14.2	729	1028	80020	36	7.19	401	1	9.0	90	7.6
05 DEC	0940	7.5	8.7	744	1028	80020	36	7.25	420	1	11.3	97	7.9
03 JAN	1000	3.0	11.1	733	1028	80020	46	7.29	432	1	12.3	92	8.1
07 FEB	1046	.1	-13.0	736	1028	80020	29	7.43	579	1	11.0	75	7.4
11 APR	0951	.1	-4.0	737	1028	80020	30	7.14	473	1	13.5	92	7.6
02	0945	4.6	2.0	729	1028	80020	66	7.46	411	1	13.1	101	8.1
MAY 01	0953	11.9	15.0	730	1028	80020	603	10.62	409	1	10.1	93	7.7
JUN 05	1015	15.1	23.0	739	1028	80020	593	10.19	360	1	10.1	101	7.5
JUL 02	1015	25.5	29.5	739	1028	80020	194	8.44	449		7.5	92	7.8
AUG 02	0915	23.0	18.0	740	1028	80020	300	9.25	359		7.3	85	7.5
Date	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	TER- BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)
OCT	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	DIS- SOLVED (MG/L AS SO4) (00945)	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024)	ATE, WATER, DISS, REC (UG/L) (04028)
OCT 03 NOV	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	DIS- SOLVED (MG/L AS SO4) (00945)	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024)	ATE, WATER, DISS, REC (UG/L) (04028)
OCT 03 NOV 05 DEC	BONATE WATER US IT FIELD MG/L AS CO3 (00452) 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75	PHORUS TOTAL (MG/L AS P) (00665) .119	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) E.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002
OCT 03 NOV 05 DEC 03	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 172 185 186	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007 E.007	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .58 .48	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75 1.58 2.30	PHORUS TOTAL (MG/L AS P) (00665) .119 .070	PHOS-PHAME, DIS-SOLVED (MG/L AS P) (00671) E.02 <.02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9 26.9	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9 24.9	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 172 185 186 298	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .15	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007 E.007 E.006	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .58 .48 .43	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75 1.58 2.30 5.10	PHORUS TOTAL (MG/L AS P) (00665) .119 .070 .086	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) E.02 <.02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9 26.9 30.9	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9 24.9 34.5	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 172 185 186	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007 E.007	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .58 .48	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75 1.58 2.30	PHORUS TOTAL (MG/L AS P) (00665) .119 .070	PHOS-PHAME, DIS-SOLVED (MG/L AS P) (00671) E.02 <.02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9 26.9	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9 24.9	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11 APR 02	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 172 185 186 298	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .15	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007 E.007 E.006	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .58 .48 .43	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75 1.58 2.30 5.10	PHORUS TOTAL (MG/L AS P) (00665) .119 .070 .086	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) E.02 <.02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9 26.9 30.9	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9 24.9 34.5	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11 APR 02 MAY 01	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 172 185 186 298 200	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .15 .05	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007 E.007 E.006 .035	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .58 .48 .43 .40 .35	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75 1.58 2.30 5.10 3.67	PHORUS TOTAL (MG/L AS P) (00665) .119 .070 .086 .066	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) E.02 <.02 <.02 E.01	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9 26.9 30.9	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9 24.9 34.5 28.0	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11 APR 02 MAY 01 JUN 05	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 0 0 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 172 185 186 298 200 157	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .15 .05 E.02	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007 E.007 E.006 .035 .024 .029	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .58 .48 .43 .40 .35	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75 1.58 2.30 5.10 3.67 3.47	PHORUS TOTAL (MG/L AS P) (00665) .119 .070 .086 .066 .083	PHOS- PHAME, DIS- SOLVED (MG/L AS P) (00671) E.02 <.02 <.02 E.01 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9 26.9 30.9 25.1 21.3	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9 24.9 34.5 28.0 24.7	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11 APR 02 MAY 01 JUN	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 0 0 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 172 185 186 298 200 157 124	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .15 .05 E.02 .05	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) E.007 E.007 E.006 .035 .024 .029 .052	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .58 .48 .43 .40 .35 .42	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.75 1.58 2.30 5.10 3.67 3.47	PHORUS TOTAL (MG/L AS P) (00665) .119 .070 .086 .066 .083 .085	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) E.02 <.02 <.02 E.01 <.02 E.01	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 23.0 24.9 26.9 30.9 25.1 21.3	DIS- SOLVED (MG/L AS SO4) (00945) 24.5 25.9 24.9 34.5 28.0 24.7	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002

05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	FONOFOS WATER DISS REC (UG/L) (04095)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	P,P' DDE DISSOLV (UG/L) (34653)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	LINDANE DIS- SOLVED (UG/L) (39341)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	MALA- THION, DIS- SOLVED (UG/L) (39532)
OCT 03	E.005	E.01	E.071	<.018	<.003	<.005	<.003	<.005	143	<.004	<.005	.088	<.027
NOV 05	<.011	E.01	E.052	<.018	<.003	<.005	<.003	<.005	153	<.004	<.005	.041	<.027
DEC 03	E.003	M	E.040	<.018	<.003	<.005	<.003	<.005	154	<.004	<.005	.045	<.027
JAN 07	<.005	<.01	E.068	<.018	<.003	<.005	<.003	<.005	245	<.004	<.005	.049	<.027
FEB 11	<.005	E.01	E.047	<.018	<.003	<.005	<.003	<.005	165	<.004	<.005	.038	<.027
APR 02	<.005	М	E.029	<.018	<.003	<.005	<.003	<.005	129	<.004	<.005	.029	<.027
MAY 01	.010	.02	E.129	<.018	<.003	<.005	<.003	<.005	101	<.004	<.005	.235	<.027
JUN 05	.056	E.01	E.316	<.018	<.003	<.005	<.003	<.005	88	<.004	<.005	.534	<.027
JUL 02	.042	.02	E.196	<.018	<.003	<.005	<.003	<.005	121	<.004	<.005	.099	<.027
AUG 02	.008	E.01	E.153	<.018	<.003	<.005	<.003	<.005	111	<.004	<.005	.129	<.027
02	.000	1.01	E.133	1.010	1.005	1.005	1.003	1.003	111	V.004	1.003	.123	1.027
Date	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	PURPOSE SITE VISIT, (CODE) (50280)	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	SAMPLE PURPOSE CODE (71999)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	DRAIN- AGE AREA (SQ. MI.) (81024)	SAM- PLING METHOD, CODES (82398)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)
OCT 03	<.007	<.005	.113	.009	.022	1001	23	15.00	1000	13	346	10	<.006
NOV 05	<.007	<.005	.068	<.008	.007	1001		15.00	1000	5.0	346	30	<.006
DEC 03	<.007	<.005	.059	.008	.011	1001	8.4	15.00	1000	6.5	346	10	<.006
JAN 07	<.010	<.005	.072	.011	.019	1001	6.6	15.00	1000	73	346	10	<.006
FEB 11	<.010	<.005	.059	.018	.009	1001	7.7	15.00	1000	4.7	346	10	<.006
APR 02	<.010	<.005	.052	.010	.010	1001	8.2	15.00	1000	4.5	346	10	<.006
MAY 01	<.010	<.005	.297	.035	.185	1001	30	15.00	1000	29	346	10	<.008
JUN 05	<.010	<.005	5.58	.139	3.09	1001	140	15.00	1000	88	346	10	<.006
JUL 02	<.010	<.005	.929	<.004	.036	1001	50	15.00	1000	42	346	10	<.006
AUG 02	<.010	<.005	.356	.007	.047	1001	58	15.00	1000	48	346	10	<.006
Date	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
OCT 03	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	E.01	<.002	<.005	<.010
NOV 05	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	E.01	<.002	<.005	<.010
DEC 03	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	M	<.002	<.005	<.010
JAN 07	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
FEB 11	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
APR 02	E.001	<.009	<.009	<.011	<.034	<.035	<.006	E.001	<.004	<.02	<.002	<.005	<.010
MAY 01	<.006	<.009	<.009	<.011	<.034	<.035	<.006	.002	<.004	E.01	<.002	<.005	<.010
JUN 05	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
JUL 02	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	E.01	<.002	<.005	<.010
AUG 02	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010

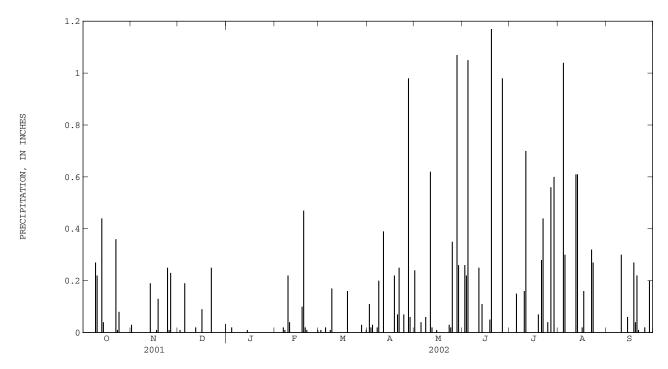
05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA--Continued

	WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002												
Date	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	WATER FLTRD 0.7 U	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
OCT 03 NOV	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
05	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
DEC 03	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
JAN 07	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
FEB 11	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
APR 02	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
MAY 01	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
JUN 05	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
JUL 02	E.014	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
AUG 02	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
		Da	te	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	ULE 2001	SAMPLE VOLUME SCHED- ULE 2001 (ML) (99856)			
		OCT 0	3	<.006	3045		108	90.6	2.00E+08	941			
		NOV 0	5	<.006	3045		91.7	82.6	2.00E+08	917			
		DEC 0	3	<.006	3045		90.7	79.0	2.00E+08	921			
		JAN 0	7	<.006	3045	585	85.3	82.4	2.00E+08	934			
		FEB 1	1	<.006	3045	481	93.7	81.3	2.00E+08	902			
		APR 0	2	<.006	3045	420	85.2	94.4		929			
			1	<.006	3039	417	130	104		930			
		JUN 0	5	<.006	3039	360	E128	114		916			
			2	<.006	3045		110	89.4		924			
		AUG 0	2	<.006	3035		97.2	91.5		938			

05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA

PRECIPITATION RECORDS

PERIOD OF RECORD.--April 10, 1996 to September 30, 1998; June 1, 2000 to current year.


INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.--Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREME FOR PERIOD OF RECORD.--Maximum daily accumulation 2.40 in., June 21, 1997.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 1.17 in., June 19.

PRECIPITATION from 8200, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.0 0.0 0.0 0.0	0.03 0.0 0.0 0.0 0.0	0.0 0.01 0.0 0.0 0.19	0.0 0.0 0.0 0.02 0.02	0.0 0.0 0.0 0.0	0.0 0.01 0.0 0.0 0.0	0.0 0.11 0.02 0.03 0.0	0.24 0.0 0.0 0.0 0.0	0.0 0.26 0.22 1.05 0.0	0.0 0.0 0.0 0.0 0.15	0.0 0.0 0.0 1.04 0.30	0.0 0.0 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.27 0.22	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.02 0.01 0.0 0.22 0.04	0.0 0.0 0.01 0.17 0.0	0.0 0.02 0.20 0.0	0.0 0.0 0.06 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.16	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.30
11 12 13 14 15	0.0 0.0 0.44 0.04	0.0 0.0 0.19 0.0	0.0 0.02 0.0 0.0 0.0	0.0 0.0 0.0 0.01 0.01	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.39 0.0 0.0 0.0 0.0	0.62 0.02 0.0 0.0 0.0	0.25 0.0 0.11 0.0 0.0	0.70 0.0 0.0 0.0 0.0	0.0 0.61 0.61 0.0 0.0	0.0 0.0 0.0 0.06 0.06
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.01 0.13 0.0 0.0	0.09 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.10 0.47 0.02	0.0 0.0 0.0 0.16 0.0	0.0 0.0 0.22 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.05 1.17 0.0	0.0 0.0 0.0 0.07	0.02 0.16 0.0 0.0	0.0 0.0 0.27 0.04 0.22
21 22 23 24 25	0.0 0.36 0.01 0.08 0.0	0.0 0.0 0.0 0.25 0.01	0.0 0.25 0.0 0.0	0.0 0.0 0.0 0.0	0.01 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.25 0.0 0.0 0.07 0.07	0.0 0.0 0.03 0.02 0.35	0.0 0.0 0.0 0.0	0.28 0.44 0.0 0.0 0.0	0.0 0.32 0.27 0.0 0.0	0.01 0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	0.23 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.01 	0.0 0.0 0.03 0.0 0.0	0.0 0.98 0.06 0.0	0.0 0.0 1.07 0.26 0.0	0.98 0.0 0.0 0.0 0.0	0.0 0.56 0.0 0.60 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.20 0.0 0.0
TOTAL MEAN MAX MIN	1.42 0.05 0.44 0.00	0.85 0.03 0.25 0.00	0.56 0.02 0.25 0.00	0.03 0.00 0.02 0.00	0.90 0.03 0.47 0.00	0.41 0.01 0.17 0.00	2.42 0.08 0.98 0.00	2.72 0.09 1.07 0.00	4.09 0.14 1.17 0.00	3.00 0.10 0.70 0.00	3.33 0.11 1.04 0.00	1.12 0.04 0.30 0.00

05421000 WAPSIPINICON RIVER AT INDEPENDENCE, IA

LOCATION.--Lat $42^{\circ}27^{\circ}49^{\circ}$, long $91^{\circ}53^{\circ}42^{\circ}$, in $SE^{1}/_{4}$ sec.4, T.88 N., R.9 W., Buchanan County, Hydrologic Unit 07080102, on right bank at Sixth Street in Independence, 1,800 ft downstream from dam at abandoned hydroelectric plant, 4.9 mi downstream from Otter Creek, 9.7 mi upstream from Pine Creek, and at mile 142.5.

DRAINAGE AREA. -- 1,048 mi².

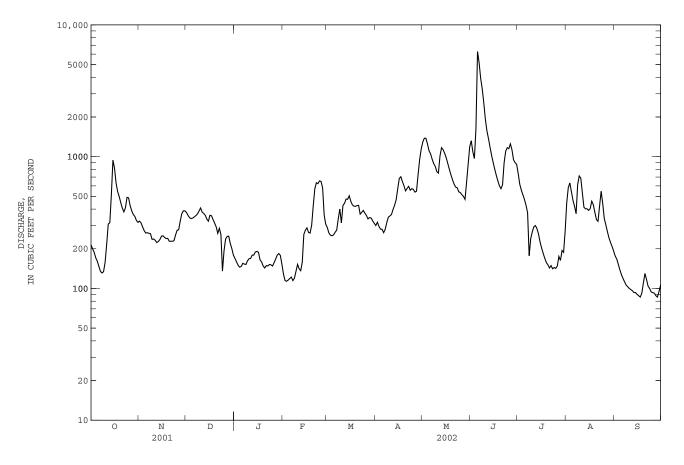
PERIOD OF RECORD. -- July 1933 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1938-39, 1940 (M), 1947.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 882.85 ft above NGVD of 1929. Prior to May 24, 1941 nonrecording gage in tailrace of powerplant 1,800 ft upstream at datum 80.00 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1901, that of May 18, 1999.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	214	324	377 358	169 159	e128	e290	300	1290	1320	743 617	446	176 167
2	200 188	314 292	344	159	e115 e113	e264 e253	318 296	1380 1380	1090 968	557	582 632	152
4	171	274	339	145	e116	e251	282	1250	1640	513	542	138
5	161	263	342	147	e119	e255	281	1110	6280	473	466	127
6	147	265	349	155	e122	e267	265	1050	5180	428	421	119
7	135	262	357	153	e115	e277	281	957	3940	375	369	112
8	131	260	367	152	e120	338	316	885	3280	177	614	106
9 10	134 158	236 237	386 408	162 168	e135 e152	400 314	347 355	843 769	2560 1930	239 269	714 686	103 100
11	216	232	380	169	e141	426	364	751	1570	294	531	98
12 13	308 315	223 227	371 359	179 179	e136 e158	443 477	397 428	1010 1170	1370 1180	300 284	413 402	96 93
14	516	235	336	189	e257	475	471	1130	1020	258	402	93
15	941	249	324	191	277	505	570	1060	904	224	391	90
1.0	01.0	051	250	100	288	4.60	602	0.01	803	202	400	88
16 17	818 631	251 244	359 356	188 165	288 266	460 431	683 704	981 887	721	202 184	403 459	88 86
18	544	239	333	159	263	421	647	801	654	169	432	92
19	498	240	313	148	302	420	600	729	601	157	377	110
20	448	228	293	143	422	425	550	668	571	151	333	130
21	407	228	262	149	568	427	574	620	613	143	323	117
22	381	228	286	148	634	366	595	588	898	149	422	104
23	410	230	e258	152	624	378	556	581	1100	141	546	100
24 25	491 487	254 276	e135 e193	151 148	655 649	391 373	572 564	541 534	1170 1150	144 142	442 340	94 93
	40/		6133	140	049	3/3	364	334	1130	142	340	
26	425	279	e237	157	579	358	538	515	1250	148	304	92
27	388	324	e248	167	e360	337	547	499	1130	175	270	88
28 29	364 352	369 388	e249 e219	179 184	e307	345 342	727 948	474 e638	947 901	163 194	242 223	86 95
30	328	388	e200	178		326	1140	873	875	188	208	106
31	317		e178	152		312		1190		271	192	
TOTAL	11224	8059	9516	5035	8121	11347	15216	27154	47616	8472	13127	3251
MEAN	362.1	268.6	307.0	162.4	290.0	366.0	507.2	875.9	1587	273.3	423.5	108.4
MAX	941	388	408	191	655	505	1140	1380	6280	743	714	176
MIN	131	223	135	143	113	251	265	474	571	141	192	86
AC-FT CFSM	22260 0.35	15990 0.26	18870 0.29	9990 0.15	16110 0.28	22510 0.35	30180 0.48	53860 0.84	94450 1.51	16800 0.26	26040 0.40	6450 0.10
IN.	0.40	0.20	0.23	0.13	0.28	0.40	0.40	0.96	1.69	0.20	0.47	0.10
STATIST	rics of M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 193	4 - 2002,	BY WATER	YEAR (WY)			
MEAN	390.6	443.4	301.2	222.4	356.9	1409	1379	991.5	1019	733.1	547.5	366.1
MAX	2306	2280	1962	1411	1698	3201	5578	4326	4721	4836	5443	1940
(WY) MIN	1973 29.3	1992 42.2	1992 26.9	1946 12.6	1984 19.0	1986 68.4	1993 198	1999 45.3	1947 12.4	1993 18.9	1993 21.5	1981 20.5
(WY)	1989	1977	1977	12.6	19.0	1934	1957	1934	1934	1936	1934	1976
(/				'								

05421000 WAPSIPINICON RIVER AT INDEPENDENCE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1934 - 2002
ANNUAL TOTAL	344516	168138	
ANNUAL MEAN	943.9	460.7	681.1
HIGHEST ANNUAL MEAN			2304 1993
LOWEST ANNUAL MEAN			74.5 1934
HIGHEST DAILY MEAN	6540 May 8	6280 Jun 5	28000 May 18 1999
LOWEST DAILY MEAN	79 Sep 5	86 Sep 17a	7.0 Oct 1 1933b
ANNUAL SEVEN-DAY MINIMUM	85 Aug 31	91 Sep 12	7.1 Jan 24 1977
MAXIMUM PEAK FLOW		7150 Jun 5	31100 May 18 1999
MAXIMUM PEAK STAGE		9.99 Jun 5	22.35 May 18 1999
ANNUAL RUNOFF (AC-FT)	683300	333500	493400
ANNUAL RUNOFF (CFSM)	0.90	0.44	0.65
ANNUAL RUNOFF (INCHES)	12.23	5.97	8.83
10 PERCENT EXCEEDS	3170	919	1670
50 PERCENT EXCEEDS	300	324	276
90 PERCENT EXCEEDS	120	135	53

a b e

Also Sept. 28 Many days in 1934 when power plant shut down; Jan. 25-30, 1977. Estimated

05422000 WAPSIPINICON RIVER NEAR DE WITT, IA

LOCATION.--Lat $41^{\circ}46^{\circ}01^{\circ}$, long $90^{\circ}32^{\circ}05^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.6, T.80 N., R.4 E., Clinton County, Hydrologic Unit 07080103, on left bank 5 ft upstream from bridge on Highway 956, 0.9 mi downstream from Silver Creek, 4.0 mi south of water tower in De Witt, 6.2 mi upstream from Brophy Creek, and 18.2 mi upstream from mouth.

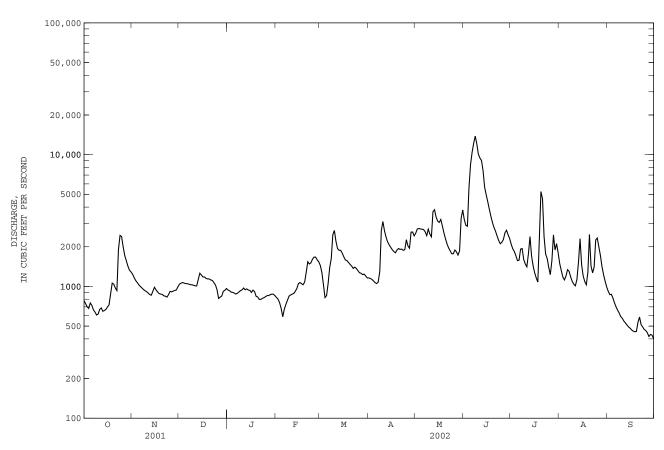
DRAINAGE AREA.--2,330 mi².

PERIOD OF RECORD.--July 1934 to current year.

REVISED RECORDS.--WSP 1308: 1937 (M). WSP 1438: Drainage area. WSP 1708: 1951.

GAGE.--Water-stage recorder. Datum of gage is 598.81 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U. S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	779 740	1240 1170	1040 1060	e940 e927	e824 e800	e1440 e1280	1160 1150	2540 2730	3220 2910	2090 1930	1490 1320	919 867
3	701	1110	1070	e905	e752	e1230	1130	2750	2860	1840	1180	872
4	681	1070	1060	e901	e678	e823	1100	2730	5580	1710	1120	818
5	749	1030	1050	e891	e589	e852	1070	2720	8390	1570	1200	750
6	719	1000	1050	e876	e671	e1060	1050	2700	10400	1580	1340	700
7	664	974	1040	e888	e731	1390	1080	2600	12200	1920	1300	660
8	639	948	1030	e908	e785	1630	1300	2430	13800	1940	1180	628
9	607	928	1030	e930	e844	2470	2660	2720	12100	1600	1090	591
10	617	912	1020	e942	e860	2660	3110	2500	10100	1480	1040	573
11	669	890	1010	973	e875	2200	2650	2380	9430	1410	1010	546
12 13	687 648	868 858	1010 1130	943 958	e883 e917	1940 1880	2370 2180	3690 3820	9040 7590	1770 2390	1130 1530	528 509
14	656	920	1260	939	e917	1880	2070	3360	5690	1710	2300	493
15	670	986	1220	933	1050	1790	1980	3130	4970	1430	1460	493
16	699	942	1180	e900	1070	1680	1900	3060	4400	1270	1200	467
17	726	908	1180	e937	1050	1590	1840	3220	3860	1160	1090	458
18	880	882	1150	e913	1030	1570	1800	2880	3410	1080	1030	453
19 20	1060 1040	875 868	1140 1140	e841 e832	1080 1280	1520 1470	1890 1940	2550 2300	3060 2800	2330 5250	1280 2480	455 534
21	973	849	1120	e797	1540	1430	1910	2100	2620	4620	1430	586
22	931	843	1110	e797	1480	1370	1920	1960	2410	2390	1270	513
23	1900	830	e1070	e812	1510	1400	1880	1860	2230	1760	1400	493
24 25	2440	866	e1030	e822	1610 1670	1370	1900	1770	2110	1630	2250	472 463
	2390	918	e943	e836	1670	1320	2260	1770	2160	1390	2330	403
26	2000	909	e811	e851	1670	1270	2030	1890	2270	1230	2000	445
27	1720	922	e830	e853	e1590	1260	1950	1830	2550	1570	1720	417
28	1570	932	e845	e866	e1540	1230	2580	1730	2670	2460	1420	432
29 30	1430 1330	941 994	e917 e934	e875 e873		1240 1200	2590 2420	1860 3290	2470 2310	1890 2110	1230 1100	427 402
31	1290		e934	e873 e851		1160	2420	3800	2310	1800	992	402
31												
TOTAL	32605	28383	32445	27510	30344	46405	56870	80670	159610	60310	43912	16953
MEAN	1052	946.1	1047	887.4	1084	1497	1896	2602	5320	1945	1417	565.1
MAX MIN	2440 607	1240 830	1260	973 797	1670 589	2660 823	3110 1050	3820 1730	13800 2110	5250	2480 992	919 402
AC-FT	64670	56300	811 64350	54570	60190	92040	112800	160000	316600	1080 119600	87100	33630
CFSM	0.45	0.41	0.45	0.38	0.46	0.64	0.81	1.11	2.28	0.83	0.61	0.24
IN.	0.52	0.45	0.52	0.44	0.48	0.74	0.91	1.28	2.54	0.96	0.70	0.24
	0.52	0.15	0.52	0.11	0.10	0.71	0.51	1.20	2.51	0.50	0.70	0.27
STATIS	TICS OF I	MONTHLY ME	EAN DATA	FOR WATER	YEARS 193	5 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	925.6	1114	910.8	823.1	1269	2971	3040	2422	2505	1790	1153	1024
MAX	3549	6435	4945	4086	3798	7137	9768	6854	10950	14280	8550	5647
(WY)	1973	1962	1983	1946	1984	1986	1993	1999	1947	1993	1993	1993
MIN	137	159	104	59.4	104	301	453	323	234	165	103	133
(WY)	1977	1965	1977	1977	1940	1954	1977	1977	1977	1936	1936	1976

05422000 WAPSIPINICON RIVER NEAR DE WITT, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR Y	YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1935 - 2002
ANNUAL TOTAL	858969		616017			
ANNUAL MEAN	2353		1688		1662	
HIGHEST ANNUAL MEAN					5461	1993
LOWEST ANNUAL MEAN					374	1989
HIGHEST DAILY MEAN	10200 May	y 15	13800	Jun 8	25400	Apr 22 1973
LOWEST DAILY MEAN	300 Jar	n 9	402	Sep 30	46	Jan 22 1977
ANNUAL SEVEN-DAY MINIMUM	357 Jar	n 7	437	Sep 24	47	Jan 18 1977
MAXIMUM PEAK FLOW			14400	Jun 8	31100	Jun 17 1990
MAXIMUM PEAK STAGE			13.16	Jun 8	14.19	Jun 17 1990
ANNUAL RUNOFF (AC-FT)	1704000		1222000		1204000	
ANNUAL RUNOFF (CFSM)	1.01		0.72		0.71	
ANNUAL RUNOFF (INCHES)	13.68		9.81		9.67	
10 PERCENT EXCEEDS	6140		2720		3960	
50 PERCENT EXCEEDS	1210		1180		924	
90 PERCENT EXCEEDS	531		685		234	

e Estimated.

120 CROW CREEK BASIN

05422470 CROW CREEK AT BETTENDORF, IA

LOCATION.--Lat $41^{\circ}33^{\circ}03^{\circ}$, long $90^{\circ}27^{\circ}15^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.24, T.78 N., R.4 E., Scott County, Hydrologic Unit 07080101, on left bank 200 ft upstream from bridge on Valley Road (old U.S. Highway 67), 3.5 mi east of U.S. Highway 6, and 0.7 mi upstream from mouth.

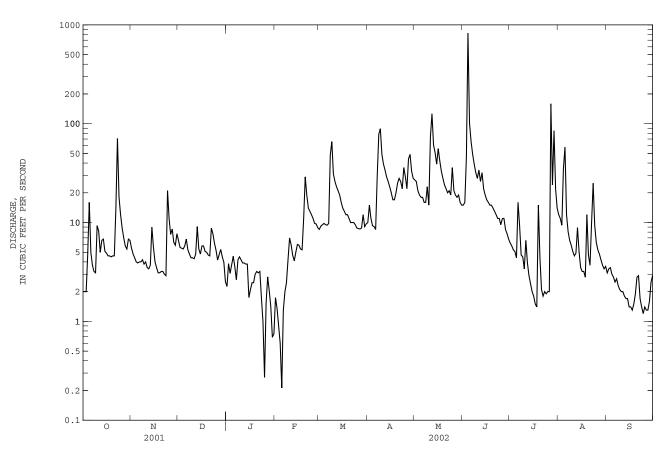
DRAINAGE AREA. -- 17.8 mi².

PERIOD OF RECORD. -- October 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 576.23 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.0	5.5	6.6	e2.3	e1.7	e8.5	10	27	15	6.2	12	3.1
2	2.0	4.8	5.6	e3.8	e1.4	9.2	15	26	16	5.8	11	3.4
3	2.0	4.4	5.5	e3.1	e0.90	9.5	11	21	46	5.3	9.4	3.5
4	4.8	4.0	5.4	e3.7	e0.60	9.8	9.3	19	825	5.1	35	3.0
5	16	3.9	5.8	e4.6	e0.21	9.5	9.1	18	101	4.4	58	2.8
6	5.0	4.0	6.8	e3.6	e1.3	9.4	8.5	18	66	16	12	2.5
7	3.7	4.0	5.3	e2.6	e2.0	9.8	29	16	49	9.3	8.1	2.7
8	3.2	4.2	4.8	4.2	e2.5	48	78	16	39	4.7	6.6	2.3
9	3.1	3.8	4.4	4.5	e4.2	66	89	23	32	4.5	5.9	2.1
10	9.3	4.0	4.4	4.2	e7.0	31	49	15	28	3.4	5.1	2.0
11 12 13 14 15	8.2 5.0 6.6 6.8 5.1	3.5 3.4 3.7 9.0 5.6	4.3 4.8 9.1 5.4 4.8	3.9 3.9 3.8 3.8 e1.7	e5.9 e4.7 e4.1 e5.0 6.0	26 23 21 19 16	39 34 29 26 23	73 126 61 51 39	34 26 32 22 19	6.6 3.9 2.9 2.4 2.0	4.6 4.9 8.9 5.1 3.5	2.0 1.8 1.7 1.7
16	4.9	4.0	5.8	e2.1	5.9	14	20	56	17	1.8	3.2	1.4
17	4.6	3.5	5.8	e2.5	5.4	13	17	42	16	1.5	3.2	1.3
18	4.6	3.1	5.1	e2.5	5.3	12	17	33	15	1.4	2.8	1.5
19	4.5	3.1	5.0	3.0	11	12	20	28	15	15	12	1.9
20	4.6	3.2	4.7	3.2	29	11	25	24	14	4.4	4.7	2.8
21 22 23 24 25	4.6 14 71 18 12	3.2 3.0 2.9 21 11	4.6 8.8 7.7 e6.2 e5.2	3.1 3.2 e1.7 e0.99 e0.27	19 14 13 12 11	10 10 10 9.5 8.8	28 26 22 36 29	22 20 21 19 36	13 12 11 11 9.5	2.1 1.8 2.0 1.9 2.0	3.7 9.9 25 9.4 6.3	2.9 1.7 1.4 1.2
26 27 28 29 30 31	8.8 7.0 5.8 5.4 6.8 6.6	7.6 8.6 6.3 5.9 7.7	e4.2 e4.7 e5.3 e4.5 e4.0 e2.5	e1.5 e2.8 e2.0 e1.4 e0.69 e0.75	9.8 e9.7 e8.9 	8.7 8.6 8.8 12 9.1 9.7	22 44 49 33 28	21 19 18 19 16 15	11 8.5 7.7 6.8	2.0 159 24 85 22 14	5.3 4.8 4.2 3.7 3.4 3.6	1.3 1.3 1.6 2.5 2.9
TOTAL	266.0	161.9	167.1	85.40	201.51	482.9	874.9	958	1528.5	422.4	295.3	63.1
MEAN	8.581	5.397	5.390	2.755	7.197	15.58	29.16	30.90	50.95	13.63	9.526	2.103
MAX	71	21	9.1	4.6	29	66	89	126	825	159	58	3.5
MIN	2.0	2.9	2.5	0.27	0.21	8.5	8.5	15	6.8	1.4	2.8	1.2
AC-FT	528	321	331	169	400	958	1740	1900	3030	838	586	125
CFSM	0.48	0.30	0.30	0.15	0.40	0.88	1.64	1.74	2.86	0.77	0.54	0.12
IN.	0.56	0.34	0.35	0.18	0.42	1.01	1.83	2.00	3.19	0.88	0.62	0.13
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	78 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	10.40	11.47	11.58	7.523	14.03	21.49	21.75	25.07	28.60	14.38	14.70	7.024
MAX	50.9	45.4	44.1	25.0	42.1	54.6	61.3	111	157	65.4	99.8	34.7
(WY)	1982	1993	1983	1988	1985	1979	1983	1996	1990	1992	1990	1992
MIN	0.67	1.19	0.77	1.09	0.76	3.45	2.33	1.68	3.17	0.74	0.85	0.49
(WY)	1989	1990	1990	2000	1989	1989	1989	1989	1988	1988	1978	1988

CROW CREEK BASIN 121

05422470 CROW CREEK AT BETTENDORF, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1978 - 2002
ANNUAL TOTAL	6140.49	5507.01	
ANNUAL MEAN	16.82	15.09	15.66
HIGHEST ANNUAL MEAN			31.7 1990
LOWEST ANNUAL MEAN			3.35 1989
HIGHEST DAILY MEAN	220 Feb 24	825 Jun 4	1660 Jun 16 1990
LOWEST DAILY MEAN	0.62 Sep 5	0.21 Feb 5	0.13 Aug 16 1988
ANNUAL SEVEN-DAY MINIMUM	0.73 Aug 30	0.89 Jan 30	0.21 Aug 13 1988
MAXIMUM PEAK FLOW		3290 Jun 4	7700 Jun 16 1990
MAXIMUM PEAK STAGE		8.98 Jun 4	11.03 Jun 16 1990
ANNUAL RUNOFF (AC-FT)	12180	10920	11350
ANNUAL RUNOFF (CFSM)	0.95	0.85	0.88
ANNUAL RUNOFF (INCHES)	12.83	11.51	11.96
10 PERCENT EXCEEDS	38	29	33
50 PERCENT EXCEEDS	8.6	6.2	7.4
90 PERCENT EXCEEDS	2.4	2.0	1.4

e Estimated

05422560 DUCK CREEK AT 110th AVENUE, DAVENPORT, IA

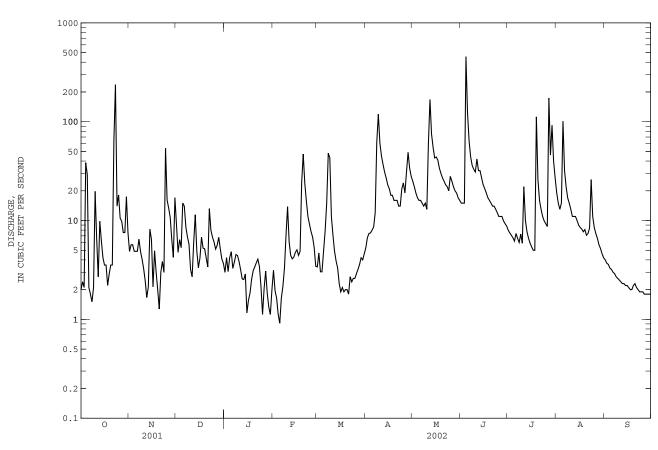
LOCATION.--Lat $41^{\circ}33^{\circ}24^{\circ}$, long $90^{\circ}41^{\circ}15^{\circ}$, in $NW^1/_4$ SW $^1/_4$, sec.13, T.78 N., R.2 E., Scott County, Hydrologic Unit 07080101, on left bank 20 ft. downstream from the bridge on County Road Y48 (110th Street), 0.3 miles downstream from unnamed creek, 3 miles west of Davenport, and 13.95 miles from the mouth.

DRAINAGE AREA. -- 16.1 mi².

PERIOD OF RECORD. -- March 1994 to current year.

GAGE.--Water stage recorder. Datum of gage is 659.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharge, which is poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e2.0	e4.9	e9.1	e3.0	e3.1	e3.4	e5.3	25	15	8.0	19	4.0
2	e2.4	e5.7	e4.8	e4.2	e1.9	e4.7	e6.7	22	15	7.5	15	3.7
3	e2.1	e5.7	e6.4	e3.0	e1.6	e3.0	e7.4	19	15	7.1	13	3.6
4	e39	e4.9	e5.3	e4.2	e1.1	e3.0	e7.5	17	454	6.7	15	3.3
5	e29	e4.9	e15	e4.8	e0.92	e4.9	e8.0	16	123	6.2	101	3.2
6	e2.1	e4.9	e14	e3.3	e1.6	e7.8	e8.6	16	64	7.4	32	3.0
7	e1.8	e6.5	e8.6	e3.8	e2.2	e15	e12	15	44	6.6	22	2.9
8	e1.5	e4.9	e6.8	e4.5	e3.3	e48	e62	14	36	6.0	17	2.7
9	e2.1	e4.1	e5.8	e4.4	e7.1	e43	119	15	33	7.3	15	2.6
10	e20	e3.3	e3.2	e3.8	e14	e11	61	13	31	5.9	13	2.5
11	e6.5	e2.5	e2.7	e3.2	e6.1	e7.1	45	60	42	22	11	2.4
12	e2.7	e1.7	e6.0	e2.6	e4.4	e4.9	37	168	32	10	11	2.3
13	e9.8	e2.1	e11	e2.5	e4.1	e3.9	31	e75	32	7.7	11	2.3
14	e6.2	e8.2	e4.9	e2.9	e4.3	e3.3	27	55	27	6.6	10	2.2
15	e4.2	e6.4	e3.3	e1.2	e4.8	e2.3	23	43	23	5.9	9.0	2.2
16	e3.5	e2.1	e4.2	e1.6	e5.1	e1.9	21	44	21	5.4	8.5	2.1
17	e3.5	e4.9	e6.8	e1.8	e4.4	e2.1	18	41	19	5.0	8.2	2.0
18	e2.2	e3.0	e5.3	e2.5	e4.9	e1.9	18	34	17	5.0	7.7	2.0
19	e2.9	e2.0	e5.2	e3.1	e24	e2.0	16	30	16	112	8.1	2.2
20	e3.5	e1.3	e4.2	e3.4	e47	e2.0	16	27	15	26	7.1	2.3
21 22 23 24 25	e3.5 e64 e238 e14 e18	e3.0 e3.9 e3.0 e54 e16	e3.4 e13 e8.0 e6.8 e6.1	e3.7 e4.1 e3.4 e2.2 e1.1	e24 e16 e11 e9.2 e7.7	e1.8 e2.7 e2.4 e2.6 e2.6	16 14 14 21 24	25 23 22 20 28	14 14 13 12 11	16 13 11 9.9 9.3	7.4 8.4 26 11 8.5	2.1 2.0 1.9 1.9
26 27 28 29 30 31	e11 e9.8 e7.6 e7.6 e17 e7.6	e13 e11 e6.4 e4.2 e17	e5.1 e5.6 e6.8 e5.2 e4.1 e3.7	e2.1 e3.1 e1.8 e1.3 e1.1 e2.0	e6.8 e5.3 e3.4 	e2.9 e3.2 e3.6 e4.2 e4.0 e4.6	19 31 49 34 28	25 22 20 19 17 16	11 11 9.9 9.3 8.8	8.7 e174 e46 92 40 27	7.4 6.6 5.7 5.2 4.6 4.2	1.8 1.8 1.8 1.8
TOTAL MEAN MAX MIN AC-FT CFSM IN.	545.1	215.5	200.4	89.7	229.32	209.8	799.5	986	1188.0	721.2	448.6	72.3
	17.58	7.183	6.465	2.894	8.190	6.768	26.65	31.81	39.60	23.26	14.47	2.410
	238	54	15	4.8	47	48	119	168	454	174	101	4.0
	1.5	1.3	2.7	1.1	0.92	1.8	5.3	13	8.8	5.0	4.2	1.8
	1080	427	397	178	455	416	1590	1960	2360	1430	890	143
	1.09	0.45	0.40	0.18	0.51	0.42	1.66	1.98	2.46	1.45	0.90	0.15
	1.26	0.50	0.46	0.21	0.53	0.48	1.85	2.28	2.74	1.67	1.04	0.17
STATIS	TICS OF M	MONTHLY ME	AN DATA	FOR WATER	YEARS 199	95 - 2002,	BY WATER	YEAR (W	<u>(</u>)			
MEAN	7.966	5.002	3.095	3.842	17.75	15.47	22.50	35.85	28.86	10.42	4.165	2.491
MAX	38.0	23.2	10.1	10.8	45.1	50.1	39.4	68.8	44.2	23.3	14.5	8.53
(WY)	1999	1999	1999	1999	2001	1998	1998	1996	2000	2002	2002	1998
MIN	0.30	0.97	0.74	0.73	4.30	3.28	2.60	14.0	9.13	3.03	1.31	0.75
(WY)	1995	1995	1997	1997	1995	1996	1996	1997	1997	1997	1997	1997

05422560 DUCK CREEK AT 110th AVENUE, DAVENPORT, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1995 - 2002
ANNUAL TOTAL	5787.76	5705.42	
ANNUAL MEAN	15.86	15.63	13.07
HIGHEST ANNUAL MEAN			17.5 1998
LOWEST ANNUAL MEAN			5.60 1997
HIGHEST DAILY MEAN	422 Feb 24	454 Jun 4	648 May 28 1996
LOWEST DAILY MEAN	0.58 Sep 17	0.92 Feb 5	0.22 Oct 16 1994
ANNUAL SEVEN-DAY MINIMUM	0.69 Sep 11	1.7 Jan 30	0.24 Oct 11 1994
MAXIMUM PEAK FLOW		1470 Jun 4	1870 May 28 1996
MAXIMUM PEAK STAGE		17.92 Jun 4	18.44 May 28 1996
ANNUAL RUNOFF (AC-FT)	11480	11320	9470
ANNUAL RUNOFF (CFSM)	0.98	0.97	0.81
ANNUAL RUNOFF (INCHES)	13.37	13.18	11.03
10 PERCENT EXCEEDS	33	32	30
50 PERCENT EXCEEDS	7.2	6.8	4.5
90 PERCENT EXCEEDS	1.6	2.1	0.89

e Estimated

05422600 DUCK CREEK AT DUCK CREEK GOLF COURSE, DAVENPORT, IA

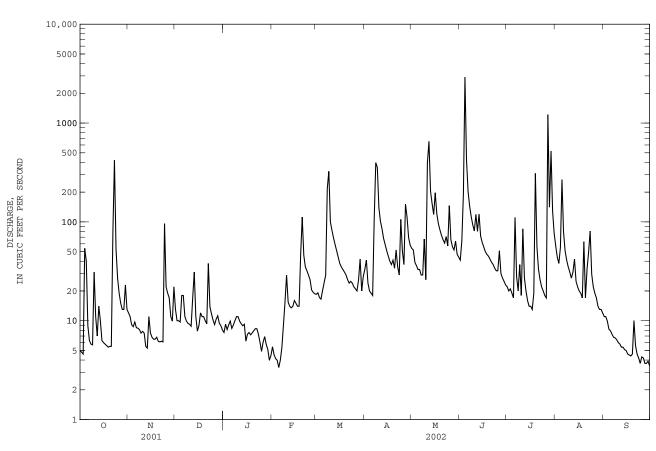
LOCATION.--Lat $41^{\circ}32^{\circ}46^{\circ}$, long $90^{\circ}31^{\circ}26^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$, $NW^{1}/_{4}$, sec.20, T.78 N., R.4 E., Scott County, Hydrologic Unit 07080101, on right bank 500 feet upstream from Kimberly Road, 100 feet upstream of golf cart bridge, 0.5 miles downstream from Pheasant Creek, in Davenport, and 4.45 miles from the mouth.

DRAINAGE AREA. -- 53.0 mi².

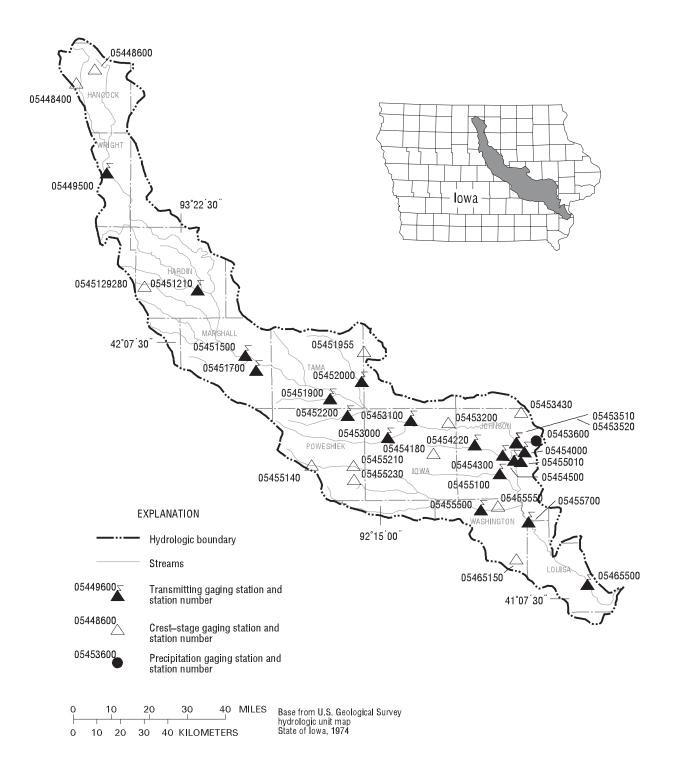
PERIOD OF RECORD. -- November 1993 to current year.

GAGE.--Water stage recorder. Datum of gage is 597.00 ft above NGVD of 1929.

REMARKS.--Records good except those for periods of estimated daily discharges, which are poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.0 4.8 4.6 54	12 11 9.1 8.7 9.7	13 10 10 9.7	e7.6 e9.2 e8.1 e9.1 e9.9	e5.4 e4.5 e4.1 e4.0 e3.4	e18 e19 e17 e17 e20	33 41 24 20 19	54 52 39 36 33	41 64 192 2910 421	22 20 21 19 17	57 44 38 55 268	11 11 9.9 8.2 7.9
6 7 8 9 10	8.9 6.3 5.8 5.7	8.5 8.4 8.1 7.5 7.8	18 11 9.9 9.4 9.2	e8.4 e9.1 10 11	e4.0 e5.4 e9.1 e16 e29	e24 29 216 325 e100	18 106 397 356 139	33 29 29 67 26	203 144 113 93 81	111 28 20 37 18	79 51 41 35 31	7.3 6.8 6.7 e6.4 6.0
11 12 13 14 15	11 7.0 14 10 6.3	7.5 e5.5 e5.3 e11 7.5	8.8 17 31 11 e7.8	9.9 9.3 8.9 9.2 e6.2	e15 e14 e14 e14 16	e82 69 59 51 44	101 85 68 59 51	396 653 204 153 119	119 80 120 72 62	85 27 20 16 14	27 31 42 25 22	5.8 5.4 5.4 5.1 5.0
16 17 18 19 20	6.0 5.8 5.6 5.4 5.5	6.8 6.5 6.5 6.8 6.2	e8.9 12 11 11	e7.3 e7.6 e7.2 e7.5 7.9	15 14 14 47 112	38 35 33 31 29	45 40 37 41 34	197 121 96 83 73	e56 50 47 45 42	14 13 19 310 56	20 19 17 63 17	4.6 4.5 4.4 4.6
21 22 23 24 25	5.5 79 420 53 27	6.1 6.2 6.1 96 22	9.3 38 e14 e12 e10	8.3 8.3 e7.3 e6.1 e4.9	46 35 32 29 26	26 24 25 24 22	52 35 29 106 51	66 61 71 57 146	39 37 34 32 32	33 26 22 20 18	33 49 e81 e30 e22	5.6 4.6 4.2 3.7 4.3
26 27 28 29 30 31	19 15 13 13 23 13	19 17 11 9.9 22	e9.1 e10 e11 e9.4 e8.9 e8.1	e6.1 e6.9 e5.8 e5.1 e4.0 e4.4	e20 e19 e19 	21 20 e26 42 20 28	37 151 111 69 58	66 56 52 64 47 44	51 30 27 25 23	17 1220 141 522 129 77	19 17 14 13 13	4.2 3.7 3.7 3.9 3.5
TOTAL MEAN MAX MIN AC-FT CFSM IN.	923.2 29.78 420 4.6 1830 0.56 0.65	375.7 12.52 96 5.3 745 0.24 0.26	386.5 12.47 38 7.8 767 0.24 0.27	241.6 7.794 11 4.0 479 0.15 0.17	585.9 20.93 112 3.4 1160 0.39 0.41	1534 49.48 325 17 3040 0.93 1.08	2413 80.43 397 18 4790 1.52 1.69	3223 104.0 653 26 6390 1.96 2.26	5285 176.2 2910 23 10480 3.32 3.71	3112 100.4 1220 13 6170 1.89 2.18	1285 41.45 268 12 2550 0.78 0.90	177.4 5.913 11 3.5 352 0.11 0.12
STATIST	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 199	5 - 2002,	BY WATER	R YEAR (WY)			
MEAN MAX (WY) MIN (WY)	25.64 125 1999 3.26 1995	18.98 68.3 1999 4.84 2000	10.79 33.1 1999 3.74 1997	15.75 38.6 1999 4.59 2000	62.10 173 2001 13.8 1995	54.29 143 1998 16.0 1996	83.89 141 1998 16.5 1996	128.6 250 1996 56.3 1997	108.6 177 2000 41.0 1997	41.74 100 2002 10.4 1997	24.92 41.5 2002 11.8 2000	17.07 35.1 1998 4.96 1995


05422600 DUCK CREEK AT DUCK CREEK GOLF COURSE, DAVENPORT, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1995 - 2002
ANNUAL TOTAL	22347.7	19542.3	
ANNUAL MEAN	61.23	53.54	49.19
HIGHEST ANNUAL MEAN			61.8 1998
LOWEST ANNUAL MEAN			25.3 1997
HIGHEST DAILY MEAN	1360 Feb 24	2910 Jun 4	2910 Jun 4 2002
LOWEST DAILY MEAN	2.2 Sep 4	3.4 Feb 5	0.86 Oct 4 1994
ANNUAL SEVEN-DAY MINIMUM	2.9 Aug 30	3.9 Sep 24	1.0 Oct 11 1994
MAXIMUM PEAK FLOW		7310 Jun 4	7310 Jun 4 2002
MAXIMUM PEAK STAGE		16.34 Jun 4	16.34 Jun 4 2002
INSTANTANEOUS LOW FLOW		3.1 Sep 30	
ANNUAL RUNOFF (AC-FT)	44330	38760	35630
ANNUAL RUNOFF (CFSM)	1.16	1.01	0.93
ANNUAL RUNOFF (INCHES)	15.69	13.72	12.61
10 PERCENT EXCEEDS	137	98	104
50 PERCENT EXCEEDS	22	19	18
90 PERCENT EXCEEDS	5.5	5.6	3.9

e Estimated

126

Figure 14. Locations of active continuous-record and crest-stage gaging stations in the Iowa River drainage basin (excluding the Cedar River drainage basin).

Gaging Stations

05449500	Iowa River near Rowan, IA
05451210	South Fork Iowa River NE of New Providence, IA
05451500	Iowa River at Marshalltown, IA
05451700	Timber Creek near Marshalltown, IA
05451900	Richland Creek near Haven, IA
05452000	Salt Creek near Elberon, IA
05452200	Walnut Creek near Hartwick, IA
05453000	Big Bear Creek at Ladora, IA
05453100	Iowa River at Marengo, IA
05453510	Coralville Lake near Coralville, IA
05453520	Iowa River below Coralville Dam near Coralville, IA
05453600	Rapid Creek below Morse, IA (precipitation)
05454000	Rapid Creek near Iowa City, IA
05454220	Clear Creek near Oxford, IA
05454300	Clear Creek near Coralville, IA
05454500	Iowa River at Iowa City, IA
05455010	South Branch Ralston Creek at Iowa City, IA
05455100	Old Mans Creek near Iowa City, IA
05455500	English River at Kalona, IA
05455700	Iowa River near Lone Tree, IA
	(Cedar River Basin Stations (178-213)
05465500	Iowa River at Wapello, IA

Crest Stage Gaging Stations

05448400	West Main Drainage Ditch 1 & 2 at Britt, IA	352
05448600	East Branch Iowa River above Hayfield, IA	352
0545129280	Honey Creek tributary near Radcliffe, IA	353
05451955	Stein Creek near Clutier, IA	353
05453200	Price Creek at Amana, IA	353
05453430	North Fork Tributary to Mill Creek near Solon, IA	353
05454180	Clear Creek Tributary near Williamsburg, IA	353
05455140	North English River near Montezuma, IA	353
05455210	North English River at Guernsey, IA	353
05455230	Deep River at Deep River, IA	354
05455550	Bulgers Run near Riverside, IA	354
05465150	North Fork Long Creek at Ainsworth, IA	355

128 IOWA RIVER BASIN

05449500 IOWA RIVER NEAR ROWAN, IA

LOCATION.--Lat $42^{\circ}45^{\circ}36^{\circ}$, long $93^{\circ}37^{\circ}23^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec.25, T.92 N., R.24 W., Wright County, Hydrologic Unit 07080207, on left bank 10 ft downstream from bridge on county highway C38, 0.9 mi downstream from drainage ditch 123, 3.8 mi northwest of Rowan, 10.7 mi downstream from confluence of East and West Branches, and at mile 316.4.

DRAINAGE AREA.--429 mi².

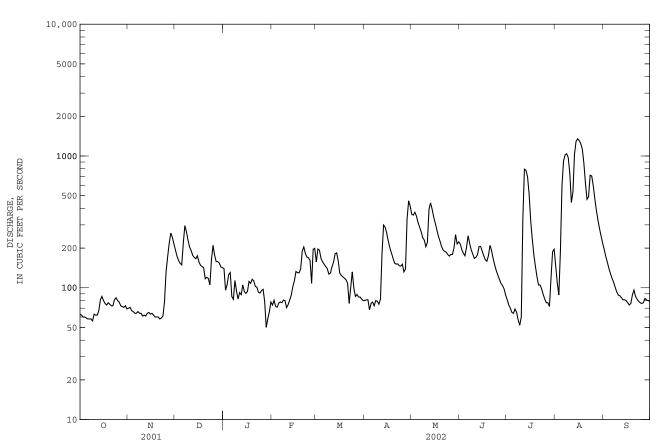
WATER DISCHARGE RECORDS

PERIOD OF RECORD.--October 1940 to September 1976, June 1977 to current year.

REVISED RECORDS.--WSP 1308: 1942-43 (M). WSP 1438: Drainage area. WDR IA-80-1: 1978.

GAGE.--Water-stage recorder. Datum of gage is 1,143.35 ft above NGVD of 1929. Prior to Oct. 14, 1948, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corp of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	63 62 60	70 71 67	193 173 161	140 e96 e106	e74 e80 e72	157 197 193	80 81 81	361 356 374	215 194 183	81 74 70	146 109 88	195 173 156
4 5	60 59	66 64	153 149	e126 e131	e71 e77	167 157	68 76	350 313	175 203	65 64	190 594	140 128
6 7 8 9 10	58 58 58 56 63	64 66 64 64	219 296 266 230 204	e86 e82 e114 e94 e82	e78 e77 e81 e80 e71	151 145 140 e127 e129	78 73 80 79 75	289 267 240 230 205	248 217 194 180 167	69 65 57 52 60	917 1020 1040 973 741	118 110 101 93 88
11 12 13 14 15	62 62 67 81 86	62 61 64 65 63	192 176 170 166 175	e92 e89 e105 e94 e91	e75 e81 e88 102 113	144 156 181 184 160	82 182 299 288 260	221 393 441 395 345	170 178 205 206 190	337 794 778 696 514	444 533 1030 1290 1350	87 84 81 81
16 17 18 19 20	80 76 74 77 75	64 62 60 60	157 148 145 142 117	e94 e112 108 116 113	133 130 130 139 189	129 124 121 118 115	226 201 184 168 154	310 277 247 227 206	175 163 159 175 210	325 236 179 146 122	1310 1240 1130 880 622	77 74 76 88 96
21 22 23 24 25	73 73 81 84 80	58 59 61 79 133	120 e118 105 164 210	e102 e101 e93 e91 e95	204 182 171 169 161	108 76 101 132 99	151 152 147 146 151	194 189 186 179 174	192 167 149 135 125	105 105 98 89 82	469 490 715 705 594	86 82 79 77 76
26 27 28 29 30 31	78 73 72 71 73 69	172 218 260 242 215	177 158 158 154 144 142	e97 e78 e50 e58 66 e78	108 196 199 	86 89 85 85 82 80	132 139 332 457 416	179 179 201 253 215 223	116 108 104 98 88	77 77 72 119 188 196	473 386 326 281 247 218	77 83 81 80 79
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2164 69.81 86 56 4290 0.17 0.19	2775 92.50 260 58 5500 0.22 0.25	5282 170.4 296 105 10480 0.41 0.47	2980 96.13 140 50 5910 0.23 0.27	3331 119.0 204 71 6610 0.28 0.30	4018 129.6 197 76 7970 0.31 0.36	5038 167.9 457 68 9990 0.40 0.45	8219 265.1 441 174 16300 0.63 0.73	5089 169.6 248 88 10090 0.41 0.45	5992 193.3 794 52 11890 0.46 0.53	20551 662.9 1350 88 40760 1.59 1.83	2926 97.53 195 74 5800 0.23 0.26
STATIST	rics of M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 194	1 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	132.6 720 1987 8.14 1990	132.1 695 1993 9.49 1990	86.92 588 1983 5.62 1990	55.69 298 1983 3.63 1959	114.0 931 1984 3.54 1959	392.1 1415 1973 23.9 1968	498.3 2439 1965 32.4 1957	378.9 1793 1991 44.3 1989	492.4 2452 1984 19.2 1989	305.8 1922 1993 5.36 1977	166.6 1684 1979 5.14 1977	139.5 1213 1965 3.98 1977

05449500 IOWA RIVER NEAR ROWAN, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1941 - 2002
ANNUAL TOTAL	174948		68365			
ANNUAL MEAN	479.3		187.3		242.2	
HIGHEST ANNUAL MEAN					869	1993
LOWEST ANNUAL MEAN					30.4	1956
HIGHEST DAILY MEAN	3180	May 5	1350	Aug 15	7640	Jun 21 1954
LOWEST DAILY MEAN	24	Jan 24	50	Jan 28	2.2	Sep 11 1977
ANNUAL SEVEN-DAY MINIMUM	26	Feb 13	58	Oct 3	2.9	Sep 8 1977
MAXIMUM PEAK FLOW			1350	Aug 15	8460	Jun 21 1954
MAXIMUM PEAK STAGE			9.45	Aug 15	14.88	Jun 21 1954
INSTANTANEOUS LOW FLOW			48	Mar 22	2.2	Sep 11 1977
ANNUAL RUNOFF (AC-FT)	347000		135600		175500	
ANNUAL RUNOFF (CFSM)	1.15		0.45		0.58	
ANNUAL RUNOFF (INCHES)	15.57		6.08		7.87	
10 PERCENT EXCEEDS	1540		347		617	
50 PERCENT EXCEEDS	136		127		86	
90 PERCENT EXCEEDS	32		65		18	

e Estimated

05449500 IOWA RIVER NEAR ROWAN, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--January 2001 to current year.

Date	Time	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	GAGE HEIGHT (FEET) (00065)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SAMPLE TREAT- MENT (CODES) (00115)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)
OCT													
03 NOV	1338	15.9	20.1	729	1028	80020	60	3.81	642	1	9.5	96	7.9
05 DEC	1326	9.4	13.8	744	1028	80020	59	3.85	642	1	13.0	117	8.2
03 JAN	1405	4.6	10.8	735	1028	80020	161	4.51	702	1	11.0	86	8.3
07 FEB	1518	.1		736	1028	80020	82	4.37	735	1	10.3	71	7.7
11 APR	1413	.4	3.9	737	1028	80020	75	4.12	666	1	14.1	98	8.0
02	1420	5.1	4.0	729	1028	80020	81	3.93	615	1	15.6	123	8.5
MAY 01	1418	11.2	15.0	721	1028	80020	361	5.59	682	1	10.9	99	8.1
JUN 05	1445	16.8	27.0	739	1028	80020	203	4.72	676	1	10.8	112	8.2
JUL 02	1430	27.2	31.0	738	1028	80020	74	3.76	568		9.9	125	8.3
AUG 01	1610	26.2	25.0	735	1028	80020	146	4.19	658		7.8	97	8.2
Date	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	TER- BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)
Date OCT 03	BONATE WATER DIS IT FIELD MG/L AS CO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHOS- PHATE, DIS- SOLVED (MG/L AS P)	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4)	BUTHYL- AZINE, WATER, DISS, REC (UG/L)	CHLOR, WATER, DISS, REC (UG/L)	ATE, WATER, DISS, REC (UG/L)
OCT	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	DIS- SOLVED (MG/L AS SO4) (00945)	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024)	ATE, WATER, DISS, REC (UG/L) (04028)
OCT 03 NOV 05 DEC	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 4.32	PHORUS TOTAL (MG/L AS P) (00665) .131	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.8	DIS- SOLVED (MG/L AS SO4) (00945) 53.0	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002
OCT 03 NOV 05 DEC 03 JAN	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 306 298 345	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .043 .042	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 4.32 4.80 10.4	PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) .06 .03	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.8 21.0	DIS- SOLVED (MG/L AS SO4) (00945) 53.0 50.1 37.3	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028)
OCT 03 NOV 05 DEC 03 JAN 07 FEB	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 2 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 306 298 345 329	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .14	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .043 .042 .032	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .53 .43 .66	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 4.32 4.80 10.4 8.72	PHORUS TOTAL (MG/L AS P) (00665) .131 .062 .123	PHOS- PHARE, DIS- SOLVED (MG/L AS P) (00671) .06 .03 .09	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.8 21.0 19.7	DIS- SOLVED (MG/L AS SO4) (00945) 53.0 50.1 37.3 48.1	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 2 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 306 298 345 329 306	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .14 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .043 .042 .032 .035	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .53 .43 .66 .53	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 4.32 4.80 10.4 8.72 5.90	PHORUS TOTAL (MG/L AS P) (00665) .131 .062 .123 .111	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) .06 .03 .09 .09	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.8 21.0 19.7 21.3	DIS- SOLVED (MG/L AS SO4) (00945) 53.0 50.1 37.3 48.1 47.5	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11 APR 02	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 2 0 0 3	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 306 298 345 329 306 284	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 <.04 E.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .043 .042 .032 .035 .023 .032	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .53 .43 .66 .53 .44	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 4.32 4.80 10.4 8.72 5.90 4.99	PHORUS TOTAL (MG/L AS P) (00665) .131 .062 .123 .111 .105 .079	PHOS- PHAME, DIS- SOLVED (MG/L AS P) (00671) .06 .03 .09 .09	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.8 21.0 19.7 21.3 22.7	DIS- SOLVED (MG/L AS SO4) (00945) 53.0 50.1 37.3 48.1 47.5	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11 APR 02 MAY 01 JUN	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 2 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 306 298 345 329 306 284 310	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 .14 <.04 E.04 E.030	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .043 .042 .032 .035 .023 .032	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .53 .43 .66 .53 .44 .60 1.0	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 4.32 4.80 10.4 8.72 5.90 4.99 11.8	PHORUS TOTAL (MG/L AS P) (00665) .131 .062 .123 .111 .105 .079 .192	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) .06 .03 .09 .09 .05 .03 <.040	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.8 21.0 19.7 21.3 22.7 20.3 19.7	DIS- SOLVED (MG/L AS SO4) (00945) 53.0 50.1 37.3 48.1 47.5 43.1 28.1	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002
OCT 03 NOV 05 DEC 03 JAN 07 FEB 11 APR 02 MAY 01	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 0 2 0 3 2	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 306 298 345 329 306 284	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 <.04 E.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .043 .042 .032 .035 .023 .032	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .53 .43 .66 .53 .44	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 4.32 4.80 10.4 8.72 5.90 4.99	PHORUS TOTAL (MG/L AS P) (00665) .131 .062 .123 .111 .105 .079	PHOS- PHAME, DIS- SOLVED (MG/L AS P) (00671) .06 .03 .09 .09	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 17.8 21.0 19.7 21.3 22.7	DIS- SOLVED (MG/L AS SO4) (00945) 53.0 50.1 37.3 48.1 47.5	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002

05449500 IOWA RIVER NEAR ROWAN, IA--Continued

Date	SI- MAZINE, WATER, DISS, REC (UG/L)	PRO- METON, WATER, DISS, REC (UG/L)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L)	CYANA- ZINE, WATER, DISS, REC (UG/L)	FONOFOS WATER DISS REC (UG/L)	ALPHA BHC DIS- SOLVED (UG/L)	P,P' DDE DISSOLV (UG/L)	CHLOR- PYRIFOS DIS- SOLVED (UG/L)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	LINDANE DIS- SOLVED (UG/L)	DI- ELDRIN DIS- SOLVED (UG/L)	METO- LACHLOR WATER DISSOLV (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
OCT 03	(04035)	(04037) E.01	(04040) E.029	(04041)	(04095) <.003	(34253)	(34653)	(38933)	(39086)	(39341)	(39381)	.039	(39532)
NOV 05	<.011	М	E.017	<.018	<.003	<.005	<.003	<.005	246	<.004	<.005	.027	<.027
DEC 03	<.011	М	E.027	<.018	<.003	<.005	<.003	<.005	286	<.004	<.005	.024	<.027
JAN 07	<.005	M	E.018	<.018	<.003	<.005	<.003	<.005	271	<.004	<.005	.021	<.027
FEB 11	<.005	E.01	E.014	<.018	<.003	<.005	<.003	<.005	252	<.004	<.005	.036	<.027
APR 02	<.005	M	E.011	<.018	<.003	<.005	<.003	<.005	237	<.004	<.005	.023	<.027
MAY 01												.049	
JUN	<.005	E.01	E.045	<.018	<.003	<.005	<.003	<.005	257	<.004	<.005	.049	<.027
05 JUL	<.005	E.01	E.033	<.018	<.003	<.005	<.003	<.005	248	<.004	<.005		<.027
02 AUG	<.005	E.01	E.030	<.018	<.003	<.005	<.003	<.005	191	<.004	<.005	.025	<.027
01	<.005	E.01	E.062	<.018	<.003	<.005	<.003	<.005	251	<.004	<.005	.047	<.027
Date	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	PURPOSE SITE VISIT, (CODE) (50280)	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	SAMPLE PURPOSE CODE (71999)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	DRAIN- AGE AREA (SQ. MI.) (81024)	SAM- PLING METHOD, CODES (82398)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)
OCT 03	<.007	<.005	.044	<.002	<.007	1001	27	15.00	1143.35	82	418	10	<.006
NOV 05	<.007	<.005	.029	<.002	<.004	1001		15.00	1143.35	16	418	30	<.006
DEC 03	<.007	<.005	.040	<.002	E.003	1001	9.7	15.00	1143.35	136	418	10	<.006
JAN 07	<.010	<.005	.025	<.004	<.006	1001	4.3	15.00	1143.35	134	418	10	<.006
FEB 11	<.010	<.005	.024	<.004	E.004	1001	6.8	15.00	1143.35	79	418	10	<.006
APR 02	<.010	<.005	.025	<.004	<.006	1001	7.6	15.00	1143.35	25	418	10	<.006
MAY 01	<.010	<.005	.075	<.004	.070	1001	43	15.00	1143.35	80	418	10	<.006
JUN 05	<.010	<.005	.182	<.004	.037	1001	46	15.00	1143.35	77	418	10	<.006
JUL 02	<.010	<.005	.119	<.004	.006	1001	42	15.00	1143.35	44	418	10	<.006
AUG 01	<.010	<.005	.160	<.004	.022	1001	80	15.00	1143.35	131	418	10	<.006
Date	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
OCT 03	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	.02	<.002	<.005	<.010
NOV 05	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	<.02	<.002	<.005	<.010
DEC 03	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	E.01	<.002	<.005	<.010
JAN 07	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
FEB 11	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
APR 02	E.001	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	E.01	<.002	<.005	<.010
MAY 01	E.003	<.009	<.009	<.011	<.034	<.035	<.006	.002	<.004	E.02	<.002	<.005	<.010
JUN 05	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
JUL 02	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	M	<.002	<.005	<.010
AUG 01	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	E.06	<.002	<.005	<.010

05449500 IOWA RIVER NEAR ROWAN, IA--Continued

Date	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
OCT													
03	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
NOV													
05	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
DEC 03	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
JAN	<.020	<.02	<.004	<.02	<.002	<.U11	<.U41	<.005	<.003	<.010	<.007	<.02	<.050
07	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
FEB													
11	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
APR 02	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
MAY	1.020	1.02	√.004	1.02	1.002	V.011	V.041	<.005	V.005	1.022	V.007	1.02	1.050
01	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
JUN													
05	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
JUL 02	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
AUG	~.020	\.UZ	\.UU4	N. UZ	<.002	~.UII	~.U41	~.003	~.003	~.022	<.UU/	∼. ∪∠	·.050
01	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050

PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SET NUMBER SCHED- ULE 2001 (NO.) (99818)	SAMPLE VOLUME SCHED- ULE 2001 (ML) (99856)
<.006	3045		114	91.6		2.00E+08	920
<.006	3045		106	93.5		2.00E+08	928
<.006	3045		92.7	88.1		2.00E+08	913
<.006	3045	744	83.7	84.6		2.00E+08	892
<.006	3045	671	96.4	88.9		2.00E+08	900
<.006	3045	620	81.7	93.7	10		898
<.006	3039	682	122	106			932
<.006	3045	665	E119	108			928
<.006	3045		111	91.7			948
<.006	3035		109	101			918
	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	METHRIN CIS WAT FLT 0.7 U SAMPLER GF, REC (UG/L) (CODE) (82687) (84164) <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045 <.006 3045	METHRIN CIS CIFIC CON-DUCT-DUCT-DUCT-DUCT-DUCT-DUCT-SAMPLER 0.7 U SAMPLER CIS CUSCMD (GF, REC TYPE LAB (UG/L) (CODE) (US/CM) (82687) (84164) (90095) <.006 3045	METHRIN CTS CTFIC CONDOTOR INON D10 SRG WAT FLT 0.7 U SAMPLER GF, REC (UG/L) (CODE) ANCE 0.7 U GF, REC (US/CM) PERCENT (84164) (90095) PERCENT (91063) <.006	METHRIN CIS CIFIC CON- D10 SRG D6 SRG DUCT- DUCT- DUCT- O.7 U SAMPLER (US/CM) WAT FLT WAT FLT O.7 U O.7 U O.7 U O.7 U GF, REC (US/CM) WAT FLT WAT FLT O.7 U O.7	METHRIN CIS CIFIC CONT INON D10 SRG D6 SRG ANCE ANCE D10 SRG D6 SRG ANCE D10 SRG D6 SRG ANCE D10 SRG D6 SRG ANCE D10 SRG D10	METHRIN CIS

THIS PAGE IS INTENTIONALLY BLANK

05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA

LOCATION.--Lat $42^{\circ}18^{\circ}55^{\circ}$, long $93^{\circ}09^{\circ}07^{\circ}$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ Sec.26, T.87 N., R.20 W., Hardin County, Hydrologic Unit 07080207, located 15 ft from the left bank downstream side of the bridge on County Road, 4.0 miles upstream of the confluence with the Iowa River, and 2.0 miles NE of New Providence.

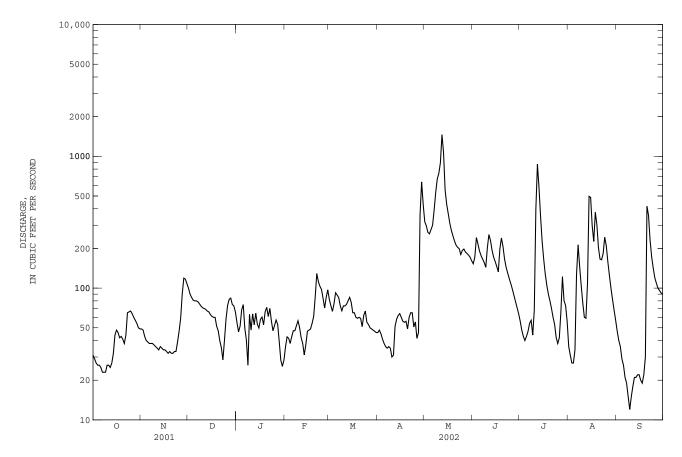
DRAINAGE AREA. -- 230 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD.--October 1995 to current year.

GAGE.--Water stage recorder. Datum of gage is 945 ft above NGVD of 1929, from map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	31 29	49 48	100	e55 e47	e36 e43	e82 e74	46 48	e319 297	153 172	56 48	36 31	47 40
3	27	43	85	e52	e42	e67	45	265	242	43	27	36
4 5	26 26	40 39	81 80	e69 e75	e38 e43	e76 e92	41 38	258 278	216 191	40 43	27 34	29 26
6	25	38	80	e50	e47	e89	36	e300	176	47	127	21
7	23	38	79	e40	e47	e85	35	e392	166	54	213	19
8 9	23 23	38 37	76 73	e26 e63	e52 e57	e74 e67	36 35	e531 e674	156 144	57 44	145 104	15 12
10	26	36	71	e48	e50	e73	30	e744	202	68	77	15
11	26	35	70	e64	e42	e73	31	e894	255	396	60	18
12 13	25 27	34 36	69 67	e53 e64	e38 e31	e75 e80	51 58	e1460 e1070	230 194	873 581	59 108	21 21
14	32	35	66	e53	e37	85	62	556	172	352	497	22
15	44	34	63	e50	47	78	64	433	159	227	488	22
16	48	34	61	e58	48	65	60	368	146	166	298	20
17 18	46 42	33 32	60 60	e60 e53	49 54	65 60	56 55	311 274	133 198	128 105	226 376	19 22
19	43	33	e51	e66	61	59	56	249	240	90	303	30
20	41	32	e48	e71	86	60	49	228	207	80	203	419
21 22	38 44	32 33	e40 e35	e61 e70	129 e112	59 e51	60 65	212 204	166 144	70 60	e166 164	356 231
23	65	33	e29	e56	e103	e62	65	199	130	53	183	173
24 25	66 67	39 47	e40 e58	e47 e52	e98 e84	67 55	e51 e55	180 193	118 108	42 38	243 210	142 120
26 27	64 60	59 90	e74 e82	e57 e53	e71 e85	53 50	e41 e46	198 188	98 88	42 66	159 125	109 100
28	57	119	e84	e39	e97	49	e363	183	79	122	100	96
29 30	54 50	117 108	e75 e73	e28 e25		48 47	e640 e432	178 171	71 64	e80 e74	82 68	92 90
31	49		e66	e28		46		161		e56	57	
TOTAL	1247	1421	2086	1633	1727	2066	2750	11968	4818	4201	4996	2383
MEAN MAX	40.23 67	47.37 119	67.29 100	52.68 75	61.68 129	66.65 92	91.67 640	386.1 1460	160.6 255	135.5 873	161.2 497	79.43 419
MIN	23	32	29	25	31	46	30	161	64	38	27	12
AC-FT CFSM	2470 0.18	2820 0.21	4140 0.30	3240 0.24	3430 0.28	4100 0.30	5450 0.41	23740 1.72	9560 0.72	8330 0.60	9910 0.72	4730 0.35
IN.	0.21	0.24	0.35	0.27	0.29	0.34	0.46	1.99	0.80	0.70	0.83	0.40
STATIST	rics of M	IONTHLY ME	AN DATA I	FOR WATER	YEARS 199	96 - 2002,	BY WATER	YEAR (WY	7)			
MEAN	26.68	56.38	39.45	27.05	107.1	168.4	220.0	318.4	471.9	166.8	47.59	24.61
MAX (WY)	76.6 1999	199 1997	119 1997	65.7 1997	250 1997	386 2001	513 1999	643 1999	1173 1998	414 1998	161 2002	79.4 2002
MIN	2.59	4.90	5.03	4.63	7.51	8.73	7.17	13.1	161	59.9	12.5	3.51
(WY)	2000	2000	2000	2001	2001	2000	2000	2000	2002	1996	2000	2000

05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1996 - 2002
ANNUAL TOTAL	55859.7	41296	
ANNUAL MEAN	153.0	113.1	149.8
HIGHEST ANNUAL MEAN			218 1998
LOWEST ANNUAL MEAN			36.6 2000
HIGHEST DAILY MEAN	1650 Mar 22	1460 May 12	2920 Jun 30 1998
LOWEST DAILY MEAN	3.4 Jan 2	12 Sep 9	1.7 Sep 13 2000
ANNUAL SEVEN-DAY MINIMUM	4.0 Jan 1	17 Sep 6	1.9 Sep 11 2000
MAXIMUM PEAK FLOW		2110 May 12	3550 Jun 21 1998
MAXIMUM PEAK STAGE		9.02 May 12	11.59 Jun 21 1998
INSTANTANEOUS LOW FLOW		10 Sep 9	1.7 Sep 26 1999a
ANNUAL RUNOFF (AC-FT)	110800	81910	108600
ANNUAL RUNOFF (CFSM)	0.68	0.51	0.67
ANNUAL RUNOFF (INCHES)	9.28	6.86	9.09
10 PERCENT EXCEEDS	458	241	371
50 PERCENT EXCEEDS	44	62	48
90 PERCENT EXCEEDS	6.0	31	5.4

Also Oct. 3, 2000. Estimated

05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1995 to current year.

Date	Time	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	GAGE HEIGHT (FEET) (00065)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SAMPLE TREAT- MENT (CODES) (00115)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)
OCT													
04 NOV	0825	14.2	9.0	734	1028	80020	26	2.58	625	1	8.7	85	7.9
06 DEC	0812	8.7	9.9	740	1028	80020	38	2.75	645	1	10.5	93	8.0
04 JAN	0835	6.7	13.4	732	1028	80020	83		794	1	11.2	92	8.2
08 FEB	0930	.1		727	1028	80020	26	3.25	809	1	13.0	89	7.8
12 APR	0809	.1	3.0	734	1028	80020	38	3.07	691	1	13.7	94	8.0
03	0816	.7	-5.0	742	1028	80020	47	2.93	664	1	14.3	100	8.3
MAY 02	0818	8.4	9.0	730	1028	80020	298	4.62	759	1	10.7	91	8.1
JUN 06	0817	15.8	19.0	736	1028	80020	77	3.81	755	1	9.6	97	8.2
JUL 03	0755	24.5	30.5	739	1028	80020	43	2.72	655		7.3	88	8.1
AUG 01	1155	28.3	29.0	734	1028	80020	37	2.63	637		9.6	124	8.3
Date	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	TER- BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)
OCT	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	DIS- SOLVED (MG/L AS SO4) (00945)	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024)	ATE, WATER, DISS, REC (UG/L) (04028)
OCT 04 NOV	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	DIS- SOLVED (MG/L AS SO4) (00945)	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024)	ATE, WATER, DISS, REC (UG/L) (04028)
OCT 04 NOV 06 DEC	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9	PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5	DIS- SOLVED (MG/L AS SO4) (00945) 32.3	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002
OCT 04 NOV 06 DEC 04 JAN	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 2 2	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 263 281 349	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .063 .090	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .57 .55	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9 13.1 17.5	PHORUS TOTAL (MG/L AS P) (00665) .025 .022	PHOS-PHAME PHAME DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 .05	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5 25.7	DIS- SOLVED (MG/L AS SO4) (00945) 32.3 31.4 30.5	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002
OCT 04 NOV 06 DEC 04 JAN 08 FEB	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9	PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5	DIS- SOLVED (MG/L AS SO4) (00945) 32.3	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002
OCT 04 NOV 06 DEC 04 JAN 08	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 2 2	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 263 281 349	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .063 .090	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .57 .55	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9 13.1 17.5	PHORUS TOTAL (MG/L AS P) (00665) .025 .022	PHOS-PHAME PHAME DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 .05	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5 25.7	DIS- SOLVED (MG/L AS SO4) (00945) 32.3 31.4 30.5	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002
OCT 04 NOV 06 DEC 04 JAN 08 FEB 12 APR 03	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 2 2 2	BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 263 281 349 364	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .063 .090 .037	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .57 .55 .63	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9 13.1 17.5	PHORUS TOTAL (MG/L AS P) (00665) .025 .022 .076	PHOS- PHARE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5 25.7	DIS- SOLVED (MG/L AS SO4) (00945) 32.3 31.4 30.5 35.6	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002
OCT 04 NOV 06 DEC 04 JAN 08 FEB 12 APR 03 MAY 02	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 2 2 2 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 263 281 349 364 252	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .06 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .063 .090 .037 .033	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .57 .55 .63 .42 .61	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9 13.1 17.5 15.9 10.9	PHORUS TOTAL (MG/L AS P) (00665) .025 .022 .076 .045	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 .05 .03	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5 25.7 26.6 25.7	DIS- SOLVED (MG/L AS SO4) (00945) 32.3 31.4 30.5 35.6	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002
OCT 04 NOV 06 DEC 04 JAN 08 FEB 12 APR 03 MAY 02 JUN 06	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 2 2 2 2 2 2 2	BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 263 281 349 364 252 265	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .063 .090 .037 .033 .037	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .57 .55 .63 .42 .61	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9 13.1 17.5 15.9 10.9	PHORUS TOTAL (MG/L AS P) (00665) .025 .022 .076 .045 .086	PHOS-PHAME, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 .05 .03 .02 <.02	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5 25.7 26.6 25.7 21.5	DIS- SOLVED (MG/L AS SO4) (00945) 32.3 31.4 30.5 35.6 30.4	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002
OCT 04 NOV 06 DEC 04 JAN 08 FEB 12 APR 03 MAY 02 JUN	BONATE WATER US IT FIELD MG/L AS CO3 (00452) 2 2 2 2 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 263 281 349 364 252 265 314	GEN, AMMONTA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .063 .090 .037 .033 .037 .043 .027	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .57 .55 .63 .42 .61 .45 .83	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 10.9 13.1 17.5 15.9 10.9 12.1 20.1	PHORUS TOTAL (MG/L AS P) (00665) .025 .022 .076 .045 .086 .019	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 .05 .03 .02 <.02 E.049	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.5 25.7 26.6 25.7 21.5 25.3	DIS- SOLVED (MG/L AS SO4) (00945) 32.3 31.4 30.5 35.6 30.4 33.1 27.9	BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022) U U U U	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002

137 IOWA RIVER BASIN 05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA--Continued

WATER-QUALITY D	DATA, WATER	YEAR OCTOBER	2001 TO	SEPTEMBER	2002
-----------------	-------------	--------------	---------	-----------	------

Date	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	FONOFOS WATER DISS REC (UG/L) (04095)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	P,P' DDE DISSOLV (UG/L) (34653)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	LINDANE DIS- SOLVED (UG/L) (39341)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	MALA- THION, DIS- SOLVED (UG/L) (39532)
OCT 04	E.005	М	E.046	<.018	<.003	<.005	<.003	<.005	218	<.004	<.005	.059	<.027
NOV 06	<.011	M	E.040	<.018	<.003	<.005	<.003	<.005	234	<.004	<.005	.073	<.027
DEC 04	<.011	М	E.038	<.018	<.003	<.005	<.003	<.005	290	<.004	<.005	.226	<.027
JAN 08	<.005	<.01	E.033	<.018	<.003	<.005	<.003	<.005	302	<.004	<.005	.059	<.027
FEB 12	<.005	M	E.026	<.018	<.003	<.005	<.003	<.005	255	<.004	<.005	.086	<.027
APR 03	<.005	М	E.019	<.018	<.003	<.005	<.003	<.005	221	<.004	<.005	.069	E.010
MAY 02	<.005	E.01	E.057	<.018	<.003	<.005	<.003	<.005	262	<.004	<.005	.226	<.027
JUN 06 JUL	.005	M	E.050	<.018	<.003	<.005	<.003	<.005	249	<.004	<.005	.147	<.027
03 AUG	.005	E.01	E.063	<.018	<.003	<.005	<.003	<.005	210	<.004	<.005	.065	<.027
01	.011	E.01	E.059	<.018	<.003	<.005	<.003	<.005	180	<.004	<.005	.110	<.027
Date	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	PURPOSE SITE VISIT, (CODE) (50280)	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	SAMPLE PURPOSE CODE (71999)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	DRAIN- AGE AREA (SQ. MI.) (81024)	SAM- PLING METHOD, CODES (82398)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)
OCT 04	<.007	<.005	.060	<.002	<.004	1001	5.0	15.00	945	55	224	10	<.006
NOV 06	<.007	<.005	.053	<.002	<.004	1001		15.00	945	67	224	30	<.006
DEC 04	<.007	<.005	.052	<.002	E.004	1001	9.5	15.00	945	140	224	10	<.006
JAN 08 FEB	<.010	<.005	.035	<.004	<.006	1001	2.9	15.00	945	147	224	10	<.006
12 APR	<.010	<.005	.047	<.004	<.006	1001	9.6	15.00	945	23	224	10	<.006
03 MAY	<.010	<.005	.035	<.004	.009	1001	6.7	15.00	945	54	224	10	<.006
02 JUN	<.010	<.005	.064	<.004	.091	1001	100	15.00	945	144	224	10	<.006
06 JUL	<.010	<.005	.267	<.004	.021	1001	50	15.00	945	96	224	10	<.006
03 AUG	<.010	<.005	.142	<.004	E.004	1001	21	15.00	945	36	224	10	<.006
01	<.010	<.005	.122	<.004	.016	1001	9.2	15.00	945	61	224	10	<.006
Date	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
OCT 04	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	<.02	<.002	<.005	<.010
NOV 06	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	<.02	<.002	<.005	<.010
DEC 04	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	<.02	<.002	<.005	<.010
JAN 08	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
FEB 12 APR	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
03 MAY	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	М	<.002	<.005	<.010
02 JUN	<.006	<.009	<.009	<.011	<.034	<.035	<.006	.003	<.004	<.02	<.002	<.005	<.010
06 JUL	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
03 AUG	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
01	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	E.01	<.002	<.005	<.010

05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA--Continued

Date	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
OCT													
04	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
NOV													
06 DEC	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
04	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
JAN													
08	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
FEB 12	<.020	- 00	<.004	<.02	<.002	<.011	- 0.41	<.005	<.003	<.022	- 007	- 00	<.050
APR	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
03	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
MAY													
02	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
JUN 06	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
JUL	<.020	<.02	<.004	<.02	<.002	<.U11	<.041	<.005	<.003	<.022	<.007	<.02	<.030
03	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
AUG													
01	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050

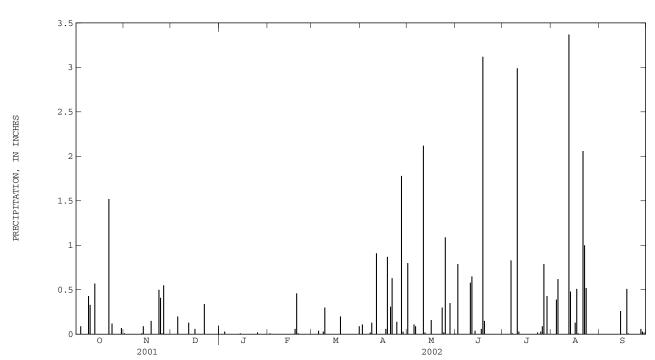
Date	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SET NUMBER SCHED- ULE 2001 (NO.) (99818)	SAMPLE VOLUME SCHED- ULE 2001 (ML) (99856)
OCT								
04	<.006	3045		96.2	83.7		2.00E+08	945
NOV 06	<.006	3045		98.1	100		2.00E+08	950
DEC								
04	<.006	3045		92.6	76.6		2.00E+08	945
JAN 08	<.006	3045	823	89.5	83.5		2.00E+08	913
FEB 12	<.006	3045	690	100	91.9		2.00E+08	941
APR								
03 MAY	<.006	3045	661	83.8	91.9	40		929
02	<.006	3045	748	112	99.1			947
JUN 06	<.006	3045	730	E118	113			906
JUL 03	<.006	3045		118	97.2			946
AUG 01	<.006	3035		107	108			885

05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- October 1995 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.


REMARKS.-- Estimated totals Oct. 1, Feb. 8-10, and Aug. 21, 22. Records good except for estimated days and winter period, which is poor due to intermittent snow accumulation and subsequent melting.

EXTREME FOR PERIOD OF RECORD.-- Maximum daily accumulation, 5.37 in., June 21, 1997.

EXTREME FOR CURRENT YEAR.-- Maximum daily accumulation 3.37 in., Aug. 12.

		PRECIPITA	ATION from	n modem,	in INCHES, DAILY	WATER YI SUM VALU		ER 2001 TO) SEPTEMBI	ER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e0.0 0.0 0.0 0.09	0.01 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.20	0.0 0.0 0.0 0.03 0.0	0.0 0.01 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.11 0.0 0.0	0.80 0.0 0.0 0.0 0.11	0.0 0.79 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.39 0.62	0.0 0.0 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.43 0.33	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 e0.0 e0.0 e0.0	0.0 0.0 0.03 0.30	0.0 0.02 0.13 0.0 0.0	0.09 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.58	0.83 0.01 0.0 0.0 2.99	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	0.0 0.0 0.57 0.0	0.0 0.01 0.09 0.0	0.0 0.13 0.0 0.0	0.0 0.0 0.0 0.01 0.01	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.91 0.0 0.0 0.0 0.0	2.12 0.02 0.0 0.0 0.0	0.65 0.0 0.04 0.0	0.03 0.0 0.0 0.0	0.0 3.37 0.48 0.0	0.0 0.0 0.0 0.26 0.0
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.15 0.0	0.06 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.06 0.46 0.01	0.0 0.0 0.0 0.20 0.0	0.0 0.06 0.87 0.0 0.31	0.16 0.0 0.0 0.0 0.0	0.0 0.06 3.12 0.15 0.0	0.0 0.0 0.0 0.0	0.13 0.51 0.01 0.0	0.0 0.0 0.51 0.01 0.0
21 22 23 24 25	0.0 1.52 0.0 0.12 0.0	0.0 0.0 0.50 0.41 0.01	0.0 0.34 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.63 0.0 0.0 0.14 0.0	0.0 0.0 0.30 0.02 1.09	0.0 0.0 0.0 0.0	0.0 0.0 0.02 0.0 0.03	e2.06 e1.00 0.52 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0 0.07	0.55 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.78 0.03 0.0 0.0	0.0 0.0 0.35 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.09 0.79 0.0 0.43 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.06 0.03 0.02 0.0
TOTAL MEAN MAX MIN	3.13 0.10 1.52 0.00	1.73 0.06 0.55 0.00	0.73 0.02 0.34 0.00	0.06 0.00 0.03 0.00	0.54 0.02 0.46 0.00	0.66 0.02 0.30 0.00	4.99 0.17 1.78 0.00	5.07 0.16 2.12 0.00	5.39 0.18 3.12 0.00	5.22 0.17 2.99 0.00	9.09 0.29 3.37 0.00	0.89 0.03 0.51 0.00

e Estimated

05451500 IOWA RIVER AT MARSHALLTOWN, IA

LOCATION.--Lat $42^{\circ}03^{\circ}57^{\circ}$, long $92^{\circ}54^{\circ}27^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.23, T.84 N., R.18 W., Marshall County, Hydrologic Unit 07080208, on right bank 10 ft downstream from bridge on State Highway 14, 1,500 ft upstream from Burnett Creek, 2.2 mi upstream from Linn Creek, and at mile 222.8.

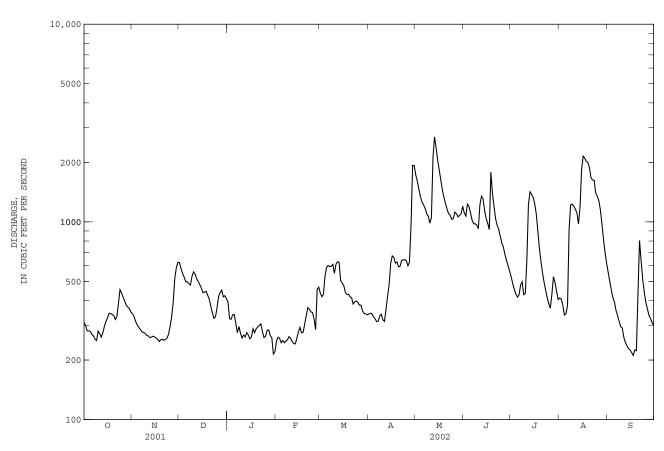
DRAINAGE AREA. -- 1,532 mi².

PERIOD OF RECORD.--October 1902 to September 1903, October 1914 to September 1927, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1915-18, 1919 (M), 1920, 1921-23 (M), 1924-27, 1933, 1934 (M), 1936, 1938, 1947 (M).

GAGE.--Water-stage recorder. Datum of gage is 853.10 ft above NGVD of 1929. See WSP 1728 for history of changes prior to Sept. 21, 1934.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	310	343	623	e393	e250	e437	342	1730	1110	527	412	554
2	299	331	579	e324	e261	e418	345	1610	1070	486	407	499
3	281	313	549	e322	e258	e430	343	1460	1230	455	378	453
4	281	301	525	e339	e245	e531	331	1340	1200	432	338	413
5	279	292	499	e340	e251	e588	323	1260	1110	416	344	393
6	270	286	498	e307	e245	e602	313	1220	1020	427	378	356
7	265	278	487	e275	e250	e594	314	1170	978	479	922	336
8	255	276	479	e296	e253	e596	335	1100	978	497	1220	313
9	251	273	530	e273	e263	e610	341	1070	963	428	1230	295
10	280	267	559	e258	e259	e550	319	986	924	435	1200	290
11	272	265	545	e268	e248	e610	314	1050	1220	639	1160	260
12	261	260	515	e262	e243	e628	361	2110	1350	1220	e1110	245
13	274	261	499	e275	e241	e625	420	2690	1310	1420	e976	236
14	296	264	481	e268	e258	504	483	2370	1140	1380	e1190	228
15	313	262	463	e256	e278	491	619	2050	1040	1330	e1850	225
16	327	259	438	e262	e293	476	673	1830	982	1240	e2150	218
17	345	255	441	e288	e275	440	661	1630	917	1100	e2100	211
18	344	248	446	e275	e276	429	619	1450	1780	902	e2020	225
19	340	253	426	e288	e304	430	627	1330	1400	737	2000	223
20	336	255	407	e294	e335	418	592	1240	1200	631	1880	429
21	321	252	e375	e299	e368	413	597	1160	1040	553	1670	805
22	332	254	e347	e305	e362	384	640	1100	962	496	1630	640
23	388	258	e325	e279	e350	394	641	1080	918	452	1620	516
24	454	270	e331	e260	e348	398	645	1030	846	414	1400	444
25	438	296	e368	e264	e323	392	635	1040	782	386	1350	393
26 27 28 29 30 31	415 397 379 371 364 349	331 392 519 587 624	e420 e438 e451 e418 e423 e409	e282 e284 e266 e260 e215 e220	e285 e456 e467 	379 379 354 344 342 339	600 627 978 1930 1930	1120 1100 1060 1080 1100 1200	744 683 638 599 563	366 431 528 493 445 405	1280 1150 972 813 697 616	364 337 325 310 299
TOTAL	10087	9325	14294	8797	8245	14525	17898	42766	30697	20150	36463	10835
MEAN	325.4	310.8	461.1	283.8	294.5	468.5	596.6	1380	1023	650.0	1176	361.2
MAX	454	624	623	393	467	628	1930	2690	1780	1420	2150	805
MIN	251	248	325	215	241	339	313	986	563	366	338	211
AC-FT	20010	18500	28350	17450	16350	28810	35500	84830	60890	39970	72320	21490
CFSM	0.21	0.20	0.30	0.19	0.19	0.31	0.39	0.90	0.67	0.42	0.77	0.24
IN.	0.24	0.23	0.35	0.21	0.20	0.35	0.43	1.04	0.75	0.49	0.89	0.26
MEAN	490.9	491.8	358.4	300.9	624.5	1563	1510	1356	1803	1033	566.3	490.8
MAX	2721	2593	2139	2231	3424	4206	6796	5559	7619	8389	7062	3362
(WY)	1987	1973	1983	1973	1915	1973	1965	1991	1918	1993	1993	1993
MIN	39.2	46.2	31.0	10.2	20.9	98.4	99.3	49.9	16.0	41.8	35.9	27.5
(WY)	1940	1940	1990	1977	1940	1934	1934	1934	1934	1977	1934	1939

05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	3 1903 - 2002
ANNUAL TOTAL	471644		224082			
ANNUAL MEAN	1292		613.9		882.2	
HIGHEST ANNUAL MEAN					3456	1993
LOWEST ANNUAL MEAN					77.3	1934
HIGHEST DAILY MEAN	6500	Mar 21	2690	May 13	39400	Jun 4 1918
LOWEST DAILY MEAN	90	Jan 2	211	Sep 17	4.7	Jan 25 1977
ANNUAL SEVEN-DAY MINIMUM	102	Feb 16	224	Sep 13	5.2	Jan 20 1977
MAXIMUM PEAK FLOW			2750	May 13	42000	Jun 4 1918
MAXIMUM PEAK STAGE			13.08	May 13	20.77	Aug 17 1993
INSTANTANEOUS LOW FLOW			208	Sep 17		
ANNUAL RUNOFF (AC-FT)	935500		444500		639100	
ANNUAL RUNOFF (CFSM)	0.84		0.40		0.58	
ANNUAL RUNOFF (INCHES)	11.45	,	5.44		7.82	
10 PERCENT EXCEEDS	4070		1230		2170	
50 PERCENT EXCEEDS	426		426		395	
90 PERCENT EXCEEDS	120		260		76	

e Estimated

05451700 TIMBER CREEK NEAR MARSHALLTOWN, IA

LOCATION.--Lat $42^{\circ}00'32"$, long $92^{\circ}51'08"$, in $SE^{1}/_{4}$ SW $^{1}/_{4}$ sec.8, T.83 N., R.17 W., Marshall County, Hydrologic Unit 07080208, on left bank 20 ft upstream from bridge on Shady Oaks Road, 3.0 mi upstream from mouth, and 3.0 mi southeast of Marshalltown.

DRAINAGE AREA.--118 mi².

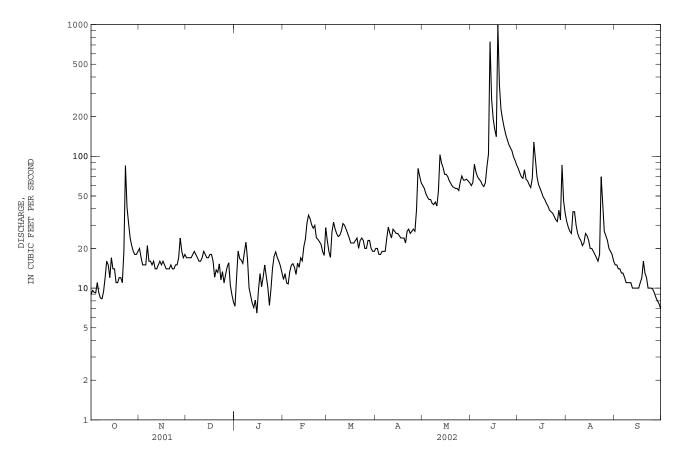
PERIOD OF RECORD.--October 1949 to current year.

REVISED RECORDS. -- WSP 1708: 1950-55, 1957-59.

GAGE.--Water stage recorder. Datum of gage is 849.44 ft above NGVD of 1929. Prior to Oct. 1, 1991 at site 1/8 mile upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of 16.8 ft, discharge, $5,700~\mathrm{ft}^3/\mathrm{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.9 9.6 9.3 9.2	20 17 15 15 15	17 17 17 17 18	e7.3 e12 e19 e17 e16	e12 e13 e11 e11 e13	e23 e19 e17 e27 e32	20 20 18 18 19	60 57 52 49 47	60 63 87 76 70	81 75 70 68 79	32 29 27 26 38	15 15 14 14 13
6 7 8 9 10	9.2 8.4 8.3 9.4	21 16 16 15 16	19 18 17 16 16	e15 e19 e22 e17 e10	e15 e15 e14 e13 e15	e28 e26 e25 e25 e27	19 19 24 29 26	47 44 43 45 42	67 65 61 59 63	67 65 61 58 68	38 30 26 24 23	13 12 11 11 11
11 12 13 14 15	16 15 12 17 14	14 14 15 16 15	17 19 18 17 17	e8.8 e7.7 e7.1 e8.1 e6.5	e14 e17 e16 e21 e24	e31 e30 e28 26 24	24 28 27 26 26	54 103 89 82 73	83 104 742 272 193	128 95 70 61 57	21 22 26 25 23	11 10 10 10
16 17 18 19 20	14 11 11 12 12	16 15 14 14	18 18 e16 e12 e14	e9.7 e13 e10 e12 e15	e31 e36 e34 e30 e28	22 22 22 23 24	25 24 24 24 22	73 70 65 62 59	160 141 994 347 227	53 49 47 44 42	20 20 19 18 17	10 11 12 16 13
21 22 23 24 25	11 19 85 41 31	15 14 14 15 15	e13 e15 e12 e13 e11	e12 e10 e7.4 e9.9 e14	e30 e24 e23 e22 e21	20 23 24 23 20	27 28 26 27 28	58 57 57 55 64	191 166 147 134 123	39 38 37 35 33	16 18 70 44 27	12 10 10 10 9.8
26 27 28 29 30 31	24 21 19 18 18	17 24 19 17 18	e13 e14 e16 e11 e8.9 e7.9	e17 e19 e17 e16 e15 e13	e19 e18 e29 	20 23 23 20 19 19	27 39 81 71 63	71 66 66 67 65 63	116 110 99 93 86	32 39 33 86 46 37	25 23 20 19 18 16	9.2 8.5 8.0 7.6 7.0
TOTAL MEAN MAX MIN AC-FT CFSM IN.	535.3 17.27 85 8.3 1060 0.15 0.17	481 16.03 24 14 954 0.14 0.15	472.8 15.25 19 7.9 938 0.13 0.15	402.5 12.98 22 6.5 798 0.11 0.13	569 20.32 36 11 1130 0.17 0.18	735 23.71 32 17 1460 0.20 0.23	879 29.30 81 18 1740 0.25 0.28	1905 61.45 103 42 3780 0.52 0.60	5199 173.3 994 59 10310 1.47 1.64	1793 57.84 128 32 3560 0.49 0.57	800 25.81 70 16 1590 0.22 0.25	334.1 11.14 16 7.0 663 0.09 0.11
STATIST	FICS OF M	ONTHLY ME.	AN DATA F	OR WATER	YEARS 195	0 - 2002,	BY WATER	YEAR (WY	")			
MEAN MAX (WY) MIN (WY)	36.02 286 1987 0.76 1951	38.59 265 1984 1.11 1951	34.71 183 1984 0.60 1956	34.99 200 1973 0.054 1977	83.54 351 1971 3.07 1954	141.1 597 1979 5.11 1956	109.4 385 1993 2.84 1956	127.6 447 1974 3.08 1977	157.0 704 1998 1.09 1977	93.67 866 1993 1.03 1956	56.80 635 1993 1.16 1956	37.19 341 1986 1.21 1950

05451700 TIMBER CREEK NEAR MARSHALLTOWN, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1950 - 2002
ANNUAL TOTAL	33092.8	14105.7	
ANNUAL MEAN	90.67	38.65	79.12
HIGHEST ANNUAL MEAN			299 1993
LOWEST ANNUAL MEAN			2.84 1956
HIGHEST DAILY MEAN	1240 Jun 13	994 Jun 18	6570 Aug 16 1977
LOWEST DAILY MEAN	5.5 Feb 2	6.5 Jan 15	0.00 Jul 24 1956a
ANNUAL SEVEN-DAY MINIMUM	6.6 Jan 21	8.3 Jan 10	0.00 Oct 4 1956
MAXIMUM PEAK FLOW		2280 Jun 18	12000 Aug 16 1977
MAXIMUM PEAK STAGE		12.98 Jun 18	17.69 Aug 16 1977
INSTANTANEOUS LOW FLOW			0.00 Jul 24 1956
ANNUAL RUNOFF (AC-FT)	65640	27980	57320
ANNUAL RUNOFF (CFSM)	0.77	0.33	0.67
ANNUAL RUNOFF (INCHES)	10.43	4.45	9.11
10 PERCENT EXCEEDS	231	71	175
50 PERCENT EXCEEDS	18	20	32
90 PERCENT EXCEEDS	9.1	11	3.3

Several days in July, Oct. 1956, Feb., July 1977. Estimated. a e

05451900 RICHLAND CREEK NEAR HAVEN, IA

LOCATION.--Lat $41^{\circ}53^{\circ}58^{\circ}$, long $92^{\circ}28^{\circ}27^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.21, T.82 N., R.14 W., Tama County, Hydrologic Unit 07080208, on right bank 5 ft upstream from bridge on county highway, 0.5 mi northeast of Haven, and 3.0 mi upstream from mouth.

DRAINAGE AREA.--56.1 mi².

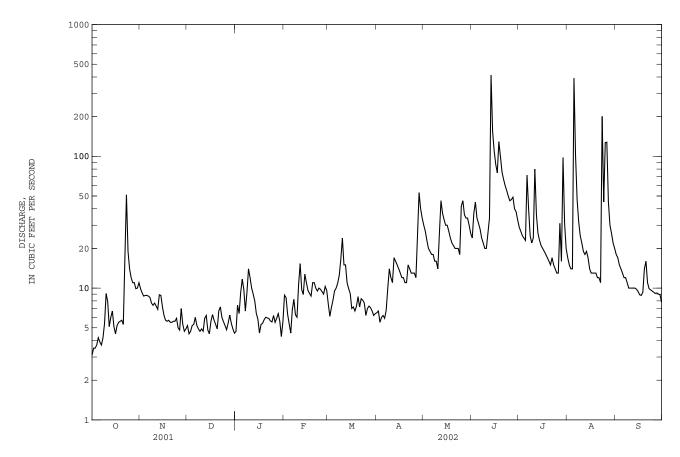
PERIOD OF RECORD.--October 1949 to current year.

REVISED RECORDS.--WSP 1708: 1950-55, 1956 (M), 1957, 1958 (M), 1959.

GAGE.--Water-stage recorder. Datum of gage is 788.69 ft above NGVD of 1929. Prior to Oct. 1, 1971, at datum 10.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1918 reached a stage of 24.3 ft present datum, discharge not determined.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 3.5 3.5 3.7 4.2	9.9 9.2 8.7 8.8	5.2 4.5 4.7 5.2 5.3	e4.7 e7.4 e6.4 e9.3 e12	e8.8 e8.5 e6.3 e5.3 e4.6	e7.5 e6.1 e7.1 e8.1 e9.5	6.5 6.7 5.5 6.0 6.2	30 27 23 20 19	24 37 45 34 31	29 27 25 24 23	17 15 14 14 391	18 17 15 14 13
6 7 8 9 10	3.9 3.7 4.2 5.4 9.1	8.7 8.5 7.7 7.4 7.7	6.0 5.2 4.9 4.7 4.9	e9.8 e6.7 e9.3 e14 e12	e6.8 e8.2 e6.3 e6.0	e10 e11 e13 e17 e24	5.9 6.8 10 14 12	18 18 16 16 14	28 24 22 20 20	72 40 25 22 24	102 47 32 25 22	12 12 11 10
11 12 13 14 15	7.9 5.1 6.0 6.7 5.1	7.3 6.9 8.9 8.8 7.2	4.7 5.9 6.2 4.8 4.5	e10 e9.0 e8.0 e6.4 e5.8	e15 e9.7 e8.9 e13 11	15 15 11 9.9 9.1	11 17 16 15	26 46 37 33 30	26 34 413 154 110	80 36 26 23 21	19 18 19 17 14	10 10 10 9.8 9.4
16 17 18 19 20	4.5 5.2 5.5 5.6 5.7	6.2 5.7 5.6 5.7 5.5	5.6 6.3 5.7 5.3 4.9	e4.6 e5.3 e5.4 e5.8 e6.0	9.6 9.1 8.7 11	7.0 7.2 6.7 7.3 8.6	13 12 12 11 11	30 27 24 22 21	87 75 129 100 76	20 19 18 17 16	13 13 13 13 12	8.9 8.8 9.3 14 16
21 22 23 24 25	5.3 17 51 19 14	5.5 5.6 5.6 5.9	6.7 7.2 6.0 e5.6 e5.2	e5.9 e5.9 e5.6 e5.5 e6.2	10 9.5 10 9.8 9.4	7.2 8.3 8.1 7.7 6.2	15 14 13 13	20 20 20 18 42	67 60 55 50 46	15 17 15 14 13	12 11 201 45 127	11 9.9 9.7 9.5 9.3
26 27 28 29 30 31	12 11 11 9.9 10	4.8 7.0 5.3 4.7 4.9	e4.8 e5.4 e6.2 e5.4 e4.9 e4.6	5.5 5.9 6.4 5.6 e4.3 e5.6	9.0 e10 e9.6 	7.0 7.3 7.1 6.7 6.2 6.4	12 25 53 40 34	46 36 34 34 30 26	47 49 40 38 33	13 31 16 98 31 20	128 45 30 26 22 20	9.1 9.2 9.0 8.9 7.8
TOTAL MEAN MAX MIN AC-FT CFSM IN.	272.8 8.800 51 3.1 541 0.16 0.18	207.5 6.917 9.9 4.7 412 0.12 0.14	166.5 5.371 7.2 4.5 330 0.10 0.11	220.3 7.106 14 4.3 437 0.13 0.15	256.1 9.146 15 4.6 508 0.16 0.17	288.3 9.300 24 6.1 572 0.17 0.19	443.6 14.79 53 5.5 880 0.26 0.29	823 26.55 46 14 1630 0.47 0.55	1974 65.80 413 20 3920 1.17 1.31	870 28.06 98 13 1730 0.50 0.58	1497 48.29 391 11 2970 0.86 0.99	331.6 11.05 18 7.8 658 0.20 0.22
STATIST	TICS OF N	MONTHLY ME	CAN DATA I	OR WATER	YEARS 195	0 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	17.98 105 1987 0.24 1957	22.17 122 1984 0.31 1951	16.81 85.8 1983 0.25 1957	19.01 104 1960 0.020 1977	42.44 165 1965 0.32 1989	67.12 270 1979 1.05 1956	57.63 323 1991 0.85 1956	60.71 337 1974 2.04 1956	68.53 270 1990 0.25 1956	44.91 463 1993 0.66 1977	31.43 427 1993 0.76 1955	19.18 159 1993 0.58 1950

05451900 RICHLAND CREEK NEAR HAVEN, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1950 - 2002
ANNUAL TOTAL	18749.6	7350.7	
ANNUAL MEAN	51.37	20.14	38.94
HIGHEST ANNUAL MEAN			162 1993
LOWEST ANNUAL MEAN			2.49 1956
HIGHEST DAILY MEAN	843 Jun 12	413 Jun 13	2880 Aug 16 1977
LOWEST DAILY MEAN	3.0 Jan 26	3.1 Oct 1	0.00 Jan 22 1977
ANNUAL SEVEN-DAY MINIMUM	3.3 Jan 20	3.7 Oct 1	0.00 Jan 22 1977
MAXIMUM PEAK FLOW		1120 Aug 5	12200 Apr 12 1991
MAXIMUM PEAK STAGE		18.56 Aug 5	26.71 Apr 12 1991
INSTANTANEOUS LOW FLOW		1.8 Oct 1	-
ANNUAL RUNOFF (AC-FT)	37190	14580	28210
ANNUAL RUNOFF (CFSM)	0.92	0.36	0.69
ANNUAL RUNOFF (INCHES)	12.43	4.87	9.43
10 PERCENT EXCEEDS	149	37	80
50 PERCENT EXCEEDS	12	10	14
90 PERCENT EXCEEDS	4.3	5.3	1.2

a Also Jan. 23 to Feb. 2, 1977, July 9 and 10, 1959. e Estimated.

05452000 SALT CREEK NEAR ELBERON, IA

LOCATION.--Lat $41^{\circ}57^{\circ}51^{\circ}$, long $92^{\circ}18^{\circ}47^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.36, T.83 N., R.13 W., Tama County, Hydrologic Unit 07080208, on left bank 20 ft upstream from bridge on U.S. Highway 30, 2.0 mi upstream from Hog Run, 3.0 mi south of Elberon, and 9.0 mi upstream from mouth.

DRAINAGE AREA. -- 201 mi².

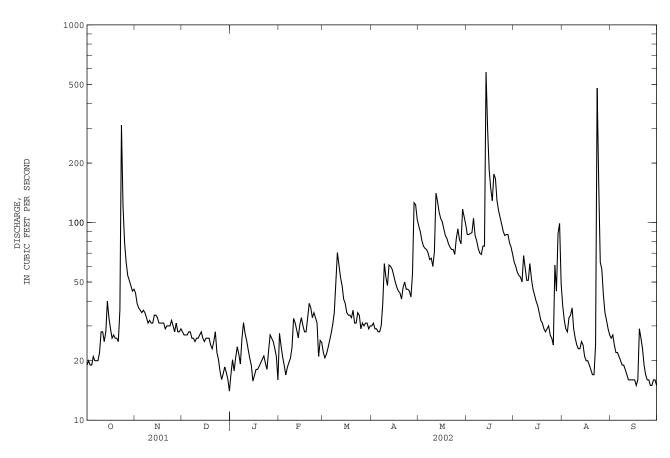
PERIOD OF RECORD. -- October 1945 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946.

GAGE.--Water-stage recorder. Datum of gage is 781.58 ft above NGVD of 1929 (Iowa Highway Commission bench mark). Prior to Oct. 15, 1945 and June 14, 1947 to Feb. 10, 1949, nonrecording gage on upstream side of bridge at present datum.

REMARKS.--Records good except those for estimated daily discharge, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 16, 1944 reached a stage of 19.9 ft, from floodmark at downstream side of bridge, discharge, about $30,000 \text{ ft}^3/\text{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	44	28	e17	e28	e22	30	96	87	63	38	26
2	20	39	27	e20	e24	e21	31	90	87	60	32	27
3	19	37	27	e18	e21	e22	29	81	88	56	29	24
4	19	36	27	e21	e19	e23	29	76	89	54	28	22
5	21	35	28	e24	e17	e25	28	74	105	53	33	22
6	20	36	28	e22	e18	e27	28	73	86	50	34	21
7	20	35	26	e19	e20	e30	30	70	81	68	37	20
8	20	33	26	e26	e21	e35	39	65	74	59	29	19
9	22	31	25	e31	e23	e49	62	66	70	51	26	19
10	28	32	26	e27	e33	e70	53	60	69	51	24	e18
11	28	31	26	e25	e31	e61	48	71	76	62	23	e17
12	25	31	27	e23	e29	e53	61	141	76	52	23	16
13	28	34	28	e21	e26	48	60	128	577	46	25	16
14	40	34	26	e19	e30	41	58	113	298	43	24	16
15	33	33	25	e16	33	39	54	105	185	40	21	16
16	29	31	26	e17	30	35	50	101	149	38	20	16
17	26	31	26	e18	28	34	47	93	129	35	20	15
18	27	31	26	e18	28	34	45	86	176	32	19	16
19	26	31	24	e19	33	33	44	83	167	31	18	29
20	26	29	23	e20	39	36	41	78	e129	29	17	26
21	25	30	25	e20	37	31	47	75	e115	28	17	23
22	36	30	28	e21	33	31	50	73	e106	29	24	19
23	311	30	22	e19	35	35	46	73	e98	30	479	17
24	121	32	e20	e18	33	34	46	69	90	27	159	16
25	79	30	e18	e22	31	29	45	83	86	26	63	16
26 27 28 29 30 31	63 54 51 48 45 46	28 31 28 28 29	e16 e17 e19 e17 e16 e14	27 26 25 23 21 16	21 e25 e25 	31 30 31 31 29 30	42 55 126 123 104	93 82 78 117 107 98	87 87 79 75 69	24 61 45 88 99 49	58 43 35 32 29 27	15 15 16 16 15
TOTAL	1375	970	737	659	771	1080	1551	2698	3690	1479	1486	569
MEAN	44.35	32.33	23.77	21.26	27.54	34.84	51.70	87.03	123.0	47.71	47.94	18.97
MAX	311	44	28	31	39	70	126	141	577	99	479	29
MIN	19	28	14	16	17	21	28	60	69	24	17	15
AC-FT	2730	1920	1460	1310	1530	2140	3080	5350	7320	2930	2950	1130
CFSM	0.22	0.16	0.12	0.11	0.14	0.17	0.26	0.43	0.61	0.24	0.24	0.09
IN.	0.25	0.18	0.14	0.12	0.14	0.20	0.29	0.50	0.68	0.27	0.28	0.11
STATIST	rics of i	MONTHLY ME	AN DATA	FOR WATER	YEARS 194	6 - 2002,	BY WATER	R YEAR (WY	7)			
MEAN	65.48	79.52	63.16	70.49	138.5	262.4	192.6	193.2	266.2	193.2	100.3	65.45
MAX	250	425	314	337	607	844	652	573	1826	1803	1157	440
(WY)	1978	1983	1983	1973	1982	1993	1983	1982	1947	1993	1993	1993
MIN	4.85	4.08	2.29	1.14	7.02	11.7	11.0	5.75	7.79	3.84	5.65	5.43
(WY)	1951	1951	1977	1977	1977	1954	1989	1977	1977	1989	1949	1950

05452000 SALT CREEK NEAR ELBERON, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEA	AR FOR 2002 WATE	R YEAR WATER YEARS	S 1946 - 2002
ANNUAL TOTAL	57135	17065		
ANNUAL MEAN	156.5	46.75	140.8	
HIGHEST ANNUAL MEAN			569	1993
LOWEST ANNUAL MEAN			23.2	1989
HIGHEST DAILY MEAN	1630 Mar 1	13 577	Jun 13 14000	Jul 9 1993
LOWEST DAILY MEAN	14 Dec 3	31 14 :	Dec 31 0.85	Jan 31 1977
ANNUAL SEVEN-DAY MINIMUM	17 Dec 2	25 16	Sep 24 0.95	Jan 25 1977
MAXIMUM PEAK FLOW		891	Aug 23 41800	Jul 9 1993
MAXIMUM PEAK STAGE		11.76	Aug 23 20.85	Jul 9 1993
ANNUAL RUNOFF (AC-FT)	113300	33850	102000	
ANNUAL RUNOFF (CFSM)	0.78	0.23	0.70	
ANNUAL RUNOFF (INCHES)	10.57	3.16	9.52	
10 PERCENT EXCEEDS	373	87	280	
50 PERCENT EXCEEDS	50	31	55	
90 PERCENT EXCEEDS	22	19	9.4	

e Estimated

05452200 WALNUT CREEK NEAR HARTWICK, IA

LOCATION.--Lat $41^{\circ}50'06"$, long $92^{\circ}23'10"$, in $SE^{1}/_{4}$ SW $^{1}/_{4}$ sec.8, T.81 N, R.13 W., Poweshiek County, Hydrologic Unit 07080208, on right bank 5 ft downstream from bridge on county highway V21, 1.2 mi downstream from North Walnut Creek, 4.0 mi northwest of Hartwick, and 6.5 mi upstream from mouth.

DRAINAGE AREA. -- 70.9 mi².

PERIOD OF RECORD. -- October 1949 to current year.

REVISED RECORDS.--WSP 1558: 1950 (P), 1951-57.

GAGE.--Water-stage recorder. Datum of gage is 786.59 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of 17.7 ft, from information by local residents, discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.2 2.1 1.9 2.1 2.5	11 9.2 8.7 8.4 8.4	5.7 5.7 6.0 6.1 6.7	e6.1 e9.4 e6.9 e10 e13	e11 e9.0 e7.1 e6.0 e5.1	e7.9 e7.5 e8.7 e8.5 e9.8	7.6 7.7 7.0 6.6 6.2	43 39 34 31 28	33 82 93 84 65	22 20 19 18	15 12 11 11 284	14 12 11 9.5 9.0
6 7 8 9 10	2.0 1.9 1.9 3.2 4.9	8.2 7.6 7.1 6.8 7.1	6.9 6.1 6.0 6.0	e11 e7.7 e12 e18 e15	e6.7 e7.6 e6.1 e6.5 e12	e12 e16 e20 e24 e29	6.3 7.3 12 19	27 26 24 25 21	54 50 46 44 42	91 72 37 29 30	74 41 31 26 23	8.6 8.0 7.3 7.0 6.7
11 12 13 14 15	3.0 2.5 4.9 4.6 3.4	6.7 6.7 7.3 7.1 6.9	6.2 6.5 7.4 6.5 6.5	e12 e10 e8.7 e7.2 e5.8	e17 e11 e10 e13 9.4	e22 18 14 12 11	14 21 20 20 19	42 65 55 49 45	52 58 517 161 113	50 35 26 22 20	20 18 18 15	6.3 6.1 5.8 5.8
16 17 18 19 20	3.1 3.0 3.0 2.8 2.8	6.9 6.3 6.1 5.6	8.0 7.6 7.1 6.6 7.9	e6.0 e6.8 e7.7 e8.1 e8.7	8.3 8.1 7.3 10	9.3 9.3 8.7 9.4	19 18 17 16 14	47 42 39 37 36	88 75 73 60 51	17 16 16 16 15	11 11 10 11 9.1	4.9 4.8 5.4 10 9.4
21 22 23 24 25	2.7 45 65 26 19	5.7 5.7 5.7 6.4 5.8	10 8.5 11 e8.2 e6.9	e9.6 e10 e9.2 e8.7 e9.0	9.3 8.5 8.2 7.3	8.3 13 9.5 8.7 8.0	20 18 17 17	33 29 29 26 57	46 43 37 34 31	14 13 11 10 9.6	9.6 10 162 40 36	5.9 4.5 6.4 7.0 7.0
26 27 28 29 30 31	17 14 13 12 13 13	6.0 6.3 5.5 5.3 5.7	e6.4 e8.0 e9.7 e9.1 e7.3 e6.1	9.8 7.9 7.1 5.9 5.7 e5.8	e7.4 e8.7 e8.3 	7.7 7.1 7.3 7.1 6.8 7.3	15 38 66 53 46	57 48 43 41 39 35	33 31 27 25 24	9.0 30 15 56 24 18	79 34 25 21 18 16	6.9 6.9 6.9 5.8
TOTAL MEAN MAX MIN AC-FT CFSM IN.	297.5 9.597 65 1.9 590 0.14 0.16	206.5 6.883 11 5.3 410 0.10 0.11	222.7 7.184 11 5.7 442 0.10 0.12	278.8 8.994 18 5.7 553 0.13 0.15	246.2 8.793 17 5.1 488 0.12 0.13	358.9 11.58 29 6.8 712 0.16 0.19	578.7 19.29 66 6.2 1150 0.27 0.30	1192 38.45 65 21 2360 0.54 0.63	2172 72.40 517 24 4310 1.02 1.14	798.6 25.76 91 9.0 1580 0.36 0.42	1114.7 35.96 284 9.1 2210 0.51 0.58	221.2 7.373 14 4.5 439 0.10 0.12
STATIST	TICS OF M	MONTHLY ME	AN DATA F	OR WATER	YEARS 195	0 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	19.20 137 1987 0.003 1957	26.95 171 1984 0.29 1956	22.34 109 1993 0.060 1977	25.24 179 1960 0.006 1956	50.64 191 1971 1.40 1954	83.17 300 1993 1.64 1954	75.49 365 1991 1.03 1957	79.16 452 1974 1.62 1977	83.73 450 1990 0.76 1956	54.77 461 1993 1.01 1954	34.88 498 1993 0.38 1955	23.65 185 1993 0.28 1953

05452200 WALNUT CREEK NEAR HARTWICK, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1950 - 2002
ANNUAL TOTAL	25375.5	7687.8	
ANNUAL MEAN	69.52	21.06	48.21
HIGHEST ANNUAL MEAN			200 1993
LOWEST ANNUAL MEAN			4.76 1956
HIGHEST DAILY MEAN	882 Jun 12	517 Jun 13	4840 Jul 2 1983
LOWEST DAILY MEAN	1.9 Oct 3	1.9 Oct 3a	0.00 Jul 31 1954
ANNUAL SEVEN-DAY MINIMUM	2.1 Oct 2	2.1 Oct 2	0.00 Many days b
MAXIMUM PEAK FLOW		1240 Jun 13	7900 Apr 29 1991
MAXIMUM PEAK STAGE		10.32 Jun 13	16.93 Apr 29 1991
INSTANTANEOUS LOW FLOW		1.7 Oct 3c	
ANNUAL RUNOFF (AC-FT)	50330	15250	34920
ANNUAL RUNOFF (CFSM)	0.98	0.30	0.68
ANNUAL RUNOFF (INCHES)	13.31	4.03	9.24
10 PERCENT EXCEEDS	178	46	103
50 PERCENT EXCEEDS	14	10	16
90 PERCENT EXCEEDS	4.1	5.7	1.4

Also Oct. 7, 8. Many days in 1954-57 and 1977. Also Oct. 4, 6-9. Estimated.

a b c e

05453000 BIG BEAR CREEK AT LADORA, IA

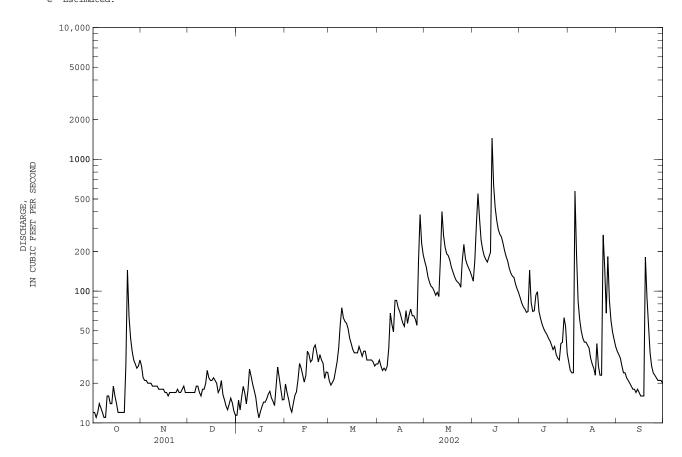
LOCATION.--Lat $41^{\circ}44^{\circ}58$ ", long $92^{\circ}10^{\circ}55$ ", in $SW^{1}/_{4}$ SW $^{1}/_{4}$ sec.7, T.80 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 10 ft downstream from bridge on county highway V52, 0.4 mi south of Ladora, 1.2 mi downstream from Coats Creek, 2.8 mi upstream from Little Bear Creek, and 8.1 mi upstream from mouth.

DRAINAGE AREA.--189 mi².

PERIOD OF RECORD.--October 1945 to current year. Prior to October 1966, published as "Bear Creek at Ladora".

REVISED RECORDS.--WSP 1308: 1947 (M). WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 744.94 ft above NGVD of 1929. Oct. 1945 to June 26, 1946, non-recording gage and June 27, 1946 to Sept. 30, 1980, water-stage recorder at datum 10.00 ft higher.


REMARKS.--Records good except those for periods of estimated daily discharge, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	27	17	e11	e20	e21	28	168	119	89	29	35
2	12	22	17	e15	e17	e19	30	152	171	81	25	33
3	11	21	17	e13	e15	e20	27	129	321	76	24	31
4	12	21	17	e16	e13	e21	25	117	549	73	24	27
5	14	20	17	e19	e12	e25	26	109	357	69	574	24
6	13	20	19	e17	e14	e29	25	106	244	70	189	24
7	12	20	19	e14	e16	e37	27	100	207	144	84	22
8	11	19	17	e18	e17	e56	37	93	185	82	61	21
9	11	19	16	e26	e21	e75	68	98	174	70	50	20
10	16	19	18	e23	e28	e63	56	91	166	71	44	19
11 12 13 14 15	16 14 14 19 16	19 18 18 18	18 20 25 22 21	e20 e18 e16 e13 e11	e26 e23 e20 e23 35	e59 57 52 44 40	49 85 85 75 70	174 402 265 215 192	181 197 1450 637 431	93 99 70 62 56	41 41 39 37 31	18 18 17 18 17
16 17 18 19 20	14 12 12 12 12	17 17 16 17	21 22 21 20 17	e12 e13 e14 e14 e15	33 29 30 37 39	36 34 34 34 38	63 57 54 71 57	186 172 152 140 129	344 293 270 258 231	52 49 47 44 42	28 26 23 40 27	16 16 16 181 90
21	12	17	18	e17	34	35	66	121	203	39	23	55
22	28	17	e21	e17	29	32	73	117	183	36	23	34
23	144	17	e16	e16	33	35	65	114	169	38	267	27
24	64	18	e15	e15	30	35	65	107	149	33	150	24
25	44	17	e13	e14	e28	30	61	171	137	31	68	23
26 27 28 29 30 31	35 30 28 26 27 30	17 18 19 17 17	e13 e14 e15 e14 e12 e11	e19 e27 e22 e18 e15 e15	e22 e24 e24 	30 30 30 29 27 28	55 167 381 231 189	226 176 160 150 141 130	130 127 113 104 97	30 40 41 63 54 34	183 85 60 49 43 38	22 21 21 21 20
TOTAL	733	557	543	513	692	1135	2368 78.93 381 25 4700 0.42 0.47	4803	8197	1878	2426	931
MEAN	23.65	18.57	17.52	16.55	24.71	36.61		154.9	273.2	60.58	78.26	31.03
MAX	144	27	25	27	39	75		402	1450	144	574	181
MIN	11	16	11	11	12	19		91	97	30	23	16
AC-FT	1450	1100	1080	1020	1370	2250		9530	16260	3730	4810	1850
CFSM	0.13	0.10	0.09	0.09	0.13	0.19		0.82	1.45	0.32	0.41	0.16
IN.	0.14	0.11	0.11	0.10	0.14	0.22		0.95	1.61	0.37	0.48	0.18
STATIST	FICS OF M	MONTHLY ME	CAN DATA I	FOR WATER	YEARS 194	6 - 2002,	BY WATER	R YEAR (WY	·)			
MEAN	56.47	72.02	60.85	71.71	122.5	236.9	198.7	214.1	232.1	139.2	89.61	71.74
MAX	375	341	294	432	543	895	704	1185	1136	1011	1537	559
(WY)	1987	1993	1983	1960	1971	1979	1973	1974	1947	1993	1993	1993
MIN	0.49	1.68	0.33	0.021	2.07	5.99	4.17	2.25	2.94	5.00	2.36	1.34
(WY)	1957	1956	1956	1977	1977	1957	1956	1956	1956	1988	1955	1956

05453000 BIG BEAR CREEK AT LADORA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1946 - 2002
ANNUAL TOTAL	70387	24776	
ANNUAL MEAN	192.8	67.88	130.4
HIGHEST ANNUAL MEAN			516 1993
LOWEST ANNUAL MEAN			8.26 1956
HIGHEST DAILY MEAN	2080 Feb 25	1450 Jun 13	9480 Mar 30 1960
LOWEST DAILY MEAN	11 Sep 6	11 Oct 3a	0.00 Jan 22 1956b
ANNUAL SEVEN-DAY MINIMUM	12 Oct 3	12 Oct 3	0.00 Jan 22 1956
MAXIMUM PEAK FLOW		2590 Jun 13	10500 Mar 30 1960
MAXIMUM PEAK STAGE		19.71 Jun 13	15.32 Sep 8 1977c
INSTANTANEOUS LOW FLOW		9.7 Oct 8d	
ANNUAL RUNOFF (AC-FT)	139600	49140	94480
ANNUAL RUNOFF (CFSM)	1.02	0.36	0.69
ANNUAL RUNOFF (INCHES)	13.85	4.88	9.37
10 PERCENT EXCEEDS	491	171	280
50 PERCENT EXCEEDS	35	29	46
90 PERCENT EXCEEDS	14	15	5.7

Also Oct. 8, 9. Also Jan. 22 to Feb. 8, 1956, Jan. 19 to Feb. 3, 1977. Datum in use prior to Oct. 1, 1980. Also Oct. 9. Estimated.

a b c d e

05453100 IOWA RIVER AT MARENGO, IA

LOCATION.-- Lat $41^{\circ}48^{\circ}48^{\circ}$, long $92^{\circ}03^{\circ}51^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.24, T.81 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 5 ft upstream from bridge on county highway V66, 1.0 mi downstream from Big Bear Creek, 0.8 mi north of Marengo, 4.6 mi upstream from Hilton Creek, and at mile 139.1.

DRAINAGE AREA. -- 2,794 mi².

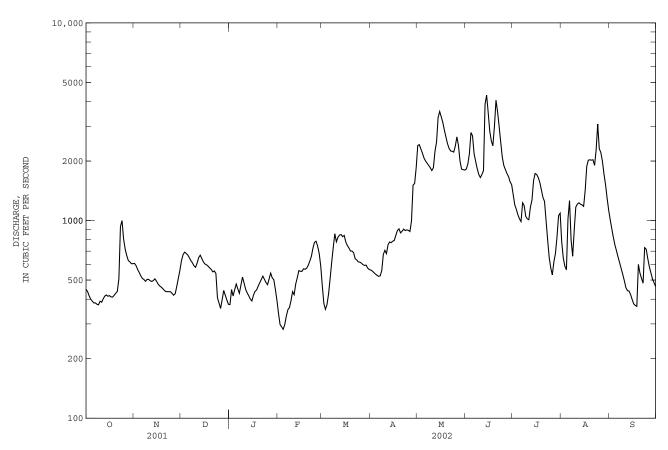
PERIOD OF RECORD.--October 1956 to current year. Monthly discharge only for some periods, published in WSP 1728.

REVISED RECORDS. -- WSP 1558: 1957.

GAGE.--Water-stage recorder. Datum of gage is 720.52 ft above NGVD of 1929.

REMARKS.--Records good, except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	449 437 416 400 391	607 591 565 546 525	627 672 692 682 670	e375 e448 e415 e447	e339 e298 e290 e282 e298	e467 e380 e355 e376 e426	562 555 545 536 528	2400 2420 2300 2190 2070	1820 1930 2180 2790 2680	e1350 1200 1140 1070 1020	779 647 588 564 1020	1010 909 822 752 703
6	383	510	649	e451	e328	e509	522	2000	2180	988	1260	654
7	383	503	627	e429	e354	e615	525	1950	1990	1230	795	612
8	377	493	611	e472	e363	e733	559	1900	1830	1190	660	572
9	375	504	590	e517	e394	e857	674	1850	1710	1050	895	534
10	391	504	580	e483	e437	781	707	1790	1650	1020	1170	497
11	386	496	610	e449	e422	823	680	1850	1710	1010	1210	458
12	402	492	650	e431	e477	844	754	2240	1790	1170	1230	442
13	415	497	668	e416	e513	850	779	2490	3870	1270	1210	440
14	420	507	642	e401	558	829	773	3320	4310	1590	1200	423
15	414	494	618	e392	554	841	786	3560	3530	1730	1180	399
16	417	478	603	e419	553	780	793	3350	2840	1710	1420	379
17	411	467	597	e438	570	747	843	3140	2530	1650	1880	372
18	410	461	588	e445	567	727	890	2870	2390	1560	2020	368
19	419	453	576	e466	574	701	908	2650	2990	1430	2030	600
20	429	444	566	e484	594	701	866	2450	4060	1310	2020	542
21	438	437	550	e503	623	687	883	2320	3560	1250	2030	510
22	508	437	556	e523	658	641	905	2250	e3000	e1000	1900	482
23	934	437	539	e504	724	632	890	2240	e2500	e800	2280	729
24	1000	436	e406	e486	776	618	897	2220	e2100	e650	3080	716
25	808	428	e382	e474	786	616	892	2380	1900	576	2310	642
26 27 28 29 30 31	718 666 628 618 605 605	419 427 465 511 561	e359 e399 e443 e419 e396 e377	e507 542 513 502 e449 e395	743 682 588 	609 598 593 595 575 565	880 996 1510 1540 1850	2650 e2400 e2000 1820 1810 1800	1810 1730 1670 1570 1520	531 619 682 829 1060 1090	2210 2000 1720 1520 1300 1130	584 544 507 485 464
TOTAL	15653	14695	17344	14253	14345	20071	25028	72680	72140	34775	45258	17151
MEAN	504.9	489.8	559.5	459.8	512.3	647.5	834.3	2345	2405	1122	1460	571.7
MAX	1000	607	692	542	786	857	1850	3560	4310	1730	3080	1010
MIN	375	419	359	375	282	355	522	1790	1520	531	564	368
AC-FT	31050	29150	34400	28270	28450	39810	49640	144200	143100	68980	89770	34020
CFSM	0.18	0.18	0.20	0.16	0.18	0.23	0.30	0.84	0.86	0.40	0.52	0.20
IN.	0.21	0.20	0.23	0.19	0.19	0.27	0.33	0.97	0.96	0.46	0.60	0.23
					YEARS 195							
MEAN	997.1	1129	940.0	815.2	1375	3136	3338	3024	3413	2683	1489	997.6
MAX	5078	3878	3633	4194	5424	8227	11310	9340	9287	19620	15290	7901
(WY)	1987	1973	1983	1973	1984	1979	1993	1991	1998	1993	1993	1993
MIN	80.8	90.0	63.0	31.3	79.0	256	259	179	114	116	108	123
(WY)	1957	1957	1990	1977	1977	1964	1977	1977	1977	1977	1989	1988

iowa river basin 153

05453100 IOWA RIVER AT MARENGO, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1957 - 2002
ANNUAL TOTAL	838918		363393			
ANNUAL MEAN	2298		995.6		1946	
HIGHEST ANNUAL MEAN					7192	1993
LOWEST ANNUAL MEAN					283	1989
HIGHEST DAILY MEAN	9270	Mar 27	4310	Jun 14	35600	Jul 12 1993
LOWEST DAILY MEAN	200	Jan 2	282	Feb 4	24	Jan 29 1977
ANNUAL SEVEN-DAY MINIMUM	240	Jan 1	313	Feb 1	25	Jan 28 1977
MAXIMUM PEAK FLOW			5180	Jun 13	38000	Jul 19 1993
MAXIMUM PEAK STAGE			13.35	Jun 13	20.31	Jul 19 1993
ANNUAL RUNOFF (AC-FT)	1664000		720800		1410000	
ANNUAL RUNOFF (CFSM)	0.82		0.36		0.70	
ANNUAL RUNOFF (INCHES)	11.17		4.84		9.46	
10 PERCENT EXCEEDS	6710		2200		4890	
50 PERCENT EXCEEDS	743		641		990	
90 PERCENT EXCEEDS	385		411		210	

e Estimated

05453510 CORALVILLE LAKE NEAR CORALVILLE, IA

LOCATION.--Lat $41^{\circ}43^{\circ}29^{\circ}$, long $91^{\circ}31^{\circ}40^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.22, T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080208, at outlet works at left end of Coralville Dam on Iowa River, 2.3 mi upstream from Rapid Creek, 4.3 mi northeast of Coralville post office, and at mile 83.3.

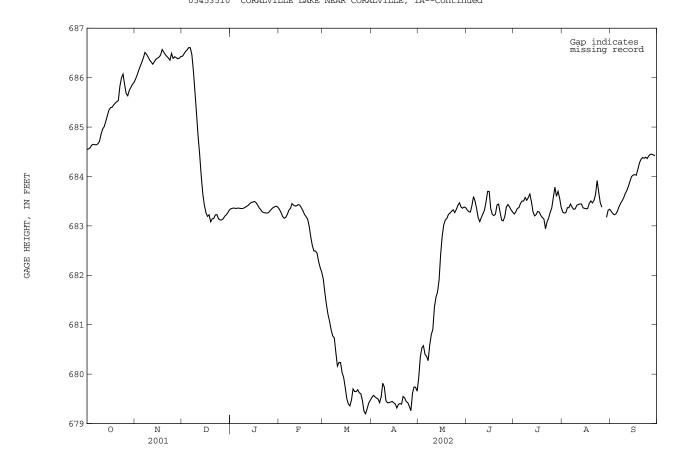
DRAINAGE AREA. -- 3,115 mi².

PERIOD OF RECORD. -- October 1958 to current year.

GAGE.--Water-stage recorder. Datum of gage is at NGVD of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Reservoir is formed by earthfill dam completed in 1957. Storage began in September 1958. Releases controlled by three gates, 8.33 ft wide and 20 ft high, into forechamber of 23-ft diameter concrete conduit through dam. Inlet invert elevation at 646.0 ft. No dead storage. Maximum design discharge through gates is 20,000 ft³/s. Ungated spillway is concrete overflow section 500 ft in length at elevation 712 ft above sea level, contents, 469,000 acre-ft, surface area, 24,800 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will lower the elevation from 683 ft. (surface area 5,430 acres) on Feb. 15 to 679 ft (surface area 3,270 acres) on Mar 1, maintaining 679 ft. Mar. 1 to June 15, 683 ft June 15 to Sept. 15, 686 ft. (surface area 7,000 acres) Sept. 15 to Dec. 15, and 683 ft Dec. 15 to Feb. 15, with a minimum release of 150 ft³/s and maximum release of 10,000 ft³/s Dec. 15 to May 1 and 6,000 ft³/s May 1 to Dec. 15. Prior to October 1, 2000 published as contents in acre feet, and as elevation in feet NGVD thereafter.

COOPERATION. -- Records provided by U.S. Army Corps of Engineers.


EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 716.75 ft July 24, 1993; minimum elevation, 658.77 ft Mar. 10, 1959.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation, 686.62 ft Dec. 6; minimum elevation, 679.19 ft Mar. 28.

ELEVATION (FEET (NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY OBSERVATION AT 0600 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	684.54 684.55 684.56 684.59 684.65	685.91 685.99 686.07 686.17 686.25	686.44 686.43 686.50 686.54 686.57	683.34 683.35 683.36 683.36	683.37 683.32 683.25 683.17 683.15	682.04 681.88 681.57 681.35 681.16	679.48 679.54 679.58 679.53 679.51	679.63 680.04 680.45 680.56 680.58	683.36 683.31 683.28 683.28 683.46	683.27 683.23 683.30 683.37 683.37	683.34 683.26 683.26 683.27 683.40	683.33 683.28 683.24 683.22 683.25
6 7 8 9 10	684.65 684.64 684.64 684.67 684.73	686.33 686.42 686.54 686.45 686.41	686.62 686.60 686.42 686.03 685.59	683.36 683.35 683.35 683.35	683.18 683.25 683.34 683.36 683.48	681.04 680.85 680.75 680.73 680.35	679.49 679.40 679.59 679.89 679.69	680.34 680.37 680.24 680.70 680.83	683.64 683.45 683.31 683.11 683.08	683.48 683.51 683.50 683.60 683.49	683.36 683.47 683.35 683.33	683.32 683.41 683.47 683.52 683.59
11 12 13 14 15	684.90 684.98 685.02 685.15 685.26	686.34 686.31 686.26 686.34 686.38	685.15 684.69 684.35 683.89 683.56	683.38 683.40 683.42 683.46 683.48	683.40 683.40 683.41 683.44 683.41	680.10 680.28 680.22 679.97	679.39 679.43 679.42 679.44	680.93 681.49 681.58 681.69 681.98	683.20 683.26 683.34 683.54 683.75	683.60 683.66 683.43 683.24 683.19	683.44 683.43 683.45 683.44 683.34	683.68 683.73 683.83 683.93 684.02
16 17 18 19 20	685.37 685.40 685.40 685.46 685.49	686.40 686.42 686.47 686.60 686.49	683.37 683.23 683.18 683.24 683.03	683.48 683.50 683.46 683.41 683.35	683.35 683.29 683.21 683.18 683.12	679.67 679.45 679.38 679.35	679.41 679.39 679.29 679.42 679.40	682.58 682.87 683.08 683.13 683.16	683.68 683.24 683.23 683.20 683.25	683.24 683.31 683.27 683.19 683.16	683.36 683.34 683.36 683.49 683.51	684.03 684.04 684.02 684.18 684.30
21 22 23 24 25	685.52 685.54 685.92 686.02 686.09	686.46 686.42 686.39 686.34 686.54	683.18 683.14 683.25 683.22 683.12	683.32 683.27 683.27 683.26 683.26	682.94 682.72 682.56 682.47 682.50	679.76 679.61 679.66 679.69 679.60	679.39 679.60 679.49 679.43 679.42	683.26 683.26 683.31 683.33 683.25	683.48 683.43 683.22 683.08 683.11	683.13 682.88 683.15 683.16 683.31	683.45 683.54 683.67 684.00 683.58	684.36 684.39 684.36 684.40 684.35
26 27 28 29 30 31	685.79 685.64 685.63 685.78 685.81 685.88	686.34 686.45 686.39 686.38 686.40	683.12 683.15 683.21 683.23 683.28	683.27 683.32 683.35 683.38 683.39 683.40	682.43 682.23 682.13	679.60 679.42 679.19 679.20 679.33 679.44	679.32 679.24 679.74 679.74	683.36 683.48 683.35 683.36 683.39	683.22 683.44 683.43 683.37	683.38 683.64 683.83 683.52 683.76 683.50	683.43 683.36 683.15 683.18 683.36	684.44 684.45 684.45 684.43
MEAN MAX MIN	685.23 686.09 684.54	686.36 686.60 685.91	684.40 686.62 683.03	683.37 683.50 683.26	683.07 683.48 682.13	680.13 682.04 679.19	679.49 679.89 679.24	682.03 683.48 679.63	683.34 683.75 683.08	683.38 683.83 682.88		683.91 684.45 683.22

05453510 CORALVILLE LAKE NEAR CORALVILLE, IA--Continued

05453520 IOWA RIVER BELOW CORALVILLE DAM NEAR CORALVILLE, IA

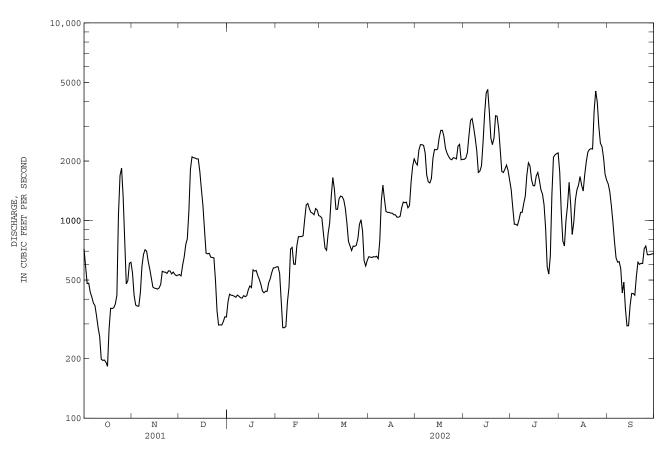
LOCATION.--Lat $41^{\circ}43^{\circ}23^{\circ}$, long $91^{\circ}31^{\circ}47^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.22, T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080208, on left bank about 500 ft downstream of Coralville Dam control house, 2.3 miles upstream from Rapid Creek, 4.3 miles northeast of Coralville post office, and at mile 83.2.

DRAINAGE AREA. -- 3,115 mi².

PERIOD OF RECORD. -- October 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 600.00 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Records good except those for estimated daily discharges, which are fair. U.S. Army Corps of Engineers satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	719	541	533	387	583	1050	656	1960	2040	1430	1760	1530
2	585	418	525	424	584	1030	653	1910	2070	1160	1100	1400
3	480	374	594	419	541	859	650	2270	2210	958	788	1190
4	482	369	653	418	395	726	657	2420	2690	957	744	980
5	433	369	754	414	287	707	654	2420	3210	945	1000	784
6	410	431	809	409	287	860	660	2400	3280	1010	1190	648
7	382	586	1110	e420	291	974	641	2200	2960	1100	1560	616
8	371	674	1820	414	388	1330	789	1700	2610	1100	1210	620
9	329	712	2100	407	462	1650	1260	1570	2250	1220	851	571
10	287	700	2080	405	718	1440	1510	1550	1750	1330	983	430
11	259	622	2070	417	732	1140	1280	1630	1780	1700	1270	488
12	199	569	2050	412	602	1140	1110	2070	1890	1960	1430	357
13	196	512	2050	417	600	1290	1100	2290	2480	1890	1510	293
14	197	461	1770	447	744	1330	1100	2280	3470	1610	1670	294
15	192	455	1440	467	829	1320	1090	2300	4410	1500	1510	373
16	183	453	e1190	458	829	1270	1090	2630	4610	1500	1410	428
17	282	450	e895	563	830	1150	1070	2860	3560	1680	1710	427
18	360	456	684	555	837	971	1070	2860	2610	1750	1990	419
19	359	476	679	559	1010	784	1040	2660	2420	1600	2220	523
20	362	554	683	528	1200	744	1040	2320	2620	1430	2290	616
21	378	549	653	504	1220	705	1050	2190	3390	1360	2310	600
22	419	548	650	476	1150	743	1160	2110	3370	1200	2300	608
23	1070	540	648	440	1100	740	1240	2050	2910	911	3600	606
24	1690	557	499	431	1090	750	1230	2030	2270	584	4520	720
25	1840	555	348	439	1070	809	1240	2080	1770	536	3980	743
26 27 28 29 30 31	1320 792 478 497 608 615	537 549 534 526 530	296 297 296 308 326 325	438 484 508 546 576 577	1150 1130 1060 	955 1010 884 626 589 629	1160 1190 1560 1880 2050	2070 2050 2380 2430 2030 2040	1750 1820 1910 1790 1600	661 1350 2090 2150 2180 2200	2990 2460 2370 2080 1710 1600	672 671 674 677 681
TOTAL MEAN MAX MIN AC-FT CFSM IN.	16774	15607	29135	14359	21719	30205	32880	67760	77500	43052	58116	19639
	541.1	520.2	939.8	463.2	775.7	974.4	1096	2186	2583	1389	1875	654.6
	1840	712	2100	577	1220	1650	2050	2860	4610	2200	4520	1530
	183	369	296	387	287	589	641	1550	1600	536	744	293
	33270	30960	57790	28480	43080	59910	65220	134400	153700	85390	115300	38950
	0.17	0.17	0.30	0.15	0.25	0.31	0.35	0.70	0.83	0.45	0.60	0.21
	0.20	0.19	0.35	0.17	0.26	0.36	0.39	0.81	0.93	0.51	0.69	0.23
					YEARS 199					0.01	0.03	0.23
MEAN	1084	1130	1310	739.8	1754	3122	3453	3949	4651	5231	3053	1747
MAX	4012	2771	4229	1723	3006	6587	7776	9347	7203	20610	18500	13050
(WY)	1994	1993	1993	1993	1997	1993	1993	1993	1993	1993	1993	1993
MIN	211	156	230	231	391	426	445	412	2362	1389	581	275
(WY)	2000	2000	2000	2000	2000	2000	2000	2000	1994	2002	1997	1997

05453520 IOWA RIVER BELOW CORALVILLE DAM NEAR CORALVILLE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1993 - 2002
ANNUAL TOTAL	922991	426746	
ANNUAL MEAN	2529	1169	2607
HIGHEST ANNUAL MEAN			7910 1993
LOWEST ANNUAL MEAN			866 2000
HIGHEST DAILY MEAN	9450 Mar 19	4610 Jun 16	25000 Jul 21 1993
LOWEST DAILY MEAN	183 Oct 16	183 Oct 16	129 Oct 26 1999
ANNUAL SEVEN-DAY MINIMUM	213 Jan 1	215 Oct 11	141 Oct 23 1999
MAXIMUM PEAK FLOW		4700 Aug 24	25800 Jul 19 1993
MAXIMUM PEAK STAGE		52.45 Aug 24	63.95 Jul 19 1993
ANNUAL RUNOFF (AC-FT)	1831000	846500	1889000
ANNUAL RUNOFF (CFSM)	0.81	0.38	0.84
ANNUAL RUNOFF (INCHES)	11.02	5.10	11.37
10 PERCENT EXCEEDS	6530	2290	6380
50 PERCENT EXCEEDS	1100	911	1300
90 PERCENT EXCEEDS	299	406	271

e Estimated

05453600 RAPID CREEK BELOW MORSE, IA

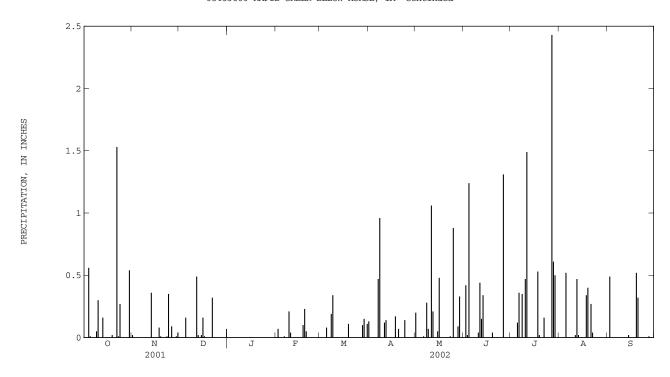
LOCATION.--Lat $41^{\circ}43^{\circ}45^{\circ}$, long $91^{\circ}25^{\circ}38^{\circ}$, in NE corner of sec.21, T.80 N., R.5 W., Johnson County, Hydrologic Unit 07080209, at bridge on county highway, 1.5 miles southwest of Morse.

DRAINAGE AREA.--8.12 mi².

PERIOD OF RECORD.--Operated May 1951 to September 1992 as a crest-stage partial record station. March 1994 to current year.

GAGE. -- Tipping bucket rain gage.

REMARKS.--Estimated totals Jan. 12, 13, and Aug. 24, 25. Estimated values taken from U.S. Geological Survey gaging station 05454000, Rapid Creek nr Iowa City. Records good except for estimated days and winter period, which is poor due to intermittent snow accumulation and subsequent melting.


EXTREME FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.65 in., May 9, 1996, June 13, 2000.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 2.43 in., July 27.

PRECIPITATION CUMULATIVE, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.0 0.0 0.0 0.56 0.01	0.02 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.16	0.0 0.0 0.0 0.0	0.0 0.07 0.0 0.0	0.0 0.0 0.0 0.0	0.13 0.0 0.0 0.0 0.0	0.20 0.0 0.0 0.0 0.0	0.0 0.42 0.02 1.24 0.0	0.0 0.0 0.0 0.0 0.12	0.0 0.0 0.0 0.0 0.52	0.0 0.49 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.05 0.30	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.01 0.0 0.0 0.21 0.04	0.0 0.0 0.19 0.34 0.0	0.0 0.47 0.96 0.0	0.01 0.0 0.28 0.07 0.0	0.0 0.0 0.0 0.0 0.0	0.36 0.0 0.35 0.0 0.47	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	0.0 0.0 0.16 0.0	0.0 0.0 0.36 0.0	0.0 0.49 0.02 0.0 0.02	 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.12 0.14 0.0 0.0	1.06 0.21 0.0 0.0 0.05	0.44 0.15 0.34 0.0	1.49 0.0 0.0 0.0 0.0	0.02 0.47 0.02 0.0	0.0 0.0 0.0 0.02 0.02
16 17 18 19 20	0.0 0.0 0.0 0.02 0.02	0.0 0.0 0.08 0.01 0.0	0.16 0.01 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.10 0.23 0.05	0.0 0.0 0.0 0.11 0.0	0.0 0.0 0.17 0.0 0.07	0.48 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.04 0.0	0.0 0.0 0.53 0.02 0.0	0.0 0.0 0.34 0.40	0.0 0.0 0.0 0.52 0.32
21 22 23 24 25	0.0 1.53 0.01 0.27 0.0	0.0 0.0 0.01 0.35 0.0	0.0 0.32 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.14 0.0	0.0 0.0 0.01 0.0 0.88	0.0 0.0 0.0 0.0 0.0	0.0 0.16 0.0 0.0	0.27 0.04 	0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.54	0.09 0.0 0.0 0.01 0.04	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.10 0.15 0.0	0.0 0.0 0.0	0.0 0.0 0.09 0.33 0.0	1.31 0.0 0.0 0.0 0.0	0.0 2.43 0.61 0.50 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.01 0.0 0.0 0.0
TOTAL	3.45	0.97	1.18		0.71	1.08		3.67		7.04		1.36

05453600 RAPID CREEK BELOW MORSE, IA--Continued

05454000 RAPID CREEK NEAR IOWA CITY, IA

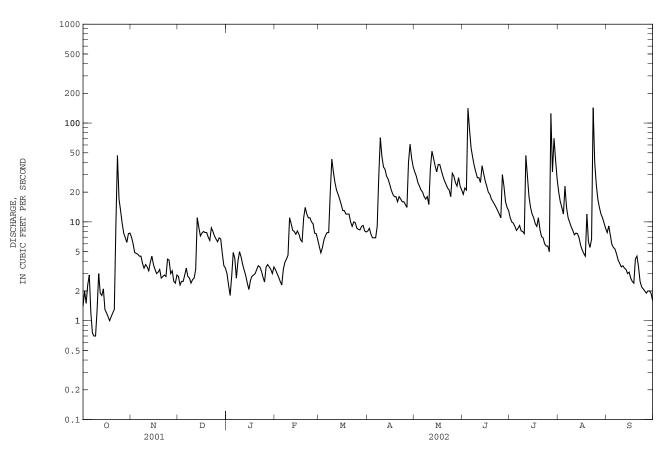
LOCATION.--Lat $41^{\circ}42^{\circ}00^{\circ}$, long $91^{\circ}29^{\circ}15^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.36. T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on left bank 80 ft upstream from bridge on State Highway 1, 3.5 mi northeast of Iowa City, and 4.7 mi upstream from mouth. DRAINAGE AREA.--25.3 mi².

PERIOD OF RECORD.--October 1937 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1558: 1941 (M), 1943 (P), 1944 (M), 1946. WSP 1708: 1951 (P), 1952. WDR IA-67-1: Drainage area.

GAGE.--Water-stage recorder and concrete control with sharp-crested weir. Datum of gage is 673.72 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem, and U.S. Army Corps of Engineers rain gage and data collection platform.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 2.0 1.5 2.3 2.9	7.0 6.0 4.9 4.8 4.7	2.8 2.3 2.5 2.5 2.9	3.0 2.3 1.8 2.8 4.9	e3.3 3.0 e2.8 2.5 2.3	e5.6 e4.9 e5.5 6.6 7.3	8.1 8.6 7.5 6.9	32 29 25 23 21	19 22 21 141 86	11 10 9.7 9.0 8.2	20 16 14 12 23	7.8 9.1 7.3 5.9 5.5
6 7 8 9 10	1.2 0.75 0.70 0.70	4.5 4.5 3.8 3.4 3.7	3.4 2.8 2.7 2.4 2.6	e4.3 e2.7 4.0 5.0 e4.4	3.3 3.9 4.2 4.6	7.8 7.8 20 43 32	6.9 9.0 29 71 46	20 18 17 18 15	56 45 37 32 28	8.6 9.2 8.1 8.0 7.6	14 11 9.9 8.9 8.2	5.3 4.7 4.1 3.8 3.5
11 12 13 14 15	3.0 1.9 1.8 2.1	3.5 3.2 3.9 4.5 3.7	2.7 3.3 11 8.8 7.2	e3.7 e3.2 e2.9 e2.4 e2.1	9.6 8.2 8.0 7.5 8.1	25 21 19 17 15	36 34 29 27 24	35 52 44 37 32	28 25 37 31 26	47 29 18 14 12	7.4 7.7 7.6 6.9 5.8	3.6 3.4 3.3 3.0 3.1
16 17 18 19 20	1.2 1.1 1.0 1.1	3.3 3.0 3.1 3.3 2.7	7.7 8.0 7.8 7.8	e2.6 e2.8 2.9 3.0 3.3	7.5 6.6 6.3 11	13 13 12 12 12	21 19 18 18	38 38 33 29 26	23 20 19 17 16	11 9.6 9.0 11 8.4	5.2 4.8 4.5 12 6.3	2.7 2.5 2.4 4.2 4.5
21 22 23 24 25	1.3 9.3 47 17	2.8 2.9 2.8 4.2 4.1	6.5 8.7 8.0 7.2 6.7	3.6 3.5 e3.2 e2.8 e2.5	12 11 11 10 9.6	10 9.0 10 9.8 8.6	18 17 16 16 15	24 22 21 18 31	15 14 13 12 11	7.1 6.9 6.0 5.7 5.7	5.5 6.7 143 40 24	3.5 2.5 2.2 2.1 2.0
26 27 28 29 30 31	9.7 7.7 6.9 6.2 7.6 7.7	3.0 3.2 2.5 2.4 2.9	6.3 6.9 6.7 4.8 3.6 3.4	3.5 3.7 3.5 3.3 3.0	7.7 7.6 e6.6 	8.4 8.3 9.0 9.2 8.1 7.9	14 40 61 44 36	29 25 23 28 23 21	30 23 16 14 13	5.0 125 32 70 42 27	17 14 12 11 9.7 8.6	1.9 2.0 2.0 1.9 1.6
TOTAL MEAN MAX MIN AC-FT CFSM IN.	163.85 5.285 47 0.70 325 0.21 0.24	112.3 3.743 7.0 2.4 223 0.15 0.17	167.0 5.387 11 2.3 331 0.21 0.25	100.2 3.232 5.0 1.8 199 0.13 0.15	203.2 7.257 14 2.3 403 0.29 0.30	397.8 12.83 43 4.9 789 0.51 0.58	718.9 23.96 71 6.9 1430 0.95 1.06	847 27.32 52 15 1680 1.08 1.25	890 29.67 141 11 1770 1.17 1.31	590.8 19.06 125 5.0 1170 0.75 0.87	496.7 16.02 143 4.5 985 0.63 0.73	111.4 3.713 9.1 1.6 221 0.15 0.16
STATIS	TICS OF M	METHLY ME	AN DATA I	FOR WATER	YEARS 193	8 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	7.535 83.5 1999 0.000 1954	10.10 84.0 1993 0.000 1956	8.863 66.6 1983 0.000 1956	9.490 56.8 1946 0.000 1940	22.42 77.5 1953 0.22 1989	29.02 106 1979 0.42 1956	24.47 98.6 1973 1.25 1956	27.37 167 1974 1.13 1977	25.74 134 1990 0.21 1956	15.88 105 1969 0.000 1957	11.70 176 1993 0.032 1955	7.821 66.6 1965 0.000 1955

05454000 RAPID CREEK NEAR IOWA CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1938 - 2002
ANNUAL TOTAL	7705.29	4799.15	
ANNUAL MEAN	21.11	13.15	16.65
HIGHEST ANNUAL MEAN			63.8 1993
LOWEST ANNUAL MEAN			1.09 1957
HIGHEST DAILY MEAN	450 Feb 25	143 Aug 23	1720 May 17 1986
LOWEST DAILY MEAN	0.36 Sep 14	0.70 Oct 8a	0.00 Jan 1 1940
ANNUAL SEVEN-DAY MINIMUM	0.58 Sep 10	1.2 Oct 15	0.00 Jan 1 1940
MAXIMUM PEAK FLOW		434 Aug 23	6700 Aug 10 1993
MAXIMUM PEAK STAGE		7.49 Aug 23	15.61 Aug 10 1993
ANNUAL RUNOFF (AC-FT)	15280	9520	12060
ANNUAL RUNOFF (CFSM)	0.83	0.52	0.66
ANNUAL RUNOFF (INCHES)	11.33	7.06	8.94
10 PERCENT EXCEEDS	54	30	35
50 PERCENT EXCEEDS	7.7	7.8	5.0
90 PERCENT EXCEEDS	1.2	2.5	0.10

Also Oct. 9. Estimated. a e

05454220 CLEAR CREEK NEAR OXFORD, IA

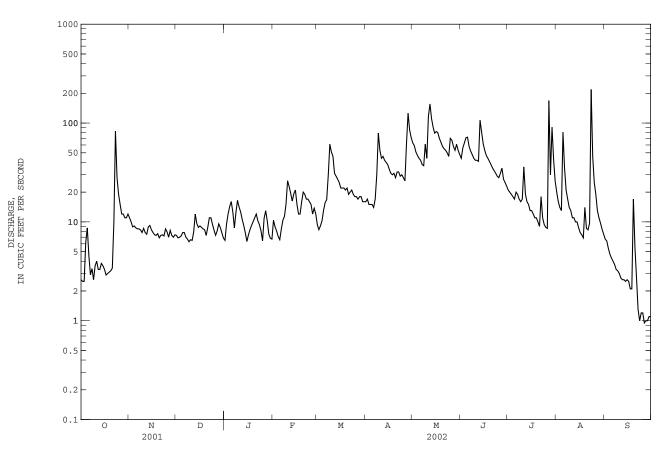
LOCATION.--Lat $41^{\circ}43^{\circ}06^{\circ}$, long $91^{\circ}44^{\circ}24^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{2}/_{4}$ sec.23, T.80 N., R.8 W., Johnson County, Hydrologic Unit 07080209, on left bank 15 ft. downstream of bridge on NW Eagle Avenue, 0.2 miles west of Kent Park, 2.6 miles upstream of Buffalo Creek, 2.8 miles east of Oxford, and 4.2 miles west of Tiffin.

DRAINAGE AREA. -- 58.4 mi².

PERIOD OF RECORD. -- November 1993 to current year.

 ${\tt GAGE.--Water}$ stage recorder. Datum of gage is 696.50 ft. above NGVD of 1929.

REMARKS.--Records good except for those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.6	11	7.3	e6.5	e10	e9.4	16	63	44	21	20	6.7
2	2.5	10	6.9	e9.5	e8.9	e8.3	17	59	56	20	16	6.4
3	2.5	8.9	7.0	e12	e8.1	e9.1	15	51	63	19	14	5.4
4	e6.2	9.1	7.2	e14	e7.1	e10	15	47	71	18	13	4.7
5	e8.7	8.7	7.8	e16	e6.6	e13	15	44	72	17	81	4.3
6	e4.6	8.5	7.8	e13	e8.5	e16	14	42	58	20	35	4.0
7	e2.9	8.5	7.0	e8.7	e10	e17	17	38	52	19	21	3.7
8	e3.4	8.3	6.7	e12	e11	e30	30	37	48	17	17	3.3
9	e2.6	7.8	6.3	e17	e15	61	79	61	44	16	14	3.2
10	3.6	8.6	6.6	e14	e26	51	53	44	42	17	13	3.0
11 12 13 14 15	4.0 3.3 3.3 3.8 3.6	7.8 7.5 8.9 9.2 8.3	6.5 7.9 12 9.6 8.8	e13 e11 e9.2 e7.7 e6.3	e23 e19 e16 e19 21	46 31 29 27 25	44 46 42 40 38	117 156 111 91 79	42 41 107 81 62	36 19 16 15	11 11 10 10 8.7	2.7 2.6 2.6 2.5 2.6
16	3.3	7.8	9.1	e7.4	15	22	34	82	53	13	7.8	2.5
17	2.9	7.4	8.8	e8.3	12	22	31	80	47	12	7.4	2.1
18	3.0	7.3	8.5	e9.2	12	22	30	70	44	11	6.9	2.1
19	3.1	7.6	8.3	e10	16	21	31	64	41	11	14	17
20	3.2	6.9	7.3	e11	20	22	28	58	38	10	8.6	5.5
21 22 23 24 25	3.4 10 83 28 19	7.3 7.4 7.2 8.5 7.9	8.8 11 11 e9.5 e8.2	e12 e10 e9.4 e8.1 e6.4	19 17 17 16 15	19 20 21 19 18	32 32 29 30 28	55 53 50 46 70	35 33 31 29 28	9.0 18 11 9.4 8.8	8.3 9.7 219 46 25	2.7 1.3 1.0 1.2
26 27 28 29 30 31	15 12 12 11 11 11	7.0 8.2 7.3 7.0 7.4	e7.3 e8.1 e9.6 e8.8 e7.8 e6.9	e11 e13 e10 e7.5 e6.8 e6.7	12 e14 e12 	18 17 18 18 16 16	26 62 126 85 71	67 58 53 61 53 48	31 35 27 25 23	8.6 169 30 91 43 26	19 13 11 9.7 8.4 7.5	0.95 1.0 1.0 1.1 1.1
TOTAL	289.5	243.3	254.4	316.7	406.2	691.8	1156	2008	1403	763.8	716.0	99.45
MEAN	9.339	8.110	8.206	10.22	14.51	22.32	38.53	64.77	46.77	24.64	23.10	3.315
MAX	83	11	12	17	26	61	126	156	107	169	219	17
MIN	2.5	6.9	6.3	6.3	6.6	8.3	14	37	23	8.6	6.9	0.95
AC-FT	574	483	505	628	806	1370	2290	3980	2780	1510	1420	197
CFSM	0.16	0.14	0.14	0.17	0.25	0.38	0.66	1.11	0.80	0.42	0.40	0.06
IN.	0.18	0.15	0.16	0.20	0.26	0.44	0.74	1.28	0.89	0.49	0.46	0.06
STATIS'	TICS OF M	MONTHLY ME.	AN DATA F	OR WATER	YEARS 199	5 - 2002,	BY WATER	YEAR (WY)			
MEAN	24.83	17.36	10.03	15.11	50.80	50.62	59.88	102.3	77.10	32.27	14.79	7.601
MAX	153	74.4	28.1	35.2	129	152	113	269	120	77.0	44.5	29.4
(WY)	1999	1999	1999	1998	2001	2001	1998	1996	2001	2000	1998	1998
MIN	1.74	2.30	2.07	3.04	6.00	5.71	8.16	15.0	32.0	10.4	4.14	1.35
(WY)	1996	2000	2000	2000	2000	2000	1996	2000	1997	1997	1996	1999

05454220 CLEAR CREEK NEAR OXFORD, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1995 - 2002
ANNUAL TOTAL	19160.2	8348.15	
ANNUAL MEAN	52.49	22.87	38.45
HIGHEST ANNUAL MEAN			56.4 1999
LOWEST ANNUAL MEAN			21.8 2000
HIGHEST DAILY MEAN	1370 Feb 25	219 Aug 23	2400 May 10 1996
LOWEST DAILY MEAN	2.1 Sep 15	0.95 Sep 26	0.74 Dec 11 1995
ANNUAL SEVEN-DAY MINIMUM	2.4 Sep 11	1.1 Sep 23	0.90 Sep 20 1999
MAXIMUM PEAK FLOW		458 Jul 27	4230 May 10 1996
MAXIMUM PEAK STAGE		8.43 Jul 27	14.89 May 10 1996
INSTANTANEOUS LOW FLOW		0.85 Sep 26	
ANNUAL RUNOFF (AC-FT)	38000	16560	27850
ANNUAL RUNOFF (CFSM)	0.90	0.39	0.66
ANNUAL RUNOFF (INCHES)	12.20	5.32	8.94
10 PERCENT EXCEEDS	128	55	91
50 PERCENT EXCEEDS	21	13	15
90 PERCENT EXCEEDS	3.6	3.6	2.4

e Estimated

05454300 CLEAR CREEK NEAR CORALVILLE, IA

LOCATION.--Lat $41^{\circ}40^{\circ}36^{\circ}$, long $91^{\circ}35^{\circ}55^{\circ}$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec.1, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank about 15 ft upstream from bridge on county highway, 1.1 mi west of post office in Coralville, 1.5 mi downstream from Deer Creek, and 2.7 mi upstream from mouth.

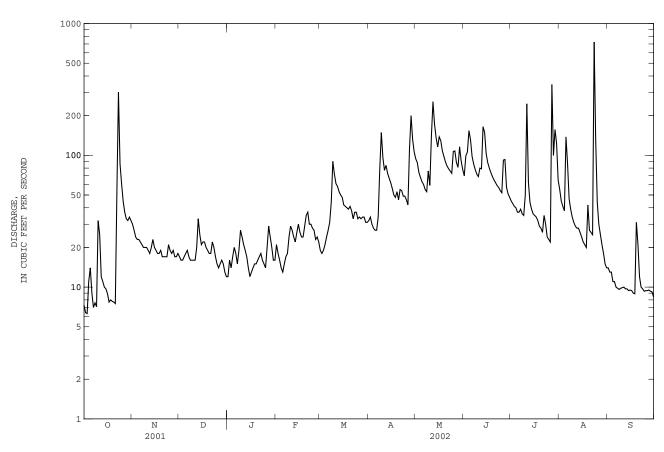
DRAINAGE AREA. -- 98.1 mi².

PERIOD OF RECORD.--October 1952 to current year. Monthly discharge only for some periods, published in WSP 1728.

REVISED RECORDS.--WDR IA-93-1: 1974 (M), 1982 (M), 1990 (M).

GAGE.--Water-stage recorder. Datum of gage is 647.48 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Jan. 7, 1957, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. U.S. Geological Survey data collection platform with telephone modem and U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.3 6.4 6.3 11	30 27 24 23 23	17 16 16 17 18	e12 e16 e14 e17 e20	e21 e18 e16 e14 e13	e19 e18 e19 e21 e24	32 34 30 28 27	94 88 74 68 63	70 99 106 154 131	45 43 41 40 37	55 45 41 38 138	14 13 13 11
6	9.1	22	19	e18	e15	e27	27	60	98	37	87	10
7	7.0	21	17	e15	e17	e31	34	55	86	39	47	9.8
8	7.6	20	16	e19	e18	e44	79	53	78	36	39	9.6
9	7.1	20	16	e27	e24	e90	149	76	72	35	34	9.8
10	32	20	16	e24	e29	72	96	59	69	50	31	9.9
11	25	19	16	e21	e27	61	77	140	80	246	29	10
12	12	18	20	e19	e24	58	84	255	79	62	28	9.7
13	11	20	33	e17	e22	53	73	172	165	44	28	9.7
14	10	23	25	e14	e26	50	67	136	149	39	26	9.4
15	9.7	20	21	e12	30	48	62	116	103	36	24	9.5
16	8.9	19	22	e13	26	42	56	138	88	35	22	9.4
17	7.7	18	22	e14	24	41	50	129	80	34	21	9.0
18	8.0	18	20	e15	24	40	48	108	74	32	20	8.9
19	7.8	19	19	e15	29	39	53	98	69	29	42	31
20	7.7	17	18	e16	35	41	46	89	65	28	27	21
21	7.5	17	18	e17	37	38	55	83	62	26	26	12
22	53	17	22	e18	30	33	54	79	59	35	25	10
23	301	17	20	e16	30	37	49	76	57	30	725	9.7
24	86	21	e17	e15	28	37	49	73	54	24	129	9.3
25	61	19	e15	e14	27	33	46	107	52	23	44	9.4
26 27 28 29 30 31	45 37 33 32 34 32	18 19 17 17 18	e14 e15 e16 e15 e13 e12	e20 e29 e24 e20 e16 e16	23 e24 e22 	34 33 34 31 31	42 112 200 132 106	108 88 81 116 91 78	92 93 57 51 48	22 345 100 157 123 65	30 25 21 18 15 14	9.4 9.5 9.3 9.2 8.4
TOTAL	937.1	601	561	543	673	1213	1997	3051	2540	1938	1894	334.9
MEAN	30.23	20.03	18.10	17.52	24.04	39.13	66.57	98.42	84.67	62.52	61.10	11.16
MAX	301	30	33	29	37	90	200	255	165	345	725	31
MIN	6.3	17	12	12	13	18	27	53	48	22	14	8.4
AC-FT	1860	1190	1110	1080	1330	2410	3960	6050	5040	3840	3760	664
CFSM	0.31	0.20	0.18	0.18	0.25	0.40	0.68	1.00	0.86	0.64	0.62	0.11
IN.	0.36	0.23	0.21	0.21	0.26	0.46	0.76	1.16	0.96	0.73	0.72	0.13
STATIS'	TICS OF M	MONTHLY ME	AN DATA E	OR WATER	YEARS 195	3 - 2002,	BY WATER	YEAR (WY)			
MEAN	33.12	43.98	37.81	39.00	73.12	111.4	102.6	111.8	107.1	90.08	59.47	42.34
MAX	261	246	162	206	243	402	452	589	566	991	759	337
(WY)	1999	1962	1993	1960	2001	1979	1973	1974	1990	1993	1993	1965
MIN	0.55	0.95	0.54	0.10	2.79	4.49	4.15	3.79	0.83	1.69	1.94	0.69
(WY)	1958	1956	1956	1977	1954	1954	1956	1956	1956	1954	1953	1953

05454300 CLEAR CREEK NEAR CORALVILLE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1953 - 2002
ANNUAL TOTAL	32965.4	16283.0	
ANNUAL MEAN	90.32	44.61	70.93
HIGHEST ANNUAL MEAN			327 1993
LOWEST ANNUAL MEAN			6.57 1957
HIGHEST DAILY MEAN	1760 Feb 25	725 Aug 23	7310 Jun 17 1990
LOWEST DAILY MEAN	5.5 Sep 16	6.3 Oct 3	0.00 Jan 18 1977
ANNUAL SEVEN-DAY MINIMUM	6.4 Sep 10	8.2 Oct 15	0.00 Jan 18 1977
MAXIMUM PEAK FLOW	_	1700 Aug 23	10200 Jun 17 1990
MAXIMUM PEAK STAGE		10.96 Aug 23	16.36 Jun 17 1990
INSTANTANEOUS LOW FLOW		5.7 Oct 3a	
ANNUAL RUNOFF (AC-FT)	65390	32300	51390
ANNUAL RUNOFF (CFSM)	0.92	0.45	0.72
ANNUAL RUNOFF (INCHES)	12.50	6.17	9.82
10 PERCENT EXCEEDS	221	93	148
50 PERCENT EXCEEDS	37	27	27
90 PERCENT EXCEEDS	9.9	10	3.0

Also Oct. 4. Estimated

05454500 IOWA RIVER AT IOWA CITY, IA

LOCATION.--Lat $41^{\circ}39^{\circ}24^{\circ}$, long $91^{\circ}32^{\circ}27^{\circ}$, in $\mathrm{SE}^{1}/_{4}$ $\mathrm{SE}^{1}/_{4}$ sec.9, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 25 ft downstream from Hydraulics Laboratory of University of Iowa in Iowa City, 175 ft downstream from University Dam, 0.8 mi upstream from Ralston Creek, 3.6 mi downstream from Clear Creek, and at mile 74.2.

DRAINAGE AREA. -- 3,271 mi².

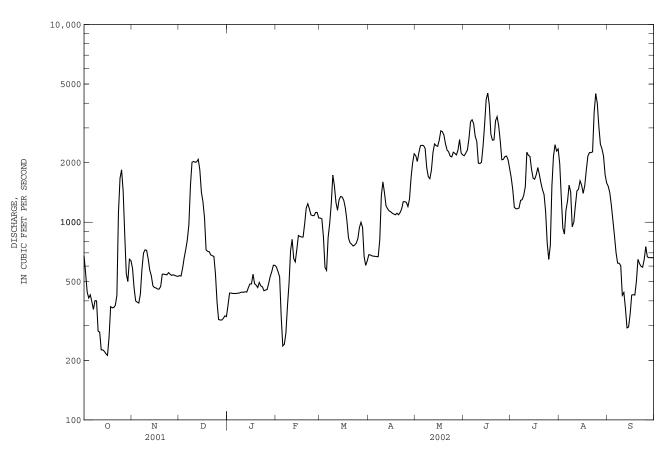
PERIOD OF RECORD. -- June 1903 to current year. Monthly discharge only for some periods, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is 29.00 ft above Iowa City datum, and 617.27 ft above NGVD of 1929. Oct. 1, 1934 to Sept. 30, 1972, at datum 10.00 ft higher. See WSP 1708 for history of changes prior to Oct. 1, 1934.

REMARKS.--Records good. Slight fluctuation at low stages caused by powerplant above station. Flow regulated by Coralville Lake (station 05453510), 9.1 mi upstream, since Sept. 17, 1958. U.S. Army Corps of Engineers raingage and satellite data collection platform and U.S. Geological Survey data collection platform with telephone modem backup at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 42,500 ft³/s June 8, 1918, gage height, 19.6 ft, from graph based on gage readings, site and datum then in use; minimum daily discharge, 29 ft³/s Oct. 21, 22, 1916, regulated.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 17, 1881, reached a stage of 21.1 ft, from floodmarks at site and datum in use 1913-21, from information by local resident, discharge, 51,000 ft³/s. Maximum stage known since at least 1850, about 3 ft higher than that of July 17, 1881, occurred in June 1851, discharge, 70,000 ft³/s, estimated


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	677	584	537	379	e592	1050	685	2170	2170	1680	1980	1520
2	553	463	534	438	e562	1040	683	2030	2240	1460	1340	1410
3	444	400	586	438	e530	e840	676	2250	2320	1190	933	1220
4	414	394	660	436	e335	e590	673	2440	2650	1170	871	1020
5	429	390	727	436	e237	e570	672	2450	3220	1170	1150	853
6	396	432	813	436	e241	838	670	2440	3300	1180	1280	702
7	362	577	970	437	e274	986	669	2360	3150	1290	1540	621
8	401	698	1530	438	376	1240	814	1890	2720	1300	1420	620
9	400	725	2010	441	488	1730	1360	1700	2560	1370	949	603
10	281	720	2030	443	718	1530	1600	1660	1990	1510	1000	427
11	278	653	2010	442	819	1260	1410	1830	1980	2260	1210	441
12	226	573	2020	445	655	1150	1210	2250	2010	2180	1440	367
13	226	536	2080	443	630	1300	1170	2490	2420	2150	1470	292
14	222	477	1840	466	729	1350	1140	2440	3120	1850	1620	295
15	216	467	1420	487	857	1340	1130	2420	4180	1670	1540	342
16	212	465	1270	487	847	1290	1110	2600	4500	1650	1400	428
17	262	459	1050	546	842	1180	1100	2900	3920	1740	1530	430
18	374	459	724	e488	841	1020	1090	2870	2790	1890	1840	428
19	369	474	712	e480	982	833	1110	2760	2600	1740	2160	501
20	370	546	709	e467	1180	787	1090	2490	2610	1580	2250	649
21	380	546	683	e495	1240	774	1120	2320	3260	1460	2250	617
22	426	543	677	e476	1170	758	1170	2270	3420	1380	2270	598
23	1120	542	671	471	1090	767	1270	2160	3070	1130	3590	592
24	1670	556	547	450	1080	784	1270	2140	2580	785	4470	649
25	1840	546	394	454	1080	826	1260	2260	2070	649	4010	752
26 27 28 29 30 31	1440 870 550 501 650 639	538 542 538 534 532	322 320 320 326 336 333	456 490 532 563 606 605	1120 1120 1050 	940 1000 942 669 605 638	1200 1310 1680 2000 2220	2230 2190 2320 2620 2240 2190	2080 2150 2160 2070 1870	764 1520 2150 2470 2290 2350	3060 2480 2350 2160 1740 1580	668 662 662 662 660
TOTAL	17198	15909	29161	14671	21685	30627	34562	71380	81180	48978	58883	19691
MEAN	554.8	530.3	940.7	473.3	774.5	988.0	1152	2303	2706	1580	1899	656.4
MAX	1840	725	2080	606	1240	1730	2220	2900	4500	2470	4470	1520
MIN	212	390	320	379	237	570	669	1660	1870	649	871	292
AC-FT	34110	31560	57840	29100	43010	60750	68550	141600	161000	97150	116800	39060
CFSM	0.17	0.16	0.29	0.14	0.24	0.30	0.35	0.70	0.83	0.48	0.58	0.20
IN.	0.20	0.18	0.33	0.17	0.25	0.35	0.39	0.81	0.92	0.56	0.67	0.22
STATIST	rics of i	MONTHLY ME	EAN DATA	FOR WATER	YEARS 19	59 - 2002,	BY WATE	R YEAR (W	Y)			
MEAN	1132	1428	1409	1048	1755	3376	3765	3277	3660	3477	2187	1432
MAX	4277	5395	4580	5381	5789	7988	9764	9763	11590	22220	20060	13760
(WY)	1994	1987	1983	1973	1973	1971	1979	1993	1991	1993	1993	1993
MIN	135	121	130	141	125	366	348	184	99.1	72.8	162	147
(WY)	1990	1967	1989	1990	1977	1977	1989	1977	1977	1977	1989	1976

05454500 IOWA RIVER AT IOWA CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WA	TER YEAR	WATER YEARS	1959 - 2002a
ANNUAL TOTAL	982482		443925			
ANNUAL MEAN	2692		1216		2330	
HIGHEST ANNUAL MEAN					8502	1993
LOWEST ANNUAL MEAN					304	1989
HIGHEST DAILY MEAN	10200	Mar 20	4500	Jun 16	26200	Jul 21 1993
LOWEST DAILY MEAN	212	Oct 16	212	Oct 16	49	Aug 1 1977b
ANNUAL SEVEN-DAY MINIMUM	235	Oct 11	235	Oct 11	50	Jul 31 1977
MAXIMUM PEAK FLOW			4650	Aug 23	28200	Aug 10 1993
MAXIMUM PEAK STAGE			15.03	Aug 23	28.52	Aug 10 1993
ANNUAL RUNOFF (AC-FT)	1949000		880500		1688000	
ANNUAL RUNOFF (CFSM)	0.82	2	0.37		0.71	
ANNUAL RUNOFF (INCHES)	11.17	7	5.05		9.68	
10 PERCENT EXCEEDS	7010		2380		6000	
50 PERCENT EXCEEDS	1170		970		1290	
90 PERCENT EXCEEDS	344		409		216	

Post regulation. Also Aug. 2, 1977. estimated.

05455010 SOUTH BRANCH RALSTON CREEK AT IOWA CITY, IA

LOCATION.--Lat 41°39'05", long 91°30'27", in $\mathrm{SW}^1/_4\,\mathrm{NE}^1/_4\,\mathrm{sec}.14$, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 60 ft downstream from bridge on Muscatine Avenue in Iowa City, and 1.2 mi upstream from mouth.

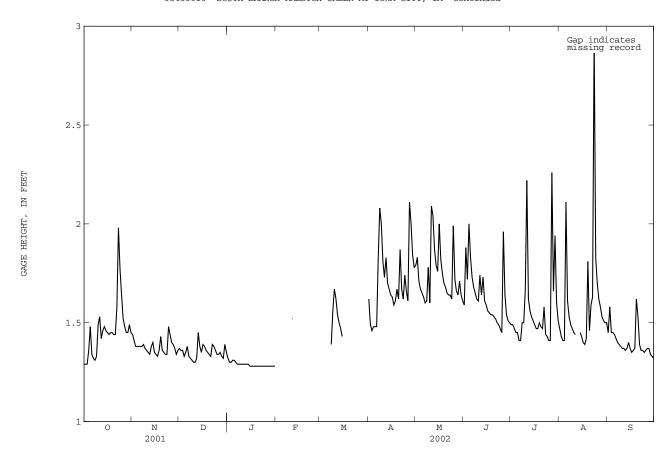
DRAINAGE AREA. -- 2.94 mi².

PERIOD OF RECORD.--Discharge records from October 1963 to September 1995. Stage-only records from October 29, 1996 to current year.

REVISED RECORDS.--WDR IA-66-1: Drainage area.

GAGE.--Records good except those for Feb. 1-10, Feb. 12 to Mar. 7, Mar. 16-31, and Aug. 12, 13. Water-stage recorder and V-notch sharp-crested weir. Datum of gage is 678.03 ft above NGVD of 1929.

REMARKS.--Minor regulation from retention dam 2 miles upstream may affect peaks. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 14, 1962, reached a stage of 10.5 ft, from flood profile, discharge not determined.

EXTREMES FOR CURRENT YEAR.--Maximum instantaneous gage height 8.12 ft on Aug. 23. Minimum gage height of 1.28 ft. Jan. 16-31, Aug. 30 to Sep. 6, and Sep. 13-17.

GAGE HEIGHT from 8200 modem, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.29 1.29 1.29 1.36 1.48	1.44 1.41 1.38 1.38	1.37 1.36 1.36 1.33 1.35	1.32 1.30 1.30 1.31 1.31	 	 	1.62 1.49 1.46 1.48 1.48	1.79 1.83 1.71 1.67 1.65	1.59 1.88 1.72 2.00 1.83	1.49 1.49 1.47 1.45 1.45	1.47 1.43 1.41 1.41 2.11	1.45 1.58 1.45 1.45
6 7 8 9 10	1.34 1.32 1.31 1.33 1.49	1.38 1.38 1.39 1.37 1.36	1.38 1.33 1.32 1.31 1.30	1.30 1.29 1.29 1.29 1.29	 	1.39 1.56 1.67	1.48 1.82 2.08 2.00 1.81	1.63 1.60 1.61 1.78 1.60	1.73 1.68 1.65 1.62 1.61	1.41 1.41 1.50 1.50	1.61 1.53 1.49 1.47 1.45	1.42 1.40 1.39 1.38 1.37
11 12 13 14 15	1.53 1.42 1.46 1.48 1.46	1.35 1.34 1.38 1.40 1.35	1.30 1.32 1.45 1.38 1.35	1.29 1.29 1.29 1.29 1.29	1.52 	1.62 1.54 1.50 1.47 1.43	1.73 1.83 1.70 1.67 1.64	2.09 2.04 1.87 1.79 1.76	1.74 1.64 1.73 1.61 1.59	2.22 1.62 1.56 1.53 1.51	1.44 1.45 1.43	1.37 1.36 1.37 1.40 1.37
16 17 18 19 20	1.45 1.44 1.45 1.45	1.34 1.33 1.36 1.43 1.36	1.39 1.38 1.36 1.35 1.34	1.28 1.28 1.28 1.28 1.28		 	1.63 1.59 1.61 1.67 1.62	2.00 1.82 1.75 1.70 1.68	1.56 1.55 1.54 1.54 1.53	1.49 1.47 1.47 1.50 1.48	1.40 1.39 1.42 1.81 1.46	1.35 1.36 1.37 1.62 1.53
21 22 23 24 25	1.44 1.58 1.98 1.77 1.64	1.35 1.34 1.34 1.48 1.44	1.33 1.39 1.38 1.36 1.34	1.28 1.28 1.28 1.28 1.28	 	 	1.87 1.67 1.62 1.74 1.66	1.65 1.64 1.64 1.62 1.99	1.52 1.50 1.49 1.47 1.45	1.47 1.58 1.44 1.43 1.41	1.59 1.63 2.95 1.83 1.70	1.39 1.36 1.36 1.35 1.36
26 27 28 29 30 31	1.52 1.48 1.45 1.45 1.49	1.40 1.39 1.37 1.34 1.36	1.34 1.35 1.33 1.32 1.39 1.35	1.28 1.28 1.28 1.28 1.28 1.28	 	 	1.61 2.11 2.00 1.84 1.78	1.72 1.66 1.64 1.71 1.64 1.61	1.96 1.64 1.54 1.51 1.50	1.41 2.26 1.66 1.94 1.60 1.51	1.62 1.58 1.53 1.51 1.50	1.37 1.37 1.34 1.33 1.32
MEAN MAX MIN	1.46 1.98 1.29	1.38 1.48 1.33	1.35 1.45 1.30	1.29 1.32 1.28			1.71 2.11 1.46	1.74 2.09 1.60	1.63 2.00 1.45	1.56 2.26 1.41	 	1.40 1.62 1.32

05455010 SOUTH BRANCH RALSTON CREEK AT IOWA CITY, IA--Continued

05455100 OLD MANS CREEK NEAR IOWA CITY, IA

LOCATION.--Lat. $41^{\circ}36^{\circ}23^{\circ}$, long. $91^{\circ}36^{\circ}56^{\circ}$, in $SE^{1}/_{4}$ SW $^{1}/_{4}$ NW $^{1}/_{4}$ sec.36, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank 10 ft downstream from bridge on county highway W62, 5 miles southwest of Iowa City, 5.9 miles upstream of Dirty Face Creek, and 8.6 miles upstream from mouth.

DRAINAGE AREA. -- 201 mi².

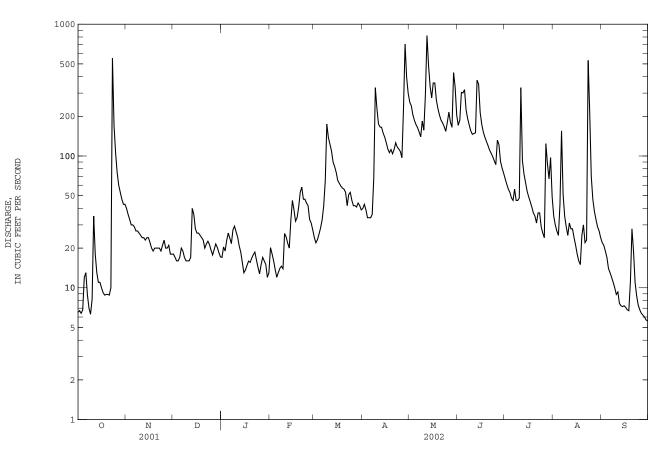
PERIOD OF RECORD.--October 1950 to September 1964, published in WSP 1914. Annual maximum, water years 1965-84. Occasional low-flow measurements, water years 1964-77; October 1984 to current year.

GAGE.--Water-stage recorder. Datum of gage is 637.49 ft above NGVD of 1929. Prior to Nov. 16, 1984, nonrecording gage at same site at datum 2.00 ft higher. Prior to Oct. 1, 1987, at datum 2.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

COOPERATION.--Gage height record and discharge measurements for water years 1951-64 were collected by the U.S. Army Corps of Engineers and computed by the U.S. Geological Survey.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 13,500 ft³/s, on the basis of contracted-opening of peak flow, June 15, 1982, gage height, 17.25 ft, present datum.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.5 6.7 6.4 6.8	40 36 33 30 30	18 17 16 16 17	e17 e20 e19 e23 e26	e20 e18 e16 e14 e12	e24 e22 e23 e26 e28	40 43 39 34 34	256 240 205 186 173	171 188 304 301 319	67 61 56 53 48	35 30 27 25 43	22 21 19 17 14
6	13	29	20	e24	e13	e33	34	164	224	46	155	13
7	8.8	27	19	e22	e14	e42	36	152	192	56	51	12
8	7.0	27	17	e27	e15	e65	68	140	172	46	35	11
9	6.3	26	16	e29	e14	e175	330	184	155	46	29	10
10	8.2	25	16	e27	e26	138	231	157	146	48	25	8.9
11 12 13 14 15	35 18 13 11	24 24 23 24 24	16 17 40 36 28	e24 e21 e19 e16 e13	e24 e22 e20 e33 46	123 109 90 83 75	175 166 165 149 139	292 821 489 338 276	148 150 377 350 214	330 92 73 63 54	31 28 28 24 21	9.3 7.6 7.3 7.2 7.3
16	10	22	26	e14	39	65	126	358	174	49	18	7.1
17	9.2	20	26	e15	32	62	113	358	152	45	16	6.8
18	8.8	19	25	e16	34	59	106	266	139	41	15	6.7
19	8.9	20	24	e16	41	57	112	229	129	37	25	11
20	8.9	20	23	e17	53	56	104	204	120	35	30	28
21	8.8	20	20	e18	58	53	112	187	111	31	22	19
22	10	20	e21	e19	47	42	126	178	105	37	23	11
23	552	19	e23	e16	47	51	117	167	99	37	532	8.7
24	170	21	e21	e14	44	53	113	154	92	29	215	7.4
25	106	23	e19	e13	42	46	108	180	86	26	70	6.8
26 27 28 29 30 31	75 60 53 47 43 43	20 20 21 18 18	e18 e19 e21 e20 e19 e17	e15 17 16 15 12 e13	33 31 e27 	42 42 41 44 42 39	97 228 708 395 299	215 180 165 429 334 204	132 122 91 81 74	24 124 87 67 97 49	47 38 33 29 27 24	6.4 6.2 6.0 5.7 5.6
TOTAL	1383.3	723	651	573	835	1850	4547	7881	5118	1954	1751	329.0
MEAN	44.62	24.10	21.00	18.48	29.82	59.68	151.6	254.2	170.6	63.03	56.48	10.97
MAX	552	40	40	29	58	175	708	821	377	330	532	28
MIN	6.3	18	16	12	12	22	34	140	74	24	15	5.6
AC-FT	2740	1430	1290	1140	1660	3670	9020	15630	10150	3880	3470	653
CFSM	0.22	0.12	0.10	0.09	0.15	0.30	0.75	1.26	0.85	0.31	0.28	0.05
IN.	0.26	0.13	0.12	0.11	0.15	0.34	0.84	1.46	0.95	0.36	0.32	0.06
STATIS					YEARS 195							
MEAN	61.09	90.61	53.98	61.28	127.5	242.9	172.6	235.7	196.3	152.3	103.2	59.90
MAX	541	636	337	436	536	793	625	1071	907	1515	1190	598
(WY)	1999	1962	1993	1960	2001	1962	1993	1996	1990	1993	1993	1993
MIN	0.21	0.39	0.35	0.26	2.50	2.12	1.29	4.97	5.34	1.43	2.97	0.36
(WY)	1958	1956	1956	1956	1954	1954	1956	1956	1956	1954	1988	1957

05455100 OLD MANS CREEK NEAR IOWA CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1951 - 2002
ANNUAL TOTAL	74900.1	27595.3	
ANNUAL MEAN	205.2	75.60	129.8
HIGHEST ANNUAL MEAN			607 1993
LOWEST ANNUAL MEAN			10.3 1954
HIGHEST DAILY MEAN	3480 Feb 25	821 May 12	8780 Jul 6 1993
LOWEST DAILY MEAN	6.0 Sep 16	5.6 Sep 30	0.10 Sep 6 1957
ANNUAL SEVEN-DAY MINIMUM	6.7 Sep 28	6.3 Sep 24	0.10 Sep 6 1957
MAXIMUM PEAK FLOW		1680 Aug 23	13000 Jul 6 1993
MAXIMUM PEAK STAGE		10.82 Aug 23	17.61 Jul 6 1993
INSTANTANEOUS LOW FLOW		4.8 Sep 30	
ANNUAL RUNOFF (AC-FT)	148600	54740	94040
ANNUAL RUNOFF (CFSM)	1.02	0.38	0.65
ANNUAL RUNOFF (INCHES)	13.86	5.11	8.77
10 PERCENT EXCEEDS	566	187	287
50 PERCENT EXCEEDS	61	32	40
90 PERCENT EXCEEDS	12	11	2.1

e Estimated

05455500 ENGLISH RIVER AT KALONA, IA

LOCATION.--Lat $41^{\circ}28^{\circ}11^{\circ}$, long $91^{\circ}42^{\circ}52^{\circ}$, (revised) in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.13, T.77 N., R.8 W., Washington County, Hydrologic Unit 07080209, on right bank 30 ft upstream from bridge on State Highway 1, 0.8 mi south of Kalona, 1.1 mi upstream from Camp Creek, 4.5 mi downstream from Smith Creek, and 14.5 mi upstream from mouth.

DRAINAGE AREA. -- 573 mi².

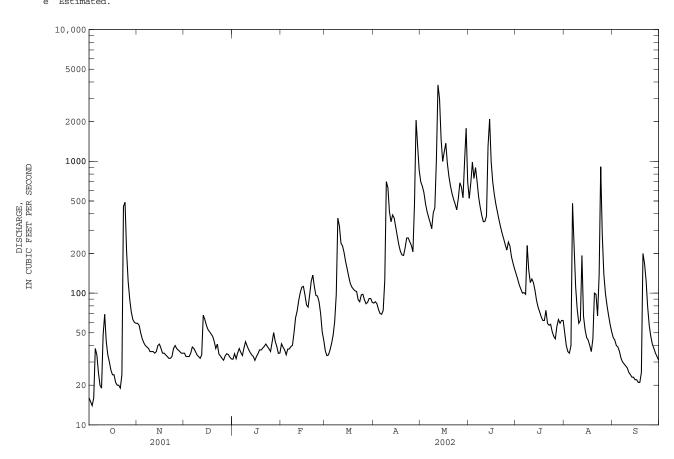
PERIOD OF RECORD. -- September 1939 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1940 (M), 1941. WSP 1708: 1956, 1957 (P), 1958 (P).

GAGE.--Water-stage recorder. Datum of gage is 633.45 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Dec. 27, 1939, nonrecording gage 30 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in June 1930 reached a stage of 19.9 ft, from floodmark, from information by local residents, discharge, $18,500 \text{ ft}^3/\text{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	59	35	e31	e41	e36	84	698	524	139	50	46
2	15	57	33	e35	e39	e34	86	648	689	127	40	44
3	14	50	33	e32	e37	e34	83	580	986	115	36	40
4	16	45	33	e35	e34	e37	75	480	740	107	35	39
5	38	42	35	e38	e38	e41	70	417	898	100	40	36
6	34	40	39	e35	e38	e48	69	377	702	101	480	32
7	25	39	38	e34	e39	e61	74	343	534	98	226	30
8	20	38	36	e38	e40	e98	125	308	449	230	111	29
9	19	36	34	e43	e50	e371	700	407	388	150	75	28
10	48	36	33	e40	e65	e324	630	444	348	120	59	27
11	69	36	32	e37	e73	e239	413	1030	350	128	62	25
12	43	35	34	e35	e88	e228	347	3800	384	120	193	24
13	34	36	68	e34	e101	203	392	2990	1300	105	67	23
14	30	40	63	e33	e111	173	372	1470	2090	88	53	23
15	26	41	57	e31	e112	152	317	1000	993	78	46	22
16	24	38	53	e33	e97	133	271	1180	699	72	44	22
17	24	35	51	e35	e81	118	232	1370	559	66	40	21
18	21	35	49	e37	e78	111	207	965	473	62	36	21
19	20	34	47	e37	97	107	195	767	412	62	45	25
20	20	33	43	e38	123	104	193	649	360	74	100	200
21	19	32	38	e39	137	103	220	568	318	59	98	168
22	24	32	41	e41	112	89	262	514	284	57	67	125
23	454	33	e34	e39	96	86	262	472	258	58	138	79
24	490	38	e33	e38	95	97	245	429	233	51	910	57
25	207	40	e32	e36	86	98	230	523	212	47	278	47
26 27 28 29 30 31	123 90 72 63 60 59	38 37 36 35 35	e31 e33 e35 e34 e33	e42 e50 e43 e39 e35 e35	70 51 e44 	89 83 85 91 91 85	206 476 2050 1310 857	687 637 528 1000 1780 693	244 227 188 168 152	45 56 63 59 62 62	139 100 81 68 58 51	41 38 35 33 31
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	2217 71.52 490 14 30 4400 0.12 0.14	1161 38.70 59 32 36 2300 0.07 0.08	1222 39.42 68 31 35 2420 0.07 0.08	1148 37.03 50 31 37 2280 0.06 0.07	2073 74.04 137 34 76 4110 0.13 0.13	3649 117.7 371 34 97 7240 0.21 0.24	11053 368.4 2050 69 238 21920 0.64 0.72	27754 895.3 3800 308 648 55050 1.56 1.80	16162 538.7 2090 152 400 32060 0.94 1.05	2761 89.06 230 45 74 5480 0.16 0.18	3826 123.4 910 35 67 7590 0.22 0.25	1411 47.03 200 21 32 2800 0.08 0.09
STATIST	rics of M	ONTHLY ME	AN DATA	FOR WATER	YEARS 194	10 - 2002,	BY WATER	R YEAR (WY	<i>(</i>)			
MEAN	161.1	245.3	182.4	205.8	366.0	695.0	641.2	688.5	602.0	405.7	266.8	227.9
MAX	1274	2060	1085	1429	1066	2957	2736	3529	2570	4207	3696	3169
(WY)	1999	1962	1983	1946	1984	1979	1973	1974	1990	1993	1993	1965
MIN	2.98	2.38	2.19	0.76	13.8	10.8	5.35	9.62	21.7	7.31	6.34	3.10
(WY)	1954	1956	1956	1977	1954	1954	1956	1956	1940	1954	1955	1955

05455500 ENGLISH RIVER AT KALONA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1940 - 2002
ANNUAL TOTAL	190754	74437	
ANNUAL MEAN	522.6	203.9	390.4
HIGHEST ANNUAL MEAN			1721 1993
LOWEST ANNUAL MEAN			41.7 1954
HIGHEST DAILY MEAN	6030 Mar 16	3800 May 12	22300 Jul 6 1993
LOWEST DAILY MEAN	14 Sep 5	14 Oct 3	0.66 Feb 5 1977
ANNUAL SEVEN-DAY MINIMUM	16 Sep 1	22 Oct 16	0.68 Feb 1 1977
MAXIMUM PEAK FLOW		4610 May 12	36100 Jul 6 1993
MAXIMUM PEAK STAGE		14.42 May 12	22.55 Jul 6 1993
INSTANTANEOUS LOW FLOW		13 Oct 3a	
ANNUAL RUNOFF (AC-FT)	378400	147600	282800
ANNUAL RUNOFF (CFSM)	0.91	0.36	0.68
ANNUAL RUNOFF (INCHES)	12.36	4.82	9.24
10 PERCENT EXCEEDS	1470	530	871
50 PERCENT EXCEEDS	100	62	120
90 PERCENT EXCEEDS	26	32	12

a Also Oct. 4. e Estimated.

05455700 IOWA RIVER NEAR LONE TREE, IA

LOCATION.--Lat $41^{\circ}25^{\circ}15^{\circ}$, long $91^{\circ}28^{\circ}25^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.6, T.76 N., R.5 W., Louisa County, Hydrologic Unit 07080209, on left bank 2,000 ft downstream from tri-county bridge on county highway W66, 5 mi southwest of Lone Tree, 6.2 mi downstream from English River, and at mile 47.2.

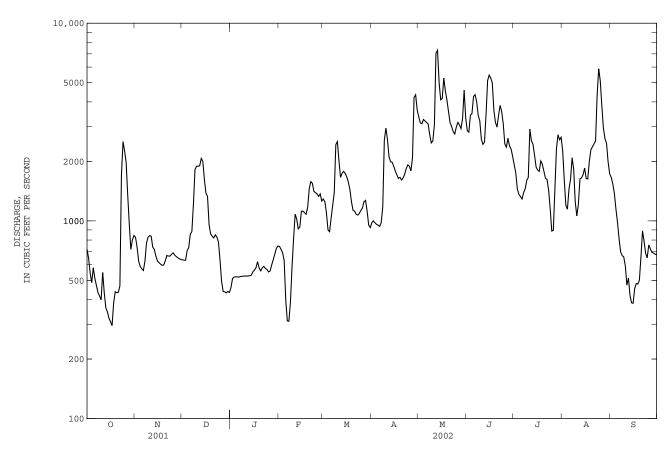
DRAINAGE AREA. -- 4,293 mi².

PERIOD OF RECORD. -- October 1956 to current year.

GAGE.--Water-stage recorder. Datum of gage is 588.16 ft above NGVD of 1929. Prior to Dec. 28, 1956, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Coralville Lake (station 05453510), 36.1 mi upstream, since Sept. 17, 1958. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 25, 1944, reached a stage of 19.94 ft, discharge not determined, from information by U.S. Army Corps of Engineers.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	719 648	826 734	635 633	e461 e511	e742 e718	1290 1250	979 1000	3360 3130	2860 2810	1920 1750	e2250 e1610	1660 1540
3	545	624	632	e519	e689	e1100	978	3100	3420	1450	e1200	1380
4	487	588	709	e521	e629	e899	961	3260	3490	1360	e1150	1150
5	579	572	732	e521	e396	e882	951	3200	4260	1330	e1450	983
6	512	561	857	e519	e312	e1030	938	3150	4350	1290	e1620	816
7 8	471 433	625 772	883 1220	e523 e524	e311 e390	1200 1390	979 1180	3090 2730	4010 3420	1390 1450	e2090 1830	697 667
9	433	772 827	1820	e524 e525	e583	2430	2560	2480	3420	1600	1250	658
10	398	842	1890	e526	810	2520	2950	2540	2590	1660	1060	593
11	548	836	1890	e525	1080	2010	2580	3060	2440	2910	1210	473
12	434	736	1900	e527	1020	1660	2110	7050	2500	2540	1630	514
13	364	717	2070	e528	911	1740	1990	7300	3440	2440	1650	420
14 15	347 322	663 626	2000 1620	e531 e553	933 1120	1780 1740	1980 1890	5030 4100	5130 5460	2150 1870	1710 1850	385 383
										1070		
16	309	615	1380	e564	1120	1670	1790	4160	5280	1810	1640	455
17 18	295 383	604 596	1330 957	e580 e622	1100 1080	1570 1440	1710 1640	5270 4550	4980 3630	1780 2010	1630 2000	482 479
19	438	596 598	957 858	e522	1170	1250	1660	4090	3150	1930	2290	501
20	433	628	836	e559	1450	1130	1610	3580	2980	1780	2370	659
0.1	425	660	000	. 570	1500	1100	1650	2140	2.400	1640	0.450	890
21 22	435 469	668 664	820 850	e579 e589	1580 1550	1120 1080	1650 1720	3140 3000	3420 3840	1640 1620	2450 2540	788
23	1710	663	e827	e574	1410	1070	1840	2830	3570	1430	4330	685
24	2520	677	e780	e568	1390	1090	1920	2750	3090	1150	5880	650
25	2260	689	e630	e552	1370	1130	1890	2980	2450	888	5110	756
26	1980	672	e495	e558	1330	1160	1790	3150	2360	896	3830	723
27	1350	660	e439	e598	1370	1250	2090	3060	2620	1450	2950	694
28 29	962 717	651 643	e438 e432	e636 e678	1260	1270 1120	4210 4350	2930 3300	2390 2310	e2320 e2730	2610 2470	687 680
30	801	638	e432	e726		952	3640	4580	2120	e2570	1990	673
31	844		e435	e747		925		3320		e2650	1730	
TOTAL	23130	20215	31437	17521	27824	42148	57536	113270	101580	55764	69380	22121
MEAN	746.1	673.8	1014	565.2	993.7	1360	1918	3654	3386	1799	2238	737.4
MAX	2520 295	842 561	2070 432	747 461	1580 311	2520 882	4350 938	7300 2480	5460 2120	2910 888	5880 1060	1660 383
MIN AC-FT	45880	40100	62360	34750	55190	83600	114100	224700	201500	110600	137600	43880
CFSM	0.17	0.16	0.24	0.13	0.23	0.32	0.45	0.85	0.79	0.42	0.52	0.17
IN.	0.20	0.18	0.27	0.15	0.24	0.37	0.50	0.98	0.88	0.48	0.60	0.19
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	59 - 2002,	BY WATE	R YEAR (W	Y)			
MEAN	1526	1957	1851	1472	2437	4690	5091	4664	4789	4397	2812	2012
MAX	6115	6347	6678	7814	7205	10410	12230	14030	13150	30320	26150	18150
(WY)	1994	1962	1983	1973	1973	1993	1979	1993	1974	1993	1993	1993
MIN	192 1989	190 1967	168 1989	154 1977	158 1977	539 1977	533 1989	282 1977	147 1977	180 1977	186 1989	210 1988
(WY)	1989	190/	1989	19//	19//	19//	1989	19//	19//	19//	1989	1388

05455700 IOWA RIVER NEAR LONE TREE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1959 - 2002a
ANNUAL TOTAL	1290115		581926			
ANNUAL MEAN	3535		1594		3143	
HIGHEST ANNUAL MEAN					11900	1993
LOWEST ANNUAL MEAN					483	1989
HIGHEST DAILY MEAN	15800	Mar 17	7300	May 13	55100	Jul 7 1993
LOWEST DAILY MEAN	280	Jan 1	295	Oct 17	69	Aug 4 1977
ANNUAL SEVEN-DAY MINIMUM	324	Jan 1	351	Oct 12	75	Jul 30 1977
MAXIMUM PEAK FLOW			8070	May 12	57100	Jul 7 1993
MAXIMUM PEAK STAGE			10.94	May 12	22.94	Jul 7 1993
ANNUAL RUNOFF (AC-FT)	2559000		1154000		2277000	
ANNUAL RUNOFF (CFSM)	0.82		0.37		0.73	
ANNUAL RUNOFF (INCHES)	11.18		5.04		9.95	
10 PERCENT EXCEEDS	9210		3230		7600	
50 PERCENT EXCEEDS	1400		1200		1770	
90 PERCENT EXCEEDS	435		512		320	

Post regulation. Estimated.

Figure 15. Locations of active continuous-record and crest-stage gaging stations in the Cedar River drainage basin.

IOWA RIVER BASIN (CEDAR RIVER BASIN)

Gaging Stations

05457700	Cedar River at Charles City, IA
05458000	Little Cedar River near Ionia, IA
05458300	Cedar River at Waverly, Ia
05458500	Cedar River at Janesville, IA
05458900	West Fork Cedar River at Finchford, IA
05459500	Winnebago River at Mason City, IA
05460000	Clear Lake at Clear Lake, IA
05462000	Shell Rock River at Shell Rock, IA
05463000	Beaver Creek at New Hartford, IA
05463050	Cedar River at Cedar Falls, Ia
05463500	Black Hawk Creek at Hudson, IA
05464000	Cedar River at Waterloo, IA
05464220	Wolf Creek near Dysart, IA
05464500	Cedar River at Cedar Rapids, IA
05464942	Hoover Creek at Hoover National Historic Site at West Branch, Ia 210
05465000	Cedar River near Conesville, IA

Crest Stage Gaging Stations

05457440	Deer Creek near Carpenter, IA
0545776680	Gizzard Creek Tributary near Bassett, IA
05459490	Spring Creek near Mason City, IA
05460100	Willow Creek near Mason City, IA
05464025	Miller Creek near Eagle Center, IA
05464535	Prairie Creek Tributary near Van Horne, IA
05464562	Thunder Creek at Blairstown, IA

05457700 CEDAR RIVER AT CHARLES CITY, IA

LOCATION.--Lat $43^{\circ}03^{\circ}45^{\circ}$, long $92^{\circ}40^{\circ}23^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$, sec.12, T.95 N., R.16 W., Floyd County, Hydrologic Unit 07080201, on right bank 800 ft downstream from bridge on U.S. Highway 18 (Brantingham Street) in Charles City, 10.6 mi upstream from Gizzard Creek, and at mile 252.9 upstream from mouth of Iowa River.

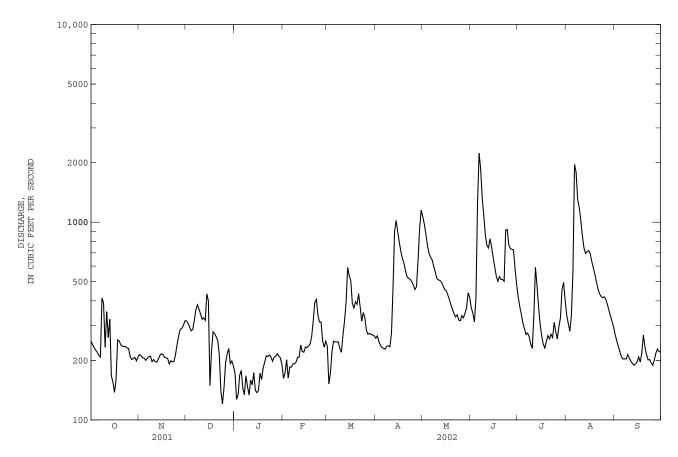
DRAINAGE AREA. -- 1,054 mi2.

PERIOD OF RECORD.--Discharge records from October 1964 to September 1995; October 1, 2000 to September 30, 2001. Stage-only records from October 1995 to September 2000.

GAGE.--Water-stage recorder. Datum of gage is 973.02 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station. Occasional minor regulation by dam 0.2 mi upstream from gage. Daily wire-weight gage readings available in district office for period Sept. 13, 1945 to June 30, 1954, at same site and datum. Discharge not published for this period because of extreme regulation of streamflow by power dam 0.2 mi upstream.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 27, 1961, reached a stage of 21.6 ft, from flood marks, discharge, 29,200 ${\rm ft}^3/{\rm s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	250	214	317	e172	e162	236	259	1070	369	420	339	269
2	240	211	308	e127	e173	152	266	977	347	374	307	251
3	232	206	295	e134	e201	e172	248	870	313	342	281	235
4	225	205	282	e168	e163	e222	238	763	413	309	337	221
5	220	200	287	e178	e185	250	232	696	1240	289	575	208
6	212	205	318	e145	185	248	230	665	2240	270	1960	203
7	208	209	361	e134	192	248	228	644	1860	275	1790	204
8	414	210	382	e167	192	248	236	598	1330	264	1300	203
9	390	197	363	e147	e196	e230	237	560	1080	242	1190	214
10	233	202	343	e134	e207	e220	234	519	858	230	1020	205
11	353	197	323	e159	e207	e268	274	511	765	335	858	198
12	261	196	328	e151	e239	e316	464	507	741	591	743	193
13	323	203	319	e173	e222	393	900	497	825	480	695	189
14	167	212	434	e141	e220	589	1020	475	748	374	709	192
15	155	216	400	e137	e234	537	894	457	664	305	719	197
16	138	214	149	e141	e232	507	793	450	593	266	695	208
17	160	207	223	e172	e236	388	711	429	534	242	633	196
18	254	206	279	e160	242	368	655	406	502	231	588	219
19	251	204	273	183	264	396	619	383	531	250	545	268
20	240	192	263	196	317	384	566	362	513	267	499	234
21	236	199	252	211	393	435	529	344	513	257	459	214
22	235	197	e212	209	407	372	519	332	502	271	434	201
23	235	197	e139	213	339	316	514	340	913	261	421	202
24	231	214	e121	208	313	349	499	320	918	311	415	e194
25	230	241	e146	198	313	328	481	317	767	279	419	189
26 27 28 29 30 31	209 202 204 207 199 208	266 287 290 300 317	e195 e215 e230 e193 e199 e187	207 210 216 210 206 191	251 233 250 	284 271 274 270 269 266	456 473 644 932 1150	337 328 346 369 439 417	735 728 725 581 483	257 296 329 457 496 405	407 384 357 335 314 294	201 218 228 221 221
TOTAL	7322	6614	8336	5398	6768	9806	15501	15728	23331	9975	20022	6396
MEAN	236.2	220.5	268.9	174.1	241.7	316.3	516.7	507.4	777.7	321.8	645.9	213.2
MAX	414	317	434	216	407	589	1150	1070	2240	591	1960	269
MIN	138	192	121	127	162	152	228	317	313	230	281	189
AC-FT	14520	13120	16530	10710	13420	19450	30750	31200	46280	19790	39710	12690
CFSM	0.22	0.21	0.26	0.17	0.23	0.30	0.49	0.48	0.74	0.31	0.61	0.20
IN.	0.26	0.23	0.29	0.19	0.24	0.35	0.55	0.56	0.82	0.35	0.71	0.23
STATIS'	rics of i	MONTHLY ME	AN DATA	FOR WATER	YEARS 196	5 - 1995,	BY WATER	R YEAR (WY)			
MEAN	600.0	524.0	379.1	275.9	366.5	1267	1536	1039	1003	829.8	711.2	539.9
MAX	2339	1639	1396	888	1707	3172	5264	3434	4071	3009	4704	1670
(WY)	1987	1983	1983	1973	1984	1983	1965	1991	1993	1993	1993	1965
MIN	126	97.7	85.4	86.3	127	176	251	197	130	159	114	116
(WY)	1977	1977	1990	1990	1990	1968	1968	1977	1977	1988	1988	1976

05457700 CEDAR RIVER AT CHARLES CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1965 - 1995
ANNUAL TOTAL	421383	135197	
ANNUAL MEAN	1154	370.4	757.3
HIGHEST ANNUAL MEAN			2048 1993
LOWEST ANNUAL MEAN			159 1977
HIGHEST DAILY MEAN	17600 Apr 8	2240 Jun 6	22100 Aug 17 1993
LOWEST DAILY MEAN	121 Dec 24	121 Dec 24	60 Nov 23 1976a
ANNUAL SEVEN-DAY MINIMUM	177 Dec 23	148 Jan 10	65 Dec 17 1989
MAXIMUM PEAK FLOW		2370 Jun 6	31200 Jul 21 1999
MAXIMUM PEAK STAGE		5.28 Jun 6	22.81 Jul 21 1999
INSTANTANEOUS LOW FLOW		98 Mar 2	45 Nov 17 1989
ANNUAL RUNOFF (AC-FT)	835800	268200	548600
ANNUAL RUNOFF (CFSM)	1.10	0.35	0.72
ANNUAL RUNOFF (INCHES)	14.87	4.77	9.76
10 PERCENT EXCEEDS	2520	701	1630
50 PERCENT EXCEEDS	312	269	380
90 PERCENT EXCEEDS	209	189	155

a Also Jan. 7, 1978. e Estimated.

05458000 LITTLE CEDAR RIVER NEAR IONIA, IA

LOCATION.--Lat $43^{\circ}02^{\circ}05^{\circ}$, long $92^{\circ}30^{\circ}05^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.21, T.95 N., R.14 W., Chickasaw County, Hydrologic Unit 07080201, on left bank 12 ft downstream from bridge on county highway B57, 2.4 mi west of Ionia, 6.4 mi upstream from mouth, and 7.6 mi downstream from Beaver Creek.

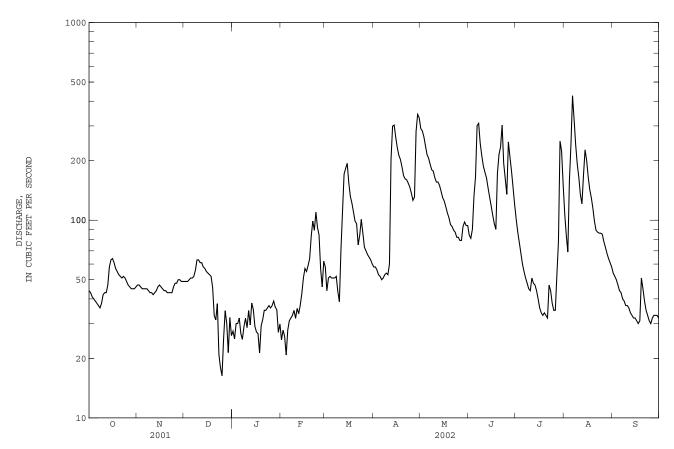
DRAINAGE AREA.--306 mi².

PERIOD OF RECORD.--October 1954 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1708: 1959.

GAGE.--Water-stage recorder. Datum of gage is 973.35 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	44 43 41 40 39	47 47 46 45 45	49 49 49 50	e27 e25 30 30 32	e25 e28 e26 e21 e28	58 44 51 52 51	58 58 56 53 52	291 283 264 238 215	84 81 e90 132 166	101 87 77 68 60	108 84 69 159 243	54 52 50 47 44
6	38	45	51	e27	31	51	50	206	301	55	426	43
7	37	45	52	e25	32	51	51	192	309	51	323	40
8	36	44	56	e29	33	52	53	180	245	48	241	39
9	38	43	63	e32	35	e44	54	177	212	45	193	37
10	42	43	63	e29	e32	e39	53	164	188	44	165	37
11	43	42	61	e35	e36	e71	60	156	175	51	135	36
12	43	43	61	e30	e34	e111	203	156	164	48	121	34
13	47	44	58	e38	e37	171	299	150	146	47	169	33
14	58	46	57	e35	e43	183	303	140	131	44	227	32
15	63	47	55	e29	51	194	263	130	118	40	201	32
16	64	46	54	e27	57	155	233	125	106	36	166	31
17	61	45	53	e27	55	132	213	117	96	34	143	30
18	57	44	52	e21	59	122	203	109	90	33	130	31
19	55	44	e46	e29	64	110	186	103	173	34	115	51
20	53	43	e33	e31	83	99	168	e95	215	33	99	45
21	52	43	e31	35	99	96	162	93	235	32	89	39
22	51	43	e38	35	89	75	160	89	303	47	87	35
23	52	43	e21	36	110	84	154	87	194	44	86	33
24	51	46	e18	37	92	101	147	82	162	38	86	31
25	49	48	e16	36	84	86	137	82	135	35	85	30
26 27 28 29 30 31	47 46 45 45 45	48 50 50 49 49	e25 e35 e30 e21 e32 e26	37 39 e36 e35 e27 e30	57 46 62 	73 70 67 65 63 60	126 131 281 343 330	79 79 93 98 94 94	249 209 177 146 120	35 53 78 251 224 152	78 73 68 64 61 58	32 33 33 33 32
TOTAL	1471	1363	1356	971	1449	2681	4640	4461	5152	2025	4352	1129
MEAN	47.45	45.43	43.74	31.32	51.75	86.48	154.7	143.9	171.7	65.32	140.4	37.63
MAX	64	50	63	39	110	194	343	291	309	251	426	54
MIN	36	42	16	21	21	39	50	79	81	32	58	30
AC-FT	2920	2700	2690	1930	2870	5320	9200	8850	10220	4020	8630	2240
CFSM	0.16	0.15	0.14	0.10	0.17	0.28	0.51	0.47	0.56	0.21	0.46	0.12
IN.	0.18	0.17	0.16	0.12	0.18	0.33	0.56	0.54	0.63	0.25	0.53	0.14
STATIS	rics of i	MONTHLY ME	EAN DATA	FOR WATER	YEARS 195	55 - 2002,	BY WATER	R YEAR (W)	<i>(</i>)			
MEAN	139.8	119.3	76.58	48.20	85.16	359.5	378.6	246.2	291.5	200.3	169.9	131.2
MAX	902	632	503	265	644	1056	1636	906	1199	1317	1744	807
(WY)	1987	1983	1983	1973	1984	1961	2001	1991	2000	1999	1993	1965
MIN	9.64	12.4	4.93	4.20	3.40	34.5	47.3	30.5	18.4	14.2	7.23	12.7
(WY)	1990	1990	1990	1959	1959	1964	1957	1958	1989	1964	1989	1988

05458000 LITTLE CEDAR RIVER NEAR IONIA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1955 - 2002
ANNUAL TOTAL	100064		31050			
ANNUAL MEAN	274.1		85.07		187.5	
HIGHEST ANNUAL MEAN					584	1993
LOWEST ANNUAL MEAN					32.0	1977
HIGHEST DAILY MEAN	7530	Apr 13	426	Aug 6	9930	Mar 27 1961
LOWEST DAILY MEAN	16	Dec 25	16	Dec 25e	3.0	Feb 4 1959a
ANNUAL SEVEN-DAY MINIMUM	24	Dec 23	24	Dec 23	3.0	Feb 3 1959
MAXIMUM PEAK FLOW			479	Aug 6	14000	Aug 16 1993
MAXIMUM PEAK STAGE			5.04	Aug 6	18.99	Aug 16 1993
INSTANTANEOUS LOW FLOW					3.0	Feb 4 1959
ANNUAL RUNOFF (AC-FT)	198500		61590		135800	
ANNUAL RUNOFF (CFSM)	0.90		0.28		0.61	
ANNUAL RUNOFF (INCHES)	12.16		3.77		8.32	
10 PERCENT EXCEEDS	539		192		390	
50 PERCENT EXCEEDS	52		52		72	
90 PERCENT EXCEEDS	35		32		20	

Also Feb. 5-9, 1959. Estimated.

05458300 CEDAR RIVER AT WAVERLY, IA

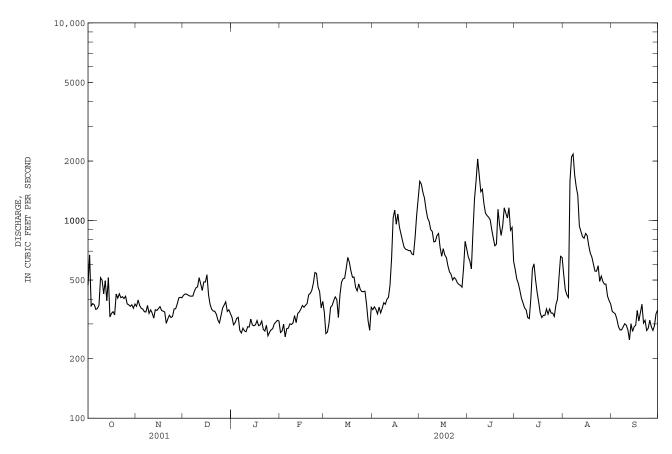
LOCATION.--Lat $42^{\circ}44^{\circ}14^{\circ}$, long $92^{\circ}28^{\circ}12^{\circ}$, in NE^{1}_{4} NW^{1}_{4} SW^{1}_{4} sec.35, T.92 N., R.14 W., Bremer County, Hydrologic Unit 07080201, on left bank 300 ft downstream from bridge on county highway at Waverly, 3.6 mi upstream from West Fork Cedar River, and at mile 207.7 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 1,547 mi².

PERIOD OF RECORD.--August 30, 2000 to current year.

GAGE.--Water-stage recorder. Datum of gage is 892.64 ft above NGVD of 1929.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e470	e368	e419	e324	e271	344	354	e1580	e655	e566	e532	e347
2	e670	e396	e425	e297	e276	268	366	e1530	e625	e506	e446	e342
3	e370	e372	e424	e304	299	e273	355	e1390	e570	e481	e421	e337
4	e380	e360	e419	e320	258	e302	337	e1300	e880	e442	e408	e316
5	375	e357	e415	e324	284	364	365	e1140	1290	e404	1580	e290
6	355	e346	e414	e278	e285	372	341	e1030	1590	e383	2100	e280
7	359	e345	e415	e270	e300	393	360	e990	2050	e361	2170	e280
8	373	e372	440	e286	e298	411	384	e900	1700	e353	1700	e290
9	514	e339	457	e276	e303	398	377	e880	1400	e323	1480	e301
10	499	e353	462	e274	e331	323	399	e780	1440	e319	1340	e295
11	426	e340	514	e290	e304	e421	409	e785	1220	e404	e938	e280
12	496	e321	478	e289	e338	488	472	e840	e1090	e570	e881	e249
13	393	e354	443	e317	e345	507	643	e860	e1060	e604	e829	e301
14	514	e351	489	e297	e356	511	1030	e730	e1040	e502	e813	e275
15	325	e359	489	e293	e372	573	1130	e660	e1010	e434	e860	e290
16	339	e367	532	e297	e364	651	958	e720	e900	e387	e839	e295
17	e346	e351	422	e312	e373	616	1080	e670	e815	e340	e746	351
18	333	e348	e376	e294	e380	557	927	e650	e745	e323	e684	310
19	425	e345	e356	e297	421	516	854	e590	e760	e332	e653	342
20	405	e302	e349	e310	428	518	789	e550	e1140	e332	e601	377
21	426	e318	e348	e282	443	460	733	e535	e950	e357	e554	303
22	407	e332	e336	e276	482	e441	716	e500	e840	e336	e554	313
23	412	e323	e314	e295	546	478	711	e515	e940	e357	e591	278
24	403	e327	e303	e261	540	448	704	e505	e1160	e340	e492	285
25	e414	e357	e331	e272	461	437	705	e485	1090	e340	e523	313
26 27 28 29 30 31	e379 e375 e368 e375 e360 e378	358 e378 406 409 e407	e361 e374 e388 e347 e354 e338	e280 e284 e300 e306 e313 e310	437 362 390 	437 439 e377 e310 e279 364	677 672 818 1060 1290	e475 e470 e460 e575 e785 e720	1030 1160 e893 e923 e621	e327 e374 e400 e519 e659 e651	e492 e477 e477 e415 e394 e378	290 278 294 338 352
TOTAL	12664	10661	12532	9128	10247	13276	20016	24600	31587	13026	25368	9192
MEAN	408.5	355.4	404.3	294.5	366.0	428.3	667.2	793.5	1053	420.2	818.3	306.4
MAX	670	409	532	324	546	651	1290	1580	2050	659	2170	377
MIN	325	302	303	261	258	268	337	460	570	319	378	249
AC-FT	25120	21150	24860	18110	20320	26330	39700	48790	62650	25840	50320	18230
CFSM	0.26	0.23	0.26	0.19	0.24	0.28	0.43	0.51	0.68	0.27	0.53	0.20
IN.	0.30	0.26	0.30	0.22	0.25	0.32	0.48	0.59	0.76	0.31	0.61	0.22
STATIST	TICS OF M	MONTHLY ME	AN DATA F	OR WATER	YEARS 200	0 - 2002,	BY WATER	YEAR (WY	·)			
MEAN	385.5	376.6	373.1	358.2	351.3	648.3	4060	2567	1872	1062	887.5	454.7
MAX	409	398	404	422	366	868	7454	4340	2634	1232	1307	525
(WY)	2002	2001	2002	2001	2002	2001	2001	2001	2001	2002	2002	2001
MIN	363	355	342	294	337	428	667	794	1109	893	468	415
(WY)	2001	2002	2001	2002	2001	2002	2002	2002	2002	2001	2001	2002

05458300 CEDAR RIVER AT WAVERLY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	NDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	3 2000 - 2002
ANNUAL TOTAL	580369		192297			
ANNUAL MEAN	1590		526.8		1118	
HIGHEST ANNUAL MEAN					1584	2001
LOWEST ANNUAL MEAN					651	2002
HIGHEST DAILY MEAN	23400	Apr 14	2170	Aug 7	23400	Apr 14 2001
LOWEST DAILY MEAN	270	Feb 27	249	Sep 12	250	Dec 18 2000
ANNUAL SEVEN-DAY MINIMUM	283	Feb 27	279	Jan 21	279	Jan 21 2002
MAXIMUM PEAK FLOW			2550	Aug 7	25600	Apr 14 2001
MAXIMUM PEAK STAGE			5.96	Aug 7	12.95	Apr 14 2001
ANNUAL RUNOFF (AC-FT)	1151000		381400		809600	
ANNUAL RUNOFF (CFSM)	1.03	3	0.34		0.72	
ANNUAL RUNOFF (INCHES)	13.96	5	4.62		9.82	
10 PERCENT EXCEEDS	3350		944		2190	
50 PERCENT EXCEEDS	480		403		458	
90 PERCENT EXCEEDS	334		295		307	

e Estimated

05458500 CEDAR RIVER AT JANESVILLE, IA

LOCATION.--Lat $42^{\circ}38^{\circ}54^{\circ}$, long $92^{\circ}27^{\circ}54^{\circ}$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec.35, T.91 N., R.14 W., Bremer County, Hydrologic Unit 07080201, on left bank 300 ft downstream from bridge on county highway at Janesville, 3.6 mi upstream from West Fork Cedar River, and at mile 207.7 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 1,661 mi².

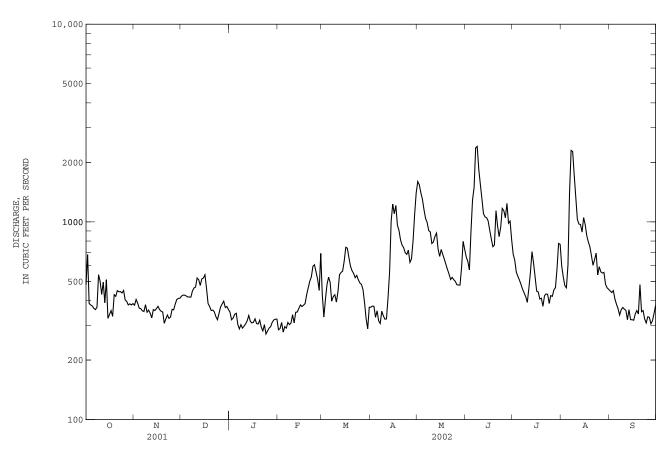
PERIOD OF RECORD.--October 1904 to Sept. 1906, October 1914 to September 1927, October 1932 to September 1942, October 1945 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "Red Cedar River at Janesville", 1905-06.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1906 (M), 1915-16 (M), 1917, 1918-19 (M), 1920-27, 1933-37 (M), 1940-42 (M), WDR IA-97-1:1996.

GAGE.--Water-stage recorder. Datum of gage is 868.26 ft above NGVD of 1929. Prior to July 26, 1919, nonrecording gage at site 1,000 ft downstream at datum 4.0 ft lower. July 26, 1919 to Sept. 30, 1927, Nov. 14, 1932 to Sept 30, 1942, and Apr. 26, 1946 to Nov. 10, 1949, nonrecording gage at county bridge 300 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation during low water caused by powerplant at Waverly, 10 mi upstream. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 17, 1945, reached a stage of 16.2 ft, from floodmark at site 300 ft upstream, discharge, 34,300 ft³/s. Flood of Mar. 16, 1929, reached a stage of about 16 ft, from information by City of Waterloo, discharge not determined.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	481 684 386	379 405 388	421 426 426	e350 e320 e326	e284 e289 e310	426 330 e405	370 375 374	1600 1540 1400	664 631 572	685 639 556	598 526 476	447 439 449
4 5	e380 e375	366 364	422 417	e341 e345	e277 e295	e482 525	329 355	e1300 e1150	889 1290	530 507	464 606	407 383
6 7	e365 e360	355 352	417 416	e303 e288	e290 e310	495 397	316 306	1040 993	1490 2370	482 456	1400 2300	364 338
8 9 10	e370 e540 e500	381 349 358	447 463 468	302 e290 297	302 308 339	419 428 e393	353 335 322	904 890 777	2410 1840 1550	437 418 392	2270 1720 1330	359 369 362
11 12	e430 e495	345 327	520 510	305 316	308 349	e443 541	323 413	792 845	1310 1100	460 555	1030 975	357 320
13 14	e390 e510	360 356	477 515	336 e314	350 365	555 564	557 1010	878 727	1060 1050	707 619	970 888	360 320
15	e325	364	e520	e308	380	634	1230	669	1010	526	1050	320
16 17	e340 356	374 360	e540 461	e310 e323	373 379	744 736	e1100 1210	725 683	907 820	446 442	970 853	318 342
18	333	353	386	e306	386	660	962 905	647	749	407	792	356
19 20	428 420	350 307	373 356	e304 e318	428 464	597 566	810	609 574	764 1140	411 374	748 675	342 482
21	449	323	358	293	501	549	762	544	954	423	603	351
22 23	443 444	338 325	e350 e331	281 302	527 596	522 536	740 698	511 524	842 e938	432 e430	644 695	356 323
24	437	330	e320	e271	607	510	685	510	1170	387	539	308
25	450	361	e345	e281	558	491	719	500	1140	424	593	331
26	403	359	e372	e290	513	483	624	481	1050	420	559	329
27 28	396 e380	384 405	e384 e397	e295 e311	450 693	455 e390	650 801	479 479	1240 985	453 465	551 555	305 316
29	385	410	e369	319		323	1090	587	1010	580	483	344
30 31	380 386	411	e373 e360	322 322		288 370	1400	797 725	813	778 770	464 456	378
31	300		6360	322		370		123		770	450	
TOTAL MEAN	13021 420.0	10839 361.3	12940 417.4	9589 309.3	11231 401.1	15257 492.2	20124 670.8	24880 802.6	33758 1125	15611 503.6	26783 864.0	10775 359.2
MAX	684	411	540	350	693	744	1400	1600	2410	778	2300	482
MIN	325	307	320	271	277	288	306	479	572	374	456	305
AC-FT	25830	21500	25670	19020	22280	30260	39920	49350	66960	30960	53120	21370
CFSM IN.	0.25 0.29	0.22 0.24	0.25 0.29	0.19 0.21	0.24 0.25	0.30 0.34	0.40 0.45	0.48 0.56	0.68 0.76	0.30 0.35	0.52 0.60	0.22
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	05 - 2002	, BY WATE	R YEAR (W	Y)			
MEAN	617.1	586.1	436.1	346.4	548.2	1813	1896	1297	1379	1066	792.4	624.2
MAX	3793	2672	2404	1293	3393	4851	8966	5668	6223	6328	7762	2805
(WY) MIN	1987 101	1983 121	1983 75.2	1983 80.3	1984 61.2	1973 124	1993 247	1991 134	1993 95.2	1999 84.7	1993 83.6	1993 117
(WY)	1935	1934	1934	1917	1959	1934	1957	1934	1934	1934	1934	1934

05458500 CEDAR RIVER AT JANESVILLE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALE	NDAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1905 - 2002
ANNUAL TOTAL	619736		204808			
ANNUAL MEAN	1698		561.1		951.2	
HIGHEST ANNUAL MEAN					3454	1993
LOWEST ANNUAL MEAN					187	1934
HIGHEST DAILY MEAN	20600	Apr 14	2410	Jun 8	38800	Jul 22 1999
LOWEST DAILY MEAN	260	Feb 28	271	Jan 24	28	Oct 21 1922
ANNUAL SEVEN-DAY MINIMUM	280	Feb 28	288	Jan 21	50	Feb 1 1918
MAXIMUM PEAK FLOW			2590	Jun 7	42200	Jul 22 1999
MAXIMUM PEAK STAGE			3.48	Jun 7	17.15	Jul 22 1999
INSTANTANEOUS LOW FLOW			235	Mar 2		
ANNUAL RUNOFF (AC-FT)	1229000		406200		689100	
ANNUAL RUNOFF (CFSM)	1.02	2	0.34		0.57	
ANNUAL RUNOFF (INCHES)	13.88	3	4.59		7.78	
10 PERCENT EXCEEDS	3790		1000		2100	
50 PERCENT EXCEEDS	504		437		477	
90 PERCENT EXCEEDS	340		316		164	

e Estimated

05458900 WEST FORK CEDAR RIVER AT FINCHFORD, IA

LOCATION.--Lat $42^{\circ}37^{\circ}50^{\circ}$, long $92^{\circ}32^{\circ}24^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.6, T.90 N., R.14 W., Black Hawk County, Hydrologic Unit 07080204, on left bank 100 ft downstream from bridge on county highway C55 at Finchford, 3.2 mi upstream from Shell Rock River, and 5.0 mi upstream from mouth.

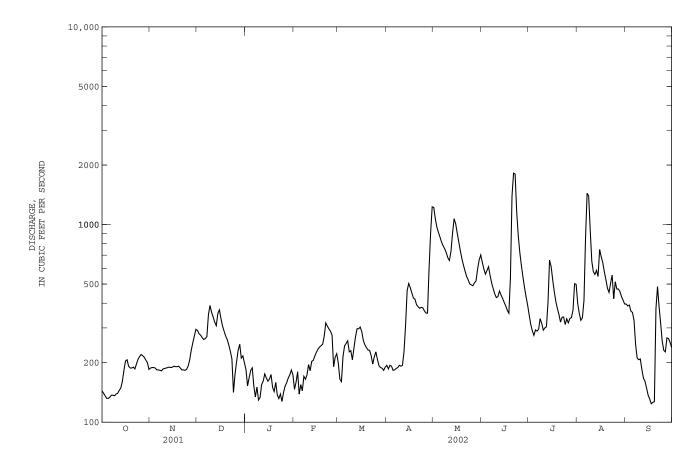
DRAINAGE AREA. -- 846 mi².

PERIOD OF RECORD.--October 1945 to current year. Prior to October 1955, published as "West Fork Shell Rock River at Finchford." REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946 (M), 1947.

GAGE.--Water-stage recorder. Datum of gage is 867.54 ft above NGVD of 1929. Prior to June 10, 1955, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. An authorized diversion of 2,100 acre-ft is made into Big Marsh, 16 mi upstream from gage, each year between September 1 and November 15. Net effect on daily flows at gage is unknown. U.S. Geological Survey Data Collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in March 1929 reached a stage of about 14 ft, from information by local resident, discharge, about 12,800 $\,\mathrm{ft}^3/\mathrm{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	144 140	188 189	291 280	e185 e153	e147 e159	e199 e165	194 186	1220 1070	647 596	348 312	e397 e356	e396 e387
3 4	136 132	189 188	276 268	e168 e183	e180 e139	e161 e215	194 192	969 912	561 585	290 275	e328 e338	e392 e365
5	132	184	262	e188	e155	e243	183	863	612	293	e413	359
6	134	184	265	e153	e144	e250	184	814	553	289	e854	327
7 8	137 137	183 182	271 350	e134 e151	e171 e165	258 227	187 189	780 754	506 474	295 334	e1440 e1390	247 211
9	136	186	e390	e130	e174	230	194	e720	445	316	e936	207
10	139	187	360	e133	e196	207	192	679	427	292	e651	209
11	140	188	341	e155	e182	237	194	658	432	e300	e578	185
12 13	145 149	189 190	321 308	e161 e176	e203 e205	271 297	228 310	731 904	461 440	304 402	e559 e587	167 161
14	161	189	354	e167	e216	297	464	1070	423	660	e545	149
15	183	190	370	e161	e226	303	503	1010	404	614	e748	137
16	204	192	335	e165	234	287	479	904	388	526	e688	131
17 18	207 192	191 191	307 289	e174 e150	240 244	259 246	451 425	816 736	368 356	459 409	e642 e578	124 126
18	192	191	289 273	e150 e143	244	238	425	671	536	409 376	e578 e527	126
20	188	188	262	e159	273	232	393	622	1390	351	e477	376
21	190	184	246	e138	318	231	384	582	1820	321	e454	485
22 23	186 197	184 183	e228 e209	e132 e139	e306 e297	217 197	377 381	546 525	1800 1160	e340 e341	e504 e555	384 317
24	208	185	e142	e127	e289	214	379	501	880	e312	e421	257
25	215	192	e175	e141	e276	227	366	495	722	e334	e513	231
26 27	220 217	206 231	e203 e232	e152 e158	e191 e213	208 193	357 356	490 507	621 543	e318 e335	e472 e472	227 267
28	217	252	e232 e248	e158 e167	e213 e222	189	e600	518	480	e338	e472 e458	265
29	206	273	e211	e173		e188	909	594	431	e370	e432	254
30	e200	295	e217	e184		183	1230	661	391	e502	e414	239
31	185		e200	e173		190		701		e498	e396	
TOTAL	5361	5945	8484	4873	6013	7059	11100	23023	19452	11454	18123	7709
MEAN MAX	172.9 220	198.2 295	273.7 390	157.2 188	214.8 318	227.7 303	370.0 1230	742.7 1220	648.4 1820	369.5 660	584.6 1440	257.0 485
MIN	132	182	142	127	139	161	183	490	356	275	328	124
AC-FT	10630	11790	16830	9670	11930	14000	22020	45670	38580	22720	35950	15290
CFSM	0.20	0.23	0.32	0.19	0.25	0.27	0.44	0.88	0.77	0.44	0.69	0.30
IN.	0.24	0.26	0.37	0.21	0.26	0.31	0.49	1.01	0.86	0.50	0.80	0.34
STATIS'	rics of M	IONTHLY ME	AN DATA F	OR WATER	YEARS 194	6 - 2002,	BY WATER	R YEAR (WY)			
MEAN	313.2	314.9	248.9	170.2	307.2	996.4	1061	864.7	1028	739.6	388.6	306.8
MAX (WY)	1412 1973	1502 1973	1165 1983	995 1973	2303 1984	2456 1961	4170 1965	3472 1999	3358 1984	3995 1993	3023 1993	2149 1965
MIN	14.9	22.3	14.2	9.35	6.37	86.2	81.8	80.1	39.5	26.6	15.2	16.9
(WY)	1990	1959	1959	1959	1959	1954	1957	1957	1977	1977	1989	1989

05458900 WEST FORK CEDAR RIVER AT FINCHFORD, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1946 - 2002
ANNUAL TOTAL	342808.6	128596	
ANNUAL MEAN	939.2	352.3	562.3
HIGHEST ANNUAL MEAN			1800 1993
LOWEST ANNUAL MEAN			65.5 1956
HIGHEST DAILY MEAN	5560 May 7	1820 Jun 21	25100 Jun 27 1951
LOWEST DAILY MEAN	75 Feb 2	124 Sep 17	5.9 Feb 26 1959a
ANNUAL SEVEN-DAY MINIMUM	89 Feb 15	135 Oct 3	6.1 Feb 23 1959
MAXIMUM PEAK FLOW		2010 Jun 22	31900 Jun 27 1951
MAXIMUM PEAK STAGE		10.24 Jun 22	18.45 Jul 29 1990
INSTANTANEOUS LOW FLOW		119 Sep 19	5.9 Feb 26 1959
ANNUAL RUNOFF (AC-FT)	680000	255100	407300
ANNUAL RUNOFF (CFSM)	1.11	0.42	0.66
ANNUAL RUNOFF (INCHES)	15.07	5.65	9.03
10 PERCENT EXCEEDS	2950	654	1370
50 PERCENT EXCEEDS	256	265	242
90 PERCENT EXCEEDS	110	153	48

a Also Feb. 27, 1959. e Estimated.

05459500 WINNEBAGO RIVER AT MASON CITY, IA

LOCATION.--Lat $43^{\circ}09^{\circ}54^{\circ}$, long $93^{\circ}11^{\circ}33^{\circ}$, in NE $^{1}/_{4}$ NW $^{1}/_{4}$ sec.3, T.96 N., R.20 W., Cerro Gordo County, Hydrologic Unit 07080203, on right bank 650 ft upstream from Thirteenth Street Bridge in Mason City, 0.1 mi downstream from Calmus Creek, 1.0 mi upstream from Willow Creek, and at mile 275.8 upstream from mouth of Iowa River.

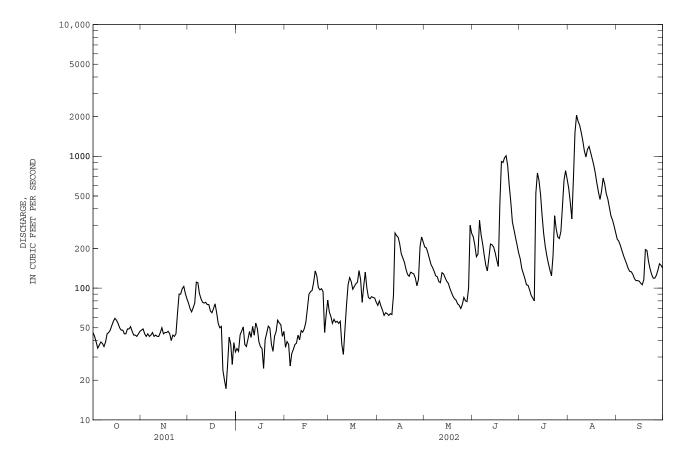
DRAINAGE AREA.--526 mi².

PERIOD OF RECORD.--October 1932 to current year. Prior to December 1932, monthly discharge only, published in WSP 1308. Prior to October 1959, published as "Lime Creek at Mason City".

REVISED RECORDS.--WSP 825: 1935-36. WSP 1438: Drainage area. WSP 1558: 1933-37, 1943 (M), 1945, 1948.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,069.59 ft above NGVD of 1929. Prior to Oct. 15, 1934, nonrecording gage at datum 6.47 ft lower. Oct. 15 to Nov. 6, 1934, nonrecording gage at different datum, and Nov. 7, 1934, to Mar. 22, 1935, nonrecording gage at present datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	46	48	77	e35	e36	66	74	205	245	e167	572	235
2	43	49	70	e33	e39	61	80	202	212	141	447	227
3	39	45	66	e44	e37	54	73	185	173	129	335	211
4	35	43	71	e47	e26	58	68	167	181	118	675	193
5	37	45	77	e51	e32	55	62	151	327	106	1510	177
6	39	43	111	e37	e34	56	65	143	254	105	2050	164
7	38	44	110	e36	e37	54	64	134	216	97	1840	153
8	36	46	91	e41	e38	56	62	124	178	88	1720	141
9	39	43	83	e47	e44	e37	64	122	149	84	1520	134
10	45	44	78	e42	e41	e31	63	112	135	80	1310	133
11	46	43	77	e51	e48	e49	88	110	170	526	1100	127
12	48	43	78	e44	e46	e74	262	131	216	747	988	118
13	52	46	75	e54	e49	106	e250	128	213	656	1130	114
14	56	e50	75	e50	55	120	243	120	205	513	1190	114
15	59	45	67	e39	70	112	216	113	186	353	1070	113
16	57	46	65	e36	90	98	182	109	163	259	960	109
17	54	46	70	e35	94	103	169	100	146	207	858	106
18	50	47	76	e25	96	108	157	93	438	176	744	116
19	48	e45	65	e41	111	111	139	87	914	154	625	196
20	48	40	54	e46	135	136	127	83	897	137	536	193
21	45	44	50	e51	124	116	123	81	976	124	470	159
22	45	43	e51	e50	101	78	132	76	1010	178	546	140
23	49	45	e24	e37	97	104	130	74	848	354	685	127
24	49	65	e20	e33	99	132	128	70	599	281	616	119
25	51	90	e17	e43	94	100	119	75	e450	244	520	119
26	47	90	e26	e47	46	85	104	85	318	238	474	125
27	44	99	e42	e57	63	83	117	80	278	269	409	137
28	44	103	e37	e54	81	86	208	79	242	417	353	153
29	43	91	e26	e53		85	244	e100	212	659	328	149
30	45	83	e39	e43		84	224	e300	185	779	296	142
31	47		e33	e47		78		260		671	264	
TOTAL	1424	1654	1901	1349	1863	2576	4037	3899	10736	9057	26141	4444
MEAN	45.94	55.13	61.32	43.52	66.54	83.10	134.6	125.8	357.9	292.2	843.3	148.1
MAX	59	103	111	57	135	136	262	300	1010	779	2050	235
MIN	35	40	17	25	26	31	62	70	135	80	264	106
AC-FT	2820	3280	3770	2680	3700	5110	8010	7730	21290	17960	51850	8810
CFSM	0.09	0.10	0.12	0.08	0.13	0.16	0.26	0.24	0.68	0.56	1.60	0.28
IN.	0.10	0.12	0.13	0.10	0.13	0.18	0.29	0.28	0.76	0.64	1.85	0.31
STATIS	TICS OF M	IONTHLY ME	AN DATA F	OR WATER	YEARS 193	3 - 2002,	BY WATER	YEAR (WY)			
MEAN	169.9	167.2	110.4	74.72	121.2	512.5	621.2	430.1	497.9	319.0	222.7	177.5
MAX	840	811	724	378	1002	1707	2880	1807	2160	1915	2054	1073
(WY)	1966	1942	1983	1983	1984	1973	1965	1991	1993	1993	1979	1938
MIN	11.3	12.7	7.45	6.61	7.50	17.6	61.0	16.1	21.9	7.29	4.89	12.6
(WY)	1935	1934	1934	1977	1959	1934	1957	1934	1934	1934	1934	1933

05459500 WINNEBAGO RIVER AT MASON CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEA	AR FOR 2002 WAT	ER YEAR	WATER YEARS	1933 - 2002
ANNUAL TOTAL	185774	69081			
ANNUAL MEAN	509.0	189.3		285.7	
HIGHEST ANNUAL MEAN				947	1993
LOWEST ANNUAL MEAN				28.1	1934
HIGHEST DAILY MEAN	5810 Apr 1	L2 2050	Aug 6	9370	Mar 27 1961
LOWEST DAILY MEAN	17 Dec 2	25 17	Dec 25	1.2	Aug 19 1989
ANNUAL SEVEN-DAY MINIMUM	27 Dec 2	23 27	Dec 23	3.1	Dec 29 1933
MAXIMUM PEAK FLOW		2120	Aug 6	10800	Mar 30 1933
MAXIMUM PEAK STAGE		6.92	Aug 6	15.70	Mar 30 1933
INSTANTANEOUS LOW FLOW				0.86	Aug 18 1988a
ANNUAL RUNOFF (AC-FT)	368500	137000		207000	
ANNUAL RUNOFF (CFSM)	0.97	0.36		0.54	
ANNUAL RUNOFF (INCHES)	13.14	4.89		7.38	
10 PERCENT EXCEEDS	1500	472		728	
50 PERCENT EXCEEDS	77	94		114	
90 PERCENT EXCEEDS	45	41		20	

Also Aug. 19, 1988. Estimated.

05460000 CLEAR LAKE AT CLEAR LAKE, IA

LOCATION.--Lat $43^{\circ}08^{\circ}01^{\circ}$, long $93^{\circ}22^{\circ}57^{\circ}$, in $SE^{1}/_{4}$ NE $^{1}/_{4}$ sec.13, T.96 N., R.22 W., Cerro Gordo County, Hydrologic Unit 07080203, at the public bathing beach in the town of Clear Lake, near dam across Clear Creek.

DRAINAGE AREA. -- 22.6 mi².

PERIOD OF RECORD.--May 1933 to current year. No winter records 1933-52. Record fragmentary November 1952 to June 1959.

GAGE.--Water-stage recorder. Datum of gage is 1,222.24 ft above NGVD of 1929, and 4.60 ft below crest of spillway of dam at outlet. See WSP 1708 for history of changes prior to June 25, 1959.

REMARKS.--Lake is formed by concrete dam on Clear Creek with ungated overflow spillway 50 ft long at elevation 1,226.84 ft above sea level. Dam constructed in 1903. A previous outlet works had been constructed in 1887. Lake is used for conservation and recreation. Area of lake is approximately 3,600 acres. U.S. Geological Survey satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height observed, 5.94 ft July 3, 1951; minimum observed, 0.76 ft Oct. 26, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 5.28 ft Aug. 17; minimum, 4.20 ft Nov. 23.

GAGE HEIGHT from DCP, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.48	4.30	4.38	4.51	4.61	4.70	4.69	4.76	4.68	4.64	4.86	5.00
2	4.48	4.30	4.37	4.51	4.61	4.72	4.73	4.81	4.65	4.60	4.82	4.99
3	4.46	4.28	4.36	4.52	4.61	4.72	4.71	4.78	4.63	4.57	4.80	4.95
4	4.45	4.27	4.37	4.52	4.61	4.72	4.69	4.79	4.69	4.54	5.07	4.93
5	4.43	4.28	4.43	4.53	4.61	4.72	4.68	4.77	4.68	4.52	5.18	4.90
6	4.41	4.28	4.44	4.53	4.61	4.72	4.67	4.80	4.68	4.51	5.19	4.88
7	4.37	4.28	4.41	4.53	4.61	4.72	4.68	4.75	4.68	4.51	5.18	4.87
8	4.37	4.27	4.43	4.53	4.61	4.74	4.68	4.77	4.65	4.51	5.16	4.85
9	4.37	4.28	4.43	4.53	4.62	4.78	4.68	4.82	4.65	4.48	5.14	4.84
10	4.42	4.24	4.42	4.53	4.66	4.77	4.69	4.72	4.64	4.51	5.13	4.83
11	4.39	4.23	4.41	4.53	4.67	4.76	4.73	4.70	4.70	4.78	5.10	4.81
12	4.37	4.23	4.42	4.54	4.67	4.76	4.77	4.75	4.69	4.79	5.14	4.80
13	4.41	4.26	4.43	4.54	4.67	4.76	4.77	4.76	4.69	4.79	5.19	4.78
14	4.45	4.26	4.42	4.55	4.68	4.75	4.79	4.75	4.66	4.79	5.19	4.78
15	4.43	4.26	4.42	4.55	4.67	4.76	4.79	4.76	4.63	4.78	5.15	4.75
16	4.40	4.25	4.44	4.55	4.67	4.75	4.81	4.74	4.61	4.77	5.12	4.74
17	4.38	4.25	4.44	4.56	4.66	4.75	4.80	4.72	4.60	4.75	5.16	4.72
18	4.38	4.26	4.45	4.56	4.67	4.75	4.82	4.71	4.69	4.74	5.09	4.74
19	4.38	4.26	4.46	4.56	4.68	4.76	4.76	4.69	4.73	4.72	5.06	4.76
20	4.36	4.25	4.44	4.56	4.71	4.76	4.71	4.67	4.74	4.72	5.04	4.76
21	4.35	4.24	4.42	4.56	4.71	4.77	4.72	4.67	4.72	4.74	5.04	4.74
22	4.35	4.23	4.48	4.56	4.70	4.77	4.75	4.66	4.75	4.82	5.07	4.72
23	4.38	4.22	4.49	4.56	4.71	4.74	4.73	4.66	4.74	4.79	5.08	4.70
24	4.43	4.31	4.47	4.56	4.71	4.72	4.77	4.61	4.71	4.76	5.08	4.65
25	4.46	4.37	4.47	4.56	4.71	4.71	4.74	4.66	4.70	4.76	5.08	4.65
26 27 28 29 30 31	4.36 4.31 4.32 4.28 4.27 4.30	4.31 4.40 4.38 4.37 4.38	4.47 4.47 4.48 4.49 4.50 4.50	4.56 4.56 4.56 4.56 4.56 4.57	4.71 4.71 4.70 	4.71 4.72 4.73 4.73 4.73 4.73	4.67 4.66 4.77 4.78 4.75	4.70 4.67 4.66 4.68 4.69 4.68	4.70 4.68 4.67 4.66 4.65	4.75 4.78 4.79 4.92 4.91 4.89	5.10 5.08 5.06 5.05 5.03 5.01	4.65 4.65 4.64 4.65 4.68
MEAN	4.39	4.28	4.44	4.55	4.66	4.74	4.73	4.72	4.68	4.71	5.08	4.78
MAX	4.48	4.40	4.50	4.57	4.71	4.78	4.82	4.82	4.75	4.92	5.19	5.00
MIN	4.27	4.22	4.36	4.51	4.61	4.70	4.66	4.61	4.60	4.48	4.80	4.64

05460000 CLEAR LAKE AT CLEAR LAKE, IA--Continued

05462000 SHELL ROCK RIVER AT SHELL ROCK, IA

LOCATION.--Lat $42^{\circ}42^{\circ}43^{\circ}$, long $92^{\circ}34^{\circ}58^{\circ}$, in $NN^{1}/_{4}$ $NE^{1}/_{4}$ sec.11, T.91 N., R.15 W., Butler County, Hydrologic Unit 07080202 on right bank 400 ft upstream from bridge on county highway C45 in Shell Rock, 2.2 mi downstream from Curry Creek, and 10.4 mi upstream from mouth.

DRAINAGE AREA. -- 1,746 mi².

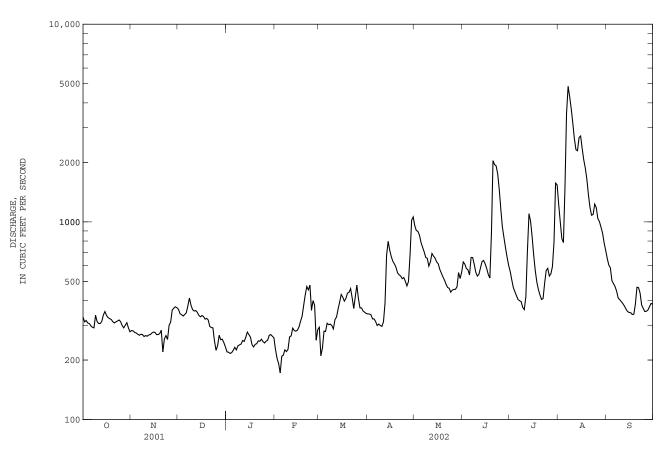
PERIOD OF RECORD.--June 1953 to current year. Prior to July 1953, monthly discharge only, published in WSP 1728.

REVISED RECORDS.--WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Rockfill dam since Oct. 19, 1957. Datum of gage is 885.34 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in 1856 reached a stage of 17,7 ft at bridge 400 ft downstream, from information provided by U.S. Army Corps of Engineers, discharge, about $45,000 \text{ ft}^3/\text{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	330 312	282 281	361 343	220 219	226 204	293 210	342 342	957 904	627 611	561 509	1220 998	654 605
3	317	276	339	216	e192	230	339	896	581	465	823	586
4	308	274	334	218	172	280	323	857	572	443	786	504
5	306	270	340	224	e209	279	323	787	539	423	1490	487
6	298	267	347	232	e212	307	313	744	661	405	3530	471
7	293	270	376	225	e225	302	299	706	660	399	4850	446
8 9	291 337	269 263	412 379	236 e239	e221 e226	304 299	304 299	661 654	611 556	395 369	4300 3740	412 404
10	313	266	360	e241	262	e287	296	597	532	360	3160	395
11	306	264	354	e251	265	e320	312	628	543	418	2640	386
12	306	268	356	e248	290	e330	388	692	585	714	2320	375
13	314	269	349	e261	282	362	678	671	630	1100	2290	362
14	338	274	337	277	280	393	797	655	638	1010	2670	352
15	352	277	331	269	283	429	719	627	613	842	2720	348
16	336	276	336	261	294	416	667	614	580	680	2350	e347
17	328	269	332	239	314	397	632	575	541	568	2060	340
18	324	269	322	233	333	410	613	550	520	497	1870	341
19 20	321 313	272 283	325 319	240 242	378 427	436 440	589 552	527 507	870 2040	455 427	1640 1370	384 467
											1370	
21	308	220	296	250	471	460	540	484	1950	405	1180	465
22	312	256	292	249	453	413	532	466	1920	409	1080	e437
23 24	315 319	266 254	291 250	255 248	479 357	365 418	516 523	461 441	1750 1460	489 568	1090 1230	380 365
25	313	300	224	244	400	479	500	452	1160	582	1180	352
26	299	311	e236	249	378	409	474	455	941	532	1040	353
27 28	291 300	358 366	e267 e253	252 267	252 285	367 367	500 684	456 469	834 739	546 595	e1000 e942	358 372
29	300	372	255	269	200	354	1020	554	664	795	879	387
30	291	368	245	264		349	1060	517	603	1570	785	383
31	278		233	259		344		558		1540	719	
TOTAL	9678	8510	9794	7597	8370	11049	15476	19122	25531	19071	57952	12518
MEAN	312.2	283.7	315.9	245.1	298.9	356.4	515.9	616.8	851.0	615.2	1869	417.3
MAX	352	372	412	277	479	479	1060	957	2040	1570	4850	654
MIN	278 19200	220 16880	224 19430	216 15070	172 16600	210 21920	296 30700	441 37930	520	360 37830	719 114900	340 24830
AC-FT CFSM	0.18	0.16	0.18	0.14	0.17	0.20	0.30	0.35	50640 0.49	0.35	1.07	0.24
IN.	0.10	0.18	0.10	0.14	0.17	0.20	0.30	0.33	0.49	0.33	1.23	0.24
	0.21	0.10	0.21	0.10	0.10	0.21	0.55	0.11	0.51	0.11	1.23	0.27
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER	YEARS 195	4 - 2002,	BY WATER	YEAR (WY)			
MEAN	728.4	685.2	515.9	347.5	498.5	1629	2127	1669	1804	1333	911.0	696.7
MAX	2544	2326	2381	1375	2833	5426	8540	5889	6239	6461	5637	2816
(WY)	1987	1983	1983	1983	1984	1992	1965	1991	1993	1993	1979	1993
MIN	74.1	77.7	39.8	45.6	44.7	193	226	243	138	114	66.7	96.6
(WY)	1990	1990	1990	1959	1959	1968	1957	1958	1977	1977	1989	1989

05462000 SHELL ROCK RIVER AT SHELL ROCK, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALE	IDAR YEAR	FOR 2002 WAT	ER YE	AR	WATER YEARS	1954 - 2002
ANNUAL TOTAL	647454		204668				
ANNUAL MEAN	1774		560.7			1080	
HIGHEST ANNUAL MEAN						3231	1993
LOWEST ANNUAL MEAN						171	1977
HIGHEST DAILY MEAN	18600	Apr 13	4850	Aug	7	32100	Mar 28 1961
LOWEST DAILY MEAN	210	Jan 26	172	Feb	4	27	Dec 22 1989
ANNUAL SEVEN-DAY MINIMUM	231	Jan 22	205	Feb	2	29	Dec 16 1989
MAXIMUM PEAK FLOW			4970	Aug	7	33500	Mar 28 1961
MAXIMUM PEAK STAGE			10.69	Aug	7	16.73	Jul 22 1999
INSTANTANEOUS LOW FLOW			112	Mar	2		
ANNUAL RUNOFF (AC-FT)	1284000		406000			782700	
ANNUAL RUNOFF (CFSM)	1.02	2	0.32			0.62	
ANNUAL RUNOFF (INCHES)	13.79	9	4.36			8.41	
10 PERCENT EXCEEDS	5440		999			2550	
50 PERCENT EXCEEDS	364		372			535	
90 PERCENT EXCEEDS	250		250			159	

e Estimated

05463000 BEAVER CREEK AT NEW HARTFORD, IA

LOCATION.--Lat $42^{\circ}34^{\circ}22^{\circ}$, long $92^{\circ}37^{\circ}04^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.28, T.90 N., R.15 W., Butler County, Hydrologic Unit 07080205, on right bank 5 ft. from right end of bridge on county highway T55, 0.2 mi north of New Hartford, and 8 mi upstream from mouth. DRAINAGE AREA.--347 mi².

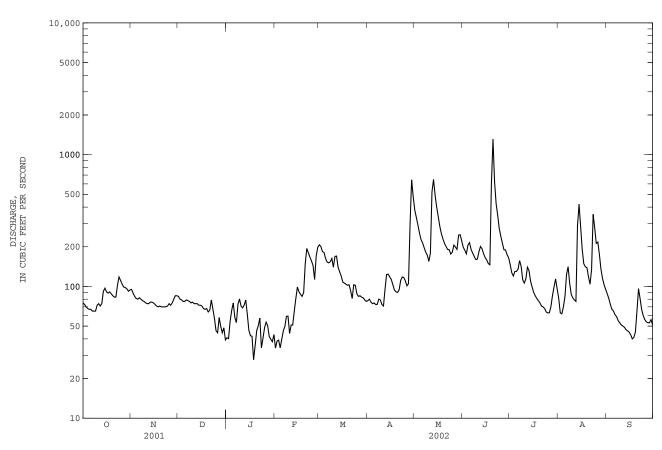
PERIOD OF RECORD.--October 1945 to current year. Prior to April 1948, monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1948-49. WSP 1708: 1947 (M).

GAGE.--Water-stage recorder. Datum of gage is 882.44 ft. above NGVD of 1929. Prior to July 14, 1959, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	75	95	84	e41	e34	207	78	380	198	e146	81	88
2	73	89	80	e40	e39	201	80	335	188	127	63	81
3	70	84	79	e54	e39	184	76	293	e177	120	62	73
3 4	68	81	77	e66	e34	181	74	255	206	130	70	67
5	67	80	77	e75	e40	163	75	227	215	130	84	65
6	67	82	79	e58	e46	153	73	214	191	135	123	61
7	65	80	78	e53	e50	151	73	197	179	157	141	59
8	65	78	77	e73	e59	154	80	182	169	142	106	e55
9	65	77	75	e80	e60	163	79	173	160	112	87	53
10	72	75	76	e71	e44	140	73	155	161	106	e82	51
10	12	73	76	e/1	644	140	13	133	101	100	eoz	31
11	74	74	74	e69	e51	169	71	179	183	114	e79	50
12	71	74	74	e72	e51	170	95	522	201	140	77	49
13	74	76	74	e79	e65	140	123	649	193	132	287	47
14	92	76	72	e61	e81	129	124	491	177	110	421	46
15	97	75	72	e46	99	120	118	401	165	99	285	45
13	91	75	12	640	99	120	110	401	103	99	200	40
16	91	73	71	e42	91	108	113	340	159	90	192	43
17	89	71	e68	e42	87	e106	103	286	149	85	149	40
18	91	70	e67	e28	84	e104	94	252	146	81	141	41
19			68			e102	91	230	608		139	45
	88	71		e36	90					78		
20	85	70	64	e46	148	103	90	212	1310	75	119	65
21	83	70	66	e50	194	93	94	201	623	71	104	96
22	83	70	79	e58	180	81	111	191	425	70	134	81
23	102	70	e67	e34	167	103	118	190	e347	68	353	67
24	118	71	e57	e40	156	102	117	176	275	64	278	60
25	111	74	e46	e49	144	88	110	182	e240	63	212	56
26	104	72	e45	e54	113	84	101	206	e213	63	217	54
27	99	e75	e58	e50	170	85	105	199	190	70	175	53
28	98	80	e50	e42	198	83	297	191	189	85	135	53
29	96	85	e45	e40		82	644	245	e174	99	115	56
30	92	85	e49	e38		79	482	247	e165	114	103	51
31	94		e39	e43		77		222		96	95	
31	24		633	643		, ,		222		50	,,,	
TOTAL	2619	2303	2087	1630	2614	3905	3962	8223	7976	3172	4709	1751
MEAN	84.48	76.77	67.32	52.58	93.36	126.0	132.1	265.3	265.9	102.3	151.9	58.37
MAX	118	95	84	80	198	207	644	649	1310	157	421	96
MIN	65	70	39	28	34	77	71	155	146	63	62	40
AC-FT	5190	4570	4140	3230	5180	7750	7860	16310	15820	6290	9340	3470
CFSM	0.24	0.22	0.19	0.15	0.27	0.36	0.38	0.76	0.77	0.29	0.44	0.17
IN.	0.28	0.25	0.22	0.17	0.28	0.42	0.42	0.88	0.86	0.34	0.50	0.19
STATIST	TICS OF M	MONTHLY ME	AN DATA	FOR WATER	YEARS 194	6 - 2002,	BY WATER	YEAR (WY	()			
MEAN	118.5	124.0	85.66	72.67	152.5	452.0	384.3	341.7	430.7	278.4	143.7	107.5
MAX	495	673	514	403	651	1606	1578	1606	2213	1686	1368	1028
	1987	1973	1983	1946	1983			1991			1993	
(WY)						1993	1993		1947	1993		1965
MIN	4.98	8.80	7.13	2.88	3.84	28.1	33.8	23.2	12.5	4.47	4.22	6.02
(WY)	1957	1957	1990	1956	1956	1954	1954	1977	1956	1956	1989	1988

iowa river basin 195

05463000 BEAVER CREEK AT NEW HARTFORD, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR Y	EAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1946 - 2002
ANNUAL TOTAL	94663		44951			
ANNUAL MEAN	259.4		123.2		224.4	
HIGHEST ANNUAL MEAN					874	1993
LOWEST ANNUAL MEAN					21.8	1956
HIGHEST DAILY MEAN	2670 Mar	22	1310	Jun 20	16300	Jun 13 1947
LOWEST DAILY MEAN	16 Jan	. 2	28	Jan 18	2.0	Sep 30 1989
ANNUAL SEVEN-DAY MINIMUM	18 Jan	. 1	38	Jan 29	2.3	Jan 19 1956
MAXIMUM PEAK FLOW			1530	Jun 20	18000	Jun 13 1947
MAXIMUM PEAK STAGE			8.21	Jun 20	13.50	Jun 13 1947
ANNUAL RUNOFF (AC-FT)	187800		89160		162600	
ANNUAL RUNOFF (CFSM)	0.75		0.35		0.65	
ANNUAL RUNOFF (INCHES)	10.15		4.82		8.79	
10 PERCENT EXCEEDS	721		212		490	
50 PERCENT EXCEEDS	85		85		88	
90 PERCENT EXCEEDS	32		50		17	

e Estimated

05463050 CEDAR RIVER AT CEDAR FALLS, IA

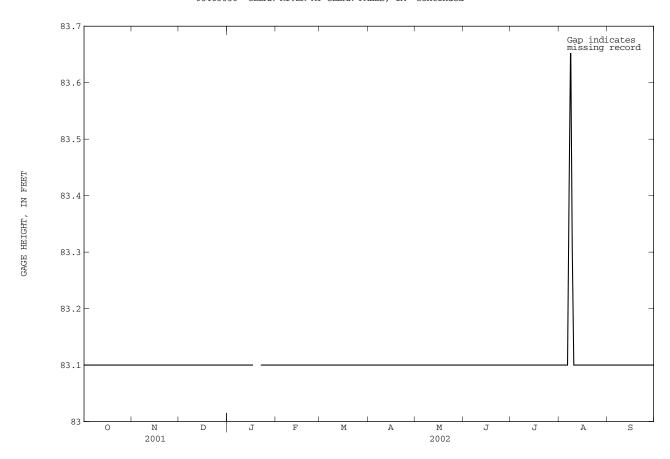
LOCATION.--Lat $42^{\circ}32^{\circ}20^{\circ}$, long $92^{\circ}26^{\circ}58^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.12, T.89 N., R.14 W., Black Hawk County, Hydrologic Unit 07080205, at bridge on U.S. Highway 20 at Cedar Falls, 1.1 mi upstream from Dry Run, and at mile 196.0 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 4,734 mi².

PERIOD OF RECORD.--October 1975 to September 1979, May 1984 to September 1985, October 1986 to September 1995; water quality data. October 1999 to current year.

GAGE.--Water-stage recorder. Datum of gage is 855.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily stages, which are poor. U.S. Geological Survey rain gage and satellite data collection platform with phone modem at station.


EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height 93.99 ft Apr. 14, 2001.

EXTREMES FOR CURRENT YEAR.--Maximum gage height 83.75 ft Aug. 7.

GAGE HEIGHT from DCP, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10
6 7 8 9 10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.41 83.68 83.31 83.10	83.10 83.10 83.10 83.10 83.10
11 12 13 14 15	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10
16 17 18 19 20	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10
21 22 23 24 25	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10
26 27 28 29 30 31	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10 83.10	83.10 83.10 83.10 83.10 83.10
MEAN MAX MIN	83.10 83.10 83.10	83.10 83.10 83.10	83.10 83.10 83.10		83.10 83.10 83.10	83.10 83.10 83.10	83.10 83.10 83.10	83.10 83.10 83.10	83.10 83.10 83.10	83.10 83.10 83.10	83.14 83.68 83.10	83.10 83.10 83.10

05463050 CEDAR RIVER AT CEDAR FALLS, IA--Continued

05463500 BLACK HAWK CREEK AT HUDSON, IA

LOCATION.--Lat $42^{\circ}24^{\circ}28^{\circ}$, long $92^{\circ}27^{\circ}47^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.27, T.88 N., R.14 W., Black Hawk County, Hydrologic Unit 07080205, on left bank 35 ft. from bridge on State Highway 58, 0.2 mi northwest of Chicago and Great Western Railway tracks at the west edge of Hudson, 4.5 mi. upstream from Prescotts Creek, and 9.6 mi. upstream from mouth.

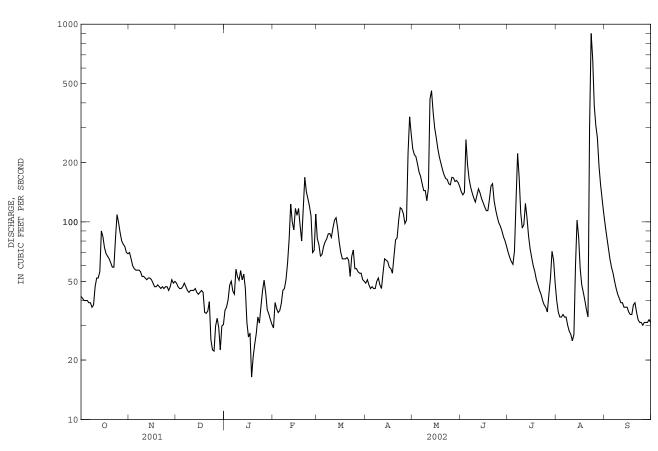
DRAINAGE AREA. -- 303 mi².

PERIOD OF RECORD.--April 1952 to September 30, 1995. October 2001 to September 30, 2002.

REVISED RECORDS.--WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 865.03 ft. above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	70	49	e36	e29	e82	49	234	142	70	40	96
2	41	65	47	e37	e39	e77	51	219	137	66	35	84
3	40	60	46	e40	e36	e67	48	214	141	63	33	74
4	40	58	46	e48	e35	e68	46	197	261	61	33	65
5	40	57	47	e50	e36	e75	47	179	195	71	34	59
6	39	57	49	e45	e39	e79	46	170	165	127	33	55
7	39	57	47	e43	e45	e82	46	156	150	222	33	50
8	37	56	45	e58	e46	e87	50	144	140	168	30	46
9	38	53	44	e53	e51	e87	52	144	132	111	28	43
10	47	53	45	e51	e62	e84	48	128	126	93	27	41
11	52	52	45	e57	e82	e93	46	148	136	97	25	39
12	52	51	45	e51	123	102	55	418	147	124	27	39
13	56	52	46	e54	100	105	65	461	140	105	60	37
14	90	52	44	e46	91	93	64	360	131	85	102	37
15	84	51	43	e31	117	79	63	299	125	73	84	37
16	74	49	44	e26	108	70	59	267	119	66	58	35
17	69	47	45	e27	117	65	58	235	114	60	48	34
18	67	47	44	e16	96	65	55	213	114	56	44	34
19	65	48	e35	e21	80	65	67	198	130	51	40	38
20	62	47	e34	e24	116	66	81	184	152	48	36	39
21	59	46	e35	e27	168	64	83	173	156	45	33	35
22	59	47	e39	e33	142	53	102	166	128	43	300	32
23	82	46	e25	e31	131	67	118	164	115	40	899	31
24	109	47	e23	e37	120	72	116	156	106	38	666	31
25	99	47	e22	e45	107	58	110	154	99	37	386	30
26	88	45	e30	e51	70	58	98	168	95	35	307	31
27	80	47	e33	e44	e72	56	102	167	90	43	266	31
28	77	51	e29	e36	e110	55	224	160	84	52	193	31
29	75	49	e23	e34		55	340	162	80	71	155	32
30	70	50	e30	e32		51	279	158	75	64	131	31
31	69		e30	e30		50		151		49	111	
TOTAL	1941	1557	1209	1214	2368	2230	2668	6347	3925	2334	4297	1297
MEAN	62.61	51.90	39.00	39.16	84.57	71.94	88.93	204.7	130.8	75.29	138.6	43.23
MAX	109	70	49	58	168	105	340	461	261	222	899	96
MIN	37	45	22	16	29	50	46	128	75	35	25	30
AC-FT	3850	3090	2400	2410	4700	4420	5290	12590	7790	4630	8520	2570
CFSM	0.21	0.17	0.13	0.13	0.28	0.24	0.29	0.68	0.43	0.25	0.46	0.14
IN.	0.24	0.19	0.15	0.15	0.29	0.27	0.33	0.78	0.48	0.29	0.53	0.16
STATIS'	rics of M	IONTHLY ME	AN DATA I	FOR WATER	YEARS 195	3 - 2002,	BY WATER	YEAR (WY	.)			
MEAN	98.31	109.8	87.33	71.06	144.2	376.8	318.4	275.9	325.7	254.6	126.7	89.41
MAX	440	359	418	463	564	1280	1173	1036	1403	1705	1134	735
(WY)	1966	1973	1983	1973	1984	1993	1991	1991	1990	1993	1993	1965
MIN	5.37	7.45	3.78	2.34	3.07	15.9	20.5	22.9	10.2	5.33	2.38	7.18
(WY)	1990	1956	1990	1956	1956	1954	1956	1977	1956	1989	1989	1989

05463500 BLACK HAWK CREEK AT HUDSON, IA--Continued

SUMMARY STATISTICS	FOR 2002 WATER YEAR	WATER YEARS 1953 - 2002
ANNUAL TOTAL	31387	
ANNUAL MEAN	85.99	190.0
HIGHEST ANNUAL MEAN		697 1993
LOWEST ANNUAL MEAN		18.4 1956
HIGHEST DAILY MEAN	899 Aug 23	11300 Jul 9 1969
LOWEST DAILY MEAN	16 Jan 18	0.12 Jan 26 1977
ANNUAL SEVEN-DAY MINIMUM	25 Jan 15	0.32 Jan 23 1977
MAXIMUM PEAK FLOW	942 Aug 23	19300 Jul 9 1969
MAXIMUM PEAK STAGE	10.37 Aug 23	18.23 Jul 9 1969
INSTANTANEOUS LOW FLOW	16 Jan 18	
ANNUAL RUNOFF (AC-FT)	62260	137600
ANNUAL RUNOFF (CFSM)	0.28	0.63
ANNUAL RUNOFF (INCHES)	3.85	8.52
10 PERCENT EXCEEDS	163	436
50 PERCENT EXCEEDS	58	76
90 PERCENT EXCEEDS	33	15

e Estimated

05464000 CEDAR RIVER AT WATERLOO, IA

LOCATION.--Lat $42^{\circ}29^{\circ}44^{\circ}$, long $92^{\circ}20^{\circ}03^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.25, T.89 N., R.13 W., Black Hawk County, Hydrologic Unit 07080205, on left bank at foot of East Seventh Street, 0.3 mi upstream from Eleventh Street bridge in Waterloo, 1.1 mi downstream from Black Hawk Creek, and at mile 187.9 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 5,146 mi².

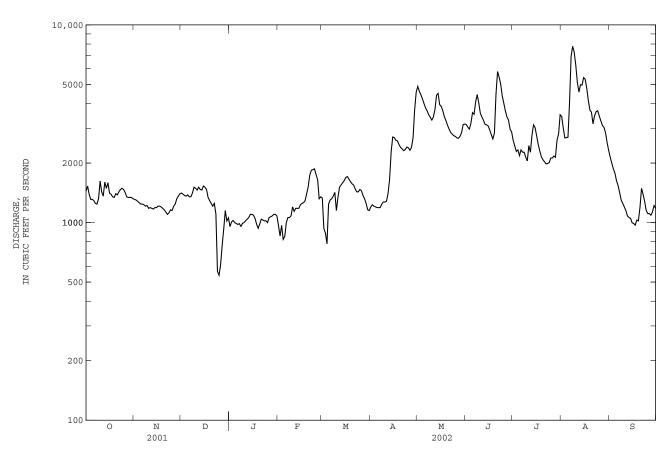
PERIOD OF RECORD. --October 1940 to current year. Prior to April 1941, monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1950.

GAGE.--Water-stage recorder. Datum of gage is 824.14 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Slight diurnal fluctuation during low flow caused by powerplant upstream from station. U.S. National Weather Service Limited Automatic Remote Collector (LARC) and U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 16, 1929, reached a stage of about 20 ft, determined by U. S. Army Corps of Engineers, from information by City of Waterloo, discharge, 65,000 ft³/s. Flood of Apr. 2, 1933, reached a stage of about 19.5 ft from information by City of Waterloo, discharge, 61,000 ft³/s.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1440	1310	1410	e953	964	1330	1200	4880	3130	2600	3440	2140
2	1530	1300	1390	e1010	855	933	1230	4620	3040	2440	3000	2000
3	1390	1280	1370	e1030	968	e883	1210	4430	2970	2290	2680	1870
4	1310	1260	1360	1000	822	e781	1200	4220	3190	2330	2690	1780
5	1310	1240	1380	989	850	1240	1190	4000	3600	2180	2700	1630
6	1290	1240	1350	978	999	1300	1190	3800	3530	2330	4050	1540
7	1250	1230	1350	987	1060	1320	1190	3670	4080	2270	6940	1420
8	1240	1210	1410	956	1060	1360	1240	3510	4440	2270	7790	1300
9	1320	1220	1510	991	1080	1420	1270	3410	4020	2140	7260	1250
10	1620	1180	1490	1000	1200	1150	1270	3300	3570	2050	6240	1200
11	1430	1190	1460	1020	1140	1340	1280	3420	3420	2450	5110	1150
12	1360	1180	1510	1040	1180	1510	1400	3730	3290	2270	4570	1080
13	1600	1170	1470	1060	1180	1550	1650	4410	3140	2770	4980	1060
14	1490	1190	1460	1100	1180	1590	2280	4500	3120	3120	4960	1050
15	1590	1190	1530	1100	1230	1630	2710	3950	3080	3020	5410	997
16	1410	1210	1510	1090	1250	1690	2690	3870	2940	2740	5310	989
17	1390	1210	1470	1050	1260	1710	2610	3680	2780	2480	4780	970
18	1350	1200	1340	982	1290	1660	2590	3430	2650	2300	4150	1030
19	1340	1180	1290	936	1400	1610	2480	3280	2840	2150	3710	1020
20	1400	1160	1250	983	1520	1570	2400	3110	4470	2080	3620	1190
21	1380	1130	1210	1040	1740	1550	2360	2970	5810	2030	3160	1490
22	1430	1100	1250	1030	1840	1480	2310	2860	5440	1980	3470	1390
23	1470	1120	e1100	1020	1850	1430	2340	2800	5010	1990	3640	1280
24	1490	1160	e566	1020	1870	1430	2410	2750	4370	2010	3680	1150
25	1470	1150	e541	999	1750	1470	2390	2730	4010	2120	3460	1110
26 27 28 29 30 31	1420 1350 1340 1340 1340 1320	1210 1240 1320 1360 1400	e612 e765 e928 e1150 e1020 e1060	1060 1070 1080 1100 1100 1080	1650 1320 1350 	1450 1370 1320 1250 1160 1150	2320 2400 2690 3710 4560	2680 2670 2730 2850 3130 3150	3670 3420 3300 2970 2870	2120 2170 2140 2610 2810 3510	3270 3100 3030 2850 2540 2320	1110 1090 1130 1220 1180
TOTAL	43410	36540	38512	31854	35858	42637	61770	108540	108170	73770	127910	38816
MEAN	1400	1218	1242	1028	1281	1375	2059	3501	3606	2380	4126	1294
MAX	1620	1400	1530	1100	1870	1710	4560	4880	5810	3510	7790	2140
MIN	1240	1100	541	936	822	781	1190	2670	2650	1980	2320	970
AC-FT	86100	72480	76390	63180	71120	84570	122500	215300	214600	146300	253700	76990
CFSM	0.27	0.24	0.24	0.20	0.25	0.27	0.40	0.68	0.70	0.46	0.80	0.25
IN. STATIST	0.31 FICS OF M	0.26 ONTHLY ME	0.28 AN DATA	0.23 FOR WATER	0.26 YEARS 194	0.31 1 - 2002,	0.45 BY WATER	0.78 R YEAR (W	0.78 Y)	0.53	0.92	0.28
MEAN	2104	2056	1541	1227	1780	5530	6374	4804	5406	4104	2726	2039
MAX	8499	7434	6891	5479	9448	13760	24940	19010	18320	21210	18770	9258
(WY)	1987	1973	1983	1973	1984	1973	1993	1991	1993	1993	1993	1993
MIN	364	370	266	252	188	687	741	732	474	455	328	387
(WY)	1990	1990	1990	1959	1959	1964	1957	1977	1977	1989	1989	1955

05464000 CEDAR RIVER AT WATERLOO, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	1765377	747787	
ANNUAL MEAN	4837	2049	3312
HIGHEST ANNUAL MEAN			10580 1993
LOWEST ANNUAL MEAN			636 1977
HIGHEST DAILY MEAN	41900 Apr 15	7790 Aug 8	74000 Mar 29 1961
LOWEST DAILY MEAN	520 Jan 2	541 Dec 25	152 Jan 28 1959
ANNUAL SEVEN-DAY MINIMUM	577 Jan 17	797 Dec 24	173 Feb 13 1959
MAXIMUM PEAK FLOW		7820 Aug 8	76700 Mar 29 1961
MAXIMUM PEAK STAGE		7.63 Aug 8	21.86 Mar 29 1961
ANNUAL RUNOFF (AC-FT)	3502000	1483000	2399000
ANNUAL RUNOFF (CFSM)	0.94	0.40	0.64
ANNUAL RUNOFF (INCHES)	12.76	5.41	8.74
10 PERCENT EXCEEDS	13200	3690	7600
50 PERCENT EXCEEDS	1510	1460	1790
90 PERCENT EXCEEDS	678	1030	567

e Estimated

05464220 WOLF CREEK NEAR DYSART, IA

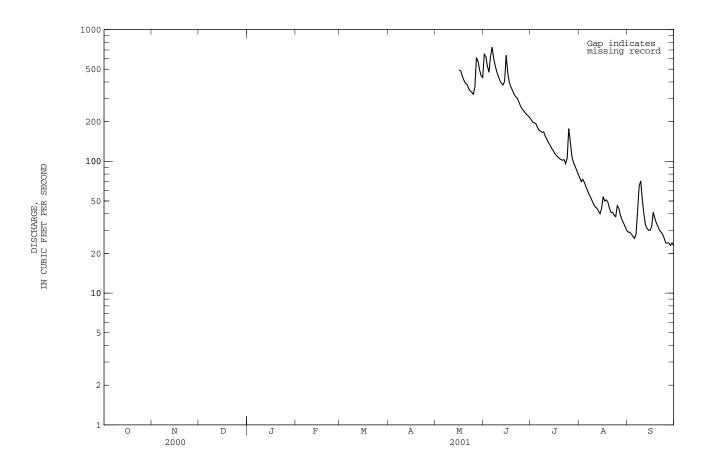
LOCATION.--Lat $42^{\circ}15^{\circ}06^{\circ}$, long $92^{\circ}17^{\circ}55^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.24, T.86 N., R.13 W., Tama County, Hydrologic Unit 07080205, on bank 20 ft upstream of right bank side of bridge on County Highway V37, 10.0 miles upstream of confluence with the Cedar River, and 5.0 miles north of Dysart.

DRAINAGE AREA. -- 299 mi².

WATER DISCHARGE RECORDS.

PERIOD OF RECORD.--October 24, 1995 to September 30, 1998. May 16, 2001 to current year.

GAGE.--Water stage recorder. Datum of gage is 835 ft above NGVD of 1929, from map.


REMARKS.--Records good except those for estimated daily discharges, which is poor. U.S. Geological Survey rain gage and satellite data collection platform at station.

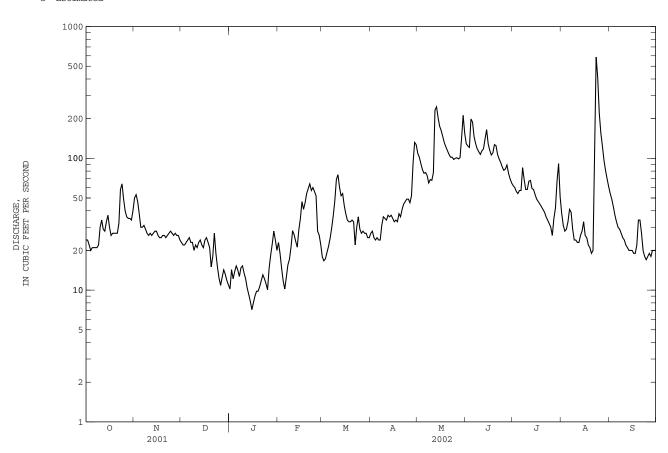
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									649	207	75	29
2									625	198	70	29
3									528	196	73	28
4									474	193	69	27
5									624	181	64	26
6									735	173	60	28
7									608	169	56	42
8									531	166	53	65
9									478	167	50	71
10									442	155	47	51
11									410	147	45	40
12									390	139	44	33
13									380	133	42	31
14									405	126	40	30
15									638	121	44	30
16								494	469	115	54	32
17								485	397	111	50	41
18								442	368	108	51	37
19								412	346	105	49	34
20								390	324	103	44	32
20								350	324	105		22
21								383	310	102	41	30
22								357	302	103	41	29
23								343	284	96	39	28
24								334	266	106	38	26
25								323	252	177	46	24
26								364	243	141	44	24
27								613	235	109	39	24
28								574	227	98	36	23
29								494	221	92	34	24
30								446	215	86	32	23
31								433		80	30	
TOTAL									12376	4203	1500	991
MEAN									412.5	135.6	48.39	33.03
MAX									735	207	75	71
MIN									215	80	30	23
AC-FT									24550	8340	2980	1970
CFSM									1.38	0.45	0.16	0.11
IN.									1.54	0.52	0.19	0.11
TIM.									1.34	0.52	0.19	0.12
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 199	5 - 2001,	BY WATER	YEAR (WY)			
MEAN	151.8	78.16	77.39	60.67	279.0	239.5	301.6	276.8	733.4	257.5	79.52	43.14
MAX	267	101	119	92.6	513	440	695	344	1773	584	163	62.9
	1999	1997	1998	92.6 1998	1997	1998	1998	1998	1998	584 1998	1998	1998
(WY) MIN	42.5	36.6	17.2	1998	1997	71.9	51.8	200	327	136	45.1	33.0
(WY)	1997	1996	1996	19.9	1996	1996	1996	1996	1997	2001	1997	2001
(VVI)	エフラ /	エフラロ	エフラロ	エフフロ	エフラロ	エフラロ	エフラロ	エフラロ	エフラ /	Z001	エフラ /	Z001

05464220 WOLF CREEK NEAR DYSART, IA--Continued

SUMMARY STATISTICS	WATER YEARS	1995	-	2001
ANNUAL MEAN	280.7			
HIGHEST ANNUAL MEAN	394			1998
LOWEST ANNUAL MEAN	168			1997
HIGHEST DAILY MEAN	4810	Jun	12	1998
LOWEST DAILY MEAN	10	Dec	10	1995
ANNUAL SEVEN-DAY MINIMUM	12	Jan	5	1996
MAXIMUM PEAK FLOW	5800	Jun	12	1998
MAXIMUM PEAK STAGE	13.33	Jun	12	1998
INSTANTANEOUS LOW FLOW	18	Oct	19	1996
ANNUAL RUNOFF (AC-FT)	203400			
ANNUAL RUNOFF (CFSM)	0.94			
ANNUAL RUNOFF (INCHES)	12.76			
10 PERCENT EXCEEDS	453			
50 PERCENT EXCEEDS	113			
90 PERCENT EXCEEDS	29			

05464220 WOLF CREEK NEAR DYSART, IA--Continued


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	24 24	50 53	23 22	e10 e14	23 e19	e18 e17	27 28	109 102	129 124	62 60	38 31	54 49
3	22	47	22	e12	e15	e17	25	91	121	56	28	43
4 5	20 21	38 30	23 24	e14 e15	e12 e10	e19 e22	24 25	82 77	199 188	54 57	29 33	37 33
6 7	21 21	30 31	25 23	e14 e13	e13 e15	e25 e30	24 24	78 74	146 129	57 85	41 39	30 29
8	21	29	23	e15	e17	e37	31	65	118	69	29	27 25
9 10	22 30	27 26	20 22	e15 e13	e21 e28	e48 e69	36 35	69 68	112 107	58 58	24 24	25 24
11	34	27	21	e12	e26	e75	34	78	114	67	23	22
12 13	29 28	26 27	23 24	e10 e9.3	e23 e21	e60 52	37 36	232 246	118 140	68 59	23 26	21 20
14	33	28	22	e8.2	e21	54	37	203	165	58	28	20
15	37	28	21	e7.1	e35	44	35	175	129	53	33	20
16	30	26	24	e8.1	47	38	33	162	115	49	26	19
17 18	26 27	25 25	25 23	e9.1 e9.8	41 46	34 33	34 33	146 131	106 110	47 45	25 22	19 22
19	27	26	21	e9.8	54	33	38	122	127	43	21	34
20	27	26	15	e11	59	34	36	114	125	41	19	34
21 22	27 32	25 26	18 27	e12 e13	64 57	33 22	41 45	107 102	107 99	39 36	20 107	27 20
23	58	26 27	19	e13 e12	60	30	45	102	93	34	587	18
24 25	64 49	28 27	e15 e12	e11	56 52	36 29	49 49	98 100	86 81	32 30	410	17 18
				e10							221	
26 27	40 36	26 27	e11 e13	e15 e18	e28 e26	27 28	46 52	101 99	83 89	26 35	156 124	19 18
28	35	26	e14	e22	e22	27	92	101	77	42	97	20
29 30	35 34	26 24	e13 e12	28 24		27 25	132 127	142 212	70 65	67 91	81 70	20 20
31	40		e11	20		25		155		51	61	
TOTAL	974	887	611	414.4	919	1068	1312	3743	3472	1629	2496	779
MEAN MAX	31.42 64	29.57 53	19.71 27	13.37 28	32.82 64	34.45 75	43.73 132	120.7 246	115.7 199	52.55 91	80.52 587	25.97 54
MIN	20	24	11	7.1	10	17	24	65	65	26	19	17
AC-FT	1930	1760	1210	822	1820	2120	2600	7420	6890	3230	4950	1550
CFSM IN.	0.11 0.12	0.10 0.11	0.07	0.04 0.05	0.11 0.11	0.12 0.13	0.15 0.16	0.40 0.47	0.39 0.43	0.18 0.20	0.27 0.31	0.09 0.10
STATIS	TICS OF N	MONTHLY ME	EAN DATA	FOR WATER	YEARS 19	95 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	121.7	66.01	62.97	48.84	218.0	188.3	237.2	237.8	609.8	216.5	79.72	39.71
MAX	267	101	119	92.6	513	440	695	344	1773	584	163	62.9
(WY) MIN	1999 31.4	1997 29.6	1998 17.2	1998 13.4	1997 32.8	1998 34.5	1998 43.7	1998 121	1998 116	1998 52.5	1998 45.1	1998 26.0
(WY)	2002	2002	1996	2002	2002	2002	2002	2002	2002	2002	1997	2002

05464220 WOLF CREEK NEAR DYSART, IA--Continued

SUMMARY STATISTICS	FOR 2002 WATER YEAR	WATER YEARS 1995 - 2002
ANNUAL TOTAL	18304.4	
ANNUAL MEAN	50.15	203.8
HIGHEST ANNUAL MEAN		394 1998
LOWEST ANNUAL MEAN		50.1 2002
HIGHEST DAILY MEAN	587 Aug 23	4810 Jun 12 1998
LOWEST DAILY MEAN	7.1 Jan 15a	7.1 Jan 15 2002a
ANNUAL SEVEN-DAY MINIMUM	8.8 Jan 13	8.8 Jan 13 2002
MAXIMUM PEAK FLOW	725 Aug 23	5800 Jun 12 1998
MAXIMUM PEAK STAGE	4.61 Aug 23	13.33 Jun 12 1998
INSTANTANEOUS LOW FLOW		18 Oct 19 1996
ANNUAL RUNOFF (AC-FT)	36310	147700
ANNUAL RUNOFF (CFSM)	0.17	0.68
ANNUAL RUNOFF (INCHES)	2.28	9.26
10 PERCENT EXCEEDS	111	390
50 PERCENT EXCEEDS	30	85
90 PERCENT EXCEEDS	15	23

Ice affected Estimated

05464500 CEDAR RIVER AT CEDAR RAPIDS, IA

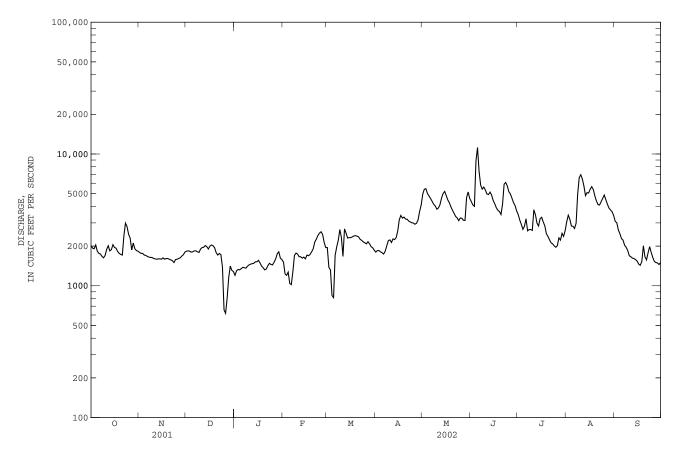
LOCATION.--Lat $41^{\circ}58^{\circ}14^{\circ}$, long $91^{\circ}40^{\circ}01^{\circ}$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ sec.28, T.83 N., R.7 W., Linn County, Hydrologic Unit 07080205, on right bank 400 ft upstream from bridge on Eighth Avenue in Cedar Rapids, 2.7 mi upstream from Prairie Creek, and at mile 112.7 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 6,510 mi².

PERIOD OF RECORD. --October 1902 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 955: 1924. WSP 1308: 1904, 1906-13, 1915, 1917, 1919-24, 1928, 1930,. WSP 1438: Drainage area. WSP 1558: 1915-18 (M), 1920 (M), 1922 (M), 1929, 1933, 1943.

GAGE.--Water-stage recorder. Datum of gage is 700.47 ft above NGVD of 1929. Prior to Aug. 20, 1920, nonrecording gage at same site and datum.


REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow affected by city hydroelectric dam 0.5 mile upstream since June 1979. U. S. Army Corps of Engineers rain gage and satellite data collection platform and U.S. Geological Survey data collection platform with telephone modem at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2010	1790	1830	1200	1510	1950	1800	4970	4360	3470	3060	3080
2	1930	1760	1840	1300	1230	1380	1850	5400	4110	3150	3430	3010
3	1910	1760	1830	1330	1200	1320	1850	5460	4010	2920	3200	2650
4	2040	1710	1800	1320	1270	844	1810	5010	8850	2680	2840	2480
5	1830	1700	1810	1350	1040	813	1780	4800	11200	2840	2830	2280
6	1760	1670	1840	1380	1020	1700	1740	4590	7360	3220	2720	2220
7	1740	1650	1840	1370	1280	1970	1830	4370	5810	2610	2980	2030
8	1670	1640	1810	1360	1700	2210	2010	4150	5410	2670	4960	1960
9	1630	1640	1790	1410	1770	2670	2200	4030	5610	2670	6630	1850
10	1700	1610	1900	1440	1740	2330	2230	3810	5340	2630	6960	1690
11	1000	1,000	1050	1460	1660	1.670	2120	2000	4070	2770	CAEO	1,000
11	1890	1600 1590	1950 1960	1460 1470	1660	1670 2700	2130 2270	3890	4970	3770	6450 5710	1660 1620
12	2010				1660	2700		4120	4920	3460		
13	1840	1600	2020	1480	1620		2240	4630	5140	2990	4830	1610
14	1880	1600	1980	1520	1650	2300	2320	5010	4880	2840	5090	1580
15	2050	1590	1900	1520	1600	2320	2600	5200	4440	3230	5060	1540
16	1950	1630	2000	1560	1710	2320	3170	4840	4190	3310	5400	1460
17	1930	1590	2040	1490	1690	2350	3420	4480	3910	3050	5650	1430
18	1820	1610	2010	1410	1730	2390	3260	4270	3740	2850	5370	1530
19	1760	1610	1940	1370	1810	2400	3320	3970	3660	2480	4790	2010
20	1730	1590	1780	1320	1910	2380	3210	3740	3470	2370	4400	1660
21	1710	1570	1710	1340	2150	2350	3200	3550	4170	2230	4130	1570
22	2390	1550	1760	1420	2260	2250	3100	3360	5900	2120	4100	1780
23	2990	1500	1720	1480	2410	2210	3050	3270	6080	2080	4350	1980
24	2810	1580	1380	1450	2510	2150	3010	3120	5730	2010	4610	1790
25	2460	1590	656	1440	2570	2120	2990	3270	5180	1960	4880	1640
26	2300	1610	618	1510	2450	2080	2930	3250	4970	2010	4500	1530
27	1870	1630	808	1600	2130	2160	2980	3140	4620	2310	4160	1500
28	2110	1680	1160	1750	1950	2080	3160	3130	4270	2220	3890	1490
29	1910	1720	1410	1810		1980	3670	4670	4060	2500	3760	1450
30	1850	1800	1310	1620		1940	4100	5150	3700	2370	3650	1500
31	1830		1280	1580		1860		4610		2620	3410	
TOTAL	61310	49170	51682	45060	49230	63707	79230	131260	154060	83640	137800	55580
MEAN	1978	1639	1667	1454	1758	2055	2641	4234	5135	2698	4445	1853
MAX	2990	1800	2040	1810	2570	2700	4100	5460	11200	3770	6960	3080
MIN	1630	1500	618	1200	1020	813	1740	3120	3470	1960	2720	1430
MED	1890	1610	1810	1440	1700	2160	2760	4270	4900	2670	4400	1660
AC-FT	121600	97530	102500	89380	97650	126400	157200	260400	305600	165900	273300	110200
CFSM	0.30	0.25	0.26	0.22	0.27	0.32	0.41	0.65	0.79	0.41	0.68	0.28
IN.	0.35	0.28	0.30	0.26	0.28	0.36	0.45	0.75	0.88	0.48	0.79	0.32
STATIS	TICS OF	MONTHLY 1	MEAN DATA	FOR WATER	YEARS 19	03 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	2350	2422	1863	1582	2487	6650	6913	5337	5910	4296	3017	2399
MAX	10570	9327	8675	8529	12230	17420	35320	24500	23420	33910	28700	13990
(WY)	1987	1973	1983	1973	1984	1929	1993	1991	1947	1993	1993	1993
MIN	463	410	290	299	304	664	1045	527	350	533	377	466
(WY)	1990	1990	1990	1911	1940	1934	1957	1934	1934	1989	1934	1934

05464500 CEDAR RIVER AT CEDAR RAPIDS, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1903 - 2002
ANNUAL TOTAL	2252722		961729			
ANNUAL MEAN	6172		2635		3771	
HIGHEST ANNUAL MEAN					15130	1993
LOWEST ANNUAL MEAN					689	1934
HIGHEST DAILY MEAN	40800	Apr 17	11200	Jun 5	71500	Mar 31 1961
LOWEST DAILY MEAN	618	Dec 26	618	Dec 26	140	Nov 18 1989
ANNUAL SEVEN-DAY MINIMUM	883	Jan 16	1030	Dec 25	224	Dec 20 1989
MAXIMUM PEAK FLOW			13000	Jun 5	73000	Mar 31 1961
MAXIMUM PEAK STAGE			7.02	Jun 5	20.00	Mar 18 1929
ANNUAL RUNOFF (AC-FT)	4468000		1908000		2732000	
ANNUAL RUNOFF (CFSM)	0.95	5	0.40		0.58	
ANNUAL RUNOFF (INCHES)	12.87	7	5.50		7.87	
10 PERCENT EXCEEDS	15200		4810		8410	
50 PERCENT EXCEEDS	2410		2040		2150	
90 PERCENT EXCEEDS	1160		1450		684	

208 CEDAR RIVER BASIN

05464942 HOOVER CREEK AT HOOVER NATIONAL HISTORIC SITE AT WEST BRANCH, IA

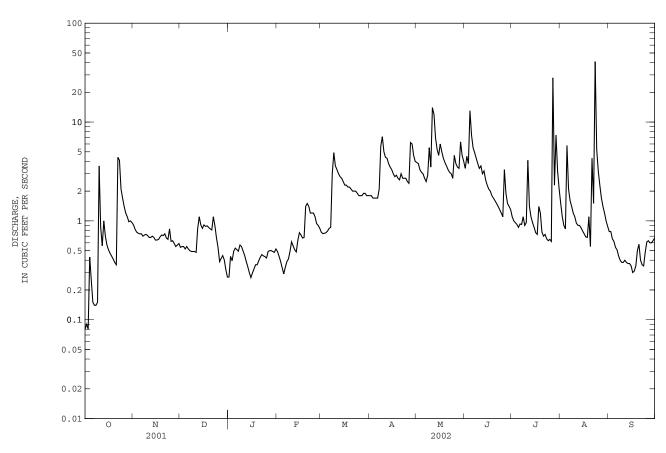
LOCATION.--Lat $41^{\circ}40^{\circ}10^{\circ}$, long $91^{\circ}21^{\circ}02^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ Sec.7, T.79 N., R.4 W., Cedar County, Hydrologic Unit 07080206, on right bank, at footbridge about 0.25 mi upstream of Hoover Presidental Library, at Hoover National Historic Site, at West Branch

DRAINAGE AREA.--2.58 mi².

PERIOD OF RECORD.--April 27, 2000 to current year.

GAGE.--Water-stage recorder. Datum of gage is 700.0 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 7, 1967 reached a stage of 711.41 ft NGVD, discharge 1,500 ft³/s from indirect discharge measurement, based on floodmarks at Downey Street bridge 1,100 ft downstream; flood of August 16, 1993 reached a stage of 715,3 ft, discharge 1,650 ft³/s from indirect discharge measurement, based on floodmarks at Hoover National Historic City

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.08 0.09 0.08 0.43 0.25	0.91 0.82 0.77 0.75	0.54 0.55 0.55 0.52 0.55	e0.27 e0.44 e0.39 e0.49 e0.53	0.49 e0.44 e0.39 e0.34 e0.29	e0.77 e0.74 e0.75 e0.76 e0.79	1.8 1.8 1.7 1.7	3.9 3.8 3.3 3.1 3.0	3.4 4.5 3.8 13 7.4	1.1 1.0 0.96 0.92 0.86	1.5 1.1 0.90 0.83 5.8	0.78 0.78 0.66 0.62 0.54
6 7 8 9 10	0.15 0.14 0.14 0.15 3.6	0.74 0.70 0.72 0.73 0.71	0.52 0.50 0.49 0.49 0.49	e0.51 e0.49 0.57 0.55 e0.50	e0.34 e0.39 e0.41 e0.49 e0.61	0.84 0.86 3.0 4.9 3.6	1.7 2.1 5.7 7.1 5.0	2.7 2.5 2.9 5.5 3.5	5.5 4.9 4.3 3.8 3.4	0.93 0.92 1.1 0.90 0.96	2.1 1.6 1.4 1.2	0.51 0.44 0.40 0.38 0.38
11 12 13 14 15	0.86 0.56 1.0 0.70 0.57	0.68 0.68 0.70 0.68 0.64	0.48 0.84 1.1 0.91 0.84	e0.45 e0.39 e0.34 e0.30 e0.27	e0.56 e0.51 e0.48 e0.64 0.76	3.3 3.0 2.8 2.7 2.5	4.4 4.3 3.8 3.5 3.3	14 12 6.9 5.3 4.6	3.6 3.0 3.2 2.6 2.3	4.1 1.4 1.1 0.96 0.86	0.95 0.90 0.90 0.85 0.79	0.40 0.38 0.37 0.37
16 17 18 19 20	0.51 0.47 0.44 0.41 0.38	0.64 0.65 0.69 0.72 0.71	0.91 0.88 0.89 0.86 0.83	e0.30 e0.33 e0.36 e0.36 e0.39	0.72 0.67 0.68 1.4 1.5	2.3 2.3 2.2 2.2 2.1	3.0 2.8 2.9 2.7 2.6	6.0 5.0 4.3 3.9 3.6	2.1 2.0 1.8 1.7	0.76 0.73 1.4 1.2 0.77	0.74 0.69 0.68 1.1 0.55	0.30 0.31 0.35 0.50 0.58
21 22 23 24 25	0.36 4.4 4.1 2.1 1.7	0.74 0.67 0.65 0.83 0.62	0.81 1.1 e0.89 e0.67 e0.54	e0.43 e0.46 e0.44 e0.43 e0.42	1.4 1.2 1.2 1.2	2.0 2.0 2.0 1.9 1.8	3.0 2.7 2.7 2.7 2.5	3.3 3.1 3.0 2.7 4.6	1.5 1.4 1.3 1.2 1.1	0.70 0.73 0.66 0.63 0.65	4.3 1.5 41 5.3 3.2	0.40 0.36 0.35 0.48 0.61
26 27 28 29 30 31	1.4 1.2 1.1 0.98 1.0 0.96	0.63 0.59 0.55 0.57 0.59	e0.39 e0.42 e0.45 e0.40 e0.32 e0.27	0.49 0.50 0.50 0.49 0.48 0.52	e0.94 e0.90 e0.84 	1.8 1.9 1.9 1.8 1.8	2.4 6.2 6.0 4.6 4.0	3.8 3.5 3.4 6.3 4.6 4.0	3.3 1.9 1.5 1.4 1.3	0.62 28 2.3 7.4 3.2 2.1	2.3 1.7 1.4 1.2 1.0	0.63 0.60 0.60 0.63 0.67
TOTAL MEAN MAX MIN AC-FT	30.31 0.978 4.4 0.08 60	20.82 0.694 0.91 0.55 41	20.00 0.645 1.1 0.27 40	13.39 0.432 0.57 0.27 27	20.89 0.746 1.5 0.29 41	63.11 2.036 4.9 0.74 125	100.4 3.347 7.1 1.7 199	142.1 4.584 14 2.5 282	93.8 3.127 13 1.1 186	69.92 2.255 28 0.62 139	89.46 2.886 41 0.55 177	14.73 0.491 0.78 0.30 29
STATIST	TICS OF I	MONTHLY ME	AN DATA	FOR WATER	YEARS 200	0 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	0.630 0.98 2002 0.28 2001	0.539 0.69 2002 0.38 2001	0.432 0.65 2002 0.22 2001	0.487 0.54 2001 0.43 2002	4.104 7.46 2001 0.75 2002	3.657 5.28 2001 2.04 2002	3.632 3.92 2001 3.35 2002	5.625 7.60 2001 4.58 2002	4.056 5.51 2001 3.13 2002	1.775 2.26 2002 1.10 2001	1.128 2.89 2002 0.16 2001	0.291 0.49 2002 0.11 2001

05464942 HOOVER CREEK AT HOOVER NATIONAL HISTORIC SITE AT WEST BRANCH, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 2000 - 2002
ANNUAL TOTAL	1020.95	678.93	
ANNUAL MEAN	2.797	1.860	2.268
HIGHEST ANNUAL MEAN			2.68 2001
LOWEST ANNUAL MEAN			1.86 2002
HIGHEST DAILY MEAN	55 Feb 24	41 Aug 23	78 May 31 2000
LOWEST DAILY MEAN	0.00 Sep 5	0.08 Oct 1	0.00 Sep 5 2001
ANNUAL SEVEN-DAY MINIMUM	0.01 Aug 30	0.17 Oct 1	0.01 Aug 30 2001
MAXIMUM PEAK FLOW		326 Aug 23	207 May 31 2000
MAXIMUM PEAK STAGE		7.45 Aug 23	7.45 Aug 23 2002
INSTANTANEOUS LOW FLOW		0.06 Oct 1a	0.00 Sep 4 2001b
ANNUAL RUNOFF (AC-FT)	2030	1350	1640
10 PERCENT EXCEEDS	6.5	4.0	5.0
50 PERCENT EXCEEDS	0.88	0.90	0.77
90 PERCENT EXCEEDS	0.08	0.39	0.14

Also Oct. 3, 4. Also Sept. 5, 6, 2001. Estimated. a b e

05465000 CEDAR RIVER NEAR CONESVILLE, IA

LOCATION.--Lat $41^{\circ}24^{\circ}36^{\circ}$, long $91^{\circ}17^{\circ}06^{\circ}$, in $SW^{1}/_{4}$ SW $^{1}/_{4}$ sec.2, T.76 N., R.4 W., Muscatine County, Hydrologic Unit 07080206, on right bank 10 ft downstream from bridge on county highway G28, 3.4 mi northeast of Conesville, 5.2 mi downstream from Wapsinonoc Creek, 10.7 mi upstream from mouth, and at mile 39.8 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 7,785 mi².

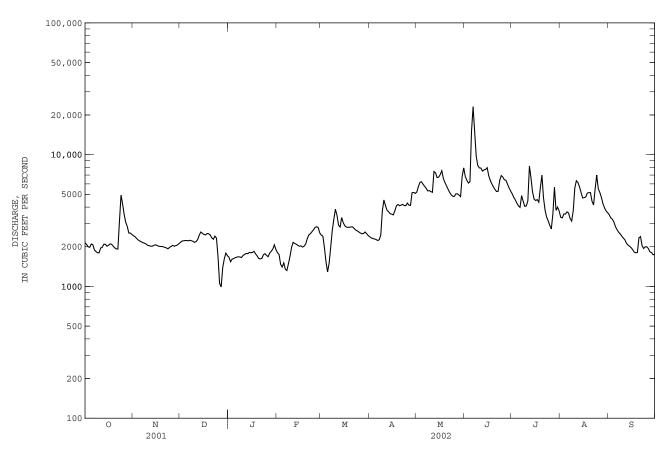
PERIOD OF RECORD. -- September 1939 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1708: 1956.

GAGE.--Water-stage recorder. Datum of gage is 581.95 ft above NGVD of 1929. Prior to Feb. 2, 1940, and Apr. 11, 1952, to July 1, 1954, nonrecording gage, Feb. 2, 1940, to Apr. 10, 1952, and July 2, 1954, to Sept. 16, 1963, water-stage recorder, at site 150 ft downstream on left bank at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of 15.8 ft, from information by local residents to U.S. Army Corps of Engineers.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2150	2420	2160	e1670	e1800	2450	2380	5200	6840	5040	3350	3500
2	2080	2380	2210	e1540	e1750	2410	2330	5710	6400	4740	3310	3310
3	2000	2310	2220	e1610	e1470	e1970	2310	6150	6090	4540	3550	3240
4	1980	2250	2230	e1630	e1400	e1540	2290	6230	6230	4280	3540	3080
5	2100	2210	2230	e1650	e1510	e1290	2270	5970	15100	4090	3680	2840
6	2070	2180	2220	e1670	e1350	e1500	2230	5750	23100	3980	3610	2700
7	1890	2150	2240	e1680	e1320	1980	2260	5560	15000	4890	3280	2580
8	1840	2130	2220	e1670	1490	2660	2450	5310	9730	4430	3130	2510
9	1800	2100	2200	e1660	1690	3230	3730	5330	8270	4050	3740	2410
10	1800	2050	2160	e1720	1980	3850	4530	5250	7930	4080	5580	2330
11	1960	2040	2190	e1750	2160	3480	4110	5180	7910	4460	6340	2260
12	1980	2020	2270	e1780	2120	2920	3790	7450	7500	8210	6150	2130
13	2090	2020	2450	e1770	2090	2820	3690	7280	7670	6650	5700	2060
14	2090	2050	2590	e1810	2050	3330	3560	6700	7720	5210	5180	2020
15	2020	2070	2530	e1800	2020	3050	3540	6750	7970	4590	4690	1970
16	2050	2050	2480	e1810	2030	2890	3490	7060	6920	4490	4720	1900
17	2100	2020	2460	e1850	1990	2820	3750	7550	6370	4560	4770	1820
18	2090	2010	2520	e1770	2020	2810	4090	6600	5990	4360	5110	1800
19	2020	2010	2510	e1700	2100	2810	4190	6140	5690	5630	5150	1810
20	1960	2000	2460	e1630	2300	2830	4100	5810	5440	7000	5150	2340
21	1930	1980	2340	e1620	2460	2830	4140	5470	5250	4700	4430	2390
22	1920	1960	2280	e1630	2510	2750	4190	5180	5270	3790	4150	2040
23	3120	1930	2410	e1740	2600	2680	4110	4960	6370	3360	5510	1940
24	4940	1980	e2330	e1770	2690	2640	4100	4830	6940	3140	7000	2000
25	4220	2010	e1670	e1720	2800	2590	4290	4820	6760	2910	5510	2000
26 27 28 29 30 31	3520 3070 2850 2540 2540 2480	2050 2020 2040 2060 2110	e1050 e991 e1390 e1620 e1790 e1710	e1680 1790 1850 1920 2070 e1900	2840 2800 2550 	2540 2510 2520 2590 2510 2430	4140 4120 5140 5170 5080	5040 5040 4940 4800 6820 7940	6450 6390 5970 5590 5300	2730 3560 5660 3780 4000 3730	5170 4740 4250 3940 3740 3630	1940 1830 1810 1740 1750
TOTAL	73200	62610	66131	53860	57890	81230	109570	182820	234160	140640	141800	68050
MEAN	2361	2087	2133	1737	2068	2620	3652	5897	7805	4537	4574	2268
MAX	4940	2420	2590	2070	2840	3850	5170	7940	23100	8210	7000	3500
MIN	1800	1930	991	1540	1320	1290	2230	4800	5250	2730	3130	1740
AC-FT	145200	124200	131200	106800	114800	161100	217300	362600	464500	279000	281300	135000
CFSM	0.30	0.27	0.27	0.22	0.27	0.34	0.47	0.76	1.00	0.58	0.59	0.29
IN. STATIS	0.35 TICS OF 1	0.30 MONTHLY MI	0.32 EAN DATA	0.26 FOR WATER	0.28 YEARS 19	0.39 40 - 2002,	0.52 BY WATER	0.87 R YEAR (W	1.12	0.67	0.68	0.33
MEAN	3106	3297	2583	2372	3239	7988	9605	7653	8309	6507	4224	3273
MAX	12380	10240	11110	11860	12000	17590	36790	24440	27780	42110	34190	19530
(WY)	1987	1973	1983	1973	1984	1948	1993	1991	1993	1993	1993	1993
MIN	599	590	429	365	359	1056	1244	1219	768	815	700	620
(WY)	1957	1956	1990	1977	1940	1954	1957	1940	1977	1989	1989	1955

05465000 CEDAR RIVER NEAR CONESVILLE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1940 - 2002
ANNUAL TOTAL	2588701		1271961			
ANNUAL MEAN	7092		3485		5184	
HIGHEST ANNUAL MEAN					18710	1993
LOWEST ANNUAL MEAN					1176	1956
HIGHEST DAILY MEAN	37600	Apr 19	23100	Jun 6	69800	Apr 6 1993
LOWEST DAILY MEAN	850	Jan 20	991	Dec 27	250	Nov 28 1955
ANNUAL SEVEN-DAY MINIMUM	990	Jan 16	1460	Dec 25	329	Jan 30 1940
MAXIMUM PEAK FLOW			24200	Jun 6	74000	Apr 6 1993
MAXIMUM PEAK STAGE			13.81	Jun 6	17.11	Apr 6 1993
ANNUAL RUNOFF (AC-FT)	5135000		2523000		3756000	
ANNUAL RUNOFF (CFSM)	0.91		0.45		0.67	
ANNUAL RUNOFF (INCHES)	12.37	,	6.08		9.05	
10 PERCENT EXCEEDS	17800		6180		12000	
50 PERCENT EXCEEDS	2850		2580		3150	
90 PERCENT EXCEEDS	1460		1750		940	

e Estimated

05465500 IOWA RIVER AT WAPELLO, IA

LOCATION.--Lat $41^{\circ}10^{\circ}41^{\circ}$, long $91^{\circ}10^{\circ}55^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.27, T.74 N., R.3 W., Louisa County, Hydrologic Unit 07080209, on right bank, 1200 ft. downstream from bridge on State Highway 99 at east edge of Wapello, 13.2 mi downstream from Cedar River, and at mile 15.8.

DRAINAGE AREA.--12,499 mi².

WATER-DISCHARGE RECORDS

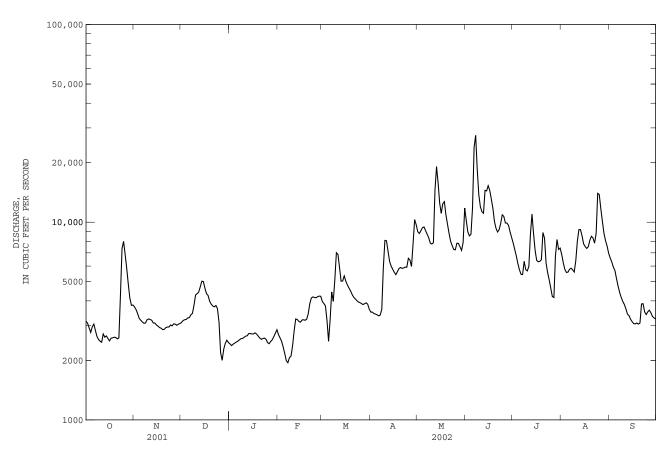
PERIOD OF RECORD.--October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1917, 1923-30, 1932. WSP 1438: Drainage area. WSP 1558: 1918, 1923-25 (M), 1929. WSP 1708: 1955(P), 1956. WDR IA-95-1:location.

GAGE.--Water-stage recorder. Datum of gage is 538.17 ft above NGVD of 1929; Oct. 1, 1914 to Apr. 15, 1934, nonrecording gage and Apr. 16, 1934 to Sept. 30, 1972, water-stage recorder at datum 10.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Coralville Lake (station 05453510) 67.3 mi upstream, since Sept. 17, 1958. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum instantaneous discharge, 111,000 ft 3 /s, July 8, 1993, gage height, 29.53 ft; minimum daily discharge, 300 ft 3 /s, Nov. 28, 1955.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3160	3730	3110	e2420	e2700	3970	3510	8960	10200	7840	6860	6590
2	3080	3610	3180	e2380	e2600	3880	3510	8770	8930	7270	6230	6290
3	2920	3440	3210	e2420	e2500	3770	3450	9060	8530	6740	5770	5930
4	2770	3260	3220	e2450	e2340	3180	3430	9380	8690	6160	5570	5700
5	2960	3190	3280	e2470	e2160	2500	3400	9470	11800	5740	5590	5190
6	3050	3130	3290	e2500	e1990	3210	3360	9060	23900	5450	5780	4760
7	2830	3080	3400	e2540	e1950	4440	3390	8700	27500	5430	5850	4420
8	2640	3090	3460	e2570	e2060	3980	3620	8340	18600	6340	5740	4170
9	2550	3210	3800	e2580	2100	5120	5880	7840	13800	5760	5600	3980
10	2500	3240	4280	e2620	2370	7010	8090	7760	12000	5670	6400	3840
11	2470	3220	4350	e2650	2820	6870	8060	7870	11300	5970	8030	3650
12	2720	3190	4430	e2660	3240	5910	7140	14500	11100	8670	9180	3430
13	2620	3090	4710 5030	e2730	3220	5030	6340	19100	14500	11000	9180	3370
14 15	2660 2580	3090 3020	5030	e2730 e2720	3150 3120	5040 5350	5990 5780	15800 12500	14400 15300	8760 7200	8530 7770	3230 3140
13	2300	3020	3010	e2720	3120	3330	3760	12300	13300	7200	7770	3140
16	2510	2980	4630	e2720	3200	5040	5580	11100	14500	6410	7530	3070
17	2590	2930	4350	e2760	3210	4820	5430	12400	13100	6310	7370	3060
18	2600	2910	4260	e2720	3190	4650	5620	12700	11800	6340	7520	3090
19	2620	2860	3980	e2660	3230	4500	5830	10900	10100	6460	8120	3050
20	2610	2870	3850	e2590	3440	4320	5900	9770	9320	8870	8490	3090
21	2570	2930	3770	e2560	3870	4180	5840	8780	8920	8310	8320	3860
22	2600	2950	3730	e2580	4140	4100	5870	8010	9170	6230	7840	3870
23	4290	2950	3790	e2590	4190	4020	5930	7610	9860	5560	8780	3520
24	7360	3020	e3650	e2560	4160	3950	5920	7280	10900	5110	14000	3410
25	8000	2990	e3110	e2460	4150	3920	6570	7250	10700	4640	13800	3520
26	6870	3060	e2190	e2430	4200	3880	6440	7830	9910	4210	11700	3590
27	5840	3050	e2000	e2490	4230	3830	5970	7810	9900	4160	10100	3480
28	4870	3010	e2280	e2540	4220	3870	7770	7510	9640	6770	8790	3340
29	4130	3050	e2440	e2640		3910 3850	10300	7200	8930	8180	8060	3280
30 31	3800 3810	3070	e2530 e2460	e2740 e2860		3630	9720	7910 11800	8360	7280 7400	7580 6960	3240
31	3010		e2400	e2000		3030		11000		7400	0900	
TOTAL	108580	93220	110780	80340	87750	135730	173640	302970	365660	206240	247040	118160
MEAN	3503	3107	3574	2592	3134	4378	5788	9773	12190	6653	7969	3939
MAX	8000	3730	5030	2860	4230	7010	10300	19100	27500	11000	14000	6590
MIN	2470 215400	2860 184900	2000 219700	2380 159400	1950 174100	2500 269200	3360 344400	7200 600900	8360 725300	4160 409100	5570 490000	3050 234400
AC-FT CFSM	0.28	0.25	0.29	0.21	0.25	0.35	0.46	0.78	0.98	0.53	0.64	0.32
IN.	0.20	0.23	0.23	0.21	0.26	0.40	0.52	0.78	1.09	0.61	0.74	0.32
										0.01	0.74	0.55
STATIS	TICS OF I	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	59 - 2002,	BY WATER	R YEAR (W	Z)			
MEAN	5410	6019	5221	4400	6206	13460	16380	13920	14140	12370	7921	5984
MAX	17200	16080	18150	20420	17080	26130	45840	33030	36630	77320	61750	37270
(WY)	1987	1993	1983	1973	1984	1982	1993	1993	1993	1993	1993	1993
MIN	926	882	664	533	661	2273	2536	1709	1022	1019	873	982
(WY)	1990	1990	1990	1977	1977	1977	1977	1977	1977	1989	1989	1988

05465500 IOWA RIVER AT WAPELLO, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WAT	ER YE	AR	WATER YEARS	195	9 -	2002a
ANNUAL TOTAL	4090600		2030110						
ANNUAL MEAN	11210		5562			9294			
HIGHEST ANNUAL MEAN						30550			1993
LOWEST ANNUAL MEAN						1908			1989
HIGHEST DAILY MEAN	42600 Ap	r 15	27500	Jun	7	106000	Jul	8	1993
LOWEST DAILY MEAN	1400 Ja	n 1	1950	Feb	7b	460	Jan	21	1977
ANNUAL SEVEN-DAY MINIMUM	1710 Ja	n 1	2140	Feb	4	470	Jan	20	1977
MAXIMUM PEAK FLOW			28800	Jun	7	111000	Jul	8	1993
MAXIMUM PEAK STAGE			19.13	Jun	7	29.53	Jul	7	1993
ANNUAL RUNOFF (AC-FT)	8114000		4027000			6733000			
ANNUAL RUNOFF (CFSM)	0.90		0.44			0.74			
ANNUAL RUNOFF (INCHES)	12.17		6.04			10.10			
10 PERCENT EXCEEDS	29200		9810			21200			
50 PERCENT EXCEEDS	4710		4190			5970			
90 PERCENT EXCEEDS	2400		2580			1750			

Post regulation. Ice affected Estimated.

05465500 IOWA RIVER AT WAPELLO, IA--Continued

WATER-OUALITY RECORDS

LOCATION -- Samples collected at bridge on State Highway 99, 1200 ft. upstream of gage.

PERIOD OF RECORD. -- January 1978 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: January 1978 to current year. WATER TEMPERATURE: January 1978 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1978 to current year.

REMARKS.--During periods of ice effect samples are collected in open water channel or through ice cover. Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 920 microsiemens Dec. 17, 1988; minimum daily, 168 microsiemens June 21, 1990.
WATER TEMPERATURES: Maximum daily, 33.0°C July 25, 1987; minimum daily, 0.0°C on many days during winter period.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,970 mg/L June 25, 1981; minimum daily mean, 1 mg/L Jan. 21, 22, 1981.
SEDIMENT LOADS: Maximum daily 604,000 tons June 20, 1990; minimum daily, 4.7 tons Dec. 23, 24, 1989.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 646 microsiemens Jan. 9; minimum daily, 309 microsiemens June 6.
WATER TEMPERATURES: Maximum daily, 28.8°C, July 3; minimum daily, 0.1°C Jan. 9.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,050 mg/L June 7; minimum daily mean, 21 mg/L Feb. 14.
SEDIMENT LOADS: Maximum daily, 78,000 tons June 7; minimum daily, 131 tons Feb. 7.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	GAGE HEIGHT (FEET) (00065)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SAMPLE TREAT- MENT (CODES) (00115)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)
OCT													
04 NOV	1020	17.7	11.0	749	1028	80020	2870	11.58	429	1	9.8	105	8.6
07 DEC	0857	11.1	17.0	753	1028	80020	3090	11.64	490	1	12.3	113	8.6
05 JAN	0930	10.7	20.0	744	1028	1028	3280	11.75	555	1	11.8	106	8.6
09 FEB	0915	.1		736	1028	80020	2580	12.00	707	1	13.8	95	8.1
13 APR	0942	1.2	2.7	754	1028	80020	3230	11.87	632	1	13.1	93	8.2
10	1049	10.3	20.0	755	1028	80020	8260	14.07	470	1	10.2	90	8.0
MAY 02	0845	11.5	3.5	744	1028	80020	8850	14.46	498	1	10.9	103	8.3
JUN 06	1050	18.7		748	1028	80020	24600	18.14	289	1	6.5	71	7.6
JUL 03	0950	28.8	30.0	748	1028	80020	6740	13.15	536	1	8.5	113	8.3
AUG 05	0933	27.9	26.7	749	1028	80020	5620	12.60	399	1	7.3	94	8.6
Date	PH WATER WHOLE LIAB (STAND- ARD UNITS) (00403)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHATE, TOTAL (MG/L AS PO4) (00650)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CYANIDE TOTAL (MG/L AS CN) (00720)
OCT	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC 05 JAN	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 6 4	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 113 170 224	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .015 .009	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 2.0 2.3	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08 2.82	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC 05 JAN 09	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC 05 JAN 09 FEB 13	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 6 4	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 113 170 224	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .015 .009	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 2.0 2.3	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08 2.82	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC 05 JAN 09 FEB 13 APR 10	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 6 4 2	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 113 170 224 278	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .015 .009 .014	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 2.0 2.3 2.0	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08 2.82 5.93	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665) .31 .48	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC 05 JAN 09 FEB 13 APR 10 MAY 02	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 6 4 2 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 113 170 224 278 240	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .16 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .015 .009 .014 .015	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 2.0 2.3 2.0 1.3	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08 2.82 5.93 4.89	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665) .31 .48 .30	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 .03 .17	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC 05 JAN 09 FEB 13 APR 10 MAY 02 JUN 06	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS C03 (00452) 6 4 2 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 113 170 224 278 240 164	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 .16 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .015 .009 .014 .015 .029 .049	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 2.0 2.3 2.0 1.3 .79 3.0	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08 2.82 5.93 4.89 5.22	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665) .31 .48 .30 .26	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 .03 .17 .13	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)
OCT 04 NOV 07 DEC 05 JAN 09 FEB 13 APR 10 MAY 02 JUN	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 6 4 2 0 0 0	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 113 170 224 278 240 164 182	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 .16 <.04 .06 <.04	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .015 .009 .014 .015 .029 .049	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 2.0 2.3 2.0 1.3 .79 3.0 1.6	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 1.01 2.08 2.82 5.93 4.89 5.22 5.85	PHATE, TOTAL (MG/L AS PO4) (00650)	PHORUS TOTAL (MG/L AS P) (00665) 31 .48 .30 .26 .79 .390	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671) <.02 <.02 .03 .17 .13 .11	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL (MG/L AS CN) (00720)

IOWA RIVER BASIN

05465500 IOWA RIVER AT WAPELLO, IA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

					,					_			
Date	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	GROSS ALPHA, DIS- SOLVED (PCI/L AS U-NAT) (01515)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	TER- BUTHYL- AZINE, WATER, DISS, REC (UG/L) (04022)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
OCT 04		34.2	43.5					U	<.010	<.002	E.002	E.01	E.064
NOV 07		37.8	42.1					U	<.010	<.002	<.011	E.01	E.056
DEC 05		37.2	44.2					U	<.010	<.002	<.011	М	E.049
JAN 09		43.3	49.1					U	<.010	<.002	<.005	<.01	E.044
FEB 13		41.2	45.5					U	<.010	<.002	<.005	E.01	E.035
APR 10		30.0	30.8						<.010	<.002	.005	E.01	E.024
MAY 02		28.1	34.1						<.010	<.002	.009	E.01	E.087
JUN 06		11.2	13.6						<.010	<.002	.097	.02	E.510
JUL 03	310	28.5	33.0	.13	14.0	<1.9	11.2		<.010	<.002	.011	E.01	E.199
AUG 05		29.0	32.6						<.010	<.002	.007	.03	E.086
Date	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	FONOFOS WATER DISS REC (UG/L) (04095)	RADIUM 226, DIS- SOLVED (PCI/L) (09503)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	P,P' DDE DISSOLV (UG/L) (34653)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	LINDANE DIS- SOLVED (UG/L) (39341)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	MALA- THION, DIS- SOLVED (UG/L) (39532)	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)
OCT 04	<.018	<.003		<.005	<.003	<.005	103	<.004	<.005	.058	E.012	<.007	<.005
NOV 07	<.018	<.003		<.005	<.003	<.005	145	<.004	<.005	.039	<.027	<.007	<.005
DEC 05	<.018	<.003		<.005	<.003	<.005	187	<.004	<.005	.035	<.027	<.007	<.005
JAN 09	<.018	<.003		<.005	<.003	<.005	230	<.004	<.005	.048	<.027	<.010	<.005
FEB 13	<.018	<.003		<.005	<.003	<.005	198	<.004	<.005	.030	<.027	<.010	<.005
APR 10	<.018	<.003		<.005	<.003	<.005	135	<.004	<.005	.092	<.027	<.010	<.005
MAY 02	<.018	<.003		<.005	<.003	<.005	151	<.004	<.005	.197	<.027	<.010	<.005
JUN 06	.020	<.003		<.005	<.003	.007	96	<.004	<.005	2.52	<.027	<.010	.039
JUL 03	<.018	<.003	М	<.005	<.003	<.005	111	<.004	<.005	.153	<.027	<.010	<.005
AUG 05	<.018	<.003		<.005	<.003	<.005	107	<.004	<.005	.060	<.027	<.010	<.005
Date	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	PURPOSE SITE VISIT, (CODE) (50280)	TUR-BID-ITY FIELD WATER UNFLTRD (NTU) (61028)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SAMPLE PURPOSE CODE (71999)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	DRAIN- AGE AREA (SQ. MI.) (81024)	TUR- BID- ITY LAB (NTU) (82079)	SAM- PLING METHOD, CODES (82398)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)
OCT 04	.116	<.002	.008	1001			15.00	538.17	57	12500		10	<.006
NOV 07	.098	<.002	<.004	1001			15.00	538.17	71	12500		30	<.006
DEC 05	.082	<.002	<.004	1001	49		15.00	538.17	98	12500		10	<.006
JAN 09	.058	<.004	<.006	1001	12		15.00	538.17	26	12500		30	<.006
FEB 13	.058	<.004	<.006	1001	18		15.00	538.17	77	12500		10	<.006
APR 10	.251	.012	.059	1001	290		15.00	538.17	453	12500		10	.009
MAY 02	.839	<.008	.145	1001			15.00	538.17	185	12500		10	.009
JUN 06	5.77	.079	1.54	1001			15.00	538.17	890	12500		10	.019
JUL 03	1.43	<.004	.037	1001		390	15.00	538.17	124	12500	22	10	<.006
AUG 05	.345	<.004	.011	1001			15.00	538.17	209	12500		10	<.006

05465500 IOWA RIVER AT WAPELLO, IA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	2,6-DI-	TRI-	ETHAL-	QUALITI D	TER-	LIN-	METHYL	I TO SEFT	PEB-	TEBU-	MOL-	ETHO-	BEN-
	ETHYL ANILINE WAT FLT	FLUR- ALIN WAT FLT	FLUR- ALIN WAT FLT	PHORATE WATER FLTRD	BACIL WATER FLTRD	URON WATER FLTRD	PARA- THION WAT FLT	EPTC WATER FLTRD	ULATE WATER FILTRD	THIURON WATER FLTRD	INATE WATER FLTRD	PROP WATER FLTRD	FLUR- ALIN WAT FLD
Date	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC	0.7 U GF, REC
bacc	(UG/L) (82660)	(UG/L) (82661)	(UG/L) (82663)	(UG/L) (82664)	(UG/L) (82665)	(UG/L) (82666)	(UG/L) (82667)	(UG/L) (82668)	(UG/L) (82669)	(UG/L) (82670)	(UG/L) (82671)	(UG/L) (82672)	(UG/L) (82673)
OCT 04	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	E.01	<.002	<.005	<.010
NOV 07	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	<.02	<.002	<.005	<.010
DEC 05	<.002	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.002	<.02	<.002	<.005	<.010
JAN 09	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
FEB 13	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
APR 10 MAY	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
02	<.006	<.009	<.009	<.011	<.034	<.035	<.006	.006	<.004	<.02	<.002	<.005	<.010
JUN 06	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	E.01	<.002	<.005	<.010
JUL 03 AUG	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
05	<.006	<.009	<.009	<.011	<.034	<.035	<.006	<.002	<.004	<.02	<.002	<.005	<.010
Date	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
OCT 04	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
NOV 07	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
DEC 05	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.010	<.007	<.02	<.050
JAN 09	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
FEB 13	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
APR 10	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
MAY 02	<.020	<.02	<.004	<.02	<.002	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
JUN 06	E.032	<.02	<.004	<.02	<.002	<.011	E.008	<.005	<.003	.025	<.007	<.02	<.050
JUL 03	<.020	<.02	<.004	<.02	.007	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
AUG 05	<.020	<.02	<.004	<.02	.003	<.011	<.041	<.005	<.003	<.022	<.007	<.02	<.050
	Da	ite	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SET NUMBER SCHED- ULE 2001 (NO.) (99818)	SAMPLE VOLUME SCHED- ULE 2001 (ML) (99856)		
	OCT 0 NOV	4	<.006	3039			113	88.5		2.00E+08	946		
		7	<.006	3039			88.6	85.7		2.00E+08	950		
		5	<.006	3039	576		101	93.0		2.00E+08	879		
		19	<.006	3060	708		88.1	80.8		2.00E+08	924		
		.3	<.006	3039	641		98.1	90.6		2.00E+08	947		
		.0	<.006	3053	479		92.7	92.7			915		
		2	<.006	3051	497		122	102			938		
		6	<.006	3053	289		E122	106			907		
		3	<.006	3053	512	340	115	93.3	30		835		
		5	<.006	3050			108	105			945		

> 05465500 IOWA RIVER AT WAPELLO, IA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

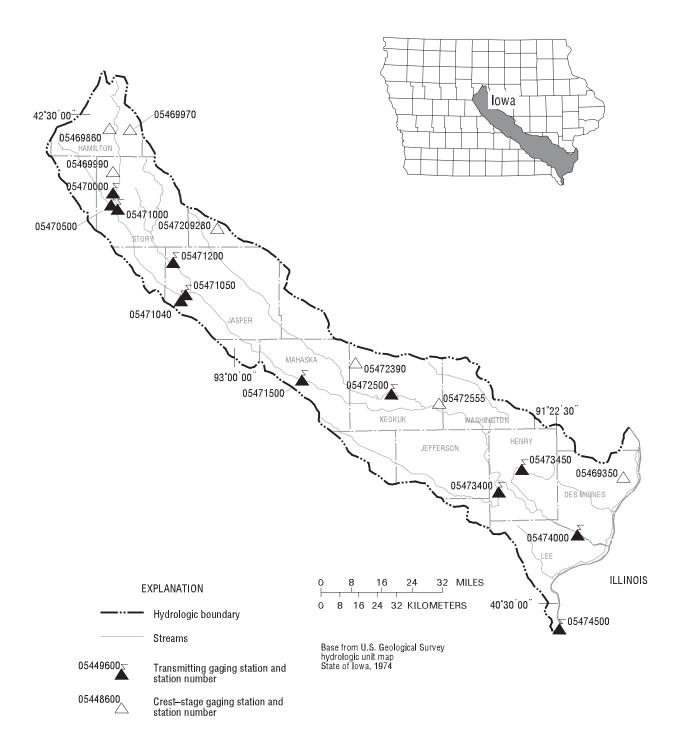
		Da	ite	Time	TEMPER- ATURE WATER (DEG C) (00010)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)			
		OCT 0	4	1245	17.7	2870	76	589	99			
		NOV		1000	12.2	3090	75	626	96			
		FEB		1010	1.2	3230	65	567	88			
		APR		1130	10.4	8260	485	10800	96			
		MAY		0930	11.5	8830	211	5030	90			
		JUN		1130	18.8	24600	866	57500	90			
		JUL		1005	28.8	6740	143	2600	92			
		AUG		1020	28.2	5620	214	3250	93			
Date	Time	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)
OCT 04	1245	5	1	4	10	21	60	80	91	100		
NOV 07	1000	4	1	3	8	18	50	74	88	96	97	100
DEC 05	0930	4	1	3	9	18	62	86	95	100		
FEB 13	1010	3	2	5	9	16	56	80	87	92	94	100
MAY 02	0945	5		0	10	48	71	93	99	100		
JUN 06	1130	4		0	15	64	89	98	100			
JUL 03	1010	5	0	1	7	34	70	90	98	100		
AUG 07	1020	5	0	1	9	35	66	85	96	100		
	SPE	CIFIC CON	DUCTANCE,	in MICRO		M, WATER		BER 2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												
2								526 		 535		
4 5	417		 506								 417	
6		462							309			
7		470										
8 9				 646								
10							520					
11 12												
13					614							
14 15												
16	508											
17 18												
19 20												
21 22												
23 24												
25												
26												
27 28												
29 30												
31												

05465500 IOWA RIVER AT WAPELLO, IA--Continued

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

				1.	MILI INSI	AN I AINEOU;	5 VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												
2								11.5				
3										28.8		
4	17.7											
5			10.7								27.9	
6		12.2							18.8			
7		11.1										
8												
9				0.1								
10							10.4					
11												
12												
13					1.2							
14												
15												
16	9.6											
17												
18												
19												
20												
21												
22												
23												
24												
25												
23												
26												
27												
28												
29												
30												
31												

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


	MEAN		MEAN		MEAN		MEAN		MEAN		MEAN	
	CONCEN-	LOAD										
	TRATION	(TONS/										
DAY	(MG/L)	DAY)										
	, ,	,	, ,	,	, ,	,	, ,	,	, ,	•	, ,	•
	OCTO	BER	NOVEMB	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1	40	342	57	578	79	664	40	262	25	182	55	593
2	45	372	59	574	81	694	39	250	25	175	46	482
3	46	362	60	562	82	715	39	254	25	169	37	375
4	47	349	62	547	84	733	38	251	25	158	28	241
5	47	380	64	548	78	692	38	251	25	146	30	199
5	4 /	300	04	340	70	092	30	234		140	30	199
6	48	399	62	526	74	655	37	250	25	134	71	629
7	46	355	61	510	75	691	37	254	25	131	111	1330
8	44	314	63	523	77	719	36	250	25	139	121	1310
9	43	294	64	558	78	796	36	251	25	142	198	2770
10	42	286	66	575	78	903	35	247	25	162	273	5180
11	42	282	65	565	79	923	34	243	26	197	255	4740
12	43	313	64	551	80	962	34	245	26	232	221	3540
13	41	293	63	525	85	1090	33	243	23	204	201	2730
14	42	299	62	516	91	1230	32	236	21	177	218	2960
15	42	294	62	502	93	1260	32	235	22	182	231	3340
16	43	290	61	492	88	1100	31	228	23	195	215	2920
17	43	299	61	481	81	954	30	223	23	198	194	2520
18	43	299	61	475	76	875	29	213	22	192	173	2180
19	42	301	60	464	73	784	27	194	25	220	156	1900
20	42	298	61	472	70	726	27	189	36	339	150	1740
21	42	292	62	492	67	682	28	193	48	503	143	1620
22	71	507	64	508	65	649	29	202	60	666	137	1520
23	149	1790	65	519	66	675	31	217	67	762	131	1420
24	222	4450	67	544	67	661	37	256	69	773	125	1330
25	198	4300	68	553	65	546	35	232	70	787	119	1250
26	162	3010	70	581	59	348	32	210	72	812	112	1180
27	128	2020	72	596	54	292	29	195	72	821	115	1190
28	93	1230	74	603	49	302	26	179	65	735	122	1280
29	61	685	76	625	46	303	25	178			128	1350
30	54	557	78	644	44	301	25	185			120	1250
31	56	574			42	279	25	193			109	1070
21	50	314			42	213	رے	1,73			109	10/0
TOTAL		25836		16209		22204		7012		9533		56139

05465500 IOWA RIVER AT WAPELLO, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	
	APR	IL	MAY		JUNE		JULY		AUGUS'	Г	SEPTEM	BER	
1 2 3 4 5	100 96 92 87 83	951 910 855 810 763	238 197 221 250 260	5770 4670 5420 6340 6640	320 285 259 258 412	8820 6880 5970 6050 14300	166 144 126 118 111	3530 2830 2290 1960 1720	242 227 218 213 214	4480 3800 3400 3210 3230	217 207 197 188 178	3770 3430 3080 2810 2420	
6 7 8 9 10	79 83 189 325 424	716 764 1870 5270 9280	252 244 236 228 230	6160 5730 5310 4840 4830	875 1050 891 683 482	57000 78000 45200 25600 15700	104 106 120 116 129	1530 1550 2050 1800 1970	225 225 206 207 262	3510 3540 3180 3120 4530	168 158 149 141 137	2090 1820 1610 1460 1360	
11 12 13 14 15	371 300 251 235 220	8080 5800 4300 3810 3430	275 445 587 528 439	5880 17900 30300 22500 14900	423 422 509 545 574	12900 12700 20100 21300 23800	173 217 249 228 201	2790 5140 7420 5410 3910	316 324 314 287 257	6820 7990 7730 6560 5350	133 128 124 120 116	1250 1130 1070 984 920	
16 17 18 19 20	204 188 172 157 158	3070 2760 2610 2480 2510	378 425 410 360 310	11300 14200 14100 10600 8190	535 468 401 335 275	20900 16600 12900 9130 6940	173 154 149 152 195	3000 2620 2550 2650 4700	237 223 223 244 264	4780 4400 4490 5290 5990	112 115 122 130 143	867 893 953 999 1120	
21 22 23 24 25	164 170 177 187 206	2580 2700 2840 2990 3690	260 230 219 208 219	6180 4970 4490 4080 4300	241 254 279 304 300	5810 6280 7440 8940 8650	198 170 150 137 123	4470 2870 2260 1890 1540	257 233 285 400 402	5710 4860 6710 15100 14900	194 205 190 179 179	1920 2020 1700 1540 1580	
26 27 28 29 30 31	210 212 271 331 301	3710 3520 5940 9210 7920	246 240 220 228 281 331	5200 5070 4450 4430 6020 10600	278 256 233 211 189	7440 6820 6080 5090 4270	115 111 179 230 214 252	1310 1250 3500 5100 4190 5030	342 283 256 246 236 226	10700 7640 5970 5260 4730 4160	180 180 176 173 166	1630 1570 1480 1420 1350	
TOTAL		106139		265370		487610		94830		181140		50246	
YEAR		1322268											
100,0	⁰⁰⁰ E	1	ı		T		T	ı		ı	T	ı	\exists
50,0	000												-
20,0	000								$^{\prime}$ $ \mathbb{V} $	(Λ	
10,0	000						٨	,	'\	٨		\setminus	=
F	000						\land	\mathbb{N}	\	V\ \	. \	$\sqrt{}$	=
50		Λ				Λ.	\	1, ,	VΛ	\ /\	$M_{\rm s}^{\rm l}$	/· \	7
	-	\mathbb{I}				\	(\)		\ / '	V **		1
20	000						\			$\backslash V$			M
10	000		\bigwedge	\			$\sqrt{}$				V		
Ę	500 	m				$ \cdot $							-
2	200 -	1		J.,	\mathcal{N}_{χ}								-
1	100	ı	ı		V	ı	ı	1	İ	ı	ı	1	
	0	N 20		.	J F	М	A		M J 102	Ü	J A	. S	

SUSPENDED-SEDIMENT DISCHARGE, IN TONS PER DAY

Figure 16. Locations of active continuous-record and crest-stage gaging stations in the Skunk River drainage basin.

Gaging	Stations

05470000	South Skunk River near Ames, IA	4
05470500	Squaw Creek at Ames, IA	36
05471000	South Skunk River below Squaw Creek near Ames, IA	8 :
05471040	Squaw Creek near Colfax, IA	0 8
05471050	South Skunk River at Colfax, IA	6
05471200	Indian Creek near Mingo, IA	8 8
05471500	South Skunk River near Oskaloosa, IA	10
05472500	North Skunk River near Sigourney, IA	12
05473400	Cedar Creek near Oakland Mills, IA	4
05473450	Big Creek near Mt. Pleasant	16
05474000	Skunk River at Augusta, IA	8
05474500	Mississippi River at Keokuk, IA	54
Crest Stage	Gaging Stations	
05469350	Haight Creek at Kingston, IA	6
05469860	Mud Lake Drainage Ditch 71 at Jewell, IA	6
05469970	Long Dick Creek near Ellsworth, IA	6
05469990	Keigley Branch near Story City, IA	6

05470000 SOUTH SKUNK RIVER NEAR AMES, IA

LOCATION.--Lat $42^{\circ}04^{\circ}06^{\circ}$, long $93^{\circ}37^{\circ}09^{\circ}$, in $NW^{1}/_{4}$ Sw $^{1}/_{4}$ sec.23, T.84 N., R.24 W., Story County, Hydrologic Unit 07080105, on left bank 2.5 mi north of Ames, 3.5 mi downstream from Keigley Branch, 5.2 mi upstream from Squaw Creek, and at mile 228.1 upstream from mouth of Skunk River.

DRAINAGE AREA. -- 315 mi².

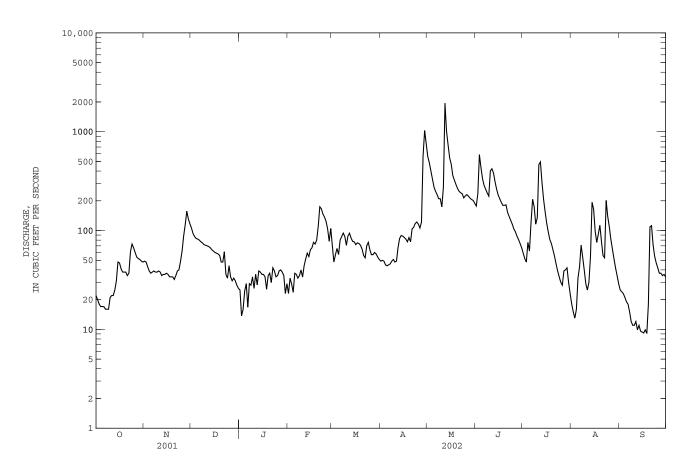
PERIOD OF RECORD.--July 1920 to September 1927, October 1932 to September 1995, October 1, 1996 to current year. Monthly discharge only for some periods, published in WSP 1308. Prior to October 1966, published as "Skunk River near Ames".

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1921, 1925-26, 1934-35 (M), 1937 (M), 1939 (M), 1947-50 (M). WDR IA-67-1: 1965. WDR IA-74-1: 1973 (P).

GAGE.--Water-stage recorder. Concrete control since July 21, 1934. Datum of gage is 893.61 ft above NGVD of 1929 (Iowa Highway Commission benchmark). Prior to Aug. 25, 1921, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with phone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 17, 1996 reached about 14,000 ft³/s, from rating curve extension, gage height 15.89 ft, from highwater mark.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	49	106	25	e23	71	49	e561	177	59	18	25
2	20	48	93	e14	33	48	50	e485	235	52	15	24
3	18	43	87	e16	e29	57	49	e401	587	48	13	e23
4	17	39	83	e24	e24	66	45	e332	434	76	16	21
5	17	37	82	29	37	e57	44	e275	335	e62	33	19
6	17	38	80	e17	36	e80	45	e249	286	e120	43	18
7	16	39	77	29	33	e87	46	e230	262	e207	71	15
8	16	38	75	28	35	e94	49	e210	e240	e174	54	12
9	16	38	72	34	40	87	51	e210	223	116	40	11
10	21	39	71	e26	e34	71	48	e174	401	135	29	11
11	22	38	70	e36	e44	88	49	e274	422	465	25	12
12	22	35	69	e28	e52	94	67	e1940	383	495	30	9.9
13	25	36	67	39	59	e84	83	1010	312	307	55	11
14	31	36	64	e38	e55	e78	89	733	262	208	193	9.6
15	48	e37	62	36	64	e77	88	543	229	155	164	9.4
16	47	36	60	36	67	e72	85	e470	210	119	98	9.2
17	41	34	59	34	76	75	82	360	193	97	76	9.9
18	38	34	58	e25	73	74	77	324	180	81	92	e9.1
19	38	34	56	35	80	71	e85	293	180	e74	113	18
20	38	32	48	37	110	e65	e77	267	182	64	78	109
21	35	e35	48	e30	174	e56	e104	250	153	55	56	112
22	37	39	61	42	166	53	e108	241	139	46	53	72
23	61	40	36	39	147	70	e118	236	127	39	202	55
24	73	49	e33	34	137	76	e122	214	116	34	139	47
25	67	62	e44	35	124	64	e116	224	104	30	110	42
26 27 28 29 30 31	60 54 52 51 49 48	88 115 157 131 117	e34 31 33 31 28 26	39 40 38 35 e23 29	104 78 105 	57 57 60 58 54 51	e106 e122 e567 e1030 e760	231 223 213 206 202 189	97 88 81 74 67	28 39 40 42 30 23	82 65 52 42 35 29	37 37 35 36 34
TOTAL	1117	1593	1844	970	2039	2152	4411	11770	6779	3520	2121	893.1
MEAN	36.03	53.10	59.48	31.29	72.82	69.42	147.0	379.7	226.0	113.5	68.42	29.77
MAX	73	157	106	42	174	94	1030	1940	587	495	202	112
MIN	16	32	26	14	23	48	44	174	67	23	13	9.1
AC-FT	2220	3160	3660	1920	4040	4270	8750	23350	13450	6980	4210	1770
CFSM	0.11	0.17	0.19	0.10	0.23	0.22	0.47	1.21	0.72	0.36	0.22	0.09
IN.	0.13	0.19	0.22	0.11	0.24	0.25	0.52	1.39	0.80	0.42	0.25	0.11
STATIS					YEARS 192							
MEAN	92.96	96.96	69.65	49.09	117.7	311.4	280.6	281.5	386.6	220.8	111.8	93.61
MAX	723	726	537	315	623	1034	1208	1193	1900	2628	1782	577
(WY)	1987	1973	1983	1973	1984	1979	1965	1944	1947	1993	1993	1926
MIN	0.12	0.14	0.000	0.000	0.31	6.35	5.44	2.28	0.011	0.017	0.087	0.081
(WY)	1954	1956	1977	1977	1956	1981	2000	1934	1977	1977	1934	1976

05470000 SOUTH SKUNK RIVER NEAR AMES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1921 - 2002
ANNUAL TOTAL	59753.7	39209.1	
ANNUAL MEAN	163.7	107.4	176.1
HIGHEST ANNUAL MEAN			752 1993
LOWEST ANNUAL MEAN			5.58 1956
HIGHEST DAILY MEAN	1860 Mar 22	1940 May 12	8980 Jul 9 1993
LOWEST DAILY MEAN	2.3 Jan 30	9.2 Sep 16	0.00 Jun 20 1934
ANNUAL SEVEN-DAY MINIMUM	2.6 Jan 29	9.7 Sep 12	0.00 Jun 20 1934a
MAXIMUM PEAK FLOW		1070 May 13	11200 Aug 16 1993
MAXIMUM PEAK STAGE		4.56 May 13	14.23 Aug 16 1993
INSTANTANEOUS LOW FLOW		8.6 Sep 16	0.00 Jun 20 1934
ANNUAL RUNOFF (AC-FT)	118500	77770	127600
ANNUAL RUNOFF (CFSM)	0.52	0.34	0.56
ANNUAL RUNOFF (INCHES)	7.06	4.63	7.59
10 PERCENT EXCEEDS	453	235	430
50 PERCENT EXCEEDS	44	57	57
90 PERCENT EXCEEDS	3.3	23	2.4

a Many days in 1934, 1953-56, 1976-77. e Estimated.

05470500 SQUAW CREEK AT AMES, IA

LOCATION.--Lat $42^{\circ}01'21"$, long $93^{\circ}37'45"$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.10, T.83 N., R.24 W., Story County, Hydrologic Unit 07080105, on left bank 65 ft downstream from Lincoln Way Bridge in Ames, 0.2 mi downstream from College Creek, and 2.4 mi upstream from mouth.

DRAINAGE AREA. -- 204 mi².

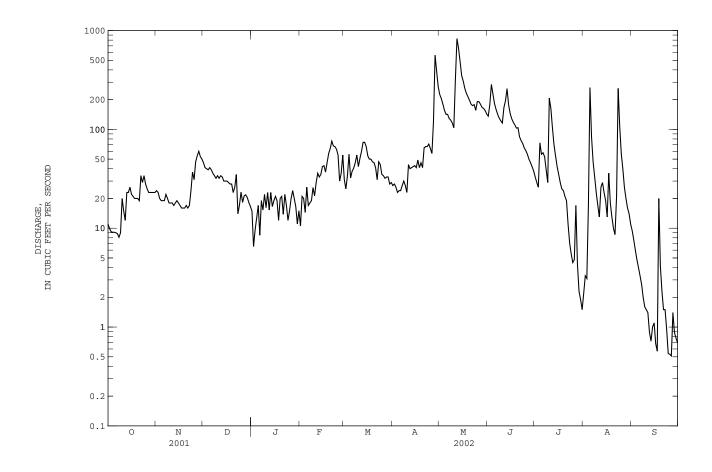
PERIOD OF RECORD.--May 1919 to September 1927, May 1965 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: Drainage area, 1920-22 (M), 1923, 1924-25 (M), 1926, 1927 (M), WDR IA-66-1: 1965, WDR IA-71-1: 1970 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 881.00 ft. above NGVD of 1929 (levels by Iowa State University). Prior to Mar. 11, 1925, nonrecording gage at site 0.6 mi upstream at different datum. Mar. 11, 1925 to Apr. 30, 1927, nonrecording gage at site 65 ft. upstream at datum about 4 ft. higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with phone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 4, 1918 reached a stage of 14.5 ft. from floodmarks, site and datum used 1919-25, discharge, 6,900 ft³/s. Flood of Mar. 1, 1965 reached a stage of 10.7 ft. from graph based on gage readings, at present site and datum, discharge, 4,200 ft³/s.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	11 9.9	24 23	46 41	e15 e6.5	e11 21	31 25	27 28	225 205	136 179	33 29	e2.2 3.3	9.4 7.6
3 4	9.2 9.1	20 19	40 39	e9.6 e13	20 e14	34 56	26 23	180 156	285 227	26 73	3.1 17	6.0
5	9.1	19	41	17	26	e32	24	142	182	56	265	4.0
6 7	9.0	19	39	e8.5	17	e38	24	142	159	58	84	3.3
8	8.8 8.1	22 20	36 34	19 e15	18 19	e41 46	27 30	129 124	142 130	53 e39	47 33	2.7
9 10	9.0 20	18 18	32 e34	22 e16	e26 e21	55 42	27 23	116 104	122 116	29 207	23 17	1.6 1.5
11	15	18	32	23	e29	51	44	322	166	164	13	1.4
12 13	12 23	17 18	34 33	e15 23	36 33	60 74	40 41	e830 663	195 258	104 70	26 29	0.89 0.72
14 15	23 26	19 18	30 30	e17 19	35 42	74 67	42 43	484 350	177 145	54 42	23 19	1.0 1.1
16	22	17	30	21	43	54	41	308	128	35	13	0.68
17	21	16	29	19	37	50	49	260	118	29	36	0.57
18 19	20 20	16 16	28 28	e12 20	46 57	50 47	41 46	232 214	111 103	25 24	18 13	20 4.1
20	20	17	23	21	64	46	41	197	104	21	10	2.3
21	19	16	26	e14	76	41	65	180	84	e19	8.6	1.5
22 23	34 29	17 24	35 14	22 e17	68 67	31 47	67 67	174 178	77 72	11 7.1	21 260	1.5 0.95
24 25	34 28	37 31	e17 e23	e12 e15	63 55	44 35	71 64	156 191	65 61	5.5 4.5	108 57	0.54 0.53
26	25	47	e18	e20	30	34	57	191	56	4.8	e40	0.51
27	23	54	e21	24	36	32	121	e180	50	17	26	1.4
28 29	23 23	60 53	e22 e20	20 e16	55 	33 33	563 389	167 163	46 42	4.3	20 16	0.88 0.77
30 31	23 23	50 	e18 e17	e11 15		28 29	271	155 143	38	e1.9 e1.5	14 11	0.69
TOTAL	589.2	763	910	517.6	1065	1360	2422	7261	3774	1249.9	1276.2	84.93
MEAN	19.01	25.43	29.35	16.70	38.04	43.87	80.73	234.2	125.8	40.32	41.17	2.831
MAX MIN	34 8.1	60 16	46 14	24 6.5	76 11	74 25	563 23	830 104	285 38	207 1.5	265 2.2	20 0.51
AC-FT	1170	1510	1800	1030	2110	2700	4800	14400	7490	2480	2530	168
CFSM IN.	0.09 0.11	0.12 0.14	0.14 0.17	0.08 0.09	0.19 0.19	0.22 0.25	0.40 0.44	1.15 1.32	0.62 0.69	0.20 0.23	0.20 0.23	0.01 0.02
STATIS	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 192	0 - 2002,	BY WATER	YEAR (WY	·)			
MEAN	77.69	82.41	59.30	39.08	96.02	206.1	219.0	233.6	316.3	168.8	83.02	78.25
MAX (WY)	505 1974	491 1973	372 1983	275 1973	465 1973	777 1979	796 1999	817 1990	1107 1975	2128 1993	1177 1993	568 1926
MIN	0.30	0.63	0.001	0.000	0.093	2.51	4.32	1.42	2.97	3.61	0.95	0.071
(WY)	2001	1967	1977	1977	1977	1981	1977	1981	1977	1927	1989	1971

05470500 SQUAW CREEK AT AMES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1920 - 2002
ANNUAL TOTAL	34709.12	21272.83	
ANNUAL MEAN	95.09	58.28	138.7
HIGHEST ANNUAL MEAN			528 1993
LOWEST ANNUAL MEAN			13.6 1981
HIGHEST DAILY MEAN	1070 Mar 20	830 May 12	12200 Jul 9 1993
LOWEST DAILY MEAN	0.00 Jan 1	0.51 Sep 26	0.00 Jul 31 1925a
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 9	0.76 Sep 24	0.00 Oct 7 1971
MAXIMUM PEAK FLOW		1620 May 12	24300 Jul 9 1993
MAXIMUM PEAK STAGE		5.08 May 12	18.54 Jul 9 1993
INSTANTANEOUS LOW FLOW		0.30 Sep 24b	0.00 Jul 31 1925
ANNUAL RUNOFF (AC-FT)	68850	42190	100500
ANNUAL RUNOFF (CFSM)	0.47	0.29	0.68
ANNUAL RUNOFF (INCHES)	6.33	3.88	9.24
10 PERCENT EXCEEDS	279	161	340
50 PERCENT EXCEEDS	23	29	45
90 PERCENT EXCEEDS	0.12	5.8	1.6

Many days in 1925, 1971, 1972, 1976, 1977, 1988, 2000, and 2001. Also Sept. 26. Estimated. a b e

05471000 SOUTH SKUNK RIVER BELOW SQUAW CREEK NEAR AMES, IA

LOCATION.--Lat $42^{\circ}00^{\circ}24^{\circ}$, long $93^{\circ}35^{\circ}43^{\circ}$, in $NE^{1}/_{4}$ NW $^{1}/_{4}$ sec.13, T.83 N., R.24 W., Story County, Hydrologic Unit 07080105, on right bank 500 ft downstream from bridge on county highway, 0.2 mi downstream from Squaw Creek, 200 ft upstream from bridge on U.S. Highway 30, 2 mi southeast of Ames, and at mile 222.6 upstream from mouth of Skunk River.

DRAINAGE AREA. -- 556 mi².

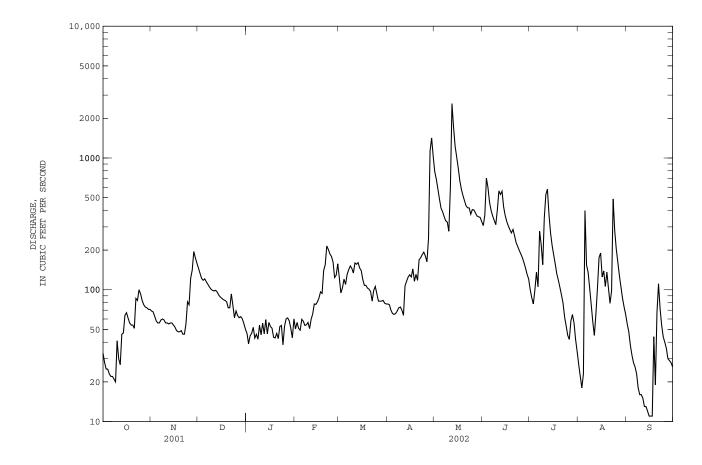
PERIOD OF RECORD.--October 1952 to December 1979, October 1991 to current year. Prior to October 1966, published as "Skunk River below Squaw Creek near Ames".

REVISED RECORDS. -- WDR IA-95-1: Location.

GAGE.--Water-stage recorder. Datum of gage is 857.10 ft above NGVD of 1929. Prior to Oct. 1, 1973, at datum 10.00 ft higher. Prior to Oct. 1991, at site 500 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Low flows are affected by pumpage by City of Ames from surficial aquifer and do not represent the natural flow of the stream. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 19, 1944, reached a stage of 13 ft, from floodmarks, discharge, 10,000 $\rm ft^3/s$, datum then in use.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	33 28	69 68	146 133	e47 e39	e50 e57	e124 e95	78 77	786 690	307 369	100 87	27 22	e55 e48
3	25	63	122	e45	e51	e103	70	581	703	78	18	e38
4	25	58	118	e47	e49	e120	66	488	597	100	23	e32
5	23	56	121	e52	e60	e110	65	417	462	136	398	28
6	22	56	115	e43	e58	e131	e66	391	400	105	154	26
7 8	22 21	59 60	110 105	e46 e42	e54 e54	e142 e152	69 73	359 334	363 336	278 221	136 103	23 18
9	20	59	101	e54	e54	e145	74	e326	312	155	77	16
10	41	56	99	e45	e51	e134	70	278	404	351	57	16
11	30	56	98	e56	e60	e160	e64	596	563	529	45	15
12	27	55	99	e46	e66	e156	107	2580	529 560	579	66	13
13 14	46 47	56 56	96 91	e59 e46	e78 e77	e161 e146	116 125	1720 1230	426	373 270	104 176	13 12
15	64	54	88	e57	e81	140	130	1020	367	217	190	11
16	67	52	86	e53	e87	120	125	841	330	184	125	11
17	61	49	84	e51	e96	108	144	674	305	157	139	11
18 19	56 54	48 48	83 81	e44 e43	e94 140	108 103	116 131	580 520	286 270	132 118	106 136	44 19
20	54	49	73	e47	155	101	118	474	287	104	103	67
21	51	46	73	e43	215	97	169	434	257	91	79	111
22	86	46	93	e53	202	82	175	419	228	79	98	72
23 24	83 100	55 81	76 e61	e54 e38	187 179	99 106	185 193	418 374	213 199	62 e53	489 281	54 44
25	93	77	e69	e53	162	93	180	406	187	45	204	40
26	83	122	e64	e60	124	82	163	403	175	42	162	36
27	77	141	e61	e61	129	82	243	383	161	e58	128	30
28 29	74 73	195 175	e63 e60	e58 e51	e157	82 83	1130 1420	363 358	146 131	e65 56	105 86	29 28
30	71	159	e55	e43		79	1030	354	e121	42	74	26
31	71		e50	e60		78		329		34	e65	
TOTAL	1628	2224	2774	1536	2830	3522	6772	19126	9994	4901	3976	986
MEAN MAX	52.52 100	74.13 195	89.48 146	49.55 61	101.1 215	113.6 161	225.7 1420	617.0 2580	333.1 703	158.1 579	128.3 489	32.87 111
MIN	20	46	50	38	49	78	64	278	121	34	18	11
AC-FT	3230	4410	5500	3050	5610	6990	13430	37940	19820	9720	7890	1960
CFSM	0.09	0.13	0.16	0.09	0.18	0.20	0.41	1.11	0.60	0.28	0.23	0.06
IN.	0.11	0.15	0.19	0.10	0.19	0.24	0.45	1.28	0.67	0.33	0.27	0.07
STATIS	TICS OF M	ONTHLY ME	CAN DATA	FOR WATER	YEARS 19	53 - 2002,	, BY WATER	R YEAR (W	7)			
MEAN	160.8	175.0	119.1	80.50	179.9	532.5	542.3	533.2	804.5	483.9	277.8	157.6
MAX	1079	1270	438	599	919	2026	2037	1421	2818	5220	3921	1157
(WY) MIN	1974 0.000	1973 0.005	1997 0.003	1973 0.000	1973 0.000	1979 8.71	1965 3.62	1974 6.71	1998 0.000	1993 0.000	1993 0.032	1993 0.029
(WY)	1957	1977	1977	1956	1956	1956	1956	1967	1977	1956	1956	2000

05471000 SOUTH SKUNK RIVER BELOW SQUAW CREEK NEAR AMES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1953 - 2002
ANNUAL TOTAL	103057.60	60269	
ANNUAL MEAN	282.3	165.1	337.1
HIGHEST ANNUAL MEAN			1475 1993
LOWEST ANNUAL MEAN			5.95 1956
HIGHEST DAILY MEAN	3170 Mar 22	2580 May 12	20500 Jul 9 1993
LOWEST DAILY MEAN	0.00 Jan 1	11 Sep 15b	0.00 Dec 17 1953a
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 1	12 Sep 11	0.00 Jan 11 1954
MAXIMUM PEAK FLOW		3020 May 12	26500 Jul 9 1993
MAXIMUM PEAK STAGE		17.12 May 12	25.57 Jun 27 1975
INSTANTANEOUS LOW FLOW		10 Sep 17	0.00 Dec 17 1953
ANNUAL RUNOFF (AC-FT)	204400	119500	244200
ANNUAL RUNOFF (CFSM)	0.51	0.30	0.61
ANNUAL RUNOFF (INCHES)	6.90	4.03	8.24
10 PERCENT EXCEEDS	768	394	815
50 PERCENT EXCEEDS	72	86	106
90 PERCENT EXCEEDS	0.00	37	1.1

Many days in 1953-56, 1963-68, 1976-77, 2000, 2001. Also Sept. 17. Estimated. a b e

05471040 SQUAW CREEK NEAR COLFAX, IA

LOCATION.--Lat $41^{\circ}39^{\circ}33^{\circ}$, long $93^{\circ}16^{\circ}14^{\circ}$, in $NE^{1}/_{4}$ NE $^{1}/_{4}$ sec.15, T.79 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on right bank at downstream side of bridge on county road S44 Ave. W., 2 mi southwest of Colfax.

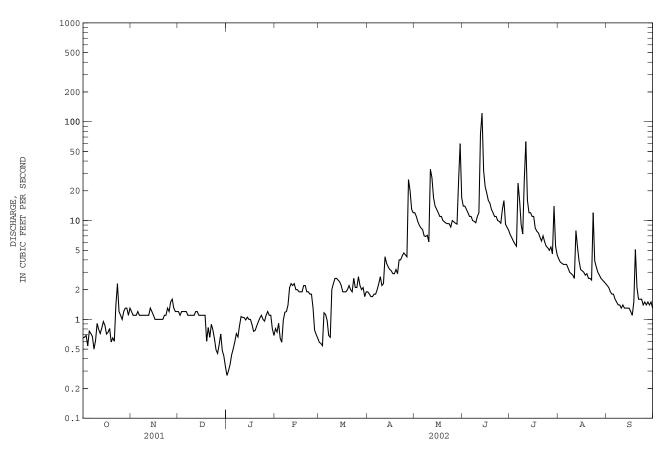
DRAINAGE AREA.--18.4 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1995 to current year.

GAGE.--Water-stage recorder. Datum of gage is 785.96 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.65 0.66 0.69 0.54 0.76	1.2 1.1 1.1 1.1 1.2	1.2 1.1 1.2 1.2	e0.27 e0.30 e0.35 e0.44 e0.51	e0.81 e0.74 e0.91 e0.64 e0.59	e0.59 e0.57 e0.54 e1.2 e1.1	1.9 1.8 1.7 1.7	12 11 9.7 8.9 8.4	14 14 13 12 11	7.2 6.7 6.2 5.8 5.5	4.1 3.8 3.7 3.6 3.6	2.2 2.1 1.9 1.8 1.8
6 7 8 9 10	0.72 0.67 0.50 0.61 0.91	1.1 1.1 1.1 1.1	1.2 1.1 1.1 1.1	e0.59 e0.72 e0.66 e0.86 e1.1	e0.98 e1.2 1.2 1.4 2.1	e0.98 e0.69 e0.66 e2.0 e2.3	1.8 2.0 2.3 2.7 2.2	8.1 7.0 6.9 7.1 6.1	11 10 9.8 9.5	24 16 9.1 7.3 26	3.6 3.3 3.0 2.9 2.8	1.6 1.5 1.4 1.4
11 12 13 14 15	0.79 0.72 0.82 0.95 0.87	1.1 1.1 1.3 1.2	1.1 1.2 1.2 1.1	e1.0 e1.0 e0.99 e1.1 1.0	2.3 2.2 2.3 2.0 2.0	2.6 2.6 2.5 2.4 2.2	2.3 4.3 3.7 3.4 3.2	33 27 17 14 13	12 75 122 32 22	63 16 12 12 11	2.6 7.9 5.4 3.9 3.2	1.4 1.3 1.3 1.3
16 17 18 19 20	0.71 0.74 0.81 0.59 0.65	1.0 1.0 1.0 1.0	1.1 1.1 1.1 e0.60 e0.83	1.0 e0.88 e0.76 e0.77 e0.86	1.9 1.9 1.9 2.2	1.9 1.9 1.9 2.0	3.1 2.9 2.9 3.2 2.9	12 11 11 10 9.7	19 16 15 13	11 8.4 7.8 7.5 6.8	3.1 3.0 2.8 2.9 2.6	1.2 1.1 1.5 5.1 2.1
21 22 23 24 25	0.60 1.4 2.3 1.2	1.0 1.1 1.1 1.3 1.2	e0.66 e0.89 e0.78 e0.63 e0.49	e0.94 e1.0 1.1 1.0 0.96	1.9 1.9 1.8 1.8 e1.3	2.0 1.9 2.6 2.1 2.1	4.0 4.0 4.4 4.7	9.4 9.3 9.3 8.6	11 11 10 9.8 9.4	6.2 7.0 6.1 5.5 5.3	2.6 2.5 12 3.9 3.4	1.6 1.6 1.4 1.5
26 27 28 29 30 31	1.0 1.2 1.3 1.3 1.1	1.5 1.6 1.3 1.2 1.2	e0.45 e0.56 e0.71 e0.48 e0.42 e0.33	1.1 1.2 1.1 1.1 e0.80 e0.69	e0.78 e0.70 e0.64 	2.7 2.2 2.0 2.1 1.7	4.3 26 20 13 12	9.7 9.4 9.2 25 60 17	13 e16 e9.2 e8.5 e8.0	5.0 5.4 4.6 14 5.5 4.5	3.0 2.8 2.6 2.5 2.4 2.3	1.4 1.5 1.4 1.5
TOTAL MEAN MAX MIN AC-FT CFSM IN.	28.16 0.908 2.3 0.50 56 0.05 0.06	34.5 1.150 1.6 1.0 68 0.06 0.07	28.33 0.914 1.2 0.33 56 0.05 0.06	26.15 0.844 1.2 0.27 52 0.05 0.05	42.29 1.510 2.3 0.59 84 0.08 0.09	56.13 1.811 2.7 0.54 111 0.10 0.11	148.7 4.957 26 1.7 295 0.27 0.30	419.8 13.54 60 6.1 833 0.74 0.85	559.2 18.64 122 8.0 1110 1.01	338.4 10.92 63 4.5 671 0.59 0.68	111.8 3.606 12 2.3 222 0.20 0.23	49.4 1.647 5.1 1.1 98 0.09 0.10
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 199	5 - 2002,	BY WATER	YEAR (WY	7)			
MEAN MAX (WY) MIN (WY)	3.452 8.91 1998 0.90 1996	4.209 11.3 1999 1.02 2001	3.391 9.33 1998 0.82 2001	3.286 9.52 1998 0.84 2002	16.90 65.0 1996 1.51 2002	15.50 48.4 2001 1.81 2002	14.07 45.4 1998 3.03 2000	32.09 65.7 1996 13.5 2001	32.32 83.0 1998 12.5 1997	12.51 34.3 1998 6.78 2001	5.757 15.8 1999 1.90 2001	1.868 3.80 1998 0.98 2001

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1995 - 2002
ANNUAL TOTAL	3884.93	1842.86	10. 20
ANNUAL MEAN HIGHEST ANNUAL MEAN	10.64	5.049	12.30 25.4 1998
LOWEST ANNUAL MEAN			5.05 2002
HIGHEST DAILY MEAN	167 Mar 14	122 Jun 13	847 Jun 18 1998
LOWEST DAILY MEAN	0.33 Dec 31	0.27 Jan 1	0.27 Jan 1 2002
ANNUAL SEVEN-DAY MINIMUM	0.49 Dec 25	0.37 Dec 29	0.37 Dec 29 2001
MAXIMUM PEAK FLOW		509 Jun 12	7020 Jun 18 1998
MAXIMUM PEAK STAGE		9.26 Jun 12	13.94 Jun 18 1998
ANNUAL RUNOFF (AC-FT)	7710	3660	8910
ANNUAL RUNOFF (CFSM)	0.58	0.27	0.67
ANNUAL RUNOFF (INCHES)	7.85	3.73	9.08
10 PERCENT EXCEEDS	25	12	29
50 PERCENT EXCEEDS	1.6	1.9	4.6
90 PERCENT EXCEEDS	0.73	0.71	0.98

e Estimated

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- May 1995 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: May 1995 to current year.
WATER TEMPERATURES: May 1995 to current year.
SUSPENDED-SEDIMENT DISCHARGE: May 1995 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 680 microsiemens Jan. 4, 2002; minimum daily, 170 microsiemens May 24, 1996.
WATER TEMPERATURES: Maximum daily, 32.0°C July 29, 1999; minimum daily, 0.0°C many days during winter.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,270 mg/L May 24, 1996; minimum daily mean, 6.0 mg/L Apr. 22, 1996.
SEDIMENT LOADS: Maximum daily, 11,400 tons June 18, 1998; minimum daily, 0.01 tons Jan. 6, 7, 1996, and Oct. 4, 8, 2001.

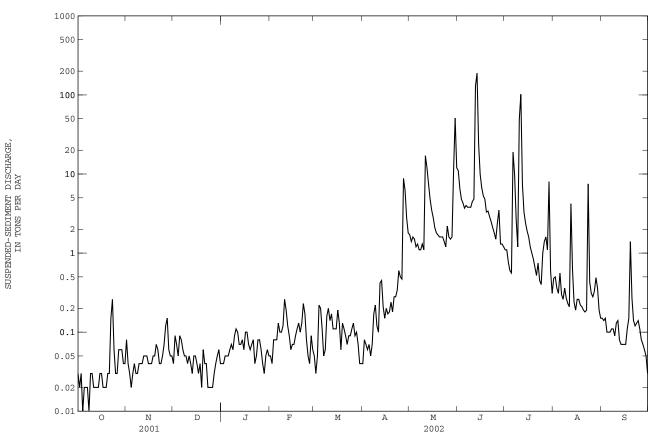
EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 680 microsiemens Jan. 4; minimum daily, 417 microsiemens Jan. 14.
WATER TEMPERATURES: Maximum daily, 26.0°C July 21, July 31 to Aug. 2, and Sept. 7, 8; minimum daily, 0.0°C many days during

SEDIMENT CONCENTRATIONS: Maximum daily mean, 507 mg/L July 11; minimum daily mean, 7.0 mg/L Mar. 31. SEDIMENT LOADS: Maximum daily, 189 tons June 13; minimum daily, 0.01 tons Oct. 4 and 8.

	SP	ECIFIC CO	NDUCTANCE,		OSIEMENS/ AILY INST			OBER 2001	TO SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	559 585 588 607 582	586 592 542 585 578	574 445 533 544 494	609 612 680 603	504 539 459 479	484 563 539 466 506	516 495 504 541 508	558 562 539 533 552	574 571 561 520 505	570 568 579 	578 501 580 488	 533 570 585
6 7 8 9 10	599 607 590 596 577	553 559 	553 496 553 516 491	 619 585 476 455	543 515 475	522 512 477 500	510 512 521 540	551 528	450 454 544	489 577 592 373	602 524 484 569	 464 580 481
11 12 13 14 15	581 608 583 579 579	547 572 557 550	495 564 571 542	495 526 485 417 522	536 489 509 515 483	500 485 522 530 504	528 539 533 538	575 564 570 441	570 535 547 567	531 567 	436 557 595 570	534 572 557
16 17 18 19 20	602 591 595 603 560	555 532	567 570 567 530	494 518 466 	501 505 504 522 553	539 517 539 496 536	534 529 542 533 547	552 549 561 562	567 533 571 524	571 	566 	487 470 543 514 552
21 22 23 24 25	593 548 593 612 613	493 575 590 578 532	504 505 556 599 562	536 504 548 466 	504 475 542 532	551 525 519 526	562 567 526 503 523	531 559 566 539	546 	524 578 585 567 465	 	 574 588 482
26 27 28 29 30 31	612 524 563 538 579 560	564 557 609 549 537	520 556 553 503 579 604	481 509 520 462 487	537 467 531 	528 548 529 527 520 530	478 560 555 544	551 557 565 575 580	 	560 534 583 585	542 479 521 495 545	 560 553

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

					-		•					
		WATER T	EMPERATURE,		GREES C), DAILY INST			R 2001 TO	SEPTEMBE	R 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19.0 20.0 18.0 12.0 13.0	15.0 13.0 13.0 15.0 13.0	5.0 6.0 6.0 10.0 12.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 2.0	8.0 5.0 4.0 9.0 11.0	13.0 14.0 16.0 16.0 20.0	20.0 18.0 19.0 16.0 18.0	25.0 24.0 25.0 	26.0 26.0 24.0 22.0	24.0 25.0 21.0
6 7 8 9 10	13.0 14.0 15.0 15.0	14.0 14.0 	7.0 5.0 3.0 3.0 5.0	0.0 0.0 1.0 0.0	0.0 1.0 0.0	0.0 1.0 1.0 1.0	11.0 9.0 12.0 7.0	17.0 16.0	19.0 21.0 20.0	21.0 25.0 24.0 21.0	22.0 23.0 22.0 23.0	26.0 26.0 20.0
11 12 13 14 15	16.0 14.0 13.0 12.0 10.0	9.0 12.0 14.0 15.0	9.0 5.0 3.0 3.0	0.0 0.0 1.0 0.0	0.0 1.0 1.0 1.0	2.0 2.0 2.0 8.0 7.0	6.0 11.0 20.0 24.0	10.0 15.0 16.0 15.0	20.0 18.0 17.0 17.0	18.0 18.0 	22.0 18.0 21.0 20.0	23.0 22.0 20.0
16 17 18 19 20	10.0 11.0 11.0 10.0 13.0	15.0 6.0	5.0 5.0 2.0 2.0	0.0 0.0 0.0 	1.0 1.0 3.0 6.0 3.0	9.0 4.0 9.0 6.0 9.0	24.0 23.0 23.0 5.0 11.0	13.0 14.0 15.0 15.0	16.0 21.0 19.0 20.0	24.5 	19.0 	22.0 20.0 22.0 19.0 20.0
21 22 23 24 25	14.0 11.0 15.0 12.0 7.0	7.0 8.0 8.0 10.0 7.0	1.0 1.0 1.0 1.0	0.0 1.0 0.0 1.0	3.0 4.0 8.0 3.0	3.0 6.0 2.0 4.0	8.0 12.0 18.0 15.0 13.0	15.0 18.0 17.0 15.0	21.0	26.0 21.0 23.0 23.0 24.0	 	15.0 16.0 14.0
26 27 28 29 30 31	6.0 7.0 9.0 11.0 9.0 12.0	7.0 3.0 2.0 3.0 4.0	0.0 0.0 0.0 0.0 0.0	2.0 1.0 1.0 0.0	0.0 0.0 0.0 	8.0 8.0 8.0 10.0 8.0 7.0	12.0 8.0 16.0 11.0	19.0 20.0 20.0 19.0 20.0 20.0	 	23.0 25.0 25.0 26.0	23.0 22.0 20.5 22.0 22.0	20.0 23.0


SUSPENDED-SEDIMENT,	WATER	YEAR	OCTOBER	2001	TO	SEPTEMBER	2002
---------------------	-------	------	---------	------	----	-----------	------

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO:	BER	NOVEMB	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1 2 3 4 5	17 12 14 8.7 9.0	0.03 0.02 0.03 0.01 0.02	23 13 9.3 7.2 9.3	0.08 0.04 0.03 0.02 0.03	11 31 21 16 27	0.04 0.09 0.07 0.05 0.09	50 55 53 41 38	0.04 0.04 0.05 0.05 0.05	21 22 31 48 49	0.05 0.04 0.08 0.08 0.08	34 20 31 70 66	0.05 0.03 0.05 0.22 0.20
6 7 8 9 10	12 12 10 18 14	0.02 0.02 0.01 0.03 0.03	11 10 11 12 13	0.04 0.03 0.03 0.04 0.04	24 19 16 17 14	0.08 0.06 0.05 0.05 0.04	36 34 34 39 37	0.06 0.07 0.06 0.09 0.11	49 30 29 32 45	0.13 0.10 0.10 0.12 0.26	40 26 35 30 32	0.11 0.05 0.06 0.16 0.20
11 12 13 14 15	11 9.5 8.9 8.5	0.02 0.02 0.02 0.02 0.03	15 16 13 16 14	0.04 0.05 0.05 0.05 0.04	17 11 11 16 16	0.05 0.04 0.03 0.05 0.05	37 25 25 29 21	0.10 0.07 0.07 0.08 0.06	31 21 13 11 13	0.19 0.12 0.09 0.06 0.07	20 23 17 17 20	0.14 0.17 0.11 0.11
16 17 18 19 20	15 11 8.5 9.9 15	0.03 0.02 0.02 0.02 0.03	15 16 17 19 25	0.04 0.04 0.05 0.05 0.07	13 11 12 15 25	0.04 0.03 0.04 0.02 0.06	38 42 32 30 30	0.10 0.10 0.07 0.06 0.07	13 17 22 22 21	0.07 0.09 0.11 0.13 0.10	37 25 12 22 18	0.19 0.13 0.06 0.13 0.11
21 22 23 24 25	16 32 41 17 8.7	0.03 0.15 0.26 0.06 0.03	23 15 14 15 22	0.06 0.04 0.04 0.05 0.07	20 15 11 14 16	0.04 0.04 0.02 0.02 0.02	30 16 18 31 30	0.08 0.04 0.05 0.08 0.08	25 44 34 17 13	0.13 0.23 0.17 0.08 0.05	18 13 13 16 19	0.09 0.07 0.09 0.09 0.11
26 27 28 29 30 31	9.6 19 19 18 13	0.03 0.06 0.06 0.06 0.04 0.04	27 33 17 15 15	0.12 0.15 0.06 0.05 0.05	20 17 19 35 51 47	0.02 0.03 0.04 0.05 0.06 0.04	22 14 9.4 16 26 25	0.06 0.04 0.03 0.05 0.06 0.05	20 47 34 	0.04 0.09 0.06 	19 15 19 13 9.7 7.0	0.13 0.09 0.10 0.07 0.04 0.04
TOTA	L	1.27		1.55		1.41		2.02		2.92		3.31

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

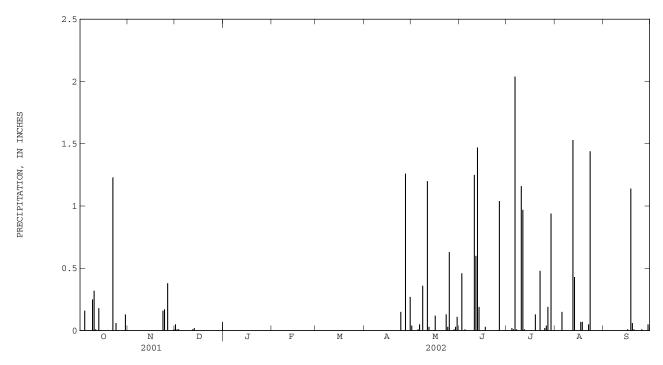
SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	IL	MAY		JUNE	JUNE			AUGUS'	г	SEPTEM	BER
1 2 3 4 5	7.5 16 15 13	0.04 0.08 0.07 0.06 0.07	56 50 63 62 54	1.7 1.4 1.6 1.5	283 178 139 131 121	11.0 6.6 4.8 4.3 3.7	54 61 45 38 38	1.1 1.1 0.77 0.60 0.56	43 48 36 32 57	0.48 0.50 0.36 0.31 0.56	25 25 29 22 22	0.15 0.14 0.15 0.10 0.10
6 7 8 9 10	11 13 26 29 19	0.05 0.07 0.17 0.22 0.12	60 60 61 69 67	1.3 1.1 1.1 1.3	141 142 144 149 154	4.0 3.8 3.8 3.8 4.5	224 225 106 59 479	19.0 9.8 2.7 1.2 49.0	31 29 45 34 30	0.30 0.26 0.36 0.27 0.23	24 26 27 24 36	0.10 0.11 0.11 0.09 0.13
11 12 13 14 15	16 37 45 22 18	0.10 0.42 0.45 0.21 0.15	152 166 158 123 101	17.0 12.0 7.5 4.8 3.5	152 249 496 273 166	4.8 129 189 24.0 9.9	507 165 97 74 60	102 7.4 3.3 2.4 1.9	30 155 43 23 22	0.21 4.2 0.62 0.24 0.19	36 23 20 20 19	0.14 0.08 0.07 0.07 0.07
16 17 18 19 20	24 21 23 28 22	0.20 0.17 0.18 0.24 0.18	84 69 63 61 60	2.8 2.1 1.8 1.7	133 118 123 94 105	6.7 5.3 4.8 3.3 3.4	55 53 47 42 36	1.6 1.2 1.0 0.84 0.66	32 32 30 28 27	0.26 0.26 0.22 0.21 0.19	20 37 36 92 47	0.07 0.11 0.15 1.4 0.27
21 22 23 24 25	26 26 29 47 41	0.28 0.28 0.34 0.60 0.50	64 63 56 51 76	1.6 1.6 1.4 1.2	95 84 75 67 58	2.9 2.5 2.1 1.8 1.5	31 39 28 27 72	0.52 0.75 0.45 0.40 1.0	26 28 184 41 35	0.18 0.19 7.5 0.43 0.31	31 27 31 37 27	0.14 0.12 0.13 0.14 0.11
26 27 28 29 30 31	41 97 113 78 57	0.47 8.8 6.2 2.8 1.8	61 59 64 78 274 260	1.6 1.5 1.6 11.0 51.0	69 82 52 55 54	2.4 3.5 1.3 1.2	106 108 88 188 39 25	1.4 1.6 1.1 8.0 0.59 0.31	34 45 69 53 30 25	0.28 0.33 0.49 0.36 0.19	20 17 15 13 9.6	0.08 0.07 0.06 0.05 0.03
TOTAI YEAR		25.32 893.03		154.8		451.0		224.25		20.64		4.54

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- July 1995 to current year.


INSTRUMENTATION.--Tipping bucket rain gage.

REMARKS.--Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREMES FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.69 in., July 17, 1996.

EXTREMES FOR CURRENT YEAR. -- Maximum daily accumulation, 1.53 in., Aug. 12.

PRECIPITATION from DCP, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.0 0.0 0.0 0.16 0.0	0.0 0.0 0.0 0.0	0.05 0.01 0.01 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.04 0.0 0.0 0.0 0.0	0.0 0.46 0.0 0.01	0.0 0.0 0.0 0.02 0.01	0.0 0.0 0.0 0.0 0.15	0.0 0.0 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.25 0.32	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.05 0.0 0.36 0.0	0.0 0.0 0.0 0.0 1.25	2.04 0.01 0.0 0.0 1.16	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	0.01 0.0 0.18 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.01 0.02 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.20 0.03 0.0 0.0 0.0	0.60 1.47 0.19 0.0 0.0	0.97 0.01 0.0 0.0 0.0	0.0 1.53 0.43 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.12 0.0 0.0 0.0 0.0	0.0 0.03 0.0 0.0	0.0 0.0 0.0 0.13 0.0	0.0 0.07 0.07 0.0	0.01 0.0 1.14 0.06 0.01
21 22 23 24 25	0.0 1.23 0.0 0.06 0.0	0.0 0.0 0.16 0.17 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.15 0.0	0.0 0.0 0.13 0.03 0.63	0.0 0.0 0.0 0.0	0.0 0.48 0.0 0.0	0.0 0.05 1.44 0.0 0.0	0.0 0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.13	0.38 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.0 0.0 0.0	0.0 1.26 0.0 0.0 0.27	0.0 0.0 0.01 0.03 0.11	1.04	0.04 0.19 0.0 0.94 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.05 0.0
TOTAL MEAN MAX MIN	2.34 0.08 1.23 0.00	0.72 0.02 0.38 0.00	0.10 0.00 0.05 0.00	0.0 0.00 0.00 0.00	0.0 0.00 0.00 0.00	0.0 0.00 0.00 0.00	1.68 0.06 1.26 0.00	2.75 0.09 1.20 0.00	 	 	3.74 0.12 1.53 0.00	1.28 0.04 1.14 0.00

05471050 SOUTH SKUNK RIVER AT COLFAX, IA

LOCATION.--Lat $41^{\circ}40^{\circ}55^{\circ}$, long $93^{\circ}14^{\circ}47^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec.1, T.79 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on left bank 15 ft downstream of bridge on State Highway 117 at north edge of Colfax, 1 mi downstream from Sugar Creek, 2.8 mi upstream from Indian Creek, and at mile 191 upstream from mouth of Skunk River.

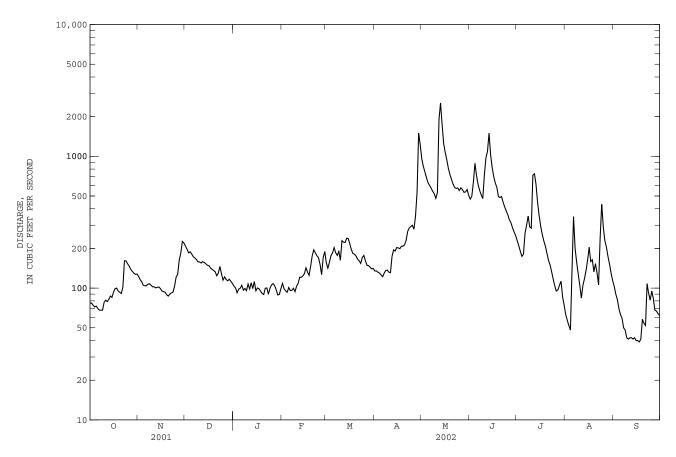
DRAINAGE AREA.--803 mi².

PERIOD OF RECORD.--June 1974 to June 1977, (operated as a partial-record low-flow measurement site), October 1985 to current year.

REVISED RECORDS.--Daily discharge for Aug. 26, 27, and Sept. 6--30, 2000.

GAGE.--Water-stage recorder. Datum of gage is 770.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	77	123	208	e104	e109	e156	135	959	473	229	63	103
2	77	116	197	e100	e99	e142	135	840	499	210	57	90
3	74	112	185	e92	e95	e157	132	761	638	e190	52	82
4	72	e105	e189	e98	e93	e177	130	689	e885	174	48	70
5	73	e104	e181	e100	e101	e185	126	631	715	181	133	63
6	70	e104	173	e105	e96	e203	122	601	611	e260	349	59
7	68	e107	169	e96	e96	e185	130	574	551	e300	200	50
8	68	e108	e165	e100	e100	e177	136	542	510	352	157	48
9	68	e105	158	e96	e94	e190	137	e520	478	291	128	42
10	78	e102	158	e108	e103	e163	132	480	719	285	105	41
11	81	e102	155	e98	e109	229	131	531	971	719	84	42
12	79	e100	159	e110	e121	223	174	1900	1090	737	105	42
13	82	e101	e156	e99	e121	222	195	2540	e1500	615	118	41
14	87	102	153	e112	e124	239	191	e1750	1030	450	136	42
15	85	99	149	e95	e129	238	203	e1250	821	356	164	40
16	93	95	148	e100	e143	217	202	1070	701	295	204	40
17	99	94	142	e99	e132	196	199	940	627	256	159	39
18	100	93	139	e95	e125	183	208	811	e580	228	164	41
19	95	89	136	e91	e147	181	208	729	e495	208	133	58
20	93	87	133	e89	e176	175	213	667	487	184	153	54
21	91	90	124	e100	e195	166	230	616	495	162	131	52
22	102	92	130	e100	e185	161	269	581	449	150	106	108
23	161	93	146	e90	e176	154	286	571	412	133	240	91
24	161	103	e129	e100	e170	171	293	e575	385	117	432	81
25	153	121	e115	e106	e151	177	e300	550	e360	104	293	95
26 27 28 29 30 31	147 139 134 130 127 128	127 163 184 226 220	e122 e116 e114 e117 e113 e109	e108 e104 e97 e89 e90 e99	e126 e170 e189 	161 149 148 144 140	e280 350 533 1500 1230	577 558 533 537 560 505	e330 313 287 267 e250	95 97 105 113 86 74	230 205 174 152 130 114	83 68 67 64 62
TOTAL	3092	3467	4588	3070	3675	5550	8510	24948	17929	7756	4919	1858
MEAN	99.74	115.6	148.0	99.03	131.2	179.0	283.7	804.8	597.6	250.2	158.7	61.93
MAX	161	226	208	112	195	239	1500	2540	1500	737	432	108
MIN	68	87	109	89	93	140	122	480	250	74	48	39
AC-FT	6130	6880	9100	6090	7290	11010	16880	49480	35560	15380	9760	3690
CFSM	0.12	0.14	0.18	0.12	0.16	0.22	0.35	1.00	0.74	0.31	0.20	0.08
IN.	0.14	0.16	0.21	0.14	0.17	0.26	0.39	1.16	0.83	0.36	0.23	0.09
STATIS	TICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 19	86 - 2002,	BY WATER	YEAR (W	<i>(</i>)			
MEAN	293.4	274.4	247.8	160.2	316.5	760.5	859.4	1065	1350	933.9	491.6	283.1
MAX	1807	981	626	451	849	2094	2435	2481	3844	5640	3549	1911
(WY)	1987	1997	1993	1992	1997	1993	1991	1991	1998	1993	1993	1993
MIN	11.9	17.5	12.4	12.3	16.2	77.5	57.0	113	96.7	31.8	12.6	6.75
(WY)	1989	1989	1989	1989	1990	2000	2000	2000	1988	1988	1988	1988

05471050 SOUTH SKUNK RIVER AT COLFAX, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1986 - 2002		
ANNUAL TOTAL	TUAL TOTAL 157762							
ANNUAL MEAN	432.2		244.8		587.2			
HIGHEST ANNUAL MEAN					1831	1993		
LOWEST ANNUAL MEAN					69.6	1989		
HIGHEST DAILY MEAN	3490	Mar 22	2540	May 13	13100	Jul 12 1993		
LOWEST DAILY MEAN	18	Feb 22	39	Sep 17	1.4	Aug 18 1988		
ANNUAL SEVEN-DAY MINIMUM	24	Feb 17	41	Sep 12	3.2	Sep 8 1988		
MAXIMUM PEAK FLOW			3100	May 12	14200	Jul 12 1993		
MAXIMUM PEAK STAGE			13.09	May 12	21.53	Jul 12 1993		
INSTANTANEOUS LOW FLOW			37	Sep 18	1.2	Aug 18 1988a		
ANNUAL RUNOFF (AC-FT)	312900		177200		425400			
ANNUAL RUNOFF (CFSM)	0.54		0.30		0.73			
ANNUAL RUNOFF (INCHES)	7.31		4.14		9.94			
10 PERCENT EXCEEDS	1250		576		1430			
50 PERCENT EXCEEDS	139		141		250			
90 PERCENT EXCEEDS	38		78		36			

a Also Aug. 19, 1988. e Estimated.

05471200 INDIAN CREEK NEAR MINGO, IA

LOCATION.--Lat $41^{\circ}48^{\circ}30^{\circ}$, long $93^{\circ}18^{\circ}53^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.28, T.81 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on left bank 20 ft downstream from bridge on State Highway 117, 0.7 mi downstream from Wolf Creek, 2.2 mi upstream from Byers Branch, 2.9 mi northwest of Mingo, and 11.3 mi upstream from South Skunk River.

DRAINAGE AREA. -- 276 mi².

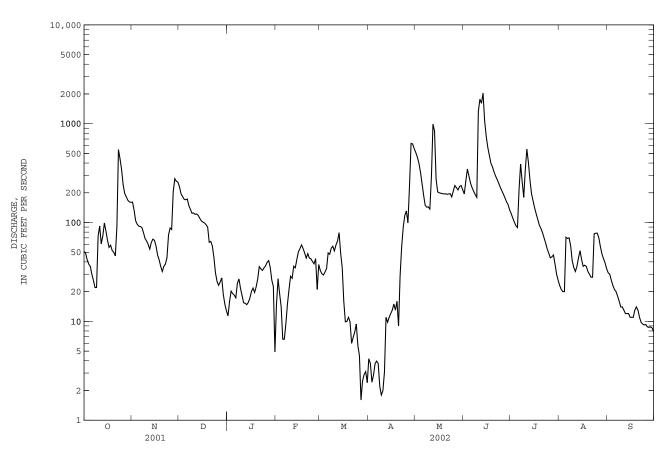
PERIOD OF RECORD.--May 1958 to September 1975; October 1985 to current year.

REVISED RECORDS.--WSP 1728: 1958 (M), 1959 (M).

GAGE.--Water-stage recorder. Datum of gage is 810.47 ft above NGVD of 1929.

REMARKS.--Records fair except those for estimated daily discharge, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 20, 1944, reached a stage of 21.4 ft, from information by local resident, discharge not determined.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e51	e161	e230	e11	e15	e33	e4.2	e512	195	123	23	31
2	e49	e133	e195	e16	e27	e30	e3.7	e460	263	111	21	30
3	e42	e104	e183	e20	e19	e29	e2.4	e400	348	101	20	26
4	e38	e96	e172	e19	e14	e32	e2.9	e325	295	93	20	23
5	e36	e92	e170	e18	e6.6	e34	e3.7	e250	251	89	71	21
6	e30	e91	e173	e17	e6.6	e49	e4.0	e190	225	213	69	20
7	e26	e89	e148	e24	e9.5	e48	e3.7	e150	207	391	70	18
8	e22	e79	e136	e27	e15	e55	e2.2	e143	192	260	58	16
9 10	e22	e69	e124	e22	e21	e58	1.8	e144	180	180	41 35	14 14
10	e73	e65	e125	e18	e29	e52	e2.0	e137	1330	342	35	14
11	e92	e60	e121	e15	e27	e59	e3.1	e286	1770	552	32	13
12	e61	e54	e122	e15	e36	e65	e11	e993	1610	404	36	12
13	e73	e63	e118	e15	e35	e79	e9.8	e841	2040	268	44	12
14	e99	e68	e110	e16	e42	e49	e11	e275	1080	195	52	12
15	e82	e66	e104	e17	e50	e35	e12	e204	751	165	42	11
16	e66	e58	e101	e20	e55	e16	e13	e200	581	140	36	11
17	e56	e47	e99	e22	e59	e9.9	e15	e198	481	122	37	11
18	e59	e42	e95	e20	e55	e10	e13	e196	e400	107	36	13
19	e52	e36	e90	e22	e49	e11	e16	e195	366	94	32	14
20	e50	e32	e63	e27	e44	e9.9	e9.0	e195	326	87	30	13
21	e46	e36	e64	e36	e48	e6.0	e29	e193	296	79	28	11
22	e90	e38	e58	e34	e44	e6.9	e57	e195	273	70	28	9.8
23	e546	e44	e44	e33	e43	e7.8	e90	196	250	62	77	9.4
24	e442	e75	e31	e35	e40	e9.4	e118	182	228	54	78	9.2
25	e343	e88	e25	e36	e38	e5.7	e131	209	210	49	78	9.3
26	e241	e85	e23	e40	e43	e4.5	e99	237	194	44	70	8.8
27	e197	e205	e25	e41	e21	e1.6	e234	e225	178	45	57	8.7
28	e182	e278	e28	e35	e38	e2.5	e631	214	162	47	48	8.8
29	e168	e262	e19	e26		e2.9	e625	232	e152	38	43	8.6
30 31	e162 e160	e256	e15 e13	e22 e4.9		e3.1 e2.4	e560 	237 214	134	30 26	39 34	7.9
31	6100		613	E4.9		e2.4		214		20	34	
TOTAL	3656	2872	3024	723.9	929.7	816.6	2717.5	8628	14968	4581	1385	426.5
MEAN	117.9	95.73	97.55	23.35	33.20	26.34	90.58	278.3	498.9	147.8	44.68	14.22
MAX	546	278	230	41	59	79	631	993	2040	552	78	31
MIN	22	32	13	4.9	6.6	1.6	1.8	137	134	26	20	7.9
AC-FT	7250	5700 0.35	6000 0.35	1440	1840	1620 0.10	5390 0.33	17110	29690	9090	2750	846
CFSM	0.43		0.35	0.08 0.10	0.12			1.01 1.16	1.81	0.54 0.62	0.16 0.19	0.05 0.06
IN.	0.49	0.39	0.41	0.10	0.13	0.11	0.37	1.10	2.02	0.62	0.19	0.06
STATIST	rics of M	ONTHLY ME	AN DATA F	FOR WATER	YEARS 195	9 - 2002,	, BY WATER	YEAR (WY)			
MEAN	105.0	95.18	77.51	57.89	116.2	299.3	277.0	370.8	499.7	305.7	147.3	83.92
MAX	689	549	319	289	619	816	834	936	1732	2809	1500	678
(WY)	1987	1973	1973	1973	1971	1993	1965	1974	1998	1993	1993	1993
MIN	1.11	4.12	2.05	1.87	2.25	10.9	8.07	5.58	10.9	3.49	1.44	0.91
(WY)	1972	1968	1990	1968	1967	1968	1989	1967	1989	1988	1988	1988

05471200 INDIAN CREEK NEAR MINGO, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1959 - 2002
ANNUAL TOTAL	71241.7	44728.2	
ANNUAL MEAN	195.2	122.5	203.2
HIGHEST ANNUAL MEAN			751 1993
LOWEST ANNUAL MEAN			11.9 1989
HIGHEST DAILY MEAN	2420 Jun 13	2040 Jun 13	12000 Jul 10 1993
LOWEST DAILY MEAN	4.4 Feb 2	1.6 Mar 27	0.00 Aug 18 1989
ANNUAL SEVEN-DAY MINIMUM	5.0 Jan 21	2.9 Apr 4	0.15 Aug 16 1989
MAXIMUM PEAK FLOW		2920 Jun 13	23500 Jun 4 1991
MAXIMUM PEAK STAGE		11.41 Jun 13	19.16 Jun 4 1991
ANNUAL RUNOFF (AC-FT)	141300	88720	147200
ANNUAL RUNOFF (CFSM)	0.71	0.44	0.74
ANNUAL RUNOFF (INCHES)	9.60	6.03	10.00
10 PERCENT EXCEEDS	503	262	480
50 PERCENT EXCEEDS	85	49	70
90 PERCENT EXCEEDS	7.4	9.8	4.9

e Estimated

05471500 SOUTH SKUNK RIVER NEAR OSKALOOSA, IA

LOCATION.--Lat $41^{\circ}21^{\circ}21^{\circ}$, long $92^{\circ}39^{\circ}24^{\circ}$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.25, T.76 N., R.16 W., Mahaska County, Hydrologic Unit 07080105, on left bank downstream from bridge on U.S. Highway 63, 0.3 mi downstream from Painter Creek, 4.0 mi north of Oskaloosa, 52.0 mi upstream from confluence with North Skunk River, and at mile 147.3 upstream from mouth of Skunk River. Gage was moved to the left bank on downstream side of the Highway 63 bridge on May 3, 1995.

DRAINAGE AREA. -- 1,635 mi².

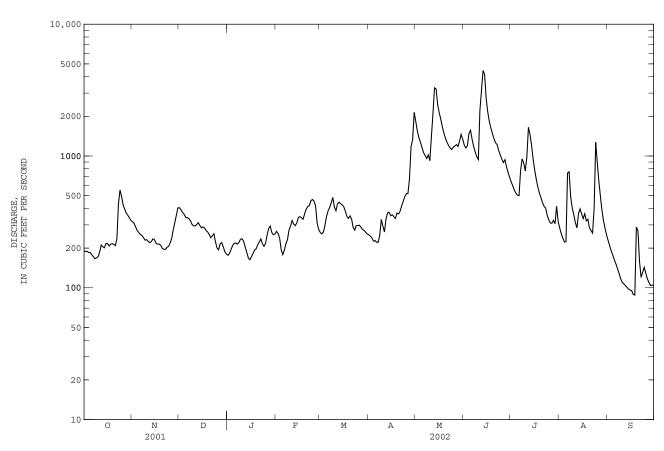
PERIOD OF RECORD.--October 1945 to current year. Prior to October 1966, published as "Skunk River near Oskaloosa." Prior to October 1948, monthly discharge only, published in WSP 1308.

REVISED RECORDS. -- WSP 1438: Drainage area. WDR IA-95-1: Location.

GAGE.--Water-stage recorder. Datum of gage is 685.50 ft above NGVD of 1929. Prior to Nov. 21, 1947, nonrecording gage at site 400 ft downstream at same datum. Accubar pressure sensor installed at site on May 3, 1995.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in May 1944 reached a stage of 25.8 ft, from floodmarks, discharge, 37,000 ${\rm ft}^3/{\rm s}$, from rating curve extended above 18,000 ${\rm ft}^3/{\rm s}$ on basis of velocity-area study.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

D111	OOM	27017	DEG	7337	FFF	143.0	3.00	1011			2110	ann
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	191	317	405	e176	e268	e262	252	1830	1210	636 593	284 257	227 207
2	188 189	308 289	390 373	e182 e196	e258 e238	e257 e265	247 239	1550 1380	1150 1200	552	238	189
4	185	272	361	e210	e195	e299	226	1270	1480	522	223	176
5	185	262	342	e217	e178	e349	228	1160	1570	504	223	162
6	178	254	341	e219	e192	e384	222	1060	1340	500	742	151
7	172	249	335	e214	e216	e407	221	1010	1180	778	e759	139
8 9	166	240	322	e221 e234	e231 e274	e442 e484	252 330	958	1070 987	949 885	491 403	128
10	169 172	230 232	303 295	e234 e235	e274 e294	409	293	1020 922	939	772	358	e116 e110
11 12	187 211	225 220	295	e225 e204	e324 e304	384	265 334	1400 2110	2220	981 1650	312 285	e107
13	205	224	301 312	e204 e186	e304 e296	434 446	369	3290	3140 4450	1460	365	e104 e101
14	201	235	297	e168	e311	435	374	3230	4150	1210	397	98
15	216	232	285	e163	343	426	352	2450	2740	947	363	96
16	217	218	290	e172	346	412	358	2130	2160	785	335	95
17	208	214	284	e182	340	381	346	1900	1830	668	364	89
18	214	215	272	e193	331	348	336	1660	1630	583	322	88
19 20	216 214	210 199	265 254	e198 e212	365 396	336 351	369 363	1490 1360	1480 1350	523 484	331 285	289 270
21	209	196	240	e223	413	332	381	1270	1260	443	272	158
22 23	235 433	195 203	248 257	e235 e216	421 458	287 274	419 454	1200 1150	1220 1100	415 403	260 402	120 131
24	553	206	e223	e216	468	296	492	1120	1020	355	1270	143
25	491	218	e200	e217	454	297	518	1170	948	328	895	129
26	425	237	e194	e251	416	298	519	1190	892	310	645	117
27	395	274	e216	e282	e308	288	674	1220	938	309	497	110
28	368	312	e220	e294	e277	277	1180	1180	827	325	386	104
29 30	355 339	355 404	e204 e188	e262 e253		272 264	1330 2140	1300 1460	749 689	306 415	322 281	105 104
31	324		e180	e256		256		1340		319	250	
TOTAL	8011	7445	8692	6702	8915	10652	14083	46780	46919	19910	12817	4163
MEAN	258.4	248.2	280.4	216.2	318.4	343.6	469.4	1509	1564	642.3	413.5	138.8
MAX	553	404	405	294	468	484	2140	3290	4450	1650	1270	289
MIN	166	195	180	163	178	256	221	922	689	306	223	88
AC-FT	15890	14770	17240	13290	17680	21130	27930	92790	93060	39490	25420	8260
CFSM IN.	0.16 0.18	0.15 0.17	0.17	0.13 0.15	0.19 0.20	0.21 0.24	0.29 0.32	0.92 1.06	0.96 1.07	0.39 0.45	0.25 0.29	0.08
TIV.	0.10	0.17	0.20	0.13	0.20	0.24	0.52	1.00	1.07	0.43	0.25	0.05
STATIS	TICS OF 1	MONTHLY MI	EAN DATA	FOR WATER	YEARS 194	6 - 2002,	BY WATER	YEAR (WY	()			
MEAN	492.6	540.0	445.6	450.5	808.7	1606	1626	1713	2161	1404	652.1	465.0
MAX	3646	3576	2322	3906	3587	4841	5366	6168	9222	11770	7772	5140
(WY)	1987	1984	1983	1973	1973	1979	1983	1974	1947	1993	1993	1993
MIN	8.47	14.5	7.55	5.30	42.9	45.9	42.1	74.2	39.4	27.3	43.3	27.8
(WY)	1957	1957	1956	1956	1954	1954	1956	1956	1977	1977	1988	1956

05471500 SOUTH SKUNK RIVER NEAR OSKALOOSA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1946 - 2002
ANNUAL TOTAL	398060	195089	
ANNUAL MEAN	1091	534.5	1030
HIGHEST ANNUAL MEAN			3884 1993
LOWEST ANNUAL MEAN			40.1 1956
HIGHEST DAILY MEAN	8600 Mar 16	4450 Jun 13	20400 Jul 15 1993
LOWEST DAILY MEAN	52 Jan 2	88 Sep 18	1.8 Oct 11 1956
ANNUAL SEVEN-DAY MINIMUM	68 Jan 1	96 Sep 12	2.0 Oct 7 1956
MAXIMUM PEAK FLOW		5890 Jun 13	20700 Jul 15 1993
MAXIMUM PEAK STAGE		17.71 Jun 13	24.78 Jul 15 1993
INSTANTANEOUS LOW FLOW		86 Sep 18	
ANNUAL RUNOFF (AC-FT)	789600	387000	746400
ANNUAL RUNOFF (CFSM)	0.67	0.33	0.63
ANNUAL RUNOFF (INCHES)	9.06	4.44	8.56
10 PERCENT EXCEEDS	2950	1260	2570
50 PERCENT EXCEEDS	360	310	442
90 PERCENT EXCEEDS	130	181	57

e Estimated

05472500 NORTH SKUNK RIVER NEAR SIGOURNEY, IA

LOCATION.--Lat $41^{\circ}18^{\circ}03^{\circ}$, long $92^{\circ}12^{\circ}16^{\circ}$, in $\text{NE}^{1}/_{4}$ SE $^{1}/_{4}$ sec.14, T.75 N., R.12 W., Keokuk County, Hydrologic Unit 07080106, on right bank 10 ft downstream from bridge on State Highway 149, 1.2 mi downstream from Cedar Creek, 2.2 mi south of Sigourney, 4.0 mi upstream from Bridge Creek, and 16.2 mi upstream from confluence with South Skunk River.

DRAINAGE AREA.--730 mi².

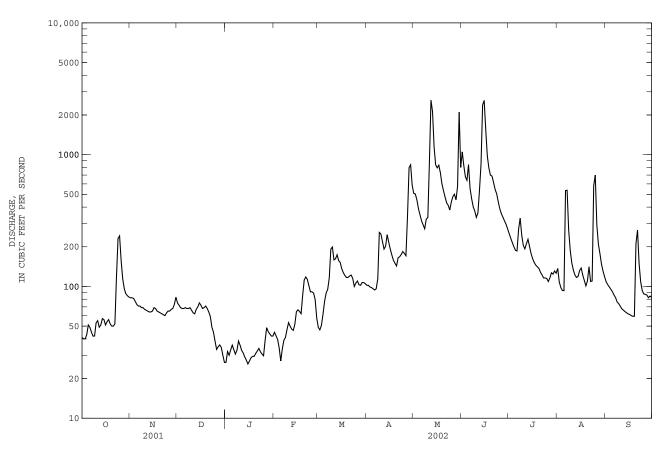
PERIOD OF RECORD. -- October 1945 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946-47 (M).

GAGE.--Water stage recorder. Datum of gage is 651.53 ft above NGVD of 1929. Prior to June 10, 1953, nonrecording gage at same site and datum.

REMARKS.--Records good except those estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1944 reached a stage of 22.8 ft, from floodmark, discharge, 14,500 ft³/s.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	41	82	75	e27	e45	e49	102	508	1050	e251	137	108
2	40	82	72	e32	e42	e47	102	503	822	232	108	103
3	40	81	69	e30	e40	e51	99	454	678	215	98	99
4	43	77	68	e33	e34	e61	98	389	639	200	93	95
5	51	73	68	e36	e27	77	96	349	839	188	93	91
6	49	71	69	e33	e34	89	94	314	552	186	534	e86
7	45	71	68	e31	e39	95	96	293	463	272	537	e82
8	42	69	68	e33	e41	116	114	274	402	330	268	e76
9	42	69	69	e38	e47	192	257	325	373	245	188	e74
10	53	67	66	e36	e53	199	250	333	334	205	151	e71
11	55	66	63	e33	e50	159	219	872	361	193	133	e68
12	49	65	62	e31	e47	162	192	2590	536	211	122	e66
13	51	64	67	e29	e46	174	202	2120	851	228	117	e64
14	57	64	70	e28	e52	157	247	1140	2380	201	119	e63
15	56	65	75	e26	e64	152	217	836	2580	177	132	e62
16	51	69	72	e27	e66	136	192	794	1550	162	138	e61
17	54	68	68	e29	e65	127	173	832	981	152	122	e60
18	56	65	69	e29	e62	121	158	730	792	145	e111	e59
19	52	64	71	e29	e86	117	150	602	699	141	e101	e59
20	50	63	68	e31	112	117	143	533	688	137	110	e211
21	50	62	64	e32	118	120	165	477	e615	128	141	268
22	52	61	59	e34	113	122	168	431	e545	122	109	150
23	117	60	e49	e32	101	115	175	413	e504	116	110	109
24	231	63	e45	e31	91	100	184	380	e439	116	582	93
25	242	65	e38	e30	91	106	178	437	e388	115	699	e88
26 27 28 29 30 31	157 114 96 88 85 83	65 67 68 73 83	e33 e35 e36 e34 e30 e27	e39 e49 e45 e44 e42 e42	89 e79 e57 	110 103 102 107 107 105	171 340 796 838 585	481 501 453 575 2100 799	356 335 e314 e296 e273	109 116 127 124 131 126	293 209 177 147 130 118	e87 e86 e82 e85 e83
TOTAL	2292	2062	1827	1041	1791	3595	6801	21838	21635	5401	6127	2789
MEAN	73.94	68.73	58.94	33.58	63.96	116.0	226.7	704.5	721.2	174.2	197.6	92.97
MAX	242	83	75	49	118	199	838	2590	2580	330	699	268
MIN	40	60	27	26	27	47	94	274	273	109	93	59
AC-FT	4550	4090	3620	2060	3550	7130	13490	43320	42910	10710	12150	5530
CFSM	0.10	0.09	0.08	0.05	0.09	0.16	0.31	0.97	0.99	0.24	0.27	0.13
IN.	0.12	0.11	0.09	0.05	0.09	0.18	0.35	1.11	1.10	0.28	0.31	0.14
STATIST	rics of M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 194	6 - 2002,	BY WATER	YEAR (WY)			
MEAN	222.4	284.4	223.1	253.3	420.2	852.4	775.2	830.1	806.3	546.1	286.5	277.9
MAX	1603	1890	1208	1767	1311	2996	2826	4170	4145	5098	3668	2708
(WY)	1987	1962	1983	1946	1973	1979	1993	1974	1947	1993	1993	1993
MIN	0.13	3.38	2.58	2.26	12.8	17.0	11.2	14.4	20.1	11.2	7.90	4.35
(WY)	1957	1957	1956	1954	1954	1954	1956	1956	1977	1977	1955	1956

05472500 NORTH SKUNK RIVER NEAR SIGOURNEY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1946 - 2002
ANNUAL TOTAL	239824		77199			
ANNUAL MEAN	657.1		211.5		481.4	
HIGHEST ANNUAL MEAN					2041	1993
LOWEST ANNUAL MEAN					27.7	1956
HIGHEST DAILY MEAN	5820	Mar 16	2590	May 12	23200	Mar 31 1960
LOWEST DAILY MEAN	27	Dec 31	26	Jan 15	0.10	Oct 7 1956
ANNUAL SEVEN-DAY MINIMUM	33	Dec 25	28	Jan 13	0.10	Oct 7 1956
MAXIMUM PEAK FLOW			2720	May 12	27500	Mar 31 1960
MAXIMUM PEAK STAGE			13.35	May 12	25.33	Mar 31 1960
ANNUAL RUNOFF (AC-FT)	475700		153100		348700	
ANNUAL RUNOFF (CFSM)	0.90)	0.29		0.66	
ANNUAL RUNOFF (INCHES)	12.22	!	3.93		8.96	
10 PERCENT EXCEEDS	1930		533		1190	
50 PERCENT EXCEEDS	124		101		167	
90 PERCENT EXCEEDS	45		39		19	

e Estimated

05473400 CEDAR CREEK NEAR OAKLAND MILLS, IA

LOCATION.--Lat. $40^{\circ}55^{\circ}20^{\circ}$, long $91^{\circ}40^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.28, T.71 N., R.7 W., Henry County, Hydrologic Unit 07080107, on left bank 30 ft upstream from bridge on county highway H46, 3.0 mi west of Oakland Mills, 2.9 mi upstream from Wolf Creek, and 4.3 mi upstream from mouth.

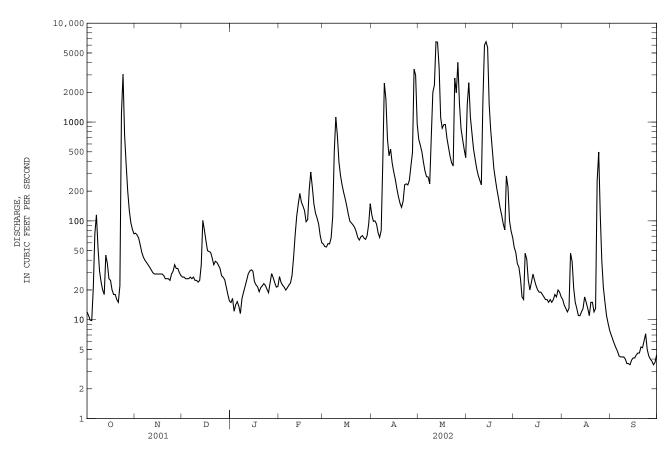
DRAINAGE AREA.--530 mi².

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1957 to 1977. July 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 565.07 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Occasional high-water measurements were made by U.S. Army Corps of Engineers in 1965, 1966, 1970, and 1974 and by U.S. Geological Survey in 1966 and 1967. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 22, 1973 reached a stage of 24.09 ft, discharge not determined. Flood of June 1905 reached a stage approximately 2 feet higher from information by local resident.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	75	27	e15	e27	e58	115	668	1510	54	16	7.0
2	11	72	27	e16	e24	e55	99	583	2500	48	14	6.3
3	9.9	67	26	e12	e22	e54	100	499	1120	37	13	5.7
4	9.8	57	26	e14	e21	e59	93	392	769	34	12	5.2
5	21	48	26	e15	e20	e59	76	318	534	e26	13	4.8
6	74	43	27	e14	e21	e67	68	280	424	e17	47	4.3
7	115	40	26	e12	e22	e110	80	278	340	16	39	4.2
8	54	38	27	e16	e23	e499	387	237	289	47	21	4.2
9	31	36	25	e19	e28	e1120	2470	705	258	e41	15	4.2
10	24	34	25	e22	e43	e723	1720	2000	232	e25	13	4.0
11	20	32	24	e25	e72	393	673	2370	1640	e20	11	3.6
12	18	30	25	29	e112	287	456	6490	6010	24	11	3.6
13	45	29	36	31	e148	231	533	6420	6500	29	12	3.5
14	37	29	101	32	e190	194	386	3580	e5680	25	13	3.9
15	26	29	81	31	e155	167	314	1110	e1510	22	17	4.1
16	25	29	63	e24	e141	141	264	866	e820	20	15	4.1
17	20	29	50	e23	127	116	212	942	e528	19	13	4.4
18	18	29	49	e22	98	99	176	945	338	19	11	4.6
19	18	28	48	e19	103	95	151	689	261	18	15	4.6
20	16	26	42	e21	208	91	137	556	206	17	15	5.3
21	15	26	36	e22	312	86	158	451	168	16	12	5.2
22	22	26	39	e23	217	78	232	387	135	16	13	6.1
23	1210	25	e38	e22	148	68	237	359	114	15	253	7.2
24	3060	29	e36	e20	120	64	231	2790	93	16	498	5.0
25	739	31	e33	e19	107	69	258	1980	81	15	115	4.3
26 27 28 29 30 31	375 200 128 96 82 74	36 33 33 30 28	e28 e27 e25 e21 e18 e15	e24 e29 e27 e24 e21 e22	93 e71 e60 	71 67 65 71 93 149	360 494 3440 2970 954	4020 1550 862 673 533 436	285 220 100 79 68	16 18 17 20 19	39 21 15 11 9.2 7.8	4.0 3.8 3.5 3.7 4.4
TOTAL	6605.7	1097	1097	665	2733	5499	17844	43969	32812	743 23.97 54 15 1470 0.04 0.05	1330.0	138.8
MEAN	213.1	36.57	35.39	21.45	97.61	177.4	594.8	1418	1094		42.90	4.627
MAX	3060	75	101	32	312	1120	3440	6490	6500		498	7.2
MIN	9.8	25	15	12	20	54	68	237	68		7.8	3.5
AC-FT	13100	2180	2180	1320	5420	10910	35390	87210	65080		2640	275
CFSM	0.40	0.07	0.07	0.04	0.18	0.33	1.12	2.66	2.05		0.08	0.01
IN.	0.46	0.08	0.08	0.05	0.19	0.38	1.25	3.07	2.29		0.09	0.01
STATIS	TICS OF N	MONTHLY ME	AN DATA I	FOR WATER	YEARS 197	8 - 2002,	BY WATER	YEAR (WY	.)			
MEAN	236.4	286.2	224.7	100.7	340.3	617.9	631.3	770.8	627.7	552.8	183.1	213.4
MAX	1711	1340	1364	545	1091	1987	1863	3116	2199	4565	2186	1245
(WY)	1987	1993	1983	1993	1985	1979	1983	1996	1990	1993	1993	1986
MIN	5.93	7.50	4.43	9.42	6.36	25.6	34.3	21.6	14.6	3.52	5.35	4.63
(WY)	1989	2000	1990	1997	1989	2000	2000	2000	1988	1988	1983	2002

05473400 CEDAR CREEK NEAR OAKLAND MILLS, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1978 - 2002
ANNUAL TOTAL	201073.7	114533.5	
ANNUAL MEAN	550.9	313.8	398.8
HIGHEST ANNUAL MEAN			1424 1993
LOWEST ANNUAL MEAN			73.0 1989
HIGHEST DAILY MEAN	7220 Mar 16	6500 Jun 13	11500 May 28 1996
LOWEST DAILY MEAN	9.8 Oct 4	3.5 Sep 13a	0.42 Sep 17 1988
ANNUAL SEVEN-DAY MINIMUM	13 Sep 11	3.8 Sep 10	0.55 Sep 14 1988
MAXIMUM PEAK FLOW		7160 May 12	12300 May 28 1996
MAXIMUM PEAK STAGE		18.40 May 12	21.27 Jul 9 1993
ANNUAL RUNOFF (AC-FT)	398800	227200	288900
ANNUAL RUNOFF (CFSM)	1.03	0.59	0.75
ANNUAL RUNOFF (INCHES)	14.03	7.99	10.17
10 PERCENT EXCEEDS	1520	679	937
50 PERCENT EXCEEDS	100	37	79
90 PERCENT EXCEEDS	21	11	8.3

Also Sept. 28. Estimated

05473450 BIG CREEK NEAR MT. PLEASANT, IA

LOCATION.--Lat. $45^{\circ}00'26"$, long $91^{\circ}33'05"$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.28, T.72 N., R.6 W., Henry County, Hydrologic Unit 07080107, on right bank 20 ft upstream from bridge on old U.S. highway 218 (Mt. Pleasant business route) about 2 miles north of Mt. Pleasant, 1.6 miles upstream from Brandy Wine Creek, and 2.3 miles upstream from Lynn Creek.

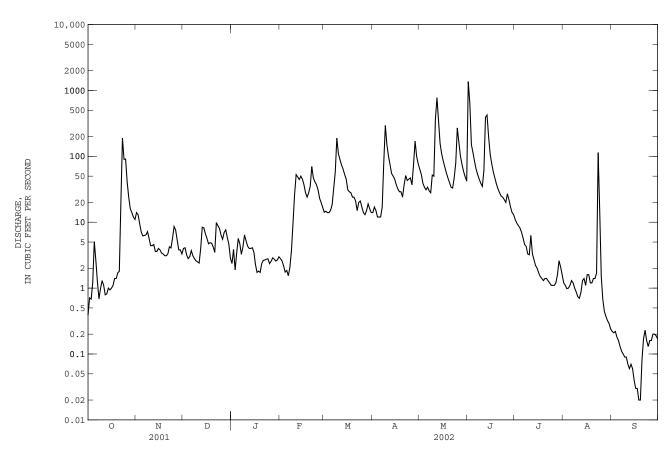
DRAINAGE AREA. -- 58 mi²

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1957 to 1977. Oct. 1, 1997 to current year.

GAGE.--Water-stage recorder. Datum of gage is 643.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 21, 1973, discharge 9,580 ft³/s, on basis of contracted-opening measurement.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.39 0.71 0.68 1.2 e5.1	14 13 9.5 7.1 6.2	4.0 4.1 3.2 2.8 3.0	e2.4 e3.9 e1.9 e3.4 e5.7	e2.8 e2.6 e2.2 e1.7 e1.9	e14 e15 e14 e14 e15	14 17 15 12	64 53 39 34 31	1360 641 150 114 84	11 9.7 8.9 8.2 7.1	1.2 1.1 0.98 1.0	0.22 0.21 0.22 0.18 0.16
6 7 8 9 10	e2.6 e1.2 0.69 0.99 1.3	6.3 6.4 7.2 5.7 4.4	3.7 3.1 2.8 2.6 2.5	e4.7 e3.3 e4.2 e6.4 e5.2	e1.5 e2.1 e3.7 e9.7	e18 e33 e58 e188 e110	12 17 81 294 150	34 30 28 52 50	64 53 45 39 35	5.8 4.6 4.3 3.3 3.2	1.3 1.2 1.0 0.87	0.13 0.11 0.10 0.09 0.09
11 12 13 14 15	1.1 0.79 0.82 1.0 0.94	4.4 4.6 3.6 3.6	2.4 4.0 8.4 8.2 6.7	e4.3 4.0 4.0 4.1 3.5	e53 e49 e44 50 45	89 74 64 53 45	101 75 55 50 45	e364 e777 346 156 109	61 390 423 198 108	6.3 3.3 2.7 2.2 2.0	0.70 0.86 1.3 1.4	0.07 0.06 0.07 0.06 0.04
16 17 18 19 20	1.0 1.1 1.4 1.4	3.8 3.4 3.3 3.1 3.1	5.7 4.7 4.9 4.8 4.2	e2.3 e1.7 e1.8 e1.7 e2.4	e37 e28 24 28 e35	31 29 28 24 24	37 32 29 29 24	85 69 56 47 40	77 58 47 38 32	1.7 1.5 1.4 1.3	1.6 1.6 1.2 1.2	0.03 0.03 0.02 0.02 0.08
21 22 23 24 25	1.8 20 189 90	3.3 e4.2 e4.1 e5.7 8.6	3.5 e9.9 e8.9 e8.1 e6.4	e2.6 e2.7 e2.7 e2.8 e2.3	70 47 41 37 31	21 15 20 21 17	37 51 43 45 47	34 33 47 79 270	e28 25 24 22 20	1.4 1.3 1.2 1.1	1.4 1.7 114 15 1.5	0.17 0.23 0.16 0.13 0.16
26 27 28 29 30 31	41 24 16 14 12	7.6 5.3 3.8 3.8 3.3	e5.5 e7.0 e7.7 e5.9 e4.6 e2.8	e2.6 e2.9 e2.7 e2.6 e2.7 e3.0	e23 e20 e17	14 13 15 19 16 14	37 73 171 100 77	163 101 75 59 49 42	27 22 17 14 13	1.1 1.2 1.6 2.6 2.1 1.6	0.67 0.44 0.37 0.32 0.29 0.24	0.16 0.20 0.20 0.19 0.17
TOTAL MEAN MAX MIN AC-FT CFSM IN.	535.91 17.29 189 0.39 1060 0.30 0.34	166.4 5.547 14 3.1 330 0.10 0.11	156.1 5.035 9.9 2.4 310 0.09 0.10	100.5 3.242 6.4 1.7 199 0.06 0.06	733.2 26.19 70 1.5 1450 0.45 0.47	1125 36.29 188 13 2230 0.63 0.72	1782 59.40 294 12 3530 1.02 1.14	3416 110.2 777 28 6780 1.90 2.19	4229 141.0 1360 13 8390 2.43 2.71	106.2 3.426 11 1.1 211 0.06 0.07	158.78 5.122 114 0.24 315 0.09 0.10	3.76 0.125 0.23 0.02 7.5 0.00 0.00
STATIS	TICS OF N	MONTHLY ME	AN DATA	FOR WATER	YEARS 199	97 - 2002,	BY WATER	R YEAR (W	<i>(</i>)			
MEAN MAX (WY) MIN (WY)	27.59 110 1999 0.56 2000	19.99 78.6 1999 0.71 2000	9.455 25.6 1999 0.68 2000	24.23 83.0 1998 0.84 2000	88.02 215 2001 14.8 2000	76.64 176 1998 8.30 2000	99.00 201 1998 26.0 2000	100.7 221 2001 26.2 2000	96.80 141 2002 47.2 1999	16.50 49.1 2000 2.67 1999	3.460 8.61 1998 0.53 1999	2.772 8.41 1998 0.13 2002

05473450 BIG CREEK NEAR MT. PLEASANT, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1997 - 2002
ANNUAL TOTAL	24350.72	12512.85	
ANNUAL MEAN	66.71	34.28	46.70
HIGHEST ANNUAL MEAN			68.1 1998
LOWEST ANNUAL MEAN			18.9 2000
HIGHEST DAILY MEAN	1440 Feb 25	1360 Jun 1	1600 Mar 31 1998
LOWEST DAILY MEAN	0.36 Sep 5	0.02 Sep 18	0.02 Sep 18 2002
ANNUAL SEVEN-DAY MINIMUM	0.46 Sep 25	0.04 Sep 13	0.04 Sep 13 2002
MAXIMUM PEAK FLOW		2450 Jun 1	2450 Jun 1 2002
MAXIMUM PEAK STAGE		12.20 Jun 1	14.29 Feb 9 2001
INSTANTANEOUS LOW FLOW		0.01 Sep 17a	0.01 Sep 17 2002
ANNUAL RUNOFF (AC-FT)	48300	24820	33830
ANNUAL RUNOFF (CFSM)	1.15	0.59	0.81
ANNUAL RUNOFF (INCHES)	15.62	8.03	10.94
10 PERCENT EXCEEDS	159	74	107
50 PERCENT EXCEEDS	11	5.7	11
90 PERCENT EXCEEDS	0.87	0.58	0.55

a Also Sept. 18, 19. e Estimated

05474000 SKUNK RIVER AT AUGUSTA, IA

LOCATION.--Lat $40^{\circ}45^{\circ}13^{\circ}$, long $91^{\circ}16^{\circ}40^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.26, T.69 N., R.4 W., Des Moines County, Hydrologic Unit 07080107, on left bank 300 ft upstream from bridge on State Highway 394 at Augusta, 2.0 mi upstream from Long Creek, and at mile 12.5. DRAINAGE AREA.--4,303 mi².

WATER-DISCHARGE RECORDS

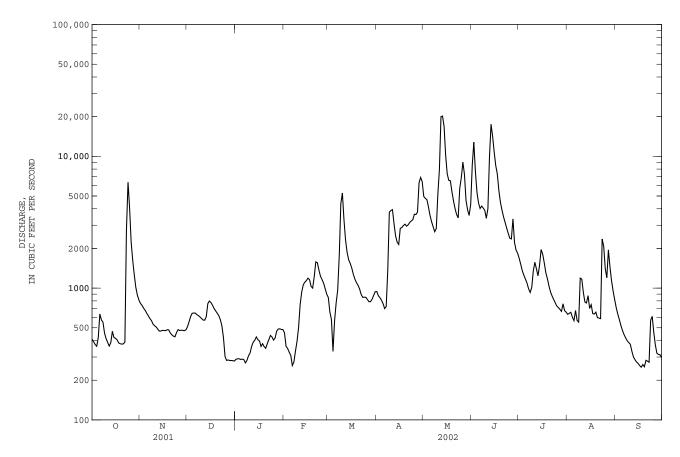
PERIOD OF RECORD.--September to November 1913, October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1915 (M), 1919-27 (M), 1932-34 (M), 1936, 1937-38 (M), 1942 (M). WSP 1438: Drainage area. WDR IA-71-1: 1966 (M).

GAGE.--Water-stage recorder. Datum of gage is 521.24 ft above NGVD of 1929. Prior to Nov. 15, 1913, nonrecording gage at site 400 ft upstream at datum about 0.7 ft higher. May 27, 1915 to Jan. 14, 1935, nonrecording gage at site 400 ft upstream at present datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1903, reached a stage of about 21 ft, discharge, about 45,000 ft³/s. Stage and discharge for flood of April 1973 are believed to be the greatest since 1851.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	410	764	509	e288	e457	849	942	4960	8590	1680	632	710
2	392	738	555	e291	e362	e659	874	4800	12800	1510	644	635
3	373	703	608	e291	e348	e577	846	4690	7670	1350	655	577
4	362	677	644	e287	e327	e332	808	4130	5350	1250	601	520
5	423	644	647	e289	e309	e565	762	3560	4430	1170	566	477
6	636	615	646	e287	e258	769	699	3190	4020	1090	677	444
7	573	587	629	e271	e274	966	724	2920	4190	988	567	419
8	550	566	618	e283	e332	1770	1370	2680	4050	927	552	399
9	455	533	604	e307	e394	4370	3770	2830	3890	1010	1190	386
10	413	517	588	e322	e503	5270	3880	5140	3390	1350	1170	375
11	387	507	572	361	749	3310	3940	7920	4010	1570	925	332
12	363	488	571	389	933	2330	3080	20000	9910	1400	783	300
13	386	472	606	402	1060	1870	2490	20200	17500	1240	771	286
14	470	472	762	426	1110	1640	2230	16800	14200	1490	876	275
15	422	478	798	406	1140	1540	e2140	10100	10800	1960	701	268
16	416	477	776	e397	1190	1420	e2850	7360	8520	1810	748	258
17	405	475	741	e361	1160	1270	e2880	6570	7340	1560	640	251
18	384	483	700	e379	1030	1170	e2990	6520	5500	1310	636	263
19	378	482	671	e360	1000	1100	e3060	5390	4480	1180	657	253
20	376	457	645	e349	1220	1050	e2950	4600	3900	1040	597	283
21	377	442	619	e379	1580	985	e3020	4010	3470	936	592	279
22	389	432	e576	e406	1560	894	e3140	3620	3150	872	587	274
23	2780	427	e517	437	1370	851	e3230	3410	2850	821	2360	570
24	6350	460	e421	426	1230	853	e3300	5710	2600	775	2080	610
25	4070	484	e303	403	1160	851	e3630	6890	2390	731	1400	461
26	2240	477	e283	418	1090	819	e3620	9020	2360	713	1200	370
27	1620	479	e285	471	988	788	e3780	7310	3350	690	1950	320
28	1260	478	e282	489	899	789	e6320	4640	2220	666	1450	314
29	1010	475	e282	491		825	6910	3930	1940	760	1140	312
30 31	882 810	482	e281 e280	e486 e485		882 939	6430	3560 4330	1840	674 657	952 819	297
31	810		e280	e485		939		4330		657	819	
TOTAL	30362	15771	17019	11637	24033	42303	86665	200790	170710	35180	29118	11518
MEAN	979.4	525.7	549.0	375.4	858.3	1365	2889	6477	5690	1135	939.3	383.9
MAX	6350	764	798	491	1580	5270	6910	20200	17500	1960	2360	710
MIN	362	427	280	271	258	332	699	2680	1840	657	552	251
AC-FT	60220	31280	33760 0.13	23080 0.09	47670	83910 0.32	171900	398300	338600 1.32	69780 0.26	57760 0.22	22850 0.09
CFSM IN.	0.23 0.26	0.12 0.14	0.13	0.09	0.20 0.21	0.32	0.67 0.75	1.50 1.73	1.32	0.26	0.22	0.09
TIV.	0.20	0.14	0.13	0.10	0.21	0.36	0.75	1.73	1.4/	0.30	0.23	0.10
STATIST	TICS OF M	MONTHLY ME	AN DATA	FOR WATER	YEARS 191	5 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	1365	1538	1262	1290	2361	4345	4155	4167	4419	2838	1663	1592
MAX	11560	10020	8387	8090	7306	16560	18770	16780	19800	26860	18550	15460
(WY)	1987	1962	1983	1946	1984	1979	1973	1996	1947	1993	1993	1926
MIN	15.5	20.5	21.2	21.3	56.5	191	104	92.5	130	122	25.8	71.4
(WY)	1957	1957	1957	1940	1940	1957	1956	1934	1977	1988	1934	1953

05474000 SKUNK RIVER AT AUGUSTA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	3 1915 - 2002
ANNUAL TOTAL	1397119		675106			
ANNUAL MEAN	3828		1850		2581	
HIGHEST ANNUAL MEAN					10200	1993
LOWEST ANNUAL MEAN					152	1934
HIGHEST DAILY MEAN	30300	May 15	20200	May 13	62600	Apr 23 1973
LOWEST DAILY MEAN	140	Jan 1	251	Sep 17	7.0	Aug 27 1934
ANNUAL SEVEN-DAY MINIMUM	153	Jan 6	264	Sep 14	7.4	Aug 26 1934
MAXIMUM PEAK FLOW			20800	May 13	66800	Apr 23 1973
MAXIMUM PEAK STAGE			15.61	May 13	27.05	Apr 23 1973
INSTANTANEOUS LOW FLOW			244	Sep 17a		
ANNUAL RUNOFF (AC-FT)	2771000		1339000		1870000	
ANNUAL RUNOFF (CFSM)	0.89		0.43		0.60	
ANNUAL RUNOFF (INCHES)	12.05		5.82		8.13	
10 PERCENT EXCEEDS	10700		4450		6800	
50 PERCENT EXCEEDS	980		764		1060	
90 PERCENT EXCEEDS	325		330		150	

a Also Sept. 18, 19. e Estimated

05474000 SKUNK RIVER AT AUGUSTA, IA--Continued

WATER OUALITY RECORDS

LOCATION.--Samples collected at bridge on State Highway 394, 300 ft downstream from gage.

PERIOD OF RECORD. -- October 1975 to current year.

PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: October 1975 to current year. WATER TEMPERATURES: October 1975 to current year.

SUSPENDED-SEDIMENT DISCHARGE: October 1975 to current year.

REMARKS.--During periods of ice effect, sediment samples are collected in open water channel. Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 20, 1979, Feb. 12, 1980; minimum daily, 149 microsiemens Mar. 6,

WATER TEMPERATURES: Maximum daily, 34.0°C July 20, 1980, Aug. 15-17, 1988, July 10-13, 1989, and July 15, 1995, and July 30, 1999; minimum daily, 0.0°C on many days during winter periods.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,550 mg/L June 25, 1981; minimum daily mean, 1 mg/L Mar. 8, 9, 12, 1978, Jan.

5, 6, 1984.

SEDIMENT LOADS: Maximum daily, 499,000 tons Mar. 21, 1978; minimum daily, 1.4 tons Dec. 11, 1989.

EXTREMES FOR CURRENT YEAR.-

OCT 16.. NOV 21.. MAR 27.. MAY 08.. JUN 19.. JUL 30.. SEP

TREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 790 microsiemens Jan. 2; minimum daily, 259 microsiemens Aug. 23.
WATER TEMPERATURES: Maximum daily, 33.0°C July 8, 9, and Aug. 1; minimum daily, 0.0°C many days during winter period.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,770 mg/L June 12; minimum daily mean, 8.4 mg/L Mar. 4.
SEDIMENT LOADS: Maximum daily, 147,000 tons May 12; minimum daily, 7.5 tons Mar. 4.

TEMPER-

ATURE

WATER-OUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DIS-

CHARGE,

INST. CUBIC

FEET

SEDI-

MENT,

SUS-

SEDT-

MENT.

DIS-

CHARGE,

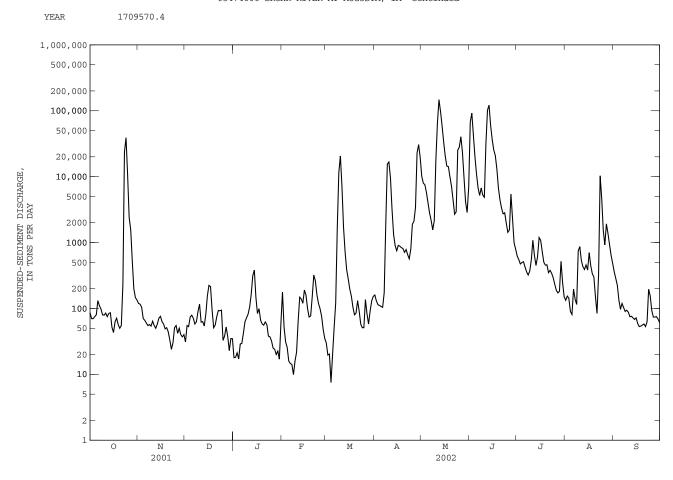
SUS-

SUSP.

DIAM. % FINER

SIEVE

		Date	Ti	(I	ATER DEG C) 00010)	PEF SECC (0006	ND	PENDEI (MG/L) 80154) (T/D	AY) .	THAN 062 MN 70331)			
		OCT 16	09	10	8.7	423	3	42	4	8.0	69			
		NOV 21	09	35	7.2	444	Į	27	3:	2.4	84			
		JAN 15 MAR	15	50	.1	424	Ŀ	89	10	2	19			
		27 MAY	08	25	4.8	787	7	50	10	6	32			
		08 JUN	09	30 1	.8.3	2730)	197	145	0	93			
		19 JUL	10	40 2	2.8	4550) :	1790	2200	0	99			
		30 SEP	13	45 2	8.0	668	3	92	16	6	97			
		11	09	00 2	10.2	334	Į	72	6	4.9	97			
Date	Time	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINE THAN .125 M	I SI DI IR % I IM .25	BED MAT. IEVE IAM. FINER PHAN 50 MM	BED MAT SIEVE DIAM % FINE THAI .500 I	E	BED MAT. SIEVE DIAM. FINER THAN .00 MM 80168)	BED MAT SIEV DIAM % FIN THA 2.00 (8016	E S . I ER % N MM 4.	BED MAT. SIEVE DIAM. FINER THAN. .00 MM	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)
OCT 16	0910	5	1	2		4	33		47	54		59	70	85
NOV 21 MAR	0935	4		0		2	39		64	73		79	88	96
27 MAY	0825	5	2	2		7	44		64	69		76	85	94
08 UN	0930	5		0		7	71		92	92		93	93	100
19 JUL	1045	5		0		9	67		83	89		93	94	100
30 SEP	1345	4	1	1	1	LO	50		64	72		82	92	100
11	0900	5	0	1		3	42		74	87		93	99	100


05474000 SKUNK RIVER AT AUGUSTA, IAContinued												
SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	422 420 421 419 437	494 507 525 537 549	549 489 492 514 535	727 790 724 776 633	594 602 615 628	616 622 589 675 652	570 572 567 559 556	479 502 554 570 581	363 276 325 410 465	572 557 570 482 439	411 423 420 426 421	462 481 485 397 368
6 7 8 9 10	475 478 473 502 503	546 547 519 532 521	480 500 507 504	741 630 699 602 743	618 612 618 599 626	625 679 623 461 391	538 532 487 360 390	593 604 596 599 472	508 540 519 566 584	421 429 402 411 468	385 418 423 478 482	383 376 396 429 435
11 12 13 14 15	494 486 459 491 491	506 498 491 490 476	539 499 583 550 504	593 602 679 665 685	629 599 615 599 602	444 517 543 567 586	458 488 518 513 525	351 293 268 340 412	448 349 270 282 374	489 517 448 500 554	411 360 404 421 412	458 467 470 488 504
16 17 18 19 20	507 530 524 519 496	475 484 501 497 500	549 550 618 529 580	621 688 643 634 672	602 598 586 568 578	589 589 611 609 621	547 558 554 553 576	499 543 520 521 562	394 435 491 532 552	470 494 565 559 544	370 397 400 402 438	523 534 520 549 538
21 22 23 24 25	492 484 385 261 258	523 536 524 504 522	531 535 514 595 532	643 620 624 635 582	575 570 568 575 582	624 619 626 619 609	553 576 572 577 535	578 588 595 401 400	572 574 573 582 584	598 535 561 472 455	417 387 259 356 369	548 556 572 567 584
26 27 28 29 30 31	323 388 419 419 457 448	546 516 503 494 504	543 516 551 660 619 536	618 598 601 581 594 608	589 596 601 	614 621 610 589 587 619	502 484 434 359 417	359 354 485 535 548 558	586 410 518 566 581	427 412 433 376 403 394	336 433 327 306 395 419	559 445 430 414 395
		WATER	TEMPERATURE,		GREES C), DAILY INST			R 2001 TO	SEPTEMBE	R 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22.0 22.0 21.0 16.0 13.0	15.0 14.0 14.0 13.0 12.0	6.0 5.0 9.0 11.0 13.0	0.0 0.0 0.0 2.0	2.0 0.0 1.0 1.0	2.0 0.0 0.0 0.0 3.0	9.0 8.0 7.0 8.0 10.0	13.0 13.0 15.0 17.0 19.0	23.0 21.0 24.0 23.0 21.0	30.0 30.0 31.0 31.0 30.0	33.0 32.0 32.0 31.0 32.0	29.0 27.0 29.0 28.0 28.0
6 7 8 9 10	15.0 15.0 16.0 17.0	14.0 16.0 11.0 10.0 12.0	10.0 7.0 6.0 5.0	0.0 0.0 2.0 2.0	2.0 1.0 4.0 5.0 3.0	5.0 5.0 8.0 4.0 4.0	11.0 9.0 9.0 10.0 12.0	21.0 20.0 22.0 19.0 18.0	22.0 23.0 25.0 23.0 25.0	30.0 30.0 33.0 33.0 28.0	29.0 29.0 28.0 28.0 26.0	28.0 27.0 29.0 30.0 29.0
11 12 13 14 15	16.0 15.0 16.0 13.0	10.0 10.0 13.0 14.0 15.0	4.0 5.0 4.0 5.0 5.0	1.0 0.0 0.0 0.0 0.0	2.0 3.0 2.0 4.0 5.0	5.0 7.0 9.0 12.0 7.0	15.0 13.0 14.0 14.0 20.0	13.0 12.0 12.6 14.0 16.0	22.0 23.0 20.0 20.0 22.0	25.0 26.0 28.0 28.0 29.0	27.0 29.0 27.0 27.0 28.0	26.0 25.0 25.0 24.0 23.0
16 17 18 19 20	10.0 13.0 13.0 13.0	16.0 15.0 14.0 10.0 9.0	5.0 5.0 5.0 4.0	0.0 0.0 0.0 0.0	5.0 5.0 7.0 7.0 5.0	7.0 6.0 8.0 8.0 9.0	22.0 24.0 25.0 22.0 16.0	15.0 13.0 15.0 14.0 15.0	22.0 21.0 23.0 23.0 25.0	29.0 29.0 30.0 31.0 32.0	26.0 28.0 27.0 27.0 24.0	25.0 24.0 25.0 25.0 23.0
21 22 23 24 25	17.0 16.0 17.0 14.0	10.0 9.0 10.0 11.0 9.0	3.0 6.0 2.0 0.0	2.0 3.0 1.0 2.0 3.0	4.0 5.0 8.0 6.0 4.0	5.0 5.0 8.0 5.0 3.0	13.0 14.0 16.0 13.0 14.0	15.0 17.0 17.0 16.0 17.0	26.0 27.0 27.0 29.0 26.0	31.0 31.0 30.0 30.0 30.0	28.0 29.0 23.0 27.0 27.0	25.0 22.0 22.0 20.0 21.0
26 27 28 29 30 31	8.0 13.0 7.0 12.0 11.0 12.0	8.0 5.0 5.0 5.0	0.0 0.0 0.0 0.0 0.1 0.1	4.0 4.0 5.0 2.0 0.0 2.0	2.0 0.0 4.0 	8.0 9.0 11.0 11.0 10.0 7.0	13.0 11.0 10.0 13.0 12.0	15.0 15.0 20.0 21.0 23.0 25.0	26.0 26.0 27.0 28.0 28.0	30.0 31.0 30.0 29.0 31.0 31.0	28.0 28.0 28.0 27.0 28.0 26.0	22.0 20.0 21.0 22.0 20.0

05474000 SKUNK RIVER AT AUGUSTA, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002											
	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	(TONS/	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMBE	ER.	DECEMBI	ER	JANUA	RY	FEBRUA	RY	MARC	СН
1 2 3 4 5	78 67 70 77 70	86.3 70.0 70.0 75.0 80.0	58 58 55 39 38	119 116 104 70.0 66.0	22 36 32 43 45	31.0 55.0 53.0 74.0 79.0	23 23 27 22 37		143 53 33 29 19	177 51.7 31.0 25.6 15.9	13 11 13 8.4 13	29.8 19.6 20.3 7.5 19.8
6 7 8 9 10	76 71 66 65 71	131 110 98.0 80.0 79.0	36 34 37 37 46	60.0 55.0 57.0 54.0 64.0	41 34 38 55 73	71.0 58.0 63.0 90.0	38 57 82 87 94	29.4 41.7 62.6 72.0 81.7	21 19 11 15 16		24 45 301 936 1420	51.0 121 1640 11600 20600
11 12 13 14 15	81 77 81 68 46	85.0 75.0 84.0 86.0 52.0	40 38 45 55 59	55.0 50.0 58.0 71.0 76.0	40 41 33 40 72	62.0 63.0 54.0 82.0	108 155 287 331 135	105 163 314 381 148	32 58 48 40 62	64.0 148 139 120 190	759 267 143 87 68	7070 1720 727 387 282
16 17 18 19 20	38 58 69 56 50	43.0 63.0 71.0 57.0 50.0	49 45 38 39 36	63.0 58.0 49.0 51.0 44.0	107 108 51 28 32	224 215 96.0 51.0 56.0	78 102 65 60 59	83.6 99.4 66.4 58.2 55.7	50 32 27 29 45	160 100 74.0 77.0 150	51 45 33 27 30	197 154 105 80.0 85.0
21 22 23 24 25	2280	55.0 233 23700 38900 10900	27 20 26 41 42	33.0 24.0 30.0 51.0 55.0	45 60 66 83 40	75.2 93.3 92.1 94.2 32.7	61 52 33 32 30	62.3 57.0 38.0 37.0 32.0	75 62 44 36 32	321 263 161 119 99.0	49 38 25 22 22	131 91.0 58.0 51.0 51.0
26 27 28 29 30 31			33 38 31 29 31		50 68 49 30 46 46		22 19 15 17 13 46		26 18 14 	76.0 48.0 35.0 	62 39 27 41 54 59	136 83.0 58.0 91.0 130 152
TOTAL		80318.3		1742.0		2356.8		2259.9		2721.4		45948.0
			SUSPENDE	-SEDIMENT	MATER	VEAR OCTO	BER 2001	TO SEPTE	WRER 2002			
DAY	MEAN CONC TRAT	LOAD (TONS/	MEAN CONCEN TRATIO	LOAD (TONS/	MEAN CONCEN TRATIO	LOAD (TONS/	MEAN CONCE TRATI	LOAD (TONS	MEAN CONCEN TRATIO	LOAD (TONS/	MEAN CONCE TRATI	LOAD
DAY	CONC TRAT (MG/	(TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)	MEAN CONCEN TRATIO (MG/L)	(TONS/ DAY)	CONCE TRATI (MG/L	(TONS/ DAY)
DAY 1 2 3 4	CONC TRAT (MG/	(TONS/	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/	MEAN CONCE TRATI (MG/L JU 137 136 130	LOAD (TONS DAY)	MEAN CONCEN TRATIO	(TONS/ DAY)	CONCE TRATI (MG/L SEPTE 187 166 143	(TONS/DAY) EMBER 360 285 224
1 2 3 4 5	CONC TRAT (MG/ AF 62 54 49 50 51	(TONS/DAY) PRIL 160 130 114 111 107	MEAN CONCEN TRATIO (MG/L) N 751 618 594 512 415	LOAD (TONS/DAY) IAY 10100 7980 7520 5720 4010	MEAN CONCEN TRATIO (MG/L) JI 2730 2620 2020 1380 907	LOAD (TONS/ DAY) UNE 67800 91900 42400 20000 10900	MEAN CONCE TRATI (MG/L JU 137 136 130 147 161	LOAD (TONS DAY) LY 623 552 473 497 512	MEAN CONCEN TRATIO (MG/L) AUG 78 88 81 55 53	(TONS/DAY) FUST 133 154 143 90.0 81.0	CONCE TRATI (MG/L SEPTH 187 166 143 94 75	(TONS/DAY) EMBER 360 285 224 133 97.0
1 2 3 4	CONC TRAT (MG/ AF 62 54 49 50	(TONS/DAY) PRIL 160 130 114 111	MEAN CONCEN TRATIO (MG/L) N 751 618 594 512 415	LOAD (TONS/DAY) IAY 10100 7980 7520 5720 4010	MEAN CONCEN TRATIO (MG/L) JI 2730 2620 2020 1380 907	LOAD (TONS/ DAY) UNE 67800 91900 42400 20000 10900	MEAN CONCE TRATI (MG/L JU 137 136 130 147 161 145 135 128	LOAD (TONS DAY) LY 623 552 473 497 512	MEAN CONCEN TRATIO (MG/L) AUG 78 88 81 55 53	(TONS/DAY) FUST 133 154 143 90.0 81.0	CONCE TRATI (MG/L SEPTH 187 166 143 94 75	(TONS/DAY) EMBER 360 285 224 133
1 2 3 4 5 6 7 8 9	CONC TRAT (MG/ AF 62 54 49 50 51 53 84 439 1490	(TONS/DAY) PRIL 160 130 114 111 107 104 173 1930 15500	MEAN CONCEN TRATIO (MG/L) N 751 618 594 512 415 323 273 214 270	LOAD (TONS/DAY) IAY 10100 7980 7520 5720 4010 2800 2170 1560 2140	MEAN CONCEN TRATIO (MG/L) JI 2730 2620 2020 1380 907 629 464 623 504	LOAD (TONS/DAY) UNE 67800 91900 42400 20000 10900 6740 5190 6740 5240	MEAN CONCE TRATI (MG/L JU 137 136 130 147 161 145 135 128 135 147 253 167 133 150	LOAD (TONS DAY) LLY 623 552 473 497 512 426 359 321 368	MEAN CONCEN TRATIO (MG/L) AUG 78 88 81 55 53 110 90 76 226	(TONS/DAY) BUST 133 154 143 90.0 81.0 197 138 115 748	CONCE TRATI (MG/L SEPTH 187 166 143 94 75 100 91 84 90	(TONS/DAY) EMBER 360 285 224 133 97.0 119 103 90.0 94.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	CONC TRAT (MG/ AF 62 54 49 50 51 53 84 439 1490 1570 879 369 193 149	(TONS/DAY) PRIL 160 130 114 111 107 104 173 1930 15500 16700 9580 3190 1330 897	MEAN CONCEN TRATIO (MG/L) N 751 618 594 512 415 323 273 214 270 1220 2850 2750 1790 1280	LOAD (TONS/DAY) IAY 10100 7980 7520 5720 4010 2800 2170 1560 2140 17500 64100 147000 97600 58500	MEAN CONCEN TRATIO (MG/L) JU 2730 2620 2020 1380 907 629 464 623 504 550 2770 3770 2490 1560	LOAD (TONS/DAY) UNE 67800 91900 42400 20000 10900 6740 5190 6740 4870 31500 102000 122000 60100	MEAN CONCE TRATI (MG/L JU 137 136 130 147 161 145 135 128 135 147 253 167 133 150 225 221 172 141	LOAD (TONS DAY) LY 623 552 473 497 512 426 359 321 368 541 1080 639 448 608	MEAN CONCEN TRATIO (MG/L) AUG 78 88 81 55 53 110 90 76 226 275 224 203 187 193	(TONS/DAY) FUST 133 154 143 90.0 81.0 197 138 115 748 868 534 429 390 457	CONCE TRATI (MG/L SEPTH 187 166 143 94 75 100 91 84 90 87 84 94 90 87	(TONS/DAY) EMBER 360 285 224 133 97.0 119 103 90.0 94.0 88.0 75.0 76.0 72.0 68.0
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19	CONC TRAT (MG/ AF 62 54 49 50 51 53 84 439 1490 1570 879 369 193 149 130 118 113 104 98	(TONS/DAY) PRIL 160 130 114 111 107 104 173 1930 15500 16700 9580 3190 1330 897 752 906 879 938 809	MEAN CONCEN TRATIO (MG/L) 751 618 594 512 415 323 273 214 270 1220 2850 2750 1790 1280 1240 1030 818 808 689	LOAD (TONS/DAY) IAY 10100 7980 7520 5720 4010 2800 2170 1560 2140 17500 64100 147000 58500 33600 20600 14500 14200 10000	MEAN CONCEN TRATIO (MG/L) 2730 2620 2020 1380 907 629 464 623 504 550 2770 3770 2490 1560 1250 1110 1050 878 878 548	LOAD (TONS/DAY) UNE 67800 91900 42400 20000 10900 6740 5190 6740 5240 4870 31500 102000 00100 36900 25500 20900 13100 6680	MEAN CONCE TRATI (MG/L JU 137 136 130 147 161 145 135 128 135 147 253 167 133 150 225 221 172 141 143 164 138 161 154 139	LOAD (TONS DAY) LY 623 552 473 497 512 426 359 321 368 541 1080 639 448 608 1190 1080 726 502 454	MEAN CONCEN TRATIO (MG/L) AUG 78 88 81 55 53 110 90 76 226 275 224 203 187 193 203 351 258 195 169	(TONS/DAY) FUST 133 154 143 90.0 81.0 197 138 115 748 868 534 429 390 457 383 703 446 336 300	CONCE TRATI (MG/L SEPTH 187 166 143 94 75 100 91 84 90 87 84 94 93 91 100	(TONS/DAY) EMBER 360 285 224 133 97.0 119 103 90.0 94.0 88.0 75.0 76.0 72.0 68.0 72.0 59.0 53.0 54.0 56.0

05474000 SKUNK RIVER AT AUGUSTA, IA--Continued

252 MISSISSIPPI RIVER MAIN STEM

05474500 MISSISSIPPI RIVER AT KEOKUK, IA

LOCATION.--Lat $40^{\circ}23'37"$, long $91^{\circ}22'27"$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.30, T.65 N., R.4 W., Lee County, Hydrologic Unit 07080104, near right bank in tailwater of dam and powerplant of Union Electric Co. at Keokuk, 0.2 mi upstream from bridge on U.S. Highway 136, 2.7 mi upstream from Des Moines River, and at mile 364.2 upstream from Ohio River.

DRAINAGE AREA. -- 119,000 mi², approximately.

PERIOD OF RECORD .-- January 1878 to current year.

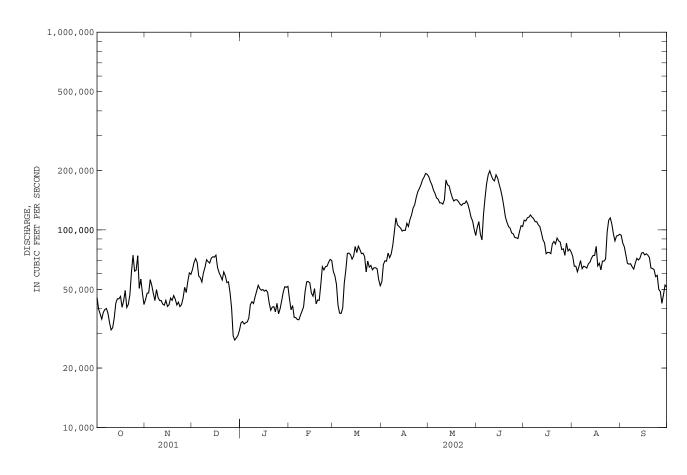
GAGE.--Water-stage recorder. Datum of gage is 477.41 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Jan. 1, 1878 to May 1913, nonrecording gage at Galland (formerly Nashville), 8 mi upstream; zero of gage was set to low-water mark of 1864, or 496.52 ft above sea level.

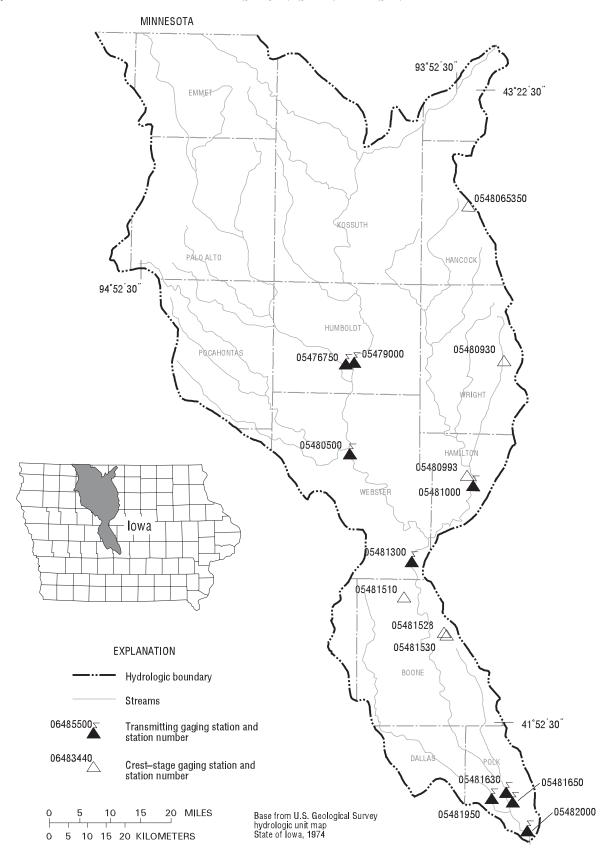
REMARKS.--Discharge computed from records of operation of turbines in powerplant and spillway gates in dam. Minor flow regulation caused by powerplant since 1913 and navigation dams. Records for May 1913 to September 1937 adjusted for change in contents in Keokuk Reservoir, those after September 1937 unadjusted.

COOPERATION. -- Records provided by Union Electric Co.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 6, 1851, reached a stage of 21.0 ft, present site and datum, estimated as 13.5 ft at Galland, discharge, $360,000 \text{ ft}^3/\text{s}$.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45500	44400	63000	33800	44700	61700	54500	186000	103000	112000	73500	93900
2	39800 37500	47800 48000	68400 71600	34400 33400	39400 41400	58600 53100	66800 69800	176000 169000	110000 95000	111000 115000	65500 65500	85700 82000
4	35400	56000	68400	33900	36100	41700	69400	159000	88900	116000	61400	74500
5	38200	52300	58400	34200	36000	37900	76400	153000	120000	119000	65200	67600
6	39600	47600	57200	35800	35200	37800	72400	145000	146000	116000	70000	67100
7 8	40000 37800	43900 49900	54500 60700	41900 43300	35100 37000	40200 53700	75500 83500	143000 137000	172000 190000	114000 110000	63600 65500	67400 65000
9	33900	45500	64600	42400	38800	62600	97600	137000	199000	110000	65000	63300
10	31200	43900	70600	45800	40800	76000	115000	135000	188000	106000	64100	67900
11	32000	43900	69100	49000	49000	76300	106000	142000	180000	104000	67300	71800
12	35900	42100	67900	52400	54600	74900	104000	179000	177000	96600	68600	70400
13 14	42600 44800	41600 44000	71900 73100	50500 49500	54800 53900	71100 73700	102000 98600	169000 167000	190000 183000	89100 85900	71900 74200	72000 76300
15	44800	41000	72800	49900	47900	82400	99600	155000	170000	75700	74200	76900
16	46100	41800	74500	49000	46200	76800	99300	146000	159000	76900	82500	74700
17	40600	45200	64500	49600	50500	82700	108000	140000	146000	76900	65700	75700
18	43700	44000	60800	48400	42200	79500	104000	142000	131000	75800	67800	74500
19 20	49400 40500	46500 44600	58400 55800	42800 39200	44200 44000	75800 76200	113000 119000	142000 139000	116000 109000	85100 87400	62700 69500	72500 64100
21	42000 47000	41700 43100	61300 58500	40700 40900	52800 65100	73300 61300	129000 134000	135000 133000	104000 102000	84800 90900	69500 71200	63800 62900
22 23	61200	40900	54100	38500	62700	69500	146000	136000	96500	88000	97400	58000
24	74500	41900	54600	42500	65200	64800	156000	136000	95500	86700	112000	58900
25	61800	45200	48200	37600	65500	66100	162000	140000	91500	79500	115000	50000
26	62500	51200	40200	39900	68600	62800	169000	135000	91100	80200	107000	48700
27 28	74000 50600	48200 54800	29100 27700	43700 48400	70900 70000	64300 64300	179000 185000	126000 116000	90400 98000	74300 85600	95500 87900	42500 46900
29	56400	60600	28400	51600	70000	63600	193000	111000	105000	78200	93100	52600
30	47900	59600	29200	51200		56000	191000	101000	104000	79900	93600	51400
31	41900		31000	51800		52200		93700		77300	95000	
	1419100	1401200	1768500	1346000	1392600	1990900	3478400	4423700	3950900	2887800	2400900	1999000
MEAN MAX	45780 74500	46710 60600	57050 74500	43420 52400	49740 70900	64220 82700	115900 193000	142700 186000	131700 199000	93150 119000	77450 115000	66630 93900
MIN	31200	40900	27700	33400	35100	37800	54500	93700	88900	74300	61400	42500
	2815000	2779000	3508000	2670000	2762000	3949000	6899000	8774000	7837000	5728000	4762000	3965000
CFSM	0.38	0.39	0.48	0.36	0.42	0.54	0.97	1.20	1.11	0.78	0.65	0.56
IN.	0.44	0.44	0.55	0.42	0.44	0.62	1.09	1.38	1.24	0.90	0.75	0.62
STATI	STICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 18	79 - 2002	, BY WATE	R YEAR (W	Y)			
MEAN	50850	51160	38710	36140	42910	80570	120200	109300	94620	75020	49960	47560
MAX	221100	211300	125600	101600	95620	185400	250100	260700	227300	385800	223000	163300
(WY) MIN	1882 16060	1882 16020	1983 13450	1973 14650	1984 15790	1973 21780	1993 32930	1888 27600	1892 17400	1993 16280	1993 13030	1993 15530
(WY)	1934	1934	1934	1940	1899	1934	1895	1934	1934	1988	1936	1976


MISSISSIPPI RIVER MAIN STEM 253

05474500 MISSISSIPPI RIVER AT KEOKUK, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 W	ATER YEAR	WATER YEARS	1879 - 2002
ANNUAL TOTAL	35518400		28459000			
ANNUAL MEAN	97310		77970		66460	
HIGHEST ANNUAL MEAN					162500	1993
LOWEST ANNUAL MEAN					21540	1934
HIGHEST DAILY MEAN	345000	May 15	199000	Jun 9	434000	Jul 10 1993
LOWEST DAILY MEAN	27700	Dec 28	27700	Dec 28	5000	Dec 27 1933
ANNUAL SEVEN-DAY MINIMUM	33400	Dec 25	30500	Dec 27	8270	Dec 25 1933
MAXIMUM PEAK FLOW					446000	Jul 10 1993
MAXIMUM PEAK STAGE					27.58	Jul 10 1993a
ANNUAL RUNOFF (AC-FT)	70450000		56450000		48150000	
ANNUAL RUNOFF (CFSM)	0.82		0.66	5	0.56	
ANNUAL RUNOFF (INCHES)	11.10	1	8.90)	7.59	
10 PERCENT EXCEEDS	212000		140000		134000	
50 PERCENT EXCEEDS	60600		67600		51000	
90 PERCENT EXCEEDS	38100		40200		23000	

a From floodmark.

Figure 17. Locations of active continuous-record and crest-stage gaging stations in the Upper Des Moines River drainage basin.

Gaging Stations

05476750	Des Moines River at Humboldt, IA
05479000	East Fork Des Moines River at Dakota City, IA
05480500	Des Moines River at Fort Dodge, IA
05481000	Boone River near Webster City, IA
05481300	Des Moines River near Stratford, IA
05481630	Saylorville Lake near Saylorville, IA
05481650	Des Moines River near Saylorville, IA
05481950	Beaver Creek near Grimes, IA
05482000	Des Moines River at Second Avenue at Des Moines, IA 278
	Crest Stage Gaging Stations
0548065350	Drainage Ditch 97 Tributary near Britt, IA
05480930	White Fox Creek at Clarion, IA
05480993	Brewers Creek Tributary near Webster City, IA
05481510	Bluff Creek at Pilot Mound, IA
05481528	Peas Creek Tributary at Boone, IA
05481530	Peas Creek at Boone, IA

05476750 DES MOINES RIVER AT HUMBOLDT, IA

LOCATION.--Lat $42^{\circ}43^{\circ}12^{\circ}$, long $94^{\circ}13^{\circ}06^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.1, T.91 N., R.29 W., Humboldt County, Hydrologic Unit 07100002 on left bank 5 ft downstream from First Avenue in city of Humboldt, .84 mi downstream of Reasoner Dam, about 700 ft downstream from City of Humboldt water plant, 3.2 mi upstream from Indian Creek, 3.9 mi upstream from East Fork Des Moines River, and at mile 334.3 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 2,256 mi².

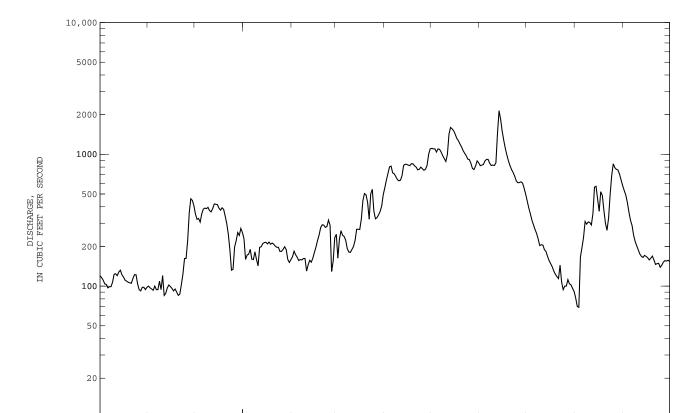
PERIOD OF RECORD. --October 1964 to current year. Prior to October 1970, published as "West Fork Des Moines River at Humboldt."

GAGE.--Water stage recorder. Datum of gage is 1,053.54 ft above NGVD of 1929. Prior to Oct. 3, 1966, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Daily nonrecording gage readings made from Mar. 7, 1940 to Sept. 30, 1964, but discharge not published for this period because of extreme regulation at dam 700 ft upstream from gage. Power generation and streamflow regulation discontinued August 1964. Low-flow discharges occasionally affected by minor regulation at Reasoner Dam. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1947, reached a stage of 12.2 ft, discharge, 11,000 ft³/s at present site and datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	120	100	351	229	167	247	558	1110	820	443	81	531
2	116	97	321	e160	184	163	637	1100	828	392	70	491
3	111	95	326	e172	173	228	714	1100	838	354	69	432
4	104	93	306	e175	e166	263	803	1040	891	317	166	365
5	103	100	353	190	e156	243	814	1100	915	292	196	316
6	97	94	384	e160	159	238	724	1090	915	269	234	289
7	99	94	391	e159	158	223	712	1040	857	251	309	243
8	99	109	387	182	162	e192	678	977	823	228	295	218
9	107	94	396	e159	162	e181	644	928	829	203	307	202
10	123	120	374	e142	e130	e180	630	883	822	206	304	188
11	124	85	366	197	e145	190	636	999	862	205	291	175
12	120	88	388	199	157	200	688	1420	1440	189	355	168
13	128	97	420	210	e152	222	823	1600	2140	183	564	165
14	132	102	418	214	163	270	841	1560	1850	168	572	171
15	122	99	415	215	180	270	839	1510	1500	156	456	168
16	117	96	391	209	198	269	828	1420	1280	148	370	164
17	111	92	377	216	222	324	821	1320	1110	140	520	158
18	109	95	393	208	244	446	849	1270	989	130	488	163
19	107	90	382	212	278	504	847	1200	892	123	377	169
20	106	85	339	208	292	493	817	1140	821	118	300	158
21	105	87	298	201	290	432	801	1070	766	114	265	146
22	114	103	e247	197	279	322	763	1020	728	144	328	148
23	122	124	188	197	283	501	769	977	683	107	496	149
24	122	162	132	e183	317	542	799	920	629	94	692	139
25	104	162	134	e184	290	371	778	913	609	100	847	144
26 27 28 29 30 31	94 92 98 98 94 98	221 358 460 447 407	198 221 255 e242 274 255	190 199 189 159 e151 159	129 155 233 	324 331 347 368 405 494	757 771 824 1000 1100	856 781 767 815 891 861	610 618 606 555 499	100 112 104 102 96 91	792 769 760 707 639 579	152 156 155 157 154
TOTAL	3396	4456	9922	5825	5624	9783	23265	33678	27725	5679	13198	6434
MEAN	109.5	148.5	320.1	187.9	200.9	315.6	775.5	1086	924.2	183.2	425.7	214.5
MAX	132	460	420	229	317	542	1100	1600	2140	443	847	531
MIN	92	85	132	142	129	163	558	767	499	91	69	139
AC-FT	6740	8840	19680	11550	11160	19400	46150	66800	54990	11260	26180	12760
CFSM	0.05	0.07	0.14	0.08	0.09	0.14	0.34	0.48	0.41	0.08	0.19	0.10
IN.	0.06	0.07	0.16	0.10	0.09	0.16	0.38	0.56	0.46	0.09	0.22	0.11
STATIST	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 196	5 - 2002,	BY WATER	YEAR (WY	.)			
MEAN	611.0	641.1	411.7	231.4	330.2	1263	2748	2003	1968	1556	694.7	507.4
MAX	3768	2656	1675	1078	1570	5110	8454	6428	9126	11540	4477	3097
(WY)	1987	1980	1983	1983	1983	1983	1969	2001	1993	1993	1993	1979
MIN	20.4	28.8	19.9	13.5	19.8	78.9	94.4	77.6	72.3	81.0	42.4	30.1
(WY)	1977	1977	1977	1977	1977	1968	1968	1968	1977	1976	1976	1976

05476750 DES MOINES RIVER AT HUMBOLDT, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1965 - 2002
ANNUAL TOTAL	663462		148985			
ANNUAL MEAN	1818		408.2		1082	
HIGHEST ANNUAL MEAN					4136	1993
LOWEST ANNUAL MEAN					74.3	1977
HIGHEST DAILY MEAN	10500	May 4	2140	Jun 13	17800	Apr 14 1969
LOWEST DAILY MEAN	27	Feb 25	69	Aug 3	13	Nov 12 1976
ANNUAL SEVEN-DAY MINIMUM	32	Feb 20	88	Jul 28	13	Jan 12 1977
MAXIMUM PEAK FLOW			2220	Jun 13	19000	Jul 13 1993
MAXIMUM PEAK STAGE			6.00	Jun 13	15.40	Apr 14 1969
INSTANTANEOUS LOW FLOW			66	Aug 2a	13	Jan 12 1977
ANNUAL RUNOFF (AC-FT)	1316000		295500		783800	
ANNUAL RUNOFF (CFSM)	0.81		0.18		0.48	
ANNUAL RUNOFF (INCHES)	10.94		2.46		6.52	
10 PERCENT EXCEEDS	6510		891		2880	
50 PERCENT EXCEEDS	313		251		446	
90 PERCENT EXCEEDS	54		102		67	

a Also Aug. 3. e Estimated.

N 2001

M 2002

05479000 EAST FORK DES MOINES RIVER AT DAKOTA CITY, IA

LOCATION.--Lat $42^{\circ}43^{\circ}26^{\circ}$, long $94^{\circ}11^{\circ}30^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.6, T.91 N., R.28 W., Humboldt County, Hydrologic Unit 07100003, on right bank 50 ft upstream from old mill dam, in city park at east edge of Dakota City, 500 ft upstream from bridge on county highway P56, 0.6 mi downstream from bridge on State Highway 3, 3.4 mi upstream from confluence with Des Moines River, and at mile 333.8 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 1,308 mi².

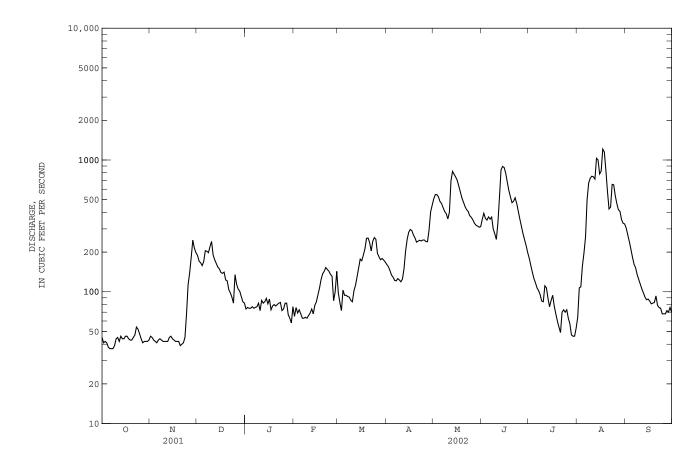
PERIOD OF RECORD. -- March 1940 to current year. Prior to October 1954, published as "near Hardy".

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1944, 1945-47 (M).

GAGE.--Water-stage recorder. Datum of gage is 1,038.71 ft above NGVD of 1929. Prior to Oct. 1, 1954, nonrecording gage at site 8 mi upstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of September 1938 reached a stage of 17.4 ft, discharge, about 22,000 $\rm ft^3/s$, site and datum in use during the period 1940-54.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45	46	189	74	65	98	161	508	355	180	64	304
2	41	45	171	76	76	e83	155	546	394	159	107	270
3	42	43	166	75	69	e72	145	546	361	141	109	240
4 5	41 38	42 41	158 170	75 77	73 68	103 94	134 129	525 484	350 370	126 117	157 197	210 183
		41	170				129					103
6	37	43	205	75	63	94	122	467	356	107	261	162
7	37	44	203	76	63	92	121	434	369	102	502	152
8 9	37 39	43 42	198 220	77 82	64 63	91 86	126 123	406 391	e300 e275	95 85	669 727	135 124
10	44	42	241	e72	66	84	119	357	e275	84	753	114
11	45	42	190	86	69	102	125	401	333	111	746	105
12	42	42	175	82	74	112	150	694	524	107	716	98
13	46	45	164	84	68	130	203	820	842	89	1030	91 87
14 15	44 44	46 44	154 149	89 81	79 84	152 177	250 283	779 743	894 876	77 86	1000 784	88
13	44	44	143	01		1//	203	743	870	00	704	00
16	46	43	140	88	95	172	297	700	794	94	826	85
17	46	42	138	73	107	190	291	634	677	78	1210	81
18	44	42	141	78	124	211	270	572	586	68	1150	82
19	43	42	123	80	137	254	256	515	525	60	837	83
20	43	39	121	78	143	e256	238	478	474	54	580	93
21	45	40	104	80	e153	e237	242	443	486	49	425	79
22	47	41	e98	82	e148	204	246	420	517	70	439	76
23	54	45	91	83	e143	241	243	407	469	73	653	75
24	52	68	82	72	e135	258	247	378	410	70	648	68
25	48	113	135	74	e131	250	247	367	357	73	536	68
26	44	139	114	82	e86	196	240	351	315	63	467	68
27	41	183	105	82	e100	184	240	331	277	57	419	72
28 29	42 42	246 215	101 92	67 63	143	175 179	295 404	320 315	249 225	47 46	408 353	70 76
30	42	198	84	58		174	454	309	199	46	331	70
31	43		82	77		168		312		53	327	
	1211	0116		0200	0.600	1010	6556		12400	0668		2500
TOTAL MEAN	1344 43.35	2146 71.53	4504 145.3	2398 77.35	2689 96.04	4919 158.7	6556 218.5	14953 482.4	13409 447.0	2667 86.03	17431 562.3	3509 117.0
MAX	43.35	246	241	77.35 89	153	258	454	820	894	180	1210	304
MIN	37	39	82	58	63	72	119	309	199	46	64	68
AC-FT	2670	4260	8930	4760	5330	9760	13000	29660	26600	5290	34570	6960
CFSM	0.03	0.05	0.11	0.06	0.07	0.12	0.17	0.37	0.34	0.07	0.43	0.09
IN.	0.04	0.06	0.13	0.07	0.08	0.14	0.19	0.43	0.38	0.08	0.50	0.10
STATIS	TICS OF 1	MONTHLY M	EAN DATA	FOR WATER	YEARS 194	41 - 2002,	BY WATER	R YEAR (W	Z)			
MEAN	307.2	317.0	218.4	124.3	233.5	908.6	1597	1218	1384	895.2	401.7	320.5
MAX	1713	2042	1340	836	1602	4033	14300	12850	8143	6777	4114	2666
(WY)	1983	1942	1992	1992	1984	1983	2001	2001	2001	1993	1979	1979
MIN	12.0	14.2	8.45	5.12	10.4	39.4	58.8	75.7	36.3	13.7	15.5	7.40
(WY)	1959	1959	1977	1977	1959	1968	1977	1977	1977	1977	1976	1976

05479000 EAST FORK DES MOINES RIVER AT DAKOTA CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	1283978	76525	
ANNUAL MEAN	3518	209.7	661.0
HIGHEST ANNUAL MEAN			3559 2001
LOWEST ANNUAL MEAN			29.7 1977
HIGHEST DAILY MEAN	21000 May 4	1210 Aug 17	21000 May 4 2001
LOWEST DAILY MEAN	32 Feb 3	37 Oct 6a	4.8 Jan 11 1977
ANNUAL SEVEN-DAY MINIMUM	36 Feb 2	39 Oct 3	4.8 Jan 8 1977
MAXIMUM PEAK FLOW		1330 Aug 17	18800 Jun 21 1954
MAXIMUM PEAK STAGE		10.32 Aug 17	24.02 Jun 21 1954
INSTANTANEOUS LOW FLOW		34 Oct 8	4.8 Jan 11 1977b
ANNUAL RUNOFF (AC-FT)	2547000	151800	478900
ANNUAL RUNOFF (CFSM)	2.69	0.16	0.51
ANNUAL RUNOFF (INCHES)	36.52	2.18	6.87
10 PERCENT EXCEEDS	13000	511	1730
50 PERCENT EXCEEDS	312	122	210
90 PERCENT EXCEEDS	40	44	24

a b e

Also Oct. 8. Also Jan. 12-14, 1977. Estimated.

05480500 DES MOINES RIVER AT FORT DODGE, IA

LOCATION.--Lat $42^{\circ}30^{\circ}22^{\circ}$, long $94^{\circ}12^{\circ}04^{\circ}$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.19, T.89 N., R.28 W., Webster County, Hydrologic Unit 07100004, on right bank 400 ft upstream from Soldier Creek, 1,800 ft downstream from Illinois Central Railroad bridge in Fort Dodge, 2,000 ft downstream from Lizard Creek, and at mile 314.6.

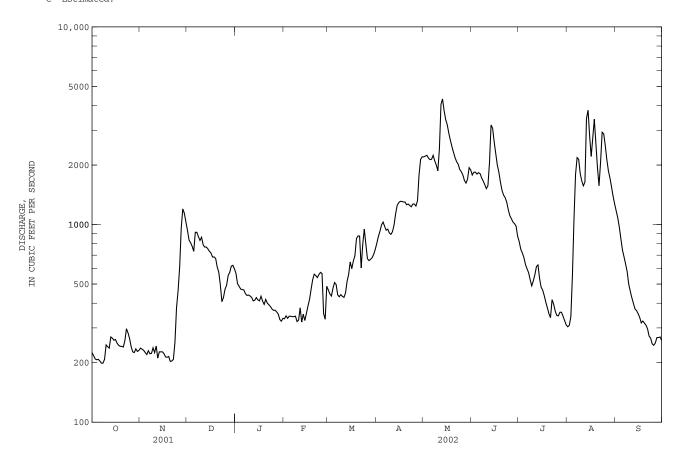
DRAINAGE AREA. -- 4,190 mi².

PERIOD OF RECORD.--April 1905 to July 1906 (no winter records), October 1913 to September 1927 (published as "at Kalo"), October 1946 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1924, 1925 (M).

GAGE.--Water-stage recorder. Datum of gage is 969.38 ft above NGVD of 1929. See WSP 1728 for history of changes prior to Dec. 8, 1949.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Occasional minor regulation caused by dam 0.8 mi upstream from gage. U.S. Army Corps of Engineers satellite data collection platform and City of Fort Dodge gage-height telemeter at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	225	237	934	566	e334	e467	804	2200	1780	819	304	1170
2	217 209	234 231	834 809	502 487	e345 e335	e445 e435	870 924	2220 2240	1840 1840	750 718	309 341	1080 968
4	207	225	776	e472	e344	e477	995	2170	1800	681	550	844
5	208	220	732	469	e344	e509	1030	2130	1830	628	1060	742
6 7	204 199	230 222	914 913	467 e447	e342 e342	e497 e441	979 936	2140 2240	1810 1720	597 571	1790 2180	686 631
8	199	223	868	438	344	e441	948	2100	1660	526	2140	577
9	208	238	831	440	323	e442	906	2000	1590	490	1810	499
10	246	225	863	435	328	e433	892	1870	1520	518	1660	459
11	241	243	791	428	379	428	920	2410	1570	557	1570	426
12	237	211	769	411	321	451	992	4050	2050	613	1640	399
13	270	227	770	414	352	516	1130	4320	3190	625	3440	374
14	266	227	754	427	327	560	1250	3770	3070	535	3790	367
15	260	227	732	e416	355	647	1290	3400	2620	482	2810	354
16	262	222	718	411	387	598	1310	3200	2290	466	2210	339
17	251	214	685	e434	418	654	1310	2900	2000	437	2740	318
18	245	213	686	e410	470	695	1300	2670	1840	405	3410	325
19	242	215	674	e394	526	849	1300	2480	1640	379	2570	317
20	242	203	610	e418	561	876	1260	2320	1490	354	1950	310
21	240	204	574	e400	552	874	1270	2180	1410	338	1570	297
22	259	208	e494	393	539	603	1250	2080	1370	417	2070	273
23	297	254	407	385	559	794	1230	2020	1300	396	2930	266
24 25	283 265	380 463	428 471	374 368	573 565	947 795	1270 1270	1900 1850	1190 1110	365 347	2880 2510	249 245
25	200	403	4/1	308	202	795	1270	1850	1110	347	2510	245
26	241	608	493	e369	354	672	1240	1780	1070	345	2130	252
27	227	959	552	e362	332	657	1320	1670	1030	360	1870	268
28 29	225 235	1200 1140	573 616	e353 331	487	667 680	1790 2140	1620 1700	1010 982	360 344	1720 1550	268 270
30	228	1030	622	e324		706	2200	1940	872	327	1390	260
31	231		597	e335		749		1890		311	1270	
TOTAL	7369	10933	21490	12880	11438	18995	36326	73460	50494	15061	60164	13833
MEAN	237.7	364.4	693.2	415.5	408.5	612.7	1211	2370	1683	485.8	1941	461.1
MAX	297	1200	934	566	573	947	2200	4320	3190	819	3790	1170
MIN	199	203	407	324	321	428	804	1620	872	311	304	245
AC-FT	14620	21690	42630	25550	22690	37680	72050	145700	100200	29870	119300	27440
CFSM	0.06	0.09	0.17	0.10	0.10	0.15	0.29	0.57	0.40	0.12	0.46	0.11
IN.	0.07	0.10	0.19	0.11	0.10	0.17	0.32	0.65	0.45	0.13	0.53	0.12
STATIST	rics of M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 191	4 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	897.1	866.2	605.7	385.4	793.8	2554	4190	3082	3464	2378	1105	885.0
MAX	6120	4447	3698	2257	4352	11070	17530	12490	16150	21530	9264	6206
(WY)	1987	1983	1983	1983	1984	1983	1993	2001	1993	1993	1993	1979
MIN	32.8	54.5	34.7	24.0	35.5	141	224	149	138	75.2	69.0	49.9
(WY)	1957	1959	1977	1977	1959	1968	2000	1926	1977	1926	1976	1976

05480500 DES MOINES RIVER AT FORT DODGE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1914 - 2002
ANNUAL TOTAL	1273666	332443	
ANNUAL MEAN	3489	910.8	1768
HIGHEST ANNUAL MEAN			7882 1993
LOWEST ANNUAL MEAN			143 1977
HIGHEST DAILY MEAN	23000 May 5	4320 May 13	35100 Apr 8 1965
LOWEST DAILY MEAN	120 Jan 16	199 Oct 7a	14 Nov 3 1955
ANNUAL SEVEN-DAY MINIMUM	126 Jan 14	205 Oct 3	23 Jan 13 1977
MAXIMUM PEAK FLOW		4440 May 12	35600 Apr 8 1965
MAXIMUM PEAK STAGE		5.66 May 12	19.62 Jun 23 1947
INSTANTANEOUS LOW FLOW		195 Oct 7b	14 Nov 3 1955
ANNUAL RUNOFF (AC-FT)	2526000	659400	1281000
ANNUAL RUNOFF (CFSM)	0.83	0.22	0.42
ANNUAL RUNOFF (INCHES)	11.31	2.95	5.73
10 PERCENT EXCEEDS	11300	2130	4720
50 PERCENT EXCEEDS	610	571	647
90 PERCENT EXCEEDS	165	239	105

a Also Oct. 8 b. Also Oct. 8, 9.. e Estimated.

05481000 BOONE RIVER NEAR WEBSTER CITY, IA

LOCATION.--Lat $42^{\circ}26^{\circ}01^{\circ}$, long $93^{\circ}48^{\circ}12^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.18, T.88 N., R.25 W., Hamilton County, Hydrologic Unit 07100005, on right bank 100 ft upstream from bridge on State Highway 17, 2.5 mi south of Webster City, and 3.2 mi downstream from Brewers Creek.

DRAINAGE AREA. -- 844 mi².

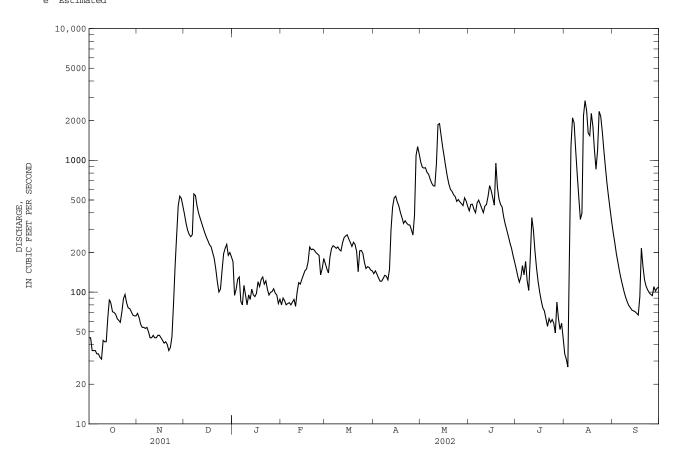
PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1940 (M), WSP 1708: 1956.

GAGE.--Water-stage recorder. Datum of gage is 989.57 ft above NGVD of 1929. Prior to June 26, 1940, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1896, 19.1 ft about June 10, 1918, from floodmarks, from information by local resident, discharge, 21,500 ft³/s. Flood of June 18, 1932, reached a stage of 16.0 ft, discharge, 15,000 ft³/s.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	45	69	390	e170	e80	e165	138	969	414	150	34	282
2	45	64	333	e95	e90	e150	145	887	463	132	31	237
3	36	57	295	e105	e86	e140	137	873	464	119	27	196
4	36	54	274	e125	e80	e185	128	879	424	130	193	168
5	36	54	263	e130	e82	e215	121	810	400	159	1290	144
6	34	53	273	e85	e83	e225	121	785	475	135	2100	126
7	34	54	556	e80	e80	e220	127	720	499	171	1920	112
8	32	50	540	e113	e84	e215	134	671	464	122	1200	100
9	31	45	453	e95	e88	e220	132	641	431	103	781	91
10	43	45	398	e80	e78	e210	124	638	401	184	525	84
11	42	47	364	e95	e100	e205	148	937	450	367	356	79
12	42	45	333	e88	118	236	298	1870	462	294	397	76
13	64	45	306	e105	115	259	441	1900	532	204	2180	73
14	88	47	281	e95	125	267	519	1540	642	152	2840	72
15	82	47	261	e92	e135	272	534	1260	590	120	2380	71
16	71	45	245	e98	e145	253	483	1060	520	100	1610	69
17	70	43	229	e120	e150	238	450	884	457	86	1540	67
18	68	41	221	e110	e170	222	402	750	950	76	2270	92
19	63	42	e200	e125	e220	239	367	658	624	72	1820	215
20	61	40	e180	e130	e210	230	332	601	510	63	1200	157
21	59	36	e150	e115	e212	204	348	581	463	55	856	124
22	71	38	e120	e122	e208	143	334	548	442	63	1190	111
23	89	46	e100	e105	e200	206	324	531	371	59	2350	104
24	96	82	e105	e95	e195	207	323	488	327	62	2160	99
25	83	157	e145	e100	e190	197	298	504	295	58	1660	96
26 27 28 29 30 31	76 75 71 67 66 66	270 453 535 513 448	e195 e215 e230 e190 e200 e185	101 106 e98 e95 e82 e88	e135 e150 e180 	168 151 156 154 147 145	271 381 1090 1270 1120	484 469 453 519 491 447	265 236 215 189 169	49 84 63 52 58 45	1200 889 e671 529 425 343	94 110 102 107 109
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	1842	3565	8230	3243	3789	6244	11040	24848	13144	3587	36967	3567
	59.42	118.8	265.5	104.6	135.3	201.4	368.0	801.5	438.1	115.7	1192	118.9
	96	535	556	170	220	272	1270	1900	950	367	2840	282
	31	36	100	80	78	140	121	447	169	45	27	67
	64	48	245	100	130	207	324	671	454	100	1200	103
	3650	7070	16320	6430	7520	12380	21900	49290	26070	7110	73320	7080
	0.07	0.14	0.31	0.12	0.16	0.24	0.44	0.95	0.52	0.14	1.41	0.14
	0.08	0.16	0.36	0.14	0.17	0.28	0.49	1.10	0.58	0.16	1.63	0.16
STATIS	TICS OF I	MONTHLY M	EAN DATA	FOR WATER	YEARS 194	11 - 2002,	BY WATER	R YEAR (W	<i>(</i>)			
MEAN	231.3	217.3	145.2	97.71	248.2	802.2	946.8	845.1	1073	578.0	263.0	209.3
MAX	1771	1395	1181	568	1847	2826	4307	4315	4239	4715	2942	2501
(WY)	1987	1993	1983	1983	1984	1973	1965	1991	1984	1993	1993	1965
MIN	6.66	11.0	4.62	0.32	3.60	32.5	33.7	46.0	14.1	8.66	9.79	6.48
(WY)	1950	1950	1977	1977	1950	1968	1957	1968	1977	1977	1949	1976

05481000 BOONE RIVER NEAR WEBSTER CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEA	AR	FOR 2002 WAT	ER YEAR	WATER YEARS	1941 - 2002
ANNUAL TOTAL	328700		120066			
ANNUAL MEAN	900.5		328.9		471.5	
HIGHEST ANNUAL MEAN					1861	1993
LOWEST ANNUAL MEAN					36.1	1956
HIGHEST DAILY MEAN	8220 May	5	2840	Aug 14	19500	Jun 22 1954
LOWEST DAILY MEAN	31 Oct	9	27	Aug 3	0.00	Feb 7 1977
ANNUAL SEVEN-DAY MINIMUM	34 Oct	3	34	Oct 3	0.01	Feb 1 1977
MAXIMUM PEAK FLOW			2890	Aug 14	20300	Jun 22 1954
MAXIMUM PEAK STAGE			6.40	Aug 14	18.55	Jun 22 1954
INSTANTANEOUS LOW FLOW			26	Aug 3a	0.00	Feb 7 1977
ANNUAL RUNOFF (AC-FT)	652000		238200		341600	
ANNUAL RUNOFF (CFSM)	1.07		0.39		0.56	
ANNUAL RUNOFF (INCHES)	14.49		5.29		7.59	
10 PERCENT EXCEEDS	3220		783		1210	
50 PERCENT EXCEEDS	143		159		138	
90 PERCENT EXCEEDS	45		54		17	

a Also Aug. 4 e Estimated

05481300 DES MOINES RIVER NEAR STRATFORD, IA

LOCATION.--Lat $42^{\circ}15^{\circ}04^{\circ}$, long $93^{\circ}59^{\circ}52^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec.21, T.86 N., R.27 W., Webster County, Hydrologic Unit 07100004, on right bank 6 ft downstream from bridge on State Highway 175, 0.1 mi downstream from Skillet Creek, 4.0 mi southwest of Stratford, 7.3 mi downstream from Boone River, and at mile 276.7.

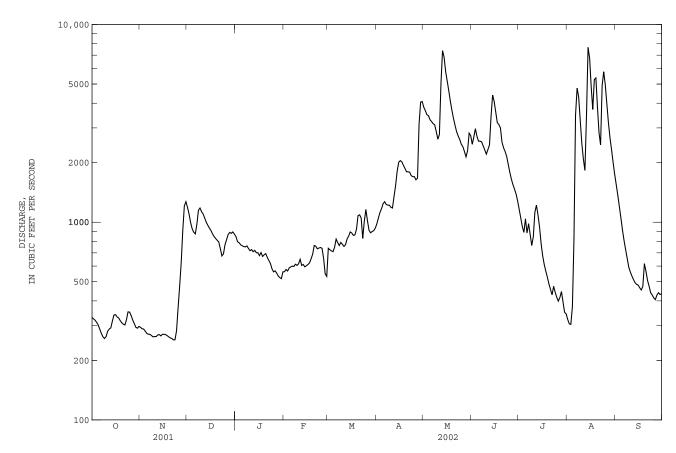
DRAINAGE AREA. -- 5,452 mi².

PERIOD OF RECORD.--October 1967 to current year in reports of U.S. Geological Survey. Replacement station for 05481500 "near Boone", which operated April 1920 to September 1968. Records not necessarily equivalent.

GAGE.--Water-stage recorder. Datum of gage is 894.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Occasional minor regulation caused by dam at Fort Dodge. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of May 30, 1903, reached a stage of 25.4 ft, from high-water mark, site and datum then in use, discharge, $43,600~{\rm ft}^3/{\rm s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	330	294	1190	e845	e562	e738	980	3820	2480	1160	322	1550
2	324	289	1100	e797	e577	e726	1050	3670	2700	1050	306	1370
3	319	288	996	e787	e566	e716	1120	3500	2970	950	304	1200
4	311	281	926	e769	e587	e710	1170	3460	2720	889	375	1050
5	301	274	890	e761	e594	e747	1240	3300	2570	1040	821	913
6	287	271	873	e752	e600	e821	1270	3230	2570	882	3480	809
7	273	271	976	e751	e597	e788	1230	3150	2550	983	4770	727
8	263	267	1150	e759	e613	e763	1220	3110	2430	867	4300	658
9	258	263	1180	e736	e605	e791	1220	2870	2320	763	3280	593
10	264	264	1130	e717	e616	e773	1190	2630	2210	842	2510	560
11 12 13 14 15	281 288 292 316 339	264 269 270 266 271	1100 1050 1000 965 934	e727 e709 e721 e701	e649 e605 e611 e595 e603	e754 e769 e823 e851 893	1180 1350 1530 1810 2010	2780 5040 7380 6830 5770	2330 2460 3420 4400 4080	1120 1220 1090 945 779	2090 1830 3470 7670 6770	535 513 495 485 481
16	341	271	908	e678	e611	882	2050	5170	3610	676	4850	466
17	332	270	873	e702	e623	858	2020	4620	3190	611	3720	454
18	328	267	847	e671	e653	862	1940	4090	3120	565	5270	473
19	318	263	827	e684	e689	922	1870	3680	3000	527	5370	617
20	310	260	810	e694	e763	1080	1800	3350	2540	487	3840	565
21	305	258	794	e664	e756	1090	1800	3090	2380	457	2840	508
22	302	254	e734	e640	e734	1050	1790	2870	2280	429	2460	475
23	321	254	e675	e619	e740	828	1720	2730	2150	474	4920	440
24	352	282	e692	e581	e745	1010	1700	2620	1960	442	5770	428
25	351	368	e771	e561	e738	1160	1700	2480	1790	417	4970	414
26 27 28 29 30 31	337 320 307 294 291 297	475 627 910 1210 1270	e817 e867 e888 e878 e893 e870	e567 e553 e534 e525 e518 e561	e655 e548 e532 	1020 912 884 897 906 932	1640 1670 3140 4050 4080	2410 2280 2140 2300 2820 2740	1650 1550 1470 1390 1280	399 416 446 395 350 344	3980 3200 2680 2330 2010 1750	406 428 440 431 434
TOTAL	9552	11341	28604	20985	17767	26956	52540	109930	75570	22015	102258	18918
MEAN	308.1	378.0	922.7	676.9	634.5	869.5	1751	3546	2519	710.2	3299	630.6
MAX	352	1270	1190	845	763	1160	4080	7380	4400	1220	7670	1550
MIN	258	254	675	518	532	710	980	2140	1280	344	304	406
AC-FT	18950	22490	56740	41620	35240	53470	104200	218000	149900	43670	202800	37520
CFSM	0.06	0.07	0.17	0.12	0.12	0.16	0.32	0.65	0.46	0.13	0.61	0.12
IN.	0.07	0.08	0.20	0.14	0.12	0.18	0.36	0.75	0.52	0.15	0.70	0.13
				FOR WATER						0.15	0.70	0.13
MEAN	1578	1661	1224	740.6	1258	4252	6643	5679	6038	4299	2000	1296
MAX	8763	5745	5267	3267	7061	13920	22020	17120	21310	27250	13500	7546
(WY)	1987	1993	1983	1992	1984	1983	1993	2001	1993	1993	1993	1993
MIN	69.4	96.3	44.4	18.7	57.7	204	348	296	177	156	122	69.5
(WY)	1977	1977	1977	1977	1977	1968	2000	1968	1977	1977	1976	1976

05481300 DES MOINES RIVER NEAR STRATFORD, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1968 - 2002
ANNUAL TOTAL	1726288	496436	
ANNUAL MEAN	4730	1360	3060
HIGHEST ANNUAL MEAN			10400 1993
LOWEST ANNUAL MEAN			254 1977
HIGHEST DAILY MEAN	32700 May 5	7670 Aug 14	41400 Apr 2 1993
LOWEST DAILY MEAN	220 Feb 3	254 Nov 22	13 Jan 23 1977a
ANNUAL SEVEN-DAY MINIMUM	254 Feb 17	261 Nov 17	14 Jan 22 1977
MAXIMUM PEAK FLOW		7900 Aug 14	423000 Apr 2 1993
MAXIMUM PEAK STAGE		11.14 Aug 14	25.68 Apr 2 1993
INSTANTANEOUS LOW FLOW		252 Nov 22	13 Jan 23 1977
ANNUAL RUNOFF (AC-FT)	3424000	984700	2217000
ANNUAL RUNOFF (CFSM)	0.87	0.25	0.56
ANNUAL RUNOFF (INCHES)	11.78	3.39	7.63
10 PERCENT EXCEEDS	15600	3250	8400
50 PERCENT EXCEEDS	830	821	1300
90 PERCENT EXCEEDS	270	302	190

a Also Jan. 24, 1977. e Estimated.

05481630 SAYLORVILLE LAKE NEAR SAYLORVILLE, IA

LOCATION.--Lat $41^{\circ}42^{\circ}13^{\circ}$, long $93^{\circ}41^{\circ}21^{\circ}$, in SE $^{1}/_{4}$ SW $^{1}/_{4}$ sec.30, T.80 N., R.24 W., Polk County, Hydrologic Unit 07100004, in control tower of Saylorville Dam, 3.2 mi northwest of Saylorville, 4.2 mi upstream from Beaver Creek, and at mile 213.7.

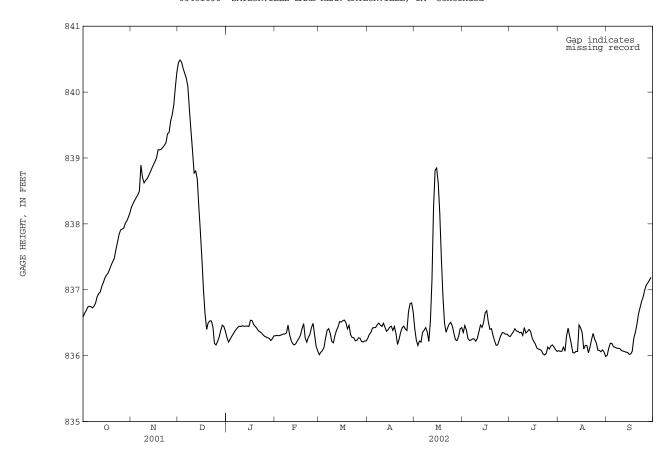
DRAINAGE AREA. -- 5,823 mi².

PERIOD OF RECORD. -- April 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is at NGVD of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Reservoir is formed by earthfill dam completed in 1976. Storage began in April 1977. Release controlled at intake structure to forechamber of 22 ft diameter concrete conduit through dam. Ungated chute spillway 430 ft in length at right end of dam at elevation 884 ft, contents, 570,000 acre-ft. Conservation pool at elevation 836 ft, contents, 90,000 acre-ft, surface area, 5,950 acres. Flood pool elevation at 890 ft, contents, 586,000 acre-ft, surface area, 16,700 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage. Prior to October 1, 2000 published as contents in acre feet, and as elevation in feet NGVD thereafter.

COOPERATION. -- Records provided by U.S. Army Corps of Engineers.


EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 892.00 ft July 14, 1993; minimum elevation, 832.61 ft Jan. 19, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 840.49 ft Dec. 3; minimum elevation, 835.97 ft Sept. 1.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY OBSERVATION AT 0600 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	836.54 836.60 836.66 836.69 836.75	838.19 838.28 838.32 838.37 838.41	840.36 840.48 840.49 840.44 840.33	836.35 836.25 836.19 836.27 836.30	836.31 836.30 836.31 836.30 836.31	836.06 836.00 836.07 836.08 836.14	836.22 836.28 836.34 836.36 836.44	836.62 836.34 836.20 836.14 836.25	836.42 836.33 836.50 836.35 836.23	836.29 836.29 836.34 836.37	836.06 836.08 836.06 836.07 836.15	835.97 836.02 836.15 836.20 836.18
6 7 8 9 10	836.75 836.74 836.72 836.76 836.81	838.45 838.51 839.02 838.60 838.63	840.27 840.19 840.05 839.62 839.34	836.34 836.38 836.41 836.44 836.45	836.32 836.33 836.33 836.35 836.50	836.31 836.41 836.41 836.31 836.18	836.42 836.43 836.48 836.50 836.45	836.19 836.41 836.38 836.44 836.33	836.23 836.24 836.26 836.25 836.21	836.36 836.37 836.34 836.36 836.29	836.04 836.38 836.43 836.25 836.16	836.12 836.13 836.11 836.11
11 12 13 14 15	836.92 836.95 836.97 837.08 837.12	838.67 838.69 838.75 838.80 838.86	839.02 838.69 838.84 838.63 838.14	836.44 836.46 836.44 836.45	836.26 836.22 836.17 836.16 836.19	836.20 836.34 836.40 836.45 836.54	836.44 836.51 836.40 836.36 836.41	836.18 836.64 837.32 838.55 838.90	836.28 836.39 836.49 836.41 836.54	836.47 836.30 836.39 836.40 836.36	836.01 836.05 836.07 836.06 836.60	836.07 836.07 836.06 836.05 836.05
16 17 18 19 20	837.20 837.23 837.26 837.33 837.39	838.91 838.96 839.02 839.16 839.11	837.79 837.35 836.86 836.55 836.35	836.44 836.57 836.52 836.46 836.44	836.24 836.27 836.33 836.44 836.50	836.50 836.54 836.54 836.49 836.38	836.44 836.45 836.36 836.47 836.29	838.83 838.55 838.02 837.30 836.78	836.69 836.68 836.46 836.38 836.42	836.24 836.21 836.17 836.10 836.10	836.36 836.34 836.02 836.20 836.14	836.01 836.03 836.08 836.33 836.36
21 22 23 24 25	837.44 837.49 837.65 837.74 837.87	839.14 839.17 839.20 839.24 839.41	836.55 836.52 836.53 836.41 836.11	836.41 836.37 836.36 836.34 836.31	836.19 836.21 836.30 836.33 836.46	836.49 836.26 836.28 836.27 836.21	836.13 836.29 836.38 836.44 836.45	836.40 836.34 836.45 836.49 836.51	836.27 836.21 836.14 836.17 836.26	836.09 836.07 836.01 836.01 836.04	836.01 836.17 836.27 836.36 836.21	836.52 836.67 836.75 836.85 836.91
26 27 28 29 30 31	837.92 837.92 837.94 838.03 838.05 838.12	839.38 839.62 839.67 839.85 840.15	836.18 836.23 836.30 836.41 836.48 836.43	836.29 836.28 836.27 836.26 836.22 836.27	836.50 836.25 836.10 	836.24 836.28 836.26 836.20 836.21 836.23	836.39 836.38 836.76 836.80 836.80	836.43 836.31 836.22 836.23 836.31 836.44	836.32 836.36 836.34 836.32 836.33	836.16 836.08 836.17 836.16 836.12 836.08	836.19 836.05 836.09 836.05 836.10 836.04	837.03 837.09 837.11 837.16 837.20
MEAN MAX MIN	837.25 838.12 836.54	838.95 840.15 838.19	838.06 840.49 836.11	836.37 836.57 836.19	836.30 836.50 836.10	836.30 836.54 836.00	836.43 836.80 836.13	836.79 838.90 836.14	836.35 836.69 836.14	836.23 836.47 836.01	836.16 836.60 836.01	836.38 837.20 835.97

05481630 SAYLORVILLE LAKE NEAR SAYLORVILLE, IA--Continued

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA

LOCATION.--Lat $41^{\circ}40^{\circ}50^{\circ}$, long $93^{\circ}40^{\circ}05^{\circ}$, $SW^{1/}_{4}$ NE $^{1/}_{4}$ NE $^{1/}_{4}$ Ne $^{1/}_{4}$ sec.5, T.79 N., R.24 W., Polk County, Hydrologic Unit 07100004, on left bank 5 ft upstream of Fisher Bridge on county highway R6F, 2.0 mi west of Saylorville, 2.1 mi downstream from Rock Creek, 2.3 mi downstream from Saylorville Dam, 2.3 mi upstream from Beaver Creek, and at mile 211.4.

DRAINAGE AREA. -- 5,841 mi².

WATER-DISCHARGE RECORDS

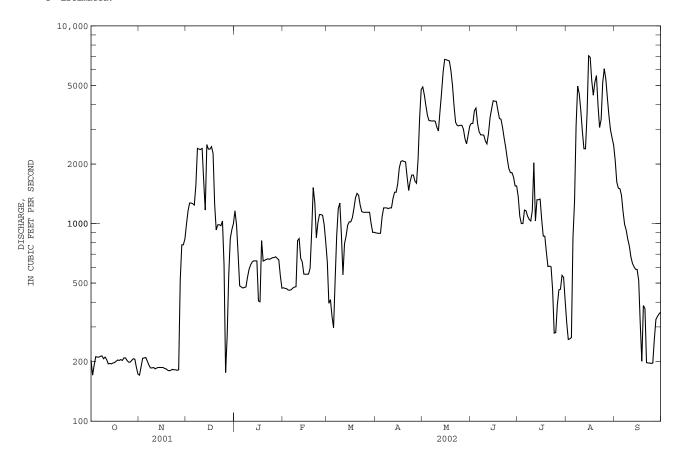
PERIOD OF RECORD.--October 1961 to current year.

GAGE.--Water-stage recorder. Datum of gage is 787.42 ft above NGVD of 1929 (levels by U. S. Army Corps of Engineers). Prior to Aug. 6, 1970, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Saylorville Lake (Station 05481630) 2.3 mi upstream since Apr. 12, 1977. U.S. Army Corps of Engineers satellite data collection platform and U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $47,400~{\rm ft}^3/{\rm s}$ Apr. 10, 1965, gage height, $24.02~{\rm ft}$; minimum daily discharge, $13~{\rm ft}^3/{\rm s}$ Jan. 25, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1893, 24.5 ft June 24, 1954, from floodmarks, discharge, 60,000 ${\rm ft}^3/{\rm s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	204 171	171 189	993 1160	1160 983	473 470	640 e395	897 894	4910 4480	3210 3210	1370 1090	315 259	2080 1620
3	192	208	1270	699	468	e412	892	3950	3720	1000	261	1510
4 5	212 211	209 210	1270 1260	e484 e478	461 460	e340 297	893 1080	3520 3320	3840 3220	1000 1170	265 849	1500 1390
6	211	201	1240	e472	463	517	1200	3310	2920	1160	1290	1150
7	213	192	1560	e475	472	868	1200	3300	2810	1090	3140	990
8 9	214 207	186 186	2400 2380	e478 535	477 479	1190 1270	1200 1190	3310 3290	2810 2800	1050 1030	4960 4540	927 835
10	211	187	2370	587	820	882	1200	3070	2620	1160	3740	771
11	205	184	2400	618	840	e550	1200	2940	2530	2030	2930	680
12 13	195 196	186 187	1640 1170	639 648	666 639	791 863	1340 1440	3690 4570	2850 3430	1030 1320	2390 2390	629 605
14	195	187	2510	647	555	980	1440	5820	3800	1320	3580	587
15	197	187	2380	647	554	1020	1590	6770	4180	1330	7060	586
16	198	187	2380	406	554	1020	1910	6740	4160	1050	6930	516
17 18	201 204	185 184	2450 2260	402 821	555 594	1070 1190	2060 2080	6690 6640	4150 3740	864 863	5280 4460	311 201
19	203	181	1250	646	907	1350	2060	5940	3400	717	5190	385
20	205	180	928	652	1520	1420	2050	4990	3370	606	5610	371
21	203	181	985	658	1280	1390	1720	3930	3060	609	3960	198
22 23	209 209	183 182	987 975	663 659	848 1010	1240 1150	1470 1640	3250 3140	2710 2430	604 461	3060 3360	197 197
24	203	182	1030	665	1110	1140	1760	3120	2130	279	5160	196
25	199	181	618	672	1110	1140	1760	3140	1900	281	6070	197
26	199	182	176	673	1100	1140	1640	3140	1810	386	5380	260
27 28	203 207	514 780	269 548	679 666	986 805	1140 1140	1600 2110	3000 2680	1810 1720	462 465	4310 3500	327 339
29	206	781	840	655		1000	3420	2530	1550	547	2970	349
30	187	836	931	543		902	4760	2800	1550	534	2710	356
31	173		1000	471		903		3110		408	2490	
TOTAL	6243	7789	43630	19481	20676	29350	49696	125090	87440	27286	108409	20260
MEAN MAX	201.4 214	259.6 836	1407 2510	628.4 1160	738.4 1520	946.8 1420	1657 4760	4035 6770	2915 4180	880.2 2030	3497 7060	675.3 2080
MIN	171	171	176	402	460	297	892	2530	1550	279	259	196
AC-FT CFSM	12380 0.03	15450 0.04	86540 0.24	38640 0.11	41010 0.13	58220 0.16	98570 0.28	248100 0.69	173400 0.50	54120 0.15	215000 0.60	40190 0.12
IN.	0.04	0.05	0.24	0.12	0.13	0.19	0.32	0.80	0.56	0.17	0.69	0.13
CMVMT CA	PTCS OF M	IONTHLY ME	י איז מיי	יחם אוא יחידים	VENDO 107	8 = 2002	BA MVuci	D VEND (M	7)			
								•				
MEAN MAX	1711 7161	2007 6210	1663 5345	920.8 3605	1525 6591	4317 13800	6938 17790	6583 18170	7146 19540	6388 32820	3123 15440	2000 13450
(WY)	1987	1987	1983	1983	1984	1983	1993	1993	1991	1993	1993	1993
MIN (WY)	194 1990	190 1990	205 1990	190 1991	204 2000	362 1981	365 2000	741 2000	877 1988	254 1988	212 1989	225 1988
(VVI)	1330	T330	T330	エフフエ	∠000	TAOT	∠000	∠000	1200	1208	1203	1200

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1978	- 2002a
ANNUAL TOTAL	1792667		545350				
ANNUAL MEAN	4911		1494		3701		
HIGHEST ANNUAL MEAN					11320		1993
LOWEST ANNUAL MEAN					487		1989
HIGHEST DAILY MEAN	16900	Apr 16	7060	Aug 15	44300	Jul 2	1 1993
LOWEST DAILY MEAN	164	Jan 27	171	Oct 2b	144	Nov 2	9 1977
ANNUAL SEVEN-DAY MINIMUM	181	Nov 19	181	Nov 19	165	Mar	5 1978
MAXIMUM PEAK FLOW			8160	Aug 16	45700	Jul 2	1 1993
MAXIMUM PEAK STAGE			9.42	Aug 16	24.22	Jul 2	1 1993
INSTANTANEOUS LOW FLOW			164	Nov 1			
ANNUAL RUNOFF (AC-FT)	3556000		1082000		2681000		
ANNUAL RUNOFF (CFSM)	0.84		0.26		0.63		
ANNUAL RUNOFF (INCHES)	11.42		3.47		8.61		
10 PERCENT EXCEEDS	14500		3540		11100		
50 PERCENT EXCEEDS	956		986		1830		
90 PERCENT EXCEEDS	195		198		234		

Post regulation Also Nov. 1. Estimated. a b e

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD: October 1961 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: December 1967 to current year.
WATER TEMPERATURES: October 1961 to current year.
SUSPENDED-SEDIMENT DISCHARGE: October 1961 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. During periods of partial ice cover, sediment samples are collected in open water channel.

EXTREMES FOR PERIOD OF DAILY RECORD. --

CREMES FOR PERIOD OF DAILY RECORD.-
SPECIFIC CONDUCTANCE: Maximum daily, 1,400 microsiemens Feb. 18, 1977; minimum daily, 90 microsiemens Feb. 19, 1971.

WATER TEMPERATURES: Maximum daily, 36.0°C June 29, 1971; minimum daily, 0.0°C on many days during winter periods.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 5,400 mg/L May 14, 1970; minimum daily mean, 1 mg/L Jan. 8, 1965, Sept. 1, 1988, Feb. 9, July 8, 1990, Dec. 4, 5, and Dec. 9, 2000.

SEDIMENT LOADS: Maximum daily, 148,000 tons June 12, 1966; minimum daily, 0.56 tons Sept. 1, 1988.

THEMES FOR CURRENT YEAR.-
SPECIFIC CONDUCTANCE: Maximum daily, 779 microsiemens Jan. 20; minimum daily, 241 microsiemens Sept. 4. WATER TEMPERATURES: Maximum daily, 31.0°C July 18 and Aug. 4; minimum daily, 1.0°C Mar. 12. SEDIMENT CONCENTRATIONS: Maximum daily mean, 227 mg/L Feb. 4; minimum daily mean, 4.1 mg/L Dec. 22. SEDIMENT LOADS: Maximum daily, 1,170 tons Aug. 26; minimum daily, 4.2 tons Nov. 23.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

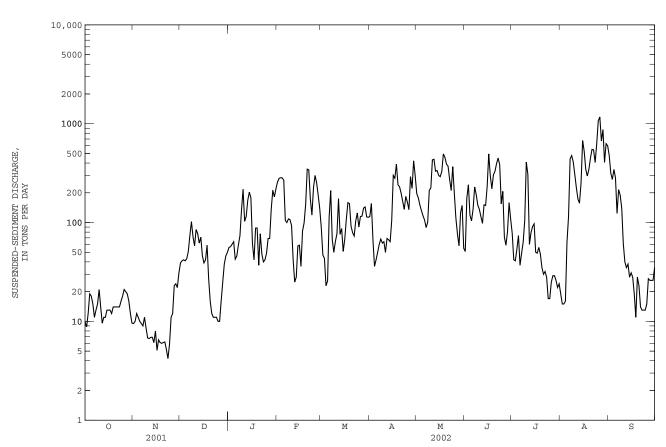
(DEG C) SECOND (MG/L) (T/DA (00010) (00061) (80154) (8015	
OCT 29 1450 11.0 214	
NOV 06 1500 16.0 197 18 9. DEC	6 99
13 1310 6.3 533 23 33.	1 81
MAR 05 1325 1.2 308 26 21.	6 72
APR 10 1635 8.1 1220 24 79.	1 74
MAY 22 1400 15.5 3180 40 343	66
JUL 09 1450 29.0 1030 19 52.	8 98
AUG 21 1415 23.0 3820 74 763	93

SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	518 514 510 509 513	542 536 538 534 533	553 552 553 558 570	 616 710	 647	 637	646 597 655 674 	628 619 625 627	 608 595 622 611	621 637 644 624 633	 598 588	521 565 241 481
6 7 8 9 10	512 505 512 508 510	545 539 532 538 546	583 568 570 586	 699 614 516	719 639 	580 576 693 	676 649 663 607	650 651 636 640	619 589 604 	627 628 622 583	597 585 587 589 591	573 509 532 594
11 12 13 14 15	508 509 507 509 510	 539 538 547	609 605 603	673 710 641 614 642	 712 708 649	653 576 661 651 572	671 662 649 665	639 662 625 657	618 626 618 619 625	605 618 614 608	596 584 575 580	593 589 576 555
16 17 18 19 20	516 518 519 525	541 548 544 	618 624 627 631 618	608 713 657 779	729 583 671 648 605	659 601 603 593	570 646 597 635	646 640 620 544	564 604 638 625	592 626 596 592	597 608 601 606 568	589 575 580 584 600
21 22 23 24 25	 	549 551 547 547	627 	622 692 665 669	601 614 571 608 562	682 615 643 586	623 639 608 638	 565 699 594 616	 578 674 571	592 600 596 601 596	538 548 607 	582 581 583 586
26 27 28 29 30 31	517 521 519 516	 560 560	 	654 689 613 603	630 	574 643 595 637 647	632 630 635 630 588	 683 622 612 627	672 652 652 583 623	597 	485 611 483 607 516	592 589 584 591 588

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

				Ī	AILY INST	ANTANEOU	S VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	18.0 23.0 18.0 16.0	17.0 15.0 11.0 17.0 16.0	7.5 9.0 8.0 10.0	3.0 4.0	 5.0	 6.0	9.0 6.0 5.5 7.0	13.0 11.0 14.0 15.0	28.0 23.5 22.5 22.0 22.0	28.0 27.0 30.5 30.0 30.0	31.0 30.0	23.0 22.0 25.0 25.0
6 7 8 9 10	13.5 14.5 17.0 16.0 16.0	15.0 14.0 11.0 9.0 10.5	8.0 8.0 7.0 7.5	6.0 3.5 3.0	5.5 6.5 	1.5 2.0 2.0 	9.0 7.5 8.0 8.1	18.0 17.0 14.5 18.0	23.0 23.0 23.0 	29.5 28.5 30.0 24.5	27.0 27.0 28.5 28.5 29.0	25.0 26.0 28.0 25.0
11 12 13 14 15	13.5 14.0 15.0 15.0 11.0	12.0 14.0 13.0	7.0 5.5 8.0	3.5 3.0 5.0 2.0 2.0	 5.0 6.0 6.0	4.0 1.0 5.5 4.0 4.0	10.5 9.0 11.0 15.0	15.0 18.0 14.0 15.0	23.0 24.0 25.0 24.0 23.0	25.5 25.5 25.0 29.0	26.0 24.5 28.0 26.0	25.0 22.0 25.0 25.0
16 17 18 19 20	14.0 15.5 13.0 11.0	17.0 12.0 14.0 	8.0 7.0 7.0 5.5 5.0	3.5 2.5 3.0	5.5 7.0 7.0 6.0 4.0	3.5 6.0 5.0 5.0	15.0 16.0 17.0 15.0	15.0 15.0 15.5 15.5	25.5 23.5 24.0 25.0	25.0 28.0 31.0 29.0	27.0 25.0 25.0 27.0 21.0	23.0 21.0 23.0 21.0 21.0
21 22 23 24 25	 	12.0 10.0 11.0 8.5	5.0 	2.5 3.0 3.5 5.5	3.5 3.0 7.0 9.0 2.5	3.0 5.5 3.5 5.5	13.5 14.5 13.0 13.5	16.5 18.0 16.5 17.0	25.0 27.0 28.0	29.5 28.0 27.5 26.0 27.0	23.0 25.0 22.5 	20.5 20.0 16.0 18.0
26 27 28 29 30 31	9.0 11.0 11.0 14.0	 7.5 7.8	 	5.0 7.0 3.5 2.0	 2.0 	3.5 7.0 9.0 6.5 7.5	14.0 11.0 12.0 13.5 11.0	19.0 19.0 21.0 24.0	26.0 26.0 25.5 27.5 28.0	27.0 	24.0 25.0 27.0 26.0 26.0	19.0 17.0 16.5 23.0 21.5


SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	R DECEMBER		JANUA	RY	FEBRUARY		MARCH	
1 2 3 4 5	18 19 24 34 31	9.9 8.8 12.0 19.0 18.0	21 20 21 20 18	9.5 10.0 12.0 11.0 10.0	15 13 12 12 13	39.0 41.0 42.0 41.0 43.0	18 22 32 49 33	56.0 57.0 60.4 64.0 42.6	201 221 225 227 215	257 280 284 283 268	51 44 39 25 32	88.1 46.9 43.4 22.9 25.7
6 7 8 9 10	27 20 22 27 37	15.0 11.0 13.0 15.0 21.0	17 17 23 17 13	9.5 9.0 11.0 8.6 6.8	15 17 16 11 9.0	51.0 74.0 102 72.0 58.0	36 46 57 93 137	45.9 59.0 73.6 134 217	84 78 85 83 47	105 100 109 107 93.0	78 91 22 15 27	113 211 67.0 50.0 64.3
11 12 13 14 15	25 18 20 20 25	14.0 9.6 11.0 11.0 13.0	13 14 14 12 16	6.7 6.9 6.9 6.1 8.0	13 18 21 10 7.2	85.0 77.0 62.0 71.0 46.0	62 66 96 116 102	103 115 168 203 178	18 14 16 39 39	42.0 25.0 28.0 58.0 59.0	52 82 33 33 19	77.2 174 76.0 87.0 51.0
16 17 18 19 20	24 24 22 26 26	13.0 13.0 12.0 14.0 14.0	10 13 12 12 13	5.1 6.5 6.1 6.0 6.1	6.1 6.3 9.7 7.7 6.6	39.0 42.0 59.0 27.0 16.0	49 38 39 51 21	61.0 42.0 88.0 88.0 37.0	24 54 62 62 81	36.0 82.0 99.0 153 347	25 38 50 43 24	68.0 109 159 155 92.0
21 22 23 24 25	26 25 25 29 34	14.0 14.0 14.0 16.0 18.0	13 10 8.6 12 22	6.2 5.2 4.2 5.9 11.0	4.4 4.1 4.2 4.2	12.0 11.0 11.0 11.0	43 27 22 24 27	77.0 48.0 40.0 42.0 49.0	98 75 44 75 101	341 172 119 224 300	21 22 33 41 29	79.0 73.0 104 125 90.0
26 27 28 29 30 31	39 37 33 29 23 20	21.0 20.0 19.0 16.0 12.0 9.6	23 18 11 11 14	12.0 23.0 24.0 22.0 31.0	22 22 17 17 18 18	10.0 16.0 25.0 38.0 46.0 50.0	38 37 76 120 125 172	69.0 69.0 137 212 182 219	85 71 63 	253 189 138 	38 38 45 53 47 46	115 116 140 144 114 113
TOTA	L	440.9		306.3		1327.0		3036.5		4551.0		2993.5

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	APRIL			JUNE	1	JULY		AUGUS	ST	SEPTEM	BER
1 2 3 4 5	47 65 28 15 14	115 156 67.0 36.0 42.0	15 15 14 14 13	196 178 150 132 117	5.8 20 24 11 12	51.0 177 241 119 104	21 14 15 20 24	78.0 42.0 41.0 54.0 74.0	22 22 22 23 27	19.0 15.0 15.0 16.0 63.0	84 72 67 85 76	477 317 273 345 283
6 7 8 9 10	15 18 21 19 20	50.0 60.0 68.0 62.0 64.0	12 9.9 11 24 27	106 89.0 101 212 224	17 30 25 20 19	137 229 192 150 136	12 17 22 38 141	37.0 49.0 63.0 105 409	33 59 36 34 30	115 441 476 412 306	41 80 76 62 30	124 215 190 140 61.0
11 12 13 14 15	16 19 17 17 24	50.0 69.0 67.0 64.0	54 45 27 22 16	431 437 331 336 300	17 13 16 15 21	115 98.0 151 149 232	59 22 22 25 27	308 60.0 79.0 91.0 97.0	28 27 24 25 35	225 173 157 252 675	22 20 23 17 19	40.0 35.0 38.0 28.0 31.0
16 17 18 19 20	58 51 70 43 41	300 281 391 241 230	16 18 28 28 29	291 329 495 457 390	44 26 22 33 36	495 296 220 304 331	17 21 24 25 22	50.0 49.0 56.0 48.0 35.0	28 24 25 24 30	526 346 296 345 448	21 22 21 27 23	28.0 19.0 11.0 28.0 23.0
21 22 23 24 25	43 41 31 39 34	199 164 136 184 161	35 31 25 44 24	372 274 211 368 199	49 62 58 27 40	395 450 384 155 207	19 20 23 23 22	30.0 32.0 28.0 17.0	56 66 45 45 66	550 544 406 624 1070	26 25 24 24 29	14.0 13.0 13.0 13.0 15.0
26 27 28 29 30 31	31 68 40 46 23	135 292 221 421 298	13 9.4 8.0 18 20 6.7	111 77.0 58.0 126 149 55.0	15 12 18 38 26	71.0 59.0 81.0 159 109	24 24 23 18 15 22	25.0 29.0 29.0 26.0 22.0 24.0	80 58 92 51 86 89	1170 668 871 407 628 598	39 30 28 27 37	27.0 26.0 26.0 26.0 35.0
TOTA	L	4729.0		7302.0		5997.0		2104.0		12857.0		2914.0
YEAR		48558.2										

THIS PAGE IS INTENTIONALLY BLANK

05481950 BEAVER CREEK NEAR GRIMES, IA

LOCATION.--Lat 41°41'18", long 93°44'06", in $\mathrm{SW}^1/_4$ $\mathrm{SW}^1/_4$ sec.35, T.80 N., R.25 W., Polk County, Hydrologic Unit 07100004, on left bank 10 ft upstream from bridge on Northwest 70th Avenue, 0.5 mi downstream from Little Beaver Creek, 2.5 mi east of Grimes, and 6 mi upstream from mouth.

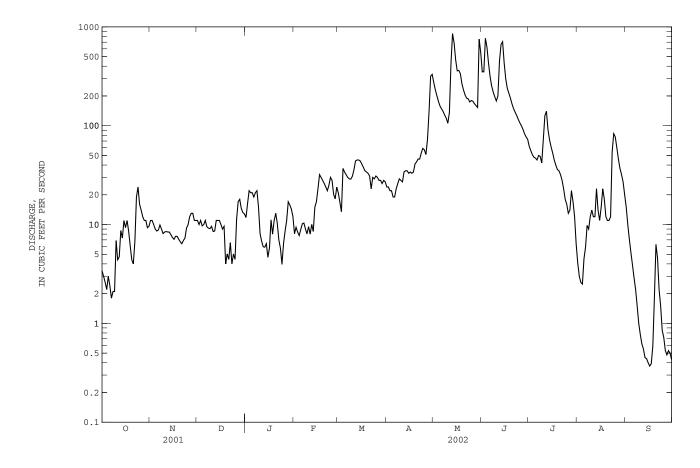
DRAINAGE AREA. -- 358 mi².

PERIOD OF RECORD. -- April 1960 to current year.

REVISED RECORDS.--WDR IA-77-1: 1974 (P), WDR IA-95-1:location.

GAGE.--Water stage recorder. Datum of gage is 806.98 ft above NGVD of 1929. Prior to Aug. 31, 1966, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.4 3.0 2.6 2.2 3.0	11 11 10 9.0 8.6	11 10 11 9.7	e12 e16 22 21 21	e8.1 e9.4 e8.4 e7.7 e8.9	e21 e17 e13 37 34	24 24 22 22 19	274 231 201 176 158	351 351 766 622 430	62 56 51 48 47	4.1 3.0 2.6 2.5 4.5	15 10 7.1 5.2 3.9
6 7 8 9 10	2.4 1.8 2.1 2.1 6.9	8.8 9.9 9.0 8.1 8.4	11 9.5 9.2 9.1 9.6	19 21 22 15 8.1	e10 e10 e9.0 e8.0 e9.5	32 30 29 e29 e31	19 23 26 29 28	148 139 128 119 106	314 252 219 196 178	45 50 49 42 72	5.9 9.8 9.0 12	2.9 2.2 1.5 1.0 0.77
11 12 13 14 15	4.4 4.7 8.7 7.3	8.5 8.4 8.4 7.9 7.4	8.5 8.6 11 11	e6.8 e6.0 5.9 6.4 e4.7	e8.0 e10 e8.5 e15 e17	e36 44 45 45 44	27 34 35 35 33	136 425 853 688 463	200 450 663 708 431	126 140 91 72 61	12 12 23 14 11	0.62 0.55 0.45 0.44 0.40
16 17 18 19 20	9.3 11 8.6 6.1 4.4	7.1 7.6 7.6 7.1 6.7	10 9.0 9.6 e4.0 e5.0	e5.8 e11 e8.0 e11 e13	e23 e32 e30 e28 e26	41 38 35 34 33	34 33 34 41 43	359 363 336 266 230	298 239 213 190 166	53 45 40 36 35	15 23 18 12 11	0.37 0.39 0.59 1.8 6.3
21 22 23 24 25	4.0 6.8 19 24 16	6.4 6.9 7.3 9.2	e4.4 e6.5 e4.0 e5.0 e4.4	e10 e7.0 e5.8 e4.0 e6.4	e24 e22 e25 30 28	31 23 30 29 31	46 46 53 59 57	205 190 187 174 180	149 137 127 116 107	32 28 23 18 16	11 12 54 83 77	4.6 2.2 1.5 0.85 0.72
26 27 28 29 30 31	14 12 11 11 9.3 9.6	12 13 13 11 11	e11 17 18 e15 e13 e13	8.6 11 17 e16 e14 e12	e20 e18 e24 	30 28 28 26 28 27	51 73 140 317 331	177 167 160 153 752 552	100 92 83 77 73	13 14 22 17 12 6.4	60 46 37 32 27 20	0.53 0.48 0.53 0.50 0.43
TOTAL MEAN MAX MIN AC-FT CFSM IN.	241.7 7.797 24 1.8 479 0.02 0.03	270.3 9.010 13 6.4 536 0.03 0.03	299.1 9.648 18 4.0 593 0.03	367.5 11.85 22 4.0 729 0.03 0.04	477.5 17.05 32 7.7 947 0.05 0.05	979 31.58 45 13 1940 0.09 0.10	1758 58.60 331 19 3490 0.16 0.18	8696 280.5 853 106 17250 0.78 0.90	8298 276.6 766 73 16460 0.77 0.86	1422.4 45.88 140 6.4 2820 0.13 0.15	677.4 21.85 83 2.5 1340 0.06 0.07	73.82 2.461 15 0.37 146 0.01 0.01
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 196	1 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	96.35 724 1974 0.058 1989	114.6 655 1973 0.63 1967	95.81 486 1983 0.77 1977	59.35 305 1974 0.002 1977	119.3 526 1973 0.35 1977	344.6 1171 1979 3.98 1981	374.7 1275 1965 3.26 1981	420.3 1419 1974 1.11 1981	467.6 1434 1998 1.41 1977	277.2 2160 1993 0.24 1977	106.3 695 1993 0.73 1988	69.92 654 1993 0.26 1988

05481950 BEAVER CREEK NEAR GRIMES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1961 - 2002
ANNUAL TOTAL	60240.15	23560.72	
ANNUAL MEAN	165.0	64.55	212.4
HIGHEST ANNUAL MEAN			575 1993
LOWEST ANNUAL MEAN			17.3 1981
HIGHEST DAILY MEAN	2130 Mar 17	853 May 13	11500 Jul 10 1993
LOWEST DAILY MEAN	0.33 Sep 5	0.37 Sep 16	0.00 Sep 8 1970a
ANNUAL SEVEN-DAY MINIMUM	0.69 Aug 30	0.46 Sep 12	0.00 Oct 7 1971
MAXIMUM PEAK FLOW		912 May 30	14300 Jul 10 1993
MAXIMUM PEAK STAGE		7.70 May 13	16.58 Jul 10 1993
INSTANTANEOUS LOW FLOW		0.34 Sep 16	
ANNUAL RUNOFF (AC-FT)	119500	46730	153900
ANNUAL RUNOFF (CFSM)	0.46	0.18	0.59
ANNUAL RUNOFF (INCHES)	6.26	2.45	8.06
10 PERCENT EXCEEDS	506	188	547
50 PERCENT EXCEEDS	11	17	69
90 PERCENT EXCEEDS	2.3	4.0	2.2

Also Sept. 11-13, 1970, Sept. 17, 18, Oct. 7-17, 1971, and many days during 1977. Estimated. a e

05482000 DES MOINES RIVER AT SECOND AVENUE AT DES MOINES, IA

LOCATION.--Lat $41^{\circ}36^{\circ}45^{\circ}$, long $93^{\circ}37^{\circ}15^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.34, T.79 N., R.24 W., Polk County, Hydrologic Unit 07100004, on right bank 5 ft upstream from 2nd Avenue or State Highway 60 bridge in Des Moines, 1.8 miles upstream from Des Moines Electric Company dam, 2.8 miles upstream from Raccoon River, and 4.5 miles downstream from Beaver Creek.

DRAINAGE AREA. -- 6,245 mi².

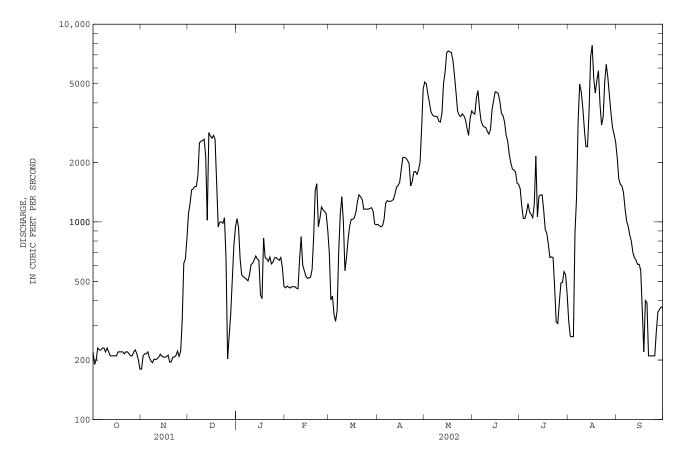
PERIOD OF RECORD.--October 1902 to August 1903, October 1914 to February 1915 (gage heights and discharge measurements only);
March 1915 to September 1961, October 1996 to current year.

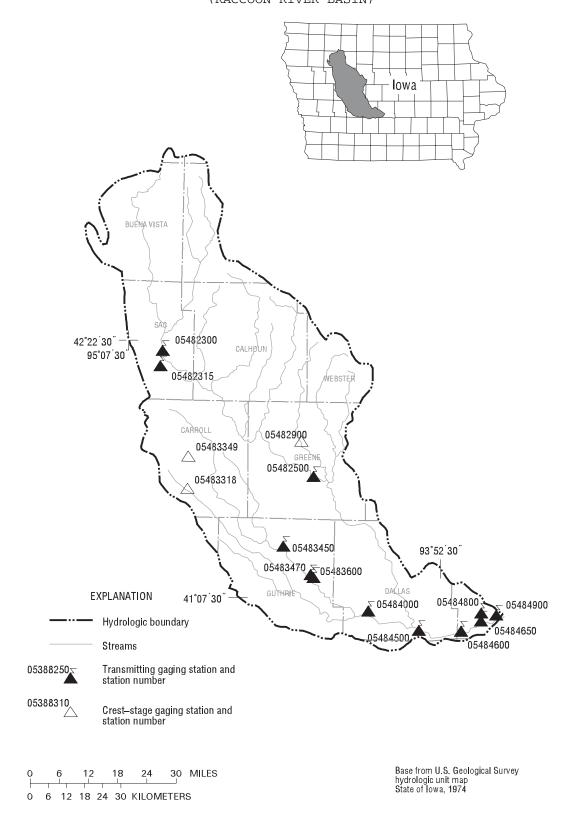
REVISED RECORDS-- WSP 1308: 1915-19, 1921, 1923, 1933, 1943(M). WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 773.68 ft above NGVD of 1929 and at city datum. Prior to August 21, 1941, staff, chain, or recording gages at several sites within 3 mi of present site at various datums.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Saylorville Dam 6.8 mi. upstream, since Apr. 12, 1977. U.S. Army Corps of Engineers rain gage and U.S. Geological Survey satellite data collection platform, and U.S. Weather Service Limited Automated Remote Collector (LARC) at station.

EXTREMES FOR PERIOD OF RECORD--Maximum discharge $60,200 \text{ ft}^3/\text{sec}$ on June 24, 1954, gage height 30.16; minimum unregulated daily discharge 24 ft $^3/\text{sec}$ Jan. 29, 30, 1940.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	e220 e190	e180 e210	1100 1240	1040 938	464 473	696 403	972 955	5100 4990	3550 3510	1470 1200	315 264	e2110 e1650
3	e200	e215	1450	650	467	421	944	4430	4240	1040	262	e1550
4	e230	e215	1470	539	463	341	956	4000	4620	1040	263	e1520
5	e225	e220	1510	528	470	314	1030	3600	3740	1110	e880	e1410
6	e225	206	1510	521	470	356	1240	3470	3240	1240	e1320	e1170
7	e230	198	1710	513	470	704	1280	3420	3080	1120	e3200	e1010
8 9	e230 e220	194 202	2510 2560	503 542	462 459	1090 1340	1270 1270	3420 3400	3020 3000	1090 e1050	e4970 e4560	e950 e860
10	e230	202	2580	608	e644	998	1280	3230	2870	e1230	e3770	e800
11 12	e220 e210	203 207	2620 2150	617 641	e842 e604	565 662	1300 1390	3200 3560	2780 2930	e2150 e1060	e2950 e2400	e700 e660
13	e210	214	1020	672	e566	815	1500	5020	3700	e1350	e2400	e640
14	e210	209	2830	649	533	950	1530	5730	4110	e1370	e3610	e610
15	e210	207	2720	640	518	1030	1590	7170	4550	e1370	6820	e610
16	e210	207	2650	e429	521	1030	1850	7320	4530	1150	7820	e570
17	e220	208	2740	e409	525	1050	2120	7250	4450	914	e5300	e360
18	e220	212	2610	e828	574	1120	2120	7200	4070	875	e4490	e220
19 20	e220 e220	195 196	1570 e945	e658 651	842 1440	1270 1370	2100 2050	6560 5500	3540 3450	768 e660	e5210 5810	e400 e390
	e220			021						ebbu	2810	e390
21	e215	207	e997	631	1560	1340	1970	4490	3200	e665	3930	e210
22	e220	207	e1000 e983	664 613	945 1040	1300	1520	3630	2750 2560	e660 468	e3090	e210
23 24	e220 e215	211 222	e1050	627	1190	1160 1160	1600 1790	3460 3410	2200	312	e3390 e5100	e210 e210
25	e210	209	e647	657	1150	1160	1800	3520	1990	306	6260	e210
26 27	e210 e220	221 320	e203 e264	660 649	1130 1100	1160 1170	1740 1830	3440 3290	1850 1830	e390 e490	e5400 e4370	e280 e350
28	e225	617	e344	639	908	1180	2000	2980	1790	e490	e3550	e360
29	e215	647	e510	660		1130	2980	2740	1570	e560	e3000	e370
30	e200	819	e757	587		976	4720	3340	1550	e540	e2770	e370
31	e180		e938	472		966		3640		e430	e2530	
TOTAL	6680	7779	47188	19435	20830	29227	50697	135510	94270	28573	110004	20970
MEAN	215.5	259.3	1522	626.9	743.9	942.8	1690	4371	3142	921.7	3549	699.0
MAX	230 180	819 180	2830 203	1040 409	1560 459	1370 314	4720 944	7320 2740	4620 1550	2150 306	7820 262	2110 210
MIN AC-FT	13250	15430	93600	38550	41320	57970	100600	268800	187000	56670	218200	41590
CFSM	0.03	0.04	0.24	0.10	0.12	0.15	0.27	0.70	0.50	0.15	0.57	0.11
IN.	0.04	0.05	0.28	0.12	0.12	0.17	0.30	0.81	0.56	0.17	0.66	0.12
STATIST	TICS OF	MONTHLY 1	MEAN DATA	FOR WATER	YEARS 199	7 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	464.5	1182	1228	584.3	1509	3951	8275	7859	7561	5878	2251	476.8
MAX	818	2871	2696	1231	2775	9385	15940	15050	13760	8820	3549	699
(WY)	1999	1997	1997	1997	1997	1997	2001	2001	2001	1999	2002	2002
MIN	208	212	226	245	217	492	413	797	3142	922	914	289
(WY)	2000	2000	2000	2000	2000	2000	2000	2000	2002	2002	2000	2000

05482000 DES MOINES RIVER AT SECOND AVENUE AT DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDA	AR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1997 - 2002
ANNUAL TOTAL	1951190		571163			
ANNUAL MEAN	5346		1565		3440	
HIGHEST ANNUAL MEAN					5301	2001
LOWEST ANNUAL MEAN					948	2000
HIGHEST DAILY MEAN	18300	Apr 16	7820	Aug 16	18300	Apr 16 2001
LOWEST DAILY MEAN	180	Jan 2	180	Oct 31a	160	Sep 18 2000
ANNUAL SEVEN-DAY MINIMUM	193	Jan 1	202	Nov 6	190	Dec 17 1999
MAXIMUM PEAK FLOW			8940	Aug 16	18500	Apr 17 2001
MAXIMUM PEAK STAGE			18.05	Aug 16	20.41	Apr 17 2001
ANNUAL RUNOFF (AC-FT)	3870000		1133000		2492000	
ANNUAL RUNOFF (CFSM)	0.86		0.25		0.55	
ANNUAL RUNOFF (INCHES)	11.62		3.40		7.48	
10 PERCENT EXCEEDS	16100		3720		12100	
50 PERCENT EXCEEDS	964		998		1200	
90 PERCENT EXCEEDS	210		212		220	

Also Nov. 1. Estimated.

Figure 18. Locations of active continuous-record and crest-stage gaging stations in the Raccoon River drainage basin.

DES MOINES RIVER BASIN (RACCOON RIVER BASIN)

Gaging	Stations
Gaging	DIGITOID

05482300	North Raccoon River near Sac City, IA
05482315	Black Hawk Lake at Lake View, IA
05482500	North Raccoon River near Jefferson, IA
05483450	Middle Raccoon River near Bayard, IA
05483470	Lake Panorama at Panora, IA
05483600	Middle Raccoon River at Panora, IA
05484000	South Raccoon River at Redfield, IA
05484500	Raccoon River at Van Meter, IA
05484600	Raccoon River near West Des Moines, IA
05484650	Raccoon River at 63rd Street, Des Moines, IA
05484800	Walnut Creek at Des Moines, IA
05484900	Raccoon River at Fleur Drive, Des Moines, IA
Crest Stage	Gaging Stations
0540000	
05482900	Hardin Creek near Farlin, IA
05483318	Brushy Creek near Templeton, IA
05483349	Middle Raccoon River Tributary at Carroll, IA

05482300 NORTH RACCOON RIVER NEAR SAC CITY, IA

LOCATION.--Lat $42^{\circ}21^{\circ}16^{\circ}$, long $94^{\circ}59^{\circ}26^{\circ}$, in $NW^{1}/_{4}$ Nec.13, T.87 N., R.36 W., Sac County, Hydrologic Unit 07100006, on right bank 5 ft downstream from bridge on county highway, 2.1 mi upstream from Indian Creek, 0.3 mi upstream from Drainage Ditch 73, 4.6 mi south of Sac City, 167.1 miles upstream of mouth of Raccoon River, and at mile 367.6 upstream from mouth of Des Moines River.

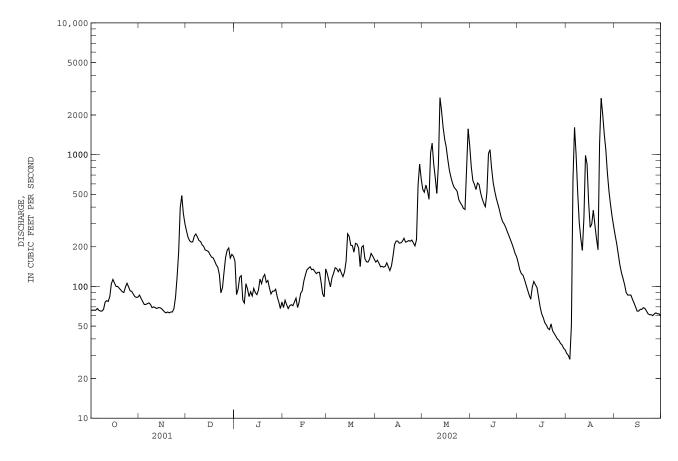
DRAINAGE AREA. -- 700 mi².

PERIOD OF RECORD. -- June 1958 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,146.03 ft above NGVD of 1929. Prior to Oct. 1, 1987 at site 1.7 miles downstream at datum 1.43 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1954, reached a stage of 15.61 ft, from floodmark, discharge, 7,000 ft³/s.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	66 66 66 68	86 81 77 73 73	264 236 222 217 218	e155 e87 e96 e117 e121	e69 e79 e73 e68 e71	e125 e111 e99 e116 e126	153 158 150 141 142	546 519 588 531 459	810 637 596 543 610	e151 e134 125 122 113	31 30 28 51 646	243 209 174 145 127
6	66	74	241	e79	e73	e139	140	1030	593	103	1610	115
7	65	75	250	e75	e71	e136	142	1220	512	94	997	103
8	65	73	237	e105	e76	e129	151	850	462	86	520	90
9	67	69	223	e96	e82	e136	141	664	427	80	307	86
10	76	70	219	e84	e69	e126	132	508	403	99	231	86
11 12 13 14 15	78 77 84 105 113	69 68 69 69	207 201 189 187 184	e91 e85 e97 e90 e87	e76 e89 e93 e110 e122	e119 e129 e155 e251 e239	143 170 208 221 221	837 2710 2160 1610 1310	517 1020 1090 785 615	109 103 98 83 70	188 334 987 849 436	86 e80 e75 e70 e65
16	106	66	175	e94	e134	e205	213	1140	529	62	281	e65
17	100	64	167	e114	e138	e204	214	919	466	58	298	67
18	100	63	165	e105	e141	e182	220	763	422	53	378	67
19	97	64	156	e118	e134	e212	232	674	381	51	294	69
20	94	63	146	e123	e135	e210	217	609	338	48	232	68
21	91	64	e140	e107	e130	e196	219	565	311	47	190	65
22	90	64	e123	e111	125	e142	223	548	298	52	1210	62
23	99	68	e90	e98	128	e199	220	526	281	e46	2680	61
24	e106	83	e98	e88	128	e204	225	457	261	e44	2020	61
25	e99	118	e129	e92	108	163	214	432	244	e42	1430	60
26 27 28 29 30 31	e93 e92 e87 e84 e83	182 395 489 358 299	e166 e188 e196 e164 e175 e170	e92 e95 e83 e76 e68 e76	e88 e83 e136 	154 153 161 178 170 161	203 226 586 846 657	414 391 384 777 1570 1170	227 211 195 178 168	e40 e39 e37 e36 e34 e33	1090 726 529 417 340 285	62 63 62 62 60
TOTAL	2632	3534	5743	3005	2829	5030	7128	26881	14130	2292	19645	2708
MEAN	84.90	117.8	185.3	96.94	101.0	162.3	237.6	867.1	471.0	73.94	633.7	90.27
MAX	113	489	264	155	141	251	846	2710	1090	151	2680	243
MIN	65	63	90	68	68	99	132	384	168	33	28	60
AC-FT	5220	7010	11390	5960	5610	9980	14140	53320	28030	4550	38970	5370
CFSM	0.12	0.17	0.26	0.14	0.14	0.23	0.34	1.24	0.67	0.11	0.91	0.13
IN.	0.14	0.19	0.31	0.16	0.15	0.27	0.38	1.43	0.75	0.12	1.04	0.14
					YEARS 195					0.12	1.01	0.11
MEAN	233.4	211.5	135.7	92.11	176.4	634.0	787.9	658.8	833.6	478.0	243.5	222.6
MAX	1782	1005	641	498	1038	2723	2726	2077	3344	3096	1188	1966
(WY)	1983	1984	1983	1983	1984	1983	1983	1991	1984	1993	1993	1962
MIN	6.39	9.44	4.39	0.87	1.16	27.2	22.7	28.2	24.7	23.0	9.29	7.80
(WY)	1959	1959	1959	1977	1959	1968	2000	2000	1977	1977	1976	1976

05482300 NORTH RACCOON RIVER NEAR SAC CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1959 - 2002
ANNUAL TOTAL	157453		95557			
ANNUAL MEAN	431.4		261.8		392.6	
HIGHEST ANNUAL MEAN					1331	1983
LOWEST ANNUAL MEAN					25.3	1977
HIGHEST DAILY MEAN	4290	Mar 22	2710	May 12	12400	Mar 23 1979
LOWEST DAILY MEAN	30	Feb 28	28	Aug 3	0.00	Jan 30 1977b
ANNUAL SEVEN-DAY MINIMUM	44	Jan 21	33	Jul 28	0.01	Jan 29 1977
MAXIMUM PEAK FLOW			2900	May 12	13100	Mar 23 1979
MAXIMUM PEAK STAGE			13.80	Aug 23	20.14	Jun 17 1990
INSTANTANEOUS LOW FLOW			28	Aug 3a		
ANNUAL RUNOFF (AC-FT)	312300		189500		284400	
ANNUAL RUNOFF (CFSM)	0.62	!	0.37		0.56	
ANNUAL RUNOFF (INCHES)	8.37	,	5.08		7.62	
10 PERCENT EXCEEDS	1140		609		1010	
50 PERCENT EXCEEDS	129		134		133	
90 PERCENT EXCEEDS	53		65		17	

a b e

Also Aug. 4. Also Jan. 31 to Feb. 4, 1977. Estimated.

05482315 BLACK HAWK LAKE AT LAKE VIEW, IA

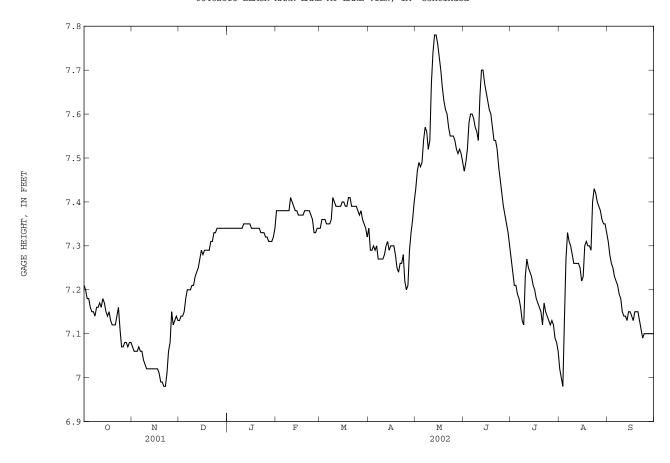
LOCATION.--Lat 42°18'15", long 95°02'30", in $\mathrm{NW}^1/_4$ SE $^1/_4$ sec.33, T.87 N., R.36 W., Sac County, Hydrologic Unit 07100006, on south shore across from swimming beach at Lake View and 2 mi. upstream from lake outlet.

DRAINAGE AREA.--23.3 mi².

PERIOD OF RECORD.--April 1970 to September 1975; April 1978 to September 1992, October 1994 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,213.50 ft above NGVD of 1929 and 7.00 ft below crest of spillway of dam at outlet. Prior to June 25, 1970, nonrecording gage at lake outlet. Prior to Jan. 22, 2001, at datum 5.0 ft higher.

REMARKS.--Gage height was considered reliable for the year. Lake is formed by concrete dam with ungated overflow spillway at elevation 1,220.50 ft. above sea level. Lake is used for conservation and recreation. Area of lake is approximately 957 acres. U.S. Geological Survey satellite data collection platform at station.


EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 4.34 ft June 22, 1996, datum then in use; minimum, 4.91 ft Jan. 25, 2001.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 7.89 ft May 11 (affected by wind); minimum, 6.94 ft Nov. 18, and Aug. 4.

GAGE HEIGHT from DCP, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.21	7.07	7.13	7.34	7.38	7.34	7.34	7.43	7.47	7.27	7.02	7.31
2	7.20	7.06	7.14	7.34	7.38	7.36	7.29	7.47	7.49	7.24	7.00	7.28
3	7.18	7.06	7.14	7.34	7.38	7.36	7.29	7.49	7.52	7.21	6.98	7.26
4	7.18	7.06	7.15	7.34	7.38	7.36	7.30	7.48	7.58	7.21	7.13	7.25
5	7.16	7.07	7.18	7.34	7.38	7.35	7.29	7.49	7.60	7.19	7.27	7.23
6	7.15	7.06	7.20	7.34	7.38	7.35	7.30	7.54	7.60	7.18	7.33	7.22
7	7.15	7.06	7.20	7.34	7.38	7.35	7.27	7.57	7.59	7.16	7.31	7.21
8	7.14	7.04	7.20	7.34	7.38	7.36	7.27	7.56	7.57	7.13	7.30	7.19
9	7.16	7.03	7.21	7.34	7.38	7.41	7.27	7.52	7.56	7.12	7.28	7.18
10	7.16	7.02	7.21	7.34	7.41	7.40	7.27	7.54	7.54	7.23	7.26	7.15
11	7.17	7.02	7.23	7.35	7.40	7.39	7.28	7.67	7.64	7.27	7.26	7.14
12	7.16	7.02	7.24	7.35	7.39	7.39	7.30	7.74	7.70	7.25	7.26	7.14
13	7.18	7.02	7.25	7.35	7.38	7.39	7.31	7.78	7.70	7.24	7.26	7.13
14	7.17	7.02	7.27	7.35	7.38	7.39	7.29	7.78	7.67	7.23	7.25	7.15
15	7.15	7.02	7.29	7.35	7.37	7.40	7.30	7.76	7.65	7.21	7.22	7.15
16	7.14	7.02	7.28	7.34	7.37	7.40	7.30	7.73	7.63	7.20	7.23	7.14
17	7.15	7.02	7.29	7.34	7.37	7.39	7.30	7.70	7.61	7.18	7.30	7.13
18	7.13	7.01	7.29	7.34	7.37	7.39	7.28	7.66	7.60	7.17	7.31	7.15
19	7.12	6.99	7.29	7.34	7.38	7.41	7.25	7.63	7.57	7.16	7.30	7.15
20	7.12	6.99	7.29	7.34	7.38	7.41	7.24	7.61	7.54	7.15	7.30	7.15
21	7.12	6.98	7.31	7.34	7.38	7.39	7.26	7.60	7.54	7.12	7.29	7.13
22	7.14	6.98	7.31	7.33	7.38	7.39	7.26	7.57	7.52	7.17	7.40	7.11
23	7.16	7.01	7.33	7.33	7.37	7.39	7.28	7.55	7.48	7.15	7.43	7.09
24	7.11	7.06	7.33	7.33	7.36	7.39	7.22	7.55	7.45	7.14	7.42	7.10
25	7.07	7.08	7.34	7.32	7.33	7.39	7.20	7.55	7.42	7.13	7.40	7.10
26 27 28 29 30 31	7.07 7.08 7.08 7.07 7.08 7.08	7.15 7.12 7.13 7.14 7.13	7.34 7.34 7.34 7.34 7.34 7.34	7.32 7.31 7.31 7.31 7.32 7.34	7.33 7.34 7.34 	7.37 7.38 7.36 7.35 7.34 7.32	7.21 7.29 7.33 7.36 7.40	7.54 7.52 7.51 7.52 7.51 7.49	7.39 7.37 7.35 7.33 7.30	7.12 7.13 7.12 7.09 7.08 7.06	7.39 7.38 7.36 7.35 7.35 7.33	7.10 7.10 7.10 7.10 7.10
MEAN	7.14	7.05	7.26	7.34	7.37	7.38	7.29	7.58	7.53	7.17	7.28	7.16
MAX	7.21	7.15	7.34	7.35	7.41	7.41	7.40	7.78	7.70	7.27	7.43	7.31
MIN	7.07	6.98	7.13	7.31	7.33	7.32	7.20	7.43	7.30	7.06	6.98	7.09

05482315 BLACK HAWK LAKE AT LAKE VIEW, IA--Continued

05482500 NORTH RACCOON RIVER NEAR JEFFERSON, IA

LOCATION.--Lat $41^{\circ}59^{\circ}17^{\circ}$, long $94^{\circ}22^{\circ}36^{\circ}$, in $SW^{1}/_{4}$ NW $^{1}/_{4}$ sec.20, T.83 N., R.30 W., Greene County, Hydrologic Unit 07100006, on right bank 20 ft downstream from bridge on State Highway 4, 0.1 mi downstream from Drainage Ditch 33 and 40, 1.9 mi south of Jefferson, 4.7 mi upstream from Hardin Creek, 92.0 miles upstream of mouth of Raccoon River, and at mile 292.5 upstream from mouth of Des Moines River.

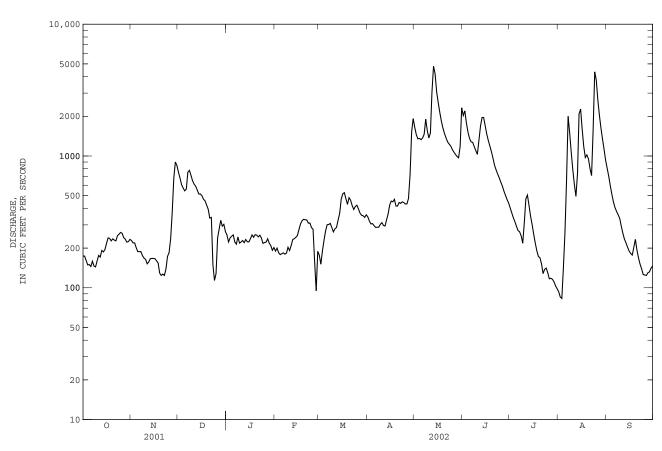
DRAINAGE AREA. -- 1,619 mi².

PERIOD OF RECORD.--March 1940 to current year. Prior to April 1940, monthly discharge only, published in WSP 1308. Prior to October 1955, published as "Raccoon River near Jefferson".

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940 (M), 1950-51.

GAGE.--Water-stage recorder. Datum of gage is 967.09 ft above NGVD of 1929. Prior to Apr. 22, 1946, nonrecording gage at site 4 mi upstream at different datum. Apr. 22 to June 25, 1946, nonrecording gage, June 26, 1946 to Sept. 30, 1955, water-stage recorder, Oct. 1, 1955 to Apr. 30, 1958, nonrecording gage, at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	174	228	752	251	e190	e177	e345	1650	2030	403	e93	803
2	174	219	678	e223	e200	e151	321	1450	2200	370	85	698
3	161	219	604	239	e184	e190	305	1350	1780	340	83	592
4	149	201	571	246	e178	e229	307	1360	1520	317	143	509
5	150	188	544	252	e181	e270	296	1330	1360	293	264	447
6	145	188	561	e222	e184	301	287	1370	1280	272	648	405
7	159	188	754	e214	e180	302	288	1460	1270	266	e2000	379
8	146	175	778	e243	183	308	288	1900	1180	248	e1500	358
9	144	168	712	e218	203	e286	303	1560	1100	218	1070	336
10	160	164	649	e222	e192	e265	312	1370	1030	311	787	293
11	176	152	611	e228	e209	280	297	1490	1310	473	608	259
12	171	157	589	e220	232	287	294	3070	1680	505	494	234
13	192	166	551	e232	e236	326	328	4810	1960	423	733	219
14	187	167	514	e223	e241	e366	365	4200	1960	350	2090	203
15	195	167	515	e223	249	e470	426	3060	1700	302	2270	190
16	217	166	499	e236	e277	517	455	2540	1470	255	1590	182
17	239	160	469	e252	e305	527	449	2140	1310	219	1180	177
18	237	154	457	e242	323	474	469	1840	1190	191	973	203
19	227	129	424	253	331	429	417	1630	e1080	173	1020	233
20	235	124	394	251	328	483	417	1480	e961	169	953	193
21	230	127	338	e243	327	462	444	1370	849	152	802	168
22	227	124	342	e251	309	e421	437	1280	784	128	710	151
23	248	139	e150	e238	310	393	449	1230	729	138	1590	139
24	255	173	e114	e217	286	414	443	1190	682	141	4350	126
25	263	185	128	e220	278	e423	432	1120	633	130	3770	125
26 27 28 29 30 31	259 240 234 222 224 233	236 374 676 901 846	239 e279 e325 e293 303 267	222 e235 e218 e209 e192 e202	e158 95 189 	397 369 355 352 e342 e358	433 476 717 1520 1920	1070 1030 992 969 1180 2320	591 541 502 467 439	117 118 116 e111 e103 e98	2660 2040 1630 1340 1120 924	124 130 132 141 146
TOTAL	6273	7261	14404	7137	6558	10924	14240	54811	35588	7450	39520	8295
MEAN	202.4	242.0	464.6	230.2	234.2	352.4	474.7	1768	1186	240.3	1275	276.5
MAX	263	901	778	253	331	527	1920	4810	2200	505	4350	803
MIN	144	124	114	192	95	151	287	969	439	98	83	124
AC-FT	12440	14400	28570	14160	13010	21670	28250	108700	70590	14780	78390	16450
CFSM	0.12	0.15	0.29	0.14	0.14	0.22	0.29	1.09	0.73	0.15	0.79	0.17
IN.	0.14	0.17	0.33	0.16	0.15	0.25	0.33	1.26	0.82	0.17	0.91	0.19
					YEARS 194					***		
MEAN	420.4	380.1	269.8	199.5	405.9	1271	1518	1441	1850	1021	509.8	386.6
MAX	3654	2011	1228	1045	2407	4990	5650	4702	6831	7584	3007	2823
(WY)	1974	1974	1974	1973	1984	1983	1983	1984	1984	1993	1993	1962
MIN	5.04	19.8	13.4	3.58	6.89	68.5	46.3	48.4	61.9	18.1	12.1	16.6
(WY)	1957	1956	1977	1977	1977	1956	1956	2000	1977	1956	1956	1955

05482500 NORTH RACCOON RIVER NEAR JEFFERSON, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YE	AR	FOR 2002 WAT	TER YEAR	WATER YEARS	1941 - 2002
ANNUAL TOTAL	366197			212461			
ANNUAL MEAN	1003			582.1		806.6	
HIGHEST ANNUAL MEAN						2615	1993
LOWEST ANNUAL MEAN						32.8	1956
HIGHEST DAILY MEAN	11800	May	4	4810	May 13	23200	Jun 24 1947
LOWEST DAILY MEAN	27	Jan	1	83	Aug 3	0.60	Oct 5 1956
ANNUAL SEVEN-DAY MINIMUM	32	Jan	1	98	Jul 28	0.91	Oct 4 1956
MAXIMUM PEAK FLOW				5080	May 13	29100	Jun 23 1947
MAXIMUM PEAK STAGE				10.81	May 13	22.30	Jun 23 1947
INSTANTANEOUS LOW FLOW				11	Feb 27		
ANNUAL RUNOFF (AC-FT)	726400			421400		584400	
ANNUAL RUNOFF (CFSM)	0.62			0.36		0.50	
ANNUAL RUNOFF (INCHES)	8.41			4.88		6.77	
10 PERCENT EXCEEDS	2750			1460		2040	
50 PERCENT EXCEEDS	327			303		287	
90 PERCENT EXCEEDS	55			151		42	

e Estimated

05483450 MIDDLE RACCOON RIVER NEAR BAYARD, IA

LOCATION.--Lat $41^{\circ}46^{\circ}43^{\circ}$, long $94^{\circ}29^{\circ}33^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.32, T.81 N., R.31 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft downstream from bridge on State Highway 25, 0.2 mi downstream from Battle Run Creek, 1.8 mi upstream from Springbrook Creek, 5.8 mi southeast of Bayard, 10.3 mi upstream from dam at Lake Panorama, at mile 78.0 mi. upstream from mouth of Raccoon River, and at mile 279.2 upstream from mouth of Des Moines River.

DRAINAGE AREA.--375 mi².

PERIOD OF RECORD.--March 1979 to current year. Occasional low-flow measurements, water years 1976, 1977.

GAGE.--Water-stage recorder. Datum of gage is 1,040.00 ft above NGVD of 1929. Prior to June 23, 1979, nonrecording gage at present site and datum.

REMARKS.--Records are good, except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem and U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 3, 1973 reached a stage of 21.63 ft, from contracted-opening measurement, discharge, $14,600 \text{ ft}^3/\text{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35	50	90	e35	e27	e77	59	424	204	113	41	95
2	34	48	82	e31	e31	e67	60	384	235	106	38	87
3	34	45	77	e40	e28	e59	59	346	766	104	37	85
4	34	43	75	e63	e23	e72	56	308	410	113	158	73
5	35	42	73	e72	e30	e88	55	277	339	95	499	64
6	35	42	76	e56	e38	e92	55	456	295	89	569	59
7	35	43	110	e47	e42	e91	55	437	268	82	248	56
8	34	42	95	e70	e50	e96	60	320	248	80	152	53
9	34	41	86	e77	e55	e87	60	279	231	75	101	50
10	38	40	83	e65	e46	e72	54	240	218	157	78	48
11 12 13 14 15	44 40 44 51 49	42 41 41 41 41	81 81 81 73 72	e59 e60 e71 e59 e41	e61 e56 e65 82 101	85 87 106 133 109	55 65 70 59 59	546 1710 1010 725 586	792 1470 992 558 447	415 441 240 173 136	65 56 171 365 173	46 46 43 43
16	46	40	70	e38	126	87	58	508	380	114	104	42
17	45	38	68	e41	124	76	56	476	338	98	126	39
18	44	38	67	e22	111	75	192	409	313	87	90	52
19	45	39	66	e41	102	73	183	371	287	80	68	79
20	44	39	58	e38	99	84	108	342	270	74	64	57
21	43	39	67	e41	91	e62	110	319	245	66	58	47
22	45	40	74	e53	82	e56	141	303	228	59	60	42
23	52	42	e68	e25	78	74	140	296	210	62	1310	40
24	67	56	e55	e20	81	87	146	270	195	53	879	39
25	59	89	e44	e35	75	74	122	264	181	54	435	39
26 27 28 29 30 31	54 51 50 50 50 49	82 107 123 103 95	e39 e50 e46 e37 e39 e32	e41 e43 e39 e32 e29 e36	e62 e60 e85 	70 71 65 66 64 60	107 133 779 663 485	256 242 235 229 227 215	170 157 143 135 124	54 64 52 48 45 42	306 232 179 145 121 105	40 43 43 42 40
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1370	1612	2115	1420	1911	2465	4304	13010	10849	3471	7033	1576
	44.19	53.73	68.23	45.81	68.25	79.52	143.5	419.7	361.6	112.0	226.9	52.53
	67	123	110	77	126	133	779	1710	1470	441	1310	95
	34	38	32	20	23	56	54	215	124	42	37	39
	2720	3200	4200	2820	3790	4890	8540	25810	21520	6880	13950	3130
	0.12	0.14	0.18	0.12	0.18	0.21	0.38	1.12	0.96	0.30	0.60	0.14
	0.14	0.16	0.21	0.14	0.19	0.24	0.43	1.29	1.08	0.34	0.70	0.16
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER	YEARS 198	80 - 2002,	BY WATER	YEAR (WY	")			
MEAN	108.6	115.5	114.4	86.27	182.6	286.0	381.9	454.6	534.8	403.5	183.3	105.9
MAX	587	376	347	175	645	907	1035	993	1667	2653	673	466
(WY)	1987	1993	1993	1993	1983	1993	1991	1984	1990	1993	1993	1993
MIN	20.1	18.3	12.5	13.8	27.4	23.3	22.9	51.6	77.0	40.2	32.1	18.8
(WY)	1981	1981	1981	1981	1990	1981	1981	1981	2000	1980	2000	1980

05483450 MIDDLE RACCOON RIVER NEAR BAYARD, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1980 - 2002
ANNUAL TOTAL	75217	51136	
ANNUAL MEAN	206.1	140.1	246.5
HIGHEST ANNUAL MEAN			677 1993
LOWEST ANNUAL MEAN			54.1 1981
HIGHEST DAILY MEAN	2760 Mar 15	1710 May 12	18100 Jul 9 1993
LOWEST DAILY MEAN	13 Jan 1	20 Jan 24	5.5 Jun 13 1981
ANNUAL SEVEN-DAY MINIMUM	17 Jan 1	29 Jan 30	7.3 Jun 8 1981
MAXIMUM PEAK FLOW		2240 Aug 23	27500 Jul 9 1993
MAXIMUM PEAK STAGE		16.92 Aug 23	29.02 Jul 9 1993
ANNUAL RUNOFF (AC-FT)	149200	101400	178600
ANNUAL RUNOFF (CFSM)	0.55	0.37	0.66
ANNUAL RUNOFF (INCHES)	7.46	5.07	8.93
10 PERCENT EXCEEDS	522	327	558
50 PERCENT EXCEEDS	60	70	109
90 PERCENT EXCEEDS	25	39	32

e Estimated

05483470 LAKE PANORAMA AT PANORA, IOWA

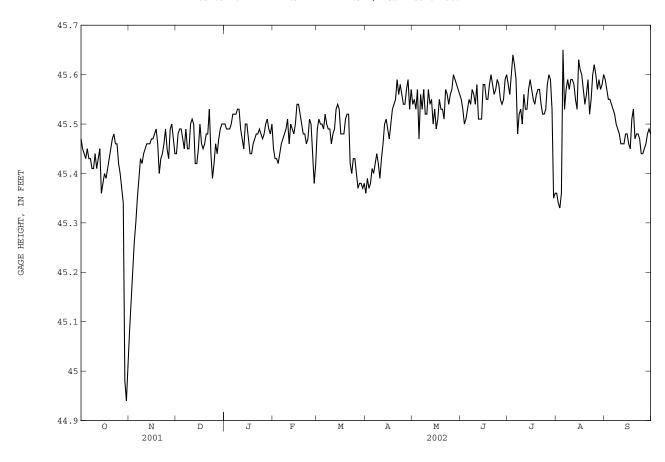
LOCATION.--Lat $41^{\circ}41^{\circ}44^{\circ}$, long $94^{\circ}22^{\circ}53^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.31, T.80 N., R.30 W., Guthrie County, Hydrologic Unit 07100007, in gate control building of dam on Middle Raccoon River, 0.5 mi upstream from State Highway 44, 1.0 mi west of Panora, 4.4 mi upstream from Bay Branch, 67.7 mi. upstream from mouth of Raccoon River, and at mile 268.8 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 433 mi².

PERIOD OF RECORD. -- May 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,000.00 ft above NGVD of 1929.

REMARKS.--Lake is formed by earthfill dam with 100 ft bascule gate and concrete chute spillway, and 300 ft earthen emergency spillway. Low-flow outlet is 30-inch conduit and gate valve through dam. Dam was completed in August, 1970 and began filling April 27, 1971. Total storage, 60,000 acre-ft, surface area, 2,900 acres, at top of dam, elevation 1,068 ft. Storage unknown at top of spillway, elevation 1,048 ft. Normal storage, 19,700 acre-ft, surface area, 1,270 acres with bascule gate closed, elevation 1,045 ft. Dead storage unknown with bascule gate open, elevation 1,036 ft. Present lake classification is utility (industrial) but is also used for recreation. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 50.68 ft July 9, 1993; minimum, 41.56 ft Oct. 15, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 45.98 ft Aug. 23; minimum recorded, 44.87 ft Oct.29.

GAGE HEIGHT from dcp, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	45.47 45.45 45.44 45.43 45.45	45.08 45.14 45.20 45.26 45.30	45.44 45.48 45.49 45.49 45.47	45.50 45.49 45.49 45.49 45.50	45.45 45.43 45.43 45.42 45.44	45.49 45.51 45.50 45.49	45.36 45.39 45.37 45.38 45.41	45.54 45.55 45.53 45.57 45.47	45.55 45.53 45.50 45.51 45.53	45.58 45.56 45.60 45.64 45.62	45.36 45.34 45.33 45.36 45.65	45.59 45.57 45.55 45.55 45.54
6 7 8 9 10	45.43 45.43 45.41 45.41 45.44	45.35 45.39 45.43 45.42 45.44	45.45 45.49 45.45 45.45 45.50	45.52 45.52 45.52 45.53 45.53	45.46 45.47 45.48 45.49 45.51	45.52 45.50 45.49 45.49 45.46	45.40 45.42 45.44 45.42 45.39	45.56 45.53 45.57 45.52 45.52	45.55 45.54 45.57 45.56 45.54	45.59 45.48 45.52 45.53 45.50	45.53 45.57 45.59 45.57 45.59	45.53 45.52 45.50 45.49 45.48
11 12 13 14 15	45.41 45.43 45.45 45.36 45.38	45.45 45.46 45.46 45.46 45.47	45.51 45.50 45.42 45.42 45.45	45.49 45.47 45.45 45.50	45.46 45.50 45.49 45.48 45.50	45.48 45.49 45.53 45.54 45.53	45.43 45.46 45.50 45.51 45.49	45.57 45.54 45.55 45.50 45.53	45.58 45.51 45.51 45.51 45.58	45.56 45.53 45.53 45.57 45.59	45.59 45.58 45.55 45.63	45.46 45.46 45.46 45.48 45.48
16 17 18 19 20	45.40 45.39 45.41 45.43 45.45	45.47 45.48 45.49 45.46 45.40	45.50 45.46 45.45 45.46 45.48	45.47 45.44 45.46 45.47	45.54 45.54 45.52 45.50 45.48	45.48 45.48 45.48 45.51 45.52	45.47 45.50 45.53 45.54 45.55	45.49 45.51 45.55 45.53 45.53	45.58 45.55 45.55 45.58 45.60	45.57 45.55 45.54 45.56 45.57	45.61 45.60 45.57 45.54 45.56	45.46 45.45 45.51 45.53 45.47
21 22 23 24 25	45.47 45.48 45.46 45.46 45.42	45.43 45.44 45.46 45.49 45.45	45.48 45.53 45.44 45.39 45.42	45.48 45.48 45.49 45.48 45.47	45.48 45.46 45.47 45.51 45.50	45.52 45.42 45.40 45.43 45.43	45.59 45.56 45.58 45.56 45.54	45.51 45.57 45.56 45.54 45.56	45.58 45.56 45.57 45.59 45.58	45.57 45.54 45.52 45.52 45.53	45.59 45.52 45.55 45.60 45.62	45.48 45.48 45.47 45.44 45.44
26 27 28 29 30 31	45.40 45.37 45.34 44.98 44.94 45.01	45.43 45.49 45.50 45.47 45.44	45.46 45.44 45.47 45.49 45.50	45.48 45.50 45.51 45.49 45.48 45.50	45.44 45.38 45.42 	45.40 45.37 45.38 45.38 45.37 45.38	45.54 45.57 45.59 45.53 45.57	45.57 45.60 45.59 45.58 45.57 45.56	45.55 45.54 45.55 45.59 45.60	45.58 45.60 45.59 45.53 45.35	45.60 45.57 45.59 45.57 45.58 45.60	45.45 45.46 45.48 45.49 45.48
MEAN MAX MIN	45.38 45.48 44.94	45.41 45.50 45.08	45.47 45.53 45.39	45.49 45.53 45.44	45.47 45.54 45.38	45.47 45.54 45.37	45.49 45.59 45.36	45.54 45.60 45.47	45.55 45.60 45.50	45.54 45.64 45.35	45.55 45.65 45.33	45.49 45.59 45.44

05483470 LAKE PANORAMA AT PANORA, IOWA--Continued

05483600 MIDDLE RACCOON RIVER AT PANORA, IA

LOCATION.--Lat $41^{\circ}41^{\circ}14^{\circ}1,$ long $94^{\circ}22^{\circ}15^{\circ}$, in $NE^{1}/_{4}$ NW¹/₄ sec.5, T.79 N., R.30 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft downstream from bridge on Soldier Trail, 0.2 mi southwest of Panora, 1.5 mi upstream from Andy's Branch, 1.6 mi downstream from Lake Panorama, 18.1 mi upstream from mouth, 66.1 mi. upstream from mouth of Raccoon River, and at mile 267.2 upstream from mouth of Des Moines River.

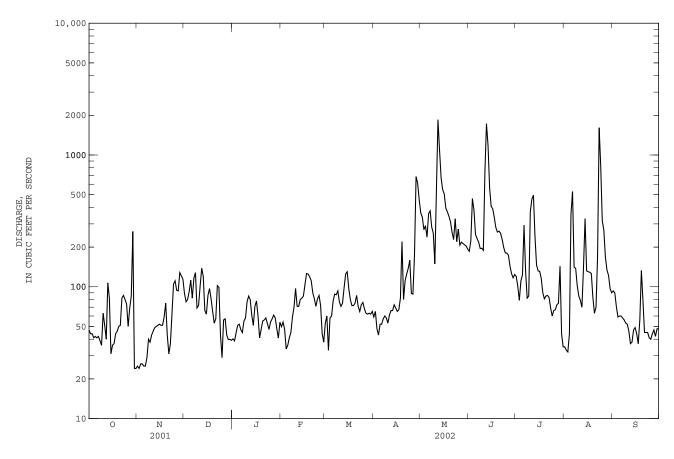
DRAINAGE AREA.--440 mi².

PERIOD OF RECORD. -- June 1958 to current year.

REVISED RECORDS. -- WDR IA-74-1: 1973 (P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 991.20 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. City of Panora diverts approximately 100 acre-ft/yr upstream of station. Flow regulated by dam on Lake Panorama since August 1970. U.S. Army Corps of Engineers rain gage and data collection platform at station. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 10, 1953, reached a stage of 14.3 ft, from floodmark, discharge, about 14,000 ${\rm ft}^3/{\rm s}$.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	47	25	89	e40	e50	53	59	364	186	120	35	93
2	44	24	77	e39	54	60	65	337	223	101	33	90
3	44	26	80	e45	e47	33	48	271	466	79	32	71
4	41	26	92	51	e34	58	43	291	382	111	44	59
5	42	25	112	52	36	60	52	238	249	123	356	60
6	41	25	82	e47	41	78	52	359	232	293	529	60
7	42	29	116	e45	45	88	57	377	218	131	141	58
8	39	40	128	55	59	87	60	284	195	82	138	56
9	36	38	69	58	70	93	58	255	196	85	102	53
10	63	43	72	77	97	77	53	149	189	369	85	52
11	51	46	101	85	71	71	61	534	740	462	79	46
12	40	49	138	80	71	75	66	1850	1730	495	70	37
13	107	50	120	61	80	98	66	1090	1180	241	140	38
14	82	51	66	51	82	125	73	670	563	146	329	47
15	31	52	62	71	85	130	69	546	407	132	132	49
16	36	51	86	78	104	97	65	507	391	131	130	44
17	37	51	97	60	126	80	67	396	335	116	129	37
18	44	59	81	e41	125	72	82	371	281	90	126	56
19	46	75	65	e47	119	72	220	343	260	81	83	133
20	50	43	53	55	111	75	80	311	264	85	63	78
21	51	31	57	56	90	86	111	260	255	86	70	45
22	82	37	102	58	81	71	125	228	229	83	170	45
23	86	62	99	e52	71	65	138	328	199	69	1610	45
24	80	105	43	e47	81	73	159	220	181	60	829	41
25	74	111	29	54	86	76	89	274	180	66	317	40
26 27 28 29 30 31	50 69 85 263 24 24	94 93 128 121 114	56 e57 43 e40 e40 e39	57 61 58 48 e41 e54	72 44 38 	68 63 62 63 62 65	88 174 686 610 458	207 218 213 208 204 193	174 144 126 117 124	67 73 75 143 44 35	269 168 134 122 97 90	44 47 42 48 48
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1851	1724	2391	1724	2070	2336	4034	12096	10416	4274	6652	1662
	59.71	57.47	77.13	55.61	73.93	75.35	134.5	390.2	347.2	137.9	214.6	55.40
	263	128	138	85	126	130	686	1850	1730	495	1610	133
	24	24	29	39	34	33	43	149	117	35	32	37
	3670	3420	4740	3420	4110	4630	8000	23990	20660	8480	13190	3300
	0.14	0.13	0.18	0.13	0.17	0.17	0.31	0.89	0.79	0.31	0.49	0.13
	0.16	0.15	0.20	0.15	0.18	0.20	0.34	1.02	0.88	0.36	0.56	0.14
STATIST	rics of M	IONTHLY ME	AN DATA	FOR WATER	YEARS 197	71 - 2002,	BY WATER	YEAR (WY	7)			
MEAN	121.9	140.2	122.0	98.49	212.9	366.6	382.2	488.6	492.8	382.8	168.6	134.3
MAX	670	588	356	439	838	1479	1222	1458	1646	2731	668	528
(WY)	1987	1973	1993	1973	1971	1979	1984	1974	1990	1993	1996	1973
MIN	19.5	12.8	7.60	6.95	27.8	20.2	26.4	20.0	9.40	5.56	22.2	19.3
(WY)	1981	1971	1971	1971	1972	1981	1977	1977	1977	1977	1971	1980

05483600 MIDDLE RACCOON RIVER AT PANORA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR Y	EAR	FOR 2002 WAT	ER YEAR	WATER YEARS 1971 - 20		
ANNUAL TOTAL	81440		51230				
ANNUAL MEAN	223.1		140.4		259.3		
HIGHEST ANNUAL MEAN					701	1973	
LOWEST ANNUAL MEAN					38.6	1977	
HIGHEST DAILY MEAN	2550 Mar	15	1850	May 12	17500	Jul 10 1993	
LOWEST DAILY MEAN	16 Jar	ı 9	24	Oct 30a	0.00	Jun 9 1977c	
ANNUAL SEVEN-DAY MINIMUM	22 Jan	ı 4	25	Oct 30	3.1	Jul 8 1977	
MAXIMUM PEAK FLOW			4050	Aug 23	22400	Jul 9 1993	
MAXIMUM PEAK STAGE			8.97	Aug 23	20.04	Jul 9 1993	
INSTANTANEOUS LOW FLOW			12	Jul 30			
ANNUAL RUNOFF (AC-FT)	161500		101600		187900		
ANNUAL RUNOFF (CFSM)	0.51		0.32		0.59		
ANNUAL RUNOFF (INCHES)	6.89		4.33		8.01		
10 PERCENT EXCEEDS	524		300		577		
50 PERCENT EXCEEDS	80		77		106		
90 PERCENT EXCEEDS	32		40		31		

Also Oct. 31 and Nov. 2 Post regulation. Also June 10, 1977, result of gate operations at Lake Panorama. Estimated. a b c e

05484000 SOUTH RACCOON RIVER AT REDFIELD, IA

LOCATION.--Lat $41^{\circ}35^{\circ}22^{\circ}$, long $94^{\circ}09^{\circ}04^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.2, T.78 N., R.29 W., Dallas County, Hydrologic Unit 07100007, on right bank 20 ft upstream from bridge on H Avenue, 3.4 mi. downstream from bridge on U.S. Highway 6, 3.4 mi. downstream from Middle Raccoon River, 14.3 mi. upstream from mouth, 44.6 miles upstream of mouth of Raccoon River, and at mile 245.6 upstream from mouth of Des Moines River.

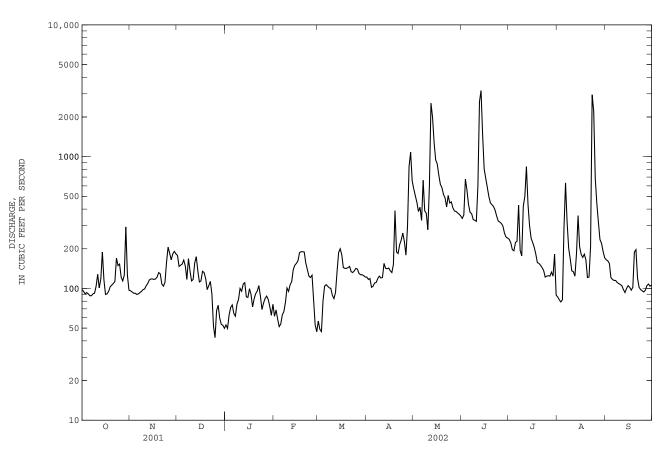
DRAINAGE AREA.--994 mi².

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940, WDR IA-87-1:datum.

GAGE.--Water-stage recorder. Datum of gage is 888.88 ft above NGVD of 1929. Prior to June 12, 1946, nonrecording gage, June 12, 1946 to Sept. 30, 1986, water-stage recorder at site 2.4 mi upstream at datum 7.55 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	98 95	96 94	178 147	e53 e50	e62 e69	e57 e49	122 117	569 505	340 361	236 222	86 82	165 162
3 4	91 93	92 92	150 153	e63 e72	e59 e51	e47 e80	119 102	450 383	675 557	197 193	79 82	155 121
5	91	90	164	e75	e54	e104	104	413	433	223	286	117
6 7	88 88	91 93	148 117	e65 e62	e63 e67	e107 e104	110 111	328 662	378 369	228 428	632 318	115 115
8	91 92	95	168	e76	e78	e101	119	388	333	194	202	111
9 10	104	98 99	136 114	e83 e100	e101 e95	e100 e89	124 120	372 279	329 323	177 419	168 136	109 107
11 12	128 101	105 109	117 156	e95 e108	e107 e113	e84 e93	121 155	596 2550	600 2610	501 839	134 124	105 98
13	118	116	174	e111	e139	e135	142	1990	3180	437	184	93
14 15	189 116	118 118	136 112	e86 e85	150 155	188 200	141 143	1280 945	1470 807	300 240	357 207	100 105
16	90	117	114	e99	162	180	136	881	685	223	181	102
17 18	91 95	118 122	135 132	e90 e72	187 190	144 142	132 152	725 617	585 498	205 182	172 182	97 102
19 20	103 106	132 129	119 98	e84 e91	190 189	142 144	389 189	582 516	445 432	157 155	165 121	189 197
21	109	108	105	e96	156	147	184	487	418	150	122	120
22 23	113 170	104 111	113 e91	e105 e88	139 124	134 132	215 233	415 508	392 353	144 137	208 2950	102 98
24 25	149 153	158 206	e52 e42	e69 e78	121 126	136 142	263 227	445 454	325 319	122 124	2220 681	96 94
26	122	185	e68	e84	e81	140	179	409	311	125	442	97
27	114	165	e74	e87	e53	130	293	387	297	124	318	105
28 29	126 293	183 191	e59 e53	e82 e73	e47	127 127	842 1080	384 374	262 245	133 124	235 220	108 104
30 31	126 97	183	e53 e50	e63 e76		125 122	654	366 355	241	182 89	191 171	106
TOTAL	3640	3718	3528	2521	3128	3752	7018	19615	18573	7210	11656	3495
MEAN	117.4	123.9	113.8	81.32	111.7	121.0	233.9	632.7	619.1	232.6	376.0	116.5
MAX MIN	293 88	206 90	178 42	111 50	190 47	200 47	1080 102	2550 279	3180 241	839 89	2950 79	197 93
AC-FT CFSM	7220 0.12	7370 0.12	7000 0.11	5000 0.08	6200 0.11	7440 0.12	13920 0.24	38910 0.64	36840 0.62	14300 0.23	23120 0.38	6930 0.12
IN.	0.14	0.12	0.11	0.09	0.11	0.12	0.24	0.73	0.70	0.27	0.44	0.13
STATIST	TICS OF M	IONTHLY ME	AN DATA F	OR WATER	YEARS 194	1 - 2002,	BY WATER	YEAR (WY	.)			
MEAN	231.2	234.0	191.9	173.7	391.0	822.3	757.0	874.3	1036	645.2	370.8	280.8
MAX (WY)	1501 1987	1162 1973	826 1993	565 1983	1785 1971	3112 1979	2474 1984	3005 1974	5017 1947	5494 1993	2745 1993	1385 1993
MIN (WY)	28.6 1941	36.2 1956	32.4 1956	30.4 1950	35.5 1956	74.2 1981	50.0 1956	62.9 1967	43.2 1977	57.4 1954	37.8 1955	36.0 1955

05484000 SOUTH RACCOON RIVER AT REDFIELD, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	164397	87854	
ANNUAL MEAN	450.4	240.7	500.7
HIGHEST ANNUAL MEAN			1632 1993
LOWEST ANNUAL MEAN			91.4 1968
HIGHEST DAILY MEAN	5920 Mar 15	3180 Jun 13	33600 Jul 10 1993
LOWEST DAILY MEAN	32 Jan 1	42 Dec 25	17 Aug 4 1977
ANNUAL SEVEN-DAY MINIMUM	49 Jan 1	54 Dec 28	20 Jan 24 1954
MAXIMUM PEAK FLOW		4400 Aug 23	44000 Jul 10 1993
MAXIMUM PEAK STAGE		8.76 Aug 23	29.04 Jul 2 1958
ANNUAL RUNOFF (AC-FT)	326100	174300	362700
ANNUAL RUNOFF (CFSM)	0.45	0.24	0.50
ANNUAL RUNOFF (INCHES)	6.15	3.29	6.84
10 PERCENT EXCEEDS	1180	447	1110
50 PERCENT EXCEEDS	153	132	202
90 PERCENT EXCEEDS	90	80	60

e Estimated

05484500 RACCOON RIVER AT VAN METER, IA

LOCATION.--Lat $41^{\circ}32^{\circ}02^{\circ}$, long $93^{\circ}56^{\circ}59^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.22, T.78 N., R.27 W., Dallas County, Hydrologic Unit 07100006, on right bank 10 ft downstream from bridge on county highway R16, 0.3 mi northeast of Van Meter, 0.7 mi upstream from small left bank tributary, 1.1 mi downstream from confluence of North and South Raccoon Rivers, 29.1 mi upstream from mouth, and at mile 230.5 upstream from mouth of Des Moines River.

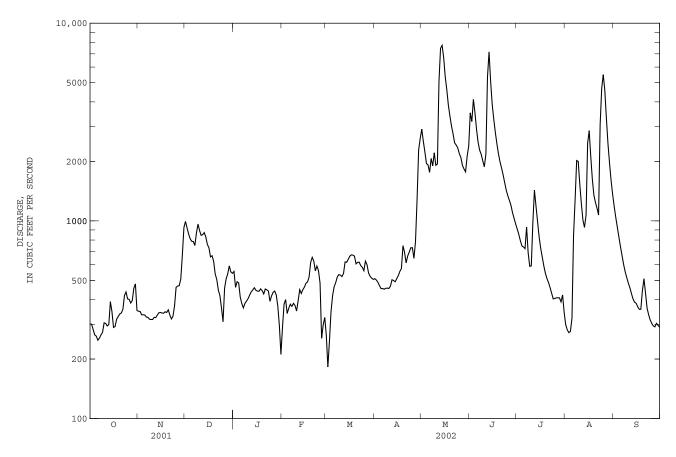
DRAINAGE AREA. -- 3,441 mi².

PERIOD OF RECORD. --April 1915 to current year. Prior to October 1934, monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1927 (M), WSP 1438: Drainage area, WSP 1508: 1915 (M), 1925 (M), 1926, 1933 (M), 1939 (M), 1947 (M), 1949 (M).

GAGE.--Water-stage recorder. Datum of gage is 841.16 ft above NGVD of 1929. See WSP 1308 for history of changes prior to Aug. 8, 1934.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	301	349	994	e555	e289	e264	510	2910	3520	910	298	1180
2	300 282	348 335	922 858	e461 e492	e379 e400	e182 e246	502 488	2530 2230	3180 4120	855 795	281 272	1040 928
4	265	335	812	e485	e340	346	470	1950	3520	747	276	827
5	261	334	788	e411	e362	418	454	1920	2910	738	322	740
6	249	326	786	e381	e379	464	455	1760	2500	724	842	668
7	255	325	751	e363	e379	484	455 451	2070	2280	931	1280	602
8	265	318	868	e383	e383	520	456	1900	2170	689	2020	553
9	273	317	964	e393	e373	535	457	2210	2010	589	2000	517
10	305	317	894	e404	e350	e532	455	1910	1880	592	1530	485
11	303	325	845	e421	e394	e523	468	1940	2180	980	1220	459
12	294	324	852	e437	e449	542	504	5070	5330	1430	1010	429
13	299	334	872	e447	e429	620	499	7460	7160	1190	926	403
14 15	390 348	343 344	828 760	e459 e446	e449 e462	617 639	492 510	7730 6700	5090 3900	995 831	1070 2470	388 383
13	340	344	760	6440	E402	033	310	6700	3900	031	2470	303
16	289	342	730	e441	e484	662	528	5360	3280	728	2860	368
17	292	341	e657	e440	e491	673	555	4610	2810	657	2120	357
18 19	318 328	347 344	e666 e624	e453 e443	e520 e616	671 663	574 750	3850 3390	2460 2190	592 544	1630 1350	357 443
20	338	355	e539	e427	e654	606	693	3020	1990	511	1240	510
21	342	334	e505	e452	e626	617	613	2760	1850	488	1160	431
22 23	357 419	319 329	e446 e419	e448 e441	e558 e591	618 594	664 695	2480 2420	1710 1560	460 431	1070 3070	362 335
24	437	371	e363	e392	e560	582	731	2340	1430	403	4690	315
25	403	461	e309	e417	e485	560	732	2190	1340	405	5490	303
26	401	468	e457	e435	e255	626	646	2090	1270	408	4560	294
27	384	470	e509	e442	e297	601	785	1910	1200	408	3300	291
28	396	508	e540	e422	e325	545	1280	1830	1100	408	2460	303
29	456	672	e592	e371		524	2280	1770	1030	389	1960	296
30	480 352	926	e552	e296		513	2610	2120	965 	422	1600	290
31	352		e543	e211		506		2390		345	1360	
TOTAL	10382	11561	21245	13069	12269	16496	21307	94820	77935	20595	55737	14857
MEAN	334.9	385.4	685.3	421.6	438.2	532.1	710.2	3059	2598	664.4	1798	495.2
MAX MIN	480 249	926 317	994 309	555 211	654 255	673 182	2610 451	7730 1760	7160 965	1430 345	5490 272	1180 290
AC-FT	20590	22930	42140	25920	24340	32720	42260	188100	154600	40850	110600	29470
CFSM	0.10	0.11	0.20	0.12	0.13	0.15	0.21	0.89	0.75	0.19	0.52	0.14
IN.	0.11	0.12	0.23	0.14	0.13	0.18	0.23	1.03	0.84	0.22	0.60	0.16
STATIS	TICS OF M	MONTHLY ME	CAN DATA E	FOR WATER	YEARS 191	6 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	812.0	763.7	566.9	485.7	984.1	2603	2635	2657	3308	1880	1002	857.8
MAX	6840	4774	3085	3461	5438	10480	10630	9257	13970	17260	7414	7222
(WY)	1974	1973	1983	1932	1984	1979	1983	1984	1947	1993	1993	1926
MIN	48.6	51.5	31.0	17.2	31.5	146	125	121	112	68.1	28.1	43.1
(WY)	1940	1938	1938	1940	1940	1931	1956	1934	1977	1936	1936	1939

05484500 RACCOON RIVER AT VAN METER, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1916 - 2002
ANNUAL TOTAL	705538	370273	
ANNUAL MEAN	1933	1014	1547
HIGHEST ANNUAL MEAN			5717 1993
LOWEST ANNUAL MEAN			166 1956
HIGHEST DAILY MEAN	13900 May 6	7730 May 14	57500 Jul 10 1993
LOWEST DAILY MEAN	120 Jan 2	182 Mar 2	10 Jan 22 1940a
ANNUAL SEVEN-DAY MINIMUM	160 Feb 16	264 Oct 3	10 Jan 22 1940
MAXIMUM PEAK FLOW		8420 Jun 13	70100 Jul 10 1993
MAXIMUM PEAK STAGE		10.08 Jun 13	26.34 Jul 10 1993
ANNUAL RUNOFF (AC-FT)	1399000	734400	1121000
ANNUAL RUNOFF (CFSM)	0.56	0.29	0.45
ANNUAL RUNOFF (INCHES)	7.63	4.00	6.11
10 PERCENT EXCEEDS	5600	2400	3920
50 PERCENT EXCEEDS	620	523	600
90 PERCENT EXCEEDS	200	317	116

a Also Jan. 23-31, 1940. e Estimated.

05484600 RACCOON RIVER NEAR WEST DES MOINES, IA

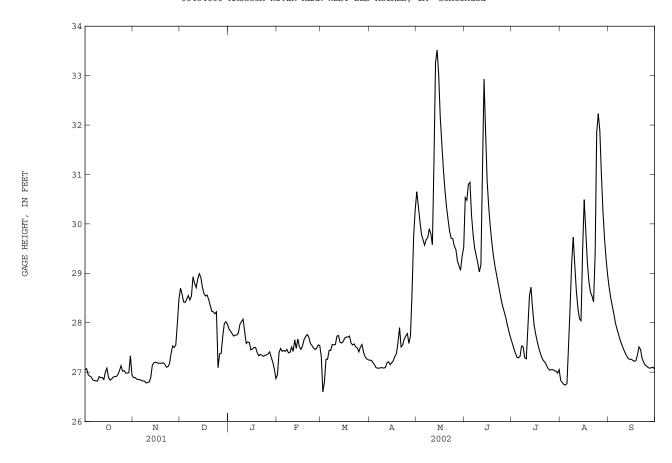
LOCATION.--Lat $41^{\circ}31^{\circ}54^{\circ}$, long $93^{\circ}46^{\circ}54^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.30, T.78 N., R.25 W., Polk County, Hydrologic Unit 07100006, on right bank, 0.4 mile upstream of bridge on Interstate 35, 13.1 mi. upstream from mouth of Raccoon River, and at mile 215.9 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 3,500 mi².

PERIOD OF RECORD. -- July 19, 2000 to current year.

GAGE.--Water-stage recorder. Datum of gage is 782.967 ft above NGVD of 1929.

REMARKS.--Records good. Discharge not published, low-flow use only. U.S. Geological Survey satellite data collection platform and rain gage at station.


EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 37.33 ft. May 7, 2001; minimum gage height, 26.14 ft. Dec. 5,2000.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 33.61 ft. May 14; minimum gage height, 26.37 ft. Mar. 2.

GAGE HEIGHT from dcp, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27.05	26.89	28.70	27.87	26.95	27.31	27.24	30.65	30.53	27.59	26.83	28.70
2	27.07	26.89	28.58	27.83	27.40	26.60	27.24	30.36	30.48	27.48	26.79	28.50
3	26.95	26.86	28.42	27.78	27.48	26.80	27.19	30.06	30.80	27.39	26.75	28.33
4	26.92	26.85	28.41	27.73	27.42	27.26	27.15	29.79	30.84	27.30	26.74	28.17
5	26.90	26.85	28.48	27.75	27.44	27.26	27.09	29.68	30.18	27.29	26.77	27.99
6	26.84	26.83	28.55	27.75	27.42	27.44	27.08	29.57	29.78	27.32	27.53	27.87
7	26.83	26.82	28.46	27.79	27.46	27.44	27.08	29.68	29.51	27.53	28.32	27.76
8	26.82	26.82	28.54	27.97	27.39	27.56	27.09	29.72	29.36	27.51	29.20	27.65
9	26.82	26.78	28.93	28.02	27.40	27.55	27.09	29.90	29.20	27.29	29.73	27.56
10	26.91	26.79	28.80	28.07	27.51	27.56	27.08	29.80	29.03	27.27	29.16	27.48
11	26.89	26.80	28.71	27.83	27.42	27.73	27.10	29.58	29.17	27.89	28.64	27.40
12	26.89	26.89	28.88	27.58	27.65	27.74	27.19	31.27	31.09	28.54	28.29	27.34
13	26.85	27.14	28.99	27.61	27.48	27.60	27.21	33.26	32.93	28.72	28.08	27.28
14	27.00	27.19	28.92	27.60	27.67	27.59	27.15	33.52	31.85	28.29	28.04	27.26
15	27.08	27.20	28.72	27.45	27.51	27.62	27.19	33.03	30.86	27.95	29.47	27.26
16	26.89	27.19	28.59	27.47	27.46	27.69	27.23	32.17	30.34	27.77	30.49	27.24
17	26.84	27.18	28.54	27.50	27.53	27.71	27.32	31.63	29.94	27.62	29.87	27.22
18	26.86	27.18	28.56	27.50	27.66	27.71	27.37	31.11	29.62	27.49	29.23	27.23
19	26.90	27.18	28.47	27.40	27.72	27.73	27.60	30.69	29.35	27.38	28.84	27.34
20	26.91	27.19	28.35	27.33	27.76	27.59	27.90	30.35	29.14	27.29	28.62	27.51
21	26.91	27.16	28.23	27.36	27.71	27.55	27.51	30.09	28.97	27.23	28.54	27.46
22	26.95	27.10	28.22	27.34	27.58	27.57	27.55	29.85	28.80	27.20	28.42	27.28
23	27.03	27.11	28.18	27.32	27.54	27.51	27.67	29.71	28.63	27.13	29.39	27.20
24	27.13	27.17	28.22	27.34	27.49	27.49	27.73	29.70	28.46	27.07	31.85	27.14
25	27.02	27.38	27.09	27.35	27.46	27.41	27.78	29.55	28.32	27.04	32.23	27.12
26 27 28 29 30 31	27.03 26.98 26.98 26.99 27.33 26.94	27.53 27.50 27.55 27.98 28.47	27.37 27.38 27.72 27.98 28.02 27.97	27.37 27.41 27.30 27.20 27.06 26.87	27.48 27.55 27.54 	27.51 27.56 27.40 27.31 27.27 27.25	27.58 27.74 28.63 29.74 30.28	29.48 29.25 29.15 29.06 29.35 29.52	28.21 28.09 27.94 27.81 27.69	27.05 27.05 27.03 27.02 26.98 27.05	31.89 31.00 30.25 29.70 29.29 28.96	27.09 27.08 27.09 27.10 27.06
MEAN	26.95	27.15	28.35	27.54	27.50	27.46	27.56	30.34	29.56	27.44	29.00	27.49
MAX	27.33	28.47	28.99	28.07	27.76	27.74	30.28	33.52	32.93	28.72	32.23	28.70
MIN	26.82	26.78	27.09	26.87	26.95	26.60	27.08	29.06	27.69	26.98	26.74	27.06

05484600 RACCOON RIVER NEAR WEST DES MOINES, IA--Continued

05484650 RACCOON RIVER AT 63RD STREET, DES MOINES, IA

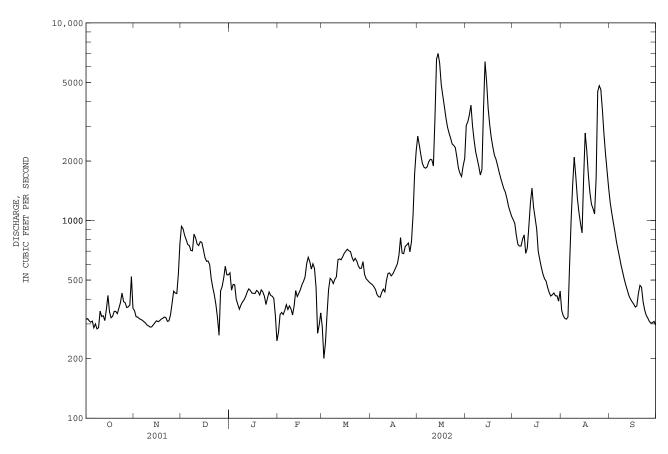
LOCATION.--Lat $41^{\circ}33^{\circ}49^{\circ}$, long $93^{\circ}42^{\circ}13^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.14, T.78 N., R.25 W., Polk County, Hydrologic Unit 07100006, on left bank, at upstream side of bridge on State Highway 28, 2.9 mi. upstream from Walnut Creek, 8.6 mi. upstream from mouth of Raccoon River, and at mile 210.0 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 3,529 mi².

PERIOD OF RECORD.-- October 1991 to current year. October 1991 to September 1996 gage height record only.

GAGE.--Water-stage recorder. Datum of gage is 773.91 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. National Weather Service Limited Automatic Remote Collector (LARC) and U.S. Army Corps of Engineers rain gage and U.S. Geological Survey satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	316	350	935	e544	e272	e288	e480	2670	3030	1010	350	1230
2	319	326	909	e444	e335	e201	e474	2410	3160	968	330	1090
3 4	311 306	325 319	842 801	e475 e473	e343 e335	e240 e333	e462 e448	2140 1940	3430 3840	842 757	320 317	976 877
5	310	316	757	e400	e351	447	e422	1860	3010	743	325	780
6	287	313	747	e377	e375	510	e412	1840	2550	743	586	710
7	300	308	706	e356	e355	e500	e410	1870	2230	806	1000	650
8 9	283 287	303 296	703 855	e374 e387	e370 e357	e480 e504	e434 e450	1980 2040	2050 1880	846 683	1520 2090	591 547
10	348	293	817	e397	e333	519	e436	2030	1700	725	1670	504
			017	233,				2000	1,00		10.0	
11	327	289	761	e413	e370	634	498	1890	1810	935	1300	471
12	330	290	747	e435	e442	640	540	3320	3610	1230	1100	442
13 14	312 355	297 304	782 775	e451 e443	e413 e429	e633 e655	543 525	6550 7010	6370 5030	1460 1170	969 865	416 400
15	418	311	712	e443	e447	e682	536	6240	3690	1030	1630	388
13	410	311	712	C450	CIII	C002	330	0240	3030	1030	1050	300
16	345	308	651	e429	e474	e700	556	4880	3040	906	2770	378
17	322	311	622	e427	e493	e716	580	4280	2620	698	2270	365
18	328	317	624	e443	e519	e703	605	3780	2350	633	1710	370
19 20	347 347	320 325	599 e509	e436 e420	e604 e652	e696 e651	670 820	3310 2970	2140 2040	578 536	1390 1210	427 470
20	347	323	6303	E420	6032	6031	020	2310	2040	220	1210	470
21	338	323	e458	e446	e619	e624	684	2770	1900	508	1150	460
22	360	309	e420	e435	e568	e644	680	2610	1760	494	1080	389
23 24	385 430	311 334	e376 323	e414 e376	e604 e573	e625 e590	740 753	2440 2400	1640 1540	459 432	1650 4500	353 332
25	389	382	263	e407	e459	e572	770	2340	1450	415	4810	321
26	384	439	441	435	e269	e574	695	2090	1390	421	4600	309
27	363	430	464	418	e296	e620	784	1840	1290	430	3630	303
28 29	366 374	427 534	513 587	414 404	e341	e534 e508	1070 1730	1730 1670	1180 1110	416 416	2740 2170	304 309
30	521	765	e531	331		e498	2250	1890	1050	391	1780	297
31	360		e531	246		e488		2060		440	1460	
TOTAL	10768	10475	19761	12880	11998	17009	20457	88850	73890	22121	53292	15459
MEAN MAX	347.4 521	349.2 765	637.5 935	415.5 544	428.5 652	548.7 716	681.9 2250	2866 7010	2463 6370	713.6 1460	1719 4810	515.3 1230
MIN	283	289	263	246	269	201	410	1670	1050	391	317	297
AC-FT	21360	20780	39200	25550	23800	33740	40580	176200	146600	43880	105700	30660
CFSM	0.10	0.10	0.18	0.12	0.12	0.16	0.19	0.81	0.70	0.20	0.49	0.15
IN.	0.11	0.11	0.21	0.14	0.13	0.18	0.22	0.94	0.78	0.23	0.56	0.16
STATIST	rics of M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 199	7 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	497.0	797.2	664.6	482.6	1210	2322	4062	4339	5109	2701	1182	442.6
MAX	1142	2484	1873	1236	3205	4914	9591	7830	12460	7560	2220	694
(WY)	1997	1997	1997	1997	1997	2001	1999	1999	1998	1998	1998	1998
MIN	124	246	148	200	211	407	281	334	603	714	339	164
(WY)	2001	2001	2001	2001	2001	2000	2000	2000	2000	2002	2000	2000

05484650 RACCOON RIVER AT 63RD STREET, DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1997 - 2002
ANNUAL TOTAL	710772		356960			
ANNUAL MEAN	1947		978.0		1983	
HIGHEST ANNUAL MEAN					3352	1998
LOWEST ANNUAL MEAN					375	2000
HIGHEST DAILY MEAN	17100 May	y 7	7010	May 14	36300	Jun 16 1998
LOWEST DAILY MEAN	130 Jar	n 2	201	Mar 2	80	Dec 25 2000
ANNUAL SEVEN-DAY MINIMUM	169 Feb	o 17	281	Feb 26	94	Dec 20 2000
MAXIMUM PEAK FLOW			7470	Jun 13	40300	Jun 16 1998
MAXIMUM PEAK STAGE			28.55	Jun 13	40.77	Jul 11 1993
ANNUAL RUNOFF (AC-FT)	1410000		708000		1437000	
ANNUAL RUNOFF (CFSM)	0.55		0.28		0.56	
ANNUAL RUNOFF (INCHES)	7.49		3.76		7.64	
10 PERCENT EXCEEDS	5230		2260		5220	
50 PERCENT EXCEEDS	651		531		700	
90 PERCENT EXCEEDS	210		316		238	

e Estimated

05484800 WALNUT CREEK AT DES MOINES, IA

LOCATION.--Lat $41^{\circ}35^{\circ}14^{\circ}$, long $93^{\circ}42^{\circ}11^{\circ}$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.2, T.78 N., R.25 W., Polk County, Hydrologic Unit 07100006, on left bank, 25 ft downstream from bridge on 63rd Street in Des Moines, and 2.2 mi upstream from Raccoon River.

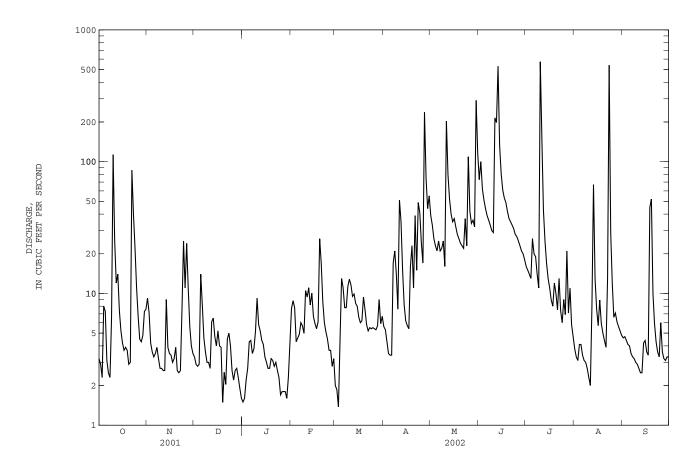
DRAINAGE AREA. -- 78.4 mi².

PERIOD OF RECORD.--October 1971 to current year.

REVISED RECORDS.--WDR IA-73-1: 1972. WDR IA-75-1: 1973-74.

GAGE.--Water-stage recorder. Datum of gage is 801.04 ft above NGVD of 1929 (levels by Iowa Natural Resources Council).

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. National Weather Service Limited Automatic Remote Collector (LARC) and U.S. Geological Survey data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.2 2.9 2.3 8.0 7.3	9.2 7.1 4.2 3.6 3.3	3.3 2.9 2.8 2.9	1.5 1.6 2.2 2.7 4.3	7.7 8.8 7.8 4.3 4.6	e2.0 e1.9 e1.4 4.3	5.6 5.3 4.3 3.5 3.4	39 33 26 23 21	73 100 62 51 44	16 15 14 13 26	3.8 3.3 3.1 4.1 4.1	4.6 4.7 4.4 4.1 4.0
6 7 8 9 10	3.1 2.5 2.3 6.5 113	3.5 3.9 3.2 2.7 2.7	8.2 4.6 3.6 3.0 3.0	4.4 3.5 3.8 5.2 9.2	4.9 6.0 e5.7 e5.0 e11	11 7.8 7.8 e11 e13	3.4 17 21 14 7.6	25 21 22 25 16	39 36 33 30 29	20 19 14 11 573	3.4 3.1 3.0 2.7 2.3	3.5 3.3 3.2 3.0 2.9
11 12 13 14 15	25 12 14 7.4 5.2	2.6 2.6 9.0 3.9 3.5	2.7 6.1 6.5 4.7 4.0	5.8 5.2 4.4 4.1 3.3	e9.4 e11 e8.2 e10 6.7	e12 9.5 9.9 8.4 8.0	51 35 e15 e8.2 6.2	203 80 52 40 35	215 198 529 133 81	153 43 25 17 13	2.0 8.0 67 13 7.6	2.7 2.5 2.5 4.2 4.4
16 17 18 19 20	4.2 3.7 3.9 3.7 2.9	3.4 3.0 3.2 3.9 2.6	5.2 4.0 3.9 e1.5 e2.5	3.0 2.7 2.7 3.2 3.1	5.9 5.4 6.1 26 17	6.6 6.0 6.2 9.4 7.5	5.7 5.4 16 23 11	37 32 28 26 24	61 53 49 42 37	11 8.9 8.0 12	5.7 8.9 5.9 5.0 4.4	3.6 3.4 45 52 10
21 22 23 24 25	3.0 86 40 22 11	2.5 2.6 7.4 25	e2.0 e4.5 e5.0 e4.0 2.6	2.8 3.0 2.6 2.3 1.7	8.7 6.0 5.1 4.5 3.7	5.8 5.2 5.5 5.4 5.5	39 15 49 41 24	23 22 37 23 109	35 33 31 28 27	7.5 13 7.4 6.0 9.0	3.9 13 539 29 12	5.9 4.3 3.6 3.3 6.0
26 27 28 29 30 31	6.7 4.5 4.3 4.8 7.3	24 11 5.6 4.0 3.5	2.2 2.6 2.7 2.3 1.9 1.6	1.8 1.8 1.6 2.3 4.2	3.7 2.8 3.2 	5.4 5.3 5.7 9.0 5.9 6.7	17 237 75 44 55	42 34 36 32 292 116	25 23 21 20 18	6.9 21 7.1 11 5.8 4.7	6.6 7.1 6.1 5.6 5.2 4.8	3.6 3.2 3.1 3.3
TOTAL MEAN MAX MIN AC-FT CFSM IN.	430.3 13.88 113 2.3 854 0.18 0.20	177.7 5.923 25 2.5 352 0.08 0.08	120.8 3.897 14 1.5 240 0.05 0.06	101.8 3.284 9.2 1.5 202 0.04 0.05	209.2 7.471 26 2.8 415 0.10 0.10	222.1 7.165 13 1.4 441 0.09 0.11	857.6 28.59 237 3.4 1700 0.36 0.41	1574 50.77 292 16 3120 0.65 0.75	2156 71.87 529 18 4280 0.92 1.02	1121.3 36.17 573 4.7 2220 0.46 0.53	792.7 25.57 539 2.0 1570 0.33 0.38	207.6 6.920 52 2.5 412 0.09 0.10
STATIST	rics of M	MONTHLY ME	AN DATA F	OR WATER	YEARS 197	2 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	30.15 166 1974 1.33 1972	35.89 147 1973 0.88 1977	29.38 119 1983 0.17 1977	21.47 123 1974 0.001 1977	42.79 178 1973 0.48 1977	71.94 214 1990 3.17 1981	97.61 310 1973 2.71 1981	119.6 390 1996 6.36 1977	120.1 385 1990 7.62 1977	80.73 427 1993 2.96 1985	45.80 329 1993 4.37 1976	29.82 214 1993 0.57 1976

05484800 WALNUT CREEK AT DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1972 - 2002			
ANNUAL TOTAL	15416.48	7971.1				
ANNUAL MEAN	42.24	21.84	60.45			
HIGHEST ANNUAL MEAN			158 1993			
LOWEST ANNUAL MEAN			10.3 1989			
HIGHEST DAILY MEAN	624 Apr 9	573 Jul 10	4520 Jul 1 1973			
LOWEST DAILY MEAN	0.00 Aug 14	1.4 Mar 3	0.00 Jan 3 1977a			
ANNUAL SEVEN-DAY MINIMUM	0.16 Aug 8	1.9 Jan 24	0.00 Jan 3 1977			
MAXIMUM PEAK FLOW		2460 Jul 10	12500 May 10 1986			
MAXIMUM PEAK STAGE		11.08 Aug 23	18.32 May 10 1986			
INSTANTANEOUS LOW FLOW		0.38 Jan 24				
ANNUAL RUNOFF (AC-FT)	30580	15810	43800			
ANNUAL RUNOFF (CFSM)	0.54	0.28	0.77			
ANNUAL RUNOFF (INCHES)	7.31	3.78	10.48			
10 PERCENT EXCEEDS	106	41	143			
50 PERCENT EXCEEDS	10	6.1	23			
90 PERCENT EXCEEDS	2.6	2.7	2.5			

a Many days in 1977, Aug. 21, 1994, many days in 2000, and Aug. 14, 2001. e Estimated.

05484900 RACCOON RIVER AT FLEUR DRIVE, DES MOINES, IA

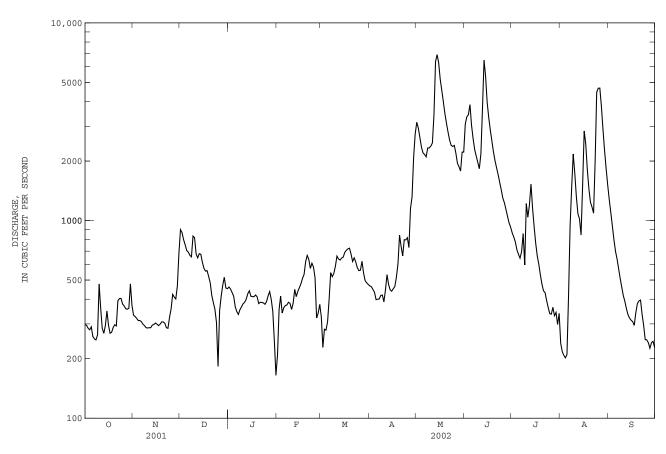
LOCATION.--Lat $41^{\circ}34^{\circ}54^{\circ}$, long $93^{\circ}38^{\circ}34^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec.8, T.78 N., R.24 W., Polk County, Hydrologic Unit 07100006, on downstream side of Fleur Drive bridge (SW 18th St.) attached to handrail 465 ft. from right edge of bridge, 3.0 miles downstream from Walnut Creek, 2.6 miles upstream from mouth, and at mile 204.1 above mouth of Des Moines River.

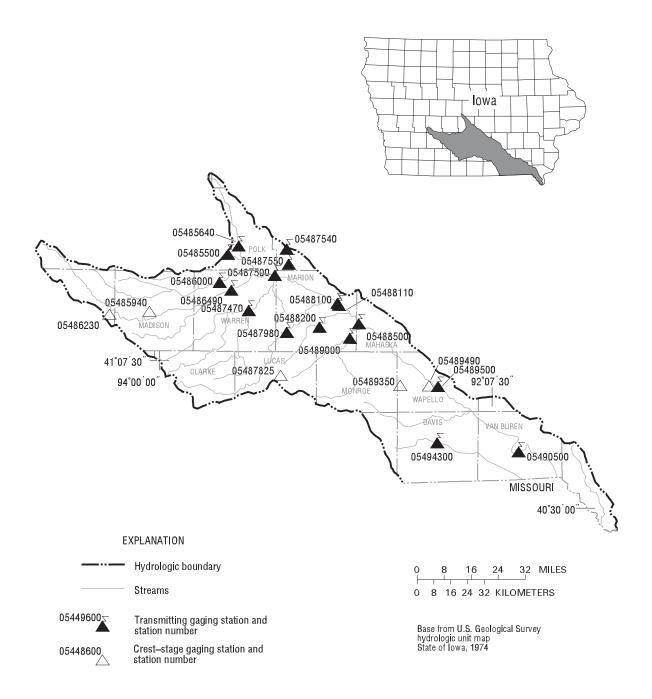
DRAINAGE AREA. -- 3,625 mi².

PERIOD OF RECORD.-- June 1984 to current year; June 1984 to September 1996 gage-height record only.

GAGE.--Water-stage recorder. Datum of gage is 780.70 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Discharges are affected by withdrawal by Des Moines Water Works. U.S. Geological Survey satellite data collection platform and U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	298	332	900	461	208	e326	467	3140	3070	866	239	1280
2	e295	327	868	450	354	e228	463	2940	3350	825	217	1100
3	e285	320	800	432	415	e282	448	2630	3430	780	208	940
4	e280	312	753	414	e340	e279	433	2350	3860	711	202	801
5	e290	312	705	366	e362	e308	398	2200	3040	675	210	700
6	259	308	693	346	e372	e400	400	2160	2600	645	414	640
7	252	299	667	335	e374	e545	401	2100	2290	e697	943	571
8	249	294	655	354	e386	e520	418	2330	2120	e858	1470	510
9	264	287	835	366	e381	e540	420	2330	1970	596	2170	461
10	478	286	819	379	e355	e587	388	2380	1830	1220	1730	417
11	360	287	677	386	e381	e661	446	2470	2180	1040	1320	390
12	285	287	648	400	e448	639	533	3430	3680	1200	1080	358
13	269	296	680	426	e412	631	475	6360	6490	1530	1020	334
14	294	298	675	441	e439	646	446	6910	5350	1160	845	321
15	349	303	615	414	e458	653	439	6280	3960	933	1510	313
16	295	299	573	412	e479	690	452	5180	3320	770	2840	308
17	269	294	555	412	e510	707	464	4550	2870	663	2440	295
18	272	299	558	420	e534	719	518	3990	2530	601	1810	342
19	288	307	e521	411	e620	725	605	3470	2230	531	1450	e380
20	297	307	e485	380	e666	677	844	3100	2010	477	1240	392
21	293	302	e418	386	e637	621	740	2800	1850	441	1170	396
22	393	287	e384	385	e572	648	662	2550	1710	432	1090	336
23	403	285	e356	383	e608	618	800	2400	1560	394	2000	295
24	404	324	e306	377	e582	578	798	2370	1430	363	4460	250
25	378	357	183	389	e513	558	819	2400	1300	338	4670	249
26	370	423	350	416	e321	561	730	2190	1230	336	4680	241
27	358	410	413	437	e340	622	1150	1950	1140	364	3780	226
28	356	401	471	399	e376	543	1320	1870	1050	330	2900	241
29	360	466	516	347		497	2090	1780	973	343	2270	245
30 31	478 372	683	456 452	245 165		484	2740	2220 2220	925	298 339	1840	228
31	312		452	100		475		2220		339	1520	
TOTAL	10093	9992	17987	11934	12443	16968	21307	95050	75348	20756	53738	13560
MEAN	325.6	333.1	580.2	385.0	444.4	547.4	710.2	3066	2512	669.5	1733	452.0
MAX	478	683	900	461	666	725	2740	6910	6490	1530	4680	1280
MIN	249	285	183	165	208	228	388	1780	925	298	202	226
AC-FT	20020	19820	35680	23670	24680	33660	42260	188500	149500	41170	106600	26900
CFSM	0.09	0.09	0.16	0.11	0.12	0.15	0.20	0.85	0.69	0.18	0.48	0.12
IN.	0.10	0.10	0.18	0.12	0.13	0.17	0.22	0.98	0.77	0.21	0.55	0.14
STATIST	TICS OF M	MONTHLY ME	AN DATA F	OR WATER	YEARS 199	7 - 2002,	BY WATER	YEAR (W	Y)			
MEAN	484.3	798.3	646.1	465.6	1221	2314	4180	4420	5209	2697	1177	416.1
MAX	1139	2527	1873	1235	3280	4877	9905	7915	12570	7266	2252	664
(WY)	1997	1997	1997	1997	1997	2001	1999	1999	1998	1998	1998	1998
MIN	120	265	177	169	224	349	277	370	671	670	334	124
(WY)	2001	2000	2001	2000	2000	2000	2000	2000	2000	2002	2000	2000

05484900 RACCOON RIVER AT FLEUR DRIVE, DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1997 - 2002
ANNUAL TOTAL	717377	359176	
ANNUAL MEAN	1965	984.0	2001
HIGHEST ANNUAL MEAN			3350 1998
LOWEST ANNUAL MEAN			381 2000
HIGHEST DAILY MEAN	15000 May 7	6910 May 14	40100 Jun 16 1998
LOWEST DAILY MEAN	150 Jan 2	165 Jan 31	73 Oct 4 2000
ANNUAL SEVEN-DAY MINIMUM	183 Feb 17	240 Sep 24	85 Sep 28 2000
MAXIMUM PEAK FLOW		7440 Jun 13	45000 Jun 16 1998
MAXIMUM PEAK STAGE		8.39 Jun 13	26.80 Jul 11 1993
ANNUAL RUNOFF (AC-FT)	1423000	712400	1450000
ANNUAL RUNOFF (CFSM)	0.54	0.27	0.55
ANNUAL RUNOFF (INCHES)	7.36	3.69	7.50
10 PERCENT EXCEEDS	5500	2420	5350
50 PERCENT EXCEEDS	595	479	663
90 PERCENT EXCEEDS	220	289	220

e Estimated

Figure 19. Locations of active continuous-record and crest-stage gaging stations in the Lower Des Moines River and Fox River drainage basins.

Gaging Stations

05485500	Des Moines River blw Raccoon River at Des Moines, IA 308
05485640	Fourmile Creek at Des Moines, IA
05486000	North River near Norwalk, IA
05486490	Middle River near Indianola, IA
05487470	South River near Ackworth, IA
05487500	Des Moines River near Runnells, IA
05487540	Walnut Creek near Prairie City, IA
05487550	Walnut Creek near Vandalia, IA
05487980	White Breast Creek near Dallas, IA
05488100	Lake Red Rock near Pella, IA
05488110	Des Moines River near Pella, IA
05488200	English Creek near Knoxville, IA
05488500	Des Moines River near Tracy, IA
05489000	Cedar Creek near Bussey, IA
05489500	Des Moines River at Ottumwa, IA
05490500	Des Moines River at Keosauqua, IA
05494300	Fox River at Bloomfield, IA
	Crest Stage Gaging Stations
05485940	Cedar Creek Tributary No. 2 near Winterset, IA
05486230	Bush Branch Creek near Stanzel, IA
05487825	Little White Breast Creek Tributary near Chariton, IA
05489350	South Avery Creek near Blakesburg, IA
05489490	Bear Creek at Ottumwa, IA

05485500 DES MOINES RIVER BELOW RACCOON RIVER AT DES MOINES, IA

LOCATION.--Lat $41^{\circ}34^{\circ}40^{\circ}$, long $93^{\circ}36^{\circ}19^{\circ}$, in SW $^{1}/_{4}$ NE $^{1}/_{4}$ sec.10, T.78 N., R.24 W., Polk County, Hydrologic Unit 07100008, on left bank 40 ft downstream from bridge on Southeast 6th Street at Des Moines, 0.5 mi downstream from Raccoon River and Scott Street Dam, and at mile 201.0.

DRAINAGE AREA. -- 9,879 mi².

PERIOD OF RECORD. -- April 1940 to current year.

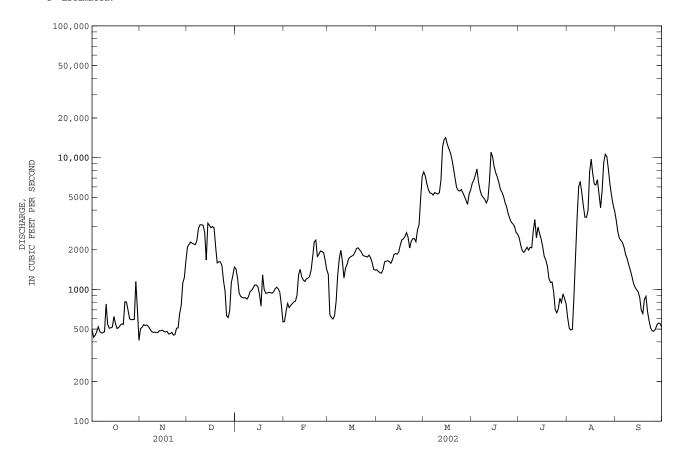
REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1943 (P).

GAGE.--Water-stage recorder. Datum of gage is 762.52 ft above NGVD of 1929. Prior to Oct. 1, 1951, and Oct. 1, 1953 to Sept. 30, 1959, water-stage recorder upstream of Scott Street Dam, 0.8 mi upstream at datum 11.16 ft higher. Oct. 1, 1951 to Sept. 30, 1953, Oct. 1, 1959 to April 24, 1997 water-stage recorder .3 mi downstream at current datum, and Oct. 1, 1959 to Sept. 30, 1961, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Des Moines municipal water supply is taken from infiltration galleries on Raccoon River, 3.5 mi upstream from station. At times, water is pumped from Raccoon River into recharge basins or into Waterworks Reservoir, capacity 4,800 acre-ft. Effluent from sewage treatment plant enters the river 2.3 mi downstream from station. Net effect of diversions not known. Flow regulated by Saylorville Lake (station 05481630) 12.7 mi upstream, since Apr. 12, 1977. U.S. Army Corps of Engineers rain gage and data collection platform, U.S. National Weather Service Limited Automatic Remote Collector (LARC), and U.S. Geological Survey data logger at station.

COOPERATION.--Average monthly pumpage from galleries provided by Des Moines Water Works.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $116,000 \text{ ft}^3/\text{s}$ July 11,1993, gage height, 34.29; minimum daily discharge, $26 \text{ ft}^3/\text{s}$ Jan. 16-29, 1977.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1893, that of June 26, 1947, site and datum then in use. Flood of May 31, 1903, reached a stage of 20.9 ft, from flood profile, at Scott Street site and datum, by office of Des Moines City Engineer.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	496 434	505 516	2100 2200	1430 1220	570 683	1300 640	1410 1370	7800 7250	6390 6750	2460 2160	605 508	3350 2750
3	449	540	2290	e941	782	613	1340	6310	7380	1970	492	2450
4	478	532	2240	e884	728	596	1330	5700	8210	1910	498	2350
5	520	538	2210	869	757	634	1420	5390	6550	1990	893	2270
6 7	478	524	2190	e862	780	813	1620	5360	5660	2090	1780	2090
8	468 470	501 480	2350 2910	e866 844	804 815	1280 1710	1640 1650	5200 5440	5180 4990	1990 2090	3500 6000	1840 1710
9	478	472	3090	882	902	1980	1630	5350	4820	2070	6600	1540
10	776	474	3100	962	1290	1640	1580	5300	4530	2790	5420	1400
11	542	472	3060	985	1420	1220	1680	5430	4830	3390	4310	1260
12 13	508 511	470 486	2700 1670	1030 1080	1250 1180	1450 1550	1850 1870	6790 12000	6700 11000	2460 2980	3530 3530	1120 1040
14	519	486	3180	1080	1150	1710	1850	13700	10100	2660	3990	996
15	624	490	3070	1050	1200	1760	1920	14200	8530	2420	7790	958
16	549	480	2940	921	1220	1790	2170	12700	7680	2110	9730	872
17	505	475	3000	746	1250	1820	2380	11700	7130	1780	7560	696
18 19	514 534	480 459	2930 2100	1290 1000	1400 1760	1910 2040	2420 2520	10900 9720	6480 5730	1670 1500	6300 6200	656 839
20	548	462	1590	936	2290	2070	2700	8300	5470	1210	6810	887
21	543	472	1620	938	2370	2000	2480	6990	5080	1130	5280	681
22	807	450	1620	952	1780	1930	2060	5930	4540	1140	4170	577
23 24	801 697	454 507	1520 1170	947 936	1850 1960	1820 1790	2320 2430	5650 5580	4210 3740	962 703	5670 9130	510 484
25	599	511	973	959	1940	1780	2430	5730	3450	665	10600	482
	589		630	1010	1900	1760	2300	5410	3230			498
26 27	591	655 759	612	1010	1660	1820	2830	5090	3230	712 857	10200 8150	538
28	592	1120	693	1010	1410	1740	3090	4740	3010	796	6270	556
29	1150	1230	1120	953		1600	4900	4420	2710	926	5160	551
30 31	705 410	1650	1280 1480	762 568		1420 1400	7220	5300 5710	2630	853 773	4390 3930	520
TOTAL	17885 576.9	17650 588.3	63638 2053	29953	37101 1325	47586 1535	68410 2280	225090	169850	53217	158996	36471
MEAN MAX	1150	1650	2053 3180	966.2 1430	2370	2070	7220	7261 14200	5662 11000	1717 3390	5129 10600	1216 3350
MIN	410	450	612	568	570	596	1330	4420	2630	665	492	482
AC-FT	35470	35010	126200	59410	73590	94390	135700	446500	336900	105600	315400	72340
CFSM	0.06	0.06	0.21	0.10	0.13	0.16	0.23	0.73	0.57	0.17	0.52	0.12
IN.	0.07	0.07	0.24	0.11	0.14	0.18	0.26	0.85	0.64	0.20	0.60	0.14
STATIST	TICS OF N	MONTHLY MI	EAN DATA I	FOR WATER	YEARS 197	8 - 2002,	BY WATER	R YEAR (W	Y)			
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX	2944 15060	3329 10610	2888 9045	1756 6439	3088 12400	7990 23530	11740 27620	11810 28190	12890 35250	10690 55960	5102 26050	3350 21430
(WY)	1987	1993	1983	1983	1984	1983	1993	1993	1984	1993	1993	1993
MIN	293	363	342	310	343	560	627	1159	1716	739	441	406
(WY)	2001	1990	1990	1981	1978	1981	2000	2000	1988	1988	1988	2000

05485500 DES MOINES RIVER BELOW RACCOON RIVER AT DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAL	R YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1978 - 2002a
ANNUAL TOTAL	2596685		925847			
ANNUAL MEAN	7114		2537		6475	
HIGHEST ANNUAL MEAN					19180	1993
LOWEST ANNUAL MEAN					1036	1989
HIGHEST DAILY MEAN	27500 I	Mar 25	14200	May 15	113000	Jul 11 1993
LOWEST DAILY MEAN	270	Jan 2	410	Oct 31	200	Mar 12 1978b
ANNUAL SEVEN-DAY MINIMUM	309	Jan 1	465	Nov 17	236	Mar 7 1978
MAXIMUM PEAK FLOW			14800	May 14	116000	Jul 11 1993
MAXIMUM PEAK STAGE			18.38	May 14	34.29	Jul 11 1993
INSTANTANEOUS LOW FLOW			308	Oct 2		
ANNUAL RUNOFF (AC-FT)	5151000		1836000		4691000	
ANNUAL RUNOFF (CFSM)	0.72		0.26		0.66	
ANNUAL RUNOFF (INCHES)	9.78		3.49		8.90	
10 PERCENT EXCEEDS	20800		6280		18200	
50 PERCENT EXCEEDS	1590		1630		3220	
90 PERCENT EXCEEDS	460		509		540	

Post regulation. Also Mar. 13, 1978. Estimated. a b e

05485640 FOURMILE CREEK AT DES MOINES, IA

LOCATION.--Lat $41^{\circ}36^{\circ}50^{\circ}$, long $93^{\circ}32^{\circ}43^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.32, T.79 N., R.23 W., Polk County, Hydrologic Unit 07100008, on right bank 20 ft downstream from bridge on Easton Blvd., 4.4 mi downstream from Muchikinock Creek, and 5.0 mi upstream from Des Moines River.

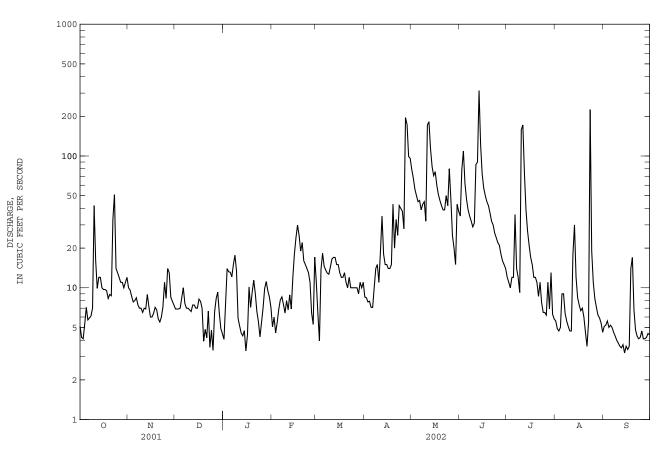
DRAINAGE AREA. -- 92.7 mi².

PERIOD OF RECORD. -- October 1971 to current year.

REVISED RECORDS.--WDR IA-75-1: 1974 (P).

GAGE.--Water-stage recorder. Datum of gage is 795.87 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite data collection platform and U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.1 4.2 4.1 5.3 7.1	10 9.6 8.6 7.8 8.0	6.9 6.9 6.9 7.0 8.4	e4.1 e7.5 e14 e13 e13	e5.1 e6.0 e4.6 e5.4 e6.9	e11 e6.4 e3.9 e14 e18	8.5 8.4 7.8 7.9 7.1	79 68 56 50 45	35 79 109 62 47	12 11 10 12 12	5.6 4.9 4.7 5.0 9.0	5.1 5.2 5.6 5.0 5.2
6 7 8 9 10	5.7 5.9 6.1 7.0	8.4 7.4 7.0 7.0 6.5	10 7.6 7.0 7.0 6.8	e12 e15 e18 e13 e5.9	e8.1 e8.5 e7.5 e6.4 e8.0	e15 e14 e13 e13 e14	7.1 10 14 15	46 39 43 45 32	39 35 32 29 31	36 14 12 9.2 158	9.0 6.4 5.6 5.1 4.7	e5.0 e4.6 e4.3 e4.0 e3.8
11 12 13 14 15	16 9.9 12 12 10	7.0 6.9 8.9 7.2 6.0	6.6 7.4 7.4 7.0 7.0	e5.1 e4.5 e4.3 e4.7	e6.8 e8.8 e6.9 12 e18	e17 17 17 15 15	19 35 18 15	172 182 113 83 71	86 90 313 122 73	172 74 39 27 21	4.7 18 30 12 8.4	3.6 3.5 3.7 3.2 3.6
16 17 18 19 20	9.7 9.7 9.5 8.3 8.9	6.0 6.4 7.1 6.8 5.8	8.2 7.9 7.0 e3.9 e4.8	e4.4 e10 e7.1 e9.2 e11	e24 e30 e25 19 22	13 12 12 13 11	14 14 15 43 20	76 60 51 46 42	57 50 45 42 37	17 15 12 12 11	7.4 6.7 7.0 6.0 4.6	3.4 3.6 14 17 6.8
21 22 23 24 25	8.7 33 51 e14 13	5.5 6.0 7.2 11 8.3	e4.2 e6.7 e3.5 e4.8 e3.3	e9.1 e6.6 e5.5 e4.2 e5.5	16 15 14 13 e11	10 e12 10 10	33 25 42 40 38	39 39 e50 e42 e80	32 30 26 24 22	8.6 11 7.7 6.5 6.5	3.6 5.5 225 19 11	4.8 4.3 4.1 4.2 4.7
26 27 28 29 30 31	12 11 11 10 11	14 13 8.5 7.9 7.4	e6.5 e8.3 e9.3 e6.4 e4.9 e4.5	e7.1 e9.9 e11 e9.5 e8.5 e7.1	e6.4 e5.3 e17 	10 10 9.0 11 10	28 196 173 99 96	e47 e25 e20 e15 e43 38	21 18 16 15 14	6.2 11 6.9 13 6.3 5.8	8.3 7.1 6.2 5.9 5.4 4.6	4.1 4.1 4.2 4.5 4.4
TOTAL MEAN MAX MIN AC-FT CFSM IN.	385.2 12.43 51 4.1 764 0.13 0.15	237.2 7.907 14 5.5 470 0.09 0.10	204.1 6.584 10 3.3 405 0.07 0.08	263.1 8.487 18 3.3 522 0.09 0.11	336.7 12.03 30 4.6 668 0.13 0.14	377.3 12.17 18 3.9 748 0.13 0.15	1074.8 35.83 196 7.1 2130 0.39 0.43	1837 59.26 182 15 3640 0.64 0.74	1631 54.37 313 14 3240 0.59 0.65	775.7 25.02 172 5.8 1540 0.27 0.31	466.4 15.05 225 3.6 925 0.16 0.19	153.6 5.120 17 3.2 305 0.06 0.06
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 197	2 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	38.45 258 1987 1.36 1989	43.24 317 1984 1.57 1977	33.15 124 1983 0.25 1977	23.07 118 1974 0.001 1977	47.46 206 1973 0.55 1977	98.32 292 1979 4.04 1981	119.9 354 1973 3.67 1981	141.7 462 1974 6.67 1977	157.9 505 1998 0.73 1977	98.48 607 1993 0.074 1977	47.06 363 1993 1.66 1988	35.07 270 1993 1.37 1988

05485640 FOURMILE CREEK AT DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1972 - 2002		
ANNUAL TOTAL	22500.9	7742.1			
ANNUAL MEAN	61.65	21.21	73.68		
HIGHEST ANNUAL MEAN			204 1993		
LOWEST ANNUAL MEAN			7.97 1981		
HIGHEST DAILY MEAN	822 Apr 9	313 Jun 13	3570 Jun 9 1974		
LOWEST DAILY MEAN	1.2 Aug 13	3.2 Sep 14	0.00 Jan 2 1977		
ANNUAL SEVEN-DAY MINIMUM	1.9 Aug 8	3.5 Sep 11	0.00 Jan 2 1977		
MAXIMUM PEAK FLOW		636 Jun 13	5600 Jun 18 1998		
MAXIMUM PEAK STAGE		7.02 Jun 13	15.00 Jun 18 1998		
INSTANTANEOUS LOW FLOW		2.2 Sep 15			
ANNUAL RUNOFF (AC-FT)	44630	15360	53380		
ANNUAL RUNOFF (CFSM)	0.67	0.23	0.79		
ANNUAL RUNOFF (INCHES)	9.03	3.11	10.80		
10 PERCENT EXCEEDS	150	46	173		
50 PERCENT EXCEEDS	13	10	25		
90 PERCENT EXCEEDS	5.5	4.6	3.1		

e Estimated

05486000 NORTH RIVER NEAR NORWALK, IA

LOCATION.--Lat $41^{\circ}27^{\circ}25^{\circ}$, long $93^{\circ}39^{\circ}10^{\circ}$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.20, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on county highway R57, 1.7 mi southeast of Norwalk, 5.2 mi upstream from Middle Creek, and 6.2 mi downstream from Badger Creek.

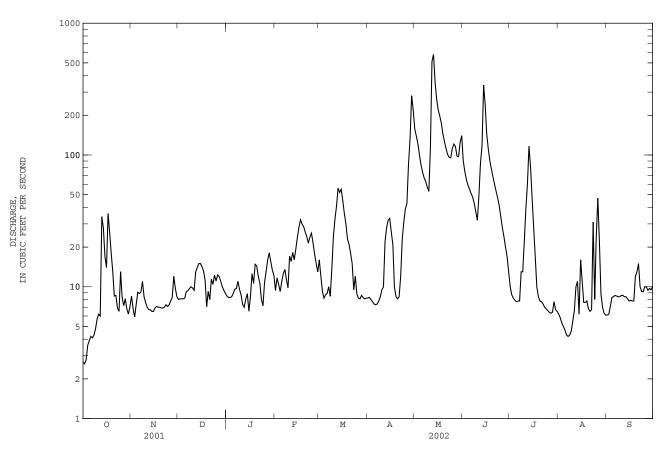
DRAINAGE AREA. -- 349 mi².

PERIOD OF RECORD. -- February 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1946. WDR IA-76-1: 1975 (P).

GAGE.--Water-stage recorder. Datum of gage is 788.45 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to June 12, 1946, nonrecording gage at same site and datum. Jan. 7 to Oct. 11, 1960, nonrecording gage at site 2.1 mi upstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.7	8.5	8.0	8.5	e9.4	16	8.2	158	e90	10	6.2	6.1
2	2.6	6.8	8.1	8.3	e12	12	8.3	139	e75	8.7	5.8	6.2
3	2.8	5.9	8.1	8.3	e10	9.2	8.0	122	e65	8.2	5.3	7.1
4	3.6	e7.4	8.1	8.4	e9.2	8.2	7.7	100	59	7.9	5.0	8.3
5	3.9	e9.1	8.2	8.9	e11	8.7	7.4	84	55	7.7	4.7	8.4
6 7 8 9 10	4.2 4.1 4.3 4.8 5.7	e8.9 e9.1 e11 e8.4 e7.6	9.2 9.3 9.7 10 9.8	9.6 9.7 11 e9.6 e8.7	e13 e14 e11 e9.8 e17	8.9 10 e8.5 e14 e24	7.3 7.4 7.8 8.4 9.5	74 67 63 57 53	51 48 43 37 32	7.8 7.8 13 13	4.3 4.2 4.3 4.6 5.5	8.6 8.5 8.4 8.4
11	6.2	e7.0	9.4	e7.3	e16	e33	10	112	49	39	6.6	8.6
12	6.0	e6.7	13	e7.0	e18	e41	22	512	87	60	10	8.4
13	34	e6.7	14	e8.1	e16	56	28	580	118	117	11	8.4
14	28	e6.5	15	e8.8	e19	52	32	354	339	81	6.2	8.1
15	17	e6.5	15	e6.5	e24	55	33	265	241	47	16	7.8
16	14	e6.9	e14	e8.5	e28	45	26	219	144	28	11	7.9
17	36	e7.1	e13	e13	e32	36	21	197	111	17	7.6	7.8
18	26	e7.0	e11	e11	e30	30	10	174	90	10	7.6	7.8
19	18	e7.0	e7.1	e15	e29	23	8.4	144	78	8.4	7.8	12
20	13	e6.9	e9.2	e14	e26	21	8.1	126	68	7.8	6.8	13
21 22 23 24 25	8.5 8.6 6.9 6.5	e6.9 e7.0 e7.3 e7.1 e7.3	e8.0 e11 e10 e12 e11	e12 e11 e8.0 e7.2 e11	e24 e21 e24 e26 e21	18 15 9.5 12 8.8	8.4 12 23 31 39	112 101 96 95 112	60 53 47 41 34	7.7 7.4 7.0 6.8 6.6	6.5 6.7 31 8.0 24	15 10 9.2 9.2
26 27 28 29 30 31	8.3 7.2 8.1 6.8 6.2 7.1	e7.8 e8.3 e12 9.7 8.4	e12 12 11 10 9.4 8.9	e13 e16 e18 e16 e13 e12	e18 15 13 	8.2 8.1 8.6 8.3 8.1 8.2	43 85 133 282 220	121 116 98 97 e125 e140	28 24 20 17 13	6.4 6.3 6.4 7.7 6.7	47 22 8.8 7.0 6.3 6.1	10 9.4 9.7 9.5 10
TOTAL	324.1	232.8	324.5	327.4	516.4	624.3	1154.9	4813	2217	596.8	313.9	270.4
MEAN	10.45	7.760	10.47	10.56	18.44	20.14	38.50	155.3	73.90	19.25	10.13	9.013
MAX	36	12	15	18	32	56	282	580	339	117	47	15
MIN	2.6	5.9	7.1	6.5	9.2	8.1	7.3	53	13	6.3	4.2	6.1
AC-FT	643	462	644	649	1020	1240	2290	9550	4400	1180	623	536
CFSM	0.03	0.02	0.03	0.03	0.05	0.06	0.11	0.44	0.21	0.06	0.03	0.03
IN.	0.03	0.02	0.03	0.03	0.06	0.07	0.12	0.51	0.24	0.06	0.03	0.03
STATIS	TICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 194	41 - 2002,	BY WATER	R YEAR (WY	·)			
MEAN	75.70	99.15	73.10	75.85	156.9	331.0	346.1	355.1	376.9	190.9	108.9	89.60
MAX	593	747	567	739	911	1041	1401	1699	3260	1722	1185	1007
(WY)	1987	1973	1993	1973	1973	1965	1973	1996	1947	1993	1993	1993
MIN	0.20	0.37	0.36	0.38	3.21	3.90	1.22	3.71	1.58	1.10	0.21	0.26
(WY)	1950	1956	1956	1954	1956	1954	1956	1967	1977	1977	1968	1957

05486000 NORTH RIVER NEAR NORWALK, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	49795.8	11715.5	
ANNUAL MEAN	136.4	32.10	189.8
HIGHEST ANNUAL MEAN			709 1993
LOWEST ANNUAL MEAN			8.08 1968
HIGHEST DAILY MEAN	2010 Mar 16	580 May 13	21600 Jun 13 1947
LOWEST DAILY MEAN	2.0 Aug 14	2.6 Oct 2	0.00 Jul 20 1954a
ANNUAL SEVEN-DAY MINIMUM	2.5 Aug 11	3.4 Oct 1	0.00 Jul 25 1954
MAXIMUM PEAK FLOW		732 May 12	32000 Jun 13 1947b
MAXIMUM PEAK STAGE		12.28 May 12	25.30 Jun 13 1947c
INSTANTANEOUS LOW FLOW		2.4 Oct 2	0.00 Jul 20 1954
ANNUAL RUNOFF (AC-FT)	98770	23240	137500
ANNUAL RUNOFF (CFSM)	0.39	0.092	0.54
ANNUAL RUNOFF (INCHES)	5.31	1.25	7.39
10 PERCENT EXCEEDS	384	88	436
50 PERCENT EXCEEDS	14	10	43
90 PERCENT EXCEEDS	4.1	6.5	2.5

a b c e

Many days 1954-58, Oct. 7-9, 2001. From rating curve extended above 9,000 $\rm ft^3/s$ on basis of velocity-area studies. From floodmark. Estimated.

05486490 MIDDLE RIVER NEAR INDIANOLA, IA

LOCATION.--Lat $41^{\circ}25^{\circ}27^{\circ}$, long $93^{\circ}35^{\circ}09^{\circ}$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.35, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on right bank 10 ft downstream from bridge on county highway, 0.4 mi upstream from Cavitt Creek, 1.5 mi upstream from bridge on U.S. Highway 69, and 4.6 mi northwest of Indianola.

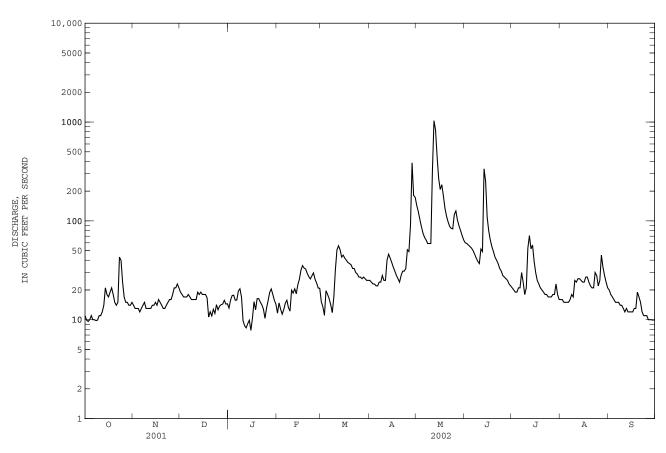
DRAINAGE AREA.--503 mi².

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940 (M), 1941, 1944, 1946, 1949 (M).

GAGE.--Water-stage recorder. Datum of gage is 776.15 ft above NGVD of 1929 (U.S. Army Corps of Engineers bench mark). Prior to June 11, 1946, June 9, 1947 to Nov. 23, 1948, and Sept. 8, 1951 to Oct. 30, 1952, nonrecording gage; and June 11, 1946 to June 8, 1947 (destroyed by flood), Nov. 24, 1948 to Sept. 7, 1951, Oct. 31, 1952 to Sept. 30, 1962, water-stage recorder at site 1.6 mi downstream at datum 2.81 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	11 9.9	14 13	19 18	e13 e16	e12 e15	e15 e13	25 24	143 124	60 59	21 20	16 16	20 18
3 4	9.6 10	13 13	17 17	e18 e18	e13 e11	e11 e20	23 23	103 87	57 55	19 19	15 15	17 16
5	11	12	17	e16	e13	e18	22	75	53	21	15	15
6 7	10 10	13 14	18 17	e16 e20	e15	e16 e14	22 24	68 64	50 46	21 30	15 16	15 15
8	9.8	15	16	e21	e16 e13	e12	24	59	42	24	18	14
9 10	9.9 11	13 13	16 16	e17 e9.7	e12 e20	e17 e32	28 25	59 59	39 37	18 21	17 25	14 13
11 12	11 12	13 13	16 19	e8.7	e19	51 56	25 40	317 1030	52 49	53 71	24	12 13
13	14	14	18	e8.3 e9.1	e21 e18	51	46	832	336	52	26 26	12
14 15	21 18	14 15	19 18	e9.9 e7.8	e23 e26	43 45	42 38	446 269	252 109	57 39	25 24	12 12
16	17	14	18	e10	e32	42 40	34	208	79 64	30	24	12
17 18	19 21	16 15	18 e17	e15 e13	e35 e33	38	31 28	232 180	55	25 23	27 27	13 13
19 20	18 15	14 13	e11 e12	e16 e16	e33 e29	37 36	26 24	135 112	49 43	21 20	24 22	19 17
21	14	13	e11	e15	e27	33	28	98	40	19	21	15
22 23	15 43	14 15	e13 e12	e14 e13	e26 e28	33 30	31 31	88 84	37 33	18 18	21 30	12 11
24 25	40 24	16 16	e14 e13	e10 e13	e30 e26	29 27	33 51	83 116	31 28	17 17	28 22	11 11
26 27	17 15	18 21	e14	e16	e23	27	49 91	126 102	27 26	17 18	25 45	10 10
28	15	21	e14 e14	e19 e20	e21 e21	26 27	386	89	25	18	34	10
29 30	14 14	23 21	e16 e14	e18 e16		26 25	181 173	80 71	23 22	23 18	28 24	9.9 10
31	15		e14	e14		25		64		16	21	
TOTAL MEAN	494.2 15.94	452 15.07	486 15.68	446.5 14.40	611 21.82	915 29.52	1628 54.27	5603 180.7	1878 62.60	804 25.94	716 23.10	401.9 13.40
MAX	43	23	19	21	35	56	386	1030	336	71	45	20
MIN MED	9.6 14	12 14	11 16	7.8 15	11 21	11 27	22 30	59 102	22 48	16 21	15 24	9.9 13
AC-FT CFSM	980 0.03	897 0.03	964 0.03	886 0.03	1210 0.04	1810 0.06	3230 0.11	11110 0.36	3730 0.12	1590 0.05	1420 0.05	797 0.03
IN.	0.04	0.03	0.04	0.03	0.05	0.07	0.12	0.41	0.14	0.06	0.05	0.03
STATIS'	rics of M	IONTHLY ME	AN DATA I	FOR WATER	YEARS 194	1 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX	110.7 928	130.9 961	112.8 1070	102.3 646	225.0 1415	464.1 1417	486.5 1983	510.6 2053	505.9 4094	270.6 3121	163.6 1419	169.8 1460
(WY)	1974 4.28	1973 2.80	1983 1.62	1973 1.02	1973 4.68	1962 7.35	1973 4.81	1996 10.1	1947 3.81	1993 5.20	1993 4.47	1992
MIN (WY)	1969	1956	1956	1977	1977	1954	1956	1956	1977	1977	1968	1968

05486490 MIDDLE RIVER NEAR INDIANOLA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	85197.2	14435.6	
ANNUAL MEAN	233.4	39.55	270.8
HIGHEST ANNUAL MEAN			1006 1993
LOWEST ANNUAL MEAN			17.8 1968
HIGHEST DAILY MEAN	3560 May 31	1030 May 12	21400 Jun 13 1947
LOWEST DAILY MEAN	8.5 Jan 2	7.8 Jan 15	0.11 Jul 2 1977
ANNUAL SEVEN-DAY MINIMUM	10 Oct 2	9.1 Jan 10	0.51 Jun 29 1977
MAXIMUM PEAK FLOW		1190 May 12	34000 Jun 13 1947
MAXIMUM PEAK STAGE		10.22 May 12	28.27 Jun 13 1947a
ANNUAL RUNOFF (AC-FT)	169000	28630	196200
ANNUAL RUNOFF (CFSM)	0.46	0.079	0.54
ANNUAL RUNOFF (INCHES)	6.30	1.07	7.32
10 PERCENT EXCEEDS	627	64	600
50 PERCENT EXCEEDS	24	20	68
90 PERCENT EXCEEDS	12	12	9.0

From floodmark. Estimated.

05487470 SOUTH RIVER NEAR ACKWORTH, IA

LOCATION.--Lat $41^{\circ}20^{\circ}14^{\circ}$, long $93^{\circ}29^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ sec.34, T.76 N., R.23 W., Warren County, Hydrologic Unit 07100008, on right bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Otter Creek, and 2.2 mi southwest of Ackworth

DRAINAGE AREA.--460 mi².

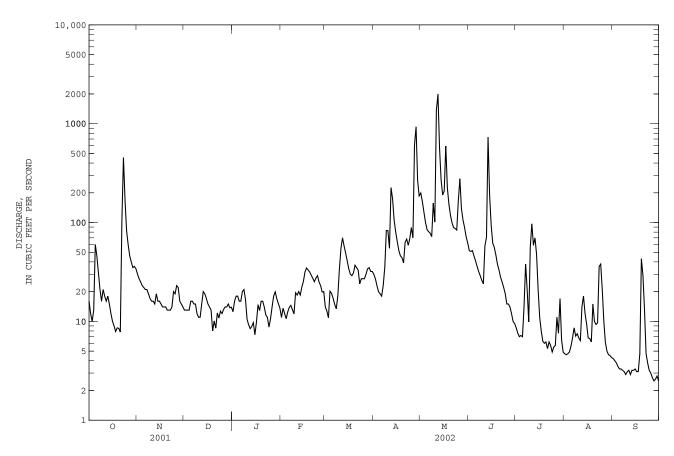
PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1941, 1945 (M), 1946.

GAGE.--Water-stage recorder. Datum of gage is 769.97 ft above NGVD of 1929. Prior to June 12, 1946, nonrecording gage, June 13, 1946 to Apr. 13, 1960, water-stage recorder, and Apr. 14, 1960 to Sept. 30, 1961, nonrecording gage, all at site 4.0 mi downstream at datum 8.06 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in June 1930 reached a stage of $24.5~\mathrm{ft}$, from information by local residents, discharge, about $30,000~\mathrm{ft}^3/\mathrm{s}$, at site $4.0~\mathrm{mi}$ downstream.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	16 12 10 13 60	30 27 25 23 22	13 13 13 13 16	e13 16 18 18 16	e11 e14 e12 e11 e12	14 e13 e11 e20 e19	30 27 23 20 19	199 164 128 101 85	52 51 52 46 41	8.6 7.6 7.0 7.2 7.0	4.7 4.6 4.7 4.9 5.6	4.2 4.0 3.8 3.5 3.3
6 7 8 9 10	46 31 21 16 21	21 21 19 17 16	16 15 15 12 11	16 20 21 e17 e10	e14 e15 e13 e12 e19	e17 e15 e13 e18 e34	18 23 35 83 83	81 78 72 157 101	36 32 29 26 24	14 38 21 9.9 57	6.8 8.6 7.1 7.5 6.8	3.3 3.2 3.1 2.9 3.1
11 12 13 14 15	18 16 18 15	16 15 19 16 16	11 15 20 19 17	e9.2 e8.4 e8.9 e9.7 e7.3	e18 e20 e18 e22 e25	e55 70 58 49 41	55 226 173 105 80	1380 1990 569 269 190	58 71 730 189 94	97 59 70 48 21	6.4 14 18 12 9.4	3.2 2.9 3.2 3.2 3.3
16 17 18 19 20	10 9.0 7.9 8.6 8.5	15 14 14 14 13	15 14 13 e8.0 e10	e9.9 e15 e13 16 16	e32 e35 e33 e32 e29	34 30 29 31 37	64 52 46 44 39	209 595 225 153 118	62 56 47 38 33	11 8.0 6.3 6.0 6.2	6.8 6.7 6.2 15	3.1 3.1 4.7 43 29
21 22 23 24 25	7.8 105 454 168 83	13 13 14 20 19	e8.5 e12 e11 e13 e12	e14 e12 e11 e8.7 e11	e27 e25 e27 29 25	35 33 24 27 27	63 68 59 69 89	99 89 87 84 165	28 25 22 19 15	5.3 6.2 5.7 4.9 5.5	9.3 9.7 36 38 21	13 4.7 3.8 3.2 3.0
26 27 28 29 30 31	60 46 40 35 36 34	23 22 16 15 14	e13 14 14 15 e14 e14	e14 e18 e20 e17 e15 e14	23 e20 20 	27 30 34 35 32 32	70 604 930 266 186	278 138 106 89 72 62	15 14 12 10 9.5	5.7 11 7.6 17 6.5 4.9	10 6.1 5.0 4.6 4.5 4.3	2.7 2.5 2.6 2.8 2.5
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1437.8 46.38 454 7.8 2850 0.10 0.12	542 18.07 30 13 1080 0.04 0.04	419.5 13.53 20 8.0 832 0.03 0.03	433.1 13.97 21 7.3 859 0.03 0.04	593 21.18 35 11 1180 0.05 0.05	944 30.45 70 11 1870 0.07 0.08	3649 121.6 930 18 7240 0.26 0.30	8133 262.4 1990 62 16130 0.57 0.66	1936.5 64.55 730 9.5 3840 0.14 0.16	590.1 19.04 97 4.9 1170 0.04 0.05	314.3 10.14 38 4.3 623 0.02 0.03	173.9 5.797 43 2.5 345 0.01 0.01
STATIS	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 194	1 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	108.1 1283 1974 0.35 1957	123.6 906 1962 1.05 1957	107.4 1022 1983 0.88 1956	100.0 901 1974 1.05 1956	211.6 1209 1973 3.70 1989	443.1 1568 1960 3.61 1957	456.3 1937 1973 1.70 1956	472.0 1962 1959 6.88 2000	471.5 4305 1947 1.79 1977	254.6 3870 1993 1.48 1977	127.2 1546 1993 2.02 1957	149.7 1332 1993 1.05 1957

05487470 SOUTH RIVER NEAR ACKWORTH, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	87338.3	19166.2	
ANNUAL MEAN	239.3	52.51	251.9
HIGHEST ANNUAL MEAN			966 1993
LOWEST ANNUAL MEAN			16.1 1989
HIGHEST DAILY MEAN	6550 May 31	1990 May 12	31400 Jun 17 1990
LOWEST DAILY MEAN	4.8 Sep 5	2.5 Sep 27a	0.00 Sep 19 1956b
ANNUAL SEVEN-DAY MINIMUM	5.2 Aug 30	2.8 Sep 24	0.00 Sep 19 1956
MAXIMUM PEAK FLOW		3360 May 11	38100 Jun 17 1990
MAXIMUM PEAK STAGE		13.20 May 11	32.85 Jul 5 1981
INSTANTANEOUS LOW FLOW		2.0 Sep 30	0.00 Sep 19 1956b
ANNUAL RUNOFF (AC-FT)	173200	38020	182500
ANNUAL RUNOFF (CFSM)	0.52	0.11	0.55
ANNUAL RUNOFF (INCHES)	7.06	1.55	7.44
10 PERCENT EXCEEDS	577	89	479
50 PERCENT EXCEEDS	32	17	40
90 PERCENT EXCEEDS	11	5.0	3.3

a b e

Also Sept. 30. Also Sept. 30 to Oct. 13, 1956. Estimated.

05487500 DES MOINES RIVER NEAR RUNNELLS, IA

LOCATION.--Lat $41^{\circ}29^{\circ}19^{\circ}$, long $93^{\circ}20^{\circ}17^{\circ}$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ sec.12, T.77 N., R.22 W., Polk County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on State Highway 316, 0.2 mi downstream from South River River, 0.5 mi upstream from Camp Creek, 2.2 mi southeast of Runnells, 37.2 mi upstream from Red Rock Dam, and at mi 179.5.

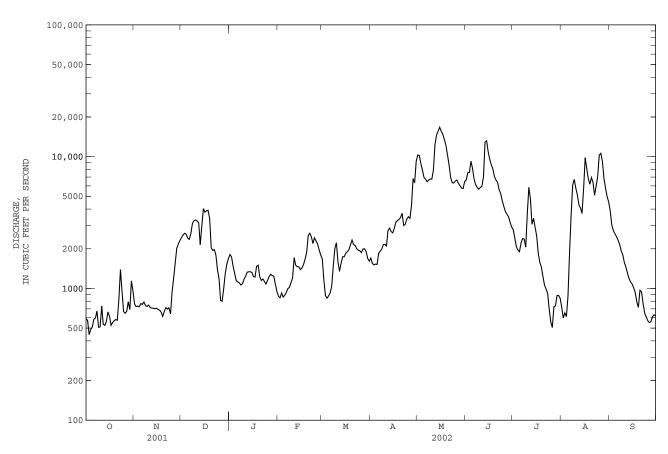
DRAINAGE AREA. -- 11,655 mi².

PERIOD OF RECORD. -- October 1985 to current year.

GAGE.--Water-stage recorder. Datum of gage is 700.00 ft above NGVD of 1929 (U.S. Army Corps of Engineers bench mark).

REMARKS.--Records good except those for estimated daily discharge, which are poor. Flow regulated by Saylorville Lake (station 05481630) 34.2 mi upstream. Stage-discharge relation is affected at times by backwater from Lake Red Rock (05488100). U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods occurred on May 31, 1903; June 14, 1947; June 26, 1947; and June 24, 1954. No gage height or discharge was determined. Gage height and discharge information is available for these floods at other sites on the Des Moines River.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	592	762	e2430	e1810	e871	1670	1700	10300	6650	2790	e720	3880
2	571 446	728 735	e2540 e2620	e1730 e1470	850 922	e1160 e883	1550 1510	10200 8840	7570 7600	2420 2070	e598 e652	3040 e2750
3 4	487	725	e2580	e1300	e860	e844	1530	7900	9230	1960	e611	e2600
5	510	767	e2410	e1140	e890	e877	1520	6950	8150	1900	e870	e2480
6	584	757	e2360	e1120	e932	922	1840	6740	6740	2210	e1850	e2330
7 8	596 675	788 e741	e2610 e3120	e1100 e1060	996 1020	1040 1470	1920 1990	6450 6640	6130 5840	2390 2370	e3580 e6070	e2160 e1930
9	507	730	e3120	e1000 e1090	1110	2000	2150	6760	5670	2060	e6720	e1930
10	511	748	e3310	e1180	1200	2220	2160	6750	5840	3700	5780	e1580
11	734	e716	e3250	e1240	1710	1590	2100	7910	5960	5850	5120 4300	e1450
12 13	e536 e525	e708 e708	e3140 2150	e1330 e1340	1500 1460	1350 1550	2750 2870	12300 14600	7020 12900	4790 3070	4080	e1310 e1190
14	e562	e700	2990	1340	1460	1740	2700	15600	13200	3410	3710	e1120
15	e663	e708	4030	1320	1390	1740	2640	16700	10900	2910	5740	e1080
16	e615 e525	e693 e685	3790	1230 1220	1430 1520	1850 1900	2850	15600	9540	2500 1850	e9810 8120	e1010 e930
17 18	e525 e551	e685 e661	3890 3910	1470	1670	1900	3190 3260	14800 13500	8660 8060	1580	6780	e930 e790
19	e570	e613	3390	1500	1880	2140	3340	12200	7060	1450	6180	e720
20	e581	e669	2040	1230	2520	2330	3450	10300	6640	1230	e6950	968
21	e573	e716	1940	1150	e2620	2150	3720	8690	6380	1060	6370	943
22 23	e832 1390	e697 e712	1970 1790	1180 1130	2470 2190	2120 2000	3000 3070	6990 6350	5620 5250	989 917	5100 5990	e770 e650
24	950	e642	e1390	1080	2420	1950	3360	6310	4620	699	7100	e610
25	e667	e942	e1180	1150	2290	1930	3500	6520	4200	557	10300	e570
26	e648	e1200	e812	1230	2170	1870	3400	6650	3840	506	10600	e550
27 28	670 791	e1560 2020	e800 e1000	1280 1250	e1960 e1790	1990 2000	4240 6820	6260 6020	3660 3500	726 737	9220 6840	e560 e610
29	692	2180	e1300	1240		1910	6320	5770	3180	883	5780	e630
30	1140	2310	e1530	1080		1690	9190	5740	2930	884	4980	e620
31	958		e1680	945		1610		6500		e843	4540	
TOTAL	20652	27321	75212	38935	44101	52466	93640	282840	202540	61311	165061	41641
MEAN	666.2	910.7	2426	1256	1575	1692	3121	9124	6751	1978	5325	1388
MAX	1390	2310	4030	1810	2620	2330	9190	16700	13200	5850	10600	3880
MIN	446	613	800	945	850	844	1510	5740	2930	506	598	550
AC-FT	40960	54190	149200	77230	87470	104100	185700	561000	401700	121600	327400	82590
CFSM	0.06	0.08	0.21	0.11	0.14	0.15	0.27	0.78	0.58	0.17	0.46	0.12
IN.	0.07	0.09	0.24	0.12	0.14	0.17	0.30	0.90	0.65	0.20	0.53	0.13
STATIST	rics of M	MINTHLY MI	EAN DATA	FOR WATER	YEARS 198	86 - 2002,	BY WATER	R YEAR (W	7)			
MEAN	3444	3692	3409	1931	3288	9058	13380	14770	15930	13610	6625	3827
MAX	18040	12660	10000	6237	8557	18390	30380	32740	40530	68140	32990	26320
(WY)	1987	1993	1992	1992	1997	1993	1993	1993	1991	1993	1993	1993
MIN	352	524	473	450	500	1136	773	1272	1777	840	534	503
(WY)	2001	1990	1990	1990	1990	2000	2000	2000	1988	1988	1988	2000

05487500 DES MOINES RIVER NEAR RUNNELLS, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS 1986 - 2002		
ANNUAL TOTAL	3028295		1105720				
ANNUAL MEAN	8297		3029		7764		
HIGHEST ANNUAL MEAN					22980	1993	
LOWEST ANNUAL MEAN					1200	1989	
HIGHEST DAILY MEAN	34000	Mar 25	16700	May 15	133000	Jul 11 1993	
LOWEST DAILY MEAN	340	Jan 2	446	Oct 3	297	Sep 17 2000	
ANNUAL SEVEN-DAY MINIMUM	397	Jan 1	541	Oct 1	319	Oct 16 2000	
MAXIMUM PEAK FLOW			16900	May 15	134000	Jul 11 1993	
MAXIMUM PEAK STAGE			51.90	May 15	82.88	Jul 11 1993	
ANNUAL RUNOFF (AC-FT)	6007000		2193000		5625000		
ANNUAL RUNOFF (CFSM)	0.71		0.26		0.67		
ANNUAL RUNOFF (INCHES)	9.67		3.53		9.05		
10 PERCENT EXCEEDS	24000		6950		21000		
50 PERCENT EXCEEDS	2150		1870		3770		
90 PERCENT EXCEEDS	580		665		638		

e Estimated

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA

LOCATION.--Lat $41^{\circ}36^{\circ}05^{\circ}$, long $93^{\circ}16^{\circ}14^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.5, T.78 N., R.21 W., Jasper County, Hydrologic Unit 07100008, on left bank downstream side of bridge on Highway 163.

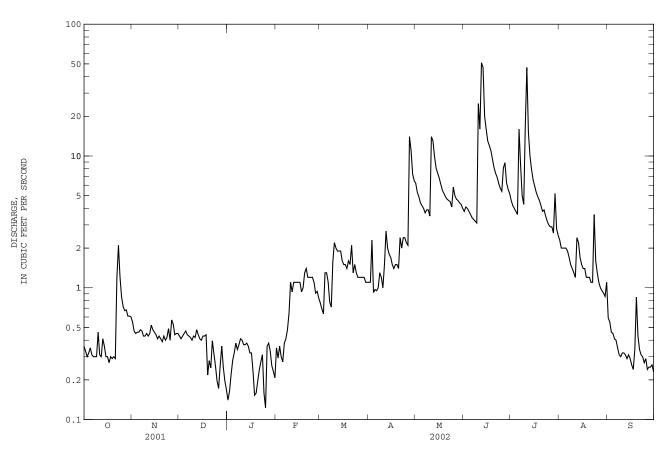
DRAINAGE AREA.--6.78 mi^2 .

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1995 to current year.

GAGE.--Water-stage recorder. Concrete control. Datum of gage is 826.33 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharge, which are poor. U.S. Geological Survey rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	0.36	0.55 0.47	0.43	e0.14 e0.16	0.35 e0.29	e0.77 0.69	1.1 1.1	6.2 5.3	3.8 4.1	4.6 4.2	2.3	0.59 0.55
3 4	0.30	0.45	0.43	e0.22 e0.28	0.36	e0.63 1.3	2.3 0.92	4.9	4.0	4.0	2.0	0.46 0.45
5	0.35	0.46	0.47	e0.32	e0.27	1.3	0.97	4.2	3.6	3.6	2.0	0.41
6 7	0.31	0.48 0.47	0.44	0.38 0.34	0.38 0.41	e1.1 e0.78	0.95 1.0	4.0 3.7	3.4	16 8.5	1.9 1.7	0.40
8	0.30	0.43	0.42	0.37	0.48	e0.71	1.3	3.9	3.2	5.0	1.5	0.31
9 10	0.30 0.46	0.43 0.45	0.40 0.43	0.41 0.40	0.64 1.1	e1.6 2.2	1.2	3.9 3.5	3.1 25	4.3 17	1.4	0.30 0.32
11	0.31	0.43	0.42	0.37	0.93	2.0	1.5	14	16	47	1.2	0.32
12 13	0.30	0.45 0.52	0.48	0.37	1.1 1.1	1.9 1.9	2.7	13 9.9	51 47	15 10	2.4	0.31
14 15	0.36 0.30	0.48 0.46	0.41 0.40	0.36 0.32	1.1 1.1	1.9 1.6	1.8 1.7	8.1 7.4	20 16	7.9 6.6	1.7 1.5	0.31 0.29
16	0.30 0.27	0.44	0.43	0.32	1.1 0.93	1.5 1.5	1.5	6.8	13	5.9 5.3	1.4	0.26
17 18	0.30	0.41	0.43	e0.23 e0.15	1.0	1.4	1.4	6.1 5.5	12 11	4.9	1.4	0.24
19 20	0.29 0.30	0.41 0.39	e0.22 e0.28	e0.16 e0.20	1.3 1.4	1.6 1.5	1.5 1.4	5.2 4.9	9.5 8.2	4.6 4.2	1.2 1.2	0.85 0.43
21 22	0.29 1.2	0.43	e0.25 e0.40	e0.24 e0.27	1.2 1.2	2.1	2.4	4.7 4.6	7.4 6.9	3.8 3.9	1.1	0.34 0.31
23	2.1	0.42	e0.32	0.31	1.2	1.5	2.4	4.5	6.2	3.5	3.6	0.30
24 25	1.2 0.85	0.49 0.40	e0.26 e0.20	e0.16 e0.12	1.2 1.1	1.3 1.2	2.4	4.1 5.8	5.7 5.4	3.2 3.0	1.6 1.3	0.27 0.29
26 27	0.72 0.67	0.57 0.53	e0.17 e0.26	0.36 0.38	0.91 0.94	1.2	2.1 14	5.0 4.7	8.1 8.9	2.9	1.1	0.24 0.25
28	0.68	0.44	0.36	0.33	e0.83	1.2	11	4.6	6.3	2.6	0.95	0.25
29 30	0.61 0.61	0.45 0.45	0.25 e0.20	e0.26 e0.23		1.2 1.1	7.3 6.5	4.4	5.6 5.2	5.2	0.91 0.86	0.26 0.23
31	0.60		e0.17	e0.21		1.1		4.0		2.5	1.1	
TOTAL MEAN	16.00 0.516	13.65 0.455	11.10 0.358	8.75 0.282	24.22 0.865	42.28 1.364	81.14 2.705	175.6 5.665	326.7 10.89	218.7 7.055	48.12 1.552	10.52 0.351
MAX MIN	2.1 0.27	0.57 0.39	0.48 0.17	0.41 0.12	1.4 0.27	2.2 0.63	14 0.92	14 3.5	51 3.1	47 2.5	3.6 0.86	0.85 0.23
AC-FT CFSM	32 0.08	27 0.07	22 0.05	17 0.04	48 0.13	84 0.20	161 0.40	348 0.84	648 1.61	434 1.04	95 0.23	21 0.05
IN.	0.09	0.07	0.06	0.05	0.13	0.23	0.45	0.96	1.79	1.20	0.26	0.06
STATIS'	TICS OF M	IONTHLY ME	AN DATA F	OR WATER	YEARS 199	6 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX	1.224	1.692 5.69	1.206	1.267	6.296 19.8	6.026 19.4	5.205 13.1	11.68 25.0	14.32 31.8	5.865 13.8	3.320 10.5	0.912 1.97
(WY) MIN	1999 0.20	1999 0.36	1998 0.12	1998 0.28	1996 0.87	2001	1998 1.41	1996 3.95	1998 6.61	1998 2.67	1999 1.07	1999
(WY)	1996	2001	2001	2002	2002	2000	1996	2001	1997	2001	2001	2000

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1996 - 2002
ANNUAL TOTAL	1578.11	976.78	
ANNUAL MEAN	4.324	2.676	4.901
HIGHEST ANNUAL MEAN			9.24 1998
LOWEST ANNUAL MEAN			2.68 2002
HIGHEST DAILY MEAN	87 Feb 25	51 Jun 12	210 May 24 1996
LOWEST DAILY MEAN	0.10 Jan 1	0.12 Jan 25	0.04 Jan 7 1996
ANNUAL SEVEN-DAY MINIMUM	0.18 Jan 1	0.20 Dec 29	0.07 Dec 18 2000
MAXIMUM PEAK FLOW		329 Jun 12	1350 Jun 18 1998
MAXIMUM PEAK STAGE		6.82 Jun 12	9.66 Jun 18 1998
INSTANTANEOUS LOW FLOW		0.10 Dec 29	0.00 Nov 10 1995
ANNUAL RUNOFF (AC-FT)	3130	1940	3550
ANNUAL RUNOFF (CFSM)	0.64	0.39	0.72
ANNUAL RUNOFF (INCHES)	8.66	5.36	9.82
10 PERCENT EXCEEDS	10	6.1	11
50 PERCENT EXCEEDS	0.93	1.1	2.0
90 PERCENT EXCEEDS	0.30	0.29	0.30

e Estimated

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1995 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: April 1995 to current year.
WATER TEMPERATURES: April 1995 to current year.
SUSPENDED-SEDIMENT DISCHARGE: May 1995 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.—
SPECIFIC CONDUCTANCE: Maximum daily, 801 microsiemens Feb. 17, 1997; minimum daily, 159 microsiemens May 24, 1996.
WATER TEMPERATURES: Maximum daily, 31.5°C July 31, 2001; minimum daily, 0.0°C many days during winter.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,130 mg/L July 22, 1998; minimum daily mean, 3 mg/L Feb. 2, 21, 2001.
SEDIMENT LOADS: Maximum daily, 1,080 tons May 24, 1996; minimum daily, 0.003 tons Nov. 28, 1995, Dec. 10-13, 2000, Jan. 4-7, 11, 12, 19, 23, 26, 28, Feb. 2, and Dec. 20, 2001.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum daily, 601 microsiemens July 29; minimum daily, 374 microsiemens Oct. 22. WATER TEMPERATURES: Maximum daily, 30.8°C June 3; minimum daily, 0.0°C many days during winter. SEDIMENT CONCENTRATIONS: Maximum daily mean, 339 mg/L Apr. 27; minimum daily mean, 3.1 mg/L Mar. 5. SEDIMENT LOADS: Maximum daily, 47 tons June 12; minimum daily, 0.003 tons Dec. 20.

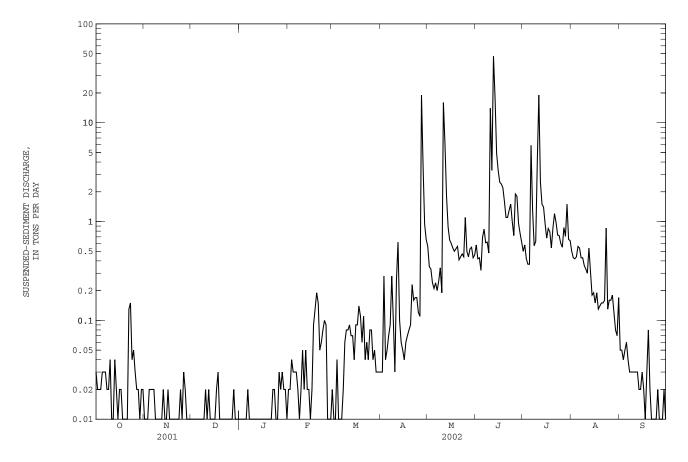
SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
DAY	OCT.	NOV	DEC	JAN	FEB	MAR	APK	MAY	JUN	JUL	AUG	SEP
1	482	499	412	456	508	471	464	535	539	546		525
2	407 489	 491	436 448	411 433	502 448	 495	436	526 506	531 539	526 559	544	466
3 4	409	428	431	517	465	508	464	531	528		566	
5	523	431	481	456	491	447	435	516	464	559	533	486
6	446	496	472	443	454	447	467	487	414		512	535
7	404	464	420	403	549	463	504	542	527		576	
8	472			459	506	436	552	531	482		504	
9 10	494 511	486 434	414 438	 457	528 552	470 477	514 468		526 439	493	531 595	482 454
10	211	434	430	437	332	4//	400		439		393	454
11	498	438	446	447	477	451	459		547	517		
12	486	438	477	445	465	432	538		527	547	544	
13 14	495 517	403	429 480	434 435	458 478	432 466	516 505	541	517 544	 553	587	540 566
15	436	486	426	404	456	469	491	533			554	526
16	456	402	415	435	489	479	488		516		595	
17 18	456 513	463	429 441	442 423	461 412	469 448	484 482	529 528	 497	492	534 567	476 541
19	213	399	437	443	412	448	482	528 535	497	551	567	541
20		403	438	478	475	462	479	463	561	501		576
21	486 374	427 456	443 472	506 411	472	473 441	524	541 537	545	466 596	505 547	574
22 23	521	456	472	411	452 469	441	522 516	495	503	458	54 / 581	
24	525	489	455	416	461		531	455	543	477	594	580
25	530	406	411	473	445	412		544			552	
26	520	478	547	427	484	453	489	550	535			495
27	477	478	438	462	502		481	532			458	
28	496	441	478	422	439	463	528	542	555	460	520	435
29 30	515	427	435	453		449	526	475		601	460	
31	497 503	482	461 449	407 489		436	550 	506 529		541 564	431	
J ±	202		447	407				262		204	42 T	

des moines river basin 321

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY INSTANTANEOUS VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1.9 20.1 16.4 4.8 0.0 1.1 0.8 12.0 25.9 26.7 2 14.7 20.1 0.0 1.7 13.2 22.4 7.5 4.6 6.6 0.8 0.0 30.8 10.1 21.5 23.3 25.6 4 11 2 12.0 1.1 10.4 8.7 15.5 9.7 23.6 24.3 5 1.5 13.8 14.4 0.6 1.9 10.1 9.7 ---23.6 6 7 4.5 10.1 7.3 0.0 1.4 0.4 11.6 14.5 22.3 27.6 ---14.7 17.2 6.2 1.4 1.5 1.8 8.5 8.4 12.5 ---22.2 ---8 15.7 2.0 3.0 23.4 16.1 2.9 ---9 13.7 10.0 0.8 0.0 15.6 ___ 22.6 26.2 1.3 ------10 5.7 ---25.1 22.0 15.1 9.8 0.6 1.1 17.2 10.7 17.5 11 16.6 3.6 1.2 1.0 6.2 ------___ ___ 18.6 0.0 12 13.9 12.9 10.5 1.6 8.3 12.2 ---25.1 6.1 19.3 9.0 21.5 20.7 13 1.6 15.1 16.1 19.2 15.8 ---20.6 14 10.4 5.8 0.8 3 4 22 2 9.8 21.9 9.8 24.6 ---15 9.5 16.8 5.3 0.1 4.5 ---17.7 7.4 22.7 22.9 6.2 0.3 21.3 16 ___ 13.8 4.4 ------22.5 15.0 ---22.8 21.7 1.9 17 6.4 2.2 5.3 18 ---13.8 0.0 7.6 11.4 23.8 17.5 17.2 ---19.8 22.3 19 1 2 0.3 7 6 6 1 14.4 21.2 ---8.8 2.8 12.9 27.6 ---20 0.1 0.0 11.4 15.4 ---2.3 9.2 15.3 12.0 3.0 17.8 21 9.3 3.1 3.6 ---26.9 25.9 17.6 22 9.9 2.6 4.9 2.9 12.6 20.4 26.1 2.3 ---16.7 14.2 2.8 ---23 0.0 0.7 3.1 21.2 16.2 23.8 23.8 12.5 24 23.4 13.5 0.0 1.3 13.1 22.3 25 4.0 6.6 0.8 2.2 1.7 0.5 14.7 25.6 7.1 7.1 12.3 7.8 20.5 19.2 26 0.0 3.5 0.0 8.4 7.7 7.0 16.0 1.9 18.5 17.9 6.2 9.0 3.2 1.5 1.3 20.3 19.2 28 0.9 11.0 22.3 21.6 20.0 29 26.4 ---10.0 23.8 ------30 0.0 10.1 6.6 6.6 11.6 13.6 0.0 0.6 ___ 22.1 25.4 24.4 ___


SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB:	ER	DECEMBI	ER	JANUA	RY	FEBRUA	RY	MARCI	Н
1 2 3 4 5	25 20 26 18 30	0.03 0.02 0.02 0.02 0.03	9.5 6.6 6.9 18 18	0.01 0.00 0.00 0.02 0.02	5.8 7.5 7.4 9.9	0.00 0.00 0.00 0.01 0.01	15 16 16 13 14	0.00 0.00 0.00 0.00 0.01	16 26 37 40 43	0.02 0.02 0.04 0.03 0.03	9.5 5.7 6.9 11 3.1	0.02 0.01 0.01 0.04 0.01
6 7 8 9 10	39 39 23 19 28	0.03 0.03 0.02 0.02 0.04	14 14 7.8 5.2 8.1	0.02 0.02 0.00 0.00 0.00	5.9 7.4 7.7 13 14	0.00 0.00 0.00 0.01 0.02	22 13 9.7 11 7.1	0.02 0.01 0.00 0.01 0.00	31 15 6.3 9.8 16	0.03 0.02 0.00 0.02 0.05	4.0 3.6 10 15	0.01 0.00 0.02 0.06 0.08
11 12 13 14 15	15 18 30 19 17	0.01 0.01 0.04 0.02 0.01	4.3 7.3 13 7.9 12	0.00 0.00 0.02 0.01 0.01	11 16 9.9 6.5 6.8	0.01 0.02 0.01 0.00 0.00	8.1 8.4 9.7 13 10	0.00 0.00 0.00 0.01 0.00	9.5 18 7.5 6.8 4.6	0.02 0.05 0.02 0.02 0.01	13 16 13 13 9.4	0.08 0.09 0.07 0.07 0.04
16 17 18 19 20	24 21 13 11 11	0.02 0.02 0.01 0.00 0.00	13 5.7 8.6 11 3.4	0.02 0.00 0.01 0.01 0.00	11 18 27 18 4.2	0.01 0.02 0.03 0.01 0.00	14 9.0 11 22 19	0.01 0.00 0.00 0.00 0.01	8.2 33 48 52 39	0.02 0.09 0.13 0.19 0.15	22 23 35 26 15	0.09 0.09 0.14 0.11 0.06
21 22 23 24 25	10 27 24 13 20	0.00 0.13 0.15 0.04 0.05	6.3 5.1 6.8 14 5.5	0.00 0.00 0.00 0.02 0.00	11 14 8.1 5.4	0.00 0.01 0.00 0.00 0.00	17 28 20 17 24	0.01 0.02 0.02 0.00 0.00	16 20 25 31 26	0.05 0.06 0.08 0.10 0.09	16 9.7 14 11 23	0.11 0.04 0.06 0.04 0.08
26 27 28 29 30 31	15 12 11 5.9 11	0.03 0.02 0.02 0.00 0.02 0.02	14 14 9.7 5.9 3.6	0.03 0.02 0.01 0.00 0.00	14 7.4 16 6.4 6.9 7.6	0.00 0.00 0.02 0.00 0.00	27 23 33 26 29 15	0.03 0.02 0.03 0.02 0.02	4.5 4.6 4.5 	0.01 0.01 0.01 	26 12 14 11 11	0.08 0.04 0.05 0.03 0.03
TOTAL	և	0.88		0.25		0.19		0.25		1.37		1.69

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

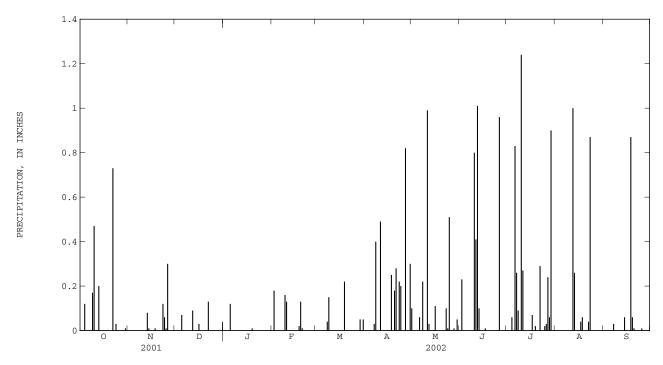
SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	IL	MAY		JUNE		JULY		AUGUS'	T	SEPTEM	BER
1 2 3 4 5	11 9.2 25 18 21	0.03 0.03 0.28 0.04 0.05	33 25 25 20 18	0.56 0.35 0.33 0.24 0.21	57 37 40 31 72	0.58 0.42 0.43 0.32 0.69	40 51 39 36 38	0.50 0.58 0.42 0.37 0.37	82 79 78 84 106	0.50 0.43 0.42 0.44 0.56	30 30 36 38 52	0.05 0.05 0.04 0.05 0.06
6 7 8 9 10	28 31 71 29 10	0.07 0.09 0.28 0.10 0.03	22 20 24 31 20	0.24 0.20 0.25 0.34 0.19	90 69 72 58 140	0.84 0.61 0.62 0.48 14.0	75 57 42 55 63	5.9 1.3 0.57 0.63 4.0	106 95 104 97 90	0.54 0.43 0.43 0.36 0.33	37 36 34 39 34	0.04 0.03 0.03 0.03 0.03
11 12 13 14 15	38 78 19 11 10	0.26 0.62 0.10 0.06 0.05	291 175 65 40 33	16.0 6.1 1.8 0.88 0.65	75 146 136 89 79	3.3 47.0 18.0 4.9 3.3	126 61 55 66 53	19.0 2.5 1.5 1.4 0.95	91 75 51 40 47	0.30 0.54 0.31 0.18 0.19	33 32 31 29 32	0.03 0.03 0.02 0.02 0.03
16 17 18 19 20	10 16 17 20 23	0.04 0.06 0.07 0.08 0.09	33 33 34 38 42	0.60 0.54 0.50 0.53 0.56	72 74 77 64 48	2.5 2.4 2.2 1.6 1.1	43 59 59 44 77	0.68 0.85 0.79 0.54 0.86	39 50 37 44 46	0.15 0.19 0.13 0.14 0.15	24 20 30 33 19	0.02 0.01 0.03 0.08 0.02
21 22 23 24 25	34 30 25 25 21	0.23 0.16 0.17 0.17	32 35 39 40 69	0.41 0.44 0.47 0.44 1.1	55 70 92 66 49	1.1 1.3 1.5 1.0 0.72	114 90 78 83 73	1.2 0.98 0.73 0.72 0.60	50 55 76 32 46	0.15 0.16 0.86 0.13 0.16	14 13 14 17 21	0.01 0.01 0.01 0.01 0.02
26 27 28 29 30 31	20 339 112 47 37	0.11 19.0 3.7 0.94 0.66	37 35 43 46 36 43	0.50 0.44 0.53 0.55 0.43 0.46	70 73 56 50 44	1.9 1.8 0.96 0.76 0.62	70 110 102 92 87 96	0.55 0.87 0.71 1.5 0.66 0.64	54 64 47 33 31 52	0.16 0.18 0.12 0.08 0.07 0.17	11 12 19 24 11	0.00 0.00 0.01 0.02 0.00
TOTAL YEAR		27.69 248.73		36.84		116.95		52.87		8.96		0.79

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- July 1995 to current year.


INSTRUMENTATION.--Tipping bucket rain gage.

REMARKS.--Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREMES FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.53 in., July 17, 1996.

EXTREMES FOR CURRENT YEAR. -- Maximum daily accumulation, 1.24 in., July 10.

PRECIPITATION from DCP, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.0 0.0 0.0 0.12 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.12	0.0 0.18 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.10 0.0 0.0 0.0 0.0	0.0 0.23 0.0 0.0	0.0 0.0 0.0 0.06 0.06	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.17 0.47	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.16 0.13	0.0 0.0 0.04 0.15 0.0	0.0 0.03 0.40 0.0	0.06 0.0 0.22 0.0	0.0 0.0 0.0 0.0 0.80	0.83 0.26 0.09 0.0 1.24	0.0 0.0 0.0 0.0	0.0 0.03 0.0 0.0
11 12 13 14 15	0.0 0.0 0.20 0.0	0.0 0.0 0.08 0.01 0.0	0.0 0.09 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.49 0.0 0.0 0.0 0.0	0.99 0.03 0.0 0.0	0.41 1.01 0.10 0.0 0.0	0.27 0.0 0.0 0.0 0.0	0.0 1.00 0.26 0.0 0.0	0.0 0.0 0.0 0.06 0.0
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.01 0.0 0.0	0.03 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.01	0.0 0.0 0.02 0.13 0.01	0.0 0.0 0.0 0.22 0.0	0.0 0.0 0.25 0.0 0.18	0.11 0.0 0.0 0.0 0.0	0.0 0.01 0.0 0.0	0.0 0.07 0.0 0.02 0.0	0.0 0.04 0.06 0.0	0.0 0.0 0.87 0.06 0.01
21 22 23 24 25	0.0 0.73 0.0 0.03 0.0	0.0 0.0 0.12 0.06 0.01	0.0 0.13 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.28 0.0 0.22 0.20 0.0	0.0 0.0 0.10 0.01 0.51	0.0 0.0 0.0 0.0	0.0 0.29 0.0 0.0	0.0 0.04 0.87 0.0 0.0	0.0 0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0	0.30 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.0 0.05 0.0 0.05	0.0 0.82 0.0 0.0 0.30	0.0 0.0 0.01 0.0 0.05 0.0	0.96 0.0 0.0 0.0 0.0	0.03 0.24 0.06 0.90 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
TOTAL MEAN MAX MIN	1.73 0.06 0.73 0.00	0.59 0.02 0.30 0.00	0.32 0.01 0.13 0.00	0.13 0.00 0.12 0.00	0.63 0.02 0.18 0.00	0.51 0.02 0.22 0.00	3.17 0.11 0.82 0.00	2.19 0.07 0.99 0.00	3.52 0.12 1.01 0.00	4.38 0.14 1.24 0.00	2.27 0.07 1.00 0.00	1.04 0.03 0.87 0.00

05487550 WALNUT CREEK NEAR VANDALIA, IA

LOCATION.--Lat $41^{\circ}32^{\circ}13^{\circ}$, long $93^{\circ}15^{\circ}32^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec.27, T.78 N., R.21 W., Jasper County, Hydrologic Unit 07100008, on right bank downstream side of bridge.

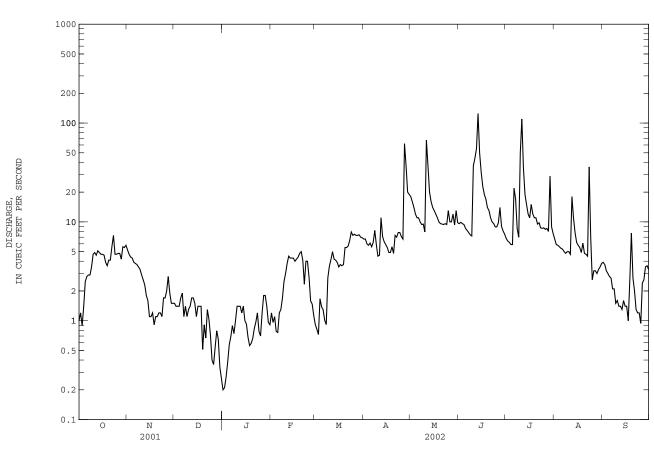
DRAINAGE AREA.--20.3 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1994 to current year.

GAGE.--Water-stage recorder. Concrete control. Datum of gage is 785.15 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharge, which are poor. U.S. Geological Survey rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1.0 1.2	e5.2 e4.7	$\frac{1.5}{1.4}$	0.20 0.21	1.2 0.96	e0.91 e0.82	6.7 6.7	18 16	9.6 9.9	6.8 6.4	6.7 5.9	3.9 3.7
3 4	0.89 1.4	e4.4 e4.3	$\begin{smallmatrix}1.4\\1.4\end{smallmatrix}$	0.27 0.38	1.1 0.78	e0.73 e1.7	6.0 5.8	14 12	9.6 9.4	6.2 5.9	5.8 5.6	3.2 3.0
5	2.5	e3.9	1.7	0.57	0.76	e1.4	6.1	11	8.6	5.9	5.4	2.8
6 7	2.8	e3.8 e3.7	1.9 1.1	0.69 0.89	1.2	e1.3 e1.0	5.6 6.2	11 10	8.2 7.8	22 17	5.3 5.0	2.7 2.1
8 9	2.9	e3.5 e3.3	1.4 1.1	0.74 1.0	1.7	e0.91 e2.7	8.2 5.9	9.4 9.5	7.4 7.2	8.6 7.0	4.8 5.0	2.1 1.5
10	4.7	e2.9	1.3	1.4	e3.0	e3.6	4.5	7.9	37	50	5.0	1.6
11 12	4.9 4.6	e2.6 e2.3	1.4 1.7	1.4 1.4	e3.8 4.5	e4.2 5.0	4.6 11	67 37	44 55	110 35	4.7 18	1.4
13 14	5.1 4.9	e1.8 e1.6	1.7	1.2	4.3	4.2 4.1	7.1 6.3	20 16	125 50	19 15	11 7.8	1.3
15	4.7	1.1	1.1	1.0	4.3	3.9	5.9	14	32	12	6.2	1.4
16 17	4.7	1.1	1.4	0.92	e4.0	3.5 3.7	5.5	13 12	23 19	11 15	5.8 5.5	1.4
18	4.6 3.9	1.2 0.91	1.4	0.68	e4.2 e4.4	3.6	4.9	11	17	12	4.9	2.6
19 20	3.6 4.1	1.1 1.1	e0.51 e0.91	0.59 0.66	4.8 5.0	3.7 5.5	5.6 4.8	10 9.6	14 13	11 11	6.1 4.8	7.7 2.7
21	4.1	1.2	e0.67	0.83	4.1	5.5	7.3	9.5	11	9.5	4.7	2.0
22 23	5.6 7.3	1.2 1.1	e1.3 e1.0	0.97 1.2	e2.3 4.0	5.7 6.5	7.0 7.8	9.4 9.6	10 9.6	9.8 8.7	4.5 36	1.3
24 25	$\frac{4.7}{4.7}$	1.7 1.7	0.71 0.40	0.78 0.70	4.0 e2.7	7.9 7.3	7.8 7.1	9.4 13	8.9 8.9	8.6 8.7	e7.0 e2.6	1.2 0.94
26	4.8	2.0	0.36	1.2	e1.6	7.5	6.7	10	9.8	8.4	e3.2	2.4
27 28	4.8 4.2	2.8 1.9	0.54 0.79	1.8 1.8	e1.5 e1.1	7.3 7.3	62 37	10 12	14 9.0	8.6 8.0	e3.2 e3.0	2.6 3.5
29 30	5.6 5.5	1.5 1.5	0.65 0.34	1.4 0.96		7.4 7.0	20 19	9.3 13	8.1 7.5	29 8.9	3.3 3.5	3.6 3.3
31	e5.8		0.26	0.91		6.9		9.8		7.6	3.8	
TOTAL MEAN	125.99 4.064	71.11 2.370	34.24 1.105	28.71 0.926	79.40 2.836	132.77 4.283	304.0 10.13	443.4 14.30	603.5 20.12	502.6 16.21	204.1 6.584	71.14 2.371
MAX	7.3	5.2	1.9	1.8	5.0	7.9	62	67	125	110	36	7.7
AC-FT	250	141	68	57	157	263	603	879	1200	997	405	141
IN.	0.20	0.12	0.05	0.05	0.14	0.21	0.56	0.70	1.11	0.80	0.32	0.12
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 199	95 - 2002,	BY WATER	YEAR (WY)			
MEAN	3.201	4.220	3.104	3.298	19.47	18.64	20.50	41.41	34.77	16.60	8.256	2.487
(WY)	1999	1999	1998	1998	1996	2001	1995	1996	1998	1998	1999	1999
MIN (WY)	0.21 1995	0.49 1995	0.27 2001	0.93 2002	2.84 2002	3.82 2000	5.62 1996	14.3 2002	15.2 1995	6.40 2001	2.44 1997	0.89 1997
MAX MIN AC-FT CFSM IN. STATIS MEAN MAX (WY) MIN	7.3 0.89 250 0.20 0.23 TICS OF M 3.201 7.81 1999 0.21	5.2 0.91 141 0.12 0.13 ONTHLY ME 4.220 13.5 1999 0.49	1.9 0.26 68 0.05 0.06 AN DATA F 3.104 8.41 1998 0.27	1.8 0.20 57 0.05 0.05 OR WATER 3.298 10.3 1998 0.93	5.0 0.76 157 0.14 0.15 YEARS 199 19.47 58.8 1996 2.84	7.9 0.73 263 0.21 0.24 95 - 2002, 18.64 66.3 2001 3.82	62 4.5 603 0.50 0.56 BY WATER 20.50 47.4 1995 5.62	67 7.9 879 0.70 0.81 YEAR (WY 41.41 86.1 1996 14.3	125 7.2 1200 0.99 1.11) 34.77 97.8 1998 15.2	110 5.9 997 0.80 0.92 16.60 42.4 1998 6.40	36 2.6 405 0.32 0.37 8.256 31.2 1999 2.44	7. 0.9 14 0.1 0.1 2.48 7.0 199 0.8

05487550 WALNUT CREEK NEAR VANDALIA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1995 - 2002
ANNUAL TOTAL	5539.85	2600.96	
ANNUAL MEAN	15.18	7.126	14.62
HIGHEST ANNUAL MEAN			27.5 1998
LOWEST ANNUAL MEAN			7.13 2002
HIGHEST DAILY MEAN	255 Feb 25	125 Jun 13	573 May 24 1996
LOWEST DAILY MEAN	0.16 Sep 5	0.20 Jan 1	0.10 Dec 7 1994
ANNUAL SEVEN-DAY MINIMUM	0.35 Aug 31	0.32 Dec 30	0.14 Dec 18 2000
MAXIMUM PEAK FLOW		398 Jun 12	1380 Jun 14 1998
MAXIMUM PEAK STAGE		5.38 Jun 12	10.85 Jun 14 1998
INSTANTANEOUS LOW FLOW			0.01 Jan 8 1996
ANNUAL RUNOFF (AC-FT)	10990	5160	10590
ANNUAL RUNOFF (CFSM)	0.75	0.35	0.72
ANNUAL RUNOFF (INCHES)	10.15	4.77	9.78
10 PERCENT EXCEEDS	38	13	32
50 PERCENT EXCEEDS	4.3	4.4	5.6
90 PERCENT EXCEEDS	0.80	0.93	0.69

e Estimated

05487550 WALNUT CREEK NEAR VANDALIA, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1995 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: March 1995 to current year.

WATER TEMPERATURES: March 1995 to current year. SUSPENDED-SEDIMENT DISCHARGE: March 1995 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 771 microsiemens Oct. 10, 1995; minimum daily, 137 microsiemens Feb. 18, 1997.
WATER TEMPERATURES: Maximum daily, 33.5°C Aug. 1, 2001; minimum daily, 0.0°C many days in winter.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,120 mg/L Mar. 30, 1998; minimum daily mean, 4.0 mg/L Feb. 15, 17, 19, 21,

2001.
SEDIMENT LOADS: Maximum daily, 4,600 tons Mar. 30, 1998; minimum daily, 0.01 tons Feb. 2-3, 1996, Dec. 23, 29-31, 2000, Jan. 1, 11, Sept. 5, 2001, Jan. 1, 3, 15, 17, and Sept. 25, 2002.

THEMES FOR CURRENT YEAR. -SPECIFIC CONDUCTANCE: Maximum daily, 568 microsiemens Dec. 28; minimum daily, 304 microsiemens Apr. 27.
WATER TEMPERATURES: Maximum daily, 29.4°C July 21; minimum daily, 0.0°C many days in winter.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,430 mg/L May 11; minimum daily mean, 5.1 mg/L Jan. 15.
SEDIMENT LOADS: Maximum daily, 583 tons June 13; minimum daily, 0.01 tons Jan. 1, 3, 15, 17, and Sept. 25.

SPECIFIC CONDUCTANCE, in MICROSIEMENS/CM, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

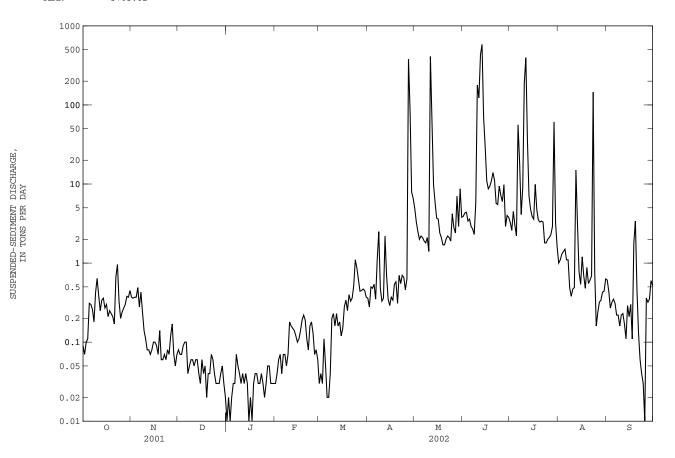
DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	409 443 443 438	423 451 406 435	385 363 384 378 391	493 459 393 420 536	490 448 442 456 517	523 459 441 455	428 449 391 415	462 470 476 459	481 486 484 483	539 541 537 539 533	543 499 488 494	 503 518 511
6 7 8 9 10	418 408 458 421	418 428 413 418 414	404 420 355 370 381	468 452 382 405	444 458 491 487 380	440 435 431 429 471	441 441 432 431 437	 461 	494 476 469 498 390	 509 343 	516 463 561 563 545	421 475 444 438
11 12 13 14 15	436 413 441 421 459	414 412 412 380	416 386 406 444 367	408 422 387 440 446	508 462 443 456 419	442 453 443 449 444	438 481 454 440 438	458 465 483	334 510 445 	328 504 513 519	 347 493 532 548	484 518 416 441
16 17 18 19 20	456 484 459 	387 404 370 444	393 393 377 463 433	411 468 409 443 400	414 441 442 417 429	451 461 410 438 437	424 443 439 430	469 477 482 490	518 518 522	524 488 544	498 529 514 506	505 471 390 466
21 22 23 24 25	474 431 453 481 499	361 382 434 419	405 438 480	389 413 406 407 429	455 458 472 443 458	449 437 456 428	434 468 430 447 464	483 476 482 445	529 543 533 513	522 516 550 510	442 498 509	
26 27 28 29 30 31	493 491 441 440 466 443	432 416 411 436 427	458 485 568 468 415 503	441 371 419 421 414 460	467 466 453 	454 433 433	419 304 450 457 442	 488 408 479 447 478	525 529 544 	 546 315 535 533	503 497 415 481 420	480 489 487

WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

05487550 WALNUT CREEK NEAR VANDALIA, IA--Continued

		WATER T	EMPERATURE			WATER YEZ PANTANEOU:		R 2001 TO	SEPTEMBE	R 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19.7 18.8 21.6 11.1	18.6 11.9 12.1 12.4	4.5 6.1 6.9 11.1 15.4	0.0 0.1 0.5 1.1	1.3 1.2 0.5 0.5 2.3	0.5 0.2 0.6 1.7	3.0 6.6 9.3 11.4	14.3 15.4 10.6 13.5	23.1 17.8	28.3 27.1 24.8 26.4 26.0	29.0 25.6 23.6 22.7	23.4 20.6 22.9
6 7 8 9 10	5.7 16.0 18.0 13.9	10.4 17.1 11.2 9.4 10.5	7.4 5.9 5.1 3.1 3.7	0.2 1.6 1.3 0.5	0.8 2.5 1.1 0.7 0.4	0.3 0.9 0.9 0.0 1.0	11.5 10.0 10.1 14.5 19.6	13.5 	 	24.2 	20.3 21.7 24.7 24.1 25.4	25.6 25.9 25.7 22.8
11 12 13 14 15	17.8 16.2 13.6 10.1 9.4	5.6 11.0 15.7 13.6	2.9 5.8 3.2 4.8 5.2	0.6 0.0 3.4 0.6 0.3	1.0 1.1 1.7 1.3	3.0 6.9 10.5 3.5 8.9	17.9 12.5 14.8 22.1 25.3	10.1 16.9 11.3	 	18.5 20.5 18.3 23.7	22.7 19.3 23.1 22.7	17.3 20.3 18.9 18.0
16 17 18 19 20	 	12.5 13.7 9.6 8.7	5.8 4.6 4.2 1.5 0.0	0.1 1.4 0.0 0.3 0.0	3.2 1.7 1.9 5.4 2.9	7.6 5.6 10.8 6.6 11.7	24.6 22.2 24.6 17.9	12.8 18.4 14.7 14.8	 	26.5 24.6 28.7	21.6 21.6 22.6 18.3	20.3 19.6 20.5 18.4
21 22 23 24 25	 8.3	9.2 6.3 12.3 7.4	3.8 0.0 0.3	2.4 0.6 1.6 1.3 2.7	3.5 4.5 2.6 7.6 0.5	4.2 4.1 3.5 0.2	9.4 16.7 20.4 12.4 11.5	18.5 18.2 14.5 16.1	26.8	29.4 24.1 25.6 22.9	26.4 23.7 24.7	
26 27 28 29 30 31	6.6 5.9 7.3 12.2 10.0 13.9	7.4 5.1 3.4 4.3 5.6	0.0 0.0 1.6 0.0 0.0	2.5 3.6 0.9 0.4 0.0	0.0 1.8 2.7 	8.3 9.0 6.7	15.2 8.6 9.3 17.9 11.6	16.9 23.0 19.5 22.1 25.2	25.5 25.3 23.1	25.7 23.7 26.2	20.4 24.0 23.3 21.2 22.9	15.6 17.4 16.8


SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO:	BER	NOVEMB:	ER	DECEMB:	ER	JANUA	RY	FEBRUA	RY	MARCI	Н
1	32	0.09	26	0.37	20	0.08	20	0.01	8.1	0.03	11	0.03
2	23	0.07	28	0.36	18	0.07	27	0.02	15	0.04	17	0.04
3	36	0.10	31	0.37	19	0.07	19	0.01	21	0.06	17	0.03
4	27	0.11	32	0.37	23	0.09	16	0.02	36	0.07	24	0.11
5	45	0.31	47	0.49	23	0.10	18	0.03	19	0.04	14	0.05
6	39	0.30	27	0.28	19	0.10	18	0.03	21	0.07	6.3	0.02
7	33	0.26	43	0.43	12	0.04	29	0.07	21	0.07	6.1	0.02
8	23	0.18	25	0.24	14	0.05	25	0.05	12	0.05	15	0.04
9	43	0.42	16	0.14	19	0.06	16	0.04	10	0.07	28	0.20
10	50	0.64	14	0.11	17	0.06	8.7	0.03	22	0.18	24	0.23
11	29	0.39	12	0.08	14	0.05	9.8	0.04	16	0.16	14	0.16
12	20	0.25	13	0.08	13	0.06	8.1	0.03	12	0.15	17	0.23
13	25	0.34	15	0.07	13	0.06	12	0.04	12	0.14	14	0.16
14	27	0.36	18	0.08	11	0.04	7.0	0.03	11	0.12	16	0.18
15	21	0.27	34	0.10	11	0.03	5.1	0.01	8.6	0.10	11	0.12
16	23	0.30	32	0.10	15	0.06	7.1	0.02	10	0.11	16	0.15
17	17	0.21	30	0.09	10	0.04	7.1	0.01	12	0.14	28	0.28
18	24	0.25	27	0.07	13	0.05	22	0.03	16	0.19	35	0.34
19	24	0.23	44	0.14	11	0.02	24	0.04	17	0.22	26	0.25
20	19	0.21	20	0.06	17	0.04	21	0.04	14	0.19	27	0.40
21	15	0.17	19	0.06	23	0.04	16	0.03	9.8	0.11	22	0.33
22	42	0.67	23	0.07	20	0.07	11	0.03	13	0.08	23	0.36
23	46	0.96	20	0.06	22	0.06	11	0.04	15	0.16	29	0.52
24	26	0.33	18	0.08	19	0.04	12	0.03	17	0.18	52	1.1
25	16	0.20	15	0.07	29	0.03	13	0.02	18	0.13	44	0.87
26 27 28 29 30 31	18 21 26 25 25 29	0.24 0.27 0.30 0.38 0.37	20 21 13 13 18	0.12 0.17 0.07 0.05 0.07	27 20 20 31 33 24	0.03 0.03 0.04 0.05 0.03 0.02	9.5 11 9.6 8.4 10	0.03 0.05 0.05 0.03 0.03	16 19 19 	0.07 0.08 0.06 	30 22 23 23 24 20	0.62 0.44 0.45 0.47 0.45 0.37
TOTA	L	9.63		4.85		1.61		0.97		3.07		9.02

05487550 WALNUT CREEK NEAR VANDALIA, IA--Continued

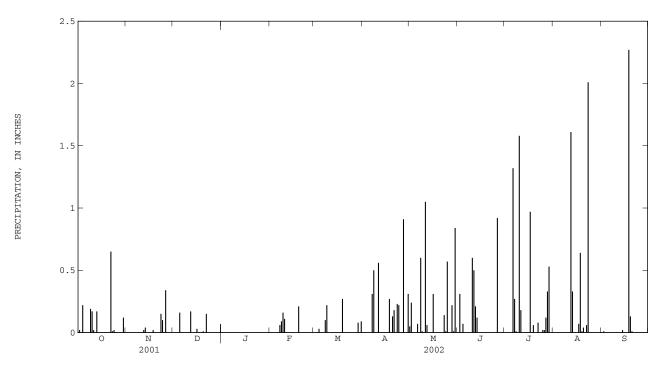
SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APR	IL	MAY		JUNE		JULY		AUGUS	Т	SEPTEM	BER
1 2 3 4 5	20 16 31 30 33	0.36 0.28 0.50 0.48 0.54	98 76 66 62 72	4.9 3.3 2.5 2.0 2.2	149 160 168 133 156	3.9 4.3 4.4 3.4 3.6	180 153 270 186 137	3.3 2.6 4.5 3.0 2.2	57 70 83 94 99	1.0 1.1 1.3 1.4	58 44 31 40 46	0.61 0.44 0.27 0.32 0.35
6 7 8 9 10	23 62 127 30 27	0.35 1.1 2.5 0.48 0.33	72 69 70 80 67	2.1 1.9 1.8 2.1 1.4	130 130 116 300 1130	2.9 2.7 2.3 5.8 178	385 350 174 471 881	56.0 19.0 4.1 8.9	76 82 38 28 35	1.1 1.1 0.49 0.38 0.47	43 40 39 40 51	0.31 0.22 0.22 0.16 0.22
11 12 13 14 15	27 74 36 20 18	0.36 2.2 0.69 0.35 0.29	1430 520 177 136 101	411 63.0 9.8 5.8 3.7	689 729 1240 501 333	123 431 583 69.0 30.0	1190 337 137 120 121	396 36.0 7.1 4.8 3.9	39 213 104 35 32	0.49 15.0 3.1 0.77 0.54	62 47 32 65 54	0.23 0.17 0.11 0.29 0.21
16 17 18 19 20	25 26 41 37 24	0.37 0.34 0.54 0.58 0.31	100 76 72 62 68	3.6 2.4 2.1 1.7	187 168 211 285 426	11.0 8.7 9.4 11.0 14.0	122 195 142 120 116	3.6 9.9 4.7 3.5 3.3	77 47 36 51 43	1.2 0.69 0.48 0.88 0.55	58 42 71 122 57	0.30 0.11 1.8 3.4 0.46
21 22 23 24 25	35 29 33 32 24	0.70 0.55 0.70 0.66 0.46	77 86 81 75 118	2.0 2.2 2.1 1.9 4.2	352 203 216 390 300	11.0 5.7 5.5 9.4 7.2	133 123 76 76 84	3.4 3.3 1.8 1.8	49 57 512 42 23	0.61 0.69 145 0.79 0.16	23 17 13 9.3 5.6	0.13 0.06 0.04 0.03 0.01
26 27 28 29 30 31	35 1340 666 143 125	0.63 378 85.0 7.9 6.6	103 86 190 117 216 145	2.8 2.4 7.0 2.9 8.7 3.8	225 214 120 180 187	6.0 9.8 2.9 4.0 3.8	93 101 130 465 129 80	2.1 2.3 2.9 61.0 3.2 1.6	28 37 42 48 47 62	0.24 0.32 0.34 0.43 0.44 0.63	45 42 36 63 59	0.36 0.32 0.35 0.60 0.52
TOTA YEAR		494.15 3705.61		569.0		1566.7		850.8		183.19		12.62

05487550 WALNUT CREEK NEAR VANDALIA, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- April 1995 to current year.


INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.--Records good except for the winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREMES FOR PERIOD OF RECORD.--Maximum daily accumulation, 4.72 in., May 9, 1996.

EXTREMES FOR CURRENT YEAR. -- Maximum daily accumulation, 2.27 in., Sept. 18.

PRECIPITATION, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.0 0.02 0.0 0.22 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.16	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.03	0.0 0.0 0.0 0.0	0.05 0.24 0.0 0.0	0.0 0.31 0.0 0.07	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.01 0.0 0.0 0.0
6 7 8 9 10	0.0 0.0 0.0 0.19 0.17	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.06 0.09 0.16 0.11	0.0 0.0 0.10 0.22 0.0	0.0 0.31 0.50 0.0	0.07 0.0 0.60 0.01 0.0	0.0 0.0 0.0 0.0 0.60	1.32 0.27 0.01 0.0 1.58	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	0.02 0.0 0.17 0.0 0.0	0.0 0.02 0.04 0.0	0.0 0.17 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.56 0.0 0.0 0.0 0.0	1.05 0.06 0.0 0.0	0.50 0.21 0.12 0.0 0.0	0.18 0.0 0.0 0.0 0.0	0.0 1.61 0.33 0.0 0.0	0.0 0.0 0.0 0.02 0.02
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.02 0.0	0.03 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.21	0.0 0.0 0.0 0.27 0.0	0.0 0.0 0.27 0.0 0.13	0.31 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.97 0.0 0.06 0.0	0.0 0.07 0.64 0.01 0.04	0.0 0.0 2.27 0.13 0.01
21 22 23 24 25	0.0 0.65 0.01 0.02 0.0	0.0 0.0 0.15 0.10 0.0	0.0 0.15 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.18 0.0 0.23 0.22 0.0	0.0 0.0 0.14 0.01 0.57	0.0 0.0 0.0 0.0	0.0 0.08 0.0 0.0 0.0	0.0 0.06 2.01 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.12 0.0	0.34 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 	0.0 0.0 0.0 0.08 0.0 0.09	0.0 0.91 0.0 0.0 0.31	0.0 0.0 0.22 0.01 0.84 0.0	0.92 0.0 0.0 0.0 0.0	0.02 0.12 0.33 0.53 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
TOTAL MEAN MAX MIN	1.59 0.05 0.65 0.00	0.67 0.02 0.34 0.00	0.52 0.02 0.17 0.00	0.0 0.00 0.00 0.00	0.63 0.02 0.21 0.00	0.79 0.03 0.27 0.00	3.62 0.12 0.91 0.00	4.18 0.13 1.05 0.00	2.73 0.09 0.92 0.00	5.49 0.18 1.58 0.00	4.77 0.15 2.01 0.00	2.44 0.08 2.27 0.00

05487980 WHITE BREAST CREEK NEAR DALLAS, IA

LOCATION.--Lat $41^{\circ}14^{\circ}41^{\circ}$, long $93^{\circ}16^{\circ}08^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.3, T.74 N., R.21 W., Marion County, Hydrologic Unit 07100008, on left bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Kirk Branch, and 1.7 mi northwest of Dallas.

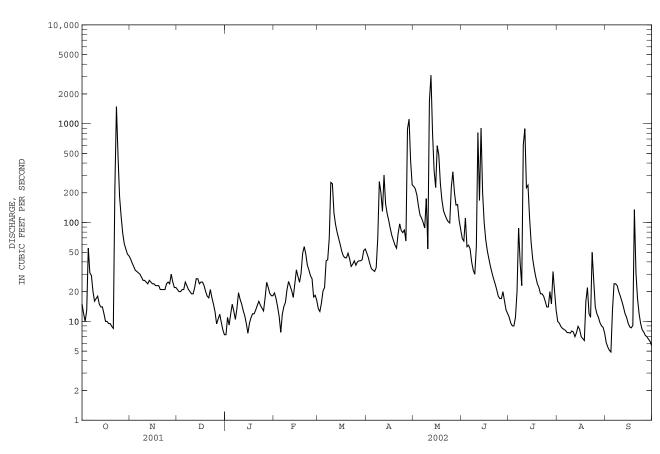
DRAINAGE AREA.--342 mi².

PERIOD OF RECORD.--October 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 759.21 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 11, 1962 reached a stage of 28.87 ft, from floodmark, discharge, about 12,000 ${\rm ft}^3/{\rm s}$. Flood of June 6, 1947 may have been slightly higher.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 12 10 13 55	43 39 36 33 32	21 20 20 21 21	e7.3 e11 e9.2 e12 e15	e19 e17 e14 e11 e7.8	e13 e13 e15 e20 22	49 44 38 34 33	232 e219 e189 147 119	69 65 111 57 59	11 9.6 9.0 9.0	10 9.6 8.9 8.5 8.3	6.1 5.5 5.1 4.9
6	31	31	25	e13	e12	41	32	111	54	20	8.1	24
7	29	30	23	e10	e14	42	35	100	40	88	7.7	24
8	20	28	21	e14	e16	70	70	88	33	39	7.7	23
9	16	26	20	e19	e21	255	260	e175	30	23	7.6	20
10	17	26	19	e17	e25	247	201	e54	57	611	8.0	18
11 12 13 14 15	18 15 14 14	25 24 26 25 24	19 22 27 27 24	e15 e13 e11 e9.5 e7.6	e23 e20 e17 e24 e33	125 96 80 69 60	130 303 e155 e123 105	e1680 3090 809 337 226	811 167 905 200 100	893 225 239 113 63	7.8 7.0 7.7 8.9 8.3	16 14 12 11 9.6
16	10	24	25	e9.6	e28	51	87	599	67	43	7.0	8.8
17	10	23	25	e11	e25	46	74	482	52	34	6.7	8.6
18	9.5	23	23	e12	e31	44	66	249	43	28	6.4	9.1
19	9.5	23	20	e12	49	44	59	169	36	24	16	135
20	8.9	21	18	e13	57	49	55	132	31	22	22	31
21	8.5	21	e17	e15	48	43	77	119	27	19	12	17
22	229	21	21	e16	37	36	97	109	24	19	11	12
23	1490	21	e17	e15	33	38	83	102	21	18	50	9.5
24	471	24	e15	e14	29	41	79	99	18	16	26	8.2
25	182	25	e12	e13	27	37	84	227	17	14	14	7.8
26 27 28 29 30 31	115 78 61 54 48 46	24 30 25 22 22	e9.4 e11 e12 e9.8 e8.2 e7.3	e17 e25 e22 e19 e18 e18	e18 e18 e16 	40 41 41 42 52 54	65 885 1110 417 241	326 202 150 152 105 85	17 20 16 13 12	14 20 15 32 20 13	12 11 9.7 9.0 8.7 7.6	7.2 7.0 6.6 6.3 5.7
TOTAL	3121.4	797	580.7	433.2	689.8	1867	5091	10883	3172	2714.6	353.2	486.0
MEAN	100.7	26.57	18.73	13.97	24.64	60.23	169.7	351.1	105.7	87.57	11.39	16.20
MAX	1490	43	27	25	57	255	1110	3090	905	893	50	135
MIN	8.5	21	7.3	7.3	7.8	13	32	54	12	9.0	6.4	4.9
AC-FT	6190	1580	1150	859	1370	3700	10100	21590	6290	5380	701	964
CFSM	0.29	0.08	0.05	0.04	0.07	0.18	0.50	1.03	0.31	0.26	0.03	0.05
IN.	0.34	0.09	0.06	0.05	0.08	0.20	0.55	1.18	0.35	0.30	0.04	0.05
STATIS	TICS OF M	MONTHLY ME	AN DATA E	FOR WATER	YEARS 196	3 - 2002,	BY WATER	YEAR (WY	')			
MEAN	117.0	109.9	104.8	62.79	166.1	346.5	446.0	402.1	291.5	277.3	115.8	178.2
MAX	1153	756	718	601	718	1056	1592	1823	1146	3641	1202	1902
(WY)	1974	1984	1983	1974	1973	1998	1991	1996	1967	1993	1993	1992
MIN	1.16	1.35	0.80	0.49	1.82	4.05	3.85	6.44	5.13	1.47	2.09	1.11
(WY)	1990	1977	1964	1977	1964	1964	1989	1980	1977	1988	1971	1968

05487980 WHITE BREAST CREEK NEAR DALLAS, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1963 - 2002
ANNUAL TOTAL	103494.0	30188.9	
ANNUAL MEAN	283.5	82.71	218.1
HIGHEST ANNUAL MEAN			816 1993
LOWEST ANNUAL MEAN			17.1 1989
HIGHEST DAILY MEAN	4050 May 11	3090 May 12	24700 Sep 16 1992
LOWEST DAILY MEAN	3.1 Sep 5	4.9 Sep 4	0.02 Oct 14 1989
ANNUAL SEVEN-DAY MINIMUM	3.8 Aug 31	6.7 Aug 29	0.05 Aug 9 1989
MAXIMUM PEAK FLOW		4010 May 11	37300 Jul 16 1982
MAXIMUM PEAK STAGE		15.85 May 11	33.45 Jul 16 1982
ANNUAL RUNOFF (AC-FT)	205300	59880	158000
ANNUAL RUNOFF (CFSM)	0.83	0.24	0.64
ANNUAL RUNOFF (INCHES)	11.26	3.28	8.67
10 PERCENT EXCEEDS	806	168	438
50 PERCENT EXCEEDS	38	23	35
90 PERCENT EXCEEDS	8.0	8.9	2.8

e Estimated

05488100 LAKE RED ROCK NEAR PELLA, IA

LOCATION.--Lat $41^{\circ}22'11"$, long $92^{\circ}58'48"$, in $NE^{1}/_{4}$ NW $^{1}/_{4}$ sec.19, T.76 N., R.18 W., Marion County, Hydrologic Unit O7100008, at outlet works near right end of Red Rock Dam on Des Moines River, 1.4 mi upstream from Lake Creek, 4.5 mi southwest of Pella, and at mile 142.3.

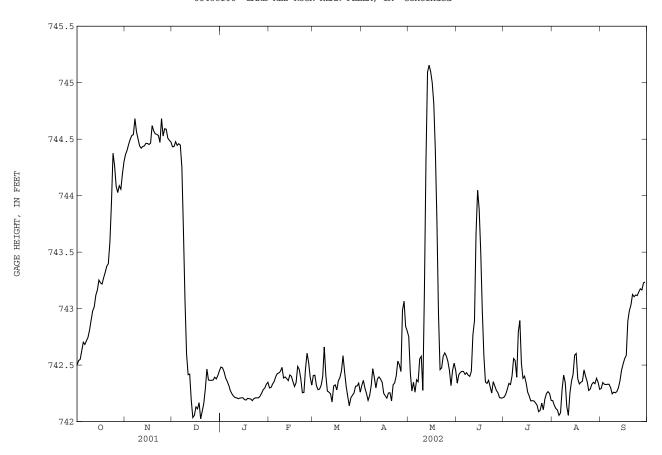
DRAINAGE AREA. -- 12,323 mi².

PERIOD OF RECORD. -- March 1969 to current year.

GAGE.--Water-stage recorder. Datum of gage is at NGVD Of 1929 level (levels by U.S. Army Corps of Engineers).

REMARKS.--Reservoir is formed by earthfill dam completed in 1969. Storage began in March 1969. Releases controlled through 14 concrete conduits extending through the concrete ogee spillway section into the stilling basin. Inlet invert elevation at 690 ft above sea level. Maximum design discharge through the conduits is 37,500 ft³/s but normal flood control operation limits maximum outflow to 30,000 ft³/s. Spillway section consists of 5 tainter gates, 41 ft wide and 45 ft high, on concrete ogee crest at elevation 736 ft. The storage capacity of the reservoir at full flood-control pool level, 780 ft, is 1,489,900 acre-ft, surface area, 65,440 acres. Conservation pool level, 742 feet, is 265,500 acre-feet, surface area, 19,100 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will maintain an elevation of 742 ft with minimum release of 300 ft³/s and maximum release of 30,000 ft³/s during the non-growing season, providing discharges at Ottumwa and Keosauqua do not exceed 30,000 ft³/s and 35,000 ft³/s respectively. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage. Prior to October 1, 2000 published as contents in acre feet, and as elevation in feet NGVD thereafter.

COOPERATION. -- Records provided by U.S. Army Corps of Engineers.


EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 782.67 ft July 13, 1993; minimum elevation, 719.68 ft Feb. 17, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 745.26 ft May 14; minimum elevation, 741.97 ft Dec.20.

ELEVATION (FEET (NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY OBSERVATION AT 0600 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	742.47	744.32	744.47	742.46	742.35	742.31	742.23	742.81	742.43	742.21	742.17	742.27
2	742.51	744.38	744.42	742.49	742.28	742.44	742.35	742.73	742.31	742.22	742.19	742.3
3	742.55	744.41	744.44	742.47	742.31	742.4	742.37	742.33	742.45	742.25	742.13	742.36
4	742.55	744.47	744.49	742.43	742.34	742.29	742.27	742.25	742.43	742.3	742.11	742.32
5	742.65	744.51	744.43	742.37	742.36	742.28	742.24	742.38	742.45	742.35	742.1	742.33
6	742.72	744.54	744.47	742.35	742.41	742.29	742.17	742.22	742.44	742.32	742.04	742.33
7	742.67	744.54	744.44	742.31	742.43	742.33	742.25	742.42	742.41	742.43	742.09	742.33
8	742.73	744.73	744.19	742.26	742.43	742.42	742.34	742.33	742.44	742.6	742.35	742.29
9	742.75	744.51	743.52	742.24	742.45	742.74	742.51	742.63	742.4	742.52	742.43	742.23
10	742.83	744.5	742.92	742.22	742.49	742.3	742.35	742.56	742.4	742.35	742.32	742.27
11	742.92	744.42	742.49	742.21	742.35	742.26	742.28	742.18	742.46	742.94	742.07	742.25
12	743	744.42	742.39	742.21	742.41	742.26	742.41	743.47	742.87	742.88	742.05	742.27
13	743.02	744.44	742.43	742.2	742.37	742.24	742.39	744.59	742.9	742.39	742.32	742.31
14	743.15	744.44	742.11	742.21	742.36	742.15	742.37	745.26	743.92	742.38	742.37	742.38
15	743.17	744.47	742.01	742.21	742.43	742.37	742.34	745.12	744.09	742.41	742.43	742.48
16	743.28	744.46	742.07	742.21	742.39	742.31	742.22	745.09	743.81	742.32	742.64	742.52
17	743.21	744.45	742.15	742.19	742.34	742.27	742.23	744.97	743.4	742.24	742.59	742.57
18	743.22	744.47	742.1	742.19	742.3	742.39	742.2	744.76	742.84	742.22	742.31	742.59
19	743.29	744.67	742.19	742.21	742.36	742.39	742.27	744.27	742.5	742.17	742.34	742.99
20	743.33	744.54	741.97	742.2	742.53	742.47	742.25	743.61	742.3	742.19	742.35	742.98
21	743.39	744.55	742.13	742.2	742.44	742.62	742.16	742.73	742.35	742.18	742.36	743.05
22	743.4	744.54	742.17	742.18	742.36	742.38	742.38	742.37	742.37	742.16	742.49	743.15
23	743.65	744.53	742.33	742.21	742.22	742.29	742.33	742.51	742.29	742.14	742.37	743.09
24	744.03	744.45	742.51	742.21	742.27	742.2	742.43	742.6	742.24	742.07	742.35	743.13
25	744.49	744.76	742.32	742.21	742.53	742.12	742.57	742.61	742.39	742.11	742.25	743.11
26 27 28 29 30 31	744.19 744.05 744.02 744.11 744.04 744.24	744.45 744.64 744.57 744.49 744.49	742.38 742.36 742.37 742.4 742.37 742.42	742.21 742.23 742.26 742.29 742.3 742.34	742.63 742.49 742.36 	742.24 742.23 742.26 742.33 742.31 742.35	742.48 742.43 743.17 743.03 742.78	742.57 742.52 742.43 742.28 742.51 742.52	742.29 742.27 742.25 742.2 742.21	742.18 742.08 742.24 742.25 742.27 742.24	742.3 742.34 742.35 742.33 742.4 742.33	743.16 743.18 743.16 743.25 743.23
MEAN	743.28	744.51	742.89	742.27	742.39	742.33	742.39	743.08	742.60	742.31	742.30	742.66
MAX	744.49	744.76	744.49	742.49	742.63	742.74	743.17	745.26	744.09	742.94	742.64	743.25
MIN	742.47	744.32	741.97	742.18	742.22	742.12	742.16	742.18	742.20	742.07	742.04	742.23

05488100 LAKE RED ROCK NEAR PELLA, IA--Continued

05488110 DES MOINES RIVER NEAR PELLA, IA

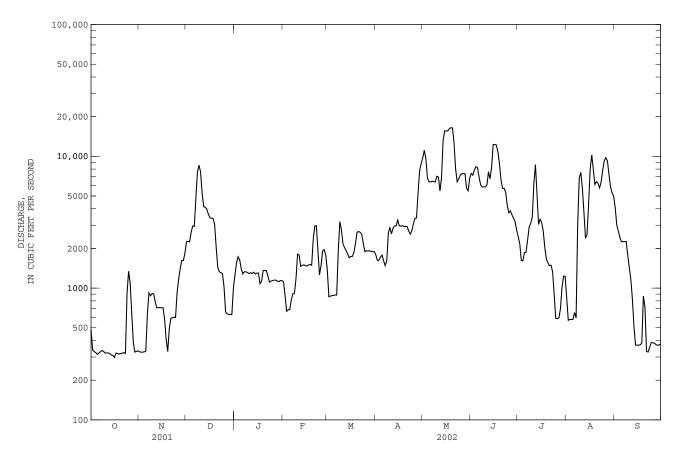
LOCATION.--Lat $41^{\circ}21^{\circ}38^{\circ}$, long $92^{\circ}58^{\circ}23^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.19, T.76 N., R.18 W., Marion County, Hydrologic Unit 07100009, on right bank, 0.4 mile downstream of outlet of Red Rock Reservoir, and 0.75 mile upstream of Lake Creek.

DRAINAGE AREA.--12,330 mi^2 .

PERIOD OF RECORD.--October 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 600.00 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Lake Red Rock (station 05488100) 0.4 mi upstream. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	487	329	2250	1260	1120	1370	1790	9760	7410	2460	837	4070
2	339	326	2260	1560	876	860	1620	11100	7200	2170	569	3000
3	330	327	2250	1730	667	e870	1630	9560	7860	1620	579	2710
4	324	328	2660	1640	684	e877	1720	6820	8360	1610	578	2410
5	314	332	2960	1400	688	e880	1780	6400	e8190	1860	579	2250
6	321	629	2940	1280	813	888	1610	6390	e6930	1870	652	2250
7	329	918	4800	1330	905	885	1480	6480	6070	2320	595	2250
8	336	875	7610	1330	914	1910	1610	6430	5850	2900	3000	2260
9	331	908	8560	1310	1180	3190	2620	6370	5860	3100	6820	1780
10	321	907	7630	1290	1810	2780	2870	7060	5870	3470	7540	1430
11	322	791	5240	1310	1780	2170	2580	6970	6050	6190	5730	1160
12	322	708	4150	1290	1460	2030	2850	5460	7630	8620	3760	815
13	319	712	4100	1320	1490	1930	2960	6900	6760	5230	2390	504
14	311	711	3970	1280	1500	1820	2970	13200	8240	3040	2560	370
15	309	710	3640	1300	1480	1700	3280	15600	12300	3330	4390	368
16	298	710	3420	1300	1470	1740	2970	15600	12300	3150	8010	370
17	322	584	3390	1080	1500	1740	2950	15600	12200	2710	10200	371
18	318	410	3380	1130	1510	1860	2980	16200	10800	2030	7960	384
19	316	331	3030	1360	1490	2180	2930	16500	8830	1660	6110	869
20	319	490	2030	1360	2340	2650	2940	16400	6650	e1550	6430	717
21	321	591	1430	1360	2960	2690	2930	12600	5730	e1480	6250	331
22	324	595	1330	1240	2980	2650	2720	8000	5720	1490	5760	327
23	319	602	1310	1110	1930	2570	2570	6410	5330	1330	6400	355
24	910	599	1290	1130	1260	2180	2720	6750	4250	884	7860	385
25	1340	923	1020	1140	1480	1890	3060	7200	3730	589	9250	386
26	1100	1170	660	1150	1910	1920	3380	7380	3850	588	9750	382
27	647	1410	638	1150	1960	1910	3410	7380	3600	593	9260	373
28	390	1620	631	1130	1780	1920	5280	7380	3390	697	7280	368
29	327	1620	e631	1120		1900	7790	5720	3200	1020	5870	370
30	331	1840	e631	1140		1890	8790	5470	2760	1230	5290	377
31	334		e1010	1140		1890		6820		1230	4990	
TOTAL	12931	23006	90851	39670	41937	57740	90790	285910	202920	72021	157249	33992
MEAN	417.1	766.9	2931	1280	1498	1863	3026	9223	6764	2323	5073	1133
MAX	1340	1840	8560	1730	2980	3190	8790	16500	12300	8620	10200	4070
MIN	298	326	631	1080	667	860	1480	5460	2760	588	569	327
AC-FT	25650	45630	180200	78690	83180	114500	180100	567100	402500	142900	311900	67420
CFSM	0.03	0.06	0.24	0.10	0.12	0.15	0.25	0.75	0.55	0.19	0.41	0.09
IN.	0.04	0.07	0.27	0.12	0.13	0.17	0.27	0.86	0.61	0.22	0.47	0.10
STATIST	TICS OF N	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	93 - 2002,	BY WATER	R YEAR (W	Y)			
MEAN	2930	3463	3854	1872	3848	8851	12690	13940	15920	20110	9208	4493
MAX	11150	11990	12380	3997	8246	17480	22040	28520	27950	79340	44600	33490
	1994	1990	1993	1993	1997	1993	1998	1993	1993	1993		1993
(WY) MIN	285	327	654	642	824	930	916	1105	5516	2323	1993 1498	451
(WY)	2001	2000	2000	2000	2000	2000	2000	2000	2000	2002	2000	2000
(VV I)	Z001	2000	∠000	∠000	2000	2000	∠000	2000	∠000	2002	∠000	∠000

05488110 DES MOINES RIVER NEAR PELLA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1993 - 2002
ANNUAL TOTAL	3098931		1109017			
ANNUAL MEAN	8490		3038		8458	
HIGHEST ANNUAL MEAN					24360	1993
LOWEST ANNUAL MEAN					1731	2000
HIGHEST DAILY MEAN	29300	Apr 14	16500	May 19	104000	Jul 12 1993
LOWEST DAILY MEAN	298	Oct 16	298	Oct 16	248	Oct 15 2000
ANNUAL SEVEN-DAY MINIMUM	313	Oct 13	313	Oct 13	254	Oct 9 2000
MAXIMUM PEAK FLOW			16600	May 18a	105000	Jul 12 1993
MAXIMUM PEAK STAGE			92.78	May 18b	109.71	Jul 12 1993
ANNUAL RUNOFF (AC-FT)	6147000		2200000		6128000	
ANNUAL RUNOFF (CFSM)	0.69	1	0.25		0.69	
ANNUAL RUNOFF (INCHES)	9.35	i	3.35		9.32	
10 PERCENT EXCEEDS	23000		7460		21500	
50 PERCENT EXCEEDS	2850		1780		3980	
90 PERCENT EXCEEDS	501		369		631	

Also May 19, 20. Also May 19, 20. Estimated

05488200 ENGLISH CREEK NEAR KNOXVILLE, IA

LOCATION.--Lat $41^{\circ}18^{\circ}02^{\circ}$, long $93^{\circ}02^{\circ}43^{\circ}$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec.16, T.75 N., R.19 W., Marion County, Hydrologic Unit 07100009, on left bank 30 ft from left upstream abutment of bridge on State Highway 92, 3 mi east of Knoxville, and 11.4 mi upstream from mouth at Des Moines River.

DRAINAGE AREA. -- 90.1 mi².

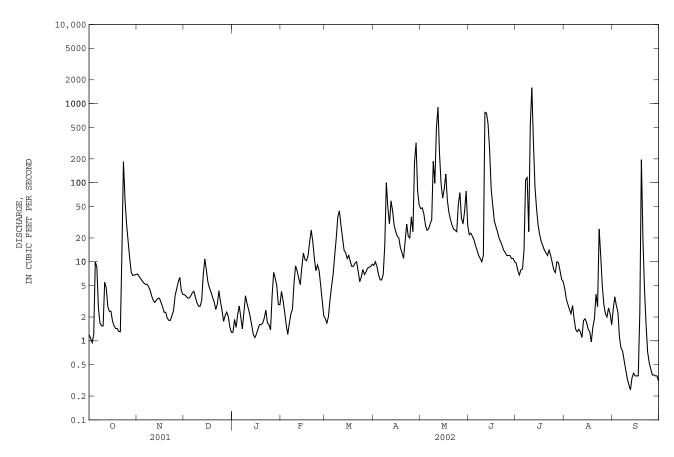
PERIOD OF RECORD.--July 1985 to current year.

REVISED RECORDS. -- WDR IA-97: (M)

GAGE.--Water-stage recorder. Datum of gage is 721.79 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 16, 1982 reached a stage of 30.28 ft, gage datum, discharge 28,000 ft 3 /s, from contracted-opening indirect computations.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e1.2 e1.1 e0.95 e1.2 e10	7.0 6.5 6.1 5.7	e3.8 e3.7 e3.5 e3.5	e1.3 e1.9 e1.5 e2.2 e2.8	e4.2 e3.2 e2.3 e1.6 e1.2	e1.9 e1.7 e2.0 e3.3 4.9	9.0 10 8.7 6.9 5.9	47 48 40 29 25	22 23 21 19 16	9.6 7.8 6.8 7.9 8.1	4.6 3.4 2.9 2.5 2.2	2.5 3.6 2.8 2.3 1.1
6 7 8 9 10	e8.5 e2.6 e1.7 e1.5 e1.5	e5.2 e5.2 e4.9 e4.4 e3.7	e4.1 e4.2 e3.5 e3.0	e2.0 e1.4 e2.3 e3.7	e1.7 e2.2 e2.5 e5.4 e8.9	6.9 12 20 37 44	5.9 6.9 16 100 48	26 30 34 186 e98	14 12 11 10 12	14 109 116 24 540	2.8 1.9 1.4 1.3	0.81 0.74 0.56 0.43 0.33
11 12 13 14 15	e5.5 e4.7 e2.7 e2.4 e2.4	e3.3 e3.1 e3.3 e3.5 e3.5	e2.7 e3.2 e6.8 e11 e7.8	e2.5 e2.0 e1.6 e1.2	e7.6 e6.2 e5.1 e8.5 e13	29 20 14 13 11	30 59 44 29 24	e485 901 231 96 64	776 760 557 260 83	1590 323 88 47 29	1.3 1.1 1.8 1.9	0.28 0.24 0.34 0.39 0.36
16 17 18 19 20	e1.8 e1.5 e1.4 e1.4 e1.3	e3.1 e2.7 e2.3 e2.3 e1.9	e5.5 e4.6 e4.1 e3.5 e3.1	e1.2 e1.4 e1.6 e1.6	e11 e10 e12 18 25	12 10 8.7 8.8 9.6	21 20 15 13	83 129 60 42 34	52 33 28 24 20	22 18 16 14 13	1.4 1.3 0.97 1.5	0.36 0.36 2.3 195 19
21 22 23 24 25	e1.3 e13 185 60 30	e1.8 e1.8 e2.1 e2.4 e3.7	e2.5 e2.9 e4.3 e3.1 e2.4	e1.9 e2.4 e1.7 e1.6 e1.4	18 11 7.7 9.1 7.8	10 7.6 5.6 6.4 8.0	18 30 21 20 37	29 26 25 24 53	18 16 14 13 12	12 14 12 9.8 7.9	3.9 2.7 26 12 5.0	4.4 1.6 0.72 0.53 0.44
26 27 28 29 30 31	18 11 7.3 6.7 6.8 6.9	e4.5 e5.5 e6.3 e4.3 e3.8	e1.8 e2.1 e2.3 e2.0 e1.5 e1.3	e3.7 e7.3 e6.2 e4.9 e2.9	e5.2 e3.2 e2.1 	6.9 7.4 8.3 8.5 8.7 9.3	24 179 320 78 52	75 36 30 43 78 29	12 12 11 11 10	7.3 10 9.7 7.7 6.0 5.6	2.9 2.2 2.0 2.6 2.2 1.6	0.37 0.37 0.36 0.36 0.31
TOTAL MEAN MAX MIN AC-FT CFSM IN.	401.35 12.95 185 0.95 796 0.14 0.17	119.3 3.977 7.0 1.8 237 0.04 0.05	114.2 3.684 11 1.3 227 0.04 0.05	74.9 2.416 7.3 1.1 149 0.03 0.03	213.7 7.632 25 1.2 424 0.08 0.09	356.5 11.50 44 1.7 707 0.13 0.15	1262.3 42.08 320 5.9 2500 0.47 0.52	3136 101.2 901 24 6220 1.12 1.29	2882 96.07 776 10 5720 1.07 1.19	3105.2 100.2 1590 5.6 6160 1.11 1.28	102.37 3.302 26 0.97 203 0.04 0.04	243.26 8.109 195 0.24 483 0.09 0.10
STATIS	STICS OF N	MONTHLY ME	AN DATA I	FOR WATER	YEARS 198	s5 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	24.70 161 1987 0.48 1995	22.09 100 1993 0.76 1989	22.64 112 1993 0.31 1989	14.04 51.8 1998 0.66 1989	48.46 183 2001 0.50 1989	102.2 335 1993 2.05 1989	116.6 476 1991 1.03 1989	139.1 514 1996 1.99 2000	99.19 260 2000 2.27 1992	90.03 1039 1993 0.18 1988	29.39 285 1993 0.17 1988	32.90 159 1992 0.026 1991

05488200 ENGLISH CREEK NEAR KNOXVILLE, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1985 - 2002
ANNUAL TOTAL	28092.39	12011.08	
ANNUAL MEAN	76.97	32.91	62.41
HIGHEST ANNUAL MEAN			214 1993
LOWEST ANNUAL MEAN			6.71 1989
HIGHEST DAILY MEAN	1350 Feb 26	1590 Jul 11	8610 Jul 5 1993
LOWEST DAILY MEAN	0.32 Sep 15	0.24 Sep 12	0.00 Sep 12 1988a
ANNUAL SEVEN-DAY MINIMUM	0.39 Sep 13	0.33 Sep 10	0.00 Sep 25 1991
MAXIMUM PEAK FLOW		1870 Jul 11	18900 Jul 5 1993
MAXIMUM PEAK STAGE		19.89 Jul 11	27.88 Jul 5 1993
INSTANTANEOUS LOW FLOW		0.21 Sep 12	
ANNUAL RUNOFF (AC-FT)	55720	23820	45210
ANNUAL RUNOFF (CFSM)	0.85	0.37	0.69
ANNUAL RUNOFF (INCHES)	11.60	4.96	9.41
10 PERCENT EXCEEDS	215	47	103
50 PERCENT EXCEEDS	8.1	6.1	9.1
90 PERCENT EXCEEDS	1.2	1.3	0.41

Also Aug. 8-13, Sept. 13-17, 1989; Sept.6-10, 21, and Sept. 25 to Oct. 3, 1991. Estimated

338 IOWA RIVER BASIN

05488500 DES MOINES RIVER NEAR TRACY, IA

LOCATION.--Lat $41^{\circ}16^{\circ}53^{\circ}$, long $92^{\circ}51^{\circ}34^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.19, T.75 N., R.17 W., Mahaska County, Hydrologic Unit 07100009, on right bank 250 ft upstream from abandoned Bellefountaine Bridge, 0.8 mi east of Tracy, 3.1 mi upstream from Cedar Creek, 3.8 mi downstream from bridge on newly located State Highway 92, 6.4 mi downstream from English Creek, and at mile 130.4.

DRAINAGE AREA. -- 12,479 mi².

PERIOD OF RECORD. -- March 1920 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1920 (M), 1922 (M), 1933.

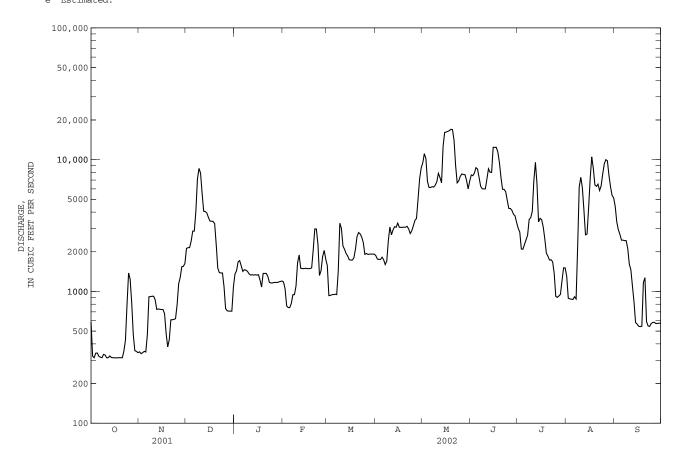
GAGE.--Water-stage recorder. Datum of gage is 670.91 ft above NGVD of 1929. Prior to June 26, 1940 and June 30, 1952 to Nov. 4, 1960 nonrecording gage, and June 27, 1940 to June 29, 1952 water-stage recorder, at site 250 ft downstream at same datum.

REMARKS.--Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Lake Red Rock (station 05488100) 11.9 mi upstream, since March 12, 1969. U.S. Army Corps of Engineers gage-height telemeter and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 155,000 ${\rm ft^3/s}$, June 14, 1947, gage height, 26.5 ${\rm ft}$; minimum daily discharge, 40 ${\rm ft^3/s}$ Jan. 29 to Feb. 2, 1940.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1851, that of June 14, 1947. Flood of May 31, 1903, reached a stage of about 25 ft, discharge, about 130,000 ft³/s. Minimum daily discharge since at least 1910, that of Jan. 29 to Feb. 1, 1940.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY													
3 314 343 2150 e1660 778 e934 1750 10200 7920 2100 878 2940 4 340 351 2410 e1710 7754 e944 1750 6850 8700 2090 873 2710 5 341 340 351 2410 1750 754 e947 1820 6150 8480 2270 869 2450 6 322 470 2870 1560 754 e947 1820 6150 8480 2270 869 2450 6 322 470 2870 1420 811 e952 1740 6150 7320 2460 912 2450 7 317 911 4060 e1460 945 946 1600 6240 6280 2670 877 2430 8 314 914 7120 1450 946 1430 1700 6190 6010 3520 2210 2430 1 333 919 8590 1420 1100 3290 2430 6410 6000 3630 6230 2120 10 329 920 7900 1360 1650 3020 3080 6800 6000 4060 7340 1610 11 314 863 5330 1330 1890 2120 2690 7980 7340 6410 6410 320 2210 2430 11 314 863 5330 1330 1890 2100 2090 2930 7320 8530 9540 4130 1100 13 2210 2430 1440 1320 1490 1940 3100 6680 8030 6540 2690 834 14 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 881 15 314 729 3650 1330 1490 1860 3070 12700 8010 3370 2730 881 15 314 729 3650 1330 1490 1860 3070 12700 8010 3370 2730 881 15 314 729 3650 1330 1490 1940 3100 6680 8030 6540 2690 431 15 15 15 15 15 15 15 15 15 15 15 15 15	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 314 343 2150 e1660 778 e934 1750 10200 7920 2100 878 2940 4 340 351 2410 e1710 7754 e944 1750 6850 8700 2090 873 2710 5 341 340 351 2410 1270 754 e947 1820 6150 8480 2270 869 2450 6 322 470 2870 1560 754 e947 1820 6150 8480 2270 869 2450 6 322 470 2870 1420 811 e952 1740 6150 7320 2460 912 2450 7 317 911 4060 e1460 945 946 1600 6240 6280 2670 877 2430 8 314 914 7120 1450 946 1430 1700 6190 6010 3520 2210 2430 9 333 919 8590 1420 1100 3290 2430 6410 6000 3630 2210 2430 10 329 920 7900 1360 1650 3020 3080 6800 6000 4060 7340 1610 12 314 863 5330 1330 1890 2120 2690 2930 7320 8530 9540 4130 1100 12 314 863 5330 1330 1890 2100 2690 2930 7320 8530 9540 4130 1100 13 324 737 4040 1330 1490 1940 3100 6680 8030 6640 2690 834 14 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 881 14 314 739 3650 1330 1490 1940 3100 6680 8030 6640 2690 834 14 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 881 15 314 729 3650 1330 1490 1940 3100 6680 8030 6640 2690 434 17 313 47 37 4040 1800 1490 1800 3070 12700 8010 3370 2730 881 15 314 729 3650 1330 1490 1940 3100 6680 8010 3370 2730 581 18 314 739 3400 1340 1490 1730 3070 16000 12400 3590 4330 565 166 314 729 3420 1340 1490 1730 3070 16000 12400 3590 4330 565 166 314 729 3450 1330 1200 3700 16000 1400 2500 8580 544 19 314 380 3270 1370 1510 2100 3070 16000 1400 2500 8580 544 19 314 380 3270 1370 1510 2100 3070 16000 1400 2500 8580 544 19 314 380 3270 1370 1510 2100 3070 16000 1400 2500 8580 544 19 314 380 3270 1370 1510 2100 3070 16000 1400 2500 9880 1950 6630 1770 882 122 353 610 1330 1300 2880 2730 2880 6700 3700 1700 9480 1950 6270 1270 882 122 353 610 1300 1160 1280 3280 2730 8850 7710 4860 6330 544 344 377 622 1380 1160 1400 1990 880 3070 16000 3700 17000 9480 1950 6630 1770 288 470 1500 1700 1800 1800 1800 1800 1800 1800 18	1												
6 322 470 2870 1560 754 e947 1820 6150 8480 2270 869 2450 6 322 470 2870 1420 811 e952 1740 6150 7320 2460 912 2450 7 317 911 4060 e1460 945 946 1600 6240 6280 2670 877 2430 8 314 914 7120 1450 946 1430 1700 6190 6010 3520 2210 2430 9 333 919 8590 1420 11000 3290 2430 6410 6000 3630 6230 2120 10 329 920 7900 1360 1650 3020 3080 6800 6000 4060 7340 1610 11 314 863 5530 1330 1890 2210 2690 7880 7130 6940 6110 1460 12 314 730 4060 1340 1500 2090 2930 7320 8530 9540 4130 1100 13 324 737 4040 1330 1490 1940 3100 6680 8030 6540 2690 834 144 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 581 15 314 729 3650 1330 1500 1740 3300 16100 12400 3590 4330 565 16 314 729 3420 1340 1490 1730 3070 16200 12400 3590 4330 565 16 314 729 3420 1370 1490 1730 3070 16200 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 19 314 860 3270 1370 2070 2610 3070 1600 11400 2500 8880 544 19 314 480 2270 1370 2070 2610 3070 1600 7290 1850 6270 1270 21 314 609 1500 1310 2980 2800 3120 1400 5960 1730 6530 543 22 353 610 1390 1300 2980 2730 2980 9030 5950 1740 5830 543 23 427 613 1380 1170 2290 2580 2750 6670 5710 1680 6330 543 24 797 622 1380 1160 1320 2350 2890 9030 5950 1740 5830 543 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 919 9270 582 26 1240 1140 e741 1170 e2050 1910 3580 7710 4120 924 9800 572 21 314 609 1500 1710 2980 3290 9650 1700 12400 9540 10500 4810 1370 7780 571 13 343 e1080 1200 1920 8650 1700 12400 9540 10500 4810 1310 331 337 709 1080 8450 1150 3580 7710 4120 9240 9800 572 31 334 470 630 679 1170 2980 3290 8650 1700 12400 9540 10500 4810 1370 7780 571 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 911 1000 583 27 28 470 1540 670 1170 2880 3290 8650 1700 12400 9540 10500 4810 1310 331 337 709 1080 8450 11500 12500 8450 10500 4410 1310 331 337 709 1080 8450 11500 12500 8450 11000 12400 9540 105	2												
6 322 470 2870 1560 754 e947 1820 6150 8480 2270 869 2450 6 322 470 2870 1420 811 e952 1740 6150 7320 2460 912 2450 7 317 911 4060 e1460 945 946 1600 6240 6280 2670 877 2430 8 314 914 7120 1450 946 1430 1700 6190 6010 3520 2210 2430 9 333 919 8590 1420 11000 3290 2430 6410 6000 3630 6230 2120 10 329 920 7900 1360 1650 3020 3080 6800 6000 4060 7340 1610 11 314 863 5530 1330 1890 2210 2690 7880 7130 6940 6110 1460 12 314 730 4060 1340 1500 2090 2930 7320 8530 9540 4130 1100 13 324 737 4040 1330 1490 1940 3100 6680 8030 6540 2690 834 144 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 581 15 314 729 3650 1330 1500 1740 3300 16100 12400 3590 4330 565 16 314 729 3420 1340 1490 1730 3070 16200 12400 3590 4330 565 16 314 729 3420 1370 1490 1730 3070 16200 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1600 12400 3080 10500 541 19 314 860 3270 1370 2070 2610 3070 1600 11400 2500 8880 544 19 314 480 2270 1370 2070 2610 3070 1600 7290 1850 6270 1270 21 314 609 1500 1310 2980 2800 3120 1400 5960 1730 6530 543 22 353 610 1390 1300 2980 2730 2980 9030 5950 1740 5830 543 23 427 613 1380 1170 2290 2580 2750 6670 5710 1680 6330 543 24 797 622 1380 1160 1320 2350 2890 9030 5950 1740 5830 543 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 919 9270 582 26 1240 1140 e741 1170 e2050 1910 3580 7710 4120 924 9800 572 21 314 609 1500 1710 2980 3290 9650 1700 12400 9540 10500 4810 1370 7780 571 13 343 e1080 1200 1920 8650 1700 12400 9540 10500 4810 1310 331 337 709 1080 8450 1150 3580 7710 4120 9240 9800 572 31 334 470 630 679 1170 2980 3290 8650 1700 12400 9540 10500 4810 1370 7780 571 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 911 1000 583 27 28 470 1540 670 1170 2880 3290 8650 1700 12400 9540 10500 4810 1310 331 337 709 1080 8450 11500 12500 8450 10500 4410 1310 331 337 709 1080 8450 11500 12500 8450 11000 12400 9540 105	3												
6 322 470 2870 1420 811 e952 1740 6150 7320 2460 912 2450 7 317 911 4060 e1460 945 946 1600 6240 6280 2670 877 2430 8 314 914 7120 1450 946 1430 1700 6190 6010 3520 2210 2430 9 333 919 8590 1420 1100 3290 2430 6410 6000 3630 6230 2120 10 329 920 7900 1360 1650 3020 3080 6800 6000 4060 7340 1610 11 314 863 5530 1330 1890 2210 2690 7880 7130 6940 6110 1460 12 314 730 4060 1340 1500 2090 2930 7320 8530 9540 4130 1100 13 324 737 4040 1330 1490 1940 3100 6680 8030 6540 2690 834 14 315 731 3340 1340 1490 1940 3100 6680 8030 6540 2690 834 14 315 731 3340 1340 1490 1860 3070 12700 8010 3370 2730 851 15 314 729 3650 1330 1500 1740 3300 16100 12400 3590 4330 565 16 314 4799 3400 1000 1200 3700 1200 12400 3590 4330 565 16 314 4799 3400 1000 1490 1300 16600 12400 3590 4330 565 16 314 4799 3400 1000 1490 1300 16600 12400 3590 4330 565 17 300 1400 1400 1400 1400 1400 1400 1400	4												
The color of the	5	341	347	2870	1560	754	e947	1820	6150	8480	2270	869	2450
8 314 914 7120 1450 946 1430 1700 6190 6010 3520 2210 2430 610 329 920 77900 1360 1650 3290 2430 6400 6000 4060 7340 1610 11 314 863 5530 1330 1890 2210 2690 7880 7130 6940 6110 1460 12 314 730 4060 1340 1500 2990 2930 7320 8530 9540 4130 1100 13 324 737 4040 1330 1490 1940 3100 6680 8030 6540 2690 834 143 1150 315 731 3940 1340 1490 1940 3100 6680 8030 6540 2690 834 145 731 3940 1340 1490 1940 3100 1600 12400 3590 4330 565 16 314 729 3650 1330 1490 1740 3300 16100 12400 3590 4330 565 16 314 729 3650 1330 1490 1730 3070 12700 8010 3370 2730 581 15 314 729 3650 1330 1500 1740 3300 16100 12400 3590 4330 565 16 314 729 3420 1340 1220 1490 1730 3060 16400 12400 3590 4330 565 18 314 729 3400 1080 1490 1730 3060 16400 12400 3590 8880 544 17 313 677 3410 1220 1490 1730 3060 16600 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 1700 8010 2500 8880 544 19 314 380 3270 1370 1510 2100 3070 1700 9480 1950 6430 1170 120 314 430 2270 1370 2070 2610 3070 16900 7290 1850 6270 1270 21 314 430 2270 1370 2070 2610 3070 1700 9480 1950 6430 1170 1270 1270 1270 1270 1270 1270 127	6												
9 333 919 8590 1420 1100 3290 2430 6410 6000 3630 6230 2120 10 329 920 7900 1360 1650 3020 3080 6600 6000 4060 7340 1610 11 314 863 5530 1330 1890 2210 2690 7880 7130 6940 6111 1460 12 314 730 4060 1340 1500 2090 2930 7320 8530 5540 4130 1100 13 334 737 4040 1330 1490 1940 3100 6680 8030 6540 2690 834 14 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 581 15 314 729 3650 1330 1500 1740 3300 16100 12400 3590 4330 565 16 314 729 3420 1340 1490 1730 3070 16200 12400 3590 4330 565 16 314 729 3400 1080 1490 1730 3070 16200 12400 3590 4330 565 18 314 479 3400 1080 1490 1730 3070 16200 12400 3580 541 18 314 479 3400 1080 1490 1730 3070 1600 12400 3580 541 19 314 380 3270 1370 1510 2100 3070 1600 12400 3080 10500 541 18 314 479 3400 1080 1490 1700 7000 9480 1950 6430 1170 20 314 430 2270 1370 2070 2610 3070 16900 7290 1850 6670 21 314 609 1500 1370 2980 2800 3120 14000 5960 1730 6520 591 22 353 610 1390 1300 2980 2730 2980 9030 5950 1740 5830 547 23 427 613 1380 1170 2290 2580 2750 6670 5710 1680 6530 547 24 797 622 1380 1160 1320 2350 2890 6910 4910 1370 7780 571 25 1380 790 e1080 1160 1340 1910 3150 7480 4260 991 10000 583 27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1170 1760 1920 5030 7880 4260 991 10000 583 27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1170 1760 1920 5030 7690 3850 951 7790 571 31 343 e1080 1200 1920 7160 6940 3740 1210 6220 574 MAX 1360 1630 8799 1190 1920 8650 6000 3330 1510 5550 577 31 333 37 79 1088 8590 1710 2980 3290 8650 1700 12400 9540 10500 4410 MIN 313 337 79 1088 8590 1710 2980 3290 8650 1700 12400 9540 10500 4410 MIN 313 337 79 1088 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 79 1088 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 799 1080 874 4302 9159 11840 11980 13290 13690 7805 4410 MIN 318 340 344 305 276 746 866 425 277 220 5991 343	7						946						
11													
11													
12	10	329	920	7900	1360	1650	3020	3080	6800	6000	4060	7340	1610
13 324 737 4040 1330 1490 1940 3100 6680 8030 6540 2690 834 14 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 581 15 314 729 3650 1330 1500 1740 3300 16100 12400 3590 4330 565 16 314 729 3420 1340 1490 1730 3070 16200 12400 3590 7180 544 17 313 677 3410 1220 1490 1730 3060 16400 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 16600 11400 2500 8580 544 19 314 380 3270 1370 1510 2100 3070 17000 9480 1950 6430 1170 20 314 430 2270 1370 2070 2610 3070 16900 7290 1850 6270 1270 21 314 609 1500 1370 2980 2800 3120 14000 5960 1730 6520 591 22 353 610 1390 1300 2980 2730 2980 9030 5950 1740 5830 547 23 427 613 1380 1170 2290 2580 2750 6670 5710 1680 6330 543 24 797 622 1380 1160 1320 2350 2890 6910 4910 1370 7780 571 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 919 9270 582 26 1240 1140 e741 1170 1840 1940 3460 7800 4260 901 10000 583 27 819 1280 e709 1170 1760 1920 5030 7690 3850 951 7590 572 29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1170 1760 1820 5030 7690 3850 951 7590 572 29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1170 1760 1830 1830 9562 7170 2772 5198 1374 MAX 1380 1630 8590 710 290 3290 3290 3250 3260 8080 4360 8080 45240 33670 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BW WATER YEAR (WY)													
14 315 731 3940 1340 1490 1860 3070 12700 8010 3370 2730 581 15 314 729 3650 1330 1500 1740 3300 16100 12400 3590 4330 565 16 314 729 3420 1340 1490 1730 3070 16200 12400 3080 10500 541 18 314 479 3400 1080 1490 1800 3070 16600 11400 2500 8580 544 19 314 380 3270 1370 1510 2100 3070 16600 11400 2500 8580 544 19 314 430 2270 1370 2980 2800 3120 14000 5960 1730 6520 591 21 314 609 1500 1370 2980 2800 9030 5950 1740	12												
15	13												834
16													
17	15	314	729	3650	1330	1500	1740	3300	16100	12400	3590	4330	565
18	16	314	729	3420	1340	1490	1730	3070	16200	12400	3500	7180	544
19	17	313	677	3410	1220	1490	1730	3060	16400	12400	3080	10500	541
20		314	479	3400	1080	1490	1800	3070	16600	11400	2500	8580	544
21 314 609 1500 1370 2980 2800 3120 14000 5960 1730 6520 591 22 353 610 1390 1300 2980 2730 2980 9030 5950 1740 5830 547 547 547 547 548 547 548 547 548	19	314	380	3270	1370	1510	2100	3070	17000	9480	1950	6430	1170
22 353 610 1390 1300 2980 2730 2980 9030 5950 1740 5830 547 23 427 613 1380 1170 2290 2580 2750 6670 5710 1680 6330 543 24 797 622 1380 1160 1320 2350 2890 6910 4910 1370 7780 571 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 919 9270 582 26 1240 1140 e741 1170 1840 1940 3460 7800 4260 911 10000 583 27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1170 1760 1920 5030 7690 3850 951 7590 572 29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 8650 6000 3330 1510 6320 572 31 343 e1080 1200 1920 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215900 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1983 1998 1993 1993 1993 1993 1993 199	20	314	430	2270	1370	2070	2610	3070	16900	7290	1850	6270	1270
23 427 613 1380 1170 2290 2580 2750 6670 5710 1680 6330 543 24 797 622 1380 1160 1320 2350 2890 6910 4910 1370 7780 571 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 919 9270 582 26 1240 1140 e741 1170 1840 1940 3460 7800 4260 901 10000 583 27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1170 1760 1920 5030 7690 3850 951 7590 572 29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 8650 6000 3330 1510 5350 572 31 343 e1080 1200 1920 7 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215090 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CPSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1973 1983 1998 1993 1994 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591	21	314	609	1500	1370	2980	2800	3120	14000	5960	1730	6520	591
23 427 613 1380 1170 2290 2580 2750 6670 5710 1680 6330 543 24 797 622 1380 1160 1320 2350 2890 6910 4910 1370 7780 571 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 919 9270 582 26 1240 1140 e741 1170 1840 1940 3460 7800 4260 901 10000 583 27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1170 1760 1920 5030 7690 3850 951 7590 572 29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 8650 6000 3330 1510 5350 572 31 343 e1080 1200 1920 7 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215090 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CPSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1973 1983 1998 1993 1994 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591	22	353	610	1390	1300	2980	2730	2980	9030	5950	1740	5830	547
24 797 622 1380 1160 1320 2350 2890 6910 4910 1370 7780 571 25 1380 790 e1080 1160 1440 1910 3150 7480 4260 919 9270 582 26 1240 1140 e741 1170 1840 1940 3460 7800 4260 901 10000 583 27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1170 1760 1920 5030 7690 3850 951 7590 572 29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 7160 6940 3330 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215090 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1983 1998 1993 1984 1993 1993 1993 1993 MIN 318 340 344 340 344 305 276 746 866 425 277 220 5591 532		427	613	1380	1170		2580		6670	5710	1680	6330	543
26 1240 1140 e741 1170 1840 1940 3460 7800 4260 901 10000 583 27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1170 1760 1920 5030 7690 3850 951 7590 572 29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 8650 6000 3330 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215090 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CPSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1983 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 5591				1380	1160				6910		1370	7780	
27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 8650 6000 3330 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5350 572 31 343 e1080 1200 1920 2 6870 1510 5350 572 31 351 1630 8590 1710 2800 3850 92700 296420 215090 85935	25	1380	790	e1080	1160	1440	1910	3150	7480	4260	919	9270	582
27 819 1280 e713 1170 e2050 1910 3580 7710 4120 924 9800 570 28 470 1540 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 8650 6000 3330 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5350 572 31 343 e1080 1200 1920 2 6870 1510 5350 572 31 351 1630 8590 1710 2800 3850 92700 296420 215090 85935	26	1240	1140	e741	1170	1840	1940	3460	7800	4260	901	10000	583
28	27							3580					
29 355 1550 e709 1180 1920 7160 6940 3740 1210 6220 574 30 351 1630 e709 1190 1920 8650 6000 3330 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215090 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 TN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1973 1973 1973 1973 1973 197													
30 351 1630 e709 1190 1920 8650 6000 3330 1510 5350 572 31 343 e1080 1200 1920 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215090 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1983 1998 1993 1984 1993 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591													
31 343 e1080 1200 1920 6870 1510 5130 TOTAL 13519 22729 90621 41140 42548 58672 92700 296420 215090 85935 161146 41224 MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1983 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591													
MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444													
MEAN 436.1 757.6 2923 1327 1520 1893 3090 9562 7170 2772 5198 1374 MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444	TOTAL	13519	22729	90621	41140	42548	58672	92700	296420	215090	85935	161146	41224
MAX 1380 1630 8590 1710 2980 3290 8650 17000 12400 9540 10500 4410 MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190													
MIN 313 337 709 1080 754 929 1600 6000 3330 901 869 541 AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1983 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591 342						2980							
AC-FT 26810 45080 179700 81600 84390 116400 183900 587900 426600 170500 319600 81770 CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1983 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591 342	MIN	313	337	709	1080		929	1600	6000	3330	901	869	541
CFSM 0.03 0.06 0.23 0.11 0.12 0.15 0.25 0.77 0.57 0.22 0.42 0.11 IN. 0.04 0.07 0.27 0.12 0.13 0.17 0.28 0.88 0.64 0.26 0.48 0.12 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1983 1998 1993 1984 1993 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591 342	AC-FT	26810	45080	179700	81600	84390	116400	183900	587900		170500	319600	81770
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2002, BY WATER YEAR (WY) MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1983 1998 1993 1984 1993 1999 MIN 318 340 344 305 276 746 866 425 277 220 591 342													
MEAN 3444 4416 3791 2491 4302 9159 11840 11980 13290 13690 7805 4109 MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1973 1983 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591 342	IN.	0.04	0.07	0.27	0.12	0.13	0.17	0.28	0.88	0.64	0.26	0.48	0.12
MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1983 1993 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591 342	STATIST	rics of M	ONTHLY ME	EAN DATA	FOR WATER	YEARS 19	70 - 2002,	BY WATER	R YEAR (W	Y)			
MAX 17190 19160 12540 11510 15560 21520 24370 28280 30260 80800 45240 33670 (WY) 1974 1987 1983 1973 1983 1993 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591 342	MEAN	3444	4416	3791	2491	4302	9159	11840	11980	13290	13690	7805	4109
(WY) 1974 1987 1983 1973 1983 1998 1993 1984 1993 1993 1993 MIN 318 340 344 305 276 746 866 425 277 220 591 342													
MIN 318 340 344 305 276 746 866 425 277 220 591 342													

339 IOWA RIVER BASIN

05488500 DES MOINES RIVER NEAR TRACY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1970 -	2002a
ANNUAL TOTAL	3221698		1161744				
ANNUAL MEAN	8827		3183		7542		
HIGHEST ANNUAL MEAN					24450		1993
LOWEST ANNUAL MEAN					898		1977
HIGHEST DAILY MEAN	29900	Apr 15	17000	May 19	107000	Jul 12	1993
LOWEST DAILY MEAN	313	Oct 17	313	Oct 17	165	Feb 20	1977
ANNUAL SEVEN-DAY MINIMUM	314	Oct 15	314	Oct 15	210	Oct 9	1980
MAXIMUM PEAK FLOW			17100	May 18b	109000	Jul 12	1993
MAXIMUM PEAK STAGE			8.95	May 18c	24.16	Jul 12	1993
ANNUAL RUNOFF (AC-FT)	6390000		2304000		5464000		
ANNUAL RUNOFF (CFSM)	0.71		0.26		0.60		
ANNUAL RUNOFF (INCHES)	9.60		3.46		8.21		
10 PERCENT EXCEEDS	23600		7700		19200		
50 PERCENT EXCEEDS	2940		1840		3840		
90 PERCENT EXCEEDS	540		542		550		

Post regulation. Also May 19. Also May 19. Estimated.

05489000 CEDAR CREEK NEAR BUSSEY, IA

LOCATION.--Lat $41^{\circ}13^{\circ}09^{\circ}$, long $92^{\circ}54^{\circ}38^{\circ}$, at SW corner sec.11, T.74 N., R.18 W., Marion County, Hydrologic Unit 07100009, on left bank 10 ft downstream from bridge on State Highway 156, 0.8 mi downstream from North Cedar Creek, 1.6 mi northwest of Bussey, 3.0 mi upstream from Honey Creek, and 8.9 mi upstream from mouth.

DRAINAGE AREA. -- 374 mi².

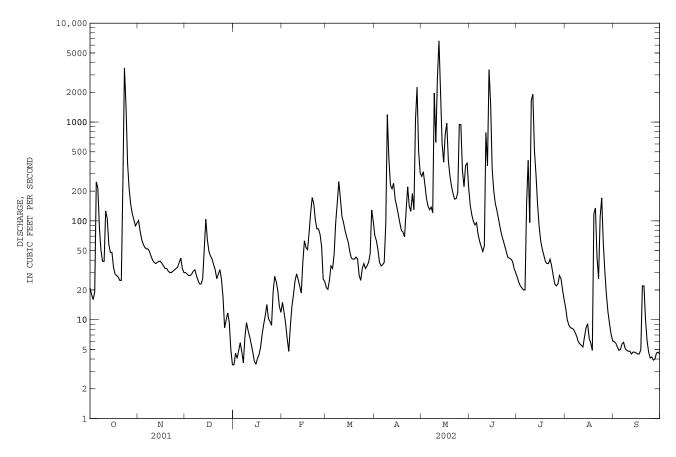
PERIOD OF RECORD. -- October 1947 to current year.

REVISED RECORDS.--WSP 1438: Drainage area.

GAGE.--Water stage recorder. Datum of gage is 682.15 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Feb. 21, 1949, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in June 1946 reached a stage of 28.45 ft on upstream side and 28.05 ft on downstream side of bridge, levels to floodmarks by U.S. Army Corps of Engineers, discharge, $31,500 \text{ ft}^3/\text{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	101	30	e3.5	e15	e21	71	282	143	27	13	6.0
2	18	79	29	e4.6	e12	e20	63	314	115	24	10	5.8
3	16	65	28	e4.1	e9.1	e25	51	233	99	22	8.8	5.3
4	19	58	28	e4.9	e6.5	35	38	169	91	21	8.3	4.9
5	248	54	29	e5.9	e4.8	33	35	141	96	20	8.2	5.0
6	215	52	31	e4.7	e8.5	46	36	130	73	20	8.0	5.7
7	85	52	32	e3.7	e14	96	38	138	62	149	7.4	5.9
8	50	49	28	e6.7	e18	153	93	121	55	410	6.8	5.1
9	39	44	25	e9.3	e25	250	1190	1960	49	96	6.0	4.9
10	39	40	23	e7.8	e29	168	421	621	56	1660	5.7	4.8
11 12 13 14 15	126 106 58 48 48	38 37 38 39 39	23 26 52 104 64	e6.7 e5.7 e4.7 e3.8 e3.6	e26 e22 e19 e38 e63	111 96 80 69 61	230 211 240 166 141	2770 6630 2000 607 393	784 361 3400 1550 335	1910 518 296 148 88	5.5 5.3 6.7 8.3 9.1	4.8 4.5 4.7 4.7
16	34	37	49	e4.0	e54	49	116	751	203	63	6.5	4.5
17	29	35	44	e4.4	e51	42	95	973	150	52	5.8	4.5
18	28	33	41	e5.2	e76	41	80	408	128	45	4.9	5.0
19	27	33	36	e7.2	121	41	77	285	106	39	118	22
20	25	31	32	e9.0	172	43	69	225	87	37	135	22
21	25	30	26	e11	149	41	127	188	73	37	43	10
22	241	30	29	e14	102	28	221	166	64	41	26	6.1
23	3530	31	e32	e10	83	25	141	168	56	35	109	4.7
24	1430	32	e26	e9.6	83	33	125	193	49	28	171	4.1
25	381	33	e17	e8.8	73	37	189	947	43	23	e60	4.2
26 27 28 29 30 31	211 147 118 103 89 95	34 38 42 33 30	e8.3 e9.9 e12 e9.3 e5.0 e3.5	e19 e27 e24 e20 e14 e12	55 e26 e24 	33 35 38 46 129 99	129 1060 2250 508 305	941 323 221 363 383 213	42 41 39 33 30	22 23 28 26 20 16	e31 e18 12 9.1 7.1 6.1	3.9 4.0 4.6 4.7 4.5
TOTAL	7649	1287	932.0	278.9	1378.9	2024	8516	23257	8413	5944	879.6	185.5
MEAN	246.7	42.90	30.06	8.997	49.25	65.29	283.9	750.2	280.4	191.7	28.37	6.183
MAX	3530	101	104	27	172	250	2250	6630	3400	1910	171	22
MIN	16	30	3.5	3.5	4.8	20	35	121	30	16	4.9	3.9
AC-FT	15170	2550	1850	553	2740	4010	16890	46130	16690	11790	1740	368
CFSM	0.66	0.11	0.08	0.02	0.13	0.17	0.76	2.01	0.75	0.51	0.08	0.02
IN.	0.76	0.13	0.09	0.03	0.14	0.20	0.85	2.31	0.84	0.59	0.09	0.02
STATIST	TICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 194	8 - 2002,	BY WATER	R YEAR (WY	7)			
MEAN	111.4	127.3	88.84	84.43	228.8	411.0	417.0	428.2	318.2	279.3	105.6	149.2
MAX	950	1331	844	894	952	1371	1552	1797	1258	3846	1070	1384
(WY)	1974	1962	1983	1974	1949	1960	1973	1996	1967	1982	1993	1992
MIN	0.18	0.33	0.39	0.20	2.29	3.78	0.79	7.19	2.74	2.26	2.51	0.60
(WY)	1957	1956	1956	1956	1954	1954	1956	1956	1977	1988	1953	1953

05489000 CEDAR CREEK NEAR BUSSEY, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1948 - 2002
ANNUAL TOTAL	121717.7	60744.9	
ANNUAL MEAN	333.5	166.4	228.8
HIGHEST ANNUAL MEAN			768 1993
LOWEST ANNUAL MEAN			29.4 1989
HIGHEST DAILY MEAN	5770 Mar 16	6630 May 12	42000 Jul 3 1982
LOWEST DAILY MEAN	3.4 Sep 4	3.5 Dec 31	0.00 Sep 6 1955a
ANNUAL SEVEN-DAY MINIMUM	3.7 Aug 31	4.3 Sep 24	0.00 Sep 6 1955
MAXIMUM PEAK FLOW		7340 May 12	96000 Jul 3 1982
MAXIMUM PEAK STAGE		20.12 May 12	34.61 Jul 3 1982
ANNUAL RUNOFF (AC-FT)	241400	120500	165800
ANNUAL RUNOFF (CFSM)	0.89	0.44	0.61
ANNUAL RUNOFF (INCHES)	12.11	6.04	8.31
10 PERCENT EXCEEDS	861	283	410
50 PERCENT EXCEEDS	56	38	37
90 PERCENT EXCEEDS	9.5	5.2	2.7

Also Sept. 7-20, 1955, Oct. 11, 12, 1956, Aug. 12, 13, 1989. Estimated.

05489500 DES MOINES RIVER AT OTTUMWA, IA

LOCATION.--Lat $41^{\circ}00'39"$, long $92^{\circ}24'40"$, in $SE^{1}/_{4}$ NE $^{1}/_{4}$ sec.25, T.72 N., R.14 W., Wapello County, Hydrologic Unit 07100009, on right bank 15 ft downstream from Colorado and Eastern Railroad Bridge at Ottumwa, 0.4 mi downstream from Ottumwa powerplant, 6.5 mi upstream from Village Creek, 9.5 mi downstream from South Avery Creek, and at mile 94.1.

DRAINAGE AREA.--13,374 mi²

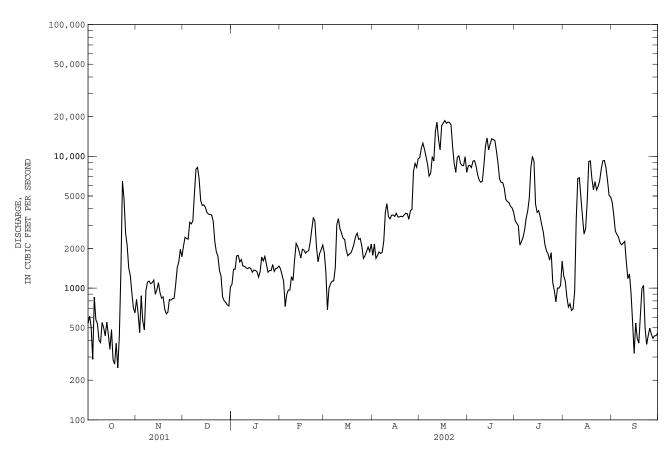
PERIOD OF RECORD.--March 1917 to current year (published as "at Eldon" October 1930 to March 1935). Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 525: 1917-20. WSP 1308: 1917-23 (M), 1925-27 (M), 1931. WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 622.00 ft above NGVD of 1929. Prior to Sept. 30, 1930, nonrecording gage at Market Street Bridge 1,700 ft upstream at datum 0.83 ft higher. Oct. 1, 1930 to Mar. 31, 1935, nonrecording gage at Eldon 15 mi downstream at different datum. Apr. 1, 1935 to Oct. 25, 1963, water-stage recorder at site 1,100 ft downstream at Vine Street Bridge at datum 0.77 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Prior to Dec. 12, 1958 and since Nov. 30, 1960, diurnal fluctuation at low and medium stages are caused by powerplant upstream of station about $^1/_2$ mile. Flow regulated by Lake Red Rock (station 05488100) 48.2 mi upstream since March 12, 1969. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $135,000 \text{ ft}^3/\text{s}$ June 7, 1947, gage height, 20.2 ft, site and datum then in use; minimum daily discharge, $26 \text{ ft}^3/\text{s}$ Oct. 25, 1990, when gates at dam in Ottumwa were closed.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1850, that of June 7, 1947. Flood of May 31, 1903, reached a stage of 19.4 ft, former site and datum at Vine Street Bridge or about 22 ft at Market Street Bridge, from information by U.S. Army Corps of Engineers and U.S. National Weather Service, discharge, about 140,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	538	822	2080	1070	e1400	e1860	1770	9780	8450	3250	1240	4480
2	614	644	2430	1390	e1260	e1320	2160	11500	8560	3100	1130	3560
3	505	459	2380	1390	e1120	e685	1680	12600	8210	2970	858	2710
4	288	875	2350	e1760	e725	e1000	1770	e11300	9190	2120	719	2550
5	854	560	3160	e1770	e897	e1080	1880	e9960	9270	2260	761	2440
6	576	482	3070	1580	e966	e1130	1830	8640	8420	2420	677	2210
7	538	960	3240	e1650	968	e1130	1870	7080	7250	2760	696	2130
8	403	1110	5270	1470	1220	e1420	2270	7460	6590	3390	943	2190
9	386	1130	8000	e1460	1140	3040	3750	9940	6350	3860	3320	2260
10	549	1080	8240	e1430	1640	3360	4370	9200	6480	4830	6800	1580
11	499	1100	6740	e1400	2180	2820	3490	15400	8550	8190	6880	1180
12	435	1150	4600	e1430	2070	2620	3350	18200	12000	10000	4820	1280
13	552	898	4240	e1410	1880	2390	3570	13400	13800	9140	3490	927
14	443	972	4280	e1320	1690	2340	3590	11200	11200	4340	2570	559
15	343	1100	4100	e1370	1970	1950	3500	17100	12400	3760	2830	319
16	484	921	3750	e1360	1940	1760	3700	17900	13600	3870	4500	543
17	285	838	3640	e1330	1840	1810	3470	18700	13400	3460	9120	417
18	265	858	3620	e1210	1900	1850	3470	17800	13200	3000	9240	382
19	381	692	3590	e1340	1920	1980	3510	18200	11000	2640	6790	623
20	248	639	3220	1720	2240	2180	3480	18100	8910	2140	5570	995
21	427	655	2270	1610	2800	2460	3580	17300	6750	1910	6440	1050
22	1340	820	1880	1740	3440	2610	3700	11800	6350	1820	5560	497
23	6470	810	1750	1520	3210	2340	3670	8860	6320	1630	5910	374
24	4750	833	1360	1320	2050	2380	3330	7560	5740	1860	6570	436
25	2620	835	e1230	1360	1580	2070	3860	9810	4720	1100	8010	497
26 27 28 29 30 31	2110 1420 1250 927 705 649	1060 1430 1580 1970 1730	e857 e801 e779 e746 732 1020	1360 1510 1340 1410 1420 1470	1830 1960 e2120 	1680 1760 1900 2050 1890 2160	3960 7700 8840 8250 9580	10100 8850 8530 8510 9930 7560	4530 4460 4180 4060 3750	959 785 1000 1000 1050 1600	9240 9300 8220 6530 5050 4920	446 416 434 436 454
TOTAL	31854	29013	95425	44920	49956	61025	114950	372270	247690	96214	148704	38375
MEAN	1028	967.1	3078	1449	1784	1969	3832	12010	8256	3104	4797	1279
MAX	6470	1970	8240	1770	3440	3360	9580	18700	13800	10000	9300	4480
MIN	248	459	732	1070	725	685	1680	7080	3750	785	677	319
AC-FT	63180	57550	189300	89100	99090	121000	228000	738400	491300	190800	295000	76120
CFSM	0.08	0.07	0.23	0.11	0.13	0.15	0.29	0.90	0.62	0.23	0.36	0.10
IN.	0.09	0.08	0.27	0.12	0.14	0.17	0.32	1.04	0.69	0.27	0.41	0.11
				FOR WATER						0.27	0.41	0.11
MEAN	3829	4798	4211	2827	4725	9978	12660	13030	14040	14440	8197	4496
MAX	18390	19250	13980	12380	16470	21750	25330	29770	31980	85570	47380	34790
(WY)	1974	1987	1993	1973	1973	1983	1983	1993	1984	1993	1993	1993
MIN	307	327	381	290	328	891	962	519	282	238	610	366
(WY)	2001	1977	1977	1977	1977	1977	1977	1977	1977	1977	1988	1976

05489500 DES MOINES RIVER AT OTTUMWA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAS	FER YEAR	WATER YEARS	1970 - 2002a
ANNUAL TOTAL	3493783		1330396			
ANNUAL MEAN	9572		3645		8118	
HIGHEST ANNUAL MEAN					26350	1993
LOWEST ANNUAL MEAN					1120	1977
HIGHEST DAILY MEAN	31400	Mar 22	18700	May 17	110000	Jul 12 1993
LOWEST DAILY MEAN	248	Oct 20	248	Oct 20	26	Oct 25 1990b
ANNUAL SEVEN-DAY MINIMUM	348	Oct 15	348	Oct 15	182	Jul 7 1977
MAXIMUM PEAK FLOW			22900	May 11	112000	Jul 12 1993
MAXIMUM PEAK STAGE			8.22	May 11	22.15	Jul 12 1993
ANNUAL RUNOFF (AC-FT)	6930000		2639000		5881000	
ANNUAL RUNOFF (CFSM)	0.72		0.27		0.61	
ANNUAL RUNOFF (INCHES)	9.72	2	3.70		8.25	
10 PERCENT EXCEEDS	24600		9190		20500	
50 PERCENT EXCEEDS	3620		2050		4310	
90 PERCENT EXCEEDS	647		599		638	

Post regulation. Gates at dam in Ottumwa closed. Estimated.

05490500 DES MOINES RIVER AT KEOSAUQUA, IA

LOCATION.--Lat $40^{\circ}43^{\circ}40^{\circ}$, long $91^{\circ}57^{\circ}34^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.36, T.69 N., R.10 W., Van Buren County, Hydrologic Unit 07100009, on right bank 10 ft upstream from bridge on State Highway 1 at Keosauqua, 4.0 mi downstream from Chequest Creek, and at mile 51 3

DRAINAGE AREA. -- 14,038 mi².

PERIOD OF RECORD.--May 1903 to July 1906, April to December 1910, August 1911 to current year. Monthly discharge only for some periods, published in WSP 1308.

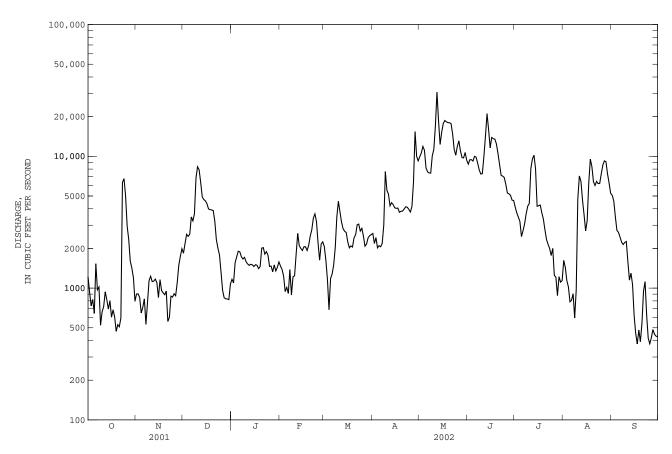
REVISED RECORDS.--WSP 525: 1913-20. WSP 1438: Drainage area. WSP 1508: 1903, 1905-6, 1915- 18 (M), 1922 (M), 1924-26 (M), 1932-34 (M), 1937, 1942 (M).

GAGE.--Water-stage recorder. Datum of gage is 547.36 ft above NGVD of 1929. Prior to Dec. 24, 1933, nonrecording gage, and Dec. 25, 1933, to Sept. 30, 1972, water-stage recorder, at same site at datum 10.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Prior to Dec. 21, 1958, and since Nov. 30, 1960, some diurnal fluctuation at medium and low stages caused by power plant at Ottumwa. Flow regulated by Lake Red Rock (station 05488100) 91.0 mi upstream, since March 12, 1969. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $146,000 \text{ ft}^3/\text{s}$ June 1, 1903, gage height, 27.85 ft, from floodmark, datum then in use; minimum daily discharge, $40 \text{ ft}^3/\text{s}$ Jan. 30, 1940.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1851, reached a stage of 24 ft, discharge not determined.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1220	902	1840	e1170	1470	e2070	2600	9950	8730	4120	1620	5060
2	928	904	2180	e1100	e1380	e1630	2180	10600	9420	3720	1440	4580
4	732 820	849 647	2560 2470	e1560 e1720	e1230 e942	e1160 e685	2420 2020	11900 11100	9430 9210	3460 3200	1140 1020	3480 2740
5	642	716	2560	e1910	e1010	e1180	2100	8160	10000	e2460	787	2650
6	1530	828	3470	e1880	912	e1280	2060	7620	9850	e2730	809	2440
7	970	531	3240	e1730	1380	e1500	2180	7480	8900	e3070	907	2230
8 9	1020 523	775 1140	3660 6860	e1660 e1710	886 1220	e2040 e3470	3000 7660	7460 10100	7880 7340	e3660 e4180	595 968	2140 2220
10	661	1230	8330	e1590	1240	4560	5530	11300	7340	4390	4750	2260
	001	1230	0330	01000	1210	1300	3330	11300	,350	1000	1,50	2200
11	725	1120	7900	e1530	1810	3790	5160	17100	10000	8080	7100	1590
12	937	1130	6330	e1490	2600	3170	4210	30700	14300	9570	6470	1150
13 14	816 693	1170 1100	4920 4700	e1520 e1500	2100 2000	2820 2700	4450 4300	18600 12300	21100 15900	10200 8050	4670 3610	1300 1060
15	802	847	4590	e1460	1930	2640	4070	15200	11600	4180	2720	618
13	002	047	4330	CITOU	1930	2040	4070	15200	11000	4100	2720	010
16	602	1160	4370	e1500	2060	2240	4030	17700	13900	4220	3260	453
17	684	957	3990	e1490	2060	2020	4050	18700	13600	4270	6240	377
18	606	920	3940	e1410	1930	2090	3760	18300	13500	3730	9510	481
19 20	470 528	891 949	3920 3880	e1460 2010	2110 2480	2050 2410	3830 3840	18000 18000	12400 10500	3340 2770	8370 6430	392 543
20	320	343	3000	2010	2400	2410	3040	18000	10300	2770	0430	343
21	509	558	3230	2030	2770	2540	3980	17700	8680	2340	6010	949
22	594	600	2340	1810	3400	3020	4140	14800	7180	2150	6450	1120
23	6340	869	2010	1890	3660	3060	4110	11300	7070	2000	6210	625
24 25	6780 5000	854 906	1790 1320	1780 1460	3200 2200	2710 2840	3960 3780	10200 11900	6900 6130	1770 2000	6230 7360	417 378
∠5	5000	906	1320	1460	2200	2840	3780	11900	0130	2000	/360	3/8
26	2960	875	e961	1470	1630	2480	4150	13100	5270	1250	8580	420
27	2340	1100	e844	1330	e2160	2080	6360	11000	5190	1210	9240	485
28	1600	1490	e830	1500	e2240	2160	e15400	9780	5060	877	9100	447
29 30	1420 1200	1740 1990	e827 e818	1350 1440		2410 2500	e10000 9240	9730 10700	4650 4620	1220 1110	7350 6270	432 427
31	795	1990	e1070	1580		2550	9240	9340	4020	1140	5240	427
31	755		CIOTO	1500		2550		2340		1140	3240	
TOTAL	45447	29748	101750	49040	54010	73855	138570	409820	285700	110467	150456	43464
MEAN	1466	991.6	3282	1582	1929	2382	4619	13220	9523	3563	4853	1449
MAX	6780 470	1990 531	8330 818	2030 1100	3660 886	4560 685	15400 2020	30700 7460	21100 4620	10200 877	9510 595	5060 377
MIN AC-FT	90140	59010	201800	97270	107100	146500	274900	812900	566700	219100	298400	86210
CFSM	0.10	0.07	0.23	0.11	0.14	0.17	0.33	0.94	0.68	0.25	0.35	0.10
IN.	0.12	0.08	0.27	0.13	0.14	0.20	0.37	1.09	0.76	0.29	0.40	0.12
STATIST	TICS OF M	ONTHLY MI	EAN DATA	FOR WATER	YEARS 19	70 - 2002,	BY WATER	R YEAR (W	ľ)			
MEAN	4048	4945	4427	2993	5032	10460	13300	13830	14430	14930	8440	4879
MAX	19850	19320	14510	13120	17370	22200	30030	31260	30900	86150	47320	35210
(WY)	1974	1987	1983	1973	1973	1983	1973	1993	1984	1993	1993	1993
MIN	383	332	385	291	331	1170	1224	696	300	258	528	362
(WY)	1977	1977	1977	1977	1977	1981	1977	1977	1977	1977	1989	1976

345 DES MOINES RIVER BASIN

05490500 DES MOINES RIVER AT KEOSAUQUA, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WA	TER YEAR	WATER YEARS	1970 - 2002a
ANNUAL TOTAL	3629457		1492327			
ANNUAL MEAN	9944		4089		8492	
HIGHEST ANNUAL MEAN					26920	1993
LOWEST ANNUAL MEAN					1303	1977
HIGHEST DAILY MEAN	41400	Mar 16	30700	May 12	108000	Jul 13 1993
LOWEST DAILY MEAN	470	Oct 19	377	Sep 17	115	Oct 27 1990b
ANNUAL SEVEN-DAY MINIMUM	570	Oct 16	429	Sep 24	204	Jul 3 1977
MAXIMUM PEAK FLOW			35500	May 12	111000	Jul 12 1993
MAXIMUM PEAK STAGE			19.92	May 12	32.66	Jul 13 1993
ANNUAL RUNOFF (AC-FT)	7199000		2960000		6152000	
ANNUAL RUNOFF (CFSM)	0.71	L	0.29		0.60	
ANNUAL RUNOFF (INCHES)	9.62	2	3.95		8.22	
10 PERCENT EXCEEDS	25600		10000		21300	
50 PERCENT EXCEEDS	3990		2340		4640	
90 PERCENT EXCEEDS	750		792		700	

Post regulation. Gates at dam in Ottumwa closed Estimated.

346 FOX RIVER BASIN

05494300 FOX RIVER AT BLOOMFIELD, IA

LOCATION.--Lat $40^{\circ}46^{\circ}10^{\circ}$, long $92^{\circ}25^{\circ}05^{\circ}$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.13, T.69 N., R.14 W., Davis County, Hydrologic Unit 0711000, on left bank 15 ft. downstream from bridge on county road V20, 1.3 miles north of county courthouse at Bloomfield, and 8.6 miles downstream from North Fox Creek.

DRAINAGE AREA.-- 87.7 mi²

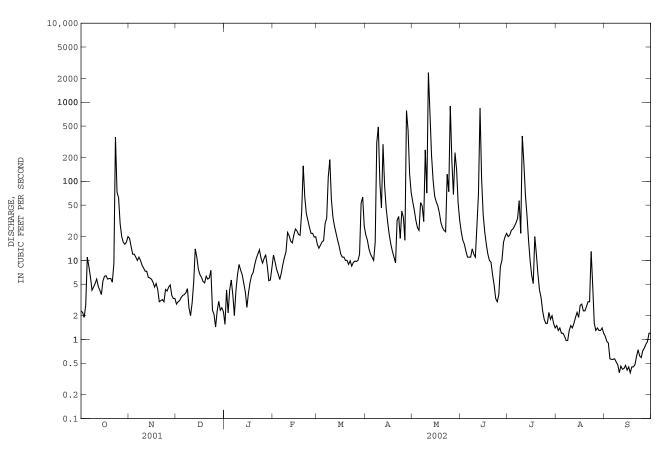
PERIOD OF RECORD.--October 1957 to September 1973; May 1997 to current year.

GAGE.--Water-stage recorder. Datum of gage is 755.57 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 9, 1905 and June 18, 1946, exceeded all other known floods at this location, stage and discharge unknown. Also flood of May 6, 1960 reached a stage of 24.02 ft., gage datum; discharge 8,600 cfs (Slope-Area Measurement).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.3 2.2 1.9 2.7	19 15 12 12	e2.8 e3.0 e3.1 e3.4 e3.6	e1.6 e4.2 e2.2 e4.2 e5.7	e12 e9.6 e7.7 e6.7 e5.7	e16 e14 e16 e17 e18	21 18 14 12 11	55 43 32 26 24	23 18 16 13 11	20 21 24 25 27	e1.5 e1.3 e1.4 e1.2 e1.2	e1.1 e0.95 e0.90 e0.57 e0.56
6	8.4	10	e3.7	e3.7	e6.9	e29	10	54	11	30	1.1	e0.56
7	6.2	11	e3.9	e2.0	e8.9	e34	17	49	11	34	0.97	e0.57
8	4.2	10	e4.4	e4.2	e11	e114	311	31	14	57	e0.97	e0.52
9	4.6	8.7	e2.5	e6.6	e13	e188	488	250	12	22	e1.3	e0.48
10	5.1	8.0	e2.0	e8.9	e23	59	95	71	11	375	e1.5	e0.38
11	5.8	7.3	e2.9	e7.5	e21	35	46	2370	27	171	e1.4	e0.46
12	4.7	7.3	e5.3	e6.6	e18	27	294	722	71	67	e1.6	e0.42
13	4.2	6.1	e14	e5.1	e17	22	89	215	846	37	e1.9	e0.43
14	3.7	6.0	e11	e4.0	e21	18	46	103	107	18	e2.2	e0.47
15	5.5	5.8	e7.7	e2.5	e25	15	30	65	38	9.9	e1.9	e0.41
16	6.3	5.3	e6.6	e3.9	e24	12	21	55	23	6.5	e2.7	e0.45
17	6.4	4.6	e6.1	e5.2	e21	11	16	49	16	5.1	e2.8	e0.38
18	5.8	5.1	e5.4	e6.4	e21	11	13	40	12	20	e2.3	e0.45
19	5.9	4.3	e5.2	e7.0	41	10	11	30	10	12	e2.3	e0.45
20	5.9	3.0	e6.3	e8.8	157	10	9.3	26	9.5	6.7	e2.6	e0.48
21	5.3	3.1	e5.8	e11	63	8.9	32	24	6.6	4.2	e3.0	e0.61
22	9.2	3.2	e6.0	e12	39	9.9	36	23	4.9	3.4	e3.0	e0.74
23	364	3.0	e7.5	e14	32	8.5	19	123	3.3	e2.3	e13	e0.62
24	73	4.3	e2.3	e11	26	9.4	42	74	3.0	1.8	e4.8	e0.59
25	62	4.1	e2.1	e9.3	22	9.8	35	897	3.7	1.6	e1.6	e0.72
26 27 28 29 30 31	29 20 17 16 17 20	4.6 4.9 e3.6 e3.3 e3.3	e1.4 e2.3 e3.0 e2.3 e2.5 e2.5	e11 e12 e8.6 e5.5 e5.7 e8.1	22 e20 e20 	9.7 10 e12 e53 63 27	18 785 444 123 72	179 68 230 143 53 32	8.4 10 17 20 22	1.6 2.2 1.8 2.0 1.6 1.4	e1.3 e1.4 e1.3 e1.3 e1.4 e1.2	e0.78 e0.87 e0.94 e1.2 e1.2
TOTAL	735.3	208.9	140.3	208.5	714.5	897.2	3178.3	6156	1398.4	1012.1	67.44	19.26
MEAN	23.72	6.963	4.526	6.726	25.52	28.94	105.9	198.6	46.61	32.65	2.175	0.642
MAX	364	19	14	14	157	188	785	2370	846	375	13	1.2
MIN	1.9	3.0	1.4	1.6	5.7	8.5	9.3	23	3.0	1.4	0.97	0.38
AC-FT	1460	414	278	414	1420	1780	6300	12210	2770	2010	134	38
CFSM	0.27	0.08	0.05	0.08	0.29	0.33	1.21	2.26	0.53	0.37	0.02	0.01
IN.	0.31	0.09	0.06	0.09	0.30	0.38	1.35	2.61	0.59	0.43	0.03	0.01
STATIS'	TICS OF M	ONTHLY ME	AN DATA E	FOR WATER	YEARS 195	58 - 2002,	BY WATER	YEAR (W	<i>(</i>)			
MEAN	33.79	24.29	20.67	29.62	60.27	104.5	102.0	86.29	45.48	27.04	30.11	40.09
MAX	178	222	115	127	158	291	370	325	257	163	254	377
(WY)	1960	1962	1971	1973	1959	1960	1973	1973	2001	1969	1970	1970
MIN	0.21	0.53	0.32	0.59	0.67	1.07	1.17	0.69	0.73	1.09	0.20	0.27
(WY)	1964	1965	1964	1964	1964	1964	2000	2000	1963	1972	1961	1999

FOX RIVER BASIN 347

05494300 FOX RIVER AT BLOOMFIELD, IA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1958 - 2002
ANNUAL TOTAL	30164.8	14736.20	
ANNUAL MEAN	82.64	40.37	50.76
HIGHEST ANNUAL MEAN			117 1973
LOWEST ANNUAL MEAN			8.40 1964
HIGHEST DAILY MEAN	2650 Mar 15	2370 May 11	4370 May 6 1960
LOWEST DAILY MEAN	1.2 Aug 2	0.38 Sep 10	0.00 Oct 1 1957
ANNUAL SEVEN-DAY MINIMUM	1.8 Sep 1	0.43 Sep 12	0.00 Oct 1 1957
MAXIMUM PEAK FLOW		5160 May 11	8600 May 6 1960
MAXIMUM PEAK STAGE		18.77 May 11	24.02 May 6 1960
INSTANTANEOUS LOW FLOW		_	0.00 Oct 1 1957
ANNUAL RUNOFF (AC-FT)	59830	29230	36770
ANNUAL RUNOFF (CFSM)	0.94	0.46	0.58
ANNUAL RUNOFF (INCHES)	12.80	6.25	7.86
10 PERCENT EXCEEDS	171	62	77
50 PERCENT EXCEEDS	12	9.2	5.2
90 PERCENT EXCEEDS	2.3	1.3	0.50

e Estimated

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years up to the current year for which the annual maximum has been determined.

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

[+--not determined, a--peak stage did not reach bottom of gage, b--ice affected, c--old gage datum, d--estimate, e--peak affected by backwater]

			Water y	year 2002	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	UPPER	IOWA R	IVER BASI	N				
Dry Run Creek near Decorah, IA (05387490)	Lat 43°17'29",long 91°48'33"in SE1/4, sec.20, T.98 N., R.8 W., Winneshiek County, Hydrologic Unit 07060002, on State Highway 9, 0.5 mi west of Decorah. Drainage area 21.0 mi ² .	1978-	05-9-02 Revised 07-22-78 1980 06-17-84 02-23-85 03-16-86 10-12-86 1988 03-12-89 08-25-90 1992	18.23 Record: 19.06 19.23 17.78 18.30 17.74 19.22 (a) 18.42 18.49 (a)	1,710 2,460 2,620 1,360 1,770 1,340 2,610 <930 1,880 1,940 <930	08-16-93	20.80	4,620
Waterloo Creek near Dorchester, IA (05388310)	Lat 43°27'04", long 91°30'18", in NW1/4, sec.25, T.100 N., R.6 W., Allamakee County, Hydrologic Unit 07060002, on State Highway 76, 1.4 mi south of Dorchester. Drainage area 46.6 mi ² .	1966-	06-15-02 Revised 06-16-70 09-25-72 06-09-74 04-18-76 07-01-78 08-17-80 03-13-82 1984 02-23-85 09-17-86 10-14-86 1988 03-12-89 06-29-90 08-08-91 04-21-92 07-18-93 02-19-94 04-11-95 03-24-96 04-09-99	(a) Record: 8.41 8.08 10.85 9.34 14.80 9.92 9.02 (a) 9.08 10.32 10.15 (a) 9.12 7.86 10.13 10.00 9.52 9.09 8.33 7.98	<610 680 460 2,500 1,150 9,380 1,600 1000 <700 1,900 1,800 <120 (+) 1,020 370 1,730 1,630 1,270 1,000 590 420	07-01-78	14.80	9,380
	MISSIS	SSIPPI R	RIVER BAS	IN				
Mississippi River tributary at McGregor, IA (05389501)	Lat 43°01'12", long 91°11'25", in N1/4, sec.27, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, at culvert on County Road X50, at intersection with U.S. Highway 18 (Business Route), in McGregor. Drainage area 0.72 mi ² .	1991-	2002 Revised 08-02-01		(+)	03-31-93	13.13	(+)
	TUR	KEY RIV	ER BASIN					
	Lat 42°50'19", long 91°24'25", in SW1/4, sec.26, T.93 N.,R.5 W., Clayton County, Hydrologic Unit 07060004, at culvert on State Highway 13, 1.1 mi south of Elkader. Drainage area 3.56 mi ² .	1991-	06-05-02	10.31	^d 270	05-17-99	^d 19.9	^d 3,100
	LITTLE M	AQUOKET	A RIVER B	ASIN				
Little Maquoketa River at Graf, IA (05414350)	Lat 42°30'09", long 90°51'50", in SE1/4 NW1/4, sec.20, T.89 N., R.1 E., Dubuque County, Hydrologic Unit 07060003, at bridge on county highway, 300 ft downstream from Illinois Central railroad bridge, 0.5 mi northeast of Graf. Drainage area 39.6 mi ² .	1951-	06-04-02	15.93	7,700	6-4-02	15.93	7,700

_			Water	703r 2002	marimum	Poriod o	of record	maximum
	Location	Period		year 2002 Gage	Dis-		Gage	Dis-
Station name and number	and drainage area	of record	Date	height (ft)	charge (ft ³ /s)	Date	height (ft)	charge (ft ³ /s)
	LITTLE MAQUOK	ETA RIVE	R BASIN-	-continue	ed			
Middle Fork Little Maquoketa River near Rickardsville, IA (05414400)	Lat 42°33′38″, long 90°51′35″, in SE1/4, sec.32, T.90 N., R.1 E., Dubuque County, Hydrologic Unit 07060003, at bridge on county highway, 2 mi southeast of Rickardsville. Drainage area 30.2 mi ² .	1951-	06-04-02 Revised 1976 02-25-77 06-16-78 03-29-79 08-17-80 06-15-81 02-22-84 1983 06-22-84 02-23-85 09-21-86	(a) 13.61 16.59 14.37 16.78 16.07 15.33 (a) 13.13 15.02 16.50	<pre><6,870 <666 1,220 3,470 1,630 3,670 2,970 2,330 <666 1,000 2,090 3,380</pre>	08-02-72	27.70	23,000
			08-26-87 1988 08-25-90 04-13-91 04-20-92 07-05-93 04-25-94 05-10-95 06-06-96 02-21-97 03-31-98 05-17-99 2000	14.96 (a) 15.31 21.81 13.72 17.98 18.86 14.29 15.24 13.69 16.56 20.62 (a)	2,040 <666 2,310 13,400 1,270 5,280 6,750 1,580 2,260 1,250 3,440 10,400 <642			
North Fork Little Maquoketa River near Rickardsville, IA (05414450)	Lat 42°35'09", long 90°51'20", near NW corner, sec.28, T.90 N., R.1 E., Dubuque County, Hydrologic Unit 07060003, at bridge on county highway, 1 mi northeast of Rickardsville. Drainage area 21.6 mi ² .	1951-	06-04-02	12.40	4,960	08-02-72	14.02	7,180
Little Maquoketa River tributary at Dubuque, IA (05414600)	Lat 42°32′38″, long 90°41′38″, near NW corner, sec.11, T.89 N., R.2 E, Dubuque County, Hydrologic Unit 07060003, at bridge on State Highway 386, near north city limits of Dubuque. Drainage area 1.54 mi².	1951- 2002	06-04-02	14.50	559	07-31-57	^c 7.98	^d 1,650
Bloody Run tributary near Sherrill, IA (05414605)	Lat 42°37'13", long 90°45'44", in SE1/4, sec.7, T.90 N., R.2 E., Dubuque County, Hydrologic Unit 07060003, at culvert on county road 1.6 mi northeast of Sherrill. Drainage area 0.59 mi	1991-	08-22-02	14.90	^d 280	06-15-91	19.27	^d 692
	LAM	ONT CRE	EK BASIN					
Lamont Creek tributary at Lamont, IA (05416200)	Lat 42°35'22", long 91°38'52", in SE1/4, sec.22, T.90 N., R.7 W., Buchanan County, Hydrologic Unit 07060006, at culvert on State Highway 187, 0.8 mi southwest of Lamont. Drainage area 1.78 mi ² .	1991-	06-04-02	15.74	^d 138	06-01-00	20.13	^d 635
	UQAM	OKETA RI	VER BASII	N				
Sand Creek near Manchester, IA (05416972)	Lat 42°26′57″, long 91°28′50″, in SE1/4, sec.12, T.88 N., R.6 W., Delaware County, Hydrologic Unit 07060006, at culvert on State Highway 13, 2.7 mi southwest of Manchester. Drainage area 11.0 mi².	1991-	06-04-02	19.31	^d 4,290	06-04-02	19.31	^d 4,290
Williams Creek near Charlotte, IA (05418645)	Lat 41°55′55″, long 90°31′44″, in SE1/4, sec.6, T.82 N., R.4 E., Clinton County, Hydrologic Unit 07060006, at culvert on County Road Y7, 2.1 mi north of County Highway E63, 5 mi southwest of Charlotte. Drainage area 1.77 mi².	1990-	06-04-02	12.25	^d 870	05-29-96	13.02	(+)

			Water y	year 2002	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	WAPSIE	PINICON	RIVER BAS	IN				
Little Wapsipinicon River tributary near Riceville, IA (05420600)	Lat 43°21'31", long 92°29'08", near SW1/4 corner, sec. 27, T.99 N., R.14 W., Howard County, Hydrologic Unit	1953-	04-12-02 Revised 08-25-90	5.64	11.1 d ₂ ,230	06-14-00	7.66	^d 2,100
	07080102, at culvert on county highway, 3.5 mi east of Riceville. Drainage area 1.10 mi ² .		05-18-91 07-20-94 03-25-96 03-11-97 06-28-98 07-21-99 06-14-00 04-12-01	5.26 4.10 3.30 55.70 5.57 5.70 5.60 3.54	1,240 150 30 (+) d2,010 d2,440 d2,100 50			
Little Wapsipinicon River near Oran, IA (05420850)	Lat 42°42′53″, long 92°02′29″, near NW corner, sec.9, T.91 N., R.10 W., Fayette County, Hydrologic Unit 07080102, at bridge on State Highway 3, 2 mi northeast of Oran. Drainage area 94.1 mi².	1966-	06-04-02	87.67	1,570	05-17-99	94.15	12,800
Buck Creek near Oran, IA (05420875)	Lat 42°42′53″, long 92°07′33″, in NE1/4, sec.10, T.91 N., R.11 W., Bremer County,	1966-	06-04-02	87.60	431	05-17-99	91.02	^d 5,600
(03420673)	Hydrologic Unit 07080102, at bridge on State Highway 3, 2.5 mi northwest of Oran. Drainage area 37.9 mi ² .		Revised 06-15-67 06-27-69 03-03-70 1972 04-16-73 03-21-75 04-17-76 1977 04-06-78 05-22-82 06-18-96	86.13 89.05 87.68 (a) 88.09 87.89 88.35 (a) 87.73 87.58	100 1,020 610 <96 770 690 880 <96 620 490 550			
n: a 1		1050	05-17-99	91.02	d5,600	05.45.60	0.05	daaa
Pine Creek tributary near Winthrop, IA (05421100)	Lat 42°29'17", long 91°47'10", in SW1/4, sec.27, T.89 N., R.8 W., Buchanan County, Hydrologic Unit 07080102, at culvert on county road, 2.5 mi northwest of Winthrop. Drainage area 0.33 mi ² .	1953-	06-04-02	6.46	^d 150	07-17-68	8.97	^d 334
Wapsipinicon River tributary at	Lat 42°28'06", long 91°44'33", at N1/4 corner sec.2, T.88 N.,	1953-	06-04-02	6.07	55	07-17-68	7.26	570
Winthrop, IA (05421300) (formerly published as: "Pine Creek trib. no. 2 at Winthrop")	R.8 W., Buchanan County, Hydrologic Unit 07080102, at culvert on State Highway 939, near west city limits of Winthrop. Drainage area 0.70 mi ² .		Revised 09-29-72 1988 1990 1991 1992 1994 1995	Record: 5.18 (a) (a) (a) (a) (a) (a) (a) (a)	14 <7 <7 <7 <7 <7 <7			
Silver Creek at Welton, IA (05421890)	Lat 41°54′54″, long 90°36′00″, in NW1/4, sec.15, T.82 N., R.3 E., Clinton County, Hydrologic Unit 07080103, at bridge on U.S. Highway 61, at north edge of Welton. Drainage area 9.03 mi ² .	1966-	06-04-02	90.13	1,890	05-17-74	89.77	^d 4,820
	IC	WA RIVE	R BASIN					
Westmain drainage ditch 1 & 2 at	Lat 43°06'09", long 93°47'04", in SW1/4, sec.27, T.96 N.,	1966-	2002	(a)	<53	04-28-75	83.59	372
Britt, IA (05448400) Low- flow site April 1958 to Sept. 1976	R.25 W., Hancock County, Hydrologic Unit 07080207, at bridge on U.S. Highway 18, near east city limits of Britt. Drainage area 21.2 mi ² .		Revised 03-16-71 03-10-73 1992 1993 1994 05-28-95 1996 06-24-98 05-05-99	Record: 81.77 81.71 (a) (a) (a) 81.18 (a) 82.62 80.60	190 185 <53 <50 100 <50 160 80			
East Branch Iowa River above Hayfield, IA (05448600)	Lat 43°09'21", long 93°41'21", at S1/4 corner sec.4, T.96 N., R.24 W., Hancock County, Hydrologic Unit 07080207, at bridge on county highway, 1.5 mi southeast of Hayfield. Drainage area 2.23 mi ² .	1953-	2002	(a)	(+)	04-11-01	8.12	(+)

-			Water y	year 2002	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
			Ncontir		(10 / 5)		(10)	(10 / 5)
Honey Creek tributary near Radcliffe, IA (0545129280)	Lat 42°19'44", long 93°25'28", in SW1/4, sec.21, T.87 N., R.22 W., Hardin County, Hydrologic Unit 07080207, at culvert on county road highway S27, 1.1 mi northeast of Radcliffe. Drainage area 3.29 mi ² .	1991-	05-12-02	94.94	^d 110	05-10-95	100.14	^d 510
Stein Creek near Clutier, IA (05451955)	Lat 42°04'46", long 92°18'00", in NE1/4, sec.24, T.84 N., R.13 W., Tama County, Hydrologic Unit 07080208, at bridge on county highway E36, 5 mi east of Clutier. Drainage area 23.4 mi ² .	1971-	2002	(a)	<201	06-15-82	77.92	11,400
Price Creek at Amana, IA (05453200)	Lat 41°48′18″, long 91°52′23″, in SE1/4, sec.22, T.81 N., R.9 W., Iowa County, Hydrologic Unit 07080208, at bridge on State Highway 151, near north edge of Amana. Drainage area 29.1 mi².	1966-	06-13-02 Revised 1966 1967 08-05-68 07-18-69 03-02-70 02-19-71 1972 04-20-73 08-12-74 03-19-75 08-18-77 06-29-78 03-19-79 1980 02-25-81 06-15-82 05-02-83 02-18-84 10-18-84 10-18-84 1987 1988 09-08-89 06-17-90 04-29-91 07-13-92 03-12-01	85.20 Record: (a) (a) 83.17 83.94 85.87 84.57 (a) 83.94 86.16 84.43 85.81 86.42 84.35 87.22 84.35 84.97 84.19 86.18 (a) (a) (a) 88.78 84.81 84.59 87.47	1,890 <1,400 <1,400 1,440 1,720 2,410 1,940 <1,400 1,500 2,630 1,460 2,840 1,420 3,530 1,420 1,740 1,340 2,840 1,740 1,740 1,740 1,740 1,750 5,080 1,650 1,650 1,540 3,770	06-17-90	88.80	5,080
North Fork tributary to Mill Creek near Solon, IA (05453430)	Lat 41°50′24″, long 91°30′04″ in NW1/4, sec.12, T.81 N., R.6 W., Johnson County, Hydrologic Unit 07080208, at culvert on State Highway 1, 2 mi north of Solon. Drainage area 0.78 mi ² .	1990-	04-27-02 Revised 06-22-97 02-27-98 06-10-99 06-13-00 02-25-02	12.26 Record: 12.12 11.99 13.42 12.27 11.94	d120 d100 d98 d190 d110 d96	07-16-92	(+)	(+)
Clear Creek tributary near Williamsburg, IA (05454180)	Lat 41°41′16", long 91°57′02", in SE1/4, sec.36, T.80 N., R.10 W., Iowa County, Hydrologic Unit 07080209, at culvert on county road, 4 mi northeast of Williamsburg, 1 mi south of county highway F35. Drainage area 0.37 mi².	1990-	05-12-02	44.97	^d 15	06-17-90	48.76	^d 291
North English River near Montezuma, IA (05455140)	Lat 41°38'51", long 92°34'16", in SW1/4, sec.14, T.79 N., R.15 W., Poweshiek County, Hydrologic Unit 07080209, at bridge on county highway, 5.0 mi northwest of Montezuma. Drainage area 31.0 mi ² .	1972-	2002	(a)	<1,020	07-20-78	28.18	4,640
North English River at Guernsey, IA (05455210)	Lat 41°38'42", long 92°21'28", at NW corner sec.22, T.79 N., R.13 W., Poweshiek County, Hydrologic Unit 07080209, at bridge on State Highway 21, 1 mi southwest of Guernsey. Drainage area 81.5 mi ² .	1960, 1966-	2002	(a)	<1,940	06-15-82	87.43	7,460

			Water y	ear 2002	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	IOWA RI	VER BASI	Ncontin	nued				
Deep River at Deep River, IA	Lat 41°35′29″, long 92°21′18″, in SW1/4, sec.3, T.78 N., R.13	1960, 1966-	2002	(a)	<856	05-14-70	c83.85	6,200
(05455230)	W., Poweshiek County, Hydrologic Unit 07080209, at bridge on State Highway 21, 1 mi northeast of Deep River. Drainage area is 30.5 mi ² .		Revised 04-29-74 03-18-75 04-24-76 08-16-77 04-18-78 03-29-79 1980 06-24-81 11-11-82 1984 1985 09-19-86 08-26-87 09-08-89 06-17-90 06-01-91 09-16-92 07-05-93 1994 06-06-95 05-10-96 05-20-97 06-15-98 06-12-99 20000	Record: 83.28 80.83 80.52 80.55 80.19 79.70 (a) 80.18 80.46 (a) (a) 79.38 78.80 79.77 82.38 80.68 78.21 (a) 77.02 80.63 78.10 77.94 76.41 (a)	3,310 1,520 1,430 1,440 1,280 1,150 <860 1,350 1,450 <940 <940 1,200 1,140 1,300 2,350 1,630 1,200 2,740 <860 1,060 1,720 1,260 1,260 1,230 950 <860			
Bulgers Run near	Lat 41°29′02″, long 91°37′36″,	1965-	05-12-02	87.68	1,180	09-21-65	89.04	3,080
Riverside, IA (05455550)	in SE1/4, sec.11, T.77 N., R.7 W., Washington County, Hydrologic Unit 07080209, at bridge on State Highway 22, 2.5 mi west of Riverside. Drainage area 6.31 mi ² .		Revised 05-23-66 04-13-67 06-24-68 07-18-69 09-22-70 09-11-72 04-22-73 05-07-74 03-19-75 04-24-76 1977 04-12-78 04-20-79 09-13-80 06-24-81 06-15-82 12-05-82 12-05-82 05-28-84 03-03-85 05-17-86 05-20-87 1988 06-01-89 06-18-90 1991 08-01-92 05-04-93 05-10-96 02-21-97	Record: 86.86 86.19 85.51 86.79 87.08 88.13 87.54 88.13 85.65 86.47 (a) 88.07 87.20 86.81 88.53 87.20 86.23 (a) 85.26 85.30 87.07 (a) 87.36 87.93 88.10 86.41	800 610 460 780 880 1,560 1,110 1,560 490 <270 1,490 930 580 780 2,150 1,050 420 420 420 420 <430 1,010 1,340 1,530 670			
Deer Creek near Carpenter, IA (05457440)	Lat 43°24'54", long 92°59'05", in NW1/4 sec.9, T.99 N., R.18 W., Mitchell County, Hydrologic Unit 07080201, at bridge on State Highway 105, 1.5 mi east of Carpenter. Drainage area 91.6 mi ² .	1966-	2002	(a)	<1,470	07-18-93	84.65	3,460
Gizzard Creek tributary near Bassett, IA (0545776680)	Lat 43°04'01",long 92°34'31", in SE1/4, sec.2, T.95 N., R.15 W., Floyd County, Hydrologic Unit 07080201, at culvert on U.S. Highway 18, 3.3 mi west of Bassett. Drainage area 3.42 mi ² .	1990-	08-05-02	97.95	(+)	07-21-99	103.00	(+)

Location and drainage area	Period of						
			Gage height	Dis- charge		Gage height	Dis- charge
	record	Date	(ft)	(ft ³ /s)	Date	(ft)	(ft ³ /s)
IOWA RI	VER BASI	N contin	nued				
48", long 93°12'38", , sec.16, T.97 N., Cerro Gordo County, ic Unit 07080203, at n U.S. Highway 65, 4 of Mason City. area 29.3 mi ² .	1966-	08-04-02 Revised 1974 04-28-75 1976 1977 06-15-78 08-23-79 05-30-80 05-28-81 06-28-83 06-16-84 03-18-86 10-12-86 08-25-90 1992 06-19-93 06-23-94 05-28-95 06-17-96	83.67 Record: (a) 88.19 (a) (a) 86.16 86.93 90.32 88.34 86.81 87.25 86.07 88.94 (a) 89.65 87.47 83.83 (a) (a)	<138 <160 2,050 <140 <140 610 840 2,800 1,500 830 1,000 590 1,820 <115 2,300 1,000 420 140 <90 <90	07-21-99	91.05	2,030
		07-21-99 06-14-00 04-11-01	91.05 86.61 87.66	2,030 420 640			
55", long 93°16'07", ter sec.12, T.96 N., Cerro Gordo County, ic Unit 07080203, at n U.S. Highway 18, 3.5 of Mason City, area 78.6 mi ² .	1966-	08-05-02	89.68	561	07-21-99	21.92	1,150
22", long 92°20'50", , sec.27, T.87 N., Black Hawk County, ic Unit 07080205, at on State Highway 21, outheast of Eagle Drainage area is 9.14	1991-	06-04-02	40.94	(+)	06-11-98	47.60	(+)
33", long 92°05′06",	1991-	2002	(a)	d<320	05-26-97	18.14	^d 571
, sec.24, T.83 N., Benton County, ic Unit 07080205, at on County Highway V66, outh of Van Horne. area is 0.94 mi ² .		Revised 04-19-90	Record: 15.02	^d 240			
12", long 92°05'03",	1991-	06-13-02	14.57	280	08-16-93	16.12	^d 540
Benton County, ic unit 07080205, at on county highway V66, y limits of wm. Drainage area 0.96		Revised 07-07-92	Record: 15.11	^d 130			
51", long 91°32'16", ek at in SW1/4, T.75 N., ishington County, ic Unit 07080209, at n U.S. Highway 218, 1 east of Ainsworth. area 30.2 mi ² .	1951, 1965-	06-13-67 03-03-70 05-08-72 05-29-73 04-30-74 03-19-75 03-04-76 08-08-77 07-22-78 03-18-79 09-13-80 04-14-81 07-18-82 05-03-84 05-17-86 03-16-87 06-20-90 09-10-92	88.77 87.43 87.57 88.43 88.31 87.70 87.42 88.29 87.92 88.60 88.20 88.80 89.21 87.60 89.42 89.11 90.66 89.89	2,110 1,110 480 510 800 750 550 480 740 610 940 710 1,140 1,620 520 1,880 1,510 ds,880 2,590	05-10-96	93.40	(+)
1 , i o y v 5 e T i i n e	2", long 92°05'03", sec.23, T.82 N., Benton County, c unit 07080205, at n county highway V66, limits of m. Drainage area 0.96 11", long 91°32'16", ak at in SW1/4, c.75 N., shington County, c Unit 07080209, at u.S. Highway 218, 1 least of Ainsworth.	2", long 92°05'03", 1991- sec.23, T.82 N., Benton County, c unit 07080205, at n county highway V66, limits of m. Drainage area 0.96 11", long 91°32'16", 1951, ck at in SW1/4, 1965- 2.75 N., shington County, c Unit 07080209, at u U.S. Highway 218, 1 least of Ainsworth.	2", long 92°05'03", sec.23, T.82 N., Benton County, cunit 07080205, at n county highway V66, limits of m. Drainage area 0.96 11", long 91°32'16", l951, l95-12-02 ka tin SW1/4, l965-12-75 N., shington County, c. Unit 07080209, at at U.S. Highway 218, 1 least of Ainsworth area 30.2 mi². Past of Ainsworth area 30.2 mi².	2", long 92°05'03", sec.23, T.82 N., Benton County, curit 07080205, at n county highway V66, limits of m. Drainage area 0.96 Al", long 91°32'16", lek at in SW1/4, let at in S	2", long 92°05'03", sec.23, T.82 N., Benton County, Cunit 07080205, at nounty highway V66, limits of m. Drainage area 0.96 Al", long 91°32'16", lek at in SW1/4, less at les	2", long 92°05'03", sec.23, T.82 N., Benton County, c unit 07080205, at n county highway V66, r limits of m. Drainage area 0.96 Al", long 91°32'16", 1965- 2.75 N., shington County, c Unit 07080209, at 10.5. Highway 218, 1 last of Ainsworth. area 30.2 mi². Al " 05-08-72	2", long 92°05'03", sec.23, T.82 N., Benton County, counit 07080205, at n county highway V66, limits of mn. Drainage area 0.96 1", long 91°32'16", ek at in SW1/4, 1965- N:5 N., sc Unit 07080209, at a least of Ainsworth. area 30.2 mi². 1", long 91°32'16", ex at in SW1/4, 1965- 1", long 91°32'16", ex at in SW1/4, 1965- N:5 N., sc Unit 07080209, at a least of Ainsworth. area 30.2 mi². 2", long 91°32'16", ex at in SW1/4, 1965- N:5 N., sc Unit 07080209, at a least of Ainsworth. area 30.2 mi². 2", long 91°32'16", ex at in SW1/4, 1965- N:5 N., sc Unit 07080209, at least of Ainsworth. area 30.2 mi². 3", long 91°32'16", ex at in SW1/4, 1965- N:5 N., sc Unit 07080209, at least of Ainsworth. area 30.2 mi². 4", long 91°32'16", ex at in SW1/4, 1965- Noble 10 Noble

			Water y	year 2002	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	Yellow	Spring	Creek Bas	sin				
Haight Creek at	Lat 40°58'14", long 91°02'30",	1990-	06-01-02	12.62	^d 740	06-16-90	15.18	^d 1,460
Kingston, IA (05469350)	in NW1/4, sec.12, T.71 N., R.2 W., Des Moines County, Hydrologic Unit 07080104, at culvert on State Highway 99, 0.5 mi south of Kingston. Drainage area 2.67 mi.		Revised 06-16-90 1991 04-21-92 08-10-93 1994 05-24-95 05-10-96 02-19-97 07-07-98 10-18-98 06-24-00 05-14-01	Record: 15.18 (a) 11.50 13.71 (a) 12.94 ⁴ 13.10 12.60 ⁴ 14.10 12.23 ⁴ 13.03 13.62	d1,460 d<170 d430 d1,020 d<170 d810 d850 d710 d1,130 d640 d830 d950			
	SK	UNK RIVI	ER BASIN					
Mud Lake drainage ditch 71, at Jewell, IA (05469860)	Lat 42°18′52″, long 93°38′23″, in SW1/4, sec.27, T.87 N., R.24 W., Hamilton County, Hydrologic Unit 07080105, at bridge on U.S. Highway 69, in Jewell. Drainage area 65.4 mi².	1966-	05-12-02	85.14	467	07-09-93	91.32	3,700
Long Dick Creek near Ellsworth, IA (05469970)	Lat 42°18'37", long 93°32'06", in NW1/4, sec.33, T.87 N., R.23 W., Hamilton County, Hydrologic Unit 07080105, at culvert on State Highway 175, 2.2 mi east of Ellsworth. Drainage area 6.08 mi.	1991-	05-12-02	(+)	(+)	08-17-93	94.73	(+)
Keigley Branch near Story City, IA (05469990)	Lat 42°09'01", long 93°37'13", in NW1/4, sec.26, T.85 N., R.24 W., Story County, Hydrologic Unit 07080105, at bridge on U.S. Highway 69, 3 mi south of Story City. Drainage area 31.0 mi ² .	1966-	2002	(a)	<228	06-17-96	92.26	^d 3,440
Snipe Creek tributary at Melbourne, IA (0547209280)	Lat 41°56′08", long 93°05′08", in SE1/4, sec.5, T.82 N., R.19 W., Marshall County, Hydrologic Unit 07080106, at culvert on county highway E63, 0.5 mi east of Melbourne. Drainage area 1.61 mi ² .	1990-	06-18-02	14.60	^d 180	06-17-90	17.39	^d 360
Middle Creek near Lacey, IA (05472390)	Lat 41°25′17", long 92°23′04", at N1/4 corner sec.1, T.76 N., R.16 W., Mahaska County, Hydrologic Unit 07080106, at bridge on U.S. Highway 63, 1.5 mi northwest of Lacey. Drainage area 23.0 mi ² .	1966-	2002	(a)	<170	04-24-76	90.06	9,650
Skunk River tributary near Richland, IA (05472555)	Lat 41°15′50″, long 91°57′52″, in NE1/4, sec.35, T.75 N., R.10 W., Keokuk County, Hydrologic Unit 07080107, at culvert on county highway W15, 4.9 mi north of Richland, 5.1 mi south of State Highway 92. Drainage area 0.19 mi².	1990-	06-13-02	13.05	^d 7.0	03-16-01	17.08	^d 120
	DES M	OINES R	IVER BASI	N				
Drainage Ditch 97 tributary near Britt, IA (0548065350)	Lat 43°06'42", long 93°54'22", in SW1/4, sec.22, T.96 N., R.26 W., Hancock County, Hydrologic Unit 07100005, at culvert on county road, 5.4 mi northwest of Britt. Drainage area 0.94 mi ² . (Revised)	1991-	2002	(a)	(+)	07-09-93	94.53	(+)

			Total	2002		Davit - 3	-£	
	*	B	Water y	/ear 2002		Period o	of record	
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	DES M	OINES R	IVER BASI	N				
White Fox Creek at Clarion, IA (05480930)	Lat 42°43'55", long 93°42'26", in NW1/4, sec.5, T.91 N., R.24 W., Wright County, Hydrologic Unit 07100005, at bridge on State Highway 3, 1.5 mi east of Clarion. Drainage area 13.3	1966-	08-14-02 Revised 1966 06-09-67 1968	88.73 Record: (a) 93.01 (a)	205 <280 d1,240 <280	06-29-95	93.27	^d 1,140
	mi ² .		1969 1970 03-16-71 07-14-79 06-15-80 06-24-81 06-16-84 1989 06-18-91 06-23-94 06-29-95	(a) (a) 89.57 90.23 90.55 91.81 93.11 (a) 93.27 91.52 e92.91	<280 <280 <280 330 440 480 680 d1,060 <20 d1,140 d980			
Brewers Creek	Lat 42°26′57″, long 93°51′59″,	1990-	2002	(a)	^d <32	06-04-91	99.25	^d 544
tributary near Webster City, IA (05480993)	in NW1/4, sec.10, T.88 N., R.26, W., Hamilton County, Hydrologic Unit 07100005, at culvert on U.S. Highway 20, 2.5 mi southwest of Webster City. Drainage area 1.58 mi.		Revised 03-14-97	Record: 97.84	^d 296			
Bluff Creek at Pilot Mound, IA	Lat 42°09'59", long 94°01'11", in NW1/4, sec.20 T.85 N., R.27	1966-	2002	(a)	<40.0	07-09-93	89.25	1,120
(05481510)	W., Boone County, Hydrologic Unit 07100004, at bridge on county road E18 at northwest edge of Pilot Mound. Drainage area 23.5 mi ² . (Revised)		Revised 09-26-73 06-04-91 1992 07-09-93 02-18-94	Record: 85.46 88.58 (a) 89.25 85.77	530 960 <240 1,120 420			
			1996 06-21-97 06-15-98 06-12-99 2000 05-05-01	(a) 85.03 86.19 85.71 (a) 86.96	<240 310 480 410 <240 620			
Peas Creek	Lat 42°02′06″, long 93°51′13″,	1990-	2002	(a)	^d <29	06-17-90	95.19	^d 239
tributary at Boone, IA (05481528)	in SW1/4, sec.35, T.84 N., R.26 W., Boone County, Hydrologic Unit 07100004, at culvert on Corporal Rodger Snedden Drive, at intersection with U.S. Highway 30, at the south edge of Boone city limits. Drainage area 0.30 mi ² .		Revised 02-19-97	Record: b92.97	(+)			
Peas Creek at Boone, IA	Lat 42°02'04", long 93°51'25", in SE1/4, sec.34, T.84 N.,	1990-	08-23-02	(a)	^d <74	06-15-98	103.05	^d 410
(05481530)	R.26 W., Boone County, Hydrologic Unit 07100004, at culvert on U.S. Highway 30, at the southeast side of Boone		Revised 1991 07-16-92 07-09-93	Record: (a) 98.42 99.80	^d <15 ^d 50 ^d 130			
	city limits. Drainage area 1.69 mi ² .		02-18-94 1995 06-17-96 1997 06-15-98 04-23-99 2000 2001	99.04 (a) 102.51 (a) 103.05 97.67 (a) (a)	d80 d<15 d350 d<15 d410 d20 d<70 d<70			
Hardin Creek near Farlin, IA (05482900)	Lat 42°05'34, long 94°25'39", in NE1/4 NW1/4 NW1/4, sec. 14, T.84 N., R.31 W., Greene County, Hydrologic Unit 07100006, at bridge on county highway, 1.5 mi northeast of Farlin. Drainage area 101 mi ² .	1951-	2002	(a)	<577	07-09-93	13.97	3,010
Brushy Creek near Templeton, IA (05483318)	Lat 41°56′45″, long 94°52′45″, in SW1/4 NW 1/4 NW 1/4, sec.1, T.82 N., R.35 W., Carroll County, Hydrologic Unit 07100007, at bridge on U.S. Highway 71, 4 mi northeast of Templeton. Drainage area 45.0 mi ² .	1966-	08-23-02	75.02	3,430	07-09-93	93.48	19,000
Middle Raccoon River tributary at Carroll, IA (05483349)	Lat 42°02'30", long 94°52'43", in NW1/4 NW1/4 SW1/4, sec. 36, T. 84 N.R.35 W., Carroll County Hydrologic Unit 07100007, at bridge on U.S. Highway 71, 1.1 mi south of Carroll. Drainage area 6.58 mi ² .	1966-	08-23-02	24.61	2,900	06-17-96	25.88	4,600

			Water	year 2002	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	DES MOINES	RIVER B	BASINco	ntinued				
Cedar Creek tributary No. 2 near Winterset, IA (05485940)	Lat 41°19'49", long 94°03'05", in SW1/4, sec.35, T.76 N., R.28 W., Madison County, Hydrologic Unit 07100008, at culvert on State Highway 92, 0.5 mi west of U.S. Highway 169, 1 mi west of Winterset. Drainage area 1.02 mi ² .	1990-	05-12-02 Revised 1995 1997		d<30 d<24 d<29	05-24-96	98.58	^d 447
Bush Branch Creek near Stanzel, IA (05486230)	Lat 41°18'57", long 94°16'42", in SW1/4, sec.2, T.75 N., R.30 W., Adair County, Hydrologic Unit 07100008, at culvert on State Highway 92, 1 mi west of Stanzel. Drainage area is 3.02 mi.	1990-	05-12-02	(a)	(+)	09-15-92	97.06	(+)
Little White Breast Creek tributary near Chariton, IA (05487825)	Lat 41°03'36", long 93°18'12", in SW1/4, sec. 5, T.72 N., R.21 W., Lucas County, Hydrologic Unit 07100008, at culvert on State Highway 14, 2.0 mi north of Chariton. Drainage area 0.05 mi ² .	1990-	10-23-01	17.04	^d 14	08-19-93	18.93	^d 56.2
South Avery Creek near Blakesburg, IA (05489350)	Lat 41°00'59", long 92°37'32", in SE1/4, sec.19, T.72 N., R.15 W., Wapello County, Hydrologic Unit 07100009, at bridge on U.S. Highway 34, 3.5 mi north of Blakesburg. Drainage area 33.1 mi ² .	1965-	05-12-02	85.13	5,890	07-03-82	90.20	(+)
Bear Creek at Ottumwa, IA (05489490)	Lat 41°00'52", long 92°27'44", in NW1/4, sec.27, T.72 N., R.14 W., Wapello County, Hydrologic Unit 07100009, at bridge on U.S. Highway 34, near west edge of Ottumwa. Drainage area 22.9 mi ² .	1965-	05-11-02	89.30	2,670	09-21-65	92.80	4,000

Acid neutralizing capacity, definition of	Brushy Creek near Templeton	355
Ackworth, South River near	Bulger Run near Riverside	352
Acre-foot, definition of	Bush Branch Creek near Stanzel	
Adenosine triphosphate, definition of	Bussey, Cedar Creek near	
Algae, definition Blue-green, definition of	Cedar Creek	
Blue-green, definition of	near Bussey	340
Algae, definition of	near Oakland Mills	
Fire, definition of	Cedar Creek tributary No. 2 near Winterset	356
Green, definition of	Cedar Falls, Cedar River at	
Algal growth potential, definition of	Cedar Rapids, Cedar River at	
Alkalinity, definition of	Cedar River	
Ames	at Cedar Falls	196
South Skunk River below Squaw Creek near	at Cedar Rapids	
South Skunk River near	at Charles City	
Squaw Creek at	near Conesville	
Annual 7-day minimum, definition of	at Janesville	
Annual runoff, definition of	at Waterloo.	
Aquifer, water table, definition of	at Waverly	
able, definition of	Cells/volume, definition of	
Aroclor	Charles City, Cedar River at	
Artificial substrate, definition of	Chemical oxygen demand, definition of	
Ash mass, definition of	Clayton	. 04
Augusta, Skunk River at	Mississippi River at	72
Bacteri Fecal streptococcal, definition of	Clear Creek	. , _
Fecal streptococcal, definition of	near Coralville	164
Bacteria Escherichia coli, definition of	near Oxford	
Escherichia coli, definition of	Clear Creek tributary near Williamsburg	
Bacteria, d Fecal coliform, definition of	Clear Lake at Clear Lake	
Fecal coliform, definition of	Clinton	130
Bacteria, def Enterococcus, definition of	Beaver Slough at Third Street	100
Enterococcus, definition of	Mississippi River at	
Bacteria, deTotal coliform, definition of	Colfax	102
Total coliform, definition of	South Skunk River at	23/
Base flow, definition of	Squaw Creek near	
Bayard, Middle Raccoon River near	Color unit, definition of	
Bear Creek at Ottumwa	Conesville, Cedar River near	
Beaver Creek	Confined aquifer, definition of	
near Grimes	Contents, definition of	
at New Hartford	Control structure, definition of	
Beaver Slough at Third Street Clinton	Control, definition of	
Bed load, definition of	Coralville	. 00
Bed material, definition of	Clear Creek near	164
Bed-load discharge, definition of	Coralville Lake near	
Benthic organisms, definition of	Iowa River below Coralville Dam near	
Bettendorf, Crow Creek at	Crest-stage stations, maximum stage and discharge, made at par	
Big Bear Creek at Ladora	record stations in	
Big Creek near Mt. Pleasant	Crow Creek at Bettendorf	
Biochemical oxygen demand, definition of	Cubic foot per second per square mile, definition of	
Biomass pigment ratio, definition of	Cubic foot per second, definition of	
Biomass, definition of	Cubic foot per second-day, definition of	
Black Hawk Creek	Dakota City, East Fork Des Moines River at	
at Hudson	Dallas, White Breast Creek near	
Black Hawk Lake at Lake View. 282	Davenport	550
Bloody Run Creek near Marquette 60	Duck Creek at 110th Avenue	100
Bloody Run tributary near Sherrill	Duck Creek at 110th Avenue	
Bloomfield, Fox River at	De Witt, Wapsipinicon River near	
	Decorah, Upper Iowa River at	
Blue-green algae, definition of		
Bluff Creek at Pilot Mound	Deep River at Deep River	
	Des Moines	JJ2
Boone River near Webster City	Des Moines River at Second Avenue at	276
Brewers Creek tributary near Webster City		306
THE STATE OF THE S	IZEO MICHIEO INTELLIDATON NACCUUH INTELAL	UU()

Fourmile Creek at		Grimes, Beaver Creek near	
Raccoon River at 63rd Street		Ground-water levels, records of	
Raccoon River at Fleur Drive		Data collection and computation	. 29
Raccoon River near West Des Moines	296	Data presentation	
Walnut Creek at	300	Ground-water quality, records of	
Des Moines River		Data presentation	
below Raccoon River at Des Moines		Haight Creek at Kingston	
at Second Avenue at Des Moines	276	Hardin Creek near Farlin	355
at Fort Dodge		Hardness, definition of	
at Humboldt	256	Hartwick, Walnut Creek near	
at Keosauqua	344	Haven, Richland Creek near	
at Ottumwa		High tide, definition of	
near Pella	334	Honey Creek tributary near Radcliffe	351
near Runnells		Hoover Creek	
near Saylorville	268	at West Branch	
near Stratford		Hudson, Black Hawk Creek at	
near Tracy		Humboldt, Des Moines River at	
Des Moines River basin, crest-stage partial-record stations in 3	354,	Hydrologic conditions, summary of	
355,		Ground-water quality	
Diatom, definition of		Surface water	
Diel, definition of		Hydrologic unit, definition of	
Dissolved oxygen, definition of		Independence, Wapsipinicon River at	
Dissolved, definition of		Indian Creek near Mingo	
Dissolved-solids concentration, definition of		Indianola, Middle River near	
Diversity index, definition of		Ionia, Little Cedar River near	180
Dorchester, Upper Iowa River near		Iowa City	
Downstream order system		Iowa River at	
Drainage area, definition of		Old Mans Creek near	
Drainage basin, definition of		Rapid Creek near	
Drainage Ditch 97 tributary near Britt		South Branch Ralston Creek at	168
Dry mass, definition of		Iowa River	
Dry Run Creek near Decorah		below Coralville Dam near Coralville	
Dry weight, definition of	. 36	at Iowa City	
Duck Creek		near Lone Tree	
at 110th Avenue, Davenport		at Marengo	
at Duck Creek Golf Course Davenport		at Marshalltown	
Dysart, Wolf Creek near		near Rowan	
East Branch Iowa River above Mayfield		at Wapello	
East Fork Des Moines River at Dakota City		Iowa River basin, crest-stage partial-record stations in 350,	
Elberon, Salt Creek near		Janesville, Cedar River at	
Eldorado, Turkey River near		Jefferson, North Raccoon River near	
Elkader, Turkey River above French Hollow Creek at		Kalona, English River at	
English Creek near Knoxville		Keigley Branch near Story City	
English River at Kalona		Keokuk, Mississippi River at.	
Enterococcus bacteria, definition of		Keosauqua, Des Moines River at	
Escherichia coli (E. coli), definition of		Knoxville, English Creek near	
Euglenoids, definition of		Ladora, Big Bear Creek at	
Fecal coliform bacteria, definition of		Lake Panorama at Panora	
Fecal streptococcal bacteria, definition of		Lake Red Rock near Pella	
Finchford, West Fork Cedar River at		Lake View, Black Hawk Lake at	
Fire algae, definition of		Lamont Creek basin, crest-stage partial-record stations in	
Flow-duration percentiles, definition of		Lamont Creek tributary at Lamont	
Fort Dodge, Des Moines River at		Land-surface datum, definition of	
Fourmile Creek at Des Moines.		Light-attenuation coefficient, definition of	
Fox River at Bloomfield		Lipid, definition of	
Fulton, North Fork Maquoketa River near		Little Cedar River near Ionia	ıøU
Gage height, definition of		Little Maquoketa River	240
Gaging station, definition of		at Graf	
Garber, Turkey River at	. 02	Little Wagaining Piver page Orga	
Gas chromatography/flame ionization detector, definition of	27	Little Wapsipinicon River near Oran	
tion of	. 37 37	Little Wapsipinicon River tributary near Riceville	350

Littleport, Volga River at	North Raccoon River	
Lone Tree, Iowa River near	near Jefferson	284
Long Dick Creek near Ellsworth	near Sac City	280
Low flow, 7-day 10-year, definition of	North River near Norwalk	310
Low tide, definition of	North Skunk River near Sigourney	240
Macrophytes, definition of	Norwalk, North River near	310
Manchester, Maquoketa River at	Numbering system for wells	. 17
Maquoketa River at Manchester	Oakland Mills, Cedar Creek near	
Maquoketa River basin, crest-stage partial-record stations in 348,	Old Mans Creek near Iowa City	
349	Open or screened interval, definition of	
Maquoketa River near Maquoketa	Organic carbon, definition of	
Marengo, Iowa River at	Organic mass, definition of	
Marquette, Bloody Run Creek near	Organism count, definition of	
Marshalltown	Area, definition of	. 40
Iowa River at	Total, definition	
Timber Creek near	Volume, definition of	
Mason City, Winnebago River at	Organochlorine compounds, definition of	
McGregor, Mississippi River at	Oskaloosa, South Skunk River near	
Mean discharge, definition of	Ottumwa, Des Moines River at	
Measuring point, definition of	Oxford, Clear Creek near	
Membrane filter, definition of	Panora	
Metamorphic stage, definition of	Lake Panorama at	288
Methylene blue active substances, definition of	Middle Raccoon River at	
Micrograms per gram, definition of	Parameter Code, definition of	
Micrograms per kilogram, definition of	Partial-record station, definition of	
Micrograms per liter, definition of	Partial-record stations and miscellaneous discharges at	
Microsiemens per centimeter, definition of	Particle size, definition of	
Middle Creek near Lacey	Particle-size classification, definition of	
Middle Fork Little Maquoketa River near Rickardsville 349	Peas Creek at Boone	
Middle Raccoon River	Peas Creek tributary at Boone	
near Bayard	Pella	000
at Panora	Des Moines River near	334
Middle River near Indianola	Lake Red Rock near	
Miller Creek near Eagle Center	Percent composition, definition of	
Milligrams per liter, definition of	Periodic station, definition of	
Mingo, Indian Creek near	Periphyton, definition of	
Miscellaneous site, definition of	Pesticides, definition of	
Mississippi River	pH, definition of	
at Clayton	Phytoplankton, definition of	
at Clinton	Picocurie, definition of	
at Keokuk	Pine Creek tributary near Winthrop	
at McGregor	Pine Creek tributary No. 2 at Winthrop	
Mississippi River basin, crest-stage partial-record stations in . 348	Plankton, definition of	
Mississippi River tributary at McGregor	Polychlorinated biphenyls (PCB s), definition of	
Morse, Rapid Creek below	Polychlorinated naphthalenes, definition of	
Most probable number (MPN), definition of	Prairie City, Walnut Creek near	
Mt. Pleasant, Big Creek near	Prairie Creek tributary near Van Horne	
Mud Lake drainage ditch 71 at Jewell	Price Creek at Amana	
Multiple-plate samplers, definition of	Primary productivity, definition of	
Nanograms per liter, definition of	Carbon method, definition of	
Natural substrate, definition of	Oxygen method, definition of	
Nekton, definition of	Raccoon River	
Nephelometric turbidity unit, definition of 40	at 63rd Street Des Moines	298
New Hartford, Beaver Creek at	at Fleur Drive Des Moines	
New Providence, South Fork Iowa River Northeast of 134	at Van Meter	
North English River	near West Des Moines	
at Guernsey	Radioisotopes, definition of	
near Montezuma	Rapid Creek	
North Fork Little Maquoketa River near Rickardsville 349	below Morse	158
North Fork Long Creek at Ainsworth	Rapid Creek near Iowa City	
North Fork Maquoketa River near Fulton	Records, explanation of	
North Fork tributary to Mill Creek near Solon	Recoverable, bottom material, definition of	

Recurrence interval, definition of	Surface-water quality, records of	
Redfield, South Raccoon River at	Arrangement of records	25
Replicate samples, definition of	Classification of records	24
Richland Creek near Haven	Data presentation	26
River mileage, definition of	Laboratory measurements	26
Rowan, Iowa River near	On-site measurements and sample collection	25
Runnells, Des Moines River near	Remark codes	27
Runoff, definition of	Sediment	26
Sac City, North Raccoon River near	Water temperature and specific conductance	
Salt Creek near Elberon	Surficial bed material, definition of	
Sand Creek near Manchester	Suspended sediment, definition of	
Saylorville	Suspended, definition of	
Des Moines River near	Recoverable, definition of	44
Saylorville Lake near	Total, definition of	
Sea level, definition of	Suspended-sediment concentration, definition of	
Sediment, definition of	Suspended-sediment discharge, definition of	
Shell Rock River at Shell Rock	Suspended-sediment load, definition of	
Sigourney, North Skunk River near	Synoptic studies, definition of	
Silver Creek	Taxonomy, definition of	
at Welton	Thunder Creek at Blairstown	353
Skunk River at Augusta	Timber Creek near Marshalltown	
Skunk River basin, crest-stage partial-record stations in 354	Time-weighted average, definition of	
Skunk River tributary near Richland	Tons per acre-foot, definition of	45
Snipe Creek tributary at Melbourne	Total coliform bacteria, definition of	
Sodium adsorption ratio, definition of	Total discharge, definition of	
South Avery Creek near Blakesburg	Total length, definition of	
South Branch Ralston Creek at Iowa City	Total load, definition of	45
South Fork Iowa River Northeast of New Providence 134	Total organism count, definition of	
South Raccoon River at Redfield	of	
South River near Ackworth	Total recoverable, definition of	
South Skunk River	Total sediment discharge, definition of	
near Ames	Total, bottom material, definition of	
at Colfax	Total, definition of	
near Oskaloosa	Tracy, Des Moines River near	
below Squaw Creek near Ames	Tripoli, Wapsipinicon River near	
Special networks and programs	Turkey River above French Hollow Creek at Elkader	
Specific conductance, definition of	Turkey River at Garber	
Spring Creek near Mason City	Turkey River basin, crest-stage partial-record stations in	
Squaw Creek	Turkey River near Eldorado	
at Ames	Upper Iowa River at Bluffton	
near Colfax	Upper Iowa River at Decorah	
Stable isotope ratio, definition of	Upper Iowa River basin, crest-stage partial-record stations in.	
Stage (see gage height)	Upper Iowa River near Dorchester	
Stage and water discharge, records of	Van Meter, Raccoon River at	
Accuracy of the records	Vandalia, Walnut Creek near	
Data collection and computation	Volatile organic compounds, definition of	
Data presentation	Volga River at Littleport	80
Identifying estimated daily discharge	Walnut Creek	
Other records available	at Des Moines	
Stage-discharge relation, definition of	near Hartwick	
Station identification numbers	near Prairie City	
Downstream order system	near Vandalia	
Latitude-longitude system	Wapello, Iowa River at	212
Stein Creek near Clutier	Wapsipinicon River	
Stratford, Des Moines River near	near De Witt	
Streamflow, definition of	at Independence	
Substrate, artificial, definition of	Wapsipinicon River basin, crest-stage partial-record stations in	• • •
ficial, definition of	350	
Substrate, definition of	Wapsipinicon River near Tripoli	
Substrate, natural, definition of	Water table, definition of	
, definition of	Water year, definition of	
Surface area, definition of	w aterioo Creek near Dorchester	348

Waterloo, Cedar River at	Wet mass, definition of	46
Water-table aquifer, definition of	Wet weight, definition of	
WATSTORE data, access to	White Breast Creek near Dallas	330
Waverly, Cedar River at	White Fox Creek at Clarion	355
WDR, definition of	Williams Creek near Charlotte	349
Webster City, Boone River near	Willow Creek near Mason City	353
Weighted average, definition of	Winnebago River at Mason City	188
West Branch, Hoover Creek at	Wolf Creek near Dysart	202
West Fork Cedar River at Finchford	WSP, definition of	46
Westmain drainage ditch 1 & 2 at Britt	Zooplankton, definition of	46

CONVERSION FACTORS

Multiply	$\mathbf{B}\mathbf{y}$	To obtain
	Length	
inch (in.)	2.54×10^{1}	millimeter
· /	2.54×10^{-2}	meter
foot (ft)	3.048×10^{-1}	meter
mile (mi)	1.609×10^0	kilometer
	Area	
acre	4.047×10^3	square meter
	4.047×10^{-1}	square hectometer
	4.047×10^{-3}	square kilometer
square mile (mi ²)	2.590×10^{0}	square kilometer
	Volume	
gallon (gal)	3.785×10^{0}	liter
guiion (gui)	3.785×10^{0}	cubic decimeter
	3.785×10^{-3}	cubic meter
million gallons (Mgal)	3.785×10^3	cubic meter
	3.785×10^{-3}	cubic hectometer
cubic foot (ft ³)	2.832×10^{1}	cubic decimeter
, ,	2.832×10^{-2}	cubic meter
cubic-foot-per-second day [(ft ³ /s) d]	2.447×10^3	cubic meter
• • • • • • • • • • • • • • • • • • • •	2.447×10^{-3}	cubic hectometer
acre-foot (acre-ft)	1.233×10^3	cubic meter
	1.233×10^{-3}	cubic hectometer
	1.233×10^{-6}	cubic kilometer
	Flow	
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter per second
()	2.832×10^{1}	cubic decimeter per second
	2.832×10^{-2}	cubic meter per second
gallon per minute (gal/min)	6.309×10^{-2}	liter per second
	6.309×10^{-2}	cubic decimeter per second
	6.309×10^{-5}	cubic meter per second
million gallons per day (Mgal/d)	4.381×10^{1}	cubic decimeter per second
<i>y</i> (<i>y</i>)	4.381×10^{-2}	cubic meter per second
	Mass	
ton (short)	9.072x10 ⁻¹	megagram or metric ton

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey P.O. Box 1230 Iowa City, IA 52244