

Prepared in cooperation with the State of Ohio and other agencies

Water Resources Data Ohio Water Year 2003

Volume 2 St. Lawrence River Basin and Statewide Project Data

Water-Data Report OH-03-2

CALENDAR FOR WATER YEAR 2003

2002

		00	тов	ER					NO	VEMI	BER					DE	CEM	BER		
S	M	T	W	Т	F	S	S	M	T	W	T	F	S	S	M	T	W	Т	F	S
		1	2	3	4	5						1	2	1	2	3	4	5	7	7
6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14
13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21
20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28
27	28	29	30	31			24	25	26	27	28	29	30	29	30	31				
										2003										
		JA	NUA	RY					FEI	BRUA	RY					N	IARC	Н		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
			1	2	3	4							1							1
5	6	7	8	9	10	11	2	3	4	5	6	7	8	2	3	4	5	6	7	8
12	13	14	15	16	17	18	9	10	11	12	13	14	15	9	10	11	12	13	14	15
19	20	21	22	23	24	25	16	17	18	19	20	21	22	16	17	18	19	20	21	22
26	27	28	29	30	31		23	24	25	26	27	28		23 30	24 31	25	26	27	28	29
		-	APRIL							MAY						J	UNE			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
		1	2	3	4	5					1	2	3	1	2	3	4	5	6	7
6	7	8	9	10	11	12	4	5	6	7	8	9	10	8	9	10	11	12	13	14
13	14	15	16	17	18	19	11	12	13	14	15	16	17	15	16	17	18	19	20	21
20	21	22	23	24	25	26	18	19	20	21	22	23		22	23	24	25	26	27	28
27	28	29	30				25	26	27	28	29	30	31	29	30					
		,	JULY						Αl	JGUS	Т					SEP	ГЕМВ	ER		
S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
		1	2	3	4	5						1	2		1	2	3	4	5	6
6	7	8	9	10	11	12	3	4	5	6	7	8	9	7	8	9	10	11	12	13
13	14	15	16	17	18	19	10	11	12	13	14	15	16	14	15	16	17	18	19	20
20	21	22	23	24	25	26	17	18	19	20	21	22	23	21	22	23	24	25	26	27
27	28	29	30	31			24 31	25	26	27	28	29	30	28	29	30				

Water Resources Data Ohio Water Year 2003

Volume 2. St. Lawrence River Basin and Statewide Project Data

By H.L. Shindel, J.P. Mangus, and S.R. Frum

Water-Data Report OH-03-2

Prepared in cooperation with the State of Ohio and with other agencies

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

U.S. Geological Survey 6480 Doubletree Avenue Columbus, OH 43229-1111 (614) 430-7700

Information about the USGS, WRD, Ohio District is available on the Internet at http://oh.water.usgs.gov Information about all USGS reports and products is available by calling 1-888-ASK-USGS or on the Internet via the World Wide Web at http://www.usgs.gov/

Additional earth science information is available by accessing the USGS home page at http://www.usgs.gov/

PREFACE

This volume of the annual hydrologic data report of Ohio is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Ohio are contained in two volumes:

Volume 1. Ohio River Basin Excluding Project Data Volume 2. St. Lawrence River Basin and Statewide Project Data

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

K.E. Bossenbroek	S.W. Hatch	J.W. Roberts
A.M.G. Brady	C.A. Hawkins	C.W. Schalk
A.W. Coen III	G.A. Hren	T.L. Schumann
R.A. Darner	C.A. Huitger	K.H. Shaffer
A.L. Dillenburg	K.S. Jackson	J.M. Sherwood
D.H. Dumouchelle	S.D. Janosy	D.J. Shifflet
C.M. Eberle	G.F. Koltun	B.N. Sroka
T.J. Eaton	D.O. Kumfer	D.E. Straub
D.P. Finnegan	B.E. Mailot	J.S. Tertuliani
D.S. Francy	J.A. McClure	M.A. Thomas
R.P. Frehs	K.D. Metzker	M.A. Tibbetts
S.M. Fuller	C.J. Ostheimer	S.A. Vivian
R.J. Haefner	S.M. Quigley	M.T. Whitehead

This report was prepared in cooperation with the State of Ohio and with other agencies under the general supervision of J.R. Morris, District Chief, Ohio.

REPORT D	OCUMENTATIO	N PAGE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of in gathering and maintaining the data needed, a collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 222	formation is estimated to average 1 hour pe nd completing and reviewing the collection of s for reducing this burden, to Washington He 202-4302, and to the Office of Management	r response, including the time for revie of information. Send comments regard eadquarters Services, Directorate for I and Budget, Paperwork Reduction Pr	ewing instructions, searching existing data sources, ing this burden estimate or any other aspect of this nformation Operations and Reports, 1215 Jefferson oject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE May 2004	3. REPORT TYPE AND Annual—Oct.1, 20	DATES COVERED
4. TITLE AND SUBTITLE Water Resources Data, Ohio, W St. Lawrence River Basin and S			5. FUNDING NUMBERS
6. AUTHOR(S) H.L. Shindel, J.P. Mangus, and			
7. PERFORMING ORGANIZATION NAME U.S. Geological Survey	E(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Ohio District			USGS-WDR-OH-03-2
6480 Doubletree Avenue Columbus, Ohio 43229-1111			
9. SPONSORING / MONITORING AGENU.S. Geological Survey, Ohio I			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
6480 Doubletree Avenue Columbus, Ohio 43229-1111		USGS-WDR-OH-03-2	
11. SUPPLEMENTARY NOTES Prepared in cooperation with Fe	-		
12a. DISTRIBUTION / AVAILABILITY ST			12b. DISTRIBUTION CODE
No restriction on distribution. T National Technical Information			
			e, and water quality of streams; stage
contains records for water disch and 35 crest-stage gages; and wa are data from miscellaneous a systematic data-collection prog	arge at 138 gaging stations and vater quality at 30 gaging stations and synoptic sites. Additional varam and are published as misce	various partial-record sites; , 34 observation wells, and vater data were collected llaneous measurements and	wells. This report, in two volumes, water levels at 217 observation wells no partial-record sites. Also included at various sites not involved in the d analyses. These data represent that cooperating Federal, State, and local
*Ohio, *Hydrologic data, *Surstations, Lakes, Reservoirs, Che	emical analyses, Sediments, Wa		
Water levels, Water analyses, S 17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT Unclassified
Unclassified	Unclassified	Unclassified	Uliciassificu

CONTENTS

Preface	iii
Contents	
List of surface-water stations, in downstream order, for which records are published	
List of ground-water stations for which records are published	
Discontinued surface-water-discharge stations	
Discontinued surface-water-quality stations	
Introduction	
Cooperation	
Summary of hydrologic conditions	
Precipitation	
Surface water	
Streamflow	
Water quality	
Ground water	
Ground-water levels	
Downstream order and station number	
Numbering system for wells and miscellaneous sites	
Special networks and programs	
Explanation of stage- and water-discharge records	
Data collection and computation	
Data presentation	
Station manuscript	
Peak discharge greater than base discharge	
Data table of daily mean values	
Statistics of monthly mean data	
Summary statistics	
Identifying estimated daily discharge	
Accuracy of field data and computed results	20
Other data records available	
Explanation of water-quality records	
Water analysis	
± •	
Classification of records	
Accuracy of the records	
Arrangement of records	
On-site measurements and sample collection	
Water temperature	
Sediment	
Laboratory measurements	
Data presentation	
Remark codes	
Water-quality control data	
Blank samples	
Reference samples	
Replicate samples	
Spike samples	
Explanation of ground-water-level records	26

Site identification numbers26Data collection and computation26Data presentation27Water-level tables28Hydrographs28Ground-water-quality data28Data collection and computation28
Data presentation
Water-level tables28Hydrographs28Ground-water-quality data28Data collection and computation28
Hydrographs28Ground-water-quality data28Data collection and computation28
Ground-water-quality data
Data collection and computation
Laboratory measurements
Access to USGS water data
Definition of terms
Publications on Techniques of Water-Resources Investigations
Surface-water records
Peak discharge and stages at continuous-record surface discharge stations
Ground-water records
Project data:
City of Akron water diversion
Results from selected sites in the Lake Erie-Lake St. Clair Basin
Results from slelected sites in the White, Great, and Little Miami River Basin
Ground-water data for Geauga County, Ohio
Ground-water records for former Air Force Plant 36
Columbus well field, southern Franklin County, Ohio
Ground-water data for South Russell Village, Ohio
Water quality of domestic wells in selected parts of Preble and Shelby Counties
Ohio Department of Health—septic system
Low-flow magnitude and frequency of Ohio streams
Escherichia coli in water and bed sediments in Maumee Bay, Toledo and Oregon, Ohio
Rush Creek watershed assessment 272
Determining the presence of glyphosate and other herbicides in midwest streams
Index
Factors for converting inch-pound units to International System units (SI)
ILLUSTRATIONS
Figure 1a., 1b. Location of data-collection stations and wells
2. Physiographic divisions and location of hydrologic index stations
3. Streamflow during water year 2003 compared with median streamflow for period 1971-2000
for four representative gaging stations
4. Streamflow and concentration of select constituents measured in water year 2003
and the distribution of those characteristics from measurements made during
water years 1996-2002 for the Maumee River at Waterville, Ohio
5. Streamflow and concentration of select constituents measured in water year 2003
and the distribution of those characteristics from measurements made during
water years 1999-2002 for the Mad River at St. Paris Pike at Eagle City, Ohio
6. Geographic distribution of principal aquifers in Ohio
7. Sample of 1-year and 5-year hydrographs of well H-1, completed in a
unconfined unconsolidated aquifer
8. Sample of 1-year and 5-year hydrographs of well U-4, completed in a
confined carbonate-rock aquifer
9. System for numbering wells and miscellaneous sites
[Maps showing project study areas are at the beginning of each project-data listing]

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

[Letters after station names designate type of data: (c) chemical, (d) discharge, (e) contents and (or) elevation, (M) water-quality monitor, (HBM) hydrologic bench mark, (S) daily suspended-sediment data]

bench mark, (5) daily suspended-sediment data]		
	Station	D
LAKE ERIE BASIN	Number	Page
OTTAWA RIVER BASIN		
Ottawa River at University of Toledo, Toledo (d)	04177000	. 50
MAUMEE RIVER BASIN		. 50
Bean Creek at Powers (d)	04184500	. 51
Tiffin River at Stryker (d)		
Unnamed Tributary to Lost Creek near Farmer (d)		
Auglaize River near Fort Jennings (d)		
Blanchard River near Findlay (d)		
Auglaize River near Defiance (d)		
Maumee River near Defiance (d)		
Maumee River at Waterville (dS)		
PORTAGE RIVER BASIN		. 50
Portage River at Woodville (d)	04195500	62
Portage River at Elmore (d)		
SANDUSKY RIVER BASIN		. 03
Sandusky River near Bucyrus (d)	04196000	. 64
Sandusky River near Upper Sandusky (d)		
Tymochtee Creek at Crawford (d)		
Honey Creek at Melmore (d)		
Rock Creek at Tiffin (d)		
Sandusky River near Fremont (d)		
HURON RIVER BASIN		. 0)
Huron River at Milan (d)	04199000	. 70
OLD WOMAN CREEK BASIN		, , ,
Old Woman Creek at Berlin Road near Huron (d)	04199155	. 71
VERMILION RIVER BASIN		, , -
Vermilion River near Vermilion (d)	04199500	. 72
BLACK RIVER BASIN		–
Black River at Elyria (d)	04200500	. 73
ROCKY RIVER BASIN		
Rocky River near Berea (d)	04201500	. 74
CUYAHOGA RIVER BASIN		
Cuyahoga River at Hiram Rapids (d)	04202000	. 75
Cuyahoga River at Old Portage (d)		
Powers Brook at Hudson (d)		
Powers Brook at Stow (d)		
Mud Brook at Stow (d)		
Crystal Creek at Stow (d)		
Mud Brook at Cuyahoga Falls (d)		
North Fork at Bath Center (d)		
Yellow Creek at Botzum (d)		
Tinkers Creek at Bedford (d)		
Cuyahoga River at Independence (d)		
Mill Creek at Garfield Heights (d)		
- · · · · · · · · · · · · · · · · · · ·		

CHYALIOCA DIVED DACIN. Condin. 1	ge
CUYAHOGA RIVER BASIN—Continued	
Cuyahoga River at LTV Steel at Cleveland (d)	37
CHAGRIN RIVER BASIN	
Chagrin River At Willoughby (d)	38
GRAND RIVER BASIN	
Grand River near Painesville (d)	39
CONNEAUT CREEK BASIN	
Conneaut Creek at Conneaut (d)	€0

GROUND-WATER STATIONS FOR WHICH RECORDS ARE PUBLISHED

[Letter after station names designate type of data: (1) water level]

	Well Number	Local Number	Page
CRAWFORD COUNTY			•
Bucyrus (l)	404838082563100	CR-1	. 95
GEAUGA COUNTY			
Southeast of Chagrin Falls (1)	412518081221500	GE-3A	. 96
HANCOCK COUNTY			
North of Vanlue (1)	405940083275500	HA-3	. 97
HARDIN COUNTY			
Southeast of Dola (l)	404648083412600	HN-2A	. 98
HENRY COUNTY			
Southwest of McClure (1)	412123083574000	HY-2	. 99
LUCAS COUNTY			
Toledo (l)	413704083362200	LU-1	. 100
MEDINA COUNTY			
Lodi (1)	4101420820057	MD-1A	. 101
Lodi (l)	410142082005900	MD-1	. 102
South of Brunswich (1)	411233081474200	MD-6	. 103
OTTAWA COUNTY			
Catawba Island (1)	413434082494000	O-2	. 104
PORTAGE COUNTY			
East of Kent (l)	410931081192900	PO-123	. 105
PUTNAM COUNTY			
Columbus Grove (1)	405505084032900	PU-1	. 106
SANDUSKY COUNTY			
Fremont (1)	411914083045300	S-3	. 107
Woodville (1)	412703083213600	S-2	. 108
SENECA COUNTY			
Tiffin (l)	410802083093900	SE-2	. 109
SUMMIT COUNTY			
Akron (1)	410330081282000	SU-6	. 110
Cuyahoga Falls (l)			
VAN WERT COUNTY			
Van Wert (1)	405215084335400	VW-1	. 112
WILLIAMS COUNTY			
Bryan (1)	412819084323800	WM-1A	. 113
Bryan (1)			
Bryan (l)			
East of Blakeslee (1)			
WYANDOT COUNTY			
Upper Sandusky (l)		WY-1	. 117

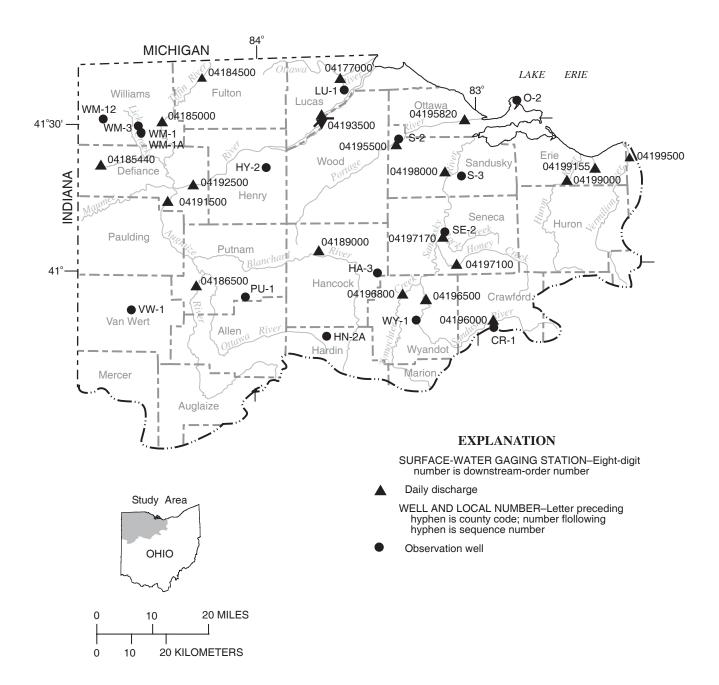


Figure 1a. Location of data-collection stations and wells.

Figure 1b. Location of data-collection stations and wells.

Discontinued Surface-Water-Discharge Stations

The following continuous-record surface-water-discharge or stage-only stations (gaging stations) have been discontinued. Daily discharge or stage records were collected and published for the period of record, expressed in water years, shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[mi², square miles; a---, not determined for canals]

	number	area (mi ²)	of record
St. Joseph River near Blakeslee	04177500	394	1926-32
St. Marys River near Willshire	04181000	354	1926-32
Maumee River at Antwerp	04183500	2,129	1922-35 1939-82
Maumee River near Sherwood	04184000	2,275	1903-06
Tiffin River near Brunersburg	04185500	736	1928-36
Miami and Erie Canal at Delphos	04186000	a	1928-33
Ottawa River at Lima	04187100	128	1988-99
Ottawa River at Allentown	04187500	160	1924-36 1943-82
Ottawa River at Kalida	04188000	309	1931-36
Eagle Creek near Findlay	04188500	55.0	1947-57
Blanchard River at Glandorf	04189500	644	1921-28 1947-52
Blanchard River at Dupont	04190000	756	1928-36
Roller Creek at Ohio City	04190500	5.14	1946-48
Town Creek near Van Wert	04191000	21.2	1945-53
Miami and Erie Canal near Defiance	04192000	a	1925-29 1953-69
Miami and Erie Canal at Waterville	04193000	a	1921-29
Swan Creek at Toledo	04194000	199	1945-48
Portage River near Pemberville	04194500	337	1930-35
North Branch Portage River near Bowling Green	04195000	45.1	1924-32
Lacarpe Creek near Oak Harbor	04195825	2.95	1988-92
Bayou Ditch near Oak Harbor	04195830	2.82	1988-92
Broken Sword Creek at Nevada	04196200	83.8	1976-81
Tymochtee Creek near Marseilles	04196600	137	1970-74
Sandusky River near Mexico	04197000	774	1923-36 1938-82
Honey Creek near New Washington	04197020	17	1979-89
Wolf Creek at Bettsville	04197300	66.2	1976-81
East Branch Wolf Creek near Bettsville	04197450	82.4	1976-81
Havens Creek at Havens	04197500	4.28	1946-49
East Branch Huron River near Norwalk	04198500	85.5	1924-35
Old Woman's Creek at U.S. Highway 6 at Huron	04199165	26.5	1980-94
Lake Erie at Huron	04199170		1980-86
Lake Erie at Ruggles Beach	04199175		1987-94
Vermilion River near Fitchville	04199287	112	1987-89 1991-93

Discontinued Surface-Water-Discharge Stations—Continued

[mi², square miles; a---, not determined for canals]

Station name	Station number	Drainage area (mi ²)	Period of record
West Branch Black River above Lake Street at Elyria	04200430	174	1980-84
Cuyahoga River near Kent	04202500	210	1934-35
Breakneck Creek near Kent	04203000	77.6	1927-35
Cuyahoga River at Cuyahoga Falls	04203900	333	1999-2001
Little Cuyahoga River at Mogadore	04204000	14.3	1946-78
Little Cuyahoga River at Massillon Road at Akron	04204500	31.6	1946-74
Springfield Lake Outlet at Akron	04205000	9.72	1946-49 1961-74
Little Cuyahoga River at Akron	04205500	44.4	1920 1928-34
Little Cuyahoga River Below Ohio Canal at Akron	04205700	59.2	1974-79
Yellow Creek at Ghent	04206208	12.7	1992-98
North Fork at Bath	04206210	2.81	1992-98
Park Creek at Bath Center	04206211	0.826	1992-98
Bath Creek at Bath Center	04206215	3.52	1992-98
Cuyahoga River at Ira	04206250	478	1974-79
Ohio Canal at Independence	04207500	a	1922-23 1927-36 1941 1949-80
Grand River near North Bristol	04209500	85.4	1942-47
Phelps Creek near Windsor	04210000	25.6	1942-59
Grand River near Rome	04210500	251	1942-47
Rock Creek near Rock Creek	04211000	69.2	1942-66
Mill Creek near Jefferson	04211500	82.0	1942-74
Grand River near Madison	04212000	581	1923-35 1938-74
Ashtabula River near Ashtabula	04212500	111	1924-36 1939-48 1950-79

Discontinued Surface-Water-Quality Stations

The following continuous-record surface-water-quality stations have been discontinued. Daily records of temperature, specific conductance, pH, dissolved oxygen, or sediment were collected and published for the period of record, expressed in water years, shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[mi², square miles; letters designate type of record: do, dissolved oxygen; pH, pH; s, sediment; sc, specific conductance; t, temperature]

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record
Maumee River at Antwerp	04183500	2,129	t	1939-82
Maumee River at Defiance	04184100	2,316	do, sc, t pH	1966-70 1973-78
Tiffin River at Evansport	04185300	541	do, pH, sc, t	1968-78
Auglaize River near Ft. Jennings	04186500	332	do, pH, sc, t	1969-78
Ottawa River at Allentown	04187500	160	sc, t do, pH	1969-82 1977-82
Auglaize River at Cloverdale	04188200	713	do, pH, sc, t	1967-78
Blanchard River near Findlay	04189000	346	do, pH, sc, t	1968-80
Auglaize River near Defiance	04191500	2,318	s do, pH, sc, t	1936 1966-76
Maumee River near Waterville	04193490	6,313	do, pH, sc, t	1977-91
Maumee River at Waterville	04193500	6,329	do, pH, sc, t	1963-77
Maumee River at mouth at Toledo	04194023	6,608	do, pH, sc, t	1967-75
Middle Branch Portage River near Portage	04194310	217	sc, t	1969-75
Portage River at Railroad Bridge at Woodville	04195600	428	do, pH, sc, t	1968-80
Portage River at Elmore	04195800	432	t s do	1950-52 1950-53 1970-80
Sandusky River near Upper Sandusky	04196500	298	do, sc, t pH	1969-79 1977-79
Tymochtee Creek at Crawford	04196800	229	do, pH, sc, t	1968-75
Sandusky River at St. Johns Bridge near Mexico	04196990	711	do, sc, t	1969-76
Honey Creek at Melmore	04197100	141	S	1988-89
Sandusky River near Fremont	04198000	1,251	S	1951-56 1979-2002
Sandusky River below Fremont	04198005	1,264	do, pH, sc, t	1966-80
West Branch Huron River near Willard	04198018	86.0	sc, t	1968-75
Huron River at Milan	04199000	371	s s	1970-74 1988-91
Huron River below Milan	04199100	385	do, pH, sc, t	1968-78
Vermilion River near Fitchville	04199287	112	S	1987-89
Vermilion River near Vermilion	04199500	262	sc, t do, pH	1969-76 1976-80
East Branch Black River at Grafton	04199900	170	sc, t	1969-75
West Branch Black River near Elyria	04200400	170	sc, t	1969-75
West Branch Black River above Lake Street at Elyria	04200430	174	S	1980-81
Black River at Elyria	04200500	396	t sc s	1962-70 1964-70 1980-81

Discontinued Surface-Water-Quality Stations—Continued

[mi², square miles; letters designate type of record: do, dissolved oxygen; pH, pH; s, sediment; sc, specific conductance; t, temperature]

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record
Black River below Elyria	04200550	412	do, sc, t	1966-82
			pН	1976-82
Cuyahoga River at Old Portage	04205700	59.2	do, pH, sc, t	1970-84
			S	1972-81
Cuyahoga River at Botzum	04206200	443	t	1947-49
Tinkers Creek at Bedford	04207200	83.9	S	1972-79
Cuyahoga River at Independence	04208000	707	S	1950-74
			do, sc, t	1965-91
			pН	1972-91
			S	1977-84
			S	1988-2002
Big Creek at Cleveland	04208502	35.3	S	1978
Cuyahoga River at Dupont Intake in Cleveland	04208505	794	sc	1964-75
Cuyahoga River at West Third Street Bridge	04208506	798	do, pH, sc, t	1966-87
Cuyahoga River at Superior Street Bridge in Cleveland	04208510	808	do, pH, sc, t	1964-66
Chagrin River at Willoughby	04209000	246	t	1950
			S	1969-74
Grand River at Painesville	04212200	701	do, pH, sc, t	1966-82
Fields Brook at Ashtabula	04212680	3.63	do, pH, sc, t	1983-91
Ashtabula River at Ashtabula	04212700	136	do, pH, sc, t	1968-79

INTRODUCTION

The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with state agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled "Water Resources Data—Ohio."

This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains (1) discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations, (2) stage and content records for streams, lakes, and reservoirs, (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sites, and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 1a through 1b (located after "contents"). The data in this report represent that part of the National Water Information System collected by the USGS and cooperating State and Federal agencies in Ohio.

This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to the introduction of this series, and for several years concurrent with it, water-resources data for Ohio were published in a series of USGS Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage through September 1960 were published annually under the title "Surface-Water Supply of the United States, Parts 3 and 4." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above-mentioned Water-Supply Papers can be found in libraries of the principal cities of the United States and can be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.

Publications similar to this report are published annually by the USGS for all states. These official USGS reports are identified by means of a number consisting of the two-letter state abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report OH-03-2." For archiving and general distribution, the reports for 1971-74 water years are also identified as water-data reports. These water-data reports can be purchased in paper copy or in microfiche from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

USGS water data can be accessed on the World Wide Web at http://water.usgs.gov. Data at this Web site include historical daily values and peaks, real-time water data, and spatial data. (The USGS Ohio District's Web site can be accessed at http://oh.water.usgs.gov.)

Additional information for specific reports may be obtained by writing the District Chief at the address given on the back of title page or by telephoning (614) 430-7700.

COOPERATION

The USGS has had cooperative agreements for the collection of water-resources data since 1898. The following organizations assisted in collecting data in this report:

Cities of Akron, Canton, Columbus (Water Division and Sewerage and Drainage Division), Fremont,

WATER RESOURCES DATA—OHIO, 2003

Volume 2: St. Lawrence River Basin and Statewide Project Data

Oregon, Toledo, and Westerville

Counties of Clermont, Geauga, Knox, Lake, Lucas, Lorain, Madison, Ross, and Summit

Eastgate Development and Transportation Agency

Hamilton and New Baltimore Groundwater Consortium

Miami Conservancy District

Natural Resources Conservation Service

Northeast Ohio Regional Sewer District

Ohio Departments of Health, Natural Resources (Mineral Resources Management and Water Divisions) and Transportation

Ohio Water Development Authority

Ottawa Soil and Water District

State of Ohio Adjutant General's Department

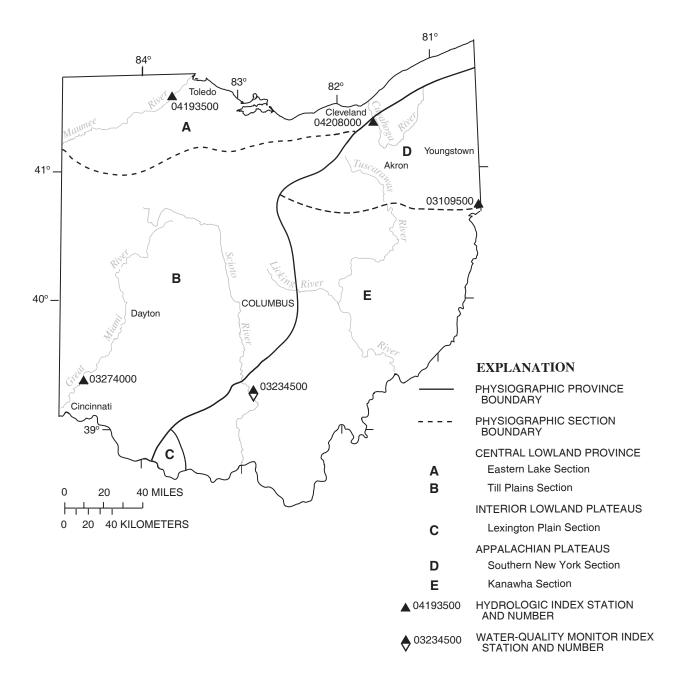
Toledo Metropolitan Area Council of Governments

Villages of Chagrin Falls, North Olmstead, and South Russell

U.S. Air Force, Air Force Materiel Command, Aeronautical Systems Center, Environmental Management Directorate, Restoration Branch

U.S. Army Corps of Engineers (Buffalo, Huntington, Louisville, and Pittsburgh Districts)

SUMMARY OF HYDROLOGIC CONDITIONS


Ohio is part of three physiographic provinces. Each province has its own distinctive hydrologic characteristics. The topography of the Till Plains Section of the Central Lowlands Physiographic Province (fig. 2) consists of gently rolling ground moraine, bands of terminal moraine, and outwash-filled valleys. Glaciation altered the courses of most streams in this area. The Eastern Lake Section (fig. 2) consists of wide expanses of level or nearly level land interrupted only by the sporadic sandy ridges that are the last visible remnants of glacial-lake beaches. Much of the area was swamp prior to development, and marshes are still present along Lake Erie near Toledo. The Lexington Plain Section of the Interior Low Plateaus Province (fig. 2) is characterized by rolling terrain and a few isolated large hills and ridges. The "barbed" drainage pattern formed when small streams were captured as their headwaters cut back into the hills over time. Streams have carved the Kanawha Section of the Appalachian Plateaus Province (fig. 2) into an intricate series of hollows and steep-sided ridges. Only the large streams in the section have any appreciable flood plain. In the southern New York Section (fig. 2), successive waves of glaciation have subdued the relief, buried many preglacial valleys, and rerouted many streams.

Precipitation

The average annual precipitation in Ohio is about 38 inches. The annual precipitation decreases from around 42 inches on the southern border to about 32 inches in the northwest. An anomalous area of high precipitation (as much as 44 inches) in northeastern Ohio results from air masses that pick up moisture and heat from Lake Erie and subsequently release precipitation over a range of hills stretching northeastward from Cleveland.

Monthly precipitation typically is greatest from May through July and least in October, December, and February. Of the approximate 38 inches of average annual precipitation, about 10 inches runs off immediately, 2 inches is retained at or near the surface and evaporates and transpires, and 26 inches enters the ground. Of the 26 inches that enters the ground, 20 inches is retained in the unsaturated zone and is later lost by evapotranspiration. The remaining 6 inches reaches the water table. Of this 6 inches, 2 inches eventually discharges to streams, and the rest is lost by evapotranspiration and consumptive use. Average runoff ranges from about 15 to 18 inches along the southern border to about 8 to 12 inches along most of the northern border, except in the northeast, where runoff is as much as 20 inches. The pattern of streamflow differs from the pattern of precipitation because of the

contributions of snowmelt to streamflow in the early spring and the reduction in flows by evapotranspiration from June through September.

Figure 2. Physiographic divisions and location of hydrologic index stations.

Surface Water

Streamflow

Streamflow-data-collection stations are distributed irregularly throughout the State and tend to be concentrated on the main river systems. The stations are used to sample a wide variety of conditions. The drainage areas range from less than four to more than 6,330 square miles and represent a wide diversity of topography and other physical characteristics. Streamflow ranges from unregulated to highly regulated.

Statewide Streamflow, Water Year 2003. Streamflow conditions during water year 2003 were as follows: *October.* At the beginning of water year 2003, streamflow was in the normal to below-normal range in southern Ohio and below normal in northern Ohio

November-December. Streamflow was generally in the normal range in the southern part of Ohio and below normal in northern Ohio throughout the period.

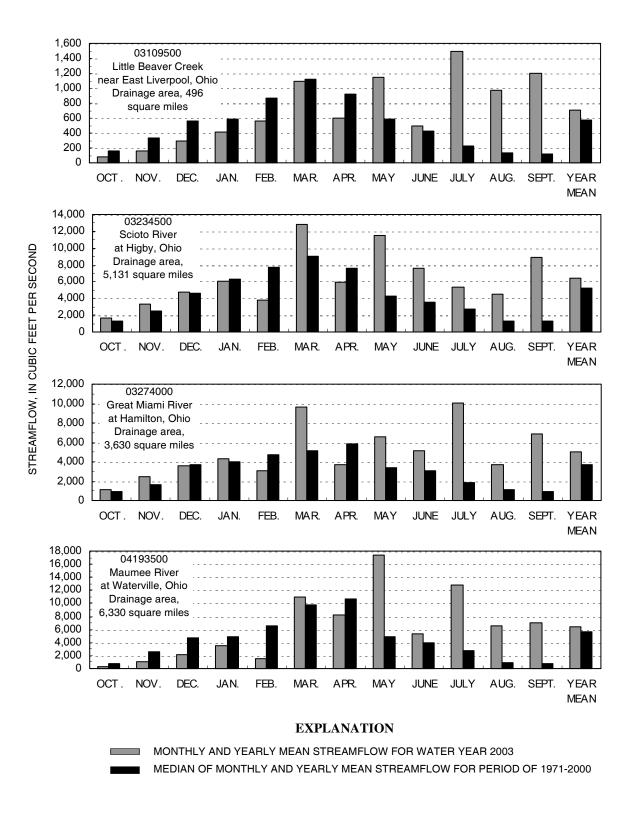
January-February. Normal to below-normal streamflow prevailed throughout the State in response to near-normal precipitation.

March. Runoff from snowmelt caused streamflow to rise into the above-normal range in southwest Ohio and into the normal range for the remainder of the State.

April. Streamflow declined into the deficient range in southern Ohio in response to below-normal precipitation. Flows remained normal in the northern part of the State.

May-June. Excessive flows prevailed statewide in May due to above-normal precipitation. Flows declined into the normal range by the end of the period except in southwest Ohio, where they remained above normal.

July-September. Well above normal precipitation produced excessive flows throughout Ohio for the remainder of the water year. Record daily and monthly flows were established at several gages during the period. At the close of water year 2003, streamflow was above normal statewide.


A comparison of streamflows for 2003 with long-term median flows at four representative stations is shown in figure 3.

Water Quality

Water-quality data in Ohio are collected on a short-term basis in conjunction with local or regional studies. On a long-term basis, water-quality data in Ohio are collected at fixed stations. The only active long-term monitoring program in Ohio is the National Water-Quality Assessment (NAWQA) Program, a program designed to assess the status and trends in the quality of ground- and surface-water resources in major hydrologic systems (study units) of the United States. Sampling in NAWQA began in 1991 in the Nation and in March 1996 at some sites in Ohio as part of the Lake Erie-Lake St. Clair (LERI) study unit. Sampling began in 1999 at some sites as part of the Great Miami and Little Miami River Basins (MIAM) study unit. In 2001, watersheds in the MIAM study unit were combined with those in the White River Basin study unit in Indiana to form the White and Great and Little Miami River Basins study unit (WHMI). During 2003, the LERI NAWQA was in its low-intensity data-collection phase; water-quality data were collected at five fixed stations eight times per year. During 2003, the WHMI was in its high-intensity data-collection phase and collected water-quality data 18 times per year at two fixed sites in Ohio. Samples at NAWQA sites are collected over a range of streamflows and are analyzed for major anions and cations, nutrients, pesticides, suspended sediment, and selected physical properties.

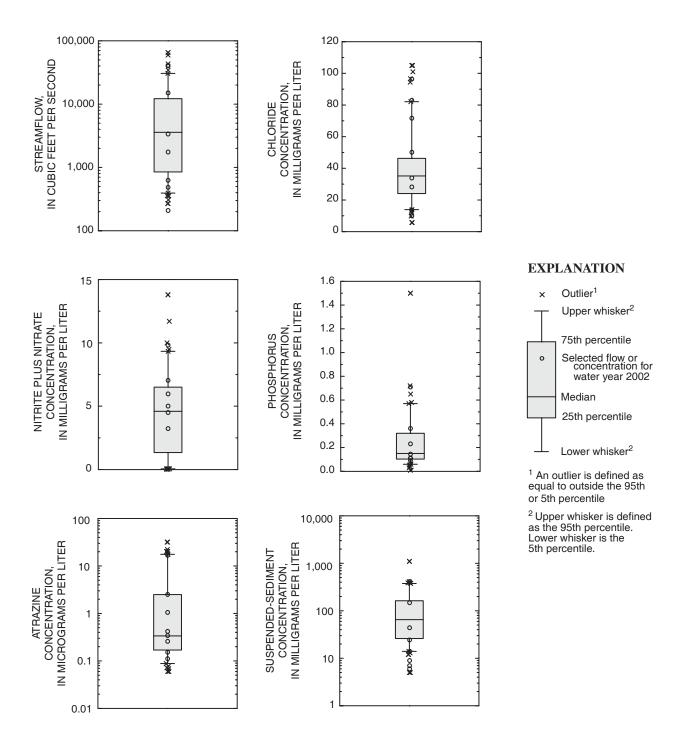
Several continuous years of water-quality data collected as part of the NAWQA program for two sites are shown in figures 4 and 5—the Maumee River at Waterville and the Mad River at St. Paris Pike at Eagle City.

¹ For streamflow, "normal" is defined as being between the 25th and 75th percentiles as measured during the base period, water years 1971-2000.

Figure 3. Streamflow during water year 2003 compared with median streamflow for period 1971-2000 for four representative gaging stations.

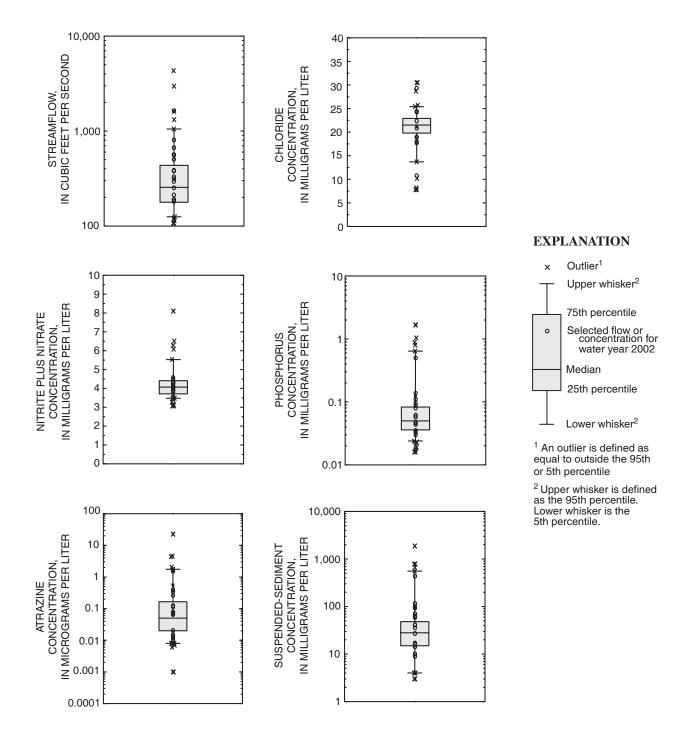
Streamflows and concentrations of selected constituents measured during the previous 7-year period (1996 to 2002) for the Maumee River and previous 4-year period (1999 to 2002) for the Mad River are shown in boxplots. Results of analysis of samples collected in water year 2003 are superimposed on the box plots and are represented by dark circles.

The values for streamflow measured at the time of water-quality sampling during 2003 were similar to those found during the previous 7-year period for the Maumee River but not for the Mad River. For the Maumee River in 2003, three out of eight samples were collected at low flow (below the 25th percentile for the previous 7-year period), two at a moderate flow (between the 25th and 75th percentile), and three at high flow (above the 75th percentile). For the Mad River, samples collected during 2003 were collected during higher streamflows than for the previous 4-year period; no samples were collected at low flow, 12 were collected at medium flow, and 6 were collected at high flow.


At both sites, chloride concentrations (commonly associated with municipal or industrial point sources of wastewater) were in the same range in 2003 as concentrations measured during the previous periods. For the Maumee River, chloride concentrations determined in eight samples collected during 2003 ranged from 10 to 96 milligrams per liter (mg/L), with a median of 42 mg/L. For the Mad River, concentrations determined in 11 samples collected during 2003 were lower than in the Maumee, ranging from 11 to 29 mg/L, with a median of 21 mg/L.

Out of the 26 samples collected for nitrate plus nitrite during 2003 at these two sites, none exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for finished drinking water (10 mg/L, as N). In Ohio, fertilizers are a major source of nitrate. Concentrations in the Maumee River in 2003 were in the same range as those found during the previous 7-year period. Similarly, in the Mad River, nitrate plus nitrite concentrations during 2003 were in the same range as those found during the previous 4 years, except that no outside values above the 95th percentile were found during 2003.

Agricultural runoff and municipal and industrial point sources are the principal sources of phosphorus in Ohio. Increased phosphorus concentrations may lead to a high rate of production of plant materials in water and eutrophication of the receiving water. During 2003, median concentrations of total phosphorus were 0.129 mg/L for the Maumee River and 0.053 mg/L for the Mad River. Phosphorus concentrations are affected by streamflow. For 2003 in the Mad River, 11 out of 18 samples were above the median phosphorus concentration for the previous 4-year period (0.05 mg/L), probably the result of higher streamflows during 2003.


The Maumee and Mad Rivers are in areas of heavy herbicide use. Not surprisingly, atrazine was detected in 100 percent of the water sample collected . Atrazine concentrations found in samples collected during 2003 were generally in the same range as those found during the previous periods. In the Maumee River during 2003, atrazine concentrations ranged from 0.113 to 16.7 micrograms per liter (μ g/L); in the Mad River, atrazine concentrations were lower and ranged from 0.01 to 1.7 μ g/L. The atrazine concentration in one samples from the Maumee River exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 3 μ g/L.

Elevated suspendend-sediment concentrations result from periods of high streamflows and are exacerabated by increased development and agriculture. Suspended-sediment concentrations in the Maumee River in 2003 were lower than those found during the previous 7-year period; the median value for 2003 was 19 mg/L, whereas the median for the previous period was 67 mg/L. At the Mad River, concentrations during 2003 were somewhat higher than those measured during 1999-2002; median concentrations were 38 and 28 mg/L, respectively.

Figure 4. Streamflow and concentration of select constituents measured in water year 2003 and the distribution of those characteristics from measurements made during water years 1996-2002 for the Maumee River at Waterville, Ohio.

Volume 2: St. Lawrence River Basin and Statewide Project Data

Figure 5. Streamflow and concentration of select constituents measured in water year 2003 and the distribution of those characteristics from measurements made during water years 1999-2002 for the Mad River at St. Paris Pike at Eagle City, Ohio.

Ground Water

Ground water serves the needs of 46 percent of Ohio's population. An estimated 800 million gallons of ground water per day is withdrawn for public-supply, domestic, industrial, and agricultural purposes. Many people in Ohio depend on ground water as the only practical source of supply.

Ohio's unconsolidated aquifers are composed of either coarse- or fine-grained sediments. Both types are composed mainly of materials of glacial origin. The coarse-grained unconsolidated aquifers generally consist of highly permeable sand and gravel. Much of the sand and gravel is alluvium derived from glaciofluvial outwash along the courses of some modern streams; thus, these aquifers sometimes are referred to as "watercourse" aquifers. Coarse-grained unconsolidated aquifers in the northwestern corner of the State (fig. 6) underlie glacial till, are locally confined under artesian pressure, and are highly productive. Extensive kame-terrace deposits of water-bearing gravel and sand are widely used ground-water sources in northeastern Ohio. The fine-grained unconsolidated aquifers are similar to the coarse-grained unconsolidated aquifers in form and origin but are less permeable because of higher percentages of mixed fine sand, silt, and clay. Included in the fine-grained unconsolidated aquifers are tills that contain thin or localized stratified lenses of sand and gravel.

Ground-water supply for much of the unglaciated upland area of southeastern Ohio is from bedrock aquifers composed of shaly sandstone and thin limestone. These strata, which range from Mississippian to Permian in age, are dominated by low-yielding shales and shaly sandstones that include numerous coal-bearing strata. In some places, small water supplies are available from fractured coal beds. Several sandstone aquifers in northeastern Ohio are of regional extent and are major ground-water sources for individual and small public supplies. These include the Berea and Black Hand Sandstones of Mississippian age and several sandstone members of the Pottsville and Allegheny Formations of Pennsylvanian age. The Lake Erie coastline of northeastern Ohio is underlain by shale of Devonian and Mississippian age (fig. 6) that yields only small amounts of water to wells. Silurian-age limestone and dolomite and Devonian limestone comprise the carbonate aquifer system (fig. 6) of much of western Ohio. Glacial cover is uneven and consists of valley fill and terminal moraine in some places. The northeastern part of western Ohio contains an area of high-yielding wells that tap a preferentially weathered zone, which developed when a carbonate section was periodically exposed as land mass during the Paleozoic Era. The southwestern corner of Ohio near Cincinnati is underlain by shale and a thin limestone aquifer of Ordovician age. Away from the watercourse (coarse unconsolidated) aquifers that traverse the area, the rocks that form the uplands yield only very small amounts of ground water.

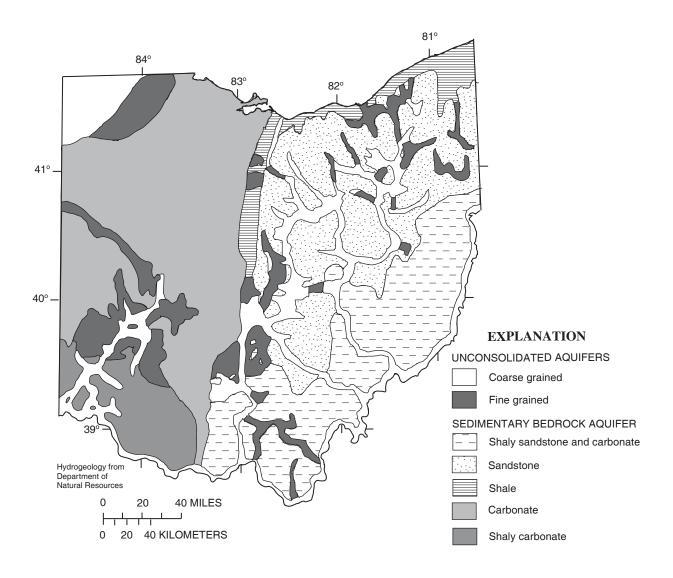
Ground-Water Levels

Most ground-water observation wells in Ohio tap unconsolidated sand and gravel aquifers associated with the State's principal streams. Sample 1-year and 5-year hydrographs of a well completed in an unconfined unconsolidated sand-and-gravel aquifer are shown in figure 7. The observation-well network also includes some bedrock wells in areas where consolidated aquifers are heavily used for water supply, such as in the carbonate-rock region of northwestern Ohio. Sample 1-year and 5-year hydrographs of a well completed in a confined carbonate-rock aquifer are shown in figure 8. The yearly low for most wells occurs during the winter months, especially in cold, dry years or near the end of the growing season. Highs for the year usually occur from March through June, which is the peak of the recharge season. The yearly water-level fluctuation due to climatic conditions in water-table and confined-aquifer wells is commonly 3 to 5 feet but can be as much as 10 feet.

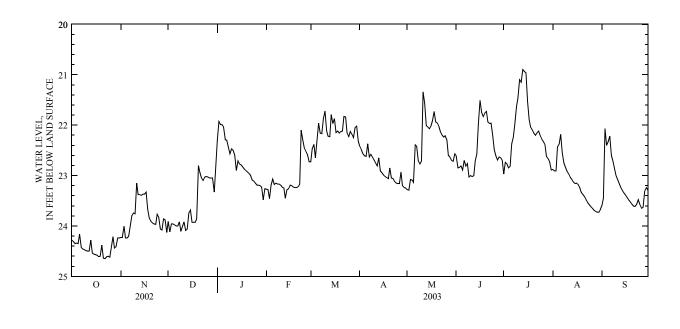
Ground-water conditions in Ohio during water year 2003 were as follows:

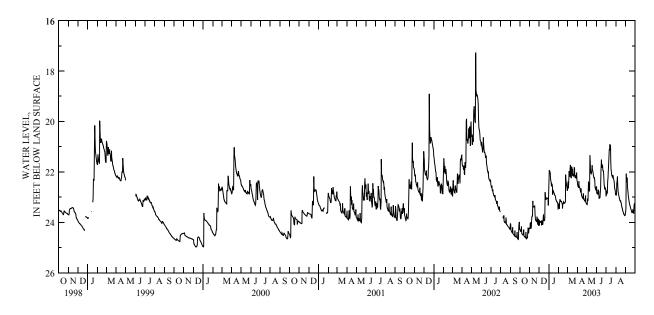
October. At the beginning of water year 2003, ground-water levels were below normal in most aquifers throughout the state. Levels declined in October and remained below normal.

November-December. Ground-water levels showed some response to normal to above-normal precipitation during the period; however, levels remained below normal statewide.


WATER RESOURCES DATA—OHIO, 2003

Volume 2: St. Lawrence River Basin and Statewide Project Data


January-March. A combination of above-normal precipitation and periods of snowmelt produced net rises in ground-water levels throughout Ohio, but levels continued to be below normal.


June-July. Above-normal precipitation during the period produced net rises in ground-water levels statewide. Levels rose to above normal in consolidated aquifers but remained below normal in unconsolidated aquifers.

August-September. Seasonal declines occurred throughout the period; but in response to above-normal precipitation, ground-water levels were above normal statewide.

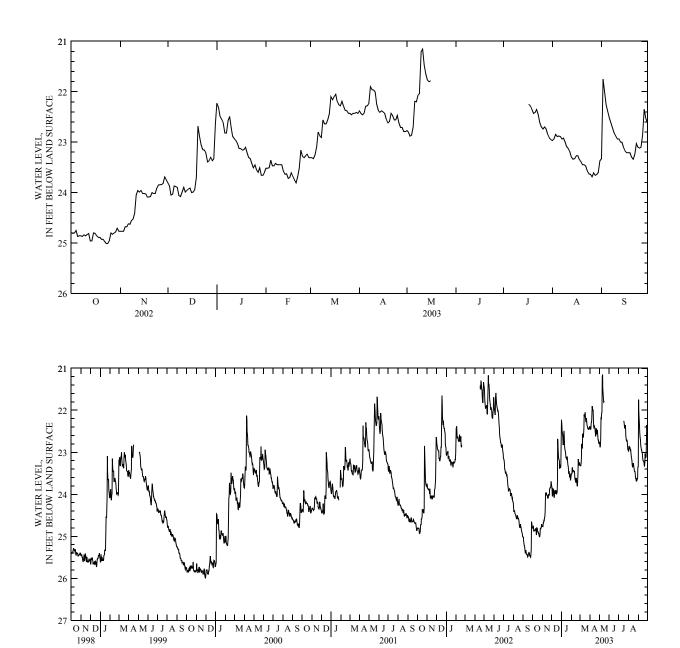
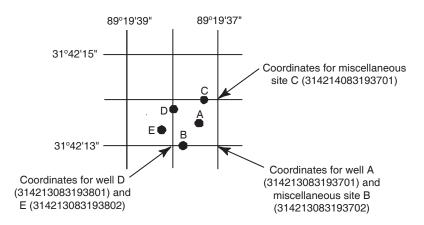


Figure 6. Geographic distribution of principal aquifers in Ohio.

Figure 7. Sample of 1-year and 5-year hydrographs of well H-1 (391717084393300), completed in a unconfined unconsolidated aquifer.

Figure 8. Sample of 1-year and 5-year hydrographs of well U-4 (401826083255200), completed in a confined carbonate-rock aquifer.


DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two main-stream stations is listed between those stations. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is located with respect to the stream to which it is immediately tributary is indicated by an indention in that list of stations in the front of this report. Each indentation represents one rank. This downstream order and system of indentation indicates which stations are on tributaries between any two stations and the rank of the tributary on which each station is located.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These station numbers are in the same downstream order used in this report. In assigning a station number, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list composed of both types of stations. Gaps are consecutive. The complete 8-digit (or 10-digit) number for each station such as 09004100, which appears just to the left of the station name, includes a 2-digit part number "09" plus the 6-digit (or 8-digit) downstream order number "004100." In areas of high station density, an additional two digits may be added to the station identification number to yield a 10-digit number. The stations are numbered in downstream order as described above between stations of consecutive 8-digit numbers.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The USGS well and miscellaneous site-numbering system is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude; the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and miscellaneous site are the same, a sequential number such as "01," "02," and so forth, would be assigned as one would for wells (see fig. 9). The 8-digit, downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

Figure 9. System for numbering wells and miscellaneous sites (latitude and longitude).

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 61 sites in small drainage basins in 39 States that was established in 1963 to provide consistent streamflow data representative of undeveloped watersheds nationwide, and from which data could be analyzed on a continuing basis for use in comparison and contrast with conditions observed in basins more obviously affected by human activities. At selected sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program may be accessed from *http://water.usgs.gov/hbn/*.

National Stream-Quality Accounting Network (NASQAN) is a network of sites used to monitor the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande River basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia Rivers so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment (NAWQA) Program; (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program may be accessed from http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a network of monitoring sites that provide continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead Federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from this network of 250 precipitation-chemistry monitoring sites. The USGS supports 74 of these 250 sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as data from the individual sites, may be accessed from http://bqs.usgs.gov/acidrain/.

The USGS National Water-Quality Assessment (NAWQA) Program is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground-and surface-water resources; to provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and to provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 42 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents is measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for water-resources managers to use in making decisions and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and Federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of

representatives from key Federal, State, and local water-resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program may be accessed from http://water.usgs.gov/nawqa/.

The USGS National Streamflow Information Program (NSIP) is a long-term program with goals to provide framework streamflow data across the Nation. Included in the program are creation of a permanent Federally funded streamflow network, research on the nature of streamflow, regional assessments of streamflow data and databases, and upgrades in the streamflow information delivery systems. Additional information about NSIP may be accessed from http://water.usgs.gov/nsip/.

EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS

Data Collection and Computation

The base data collected at gaging stations (fig. 1a and 1b) consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and volume of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, USGS Water-Supply Paper 2175, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

For stream-gaging stations, discharge-rating tables for any stage are prepared from stage-discharge curves. If extensions to the rating curves are necessary to express discharge greater than measured, the extensions are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, or computation of flow over dams and weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features of the stream channel, the daily mean discharge is computed by the shifting-control method in which correction factors based on individual discharge measurements and notes by engineers and observers are used when applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the controlling section, the daily mean discharge is computed by the shifting-control method.

The stage-discharge relation at some stream-gaging stations is affected by backwater from reservoirs, tributary streams, or other sources. Such an occurrence necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage at some distance from the base gage.

An index velocity is measured using ultrasonic or acoustic instruments at some stream-gaging stations and this index velocity is used to calculate an average velocity for the flow in the stream. This average velocity along with a stage-area relation is then used to calculate average discharge.

At some stations, stage-discharge relation is affected by changing stage. At these stations, the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations in the northern United States, the stage-discharge relation is affected by ice in the winter; therefore, computation of the discharge in the usual manner is impossible. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter-discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge from other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the volume or contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some stream-gaging stations, periods of time occur when no gage-height record is obtained or the recorded gage height is faulty and cannot be used to compute daily discharge or contents. Such a situation can happen when the recorder stops or otherwise fails to operate properly, the intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records from other stations in the same or nearby basins. Likewise, lake or reservoir volumes may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

Data Presentation

The records published for each continuous-record surface-water discharge station (stream-gaging station) consist of five parts: (1) the station manuscript or description; (2) the data table of daily mean values of discharge for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period, by water year; and (4) a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments follow that clarify information presented under the various headings of the station description.

LOCATION.—Location information is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This term indicates the time period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its flow reasonably can be considered equivalent to flow at the

present station.

REVISED RECORDS.—If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

GAGE.—The type of gage in current use, the datum of the current gage referred to a standard datum, and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.—All periods of estimated daily discharge either will be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See section titled Identifying Estimated Daily Discharge.) Information is presented relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, the outlet works and spillway, and the purpose and use of the reservoir.

COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.—Information here documents major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS.

REVISIONS.—Records are revised if errors in published records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb (http://water.usgs.gov/nwis/nwis). Users are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent data updates. Updates to NWISWeb are made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because no current or, possibly, future station manuscript would be published for these stations to document the revision in a REVISED RECORDS entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were revised after the station was discontinued. If, however, the data for a discontinued station were obtained by computer retrieval, the data would be current. Any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the REMARKS and in the inclusion of a stage-capacity table when daily volumes are given.

Peak Discharge Greater than Base Discharge

Tables of peak discharge above base discharge are included for some stations where secondary instantaneous peak discharge data are used in flood-frequency studies of highway and bridge design, flood-control structures, and other flood-related projects. The base discharge value is selected so an average of three peaks a year will be reported. This base discharge value has a recurrence interval of approximately 1.1 years or a 91-percent chance of exceedence in any 1 year.

Data Table of Daily Mean Values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed TOTAL gives the sum of the daily figures for each month; the line headed MEAN gives the arithmetic average flow in cubic feet per second for the month; and the lines headed MAX and MIN give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month is expressed in cubic feet per second per square mile (line headed CFSM); or in

Volume 2: St. Lawrence River Basin and Statewide Project Data

inches (line headed IN); or in acre-feet (line headed AC-FT). Values for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if extensive regulation or diversion is in effect or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir volumes are given. These values are identified by a symbol and a corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed MEAN), maximum (MAX), and minimum (MIN) of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those values. The designated period will be expressed as FOR WATER YEARS ____, BY WATER YEAR (WY), and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. The designated period will consist of all of the station record within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled SUMMARY STATISTICS follows the statistics of monthly mean data tabulation. This table consists of four columns with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, WATER YEARS ____, will consist of all of the station records within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When the dates of occurrence do not fall within the selected water years listed in the heading, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration-curve statistics and runoff data also are given. Runoff data may be omitted if extensive regulation or diversion of flow is in effect in the drainage basin.

The following summary statistics data are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the SUMMARY STATISTICS table.

ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year.

ANNUAL MEAN.—The arithmetic mean for the individual daily mean discharges for the year noted or for the designated period.

HIGHEST ANNUAL MEAN.—The maximum annual mean discharge occurring for the designated

LOWEST ANNUAL MEAN.—The minimum annual mean discharge occurring for the designated

- HIGHEST DAILY MEAN.—The maximum daily mean discharge for the year or for the designated period.
- LOWEST DAILY MEAN.—The minimum daily mean discharge for the year or for the designated period.
- ANNUAL 7-DAY MINIMUM.—The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. This value should not be confused with the 7-day 10-year low-flow statistic.
- MAXIMUM PEAK FLOW.—The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.
- MAXIMUM PEAK STAGE.—The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.—The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF.—Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
 - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
 - Cubic feet per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
 - Inches (INCHES) indicate the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS.—The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.—The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.—The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first table lists annual maximum stage and discharge at crest-stage stations, and the second table lists discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are often made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for a special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified. This identification is shown either by flagging individual daily values with the letter "e" and noting in a table footnote, "e–Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The degree of accuracy of the records is stated in the REMARKS in the station description. "Excellent" indicates that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair," within 15 percent. "Poor" indicates that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record.

Values of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft³/s; to the nearest tenths between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures above 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge values listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Records Available

Information of a more detailed nature than that published for most of the stream-gaging stations such as discharge measurements, gage-height records, and rating tables is available from the District office. Also, most stream-gaging station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the District office (see address that is shown on the back of the title page of this report).

EXPLANATION OF WATER-QUALITY RECORDS

Collection and Examination of Data

Surface-water samples for analysis usually are collected at or near stream-gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, water temperature, sediment discharge, and so forth); extremes for the current year; and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, sampling date, or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water Analysis

Most of the methods used for collecting and analyzing water samples are described in the TWRIs. A list of TWRIs is provided in this report.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross-section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled at several verticals to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values (and sometimes mean or median values) for each constituent measured, and are based on 15-minute or 1-hour intervals of recorded data beginning at 0000 hours and ending at 2400 hours for the day of record.

SURFACE-WATER-QUALITY RECORDS

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because discharge data is useful in the interpretation of surface-water quality. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A *continuous-record station* is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A *partial-record station* is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A *miscellaneous sampling site* is a location other than a continuous- or partial-record station, where samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between *continuous records* as used in this report and *continuous recordings* that refer to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figures 1a and 1b.

Accuracy of the Records

One of four accuracy classifications is applied for measured physical properties at continuous-record stations on a scale ranging from poor to excellent. The accuracy rating is based on data values recorded before any

WATER RESOURCES DATA—OHIO, 2003

Volume 2: St. Lawrence River Basin and Statewide Project Data

shifts or corrections are made. Additional consideration also is given to the amount of publishable record and to the amount of data that have been corrected or shifted.

Rating classifications for continuous water-quality records.

[\leq , less than or equal to; \pm , plus or minus value shown; $^{\circ}$ C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Rating									
property	Excellent	Good	Fair	Poor						
Water temperature	≤±0.2 °C	$> \pm 0.2$ to 0.5 °C	$> \pm 0.5$ to 0.8 °C	> ±0.8 °C						
Specific conductance	≤±3%	$> \pm 3$ to 10%	$> \pm 10$ to 15%	$> \pm 15\%$						
Dissolved oxygen	$\leq \pm 0.3 \text{ mg/L}$	$> \pm 0.3$ to 0.5 mg/L	$> \pm 0.5$ to 0.8 mg/L	$> \pm 0.8$ mg/L						
pH	$\leq \pm 0.2$ unit	$> \pm 0.2$ to 0.5 unit	$> \pm 0.5$ to 0.8 unit	$> \pm 0.8$ unit						
Turbidity	≤±5%	$> \pm 5$ to 10%	$> \pm 10$ to 15%	$> \pm 15\%$						

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represent the naturally occurring quality of the water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made on site when the samples are taken. To assure that measurements made in the laboratory also represent the naturally occurring water, carefully prescribed procedures must be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1-A9. These TWRIs are listed in this report. Also, detailed information on collecting, treating, and shipping samples can be obtained from the USGS District office (see address that is shown on the back of title page in this report).

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may be collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples are collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical oxygen demand (BOD) and indicator bacteria are analyzed locally. All other samples are analyzed in the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRIs, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

DRAINAGE AREA.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.—This indicates the time periods for which published water-quality records for

WATER RESOURCES DATA—OHIO, 2003

Volume 2: St. Lawrence River Basin and Statewide Project Data

the station are available. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

- INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.
- REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.
- COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.
- EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. For parameters measured weekly or less frequently, true maximums or minimums may not have been obtained. Extremes, when given, are provided for both the period of record and for the current water year.
- REVISIONS.—Records are revised if errors in published water-quality records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb (http://waterdata.usgs.gov/nwis). Users of USGS water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent updates. Updates to the NWISWeb are made on an annual basis.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this section:

Drinted Output

Printed Output	Hemark
E or e	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
K	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
V	Analyte was detected in both the environmental sample and the associated blanks.
&	Biological organism estimated as dominant.

Water-Quality Control Data

The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDLs) and laboratory reporting levels (LRLs). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year.

This reporting procedure limits the occurrence of false positive error. Falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less.

Accordingly, concentrations are reported as less than LRL for samples in which the analyte was either not detected or did not pass identification. Analytes detected at concentrations between the LT-MDL and the LRL and

that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the E remark code.

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District office are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. These data are not presented in this report but are available from the District office.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated in the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. Many types of blank samples are possible; each is designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

- **Field blank**—A blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.
- **Trip blank**—A blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.
- **Equipment blank**—A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).
- **Sampler blank**—A blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.
- **Filter blank**—A blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.
- **Splitter blank**—A blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.
- **Preservation blank**—A blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory. The reference material composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case

consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. Many types of replicate samples are possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent samples—A type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating the collection of samples into two or more compositing containers.

Sequential samples—A type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample—A type of replicate sample in which a sample is split into subsamples, each subsample contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

EXPLANATION OF GROUND-WATER-LEVEL RECORDS

Generally, only ground-water-level data from selected wells with continuous recorders from a basic network of observation wells are published in this report. This basic network contains observation wells located so that the most significant data are obtained from the fewest wells in the most important aquifers.

Site Identification Numbers

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is produced for local needs. (See NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES in this report for a detailed explanation).

Data Collection and Computation

Measurements are made in many types of wells, under varying conditions of access and at different temperatures; hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Most methods for collecting and analyzing water samples are described in the TWRIs referred to in the Onsite Measurements and Sample Collection and the Laboratory Measurements sections in this report. In addition, TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1 through A9. The values in this report represent water-quality conditions at the time of sampling, as much as possible, and that are consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. Trained personnel collected all samples. The wells sampled were pumped long enough to ensure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material,

possibly metal, comprising the casings.

Water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum above sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth of water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Data Presentation

Water-level data are presented in alphabetical order by county. The primary identification number for a given well is the 15-digit site identification number that appears in the upper left corner of the table. The secondary identification number is the local or county well number. Well locations are shown in figures 1c and 1d, each well is identified on the map by its local well or county well number.

Each well record consists of three parts: the well description, the data table of water levels observed during the water year, and, for most wells, a hydrograph following the data table. Well descriptions are presented in the headings preceding the tabular data.

The following comments clarify information presented in these various headings.

- LOCATION.—This paragraph follows the well-identification number and reports the hydrologic-unit number and a geographic point of reference. Latitudes and longitudes used in this report are reported as North American Datum of 1927 unless otherwise specified.
- AQUIFER.—This entry designates by name and geologic age the aquifer that the well taps.
- WELL CHARACTERISTICS.—This entry describes the well in terms of depth, casing diameter and depth or screened interval, method of construction, use, and changes since construction.
- INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on continuous, monthly, or some other frequency of measurement.
- DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The altitude of the land-surface datum is described in feet above the altitude datum; it is reported with a precision depending on the method of determination. The measuring point is described physically (such as top of casing, top of instrument shelf, and so forth), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD 29); it is reported with a precision depending on the method of determination.
- REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level, when various methods of measurement were begun, and the network (climatic, terrane, local, or areal effects) or the special project to which the well belongs.
- PERIOD OF RECORD.—This entry indicates the time period for which records are published for the well, the month and year at the start of publication of water-level records by the USGS, and the words "to current year" if the records are to be continued into the following year. Time periods for which water-level records are available, but are not published by the USGS, may be noted.
- EXTREMES FOR PERIOD OF RECORD.—This entry contains the highest and lowest instantaneously

recorded or measured water levels of the period of published record, with respect to land-surface datum or sea level, and the dates of occurrence.

Water-Level Tables

A table of water levels follows the well description for each well. Water-level measurements in this report are given in feet with reference to either sea level or land-surface datum (lsd). Missing records are indicated by dashes in place of the water-level value.

For wells not equipped with recorders, water-level measurements were obtained periodically by steel or electric tape. Tables of periodic water-level measurements in these wells show the date of measurement and the measured water-level value.

Hydrographs

Hydrographs are a graphic display of water-level fluctuations over a period of time. In this report, current water year and, when appropriate, period-of-record hydrographs are shown. Hydrographs that display periodic water-level measurements show points that may be connected with a dashed line from one measurement to the next. Hydrographs that display recorder data show a solid line representing the mean water level recorded for each day. Missing data are indicated by a blank space or break in a hydrograph. Missing data may occur as a result of recorder malfunctions, battery failures, or mechanical problems related to the response of the recorder's float mechanism to water-level fluctuations in a well.

GROUND-WATER-QUALITY DATA

Data Collection and Computation

The ground-water-quality data in this report were obtained as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some wells within a county but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide.

Most methods for collecting and analyzing water samples are described in the TWRIs. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. Also, detailed information on collecting, treating, and shipping samples may be obtained from the USGS District office (see address shown on back of title page in this report).

Laboratory Measurements

Analysis for sulfide and measurement of alkalinity, pH, water temperature, specific conductance, and dissolved oxygen are performed on site. All other sample analyses are performed at the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used by the USGS laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed from http://water.usgs.gov.

Water-quality data and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on various media. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each Water Discipline District Office (See address that is shown on the back of the title page of this report.)

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a

year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of poly-chlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with

clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

Aspect is the direction toward which a slope faces with respect to the compass.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time.

NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

Bed material is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL)

or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere 4/3 π r³ cone 1/3 π r²h cylinder π r²h. pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume (μ m³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a sporeforming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and

transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/

s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or **flow**, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a

cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community.

Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis*, *Streptococcus feacium*, *Streptococcus avium*, and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute

intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site:* http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of

organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N} ,$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents

(NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.]

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_0 e^{-\lambda L}$$
,

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} \cdot$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site:
http://www.co-ops.nos.noaa.gov/tideglos.html

- Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.
- Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")
- **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")
- **Mean high** or **low tide** is the average of all high or low tides, respectively, over a specific period.
- Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")
- **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.
- **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.
- Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.
- Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL

- concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.
- Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.
- Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.
- Micrograms per kilogram (UG/KG, μg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.
- Micrograms per liter (UG/L, µg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.
- Microsiemens per centimeter (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.
- Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.
- **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.
- Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a

river basin.

- Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")
- Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")
- **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.
- Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.
- North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial

- leveling networks.
- **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).
- Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")
- **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.
- **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.
- **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.
- Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.
- Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.
- Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottomwithdrawal tube, visual-accumulation tube,

sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (millimeters)	Method of analysis				
Clay	>0.00024 - 0.004	Sedimentation				
Silt	>0.004 - 0.062	Sedimentation				
Sand	>0.062 - 2.0	Sedimentation or sieve				
Gravel	>2.0 - 64.0	Sieve				
Cobble	>64 - 256	Manual measurement				
Boulder	>256	Manual measurement				

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogenion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7×10^{10} radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate

measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is

exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the $7Q_{10}$ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two

commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified crosssectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

- 0 < no gravel or larger substrate
- 1 > 75 percent
- 2 51-75 percent
- 3 26-51 percent
- 4 5-25 percent
- 5 < 5 percent

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS

topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also

"Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydro-logic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (Species) richness is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with

the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta
Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia
Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and

suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonsporeforming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample.

(See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for wholewater samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in

nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surfacewater supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2003, is called the "2003 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton.

Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required.

Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1–D1. *Water temperature—Influential factors, field measurement, and data presentation*, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2–D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. *Application of seismic-refraction techniques to hydrologic studies*, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.

- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3-A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS-TWRI book 3, chap. A5. 1967. 29 p.
- 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS-TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Alo. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3–B1. *Aquifer-test design, observation, and data analysis,* by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS—TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.

- 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3–C1. Fluvial sediment concepts, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p.
- 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3–C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4–A1. Some statistical tools in hydrology, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4–B1. Low-flow investigations, by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973.15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. *Determination of minor elements in water by emission spectroscopy*, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5–C1. *Laboratory theory and methods for sediment analysis*, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. National field manual for the collection of water-quality data: Selection of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. National field manual for the collection of water-quality data: Cleaning of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. National field manual for the collection of water-quality data: Safety in field activities, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

SURFACE-WATER RECORDS Ottawa River Basin

04177000 OTTAWA RIVER AT UNIVERSITY OF TOLEDO, TOLEDO, OHIO

LOCATION.—Latitude 41°39′29″, longitude 83°37′19″, in NE ¼ sec. 32, T.9 S., R.7 E., Lucas County, Hydrologic Unit 04100001, on left bank at auto bridge at University of Toledo, Toledo, Ohio, 0.4 mi downstream from Deline Ditch, 5.6 mi upstream from Sibley Creek, and 10.9 mi upstream from mouth.

DRAINAGE AREA.—150 mi². Area at site used prior to Sept. 30, 1948, 150 mi², revised. PERIOD OF RECORD.—March 1945 to September 1948 (published as "Tenmile Creek at Toledo"), August 1976 to current year.

PERIOD OF RECORD.—March 1945 to September 1948 (published as "Tenmile Creek at Toledo"), August 1976 to current year.

REVISED RECORDS.—WSP 1307: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 576.28 ft above sea level. From Aug. 1976-July, 1979, at site 500 ft downstream. Prior to Sept. 30, 1948, water-stage recorder at site 2,500 ft upstream at datum 3.72 ft higher.

REMARKS.—Records fair except for periods of estimated record, which are poor. Water-quality data fomerly collected at this site.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 1, 1943, reached a stage of 15.1 ft present datum, from floodmark, Lucas County Sanitary Engineers; discharge, 3,400 ft³/s. Flood of Apr. 25, 1950, reached a stage of 15.0 ft present datum, from floodmark; discharge, 3,300 ft³/s.

		DISCHA	RGE, CUB	IC FEET PEI		WATER YE Y MEAN VAI		R 2002 TO	SEPTEMBE	R 2003		
DAY 1 2 3 4 5	OCT 4.9 5.4 32 14 25	NOV 22 27 39 54 64	DEC 13 11 10 8.8 8.4	JAN 140 84 46 41 35	FEB e8.0 e10 e15 70 29	MAR e13 e12 e11 e10 e9.6	APR 95 78 63 175 766	MAY 56 88 148 86 265	JUN 242 117 77 60 50	JUL 15 14 13 16 23	AUG 13 154 47 76 45	SEP 389 191 147 85 46
6 7 8 9 10	7.0 4.9 4.8 4.2 3.8	57 37 33 28 117	8.5 8.1 7.6 6.4 6.0	31 25 27 32 35	e20 e16 e13 e12 e11	e9.0 e14 e26 145 48	1090 494 310 234 209	573 293 198 474 894	41 35 31 31 27	20 53 79 76 63	23 18 31 30 18	35 26 22 18 16
11 12 13 14 15	3.6 3.9 3.7 3.1 3.5	89 27 24 20 17	6.5 6.2 6.2 15	43 48 e26 e19 e16	e9.4 e8.6 e8.0 e7.6 e7.0	38 75 192 218 382	157 122 92 71 64	827 484 295 172 149	26 159 449 349 163	51 30 20 15 16	17 71 25 22 17	14 13 12 13 29
16 17 18 19 20	3.2 2.7 2.4 12 5.7	15 10 8.7 15	9.0 8.1 11 128 127	e14 e13 e12 e11 e10	e6.6 e6.4 e6.0 e7.0 e9.0	699 978 776 427 345	59 52 54 48 54	205 150 105 82 80	96 75 57 51 44	28 14 14 12 12	28 45 27 17	16 12 9.9 10 9.7
21 22 23 24 25	3.7 3.2 3.1 2.9	12 44 29 26 25	104 60 37 25 27	e9.0 e8.6 e8.0 e7.6 e7.4	e13 e50 e31 e25 e20	465 446 263 174 134	47 41 37 31 29	67 56 46 43 41	36 30 27 23 20	32 14 14 11 9.2	11 10 8.5 7.7 9.6	12 110 82 67 60
26 27 28 29 30 31 TOTAL MEAN MAX MIN CFSM IN.	31 7.4 5.2 4.8 4.6 16 250.7 8.09 32 2.4 0.05 0.06	20 17 15 13 14 930.7 31.0 117 8.7 0.21 0.23	23 18 16 16 30 76 849.8 27.4 128 6.0 0.18 0.21	e7.2 e7.0 e6.8 e6.8 e6.6 e8.6 25.5 140 6.6 0.17 0.20	e18 e16 e14 466.6 16.7 70 6.0 0.11 0.12	116 98 78 147 218 128 6694.6 216 978 9.0 1.44 1.66	28 27 26 25 44 4622 154 1090 25 1.03 1.15	38 35 35 31 30 156 6202 200 894 30 1.33 1.54	30 26 17 29 16 2434 81.1 449 16 0.54 0.60	7.8 28 45 12 9.1 8.5 774.6 25.0 79 7.8 0.17 0.19	9.6 8.8 9.4 9.1 8.9 8.3 837.9 27.0 154 7.7 0.18 0.21	39 104 72 66 41 1766.6 58.9 389 9.7 0.39 0.44
MEAN MAX (WY) MIN (WY)	63.5 407 1987 0.85 1947	STATISTI 88.6 449 1993 3.04 1947	CS OF MON 126 380 1978 6.14 1947	NTHLY MEAN 114 561 1993 4.92 1977	DATA FOR 174 467 1990 16.7 2003	WATER YE 271 729 1978 43.8 2000	ARS 1945 - 243 438 1977 20.4 1946	- 2003, B 150 358 1945 21.4 1988	Y WATER YE 131 437 1989 7.36 1988	AR (WY) 48.2 264 1992 8.46 1984	29.7 143 1980 0.82 1946	40.9 406 1981 0.13 1946
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS			FOR 2002 40067.6 110 2040 2.4 3.0 0.73 9.94 217 27 3.9	May 14 Sep 26 Aug 7	YEAR	FOR 20 26619.1 72.9 1090 2.4 3.2 1220 9.96 0.49 6.60 167 26 7.0	-	5 3 2	WATER YEZ 123 215 65.5 3500 0.00 0.00 3950 14.54 0.00 0.82 11.15 309 39 7.0	Mar 1 Aug 2 Aug 2 Mar 1 Mar 1	- 2003 1993 1995 4 1982 4 1945 4 1945 4 1982 4 1982 9 1945	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

e Estimated.

04184500 BEAN CREEK AT POWERS, OHIO

LOCATION.—Latitude 41°39′35″, longitude 84°14′57″, in NE ¼ of SE ¼ sec. 5, T.9 S., R.1 E., Fulton County, Hydrologic Unit 04100006, on left bank at downstream side of bridge on Fulton County Road 20, 2.1 mi south of Powers, 0.3 mi upstream from Iron Creek, 5 mi downstream from Siver Creek,

downstream side of bridge on Fulton County Road 20, 2.1 mi south of Powers, 0.3 mi upstream from Iron Creek, 5 mi downstream from Siver Creek, and 5.2 mi east of Fayette.

DRAINAGE AREA.—206 mi².

PERIOD OF RECORD.—October 1940 to Septmber 1981, November 2000 to current year.

REVISED RECORDS.—WSP 1307: 1948 (M). WSP 1912: Drainage area WDR OH-76-2: 1975.

GAGE.—Water-stage recorder and crest gage. Datum of gage is 710.0 ft above sea level. Prior to Jan. 18, 1941, nonrecording gage, Jan. 18, 1941-Sept. 30, 1977, water-stage recorder at site 0.5 mi upstream at datum 12.57 ft higher; Oct.1, 1977-Oct. 30, 1980 at site 0.5 mi upstream at datum 7.57 ft higher.

REMARKS.—Records fair except for periods of estimated record, which are poor. Water-quality data formerly collected at this site.

TALLIVII ITATIO	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
DAY 1 2 3 4 5	OCT 19 17 19 21 23	NOV 30 29 28 28 27	DEC 44 59 74 e60 e54	JAN e73 e64 e58 e54 e52	FEB e16 e16 e20 e28 e43	MAR e21 e20 e19 e18 e17	APR 249 214 182 170 717	MAY 92 114 120 110 250	JUN 80 80 73 69	JUL 17 16 14 14	AUG 6.6 313 343 226 173	SEP 25 81 120 85 61	
6 7 8 9 10	22 22 22 21 20	28 28 29 32 41	e50 e46 e42 e39 e36	e48 e44 e41 e39 e36	e68 e50 e42 e37 e33	e18 e19 e21 e24 e35	732 521 399 332 291	294 216 177 411 886	65 62 62 60 57	16 49 65 69 52	119 89 67 56 45	47 39 34 30 26	
11 12 13 14 15	20 20 20 19 19	59 61 53 51 45	e34 e33 e31 e30 e29	e33 e31 e29 e28 e27	e31 e28 e26 e24 e22	e74 e180 e240 e340 e700	260 227 195 172 159	693 537 459 364 302	53 59 101 102 85	45 38 31 26 23	39 37 35 32 30	24 22 20 19 24	
16 17 18 19 20	20 20 21 23 22	41 40 38 41 39	e28 e27 e26 e25 e25	e26 e25 e24 e23 e22	e21 e19 e18 e17 e16	e1000 e800 e540 e470 e420	142 128 120 112 108	268 234 208 185 168	70 62 57 53 48	20 18 12 8.0 8.7	27 25 23 17 17	23 22 20 19 18	
21 22 23 24 25	24 25 24 24 25	39 49 52 49 47	e64 e56 e49 e46 e42	e21 e21 e20 e20 e19	e16 e20 e29 e27 e26	642 468 345 278 250	106 109 107 98 88	151 137 124 115 107	43 39 35 29 25	14 22 21 15 13	14 16 11 9.5 8.6	17 37 95 93 120	
26 27 28 29 30 31 TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	28 27 26 25 24 31 693 22.4 31 17 22 1370 0.11 0.13	44 42 41 49 36 1216 40.5 61 27 41 2410 0.20 0.22	e40 e38 e36 e34 e43 e58 1298 41.9 74 25 40 0.20 0.23	e19 e18 e18 e17 e17 e17 984 31.7 73 17 26 1950 0.15 0.18	e24 e23 e22 762 27.2 68 16 24 1510 0.13 0.14	253 218 194 450 430 309 8813 284 1000 17 250 17480 1.38 1.59	82 77 72 66 66 6301 210 732 66 150 12500 1.02	101 94 89 82 76 77 7241 234 886 76 168 14360 1.13 1.31	22 23 19 22 21 1643 54.8 102 19 58 3260 0.27 0.30	11 9.3 10 7.5 7.5 5.9 693.9 22.4 69 5.9 16 1380 0.11 0.13	11 11 9.7 9.3 13 10 1842.7 59.4 343 6.6 25 3650 0.29 0.33	173 336 379 256 183 2448 81.6 379 17 35 4860 0.40 0.44	
MEAN MAX (WY) MIN (WY)	47.9 285 2002 8.30 1964	STATIST 85.5 350 1973 13.5 1965	ICS OF MOD 163 722 1968 13.4 1964	NTHLY MEAN 179 761 1952 15.5 1963	DATA FO 290 830 2001 16.9 1963	R WATER Y 386 863 1978 64.5 1964	337 1019 1950 77.1 1946	- 2003, E 231 1071 1943 53.3 1941	Y WATER Y 128 540 1981 25.6 1962	EAR (WY) 86.4 507 1951 12.1 1963	40.3 222 1980 8.38 1963	42.6 431 1981 7.03 1963	
ANNUAL TO ANNUAL ME HIGHEST A LOWEST AN HIGHEST D LOWEST DA ANNUAL SE MAXIMUM P	AN NNUAL MEAN NUAL MEAN AILY MEAN ILY MEAN VEN-DAY M: EAK FLOW EAK STAGE EOUS LOW I NOFF (CFSI NOFF (INCFI T EXCEEDS T EXCEEDS	N INIMUM FLOW FT) 4)		FOR 2002 64486.4 177 3250 2.3 2.6 127900 0.86 11.65 418 51 14	May 13 Sep 11 Sep 7		FOR 20 33935.6 93.0 1000 5.9 8.3 1300 15.61 67310 0.44 6.13 251 38 17	1 Mar 15	5 5 5 5 5	167 329 34.8 3740 2.3 2.6 4250	Sep 1 Sep Apr 2 Feb 2 Aug	1950 1964 5 1950 1 2002 7 2002 9 1956	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. b Ice jam.

e Estimated.

04185000 TIFFIN RIVER AT STRYKER, OHIO

LOCATION.—Latitude 41°30′16", longitude 84°25′47", in SE 1/4 sec. 5, T.6 N., R.4 E., Williams County, Hydrologic Unit 04100006, on left bank 0.5 mi downstream from bridge on State Highway 191 at west edge of Stryker, Ohio, 0.6 mi upstream from Penn Central bridge, and 1.6 mi downstream from Leatherwood Creek.

Leatherwood Creek.
DRAINAGE AREA.—410 mi².
PERIOD OF RECORD.—September 1921 to September 1928 (published as "near Stryker"), October 1940 to current year.
REVISED RECORDS.—WSP 1144: 1922-28. WSP 1387: 1925. WSP 1912: Drainage area.
GAGE.—Water-stage recorder and crest gage. Datum of gage is 685.1 ft above sea level. Prior to Sept. 30, 1928, nonrecording gage at site 3.5 mi downstream at different datum; Oct. 13, 1940-Jan. 17, 1941, nonrecording gage; and Jan. 18, 1941-Sept. 30, 1953, water-stage recorder, at site 0.5 mi downstream at same datum.

REMARKS.—Records fair except for periods of estimated record, which are poor. Small diversion upstream from gage for municipal supply of Archbold.

Diversion returned as sewage to Brush Creek, which flows into Tiffin River about 15 mi downstream from station. Water-quality and sediment data

fomerly collected at this site.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in Mar. 1913 reached a stage of 16.0 ft, from floodmarks; discharge, 7,600 ft³/s. Flood in 1937 reached a stage of 15.0 ft, from information by local resident; discharge, 6,000 ft³/s.

		DISCHA	RGE, CUE	BIC FEET PER	SECOND, DAIL	WATER Y	YEAR OCTOBE VALUES	R 2002 TC	SEPTEMI	BER 2003		
DAY 1 2 3 4 5	OCT e20 e20 e19 e18 e17	NOV 28 33 33 32 34	DEC 68 47 45 85 106	JAN e170 e140 e100 e86 e80	FEB e17 e17 e20 e30 e50	MAR e25 e23 e22 e22 e21	APR e500 e420 e350 e320 e1200	MAY 133 225 263 239 770	JUN 147 139 128 117	JUL 31 28 25 23 26	AUG 25 255 450 482 471	SEP 134 640 754 346 156
6 7 8 9 10	e25 e23 e20 e19 18	36 37 37 37 49	e90 e82 e76 e70 e64	e74 e68 e66 e62 e58	e100 e70 e56 e50 e43	e21 e20 e24 e30 e45	e2000 e1300 e1000 e700 e600	1380 1390 1090 1160 1370	98 89 86 89	33 40 139 449 328	359 226 153 200 152	86 58 43 35 30
11 12 13 14 15	18 17 18 17 18	106 132 111 94 83	e60 e58 e56 e54 e52	e54 e49 e44 e41 e38	e37 e33 e30 e28 e26	e70 e120 e230 e700 e1200	e460 e400 e340 e300 e270	1500 1580 1500 1310 1020	80 112 234 233 197	176 121 84 61 47	90 72 65 57 55	29 26 20 19 22
16 17 18 19 20	18 18 18 21 24	75 66 60 59 60	e50 e49 e48 e48 e47	e35 e32 e30 e27 e26	e24 e21 e20 e19 e17	e3000 e2400 e1700 e1200 e1500	e240 e220 e210 e200 e190	680 478 385 324 283	154 122 104 93 84	47 44 34 30 23	53 50 44 41 34	26 23 19 17 11
21 22 23 24 25	23 23 23 23 24	62 78 111 111 97	e160 e110 e90 e62 e56	e25 e23 e22 e21 e21	e17 e25 e36 e34 e30	e1800 e1000 e800 e600 e520	e180 e190 e190 e160 145	253 225 202 184 171	71 63 56 50 44	35 71 67 51 37	31 29 28 25 22	12 36 116 119 195
26 27 28 29 30	29 31 29 27 27	86 78 70 58 73	e52 e48 e45 e44 e43	e20 e20 e19 e19 e18	e29 e27 e26 	e460 e420 e400 e1100 e900	133 122 112 106 99	158 145 136 128 119	38 37 36 31 32	28 28 56 37 25	21 22 24 24 23	211 279 260 215 144
31 TOTAL MEAN MAX MIN	27 672 21.7 31 17	2026 67.5 132 28	e70 2035 65.6 160 43	e18 1506 48.6 170 18	932 33.3 100 17	e700 21073 680 3000 20	12657 422 2000 99	121 18922 610 1580 119	2957 98.6 234 31	23 2247 72.5 449 23	24 3607 116 482 21	4081 136 754 11
MEAN MAX (WY) MIN (WY)	119 933 2002 10.2 1964	STATISTI 222 1339 1993 14.6 1954	366 1785 1928 18.4 1964	0NTHLY MEAN 386 1687 1993 20.2 1963	DATA FOR 553 1586 2001 21.9 1963	785 2563 1982 135 1964	YEARS 1922 665 1990 1950 106 1946	- 2003, 402 2112 1943 74.4 1925	BY WATER 264 1422 1989 24.1 1988	YEAR (WY) 149 761 1943 13.7 1988	74.7 799 1998 9.76 1941	69.6 460 1981 7.39 1999
SUMMARY STATISTICS ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			FOR 2002 143194.7 392 3870 3.7 5.8	May 14 Sep 12 Sep 8	YEAR	FOR 200 72715 199 3000 11 18) Mar 1 L Sep 2 3 Oct 1	.6 .0 .0	3: 6: 59 76: 2	40 Mar 1 .5 Jul 1 .6 Jul	- 2003 1950 1964 5 1982 8 1988 7 1988 5 1982	
			1480 100 14			14.20 489 59 21) Mar 1)		18.7 2 9. 13	36 Mar 1	5 1982 8 1988	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

04185440 UNNAMED TRIBUTARY TO LOST CREEK NEAR FARMER, OHIO

LOCATION.—Latitude 41°21′42″, longitude 84°41′28″, Defiance County, Hydrologic Unit 04100006, on right bank 400 ft above bridge on Rosedale Road, 0.5 mi above mouth and 3 mi west from Farmer, Ohio.

DRAINAGE AREA.—4.23 mi².

PERIOD OF RECORD.—October 1985 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 760 ft above sea level (from topographic map).

REMARKS.—Records fair except for periods of estimated record, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	0.02	0.06 0.08	e0.27 e0.25	9.8 3.3	e0.32 e0.31	e0.72 e0.68	4.0 3.0	1.0	0.21 0.18	0.06 0.06	17 100	81 56
3 4	0.02	0.08	e0.23 e0.22	1.9 e1.2	0.43 21	e0.70 e0.80	2.4	0.93 0.64	0.21	0.05 0.06	16 48	12 5.2
5	0.03	0.11	e0.21	e1.0	4.0	e1.2	78	150	0.17	0.10	9.7	2.9
6 7	0.02	0.11 0.09		e0.92 e0.88	1.7 0.87	e1.0 e0.80		12 4.5	0.14	0.11 1.2	4.0	2.0 1.2
8 9	0.02	0.09	e0.17 e0.15	e1.2 6.8	e0.60 e0.46	7.4 11	15 6.9	2.7	0.14	18 18	2.4 28	0.83
10	0.02	17	e0.15	5.8	e0.40	3.8	4.3	64	0.11	1.9	3.8	0.50
11 12	0.02	13 1.7	e0.15 e0.15	1.9 e1.2	e0.36 e0.32	2.0 23	2.3	13 25	0.11	0.70 0.35	1.8 1.7	0.45
13 14	0.02	0.87	e0.15 e0.14	e1.1 e1.0	e0.30 e0.27	69 e23	1.8 1.8	6.5 3.5	1.0 0.67	0.21	1.3 0.79	0.26
15	0.03	0.34	e0.14	e0.90	e0.25	e15	1.7	5.3	0.39	0.12	0.57	0.50
16 17	0.03	0.28 0.26	e0.19 0.21	e0.82 e76	e0.24 e0.23	e13 e10	1.5 1.1	3.4	0.23 18	0.09 0.04	0.43	0.29 0.19
18	0.04	0.22	0.26	e8.0	e0.22	e9.0	1.00	1.8	4.5	0.04	0.20	0.15
19 20	0.07 0.05	0.22 0.24	3.9 17	e0.62 e0.56	0.30	e8.2 12	0.90 0.83	1.3 1.1	1.2 0.68	0.03 0.03	0.15 0.13	0.15 0.12
21 22	0.03	0.28 8.1	3.3 1.5	e0.52 e0.50	3.1 12	18 7.3	0.73 0.61	0.86	0.41	0.48 0.32	0.11 0.10	0.11
23	0.03	3.4	0.87	e0.46	3.7	4.5	0.52	0.61	0.22	0.84	0.09	4.7
24 25	0.03 0.06	2.0 1.1		e0.45 e0.43	1.8 1.1	3.5 3.1	0.48	0.50 0.42	0.17 0.12	0.15 0.07	0.08 0.07	1.4
26 27	0.09	0.78 0.55	e0.39 e0.36	e0.41 e0.39	e0.90 e0.80	2.8	0.44	0.35 0.31	0.10	0.05 13	0.17 0.47	3.7 54
28	0.05	e0.40	e0.33	e0.38	e0.76	2.6	0.24	0.30	0.09	9.7	0.15	6.8
29 30	0.05 0.04	e0.35 e0.30	e0.32 1.2	e0.36 e0.35			0.19 0.25	0.28 0.24	0.09	0.95 0.35	0.13 0.12	3.3 1.9
31	0.06		52	e0.34		4.6		0.30		0.15	0.10	
TOTAL MEAN		52.67 1.76	85.65 2.76	129.49 4.18			185.41 6.18		31.86 1.06	67.35 2.17	239.86 7.74	275.87 9.20
MAX MIN	0.09	17	52 0.14	76 0.34	21 0.22				18 0.07	18 0.03	100 0.07	81 0.11
CFSM	0.02	0.06	0.65	0.99	0.49	2.40	1.46	3.20	0.25	0.51	1.83	2.17
IN.	0.01	0.46	0.75	1.14	0.51	2.77	1.63	3.69	0.28	0.59	2.11	2.43
MEAN	3.04	STATIST	ICS OF M	ONTHLY MEAN 5.49	N DATA FO 6.88	R WATER 7.33	YEARS 1986 7.92	- 2003, 4.80	BY WATER	YEAR (WY)	2.16	1.51
MAX	15.7	15.6	23.9	13.9	21.2	14.5	20.6	13.6	9.09	7.75	16.4	9.20
(WY) MIN	2002 0.031	1993 0.037	1991 0.11	1993 0.44	1990 0.46	1998 1.19	1999 1.92	2003	1996 0.046	1986 0.011	1998 0.015	2003
(WY)	1995	2000	1990	2000	1995	2001	1987	1988	1988	1988	1989	1991
	SUMMARY ST	TATISTICS		FOR 2002		YEAR		003 WATER	R YEAR	WATER	YEARS 198	6 - 2003
ANNUAL ANNUAL				1281.51 3.51			1861.8			4	. 47	
HIGHEST	ANNUAL ME										. 66 . 96	1998 1995
HIGHEST	DAILY MEA	ΔN		101			15		5		222	25 1998
	DAILY MEAN SEVEN-DAY			0.02			0.0		1 6	0.	.00 Aug	3 1987 3 1987
MAXIMUM	I PEAK FLOW I PEAK STAG	1					5.5	99 May	5a	0 0 0 0 1 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0	770 Aug	25 1998
INSTANT	ANEOUS LOW	/ FLOW						-	J			25 1998 27 1991
	RUNOFF (CF RUNOFF (IN			0.83 11.27			1.2 16.3			1 14		
10 PERC	ENT EXCEED	S		5.8 0.41			0.5	12		9	9.4 .63	
	ENT EXCEED			0.41			0.0				.05	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

e Estimated.

04186500 AUGLAIZE RIVER NEAR FORT JENNINGS, OHIO

LOCATION.—Latitude 40°56′55″, longitude 84°15′58″, in SE ¼ sec. 15, T.1 S., R.5. E., Putnam County, Hydrologic Unit 04100007, on left bank 200 ft upstream from bridge on U. S. Highway 224, 3.5 mi northeast of Fort Jennings, Ohio, 6 mi upstream from Ottawa River, and 7.3 mi downstream from Jennings Creek.

Jennings Creek.

DRAINAGE AREA.—332 mi².

PERIOD OF RECORD.—August 1921 to December 1935. October 1940 to current year.

REVISED RECORDS.—WSP 744: 1932. WSP 974: 1930(M). WSP 1307: 1922-24(M), 1926-27(M), 1929(M). WSP 1912: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 713.6 ft above sea level. Prior to Oct. 6, 1930, nonrecording gage at same site and datum.

REMARKS.—Records fair except for periods of estimated record, which are poor. Beginning Jan. 4, 1971, water was diverted for low-flow augmentation and water supply of city of Lima, in Ottawa River Basin. Some diversion from Grand Lake to Auglaize River Basin through Miami and Erie Canal into Jennings Creek at a point 9.2 mi upstream from station. Annual figures of runoff are considered to be within 10 percent of natural yield. Water-quality and sediment data formerly collected at this site.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
2 3 4 4	28 20 15 13	DEC 35 40 52 46 30	JAN 2340 1830 731 352 240	FEB e10 e9.8 e13 e130 e450	MAR e170 e140 e120 e110 e300	APR 306 251 212 222 2050	MAY 66 493 566 342 958	JUN 77 139 114 294 363	JUL 167 480 338 165 1610	AUG 88 440 2430 4390 3560	SEP 376 2340 4150 3560 1040	
6 2 7 2 8 1 9 1 10 1	.0 42 .9 27	19 31 20 11 8.3	186 146 132 245 697	e380 e170 e110 e74 e54	e1200 1470 e700 e1300 e2300	2630 1690 2200 1460 711	2320 1230 632 2080 4530	244 159 106 86 111	3720 4020 5080 6700 5800	1860 576 437 747 372	417 252 174 151 117	
11 1 12 1 13 1 14 1 15 1	.6 136 .4 147 .4 81	6.6 5.8 4.5 4.9 5.7	502 e200 e96 e54 e37	e43 e40 e38 e35 e34	e1700 e1100 e1500 e2200 1960	478 359 280 225 190	4710 4530 2610 817 605	120 140 786 2180 3400	4320 2460 765 464 333	237 169 368 470 285	92 75 55 43 46	
16 1 17 1 18 1 19 1 20 1	.5 26 .6 24 .7 21	8.6 10 9.3 101 679	e29 e23 e20 e17 e15	e33 e32 e31 e30 e29	1360 1220 1010 754 823	172 159 146 128 109	1060 662 389 291 238	1490 494 857 1010 391	266 218 174 143 119	175 108 80 62 52	54 63 39 29 37	
21 1 22 2 23 2 24 2 25 2	.0 22 .4 27	1200 521 241 150 98	e14 e13 e12 e12 e11	e28 e45 e130 822 888	1210 2140 1390 609 412	105 101 79 57 50	197 243 194 174 154	251 182 136 126 117	322 1800 2120 747 393	45 41 35 31 27	52 61 107 94 229	
27 28 5 29 8 30 3	.4 50 11 57 .1 53 .4 51 31 41	e68 e50 e40 e30	e11 e11 e11 e10 e10	507 e300 e210 	336 395 328 303 457	48 48 46 47 64	130 110 82 65 60	106 132 128 107 85	254 162 268 290 228	28 156 195 175 87	279 1360 2230 829 356	
TOTAL 184 MEAN 5.9 MAX 3 MIN 1 CFSM 0.0	94 42.3 31 147 .3 7.7 02 0.13	1160 4748.7 153 1200 4.5 0.46	e10 8017 259 2340 10 0.78	4675.8 167 888 9.8 0.50	414 29431 949 2300 110 2.86	14623 487 2630 46 1.47	63 30601 987 4710 60 2.97	13931 464 3400 77 1.40	135 44061 1421 6700 119 4.28	222 17948 579 4390 27 1.74	18707 624 4150 29 1.88	
IN. 0.0 MEAN 76 MAX 78 (WY) 192 MIN 5.4 (WY) 198	STATI .7 169 32 1286 27 1973 14 8.53	300 1283 1991 10.9	0.90 MONTHLY ME 425 2184 1950 8.23 1977	0.52 EAN DATA FO 466 1555 1950 23.6 1964	3.30 DR WATER 593 2112 1978 78.3 2000	1.64 YEARS 1921 507 1874 1957 51.3 1971	3.43 1 - 2003, 303 1237 1943 28.7 1934	1.56 BY WATER 254 1142 1981 13.6 1988	4.94 YEAR (WY) 190 1652 1992 12.7 2002	2.01 81.3 579 2003 8.10 1991	2.10 89.0 1090 1926 2.89 1999	
SUMMAR ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL LOWEST ANNUAL HIGHEST DAILY	MEAN	:S	86137 2 43	36 40 Mar 33		FOR 2 188196.3 516	2003 WATE Jul	R YEAR	6		1973 1931 15 1992	
LOWEST DAILY ANNUAL SEVEN- MAXIMUM PEAK MAXIMUM PEAK INSTANTANEOUS ANNUAL RUNOFF ANNUAL RUNOFF 10 PERCENT EX 50 PERCENT EX 90 PERCENT EX	DAY MINIMUM FLOW STAGE LOW FLOW (CFSM) (INCHES) CEEDS CEEDS		0. 9. 5	.3 Oct 16 .5 Oct 12	5	1.3 1.5 6880 15.95 1.55 21.09 1640 130 9.9	Oct Oct Jul Jul		12 20 0 0	1.1 Sep 800 Jul .30 Jan	20 1994 19 1999 15 1992 23 1959 20 1994	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

04189000 BLANCHARD RIVER NEAR FINDLAY, OHIO

 $LOCATION. \\-Latitude~41^{\circ}03'21'', longitude~83^{\circ}41'17'', on~east~line~of~sec.~10, T.1~N., R.10~E., \\Hancock~County, \\Hydrologic~Unit~04100008, on~left~bank~line~of~sec.~10, T.1~N., \\R.10~E., \\Hancock~County, \\Hydrologic~Unit~04100008, on~left~bank~line~of~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~04100008, on~left~bank~line~of~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~04100008, on~left~bank~line~of~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~04100008, on~left~bank~line~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~0410008, on~left~bank~line~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~04100008, on~left~bank~line~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~04100008, on~left~bank~line~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~bank~line~sec.~10, T.1~N., \\Hancock~County, \\Hydrologic~Unit~bank~line~sec.~10, T.1~N., \\Hancock~County, \\Hancock$ at upstream side of county road bridge, 2 mi west of Findlay, Ohio, 3 mi downstream from Eagle Creek, and 3 mi upstream from Aurand Run. DRAINAGE AREA.—346 mi²

DRAINAGE AREA.—340 lill-.

PERIOD OF RECORD.—October 1923 to December 1935, October 1940 to current year. Monthly discharge only for October 1923, published in WSP 1307. REVISED RECORDS.—WSP 974: 1942. WSP 1054: 1927-30, 1933(M), 1945. WSP 1387: 1926, 1928(M), 1930(M), 1952. WSP 1912: Drainage area. WRD-OH-81-2: 1959, 1975(M). WRD-OH-97-2: 1996(M).

GAGE.—Water-stage recorder. Datum of gage is 753.65 ft above sea level (North American Vertical Datum of 1988). Prior to July 24, 1930, nonrecording

gage at same site and datum.

REMARKS.—Records good except for periods of estimated record, which are poor. Water is diverted upstream from station into Findlay Reservoir. All water returns to stream upstream from station. Water-quality and sediment data formerly collected at this site.

returns	to stream ups	stream from	station. W	ater-quality a	nd sedimen	t data for	merly collected	d at this site	ė.		•			
	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	24	35	132	3230	e40	e56	226	82	104	79	83	191		
2	19	33	106	2180	e40	e52	213	200	92	761	252	440		
3	17	27	59	581	e50	e50	176	177	106	824	905	749		
4	18	28	48	312	e140	e60	281	126	90	265	1630	304		
5	21	36	44	e180	e240	1050	3120	730	113	262	1510	140		
6	15	45	37	e150	e150	1240	3090	1260	95	579	587	83		
7	14	30	30	e130	e84	611	2390	648	79	1200	302	57		
8	14	25	30	e140	e60	539	3030	772	126	3280	222	48		
9	14	25	26	496	e50	2420	1760	3370	497	5060	160	46		
10	17	122	26	907	e46	1790	685	6990	289	5930	166	36		
11	16	106	26	390	e45	1070	442	6690	184	5280	133	36		
12	18	115	26	176	e43	1080	324	4750	324	2940	132	40		
13	17	92	25	e130	e41	1650	238	1750	529	608	75	45		
14	18	49	32	e110	e39	1590	189	715	924	316	101	45		
15	20	39	35	e92	e38	1920	171	519	459	225	71	45		
16	19	40	38	e80	e36	1470	161	507	265	177	68	45		
17	19	30	30	e70	e34	1150	133	366	365	132	57	46		
18	21	26	40	e64	e33	893	114	278	781	103	49	47		
19	39	27	778	e60	e32	607	99	229	436	85	54	47		
20	22	25	1970	e54	e32	652	94	288	261	73	44	47		
21	18	24	1100	e50	e31	1020	98	1020	200	245	48	35		
22	17	79	322	e48	275	922	93	648	153	841	51	52		
23	17	59	e140	e47	691	459	82	293	119	391	51	36		
24	17	72	e90	e46	465	290	70	217	92	215	53	51		
25	47	102	e78	e44	288	230	65	178	78	148	44	58		
26 27 28 29 30 31	55 21 19 22 29 33	122 124 86 68 102	e72 e68 e64 e60 167 2420	e43 e43 e42 e41 e41 e40	148 e80 e64 	235 392 278 366 450 289	69 61 57 59 60	144 119 109 102 95 154	75 215 173 110 91	109 139 279 284 163 107	65 67 46 50 51 40	43 449 466 230 122		
TOTAL	677	1793	8119	10017	3315	24881	17650	33526	7425	31100	7167	4079		
MEAN	21.8	59.8	262	323	118	803	588	1081	248	1003	231	136		
MAX	55	124	2420	3230	691	2420	3120	6990	924	5930	1630	749		
MIN	14	24	25	40	31	50	57	82	75	73	40	35		
CFSM	0.06	0.17	0.76	0.93	0.34	2.32	1.70	3.13	0.72	2.90	0.67	0.39		
IN.	0.07	0.19	0.87	1.08	0.36	2.68	1.90	3.60	0.80	3.34	0.77	0.44		
MEAN MAX (WY) MIN (WY)	63.9 623 1927 2.43 1935	STATISTI 150 1435 1973 3.67 1935		365 1800 1930 6.54 1945			YEARS 1924 473 1588 1957 33.3 1925	- 2003, 289 1081 2003 22.1 1925		YEAR (WY) 142 1075 1992 4.27 1934	65.8 474 1979 1.24 1934	86.2 944 1926 1.62 1934		
ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST D ANNUAL S MAXIMUM MAXIMUM INSTANTA ANNUAL R ANNUAL R ANNUAL S OPERCE 50 PERCE		AN J J J J J J J J J J J J J J J J J J J		FOR 2002 95294.9 261 5000 9.6 10 0.75 10.25 451 47	CALENDAR Feb 1 Sep 1 Sep 1	YEAR	FOR 20 14974 41 699 1. 771 13.1 1.1 16.1 102	0 May 1 4 Oct 5 Oct 0 May 1 6 May 1 3 Oct 8 9 0	.0 7 6 .0a	22 55 57 1200 0.0 0.1 1330 17.0 0.1 10.1	Jun 1 40 Aug 2 56 Aug 2 00 Jun 1 43 Jun 1 40 Aug 2	- 2003 1973 1931 14 1981 25 1934 25 1934 14 1981 14 1981 27 1934		

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

90 PERCENT EXCEEDS

e Estimated.

04191500 AUGLAIZE RIVER NEAR DEFIANCE, OHIO

LOCATION.—Latitude 41°14′15", longitude 84°23′57", in NE 1/4 sec. 9, T.3 N. R.4 E., Defiance County, Hydrologic Unit 04100007, on right bank 125 ft downstream from City of Bryan hydroelectric dam, 0.2 mi upstream from Jackson Ditch, and 3 mi south of Defiance, Ohio. DRAINAGE AREA.—2,318 mi2.

PERIOD OF RECORD.—May to August 1903 (gage heights only), April 1915 to current year. Monthly discharges only for some periods, published in WSP

REVISED RECORDS.—WSP 954: 1941. WSP 1912: Drainage area. WRD OH-72-1: 1966(M).

REVISED RECORDS.—WSP 954: 1941. WSP 1912: Drainage area. WRD OH-72-1: 1966(M).

GAGE.—Water-stage recorder. Datum of gage is 659.70 ft above sea level. May 20-Aug. 8, 1903, non-recording gage at site 1.8 mi downstream at different datum; Apr. 13, 1915-Dec. 6, 1933, nonrecording gage near right bank on downstream side of dam at present datum; Oct. 1982-Nov. 1984 at dam 125 ft upstream, at present datum.

REMARKS.—Records fair except for periods of estimated record, which are poor. Flow regulated by dam at powerplant at station; reservoir capacity, 9,800 acre-ft. Plant shut down except for occasional gate operation, Jan. 10, 1963-Sept. 7, 1985. Some diversion by Miami and Erie Canal from Grand Lake into Jennings Creek, tributary to Auglaize River 70 mi upstream from station. Water-quality data formerly collected at this site.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Mar. 1913 reached a stage of 38.8 ft, from reading on powerplant tailwater gage at present datum; discharge, 120,000 ft³/s, from rating curve extended above 51,000 ft³/s.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOW DEC. TANK DEED MAR ARR ARR ARR ARR ARR ARR ARRANGE SERVICES.													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	453	45	444	11000	357	876	2130	499	586	561	829	2180		
2	171	43	441	10000	127	816	1530	1090	553	1110	2340	6370		
3	112	41	441	5600	327	372	1300	2940	747	2550	8980	10900		
4	265	39	430	4890	949	518	1240	2300	551	2110	14700	11000		
5	113	226	391	2040	1110	671	10800	8240	932	4450	16300	5850		
6	25	271	e300	1400	1590	1510	16800	14100	786	10200	11500	1840		
7	36	59	e240	1330	1500	4430	15000	10800	538	14100	4140	1710		
8	36	60	e180	1250	1430	3520	16400	5020	664	24600	2310	1270		
9	41	63	e130	912	1120	4260	13700	14200	400	29300	2980	1200		
10	47	66	e96	1670	534	8040	9280	28600	600	26200	2220	810		
11	48	418	e76	3350	337	7740	4400	33000	765	19500	1370	530		
12	46	1310	e56	2130	333	6880	3240	31600	1040	14800	893	517		
13	46	976	e40	1140	153	10700	1730	26000	1260	9830	1930	588		
14	166	717	e44	1240	52	14300	1290	16200	7570	6470	2010	508		
15	46	570	e48	1080	54	15100	63	8100	6770	2660	1560	247		
16	46	350	e52	698	62	16300	635	3850	4560	1060	1110	172		
17	46	328	e56	709	501	13900	926	3230	4260	710	531	110		
18	44	175	e250	512	568	10900	584	1710	8120	568	512	282		
19	43	82	1010	391	389	7280	611	1700	11000	564	516	68		
20	44	289	4220	364	134	7050	695	1510	5320	570	294	66		
21	44	396	8120	314	39	7180	702	1080	2840	2630	279	111		
22	43	200	4450	311	422	8240	446	1110	1260	10300	486	684		
23	45	83	1920	162	781	7980	686	1640	651	11600	249	889		
24	42	86	1210	214	1930	3980	333	1240	914	8490	115	1470		
25	41	e400	1010	298	2280	2400	232	908	534	3140	245	1870		
26 27 28 29 30 31	40 37 36 189 201 49	e700 798 573 219 308	977 918 544 404 464 5140	299 305 356 365 144 150	1600 1540 1110 	1860 1410 1540 1670 2100 2480	407 349 381 341 159	837 455 537 536 530 565	424 478 653 800 606	2360 918 1150 1820 1680 1200	274 346 1340 1220 681 455	3110 7880 13400 8310 e5000		
TOTAL	2641	9891	34102	54624	21329	176003	106390	224127	66182	217201	82715	88942		
MEAN	85.2	330	1100	1762	762	5678	3546	7230	2206	7006	2668	2965		
MAX	453	1310	8120	11000	2280	16300	16800	33000	11000	29300	16300	13400		
MIN	25	39	40	144	39	372	63	455	400	561	115	66		
MEAN MAX (WY) MIN (WY)	511 4151 2002 23.6 1953	STATIST 985 7856 1973 7.28 1953	TICS OF M 1821 8510 1967 9.34 1977	ONTHLY MEAN 2497 13350 1950 48.5 1977	1 DATA FO 2997 10170 1976 111 1964	OR WATER 4115 13090 1982 382 1941	YEARS 1916 3489 11210 1957 242 1946	6 - 2003, 2025 10490 1943 69.8 1934	BY WATER 1488 6733 1947 101 1988	YEAR (WY) 895 7006 2003 42.0 1930	374 2668 2003 27.1 1932	448 5571 1992 28.9 1963		
ANNUAL T ANNUAL M HIGHEST LOWEST A HIGHEST LOWEST D ANNUAL S MAXIMUM MAXIMUM INSTANTA 10 PERCE 50 PERCE		AN N N MINIMUM E FLOW S		FOR 2002 601278 1647 29100 25 30 4240 310 43	Mar 3		10841 29 330 341 21.	000 May 25 Oct 40 Oct 000 May 39 May	11 6 6 11	1' 3: 52: 0 52: 27 0 4:	.50 Oct 1.1 Oct 500 Feb .65 Feb	1973 1931 14 1982 13 1952 12 1952 16 1950 13 1959 13 1952		

e Estimated.

04192500 MAUMEE RIVER NEAR DEFIANCE, OHIO

LOCATION.—Latitude 41°17′31″, longitude 84°16′52″, in NW 1/4 sec. 22, T.4 N., R.5 E., Defiance County, Hydrologic Unit 04100009, on left bank 40 ft upstream from Independence Dam, 4 mi downstream from mouth of Auglaize River, and 4.5 mi east of Defiance, Ohio.

upstream from Independence Dam, 4 mi downstream from mouth of Augiaize River, and 4.5 mi east of Defiance, Office.

DRAINAGE AREA.—5,545 mi².

PERIOD OF RECORD.—October 1924 to December 1935, March 1939 to September 1974, October 1978 to current year.

REVISED RECORDS.—WSP 974: 1926-27, 1930. WSP 1387: 1925-28, 1946. WRD Ohio, 1970: Drainage Area.

GAGE.—Water-stage recorder. Datum of gage is 658.56 ft above sea level. Prior to Nov. 13, 1924, nonrecording gage at same site and datum.

REMARKS.—Records good except for periods estimated record, which are poor. Flow affected by regulation of Augiaize River at hydroelectric plant of the Hydro-Corporation, 7 mi upstream. Operation of hydroelectric plant there was discontinued Jan. 10, 1963-Sept. 7, 1985. Low flow slightly regulated by powerplant at Ft. Wayne, Indiana. Slight diversion 275 ft upstream into Miami and Erie Canal through a 24-inch conduit, which bypasses station. Two 36-inch diversion pipes installed at dam in 1998 for low-flow augmentation. Water-quality and sediment data formerly collected at this site.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	946	174	828	15100	590	e1600	6730	1240	1410	1040	2640	3780
2	639	160	802	15000	455	e1300	5470	2170	1430	1330	8260	15100
3	322	152	713	9550	440	e1100	4190	4610	1540	3150	22800	22900
4	614	141	687	7290	2170	e1000	4400	4950	1540	3670	25500	22000
5	483	235	668	4510	2330	e1100	19500	16500	1710	5380	27600	14700
6	254	496	544	e3200	3360	e1300	29900	30700	1870	14600	22000	8080
7	314	193	294	e2800	3490	e1900	27000	24800	1560	21800	14900	6650
8	354	185	339	e2300	2870	e4600	26700	14900	1800	36400	11100	5040
9	312	204	432	e2100	2260	e5000	23000	26500	1360	45700	10000	3360
10	222	313	594	e2400	e1300	e5800	16700	49200	1390	44200	7900	2500
11	176	1540	523	e4500	e960	e10000	10500	54800	1580	37900	4820	1670
12	168	2700	297	e3000	e740	e9000	8340	52500	1780	32500	3000	1380
13	195	2640	281	e2300	e550	e12000	5680	45400	2770	26500	3890	1120
14	263	1950	298	e2000	e450	e17000	4720	33400	9520	20800	4070	939
15	191	1450	291	e1500	e380	e24000	2360	22200	11600	13300	3280	956
16	155	971	441	1240	e350	e30000	2340	15700	9960	7020	2450	927
17	140	847	484	1170	e500	26700	2560	12000	12500	4110	1430	937
18	164	707	e350	1090	e880	21700	2090	8310	15700	2350	1240	854
19	189	526	1770	871	e550	16900	1900	6210	16500	1680	1230	665
20	160	553	5560	820	e420	14600	1860	5340	11300	1360	1010	560
21	234	714	10000	753	e320	14500	1820	4790	8620	2690	727	626
22	384	768	7760	700	879	14900	1530	3740	5350	17200	1000	1120
23	230	809	4380	572	1520	13800	1470	3880	3530	17500	913	2440
24	180	854	2620	456	2460	9480	1430	3240	2970	13200	647	3920
25	173	1040	2220	562	3590	6870	1050	2430	2280	7300	664	5560
26 27 28 29 30 31	175 186 250 303 460 199	1360 1300 1100 768 610	1970 1740 1190 930 1010 7050	546 546 592 614 522 425	2610 e2200 e1800 	5840 4770 4400 5790 8770 8370	1140 1160 1160 1040 916	2230 1830 1510 1390 1500 1480	1490 1230 1200 1400 1070	5720 3900 4650 5100 4600 3460	781 730 2550 2130 1350 956	7910 14900 23700 18500 11800
TOTAL	9035	25460	57066	89029	40424	304090	218656	459450	137960	410110	191568	204594
MEAN	291	849	1841	2872	1444	9809	7289	14820	4599	13230	6180	6820
MAX	946	2700	10000	15100	3590	30000	29900	54800	16500	45700	27600	23700
MIN	140	141	281	425	320	1000	916	1240	1070	1040	647	560
MEAN	1433	STATIST 2647	ICS OF MO	ONTHLY MEAN 5871	DATA F 6941	OR WATER 9361	YEARS 1925 8576	- 2003, 5328	BY WATER 3718	YEAR (WY) 2202	1109	1163
MAX	11490	16410	18040	30150	22460	33940	23210	27270	20370	13230	7598	11470
(WY)	2002		1967	1950	1959	1982	1957	1943	1981	2003	1998	1926
MIN	63.9		158	219	363	1455	789	359	214	211	111	88.1
(WY)	1929		1964	1945	1964	1941	1925	1925	1988	1930	1932	1955
;	SUMMARY ST	PATISTICS		FOR 2002	CALENDA				R YEAR	WATER :	YEARS 192	5 - 2003
LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM	MEAN ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEAN SEVEN-DAY PEAK FLOW PEAK STAG	N N MINIMUM EE		1458328 3995 46900 140 176		2 7	21474 588 548 1. 1. 555 9.	8286	11 17 15 11	988 3 1044 15. 2 12!	390 Mar 3.0 Sep 27 Aug 000 Mar .87 Mar	15 1982 4 1925 31 1925 15 1982 15 1982
10 PERCI	ANEOUS LOW ENT EXCEED ENT EXCEED ENT EXCEED	S S		11000 1100 235			171 18: 3:	00 30 14		125 14 2	2.0 Sep 500 420 229	3 1925

e Estimated.

04193500 MAUMEE RIVER AT WATERVILLE, OHIO

LOCATION.—Latitude 41°30′00″, longitude 83°42′46″, Lucas County, Hydrologic Unit 04100009, on downstream side of first pier from left end of bridge on State Highway 64 at Waterville, Ohio, 3 mi downstream from Tontogany Creek, and 20.7 mi upstream from mouth. DRAINAGE AREA.—6,330 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—November 1898 to December 1901, August 1921 to December 1935, March 1939 to current year. Miami and Erie Canal flow

included at Waterville prior to 1930, when the canal was abandoned.

REVISED RECORDS.—WSP 894: 1930(M). WSP 1084: 1946. WSP 1387: 1900(M), 1922-23, 1933. WDR OH-68-1: 1967. WDR OH-70-1: Drainage area. WRD-OH-82-2: 1981.

GAGE.—Water-stage recorder with auxiliary crest-stage gage. Datum of gage is 595.71 ft above sea level. Nov. 19, 1898-Dec. 31, 1901 and Aug. 26, 1921-July 31, 1930, nonrecording gage; Aug. 1, 1930-Dec. 31, 1935, water-stage recorder; Mar. 14, 1939-Mar. 12, 1940, nonrecording gage at same site and

REMARKS.—Records fair except for periods of estimated record, which are poor. Satellite telemeter at station. Water-quality and sediment data collected at this site.

EXTREMES FOR PERIOD OF RECORD.—Practically no flow at times prior to June 30, 1929, when entire river flow was being diverted by canal. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in Mar. 1913 reached a stage of 19.9 ft, from information by local resident; estimated discharge, 180,000 ft³/s, from rating curve extended above 94,000 ft³/s.

DISCHARGE CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		DISCH	ARGE, CU	BIC FEET PER		, WATER Y MEAN '		BER 2002 T	O SEPTEME	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	880	455	812	18500	e620	e1700	7830	1220	2100	1150	2900	1950
2	882	249	850	18200	e540	e1400	6240	2550	1760	1040	5720	11300
3	468	133	1020	13900	e500	e1200	4650	5390	1590	1780	20400	22800
4	378	186	948	8260	e900	e1100	4300	6360	2020	3650	27400	23600
5	638	152	970	6340	e1700	e1000	20100	15700	1710	3490	32300	18800
6	348	436	774	3920	e3200	e1200	33300	38900	2120	10700	25900	9780
7	295	507	697	e3000	e4100	e1600	30300	34000	2010	18500	18700	7480
8	153	343	420	e2600	e3900	e4700	29800	23100	1910	30500	11900	6030
9	260	221	419	e2400	e3000	e4000	26600	25300	2080	42400	10400	4110
10	238	438	588	e2300	e1500	e5500	20400	55800	1410	42400	9420	3160
11	170	1010	632	e3300	e1200	e11000	14600	62400	1830	37200	5900	2010
12	157	2340	515	e5200	e850	e10000	9390	58700	2520	32100	4020	1570
13	250	3260	372	e3500	e700	e12000	7210	50300	4270	27200	3150	1260
14	167	2380	401	e2200	e580	e15000	5600	39100	8290	22100	4070	1080
15	143	1780	370	e1800	e500	e22000	3540	27600	14900	16400	3630	1030
16	202	1330	375	e1500	e400	e36000	1930	20100	12800	8910	2790	891
17	149	1030	554	e1200	e700	34100	2410	13900	10200	5430	1750	901
18	146	885	581	e1000	e1000	26500	2650	11800	17000	2950	1180	839
19	343	806	1330	e900	e650	21300	1850	7400	19500	1880	1140	957
20	187	544	6730	e840	e470	17200	1920	6520	14800	1420	1080	567
21	127	679	10800	e900	e330	17100	1950	5290	10300	1470	810	520
22	217	1030	10600	e820	e600	16800	1690	4520	7360	10700	711	830
23	330	1020	6790	e690	e1400	16100	1380	3980	4710	17500	877	1680
24	230	1080	2940	e570	e1800	12600	1580	3950	3290	15300	733	3250
25	213	1130	2680	e640	e3000	8010	1170	2650	3050	9690	556	4830
26	373	1460	2080	e700	e4000	6700	1180	2320	1920	5800	640	7140
27	255	1570	2020	e780	e2500	5360	1230	2110	1560	4710	629	12500
28	180	1450	1860	e800	e2000	4630	1260	1670	1390	4510	1050	24700
29	196	1130	1300	e760		5170	1070	1550	1450	5040	2220	22000
30	448	827	1120	e700		8550	1130	1500	1320	5070	1630	14800
31 TOTAL	575 9598	29861	5520 67068	e660 108880	42640	9330 338850	248260	1870 537550	161170	3800 394790	989 204595	212365
MEAN	310	995	2163	3512	1523	10930	8275	17340	5372	12740	6600	7079
MAX	882	3260	10800	18500	4100	36000	33300	62400	19500	42400	32300	24700
MIN	127	133	370	570	330	1000	1070	1220	1320	1040	556	520
MED	238	949	948	1500	950	8550	3100	6520	2110	5800	2790	3210
CFSM	0.05	0.16	0.34	0.55	0.24	1.73	1.31	2.74	0.85	2.01	1.04	1.12
IN.	0.06	0.18	0.39	0.64	0.25	1.99	1.46	3.16	0.95	2.32	1.20	1.25
		STATIST	ICS OF M	ONTHLY MEAN	DATA FO	R WATER	YEARS 1930	0 - 2003,	BY WATER	YEAR (WY)		
MEAN	1575	2951	5348	6743	7916	10790	9796	6252	4365	2548	1279	1191
MAX	13810	19010	23830	34010	30000	38210	25890	29540	24030	12740	9665	10320
(WY)	2002	1993	1967	1950	1976	1982	1957	1943	1981	2003	1998	1992
MIN	95.5	196	177	235	424	1759	914	587	231	207	146	127
(WY)	1964	1965	1964	1945	1934	1941	1946	1934	1988	1930	1941	1963
ANNUAL	SUMMARY S'	TATISTICS		FOR 2002 1689686	CALENDAR	YEAR	23556	003 WATE	R YEAR	WATER	YEARS 1930	0 - 2003
ANNUAL				4629				54		5	046	
	r annual mi	EAN		4025			04	34			370	1950
	ANNUAL ME										938	1931
	r DAILY ME			52100	Feb 2		624	00 May	11	113		14 1982
LOWEST	DAILY MEAN	N		81	Sep 14		1	27 Oct				30 1988
ANNUAL	SEVEN-DAY	MINIMUM		110	Sep 12		1	73 Oct	12		47 Jun	27 1988
MAXIMUN	M PEAK FLO	W					641	00 May	11	121	000 Mar	14 1982
	M PEAK STAG						12.	87 Mar	16b	17		14 1982
	PANEOUS LO											30 1988
	RUNOFF (CI			0.73			1.				.80	
	RUNOFF (II			9.93			13.				.83	
	CENT EXCEE			12700 1300			201	20			100	
	CENT EXCEE			1300 221				01			670 264	
JU PERC	LEINI EACEEI	מע		221			4	UΙ			204	

b Ice jam.

e Estimated.

04193500 MAUMEE RIVER AT WATERVILLE, OHIO—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.—April 1950 to September 2003 (discontinued). PERIOD OF DAILY RECORD.—

CHLORIDE: October 1987 to September 1994.

NITROGEN, NITRITE + NITRATE: October 1987 to September 1994.

NITROGEN, AMMONIA + ORGANIC: October 1987 to September 1994.

PHOSPHORUS: October 1987 to September 1994.

SUSPENDED SEDIMENT DISCHARGE: April 1950 to September 1984. October 1987 to September 2003 (discontinued).

INSTRUMENTATION.—Refrigerated water-quality pumping sampler, operated by Heidelberg College Water Quality Laboratory, from Oct. 1987-Sept.

INSTRUMENTATION.—Refrigerated water-quality pumping sampler, operated by Heidelberg College Water Quality Laboratory, from Oct. 1987-Sept. 1994. Sampler located at station 04193490.

REMARKS.—Sediment samples were collected by a local observer on an approximate once daily basis. Sediment loads were calculated using the meaniterval method (Porterfield, George, 1972, Computation of Fluvial-Sediment Discharge: U.S. Geological Survey, Techniques of Water-Resources Investigations, Book 3, Chap. C3, 66 p.). For days with unsteady concentration, discharge, or both, the day was subdivided into hourly intervals and the daily load was calculated by summation of hourly loads. This required interpolation between measured and estimated concentrations.

EXTREMES FOR PERIOD OF DAILY RECORD.—

SEDIMENT CONCENTRATIONS: Maximum daily mean 2, 240 mg/L Mar 26, 1954; minimum daily mean 1 mg/L on many days during 1953, 1955.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,240 mg/L, Mar. 26, 1954; minimum daily mean, 1 mg/L, on many days during 1953, 1955, 1963, Jan. 15, and 16, 2001.

SEDIMENT LOADS: Maximum daily, 300,000 tons, Feb. 24, 1990; minimum daily, 0.26 ton, Sept. 18, 1955.

EXTREMES FOR CURRENT YEAR.— SEDIMENT CONCENTRATIONS: Maximum daily mean, 773 mg/L, Apr. 6; minimum daily mean, 3 mg/L, Nov. 2.

SEDIMENT LOADS: Maximum daily, 124,000 tons, May 11; minimum daily, 1.3 tons, Nov. 3.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; Sampling code*, 10 means stream cross-section sample collected by equal-width-increment (EWI) method; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; mm, millimeter; mg/L,

Date	Time	Instan- taneous dis- charge, cfs (00061)	Sam- pling method, code* (82398)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	suspnd. sedi- ment, sieve diametr percent <.062mm (70331)	pended sedi- ment concen- tration mg/L (80154)
MAY 07	1150	34300	10	391	13.0	15.5	98	449
JUL 10	1240	43000	10	282	29.0	23.5		209

04193500 MAUMEE RIVER AT WATERVILLE, OHIO—Continued

WATER-QUALITY RECORDS—Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[cfs, cubic feet per second; mg/L, milligrams per liter; tons/day, tons per day; ---, no data; e, estimated]

	Day	Mean discharge (cfs)	Mean concen- tration (mg/L)	Sediment discharge (tons/day)	Mean discharge (cfs)	Mean concen- tration (mg/L)	Sediment discharge (tons/day)	Mean discharge (cfs)	Mean concen- tration (mg/L)	Sediment discharge (tons/day)
			OCTOBER			NOVEMBER			DECEMBER	
	1	880	20	47	455	5	5.8	812	19	42
	2	882	20	47	249	3	2.4	850	18	42
	3	468	18	24	133	4	1.3	1020	17	47
	4	378	17	17	186	5	2.4	948	16	41
	5	638	16	27	152	6	2.3	970	15	40
	6	348	14	13	436	5	6.0	774	14	30
	7	295	13	10	507	5	6.8	697	13	25
	8	153	11	4.7	343	5	4.6	420	12	14
	9	260	11	7.6	221	5	2.8	419	11	13
	10	238	11	6.8	438	9	11	588	10	16
	11	170	10	4.7	1010	27	77	632	9	15
	12	157	10	4.2	2340	35	224	515	9	12
	13	250	10	6.6	3260	36	315	372	8	8.1
	14	167	10	4.3	2380	22	146	401	7	7.3
	15	143	9	3.6	1780	16	78	370	5	5.3
	16	202	9	4.9	1330	13	47	375	5	5.1
	17	149	9	3.5	1030	16	44	554	5	7.5
	18	146	9	3.4	885	21	50	581	5	8.1
	19	343	8	7.6	806	23	49	1330	23	128
	20	187	8	4.1	544	21	30	6730	120	2310
	21	127	8	2.7	679	18	32	10800	221	6520
	22	217	8	4.4	1030	15	40	10600	205	5920
	23	330	7	6.5	1020	12	32	6790	148	2760
	24	230	7	4.4	1080	11	31	2940	78	638
	25	213	7	3.9	1130	10	31	2680	58	418
	26	373	7	6.6	1460	15	59	2080	55	310
	27	255	6	4.3	1570	14	59	2020	53	287
	28	180	6	2.9	1450	14	55	1860	50	252
	29	196	4	2.3	1130	17	52	1300	48	169
	30	448	5	6.1	827	19	43	1120	54	162
	31	575	6	8.8				5520	125	2150
1	TOTAL	9598		303.9	29861		1539.4	67068		22402.4
			JANUARY			FEBRUARY			MARCH	
	1	18500	225	11300	e620	8	13	e1700	19	86
		10000	223		0020			e1700		0.0
	2	18200	212	10400	e540	7	10	e1400	18	68
	2	18200 13900	212 168	6360	e540 e500	7 6	10 8.6	e1400 e1200	18 17	68 56
	2 3 4	18200 13900 8260	212 168 126	6360 2820	e540 e500 e900	7 6 13	10 8.6 31	e1400 e1200 e1100	18 17 17	68 56 50
	2 3 4 5	18200 13900	212 168	6360	e540 e500	7 6	10 8.6	e1400 e1200	18 17	68 56
	2 3 4 5	18200 13900 8260 6340 3920	212 168 126 103 95	6360 2820 1770 1000	e540 e500 e900 e1700	7 6 13 25 38	10 8.6 31 115	e1400 e1200 e1100 e1000	18 17 17 16 15	68 56 50 43
	2 3 4 5 6 7	18200 13900 8260 6340 3920 e3000	212 168 126 103 95 90	6360 2820 1770 1000 733	e540 e500 e900 e1700 e3200 e4100	7 6 13 25 38 47	10 8.6 31 115 322 518	e1400 e1200 e1100 e1000 e1200 e1600	18 17 17 16 15 17	68 56 50 43 49 72
	2 3 4 5 6 7 8	18200 13900 8260 6340 3920 e3000 e2600	212 168 126 103 95 90 77	6360 2820 1770 1000 733 540	e540 e500 e900 e1700 e3200 e4100 e3900	7 6 13 25 38 47 39	10 8.6 31 115 322 518 408	e1400 e1200 e1100 e1000 e1200 e1600 e4700	18 17 17 16 15 17 30	68 56 50 43 49 72 379
	2 3 4 5 6 7 8 9	18200 13900 8260 6340 3920 e3000 e2600 e2400	212 168 126 103 95 90 77 61	6360 2820 1770 1000 733 540 399	e540 e500 e900 e1700 e3200 e4100 e3900 e3000	7 6 13 25 38 47 39 27	10 8.6 31 115 322 518 408 223	e1400 e1200 e1100 e1000 e1200 e1600 e4700 e4000	18 17 17 16 15 17 30 33	68 56 50 43 49 72 379 359
	2 3 4 5 6 7 8	18200 13900 8260 6340 3920 e3000 e2600	212 168 126 103 95 90 77	6360 2820 1770 1000 733 540	e540 e500 e900 e1700 e3200 e4100 e3900	7 6 13 25 38 47 39	10 8.6 31 115 322 518 408	e1400 e1200 e1100 e1000 e1200 e1600 e4700	18 17 17 16 15 17 30	68 56 50 43 49 72 379
	2 3 4 5 6 7 8 9 10	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3300	212 168 126 103 95 90 77 61 47	6360 2820 1770 1000 733 540 399 291	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500	7 6 13 25 38 47 39 27 17	10 8.6 31 115 322 518 408 223 72 50	e1400 e1200 e1100 e1000 e1200 e1600 e4700 e4000	18 17 17 16 15 17 30 33 75	68 56 50 43 49 72 379 359 1110
	2 3 4 5 6 7 8 9 10	18200 13900 8260 6340 3920 e3000 e2400 e2300 e3300 e5200	212 168 126 103 95 90 77 61 47 51 65	6360 2820 1770 1000 733 540 399 291 451 904	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850	7 6 13 25 38 47 39 27 17 15	10 8.6 31 115 322 518 408 223 72 50 34	e1400 e1200 e1100 e1000 e1200 e1600 e4700 e4000 e5500 e11000	18 17 17 16 15 17 30 33 75 124 138	68 56 50 43 49 72 379 359 1110 3640 3720
	2 3 4 5 6 7 8 9 10 11 12 13	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e5200 e3500	212 168 126 103 95 90 77 61 47 51 65 42	6360 2820 1770 1000 733 540 399 291 451 904 407	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700	7 6 13 25 38 47 39 27 17 15 15	10 8.6 31 115 322 518 408 223 72 50 34 27	e1400 e1200 e1100 e1000 e1600 e4700 e4000 e5500 e11000 e12000	18 17 17 16 15 17 30 33 75 124 138 230	68 56 50 43 49 72 379 359 1110 3640 3720 7440
	2 3 4 5 6 7 8 9 10 11 12 13 14	18200 13900 8260 6340 3920 e3000 e2400 e2300 e3300 e5200 e3500 e2200	212 168 126 103 95 90 77 61 47 51 65 42 22	6360 2820 1770 1000 733 540 399 291 451 904 407 135	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580	7 6 13 25 38 47 39 27 17 15 15	10 8.6 31 115 322 518 408 223 72 50 34 27 21	e1400 e1200 e1100 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e12000 e15000	18 17 17 16 15 17 30 33 75 124 138 230 363	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600
	2 3 4 5 6 7 8 9 10 11 12 13 14 15	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e5200 e3500	212 168 126 103 95 90 77 61 47 51 65 42	6360 2820 1770 1000 733 540 399 291 451 904 407	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700	7 6 13 25 38 47 39 27 17 15 15	10 8.6 31 115 322 518 408 223 72 50 34 27	e1400 e1200 e1100 e1000 e1600 e4700 e4000 e5500 e11000 e12000	18 17 17 16 15 17 30 33 75 124 138 230	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000
	2 3 4 5 6 7 8 9 10 11 12 13 14	18200 13900 8260 6340 3920 e3000 e2400 e2300 e3300 e5200 e3500 e2200	212 168 126 103 95 90 77 61 47 51 65 42 22	6360 2820 1770 1000 733 540 399 291 451 904 407 135	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580	7 6 13 25 38 47 39 27 17 15 15	10 8.6 31 115 322 518 408 223 72 50 34 27 21	e1400 e1200 e1100 e1000 e1200 e1600 e4700 e4000 e5500 e11000 e15000 e22000 e36000	18 17 17 16 15 17 30 33 75 124 138 230 363	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600
	2 3 4 5 6 7 8 9 10 11 12 13 14 15	18200 13900 8260 6340 3920 e3000 e2400 e2300 e3300 e5200 e3500 e2200 e1800 e1500 e1200	212 168 126 103 95 90 77 61 47 51 65 42 22 19	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1500 e700 e580 e500 e400 e700	7 6 13 25 38 47 39 27 17 15 14 13 13 13	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17	e1400 e1200 e1100 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e12000 e22000 e36000 34100	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1500 e1200 e1000	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580 e500 e400 e700 e1000	7 6 13 25 38 47 39 27 17 15 15 14 13 13	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17	e1400 e1200 e1100 e1000 e1200 e1600 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 26500	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e5200 e3500 e2200 e1800 e1200 e1000 e900	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580 e500 e400 e700 e1000 e650	7 6 13 25 38 47 39 27 17 15 15 14 13 13 12 12 12	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17	e1400 e1200 e1100 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e12000 e22000 e36000 34100 26500 21300	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1500 e1200 e1000	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580 e500 e400 e700 e1000	7 6 13 25 38 47 39 27 17 15 15 14 13 13	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17	e1400 e1200 e1100 e1000 e1200 e1600 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 26500	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	18200 13900 8260 6340 3920 e3000 e2600 e22400 e2300 e3500 e22200 e1800 e1200 e1200 e1000 e900 e840	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1500 e580 e700 e580 e700 e1000 e650 e470 e650 e470	7 6 13 25 38 47 39 27 17 15 15 14 13 13 12 12 11 10 10	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12	e1400 e1200 e1100 e1000 e1000 e1200 e4700 e4700 e4000 e5500 e11000 e15000 e22000 e36000 34100 26500 21300 17200	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	18200 13900 8260 6340 3920 e3000 e2400 e2300 e3300 e5200 e3500 e2200 e1800 e1200 e1000 e900 e840 e900 e820	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1500 e1500 e580 e700 e580 e700 e1000 e650 e470 e330 e470	7 6 13 25 38 47 39 27 17 15 15 14 13 13 12 12 11 10 10	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12	e1400 e1200 e1100 e1000 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e12000 e122000 e36000 34100 26500 21300 17200 17100 16800	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540 5070 4940
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1200 e1000 e900 e840 e900 e840 e900 e820 e690	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580 e500 e400 e650 e470 e650 e470	7 6 13 25 38 47 39 27 17 15 14 13 13 12 11 10 10	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 13 40	e1400 e1200 e1100 e1000 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 26500 21300 17200 17100 16800 16100	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 109	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540 5070 4940 4670
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e5200 e3500 e2200 e1800 e1500 e1000 e900 e840 e900 e840 e900 e820 e690 e570	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32 26 20	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580 e500 e400 e700 e650 e470 e650 e470	7 6 13 25 38 47 39 27 17 15 15 14 13 13 12 12 11 10 10	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 13 40 75	e1400 e1200 e1100 e1000 e1000 e1200 e1600 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 265500 21300 17200 17100 16800 16100 12600	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 109	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540 5070 4940 4670 3270
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1200 e1000 e900 e840 e900 e840 e900 e820 e690	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32 26 20 22	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580 e500 e400 e650 e470 e650 e470	7 6 13 25 38 47 39 27 17 15 14 13 13 12 11 10 10	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 13 40	e1400 e1200 e1100 e1000 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 26500 21300 17200 17100 16800 16100	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 109	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540 5070 4940 4670
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1200 e1000 e900 e840 e900 e840 e900 e840 e900 e840 e700	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 16 15 15 14 13 12	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32 26 20 22	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1500 e1500 e580 e700 e580 e700 e1000 e650 e470 e3300 e1400 e1800 e3000 e4000	7 6 13 25 38 47 39 27 17 15 15 14 13 13 12 12 11 10 10 9 8 11 15 20 24	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 13 40 75	e1400 e1200 e1100 e1000 e1000 e1200 e4700 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 26500 21300 17200 17100 16800 16100 12600 8010	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 109 108 96 78	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540 5070 4940 4670 3270 1700
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1200 e1000 e900 e840 e900 e840 e900 e870 e640 e700 e780	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16 15 14 13 12 12	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32 26 20 22 22	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1500 e1500 e580 e700 e580 e700 e1000 e650 e470 e1000 e650 e470 e330 e600 e1400 e1800 e3000 e1400 e3000 e1400 e2500	7 6 13 25 38 47 39 27 17 15 15 14 13 13 12 12 11 10 10 9 8 11 15 20 24 21	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 13 40 75 164 256 140	e1400 e1200 e1100 e1000 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e12000 e122000 e136000 34100 26500 21300 17200 17100 16800 16100 12600 8010 6700 5360	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 108 96 78 62 55	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540 5540 4670 3270 1700 1120 796
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1200 e1200 e1000 e900 e840 e900 e840 e900 e840 e700 e780 e880	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16 15 14 13 12	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32 26 20 22 22 23 22	e540 e500 e900 e1700 e3200 e4100 e3900 e1500 e1500 e1500 e700 e580 e500 e400 e700 e1000 e650 e470 e330 e600 e1400 e1800 e3000 e2500 e2000	7 6 13 25 38 47 39 27 17 15 14 13 13 12 11 10 10 9 8 11 15 20 24 21	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 75 164 256 140 105	e1400 e1200 e1100 e1000 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 26500 21300 17200 17100 16800 16100 12600 8010 6700 5360 4430	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 108 96 78	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 16500 8840 5540 5070 4940 4670 3270 1700 1120 796 652
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	18200 13900 82600 6340 3920 e3000 e26000 e24400 e2300 e3500 e22200 e1800 e12000 e1000 e9000 e840 e9000 e840 e9000 e840 e700 e780 e8800 e760	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16 15 15 14 13 12 12 11 10 10	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32 26 20 22 22 22 23 22	e540 e500 e900 e1700 e3200 e4100 e3900 e3000 e1500 e1200 e850 e700 e580 e500 e400 e650 e470 e330 e600 e1400 e1800 e3000 e4000 e2500 e2000	7 6 13 25 38 47 39 27 17 15 15 14 13 13 12 12 11 10 10 9 8 11 15 20 24 21	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 13 40 75 164 256 140 105	e1400 e1200 e1100 e1100 e1000 e1000 e1600 e4700 e4000 e5500 e11000 e15000 e22000 e36000 34100 26500 21300 17200 17100 16800 16100 12600 8010 6700 5360 4630 5170	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 108 96 78 62 55 52 49	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 37200 16500 8840 5540 5070 4940 4670 3270 1700 1120 796 652 688
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	18200 13900 8260 6340 3920 e3000 e2600 e2400 e2300 e3500 e2200 e1800 e1200 e1200 e1000 e900 e840 e900 e840 e900 e840 e700 e780 e880	212 168 126 103 95 90 77 61 47 51 65 42 22 19 19 18 17 17 16 15 14 13 12	6360 2820 1770 1000 733 540 399 291 451 904 407 135 94 76 58 47 40 36 37 32 26 20 22 22 23 22	e540 e500 e900 e1700 e3200 e4100 e3900 e1500 e1500 e1500 e700 e580 e500 e400 e700 e1000 e650 e470 e330 e600 e1400 e1800 e3000 e2500 e2000	7 6 13 25 38 47 39 27 17 15 14 13 13 12 11 10 10 9 8 11 15 20 24 21	10 8.6 31 115 322 518 408 223 72 50 34 27 21 17 13 22 29 18 12 8.0 75 164 256 140 105	e1400 e1200 e1100 e1000 e1000 e1600 e4700 e4000 e5500 e11000 e12000 e15000 e22000 e36000 34100 26500 21300 17200 17100 16800 16100 12600 8010 6700 5360 4430	18 17 17 16 15 17 30 33 75 124 138 230 363 490 556 400 227 153 119 109 108 96 78	68 56 50 43 49 72 379 359 1110 3640 3720 7440 14600 29000 53700 16500 8840 5540 5070 4940 4670 3270 1700 1120 796 652

04193500 MAUMEE RIVER AT WATERVILLE, OHIO—Continued

WATER-QUALITY RECORDS—Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[cfs, cubic feet per second; mg/L, milligrams per liter; tons/day, tons per day; ---, no data; e, estimated]

Day	Mean discharge (cfs)	Mean concen- tration (mg/L)	Sediment discharge (tons/day)	Mean discharge (cfs)	Mean concen- tration (mg/L)	Sediment discharge (tons/day)	Mean discharge (cfs)	Mean concen- tration (mg/L)	Sediment discharge (tons/day)
		APRIL			MAY			JUNE	
1	7830	49	1030	1220	14	46	2100	18	104
2	6240	50	847	2550	27	198	1760	17	82
3	4650	45	568	5390	47	702	1590	16	70
4	4300	43	519	6360	53	912	2020	14	77
5	20100	368	23000	15700	91	5430	1710	12	55
6	33300	773	69600	38900	538	57100	2120	11	65
7	30300	613	50400	34000	476	44400	2010	12	64
8	29800	369	29700	23100	296	18800	1910	12	64
9	26600	246	17800	25300	251	18200	2080	13	72
10	20400	171	9550	55800	500	76700	1410	11	43
11	14600	128	5060	62400	739	124000	1830	9	46
12	9390	95	2420	58700	603	95700	2520	28	211
13	7210	65	1290	50300	423	57700	4270	46	528
14	5600	53	807	39100	326	34600	8290	121	3050
15	3540	47	452	27600	241	18100	14900	150	6090
16	1930	44	230	20100	198	10800	12800	113	3940
17	2410	36	229	13900	172	6460	10200	117	3430
18	2650	27	198	11800	146	4700	17000	269	12500
19	1850	25	125	7400	120	2410	19500	325	17200
20	1920	25	130	6520	88	1560	14800	227	9180
21	1950	25	131	5290	56	797	10300	173	4840
22	1690	25	114	4520	43	532	7360	136	2740
23	1380	25	93	3980	40	429	4710	102	1310
24	1580	23	99	3950	36	388	3290	87	768
25	1170	21	67	2650	33	236	3050	81	671
26 27 28 29 30 31 TOTAL	1180 1230 1260 1070 1130 248260	19 17 15 13 13	60 56 50 37 39 214701	2320 2110 1670 1550 1500 1870 537550	29 26 23 21 20 19	185 148 102 89 82 97 581603	1920 1560 1390 1450 1320 161170	76 73 70 67 64	395 306 262 262 227 68652
TOTAL	240200	JULY	214701	337330	AUGUST	381003	101170	SEPTEMBER	00032
1	1150	58	181	2900	36	283	1950	41	265
2	1040	52	145	5720	70	1230	11300	142	4770
3	1780	58	285	20400	152	8640	22800	260	16100
4	3650	68	667	27400	235	17500	23600	239	15200
5	3490	64	604	32300	253	22100	18800	154	7970
6	10700	100	3030	25900	171	12100	9780	109	2910
7	18500	166	8470	18700	121	6200	7480	78	1590
8	30500	288	24100	11900	95	3060	6030	48	797
9	42400	361	41300	10400	83	2340	4110	36	398
10	42400	234	26900	9420	72	1830	3160	31	265
11	37200	156	15700	5900	60	962	2010	26	144
12	32100	132	11400	4020	48	530	1570	25	104
13	27200	114	8370	3150	42	368	1260	24	81
14	22100	95	5700	4070	50	548	1080	23	68
15	16400	76	3410	3630	41	399	1030	22	62
16	8910	57	1390	2790	35	265	891	22	52
17	5430	38	568	1750	29	140	901	21	51
18	2950	31	251	1180	26	82	839	20	46
19	1880	28	144	1140	24	75	957	20	51
20	1420	25	96	1080	24	69	567	19	29
21	1470	22	87	810	23	51	520	18	26
22	10700	62	2290	711	23	44	830	27	63
23	17500	99	4700	877	23	54	1680	45	212
24	15300	75	3130	733	22	44	3250	64	575
25	9690	62	1640	556	22	33	4830	83	1100
26 27 28 29 30 31 TOTAL YEAR	5800 4710 4510 5040 5070 3800 394790 2355627	53 49 44 42 40 38	832 621 539 568 545 390 168053 1481659.3	640 629 1050 2220 1630 989 204595	21 21 24 46 36 26	37 35 82 275 160 70 79606	7140 12500 24700 22000 14800 212365	103 144 266 219 132	1990 5150 17800 13200 5220 96289

SURFACE-WATER RECORDS **Portage River Basin**

04195500 PORTAGE RIVER AT WOODVILLE, OHIO

LOCATION.—Latitude 41°26′58", longitude 83°21′41", in sec. 28, T.6 N., R.13 E., Sandusky County, Hydrologic Unit 04100010, on left bank at upstream side of bridge on U.S. Highway 20 in Woodville, Ohio, 600 ft downstream from unnamed right bank tributary, and 10.3 mi upstream from Sugar Creek. DRAINAGE AREA.—428 mi²

PERIOD OF RECORD.—July 1928 to December 1935, October 1939 to current year.

REVISED RECORDS.—WSP 894: 1929-30. WSP 1207: 1933. WSP 1387: 1931, 1933. WSP 1912: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 614.75 ft above sea level. Prior to Oct. 8, 1933, nonrecording gage; Oct. 9, 1933-Dec. 30, 1935, water-stage

recorder; Oct. 17-Nov. 29, 1939, nonrecording gage, all at same site and datum.

REMARKS.—Records good except for periods of estimated record, which are poor. Flow supplemented by water imported from Maumee River Basin for municipal supply for city of Bowling Green 16 mi upstream. The importation of this water began Sept. 1, 1951. Water-quality data formerly collected at this site 800 ft downstream. Sediment data formerly collected at this site. National Weather Service gage height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in Mar. 1913 reached a stage of 17 ft, from information by local residents; discharge, 17,000 ft³/s, from rating curve extended above 11,500 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY AUG SEP 27 177 e50 e150 8.9 e56 e140 e70 e130 9.8 e120 e110 e140 e470e390 e140 e110 e600 e1100 e92 e82 e600 2.8 1.0 e70 e500 9.3 e800 e250 e62 8.7 e190 e58 e3000 8.3 e54 e4000 8.3 e130 e50 e3500 27 8.9 e110 e47 9.2 e90 e44 e76 9.6 e42 8.8 2.7 e40 2.2.7 e60 e39 2.2 e56 e502.4 2.3 e52 e120 e300 e48 e250 e44 e220 e42 e190 e40 e170 2.2 e41 e43 e47 2.7 2768.7 TOTAL 471.1 15.2 89.9 MEAN 92.3 MAX 8.3 8.9 2.32 0.04 0.22 0.81 0.75 0.32 1.68 2.32 0.77 0.65 1.10 0.21 CFSM IN. 0.04 0.24 0.93 0.87 0.33 2.67 1.88 2.68 0.86 0.75 1.26 0.23 DATA FOR WATER YEARS 1928 STATISTICS OF MONTHLY MEAN 2003. BY WATER YEAR (WY) 87.0 MEAN 89.2 84.8 (WY) MIN 2.96 3.61 4.37 2.24 2.00 41.7 25.4 9.29 2.81 3.09 3.67 (WY) 7.12 6.74 6.90 7.37 7.35 7.98 8.38 7.51 7.97 8.43 8.23 8.03 (+)MEAN≠ 7.17 85.2 81.7 0.19 0.20 0.79 0.74 0.30 2.30 0.75 IN≠ 0.020.22 0.91 0.85 0.31 2.65 1.86 2.65 0.84 0.73 1.24 0.21 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1928 ANNUAL TOTAL 146679.8 121385.3 ANNUAL MEAN 402 (≠394) ≠329 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 81.4 HIGHEST DAILY MEAN Feb May 10 Aug 27 LOWEST DATLY MEAN 7.0 Aug 26 Aug 14 8.3 Oct 15 0.40 ANNUAL SEVEN-DAY MINIMUM 8.8 0.93 Aug 12 Oct Oct MAXIMUM PEAK FLOW May 10a Feb 15 1950 MAXIMUM PEAK STAGE 10.45 Mar 14b 14.51 Feb 15 Aug 16 1931 INSTANTANEOUS LOW FLOW 8.0 Oct 15 0.40 ANNUAL RUNOFF (CFSM) 0.78 0.94 0.79 ANNUAL RUNOFF (INCHES) 10.55 12.75 (≠12.49) **≠**10.57 10 PERCENT EXCEEDS PERCENT EXCEEDS

8.4

9.9

90 PERCENT EXCEEDS

Diversion in cubic feet per second, from Maumee River Basin for municipal supply; furnished by City of Bowling Green. Adjusted for diversion.

Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

b

Estimated. е

SURFACE-WATER RECORDS **Portage River Basin**

04195820 PORTAGE RIVER AT ELMORE, OHIO

LOCATION.—Latitude 41°29′28″, longitude 83°13′29″, Ottawa County, Hydrologic Unit 04100010, on right bank 500 ft upstream from State Route 590, 0.4 mi upstream from Sugar Creek, and 4.2 mi east of Elmore.

0.4 mit upstream from Sugar Creek, and 4.2 mit east of Emiore.

DRAINAGE AREA.—494 mi².

PERIOD OF RECORD.—August 1998 to current year.

GAGE.—Water-stage recorder. Datum of gage is 576 ft above sea level.

REMARKS.—Records fair except for periods of estimated record, which are poor. Flow supplemented by water imported from Maumee River Basin for municipal supply for city of Bowling Green 30 mi upstream. The importation of this water began Sept. 1, 1951.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	63 45 34 28 26	16 14 13 13	373 280 159 190 122	3770 2240 996 553 353	e76 e84 e100 253 824	e160 e150 e140 e130 e140	389 327 266 268 4210	164 539 1570 861 1160	1030 710 368 237 196	87 67 55 47 45	148 162 496 1890 3650	52 410 618 372 198
6 7 8 9 10	23 22 19 17 16	14 15 18 23 35	80 74 60 57 48	273 205 189 236 e900	e600 e290 e220 e170 e140	e200 e720 e680 e1000 e2000	6120 3170 3430 2430 1420	3490 1810 2210 2620 5480	154 125 122 186 252	39 52 90 1720 1880	3990 1860 1080 736 409	123 86 67 53 45
11 12 13 14 15	16 16 15 13	64 325 201 115 80	47 42 41 44 49	e600 e420 e340 e280 e240	e120 e100 e92 e84 e74	e1200 e840 e1000 e4000 e5400	979 731 531 383 316	5460 3950 2480 1280 814	174 163 1450 1800 1430	1200 733 373 208 139	229 165 230 185 123	40 37 34 31 31
16 17 18 19 20	13 13 14 17 16	62 51 46 44 40	62 98 139 751 3380	e210 e180 e150 e130 e120	e70 e64 e60 e58 e56	e4000 3620 2640 1900 1450	274 233 205 184 178	671 535 378 287 255	786 397 403 996 482	105 80 62 50 43	93 75 60 51 44	32 29 27 30 27
21 22 23 24 25	13 19 16 19 19	39 52 104 281 337	2650 1170 596 341 220	e110 e100 e94 e88 e82	e64 e80 e140 e420 e320	2170 2490 1530 962 702	172 172 164 149 140	347 304 229 187 161	258 174 130 103 86	47 79 229 194 185	40 38 70 65 46	23 24 32 34 42
26 27 28 29 30 31	26 25 49 38 26 20	481 410 267 184 201	189 144 131 153 138 1730	e78 e74 e72 e68 e70 e72	e250 e210 e180 	527 401 330 333 524 530	138 146 154 148 140	143 125 118 116 115 190	75 134 353 195 121	124 83 494 1350 578 254	35 37 55 40 32 29	35 47 134 202 137
TOTAL MEAN MAX MIN CFSM IN.	709 22.9 63 13 0.05 0.05	3558 119 481 13 0.24 0.27	13558 437 3380 41 0.89 1.02	13293 429 3770 68 0.87 1.00	5199 186 824 56 0.38 0.39	41869 1351 5400 130 2.73 3.15		38049 1227 5480 115 2.48 2.87	13090 436 1800 75 0.88 0.99	10692 345 1880 39 0.70 0.81	16163 521 3990 29 1.06 1.22	3052 102 618 23 0.21 0.23
111.			ICS OF MO	ONTHLY MEAN	DATA FO	R WATER	YEARS 1998	- 2003,			1.22	0.23
MEAN MAX (WY) MIN (WY)	212 747 2002 22.9 2003	119 2003 20.1	359 802 2002 37.4 1999	996 1999 99.8	728 1164 2002 186 2003	1351 2003	1053 1515 1999 578 2000	689 1227 2003 131 1999	478 1169 2000 193 2002	132 345 2003 23.6 2002	421 1686 1998 21.1 1999	66.4 107 1998 13.1 1999
ANNUAL TANNUAL MHIGHEST LOWEST A HIGHEST LOWEST DANNUAL SMAXIMUM MAXIMUM INSTANTA ANNUAL RANNUAL RANNU		AN I I I I I I I I I I I I I I I I I I I		FOR 2002 152554.5 418 7330 5.7 7.1 0.85 11.49 935 89 13	Feb 2		FOR 20 18679 51 612 1 650 11.1 1.0 14.0 148	9 2 0 Apr 3 Oct : 4 Oc		4 5 3 99 5 7 102 13. 0. 11.	22 12 47 40 Aug : .7 Jul .1 Jul .00 Aug : 92 Aug : .5 Jul : 86 62	2003 2000 27 1998 17 2002 14 2002 27 1998 27 1998 17 2002

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. b Ice jam.
e Estimated.

04196000 SANDUSKY RIVER NEAR BUCYRUS, OHIO

LOCATION.—Latitude 40°48′13", longitude 83°00′21", in NE 1/4 sec. 10, T.3 S., R.16 E., Crawford County, Hydrologic Unit 04100011, on right bank at downstream side of bridge on township road, 1 mi upstream from unnamed left bank tributary, 1.5 mi west of Bucyrus, Ohio, and 12 mi downstream from Loss Creek.

DRAINAGE AREA.—88.8 mi².
PERIOD OF RECORD.—August 1925 to November 1935, July 1938 to December 1951, December 1963 to September 1981, October 1995 to current year.
REVISED RECORDS.—WSP 744: 1925-32. WSP 874: 1938. WSP 1307: 1926(M), 1928(M), 1931, 1932(M), 1934-35(M), 1939, 1940(M), 1946(M). WSP

REVISED RECORDS.—WSF /44: 1925-32. WSF 6/4. 1936. WSF 1307. 1926(M), 1926(M

stage of 11.9 ft, from floodmarks; discharge, 13,500 ft³/s.

REVISIONS.—The maximum discharge for water year 2002 has been revised to 1,690 cfs, Apr. 3, 2002; gage height, 7.09 ft.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1 16 16 45 773 e6.2 e22 94 54 38 145 21 2 11 12 30 325 e6.0 e20 75 306 29 158 43 3 9.3 10 e17 150 e10 e30 54 155 38 67 459 4 12 9.8 e15 e80 e170 e45 84 87 50 45 184 5 9.2 15 e12 e40 e100 e600 992 235 43 54 128 6 8.7 12 e10 e31 e45 e200 400 234 33 38 59 7 9.2 11 e8.0 e27 e25 e140 390	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FER MAR APR MAY JUIN JUIN SEP													
7 9.2 11 e8.0 e27 e25 e140 390 262 28 130 41 8 7.6 14 e6.4 e40 e18 e200 657 1180 65 618 31 9 6.8 13 e5.2 e56 e15 e700 243 1260 565 2050 25 10 6.2 65 e4.0 e70 e12 e200 152 1590 159 777 21 11 6.2 518 e3.8 e14 e9.6 e130 113 442 78 422 18 12 6.1 165 e3.6 e11 e8.0 e125 87 238 73 163 16 13 5.8 63 e3.5 e10 e7.0 e370 68 178 129 90 15 14 5.9 39 e5.0 e10 e6.2 657 58 122 97 60 17 15 6.0 29 e8.0 e9.8 e5.8 302 51 97 72 46 14 16 6.6 26 e12 e9.6 <td>SEP 57 379 173 68 39</td>	SEP 57 379 173 68 39													
12 6.1 165 e3.6 e11 e8.0 e125 87 238 73 163 16 13 5.8 63 e3.5 e10 e7.0 e370 68 178 129 90 15 14 5.9 39 e5.0 e10 e6.2 657 58 122 97 60 17 15 6.0 29 e8.0 e9.8 e5.8 302 51 97 72 46 14 16 6.6 26 e12 e9.6 e5.4 314 46 104 48 41 12 17 6.5 22 e24 e9.2 e5.2 292 41 98 46 34 12	28 21 17 14 13													
17 6.5 22 e24 e9.2 e5.2 292 41 98 46 34 12	12 11 10 9.9 13													
18 6.5 20 48 e9.0 e5.0 244 37 66 69 26 11 19 14 21 327 e8.6 e4.8 179 34 54 50 22 10 20 6.5 16 887 e8.4 e4.7 148 42 108 40 19 8.9	15 12 9.5 67 137													
21 13 17 287 e8.2 e4.6 146 49 225 32 49 8.5 22 9.1 60 120 e8.0 e18 153 42 103 27 156 11 23 8.0 141 72 e7.8 e37 103 34 66 23 100 8.2 24 6.9 102 44 e7.6 e110 81 30 53 20 55 8.4 25 18 134 e27 e7.4 e60 80 28 45 18 35 7.7	42 59 174 77 52													
26	57 924 942 207 109													
MEAN 10.4 61.2 107 57.1 28.4 209 134 244 66.0 184 43.1 MAX 26 518 1210 773 170 700 992 1590 565 2050 459 MIN 5.8 9.8 3.5 6.4 4.6 20 24 31 16 19 7.7 CFSM 0.12 0.69 1.20 0.64 0.32 2.35 1.51 2.75 0.74 2.07 0.49	3748.4 125 942 9.5 1.41													
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2003, BY WATER YEAR (WY) MEAN 22.9 54.6 107 138 140 183 153 97.4 76.2 37.3 24.6 MAX 278 271 405 635 339 471 408 252 428 184 212	1.57 23.2 125 2003 0.38 1995													
SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1925 - ANNUAL TOTAL 31489.8 38884.2 ANNUAL MEAN 86.3 107 87.6 HIGHEST ANNUAL MEAN 145	1973 1934 1927													
ANNUAL SEVEN-DAY MINIMUM 2.4 Sep 8 4.5 Dec 8 0.36 Sep 24 MAXIMUM PEAK FLOW 2290 Jul 9a 5800 Dec 14 MAXIMUM PEAK STAGE 8.18 Jul 9 9.83 Dec 14 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) 0.97 ANNUAL RUNOFF (INCHES) 13.19 16.29 13.40 10 PERCENT EXCEEDS 194 239 195 50 PERCENT EXCEEDS 3.8 7.3 3.3	1995 1927 1977													

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

04196500 SANDUSKY RIVER NEAR UPPER SANDUSKY

LOCATION.—Latitude 40°51′02″, longitude 83°15′23″, Wyandot County, Hydrologic Unit 04100011, on left bank at downstream side of county road bridge, 0.7 mi downstream from unnamed right bank tributary, 0.8 mi upstream from Rocky Run, and 2 mi northeast of Upper Sandusky, Ohio.

PERIOD OF RECORD.—October 1921 to December 1935, January 1938 to September 1981, November 2000 to current year. Gage height records collected

at site 3 mi upstream since 1912 (fragmentary) are contained in reports of National Weather Service.

REVISED RECORDS.—WSP 874: 1927-30, 1933. WSP 1387: 1922(tn), 1923-29, 1944. WSP 1912: Drainage area

GAGE.—Water-stage recorder. Datum of gage is 792.25 ft above sea level. Prior to Sept. 14, 1924, nonrecording site and datum. Water-quality data collected at site 1969-1980.

REMARKS.—Records good except for periods of estimated record, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 1937 reached a stage of 14.3 ft from high-water marks in gage well.

DISCHARGE,	CUBIC FEET PER	SECOND,	WATER	YEAR (OCTOBER	2002 TO	SEPTEMBER 2	2003
		DAIL	Y MEAN	VALUE:	S			

					DAILY	MEAN \	/ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	59 39 25 23 22	33 28 38 37 35	134 e80 e58 e44 e36	2890 1700 786 442 305	e38 e37 e36 e60 e370	e140 e130 e110 e100 e760	366 296 235 253 1940	73 306 541 298 491	116 101 96 127 134	263 568 288 167 234	63 105 338 795 617	51 481 636 272 141
6 7 8 9 10	21 19 14 13	38 35 37 27 47	e30 e25 e22 e19 e17	△14 0	e200 e140 e110 e90 e70	1850 1230 627 2230 2250	2270 1360 2040 1270 700	826 515 1870 2850 4510	111 89 90 545 873	189 397 1020 3650 4380	410 202 134 93 71	88 62 49 40 31
11 12 13 14 15	11 10 10 9.5 9.6	391 885 299 148 92	e16 e15 e14 e14 e13	e200 e160 e120 e100 e88	e54 e42 e34 e27 e22	1030 847 1510 2080 1200	188	3560 1290 801 558 412	351 215 186 242 188	2620 1140 545 316 214	56 83 55 39 36	27 25 22 20 29
16 17 18 19 20	8.8 11 12 18 12	66 53 43 39 36	e25 e40 e100 414 1960	e78 e70 e66 e62 e58	e19 e17 e15 e13 e12	1010 947 845 697 568	161 141 125 108 97 113	515 450 304 230 322	142 108 109 142 118	161 124 97 76 62	31 28 24 23 22	26 25 25 26 97
21 22 23 24 25	18 17 14 18 25	178 328	1700 752 375 243 e130	e56 e52 e50 e48 e46	e11 e30 385 865 640	448 322 274	110 90 80	221 176		266 150	20 18 16 17 14	140 87 200 289 152
26 27 28 29 30 31	24 42 34 40 33 36	351 246 165 125 127	e110 e80 e66 e56 e80 2120	e44 e43		500 570 373 539 907 546		145 119 109 104 96 108	39 53 51 38 42	94 80 162 240 135 84	28 50 71 58 39 27	107 1030 2200 1170 496
	21.3 59	4317 144 885 27 0.48 0.54	8788 283 2120 13 0.95 1.10	8775 283 2890 39 0.95 1.10			13779 459 2270 66 1.54 1.72	757	4620 154 873 38 0.52 0.58	18420 594 4380 62 1.99 2.30	3583 116 795 14 0.39 0.45	8044 268 2200 20 0.90 1.00
MEAN MAX (WY) MIN (WY)	53.5 795 1927 1.67 1964	STATIST: 126 891 1973 5.09 1964	ICS OF MC 268 1107 1978 5.64 1964	0NTHLY MEAN 388 1701 1930 13.9 1945	DATA FOR 437 1069 1971 15.6 1964	569 1490 1963 114 1941	YEARS 1922 450 1399 1957 37.3 1946	- 2003, 268 761 1969 18.2 1934	BY WATER 190 1283 1947 6.44 1934	YEAR (WY) 102 594 2003 8.07 1934	55.8 504 1958 4.02 1952	65.2 839 1981 1.22 1955
ANNUAL ME HIGHEST A LOWEST AN HIGHEST I ANNUAL SE MAXIMUM I INSTANTAN ANNUAL RU ANNUAL RU ANNUAL RU OPERCES 50 PERCES	EAN ANNUAL MEA NNUAL MEAN DAILY MEAN AILY MEAN EVEN-DAY M	IN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		FOR 2002 91442.1 251 3270 1.9 2.8 0.84 11.41 606 66 6.1		YEAR	341	May 1 Oct 1 May 2 Oct 1 May 1 May 1 Oct 1 May 3		4 70 84 0.: 0.: 1000 15.: 0.: 0.:	18 19 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1973

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

04196800 TYMOCHTEE CREEK AT CRAWFORD, OHIO

LOCATION.—Latitude 40°55′22″, longitude 83°20′56″, in SE ¼ sec. 27, T.1 S., R.13 E., Wyandot County, Hydrologic Unit 04100011, on right bank at downstream side of bridge on State Highway 199 (formerly U.S. Highway 23), 0.4 mi northwest of Crawford, Ohio, 1.5 mi downstream from Lick Run, 2.7 mi upstream from Little Tymochtee Creek, and 3 mi southeast of Carey, Ohio.

DRAINAGE AREA.—229 mi².

PERIOD OF RECORD.—Occasional low-flow measurements, water years 1961-63, and annual maximum, water years 1961-64, June 1964 to current year. REVISED RECORDS.—WRD Ohio 1969: 1964(P), 1966(M), 1967(P).

GAGE.—Water-stage recorder. Datum of gage is 785.86 ft above sea level.

REMARKS.—Records good except for periods of estimated record, which are poor. Water-quality and sediment data formerly collected at this site.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	20 9.6	2.7	92 e64	1520 2020	e17 e17	e100 e96	250 185	26 65	73 99	20 391	25 30	28 163
3	5.4	2.9	e40	1340	e16	e86	145	110	91	158	92	627
4 5	4.1 3.5	3.5 3.8	e33 e28	469 241	e34 e70	e80 e450	172 1030	171 303	84 177	72 68	273 396	536 206
6	2.7	4.5	e22	163	e200	818	1640	725	150	94	309	107
7 8	2.3	4.5 4.4	e19 e17	125 106	e100 e70	954 528	1900 1480	781 382	104 88	292 1050	173 112	64 41
9 10	2.2	4.5 8.5	e15 e13	185 425	e54 e43	e700 e1000	1590 893	1070 2620	102 160	2040 2010	75 43	28 22
10	1.0	35	e13 e12	395	e43 e37	e1000 e1200	410	3470	128	2010	32	18
12	0.99	121	e11	e150	e30	e820	274	2180	87	1410	28	17
13 14	0.81 0.56	193 106	e11 e10	e110 e80	e25 e20	e780 e1100	197 148	1400 591	77 155	602 229	24 24	16 15
15	0.62	61	e10	e66	e17	2320	113	338	138	137	20	15
16 17	1.0 1.1	37 26	e10 e13	e54 e47	e14 e12	1710 1150	91 75	397 781	110 88	94 67	19 17	13 14
18	1.0	21	e20	e40	e11	925	63	490	76	49	15	14
19 20	1.2	19 16	206 727	e35 e31	e9.4 e8.4	681 516	55 51	231 339	58 53	38 29	14 13	15 14
21	0.95	14	940	e31 e28	e7.8	455	44	927	50	53	11	14
22	0.90	16	857	e26	e20	570	40	681	38	127	11	16
23 24	0.98 0.93	19 32	313 166	e24 e23	e60 e170	492 295	44 43	263 153	32 26	129 113	13 12	20 24
25	1.2	70	109	e23 e22	e480	295	35	107	20	69	10	39
26	2.3	127	e74	e21	e230	383	31	83	20	44	11	46
27 28	2.4 2.1	149 114	e62 e52	e20 e20	e150 e120	639 391	31 30	65 52	23 19	32 50	17 17	82 302
29	2.1	85	e44	e20		306	28	46	17	76	15	520
30 31	2.6	79 	e70 872	e18 e18		484 413	26	55 77	19	39 33	14 13	235
	83.04		4932			20656	11114	18979	2264	11645	1878	3271
TOTAL MEAN	2.68	1381.9 46.1	159	7841 253	2042.6 73.0	20656 666	370	612	2364 78.8	376	60.6	109
MAX	20	193	940	2020	480	2320	1900	3470	177	2040	396	627 13
MIN	0.56	2.6	10	18	7.8	80	26	26	17	20	10	13
	21.0						YEARS 1964				22.6	22.0
MEAN MAX	31.2 278	131 844	220 1104	227 777	300 823	405 1392	342 946	221 686	143 780	112 741	33.6 201	33.0 370
(WY)	1987	1993	1991	1974	1975	1978	1972	1996	1981	1992	1992	1981
MIN (WY)	0.084 1965	0.86 1992	1.78 1992	1.67 1977	37.2 1972	35.1 1983	32.8 1971	11.7 1988	1.78 1988	1.04 1965	0.48 1965	0.27 1964
	SUMMARY S	TATISTICS		FOR 2002	2 CALENDAR	YEAR	FOR 20	003 WATER	YEAR	WATER Y	EARS 1964	- 2003
ANNUAL '				56558.2			86187.5					
ANNUAL I	MEAN ANNUAL M	EAN		15	5		23	6		18		1973
	ANNUAL ME			246	0 26 20		2.45	10 35 1	1	72		1988
	DAILY ME DAILY MEA			246 0.1			347 0.5			628 0.0		1 1990 .0 1964
	SEVEN-DAY			0.3	0 Aug 13		0.8			0.0		3 1964
	PEAK FLO						379 7.8			670 11.2		1 1990 6 1963
	ANEOUS LO			35	1		74			0.0		0 1964
	ENT EXCEE ENT EXCEE			3	0		5	55			34	
90 PERC	ENT EXCEE	DS		0.7	3		4.	5		1	. 6	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

04197100 HONEY CREEK AT MELMORE, OHIO

LOCATION.—Latitude 41°01′20″, longitude 83°06′35″, Seneca County, Hydrologic Unit 04100011, at bridge on State Highways 67 and 100 at Melmore, Ohio, 1.5 mi upstream from Buckeye Creek.

DRAINAGE AREA.—149 mi².

PERIOD OF RECORD.—Annual maximum, water years 1961-75, February 1976 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 818 ft above sea level (from topographic map).

REMARKS.—Records fair except for periods of estimated record, which are poor. Water-quality data fomerly collected at this site.

DAY 1	OCT 7.5	NOV 1.0	DEC 50	JAN e1000	FEB e7.8	MAR e29	APR 145	MAY 22	JUN 38	JUL 11	AUG 41	SEP 15
2	3.7	1.4	e30	e500	e7.6	e24	108	26	36	25	41	33
3 4	2.2 1.4	1.3	e20 e14	e300 e180	e7.4 e30	e30 e40	83 148	89 71	34 32	155 70	168 205	65 47
5	1.2	1.4	e14	e80	e200	478	1060	62	33	38	405	29
6	0.98	1.5	e8.0	e50	e80	617	1200	110	31	32	144	20
7 8	0.80 0.69	1.3 1.2	e6.6 e5.2	e37 e35	e30 e20	518 402	828 944	103 78	27 101	31 478	75 54	14 11
9	0.59	1.1	e4.2	e60	e17	884	722	427	482	1750	37	8.5
10 11	0.56 0.55	3.3 13	e3.3 e3.0	e80 e50	e15 e13	758 407	386 246	921 815	524 231	2340 2040	29 24	6.6 5.6
12	0.54	46	e2.6	e34	e12	287	169	463	115	963	20	4.8
13 14	0.55 0.52	40 21	e2.5 e2.3	e30 e25	e11 e10	442 522	121 87	317 209	85 231	455 211	17 15	4.3
15	0.51	11	e2.7	e22	e9.4	553	70	132	125	121	13	4.9
16 17	0.49	6.1 4.7	e3.3 9.4	e20	e8.8	472	59 51	108 80	71 49	78 56	11 11	4.5 5.3
18	0.45	4.7	9.4 17	e18 e16	e8.2 e7.6	418 377	45	62	43	40	10	4.1
19 20	0.68 0.62	3.2	129 550	e15 e14	e7.0 e6.6	301 274	40 36	50 149	52 45	31 26	10 8.6	5.7 21
21	0.60	2.1	549	e13	e6.4	339	35	440	34	37	7.9	40
22	0.58	8.0	265	e12	e10	320	35	315	27	177	7.2	27
23 24	0.53 0.53	64 89	e100 e50	e11 e11	e22 e60	216 140	34 30	144 88	23 19	143 89	11 16	27 43
25	0.90	83	e30	e10	e110	110	27	65	16	56	12	34
26 27	1.1	92 72	e20 e17	e9.6 e9.4	e70 e50	330 296	26 25	51 42	18 19	37 42	9.9 9.3	24 86
28	0.90	47	e15	e8.8	e34	171	24	36	14	314	7.7	433
29 30	0.86 0.92	35 38	e13 e12	e8.6 e8.2		294 408	22 21	35 35	15 14	313 123	7.1 7.4	385 135
31	0.78		e100	e8.0		241		37		61	6.9	
TOTAL MEAN	33.69 1.09	696.6 23.2	2045.1 66.0	2675.6 86.3	870.8 31.1	10698 345	6827 228	5582 180	2584 86.1	10343 334	1441.0 46.5	1547.3 51.6
MAX	7.5	92	550	1000	200	884	1200	921	524	2340	405	433
MIN CFSM	0.45 0.01	1.0 0.16	2.3 0.44	8.0 0.58	6.4 0.21	24 2.32	21 1.53	22 1.21	14 0.58	11 2.24	6.9 0.31	4.0 0.35
IN.	0.01	0.17	0.51	0.67	0.22	2.67	1.70	1.39	0.65	2.58	0.36	0.39
		STATIS	TICS OF M	ONTHLY MEA	N DATA FO	R WATER	YEARS 1976	- 2003,	BY WATER	YEAR (WY)		
MEAN MAX	28.5 186	91.8 550	155 518	147 465	233 601	264 765	239 540	119 340	109 740	74.5 373	43.1 233	34.7 242
(WY)	1991	1993	1978	1993	1976	1978	1979	1997	1981	1992	1998	1981
MIN (WY)	0.71 1989	2.51 1995	1.99 1977	1.31 1977	31.1 2003	40.4 1981	44.4 1976	8.69 1988	1.05 1988	0.46 1988	0.91 2002	0.84 1995
	SUMMARY ST			FOR 2002				03 WATER			YEARS 197	
ANNUAL T				35201.47			45344.09					
ANNUAL M	IEAN ANNUAL ME	AN		96.4	1		124	4			128 189	1993
LOWEST A	NNUAL MEA	N								4	8.1	1988
	DAILY MEA DAILY MEAN			2120 0.15			0.4					30 1990 28 1988
ANNUAL S	SEVEN-DAY	MINIMUM		0.17			0.50	0 Oct 1	2	0	.09 Sep	24 1988
	PEAK FLOW PEAK STAG						2540 10.99			11		13 1981 13 1981
	NEOUS LOW			0.65			0.83	2			.07 Sep	28 1988
ANNUAL R	RUNOFF (IN	CHES)		8.79	9		11.32	2		11	.68	
	ENT EXCEED			189 19			401				339 30	
	INT EXCEED			0.55			1.				1.9	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. b Ice jam.
e Estimated.

04197170 ROCK CREEK AT TIFFIN, OHIO

LOCATION.—Latitude 41°06′49″, longitude 83°10′06″, Seneca County, Hydrologic Unit 04100011, on left bank 0.05 mi downstream from bridge on Rebecca Street, at Heidelberg College, Tiffin, Ohio.

DRAINAGE AREA.—34.6 mi².

PERIOD OF RECORD.—June 1983 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 740 ft above sea level (from topographic map).

REMARKS.—Records fair except for periods of estimated record, which are poor.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.7	1.7	12	312	e2.3	e1.7	22	5.7	11	4.1	5.4	7.1
2	1.5	1.5	5.2	66 27	e2.2	e1.6	18	7.1	8.4	3.8	7.0 8.9	5.7
4	1.6 2.0	1.6 1.8	2.3 1.4	17	e2.5 e80	e5.0 e15	14 62	6.3 5.7	7.4 7.6	3.5 3.3	18	6.9 6.4
5	1.8	2.1	1.1	13	e30	e80	580	13	7.0	3.2	59	4.6
6 7	1.9 1.8	1.9 2.0	0.90 e0.70	12 11	e6.0 e2.5	e50 e30	120 172	14 10	6.3 5.7	3.3 5.5	26 10	3.7 3.2
8 9	1.7	1.8	e0.60	10	e1.5	e80	201 57	8.1	12	95	7.0 5.6	3.0
10	1.9 1.9	5.3	e0.54 e0.50	33 54	e1.2 e1.1	e150 e28	32	163 129	134 32	443 173	4.9	2.8
11	1.8	11	e0.48	27	e1.0	e19	22	38 24	15	179	4.4	2.5
12 13	1.9 1.9	4.3 3.5	e0.47 e0.52	e14 e8.0	e1.0 e0.94	e14 e30	17 13	24	13 26	42 18	4.1 3.8	2.5 2.5
14 15	2.0 1.9	2.0 1.4	e0.58 e0.64	e7.0 e6.6	e0.90 e0.88	e90 e64	11 10	17 12	282 158	12 9.4	4.8	2.5
16	2.1	1.5	e0.72	e6.0	e0.84	e58	9.3	9.9	24	8.3	3.8	2.7
17 18	2.3	1.4 1.3	e0.80 e1.1	e5.8 e5.4	e0.82 e0.82	e56 e45	8.5 7.9	8.5 7.9	14 11	7.4 6.9	3.5 3.5	2.5
19 20	2.9	1.2	106 339	e5.0 e4.7	e0.80 e0.80	43 42	7.4 7.3	7.3 11	9.1	6.4 6.1	3.0	3.6
21	2.3	1.2	94	e4.7	e0.80	56	7.0	60	6.4	11	2.8	2.7
22 23	2.2	5.6	28 20	e4.3 e4.0	e30 e120	75 37	6.8	22 11	5.7	12 10	2.7	4.1
24	2.3	26	14	e3.7	e25	25	6.2	8.8	4.7	8.4	2.5	3.5
25	2.7	32	12	e3.4	e8.0	21	6.1	7.5	4.4	6.6	2.5	3.7
26 27	1.7 1.2	33 14	8.9 7.5	e3.2 e3.0	e2.0 e1.9	56 47	6.1 5.7	6.6 6.2	4.8 6.2	5.9 11	2.8 3.0	3.7 14
28 29	1.2	5.8 3.4	6.9 6.6	e2.9 e2.7	e1.8	26 67	5.4 5.4	6.1 5.8	6.2 6.4 5.0	83 28	2.6	35 11
30	1.2	5.2	66	e2.6		71	5.2	7.4	4.5	9.5	2.6	5.9
31 TOTAL	1.4 59.0	207.8	630 1369.45	e2.5 681.3	327.60	31 1414.3	1451.7	9.4 671.3		6.5 1225.1	2.5 218.9	160.3
MEAN	1.90	6.93	44.2	22.0	11.7	45.6	48.4	21.7	28.1	39.5	7.06	5.34
MAX MIN	2.9 1.2	33 1.2	630 0.47	312 2.5	120 0.80	150 1.6	580 5.2	163 5.7	282 4.4	443 3.2	59 2.5	35 2.5
CFSM IN.	0.06	0.20	1.28	0.64	0.34	1.32	1.40	0.63	0.81	1.14	0.20	0.15
IN.	0.06	0.22 STATIS	1.47	0.73	0.35 N DATA FO	1.52 OR WATER	1.56 YEARS 1984	0.72 - 2003.	0.91	1.32 YEAR (WY)	0.24	0.17
MEAN	9.21	25.7	35.9	36.9	57.1	48.5	55.8	28.7	22.7	14.5	10.9	11.3
MAX	50.3 1991	145 1993	172 1991	98.5 1993	122 1990	138	108 2002	87.6 1997	90.8	82.0 1992	88.8 1998	99.5
(WY) MIN	1.27	1.73	2.09	9.48	11.7	1984 13.6	17.9	2.29	1997 1.12	0.55	1.19	0.83
(WY)	2000	2000	1992		2003	1989	1988	1988	1988	1988 WATER Y	2002	1995
ANNUAL T		TATISTICS	•	FOR 2002		R YEAR	FOR 20		YEAR	WATER Y	EARS 1984	- 2003
ANNUAL M	EAN			32.			23.0			29		
	ANNUAL MI NNUAL MEA									48 11		1984 1988
HIGHEST	DAILY MEA	AN		108			630 0.4					26 1998
	AILY MEAN EVEN-DAY			0.3			0.53	3 Dec		0.	37 Sep	29 1988 11 2001
	PEAK FLOW PEAK STAGE						793 7.13			26 8.		26 1998 26 1998
INSTANTA	NEOUS LOV	W FLOW		0.9	4		0.68		-	0.	32 Jul :	29 1988
ANNUAL R	UNOFF (CI UNOFF (II	NCHES)		12.7	3		9.28	8		11.	61	
	NT EXCEEI NT EXCEEI			4.			5.0 6.0				56 .1	
	NT EXCEE			0.8	1		1.4	4		1	. 4	

b Ice jam. e Estimated.

04198000 SANDUSKY RIVER NEAR FREMONT, OHIO

LOCATION.—Latitude 41°18′28″, longitude 83°09′32″, in sec. 17, T.4 N., R.15 E., Sandusky County, Hydrologic Unit 04100011, on left bank at downstream side of county road bridge, 2.3 mi upstream from Ballville diversion dam, 2.5 mi downstream from Wolf Creek, and 3.5 mi southwest of Fremont, Ohio.

DRAINAGE AREA.—1,251 mi².

DRAINAGE AREA.—1,251 mi².

PERIOD OF RECORD.—November 1898 to March 1901 (gage height and discharge measurements only, published as "at Fremont"), October 1923 to December 1935, July 1938 to current year. Monthly discharge only for October 1923, published in WSP 1307.

REVISED RECORDS.—WSP 744: 1931-32. WSP 874: 1938. WSP 1144: 1924-30. WSP 1387: 1925, 1928-29, 1931-35. WSP 1912: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 626.30 ft (National Geodetic Vertical Datum of 1912). Nov. 18, 1898-Mar. 10, 1901, nonrecording gage at site 4 mi downstream at different datum; Nov. 8, 1923-Sept. 5, 1930, nonrecording gage at present site and datum.

REMARKS.—Records good except for periods of estimated record, which are poor. Water-quality data collected at this site.

REMARKS	-Records	good except	for periods	s of estimated	record, wh	nich are po	oor. Water-quali	ity data co	ollected at th	nis site.		
		DISCH	ARGE, CUE	BIC FEET PER		, WATER Y MEAN \	YEAR OCTOBE VALUES	R 2002 T	O SEPTEME	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	312	60	e1000	9520	e140	e600	1570	359	632	185	422	165
2	185	57	e500	7950	e180	e540	1090	617	484	392	552	240
3	125	53	e350	6340	e240	e490	841	697	428	1850	717	780
4	95	56	e280	3640	e400	e460	815	1170	428	1030	1730	1540
5	75	59	e240	1690	e1900	e440	6320	1360	407	582	3950	1100
6	60	62	e200	1070	e1400	e1300	8640	2260	443	456	2900	597
7	52	63	e170	791	e1000	e4000	7330	2630	475	555	1540	381
8	50	59	e150	677	e700	e3300	8660	2710	488	2160	946	273
9	48	55	e130	860	e580	e3300	7130	5180	1280	10600	667	208
10	47	57	e120	1760	e480	e5400	4990	11200	1830	11300	497	169
11	47	313	e120	e1100	e420	e3800	2890	10600	1870	12200	378	143
12	47	373	e110	e860	e370	e2200	1890	10800	1140	10500	309	120
13	46	971	109	e640	e330	e2000	1430	7840	1170	6390	291	105
14	44	690	118	e450	e300	e4300	1110	4010	3380	2380	357	97
15	40	413	118	e370	e270	e7000	922	1990	3160	1220	308	95
16	37	281	139	e300	e250	e6400	782	1380	1190	827	239	95
17	37	215	154	e250	e220	5130	675	1340	747	616	195	92
18	37	180	181	e210	e210	3900	605	1590	590	484	180	87
19	40	151	826	e180	e190	3140	547	1150	541	393	164	91
20	47	128	4520	e160	e210	2500	499	826	476	323	147	93
21	42	111	5410	e150	e260	2430	483	2370	420	356	132	88
22	37	170	3950	e130	e400	2620	448	2980	357	737	120	151
23	39	323	2300	e120	e1100	2180	446	1960	304	1020	109	239
24	42	406	1190	e120	e2100	1620	438	1110	268	849	104	230
25	54	669	773	e110	e1600	1140	416	755	235	689	102	373
26 27 28 29 30 31 TOTAL MEAN MAX MIN CFSM	77 70 65 63 62 60 2082 67.2 312 37 0.05	769 e1000 e600 e450 e640 9434 314 1000 53 0.25	568 427 344 320 392 5170 30379 980 5410 109 0.78	e110 e100 e100 e98 e110 e120 40086 1293 9520 98 1.03	e1200 e940 e720 18110 647 2100 140 0.52	1160 1940 1840 1510 2400 2290 81330 2624 7000 440 2.10	397 372 354 350 354 62794 2093 8660 350 1.67	599 496 426 376 348 478 81607 2632 11200 348 2.10	214 237 258 246 217 23915 797 3380 214 0.64	508 405 1360 1400 942 603 73312 2365 12200 185 1.89	100 98 97 139 149 140 17779 574 3950 97 0.46	346 402 1680 3210 2220 15410 514 3210 87 0.41
MEAN MAX (WY) MIN (WY)	222 2521 1927 9.94 1964	0.28	0.90	1.19	0.54	2.42	1.87 1.87 YEARS 1924 1861 5524 1957 144 1946	2.43	0.71	2.18	235 1660 1958 22.4 1952	254 3713 1981 13.5 1953
			FOR 2002 358081 981 14300 18 21 0.78 10.65 2220 280 28	Feb 2 Sep 13 Jul 6	3	FOR 201 456238 1250 12200 37 4(12500 10.90 1.00 13.57 3300 444	0 Jul 7 Oct 9 Oct 9 Jul 14 Feb 17 Oct 18 Jul 18 Feb	11 16 16 11a	10 21 2 360 5 6 365 16. 4 0. 11. 27	67 75 00 Mar 1 .0 Oct 2 .3 Jul 00 Mar 1 14 Feb 2 .4 Feb 2 82	- 2003 1984 1934 5 1978 0 1963 9 1988 6 1978 4 1979 9 1964	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

b Ice jam.

e Estimated.

SURFACE-WATER RECORDS **Huron River Basin**

04199000 HURON RIVER AT MILAN, OHIO

LOCATION.—Latitude 41°18′06″, longitude 82°36′25″, in SW ¼ sec. 4, T.5 N., R.22 W., Erie County, Hydrologic Unit 04100012, on right bank on upstream side of bridge on U.S. Highway 250, 0.2 mi northwest of Milan, Ohio, and 2 mi downstream from confluence of east and west branches.

upstream side of bridge on U.S. Highway 250, 0.2 mi northwest of Milan, Onto, and 2 mi downstream from confidence of cast and west branches.

DRAINAGE AREA.—371 mi².

PERIOD OF RECORD.—March 1950 to September 1980, October 1987 to current year.

REVISED RECORDS.—WSP 1912: Drainage area. WDR OH-89-2: 1988.

GAGE.—Water-stage recorder. Datum of gage is 573.26 ft above sea level. July 29, 1953-Oct. 5, 1979, water-stage recorder at site of former highway bridge 500 ft downstream at same datum; July 29, 1953, nonrecording gage at site of former highway 450 ft downstream at same datum.

REMARKS.—Records fair except for periods of estimated record, which are poor. Water-quality and sediment data formerly collected at this site.

		DISCHA	ARGE, CUE	BIC FEET PER		WATER Y	YEAR OCTOB YALUES	ER 2002 TO	O SEPTEMI	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	49 33 28 26 26	23 26 22 19 20	385 217 130 197 210	3170 1230 591 372 286	e72 e78 e90 e200 e500	e150 e140 e130 e130 e120	337 283 234 563 4760	72 138 308 171 193	525 245 165 148 139	55 55 142 86 71	101 211 497 532 591	107 374 295 149 89
6 7 8 9 10	23 21 21 18 19	25 20 21 23 28	115 92 68 66 72	244 190 209 467 520	e400 e280 e200 e150 e120	e180 e500 e400 e700 e900	1990 1480 2400 1060 643	311 292 2210 2710 2980	115 98 293 2110 742	64 113 248 2480 2750	275 142 119 81 68	64 49 42 38 35
11 12 13 14 15	17 16 15 15	455 335 133 69 51	53 53 54 99 184	e260 e210 e180 e160 e140	e110 e98 e90 e84 e80	e600 e500 e1000 2560 1760	476 361 272 219 189	1070 716 722 480 317	377 434 624 1750 571	1620 495 275 183 120	60 56 53 45 57	36 29 24 23 28
16 17 18 19 20	14 14 14 26 22	74 99 74 55 49	263 197 160 1130 3070	e120 e110 e100 e94 e88	e76 e74 e70 e66 e64	1340 1180 990 704 621	164 141 125 115 110	254 199 161 136 288	305 205 184 188 131	94 73 56 48 42	79 110 81 57 44	24 21 21 294 456
21 22 23 24 25	22 23 746 505 23 21 1080 365 24 19 689 e240 25 27 807 e220 26 49 652 e200				e64 e90 e200 e400 e300	806 712 464 348 309	126 117 100 88 84	964 426 251 183 143	104 91 82 74 67	194 451 208 123 79	37 42 105 72 49	180 128 178 169 99
26 27 28 29 30 31	49 39 36 28 22	652 411 308 247 490	e200 e190 e180 e160 607 5350	e66 e64 e64 e66 e68	e230 e190 e170 	941 607 377 724 843 445	95 88 79 73 70	117 102 103 95 88 392	69 79 66 62 58	55 96 1040 399 201 134	42 36 40 38 30 32	82 1950 1640 463 268
TOTAL MEAN MAX MIN CFSM IN.	739 23.8 49 14 0.06 0.07	7099 237 1080 19 0.64 0.71	16012 517 5350 53 1.39 1.61	9507 307 3170 64 0.83 0.95	4546 162 500 64 0.44 0.46	21181 683 2560 120 1.84 2.12	16842 561 4760 70 1.51 1.69	16592 535 2980 72 1.44 1.66	10101 337 2110 58 0.91 1.01	12050 389 2750 42 1.05 1.21	3782 122 591 30 0.33 0.38	7355 245 1950 21 0.66 0.74
		STATIST	CS OF MO	NTHLY MEAN	DATA FOR	R WATER	YEARS 1951	- 2003,	BY WATER	YEAR (WY)		
MEAN MAX (WY) MIN (WY)	MAX 402 1259 1909 (WY) 1991 1973 1991 MIN 7.86 14.0 9.23			455 1302 1952 26.8 1977	533 1422 1959 24.0 1964	677 1697 1978 117 1981	578 1536 1957 86.0 1971	320 929 1967 46.5 1962	239 980 1981 14.9 1988	180 1821 1969 11.8 1963	101 749 1998 11.3 1952	79.3 573 1972 5.76 1955
S	UMMARY STA	TISTICS		FOR 2002	CALENDAR	YEAR	FOR 20	003 WATER	YEAR	WATER Y	EARS 1951	- 2003
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				105742.3 290 6700 4.5 5.9 0.78 10.60 599 78 12	Feb 1 Sep 13 Sep 7		12580 34 535 1 592 17.2 0.9 12.6 77 13	00 Dec 3 4 Oct 1 5 Oct 1 00 Dec 3 9 Mar	L5 L2 31a	5 11 314 3 3 496 31. 2 0. 11.	.0 Sep : .4 Sep : 00 Jul 10 Jul .2 Sep :	1997 1953 5 1969 10 1955 16 1955 5 1969 5 1969 10 1955

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

b Ice jam.

e Estimated.

SURFACE-WATER RECORDS Old Woman Creek Basin

04199155 OLD WOMAN CREEK AT BERLIN ROAD NEAR HURON, OHIO

LOCATION.—Latitude 41°20′54″, longitude 82°30′50″, Erie County, Hydrologic Unit 04100012, on left downstream side of Berlin Road Bridge, 3.8 mi southeast of Huron, Ohio.

DRAINAGE AREA.—22.1 mi².

PERIOD OF RECORD.—October 1987 to September 1994, October 1995 to current year. Published as "Old Woman's Creek" prior to 2002. REVISED RECORDS.—WSP 1912: Drainage area. WDR OH-89-2: 1988.

GAGE.—Water-stage recorder. Datum of gage is 570 ft above sea level. Erie County benchmark.

REMARKS.—Records fair except for periods of estimated record, which are poor.

		DISCI	HARGE, CUI	BIC FEET PE), WATER Y LY MEAN V	EAR OCTOB	ER 2002 TO	SEPTEME	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.89 0.64 0.44 0.47 0.69	0.66 0.52 0.49 0.55 0.58	27 13 11 9.3 7.8	129 54 29 22 19	e1.7 e1.9 e2.3 e7.0 e20	e6.2 e5.6 e5.0 e4.8 e25	22 18 14 92 474	3.7 8.0 5.7 4.5 10	75 22 15 13 11	3.1 3.2 2.6 10 8.6	1.2 20 55 70 14	5.1 5.4 2.8 1.6 0.94
6 7 8 9 10	0.45 0.28 0.20 0.18 0.15	1.1 0.97 0.90 0.84 4.1	6.8 6.1 5.8 4.8 4.9	18 18 19 58 38	e13 e11 e7.0 e5.6 e4.5	e22 e18 e30 e70 e56	79 115 98 52 34	10 14 41 133 68	8.1 6.5 34 103 22	3.5 39 131 53 182	6.8 4.2 3.0 2.5 2.1	0.88 0.66 0.46 0.41 0.37
11 12 13 14 15	0.17 0.19 0.21 0.30 0.25	111 12 3.6 2.1 1.7	4.9 5.2 6.0 28 51	18 e10 e8.0 e6.2 e5.2	e3.7 e3.1 e2.8 e2.6 e2.4	e46 e40 211 164 107	25 20 15 13 12	30 28 24 15 12	14 14 53 272 39	71 19 9.8 6.0 4.4	1.6 1.4 1.2 0.92 0.82	0.32 0.26 0.18 0.15 0.33
16 17 18 19 20	0.22 0.22 0.19 0.77 0.56	5.1 6.7 3.6 2.7 3.0	54 17 18 137 195	e4.3 e3.8 e3.4 e3.0 e2.7	e2.3 e2.2 e2.0 e1.9 e1.8	96 83 64 43	10 8.4 7.5 6.7 6.8	9.1 7.3 6.1 5.4 51	19 13 11 8.9 7.3	3.8 2.5 2.2 2.0 1.6	1.6 2.1 1.1 0.78 0.63	0.28 0.15 0.09 48 16
21 22 23 24 25	0.40 0.34 0.36 0.58 1.2	3.1 272 156 85 85	47 23 18 13	e2.4 e2.2 e2.0 e1.9 e1.8	e1.7 e3.0 e5.0 e15 e12	43 46 26 20 21	9.0 7.1 6.0 5.3 5.2	61 20 13 11 8.3	5.8 4.8 3.9 3.3 2.6	30 24 6.8 4.2 2.6	0.50 0.41 0.35 0.34 0.30	3.3 3.0 4.7 2.6 1.8
26 27 28 29 30 31	8.2 2.8 1.4 1.0 0.81 0.92	44 26 27 23 74	10 9.6 10 8.9 132 408	e1.8 e1.7 e1.7 e1.6 e1.6 e1.6	e9.0 e8.0 e7.0 	98 37 23 89 50 27	5.5 4.7 4.2 3.8 3.6	6.7 5.8 6.4 5.4 4.5 88	3.8 6.2 3.3 2.5 4.2	2.1 4.1 5.0 2.8 1.9	0.35 0.38 0.29 0.24 0.21 0.16	1.2 166 33 10 5.7
TOTAL MEAN MAX MIN CFSM IN.	25.48 0.82 8.2 0.15 0.04 0.04	957.31 31.9 272 0.49 1.44 1.61	1305.1 42.1 408 4.8 1.90 2.20	488.9 15.8 129 1.6 0.71 0.82	159.5 5.70 20 1.7 0.26 0.27	1619.6 52.2 211 4.8 2.36 2.73	1176.8 39.2 474 3.6 1.77 1.98	715.9 23.1 133 3.7 1.04 1.21	801.2 26.7 272 2.5 1.21 1.35	643.2 20.7 182 1.4 0.94 1.08	194.48 6.27 70 0.16 0.28 0.33	315.68 10.5 166 0.09 0.48 0.53
		STATIS			N DATA FO	OR WATER	YEARS 1988	•	BY WATER	YEAR (WY)		
MEAN MAX (WY) MIN (WY)	20.8 68.4 98.2 1997 1993 1991 0.001 0.31 0.70			29.6 74.8 1993 8.03 1988	31.9 78.6 1990 5.70 2003	33.7 86.3 1993 11.2 2001	41.6 66.5 1998 18.4 1988	19.2 52.2 1989 2.20 1988	17.9 47.4 1997 0.17 1988	6.56 35.1 1992 0.010 1991	5.72 23.7 1992 0.000 1991	5.90 23.1 1996 0.000 1991
	Y) 1995 1992 1992 SUMMARY STATISTICS				CALENDA	R YEAR	FOR 20	003 WATER	YEAR	WATER	YEARS 198	8 - 2003
ANNUAL M HIGHEST LOWEST D ANNUAL S MAXIMUM INSTANTA ANNUAL R ANNUAL R ANNUAL R 50 PERCE	ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS				Feb : Jul 1' Jul 1'	7	0.2 89	4 Apr 19 Sep 1 10 Oct 16 Mar 18 Sep 1 44 4	7 9a 9	3 8 0 0 1 11 0 0	.00 Jun .00 Jun 940 Feb .92 Jan	1997 2001 8 1998 15 1988 15 1988 27 1997 21 1999 9 1991

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

SURFACE-WATER RECORDS **Vermilion River Basin**

04199500 VERMILION RIVER NEAR VERMILION, OHIO

LOCATION.—Latitude 41°22′55″, longitude 82°19′01″, in T.6 N., R.19 W., Lorain County, Hydrologic Unit 04100012, on right bank downstream wingwall of bridge on North Ridge Road, 3.5 mi southeast of Vermilion and 4.5 mi upstream from mouth of Lake Erie.

DRAINAGE AREA.—262 mi².

PERIOD OF RECORD.—March 1950 to September 1981, November 1, 2000 to current year.

REVISED RECORDS.—WSP 1912: Drainage area. WDR-OH-70-1: 1969.

GAGE.—Water-stage recorder. Datum of gage is 595.14 ft above sea level. Prior to Aug. 3, 1953, nonrecording gage at site 40 ft upstream at same datum. REMARKS.—Records fair except those for period of estimated record, which are poor. Water-quality data formerly collected at this site.

		DISCHA	RGE, CUE	BIC FEET PER		WATER Y Y MEAN V	EAR OCTOBE	R 2002 TO	O SEPTEMBI	ER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22 13 9.6 7.7 7.1	6.2 5.9 5.5 5.2 5.3	231 152 110 88 149	2640 1050 497 300 218	e22 e24 e28 e70 e300	e66 e60 e54 e49 e46	257 207 163 334 3750	37 59 531 231 164	615 271 154 124 124	24 23 212 107 65	66 74 296 623 353	32 41 95 78 48
6 7 8 9 10	5.9 5.0 4.1 3.8 3.9	6.5 6.5 7.1 6.9 7.6	111 81 64 45 50	176 153 152 296 433	e230 e160 e110 e80 e60	e70 e340 e230 e400 e800	2290 1150 2170 986 509	228 224 1280 3210 3600	110 90 118 1300 776	45 48 242 1140 1570	191 130 99 85 79	34 26 21 17 15
11 12 13 14 15	4.1 3.8 3.8 3.7 3.6	125 130 116 58 34	61 50 43 132 279	307 e180 e120 e94 e76	e52 e42 e38 e32 e30	e600 e400 e700 e3000 e2200	343 256 194 153 130	1430 635 725 526 285	284 235 473 1060 463	421 221 134 90 67	69 46 32 27 27	14 13 9.6 8.9
16 17 18 19 20	3.5 3.4 4.0 5.5 6.0	30 31 30 27 31	326 301 153 338 1470	e66 e54 e50 e40 e36	e26 e24 e23 e22 e20	e1600 1270 951 652 479	113 98 88 79 72	225 184 145 120 198	201 129 102 91 80	54 44 38 32 28	24 48 83 70 45	8.8 7.7 7.1 86 286
21 22 23 24 25	5.8 5.2 4.7 4.5 5.2	30 439 637 387 351	832 344 236 183 116	e32 e30 e27 e25 e24	e23 e32 e100 e300 e200	397 364 295 230 202	73 75 71 63 56	448 253 154 116 96	66 58 50 43 37	62 72 147 107 68	33 25 18 15 13	174 84 65 124 87
26 27 28 29 30 31	19 14 9.5 8.2 7.4 6.5	284 219 177 138 261	e100 e90 e82 e76 250 2850	e23 e22 e21 e20 e20 e21	e120 e90 e76 	560 434 276 487 600 372	56 52 48 42 38	84 75 71 65 61 277	34 38 29 26 30	51 47 634 476 152 92	12 11 9.6 8.9 9.5	58 1230 2190 693 267
TOTAL MEAN MAX MIN CFSM IN.	213.5 6.89 22 3.4 0.03 0.03	3597.7 120 637 5.2 0.46 0.51	9393 303 2850 43 1.16 1.33	7203 232 2640 20 0.89 1.02	2334 83.4 300 20 0.32 0.33	18184 587 3000 46 2.24 2.58	13916 464 3750 38 1.77 1.98	15737 508 3600 37 1.94 2.23	7211 240 1300 26 0.92 1.02	6513 210 1570 23 0.80 0.92	2637.0 85.1 623 8.9 0.32 0.37	5829.0 194 2190 7.1 0.74 0.83
		STATIST	CS OF MO	ONTHLY MEAN	DATA FOR	R WATER	YEARS 1950	- 2003,	BY WATER	YEAR (WY)		
MEAN MAX (WY) MIN (WY)	MEAN 30.4 114 MAX 231 906 (WY) 1973 1973 MIN 0.41 1.60		318 2340 1978 1.41 1964	356 1396 1952 17.3 1964	459 1289 1976 10.8 1964	719 4759 1978 96.3 1953	461 1170 1957 68.3 1971	257 830 1969 32.7 1976	122 629 1981 11.1 1963	132 2045 1969 2.56 1963	41.5 329 1958 1.54 1952	44.0 240 1972 0.000 1953
:	SUMMARY S'	PATISTICS		FOR 2002	CALENDAR	YEAR	FOR 200	3 WATER	YEAR	WATER	YEARS 1950	- 2003
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				73655.6 202 4270 1.6 1.7 0.77 10.46 401 75 2.7	Mar 31 Jul 21 Jul 16		92768.2 254 3750 3.4 3.7 4510 11.54 0.97 13.17 606 79 8.0	Apr 1 Oct 1 7 Oct 1) Apr 1 Mar 1	17 12 5a	229 0 0 408 17 0 0 13	.00 Aug .00 Aug 300 Jul .14 Jul .00 Aug	1978 1953 15 1977 27 1953 27 1953 6 1969 6 1969 27 1953

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. b Ice jam.

e Estimated.

SURFACE-WATER RECORDS **Black River Basin**

04200500 BLACK RIVER AT ELYRIA, OHIO

LOCATION.—Latitude 41°22′49", longitude 82°06′17", in T.6 N., R.17 W., Lorain County, Hydrologic Unit 04110001, on left bank in Cascade Park at Elyria, Ohio, 0.8 mi downstream from confluence of east and west branches.

DRAINAGE AREA.—396 mi².
PERIOD OF RECORD.—October 1944 to current year. Records for May 1903 to July 1906 (published as "near Elyria") published in WSP 97, 129, and 205,

are unreliable and should not be used.

REVISED RECORDS.—WSP 1912: Drainage area. See also PERIOD OF RECORD.

GAGE.—Water-stage recorder. Datum of gage is 620.83 ft above sea level.

REMARKS.—Records fair except for periods of estimated record and for discharges greater than 1,000 ft³/s, which are poor. Some regulation at low flow for industrial use. Water-quality and sediment data formerly collected at this site.

		DISCH	ARGE, CUI	BIC FEET PEF		WATER Y		ER 2002 TC	SEPTEMB	ER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	45 42 36 19 17	11 9.3 10 10	199 150 107 e70 e50	3800 2000 947 544 e320	e31 e30 e70 e160 e500	e130 e120 e110 e100 e90	352 269 216 447 4540	41 126 754 349 242	1890 780 293 194 171	31 28 27 61 46	141 124 132 158 242	94 80 107 109 72
6 7 8 9 10	11 12 9.2 7.0 6.7	26 35 17 15 41	e40 e66 e45 e40 e36	e230 e200 e170 e400 859	e330 e240 e170 e130 e110	e84 e560 e360 e600 e1100	3800 1730 2870 1580 872	273 310 504 3290 4230	148 122 157 1380 978	38 77 539 282 1220	403 916 308 731 506	51 40 34 30 26
11 12 13 14 15	6.4 5.8 7.3 7.5 6.4	228 311 202 106 66	e34 e33 e32 418 785	494 e300 e200 e120 e100	e90 e80 e70 e64 e58	e900 e540 e700 e2000 e1700	573 344 237 182 141	2230 823 1050 713 375	353 260 1140 2530 1930	465 293 150 97 70	152 96 73 59 49	23 18 15 13
16 17 18 19 20	7.4 8.4 7.4 25 12	58 54 55 68 86	515 e280 e200 e240 1390	e86 e76 e68 e60 e52	e56 e52 e50 e48 e45	e2200 e1500 e1100 e700 709	126 113 98 85 85	246 196 158 125 271	579 248 166 146 119	48 37 32 29 24	55 174 801 209 107	15 13 13 236 375
21 22 23 24 25	9.1 11 14 12 26	102 856 1240 734 567	1130 565 350 e200 e160	e50 e47 e43 e50 e38	e44 e70 e200 e600 e300	572 532 410 292 247	86 98 105 89 77	923 440 210 142 113	96 80 66 56 48	107 555 1580 400 197	73 53 44 36 32	313 148 155 370 176
26 27 28 29 30 31	49 33 28 19 15	370 249 207 157 186	e140 e120 e110 e100 327 3150	e37 e36 e34 e33 e32 e31	e210 e170 e150 	646 596 390 651 1050 661	73 65 56 36 37	96 85 76 68 60	44 45 37 31 34	116 102 1240 3380 851 227	34 33 22 43 27 25	107 1740 3380 1470 347
TOTAL MEAN MAX MIN CFSM IN.	527.6 17.0 49 5.8 0.04 0.05	6091.3 203 1240 9.3 0.51 0.57	11082 357 3150 32 0.90 1.04	11457 370 3800 31 0.93 1.08	4128 147 600 30 0.37 0.39	21350 689 2200 84 1.74 2.01	19382 646 4540 36 1.63 1.82	19119 617 4230 41 1.56 1.80	14121 471 2530 31 1.19 1.33	12349 398 3380 24 1.01 1.16	5858 189 916 22 0.48 0.55	9588 320 3380 13 0.81 0.90
		STATIST	ICS OF M	ONTHLY MEAN	DATA FOR	R WATER Y	EARS 1945	- 2003,	BY WATER	YEAR (WY)		
MEAN MAX (WY) MIN (WY)	61.5 463 1997 2.34 1945	219 1238 1986 5.78 1945	390 1885 1991 5.82 1945	474 1825 1952 8.48 1945	588 1505 1959 16.6 1964	768 1866 1978 135 1953	630 1728 1957 22.0 1946	363 1122 1969 49.3 1999	216 1245 1947 10.6 1988	140 1472 1969 7.42 1991	75.2 529 1958 4.72 1952	80.1 701 1972 2.84 1946
	SUMMARY S	TATISTICS		FOR 2002	CALENDAR	YEAR	FOR 20	03 WATER	YEAR	WATER Y	EARS 1945	- 2003
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				106276.4 291 4700 5.7 6.7 0.74 9.98 668 99 8.5	May 14 Sep 13 Oct 9		135052. 37 454 5. 6. 511 10.4 0.9 12.6 93	0 Apr 8 Oct 1 7 Oct 0 Apr 5 Apr 3 9	5 2 9 5 8 5	5: 11: 2490 0.6 1 5177 26.6 0.0 0.8	Jan 2 50 Oct .4 Oct 00 Jul 40 Jul 00 Oct 34	1973 1953 12 1959 5 1944 1 1944 6 1969 6 1969 10 1956

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

SURFACE-WATER RECORDS **Rocky River Basin**

04201500 ROCKY RIVER NEAR BEREA, OHIO

LOCATION.—Latitude 41°24′24″, longitude 81°53′14″, in T.6 N., R.15 W., Cuyahoga County, Hydrologic Unit 04110001, on right bank at downstream side of Cedar Point Road Bridge in Rocky River Reservation, just downstream from confluence of east and west branches, and 3 mi northwest of Berea,

DRAINAGE AREA.—267 mi².

PERIOD OF RECORD.—October 1923 to September 1935, September 1943 to current year. Monthly discharge only for October 1923, published in WSP

REVISED RECORDS.—WSP 1437: 1924, 1925(M), 1926, 1927(M), 1928-29, 1930-35(M), 1945. WSP 1912: Drainage area. WDR-OH-2-1983:

GAGE.—Water-stage recorder. Datum of gage is 649.9 ft above sea level. Cuyahoga County benchmark. Prior to Sept. 30, 1935, nonrecording gage at same site and datum.

REMARKS.—Records fair except for periods of estimated record, which are poor. Some regulation at low flow by small reservoirs on East Branch. Some interbasin transfer of water from Lake Erie for municipal water supply by Cleveland Metro Water District. Water-quality and sediment data formerly

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in Mar. 1913 reached a stage of 20.9 ft.

		DISCH	ARGE, CUE	BIC FEET PER		WATER '	YEAR OCTOBE	R 2002 T	О ЅЕРТЕМІ	BER 2003		
DAY 1	OCT 50	NOV 39	DEC 889	JAN 255	FEB e60	MAR e160	APR 328	MAY 62	JUN 2420	JUL 60	AUG 198	SEP 274
2 3	40 36	35 36	316 200	e200 e180	e60 e130	e160 e150	286 228	1110 506	582 344	75 73	208 159	397 180
3 4	32	36	153	e170	e500	e200	678	226	312	67	107	97
5	38	43	125	e160	e400	e500	4260	346	253	71	245	72
6 7	36 35	72 90	106 93	e180 e210	e240 e200	e900 e600	1240 1230	487 229	207 160	58 210	978 333	54 45
8	29	66	84	e240	e170	e500	1700	661	285	2290	345	33
9	30	50	76	298	e150	2400	740	1860	1160	1980	492	24
10 11	36 32	267 1290	72 64	378 478	e140 e130	949 533	481 352	3290 1170	446 252	907 1090	203 123	66 32
12	21	296	60	e300	e130	554	274	756	553	360	93	21
13	23	e200	79	e200	e110	1820	217	1170	2770	198	75	18
14 15	22 22	e140 e92	411 1080	e160	e100 e92	1530	176	544 285	2550 827	126 89	57 112	23
16	25	e80	379	e140 e120	e88	1330 1640	146 130	386	414	91	181	33 36
17	39	e68	1170	e100	e84	1340	110	299	267	66	178	35
18	36	e64	2780	e94	e80	874	101	196	208	60	113	33
19 20	124 101	e80 e90	750 444	e90 e86	e76 e74	588 500	97 101	150 502	211 183	51 44	57 42	905 609
21 22	70 50	e90 74	301 e210	e82 e78	e70 e200	497 448	253 202	1780 467	137 106	970 4680	36 36	171 242
23	43	57	e180	e74	e900	317	136	265	92	1410	27	773
24	40	49	e160	e72	e500	250	109	250	85	339	24	269
25	52	228	e150	e68	e300	243	95	196	66	169	24	139
26	162	254	e140	e66	e230	741	95	146	51	97	52	110
27 28	103 55	153 164	e130 e120	e66 e64	e200 e180	515 319	80 71	125 127	57 46	145 1840	100 54	3560 1490
29	43	911	e150	e64		862	60	107	42	499	105	461
30	40	1360	262	e62		901	57	82	50	195	97	220
31 TOTAL	44 1509	6474	331 11465	e60 4795	 5584	444 22765	14033	2110 19890	15136	109 18419	69 4923	10422
MEAN	48.7	216	370	155	199	734	468	642	505	594	159	347
MAX	162	1360	2780	478	900	2400	4260	3290	2770	4680	978	3560
MIN CFSM	21 0.18	35 0.81	60 1.39	60 0.58	60 0.75	150 2.75	57 1.75	62 2.40	42 1.89	44 2.23	24 0.59	18 1.30
IN.	0.21	0.90	1.60	0.67	0.78	3.17	1.75	2.77	2.11	2.57	0.69	1.45
							YEARS 1924 -			YEAR (WY)		
MEAN MAX	95.4 935	219 1080	345 1534	407 1398	466 1245	587 1253	509 1374	306 845	182 911	120 887	78.6 553	107 820
(WY)	1927	1986	1991	1930	1959	1984	1961	1984	1947	1992	1935	1924
MIN	1.25	9.14	8.15	32.4	17.0	141	40.9	17.6	10.1	4.25	0.90	0.94
(WY)	1934 JMMARY STA	1964	1964	1945 FOR 2002	1934	1969	1946 FOR 200	1934	1933	1954 WATER YE	1933	1933 1 - 2003
ANNUAL TOT		11131103		106493	CALLINDAK	ILAN	135415		X ILAK	WAIER IE	MNS 1924	- 2003
ANNUAL MEA				292			371			28		
HIGHEST AND		ſ								48 79.		1997 1934
HIGHEST DA				3990	Feb 1		4680	Jul	22	1430		22 1959
LOWEST DAI	LY MEAN			14	Aug 9		18	Sep	13	0.2	0 Sep	2 1932
ANNUAL SEV MAXIMUM PE		NIMUM		16	Aug 6		26 6230			0.2 2140		21 1933 22 1959
MAXIMUM PE							5.62			18.6		29 1924
INSTANTANE										0.2	0 Sep	2 1932
ANNUAL RUN				1.09 14.84			1.39 18.87			1.0 14.4		
10 PERCENT		/ vir.		628			957			65		
50 PERCENT	EXCEEDS			143			153	1		8	5	
90 PERCENT	r exceeds			24			40)		1	1	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

04202000 CUYAHOGA RIVER AT HIRAM RAPIDS, OHIO

LOCATION.—Latitude 41°20′26", longitude 81°10′01", in T.5 N., R.7 W., Portage County, Hydrologic Unit 04110002, on left bank at downstream side of bridge on Winchell Road at Hiram Rapids, Ohio, 0.6 mi downstream from Black Brook. DRAINĂGE AREA.—151 mi².

DRAINAGE AREA.—151 mt².

PERIOD OF RECORD.—August 1927 to December 1935 (published as "near Hiram"), October 1944 to current year.

REVISED RECORDS.—WSP 1054: 1945. WSP 1437: 1931. WSP 1912: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 1,087.46 ft above sea level. Prior to Aug. 26, 1927, nonrecording gage; Aug. 26, 1927-Dec. 31, 1935, water-stage recorder, at site 2.8 mi downstream at different datum; Oct. 20, 1944-Oct. 22, 1946, nonrecording gage at present site and datum.

REMARKS.—Records good except for periods estimated record, which are poor. Flow regulated by East Branch Reservoir, usable capacity, 4,140 acre-ft, 14.6 mi upstream since 1939, and by LaDue Reservoir, usable capacity, 18,110 acre-ft, 9.8 mi upstream since 1961. Water-quality data formerly collected at this site. collected at this site.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,670 ft³/s Jan. 23, 1959, gage height 8.11 ft; minimum daily, 6.6 ft³/s Sept. 10, 1933.

		DISCHA	ARGE, CUB	C FEET PER			YEAR OCTOBE VALUES	R 2002 T	O SEPTEME	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e37	e46	58	235	e40	292	322	51	305	e66	136	122
2	e36	e43	57	362	e45	269	293	91	348	e64	106	162
3	35	e40	57	442	e58	270	252	120	352	e62	89	190
4	32	e38	67	429	105	218	229	115	327	e60	86	180
5	32	e41	48	381	182	219	451	110	286	e78	e94	147
6	33	e50	46	312	266	248	711	134	236	e140	e105	117
7	33	e56	45	237	228	298	863	202	187	e200	e110	90
8	31	e66	42	205	e190	268	863	343	148	e240	e120	71
9	29	e54	42	182	e140	340	781	414	136	e190	e150	60
10	29	e58	55	176	e110	386	667	482	123	220	e130	54
11	29	e115	39	158	e90	403	546	723	108	228	e110	54
12	28	e200	41	166	e80	366	444	885	109	e219	e96	50
13	28	e100	51	215	e70	398	354	896	275	e160	e84	47
14	28	e80	71	151	e64	439	279	879	562	e110	e72	43
15	28	64	104	131	e60	474	216	790	835	e88	e62	43
16	30	57	123	120	e56	534	175	709	770	72	e52	43
17	33	57	124	e90	e52	621	136	606	614	59	e45	41
18	37	62	113	e76	e56	721	107	523	496	50	e41	39
19	40	66	98	e70	e66	741	89	442	412	44	e39	100
20	60	69	112	e66	76	671	77	368	345	39	38	187
21	61	70	138	e62	81	569	101	358	298	121	38	225
22	51	76	149	e58	80	499	123	356	e230	458	40	223
23	44	102	143	e54	170	443	124	345	e180	583	37	249
24	40	116	124	e50	270	394	115	319	e140	628	35	265
25	38	114	100	e48	297	347	99	280	e110	561	34	267
26 27 28 29 30	48 66 e70 e90 e60	103 90 77 64 58	81 80 78 65 65	e46 e45 e44 e43 e42	334 353 318 	332 331 334 342 346	84 76 68 66 53	235 192 160 138 118	e90 e74 e68 e62 e64	478 399 352 288 231	43 93 92 75 122	239 294 396 471 480
31 TOTAL MEAN MAX MIN	e52 1288 41.5 90 28	2232 74.4 200 38	129 2545 82.1 149 39	e41 4737 153 442 41	3937 141 353 40	337 12450 402 741 218	8764 292 863 53	201 11585 374 896 51	8290 276 835 62	175 6663 215 628 39	133 2507 80.9 150 34	4949 165 480 39
CFSM	0.28	0.49	0.54	1.01	0.93	2.66	1.93	2.47	1.83	1.42	0.54	1.09
IN.	0.32	0.55	0.63	1.17	0.97	3.07	2.16	2.85	2.04	1.64	0.62	1.22
MEAN MAX (WY) MIN (WY)	108 315 1991 39.0 1984	STATIST: 191 616 1986 33.5 1992	ICS OF MOI 267 816 1978 45.2 1961	NTHLY MEAN 266 707 1993 43.5 1961	DATA FOR 344 883 1976 56.6 1963	WATER 432 835 1963 174 1989	YEARS 1961 349 649 1961 134 1986	- 2003, 206 569 1984 59.8 1987	BY WATER 135 542 1989 35.2 1991	YEAR (WY) 101 325 1969 48.4 1991	93.4 307 1992 37.1 1961	108 374 1975 36.6 1967
ANNUAL TOTA ANNUAL MEA HIGHEST AN LOWEST ANN HIGHEST DAI ANNUAL SEV MAXIMUM PE TOTAL ANNUAL RUN ANNUAL RUN ANNUAL RUN 10 PERCENT 90 PERCENT	N NUAL MEAN UAL MEAN ILY MEAN LY MEAN EN-DAY MI AK STAGE OUS LOW F. OFF (CFSM OFF (INCH EXCEEDS EXCEEDS	NIMUM LOW)		938 28 28 0.99 13.48 342 40	May 15 Oct 12 Oct 9	YEAR	FOR 200 69947 192 896 28 908 4.05 27 1.27 17.23 447 112	May Oct Oct Apr Apr Oct	13 12 9 7	21 31 325 1 1 332 7.6 11.4 19.4	.8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .	- 2003 1997 1999 8 1976 9 1967 8 1976 8 1976 9 1967

e Estimated.

04206000 CUYAHOGA RIVER AT OLD PORTAGE, OHIO

LOCATION.—Latitude 41°08′08″, longitude 81°32′50″, Summit County, Hydrologic Unit 04110002, on right bank 230 ft upstream from North Portage Path bridge at Old Portage, Ohio, 1.2 mi downstream from Little Cuyahoga River, and 4 mi northwest of Akron City Hall, Akron, Ohio. DRAINAGE AREA.—404 mi².

DRAINAGE AREA.—404 mi².

PERIOD OF RECORD.—September 1921 to December 1935, March 1939 to current year.

REVISED RECORDS.—WSP 1307: 1924(M). WSP 1912: Drainage area. WDR OH-79-2: 1974(M), 1976(M).

GAGE.—Water-stage recorder. Datum of gage is 740.11 ft above sea level, unadjusted. Prior to Dec. 21, 1923, nonrecording gage at same site and datum.

REMARKS.—Records poor. Natural flow of stream affected by diversions, storage reservoirs, and power plants. An average of 63 ft³/s was diverted upstream from gage for municipal supply of city of Akron. Sewage from city enters river 2.9 mi downstream from station. Some diversions from the Tuscarawas River Basin drainage into this basin at Portage Lakes (see REMARKS from station 0311700 in volume 1 of this report). Sediment data formerly collected at this cita. at this site.

		DISCH	ARGE, CUE	BIC FEET PER			YEAR OCTOI VALUES	BER 2002 T	O SEPTEMI	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	100 93 86 78 82	e90 e88 e84 e82 e90	173 140 136 113 106	1510 1610 1470 1420 1370	e82 e80 e110 659 475	597 577 499 394 523	456 382 293 433 1800	e120 e350 e270 e180 e280	1660 1140 983 853 692	168 169 161 182 229	760 593 497 458 488	721 925 698 618 597
6 7 8 9 10	70 79 70 71 72	183 161 142 101 179	115 99 91 90 94	1190 860 710 702 667	621 611 773 641 e520	501 441 518 1090 940	1840 1860 1790 1570 1310	e260 e200 179 674 1380	592 504 551 517 394	191 502 3390 3350 2640	458 604 596 706 630	504 356 273 218 175
11 12 13 14 15	75 244 263 255 127	377 197 152 146 128	98 143 65 152 109	541 454 553 481 489	e420 e330 e250 e200 e160	747 738 1140 1180 1070	427	1680 1620 1640 1470 1540	410 674 1050 892 926	2200 1680 1260 1030 804	466 404 338 294 262	157 146 127 119 158
16 17 18 19 20	103 83 75 151 116	131 150 124 135 125	184 209 153 212 594	313 268 165 140 138	e130 e110 e180 130 135	1220 1390 1310 1300 1250	e310 e280 e290	2390 1890 1550 1360 1500	1230 1290 1130 941 710	590 436 348 296 246	252 202 182 166 143	124 115 99 1010 618
21 22 23 24 25	95 99 94 75 143	110 260 218 180 204	374 364 309 212 201	125 e125 e120 e110 e105	144 825 1350 1000 996	1140 951 739 589 473	e220	1600 1160 956 981 815	561 468 403 391 317	1620 4350 4080 3090 2610	129 124 105 96 89	518 840 935 721 597
26 27 28 29 30 31	258 112 e110 e100 e96 e92	213 215 197 159 156	168 e150 e130 e120 380 1810	e100 e96 e92 e88 e86 e84	1040 649 654 	594 472 419 605 620 496	e130 e100 e110	643 512 429 388 359 1280	218 206 162 153 209	1910 1840 2100 1510 968 867	100 566 276 344 400 288	534 1650 1670 1250 1190
TOTAL MEAN MAX MIN CFSM IN.	3567 115 263 70 0.28 0.33	4777 159 377 82 0.39 0.44	7294 235 1810 65 0.58 0.67	16182 522 1610 84 1.29 1.49	13275 474 1350 80 1.17 1.22	24523 791 1390 394 1.96 2.26	605 1860	29656 957 2390 120 2.37 2.73	20227 674 1660 153 1.67 1.86	44817 1446 4350 161 3.58 4.13	11016 355 760 89 0.88 1.01	17663 589 1670 99 1.46 1.63
MEAN MAX (WY) MIN (WY)	216 1205 1927 50.8 1934	321 1307 1986 56.5 1964	1CS OF MC 469 1516 1928 48.3 1964	DNTHLY MEAN 565 1807 1952 83.3 1961	DATA FOR 659 1592 1976 86.1 1963	857 1416 1927 282 1931	736 1520 1940 166	2 - 2003, 479 1253 1996 77.0 1934	BY WATER 320 1371 1989 72.4 1988	YEAR (WY) 243 1446 2003 50.4 1954	184 772 1992 56.9 1962	212 1150 1926 47.1 1964
ANNUAL TO ANNUAL ME HIGHEST A LOWEST AN HIGHEST D LOWEST DA ANNUAL SE MAXIMUM P MAXIMUM P INSTANTAN ANNUAL RU	AN NNUAL MEAN NUAL MEAN AILY MEAN ILY MEAN VEN-DAY MI EAK FLOW EAK STAGE EOUS LOW F NOFF (CFSN NOFF (INCFT T EXCEEDS T EXCEEDS	N ENIMUM FLOW M)		FOR 2002 133853 367 2000 55 71 0.91 12.33 888 200 89	May 14 Sep 2 Aug 27	YEAR	2111 5 43 51 12. 1. 19.	378 350 Jul 65 Dec 74 Oct .60 Jul 64 Jul	22 13 5 21	4 6 1 60 65 13. 1. 14. 2	24 Sep : 40 Oct : 00 Jan : 29 Sep : 26 Sep 08 71	1927 1934 22 1959 24 1964 30 1944 21 1959 14 1979 2 1945

e Estimated.

04206014 POWERS BROOK AT HUDSON, OHIO

LOCATION.—Latitude 41°12′27", longitude 81°24′41", Summit County, Hydrologic Unit 04110002, on left upstream bank 620 ft south of intersection of Stow Road and Barlow Road, 4.7 miles upstream from confluence with Mud Brook, in City of Hudson, 1.0 mi west of Summit/Portage County line. DRAINAGE AREA.—1.45 mi².
PERIOD OF RECORD.—October 2000 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 1,027 ft above sea level (from topographic map). REMARKS.—Records fair except for periods of estimated record and discharge between 0.0 ft³/s and 0.2 ft³/s, which are poor.

					272							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.02 0.01 0.00 0.00 0.03	0.00 0.00 0.00 0.00 0.01	0.02 0.02 0.02 0.01 0.01	5.7 4.6 2.1 1.3 0.92	0.06 0.07 0.17 1.2 2.6	0.95 1.0 1.2 1.00 2.2	1.2 1.0 0.82 2.4 20	0.17 0.53 0.35 0.27 1.1	7.4 1.8 1.1 0.98 0.92	0.04 0.04 0.04 0.06 0.02	0.66 0.50 0.50 0.47 0.38	0.40 0.80 0.39 0.22 0.12
6 7 8 9 10	0.01 0.00 0.00 0.00 0.00	0.02 0.02 0.01 0.00 0.10	0.01 0.01 0.01 0.00 0.00	0.68 0.62 0.71 1.2 1.8	3.3 1.1 0.83 0.60 0.47	4.4 4.7 2.6 10 4.8	4.5 5.2 6.8 2.8 1.8	1.1 0.55 0.84 5.5	0.72 0.47 0.54 1.1 0.58	0.02 5.5 59 23 5.7	0.32 0.87 1.8 0.95 1.1	0.10 0.08 0.08 0.09 0.12
11 12 13 14 15	0.00 0.00 0.00 0.00	0.06 0.01 0.01 0.00 0.00	0.06 0.10 0.08 0.28 0.34	1.1 0.60 0.35 0.26 0.21	0.39 0.33 0.28 0.23 0.22	2.3 2.0 8.5 7.3 6.3	1.3 0.97 0.74 0.58 0.47	4.2 3.1 3.6 1.8 1.6	0.43 2.3 8.8 2.2 1.1	4.2 2.0 0.96 0.63 0.39	0.58 0.37 0.26 0.21 0.18	0.09 0.08 0.07 0.07
16 17 18 19 20	0.01 0.02 0.00 0.08 0.02	0.03 0.05 0.02 0.07 0.02	0.30 0.24 0.22 0.38 0.98	0.17 0.15 0.17 0.12 0.10	0.19 0.17 0.17 0.16 0.16	6.6 4.6 2.9 1.9	0.38 0.32 0.28 0.26 0.34	8.9 3.1 1.3 0.79 2.5	0.65 0.51 0.66 0.68 0.57	0.28 0.21 0.12 0.08 0.05	0.19 0.16 0.12 0.09 0.12	0.08 0.08 0.06 2.7 1.8
21 22 23 24 25	0.01 0.00 0.00 0.00 0.08	0.02 0.18 0.04 0.02 0.02	0.80 0.56 0.50 0.29 0.19	0.08 0.07 0.07 0.04 0.04	0.17 1.1 4.3 6.3 3.4	1.4 1.6 1.2 0.93 0.91	0.88 0.76 0.59 0.43 0.35	7.8 1.8 1.0 1.1 0.79	0.34 0.24 0.18 0.12 0.07	27 83 14 3.0 1.6	0.13 0.16 0.07 0.08 0.06	0.58 1.4 3.6 1.1 0.79
26 27 28 29 30 31	0.04 0.01 0.01 0.01 0.02 0.01	0.02 0.02 0.01 0.01 0.02	0.15 0.20 0.18 0.17 0.66 5.9	0.04 0.04 0.04 0.05 0.05 0.06	2.1 e1.7 1.1 	3.4 2.1 1.2 3.9 3.5 1.6	0.29 0.24 0.21 0.19 0.17	0.57 0.44 0.40 0.33 0.27	0.05 0.04 0.04 0.04 0.04	1.2 6.5 18 2.9 1.2 0.81	0.08 0.11 0.06 0.07 0.07	0.59 13 5.6 1.6 0.96
TOTAL MEAN MAX MIN CFSM IN.	0.39 0.013 0.08 0.00 0.01	0.79 0.026 0.18 0.00 0.02 0.02	12.69 0.41 5.9 0.00 0.28 0.33	23.44 0.76 5.7 0.04 0.52 0.60	32.87 1.17 6.3 0.06 0.81 0.84	98.49 3.18 10 0.91 2.19 2.53	56.27 1.88 20 0.17 1.29 1.44	80.80 2.61 13 0.17 1.80 2.07	34.67 1.16 8.8 0.04 0.80 0.89	261.55 8.44 83 0.02 5.82 6.71	10.78 0.35 1.8 0.06 0.24 0.28	36.73 1.22 13 0.06 0.84 0.94
		STATIST	ICS OF MC	ONTHLY MEAN	DATA FO	R WATER	YEARS 2000	- 2003,	BY WATER	YEAR (WY)		
MEAN MAX (WY) MIN (WY)	0.13 0.21 2002 0.013 2003	0.23 0.48 2002 0.026 2003	1.12 1.68 2001 0.41 2003	0.86 0.96 2001 0.76 2003	1.81 2.26 2001 1.17 2003	2.39 3.18 2003 1.34 2001	1.98 2.63 2002 1.42 2001	1.92 3.02 2002 0.14 2001	1.07 2.01 2002 0.039 2001	2.71 8.44 2003 0.003 2001	0.21 0.46 2000 0.007 2002	0.33 1.22 2003 0.008 2002
		ATISTICS		FOR 2002	CALENDAR	YEAR		003 WATER	R YEAR	WATER	YEARS 2000	0 - 2003
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS				412.85 1.13 28 0.00 0.00 0.00 0.78 10.59 2.6 0.18 0.00	May 13 Jul 10 Jul 24		649.4 1.7 8 0.0 0.0 19 14.2 0.0 1.2 16.6 4.	33 Jul 00 Oct 00 Oct 08 Jul 21 Jul 00 Oct 23 34	22 3 7 21a 21 3	1 0 0 0 14 0 0 11	.18	2003 2000 22 2003 18 2001 9 2001 21 2003 21 2003 13 2001

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

e Estimated.

04206021 POWERS BROOK AT STOW, OHIO

LOCATION.—Latitude 41°12′04", longitude 81°27′16", Summit County, Hydrologic Unit 04110002, on right upstream bank at Meadowbrook Lake outlet structure, 650 ft south of intersection of Hudson Road and Norton Road, 1.4 mi upstream from confluence with Mud Brook, in City of Stow, 3.25 mi west of Summit/Portage County line.

DRAINAGE AREA.—5.87 mi².

PERIOD OF RECORD.—October 2000 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 1,003 ft above sea level (from topographic map).

REMARKS.—Records fair except for periods of estimated record and discharge less than 4 ft³/s, which are poor.

		DISCH	IARGE, CU	BIC FEET PER		, WATER \ Y MEAN V		BER 2002 T	О ЅЕРТЕМ	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.2 1.3 2.0 2.4 2.8	1.6 0.99 0.95 1.1 2.0	2.2 1.5 1.3 1.0	30 20 7.3 4.5 3.1	1.8 2.0 2.6 27 8.3	8.1 10 11 10 23	e5.0 e4.6 e4.2 e18 e59	e3.2 e8.1 e3.5 e3.4 e9.8	26 6.2 4.6 3.9 3.1	0.82 e3.2 e3.3 e8.1 e4.4	4.8 4.0 4.5 4.8 6.3	17 15 2.0 0.97 0.53
6 7 8 9 10	1.7 1.2 1.2 1.1	4.0 2.8 2.5 3.6 8.4	1.0 0.98 0.99 0.98 1.0	3.0 2.3 3.5 6.9 7.2	6.9 4.8 3.9 3.3	22 20 21 57 33	e14 e23 e12 e6.7 e5.9	e4.1 e3.7 e11 e30 e41	1.7 1.3 4.9 8.2 1.8	e4.6 e8.4 e180 e120 e60	5.3 6.3 10 13 11	0.37 0.21 0.22 0.30 0.52
11 12 13 14 15	1.1 1.2 1.2 0.97 0.96	11 1.9 0.96 0.87 0.94	1.5 3.2 3.9 11 5.3	3.8 2.1 1.4 1.1	3.2 2.8 2.8 2.7 2.4	16 14 41 29 23	e4.7 e4.2 e4.0 e3.9 e3.7	e17 e21 e10 e5.7 e38	2.8 24 46 8.4 3.7	e28 e7.0 e5.6 e4.4 e3.2	3.1 1.8 1.3 0.99 0.99	0.53 0.53 0.48 0.52 1.1
16 17 18 19 20	2.1 1.1 0.84 4.7 1.2	2.4 3.7 3.1 5.9 4.7	2.6 1.5 1.4 4.2 15	0.99 0.98 0.86 0.87 0.97	2.4 2.4 2.4 2.7 3.2	24 20 15 13 11	e4.2 e3.7 e3.5 e3.4 e3.9	e70 e17 4.9 3.0 24	2.1 2.4 3.0 4.7 2.1	e3.3 e3.0 e3.0 e2.9 e2.9	0.99 0.77 0.59 0.57 0.57	0.85 0.61 0.65 48 7.4
21 22 23 24 25	0.70 0.62 0.65 0.76 3.1	3.5 17 9.6 3.3 2.2	4.9 4.1 3.7 1.7 2.2	0.94 1.0 1.0 1.0	3.9 26 51 25 21	11 10 6.4 3.5 4.7	e6.5 e3.8 e3.6 e3.5 e3.4	34 7.0 5.0 5.2 3.1	1.1 0.67 0.48 0.42 0.42	e140 e560 e370 e150 e31	0.63 0.63 0.57 0.56 0.57	2.5 20 15 4.1 5.0
26 27 28 29 30 31	4.7 0.84 0.69 1.0 0.79	1.3 1.3 1.2 1.1 1.8	1.4 1.2 1.1 1.2 13 47	1.1 1.2 1.2 1.5 1.4	19 16 11 	20 7.9 4.8 22 11 5.7	e3.4 e3.3 e3.3 e3.2 e3.2	2.4 2.1 1.9 1.4 1.2	0.41 0.48 0.39 0.40 0.60	e6.2 e37 e56 13 6.4 5.2	4.9 5.6 0.85 0.54 0.94 0.47	2.3 67 16 5.0 3.1
TOTAL MEAN MAX MIN CFSM IN.	46.72 1.51 4.7 0.62 0.26 0.30	105.71 3.52 17 0.87 0.60 0.67 STATIS	143.05 4.61 47 0.98 0.79 0.91	114.61 3.70 30 0.86 0.63 0.73	263.6 9.41 51 1.8 1.60 1.67	528.1 17.0 57 3.5 2.90 3.35 R WATER	228.8 7.63 59 3.2 1.30 1.45 YEARS 2000	457.7 14.8 70 1.2 2.52 2.90	166.27 5.54 46 0.39 0.94 1.05 BY WATER	1830.92 59.1 560 0.82 10.1 11.60 YEAR (WY)	97.93 3.16 13 0.47 0.54 0.62	237.79 7.93 67 0.21 1.35 1.51
MEAN MAX (WY) MIN (WY)	STATISTICS OF 3.33 3.98 6.22 5.29 6.18 7.70 2002 2002 2001 1.51 2.23 4.61 2003 2001 2003			4.50 5.00 2002 3.70 2003 FOR 2002	8.39 9.41 2003 6.81 2002	10.7 17.0 2003 6.27 2001	8.55 11.5 2002 6.52 2001	10.4 14.8 2003 2.81 2001	6.29 11.3 2002 2.06 2001	20.5 59.1 2003 0.87 2001	2.84 5.76 2000 1.16 2002 EARS 2000	3.87 7.93 2003 1.75 2001
ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC	SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			2166.78 5.94 137 0.12 0.25 1.01 13.73 11 3.2 0.62	May 13 Sep 12 Sep 7		422111 5 006 130126	20 .6 Jul 21 Sep 38 Sep 46 Jul 21 Jul 20 Jun 97 75 23 .3	22 7 5 22a 22	7. 11 4. 5. 0. 0. 6 13. 0. 1.	40 .6 00 Jul 12 Sep 23 Jul 46 Jul 221 Jul 09 Sep 26 12 14 .1	2003 2001 22 2003 12 2002 27 2001 22 2003 22 2003 13 2002

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

04206029 MUD BROOK AT STOW, OHIO

LOCATION.—Latitude 41°11′11", longitude 81°29′21", Summit County, Hydrologic Unit 04110002, on right upstream bank at Wyoga Lake outlet structure, 0.35 mi north of East Steel Corners Road and 0.28 mi east of Wyoga Lake Road, 7.2 mi upstream from confluence with Cuyahoga River, in City of Stow, 5.04 mi west of Summit/Portage County line.

DRAINAGE AREA.—17.2 mi².

PERIOD OF RECORD.—October 2000 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 966 ft above sea level (from topographic map).

REMARKS.—Records fair except for discharge less than 1.4 ft³/s or greater than 150 ft³/s, which are poor.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	3.3 2.8	2.3	3.9 3.7	112 109	3.6 3.9	16 16	20 15	3.4 9.3	129 79	1.8 1.6	23 17	10 48
3 4	2.7	1.9 1.8	3.5 3.2	72 38	4.2 28	16 15	11 15	9.0 7.6	34 22	1.3 2.8	14 14	22 9.9
5	2.5	1.9	3.0	22	41	28	128	10	17	7.0	15	6.2
6	2.4	2.6	2.8	17	23	47	143	17	13	3.9	23	4.9
7 8	2.1 1.9	2.7	2.6 2.7	13 12	17 12	32 32	94 98	9.1 13	10 9.0	5.4 225	19 18	4.3 4.1
9 10	1.9	2.5	2.5	15 22	8.5 7.4	90 76	68 37	48 128	25 17	373 260	16 21	3.9 3.6
11	1.6	10	2.7	19	6.8	43	23	162	9.8	141	15	3.5
12	1.3	11	3.0	13	6.0	28	15	98	20	71	10	3.2
13 14	1.3 1.3	6.2 3.9	3.9 9.4	9.4 7.5	5.3 4.9	53 83	11 8.7	71 43	99 81	31 16	8.1 6.8	3.1 3.2
15	1.3	3.0	17	6.3	4.4	71	7.8	34	38	9.0	5.6	3.6
16 17	1.7	3.4 4.8	12 7.6	5.5 5.1	4.2	66 61	7.0 6.2	179 149	20 13	5.9 3.7	5.0 4.6	3.7 3.5
18	1.8	6.5	5.8	4.7	4.4	48	5.9	75			4.2	3.3
19 20	2.9 4.4	6.9 8.0	6.7 23	5.5 5.1 4.7 4.5 4.5	4.2 4.2	34 27	6.9 7.7	35 33	12 12	2.5 1.9 1.3	3.9 3.7	48 70
21	3.0	6.9	24	4.2	4.7	22	21	100	7.4	68	3.6	23
22 23	2.4	11 24	15 13	4.0 3.9	4.7 13 94	22 20	13 8.1	80 40	5.3 4.1	732 680	3.5 3.2	18 59
24 25	1.9 2.2	17 10	9.2 8.1	3.9	75 50	16 13	6.3	27 19	3.2	404 199	2.9	31 16
26	8.4			3.9	30	28	4.9 4.5			91	5.6	11
27	7.7	5.8	7.1 6.0 5.4 5.0 8.2	3.8	23	30	4.1	10	2.2	66	10	84
28 29	4.5 3.2	4.9 4.1	5.4 5.0	3.4 3.7	19	19 27	3.8 3.6	8.7 7.6	2.0 1.7	191 157	8.1 5.2	142 71
30 31	3.0 2.9	3.6	8.2 75	3.9 3.8 3.4 3.7 3.6		47 29	3.4	6.4 50	2.5 2.2 2.0 1.7 1.8	73 35	4.8 4.3	25
TOTAL		181.5	75	3.0	506.4		800.9				300.9	742.0
MEAN	2.75	6.05	9 60	17.9	18.1	1155 37.3 90 13 2.17	26.7	48.2	704.7 23.5 129	125	9.71	24.7
MAX MIN	8.4 1.3	24 1.8	75 2.5	112	94	90 13	143 3.4	179 3.4	129 1.7	732 1.3	23 2.8	142 3.1
CFSM IN.	0.16	0.35	0.56	1.04	1.05	2.17	1.55	2.80	1.37	7.24	0.56	1.44
IN.	0.18	0.39	0.64	1.20	1.10		1.73 YEARS 2000		1.52	8.35 VEAR (WV)	0.65	1.60
MEAN	7.42	7.27	17 1	11 3	23.0	28.3	27.7		18.9	43.6	6.74	10.2
MAX	12.4	10.9	21.2	17.9 2003	25.5	37.3	37.4	48.2	28.9	125	10.7	24.7
(WY) MIN	2002 2.75	2002 4.89	9.60	7.23	2002 18.1	2003 17.7	2002 19.1	2003 6.98	2002 4.29	2003 1.41	2000 3.15	2003 4.32
(WY)	2003	2001	2003		2003	2001	2001	2001	2001	2001	2002	2001
	SUMMARY ST	ATISTICS		FOR 2002		YEAR		03 WATER	YEAR	WATER	YEARS 2000	- 2003
ANNUAL ME				6113.91 16.8			10683. 29.			1	9.5	
HIGHEST A	ANNUAL MEA									2	9.3	2003
	NUAL MEAN DAILY MEAN			249	May 14		73	2 Jul :	22	1	0.3 732 Jul 2	2001 22 2003
LOWEST DA	AILY MEAN EVEN-DAY M	TNITMIIM		249 0.40 0.95	Jun 27 Aug 7		73 1. 1.	3 Oct :	12 10	0	.10 Jul 1	L8 2001 L7 2001
MAXIMUM E	PEAK FLOW			0.55	, 1109 ,		81	9 Jul :	22a		819 Jul 2	22 2003
	PEAK STAGE NEOUS LOW						18.07 Jul 22 0.95 Jul 20			18	.07 Jul 2	22 2003 L8 2001
	NOFF (CFS			0.97 13.22			1.70 23.11			732 Jul 22 2003 0.10 Jul 18 2001 0.16 Jul 17 2001 819 Jul 22 2003 18.07 Jul 22 2003 0.10 Jul 18 2001 1.13 15.39		
10 PERCEN	IT EXCEEDS			38	3		7	5			47	
	IT EXCEEDS IT EXCEEDS			6.7 1.8			8. 2.				6.7 2.0	
							2.			•	•	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

04206038 CRYSTAL CREEK AT STOW, OHIO

LOCATION.—Latitude 41°10′19", longitude 81°28′41", Summit County, Hydrologic Unit 04110002, at double box concrete culvert under Hudson Road, 0.6 mi north of intersection of Hudson Road and Graham Road, 0.4 mi upstream from confluence with Mud Brook, in City of Stow, 4.47 mi west of Summit/Portage County line.

DRAINAGE AREA.—3.11 mi².

PERIOD OF RECORD.—October 2000 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 969 ft above sea level (from topographic map).

REMARKS.—Records fair except for discharges less than 0.4 ft³/s, which are poor.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	0.66 0.61	0.71 0.71	1.1	17 8.7	0.62	1.6 2.6	1.8 1.5	0.40	7.7 1.9	0.49	1.4 0.54	18 11
3 4	0.65	0.76 0.82	1.1	3.3	0.91	2.1		0.63 0.55	1.9 2.1 1.5	0.44	0.67	1.4 0.93
5 6	0.92 0.78	1.0 1.6	0.90 0.86	1.8	2.8 1.6	13 4.3		1 1	1.5	1.3	1.9 0.87	0.71
7 8	0.71 0.70	1.0 0.88	0.84 0.84	1.6 2.1	1.2 0.95	4.3 2.8 11 22	16 6.9	0.75 6.1	0.83 5.6	1.5 4.5 143 94	0.46 0.40	0.55 0.55
9 10	0.73 0.67	0.88	0.82 0.76	3.6 3.1	0.80	3.3	3.1 2.5	22 30	1.2	94 44	2.1 0.94	0.55 0.52
11 12	0.65 0.65	5.7 1.1	0.76 1.1	1.7 1.2	0.80 0.67	2.1 4.7	1.5 1.2	11 14	1.5 15 25	19 3.3	0.29 0.22	0.43 0.45
13 14	0.65 0.68	0.94 0.84	1.8 5.5	0.98 0.86	0.61 0.60	19 6.0	1.0 0.89	6.0 2.3	25 3.2	2.2 1.3	0.22 0.20	0.46 0.41
15 16	0.71 0.89	0.80 1.8	2.2 1.6	0.79 0.71	0.57 0.52	6.4 5.7	0.80	27 52	1.8	0.35	0.25	0.86
17 18	0.89 0.96 0.79	2.5 1.7	1.4	0.71	0.53	4.0	0.73 0.62	11 3.5	1.7	0.20	0.23	0.44
19 20	3.5	2.7	3.4 7.1	0.71	0.55		0.56	2.7 15	4.5	0.17 0.14	0.20	44
21 22	0.73 0.71	1.0 7.0	2.4	0.61	0.65 20 24	2.5	3.0 0.86	15 3.1	0.88	104 437	0.19 0.17	1.3
23 24	0.71 0.71 0.71	3.1 1.7	2.1	0.60 0.61	24 4.7	1.5	0.68	2.9	0.69	289 117	0.17 0.19 0.12	8.4
25	3.3	1.4	1.2	0.61	2.7	2.2	0.54	1.3	0.58	22	0.12	4.5
26 27	3.7 0.93	1.1 1.1	1.4	0.60	1.9 1.6	9.1 2.4	0.50 0.47 0.44 0.40	1.1 0.79	0.52 0.64	2.7 27	1.9 14	1.4 56
28 29	0.78 0.88	1.1	1.2	0.60 0.59	1.6	1.6 12	0.44	0.82 0.73	0.41 0.69	41	0.74 1.2	7.8 2.9
30 31	1.0 0.80	1.0	12 27	0.56 0.55		3.3	0.40	1.2 39	1.0	2.3	1.1 0.50	1.9
TOTAL MEAN	31.96 1.03	49.74 1.66	88.63 2.86	60.70 1.96	90.48		114.88 3.83		91.96 3.07	1374.30 44.3	32.59 1.05	195.34 6.51
MAX MIN	3.7 0.61	7.0 0.71	27 0.76	17 0.55	24 0.52	22 1.2	44	52	25 0.41	437 0.14	14 0.12	56 0.41
CFSM IN.	0.33	0.53	0.92	0.63	1.04	1.66		2.94	0.99	14.3 16.44	0.34	2.09
111.	0.30									YEAR (WY)	0.35	2.54
MEAN	1.70	1.60	3.17	1.82	3.15	4.10	3.99	6.48	3.60	15.2	1.50	2.85
MAX (WY)	2.45 2002	2.42 2002	4.08 2001	1.96 2003	3.23 2003	5.16 2003	5.42 2002	9.33 2002	6.84 2002	44.3 2003	3.19 2000	6.51 2003
MIN (WY)	1.03 2003	0.72 2001	2.58 2002	1.69 2001	3.01 2001	2.82 2001	2.73 2001	0.98 2001	0.90 2001	0.66 2002	0.88 2001	0.90 2001
	SUMMARY S'	TATISTICS		FOR 2002	CALENDAI	R YEAR	FOR 2	2003 WATER	R YEAR	WATER Y	ZEARS 2000	- 2003
ANNUAL I				1207.9	3		2574. 7.			4	.09	
HIGHEST	ANNUAL MEA										.05	2003 2001
HIGHEST	DAILY MEAN	1		10 0.2 0.2	9 May 1	3	4	137 Jul	22	4	137 Jul 2	22 2003
ANNUAL S	OWEST DAILY MEAN NNUAL SEVEN-DAY MINIMUM			0.2	2 Aug 8 4 Aug '	7	0. 0.	.12 Aug	19	0.	04 Sep	3 2001 2 2001
MAXIMUM	IAXIMUM PEAK FLOW IAXIMUM PEAK STAGE						17.	529 Jul .54 Jul	22a 22	10. 0. 6. 17. 0.	529 Jul 2 54 Jul 2	22 2003 22 2003
ANNUAL I	NSTANTANEOUS LOW FLOW NNUAL RUNOFF (CFSM) 1.06						0. 2.		24			1 2001
ANNUAL I	RUNOFF (INC ENT EXCEEDS	CHES)		14.4 6.			30.	.79 12		17. 7	86	
50 PERCI	ENT EXCEEDS	5		1.	0			L.2 .47		0.	.93	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

04206043 MUD BROOK AT CUYAHOGA FALLS, OHIO

LOCATION.—Latitude 41°09′10", longitude 81°30′32", Summit County, Hydrologic Unit 04110002, at State Road bridge, 190 feet north of intersection of State Road and Graham Road, 3.3 mi upstream from confluence with Cuyahoga River in City of Cuyahoga Falls, 6.08 mi west of Summit/Portage County

DRAINAGE AREA.—25.6 mi².

PERIOD OF RECORD.—October 2000 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 942 ft above sea level (from topographic map).

REMARKS.—Records good except for periods of estimated record and discharge less than 2 ft³/s, which are poor.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3 4 5	4.7 3.5 2.7 3.0 3.4	5.3 4.7 4.2 4.4 4.3	11 9.8 8.4 6.8 6.5	164 149 103 62 39	7.6 7.9 10 60 56	e22 e22 e22 e21 e52	e27 e22 e17 e28 e182	6.3 26 14 11 29	135 91 46 28 22	4.5 5.0 2.8 6.4 13	32 24 21 19 22	46 73 32 14 8.0		
6 7 8 9 10	2.7 2.3 1.9 1.6 1.4	7.6 7.0 6.3 6.1 16	6.0 5.6 5.6 5.6 5.2	30 23 25 33 40	39 28 20 16 14	e56 e46 e54 e124 e103	e173 e138 e119 e83 50	24 16 37 80 150	17 14 23 41 25	8.6 16 285 371 292	28 26 22 21 26	5.8 4.7 4.0 3.8 3.4		
11 12 13 14 15	1.3 1.5 1.6 2.0	31 20 13 9.3 6.6	6.3 11 13 30 29	33 24 18 14	13 11 9.8 e9.0 e8.3	e61 e40 e77 e99 e92	31 21 16 13 12	181 135 90 55 85	19 50 118 94 49	184 90 44 24 16	20 14 11 9.5 7.9	3.3 3.2 3.0 3.0 4.5		
16 17 18 19 20	3.7 2.7 2.5 14 8.5	11 17 17 22 19	24 17 14 21 50	10 9.8 8.4 8.2 8.2	e7.9 e7.6 e7.4 e7.0 e7.0	e82 e74 e59 e45 e36	11 9.6 7.6 7.3 6.7	223 176 95 48 59	27 19 18 24 20	13 9.7 7.1 5.6 4.7	7.2 6.1 5.1 4.5 4.0	3.6 3.3 3.3 118 94		
21 22 23 24 25	6.1 4.4 3.3 3.4	17 48 42 30 20	44 30 25 19 17	7.5 7.0 6.8 6.7 6.6	e7.1 e48 e122 e99 e68	e31 e28 e24 e20 e20	16 20 13 9.6 7.7	118 97 55 36 25	13 10 7.5 6.3 5.5	228 727 723 520 270	4.0 3.7 3.5 3.1 3.1	36 54 80 46 29		
26 27 28 29 30 31	21 14 8.6 8.7 6.8 5.8	15 12 10 9.0 9.0	16 13 12 11 35 126	6.9 6.6 6.7 7.1 6.9 6.7	e47 e33 e24 	e45 e40 e26 e45 e48 e38	6.7 6.2 5.8 5.8 5.2	18 15 13 12 10 96	4.8 5.1 4.3 5.5 6.5	120 114 233 197 95 50	7.4 65 12 8.8 7.8 5.4	16 161 175 101 38		
TOTAL MEAN MAX MIN CFSM IN.	161.0 5.19 21 1.3 0.20 0.23	443.8 14.8 48 4.2 0.58 0.64	633.8 20.4 126 5.2 0.80 0.92	889.1 28.7 164 6.6 1.12 1.29	794.6 28.4 122 7.0 1.11 1.15	1552 50.1 124 20 1.96 2.26	1070.2 35.7 182 5.2 1.39 1.56	2035.3 65.7 223 6.3 2.56 2.96	948.5 31.6 135 4.3 1.24 1.38	4679.4 151 727 2.8 5.90 6.80	454.1 14.6 65 3.1 0.57 0.66	1169.9 39.0 175 3.0 1.52 1.70		
				ONTHLY MEAN										
MEAN MAX (WY) MIN (WY)	10.7 17.1 2002 5.19 2003	12.9 15.3 2002 8.60 2001	26.0 29.3 2001 20.4 2003	18.9 28.7 2003 12.6 2002	31.9 36.5 2001 28.4 2003	37.8 50.1 2003 24.9 2001	36.0 45.1 2002 27.3 2001	41.6 65.7 2003 10.9 2001	24.7 34.7 2002 7.78 2001	52.8 151 2003 3.40 2001	11.4 18.9 2000 5.60 2001	15.9 39.0 2003 7.03 2001		
	SUMMARY ST	ATISTICS		FOR 2002	CALENDAR	YEAR	FOR 2	003 WATER	YEAR	WATER Y	EARS 2000	- 2003		
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS					May 14 Aug 13 Aug 7		1 11 12. 1 1. 21.	.6 27 Jul: .3 Oct: .6 Oct: 20 Jul: 93 Jul: .2 Oct: 59	11 8 21a 21	40 15 7 0 0 11 12 0 1 14	67 Jul 95 Jul 20 Jul 93 Jul 40 Jul 04	2003 2001 22 2003 18 2001 18 2001 21 2003 21 2003 19 2001		

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

04206212 NORTH FORK AT BATH CENTER, OHIO

LOCATION.—Latitude 41°10′08", longitude 81°38′04", Summit County, Hydrologic Unit 04110002, on left upstream side of bridge on Bath Road, 750 ft east of Cleveland-Massillon Road at Bath Center, Ohio, 3.1 mi northwest of Akron corporate boundary.

DRAINAGE AREA.—5.58 mi².

PERIOD OF RECORD.—October 1991 to current year.

GAGE.—Water-stage recorder. Datum of gage is 932.57 ft above sea level (North American Vertical Datum of 1988).

REMARKS.—Records fair except for discharge less than 2.3 ft³/s, which are poor.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	0.93 0.59	1.2 1.1	3.3 2.7	28 14	1.5 1.7	4.3 5.4	5.2 4.4	1.7 19	13 4.8	1.6 1.4	3.4 3.5	10 7.0
3	0.49	1.0	2.3	7.2	2.1	5.0	3.9	3.2	4.6	1.2	3.7	2.5
4 5	0.59 0.99	1.0 1.5	2.0	5.1 4.1	24 7.5	4.4 19	82	2.3 11	4.3 4.2	3.0 2.4	3.2 2.8	1.7 1.2
6	0.55	3.0	1.9	3.8	4.9	11	14	4.2	3.1	1.3	2.9	1.1
7 8	0.50 0.44	1.9 1.9	1.8 1.7	4.1 4.4	3.4 3.0	19	43 22	2.7 14 44	2.8 23	3.9 113	4.5 3.1	1.1 1.2
9 10	0.41 0.45	1.6 6.9	$\frac{1.4}{1.4}$	8.6 7.5	2.4	11 7.9 19 39 10	11 7.4	44 44	14 4.2	28 43	2.6 2.3	1.1 1.1
11	0.41	15	1.4	4.3	2.4	8.0	5.7	10	3.5	12	2.2	1.0
12 13	0.48 0.48	2.9 2.0	1.8 3.1	3.2 2.7	2.1	8.0 15 40 21	4.6 3.9	10 16 17 5.7	100 45 38	5.1 3.3	2.2	0.96 0.91
14 15	0.48	1.5 1.4	19 8.3	2.5	1.9 1.7	21 29	3.4 3.1	5.7 7.6	38 11	2.8	2.0 2.1	0.71 2.0
16	0.71	2.8	5.7	2.2	1.4	29	2.9	19	6.3	2.2	3.6	0.83
17 18	0.86 0.55	3.4 2.9	3.5 3.9	2.2	2.0 1.9	18 12	2.8	6.3 4.1 3.6	5.1 4.5	1.8 1.7	2.4 1.5	0.56 0.51
19 20	2.8 1.1	3.9 3.0	10 17	2.3	1.7 2.1	8.1 8.8	2.6 3.0	3.6 43	5.1 4.0	1.6 1.4	1.2 1.1	35 4.2
21 22	0.63 0.54	2.3 15	5.8 4.9	1.9	3.4 37 52	7.4 5.8	5.4 3.0	23 6.6		271	1.1	1.5 19
23	0.61	8.4	4.1			4.4	2.8	4./	2.8	86 18	0.95	8.6
24 25	0.76 2.6	5.2 4.4	2.9 3.0	3.3 3.1	15 7.9	3.7 4.5	2.5 2.3		2.4	8.9 5.0	0.80 0.80	2.5
26 27	5.1	3.2	3.2	2.9	6.5	16	2.4	3.1	2.1	3.7	0.80	1.3
28	1.9 1.4	3.2 2.8	2.4 2.5	2.9 2.9	6.1 4.5	5.7 4.4	2.1	2.9	2.1 1.9 1.7 1.5	50 29	8.3 1.5	9.3
29 30	1.5 2.2	2.5 3.1	2.3 14	2.6 2.7		23 9.1	1.9 1.4	2.4	1.5 1.8	9.2 5.3	1.4 1.8	3.8 2.6
31	1.7		71	1.8		5.7				2.0	1.1	
TOTAL MEAN	33.23 1.07	110.0 3.67	210.3 6.78	142.6 4.60	7.30	403.6 13.0	290.3 9.68	386.0 12.5	323.5 10.8	723.2 23.3	71.85	199.28 6.64
MAX MIN	5.1 0.41	15 1.0	71 1.4	28 1.8		40		52	100		8.3 0.80	74 0.51
CFSM	0.19	0.66	1.22	0.82	1.31	2.33	1.73	2.23	1.93	4.18	0.42	1.19
IN.	0.22	0.73 STATIST	1.40	0.95 ONTHLY MEAN	1.36	2.69 R WATER Y	1.94 EARS 1992	2.57	2.16 BY WATER	4.82 YEAR (WY)	0.48	1.33
MEAN	2.88	5.80	6.62	9.15	8.27	10.6	11.4	6.95	5.09	4.80	2.23	2.88
MAX (WY)	7.75 1997	15.3 1993	18.3 1997	17.4 1993	12.6 1996	22.3 1993	17.5 1998	12.5 2003	11.7 1997	23.3	6.94 1992	7.21 1992
MIN	0.66	1.14	1.97	3.32	4.16	4.52	6.97 2001	1.98	1.01	0.44	0.27	1.01
(WY)	1995 SUMMARY ST	1995 ATTSTICS		2002 FOR 2002	1993 CALENDAR			1999 03 WATER	1999 YEAR	2001 WATER Y	1993 EARS 1991	2001
ANNUAL TO				2016.94			3098.2					
ANNUAL ME	EAN ANNUAL MEA	N		5.53			8.4	.9		6. 8.	38 97	1993
LOWEST AN	NNUAL MEAN	ī		90	Apr 3		27	1 7,1 2	11	3.	51	2001 21 2003
LOWEST DA	AILY MEAN			90 0.20 0.26	Sep 12		27 0.4 0.4	1 Oct	9	2 0. 0. 18 15. 0.	07 Jul	3 1992
	EVEN-DAY M PEAK FLOW	IINIMUM		0.26	Sep 7		181	.5 Oct .0 Jul 2	8 1a	18	10 Aug 10 Jul	7 1993 21 2003
	PEAK STAGE NEOUS LOW						15.9 0.3	3 Jul 2 0 Oct 2	1	15. 0.	93 Jul 01 Jul	21 2003 27 1997
ANNUAL RU	JNOFF (CFS JNOFF (INC	M)		0.99 13.45			1.5	52		1. 15.		
10 PERCEN	NT EXCEEDS			13			1	.9			14	
	NT EXCEEDS NT EXCEEDS			2.8 0.55			3. 1.				.7 53	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

04206220 YELLOW CREEK AT BOTZUM, OHIO

LOCATION.—Latitude 41°09′47″, longitude 81°35′02″, Summit County, Hydrologic Unit 04110002, on right downstream bank near Bath Road bridge over Yellow Creek, 0.5 mi upstream from confluence with Cuyahoga River, 0.7 mi west of Akron sewage treatment plant.

DRAINAGE AREA.—30.7 mi².

PERIOD OF RECORD.—October 1991 to current year.

GAGE.—Water-stage recorder. Datum of gage is 739.09 ft above sea level (North American Vertical Datum of 1988).

REMARKS.—Records fair except for periods of estimated record, which are poor.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUI	AUG	SEP
DA1 1	8.0	8.1	16	138	г <u>ь</u> ь e15	e20	34	e10	e200	e10	30	5EF 47
2	6.8	7.4	15	72	e15	e23	e30	e40	e135	e10	29	43
3 4	6.5 6.7	7.4 7.6	e13 e12	41 29	e22 142	e19 e24	e25 e50	e20 e15	e70 e40	12 14	28 25	19 14
5	11	8.4	e11	23	e36	75	e270	e45	e35	16	23	11
6 7	7.8 8.8	13 10	e10 e9.0	e21 e20	e26 e22	e50 e27	e260 e205	e35 e25	e25 e20	12 18	24 28	10 9.4
8	9.5	9.6	e8.0	e20 e21	e22 e19	68	e180	e55	e20 e35	463	29	9.1
9 10	7.1 6.3	8.8 15	e7.0 e7.0	e26 37	e16 e14	196 e48	e125 e75	e120 e225	e60 e40	268 113	22 19	8.7 8.2
11	6.1	60	e8.0	e22	e13	e27	e45	e270	e30	65	17	7.9
12 13	5.9 5.8	17 12	e9.0 e15	e19 e16	e12 e11	55 172	e30 e25	e200 e135	e75 e175	32 24	16 15	7.6 9.4
14	5.9	10	60	e14	e11	104	e20	e80	e140	20	14	7.4
15	5.8	9.2	38	e12	e10	114	e20	e130	e75	18	13	16
16 17	7.3 8.0	13 16	29 20	e11 e10	e10 e10	123 91	e15 e15	e335 e265	e40 e30	16 15	17 18	8.8 7.4
18 19	6.9 14	14 16	18 33	e10 e9.0	e11 e12	61 44	e10 e10	e140 e70	e25 e35	14 13	14 13	7.4 143
20	11	16	72	e9.0	e13	43	e10	e90	e30	12	12	36
21 22	7.9 8.5	13 54	35 27	e10 e10	e14 e100	39 34	e25 e30	e175 e145	e20 e15	553 891	14 11	18 66
23	8.5	41	25	e10	221	27	e20	e80	e10	126	10	60
24 25	7.2 11	23 20	18 e16	e11 e11	e66 e34	24 25	e15 e10	e55 e40	e10 e10	58 38	9.8 9.4	23 21
26	25	16	e15	e12	e26	75	e10	e25	e10	29	9.4	15
27 28	11 8.8	15 14	e15 e14	e12 e13	e21 e20	38 28	e10 e10	e20 e20	e10 e10	312 364	29 12	354 75
28 29	8.6	13	14	e13	e20 	28 96	e10 e10	e20 e20	e10 e10	75	9.9	33
30 31	10 9.2	14	45 244	e14 e14		57 37	e10 	e15 e145	e10	43 33	12 10	24
TOTAL	270.9	501.5	878.0	690.0	942	1864	1604	3045	1430	3687	542.5	1119.3
MEAN MAX	8.74 25	16.7 60	28.3 244	22.3 138	33.6 221	60.1 196	53.5 270	98.2 335	47.7 200	119 891	17.5 30	37.3 354
MIN	5.8	7.4	7.0	9.0	10	19	10	10	10	10	9.4	7.4
CFSM IN.	0.28	0.54 0.61	0.92 1.06	0.73 0.84	1.10 1.14	1.96 2.26	1.74 1.94	3.20 3.69	1.55 1.73	3.87 4.47	0.57 0.66	1.22 1.36
		STATIST	ICS OF MO	ONTHLY MEAN	DATA FOR	R WATER Y	EARS 1992	- 2003,	BY WATER	YEAR (WY)		
MEAN	15.5	29.8	34.3	49.0	42.7	51.8	59.6	43.6	31.2	26.0	14.6	16.7
MAX (WY)	40.3 1997	76.2 1993	94.0 1997	98.2 1993	66.8 1997	108 1993	95.4 1994	98.2 2003	70.5 1997	119 2003	41.1 1992	48.3 1992
MIN	6.31	9.23	12.1	17.8	25.4	23.8	34.0	16.3	9.11	8.05	5.68	4.85
(WY)	1995 SUMMARY ST	1992	1992	1992 FOR 2002	1995	2000 VEAR	2001 FOR 200	1999 3 WATER	1999 VEAR	2001 WATER V	1993 EARS 199	1995
ANNUAL TO		111101100		11191.3	0.1221,211	12221	16574.2		122	WIII 211 1		2003
ANNUAL MI		NT.		30.7			45.4	<u>l</u>		34 50		1997
	ANNUAL MEA NNUAL MEAN									20		2001
	DAILY MEAN AILY MEAN			447 3.4	May 13 Sep 11		891 5.8			8	91 Jul	22 2003 12 2001
ANNUAL SI	EVEN-DAY M	INIMUM		4.0	Sep 6		6.1	Oct	9	2	.6 Sep	6 2001
	PEAK FLOW PEAK STAGE						2960 19.53) Jul 2 3 Jul 2	1a 1	2 2 29 19.	60 Jul 53 Jul	21 2003 21 2003
INSTANTA	NEOUS LOW	FLOW		1.00			1.48			1.	.1 Sep	11 2001
ANNUAL RU	UNOFF (CFS UNOFF (INC	HES)		13.56			20.08	3		15.	28	
	NT EXCEEDS			62 16			121 18				70 18	
	NT EXCEEDS			5.7			8.8				.1	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

04207200 TINKERS CREEK AT BEDFORD, OHIO

LOCATION.—Latitude 41°23′04″, longitude 81°31′39″, in T.6 N., R.11 W., Cuyahoga County, Hydrologic Unit 04110002, on left bank at downstream side of bridge on State Highway 14 in Bedford, Ohio, 5.5 mi upstream from mouth.

DRAINAGE AREA.—83.9 mi².

PERIOD OF RECORD.—November 1962 to current year. REVISED RECORDS.—WSP 1912: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 876.18 ft above sea level.

REMARKS.—Records good except for periods of estimated record, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e23 e30 e70 e300 e170 e100 e120 e120 e90 2.4 e76 2.7 2.8 2.3 e64 e600 2.73 e56 e50 2.0 e90e44 e80 e41 e70 e38 e60 e36 e33 e54 e48 e30 e44 e48 e39 e36 e33 e31 e29 e800 e28 e27 e26 e300 2.7 e26 e160 2.8 e25 e100e25 e24 ---e24 TOTAL 37.8 MEAN 95.8 59.0 MAX MTN 2.0 2.4 2.54 1.76 2.95 2.26 4.50 CFSM 0.45 1.14 1.42 1.23 3.47 0.70 1.89 2.84 1.42 3.40 2.53 2.11 IN. 0.52 1.27 1.63 1.83 4.00 5.19 0.81 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 2003, BY WATER YEAR (WY) 71.4 84.6 63.9 MEAN 91.4 75.0 MAX (WY) MIN 8.55 13.4 16.9 33.1 39.0 79.8 54.1 33.4 16.5 13.1 11.3 8.73 (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1963 - 2003 ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 81.7 HIGHEST DAILY MEAN Apr Jul 23 Dec 30 1990 LOWEST DATLY MEAN Aug 11 2.0 Oct 12 5.8 Aug 10 ANNUAL SEVEN-DAY MINIMUM Oct Aug Oct MAXIMUM PEAK FLOW Jun 12a Jul 20 1969 MAXIMUM PEAK STAGE 7.71 10.10 Jul 20 1969 Jun INSTANTANEOUS LOW FLOW Oct 14 5.2 Aug 19 1963 2.03 ANNUAL RUNOFF (CFSM) 1.35 1.59 ANNUAL RUNOFF (INCHES) 18.34 27.55 21.59 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OHIO

LOCATION.—Latitude 41°23′43", longitude 81°37′48", in T.6 N., R.12 W., Cuyahoga County, Hydrologic Unit 04110002, on left bank 240 ft downstream from bridge on Old Rockside Road, 0.8 mi northeast of Independence, Ohio, and 3.0 mi downstream from Tinkers Creek.

PERIOD OF RECORD.—September 1903 to December 1905 (fragmentary), January to July 1906 (gage heights and discharge measurements only),

PERIOD OF RECORD.—September 1903 to December 1905 (fragmentary), January to July 1906 (gage heights and discharge measurements only), September 1921 to May 1923, September 1927 to December 1935, March 1940 to current year.

REVISED RECORDS.—WSP 1307: 1922-23(M), 1928-30(M), 1933(M), 1940(M), 1947(M), 1950(M). WSP 1912: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 583.57 ft above sea level. Sept. 21, 1903-July 21, 1906, nonrecording gage at bridge 240 ft upstream at present datum; Sept. 28, 1921-May 30, 1923, nonrecording gage at bridge 240 ft upstream at datum 2.42 ft higher; Sept. 29-Oct. 8, 1927, nonrecording gage; Oct. 9, 1927-Dec. 31, 1935 and Mar. 5, 1940-June 19, 1969, water-stage recorder at site 100 ft upstream at present datum.

REMARKS.—Records excellent except for period of estimated record, which are poor. Natural flow of stream affected by diversion, storage reservoirs, and powerplants. Some diversion from the Tuscarawas River Basin drainage into this basin at Portage Lakes (see REMARKS for station 03117000). Water diverted into Ohio Canal at Brecksville, 6 mi upstream from station, bypasses station. These records do not include flow in canal except above about 15,000 ft³/s, when channels merge. Satellite telemeter at gage. Water-quality data collected at this site.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3 4 5	247 227 218 212 251	235 227 216 209 252	391 351 319 290 277	3040 2590 1810 1440 1290	e210 e230 e340 2040 e1000	981 1090 978 905 1730	1240 1130 978 2010 6740	349 1650 701 448 890	3750 2350 1480 1330 1140	395 348 385 347 489	1500 1200 967 883 939	1000 2030 1230 986 878		
6 7 8 9 10	238 216 200 192 191	362 407 333 298 826	275 266 261 249 240	1180 974 882 1110 1180	e700 e600 e520 e470 e430	1740 1270 1520 3490 2110	3460 3500 3740 2790 2250	1040 611 976 2570 6360	969 850 1040 1830 871	1090 731 6470 8140 6180	1010 1020 1490 1080 1180	791 619 487 421 359		
11 12 13 14 15	189 224 323 328 294	1830 588 413 351 327	259 343 423 1140 841	852 648 542 490 449	e390 e360 e340 e320 e300	1530 1540 3230 2960 2650	1900 1600 1320 1090 990	3680 3470 3350 2590 2100	699 2060 5870 2670 1670	4000 2400 1690 1350 1130	842 725 619 535 488	324 307 283 269 378		
16 17 18 19 20	232 254 207 404 351	405 473 504 428 429	599 523 481 606 1470	e380 e360 e330 e310 e290	e280 e270 e330 367 355	2930 2760 2320 2000 1980	880 826 778 753 547	4390 3010 2160 1690 2720	1500 1500 1450 1360 1150	887 654 527 444 392	516 490 388 361 326	323 270 257 3130 1690		
21 22 23 24 25	250 247 244 237 248	340 1100 1100 613 533	933 728 700 564 523	e280 e270 e260 e250 e250	392 1150 4130 1850 1330	1850 1720 1430 1270 1150	704 558 532 458 423	3830 2100 1440 1390 1210	915 783 695 607 526	2650 11400 9460 5650 3750	307 304 283 262 258	1070 1560 2340 1360 1050		
26 27 28 29 30 31	737 369 276 253 288 250	455 456 412 360 368	543 467 399 405 959 4220	e240 e240 e230 e230 e220 e220	1100 1040 1030 	2060 1430 1180 2190 1870 1400	398 362 351 348 327	1010 865 787 677 609 4130	461 437 383 360 413	2590 2210 5110 2840 1740 1310	340 890 585 653 912 568	869 5610 3220 2510 1660		
TOTAL MEAN MAX MIN	8397 271 737 189	14850 495 1830 209	20045 647 4220 240	22837 737 3040 220	21874 781 4130 210	57264 1847 3490 905	42983 1433 6740 327 YEARS 1922	62803 2026 6360 349	41119 1371 5870 360	86759 2799 11400 347	21921 707 1500 258	37281 1243 5610 257		
MEAN MAX (WY) MIN (WY)	382 1747 1955 65.8 1934 SUMMARY ST	641 2713 1986 74.9 1931	933 2889 1978 115 1964	1109 3585 1952 191 1945 FOR 2002	1292 3217 1959 194 1934	1634 3008 1963 584 1931	1456 3175 1957 244 1946	961 2396 1984 120 1934 03 WATER	641 2450 1989 111 1934	484 2799 2003 82.9 1954	368 1363 1992 62.3 1933 EARS 1922	385 1866 1979 61.0 1933		
ANNUAL TO ANNUAL ME HIGHEST A LOWEST AN HIGHEST D LOWEST DA ANNUAL SE MAXIMUM P	TAL AN NNUAL MEAN NUAL MEAN AILY MEAN VEN-DAY M: EAK FLOW EAK STAGE EOUS LOW I T EXCEEDS T EXCEEDS	N		292218 801 5840 165 173 1820 473 205	Apr 3 Sep 13 Sep 7		11400 1180 200 14200 21.11 2740 700 255	3 Jul 2 9 Oct 1 7 Oct 6 0 Jul 2 2 Jul 2 Oct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 2	8 13 2 167 248 22.	58 93 78 00 Jan 21 Aug 37 Aug 00 Jan 41 Jan 21 Aug	1975 1934 22 1959 28 1933 26 1933 22 1959 22 1959 28 1933		

e Estimated.

04208460 MILL CREEK AT GARFIELD HEIGHTS, OHIO

LOCATION.—Latitude 41°25′26″, longitude 81°36′16″, Cuyahoga County, Hydrologic Unit 04110002, on left bank 1,000 ft downstream from General Chemical Company plant railroad bridge, 0.6 mi upstream from mouth at Cuyahoga River.

DRAINAGE AREA.—17.9 mi².

PERIOD OF RECORD.—August 2001 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 600 ft above sea level (from topographic map)..

REMARKS.—Records good except for periods of estimated record and discharges above 1,000 ft³/s, which are poor.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.7 4.0 4.2 5.1	5.3 8.1 9.6 9.2	10 8.4 10 e8.8 e8.0	66 40 43 21 19	e5.0 e15 e30 137 18	19 e35 e38 27 69	19 17 15 231 236	17 61 9.9 8.4 42	68 23 21 19 22	7.8 7.7 7.2 9.4 9.0	4.9 13 6.0 5.5 9.0	53 28 13 6.5 5.0
6 7 8 9 10	4.1 4.6 3.9 4.1 3.9	13 27 6.5 6.0 280	e7.6 e7.4 e7.2 e7.0 e7.8	19 18 28 40 31	e15 e13 e12 e11 e10	e26 e28 59 e52 e23	29 90 37 20 15	75 12 15 95 464	14 13 68 41 14	400 74 33 45 82	6.2 7.2 15 15 6.2	4.6 4.4 4.4 4.4
11 12 13 14 15	3.9 3.8 4.0 4.0 3.8	122 12 7.8 6.3 5.7	12 23 23 90 27	20 e17 e15 e14 e13	e9.4 e9.0 e8.6 e8.2 e7.8	e23 30 86 e37 43	13 13 10 9.7 9.5	51 72 65 32 44	19 154 91 53 18	28 7.5 5.4 4.8 4.5	4.8 4.7 4.7 4.4 4.3	4.3 4.2 4.2 4.3
16 17 18 19 20	6.3 5.2 4.1 43 6.2	22 24 17 16 8.0	18 10 12 37 52	e10 e9.2	e7.4 e7.0 e6.6 e6.2 e7.8	45 37 29 23 37	9.3 8.9 8.5 8.4 23	76 31 25 22 211	13 13 16 32 12	6.7 4.4 6.3 4.2 3.8	5.3 5.1 4.4 4.4	7.7 4.7 4.2 242 31
21 22 23 24 25	4.3 4.2 4.5 5.3 33	6.9 104 48 31 23	20 15 11 7.9 12	e8.0 e7.6 e7.2 e6.8 e6.4	22 150 86 e31 e31	45 40 21 18 51	26 9.8 11 8.6 8.1	74 29 31 30 22	10 9.6 9.1 8.8 8.9	269 57 15 7.0 5.9	5.3 7.4 6.0 5.7 5.7	16 92 39 17 13
26 27 28 29 30 31	22 6.3 5.3 4.8 6.3 4.6	12 15 10 8.6 13	11 9.7 12 12 110 194	e6.2 e6.0 e5.8 e5.6 e5.4 e5.2	e28 e29 e20 	67 24 18 101 30 22	9.7 7.7 8.1 7.4 7.2 925.9 30.9	19 18 28 18 17 275	8.3 14 7.9 7.6 9.7	5.5 31 33 8.2 5.5 5.2	21 26 7.3 32 13 6.3	11 445 33 127 36
TOTAL MEAN MAX MIN	234.5	887.0 29.6 280 5.3	800.8 25.8 194 7.0	525.0 16.9 66 5.2	741.0 26.5 150 5.0	1203 38.8 101 18	925.9 30.9 236 7.2	1989.3 64.2 464 8.4	817.9 27.3 154 7.6	1193.0	270.7 8.73 32 4.3	1280.3 42.7 445 4.2
										YEAR (WY)		
MEAN MAX (WY) MIN (WY)	19.3 31.1 2002 7.56 2003	23.5 29.6 2003 17.4 2002	2003	15.4 16.9 2003 13.9 2002	24.4 26.5 2003 22.4 2002	38.6 38.8 2003 38.4 2002	33.1 35.3 2002 30.9 2003	54.8 64.2 2003 45.5 2002	19.9 27.3 2003 12.6 2002	29.4 38.5 2003 20.3 2002	18.6 34.1 2001 8.73 2003	32.5 42.7 2003 26.6 2002
;	SUMMARY ST	ATISTICS		FOR 2002	CALENDAR				YEAR	WATER Y	EARS 2001	L - 2003
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS				8842.5 24.2 304 May 13 3.1 Sep 13 3.3 Sep 8			10868.4 29.8 464 May 10 3.8 Oct 12 3.9 Oct 9 3810 Jul 6 7.57 Jul 6			27.4 29.8 2003 25.1 2002 479 Aug 31 2001 0.00 Oct 3 2001 3.3 Sep 8 2002 3900 Aug 31 2001 7.64 Aug 31 2001 0.00 Oct 3 2001 66		
50 PERCEI	NT EXCEEDS NT EXCEEDS NT EXCEEDS			53 10 3.9				56 L3 . 7			11 .1	

e Estimated.

04208504 CUYAHOGA RIVER AT LTV STEEL AT CLEVELAND, OHIO

LOCATION.—Latitude 41°27′45", longitude 81°40′52", Cuyahoga County, Hydrologic Unit 04110002, on left bank at LTV Steel Company footbridge, 1.2 mi downstream from Big Creek, and 5.5 mi upstream from mouth at Cleveland, Ohio. DRAINAGE AREA.—788 mi²

PERIOD OF RECORD.—October 1991 to current year.

GAGE.—Water-stage and acoustic velocity meter recorder. Elevation of gage is 583.57 ft above sea level (from topographic map).

EMARKS.—Records fair except for periods of estimated record, which are poor.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 15,500 ft³/s Aug. 13, 1994; minimum daily discharge, 310 ft³/s Aug. 29, 1993.

EXTREMES FOR CURRENT YEAR.—Maximum daily discharge, 13,000 ft³/s July 22; minimum daily discharge, 396 ft³/s Nov. 4.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1140	419	730	3650	653	1320	1510	517	4490	521	1510	1660
2	1610	418	636	2830	689	1530	1380	2190	2610	461	1280	2280
3	2050	401	639	2110	739	1360	1230	962	1730	492	1050	1390
4	2050	396	710	1700	3100	1270	e3400	675	1540	473	962	1110
5	1650	493	749	1580	1720	2410	e10000	1230	1330	659	985	991
6	1060	642	638	1580	1160	2280	e5000	1590	1150	1690	1110	909
7	1000	751	578	1420	1100	1690	e4200	878	1020	1180	1050	778
8	943	590	648	1300	979	2030	e4400	1210	1380	e7600	1550	657
9	927	520	605	1630	945	4350	e3700	3110	2220	e1100	1210	597
10	936	817	578	1620	928	2580	e3000	7730	1100	e8000	1230	543
11	941	2880	618	1300	901	1950	e2400	4060	912	e5400	933	503
12	946	921	791	1030	827	1900	e2000	3830	2370	e4000	861	473
13	1120	674	872	837	759	3940	e1600	3690	6660	e2700	774	453
14	1100	594	2140	811	729	3650	e1300	2750	3460	e1900	672	418
15	1050	561	1410	816	719	3160	e1200	2220	1900	e1300	622	614
16	948	789	999	743	621	3480	e1100	4560	1620	e1100	700	524
17	950	972	865	777	614	3300	e1000	3160	1610	e940	662	428
18	825	963	820	672	686	2710	e970	2280	1570	e780	576	416
19	1480	909	1090	710	703	2340	902	1820	1600	e650	532	4260
20	1060	808	2220	652	724	2370	774	3150	1310	e550	475	1990
21	844	664	1530	623	755	2170	976	4400	1060	e3200	460	1220
22	754	2280	1150	564	2070	2050	757	2330	912	e13000	e460	1820
23	e540	1750	1040	584	5200	1710	740	1680	826	e8800	e450	2580
24	436	1030	905	588	2390	1490	654	1590	767	e6000	e420	1490
25	594	926	865	575	1740	1500	604	1380	691	e3900	e410	1160
26 27 28 29 30 31	1140 652 506 466 523 445	795 866 833 682 727	1000 1010 854 906 1930 5380	610 557 595 622 600 606	1450 1390 1350 	2470 1680 1440 2820 2280 1710	629 542 502 522 487	1180 1050 986 860 810 5110	573 612 499 453 532	e3000 e2400 e6000 e3400 e2000 e1300	e480 e1100 e820 1050 1110 748	997 7000 3370 e2500 1860
TOTAL	30686	26071	34906	34292	35641	70940	57479	72988	48507	94496	26252	44991
MEAN	990	869	1126	1106	1273	2288	1916	2354	1617	3048	847	1500
MAX	2050	2880	5380	3650	5200	4350	10000	7730	6660	13000	1550	7000
MIN	436	396	578	557	614	1270	487	517	453	461	410	416
CAL YR 20 WTR YR 20		TOTAL 428		MEAN 1174 MEAN 1582		MAX 5710 MAX 13000		MIN 396 MIN 396				

e Estimated.

SURFACE-WATER RECORDS **Chagrin River Basin**

04209000 CHAGRIN RIVER AT WILLOUGHBY, OHIO

LOCATION.—Latitude 41°37′51", longitude 81°24′13", in T.9 N., R.10 W., Lake County, Hydrologic Unit 04110003, on left bank, 150 ft downstream from city waterworks dam, 800 ft downstream from East Branch, 1 mi southeast of Willoughby, and 5 mi upstream from mouth. DRAINAGE AREA.—246 mi².

PERIOD OF RECORD.—July 1925 to November 1935, October 1939 to 1984, March 25, 1988 to September 1994, October 1995 to September 1996, October 1997 to October 1999, October 2001 to September 2002. (July 1925 to September 1932 monthly runoff in inches, adjusted for diversion, published in WSP 1307; previously published runoff was unadjusted and should not be used).

REVISED RECORDS.—WSP 1084: 1929(M), 1931(M). WSP 1307: 1926-28(M), 1930(M), 1932-35(M), 1942(M). WSP 1912: Drainage area. See also

PERIOD OF RECORD.

GAGE.—Water-stage recorder. Datum of gage is 594.57 ft above sea level. Prior to Dec. 20, 1939, nonrecording gage at site 150 ft upstream at datum 7 ft

higher.

REMARKS.—Records fair except for periods of estimated record, which are poor. Water diverted 200 ft upstream from station for municipal supply of City

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN				MAY	JUN	JUL	AUG	SEP		
1	71	73	129	2100	e66	e260	206	117	2310	102	113	e260		
2	64	78	128	1110	e110	e270	181	203	1000	97 93	108	e500		
3 4	60 58	72 68	137 124	450 240	e180 1380	e240 e220	150 440	206 144	407 264	93	91 e78	228 122		
5	65	67	125	183	683	e360	3690	137	235	114	e120	95		
6	69	76	121	162	e520	e580	1890	1650	222	163	e100	74		
7	50	80	e110	156	e340	e800	995	1050	201	489	e200	63		
8	39	79	e100	157	e240	e700	1400	352	186	229	e240	57		
9	36	79	e96	190	e200	e540	732	547	292	437	e280	54		
10	36	83	e90	263	e170	e480	369	3130	238	836	e160	51		
11 12	36 36	901 255	e86	175 133	e150	e740	266 226	1830 1090	192 390	770 227	e84 e78	48 43		
13	42	151	e110 226	e120	e130 e120	e560 e440	196	1650	3510	135	75	41		
14	43	132	477	e110	e110	e1200	180	921	1600	109	67	40		
15	38	126	569	e105	e100	e2000	168	434	502	99	61	50		
16	42	129	273	e100	e98	e1600	161	2630	248	149	59	65		
17	70	145	199	e96	e96	e1300	154	1180	176	111	72	55		
18 19	74 112	176 155	161 169	e94 e92	e92 e90	799 392	148 143	489 296	189 611	102 101	66 57	48 1260		
20	133	161	552	e90	e88	335	142	457	288	94	51	1030		
21	86	142	333	e88	e120	360	184	2120	168	521	48	169		
22	74	273	202	e86	e500	416	189	882	142	2540	46	136		
23	68	516	179	e84	e2000	240	167	345	127	647	45	628		
24	63	242	156	e82	e1500	177	153	279	116	493	45	213		
25	60	210	163	e80	e1200	154	142	257	107	227	43	106		
26 27	120 99	179 149	178 158	e78 e76	e680 e460	705 396	136 132	218 194	100 115	143 116	e42 e58	83 3310		
28	80	139	160	e74	e340	199	128	190	101	312	e90	1920		
29	74	129	158	e72		599	124	190	102	158	e70	2020		
30	69	124	258	e70		770	120	174	102	107	e56	1460		
31	66 2033	 5189	2180 8107	e68 6984	11763	261 18093	13312	1060 24422	14241	91 9904	e110 2813	14229		
TOTAL MEAN	65.6	173	262	225	420	584	444	788	475	319	90.7	474		
MAX	133	901	2180	2100	2000	2000	3690	3130	3510	2540	280	3310		
MIN	36	67	86	68	66	154	120	117	100	91	42	40		
CFSM	0.27	0.70	1.06	0.92	1.71	2.37	1.80	3.20	1.93	1.30	0.37	1.93		
IN.	0.31	0.78	1.23	1.06 ONTHLY MEAN	1.78	2.74	2.01 VEADC 1025	3.69	2.15	1.50	0.43	2.15		
MEAN	158	308	413	467	540	676	550	363	217	130	122	132		
MAX	976	850	1284	1312	1242	1234	1409	1088	781	698	602	641		
(WY)	1927	1984	1991	1952	1982	1963	1957	1989	1947	1969	1992	1926		
MIN	21.9	44.3	60.4	115	48.1	179	120	53.4	23.1	20.3	16.8	17.6		
(WY)	1954 SUMMARY STA	1965	1964	1977 FOR 2002	1934	1990	1946	1934 003 WATER	1934	1934	1930 EARS 1925	1933 - 2003		
ANNUAL T		11101100		97081.2	CALIBIVDAIC	TEAR	13109		LIBAIL	WAILK	LAND 1925	2005		
ANNUAL M				266			3!	59			40			
	ANNUAL MEAN	1									65	1975		
	ANNUAL MEAN DAILY MEAN			3350	May 13		369	90 Apr	5	123	48 00 Mar 22	1934		
	DAILY MEAN			6.1	Sep 13			36 Oct	9		.0 Jul 25			
	SEVEN-DAY M	INIMUM		9.6	Sep 8			38 Oct	9		.0 Aug 25			
	PEAK FLOW						560			280				
	PEAK STAGE	ar ou					11.			17.95 Mar 22 1948				
	ANEOUS LOW I RUNOFF (CFS)			1.08			1.4		9	3.0 Jul 25 1934 1.38				
	RUNOFF (INCH			14.68			19.8			18.				
10 PERCE	ENT EXCEEDS			548				51			68			
	ENT EXCEEDS			140				54			50			
90 PERCE	ENT EXCEEDS			38			•	63			37			

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

b Ice jam. e Estimated.

04212100 GRAND RIVER NEAR PAINESVILLE, OHIO

LOCATION.—Latitude 41°43′08″, longitude 81°13′41″, Lake County, Hydrologic Unit 04110004, on downstream left abutment of bridge on State Highway 84 (Walnut Avenue), 0.9 mi downstream from Big Creek in Painesville, Ohio.

DRAINAGE AREA.—685 mi².

PERIOD OF RECORD.—October 1974 to current year.

GAGE.—Water-stage recorder. Datum of gage is 596.37 ft above sea level. Previously published in error as 620.37 ft above sea level. REMARKS.—Records good except for periods of estimated record, which are poor. Water-quality data formerly collected at this site.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	121	75	329	4580	e160	e960	1420	114	3070	e50	198	506
2	80 57	79 70	354 872	3400 2030	e180 e320	e1000 e900	1180 955	191 440	2540 1600	e48 e44	141 98	1040 793
4	43	70	624	1520	e320	e850	1480	492	1430	e48	112	595
5	34	68	491	1220	e1200	e1100	6790	450	1070	e44	202	394
6	28	69	319	952	1930	e1500	6680	3090	597	e42	140	240
7 8	20 16	69 69	e220 e180	671 615	e1200 e800	e2000 e1900	4480 5020	4930 2600	377 281	e40 288	423 442	143 89
9	14	67	e160	823	e600	e1700	4290	1630	258	701	492	61
10	12	100	e140	1370	e500	e4400	2890	2500	725	840	646	e50
11	11	425	e160	1280	e400	e2700	1910	2510	698	811	584	e40
12 13	9.7 9.5	241 284	220 453	968 670	e350 e320	e1700 e1600	1230 799	3090 3700	947 8100	621 550	436 284	e35 e31
14	10	229	1380	e540	e300	e4200	571	2950	8640	451	147	e28
15	9.1	183	1980	e470	e280	e5200	463	1990	3780	269	e130	e36
16	9.9	169	1380	e410	e270	5590	400	1510	1670	207	e90	e47
17 18	22 37	170 220	960 673	e370 e340	e260 e250	6900 5560	327 287	912 802	852 553	144 113	e70 e56	e40 e100
19	86	373	574	e310	e240	3770	253	730	1500	100	e47	627
20	79	366	1060	e280	e230	2580	224	630	1760	67	e42	893
21	77	293	1180	e260	e250	1710	269	1010	1280	1170	e38	1090
22 23	71 70	621 1410	986 771	e240 e220	e350 e5000	1880 1960	366 412	1290 1040	784 479	3250 5720	e36 e34	835 1730
24	73	1120	569	e210	e5800	1530	355	1700	304	5300	e34	2210
25	65	828	438	e200	e5400	1200	291	3150	208	4510	e31	1360
26	120	645	988	e190	e3000	2420	240	1650	152	3930	e30	919
27 28	95 107	477 371	1450 1580	e180 e180	e1700 e1100	2570 1620	201 172	1170 787	83 69	2840 1580	e50 e110	3190 4920
29	96	307	1330	e170		1780	145	490	45	593	e60	5650
30	95	304	1350	e170		2540	125	354	e40	322	86	5510
31	79		3240	e165		1890		960		280	65	
TOTAL MEAN	1656.2 53.4	9774 326	26411 852	25004 807	33190 1185	77210 2491	44225 1474	48862 1576	43892 1463	34973 1128	5352 173	33202 1107
MAX	121	1410	3240	4580	5800	6900	6790	4930	8640	5720	646	5650
MIN	9.1	67	140	165	160	850	125	114	40	40	30	28
CFSM IN.	0.08	0.48	1.24 1.43	1.18 1.36	1.73 1.80	3.64 4.19	2.15	2.30	2.14 2.38	1.65 1.90	0.25 0.29	1.62 1.80
TIN •	0.09						2.40 YEARS 1975				0.29	1.00
MEAN	450	1099	1487	1379	1740	1917	1496	- 2003, 865	668	276	221	401
MEAN MAX	1880	4026	3816	3327	4044	3753	2598	3214	2851	1128	1106	1854
(WY)	1991	1986	1978	1993	1981	1993	1987	1989	1986	2003	1980	1990
MIN	42.1	67.1	141	109	322	577	450	106	39.8	30.5	17.0	11.0
(WY)	1992 SUMMARY ST	1979	1999	1977 FOR 2002	1987	1990	1975 FOR 20	1987	1988	1991	1991 EARS 1975	1995
ANNUAL T		ATISTICS		272108.4		K YEAR	383751.		K YEAK	WATER Y	EARS 1973	5 - 2003
ANNUAL M				746			105			9	95	
	ANNUAL MEAI	N								14		1997
	NNUAL MEAN DAILY MEAN			8890	May 14	1	864	0 Jun	1 /	5 153		1999 6 1985
	AILY MEAN			4.7			9.		1 =	1	7 Con	12 2002
	EVEN-DAY M	INIMUM		5.1	Sep 8	3	1		10	5	.1 Sep	8 2002
	PEAK FLOW PEAK STAGE						1000		14a 14	187	00 Jun	11 1986 25 1979
	NEOUS LOW I	FLOW					7.		16	4	.2 Sep	10 2002
	UNOFF (CFSI			1.09			1.5			5 187 13. 4	45	
	UNOFF (INCE NT EXCEEDS	HES)		14.78 1830			20.8			19. 27	/4	
	NT EXCEEDS			280			44				94	
90 PERCE	NT EXCEEDS			14			4	8			36	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations. e Estimated.

SURFACE-WATER RECORDS **Conneaut Creek Basin**

04213000 CONNEAUT CREEK AT CONNEAUT, OHIO

LOCATION.—Latitude 41°55′37″, longitude 80°36′15″, Ashtabula County, Hydrologic Unit 04120101, on right bank at downstream side of Keefus Road bridge at Conneaut, Ohio, and 6.4 mi upstream from mouth.

DRAINAGE AREA.—175 mi².

PERIOD OF RECORD.—July 1922 to December 1935, March 1950 to September 1961 (published as "at Amboy"), October 1961 to current year. REVISED RECORDS.—WSP 714: 1926. WSP 784: 1933. WSP 1437: 1923-25(M), 1926-30, 1931-32(M), 1933, 1935(M). WSP 1912: Drainage area. GAGE.—Water-stage recorder. Datum of gage is 610.3 ft above sea level. Prior to Aug. 17, 1924, nonrecording gage at same site and datum. REMARKS.—Records good except for periods of estimated record, which are poor. Water-quality and sediment data formerly collected at this site.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	23	e32	e130	e700	e64	e250	e400	59	1090	33	57	52	
2	18	e31	e280	e900	e74	e200	e280	97	750	33	47	329	
3	16	e34	e220	e660	e94	e180	e200	268	279	31	49	295	
4	14	e39	e180	e420	e200	e160	e330	194	169	28	51	111	
5	12	e36	e140	e280	e330	e200	e900	134	136	28	66	54	
6	11	e33	e110	e200	e440	e300	e1700	147	128	27	63	36	
7	9.2	e30	e84	e160	e560	e390	e1400	653	117	26	87	29	
8	8.6	e33	e70	e140	e300	e560	e760	354	98	38	79	24	
9	8.1	e32	e60	e165	e200	e400	e900	545	421	73	73	21	
10	8.7	e31	e52	e240	e160	e700	e640	570	529	52	122	19	
11	8.7	e48	e56	e400	e140	e1000	e400	458	197	49	71	17	
12	8.6	e280	e68	e300	e120	e700	e240	348	575	51	64	17	
13	8.5	e150	e210	e250	e110	e430	e180	687	2610	45	48	16	
14	7.4	e100	e310	e210	e100	e600	e160	948	4990	34	36	14	
15	6.9	e82	e450	e180	e94	e940	e140	478	771	29	30	15	
16	9.2	e70	e600	e170	e90	e780	e120	261	357	26	28	16	
17	14	e90	e380	e160	e86	e900	e100	183	213	28	26	37	
18	e17	e140	e240	e150	e84	e1300	e86	146	269	46	25	30	
19	e36	e180	e170	e140	e82	934	e72	119	642	30	24	50	
20	e41	e160	e200	e130	e80	608	e62	103	672	52	23	217	
21	e46	e110	e240	e120	e88	518	e70	111	330	286	21	229	
22	e37	e160	e300	e110	e230	888	e100	177	204	1550	19	101	
23	e33	e300	e250	e100	e600	729	e150	147	161	1740	17	359	
24	e35	e470	e200	e94	e1000	476	e190	877	104	720	16	562	
25	e29	e340	e150	e86	e2000	362	142	1060	75	514	15	200	
26 27 28 29 30 31	e32 e41 e50 e46 e40 e35	e210 e150 e130 e120 e110	e210 e270 e310 e370 e320 e500	e80 e76 e72 e70 e68 e66	e1400 e560 e300 	802 e600 e560 e390 e440 e580	114 96 82 69 62	384 200 140 111 97 133	59 51 43 39 36	255 128 96 168 100 70	16 19 33 37 30 28	96 488 2020 993 899	
TOTAL MEAN MAX MIN CFSM IN.	709.9	3731	7130	6897	9586	17877	10145	10189	16115	6386	1320	7346	
	22.9	124	230	222	342	577	338	329	537	206	42.6	245	
	50	470	600	900	2000	1300	1700	1060	4990	1740	122	2020	
	6.9	30	52	66	64	160	62	59	36	26	15	14	
	0.13	0.71	1.31	1.27	1.96	3.30	1.93	1.88	3.07	1.18	0.24	1.40	
	0.15	0.79	1.52	1.47	2.04	3.80	2.16	2.17	3.43	1.36	0.28	1.56	
MEAN MAX (WY) MIN (WY)	132 804 1927 4.95 1924	STATISTI 313 1373 1986 17.1 1954	CS OF MO 411 1049 1928 35.1 1961	NTHLY MEAN 417 929 1990 81.0 1977	DATA FOR 456 1115 1981 39.6 1934	8 WATER Y: 526 987 1972 147 2000	EARS 1922 392 839 1957 69.9 1935	- 2003, E 239 670 1953 20.2 1934	140 1013 1986 5.46 1934	YEAR (WY) 76.3 415 1969 2.79 1934	68.2 493 1980 3.19 1923	102 709 1990 3.56 1932	
ANNUAL 1 ANNUAL 1 HIGHEST LOWEST 1 HIGHEST LOWEST 1 ANNUAL 1 ANNUAL 1 ANNUAL 1 10 PERCI 50 PERCI	SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS			FOR 2002 85431.6 234 3700 2.5 2.7 X X 1.34 18.16 520 110 9.6	Ma <u>y</u> Se <u>r</u>	YEAR 7 14 5 12 7 7	FOR 20 97431.9 267 4990 6.9 8.1 7060 11.75 6.6 1.55 20.77 678 128 25	Oc Oc Ju Ma Oc	yEAR in 14 it 15 it 9 in 14a ir 17b it 15	WATER YEA 272 401 140 11000 0.30 0.64 17000 12.94 0.20 1.56 21.13 680 98 10	Jan 31 Jul 30 Aug 27 Jan 22 Mar 4 Jul 31	1986 1931 1968 1933 1933 1959 1934	

a Peaks above base shown in table of peak discharges and stages at continuous-record surface-water-discharge stations.

b Ice jam. e Estimated.

For continuous-record surface-water-discharge stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented in this table. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. The peaks are listed in chronological order. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by human intervention. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030 and 1:30 p.m. is 1330. The maximum peak discharge and gage height for the water year are flagged with an asterisk (*).

PEAK DISCHARGES EQUAL TO OR GREATER THAN BASE DISCHARGES WATER YEAR OCTOER 2002 TO SEPTEMBER 2003

[FT³/S, cubic feet per second; *, maximum peak discharge and gage height; --, no data;, e, estimated; b, ice jam]

DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)	DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)
			LAKE ER	IE BASIN			
			Ottawa Ri	ver Basin			
		0417700		LEDO UNIVERSITY, TOLEI	OO, OHIO		
Mar. 17	1500	1180	9.84	e: 1,150 ft ³ /s) Apr. 6	0830	*1220	*9.96
			Maumee Ri	ver Basin			
				EK AT POWERS, OHIO e: 1,200 ft3/s)			
Mar. 15	2145		*15.61b	Mar. 16		*1300e	b
				VER AT STRYKER, OHIO e: 1,850 ft ³ /s)			
Mar. 16	==	*3300e	*14.20	May 12	1130	1590	12.36
		04185440		<u>) LOST CREEK NEAR FARM</u> ge: 120 ft ³ /s)	MER, OHIO		
Mar. 13	0945	145	3.53	Aug. 2	0130	376	4.61
Apr.5	0200	248	4.09	Sept. 1	1000	151	3.57
May 5	0915	*699	*5.55	Sept. 27	0330	150	3.56
May 9	1045	508	5.04				
		041		NEAR FORT JENNINGS, (e: 2,700 ft ³ /s)	OHIO		
Apr. 6	0700	2760	10.56	July 9	1500	*6880	*15.95
May 11	0730	4820	14.12	Aug. 4	1230	4680	13.97
June 15	1000	3520	12.00	Sept. 3	1830	4450	13.60
		<u>(</u>		VER NEAR FINDLAY, OHI e: 2,800 ft ³ /s)	<u>o</u>		
Jan. 1	0200	3470	8.09	May 10	0800	*7710	*13.16
Apr. 5	1930	3830	8.60	July 10	0330	6130	11.52
			Portage R	iver Basin			
				ER AT WOODVILLE, OHIO e: 3,500 ft ³ /s)			
Mar. 14	1730		*10.45	May 6	0330	3510	8.33
Mar. 15		5000		May 10	2100	*5630	10.28
Apr. 6	0500	5570	10.24	Aug. 5	2100	4680	9.48
				e: 3,800 ft ³ /s)			
Jan. 1	1130	4020	8.12	May 6	0800	3980	8.08
Mar. 15	2230	6000e	*11.21b	May 11	0200	6100	10.10
Apr. 6	0330	*6500	10.50	Aug. 6	0130	4850	8.95
			Sandusky I	River Basin			
			(Base discharg	VER NEAR BUCYRUS, OHIO e: 1,200 ft ³ /s)	<u>)</u>		
Dec. 31	1530	1430	6.46	May 10	0330	2200	8.07
Apr. 4	1830	1280	6.07	July 9	1700	*2290	*8.18
May 8	1500	1450	6.51	Sept. 28	0330	1620	6.94

PEAK DISCHARGES EQUAL TO OR GREATER THAN BASE DISCHARGES WATER YEAR OCTOER 2002 TO SEPTEMBER 2003—Continued

[FT³/S, cubic feet per second; *, maximum peak discharge and gage height; --, no data;, e, estimated; b, ice jam]

DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)	DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)
			Sandusky River	Basin—Continued			
		0419		NEAR UPPER SANDUSKY, e: 2,500 ft ³ /s)	OHIO		
Jan. 1	1045	3130	6.47	May 10	1015	*4690	*8.59
Mar. 9	2245	2690	6.23	July 10	1045	4560	8.46
Apr. 6	0015	2680	6.22				
		<u>!</u>		REEK AT CRAWFORD, OHIO e: 1,800 ft ³ /s)	<u>)</u>		
Jan. 2	1115	2140	6.43	May 11	0830	*3790	7.85
Mar. 15	1645	2900	7.14	July 9	2000	2300	6.59
Apr. 7	0315	2000	6.28	041, 3	2000	2300	0.33
				EK AT MELMORE, OHIO			
July 11	0000	*2540	*8.74	e: 1,500 ft ³ /s)			
		<u>.</u>		VER NEAR FREMONT, OHIO	<u>)</u>		
				e: 10,000 ft ³ /s)			
Feb. 23	1500	1200e	*10.94b	Mar. 9	0000	3500e	8.46b
Feb. 27	0530	990e	6.53b	May 10	1330	12200	6.77
Mar. 6	1230	1400e	10.87b	July 11	1900	*12500	6.87
			Huron Ri	ver Basin			
				VER AT MILAN, OHIO e: 4,700 ft ³ /s)			
Dec. 31	0830	*5920	16.35	Mar. 9	0345		17.29b
Feb. 23	0315		17.13b	Apr. 5	0930	5720	16.12
Mar. 5	2115		16.86b	1.p1. J	0330	3720	10.12
			Old Woman	Creek Basin			
		0419915		BERLIN ROAD NEAR HUR	ON, OHIO		
Nov. 22	1430	484	(Base dischar	ge: 400 ft ³ /s)	0645	817	9.28
Dec. 31	0230	684	8.74	Apr. 5	0615	825	9.31
Mar. 5	1445	509	7.83	June 14 July 10	1845	562	8.13
Mar. 9	0000	*893	*9.56	July 10	1040	302	0.13
			Black Ri	ver Basin			
		04	199500 VERMILION RIV	ER NEAR VERMILION, OH	IO		
			_	e: 3,200 ft ³ /s)			
Dec. 31	1915	4150	6.21	Apr. 5	1500	*4510	6.20
Mar. 15	2100		*11.54b	May 10	0900	4370	6.13
				VER AT ELYRIA, OHIO e: 3,200 ft ³ /s)			
Jan. 1	0000	4440	9.72	July 29	0930	3670	8.81
Apr. 5	1230	*5110	*10.45	Sept. 28	0900	3680	8.83
May 10	0700	4770	10.09				
			Rocky Ri	ver Basin			
				ER NEAR BEREA, OHIO			
Ann F	0730	E630	_	e: 4,000 ft ³ /s)	1400	*6220	*F CO
Apr. 5	0730	5630	5.25	July 22	1400	*6230	*5.62
May 10	1100	4920	5.05	Sept. 27	1630	5030	5.10
May 31	2300	4980	5.08				

PEAK DISCHARGES EQUAL TO OR GREATER THAN BASE DISCHARGES WATER YEAR OCTOER 2002 TO SEPTEMBER 2003—Continued

[FT³/S, cubic feet per second; *, maximum peak discharge and gage height; --, no data;, e, estimated; b, ice jam]

DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)	DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)
			Cuyahoga 1	River Basin			
				ROOK AT HUDSON, OHIO rge: 30 ft3/s)			
July 8	0605	93	12.81	July 27	1825	45	11.92
July 21	2350	*198	*14.21				
			04006004				
				ROOK AT STOW, OHIO			
Feb. 22	2335	107	11.17	June 13	0025	108	11.18
Mar. 9	0225	84	11.01	July 22		*646e	*13.21e
May 20	2305	95	11.09	Sept. 19	1035	113	11.21
May 31	1340	130	11.32	Sept. 27	1020	127	11.30
				OOK AT STOW, OHIO			
				rge: 140 ft ³ /s)			
Apr. 5	2210	163	13.07	July 22	1615	*819	*18.07
May 11	0150	182	13.30	July 28	1605	203	13.60
May 16 July 9	1335 0505	191 391	13.41 15.32	Sept. 28	0355	155	12.97
July 9	0505	391	15.32				
				CREEK AT STOW, OHIO rge: 90 ft ³ /s)			
Apr. 5	0355	98	13.08	July 27	2040	133	13.55
May 15	2225	175	14.08	Sept. 19	1000	98	13.08
July 8	1055	215	14.52	Sept. 27	1105	107	13.21
July 22	0040	*629	*17.54	-			
			04206043 MIID BROOK A	T CUYAHOGA FALLS, OHIO)		
				ge: 220 ft ³ /s)	<u>~</u>		
May 15	2100	336	11.66	July 27	1920	298	11.56
July 8	0725	391	11.79	Aug. 27	0240	272	11.49
July 21	2100	*1120	*12.93	Sept. 27	1030	238	11.40
				AT BATH CENTER, OHIO			
May 20	2030	246	11.79	July 8	1920	264	11.87
June 12	1920	468	12.63	July 21	2150	*1810	*15.93
July 3	1215	383	12.34	July 27	1840	300	12.02
July 8	0740	235	11.74	<u>-</u>			
			04206220 YELLOW CF	EEK AT BOTZUM, OHIO			
			(Base dischar	ge: 650 ft ³ /s)			
Feb. 22	2235	678	13.52	July 21	2130	*2960	*19.53
July 8	0835	656	13.46	July 27	1920	1600	15.94
July 8	2000	949	14.16	Sept. 27	1000	736	13.67
				REEK AT BEDFORD, OHIO			
Nov. 10	1900	2070	6.58	June 12	2145	*3570	*7.71
Dec. 31	1500	1570	6.12	July 6	1645	2630	7.02
Feb. 22	2315	1780	6.32	July 10	1345	2220	6.70
Apr. 4	1915	2810	7.16	July 22	2315	2600	7.00
May 10	0315	3520	7.68	Sept. 27	0615	2030	6.54
May 31	1145	2340	6.79	-			
			Chagrin F	tiver Basin			
				ER AT WILLOUGHBY, OHIO	<u>0</u>		
			(Base discharg	ge: 4,800 ft ³ /s)			
Feb. 23	1800		*11.57b	Sept. 27	0830	*5660	8.37

PEAK DISCHARGES EQUAL TO OR GREATER THAN BASE DISCHARGES WATER YEAR OCTOER 2002 TO SEPTEMBER 2003—Continued

[FT³/S, cubic feet per second; *, maximum peak discharge and gage height; --, no data;, e, estimated; b, ice jam]

DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)	DATE	TIME	DISCHARGE (FT ³ /S)	GAGE HEIGHT (FEET)
			Grand	River Basin			
		0.		ER NEAR PAINESVILLE, OHIO arge: 6,500 ft ³ /s)			
Feb. 25	0030		*9.92b	June 14	0800	*10000	9.12
Mar. 17	1530	8590	8.41	July 23	0130	7290	7.72
Apr. 6	0600	7560	7.87	Sept. 29	1130	6550	7.30
			Conneau	nt Creek Basin			
		<u>!</u>		CREEK AT CONNEAUT, OHIO arge: 2,900 ft ³ /s)			
Mar. 17	1600		*11.79b	June 14	0530	*7060	8.71

GROUND-WATER RECORDS Crawford County

404838082563100. LOCAL NUMBER, CR-1

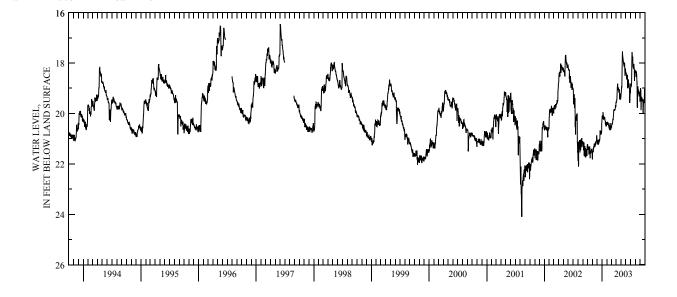
LOCATION.—Latitude 40°48′38″, longitude 82°56′31″, Hydrologic Unit 04100011, Timken Roller Bearing Company, U.S. 30 in Bucyrus. Owner: Timken Roller Bearing Company.

Roller Bearing Company.

AQUIFER.—Sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.—Drilled test water-table well, diameter 6 in., depth 54 ft, cased.

INSTRUMENTATION.—Digital recorder, 60-minute punch.


DATUM.—Elevation of land-surface datum is 1039.13 ft above sea level. Measuring point: Floor of instrument shelter 3.50 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—January 1960 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 37.64 ft below land-surface datum, Dec. 11, 1962; minimum daily low, 16.04 ft below land-surface datum, Apr. 29, 1993.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES DAY OCT NOV DEC JAN EER MAR ARR ARR MAY JUN JUL AUG SER												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	21.23	21.82	21.07	20.25	20.40	20.53	19.53	19.36	18.42	19.14	18.37	19.27	
2	21.23	21.65	21.13	20.15	20.39	20.52	19.57	19.26	18.45	18.91	18.36	19.12	
3	21.45	21.54	21.22	20.11	20.34	20.56	19.57	19.17	18.41	18.82	18.36	19.00	
4	21.32	21.53	21.16	20.14	20.39	20.43	19.53	19.14	18.38	18.92	18.31	19.05	
5	21.37	21.53	21.05	20.07	20.45	20.39	19.46	18.99	18.47	18.93	18.55	19.11	
6	21.33	21.49	21.11	20.22	20.41	20.45	19.44	18.93	18.65	18.91	18.34	19.87	
7	21.34	21.52	21.07	20.18	20.37	20.41	19.22	18.96	18.52	18.89	18.38	19.71	
8	21.36	21.41	21.24	19.95	20.38	20.39	19.07	18.57	18.53	18.76	18.42	19.34	
9	21.33	21.40	21.22	20.00	20.39	20.36	18.94	18.28	18.51	18.20	18.46	19.36	
10	21.62	21.31	21.13	20.13	20.39	20.34	18.90	17.71	18.52	17.73	18.51	19.38	
11	21.49	21.37	21.11	20.19	20.40	20.24	18.82	17.54	18.48	17.57	18.86	19.40	
12	21.40	21.35	21.19	20.24	20.47	20.23	18.98	17.70	18.47	17.65	18.73	19.37	
13	21.50	21.26	21.09	20.12	20.50	20.26	19.05	17.76	19.00	17.80	19.74	19.50	
14	21.48	21.19	21.07	20.13	20.50	20.21	19.04	17.79	18.81	17.77	19.77	19.43	
15	21.31	21.25	21.02	20.22	20.59	20.06	18.97	17.85	18.71	17.75	19.12	19.46	
16	21.36	21.23	21.11	20.19	20.57	19.97	18.99	17.93	18.72	17.91	18.93	19.49	
17	21.41	21.23	21.08	20.21	20.46	19.88	19.06	17.97	18.71	18.16	18.96	19.54	
18	21.77	21.33	21.02	20.16	20.58	19.87	19.14	18.03	18.65	18.03	19.01	19.51	
19	21.60	21.26	20.95	20.17	20.64	19.86	19.17	18.06	18.97	18.22	19.23	20.00	
20	21.50	21.25	20.69	20.23	20.65	19.83	19.12	18.08	18.87	18.12	19.08	19.81	
21	21.51	21.12	20.69	20.29	20.52	19.88	19.04	18.08	18.79	18.04	19.05	19.62	
22	21.54	21.21	20.73	20.31	20.38	19.88	19.17	18.14	18.89	18.06	19.08	19.50	
23	21.56	21.20	20.72	20.39	20.56	19.88	19.33	18.01	18.86	18.13	19.14	19.44	
24	21.54	21.14	20.70	20.44	20.60	19.85	19.44	18.00	19.02	18.21	19.17	19.46	
25	21.48	21.14	20.76	20.34	20.64	19.84	19.20	18.10	18.99	18.27	19.32	19.43	
26 27 28 29 30 31 MAX	21.42 21.45 21.42 21.41 21.40 21.42 21.77	21.12 21.08 21.03 20.87 21.03 21.82	20.84 20.80 20.70 20.78 20.68 20.44 21.24	20.47 20.51 20.34 20.50 20.50 20.41 20.51	20.49 20.63 20.56 20.65	19.83 19.76 19.67 19.73 19.72 19.60 20.56	19.31 19.37 19.40 19.45 19.39 19.57	18.17 18.52 18.31 18.23 18.24 18.37 19.36	19.58 19.44 19.09 19.11 19.20	18.71 18.41 18.26 18.30 18.34 18.35 19.14	19.20 19.16 19.19 19.18 19.53 19.43 19.77	19.59 19.35 19.02 19.07 19.07 20.00	
CAL YR WTR YR		LOW 22.11 LOW 21.82											

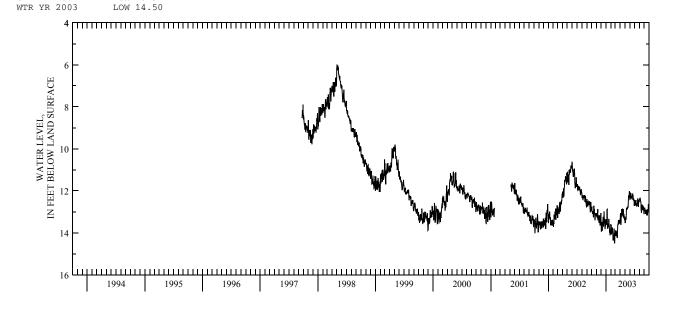
GROUND-WATER RECORDS Geauga County

412518081221500. LOCAL NUMBER, GE-3A

LOCATION.—Latitude 41°25′18", longitude 81°22′15", Hydrologic Unit 04110003, 1.2 miles southeast of Chagrin Falls, Ohio. Owner: City of Chagrin Falls.

AQUIFER.—Sandstone of Pennsylvanian Age.
WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 6 in., depth drilled 120 ft, present depth 89 ft, cased.

INSTRUMENTATION.—Digital recorder, 60-minute punch.


DATUM.—Elevation of land-surface datum is 1,130 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter, 3.00 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR. Water level affected by pumping wells nearby.

PERIOD OF RECORD.—October 1951 to September 1991 continuous. Discontinued October 1991 to March 1996. Periodic measurements April 1996 to September 1997. Continuous September 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 52.85 ft below land-surface datum, Oct. 18, 1965; minimum daily low, 5.99 ft below landsurface datum, May 2, 1998.

Ι	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES												
DAY OCT 1 12.81 2 12.80 3 12.77 4 12.75 5 12.99	NOV 13.13 13.13 13.20 13.23 13.23	DEC 13.34 13.49 13.92 13.92 13.65	JAN 13.47 13.43 13.35 13.47	FEB 13.59 13.65 13.66 13.63 14.03	MAR 14.08 13.93 14.14 13.93 13.88	APR 13.35 13.17 13.14 13.05 13.41	MAY 13.23 13.40 13.51 13.53 13.35	JUN 12.39 12.44 12.33 12.09 12.24	JUL 12.69 12.54 12.45 12.51 12.65	AUG 12.44 12.39 12.41 12.35 12.32	SEP 12.99 12.89 12.85 12.80 12.93		
6 12.99 7 13.00 8 13.10 9 12.99 10 13.05	13.05 13.28 13.11 13.00 12.87	13.55 13.50 13.89 13.90 13.67	13.60 13.60 12.89 12.87 13.32	14.07 13.89 13.91 13.88 13.75	14.11 14.12 14.04 14.04 14.15	13.62 13.49 13.26 13.25 13.15	13.28 13.34 13.37 13.35 13.11	12.35 12.20 12.12 12.32 12.36	12.65 12.63 12.69 12.63 12.60	12.35 12.39 12.48 12.51 12.54	12.96 12.90 12.93 13.02 13.08		
11 13.00 12 12.96 13 13.22 14 13.26 15 12.99	13.34 13.41 13.38 13.32 13.34	13.47 13.59 13.55 13.26 13.26	13.60 13.80 13.58 13.56 13.71	13.76 13.84 13.96 14.05 14.34	14.09 13.93 14.18 14.24 13.95	12.87 12.93 13.15 13.15 12.99	12.89 12.80 12.87 12.87 12.80	12.27 12.27 12.27 12.35 12.38	12.44 12.63 12.72 12.74 12.63	12.59 12.81 12.98 13.04 12.96	13.10 12.99 12.98 12.92 12.93		
16 12.71 17 12.89 18 12.96 19 12.87 20 13.00	13.34 13.17 13.53 13.47 13.46	13.59 13.70 13.62 13.40 12.98	13.71 13.58 13.58 13.34 13.45	14.35 14.11 14.09 14.19 14.33	13.80 13.59 13.58 13.62 13.58	12.85 12.89 13.15 13.22 13.13	12.84 12.87 12.81 12.80 12.72	12.39 12.35 12.17 12.15 12.27	12.67 12.71 12.62 12.63 12.62	12.67 12.67 12.80 12.85 12.83	13.05 13.17 13.14 12.93 13.14		
21 13.11 22 13.14 23 13.38 24 13.38 25 13.29	13.26 13.17 13.34 13.43 13.62	13.19 13.37 13.50 13.53 13.35	13.61 13.68 13.74 13.99 13.89	14.16 13.80 14.08 14.25 14.50	13.40 13.51 13.55 13.55	12.87 13.07 13.26 13.26 13.10	12.81 12.69 12.51 12.24 12.24	12.23 12.23 12.29 12.44 12.45	12.41 12.36 12.47 12.65 12.77	12.74 12.69 12.84 12.93 12.75	13.17 12.99 12.87 12.92 12.89		
26 13.07 27 13.17 28 13.17 29 13.17 30 13.05 31 13.14 MAX 13.38 CAL YR 2002	13.65 13.59 13.58 13.26 13.05 13.65 LOW 13.92	13.80 13.64 13.68 13.65 13.47 13.92	13.90 14.11 13.86 13.99 14.01 13.91 14.11	14.38 14.12 14.07 14.50	13.47 13.51 13.38 13.53 13.55 13.46 14.24	13.14 13.31 13.26 13.37 13.40	12.30 12.33 12.23 12.02 12.03 12.15 13.53	12.36 12.41 12.48 12.57 12.72	12.74 12.54 12.45 12.48 12.54 12.50 12.77	12.74 12.81 12.93 12.81 13.07 13.11 13.11	12.89 12.63 12.71 12.99 13.02		

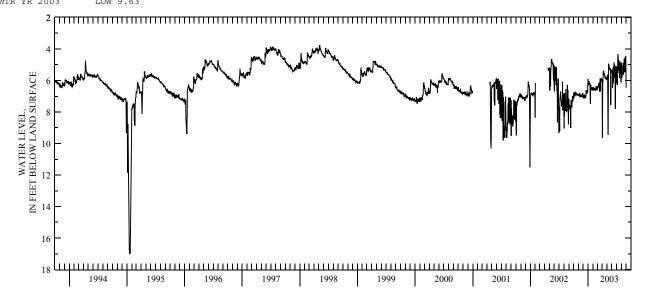
GROUND-WATER RECORDS Hancock County

405940083275500. LOCAL NUMBER, HA-3

LOCATION.—Latitude 40°59′40″, longitude 83°27′55″, Hydrologic Unit 0410008, 2 miles north of Vanlue, Ohio. Owner: City of Findlay. AQUIFER.—Limestone of Silurian Age.
WELL CHARACTERISTICS.—Drilled artesian well, diameter 10 in., diameter 6 in. below 55 ft., depth 240 ft, cased to 55 ft.

INSTRUMENTATION.—Type F continuous recorder.

DATUM.—Elevation of land-surface datum is 815 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 1.40 ft above land-surface datum.


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—May 1947 to September 1972 and August 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 20.67 ft below land-surface datum, Sept. 22, 1988; minimum daily low, 3.76 ft below land-surface datum, May 7, 1998.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES AY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP											
DAY 1 2 3 4 5	OCT 7.16 6.79 7.12 6.77 6.85	NOV 6.94 6.93 6.94 6.92 6.92	DEC 6.99 7.03 7.12 7.09 6.92	JAN 6.01 5.91 6.02 6.06 6.10	FEB 6.48 6.48 6.46 6.59 6.63	MAR 6.46 6.52 6.55 6.39 6.35	APR 5.90 8.23 9.63 7.81 6.38	MAY 5.85 5.89 5.91 5.90 5.78	JUN 5.47 5.46 5.40 5.39 5.43	JUL 5.27 5.11 5.15 5.16 5.78	AUG 5.85 4.94 4.89 4.86 5.56	SEP
6 7 8 9 10	6.99 6.84 6.83 6.78	6.95 6.97 6.88 6.86 6.80	6.95 6.91 7.10 7.10 6.96	6.26 6.26 6.08 6.08 6.14	6.61 6.50 6.51 6.50 6.49	6.42 6.42 6.37 6.28 6.28	6.11 5.77 5.50 5.41 5.40	5.62 7.69 9.30 9.44 6.50	6.46 6.36 5.59 5.22 5.21	6.28 5.40 5.04 4.58 4.33	5.80 5.52 	
11 12 13 14 15	6.76 6.92 6.90 6.90	7.05 7.05 6.98 6.92 6.98	6.94 7.03 6.99 7.01 6.98	6.21 6.25 6.18 6.20 6.29	6.50 6.55 6.58 6.58 6.65	6.21 6.13 6.19 6.19 6.71	5.40 5.55 5.61 5.61 5.59	5.06 4.93 4.99 5.03 5.11	6.17 5.37 5.21 4.98 4.85	4.47 4.61 5.40 4.75 4.72	5.05 5.63 5.40 4.90	
16 17 18 19 20	6.76 6.81 6.83 6.85 6.87	6.98 6.95 7.04 6.98 6.98	7.10 7.10 7.04 6.95 6.60	7.49 6.36 6.33 6.29 6.40	6.62 6.49 6.55 6.62 6.62	6.53 6.59 5.93 5.90 5.87	5.65 5.67 5.76 5.79 5.75	5.17 5.21 5.24 5.27 5.32	4.89 5.73 5.79 5.02 5.00	4.82 4.84 5.52 5.43 5.82	5.09 5.50 4.90 4.66 4.60	
21 22 23 24 25	6.89 6.91 6.94 6.93 6.87	6.89 7.01 7.02 7.00 7.02	6.63 6.68 6.68 6.68 6.72	6.46 6.46 6.51 6.58 6.47	6.51 6.36 6.49 6.57 6.61	6.70 6.45 5.98 5.87 5.86	5.74 5.83 5.88 5.85 5.78	5.34 5.27 5.25 5.25 6.95	5.48 5.68 7.46 7.81 6.68	4.88 5.43 4.83 4.84 5.57	5.31 4.64 4.67 5.47 4.73	
26 27 28 29 30 31 MAX	6.87 6.89 6.88 6.87 6.90 6.94 7.16	7.02 6.97 6.92 6.80 6.94 7.05	6.83 6.79 6.68 6.74 6.65 6.39 7.12	6.59 6.62 6.43 6.61 6.61 6.50 7.49	6.48 6.39 6.46 6.65	5.89 5.90 5.89 6.02 6.02 5.96 6.71	5.87 5.90 5.87 5.91 5.88 9.63	7.56 5.52 5.41 5.36 5.36 5.46 9.44	5.36 5.14 5.09 5.13 6.15 7.81	5.26 4.91 5.65 6.08 6.10 4.96 6.28	4.63 4.48 4.46 4.47 4.95 6.46	
CAL YR 2		LOW 9.34			2.03	/-	2.03		0 ±		2.10	

GROUND-WATER RECORDS Hardin County

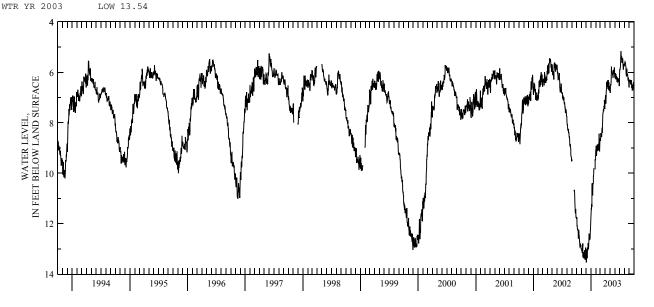
404648083412600. LOCAL NUMBER, HN-2A

LOCATION.—Latitude 40°46′48″, longitude 83°41′26″, Hydrologic Unit 04100007, at southeast edge of Dola, Ohio. Owner: Kevin Eikenbary. AQUIFER.—Limestone of Silurian Age.

WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 6 in., depth 51 ft, cased.

INSTRUMENTATION.—Electronic data logger, 60-minute log interval. Satellite telemeter at site.

DATUM.—Elevation of land-surface datum is 945 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 2.88 ft above


DAI UM.—Elevation of land-surface datum is 945 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 2.88 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—December 1954 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 15.86 ft below land-surface datum, Jan. 20, 21, 1965; minimum daily low, 5.16 ft below land-surface datum, July 10, 2003. DEPTH DELOW LAND CUDEACE (MATER LEVEL) (FEET) WATER VEAR OCTOBER 2002 TO CERTEMBER 2002

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	11.76 11.80 11.80 11.75 12.10	13.01 12.99 13.02 13.08 13.06	13.22 13.31 13.54 13.43 13.08	11.75 11.61 11.41 11.42 11.22	9.07 9.06 8.92 9.12 9.32	8.68 8.61 8.72 8.44 8.42	7.08 7.04 7.01 6.90 7.16	6.54 6.72 6.80 6.80 6.49	6.18 6.22 6.10 6.03 6.19	6.44 6.05 5.87 5.89 5.89	5.72 5.68 5.66 5.61 5.58	6.43 6.36 6.28 6.30 6.37	
6 7 8 9 10	12.07 12.17 12.24 12.21 12.26	13.09 13.16 12.97 12.92 12.78	13.15 13.02 13.37 13.34 13.07	11.34 11.29 10.50 10.40 10.66	9.27 9.11 9.13 9.04 8.87	8.57 8.54 8.48 8.48 8.55	7.24 6.95 6.81 6.72 6.61	6.49 6.50 6.47 6.36 6.09	6.25 6.09 6.06 6.25 6.25	5.83 5.78 5.68 5.35 5.16	5.59 5.61 5.66 5.72 5.77	6.37 6.30 6.33 6.38 6.43	
11 12 13 14 15	12.22 12.26 12.59 12.58 12.25	13.32 13.33 13.26 13.13 13.22	12.95 13.06 12.93 12.83 12.77	10.81 10.88 10.47 10.44 10.42	8.89 8.94 8.99 8.98 9.11	8.37 8.20 8.38 8.38 8.06	6.38 6.53 6.66 6.62 6.42	5.77 5.96 6.01 5.96 5.92	6.18 6.14 6.19 6.30 6.36	5.17 5.37 5.44 5.45 5.37	5.81 5.99 6.13 6.16 6.08	6.48 6.34 6.37 6.31 6.43	
16 17 18 19 20	12.29 12.41 12.47 12.52 12.63	13.22 13.21 13.38 13.27 13.27	12.99 12.98 12.85 12.69 12.39	10.38 10.14 10.04 9.80	9.08 8.84 8.91 9.02 9.07	7.89 7.67 7.62 7.61 7.52	6.32 6.35 6.54 6.58 6.44	6.03 6.07 6.09 6.10 6.18	6.38 6.31 6.20 6.27 6.34	5.59 5.61 5.57 5.62 5.59	5.86 5.97 6.07 6.13 6.11	6.53 6.62 6.56 6.54 6.70	
21 22 23 24 25	12.70 12.82 12.91 12.90 12.81	13.06 13.26 13.27 13.31 13.43	12.52 12.60 12.61 12.58 12.45	 	8.84 8.44 8.81 9.04 9.14	7.46 7.52 7.52 7.43 7.33	6.30 6.55 6.68 6.64 6.39	6.23 6.11 5.99 5.90 5.93	6.30 6.27 6.29 6.37 6.37	5.44 5.52 5.63 5.78 5.88	6.05 6.12 6.25 6.32 6.20	6.72 6.48 6.57 6.63 6.61	
26 27 28 29 30 31	12.82 12.91 12.88 12.85 12.93 12.99	13.41 13.38 13.29 12.95 13.12	12.63 12.54 12.27 12.25 12.04 11.85	9.85 9.45 9.47 9.47 9.32	8.93 8.68 8.69 	7.37 7.33 7.10 7.43 7.43 7.29	6.59 6.72 6.64 6.73 6.65	6.01 6.06 5.93 5.82 5.83 6.08	6.24 6.33 6.34 6.45 6.54	5.88 5.69 5.66 5.72 5.76 5.72	6.23 6.28 6.35 6.33 6.57	6.57 6.40 6.50 6.70 6.72	
MAX CAL YR		13.43 LOW 13.54		11.75	9.32	8.72	7.24	6.80	6.54	6.44	6.60	6.72	

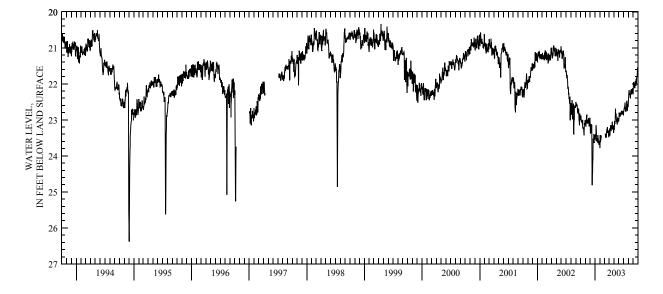
GROUND-WATER RECORDS Henry County

412123083574000. LOCAL NUMBER, HY-2

LOCATION.—Latitude 41°21′23", longitude 83°57′40", Hydrologic Unit 04100009, 1.4 mi southwest of McClure, Ohio. Owner: State of Ohio. AQUIFER.—Limestone of Silurian Age.
WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 12 in., depth drilled 300 ft, cased to 43 ft.

INSTRUMENTATION.—Digital recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 680 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—June 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 26.38 ft below land-surface datum, Dec. 3, 1994; minimum daily low, 14.55 ft below landsurface datum, Mar. 22, 1978.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES												
DAY 1 2 3 4 5	OCT 22.93 22.92 22.93 22.88 22.99	NOV 23.02 23.02 23.12 23.16 23.19	DEC 23.03 23.11 23.35 23.38 23.23	JAN 23.45 23.46 23.44 23.44 23.40	FEB 23.74 23.78 23.49 23.42 23.58	MAR 	APR 23.35 23.30 23.29 23.26 23.27	MAY 23.16 23.21 23.27 23.25 23.08	JUN 23.01 22.96 22.96 22.80 22.88	JUL 22.85 22.78 22.75 22.72 22.70	AUG 22.54 22.38 22.32 22.28 22.17	SEP 22.22 22.02 21.99 21.95 22.02	
6 7 8 9 10	23.01 23.03 23.07 23.02 23.05	23.00 23.09 22.98 22.92 22.85	23.19 23.12 23.31 23.36 23.23	23.52 23.57 23.18 23.15 23.35	23.59 23.52 23.54 23.50 23.47	23.38 23.39 23.46 23.49	23.44 23.34 23.30 23.27 23.24	23.03 23.07 23.11 23.05 22.84	22.89 22.84 22.80 22.91 22.90	22.67 22.63 22.67 22.63 22.56	22.20 22.22 22.30 22.27 22.30	22.04 22.02 22.03 22.09 22.09	
11 12 13 14 15	23.01 23.00 23.11 23.14 23.01	23.02 23.09 23.06 23.00 23.07	23.13 23.17 23.49 24.81 24.79	23.53 23.58 23.51 23.52 23.60	23.43	23.45 23.39 23.49 23.49 23.37	23.15 23.22 23.31 23.30 23.19	22.69 22.81 22.87 22.90 22.83	22.85 22.81 22.81 22.84 22.86	22.52 22.61 22.76 22.73 22.67	22.27 22.32 22.37 22.40 22.34	22.12 22.02 21.98 21.92 21.94	
16 17 18 19 20	23.20 23.24 23.20 23.23 23.23	23.08 23.05 23.10 23.08 23.08	24.46 24.46 24.16 24.10 23.62	23.61 23.52 23.53 23.42 23.42	 	23.33 23.28 23.27 23.33 23.24	23.15 23.19 23.20 23.26 23.16	22.94 23.01 23.03 23.02 23.02	22.85 22.86 22.75 22.76 22.78	22.73 22.77 22.66 22.67 22.62	22.22 22.16 22.24 22.25 22.29	21.97 22.05 22.01 21.86 21.97	
21 22 23 24 25	23.23 23.27 23.39 23.43 23.33	22.99 22.95 23.02 23.01 23.13	23.52 23.54 23.58 23.60 23.39	23.51 23.54 23.61 23.65 23.60	 	23.20 23.31 23.36 23.32 23.35	23.05 23.15 23.25 23.23 23.15	23.11 23.11 23.06 22.95 22.96	22.78 22.75 22.81 22.83 22.84	22.51 22.47 22.57 22.62 22.75	22.17 22.14 22.22 22.26 22.19	22.00 21.85 21.81 21.80 21.80	
26 27 28 29 30 31 MAX	23.09 23.13 23.13 23.10 23.01 23.05 23.43	23.18 23.15 23.12 22.98 22.94 23.19	23.63 23.63 23.56 23.53 23.52 23.44 24.81	23.67 23.69 23.62 23.68 23.69 23.58 23.69	23.78	23.36 23.37 23.29 23.44 23.48 23.46 23.49	23.18 23.27 23.21 23.36 23.33 23.44	23.01 23.07 23.01 22.96 22.98 23.04 23.27	22.76 22.77 22.83 22.85 22.86 23.01	22.72 22.62 22.56 22.60 22.62 22.61 22.85	22.19 22.17 22.22 22.12 22.27 22.29 22.54	21.77 21.55 21.60 21.72 21.77 22.22	

CAL YR 2002 LOW 24.81 WTR YR 2003 LOW 24.81

GROUND-WATER RECORDS Lucas County

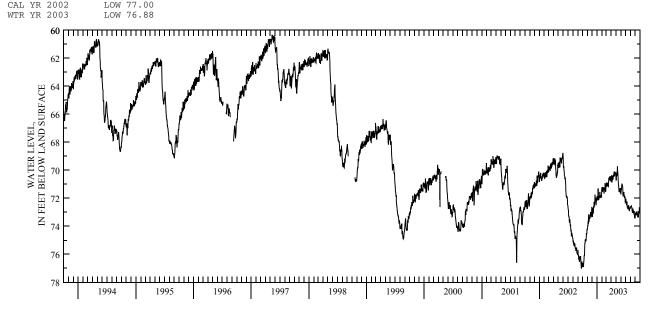
413704083362200. LOCAL NUMBER, LU-1

LOCATION.—Latitude 41°37′04", longitude 83°36′22", Hydrologic Unit 04100001, at Toledo State Hospital, Toledo, Ohio. Owner: State of Ohio. AQUIFER.—Limestone of Silurian Age.

WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 12 in., depth drilled 525 ft, present depth 523 ft, cased to 93 ft. INSTRUMENTATION.—Type F continuous recorder.

DATUM.—Elevation of land-surface datum is 624 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 2.98 ft above

land-surface datum (revised from 1978 and 1979).


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR. Prior to Aug. 23, 1978, measuring point was 3.10 ft above land-surface datum. Reported in 1979 as 3 ft above land-surface

PERIOD OF RECORD.—June 1950 to July 1982 continuous, November 1982 to January 1985 periodic, continuous thereafter. This well replaced LU-1A, which has continuous record from March 1946 to June 1950.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 117.80 ft below land-surface datum, Nov. 5-7, 1957; minimum daily low, 56.87 ft below land-surface datum, Apr. 16, 1987.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	76.66	74.19	72.78	71.97	71.32	71.15	70.50	70.20	71.67	72.28	72.65	73.29
2	76.69	74.17	72.85	71.96	71.33	70.97	70.41	70.58	71.72	72.13	72.62	73.15
3	76.74	74.10	73.28	71.87	71.29	71.18	70.48	70.69	71.60	72.10	72.61	73.07
4	76.64	73.95	73.32	71.93	71.21	70.89	70.37	70.66	71.41	72.09	72.59	73.05
5	76.88	73.99	73.03	71.88	71.54	70.87	70.73	70.24	71.37	72.24	72.58	73.18
6	76.88	73.69	72.84	72.13	71.56	71.06	70.88	70.31	71.38	72.26	72.57	73.18
7	76.86	73.83	72.72	72.13	71.43	71.06	70.78	70.38	71.11	72.25	72.55	73.06
8	76.87	73.58	73.06	71.41	71.42	70.99	70.72	70.36	70.96	72.43	72.60	72.95
9	76.63	73.42	73.10	71.30	71.38	71.01	70.69	70.26	70.97	72.51	72.66	73.11
10	76.50	73.15	72.83	71.70	71.25	71.13	70.64	70.03	71.05	72.28	72.70	73.17
11	76.39	73.55	72.65	71.94	71.26	71.02	70.40	69.72	71.10	72.24	72.67	73.22
12	76.11	73.68	72.68	72.12	71.28	70.93	70.50	70.02	71.06	72.56	72.84	73.14
13	76.11	73.59	72.63	71.89	71.34	71.17	70.66	70.13	71.23	72.67	72.99	73.14
14	76.10	73.46	72.30	71.90	71.41	71.18	70.64	70.26	71.52	72.72	73.05	73.09
15	75.60	73.46	72.29	71.98	71.63	70.90	70.40	70.48	71.70	72.60	72.96	73.10
16	75.24	73.48	72.54	72.01	71.67	70.79	70.32	70.78	71.87	72.67	72.74	73.20
17	75.21	73.35	72.58	71.86	71.43	70.59	70.35	70.94	71.77	72.75	72.87	73.36
18	75.15	73.44	72.50	71.84	71.25	70.67	70.40	71.08	71.61	72.71	72.97	73.31
19	74.96	73.32	72.18	71.56	71.32	70.69	70.46	71.14	71.61	72.80	73.01	73.11
20	75.00	73.26	71.75	71.61	71.44	70.54	70.30	71.41	71.74	72.70	72.94	73.33
21	75.02	73.04	71.92	71.77	71.28	70.46	70.11	71.54	71.77	72.50	72.88	73.37
22	74.92	72.98	72.04	71.81	70.93	70.63	70.30	71.47	71.74	72.58	72.93	73.12
23	75.06	73.08	72.17	71.86	71.09	70.65	70.42	71.39	71.74	72.65	73.16	73.01
24	75.04	73.06	72.23	71.98	71.31	70.62	70.38	71.31	71.93	72.78	73.16	73.03
25	74.86	73.28	72.01	71.89	71.54	70.54	70.12	71.42	71.97	72.90	72.94	73.09
26	74.49	73.31	72.44	71.89	71.46	70.61	70.22	71.54	71.84	72.88	73.00	73.05
27	74.57	73.24	72.45	71.98	71.24	70.62	70.29	71.59	71.94	72.68	73.19	72.66
28	74.55	73.18	72.23	71.79	71.14	70.44	70.18	71.47	71.96	72.70	73.39	72.70
29	74.46	72.84	72.19	71.81		70.78	70.30	71.29	72.14	72.73	73.20	72.86
30	74.23	72.63	72.15	71.84		70.80	70.21	71.31	72.30	72.77	73.40	72.87
31	74.29		71.96	71.67		70.72		71.54		72.73	73.44	
MAX	76.88	74.19	73.32	72.13	71.67	71.18	70.88	71.59	72.30	72.90	73.44	73.37
CAL YR	2002	LOW 77.00										

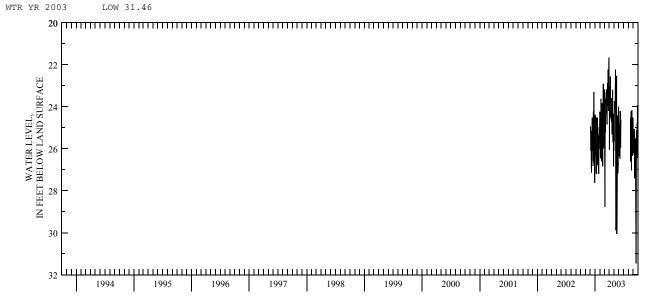
GROUND-WATER RECORDS Medina County

410142082005700. LOCAL NUMBER, MD-1A

 $LOCATION. \\ -Latitude~41^{\circ}01'42'', longitude~82^{\circ}00'57'', Hydrologic~Unit~04110001, at~Lodi, Ohio.~Owner:~Village~of~Lodi.$

AQUIFER.—Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.—Drilled unused water-table well, diameter 6 in., depth 77 ft, cased to 71 ft.

INSTRUMENTATION.—Digital recorder, 60-minute punch.


DATUM.—Elevation of land-surface datum is 910 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—December 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 31.46 ft below land-surface datum, Sept. 19, 2003; minimum daily low, 21.66 ft below land-surface datum, Mar. 30, 2003.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1				25.97	24.24	23.87	23.12	26.10	24.60			25.27
2				25.76	24.45	23.18	23.78	24.68	24.86			25.17
3			25.00	24.38	25.50	24.80	26.05	25.64	26.37			26.04
4			24.94	25.74	25.61	26.34	23.91	23.74	24.86			25.67
5			25.32	26.32	26.46	28.77	23.06	24.17	25.43			26.20
6			26.10	24.47	25.35	26.38	23.09	23.96	25.66			25.49
7			25.66	24.79	25.82	24.62	23.58	23.89	24.94			25.78
8			25.77	26.36	23.63	24.20	23.56	24.11	26.48			25.08
9			26.88	27.14	24.81	25.21	22.56	23.94	25.32			26.89
10			27.14	27.20	25.50	23.90	24.51	23.06	24.20			27.41
11			25.14	24.53	26.34	23.62	24.11	22.23	24.37			26.07
12			26.11	24.85	26.61	24.32	24.31	22.82	24.59			26.20
13			25.46	25.41	24.81	23.33	24.46	29.88	25.96			25.76
14			25.70	25.31	24.93	24.09	24.60	29.66	24.62		24.56	25.51
15			24.52	24.74	25.43	23.57	24.63	27.83			26.61	26.20
16			25.73	24.52	23.84	23.18	24.70	23.85			26.10	26.92
17			24.72	25.79	24.02	24.09	23.60	24.46			24.22	28.34
18			26.55	26.78	24.84	24.74	24.52	22.54			24.76	30.88
19			26.53	24.98	26.84	24.85	25.31	27.99			25.43	31.46
20			26.83	26.68	24.85	24.03	24.40	30.06			27.03	25.81
21			26.46	26.78	25.06	23.85	23.77	29.48			25.09	25.20
22			24.24	26.46	24.55	22.87	24.94	27.98			24.21	25.79
23			26.35	25.36	22.91	23.29	23.20	27.19			24.27	25.12
24			24.99	25.45	25.99	23.93	25.17	24.43			24.17	26.43
25			23.30	27.20	25.94	22.23	25.69	26.31			25.08	24.81
26			25.95	25.72	23.39	23.47	24.94	26.67			26.34	25.26
27			26.66	25.81	23.43	24.20	24.34	27.18			26.05	24.19
28			25.45	26.02	24.44	22.66	25.65	26.70			25.99	23.92
29			24.84	25.63		23.36	26.85	26.77			26.31	25.90
30			27.63	25.10		21.66	24.85	24.01			24.52	24.94
31			26.60	24.94		23.00		24.49			24.75	
MAX			27.63	27.20	26.84	28.77	26.85	30.06	26.48		27.03	31.46
WTR YR 20	003	LOW 31.4	6									

29

3.0

31

MAX

CAL YR 2002

26.23

25.86

26.53

30.02

26.10

26.63

28.60

TOW 31.89

27.30

GROUND-WATER RECORDS Medina County

410142082005900. LOCAL NUMBER, MD-1

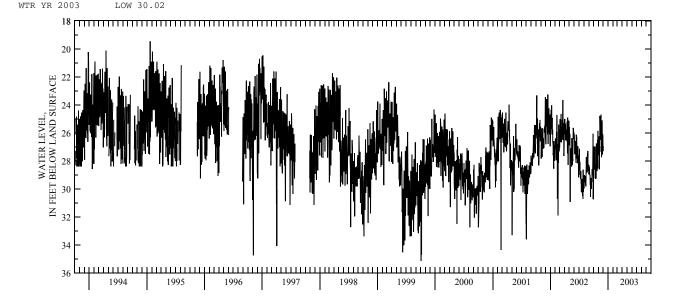
LOCATION.—Latitude 41°01'42", longitude 82°00'59", Hydrologic Unit 04110001, at Lodi, Ohio. Owner: Village of Lodi.

AQUIFER.—Sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.—Drilled unused water-table well, diameter 6 in., depth 65 ft, cased. INSTRUMENTATION.—Digital recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 910 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 1.90 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.


PERIOD OF RECORD.—September 1946 to December 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 45.21 ft below land-surface datum, July 8, 1988; minimum daily low, 7.60 ft below landsurface datum, July 6, 1969. DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAILY MAXIMÚM VALUES DAY FEB MAR OCT NOV DEC APR JUN JUL AUG SEP JAN MAY 30.02 27.61 27.08 2 28.73 27.27 27.30 ___ ___ 29.24 26.37 3 26.95 ___ ___ 28.00 26.88 4 5 26.97 27.11 6 7 27.28 26.38 27.70 26.24 27.69 28.60 26.94 27.43 10 28.62 27.36 ___ 24.78 11 28.02 12 25.93 26.98 13 27.76 25.85 14 29.28 25.98 ___ ___ ___ 15 28.56 25.22 16 29.28 26.34 26.49 24.70 17 28.25 ------18 29.21 ---___ ------___ 19 27.02 26.26 ___ ___ ---20 26.75 25.77 27.73 21 27.35 ___ ___ 22 27.94 25.66 25.57 ___ ___ ___ 23 28.56 24 28.73 25.14 25 28.55 25.11 26 27.05 25.22 27 26.48 27.42 28 28.54 27.54 ------

GROUND-WATER RECORDS Medina County

411233081474200. LOCAL NUMBER, MD-6

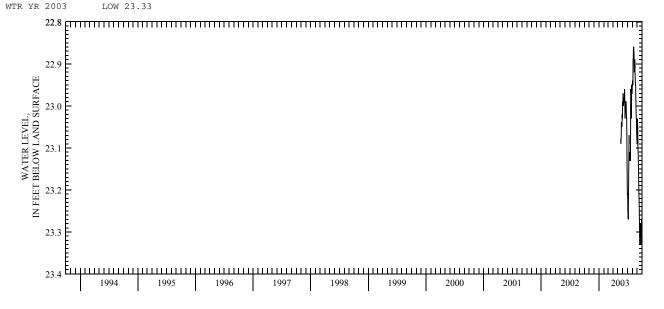
LOCATION.—Latitude 41°12′33", longitude 81°47′42", Hydrologic Unit 04110001, south of Brunswick. Owner: State of Ohio.

AQUIFER.—Sandstone of Mississippian Age.

WELL CHARACTERISTICS.—Drilled unused water-table well, diameter 6 in., depth 170 ft, cased to 70 ft.

INSTRUMENTATION.—Electronic data logger, 60-minute log interval.

DATUM.—Elevation of land-surface datum is 1,090 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.50 ft above land-surface datum.


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS

are available from ODNR.

PERIOD OF RECORD.—May 2003 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 23.33 ft below land-surface datum, Sept. 26 and 30, 2003; minimum daily low, 22.86 ft below land-surface datum, Aug. 9 and 10, 2003.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUIN JUIN SEP												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1									22.99	23.21	22.95	23.09	
2									23.00	23.21	22.95	23.03	
3									22.99	23.23	22.94	23.04	
4									22.97	23.25	22.95	23.05	
5									22.99	23.26	22.95	23.09	
6									23.00	23.27	22.89	23.11	
7									22.99	23.27	22.89	23.11	
8									22.99	23.19	22.87	23.15	
9									22.98	23.13	22.86	23.15	
10									22.99	23.12	22.86	23.18	
11									22.99	23.07	22.87	23.20	
12									22.98	23.09	22.88	23.21	
13									22.96	23.13	22.90	23.23	
14									22.98	23.13	22.92	23.25	
15									23.01	23.11	22.91	23.26	
16									23.03	23.12	22.91	23.29	
17									23.02	23.13	22.89	23.32	
18									23.00	23.13	22.92	23.33	
19									22.99	23.13	22.93	23.29	
20								23.08	23.00	23.13	22.94	23.28	
21								23.09	22.99	23.11	22.95	23.31	
22								23.08	22.99	22.96	22.95	23.31	
23								23.07	23.00	22.97	22.97	23.28	
24								23.04	23.02	22.99	23.00	23.29	
25								23.04	23.03	23.02	23.02	23.32	
26								23.04	23.03	23.03	23.03	23.33	
27								23.05	23.05	23.01	23.03	23.30	
28								23.04	23.09	22.95	23.06	23.27	
29								23.02	23.18	22.96	23.07	23.31	
30								23.03	23.21	22.97	23.08	23.33	
31								23.01		22.97	23.09		
MAX								23.09	23.21	23.27	23.09	23.33	
TATED AND	2002	T OT-7 22 2	2										

GROUND-WATER RECORDS Ottawa County

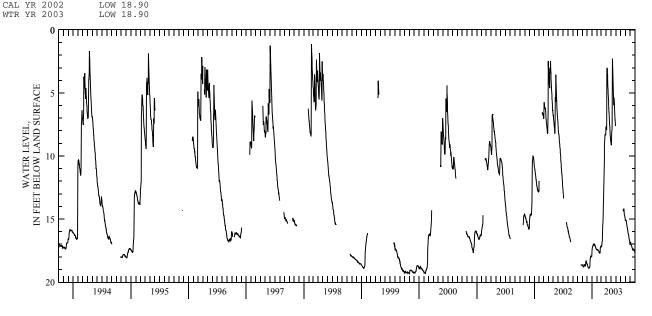
413434082494000. LOCAL NUMBER, O-2

LOCATION.—Latitude 41°34′34″, longitude 82°49′40″, Hydrologic Unit 04100010. Catawba Island near Port Clinton, Ohio. Owner: William Williams. AQUIFER.—Limestone of Silurian Age.

WELL CHARACTERISTICS.—Drilled water table well, diameter 6 in., depth 62 ft, cased to 26 ft.

INSTRUMENTATION.—Type F continuous recorder.

DATUM.—Elevation of land-surface datum is 591 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 1.60 ft above


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—March 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 19.34 ft below land-surface datum, Oct. 31, 1999, Feb. 9, and 10, 2000; minimum daily

low, 1.12 ft below land-surface datum, Feb. 18, 1998.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1		18.66	18.57	17.62	17.42	17.14	7.66	8.92			15.10	17.04		
2		18.68	18.55	17.41	17.46	17.16	7.85	8.88			15.10	16.86		
3		18.73	18.63	17.30	17.45	17.19	7.89	9.04			15.09	16.80		
4		18.75	18.64	17.26	17.41	17.13	7.91	9.14			15.08	16.84		
5		18.74	18.67	17.19	17.44	17.02	4.13	9.00			15.08	16.91		
6		18.74	18.72	17.19	17.45	16.85	3.20	8.22			15.11	16.95		
7		18.75	18.78	17.17	17.44	16.79	3.23	8.04			15.20	17.01		
8		18.78	18.83	17.12	17.45	16.71	3.00	7.91			15.29	17.06		
9		18.80	18.86	17.05	17.45	15.99	3.36	7.83			15.39	17.10		
10		18.82	18.89	17.03	17.47	15.51	3.58	5.05			15.46	17.14		
11		18.70	18.90	17.02	17.49	15.37	3.95	2.27			15.52	17.20		
12		18.63	18.89	17.04	17.53	15.24	4.45	2.73			15.61	17.23		
13		18.61	18.88	17.01	17.56	14.82	4.82	3.28			15.70	17.29		
14		18.61	18.89	17.00	17.59	14.43	5.00	3.81			15.73	17.32		
15		18.65	18.88	17.01	17.63	13.85	5.19	4.34			15.81	17.36		
16		18.68	18.88	17.00	17.66	12.95	5.62	4.88			15.91	17.41		
17		18.67	18.85	17.06	17.63	12.02	5.86	5.28			16.00	17.47		
18		18.68	18.84	17.04	17.69	11.44	6.26	5.66		14.19	16.09	17.48		
19		18.69	18.77	17.04	17.69	11.10	6.46	5.94		14.31	16.15	17.45		
20		18.72	18.41	17.11	17.71	10.79	6.59	5.95		14.39	16.18	17.39		
21		18.72	18.16	17.15	17.70	10.23	6.84	5.38		14.33	16.22	17.42		
22	18.62	18.67	18.07	17.18	17.67	9.11	7.20	5.55		14.17	16.33	17.41		
23	18.64	18.42	18.03	17.18	17.33	8.68	7.47	5.78		14.28	16.44	17.42		
24	18.65	18.34	18.03	17.23	17.23	8.48	7.58	6.18		14.37	16.50	17.45		
25	18.66	18.32	17.96	17.27	17.20	8.34	7.76	6.56		14.60	16.56	17.46		
26	18.63	18.29	17.99	17.29	17.16	8.35	8.12	6.86		14.66	16.62	17.48		
27	18.63	18.38	17.99	17.35	17.15	8.34	8.33	7.04		14.76	16.68	17.49		
28	18.63	18.43	17.97	17.33	17.16	8.29	8.45	7.12		14.79	16.75	17.56		
29	18.63	18.46	17.99	17.39		8.30	8.68	7.41		14.85	16.83	17.61		
30	18.63	18.56	17.98	17.40		7.97	8.76	7.61		14.92	16.97	17.66		
31	18.66		17.87	17.41		7.75		7.56		14.99	17.06			
MAX	18.66	18.82	18.90	17.62	17.71	17.19	8.76	9.14		14.99	17.06	17.66		
CAL YR	2002	LOW 18.90												

GROUND-WATER RECORDS Portage County

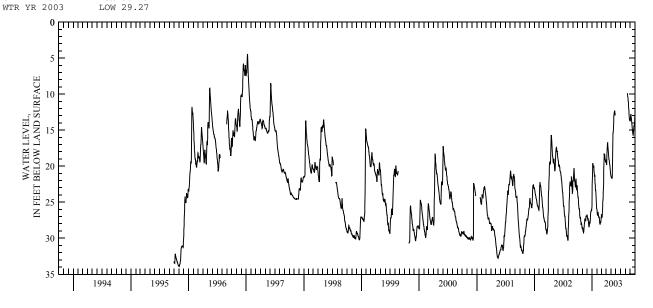
410931081192900. LOCAL NUMBER, PO-123

LOCATION.—Latitude 41°09'31", longitude 81°19'29", Hydrologic Unit 04110002, east of Kent, Ohio. Owner: City of Kent.

AQUIFER.—Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 6 in., cased.

INSTRUMENTATION.—Digitial recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 1,042 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.5 ft above land-surface datum.


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS

are available from ODNR.

PERIOD OF RECORD.—September 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 33.97 ft below land-surface datum, Nov. 3, 1995; minimum daily low, 4.43 ft below land-surface datum, Jan. 9, 1997.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	23.39	28.74	26.74	25.59	25.97	27.10	19.22	21.36				13.65		
2	23.65	28.74	26.85	24.12	25.98	26.74	19.45	21.41				13.46		
3	23.96	28.51	27.05	22.57	26.29	26.74	19.66	21.54				13.18		
4	24.25	28.67	27.16	21.42	26.64	26.97	19.83	21.56				12.93		
5	24.33	28.80	27.33	20.42	26.79	27.12	19.75	21.58				12.77		
6	24.33	29.00	27.51	19.60	26.84	27.11	18.55	21.64				12.89		
7	24.83	29.13	27.51	19.69	26.82	27.08	18.00	21.63				13.28		
8	25.22	29.27	27.25	19.84	26.79	26.81	17.60	21.74				13.38		
9	25.51	29.27	27.60	20.08	26.36	26.14	17.07	21.64				13.59		
10	25.72	29.00	27.84	20.20	26.56	25.42	16.79	21.30				13.83		
11	25.95	28.83	28.08	20.20	26.74	25.03	16.78	18.90				14.07		
12	25.95	28.63	28.30	19.93	26.98	24.62	17.19	17.03				14.36		
13	25.88	28.45	28.42	20.09	27.12	24.35	17.39	16.20				14.61		
14	26.19	28.19	28.43	20.43	27.17	23.69	17.65	15.47			9.86	14.82		
15	26.45	27.89	28.29	20.80	27.19	22.95	17.93	15.32			10.10	15.07		
16	26.81	27.76	27.98	21.09	27.02	22.11	18.26	15.31			10.37	15.30		
17	27.08	27.36	27.84	21.40	27.26	20.65	18.59	14.85			10.45	15.44		
18	27.25	27.29	27.75	21.42	27.55	19.51	18.88	14.32			10.65	15.62		
19	27.24	27.42	27.81	21.37	27.80	18.76	19.07	13.80			10.93	15.70		
20	27.08	27.44	27.85	21.90	28.00	18.25	19.13	13.19			11.20	15.64		
21	27.32	27.50	27.73	22.33	28.08	18.50	19.22	12.77			11.58	15.35		
22	27.59	27.59	27.15	22.70	28.08	18.52	19.47	12.60			11.93	15.05		
23	27.78	27.57	26.67	23.11	27.82	18.38	19.68	12.57			12.33	14.78		
24	28.00	27.05	26.48	23.36	27.78	18.78	19.76	12.40			12.63	14.38		
25	28.09	26.89	26.25	23.37	27.81	19.05	19.97	12.29			12.93	14.36		
26	28.10	26.96	26.25	23.58	27.76	19.09	20.25	12.46			13.28	14.36		
27	27.83	27.03	26.30	24.02	27.57	19.27	20.47	12.66			13.51	14.39		
28	28.07	27.03	26.26	24.46	27.29	19.31	20.71	12.88			13.60	13.99		
29	28.27	26.95	26.09	24.92		19.43	20.96	12.97			13.69	13.28		
30	28.38	26.86	26.16	25.46		19.39	21.17				13.69	12.87		
31	28.55		26.13	25.93		19.08					13.62			
MAX CAL YR		29.27 LOW 30.29	28.43	25.93	28.08	27.12	21.17	21.74			13.69	15.70		

GROUND-WATER RECORDS Putnam County

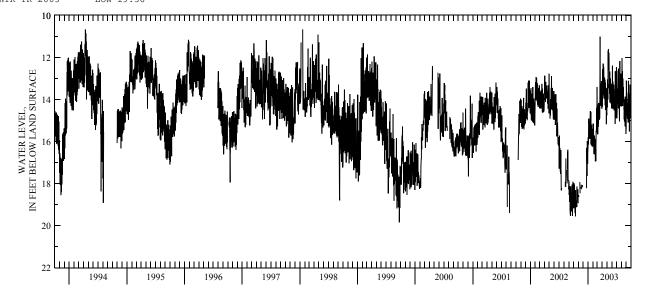
405505084032900. LOCAL NUMBER, PU-1

LOCATION.—Latitude 40°55′05", longitude 84°03′29", Hydrologic Unit 04100007, Center and Broadway Street, Columbus Grove, Ohio. Owner: Village of Columbus Grove.

AQUIFER.—Limestone of Silurian Age.
WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 6 in., depth 110 ft, cased.
INSTRUMENTATION.—Digital recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 770 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS


are available from ODNR.

PERIOD OF RECORD.—July 1946 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 24.30 ft below land-surface datum, Aug. 24, 1962; minimum daily low, 8.80 ft below land-surface datum, Dec. 30, 1990.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3	18.01 18.86 19.18	 18.59 18.56		16.34 16.18 15.80	16.21 16.18 15.91	15.34 14.46 15.18	14.23 14.34 13.99	14.75 13.47 14.31	14.09 13.45 14.45	12.47 14.78 14.73	13.90 14.33 14.03	15.01 13.10 14.22		
4 5	18.84 17.99	18.64		16.14 15.10	15.15 16.15	15.66 14.26	13.88 12.55	14.38 13.05	13.95 12.39	14.90 14.67	13.30 12.03	13.66 14.17		
6 7 8	18.63 18.06 19.01	18.44		14.91 15.13 15.06	15.58 16.08 16.59	15.04 15.31 14.31	13.79 13.65 12.29	13.73 14.00 13.92	14.24 14.19 13.16	13.66 13.49 14.20	13.31 12.66 13.68	14.02 14.64 14.83		
9 10	18.31 19.12	18.75		15.66 15.74	15.97 16.14	15.19 14.17	12.39 13.21	11.68 12.60	14.14 14.44	13.40 12.87	14.31 13.28	14.92 14.78		
11 12 13 14	19.40 18.45 19.13 19.56	17.94 18.47 18.16	 	15.52 15.87 15.72 15.79	16.61 15.73 16.23 16.48	14.25 14.88 14.88 14.97	12.45 13.29 13.96 13.43	11.61 12.43 11.78 12.33	13.40 13.80 13.30 13.48	12.64 13.80 14.42 12.53	13.98 13.01 14.14 13.42	14.40 14.15 15.10 14.91		
15 16	18.33 19.17	18.24		14.84 14.56	16.33 15.89	14.33 14.92	13.94 12.97	12.07 13.47	14.19 14.52	14.12 13.64	14.06 13.98	13.12 14.80		
17 18 19 20	18.89 18.82	18.74 18.06	 	15.47 15.88 14.59 16.10	16.94 16.88 16.37 16.94	14.66 13.34 11.01 14.22	13.81 13.67 14.01 13.06	13.27 13.74 12.67 14.14	13.51 14.20 14.14 14.32	14.44 14.18 14.71 15.05	14.51 14.08 14.95 14.59	13.97 14.67 14.98 14.39		
21 22 23 24 25	18.81 19.12 18.15 18.92 18.72	18.27 	18.23 16.31 16.81	15.96 15.94 16.18 15.20 15.94	16.18 15.62 15.48 15.57 14.40	13.39 14.01 13.83 14.31 13.24	14.28 13.21 14.08 14.50 13.45	13.49 13.03 13.79 13.00 13.91	14.05 14.62 15.16 12.66 13.80	14.54 12.18 14.14 13.53 14.28	15.06 14.13 14.02 14.33 15.29	15.53 13.73 14.79 13.30 14.62		
26 27 28 29 30 31	18.43 18.54 18.72 18.28 18.94	18.08 18.18 18.75	17.21 17.64 15.98 16.75 17.06 16.52	15.48 15.75 16.23 16.15 15.40 16.17	15.46 14.69 13.41 16.94	14.02 14.33 13.13 14.25 14.44 13.22	14.28 14.35 15.18 14.59 14.70 	14.18 13.25 13.45 13.28 14.40 14.24	14.89 14.19 13.85 14.32 14.88	13.89 14.20 14.33 12.78 14.24 14.01	13.87 14.88 14.27 14.84 15.64 15.38	14.03 14.90 14.29 14.01 13.50		
MAX	19.56	18.75	18.23	16.34	16.94	15.66	15.18	14.75	15.16	15.05	15.64	15.		

CAL YR 2002 LOW 19.56 WTR YR 2003 LOW 19.56

GROUND-WATER RECORDS Sandusky County

411914083045300. LOCAL NUMBER, S-3

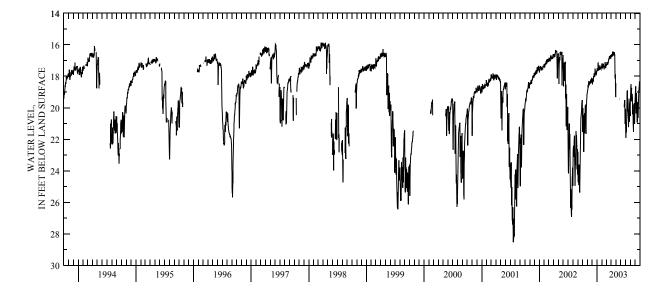
LOCATION.—Latitude 41°19′14", longitude 83°04′53", Hydrologic Unit 04100011, 2.6 mi southeast of Fremont Post Office, Fremont, Ohio. Owner: State of Ohio.

AQUIFER.-Limestone of Silurian Age.

WELL CHARACTERISTICS.—Drilled test artesian well, diameter 12 in., depth 121 ft, cased to 93 ft.

INSTRUMENTATION.—Digital recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 627 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—December 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 28.53 ft below land-surface datum, July 20, 2001; minimum daily low, 14.02 ft below land-surface datum, Mar. 24, 1975.

DE	EPTH BELO\	W LAND SU	RFACE (WA) (FEET), WA MAXIMUM		OCTOBER 2	2002 TO SE	PTEMBER 2	2003
Т	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	А
36	19.00	18.22	17.67	17.22	17.28	16.67	18.43		20.50	19

2 2 3 2 4 2	OCT 0.86 1.54 0.59 0.02	NOV 19.00 18.92 18.88 18.85	DEC 18.22 18.31 18.48 18.48	JAN 17.67 17.65 17.54 17.56 17.52	FEB 17.22 17.23 17.20 17.22 17.45	MAR 17.28 17.25 17.32 17.19	APR 16.67 16.67 16.70 16.62 16.63	MAY 18.43 	JUN 	JUL 20.50 21.31 21.83 21.91 21.04	AUG 19.75 19.25 18.92 18.68 18.50	SEP 19.30 19.00 18.81 18.64 19.70
7 2 8 2 9 2	0.47 1.21 2.36 2.80	18.62 18.65 18.56 18.45 18.30	18.20 18.15 18.32 18.34 18.13	17.62 17.61 17.17 17.15 17.35	17.47 17.35 17.33 17.31 17.27	17.22 17.21 17.15 17.19 17.27	16.78 16.66 16.67 16.63 16.57	 	 	21.33 21.56 20.53 19.90 19.46	19.27 19.59 18.91 18.74	20.35 19.93 19.32 19.07 19.48
12 2 13 2 14 2	1.55 1.05 0.46 0.33 1.19	18.54 18.59 18.53 18.44 18.45	18.00 18.03 17.98 17.84 17.81	17.53 17.57 17.51 17.49 17.58	17.25 17.38 17.41 17.40 17.53	17.15 17.11 17.19 17.15 16.99	16.43 16.59 16.72 16.69 16.55	 	 	19.05 18.95 18.89 19.99 20.22	19.10 19.40 19.94	19.97 20.58 20.74 20.94 20.13
17 2 18 2 19 1	1.61 0.73 0.33 9.96 9.81	18.42 18.40 18.48 18.41 18.42	18.02 18.02 17.97 17.82 17.52	17.57 17.46 17.46 17.31 17.38	17.53 17.39 17.34 17.39 17.42	16.95 16.88 16.92 16.91 16.83	16.52 16.54 16.59 16.62 16.54	 	 	20.13 20.34 20.62 20.76 21.22	20.41 19.79 20.29 21.02 21.45	19.65 19.84 20.58 20.64 20.00
22 1 23 2 24 2	0.07 9.87 1.15 1.66	18.28 18.20 18.25 18.24 18.36	17.64 17.77 17.82 17.86 17.75	17.46 17.49 17.47 17.54	17.32 17.10 17.30 17.43 17.48	16.71 16.80 16.83 16.77	16.47 16.59 16.67 16.62 17.45	 	19.97 19.73 19.83	20.77 19.78 19.42 19.69 20.52	21.52 20.39 20.75 21.03 20.14	19.61 19.24 18.93 18.89 18.73
27 1 28 1 29 1 30 1 31 1		18.40 18.35 18.30 18.10 18.16 19.00 LOW 26.92 LOW 22.80	17.95 17.92 17.78 17.81 17.76 17.67 18.48	17.54 17.56 17.40 17.49 17.48 17.38 17.67	17.41 17.28 17.28 17.53	16.79 16.77 16.66 16.86 16.85 16.81 17.32	18.13 17.87 18.13 19.04 19.32	19.44 19.44 19.44	19.51 19.83 20.83 21.02 20.07 21.02	20.88 19.98 19.88 19.70 20.23 20.52 21.91	19.72 20.46 21.01 20.34 19.80 19.60 21.52	18.65 18.35 18.35 18.45 18.48 20.94

GROUND-WATER RECORDS Sandusky County

412703083213600. LOCAL NUMBER, S-2

LOCATION.—Latitude 41°27′03", longitude 83°21′36", Hydrologic Unit 04100010, at Woodville, Ohio. Owner: Village of Woodville. AQUIFER.—Limestone of Silurian Age.

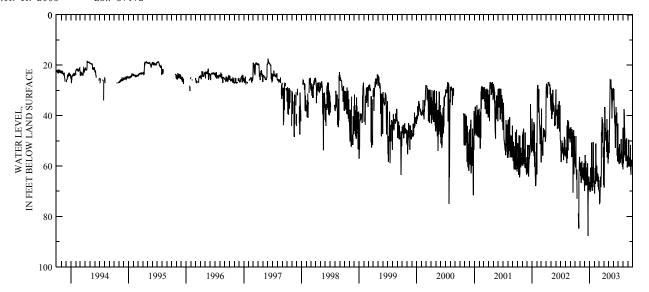
WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 8 in., depth 198 ft cased.

WELL CHARACTERISTICS.—Drifted unused artesian wen, diameter o in., depin 170 it cased.

INSTRUMENTATION.—Digital recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 635 ft above sea level (from topographic map). Measuring point: Top of casing at land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.


PERIOD OF RECORD.—June 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 100.97 ft below land-surface datum, Jan. 29, 1982; minimum daily low, 17.43 ft below land-surface datum, June 3, 1997.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58.22 57.61 60.53 55.34 57.63	58.89 58.47 62.01 61.51 59.94	66.35 62.41 57.12 55.67 58.93	66.54 67.96 68.32 70.29 69.94	69.71 70.99 66.27 66.02 65.86	67.19 65.65 69.81 69.79 75.13	56.53 56.98 67.58 68.54 65.68	51.14 53.52 50.71 51.12 54.83	29.17 29.33 30.84 32.12 29.48	53.10 56.36 53.47 52.65 58.51	61.35 57.80 58.88 57.48 52.54	55.91 58.22 57.56 59.11 59.99
6 7 8 9 10	48.16 58.95 60.21 63.91 65.28	64.03 58.88 62.65 66.71 59.12	67.74 58.01 62.37 62.68 62.62	67.58 69.63 60.66 61.08 64.72	60.81 67.08 65.88 51.03 53.33	75.01 71.88 74.42 70.26 66.10	58.07 36.62 38.02 40.87 42.28	53.05 44.96 41.10 40.01 31.79	36.99 37.90 40.46 39.82 43.17	55.15 59.26 57.48 58.06 51.32	56.59 42.04 37.40 40.33 41.85	49.56 59.70 57.19 56.51 56.90
11 12 13 14 15	64.87 61.49 73.07	60.43 62.66 58.21 65.27 65.26	62.87 66.85 65.54 67.63 60.66	66.55 68.53 67.51 50.68 59.79	58.96 60.04 66.08 62.09 59.97	64.25 66.24 65.33 68.33 66.46	48.16 45.01 48.46 49.96 46.60	27.24 25.87 26.04 26.24 25.66	39.97 47.00 52.18 52.79 40.83	57.22 58.87 57.68 57.80 58.62	44.42 45.63 48.07 52.26 55.69	59.78 59.72 57.31 59.97 59.44
16 17 18 19 20	 	62.49 61.66 64.59 60.61 62.81	66.19 63.83 63.29 63.36 58.93	64.79 60.47 69.80 60.70 63.95	62.69 62.74 63.92 63.99 66.05	61.79 46.66 47.26 45.68 45.92	48.51 48.10 49.70 54.41 53.48	26.12 28.20 29.32 29.65 28.95	42.24 41.63 36.58 40.82 42.12	58.07 55.13 55.67 57.27 49.30	54.11 55.54 55.79 58.07 56.69	60.27 51.66 61.42 61.83 63.45
21 22 23 24 25	78.86 81.42 84.84 73.43	63.61 63.99 60.59 62.16 65.52	66.58 87.72 75.60 68.77 64.29	61.34 66.59 57.18 50.46 55.09	66.08 63.24 63.43 66.39 68.35	40.57 47.49 48.04 41.37 50.79	41.41 50.66 56.64 54.79 56.30	32.34 37.97 41.11 36.54 33.50	44.14 38.84 48.36 52.02 55.92	55.93 54.03 56.91 56.06 59.44	49.54 52.45 56.41 49.08 56.04	60.59 57.56 59.19 58.30 59.77
26 27 28 29 30 31	63.40 60.55 58.59 57.84 56.42 60.62	58.87 65.79 65.24 68.16 69.94	67.04 69.48 67.69 64.30 69.21 66.44	57.26 61.17 68.19 67.66 65.97 69.74	64.32 65.86 69.34 	42.88 50.50 54.58 56.57 52.48 67.49	45.76 49.66 59.02 55.26 57.23	33.64 29.39 32.44 32.77 33.91 32.53	53.49 52.21 58.15 43.12 53.62	58.30 56.95 59.50 60.43 51.36 44.88	57.86 57.46 60.62 60.06 58.98 58.01	58.85 59.35 59.44 58.06 61.39
MAX	84.84	69.94	87.72	70.29	70.99	75.13	68.54	54.83	58.15	60.43	61.35	63.45
CAL YR 2	2002	LOW 87.72	!									

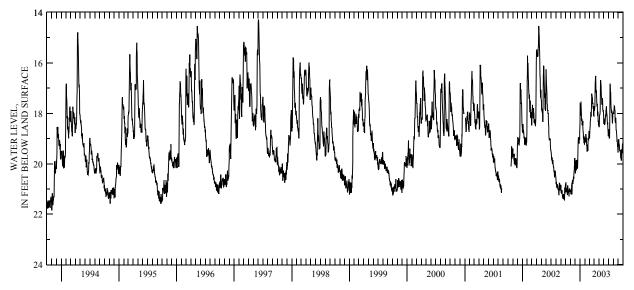
CAL YR 2002 WTR YR 2003 LOW 87.72 LOW 87.72

GROUND-WATER RECORDS Seneca County

410802083093900. LOCAL NUMBER, SE-2

LOCATION.—Latitude 41°08′02", longitude 83°09′39", Hydrologic Unit 04100011, Tiffin State Hospital, Tiffin, Ohio. Owner: State of Ohio. AQUIFER.—Limestone of Silurian Age.
WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 12 in., depth 250 ft, cased.

INSTRUMENTATION.—Digital recorder, 60-minute punch.


DATUM.—Elevation of land-surface datum is 740 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 0.50 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.
PERIOD OF RECORD.—July 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 23.76 ft below land-surface datum, Nov. 22, 1964; minimum daily low, 14.11 ft below land-surface datum, Jan. 2, 1991.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY 1 2 3 4 5	OCT 20.85 20.86 20.85 20.74 21.12	NOV 21.08 21.08 21.05 21.15 21.20	DEC 20.05 20.15 20.37 20.37 20.00	JAN 18.41 17.94 17.63 17.65	FEB 19.00 19.02 19.00 19.04 19.15	MAR 18.87 18.92 19.00 18.77 18.64	APR 17.72 17.79 17.90 17.85 17.78	MAY 18.37 18.51 18.55 18.45 18.11	JUN 18.40 18.41 18.24 18.23 18.42	JUL 18.82 18.73 18.64 18.78 18.89	AUG 18.00 18.01 18.03 17.96 17.83	SEP 19.44 19.27 19.12 19.03 19.15		
6 7 8 9 10	21.12 21.06 21.11 21.01 21.04	21.10 21.22 21.06 20.98 20.78	19.90 19.87 20.23 20.26 19.97	18.06 18.09 17.54 17.76 18.07	19.09 18.83 18.88 18.91 18.95	18.54 18.49 18.35 18.25 18.14	17.74 17.23 16.83 16.71 16.58	18.06 18.04 18.03 17.93	18.47 18.37 18.39 18.36 18.33	18.98 18.97 18.97 18.40 17.52	17.74 17.71 17.73 17.82 17.88	19.23 19.21 19.28 19.39 19.46		
11 12 13 14 15	20.99 20.97 21.23 21.24 20.86	21.20 21.20 20.97 20.69 20.75	19.85 20.01 19.95 19.93 19.89	18.23 18.30 18.22 18.26 18.46	18.97 19.19 19.28 19.28 19.51	17.99 18.01 18.13 18.13 17.67	16.52 16.95 17.16 17.16 17.09	16.77 16.68 16.77 16.84 16.94	18.12 18.05 18.14 18.06 17.91	16.83 16.87 17.06 17.21 17.20	17.91 18.12 18.33 18.38 18.31	19.51 19.47 19.47 19.46 19.62		
16 17 18 19 20	20.90 21.01 21.05 21.04 21.11	20.75 20.64 20.80 20.68 20.69	20.19 20.18 20.04 19.82 19.25	18.46 18.44 18.45 18.30 18.55	19.52 19.24 19.28 19.41 19.49	17.42 17.22 17.32 17.37 17.35	17.24 17.37 17.61 17.73 17.65	17.23 17.35 17.41 17.47 17.61	17.89 17.81 17.72 17.88 17.99	17.59 17.76 17.81 17.92 17.98	18.17 18.39 18.53 18.67 18.71	19.74 19.76 19.75 19.75 19.88		
21 22 23 24 25	21.13 21.15 21.24 21.29 21.18	20.51 20.52 20.60 20.40 20.30	19.05 18.96 19.01 19.03 18.94	18.71 18.77 18.88 19.01 18.90	19.28 18.98 19.03 19.04 19.08	17.42 17.57 17.62 17.58 17.72	17.62 17.92 18.10 18.08 17.93	17.67 17.50 17.40 17.46 17.66	18.02 18.09 18.21 18.37 18.45	17.91 17.92 18.00 18.17 18.34	18.71 18.83 19.04 19.14 19.04	19.84 19.43 19.55 19.58		
26 27 28 29 30 31	20.98 21.11 21.04 20.99 21.01 21.12	20.27 20.10 20.03 19.77 19.97	19.20 19.17 18.99 19.06 19.01 18.77	19.11 19.17 18.93 19.22 19.23 19.10	18.92 18.71 18.86 	17.80 17.83 17.72 18.10 18.11 17.89	18.20 18.33 18.29 18.49 18.43	17.82 17.91 17.90 17.87 17.99 18.20	18.37 18.59 18.66 18.76 18.91	18.40 18.24 18.16 18.02 17.98 17.97	19.09 19.19 19.33 19.26 19.51 19.56	19.44 19.25 19.20 19.19 19.19		
MAX CAL YR 2	21.29	21.22 LOW 21.44	20.37	19.23	19.52	19.00	18.49	18.55	18.91	18.98	19.56	19.88		

GROUND-WATER RECORDS Summit County

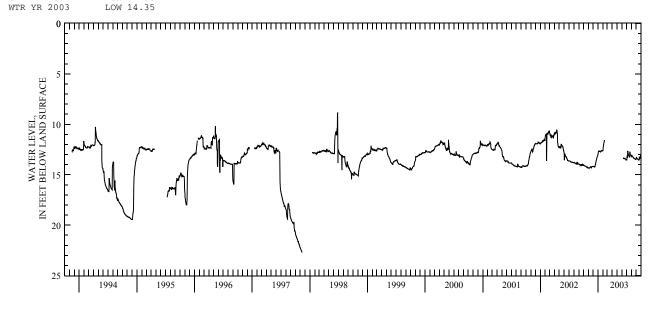
410330081282000. LOCAL NUMBER, SU-6

LOCATION.—Latitude 41°03′30", longitude 81°28′20", Hydrologic Unit 04110002, Seiberling Street, Akron, Ohio. Owner: Goodyear Tire and Rubber Company.

AQUIFER.—Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 24 in., depth 89 ft, cased.
INSTRUMENTATION.—Digital recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 1,000 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 2.63 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS


are available from ODNR.

PERIOD OF RECORD.—July 1941 to February 1944 periodic, March 1944 to current year continuous. Records for May 14-Sept. 30, 1980, published in USGS-WDR-OH-80-1, are unreliable and should not be used.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 59.47 ft below land-surface datum, Oct. 18, 1946; minimum daily low, 8.82 ft below land-

surface datum. June 26, 1998.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	14.07	14.33	14.19	13.02	12.61					13.53	13.07	13.46		
2	14.05	14.33	14.18	12.89	12.54					13.54	13.12	13.24		
3	14.07	14.34	14.19	12.78	12.45					13.53	13.15	13.31		
4	14.07	14.35	14.18	12.70	12.24					13.35	13.18	13.34		
5	14.08	14.35	14.17	12.68	12.03					13.22	13.13	13.37		
6	14.08	14.34	14.18	12.66	11.95					13.25	13.18	13.39		
7	14.10	14.35	14.19	12.68	11.92					13.32	13.20	13.41		
8	14.12	14.35	14.19	12.64	11.88					13.07	13.21	13.43		
9	14.13	14.35	14.22	12.64	11.78					12.64	13.21	13.44		
10	14.14	14.33	14.23	12.66	11.74					12.73	13.22	13.46		
11	14.14	14.27	14.23	12.67	11.61				13.42	12.79	13.24	13.46		
12	14.14	14.24	14.24	12.67	11.61				13.43	12.89	13.26	13.48		
13	14.15	14.25	14.23	12.67	11.59	11.42			13.34	12.97	13.30	13.49		
14	14.15	14.25	14.11	12.67					13.36	13.03	13.34	13.49		
15	14.15	14.26	14.01	12.67					13.38	13.07	13.34	13.50		
16	14.16	14.26	13.97	12.70					13.41	13.15	13.33	13.54		
17	14.18	14.23	13.93	12.71					13.41	13.19	13.35	13.55		
18	14.20	14.25	13.81	12.71					13.41	13.22	13.37	13.55		
19	14.20	14.24	13.75	12.68					13.38	13.24	13.39	13.52		
20	14.21	14.24	13.67	12.67					13.40	13.25	13.41	13.35		
21	14.23	14.23	13.59	12.64					13.41	13.26	13.41	13.38		
22	14.24	14.35	13.54	12.64					13.42	12.71	13.42	13.39		
23	14.26	14.19	13.50	12.62					13.44	12.80	13.43	13.30		
24	14.30	14.18	13.42	12.62					13.46	12.85	13.44	13.33		
25	14.30	14.18	13.36	12.62					13.47	12.97	13.45	13.37		
26	14.24	14.18	13.26	12.61					13.46	13.03	13.45	13.37		
27	14.24	14.19	13.20	12.61					13.40	13.03	13.45	13.36		
27	14.20	14.19	13.22	12.62					13.49	13.07	13.45	13.36		
28 29	14.30	14.19	13.20	12.65					13.51	13.00	13.45	13.07		
30	14.30	14.19	13.14	12.65					13.53	13.14	13.46	13.15		
31	14.31	14.19	13.11	12.64					13.53	13.14	13.46	13.20		
MAX	14.32	14.35	14.24	13.02	12.61	11.42			13.53	13.17	13.46	13.55		
CAL YR		LOW 14.35	14.∠4	13.02	12.01	11.42			13.33	13.34	13.40	13.33		
CUT IK	2002	TOM T4.22												

GROUND-WATER RECORDS Summit County

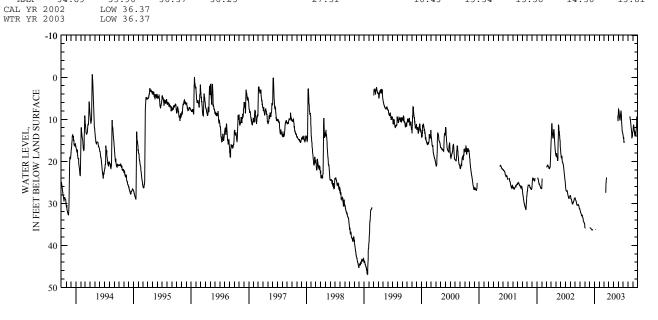
410846081271600. LOCAL NUMBER, SU-7

LOCATION.—Latitude 41°08′46″, longitude 81°27′16″, Hydrologic Unit 04110002, Monroe Falls Road, Cuyahoga Falls, Ohio. Owner: City of Cuyahoga Falls.

AQUIFER.—Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.—Drilled unused water-table, diameter 6 in., depth 100 ft, cased.

INSTRUMENTATION.—Digital recorder, 60-minute punch.

DATUM.—Elevation of land-surface datum is 994 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 5.00 ft above land-surface datum.


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—August 1968 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 46.90 ft below land-surface datum, Jan. 22, 1999; minimum daily low, 0.67 ft above landsurface datum, Apr. 15, 1994.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
` DAILY MAXIMUM VALUES

					_,							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31.54	35.76							9.10	13.73		12.91
2	31.68	35.80	35.87						7.73	14.09		12.91
3	31.85	35.83	35.84						7.62	14.32		12.32
4	32.01	35.87	35.84						7.76	14.46		11.75
5	32.15	35.90	35.85						7.91	14.44		11.44
6	32.21		35.87	36.25					8.14	15.45		11.27
7	32.33		35.95	36.23					8.59	15.58		11.58
8	32.52		35.99						9.15	15.16		12.08
9	32.68		36.03						9.63			12.25
10	32.76		36.06						9.88			12.57
11	32.94		36.09						10.01			13.40
12	33.01		36.13						10.11			12.76
13	33.01		36.15			27.51			10.07			13.78
14	32.83		36.19			26.98			9.42		9.29	13.81
15	32.81		36.22			25.58			8.98		9.87	13.72
16	32.98		36.27			24.35			8.63		10.06	12.93
17	33.17		36.28			23.93			8.16		10.17	13.32
18	33.32		36.30						7.92		10.57	13.71
19	33.41		36.31						8.32		10.94	13.79
20	33.52		36.33						8.74		11.45	13.68
21	33.76		36.37						9.30		11.77	12.94
22	34.03								10.79		12.15	12.54
23	34.29								11.31		12.43	11.94
24	34.36								11.76		12.79	12.04
25	34.36								12.53		13.30	10.57
26	34.42								12.94		14.50	9.68
27	34.66								13.05		13.60	9.30
28	34.75								13.22		13.43	9.58
29	34.81		36.31					9.09	13.30		14.11	9.76
30	34.85							10.43	13.54		13.06	10.93
31	34.89							9.48			12.97	
MAX	34.89	35.90	36.37	36.25		27.51		10.43	13.54	15.58	14.50	13.81
CAL YR		LOW 36.3										

GROUND-WATER RECORDS Van Wert County

405215084335400. LOCAL NUMBER, VW-1

LOCATION.—Latitude 40°52′15", longitude 84°33′54", Hydrologic Unit 04100007, Ridge Road near Van Wert, Ohio. Owner: Marsh Foundation.

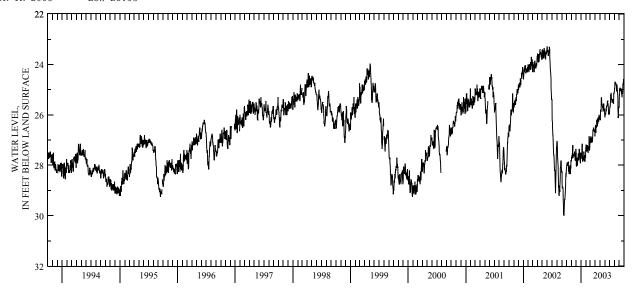
AQUIFER.—Limestone of Silurian Age.

WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 8 in., depth 340 ft, cased.

INSTRUMENTATION.—Type F continuous recorder.

DATUM.—Elevation of land-surface datum is 790.37 ft above sea level. Measuring point: Floor of instrument shelter 6.15 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.


PERIOD OF RECORD.—August 1957 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low 33.20 ft below land-surface datum, Dec. 20-21, 1991; minimum daily low, 18.85 ft below land-surface datum, Mar. 6, 1959.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MAXIMUM VALUES

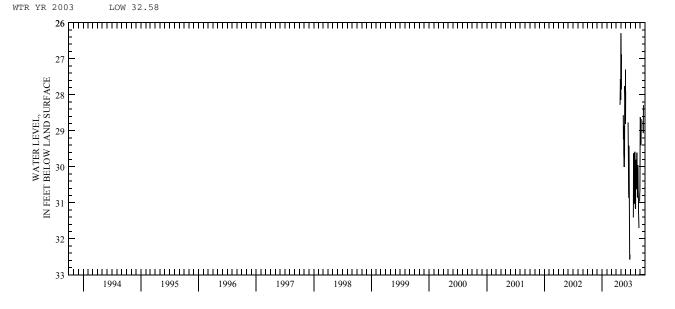
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28.15	27.80	27.60	27.55	27.30	27.10	26.55	26.05	26.05	25.95	25.05	25.50
2	28.10	27.70	27.50	27.55	27.30	26.90	26.45	26.05	26.10	25.85	24.95	25.25
3	28.00	27.70	28.00	27.50	27.20	27.10	26.45	26.20	26.00	25.70	24.95	25.10
4	28.00	27.75	28.05	27.60	27.20	27.00	26.40	26.20	25.95	25.65	24.70	24.95
5	27.90	27.60	28.00	27.55	27.45	26.85	26.50	26.00	26.00	25.70	24.70	25.05
6	28.00	27.70	27.75	27.70	27.45	26.90	26.70	25.80	26.00	25.65	24.70	25.05
7	27.90	27.70	27.75	27.75	27.40	27.05	26.70	25.85	25.95	25.55	24.70	24.95
8	28.00	27.55	27.70	27.35	27.40	27.00	26.50	25.85	25.80	25.35	24.75	24.95
9	28.00	27.40	28.00	27.15	27.45	26.95	26.50	25.85	25.75	25.20	24.75	25.00
10	27.95	27.20	28.00	27.40	27.25	27.05	26.45	25.35	25.85	25.25	24.80	25.00
11	27.95	27.60	27.85	27.60	27.20	27.10	26.35	25.30	25.70	25.15	24.80	25.00
12	27.90	27.70	27.70	27.85	27.25	26.95	26.20	25.35	25.65	25.15	24.75	25.05
13	27.85	27.65	27.80	27.80	27.35	26.90	26.45	25.60	25.65	25.30	24.85	24.95
14	28.15	27.55	27.75	27.70	27.35	27.05	26.45	25.55	25.65	25.35	24.95	25.00
15	28.25	27.60	27.55	27.75	27.45	27.05	26.45	25.60	25.65	25.40	25.05	25.00
16	28.10	27.60	27.55	27.80	27.50	26.90	26.30	25.60	25.65	25.40	25.05	25.15
17	28.20	27.55	27.70	27.65	27.30	26.75	26.15	25.65	25.65	25.50	24.85	25.20
18	28.35	27.65	27.80	27.70	27.25	26.60	26.35	25.70	25.45	25.50	24.80	25.25
19	28.25	27.60	27.70	27.45	27.35	26.60	26.25	25.70	25.45	25.45	24.95	25.30
20	28.05	27.65	27.55	27.50	27.35	26.65	26.25	25.70	25.55	25.45	25.05	25.05
21	28.10	27.45	27.35	27.75	27.25	26.55	26.10	25.85	25.60	25.45	25.05	25.15
22	28.10	27.50	27.40	27.65	26.85	26.50	26.10	25.85	25.55	25.40	25.20	25.15
23	28.00	27.55	27.40	27.65	27.05	26.60	26.25	25.75	25.65	25.40	25.40	25.05
24	28.15	27.60	27.60	27.85	27.40	26.60	26.25	25.70	25.70	25.45	25.75	24.80
25	28.30	27.75	27.70	27.80	27.40	26.60	26.15	25.55	25.95	25.50	26.05	24.80
26 27 28 29 30 31	28.35 28.10 28.10 28.10 27.80 27.85	27.80 27.80 27.80 27.60 27.35	27.60 27.80 27.90 27.90 27.50 27.55	27.60 27.85 27.75 27.65 27.70 27.55	27.30 27.05 27.10 	26.65 26.65 26.65 26.65 26.60 26.85	26.00 26.15 26.15 26.15 26.15	25.65 25.80 25.80 25.75 25.80 25.90	25.90 26.00 25.95 25.95 25.95	25.55 25.55 25.15 25.15 25.15 25.10	26.10 26.10 26.10 25.70 25.70 25.70	24.75 24.75 24.60 24.60 24.65
MAX	28.35	27.80	28.05	27.85	27.50	27.10	26.70	26.20	26.10	25.95	26.10	25.50

CAL YR 2002 WTR YR 2003 LOW 30.00

412819084323800. LOCAL NUMBER, WM-1A

 $LOCATION. \\ --Latitude~41^{\circ}28'19'', longitude~84^{\circ}32'38'', Hydrologic~Unit~04100006, at~Bryan, Ohio.~Owner:~City~of~Bryan. \\ --Latitude~41^{\circ}28'19'', longitude~84^{\circ}32'38'', Hydrologic~Unit~04100006, at~Bryan, Ohio.~Owner:~City~of~Bryan, Ohio.~Owner$

AQUIFER.—Sand and gravel of Pleistocene Age.


WELL CHARACTERISTICS.—Drilled unused production well, diameter 8 in., depth 143 ft, cased to 126 ft.
INSTRUMENTATION.—Electronic data logger. 60-minute log interval.
DATUM.—Elevation of land-surface datum is 745ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.00 ft above landsurface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—April 2003 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 32.58 ft below land-surface datum, June 27, 2003; minimum daily low, 26.31 ft below land-surface datum, May 1 and 2, 2003.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1								26.31	27.30		31.12	28.63		
2								26.31			31.17	28.65		
3								27.86			30.21	28.74		
4								27.67			29.81	29.28		
5								26.88			30.05	29.36		
6											30.20	29.40		
7											30.36	28.68		
8											30.62			
9											30.58			
10											29.64			
11											29.61			
12											30.08			
13											30.28			
14											30.65			
15											30.86			
16								28.57	28.77		30.30			
17								29.24	28.99		29.96			
18								28.87	29.64	31.41	30.20	28.73		
19								28.93	30.14	31.39	30.65	28.95		
20								29.61	30.75	29.77	30.93	29.07		
21								29.87	30.87	29.63	31.21	28.29		
22								30.01	29.42	30.18	31.36			
23								29.94	30.14	30.16	31.70			
24								29.74	30.91	30.34				
25							28.28	28.77	31.41	31.03				
26							28.26	27.76	32.56	30.94				
27							27.77	28.25	32.58	30.04				
28							27.57	28.38	32.44	29.59	30.97			
29							27.90	28.71		30.17	30.75			
30							28.14	28.81		30.59	30.66			
31								27.91		30.84	29.78			
MAX							28.28	30.01	32.58	31.41	31.70	29.40		

412821084313600. LOCAL NUMBER, WM-1

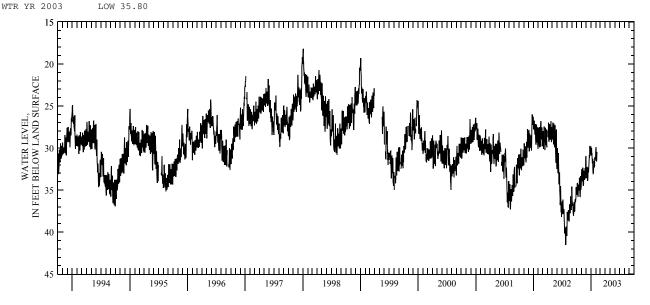
LOCATION.—Latitude 41°28′21″, longitude 84°31′36″, Hydrologic Unit 04100006, at Bryan, Ohio. Owner: City of Bryan. AQUIFER.—Sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.—Drilled unused production well, diameter 8 in., depth 118 ft, cased.

INSTRUMENTATION.—Type F continuous recorder.

DATUM.—Elevation of land-surface datum is 747 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.3 ft above landsurface datum.

surface datum.


REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—May 1951 to May 1957, discontinued June 1957 to September 1984, reactivated October 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 41.55 ft below land-surface datum, July 25, 2002; minimum daily low, 1.45 ft below land-surface datum.

surface datum, Jan. 27, 1952.

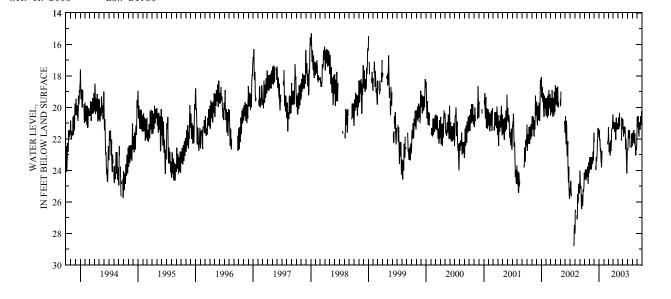
DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	35.05	34.15	30.95	29.85	30.15								
2	35.30	33.80	32.85	30.25	29.90								
3	35.50	33.00	32.75	30.90	30.15								
4	35.55	32.50	32.95	30.20	31.05								
5	35.15	33.45	33.55	30.00	31.60								
6	34.65	33.55	33.55	30.75	31.60								
7	34.15	33.90	33.25	30.60	31.40								
8	35.30	33.90	32.25	30.65	30.65								
9	35.50	33.95	33.50	31.45	30.45								
10	35.60	32.75	33.60	31.85									
11	35.80	32.35	33.90	31.65									
12	35.65	34.05	33.75	31.30									
13	34.55	34.25	33.50	32.45									
14	34.35	34.50	32.55	32.60									
15	35.00	34.30	32.35	33.00									
16	34.90	34.15	32.90	32.95									
17	35.05	32.70	32.85	33.00									
18	35.00	33.00	32.55	32.30									
19	34.25	33.70	32.20	31.55									
20	33.55	33.65	31.80	31.65									
21	34.60	33.45	31.40	31.90									
22	35.00	33.80	30.85	32.20									
23	35.35	33.65	31.15	32.30			27.90						
24	35.80	32.40	30.75	32.10									
25	35.80	33.35	29.75	31.40									
26	34.60	33.60	30.85	31.10									
27	33.90	33.45	30.75	31.55									
28	33.35	33.10	30.35	31.20									
29	34.15	31.05	30.05	31.35									
30	34.95	31.00	30.75	31.15									
31	34.60		30.40	31.00									
MAX CAL YR		34.50 LOW 41.55	33.90	33.00	31.60		27.90						

412930084320900. LOCAL NUMBER, WM-3

LOCATION.—Latitude 41°29′30", longitude 84°32′09", Hydrologic Unit 04100006, Union Street, Bryan, Ohio. Owner: City of Bryan.

AQUIFER.—Sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.—Drilled unused test well, diameter 8 in., depth 174 ft, cased.

INSTRUMENTATION.—Type F continuous recorder.


DATUM.—Elevation of land-surface datum is 760 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 2.00 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—October 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 28.80 ft below land-surface datum, July 26, 2002; minimum daily low, 15.15 ft below land-surface datum, Jan. 4, 1987.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3 4 5	24.25 24.35 24.45 24.55 24.35	24.00 23.90 23.35 23.15 23.40	21.60 22.20 	21.40 21.65 21.90 21.70 21.45	 	21.95 21.25 21.50 21.85 22.35	20.75 21.05 21.35 21.20 21.15	21.25 21.35 21.35 21.00 20.65	20.75 20.90 21.10 21.30 21.70	22.65 22.65 22.60 22.70 22.15	22.45 22.25 21.65 21.60 21.80	20.60 20.75 20.90 21.10 21.25		
6 7 8 9 10	24.10 23.95 24.20 24.35 24.55	23.60 23.65 23.95 23.90 23.15	 	22.05 22.05 22.00 22.40 22.80	 	22.70 22.85 22.65 22.25 22.60	20.95 21.00 21.10 21.35 21.50	21.00 21.20 21.35 21.25 21.05	21.85 21.70 21.25 21.30 21.45	21.65 21.45 21.65 21.65 21.95	22.00 22.15 22.25 22.05 21.45	21.00 20.55 21.00 21.35 21.60		
11 12 13 14 15	24.60 24.60 24.05 23.95 24.25	23.20 23.50 23.65 23.80 23.95	23.70 23.95 23.95 23.70 23.15	22.85 22.60 22.85 23.20 23.45	 	22.75 22.80 23.05 22.95 22.75	21.50 21.55 21.10 20.95 21.30	20.35 20.70 21.20 	21.65 21.55 21.65 21.45 21.20	21.80 21.75 21.60 21.45 21.80	21.60 21.85 22.10 22.25 22.35	21.75 21.85 21.45 20.95 21.15		
16 17 18 19 20	24.30 24.40 24.40 24.20 23.75	23.70 23.15 23.20 23.40 23.45	23.25 23.45 23.30 23.15 22.90	23.55 23.80 23.70 23.15 22.75	 	22.10 22.30 22.60 22.75 22.60	21.65 21.90 22.05 21.55 21.10	 	21.30 21.45 22.25 22.65 22.40	22.10 22.55 	22.25 21.65 21.90 22.35 22.60	21.15 21.35 21.30 21.35 21.40		
21 22 23 24 25	23.90 24.10 24.50 24.85 24.75	23.45 23.60 23.45 22.80 23.10	22.70 22.15 22.05 21.85 21.30	23.05	 22.35	22.10 21.75 21.45 21.35 21.35	20.65 21.05 21.40 21.40 21.40	22.05 22.10 22.05 21.45	22.10 22.00 22.55 23.10 23.40	 22.55	22.80 23.05 23.00 22.50 22.55	20.95 20.55 20.85 20.85 21.10		
26 27 28 29 30 31	24.40 23.75 23.50 23.65 24.15 24.15	23.35 23.35 23.10 22.15 21.75	21.55 21.65 21.55 21.35 21.75 21.70	 	22.15 22.15 22.10 	21.35 21.25 21.15 20.90 20.45 20.60	21.40 21.05 21.00 21.20 21.20	20.65 20.85 20.90 21.35 21.35 21.25	23.95 24.20 23.70 23.10 22.70	22.45 21.90 21.65 21.90 22.15 22.35	22.65 22.70 22.50 22.35 22.05 21.50	21.10 20.85 20.25 20.40 20.50		
MAX CAL YR WTR YR		24.00 LOW 28.80 LOW 24.85	23.95	23.80	22.35	23.05	22.05	22.10	24.20	22.70	23.05	21.85		

413108084415300. LOCAL NUMBER, WM-12

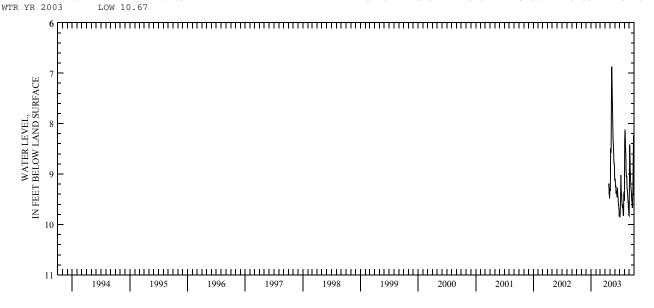
LOCATION.—Latitude 41°31′08", longitude 84°41′53", Hydrologic Unit 04100003, 1.7 mi east of Blakeslee, Ohio. Owner: State of Ohio. AQUIFER.—Sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.—Drilled test artesian well, diameter 10 in., depth 115 ft, cased to 85 ft, screened 85 ft to 115 ft. INSTRUMENTATION.—Electronic data logger. 60-minute log interval.

DATUM.—Elevation of land-surface datum is 830 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 1.50 ft above

land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.


PERIOD OF RECORD.—December 1974 to October 1982 continuous, periodic November 1982 to December 1984, continuous January 1985 to November 1986, periodic December 1986 to April 2003, continuous thereafter.

EXTREMES FOR PERIOD OF RECORD.—Maximum measured low, 10.75 ft below land-surface datum, Nov. 29, 1999; minimum daily low, 3.83 ft below

land-surface datum, Mar. 17, 1982.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								9.27	9.12	9.82	9.53	9.76
2			10.45					9.30	9.14	9.78	9.09	9.34
3								9.34	9.08	9.82	8.32	8.47
4								9.33	9.12	9.86	8.20	8.42
5								9.15	9.23	9.80	8.12	8.63
_								0 50	0.06	0.75	0 10	0 75
6 7								8.50	9.26	9.75	8.18	8.75
,								8.50	9.24	9.59	8.30	8.88
8								8.58	9.24	9.51	8.48	9.01
9								8.56	9.38	9.22	8.52	9.11
10								7.71	9.39	9.02	8.66	9.18
11								7.21	9.39	9.17	8.74	9.23
12								6.93	9.39	9.29	8.91	9.26
13								6.87	9.33	9.36	9.03	9.32
14								6.96	9.37	9.41	9.06	9.33
15								7.13	9.43	9.41	9.04	9.41
									0.46	0 55	0.05	0 40
16								7.37	9.46	9.55	9.05	9.48
17			10.63					7.57	9.45	9.58	9.19	9.53
18								7.76	9.27	9.61	9.26	9.54
19								7.92	9.38	9.66	9.32	9.56
20								8.18	9.43	9.66	9.34	9.65
21	10.67							8.30	9.44	9.60	9.34	9.67
22								8.37	9.47	9.64	9.43	9.58
23							9.25	8.42	9.53	9.70	9.52	9.43
24							9.25	8.48	9.58	9.76	9.55	9.42
25							9.19	8.62	9.62	9.82	9.55	9.13
26							0.20	0.72	0 61	0.00	0 50	0.05
26							9.32	8.73	9.61	9.82	9.56	8.95
27							9.40	8.79	9.68	9.77	9.67	8.55
28							9.38	8.77	9.70	9.43	9.70	8.24
29							9.48	8.82	9.80	9.35	9.73	8.24
30							9.46	8.87	9.84	9.44	9.82	8.27
31								9.04		9.50	9.83	
MAX	10.67		10.63				9.48	9.34	9.84	9.86	9.83	9.76
			_									

GROUND-WATER RECORDS Wyandot County

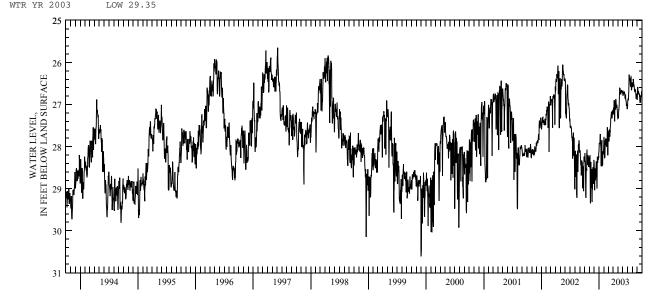
405009083172600. LOCAL NUMBER, WY-1

LOCATION.—Latitude 40°50'09", longitude 83°17'26", Hydrologic Unit 04100011, State Route 199, Upper Sandusky, Ohio. Owner: Karg Supply Company.

AQUIFER.—Limestone of Silurian Age.

WELL CHARACTERISTICS.—Drilled unused artesian well, diameter 5 in, depth 90 ft, cased.

INSTRUMENTATION.—Digital recorder, 60-minute punch.


DATUM.—Elevation of land-surface datum is 850 ft above sea level (from topographic map). Measuring point: Floor of instrument shelter 3.00 ft above land-surface datum.

REMARKS.—Station operated by Ohio Department of Natural Resources (ODNR), Division of Water. Some historical records not published by the USGS are available from ODNR.

PERIOD OF RECORD.—September 1951 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 40.90 ft below land-surface datum, July 12, 15, 17, 21, Aug. 26, 1961; minimum daily low, 25.45 ft below land-surface datum, Mar. 26 and Apr. 21, 1982.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES														
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP			
1	28.34	28.27	28.36	28.10	27.86	27.79	27.12	27.33	26.72	27.07	26.52	26.88			
2	28.33	28.42	28.43	28.01	27.77	27.69	27.23	27.32	26.77	27.02	26.57	26.81			
3	28.25	28.48	28.69	27.93	27.81	27.66	27.22	27.32	26.79	26.89	26.58	26.66			
4	28.16	28.49	28.96	27.92	28.12	27.66	27.07	27.32	26.75	26.88	26.58	26.58			
5	28.25	28.38	29.04	27.92	28.25	27.61	27.12	27.31	26.70	26.89	26.50	26.67			
6	28.36	28.20	28.69	27.91	28.26	27.88	27.12	27.13	26.74	26.89	26.47	26.71			
7	28.36	28.96	28.57	27.94	28.25	27.73	27.11	27.13	26.75	26.89	26.39	26.72			
8	28.91	29.32	28.52	27.87	28.26	27.67	26.90	27.07	26.75	26.76	26.46	26.71			
9	29.13	29.35	28.78	27.71	27.99	27.59	27.08	27.03	26.74	26.71	26.52	26.68			
10	29.22	28.82	28.80	27.71	27.86	27.63	27.36	26.90	26.70	26.56	26.55	26.71			
11	28.91	28.47	28.71	27.84	27.84	27.77	27.40	26.75	26.70	26.30	26.55	26.74			
12	28.58	28.37	28.60	27.94	27.81	27.61	27.18	26.61	26.71	26.29	26.53	26.76			
13	28.52	28.84	28.52	28.02	27.94	27.66	26.91	26.61	26.72	26.37	26.58	26.77			
14	28.56	28.98	28.42	28.15	27.97	27.58	26.90	26.63	26.78	26.38	26.64	26.77			
15	28.56	28.97	28.35	28.45	27.83	27.49	27.03	26.63	26.83	26.38	26.66	26.76			
16	28.22	28.59	28.38	28.47	27.81	27.43	27.05	26.68	26.84	26.38	26.68	26.79			
17	28.07	28.54	28.71	28.04	27.89	27.35	27.12	26.73	26.86	26.44	26.66	26.90			
18	28.25	29.21	28.79	27.92	27.95	27.30	26.87	26.75	26.81	26.47	26.64	26.95			
19	28.30	29.32	29.00	27.84	28.00	27.25	26.91	26.75	26.76	26.56	26.64	26.95			
20	28.40	28.84	28.95	27.95	28.01	27.25	26.92	26.74	26.86	26.57	26.68	26.92			
21	28.43	29.02	28.39	28.29	27.86	27.17	27.05	26.70	26.90	26.57	26.65	26.95			
22	28.30	28.93	28.24	28.36	27.77	27.21	27.07	26.66	26.91	26.51	26.69	26.94			
23	28.21	28.53	28.38	28.44	27.54	27.26	27.01	26.66	26.92	26.32	26.81	26.80			
24	28.22	28.50	28.38	28.45	27.63	27.27	27.04	26.66	27.02	26.37	26.86	26.79			
25	28.23	28.50	28.28	28.43	28.11	27.24	27.03	26.66	27.03	26.60	26.85	26.79			
26 27 28 29 30 31 MAX	28.35 28.45 28.48 28.39 28.31 28.24 29.22	28.77 28.89 28.69 28.55 28.32 29.35	28.28 28.32 28.32 28.25 28.25 28.17 29.04	28.13 28.11 28.14 28.13 28.18 28.01 28.47	28.21 28.00 27.86 28.26	27.33 27.20 27.15 27.14 27.20 27.20 27.88	27.06 27.12 27.18 27.27 27.31 27.40	26.69 26.71 26.71 26.70 26.68 26.68 27.33	27.00 27.01 27.06 27.10 27.10 27.10	26.66 26.65 26.60 26.50 26.47 26.50 27.07	26.79 26.78 26.74 26.77 26.84 26.88 26.88	26.80 26.76 26.69 26.69 26.72 26.95			
CAL YR	2002	LOW 29.35	,	20.47	20.20	27.00	27.40	27.55	27.10	27.07	20.00	20.73			

The Ohio and Eric Canal runs from the Little Cuyahoga River through the City of Akron, through Summit Lake, past Lake Nesmith to Wolf Creek, a tributary to the Tuscarawas River. Water is diverted from Long Lake, one of the Portage Lakes, into the canal system at the Long Lake Feeder Water Control structure near Lake Nesmith. The water can either flow north into the Little Cuyahoga River or south to the Tuscarawas River. The following three discharge gaging stations are on the Ohio and Eric Canal system in the Akron area. The Long Lake Feeder gage measures water flow into the canal, while the Ohio and Eric Canal at Lock 1 gage and the Wolf Creek Outlet gage measure water flow to the north and south, respectively. The tables contain the daily mean discharges at each gaging station.

410121081330300 LONG LAKE FEEDER TO OHIO & ERIE CANAL AT AKRON, OHIO

LOCATION.—Latitude 41°01′21″, longitude 81°33′03″, Summit County, Hydrologic Unit 05040001, in canal feeder gate house control structure at north end of Long Lake Channel on west side of State Route 93 (Manchester Road), 0.1 mi south of Lake Nesmith, at Akron, Ohio.

DRAINAGE AREA.—Not determined.

PERIOD OF RECORD.—June 12, 1998 to current year.

GAGE.—Acoustic Doppler Flow meter records water depth, discharge, and velocity.

REMARKS.—Records good except for periods of estimated daily discharge, which are fair, and Oct. 24, 25, Nov. 29 - Dec. 10, 28-31, Jan. 1, 9-31, Feb. 5-28, Mar. 5-7, Apr. 21-30, May 1-6, Aug. 3-7, 11-16, and 22-31, which are poor. Flow is completely regulated by operation of gates at flow control structure upstream of gage.

structure upstream of gage.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e36 e31 e23 e22 16	21 22 20 22 21	e23 e23 e22 e22 e22	e26 e31 e26 e27 e26	19 22 24 24 e24	18 24 21 24 e27	38 37 35 38 36	e26 e26 e26 e26 e26	22 22 22 22 22 22	19 e22 e35 38 e37	27 25 e26 e26 e26	e21 e22 e22 e25 e25
6 7 8 9 10	16 17 17 18 18	19 20 24 19 18	e24 e21 e21 e24 e26	28 27 e27 e26 26	e24 e18 e18 e17 e18	e25 e22 24 20 22	35 37 33 32 30	e26 23 24 28 25	24 22 21 23 22	e35 e36 60 47 e36	e26 e26 29 25 24	e25 e25 e25 e25 e35
11 12 13 14 15	21 18 18 19	17 19 17 17	25 26 28 27 28	e24 e24 e24 e25 e25	e17 e16 e16 e18 e18	24 27 26 26 30	33 32 32 31 27	23 26 27 25 24	21 22 25 22 23	e36 e36 e36 e36 e35	e24 e24 e24 e23 e23	e33 e36 27 28 34
16 17 18 19 20	18 18 21 18 19	22 22 23 19 18	27 27 e27 e27 32	e25 e26 e26 e26 e27	e18 e18 e18 e18	34 34 33 36 36	25 26 30 25 25	25 26 26 24 23	21 24 24 25 26	e41 e42 e44 e51 e47	e23 23 21 23 21	32 27 27 38 28
21 22 23 24 25	36 31 30 e33 e29	17 22 21 19 18	28 27 27 26 25	e27 e27 e27 e27 e27	e22 e29 e29 e29 e29	35 31 33 31 28	e28 e30 e30 e30 e28	23 22 25 21 21	23 25 25 21 18	e46 e42 43 40 33	22 e24 e25 e24 e24	33 43 38 e35 26
26 27 28 29 30 31	17 18 18 20 20	19 24 30 e28 e23	26 26 e23 e26 e29 e32	e27 e27 e27 e27 e27 e26	e29 e29 e26 	29 26 36 37 40 39	e26 e26 e26 e26 e26	21 22 21 19 18 19	19 23 20 18 18	30 e28 e26 25 24 24	e22 e23 e23 e22 e22 e22	28 46 47 40 39
TOTAL MEAN MAX MIN	673 21.7 36 16	619 20.6 30 17	797 25.7 32 21	818 26.4 31 24	605 21.6 29 16	898 29.0 40 18	913 30.4 38 25	737 23.8 28 18	665 22.2 26 18	1130 36.5 60 19	742 23.9 29 21	935 31.2 47 21
MEAN MAX (WY) MIN (WY)	19.9 27.0 1999 10.8 2001	18.3 22.2 1999 10.9 2001	21.0 25.7 2003 17.5 2002	21.7 26.4 2003 17.6 2002	21.3 24.5 1999 18.6 2002	21.8 29.0 2003 15.8 2002	22.4 30.4 2003 18.4 2001	21.1 23.8 2003 18.0 2000	21.4 22.2 2003 20.6 1999	YEAR (WY) 22.1 36.5 2003 17.7 2002	20.0 23.9 2003 18.3 2001	20.1 31.2 2003 12.7 2000
	SUMMARY STA	ATISTICS		FOR 2002	CALENDAR	YEAR	FOR 200	3 WATER	YEAR	WATER YE	ARS 1998	- 2003
LOWEST ANGUAL ANNUAL MAXIMUM MAXIMUM INSTANT.		I IINIMUM E FLOW G		7347 20.1 37 10 12 26 19 16	Aug 31 Sep 7 Sep 7		9532 26.1 60 16 17 85 4.33 8.8 36 25	Jul Oct Feb Jul Jul Nov 1	8 5 7 8 8 8 9	20.9 26.1 17.8 73 9.0 9.2 85 4.33 8.8 26 21	Nov 2 Nov 1 Jul Jul	2003 2001 6 1998 1 2000 9 2000 8 2003 8 2003 9 2002

e Estimated.

410433081312500 OHIO & ERIE CANAL AT LOCK 1 AT AKRON, OHIO

LOCATION.—Latitude 41°04′33″, longitude 81°31′25″, Summit County, Hydrologic Unit 05040001, at lower pool level of Lock 1, at south end of culvert under West Exchange Street, 1.6 mi. northeast of Summit Lake, at Akron, Ohio.

DRAINAGE AREA.—Not determined.

PERIOD OF RECORD.—June 1, 1998 to current year.

GAGE.—Water-stage recorder. Datum of gage approximately 954 ft above sea level.

REMARKS.—Record good except for periods of estimated record, flows greater than 175 ft³/s, and a period of significant in-channel weed growth (May 10 to September 30), which are fair. Flow is completely regulated by operation of gate at Lock 1.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 12 13 9.0 8.8	14 12 2.3 16 21	27 19 14 4.8	34 30 24 23 23	18 18 25 35 18	25 25 24 23 33	25 26 25 40 58	27 40 24 16 45	48 11 49 33 22	22 21 32 29 42	43 34 41 16 55	51 54 21 23 25
6 7 8 9 10	9.5 19 14 13	21 14 12 11 32	19 16 14 14 15	13 17 26 29 19	18 19 19 19	30 24 25 42 35	26 48 30 25 22	30 19 42 57 58	28 28 48 40 26	44 83 214 69 73	57 37 33 32 39	20 21 13 15 15
11 12 13 14 15	14 16 21 20 7.5	31 14 12 8.5 8.6	17 35 18 22 27	17 17 25 18 19	19 19 19 19	26 30 36 45 11	25 25 17 23 24	33 34 33 15 27	29 40 90 44 25	73 28 27 27 31	18 18 18 18	26 19 17 17 29
16 17 18 19 20	24 9.7 14 25 20	14 25 13 14 14	25 13 23 30 33	19 19 20 19 19	19 20 20 20 20	23 31 13 24 21	24 23 25 33 21	55 12 23 32 51	44 30 31 31 28	36 23 17 17 18	36 24 14 14	17 17 17 92 31
21 22 23 24 25	29 31 28 14 27	11 40 17 17 16	21 34 16 15 25	19 18 18 19 19	24 62 32 23 22	31 24 13 21 26	23 26 17 14 30	57 20 36 33 28	29 29 29 28 28	121 168 55 31 12	15 33 20 20 9.1	20 49 28 21 10
26 27 28 29 30 31	43 14 15 18 18	16 14 13 14 19	27 16 17 18 35 56	19 26 17 18 22 26	35 15 17 	29 22 21 32 24 17	25 18 27 16 26	21 21 25 33 36 86	28 21 16 17 46	20 64 92 37 18 54	5.8 33 16 20 28 24	15 85 26 26 19
TOTAL MEAN MAX MIN	547.5 17.7 43 7.5	486.4 16.2 40 2.3	675.8 21.8 56 4.8	651 21.0 34 13	632 22.6 62 15	806 26.0 45 11	787 26.2 58 14	1069 34.5 86 12	996 33.2 90 11	1598 51.5 214 12	804.9 26.0 57 5.8	839 28.0 92 10
MEAN MAX (WY) MIN (WY)	17.9 21.7 2002 13.1 2001	12.7 16.2 2003 6.28 2001	15.1 21.8 2003 11.4 2001	16.9 21.0 2003 13.2 2001	16.8 22.6 2003 14.7 2001	17.3 26.0 2003 13.0 2001	20.2 26.2 2003 17.6 2001	23.6 34.5 2003 15.5 1999	21.6 33.2 2003 15.4 1998	YEAR (WY) 25.0 51.5 2003 15.4 2001	21.4 26.0 2003 16.4 2002	19.7 28.0 2003 14.5 2001
	SUMMARY ST	ATISTICS			CALENDAR	YEAR	FOR 200	3 WATER	YEAR	WATER YI	EARS 1998	- 2003
LOWEST AN HIGHEST I LOWEST DA ANNUAL SE MAXIMUM I MAXIMUM I INSTANTAN 10 PERCEN 50 PERCEN	EAN ANNUAL MEAI NNUAL MEAN DAILY MEAN AILY MEAN EVEN-DAY M	INIMUM		6400.94 17.5 71 0.94 6.1 29 15 8.1	Jul 29 Jul 2 Aug 8		9892.6 27.1 214 2.3 12 311 3.23 1.0 44 23 14	Jul Nov Oct Jul Jul Feb 2	3 1 7 7	19.2 27.1 14.5 214 0.7 2.2 337 3.4 0.6 32 16 8.4	Jul 0 Dec 3 Nov 3 Aug 3	2003 2001 8 2003 12 2000 12 2000 25 1998 25 1998 21 2001

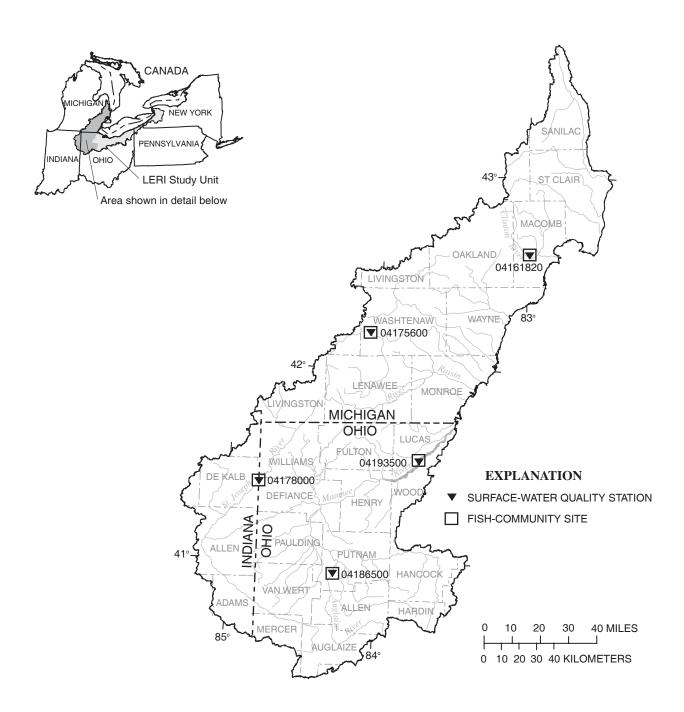
410014081362600 WOLF CREEK OUTLET OF OHIO & ERIE CANAL AT BARBERTON, OHIO

LOCATION. —Latitude 41°00′14″, longitude 81°36′26″, Summit County, Hydrologic Unit 05040001, at Wolf Road culvert for the Ohio and Erie Canal outlet, 0.1 mi. above confluence with Wolf Creek, 0.2 mi. from confluence of Wolf Creek and Tuscarawas River, 0.6 mi. east of Columbia Lake, at Barberton, Ohio.

DRAINAGE AREA.—Not determined.
PERIOD OF RECORD.—June 1, 1998 to current year.

GAGE.—Water-stage recorder. Datum of gage approximately 954 ft above sea level. Prior to Apr. 24, 2001 at site 150 ft downstream at datum 2.46 ft lower. REMARKS.—Records good except Jan. 18, 23, 27, May 19-28, Jun. 12-25, Aug. 13, and 14, which are poor. Flow is completely regulated by operation of gate at outlet structure and by canal operations at other locations.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	3.5 3.2	2.9	3.3	5.1 5.1	4.1	4.7	3.7	3.7 4.7	3.5	2.5	5.0 4.3	7.4 7.5
3	3.1	3.5	2.8	4.8	4.4	4.4	2.7	3.6	4.0	3.0	3.9	4.5
4 5	3.4 4.0	4.3	3.4 4.2	$4.4 \\ 4.1$	4.9 4.5	4.0 4.9	3.6 4.9	3.7 4.9	3.1 2.8	3.1 3.2	3.8 4.7	3.4 4.7
6	4.3	3.6	4.2	4.3	4.5	4.5	3.8	3.4	3.3	3.0	5.4	6.0
7	4.3	2.9	3.6	5.2	4.8	3.9	4.5	3.6	3.3	3.3	4.7	5.8
8 9	4.2 3.9	3.0 3.5	3.6 3.7	5.0 4.7	4.9 4.8	4.6 5.1	3.2 3.1	5.1 5.8	3.4 3.4	8.8 6.0	4.8 4.9	5.7 5.6
10	4.0	4.2	4.2	4.3	4.8	4.4	3.1	5.7	3.0	5.2	5.1	5.9
11 12	4.2 4.2	4.4 3.9	4.7 4.9	4.7 5.0	4.9 4.8	3.8 3.5	3.3 2.9	3.7 3.7	3.1 e3.5	5.0 4.1	4.7 4.7	5.9 5.7
13	4.0	3.5	3.9	4.8	4.8	5.3	3.2	3.5	e7.0	3.7	e4.8	5.5
14 15	3.7 3.5	e3.6 3.8	5.4 5.1	4.5 4.6	4.9 4.9	4.2 3.8	3.2 3.0	3.1 3.9	e4.8 e4.2	3.6 3.6	e4.9 5.2	5.3 5.5
16	4.2	4.5	4.8	4.7	5.1	4.8	3.1	4.4	e3.8	3.8	5.6	4.9
17 18	3.7 4.1	3.8	4.5 4.8	5.0 e5.0	5.5 5.3	4.2 3.8	3.1 3.3	3.4 4.1	e3.7 e3.6	3.6 3.7	5.5 5.3	4.7 4.7
19	4.8	3.1	4.7	4.9	5.0	4.7	3.2	e4.2	e3.4	4.2	5.3	8.3
20	4.1	3.0	5.4	4.9	5.0	4.2	2.4	e4.0	e3.3	4.4	5.5	6.2
21 22	4.5 5.1	3.2 4.2	4.9 4.7	4.8	5.2 6.0	4.4	3.2 3.8	e7.5 e5.2	e3.2 e3.1	6.6 8.9	5.7 5.9	5.2 6.0
23	4.2	3.2	3.6	e4.8	5.8	3.7	3.5	e4.5	e3.0	6.2	5.6	6.3
24 25	4.3 5.5	3.3 3.1	4.3 5.0	4.9 4.9	5.3 5.0	3.7 3.5	4.0 4.5	e4.3 e4.0	e2.8 e2.7	4.4	5.4 5.4	4.5 3.8
26	5.0	3.1	4.0	5.1	4.5	4.1	3.7	e4.5	2.6	4.3	5.8	4.4
27 28	3.7 3.8	3.2 3.4	4.1 4.6	e4.8 4.4	3.3 4.8	3.4	3.6 3.5	e4.0 e3.1	2.5 2.6	5.1 6.0	6.3 5.9	7.6 6.6
29	3.9	3.4	4.8	4.4	4.0	3.9	3.8	3.3	2.6	4.4	6.1	5.4
30 31	3.5 3.1	3.7	5.5 5.7	4.8 4.2		3.8 3.7	4.1	3.2 5.3	3.1	4.0 4.2	6.8 6.0	4.8
TOTAL	125.0	105.1	135.2	147.0	136.2	128.2	104.3	131.1	101.4	138.2	163.0	167.8
MEAN	4.03	3.50	4.36	4.74	4.86	4.14	3.48	4.23	3.38	4.46	5.26	5.59
MAX MIN	5.5 3.1	4.5 2.9	5.7 2.8	5.2 4.1	6.0 3.3	5.3 3.3	4.9 2.4	7.5 3.1	7.0 2.5	8.9 2.3	6.8 3.8	8.3 3.4
		STATIST	CS OF MC	NTHLY MEAN	DATA FOR	NATER Y	EARS 1998	- 2003, 1	BY WATER	YEAR (WY)		
MEAN	4.39	4.06	4.45	4.52	4.31	3.74	3.50	3.17	3.27	3.94	4.46	4.20
MAX (WY)	7.98 1999	7.19 1999	8.31 1999	7.59 1999	6.52 1999	4.14 2003	3.98 2002	4.23 2003	4.91 1998	5.55 2002	6.03 2002	6.15 1998
MIN	2.72	2.93	3.00	2.88	3.29	3.03	3.08	2.64	1.92	2.80	2.92	1.66
(WY)	2000	2000	2000	2002	2000	2000	2001	2000	2000	2001	2000	2000
ANNUAL TO	SUMMARY STA	TISTICS		FOR 2002 1478.1	CALENDAR	YEAR	FOR 200	J3 WATER	YEAR	WATER Y	EARS 1998	- 2003
ANNUAL M	EAN			4.05			4.34			3.9		
	ANNUAL MEAN NNUAL MEAN						8.9 2.3 2.6			5.1 2.8		1999 2000
HIGHEST 1	DAILY MEAN			10	Jun 19		8.9	Jul 2		13	Oct	8 1998
	AILY MEAN EVEN-DAY MI	NIMUM		1.4 1.8	Jun 8 Jun 7		2.3	Jul Jun 2		0.0		2 2000 2 2000
	PEAK FLOW						11	Jul 2		34		7 1999
	PEAK STAGE NEOUS LOW F	LOW					10.94 2.0	Jul 2 Jul	2	10.9	1 Jul	1 2003 2 2000
	NT EXCEEDS			5.9 3.8			5.6 4.2			6.1 3.6		
	NT EXCEEDS			2.5			3.1			2.2		

e Estimated.

PROJECT DATA

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

The data described in the following tables were collected and analyzed as part of NAWQA (National Water-Quality Assessment Program) project in the Lake Erie and Lake St. Clair Drainages (LERI). The objectives of the NAWQA program are to broadly characterize the water quality of the Nation's streams and aquifers in relation to human and natural factors. The period of high-intensity data collection in the LERI drainage was in the water years 1996-1998. The following stream-water-quality data are being reported in this publication as part of the NAWQA National Surface-Water Trend Network for water year 2003: Clinton River at Sterling Heights, Michigan (04161820), River Raisin near Manchester, Michigan (04175600), St. Joseph River near Newville, Indiana (04178000), Auglaize River near Ft. Jennings, Ohio (04186500), and Maumee River at Waterville, Ohio (04193500).

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS

04161820 CLINTON RIVER AT STERLING HEIGHTS, MICHIGAN

LOCATION.—Latitude 40°36′52″, longitude 83°01′36″, Macomb County, Michigan, Hydrologic Unit 04090003, on right bank at upstream side of bridge on Riverland Road, in Sterling Heights, Michigan.

DRAINAGE AREA.—309 mi².

REMARKS.—Discharge is measured at this site and is published in the Michigan Annual Report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; mm of Hg, millimeters of mercury; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated]

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
OCT									
29 NOV	1045	67	871	8.3	2.0	6.7	746	11.1	93
12 DEC	1115	113	739	7.2	5.5	9.1	747	9.1	81
10 JAN	1100	211	674	8.2	.5	.1	746	13.9	97
30 FEB	1130	120	1710	8.0	-7.0	.0	750	13.8	97
12 APR	1000	156	1450	8.3	-13.0	.0	742	13.7	97
16 MAY	0930	284	968	8.1	7.0	13.0	740	9.7	95
14 JUN	0945	292	942	8.1	10.0	12.9	746	9.7	94
10 JUL	1045	249	1010	8.0	22.5	16.3	746	9.0	94
24 AUG	0930	86	1050	8.1	22.0	19.5	750	8.9	99
27	0830	71	941	7.8	16.5	22.4	744	6.6	78
Date	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)
Date OCT 29	bonate, wat flt incrm. titr., field, mg/L	linity, wat flt inc tit field, mg/L as CaCO3	water, fltrd, mg/L	ide, water, fltrd, mg/L	water, fltrd, mg/L as N	+ nitrate water fltrd, mg/L as N	water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L
OCT 29 NOV	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613)	+ nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00608)	+ org-N, water, unfiltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)
OCT 29 NOV 12 DEC	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945) 42	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613) .021	+ nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00608)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfiltrd mg/L (00665)
OCT 29 NOV 12 DEC 10	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613)	+ nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00608)	+ org-N, water, unfiltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)
OCT 29 NOV 12 DEC 10 JAN 30	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945) 42	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613) .021	+ nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00608)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfiltrd mg/L (00665)
OCT 29 NOV 12 DEC 10 JAN 30 FEB	bonate, wat fit incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 201 171	water, fltrd, mg/L (00945) 42 38	ide, water, fltrd, mg/L (00940) 120 110 140	water, fltrd, mg/L as N (00613) .021 .013	+ nitrate water fltrd, mg/L as N (00631) 2.0 1.1	water, fltrd, mg/L as N (00608) .1 .1	+ org-N, water, unfltrd mg/L as N (00625) .6 .5	phorus, water, unfiltrd mg/L (00665) .05 .07
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16	bonate, wat flt incrm. titr., field, mg/L (00453) 245 209 232	linity, wat filt inc tit field, mg/L as CaCO3 (39086) 201 171 190 212	water, fltrd, mg/L (00945) 42 38 35	ide, water, fltrd, mg/L (00940) 120 110 140 390	water, fltrd, mg/L as N (00613) .021 .013 .010	+ nitrate water fltrd, mg/L as N (00631) 2.0 1.1 1.7	water, fltrd, mg/L as N (00608) .1 .1 .1	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665) .05 .07
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16 MAY	bonate, wat filt incrm. titr., field, mg/L (00453) 245 209 232 259 260	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 201 171 190 212 213	water, fltrd, mg/L (00945) 42 38 35 45	ide, water, fltrd, mg/L (00940) 120 110 140 390 290	water, fltrd, mg/L as N (00613) .021 .013 .010 .041 .023	+ nitrate water fltrd, mg/L as N (00631) 2.0 1.1 1.7 3.2	water, fltrd, mg/L as N (00608) .1 .1 .1 .1	+ org-N, water, unfltrd mg/L as N (00625) .6 .5 .6	phorus, water, unfltrd mg/L (00665) .05 .07 .08
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16 MAY 14 JUN 10	bonate, wat filt incrm. titr., field, mg/L (00453) 245 209 232 259 260 211	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 201 171 190 212 213	water, fltrd, mg/L (00945) 42 38 35 45 50	ide, water, fltrd, mg/L (00940) 120 110 140 390 290 170	water, fltrd, mg/L as N (00613) .021 .013 .010 .041 .023	+ nitrate water fltrd, mg/L as N (00631) 2.0 1.1 1.7 3.2 3.2 1.0	water, fltrd, mg/L as N (00608) .1 .1 .1 .4 .3	+ org-N, water, unfltrd mg/L as N (00625) .6 .5 .6 1.0 .8	phorus, water, unfltrd mg/L (00665) .05 .07 .08 .07
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16 MAY 14 JUN	bonate, wat fit incrm. titr., field, mg/L (00453) 245 209 232 259 260 211 212	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 201 171 190 212 213 173 174	water, fltrd, mg/L (00945) 42 38 35 45 50 41	ide, water, fltrd, mg/L (00940) 120 110 140 390 290 170 160	water, fltrd, mg/L as N (00613) .021 .013 .010 .041 .023 .011	+ nitrate water fltrd, mg/L as N (00631) 2.0 1.1 1.7 3.2 3.2 1.0 1.3	water, fltrd, mg/L as N (00608) .1 .1 .1 .4 .3 <.04 <.04	+ org-N, water, unfltrd mg/L as N (00625) .6 .5 .6 1.0 .8 .7	phorus, water, unfiltrd mg/L (00665) .05 .07 .08 .07 .07

PROJECT DATA

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04161820 CLINTON RIVER AT STERLING HEIGHTS, MICHIGAN—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00671), USGS National Water Information System parameter code; mg/L, milligrams per liter; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

indicated; E, esti	mated;, no data								
Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Sus- pended sedi- ment concen- tration mg/L (80154)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	Atra- zine, water, fltrd, ug/L (39632)	Deethyl- atra- zine, water, fltrd, ug/L (04040)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)
OCT	0.3	2	006	004	0.2	- 010	0.50	010	0.00
29 NOV	.03	3	<.006	<.004	.03	E.010	<.050	<.010	<.002
12 DEC	.03	103							
10 JAN	.05	5	<.006	<.004	.03	E.011	<.050	<.010	<.002
30 FEB	.03	4							
12 APR	.03	5	<.006	<.004	.02	E.010	<.050	<.010	<.002
16 MAY	<.02	15	.012	<.004	.07	E.010	<.050	<.010	<.002
14 JUN	<.02	31	.020	<.004	.03	E.017	<.050	<.010	<.002
10 JUL	E.01	49	.065	.01	.10	E.032	<.050	<.010	<.002
24 AUG	.04	10	<.006	<.004	.03	<.006	<.050	<.010	<.002
27	.10	17	<.006	<.004	.02	E.007	<.050	<.010	<.002
Date	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)	p,p'- DDE, water, fltrd, ug/L (34653)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)
OCT 29	E.005	<.020	<.005	<.018	<.003	<.003	.006	<.005	<.006
NOV 12									
DEC 10 JAN	<.041	<.020	<.005	<.018	<.003	<.003	E.009	<.005	<.006
30 FEB									
12 APR	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
16 MAY	E.013	<.020	<.005	<.018	<.003	<.003	.005	<.005	<.006
14 JUN	E.038	<.020	<.005	<.018	<.003	<.003	.010	<.005	<.006
10 JUL	E.015	<.020	<.005	<.018	<.003	<.003	.016	<.005	<.006
24 AUG	E.007	<.020	<.005	<.018	<.003	<.003	.011	<.005	<.006
27	E.083	<.020	<.005	<.018	<.003	<.003	.012	<.005	<.006

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04161820 CLINTON RIVER AT STERLING HEIGHTS, MICHIGAN—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82677), USGS National Water Information System parameter code; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Date	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	alpha- HCH, water, fltrd, ug/L (34253)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)
OCT 29 NOV	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.031
12 DEC									
10 JAN	<.02	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027
30									
FEB 12 APR	<.02	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027
16 MAY	<.02	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027
14 JUN	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
10 JUL	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
24	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
AUG 27	<.02	<.030	<.009	<.005	<.003	<.005	< .004	<.035	<.027
						Methyl		Pendi-	cis-
Date	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Para- thion, water, fltrd, ug/L (39542)	para- thion, water, fltrd 0.7u GF ug/L (82667)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	meth- alin, water, fltrd 0.7u GF ug/L (82683)	Per- methrin water fltrd 0.7u GF ug/L (82687)
OCT	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	alin, water, fltrd 0.7u GF ug/L (82683)	methrin water fltrd 0.7u GF ug/L (82687)
OCT 29 NOV	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	alin, water, fltrd 0.7u GF ug/L (82683)	methrin water fltrd 0.7u GF ug/L (82687)
OCT 29	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	alin, water, fltrd 0.7u GF ug/L (82683)	methrin water fltrd 0.7u GF ug/L (82687)
OCT 29 NOV 12 DEC 10	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	alin, water, fltrd 0.7u GF ug/L (82683)	methrin water fltrd 0.7u GF ug/L (82687)
OCT 29 NOV 12 DEC 10 JAN 30	chlor, water, fltrd, ug/L (39415) E.009	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	alin, water, fltrd 0.7u GF ug/L (82683)	methrin water fltrd 0.7u GF ug/L (82687) <.006
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12	chlor, water, fltrd, ug/L (39415) E.009	buzin, water, fltrd, ug/L (82630) <.006	nate, water, fltrd 0.7u GF ug/L (82671) <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007	thion, water, fltrd, ug/L (39542) <.010	thion, water, fltrd 0.7u GF ug/L (82667) <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004	alin, water, fltrd 0.7u GF ug/L (82683) <.022	methrin water fltrd 0.7u GF ug/L (82687) <.006
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16	chlor, water, fltrd, ug/L (39415) E.009	buzin, water, fltrd, ug/L (82630) <.006	nate, water, fltrd 0.7u GF ug/L (82671) <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007	thion, water, fltrd, ug/L (39542) <.010	thion, water, fltrd 0.7u GF ug/L (82667) <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004	alin, water, fltrd 0.7u GF ug/L (82683) <.022	methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16 MAY 14	chlor, water, fltrd, ug/L (39415) E.009 E.003	buzin, water, fltrd, ug/L (82630) <.006 <.006	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007	thion, water, fltrd, ug/L (39542) <.010 <.010 <.010	thion, water, fltrd 0.7u GF ug/L (82667) <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004	alin, water, fltrd 0.7u GF ug/L (82683) <.022	methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006 <.006
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16 MAY 14 JUN 10	chlor, water, fltrd, ug/L (39415) E.009 E.003 <.013 .13	buzin, water, fltrd, ug/L (82630) <.006 <.006 <.006	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002 <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010 <.010 <.010 <.010	thion, water, fltrd 0.7u GF ug/L (82667) <.006 <.006 <.006 <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004 <.004 <.004	alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022	methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006 <.006 <.006 <.006
OCT 29 NOV 12 DEC 10 JAN 30 FEB 12 APR 16 MAY 14 JUN	chlor, water, fltrd, ug/L (39415) E.009 E.003 <.013 .13 .02	buzin, water, fltrd, ug/L (82630) <.006 <.006 <.006 <.006 <.006	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002 <.002 <.002 <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007 <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010 <.010 <.010 <.010	thion, water, fltrd 0.7u GF ug/L (82667) <.006 <.006 <.006 <.006 <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004 <.004 <.004	alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 E.017	methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006 <.006 <.006 <.006

DEC

APR 16...

MAY 14...

JUN 10...

JUL 24...

AUG 27...

10... JAN 30... FEB 12...

<.02

<.02

<.02

<.02

<.02

<.02

<.02

<.005

<.005

<.005

<.005

<.005

<.005

<.005

<.002

<.002

<.002

< .002

< .002

<.002

<.002

<.009

<.009

<.009

<.009

<.009

<.009

<.009

PROJECT DATA

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04161820 CLINTON RIVER AT STERLING HEIGHTS, MICHIGAN—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82664), USG , no data]	S National Water Info	ormation System	parameter code;	ug/L; micrograms	per liter;<, concer	ntration or value re	eported is less tha	n that indicated; E	, estimated;
Date	Phorate water fltrd 0.7u GF ug/L (82664)	Prometon, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)
OCT									
29	<.011	E.01	< .004	<.010	<.011	<.02	.01	<.02	<.034
NOV									
12									
DEC									
10	<.011	E.01	< .004	<.010	<.011	<.02	.01	<.02	<.034
JAN									
30									
FEB 12	<.011	<.01	<.004	<.010	<.011	<.02	<.005	<.02	<.034
APR	V.011	V.01	√.004	<.010	V.011	V.02	V.005	V.02	V.034
16	<.011	E.01	< .004	<.010	<.011	<.02	.01	<.02	<.034
MAY									
14	<.011	E.01	< .004	<.010	<.011	<.02	.01	<.02	<.034
JUN									
10	<.011	E.01	< .004	<.010	<.011	<.02	.05	<.02	<.034
JUL									
24	<.011	.02	< .004	<.010	<.011	<.02	<.005	.02	<.034
AUG 27	<.011	.21	<.004	<.010	<.011	<.02	E.003	<.02	<.050
2/	V.011	.21	<.00€	<.010			E.003		\. 030
Date	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)					
OCT									
29	<.02	<.005	<.002	<.009					
NOV									
12	==			==					

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04175600 RIVER RAISIN NEAR MANCHESTER, MICHIGAN

LOCATION.—Latitude 42°10′05″, longitude 84°04′34″, Washtenaw County, Michigan, Hydrologic Unit 04100002, on left bank at downstream side of bridge on Sharon Valley Road, 2.5 miles northwest of Manchester, Michigan.

DRAINAGE AREA.—132 mi².

REMARKS.—Discharge is measured at this site and is published in the Michigan Annual Report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; mm of Hg, millimeters of mercury; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated; E, estimated]

			•						
Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 deg C (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301
OCT									
29	1545	20	558	8.2	4.0	6.4	734	10.2	86
DEC	1343	20	330	0.2	4.0	0.4	754	10.2	00
10	1400	36	581	8.3	6.0	.5	738	13.0	93
FEB									
12	1400	27	586	8.2	-8.0	2.5	742	12.7	96
APR									
16	1330	119	503	8.1	18.0	15.7	734	9.5	99
MAY									
13	1615	187	483	8.2	12.5	14.7	744	11.3	114
JUN									
10	1430	47	522	8.0	22.5	17.8	746	8.8	95
JUL									
23	1500	27	530	8.0	24.5	22.1	746	8.4	99
AUG									
27	1130	25	520	7.8	17.5	21.8	744	6.8	80
Date	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)
o om									
OCT 29	250	205	29	26	E.004	.58	<.04	. 4	.02
DEC	250	203	23	20	E.004	. 50	√.04	.4	.02
10	288	236	35	28	E.006	.87	.04	. 4	.01
FEB	200	250	33	20	1.000	.07	.04		.01
12	272	223	34	28	E.006	.87	.06	. 4	.01
APR	2.2	223	31	20	2.000	• • •	.00	• •	• • •
16	220	180	34	26	<.008	.30	< .04	.7	.03
MAY			- -						
13	216	177	30	23	.008	.33	< .04	.6	.03
JUN									
10	238	195	28	26	.010	.40	.04	.6	.03
JUL									
23	239	196	28	26	.010	.43	< .04	.6	.02
AUG									
27	232	190	28	26	.009	.36	< .04	.5	.02

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04175600 RIVER RAISIN NEAR MANCHESTER, MICHIGAN—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00671), USGS National Water Information System parameter code; mg/L, milligrams per liter; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

, ,									
Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Sus- pended sedi- ment concen- tration mg/L (80154)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	Atra- zine, water, fltrd, ug/L (39632)	Deethyl- atra- zine, water, fltrd, ug/L (04040)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)
OCT									
29	<.02	15	<.006	< .004	.01	<.006	<.050	<.010	<.002
DEC									
10	<.02	3	<.006	< .004	.02	E.007	<.050	<.010	<.002
FEB									
12	<.02	10	<.006	< .004	.02	E.007	<.050	<.010	<.002
APR 16	<.02	10	<.006	< .004	.03	E.011	<.050	<.010	<.002
MAY	₹.02	10	<.000	V.004	.03	E.011	<.030	<.010	₹.002
13	<.02	8	.02	<.004	.06	E.026	<.050	<.010	<.002
JUN									
10	<.02	9	.03	< .004	.05	E.013	<.050	<.010	<.002
JUL									
23	<.02	9	<.006	< .004	.03	E.008	<.050	<.010	<.002
AUG 27	<.02	2	<.006	<.004	.05	E.007	<.050	<.010	<.002
Date	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)	p,p'- DDE, water, fltrd, ug/L (34653)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)
OCT	0.44		0.05	010	000	0.00		0.05	005
29 DEC	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
10									
	< 041	< 020	< 005	< 018	< 003	< 0.03	< 0.05	< 0.05	< 006
FEB	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
FEB 12	<.041 <.041	<.020 <.020	<.005 <.005	<.018	<.003	<.003	<.005	<.005	<.006 <.006
12									
12 APR 16 MAY	<.041	<.020 <.020	<.005 <.005	<.018	<.003	<.003	<.005 <.005	<.005 <.005	<.006 <.006
12 APR 16 MAY 13	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
12 APR 16 MAY 13 JUN	<.041 <.041 <.041	<.020 <.020 <.020	<.005 <.005 <.005	<.018 <.018 <.018	<.003 <.003 <.003	<.003 <.003 <.003	<.005 <.005 <.005	<.005 <.005 <.005	<.006 <.006 <.006
12 APR 16 MAY 13 JUN 10	<.041	<.020 <.020	<.005 <.005	<.018	<.003	<.003	<.005 <.005	<.005 <.005	<.006 <.006
12 APR 16 MAY 13 JUN 10 JUL	<.041 <.041 <.041 <.041	<.020 <.020 <.020 <.020	<.005 <.005 <.005 <.005	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003	<.003 <.003 <.003 <.003 <.003	<.005 <.005 <.005 <.005	<.005 <.005 <.005 <.005	<.006 <.006 <.006 <.006
12 APR 16 MAY 13 JUN 10	<.041 <.041 <.041	<.020 <.020 <.020	<.005 <.005 <.005	<.018 <.018 <.018	<.003 <.003 <.003	<.003 <.003 <.003	<.005 <.005 <.005	<.005 <.005 <.005	<.006 <.006 <.006

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04175600 RIVER RAISIN NEAR MANCHESTER, MICHIGAN—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82677), USGS National Water Information System parameter code; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

[(02077), 03031	unonar water im	ormation bystem	parameter code, c	ig/E, inicrograms	per mer, <, conce	nation of value i	eported is less tha	in that maleutea, i	z, estimateuj
Date	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	alpha- HCH, water, fltrd, ug/L (34253)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)
OCT									
29 DEC	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
10 FEB	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
12 APR	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
16 MAY	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
13	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
JUN 10	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
JUL 23	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
AUG 27	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.100
Date	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Para- thion, water, fltrd, ug/L (39542)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi - meth- alin, water, fltrd 0.7u GF ug/L (82683)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)
OCT									
29 DEC	<.013	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006
10 FEB	E.007	<.006	<.002	<.007	<.010	<.006	< .004	<.022	<.006
12 APR	E.008	<.006	<.002	<.007	<.010	<.006	< .004	<.022	<.006
16 MAY	E.004	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006
13 JUN	E.012	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006
10 JUL	.013	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006
23 AUG	<.013	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006
27	<.013	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04175600 RIVER RAISIN NEAR MANCHESTER, MICHIGAN—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82664), USGS National Water Information System parameter code; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; M, presence verified but not quantified]

Date	Phorate water fltrd 0.7u GF ug/L (82664)	Prometon, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)
OCT									
29	<.011	< .01	< .004	<.010	<.011	<.02	.020	<.02	<.034
DEC									
10	<.011	<.01	< .004	<.010	<.011	<.02	.032	<.02	<.034
FEB	044	. 01	004	010	. 011	20	005	20	024
12	<.011	<.01	< .004	<.010	<.011	<.02	.027	<.02	<.034
APR 16	<.011	М	< .004	<.010	<.011	<.02	.022	<.02	<.034
MAY	V.011	n	V.004	<.010	V.011	V.02	.022	V.02	V.054
13	<.011	<.01	< .004	<.010	<.011	<.02	.014	<.02	<.034
JUN									
10	<.011	< .01	< .004	<.010	<.011	<.02	.013	<.02	<.034
JUL									
23	<.011	<.01	< .004	<.010	<.011	<.02	<.005	<.02	< .034
AUG									
27	<.011	M	< .004	<.010	<.011	<.02	.013	<.02	<.034

Date	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)
OCT				
29	<.02	<.005	<.002	<.009
DEC 10 FEB	<.02	<.005	<.002	<.009
12	<.02	<.005	<.002	<.009
16	<.02	<.005	<.002	<.009
13 JUN	<.02	<.005	<.002	<.009
10 JUL	<.02	<.005	<.002	<.009
23 AUG	<.02	<.005	<.002	<.009
27	<.02	<.005	<.002	<.009

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04178000 ST. JOSEPH RIVER NEAR NEWVILLE, INDIANA

LOCATION.—Latitude 41°23′08″, longitude 84°48′06″, Defiance County, Ohio, Hydrologic Unit 04100003, on left bank at bridge on State Highway 249, 3.5 miles northeast of Newville, Indiana at mile 42.3. DRAINAGE AREA.—610 mi².

REMARKS.—Discharge is measured at this site and is published in the Indiana Annual Report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; mm of Hg, millimeters of mercury; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated]

			•		-				
Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 deg C (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301
OCT									
30	0915	64	692	8.1	3.9	6.7	737	8.7	74
DEC									
09	1500	65	808	8.5	4.5	. 4	747	11.8	84
FEB									
11	1345	112	733	7.9	-8.0	.0	730	13.6	97
APR									
17	1000	373	625	8.1	6.0	12.7	735	9.3	91
MAY									
12	1515	2540	417	7.7	11.0	13.6	733	7.2	72
JUN	1400	1.40	660	0.0	22.0	15 5	7.40	0.0	0.0
09 JUL	1400	140	662	8.0	22.0	17.5	740	9.2	99
23	1100	238	320	7.7	24.0	22.8	743	8.4	100
AUG	1100	250	320	/ • /	24.0	22.0	743	0.4	100
26	1400	83	654	8.0	17.5	20.0	742	7.3	83
Date	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)
OCT									
30	316	259	50	42	E.004	.23	< .04	. 4	.06
DEC									
09	340	279	58	49	.024	.27	< .04	. 4	.04
FEB									
11	272	223	68	61	.014	1.3	.22	.8	.09
APR									
17 MAY	217	178	75	33	.106	2.6	< .04	1.1	.12
MAY 12	120	114	2.0	20	155	2 0	0.5	1.2	.23
JUN	139	114	38	∠∪	.155	3.9	.05	1.2	.23
09	272	223	60	34	.017	.92	< .04	. 9	.14
JUL	2,2	223		24	. 0 ± /	.,2		• •	
23	237	194	44	32	.029	2.0	<.04	1.0	.24
AUG									
26	260	213	51	34	.030	.27	< .04	.9	.14

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04178000 ST. JOSEPH RIVER NEAR NEWVILLE, INDIANA—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00671), USGS National Water Information System parameter code; mg/L, milligrams per liter; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

marcatea, E, esti	initiou, , no dutuj								
Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Sus- pended sedi- ment concen- tration mg/L (80154)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	Atra- zine, water, fltrd, ug/L (39632)	Deethyl- atra- zine, water, fltrd, ug/L (04040)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)
OCT									
30	E.01	21	<.006	< .004	.07	E.011	<.050	<.010	<.002
DEC									
09	<.02	3	.01	< .004	.08	E.010	<.050	<.010	<.002
FEB									
11	.04	7	<.006	<.010	.10	E.019	<.050	<.010	<.002
APR		4.0	- 005	- 000	4.4	- 000	0.50	04.0	
17 MAY	<.02	42	E.005	E.003	.11	E.029	<.050	<.010	<.002
12	E.01	65	1.2	.010	7.4	E.278	<.050	<.010	<.002
JUN	2.01	03	1.2	.010	, . =	1.270	1.050	1.010	1.002
09	.02	114	.07	< .004	.64	E.055	<.050	<.010	<.002
JUL									
23	.06	79	.02	< .004	.46	E.106	<.050	<.010	<.002
AUG									
26	<.02	34							
Date	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)	p,p'- DDE, water, fltrd, ug/L (34653)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	Disul- foton, water, fltrd 0.7 u GF ug/L (82677)
OCT									
30 DEC	<.020	<.005	<.018	<.003	<.003	<.007	<.005	<.006	<.02
09 FEB	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006	<.02
11	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006	<.02
APR 17	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006	<.02
MAY 12	<.020	.005	<.018	<.003	<.003	<.005	<.005	<.006	<.02
JUN 09	<.020	<.005	<.018	<.003	<.003	E.003	<.005	<.006	<.02
JUL 23	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006	<.02
AUG 26			==						

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04178000 ST. JOSEPH RIVER NEAR NEWVILLE, INDIANA—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82668), USGS National Water Information System parameter code; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Date	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	alpha- HCH, water, fltrd, ug/L (34253)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	Metola- chlor, water, fltrd, ug/L (39415)
30 DEC	<.002	<.009	<.005	<.003	<.005	<.004	<.035	E.013	.02
09 FEB	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027	.02
11 APR	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027	.05
17 MAY	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027	.04
12 JUN	<.007	<.009	<.005	<.003	<.005	<.004	<.035	<.027	1.8
09 JUL	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027	.14
23 AUG	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027	.40
26									
Date	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Para- thion, water, fltrd, ug/L (39542)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Phorate water fltrd 0.7u GF ug/L (82664)
OCT	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	para- thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	meth- alin, water, fltrd 0.7u GF ug/L (82683)	Per- methrin water fltrd 0.7u GF ug/L (82687)	water fltrd 0.7u GF ug/L (82664)
OCT 30	buzin, water, fltrd, ug/L	nate, water, fltrd 0.7u GF ug/L	amide, water, fltrd 0.7u GF ug/L	thion, water, fltrd, ug/L	para- thion, water, fltrd 0.7u GF ug/L	ulate, water, fltrd 0.7u GF ug/L	meth- alin, water, fltrd 0.7u GF ug/L	Per- methrin water fltrd 0.7u GF ug/L	water fltrd 0.7u GF ug/L
OCT 30 DEC 09	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	para- thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	meth- alin, water, fltrd 0.7u GF ug/L (82683)	Per- methrin water fltrd 0.7u GF ug/L (82687)	water fltrd 0.7u GF ug/L (82664)
OCT 30 DEC 09 FEB 11	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	para- thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	meth- alin, water, fltrd 0.7u GF ug/L (82683)	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006	water fltrd 0.7u GF ug/L (82664)
OCT 30 DEC 09 FEB	buzin, water, fltrd, ug/L (82630) <.006	nate, water, fltrd 0.7u GF ug/L (82671) <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007	thion, water, fltrd, ug/L (39542) <.010	parathion, water, fltrd 0.7u GF ug/L (82667) <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004	meth- alin, water, fltrd 0.7u GF ug/L (82683) <.022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006	water fltrd 0.7u GF ug/L (82664) <.011
OCT 30 DEC 09 FEB 11 APR 17	buzin, water, fltrd, ug/L (82630) <.006 .007	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010	para- thion, water, fltrd 0.7u GF ug/L (82667) <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004	meth- alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006	water fltrd 0.7u GF ug/L (82664) <.011 <.011
OCT 30 DEC 09 FEB 11 APR 17 MAY	buzin, water, fltrd, ug/L (82630) <.006 .007 .04	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010 <.010 <.010	para- thion, water, fltrd 0.7u GF ug/L (82667) <.006 <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004 <.004	methalin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006 <.006	water fltrd 0.7u GF ug/L (82664) <.011 <.011 <.011 <.011
OCT 30 DEC 09 FEB 11 APR 17 MAY 12 JUN 09	buzin, water, fltrd, ug/L (82630) <.006 .007 .04 .02 .15	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002 <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010 <.010 <.010 <.010	para- thion, water, fltrd 0.7u GF ug/L (82667) <.006 <.006 <.006 <.006 <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004 <.004 <.004	methalin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006 <.006 <.006	water fltrd 0.7u GF ug/L (82664) <.011 <.011 <.011 <.011 <.011

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04178000 ST. JOSEPH RIVER NEAR NEWVILLE, INDIANA—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(04037), USGS National Water Information System parameter code; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Date	Prometon, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)
OCT									
30	E.01	< .004	<.010	<.011	<.02	.03	<.02	<.041	<.02
DEC									
09	E.01	< .004	<.010	<.011	<.02	.04	<.02	<.034	<.02
FEB									
11	.03	< .004	<.010	<.011	<.02	.06	<.02	<.034	<.02
APR 17	E.01	<.004	<.010	<.011	<.02	.09	<.02	<.034	<.02
MAY	E.UI	<.004	<.010	<.011	<.02	.09	<.02	<.034	<.02
12	E.01	< .004	<.010	<.011	<.02	1.8	E.01	<.034	<.02
JUN	2.01					1.0	2.01		2
09	E.01	< .004	<.010	<.011	<.02	.20	<.02	<.034	<.02
JUL									
23	.04	< .004	<.010	<.011	<.02	.15	<.02	<.034	<.02
AUG									
26									

Date	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)
OCT			
30	<.005	<.002	<.009
DEC			
09 FEB	<.005	<.002	<.009
11	<.005	<.002	<.009
APR			
17	<.005	<.002	<.009
MAY			
12	<.005	<.002	<.009
09	< .005	< .002	<.009
JUL	1.003		
23	<.005	<.002	<.009
AUG			
26			

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04186500 AUGLAIZE RIVER NEAR FT. JENNINGS, OHIO

LOCATION.—Latitude 40°56′55″, longitude 84°15′58″, Putnam County, Ohio, Hydrologic Unit 04100007, on left bank 200 feet upstream from bridge on US Highway 224, 3.5 miles northeast of Ft. Jennings, Ohio.

DRAINAGE AREA.—332 mi².

REMARKS.—Discharge is measured at this site and is published in surface-water records.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; mm of Hg, millimeters of mercury; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated; E, estimated]

			•			_			
Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
OCT									
28	1045	5.6	1710	7.8	3.0	9.2	737	8.3	75
DEC	1045	3.0	1710	7.0	3.0	J.2	, , ,	0.5	, 5
09	1100	8.6	904	8.4	-2.0	.5	751	13.6	96
FEB									
11	1100	50	799	8.3	-10.0	.0	731	13.6	97
APR									
15	1230	188	731	8.4	17.0	14.7	740	11.8	120
MAY									
13	1200	2560	423	7.7	11.5	12.9	742	8.1	79
JUN									
11	1030	123	797	8.2	21.5	19.7	743	8.4	94
JUL									
09	1145	6840	290	7.4	27.5	24.0	745	5.9	72
AUG 26	1045	22	856	8.1	24.0	17.0	745	7.4	79
Date	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)
OCT									
28	228	187	330	250	E.005	.35	< .04	.6	.11
DEC									
09	277	227	180	130	.06	10	< .04	.6	.08
FEB									
11	200	164	100	73	.04	7.4	.14	.8	.11
APR									
15	204	181	76	34	.06	7.3	< .04	.7	.06
MAY									
13	139	114	33	18	.14	6.6	< .04	1.5	.35
JUN	0.57	211	0.0	F 1	0.2	7 7	- 04	7	1.0
JUL	257	211	90	51	.02	7.7	< .04	.7	.12
09									2.0
	1 / 1	0.3	1 🖺	7 6	0.0	2 1			
	101	83	15	7.6	.09	3.1	< .04	1.1	.30
AUG 26	101 250	83 205	15 100	7.6 68	.09	3.1	<.04	1.1	.15

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04186500 AUGLAIZE RIVER NEAR FT. JENNINGS, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00671), USGS National Water Information System parameter code; mg/L, milligrams per liter; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Sus- pended sedi- ment concen- tration mg/L (80154)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	Atra- zine, water, fltrd, ug/L (39632)	Deethyl- atra- zine, water, fltrd, ug/L (04040)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)
OCT									
28 DEC	.03	16	.02	<.004	.12	E.017	<.050	<.010	<.002
09 FEB	.04	2	.03	<.004	.13	E.020	<.050	<.010	<.002
11 APR	.06	9	.03	<.004	.10	E.033	<.050	<.010	<.002
15 MAY	<.02	22	.01	<.004	.08	E.031	<.050	<.010	<.002
13 JUN	<.02	125	3.4	.13	13	E.668	<.050	<.010	<.002
11 JUL	.05	61	.48	.02	2.4	E.191	<.050	<.010	<.002
09 AUG	.08	76	.17	.01	.81	E.244	<.050	<.010	<.002
26	<.02	22	.01	<.004	.26	E.053	<.050	<.010	<.002
Date	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)	p,p'- DDE, water, fltrd, ug/L (34653)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)
OCT 28	<.041	<.020	<.005	E.013	<.003	<.003	<.005	<.005	<.006
DEC 09	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
FEB 11	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
APR 15 MAY	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
13 JUN	E.010	<.020	.01	E.017	<.003	<.003	E.004	<.005	<.006
11 JUL	<.041	<.020	<.005	<.018	<.003	<.005	.006	<.005	<.006
09 AUG	E.008	<.020	<.010	<.018	<.003	<.003	.008	<.005	<.006
26	<.041	<.020	<.005	<.018	<.003	<.003	.007	<.005	<.006

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04186500 AUGLAIZE RIVER NEAR FT. JENNINGS, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82677), USGS National Water Information System parameter code; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated]

Date	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	alpha- HCH, water, fltrd, ug/L (34253)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)
OCT									
28 DEC	<.02	<.002	<.009	<.005	<.003	<.005	<.006	<.035	<.027
09 FEB	<.02	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027
11 APR	<.02	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027
15 MAY	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
13 JUN	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
11	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
09 AUG	<.02	<.002	<.009	<.005	<.003	<.005	< .004	<.035	<.027
26	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
Date	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Para- thion, water, fltrd, ug/L (39542)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)
OCT	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	para- thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	meth- alin, water, fltrd 0.7u GF ug/L (82683)	Per- methrin water fltrd 0.7u GF ug/L (82687)
	chlor, water, fltrd, ug/L	buzin, water, fltrd, ug/L	nate, water, fltrd 0.7u GF ug/L	amide, water, fltrd 0.7u GF ug/L	thion, water, fltrd, ug/L	para- thion, water, fltrd 0.7u GF ug/L	ulate, water, fltrd 0.7u GF ug/L	meth- alin, water, fltrd 0.7u GF ug/L	Per- methrin water fltrd 0.7u GF ug/L
OCT 28 DEC 09	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	para- thion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	meth- alin, water, fltrd 0.7u GF ug/L (82683)	Per- methrin water fltrd 0.7u GF ug/L (82687)
OCT 28 DEC 09 FEB 11	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671)	amide, water, fltrd 0.7u GF ug/L (82684)	thion, water, fltrd, ug/L (39542)	parathion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669)	meth- alin, water, fltrd 0.7u GF ug/L (82683)	Per- methrin water fltrd 0.7u GF ug/L (82687)
OCT 28 DEC 09 FEB 11 APR 15	chlor, water, fltrd, ug/L (39415)	buzin, water, fltrd, ug/L (82630)	nate, water, fltrd 0.7u GF ug/L (82671) <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007	thion, water, fltrd, ug/L (39542) <.010	parathion, water, fltrd 0.7u GF ug/L (82667)	ulate, water, fltrd 0.7u GF ug/L (82669) <.004	meth- alin, water, fltrd 0.7u GF ug/L (82683) <.022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006
OCT 28 DEC 09 FEB 11 APR 15 MAY 13	chlor, water, fltrd, ug/L (39415) .09 .22	buzin, water, fltrd, ug/L (82630) .01 .01	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010	para- thion, water, fltrd 0.7u GF ug/L (82667) <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006
OCT 28 DEC 09 FEB 11 APR 15 MAY 13 JUN 11	chlor, water, fltrd, ug/L (39415) .09 .22 .14	buzin, water, fltrd, ug/L (82630) .01 .01	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010 <.010 <.010	para- thion, water, fltrd 0.7u GF ug/L (82667) <.006 <.006 <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004 <.004	meth-alin, water, fltrd 0.7u GF ug/L (82683) <-022 <-022 <-022 <-022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006 <.006
OCT 28 DEC 09 FEB 11 APR 15 MAY 13 JUN	chlor, water, fltrd, ug/L (39415) .09 .22 .14 .06	buzin, water, fltrd, ug/L (82630) .01 .05 .01	nate, water, fltrd 0.7u GF ug/L (82671) <.002 <.002 <.002 <.002	amide, water, fltrd 0.7u GF ug/L (82684) <.007 <.007 <.007	thion, water, fltrd, ug/L (39542) <.010 <.010 <.010 <.010 <.010	parathion, water, fltrd 0.7u GF ug/L (82667) <.006 <.006 <.006 <.006 <.006	ulate, water, fltrd 0.7u GF ug/L (82669) <.004 <.004 <.004 <.004	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022	Per- methrin water fltrd 0.7u GF ug/L (82687) <.006 <.006 <.006 <.006 <.006

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04186500 AUGLAIZE RIVER NEAR FT. JENNINGS, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82664) USGS National Water Information System parameter code: ue/l: micrograms per liter: < concentration or value reported is less than that indicated: E. estimated

[(82664), USG	S National Water Info	ormation System	n parameter code; ı	ug/L; micrograms	per liter; <, conce	entration or value i	reported is less that	an that indicated; I	E, estimated]
Date	Phorate water fltrd 0.7u GF ug/L (82664)	Prometon, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)
OCT									
28 DEC	<.011	.11	<.004	<.010	<.011	<.02	.01	<.02	<.034
09	<.011	.03	<.004	<.010	<.011	<.02	.02	<.02	<.034
FEB 11 APR	<.011	E.01	<.004	<.010	<.011	<.02	.02	<.02	<.034
15 MAY	<.011	E.01	<.004	E.003	<.011	<.02	.02	<.02	<.034
13 JUN	<.011	E.01	<.004	E.008	<.011	<.02	1.1	<.02	<.034
11	<.011	.03	<.004	<.010	<.011	<.02	.14	<.02	<.034
09 AUG	<.011	.02	<.004	E.009	<.011	<.02	.04	<.02	<.034
26	<.011	.05	<.004	<.010	<.011	<.04	.02	<.02	E.012
	Terbu- fos,	Thio- bencarb	Tri- allate,	Tri- flur- alin,					
Date	water,	water	water,	water,					

Date	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	flur- alin, water, fltrd 0.7u Gl ug/L (82661
OCT				
28	<.02	<.005	<.002	<.009
DEC				
09	<.02	<.005	<.002	<.009
FEB 11	<.02	<.005	<.002	<.009
APR	<.02	<.005	<.002	<.009
15	<.02	<.005	<.002	<.009
MAY				
13	<.02	<.005	<.002	<.009
JUN				
11	<.02	<.005	<.002	<.009
JUL				
09	<.02	<.005	<.002	<.009
AUG 26	<.02	<.005	<.002	<.009
20	~.02	·. 003	· · · · · · · · · · · · · · · · · · ·	1.009

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04193500 MAUMEE RIVER AT WATERVILLE, OHIO

LOCATION.—Latitude 41°30′00″, longitude 83°42′46″, Lucas County, Ohio, Hydrologic Unit 04100009, on downstream side of first pier from left end of bridge on State Highway 64 at Waterville, Ohio, river mile 20.7.

DRAINAGE AREA.—6,330 mi².

REMARKS.—Discharge is measured at this site and is published in surface-water records.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; mm of Hg, millimeters of mercury; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated; E, estimated]

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
OCT									
28	1345	210	782	8.8	11.0	11.4	745	9.5	89
DEC									
11	1000	620	855	8.4	1.0	1.0	744	13.5	98
FEB									
26	1100	14900	772	8.1	-14.0	.1	748	15.2	106
APR	1520	2240	F00	0.0	22.0	12 7	7.40	10.0	101
15 MAY	1530	3340	588	8.2	22.0	13.7	742	12.2	121
13	0945	40800	319	7.7	11.0	14.4	742	8.1	82
JUN	0313	10000	313	,	11.0		, 12	0.1	02
11	0730	1770	673	8.4	20.5	20.1	743	8.8	100
JUL									
11	1130	39900	320	7.7	20.5	22.9	742	8.4	101
AUG									
28	0900	487	417	8.5	17.5	23.7	750	9.0	109
Date	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)
Date OCT	bonate, wat flt incrm. titr., field, mg/L	linity, wat flt inc tit field, mg/L as CaCO3	water, fltrd, mg/L	ide, water, fltrd, mg/L	water, fltrd, mg/L as N	+ nitrate water fltrd, mg/L as N	water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L
	bonate, wat flt incrm. titr., field, mg/L	linity, wat flt inc tit field, mg/L as CaCO3	water, fltrd, mg/L	ide, water, fltrd, mg/L	water, fltrd, mg/L as N	+ nitrate water fltrd, mg/L as N	water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L
OCT 28 DEC	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613)	+ nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00608)	+ org-N, water, unfiltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)
OCT 28 DEC 11	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613)	+ nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00608)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)
OCT 28 DEC 11 FEB	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945) 110	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613) <.008	+ nitrate water fltrd, mg/L as N (00631) <.06	water, fltrd, mg/L as N (00608) <.04	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)
OCT 28 DEC 11 FEB 26	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613)	+ nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00608)	+ org-N, water, unfiltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)
OCT 28 DEC 11 FEB 26 APR	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945) 110 110	ide, water, fltrd, mg/L (00940) 96 72 83	water, fltrd, mg/L as N (00613) <.008 .08	+ nitrate water fltrd, mg/L as N (00631) <.06 7.0	water, fltrd, mg/L as N (00608) <.04 <.04	+ org-N, water, unfltrd mg/L as N (00625) .7 .9	phorus, water, unfltrd mg/L (00665) .06 .11
OCT 28 DEC 11 FEB 26	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945) 110	ide, water, fltrd, mg/L (00940)	water, fltrd, mg/L as N (00613) <.008	+ nitrate water fltrd, mg/L as N (00631) <.06	water, fltrd, mg/L as N (00608) <.04	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)
OCT 28 DEC 11 FEB 26 APR 15	bonate, wat flt incrm. titr., field, mg/L (00453)	linity, wat flt inc tit field, mg/L as CaCO3 (39086)	water, fltrd, mg/L (00945) 110 110	ide, water, fltrd, mg/L (00940) 96 72 83	water, fltrd, mg/L as N (00613) <.008 .08	+ nitrate water fltrd, mg/L as N (00631) <.06 7.0	water, fltrd, mg/L as N (00608) <.04 <.04	+ org-N, water, unfltrd mg/L as N (00625) .7 .9	phorus, water, unfltrd mg/L (00665) .06 .11
OCT 28 DEC 11 FEB 26 APR 15 MAY	bonate, wat flt incrm. titr., field, mg/L (00453) 135 195	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 139 160 142	water, fltrd, mg/L (00945) 110 110 79 59	ide, water, fltrd, mg/L (00940) 96 72 83 34	water, fltrd, mg/L as N (00613) <.008 .08 .04	+ nitrate water fltrd, mg/L as N (00631) <.06 7.0 5.0	water, fltrd, mg/L as N (00608) <.04 <.04	+ org-N, water, unfltrd mg/L as N (00625) .7 .9 1.8	phorus, water, unfltrd mg/L (00665) .06 .11 .23 .14
OCT 28 DEC 11 FEB 26 APR 15 MAY 13 JUN 11	bonate, wat flt incrm. titr., field, mg/L (00453) 135 195	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 139 160 142	water, fltrd, mg/L (00945) 110 110 79	ide, water, fltrd, mg/L (00940) 96 72 83	water, fltrd, mg/L as N (00613) <.008 .08 .04	+ nitrate water fltrd, mg/L as N (00631) <.06 7.0 5.0	water, fltrd, mg/L as N (00608) <.04 <.04	+ org-N, water, unfltrd mg/L as N (00625) .7 .9 1.8	phorus, water, unfltrd mg/L (00665) .06 .11 .23
OCT 28 DEC 11 FEB 26 APR 15 MAY 13 JUN 11 JUL	bonate, wat flt incrm. titr., field, mg/L (00453) 135 195 173 161 95	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 139 160 142 132 78	water, fltrd, mg/L (00945) 110 110 79 59 23	ide, water, fltrd, mg/L (00940) 96 72 83 34 13	water, fltrd, mg/L as N (00613) <.008 .08 .04 .17 .16	+ nitrate water fltrd, mg/L as N (00631) <.06 7.0 5.0 9.8 6.0 3.2	water, fltrd, mg/L as N (00608) <.04 <.04 .47 <.04 E.03 <.04	+ org-N, water, unfltrd mg/L as N (00625) .7 .9 1.8 1.0 2.3	phorus, water, unfltrd mg/L (00665) .06 .11 .23 .14 .71
OCT 28 DEC 11 FEB 26 APR 15 MAY 13 JUN 11 JUL 11	bonate, wat flt incrm. titr., field, mg/L (00453) 135 195 173 161	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 139 160 142 132	water, fltrd, mg/L (00945) 110 110 79 59	ide, water, fltrd, mg/L (00940) 96 72 83 34	water, fltrd, mg/L as N (00613) <.008 .08 .04 .17	+ nitrate water fltrd, mg/L as N (00631) <.06 7.0 5.0 9.8 6.0	water, fltrd, mg/L as N (00608) <.04 <.04 .47 <.04 E.03	+ org-N, water, unfltrd mg/L as N (00625) .7 .9 1.8 1.0	phorus, water, unfltrd mg/L (00665) .06 .11 .23 .14
OCT 28 DEC 11 FEB 26 APR 15 MAY 13 JUN 11 JUL	bonate, wat flt incrm. titr., field, mg/L (00453) 135 195 173 161 95	linity, wat flt inc tit field, mg/L as CaCO3 (39086) 139 160 142 132 78	water, fltrd, mg/L (00945) 110 110 79 59 23	ide, water, fltrd, mg/L (00940) 96 72 83 34 13	water, fltrd, mg/L as N (00613) <.008 .08 .04 .17 .16	+ nitrate water fltrd, mg/L as N (00631) <.06 7.0 5.0 9.8 6.0 3.2	water, fltrd, mg/L as N (00608) <.04 <.04 .47 <.04 E.03 <.04	+ org-N, water, unfltrd mg/L as N (00625) .7 .9 1.8 1.0 2.3	phorus, water, unfiltrd mg/L (00665) .06 .11 .23 .14 .71

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04193500 MAUMEE RIVER AT WATERVILLE, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00671), USGS National Water Information System parameter code; mg/L, milligrams per liter; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

marcatea, E, est	imateaj								
Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Sus- pended sedi- ment concen- tration mg/L (80154)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	Atra- zine, water, fltrd, ug/L (39632)	Deethyl- atra- zine, water, fltrd, ug/L (04040)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)
OCT									
28	<.02	6	.01	< .004	.42	E.053	<.050	<.010	<.002
DEC									
11	.05	9	.09	.01	.35	E.037	<.050	<.010	<.002
FEB									
26	.14	24	.02	< .004	.15	E.036	<.050	<.010	<.002
APR									
15	<.02	44	.02	.01	.11	E.040	<.050	<.010	<.002
MAY	0.2	44.6	2 0	0.4	4.5	- 654	0.50	04.0	
13 JUN	.03	416	3.8	.21	17	E.674	<.050	<.010	<.002
11	<.02	7	.28	.01	2.5	E.185	<.050	<.010	<.002
JUL	1.02	,	.20	.01	2.5	1.105	1.030	1.010	1.002
11	.12	149	.20	.01	1.1	E.261	<.050	<.010	<.002
AUG									
28	<.02	14	.03	< .004	.26	E.019	<.050	<.010	<.002
Date	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)	p,p'- DDE, water, fltrd, ug/L (34653)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)
OCT									
28 DEC	<.041	<.020	<.005	E.012	<.003	<.003	.010	<.005	<.006
11	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
FEB									
26	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
APR									
15	<.041	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
MAY									
13	E.015	<.020	.011	E.013	<.003	<.003	.009	<.005	<.006
JUN 11	E 004	- 000	- 00F	- 010	- 003	- 003	- 005	- 005	- 000
JUL	E.004	<.020	<.005	<.018	<.003	<.003	<.005	<.005	<.006
11	E.006	<.020	<.005	<.018	<.003	<.003	E.005	<.005	<.006
AUG		. 020	.005	. 0 . 0					
28	E.113	<.020	<.005	<.018	<.003	<.003	.011	<.020	<.006

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04193500 MAUMEE RIVER AT WATERVILLE, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82677), USGS National Water Information System parameter code; ug/L; micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

E(//			r		1 , ,			,	,
Date	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	alpha- HCH, water, fltrd, ug/L (34253)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)
OCT									
28	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
DEC 11	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
FEB 26	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
APR 15	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
MAY 13	<.02	E.007	<.009	<.005	<.003	<.005	<.004	<.035	<.027
JUN 11	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
JUL 11	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
AUG 28	<.02	<.002	<.009	<.005	<.003	<.005	<.004	<.035	<.027
Date	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Para- thion, water, fltrd, ug/L (39542)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)
OCT									
28 DEC	.07	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006
11 FEB	.28	.09	<.002	<.007	<.010	<.006	<.004	<.022	<.006
26 APR	.20	.05	<.002	<.007	<.010	<.006	<.004	<.022	<.006
15 MAY	.12	.02	<.002	<.007	<.010	<.006	< .004	<.022	<.006
13	4.6	.50	<.002	<.007	<.010	<.006	< .004	E.011	<.006
JUN 11 JUL	.64	.01	<.002	<.007	<.010	<.006	<.004	<.022	<.006
11	.91	.07	<.002	<.007	<.010	<.006	<.004	<.022	<.006
AUG 28	.18	<.006	<.002	<.007	<.010	<.006	<.004	<.022	<.006

11...

26... APR 15...

FEB

MAY 13...

JUN 11...

JUL 11...

AUG

28...

< .02

<.02

<.02

<.02

<.02

<.02

<.02

<.005

<.005

<.005

<.005

<.005

<.005

<.005

<.002

<.002

<.002

<.002

<.002

<.002

<.002

<.009

<.009

<.009

<.009

<.009

<.009

<.009

PROJECT DATA

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

04193500 MAUMEE RIVER AT WATERVILLE, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82664), USG	S National Water Info	ormation System	parameter code;	ıg/L; micrograms	per liter; <, conce	ntration or value r	reported is less that	an that indicated; I	E, estimated]
Date	Phorate water fltrd 0.7u GF ug/L (82664)	Prome- ton, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)
OCT									
28 DEC	<.011	.08	<.004	<.010	<.011	<.02	.06	.03	<.034
11 FEB	<.011	.04	< .004	<.010	<.011	<.02	.09	.02	<.034
26 APR	<.011	E.01	<.004	<.010	<.011	<.02	.08	<.02	<.034
15 MAY	<.011	E.01	<.004	<.010	<.011	<.02	.08	E.01	<.034
13 JUN	<.011	.02	<.004	E.007	<.011	<.02	3.3	E.01	<.034
11 JUL	<.011	.04	<.004	<.010	<.011	<.02	.41	E.01	<.034
11 AUG	<.011	.02	<.004	<.010	<.011	<.02	.09	E.01	<.034
28	<.011	.04	<.004	<.010	<.011	<.02	.02	<.02	E.021
Date	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)					
OCT									
28 DEC	<.02	<.005	<.002	<.009					

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

FISH-COMMUNITY RESULTS

Fish community surveys were conducted at five sites in the Lake Erie River Basins as part of the National Water-Quality Assessment Program (NAWQA). Fish were collected by electrofishing with pulsed-DC current in a mapped reach at each site. Two electrofishing passes and seining were done at each reach in a single day. Electrofishing was done by use of a barge electroshocker at all sites. Fish were identified, measured, weighed, and checked for external anomalies such as parasites, lesions, and skeletal anomalies. Representative specimens were preserved, identified, and vouchered in the field. Vouchers were verified by icthyologist Terry Keiser of Ohio Northern University. More details regarding collection methods can be found in: Meador, M.R., Cuffney, T.R., and Gurtz, M.E., 1993, Methods for collecting samples of fish communities as part of the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 93-104, 40 p. Taxonomy is based on Robins, C.R., Bailey, R.M., Bond, C.E., Brooker, J.R., Lachner, E.A., Lea, R.N., and Scott, W.B., 1991, Common and scientific names of fishes from the United States and Canada, Fifth Edition: American Fisheries Society Special Publication 20, Bethesda, MD, 183 p.

CALENDER YEAR 2003

STATION NUMBER	STATION NAME	DATE SAMPLED	DRAINAGE AREA (SQUARE MILES)	REACH LENGTH (METERS)
04161820	Clinton River at Sterling Heights, Michigan	09/09/03	309	286
04193500	Maumee River at Waterville, Ohio	09/16/03	6,330	300
04175600	River Raisin near Manchester, Michigan	09/08/03	132	247
04178000	St. Joseph River near Newville, Indiana	09/17/03	610	300
04186500	Auglaize River near Fort Jennings, Ohio	09/10/03	322	241

[--, not present at indicated site]

					STATIO	ON NAME		
Family	Scientific name	Common name	ne Manch	Raisin ear ester, nigan	at Wate	e River erville, nio	at St Heig	n River erling ghts, nigan
			Abun- dance	Batch weight (grams)	Abun- dance	Batch weight (grams)	Abun- dance	Batch weight (grams)
Petromyzontidae	Ichthyomyson fosser	northern brook lamprey	4	19.1				
Lepisosteidae	Lepisosteus osseus	longnose gar			2	721		
Clupeidae	Dorosoma cepedianum	gizzard shad			7	158	19	256
Cyprinidae	Campostoma anomalum	central stoneroller	9	83.2				
	Cyprinella spiloptera	spotfin shiner	41	148.7	31	64.3	7	37.9
	Cyprinus carpio	common carp			25	36464		
	Luxilus chrysocephalus	striped shiner	168	967.1	31	60.8		
	Nocomis biguttatus	hornyhead chub	10	214.2				
	Nocomis micropogon	river chub	9	475.3			1	20
	Notropis atherinoides	emerald shiner	12	23.8	73	148.4		
	Notropis stramineus	sand shiner			9	6.5		
	Phenacobius mirabilis	suckermouth minnow						
	Pimephales notatus	bluntnose minnow	54	235	37	85.8	40	178.6
	Semotilus atromaculatus	creek chub	8	125.3				
Catostomidae	Carpiodes cyprinus	quillback			2	1182		
	Catostomus commersoni	white sucker	24	238.8			28	4876.8
	Hypentelium nigricans	northern hog sucker	52	2349.4	8	2165	29	1518
	Minytrema melanops	spotted sucker						
	Moxostoma anisurum	silver redhorse			3	4508		
	Moxostoma duquesnei	black redhorse	18	3914	1	743		
	Moxostoma erythrurum	golden redhorse	3	75				
	Moxostoma macrolepidotum	shorthead redhorse			16	5438		
Ictaluridae	Ameiurus natalis	yellow bullhead						
	Ictalurus punctatus	channel catfish			21	5961		
	Noturus flavus	stonecat	1	50	1	1		
	Noturus miurus	brindled madtom	2	16				
	Cottus bairdi	mottled sculpin	1	6				
Esocidae	Esox americanus vermiculatus	grass pickerel	3	268			1	60
	Esox lucius	northern pike	1	1070			3	3795
Salmonidae	Oncorhynchus mykiss	rainbow trout					6	174

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

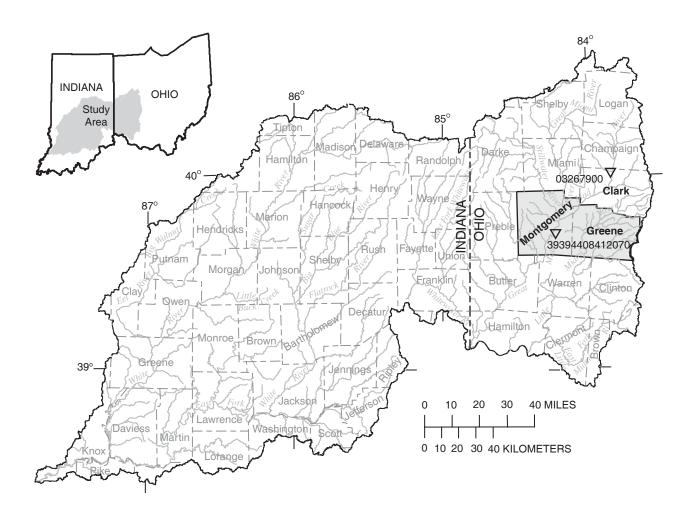
FISH-COMMUNITY RESULTS—Continued

[--, not present at indicated site]

					STATIO	ON NAME		
Family	Scientific name	Common name	ne Manch	Raisin ear ester, nigan	at Wate	Maumee River at Waterville, Ohio		n River erling ghts, nigan
			Abun- dance	Batch weight (grams)	Abun- dance	Batch weight (grams)	Abun- dance	Batch weight (grams)
Cyprinodontidae	Fundulus notatus	blackstripe topminnow						
Atherinidae	Labidesthes sicculus	brook silverside			1	0.3		
Percichthyidae	Morone chrysops	white bass			8	77		
Centrarchidae	Ambloplites rupestris	rock bass	13	1030	20	1310	21	1043
	Lepomis cyanellus	green sunfish			14	171		
	Lepomis gibbosus	pumpkinseed	3	76				
	Lepomis humilis	orangespotted sunfish			44	257		
	Lepomis macrochirus	bluegill			5	35	10	152
	Lepomis megalotis	longear sunfish	==					
	Micropterus dolomieu	smallmouth bass	8	1087	32	5243		
	Micropterus punctulatus	spotted bass			1	6		
	Micropterus salmoides	largemouth bass					1	170
	Pomoxis annularis	white crappie			1	79		
	Pomoxis nigromaculatus	black crappie						
Percidae	Etheostoma blennioides	greenside darter	39	111	21	70		
	Etheostoma caeruleum	rainbow darter	6	5				
	Etheostoma nigrum	johnny darter	9	12.2			6	14
	Perca flavescens	yellow perch			36	181	7	388
	Percina caprodes	logperch			31	212	1	4
Sciaenidae	Aplodinotus grunniens	freshwater drum			8	3290		
Gobiidae	Neogobius melanostomus	round goby					29	248
NUMBER OF SPE	CIES		24		29		16	
HYBRIDS								
TOTAL NUMBER	OF FISH		498		489		209	

Results from Selected Sites in the Lake Erie-Lake St. Clair Drainages (National Water-Quality Assessment Program)

FISH COMMUNITY RESULTS—CONTINUED


[--, not present at indicated site]

	•			STATIO	N NAME	
Family	Scientific name	Common name	near	ze River Fort gs, Ohio	River Newv	Joseph near ille, iana
			Abun- dance	Batch weight (grams)	Abun- dance	Batch weight (grams)
Petromyzontidae	Ichthyomyzon fosser	northern brook lamprey				
Lepisosteidae	Lepisosteus osseus	longnose gar				
Clupeidae	Dorosoma cepedianum	gizzard shad			1	1
Cyprinidae	Campostoma anomalum	central stoneroller				
	Cyprinella spiloptera	spotfin shiner	27	86		
	Cyprinus carpio	common carp	3	5833	24	33597
	Luxilus chrysocephalus	striped shiner	15	145		
	Nocomis biguttatus	hornyhead chub				
	Nocomis micropogon	river chub				
	Notropis atherinoides	emerald shiner	2	4		
	Notropis stramineus	sand shiner	6	12		
	Phenacobius mirabilis	suckermouth minnow	3	26		
	Pimephales notatus	bluntnose minnow	53	158		
	Semotilus atromaculatus	creek chub				
Catostomidae	Carpiodes cyprinus	quillback				
	Catostomus commersoni	white sucker			1	135
	Hypentelium nigricans	northern hog sucker	3	292		
	Minytrema melanops	spotted sucker	6	1254	3	478
	Moxostoma anisurum	silver redhorse			5	1480
	Moxostoma duquesnei	black redhorse	2	524	1	338
	Moxostoma erythrurum	golden redhorse	8	1307	1	24
T	Moxostoma macrolepidotum					
Ictaluridae	Ameiurus natalis	yellow bullhead channel catfish	4	628		
	Ictalurus punctatus			376 		
	Noturus flavus Noturus miurus	stonecat brindled madtom				
	Cottus bairdi	mottled sculpin				
Esocidae	Esox americanus vermiculatus	grass pickerel				
	Esox lucius	northern pike			1	414
Salmonidae	Onycorhynchus mykiss	rainbow trout				
Cyprinodontidae	Fundulus notatus	blackstripe topminnow	4	8		
Atherinidae	Labidesthes sicculus	brook silverside	1	2	1	
Percichthyidae	Morone chrysops	white bass				
Centrarchidae	Ambloplites rupestris	rock bass	27	1906	14	1911
	Lepomis cyanellus	green sunfish	6	200	51	348
	Lepomis gibbosus	pumpkinseed	45	164		
	Lepomis humilis	orangespotted sunfish				
	Lepomis macrochirus	bluegill	1	6	4	71
	Lepomis megalotis	longear sunfish	35	626		
	Micropterus dolomieu	smallmouth bass	9	1271		
	Micropterus punctulatus	spotted bass			1	760
	Micropterus salmoides	largemouth bass				
	Pomoxis annularis	white crappie				
	Pomoxis nigromaculatus	black crappie			6	618
Percidae	Etheostoma blennioides	greenside darter	6	17		
	Etheostoma caeruleum	rainbow darter				
	Etheostoma nigrum	johnny darter				
	Perca flavescens	yellow perch				
	Percina caprodes	logperch	2	40		
Sciaenidae	Aplodinotus grunniens	freshwater drum				
Gobiidae	Neogobius melanostomus	round goby				
NUMBER OF SPE	CIES		23		14	
HYBRIDS					1	1
TOTAL NUMBER	OF FISH		270		114	

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

The data described in the following tables were collected and analyzed as part of the NAWQA (National Water-Quality Assessment Program) project in the White, Great, and Little Miami River Basins. The objectives of the NAWQA program are to broadly characterize the water quality of the Nation's streams and aquifers in relation to human and natural factors.

Data for two stream sites in Ohio are being reported in this publication as part of the NAWQA study: Mad River at St. Paris Pike near Eagle City, Ohio (03267900), and Holes Creek at Huffman Park near Kettering, Ohio (393944084120700). Also reported are water-quality data for selected public-supply wells in the glacial deposits aquifer near Dayton.

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO

 $LOCATION.-Latitude~39^{\circ}57'51'', longitude~83^{\circ}49'54'', Clark~County, Hydrologic~Unit~05080001, and at~mile~28.8.~DRAINAGE~AREA.\\-310~mi^2.$

REMARKS.—Nine discharge measurements were made at this site. This station is maintained by the Miami Conservancy District. Continuous discharge data and water-quality-monitor data for this site are located in the surface-water section in volume 1 of this report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; mm of Hg; millimeters of mercury; mg/L, milligrams per liter; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; <, concentration or value reporeted is less than that indicated; --, no data]

Date	Time	Instan- taneous dis- charge, cfs (00061)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)
OCT										
04	1100	188	735	8.1	87	7.6	769	25.5	17.0	291
NOV										
06	1030	191	736	10.8	96	7.8	736	7.0	8.8	
DEC										
04	1130	181	752	14.7	112	7.9	734	-3.0	3.2	288
17	1300	181	743	12.7	101	8.1	727	1.0	4.8	290
JAN										
22	1115	213	747	14.1	103	8.2	745	<-5.0	1.6	297
FEB										
12	1130	191	743	13.3	98	8.3	864	<-5.0	1.7	284
MAR										
13	1115	669	738	12.1	100	7.9	585	2.0	5.9	207
APR										
08	1300	564	738	12.4	108	8.1	632	8.5	8.0	234
22	1200	313	741	10.0	92	7.9	425	10.0	10.6	
MAY										
13	1200	560	741	10.4	98	8.0	674	17.5	11.6	248
28	1330	377	737	9.9	102	8.2	720	26.5	14.8	
JUN	40.45									
11	1345	388	737	9.1	97	8.2	707	27.0	16.7	276
25	1200	297	744	10.2	109	8.2	732	26.5	17.1	
JUL										
08	1015	1640	742	7.9	89	7.9	422	31.0	20.3	170
30	1100	330	743	9.5	99	8.1	728	26.0	15.9	
AUG 06	1115	F.0.1	720	0. 3	1.00	0 0	677	26 5	16.0	271
26	1115	501 252	738 741	9.3 9.2	100 99	8.0 8.1	677 735	26.5 27.5	16.9 17.8	271
Z6 SEP	1045	232	/ 4 ⊥	9.4	99	8.1	135	21.5	1/.8	
04	1130	811	739	9.0	96	7.9	665	23.0	16.8	269
U4	TTOU	OTT	133	9.0	90	1.9	000	43.0	T0.0	209

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00453), USGS National Water Information System parameter code; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

	Bicar-	Carbon-				Nitrite		Ortho-	Partic-	
Date	bonate wat flt incrm. titr., field, mg/L (00453)	ate wat flt incrm. titr., field, mg/L (00452)	Chlor- ide, water, fltrd, mg/L (00940)	Sulfate water, fltrd, mg/L (00945)	Ammonia water, fltrd, mg/L as N (00608)	+ nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	phos- phate, water, fltrd, mg/L as P (00671)	ulate nitro- gen, susp, water, mg/L (49570)	Phos- phorus, water, unfltrd mg/L (00665)
OCT										
04 NOV	349	3	21	65	<.04	4.4	.010	.04	.06	.062
06 DEC					<.04	4.1	.012	.05		.080
04	345	3	22	66	< .04	4.3	E.006	.03	.04	.035
17	346	3	24	63	< .04	3.9	E.006	E.01	.05	.030
JAN										
22	358	2	24	66	< .04	4.2	.011	<.02	.05	.018
FEB	2.40	2	0.0		0.4		004		0.5	04.5
12 MAR	340	3	29	66	< .04	4.1	.021	<.02	.05	.017
13	250	1	19	44	.05	4.3	.011	.07	.16	.14
APR										
08	282	2	18	49	< .04	4.6	.011	E.02	.13	.061
22					< .04	3.9	.018	<.02		.033
MAY										
13	298	2	19	56	E.02	4.5	.049	<.02	.10	.058
28 JUN					E.02	4.1	.022	<.02		E.022
11	317	6	21	56	< .04	4.3	.026	<.02	.05	.047
25					<.04	3.9	.086	<.02		.044
JUL										
08	205	1	11	23	< .04	4.1	.042	.07		.50
30					E.03	3.8	.023	E.01		.11
AUG										
06	324	3	18	52	< .04	3.5	.017	.02	.12	.087
26					< .04	4.0	.013	<.02		.048
SEP 04	324	2	18	48	0.5	2 2	017	- 10	.09	007
U4	324	2	18	48	.05	3.3	.017	<.18	.09	.097

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00694), USGS National Water Information System parameter code; mg/L, milligrams per liter; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Date	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)	Organic carbon, suspnd sedimnt total, mg/L (00689)	Organic carbon, water, fltrd, mg/L (00681)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	Deethyl- atrazine, water, fltrd, ug/L (04040)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	Amino- methyl- phos- phonic acid, wat flt ug/L (62649)
OCT										
04	.5	< .1	.5	1.7	<.006	E.008	<.006	< .004	<.005	<.1
NOV										
06					<.006	E.009	<.006	< .004	<.005	<.1
DEC										
04	.2	<.1	.2	2.2	<.006	E.007	<.006	< .004	<.005	<.1
17	. 4	<.1	. 4	1.7	<.006	E.007	<.006	< .004	<.005	<.1
JAN										
22	.3	<.1	.3	1.5	<.006	E.007	<.006	< .004	<.005	.1
FEB										
12	. 4	<.1	. 4	1.7	<.006	E.007	<.006	< .004	<.005	<.1
MAR										
13	1.8	<.1	E1.8	3.3	<.006	E.039	<.006	< .004	<.005	<.1
APR		_								
08	1.2	<.1	1.2	3.2	<.006	E.034	<.006	< .004	<.005	<.1
22					<.006	E.013	.008	<.004	<.005	<.1
MAY	1 1	. 1	1 1	3.3	. 006	T 007	000	. 004	. 005	. 1
13 28	1.1	<.1	1.1	3.3	<.006 <.006	E.087 E.039	.098	<.004 <.004	<.005 <.005	<.1 .1
JUN					<.006	E.039	.022	<.004	<.005	• 1
11	.5	<.1	.5	2.1	<.006	E.037	.011	<.004	<.005	<.1
25					<.006	E.016	<.006	<.004	<.005	<.1
JUL					1.000	E.010	1.000	V.004	1.005	·. ·
08	==		==	8.4	<.006	E.29	.12	.009	<.005	<.1
30					<.006	E.017	<.006	<.004	<.005	<.1
AUG					1.000	2.017	1.000			
06	1.3	<.1	1.3	3.9	<.006	E.045	<.006	< .004	<.005	.2
26					<.006	E.006	<.006	<.004	<.005	<.1
SEP										
04	1.1	<.1	1.1	4.0	<.006	E.036	E.004	<.004	<.005	.1

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(39632), USGS\ National\ Water\ Information\ System\ parameter\ code;\ ug/L,\ micrograms\ per\ liter;\ <,\ concentration\ or\ value\ reported\ is\ less\ than\ that\ indicated;\ E,\ estimated]$

Date	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)
OCT										
04	.018	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
NOV										
06	.015	<.050	<.010	<.002	< .041	<.020	<.005	<.006	<.018	<.003
DEC										
04	.013	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
17	.013	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
JAN										
22	.010	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
FEB	04.0	0.50		0.00	0.44		0.05	005	04.0	
12 MAR	.012	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
13	.075	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
APR	.073	1.030	1.010	1.002	V.041	1.020	1.003	1.000	1.010	1.005
08	.40	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
22	.065	<.050	<.010	<.002	E.20	<.020	<.005	<.006	<.018	<.003
MAY										
13	1.5	<.050	<.010	<.002	< .041	<.020	<.005	<.006	<.018	<.003
28	.26	<.050	<.010	<.002	E.013	<.020	<.005	<.006	<.018	<.003
JUN										
11	.34	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
25	.078	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
JUL										
08	1.7	<.050	<.010	<.002	E.004	E.12	<.005	<.006	<.018	<.003
30	.068	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
AUG	12	. 050	. 010	. 000	. 041	. 000	. 005	. 006	. 010	. 002
06 26	.13	<.050	<.010 <.010	<.002 <.002	<.041 E.006	<.020 <.020	<.005 <.005	<.006 <.006	<.018 <.018	<.003
Z6 SEP	.020	<.050	<.010	<.002	E.006	<.020	<.005	<.006	<.018	<.003
04	.11	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
04	• + +	~.030	~.UIU	·. 002	~.∪ 4 ⊥	·. 020	·.003		~.UIO	~.005

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(62170), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; --, no data]

Date	Desulf- inyl fipro- nil, water, fltrd, ug/L (62170)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Desulf- inyl- fipro- nil amide, wat flt ug/L (62169)	Fipro- nil sulfide water, fltrd, ug/L (62167)	Fipro- nil sulfone water, fltrd, ug/L (62168)
OCT										
04		<.005	<.005	<.02	<.002	<.009	<.005			
NOV										
06	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
DEC										
04	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
17	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
JAN										
22	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
FEB										
12	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
MAR	004	0.05				000	0.05	000		005
13	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
APR	- 004	. 005	. 005	- 00	. 000	. 000	. 005	. 000	. 005	. 005
08 22	<.004 <.004	<.005 <.005	<.005 <.005	<.02 <.02	<.002 <.002	<.009 <.009	<.005 <.005	<.009 <.009	<.005 <.005	<.005 <.005
MAY	<.004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
13	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
28	<.004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
JUN	1.004	1.005	1.003	1.02	1.002	1.005	1.005	1.005	1.005	1.003
11	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
25	<.004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
JUL										
08	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
30	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
AUG										
06	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
26	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
SEP										
04	< .004	<.005	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(62166), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; e, estimated; --, no data]

Date	Fipro- nil, water, fltrd, ug/L (62166)	Fonofos water, fltrd, ug/L (04095)	Glufo- sinate, water, fltrd 0.7u GF ug/L (62721)	Glypho- sate, water, fltrd 0.7u GF ug/L (62722)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)
OCT										
04		<.003	<.1	<.1	< .004	<.035	<.027	<.006	E.011	<.006
NOV										
06	< .007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	E.009	<.006
DEC										
04	< .007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	E.002	<.006
17	< .007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	E.006	<.006
JAN										
22	<.007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	E.005	<.006
FEB										
12	<.007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	<.013	<.006
MAR	. 007	. 002	. 1	. 1	- 004	. 025	. 007	. 006	0.50	. 006
13 APR	<.007	<.003	<.1	<.1	<.004	<.035	<.027	<.006	.052	<.006
08	<.007	<.003	<.1	<.1	<.004	- 02E	<.027	<.006	.14	<.006
22	<.007	<.003	<.1	<.1	<.004	<.035 <.035	<.027	<.006	.018	<.006
MAY	<.007	<.003	·.ı	·. ·	<.004	<.033	<.027	<.000	.010	<.000
13	<.007	<.003	<.1	<.1	<.004	<.035	<.027	<.006	.29	.008
28	<.007	<.003	<.1	<.1	<.004	<.035	<.027	<.006	.059	<.006
JUN	1.007	1.005	\.I		1.004	1.055	1.027	1.000	.033	1.000
11	<.007	<.003	<.1	<.1	<.004	<.035	<.027	<.006	.069	<.006
25	<.007	<.003	<.1	<.1	<.004	<.035	<.027	<.006	.024	<.006
JUL										
08	<.007	<.003	<.1	<.1	<.004	<.035	<.027	<.006	.73	.029
30	< .007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	.030	<.006
AUG										
06	<.007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	.060	<.006
26	< .007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	E.010	<.006
SEP										
04	< .007	<.003	<.1	<.1	< .004	<.035	<.027	<.006	.061	<.006

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82671), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; M, presence of compound verified but concentration not quantified]

Date	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p'- DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Prome- ton, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd, 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)
OCT										
04	<.002	<.007	<.003	<.010	< .004	<.022	<.011	.02	<.004	<.010
NOV										
06	<.002	<.007	<.003	<.010	< .004	<.022	<.011	M	< .004	<.010
DEC	. 000	. 007	. 002	- 010	. 004	. 000	. 011	- 01	- 004	. 010
04	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	<.004	<.010
17 JAN	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	<.004	<.010
22	<.002	<.007	<.003	<.010	<.004	<.022	<.011	<.01	<.004	<.010
FEB	<.UU2	<.007	<.003	V.010	V.004	V.022	<.U11	<.01	<.004	<.010
12	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	< .004	<.010
MAR	1.002	1.007	1.005	1.010	1.004	1.022	1.011	1.01	1.004	1.010
13	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	<.004	<.010
APR										
08	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	<.004	<.010
22	<.002	<.007	<.003	<.010	< .004	<.022	<.011	M	< .004	<.010
MAY										
13	<.002	<.007	<.003	<.010	< .004	<.022	<.011	M	< .004	<.010
28	<.002	<.007	<.003	<.010	< .004	<.022	<.011	M	< .004	<.010
JUN										
11	<.002	<.007	<.003	<.010	< .004	<.022	<.011	.04	< .004	<.010
25	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	< .004	<.010
JUL										
08	<.002	<.007	<.003	<.010	< .004	<.022	<.011	E.01	<.004	<.010
30	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	<.004	<.010
AUG										
06	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	<.004	<.010
26	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	< .004	<.010
SEP										
04	<.002	<.007	<.003	<.010	< .004	<.022	<.011	<.01	< .004	<.010

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

03267900 MAD RIVER AT ST. PARIS PIKE NEAR EAGLE CITY, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82679), USGS National Water Information System parameter code; ug/L, micrograms per liter; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated]

Date	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Sus- pended sedi- ment concen- tration mg/L (80154)
OCT									
04	<.011	<.005	<.02	< .034	<.02	<.005	<.002	<.009	16
NOV									
06	<.011	<.005	<.02	< .040	<.02	<.005	<.002	<.009	98
DEC									
04	<.011	<.005	<.02	< .034	<.02	<.005	<.002	<.009	58
17	<.011	.006	<.02	< .034	< .02	<.005	< .002	<.009	16
JAN									
22	<.011	.005	<.02	< .034	<.02	<.005	<.002	<.009	114
FEB									
12	<.011	<.005	<.02	<.034	<.02	<.005	<.002	<.009	94
MAR									
13	<.011	.118	<.02	<.034	<.02	<.005	<.002	<.009	36
APR									
08	<.011	.082	<.02	<.034	<.02	<.005	<.002	<.009	63
22	<.011	.022	<.02	<.034	<.02	<.005	<.002	<.009	41
MAY									
13	<.011	.145	<.02	<.034	<.02	<.005	<.002	<.009	71
28	<.011	.032	<.02	<.034	<.02	<.005	<.002	<.009	27
JUN									
11	<.011	.070	<.02	<.034	<.02	<.005	<.002	<.009	17
25	<.011	.022	<.02	<.034	<.02	<.005	<.002	<.009	14
JUL									
08	<.011	.087	<.02	<.034	<.02	<.005	<.002	<.009	431
30	<.011	.011	<.02	<.034	<.02	<.005	<.002	<.009	9
AUG	. 044	005		024		0.05			4.4
06	<.011	.025	<.02	<.034	<.02	<.005	<.002	<.009	41
26	<.011	.005	<.02	<.034	<.02	<.005	<.002	<.009	10
SEP	. 011	012	. 00	. 024	. 00	. 005	. 000	. 000	1.6
04	<.011	.013	<.02	<.034	< .02	<.005	<.002	<.009	16

Alka-

Bicar-

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO

LOCATION.—Latitude 39°39′44″, longitude 84°12′07″, Montgomery County, Hydrologic Unit 05080001, and at mile 2.6. DRAINAGE AREA.—20 mi².

REMARKS.—Eleven discharge measurements were made at this site. Continuous stage data are collected at Holes Creek at Mad River Road (03271300), a station 0.6 mile upstream of the sampling site that is maintained by the Miami Conservancy District. Continuous discharge data and water-quality-monitor data for this site (03271300) are located in the surface-water section in volume 1 of this report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(00061), USGS\ National\ Water\ Information\ System\ parameter\ code;\ cfs,\ cubic\ feet\ per\ second;\ mm\ of\ Hg;\ millimeters\ of\ mercury;\ mg/L,\ milligrams\ per\ liter;\ uS/cm,\ microsiemens\ per\ centimeter;\ deg\ C,\ degrees\ Celsius;;\ --,\ no\ data]$

Date	Time	Instan- taneous dis- charge, cfs (00061)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)
OCT											
04	1445	24	735	8.5	101	8.2	574	22.5	22.0	160	191
NOV											
06	1330	30	742	11.7	101	7.9	540	7.5	7.9		
DEC											
05	1330	4.5	746	13.9	100	8.4	897	-1.0	1.1	258	308
18	1130	38	745	12.7	100	8.4	900	12.5	4.1	190	227
JAN											
23	1230	5.1	752	15.2	106	8.3	1690	<-5.0	.1	283	338
FEB											
13	1230	6.2	749	14.2	101	8.6	3250	<-5.0	. 4	243	288
MAR	1100	7 -	7.40	10.0	0.1	0 1	1100	2 0	0 1	210	250
11 APR	1100	7.5	748	12.3	91	8.1	1120	3.0	2.1	210	250
09	1230	28	740	12.0	102	8.4	926	4.0	7.0	202	241
23	1130	7.0	740	12.4	114	8.4	962	12.0	10.4	202	
MAY	1130	7.0	740	12.4	114	0.4	302	12.0	10.4		
14	1100	8.6	743	10.0	101	8.4	850	18.0	14.4	239	284
28	1130	9.1	742	10.9	115	8.4	969	23.0	16.5		
JUN											
11	1100	108	741	8.8	100	8.0	462	25.0	19.8	111	133
26	1200	4.2	743	8.3	98	8.4	922	31.0	22.4		
JUL											
10	1200	117	739	8.4	102	8.1	471	27.5	23.0	123	147
31	1230	4.5	745			8.2	842	29.0	21.6		
AUG											
05	1230	5.8	742	9.9	112	8.4	733	29.5	20.5	208	248
27	1315	134	744	8.3	96	8.2	620	21.0	20.0		
SEP											
03	1130	73	745	8.8	103	8.1	470	22.5	22.1	140	169

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00452), USGS National Water Information System parameter code; mg/L, milligrams per liter; <, concentration or value reported is less than tt indicated; E, estimated; --, no data]

Date	Carbon- ate, wat flt incrm. titr., field, mg/L (00452)	Chlor- ide, water, fltrd, mg/L (00940)	Sulfate water, fltrd, mg/L (00945)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Partic- ulate nitro- gen, susp, water, mg/L (49570)	Phos- phorus, water, unfltrd mg/L (00665)	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)
OCT											
04	2	55	36	< .04	1.02	.009	<.02	.21	.057	1.4	<.1
NOV											
06				< .04	.80	.011	<.02		.074		
DEC											
05	3	100	50	< .04	1.21	E.007	<.02	.03	.015	.3	<.1
18	2	165	40	< .04	1.10	.011	<.02	.10	.051	1.1	<.1
JAN											
23	4	397	52	< .04	1.59	E.004	<.02	.04	.013	.3	<.1
FEB											
13	4	927	55	< .04	1.43	.023	E.01	.03	.013	.3	<.1
MAR	2	040	4.4	. 0.4	4 40	04.0		0.5	0.24	_	. 4
11	3	213	41	< .04	1.40	.010	<.02	.06	.031	.6	<.1
APR 09	3	135	38	п 03	1 02	.010	- 00	.16	.064	1.3	<.1
23		133		E.03	1.03	.010	<.02 <.02		.064	1.3	
MAY				<.04	1.05	.009	<.02		.001		
14	4	115	39	< .04	1.28	.036	<.02	.21	.20	2.6	<.1
28				<.04	1.15	.031	<.02		E.013		
JUN				1.01	1.15	.031	1.02		1.015		
11	1	54	18	< .04	.61	.073	<.02	.17	.19	1.9	.2
26				< .04	1.41	.013	<.02		.019		
JUL											
10	1	54	20	< .04	.57	.035	<.02	.36	.15	4.3	.1
31				< .04	1.28	<.008	<.02		.021		
AUG											
05	3	89	32	< .04	1.021	.046	<.02	.03	.030	.3	<.1
27				.05	1.66	.015	<.02		.23		
SEP											
03	1	43	23	< .04	.69	.018	<.18	.21	.14	2.2	<.1

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00689), USGS National Water Information System parameter code; mg/L, milligrams per liter; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; M, presence of compound verified but concentration not quantified; --, no data]

Date	Organic carbon, suspnd sedimnt total, mg/L (00689)	Organic carbon, water, fltrd, mg/L (00681)	1,4- Naphth- oquin- one, water, fltrd, ug/L (61611)	1-Naph- thol, water, fltrd 0.7u GF ug/L (49295)	2-(4-t- Butyl- phenoxy) cyclo- hexanol wat flt ug/L (61637)	2,5-Di- chloro- aniline water, fltrd, ug/L (61614)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	2-[(2- Et-6-Me -Ph)- -amino] propan- 1-ol, ug/L (61615)	2Amino- N-iso- propyl- benz- amide, wat flt ug/L (61617)	2Chloro -2',6'- diethyl acet- anilide wat flt ug/L (61618)	Deethyl- atra- zine water, fltrd, ug/L (04040)
OCT											
04	1.4	4.6	<.05	<.09	<.01	<.03	<.006		<.005	<.005	E.012
NOV											
06			M	E.01	<.01	<.03	<.006	<.1	<.005	<.005	E.009
DEC											
05	.3	3.3	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.007
18	1.1	4.8	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.008
JAN											
23	.3	2.2	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.007
FEB	_										
13	.3	2.8	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.007
MAR	n -	4 4	. 05	. 00	- 01	. 02	. 006	. 1	. 005	. 005	. 006
11 APR	E.5	4.4	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	<.006
09	1.3	4.0	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.006
23		4.0	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.011
MAY			<.03	<.09	V.01	<.03	<.000	\.I	<.005	<.003	E.UII
14	2.6	4.0	<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.082
28			<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.12
JUN											
11	1.7	6.0	<.05	E.01	<.01	<.03	<.006	<.1	<.005	<.005	E.041
26	==		<.05	<.09	<.01	<.03	<.006	<.1	<.005	<.005	E.025
JUL											
10	4.2	5.9	< .05	E.01	<.01	<.03	<.006	<.1	<.005	<.005	E.025
31			<.05		<.01	<.03	<.006	<.1	<.005	<.005	E.012
AUG											
05	.3	3.5	M	E.01	<.01	<.03	<.006	<.1	<.005	<.005	E.007
27			<.05		<.01	<.03	<.006	<.1	<.005	<.005	<.006
SEP											
03	2.2	6.4	<.05	E.01	<.01	<.03	<.006	<.1	<.005	<.005	E.006

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(61620), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Date	2-Ethyl -6- methyl- aniline water, fltrd, ug/L (61620)	3-(Tri- fluoro- methyl) aniline water, fltrd, ug/L (61630)	3,4-Di- chloro- aniline water fltrd, ug/L (61625)	3,5-Di- chloro- aniline water, fltrd, ug/L (61627)	3-Phen- oxy- benzyl alcohol water, fltrd, ug/L (61629)	4- (MeOH)- pendi- meth- alin, wat flt ug/L (61665)	4,4'-Di chloro- benzo- phen- one, wat flt ug/L (61631)	4Chloro 2methyl phenol, water, fltrd, ug/L (61633)	4Chloro phenyl, mrthyl sulfone water, fltrd, ug/L (61634)	Aceto- chlor, water, fltrd, ug/L (49260)
OCT										
04 NOV	< .004	<.01	<.004	E.003			<.003	E.007		<.006
06	<.004	<.01	<.004	<.005	<.05		<.003	E.010	<.03	.035
DEC 05	<.004	<.01	<.004	<.005	<.05	<.1	<.003	<.006	<.03	<.006
18	<.004	<.01	<.004	<.005	<.05	<.1	<.003	<.006	<.03	.006
JAN	1.004	V.01	1.004	1.005	1.05	\. <u>+</u>	1.005	1.000	1.03	.000
23	< .004	<.01	< .004	<.005	<.05	<.1	<.003	<.006	<.03	<.006
FEB										
13	< .004	<.01	< .004	<.005	<.05	<.1	<.003	< .006	<.03	<.006
MAR										
11	< .004	<.01	< .004	<.005	<.05	<.1	<.003	< .006	<.03	<.006
APR										
09	< .004	<.01	< .004	<.005			<.003	E.014	<.03	<.006
23	< .004	<.01	< .004	<.005	<.05	<.1	<.003	E.011	<.03	.026
MAY		. 04	004		. 05	. 4	000	- 007		
14 28	<.004 <.004	<.01 <.01	<.004 <.004	<.005 <.005	<.05 <.05	<.1 <.1	<.003 <.003	E.007 E.011	<.03 <.03	.62 .12
JUN	<.004	<.01	<.004	<.005	<.05	<.1	<.003	E.UII	<.03	.12
11	< .004	<.01	< .004	<.005	<.05		<.003	E.025	<.03	.029
26	<.004	<.01	<.004	<.005	<.05	<.1	<.016	<.006	<.03	<.006
JUL										
10	< .004	<.01	< .004	<.005	<.05	<.1	<.003	E.009	<.03	.007
31	< .004	<.01	.013	E.002			<.003	< .006	<.03	E.006
AUG										
05	< .004	<.01	.005	<.005	<.05		<.003	E.005	<.03	<.006
27 SEP	<.004	<.01	<.004	<.005			<.003	E.013	<.03	<.006
03	<.004	<.01	.008	<.005			<.003	E.013	<.03	E.005

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(46342), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated --, no data]

Date	Ala- chlor, water, fltrd, ug/L (46342)	alpha- Endo- sulfan, water, fltrd, ug/L (34362)	alpha- HCH, water, fltrd, ug/L (34253)	Amino- methyl- phos- phonic acid, wat flt ug/L (62649)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl oxon, water, fltrd, ug/L (61635)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	beta- Endo- sulfan, water, fltrd, ug/L (34357)	Bifen- thrin, water, fltrd, ug/L (61580)
OCT										
04	< .004	<.005	<.005	.3	.035	<.02	<.050	<.010	<.01	<.005
NOV										
06	< .004	<.005	<.005	<.1	.022	<.02	<.050	<.010	<.01	<.005
DEC										
05	< .004	<.005	<.005	<.1	.015	<.02	<.050	<.010	<.01	<.005
18	< .004	<.005	<.005		.015	<.02	<.050	<.010	<.01	<.005
JAN										
23	< .004	<.005	<.005	<.1	.010	<.02	<.050	<.010	<.01	<.005
FEB										
13	< .004	<.005	<.005	<.1	.011	<.12	<.050	<.010	<.01	<.005
MAR										
11	< .004	<.005	<.005	<.1	.013	<.02	<.050	<.010	<.01	<.005
APR										
09	< .004	<.005	<.005	<.1	.015	<.02	<.050	<.010	<.01	<.005
23	<.004	<.005	<.005	<.1	.040	<.02	<.050	<.010	<.01	<.005
MAY	- 004	. 005	. 005	1	2 0	. 00	. 050	. 010	- 01	
14 28	<.004	<.005 <.005	<.005 <.005	.1 <.1	2.8	<.02 <.02	<.050 <.050	<.010 <.010	<.01 <.01	<.005 <.005
JUN	.007	<.005	<.005	<.1	.83	<.02	<.050	<.010	<.01	<.005
11	<.004	<.005	<.005	.2	.16	<.02	<.050	<.010	<.01	<.005
26	<.004	<.005	<.005	<.1	.061	<.02	<.050	<.010	<.01	<.005
JUL	1.004	1.003	1.005		.001	1.02	1.030	1.010	1.01	1.005
10	< .004	<.005	<.005	.2	.084	<.02	<.050	<.010	<.01	<.005
31	<.004	<.005	<.005	.1	.033	<.02	<.050	<.010	<.01	<.005
AUG										
05	< .004	<.005	<.005	.3	.022	<.02	<.050	<.010	<.01	<.005
27	< .004	<.005	<.005	.1	.015	<.02	<.050	<.010	<.01	<.005
SEP										
03	<.004	<.005	<.005	.2	.017	<.02	<.050	<.010	<.01	<.005

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(04028), USGS\ National\ Water\ Information\ System\ parameter\ code;\ ug/L,\ micrograms\ per\ liter;\ <,\ concentration\ or\ value\ reported\ is\ less\ than\ that\ indicated;\ E,\ estimated]$

Date	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos oxon, water, fltrd, ug/L (61636)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	cis- Propi- cona- zole, water, fltrd, ug/L (79846)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	Cyflu- thrin, water, fltrd, ug/L (61585)
OCT										
04	<.002	E.009	<.020	< .06	<.005	<.006	.011	<.018	<.005	<.008
NOV										
06	<.002	E.12	<.020	< .06	<.005	<.006	<.008	<.018	<.005	<.008
DEC										
05	<.002	E.004	<.020	<.06	<.005	<.006	<.008	<.018	<.005	<.008
18	<.002	E.007	<.020	<.06	<.005	<.006	<.008	<.018	<.005	<.008
JAN		0.44		. 0.6	0.05	006	000	04.0		000
23 FEB	<.002	< .041	<.020	<.06	<.005	<.006	<.008	<.018	<.005	<.008
13	<.002	<.041	<.020	<.06	<.005	<.006	<.008	<.018	<.005	<.008
MAR	<.002	V.041	V.020	<.00	V.005	<.000	<.000	<.016	V.005	<.008
11	<.002	<.041	<.020	<.06	<.005	<.006	<.008	<.018	<.005	<.008
APR										
09	<.002	E.008	<.020	< .06	<.005	<.006	<.008	<.018	<.005	<.008
23	<.002	E.007	<.020	< .06	<.005	<.006	<.008	<.018	<.005	<.008
MAY										
14	< .002	E.007	<.020	< .06	<.005	<.006	<.008	<.018	<.005	<.008
28	<.002	E.024	<.020	< .06	<.005	<.006	<.008	<.018	<.005	<.008
JUN										
11	<.002	E.044	<.020	<.06	<.005	<.006	.020	<.018	<.005	<.008
26	<.002	<.041	<.020	<.02	.011	<.006	E.003	<.018	<.005	<.016
JUL										
10	<.002	E.12	<.020	<.06	<.005	<.006	.028	<.018	<.005	<.008
31 AUG	<.002	E.009	<.020	<.06	<.005	<.006	.026	<.018	<.005	<.008
05	<.002	E.17	<.020	<.06	<.005	<.006	.027	<.018	<.005	<.008
27	<.002	E.026	<.020	<.06	<.005	<.006	.027	<.018	<.005	<.008
SEP	1.002	11.020	1.020	·	·	1.000	.010	V.010	·.005	
03	<.002	E.052	<.020	<.06	<.005	<.006	.038	<.018	<.005	<.008

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(61595), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Date	Cyhalo- thrin, water, fltrd, ug/L (61595)	Cyper- methrin water, fltrd, ug/L (61586)	DCPA, water fltrd 0.7u GF ug/L (82682)	Desulf- inyl fipro- nil, water, fltrd, ug/L (62170)	Diazi- non, water, fltrd, ug/L (39572)	Dicro- tophos, water fltrd, ug/L (38454)	Diel- drin, water, fltrd, ug/L (39381)	Dimeth- oate, water, fltrd 0.7u GF ug/L (82662)	Disulf- oton sulfone water, fltrd, ug/L (61640)	Disulf- oton sulf- oxide, water, fltrd, ug/L (61641)
OCT										
04 NOV	<.009	<.009	<.003		.041	<.08	<.005	<.006	<.02	<.002
06 DEC	<.009	<.009	<.003	<.004	.053	<.08	<.005	<.006	<.02	<.002
05	<.009	<.009	<.003	< .004	E.017	<.08	<.005	<.006	<.02	<.002
18	<.009	<.009	<.003	< .004	E.023	<.08	<.005	<.006	<.02	<.002
JAN										
23	<.009	<.009	<.003	< .004	.007	<.08	<.005	<.006	<.02	<.002
FEB										
13	<.009	<.009	<.003	< .004	<.005	<.08	<.005	<.006	<.02	<.002
MAR 11	<.009	<.009	<.003	<.004	<.005	<.08	<.005	<.006	<.02	<.002
APR	1.005	1.005	1.005	1.004	1.003	1.00	1.005	1.000	1.02	1.002
09	<.009	<.009	<.003	< .004	.020	<.08	<.005	<.006	<.02	<.002
23	<.009	<.009	<.003	< .004	.011	<.08	<.005	<.006	<.02	<.002
MAY										
14	<.009	<.009	<.003	< .004	.027	<.08	<.005	<.006	<.02	<.002
28	<.009	<.009	< .003	< .004	.015	<.08	<.005	<.006	<.02	<.002
JUN										
11	<.009	<.009	<.003	< .004	.066	<.08	<.005	<.006	<.02	<.002
26	<.009	<.016	<.003	< .004	.010	<.08	<.005	<.006	<.02	<.002
JUL										
10	<.009	<.009	<.003	< .004	.039	<.08	<.005	<.006	<.02	<.002
31	<.009	<.009	<.003	< .004	.015	<.08	<.005	<.006	<.02	<.002
AUG										
05	<.009	<.009	<.003	<.004	.059	<.08	<.005	<.006	<.02	<.002
27	<.009	<.009	<.003	< .004	.011	<.08	<.005	<.006	<.02	<.002
SEP	- 000	. 000	. 002	- 004	017	. 00	. 005	. 006	. 00	. 000
03	<.009	<.009	<.003	< .004	.017	<.08	<.005	<.006	<.02	<.002

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82677), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated]

Date	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	e-Di- metho- morph, water, fltrd, ug/L (79844)	Endo- sulfan ether, water, fltrd, ug/L (61642)	Endo- sulfan sulfate water, fltrd, ug/L (61590)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Ethion monoxon water, fltrd, ug/L (61644)	Ethion, water, fltrd, ug/L (82346)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fenami- phos sulfone water, fltrd, ug/L (61645)
OCT										
04	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
NOV										
06	<.02	<.02	< .004	< .006	<.002	<.009	<.03	< .004	<.005	<.008
DEC										
05	<.02	<.02	< .004	<.006	<.002	<.009	<.03	<.004	<.005	<.008
18	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
JAN										
23	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
FEB			004	006	0.00			004	0.05	000
13 MAR	<.02	<.02	<.004	<.006	<.002	<.009	<.03	<.004	<.005	<.008
11	<.02	<.02	<.004	<.006	<.002	<.009	<.03	<.004	<.005	<.008
APR	1.02	1.02	V.004	1.000	1.002	1.005	1.05	V.004	1.005	1.000
09	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
23	<.02	<.02	<.004	<.006	<.002	<.009	<.03	<.004	<.005	<.008
MAY										
14	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
28	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
JUN										
11	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
26	<.02	<.02	< .004	< .006	<.002	<.009	<.03	< .004	<.005	<.008
JUL										
10	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
31	<.02	<.02	< .004	<.006	<.002	<.009	<.03	<.004	<.005	<.008
AUG										
05	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
27	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008
SEP										
03	<.02	<.02	< .004	<.006	<.002	<.009	<.03	< .004	<.005	<.008

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(61646), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Date	Fenami- phos sulf- oxide, water, fltrd, ug/L (61646)	Fenami- phos, water, fltrd, ug/L (61591)	Fen- thion sulf- oxide, water, fltrd, ug/L (61647)	Fen- thion, water, fltrd, ug/L (38801)	Desulf- inyl- fipro- nil amide, wat flt ug/L (62169)	Fipro- nil sulfide water, fltrd, ug/L (62167)	Fipro- nil sulfone water, fltrd, ug/L (62168)	Fipro- nil, water, fltrd, ug/L (62166)	Flume- tralin, water, fltrd, ug/L (61592)	Fonofos oxon, water, fltrd, ug/L (61649)
OCT										
04	<.03	<.03	<.008	<.02					< .004	<.002
NOV										
06	<.03	<.03	<.008	<.02	E.006	E.004	E.005	E.012	< .004	<.002
DEC										
05	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.005	< .004	<.002
18	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.009	< .004	<.002
JAN										
23	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.020	< .004	<.002
FEB		. 02	- 000	. 00	. 000	- 005	. 005	D 017	- 004	. 000
13 MAR		<.03	<.008	<.02	<.009	<.005	<.005	E.017	<.004	<.002
11	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.015	<.004	<.002
APR	V.05	V.05	<.000	₹.02	<.009	<.005	<.005	E.015	V.004	<.002
09	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.012	<.004	<.002
23	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.010	<.004	<.002
MAY										
14	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.021	<.004	<.002
28	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.014	< .004	<.002
JUN										
11	<.03	<.03	<.008	< .02	<.009	<.005	<.005	E.010	< .004	<.002
26	<.03	<.03	<.008	< .02	<.009	<.005	<.005	E.009	< .004	<.002
JUL										
10	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.016	< .004	<.002
31	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.007	< .004	<.002
AUG										
05	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.007	< .004	<.002
27	<.03	<.03	<.008	<.02	<.009	<.005	<.005	<.007	< .004	<.002
SEP										
03	<.03	<.03	<.008	<.02	<.009	<.005	<.005	E.023	< .004	<.002

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

(04095), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

Date	Fonofos water, fltrd, ug/L (04095)	Glufo- sinate, water, fltrd 0.7u GF ug/L (62721)	Glypho- sate, water, fltrd 0.7u GF ug/L (62722)	Hexa- zinone, water, fltrd, ug/L (04025)	Ipro- dione, water, fltrd, ug/L (61593)	Isofen- phos, water, fltrd, ug/L (61594)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- oxon, water, fltrd, ug/L (61652)	Mala- thion, water, fltrd, ug/L (39532)
OCT										
04	<.003	<.1	<.1	<.013	<1	.014	< .004	<.035	<.008	E.016
NOV										
06	<.003	<.1	<.1	<.013	<1	<.003	<.004	<.035	<.008	<.027
DEC										
05	<.003	<.1	<.1	<.013	<1	<.003	< .004	<.035	<.008	<.027
18	<.003			<.013	<1	<.003	<.004	<.035	<.008	<.027
JAN										
23	<.003	<.1	<.1	<.013	<1	<.003	< .004	<.035	<.008	<.027
FEB										
13	<.003	<.1	<.1	<.013	<1	<.003	< .004	<.035	<.008	<.027
MAR										
11	<.003	<.1	<.1	<.013	<1	<.003	< .004	<.035	<.008	<.027
APR			. 4	043		0.00	004	025		
09 23	<.003	<.1	<.1 <.1	<.013 <.013	<1	<.003	<.004 <.004	<.035	<.008	<.027
MAY	<.003	<.1	<.1	<.013	<1	<.003	<.004	<.035	<.008	<.027
14	<.003	<.1	<.1	<.013	<1	<.003	<.004	<.035	<.008	<.027
28	<.003	<.1	.2	<.013	<1	<.003	<.004	<.035	<.008	<.027
JUN	1.005		• 2	1.015	\ <u>1</u>	1.005	1.004	1.055	1.000	1.027
11	<.003	<.1	.7	.018	<1	<.003	<.004	<.035	<.008	<.027
26	<.003	<.1	<.1	<.013	<1	<.003	<.004	<.035	<.008	<.027
JUL										
10	<.003	<.1	<.1	<.013	<1	<.003	< .004	<.035	<.008	E.008
31	<.003	<.1	<.1	<.013	<1	< .003	< .004	<.035	<.008	<.027
AUG										
05	<.003	<.1	<.1	<.013	<1	<.003	< .004	<.035	<.008	<.027
27	<.003	<.1	1.2	<.013	<1	<.003	<.015	<.035	.025	E.014
SEP										
03	<.003	<.1	. 4	<.013	<1	<.003	< .004	<.035	<.008	<.027

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

(61596), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

Meta- laxyl, water, fltrd, ug/L (61596)	Methi- althion water, fltrd, ug/L (61598)	c-Per- methric acid methyl ester, wat flt ug/L (79842)	Methyl para- oxon, water, fltrd, ug/L (61664)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	t-Per- methric acid methyl ester, wat flt ug/L (79843)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Myclo- butanil water, fltrd, ug/L (61599)
.013	<.006	< .04	< .03	<.006	<.03	E.009	<.006	<.002	E.006
.006	< .006	< .04	< .03	<.006	< .03	E.008	.014	<.002	<.008
<.005	<.006	< .04	<.03	<.006	<.03	E.001	<.006	<.002	<.008
<.005	<.006	< .04	< .03	<.006	<.03	E.005	<.006	<.002	<.008
<.005	<.006	< .04	<.03	<.006	<.03	E.004	<.006	<.002	<.008
<.005	<.006	< .04	<.03	<.006	<.03	<.013	<.006	<.002	<.008
<.005	<.006	< .04	<.03	<.006	<.03	<.013	<.006	<.002	<.008
									<.008
<.005	<.006	< .04	<.03	<.006	<.03	E.012	<.006	<.002	<.008
	005	0.4		005		- 012	005	0.00	
									<.008
<.005	<.006	<.04	<.03	<.006	<.03	.050	<.006	<.002	<.008
- 005	- 006	< 0.4	~ N2	- 006	- 02	015	- 006	- 002	<.008
									<.008
<.005	<.000	<.04	V.03	<.000	<.03	E.009	<.000	<.002	<.000
040	< 006	< 0.4	< 03	< 006	< 03	F 012	< 006	< 002	.13
									.015
.004	1.000			1.000		D.004	1.000	1.002	.013
.043	<.006	< .04	<.03	<.006	<.03	E.002	<.006	<.002	.010
.008	<.006	<.04	<.03	<.006	<.03	E.003	<.006	<.002	E.006
.090	< .006	< .04	<.03	<.006	<.03	E.007	<.006	<.002	.030
	laxy1, water, fltrd, ug/L (61596) .013 .006 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.008 <.008	laxyl, althion water, fltrd, ug/L (61596) (61598) .013	Meta-laxyl, althion water, fltrd, ug/L ug/L (61596) Methi-laxyl, ester, fltrd, ug/L ug/L ug/L (79842) .013 <.006	Meta-laxyl, althion water, water, fltrd, ug/L ug/L (61596) Methi-laxyl, water, ester, water, fltrd, ug/L ug/L ug/L ug/L (61596) Methyl para-laxid water, water, water, fltrd, ug/L ug/L ug/L (61598) Methyl para-laxid water, water, fltrd, ug/L ug/L ug/L (61664) .013 <.006	Meta-laxyl, althion water, water, fltrd, ug/L ug/L ug/L (61596) Methi-laxyl water, ester, water, fltrd, ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Meta-laxyl, althion laxyl, water, water, fltrd, fltrd, ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Meta-laxyl, althion laxyl, water, althion, water, water, ester, water, ester, water, fltrd, ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Meta-laxyl, althion laxyl, water, water, water, water, water, water, water, leftrd, ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Metha-

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82684), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

Date	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	O-Et-O- Me-S-Pr -phos- phoro- thioate wat flt ug/L (61660)	Oxy- fluor- fen, water, fltrd, ug/L (61600)	p,p'- DDE, water, fltrd, ug/L (34653)	Para- oxon, water, fltrd, ug/L (61663)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate oxon, water, fltrd, ug/L (61666)	Phorate water fltrd 0.7u GF ug/L (82664)
OCT										
04	<.007	< .008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
NOV										
06	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
DEC										
05	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	< .10	<.011
18	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
JAN										
23	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
FEB 13	<.007	<.008	<.007	<.003	<.008	<.010	<.004	<.022	<.10	<.011
MAR	<.007	<.000	<.007	V.003	<.008	<.010	V.004	V.022	<.10	V.011
11	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
APR										
09	<.007	<.008	< .007	<.003	<.008	<.010	< .004	.051	<.10	<.011
23	<.007	< .008	<.007	<.003	<.008	<.010	< .004	E.021	<.10	<.011
MAY										
14	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
28	<.007	<.008	<.007	<.003	<.008	<.010	< .004	E.009	<.10	<.011
JUN										
11	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
26	<.007	<.008	<.007	<.003	<.016	<.010	< .004	<.022	<.10	<.011
JUL	. 007	- 000	. 007	. 002	. 000	. 010	. 004	. 000	. 10	. 011
10 31	<.007 <.007	<.008 <.008	<.007 <.007	<.003 <.003	<.008 <.008	<.010 <.010	<.004 <.004	<.022 <.022	<.10	<.011 <.011
AUG	<.007	<.008	<.007	<.003	<.008	<.010	<.004	<.UZZ	<.10	<.011
05	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011
27	<.007	<.008	<.007	<.003	<.008	<.010	<.004	<.022	<.10	<.011
SEP		000		000			001			
03	<.007	<.008	<.007	<.003	<.008	<.010	< .004	<.022	<.10	<.011

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(61668), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated]

	Phosmet oxon,	Phosmet	Phoste- bupirim	Pro- fenofos	Prome- ton,	Prome- tryn,	Pron- amide, water,	Propa- chlor,	Pro- panil, water,	Propar- gite, water,
Date	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	fltrd 0.7u GF ug/L	water, fltrd, ug/L	fltrd 0.7u GF ug/L	fltrd 0.7u GF ug/L
	(61668)	(61601)	(61602)	(61603)	(04037)	(04036)	(82676)	(04024)	(82679)	(82685)
OCT										
04	<.06	<.008	<.005	<.006	.04	<.005	< .004	<.010	<.011	<.02
NOV										
06	<.06	<.008	<.005	< .006	.02	<.005	< .004	<.010	<.011	<.02
DEC										
05	<.06	<.008	<.005	<.006	E.01	<.005	< .004	<.010	<.011	<.02
18	<.06	<.008	<.005	< .006	E.01	< .005	< .004	<.010	<.011	<.02
JAN										
23	<.06	<.008	<.005	<.006	E.01	<.005	< .004	<.010	<.011	<.02
FEB										
13	<.06	<.008	<.005	<.006	E.01	<.005	<.004	<.010	<.011	<.02
MAR										
11	<.06	<.008	<.005	<.006	.05	<.005	< .004	<.010	<.011	<.02
APR										
09	<.06	<.008	<.005	<.006	.04	<.005	<.004	<.010	<.011	<.02
23	<.06	<.008	<.005	<.006	.08	<.005	<.004	<.010	<.011	<.02
MAY	<.06	- 000	< 00F	- 006	0.0	< 00F	- 004	- 010	- 011	<.02
14 28	<.06	<.008 <.008	<.005 <.005	<.006 <.006	.02	<.005 <.005	<.004 <.004	<.010 <.010	<.011 <.011	<.02
JUN	<.00	<.000	<.005	<.000	.02	<.005	<.004	<.010	<.011	<.02
11	<.06	<.008	<.005	<.006	.04	<.005	< .004	<.010	<.011	<.02
26	<.06	<.008	<.005	<.006	.02	<.005	<.004	<.010	<.011	<.02
JUL		1.000			.02					1.02
10	<.06	<.008	<.005	<.006	.04	<.005	< .004	<.010	<.011	<.02
31	<.06	<.008	<.005	<.006	.02	<.005	< .004	<.010	<.011	<.02
AUG										
05	<.06	<.008	<.005	<.006	.06	<.005	< .004	<.010	<.011	<.02
27	<.06	<.008	<.005	< .006	.03	<.005	< .004	<.010	<.011	<.02
SEP										
03	<.06	<.008	<.005	<.006	.05	<.005	< .004	<.010	<.011	<.02

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(61604), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

	Propet-	Sima-	Sulfo-	Sulpro-	Tebu- pirim- phos	Tebu- thiuron	Teflu-	Teme-	Terba- cil,	Ter- bufos oxon
D-+-	amphos,	zine,	tepp,	fos,	oxon,	water	thrin,	phos,	water,	sulfone
Date	water,	water,	water,	water,	water,	fltrd	water,	water,	fltrd	water,
	fltrd,	fltrd,	fltrd,	fltrd,	fltrd,	0.7u GF	fltrd,	fltrd,	0.7u GF	fltrd,
	ug/L (61604)	ug/L (04035)	ug/L (61605)	ug/L (38716)	ug/L (61669)	ug/L (82670)	ug/L (61606)	ug/L (61607)	ug/L (82665)	ug/L (61674)
	(01001)	(01033)	(01003)	(30,10)	(0100)	(020,0)	(01000)	(01007)	(02003)	(010/1)
OCT										
04	< .004	.011	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
NOV										
06	< .004	.006	<.003	<.02	<.006	<.02	<.008	<.3	< .034	<.07
DEC										
05	< .004	.007	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
18	< .004	.007	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
JAN										
23	< .004	E.004	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
FEB										
13	< .004	<.005	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
MAR										
11	< .004	<.005	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
APR										
09	< .004	<.010	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
23	< .004	.009	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
MAY										
14	< .004	.040	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
28	< .004	.023	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
JUN										
11	< .004	.009	<.003	<.02	<.006	<.02	<.008	<.3	< .034	<.07
26	< .004	<.005	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
JUL										
10	< .004	.009	<.003	<.02	<.006	<.02	<.008		<.034	<.07
31	< .004	.005	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
AUG										
05	< .004	<.005	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07
27	< .004	<.005	<.003	<.02	<.006	<.02	<.008	<.3	<.095	<.07
SEP										
03	< .004	<.005	<.003	<.02	<.006	<.02	<.008	<.3	<.034	<.07

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY RECORDS—CONTINUED

393944084120700 HOLES CREEK AT HUFFMAN PARK NEAR KETTERING, OHIO—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82675), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; M, presence of compound verified but concentration not quantified; E, estimated; --, no data]

Date	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Ter- buthyl- azine, water, fltrd, ug/L (04022)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	trans- Propi- cona- zole, water, fltrd, ug/L (79847)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tribu- phos, water, fltrd, ug/L (61610)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	z-Di- metho- morph, water, fltrd, ug/L (79845)	Di- chlor- vos, water fltrd, ug/L (38775)	Sus- pended sedi- ment concen- tration mg/L (80154)
OCT										
04	<.02	<.01	<.005	E.01	<.002	< .004	<.009	<.05	M	14
NOV										
06	<.02	< .01	<.005	<.01	<.002	< .004	<.009	<.05	E.02	49
DEC										
05	<.02	<.01	<.005	<.01	<.002	< .004	<.009	<.05	<.01	72
18	<.02	<.01	<.005	<.01	<.002	< .004	M	<.05	<.01	14
JAN										
23	<.02	< .01	<.005	<.01	<.002	< .004	<.009	<.05	<.01	14
FEB										
13	<.02	<.01	<.005	<.01	<.002	< .004	<.009	<.05	<.01	10
MAR										
11	<.02	<.01	<.005	<.01	<.002	<.004	<.009	<.05	<.01	56
APR										
09	<.02	<.01	<.005	<.01	<.002	<.004	E.004	<.05	<.01	40
23	<.02	<.01	<.005	<.01	<.002	<.004	E.002	<.05	<.01	63
MAY										
14	<.02	<.01	<.005	<.01	<.002	<.004	<.009	<.05	<.01	229
28	<.02	<.01	<.005	<.01	<.002	<.004	<.009	<.05	<.01	42
JUN										
11	<.02	<.01	<.005	.03	<.002	<.004	<.009	<.05	E.34	120
26	<.02	<.01	<.005	E.01	<.002	<.004	<.009	<.05	<.01	15
JUL		. 04		0.4		004			- 00	0.5
10	<.02	<.01	<.005	.04	<.002	<.004	<.009	<.05	E.02	95
31	<.02	<.01	<.005	.03	<.002	<.004	<.009	<.05	<.01	4
AUG	- 00	- 01	- 005	0.4	- 000	- 004	- 000	- 05	- 01	6
05 27	<.02 <.02	<.01 <.01	<.005 <.005	.04	<.002 <.002	<.004 <.004	<.009 E.002	<.05 <.05	<.01 <.01	6 130
Z/ SEP	<.∪∠	<.U1	<.005	.02	<.002	<.004	E.002	<.U5	<.UI	130
03	<.02	<.01	<.005	.06	<.002	<.004	E.003	<.05	E.01	40
03	ヽ. ∪∠	<.U⊥	<.UUS	.00	<.UUZ	∼. 004	E.UU3	· . U :	E.UI	40

PROJECT DATA

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO

The following tables include water-quality data from 15 public-supply wells that derive water from glacial valley-fill deposits in the vicinity of Dayton, Ohio. The wells selected for sampling were interpreted to be minimally influenced by infiltration of surface water. Wells were sampled for field parameters, inorganic constituents (major ions and trace elements) and organic constituents (pesticides, volatile organic compounds, and dissolved organic carbon). This is one of several networks of public-supply wells in urban areas throughout the Nation included in the National Water-Quality Assessment (NAWQA) Source-Water-Quality Assessment (SWQA).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(72008), USGS National Water Information System parameter code; LSD, land surface datum; NTU, Nephelometric Turbidity Units; mg/L, milligrams per liter; uS/cm; microsiemens per centimeter; deg C, degrees Celsius]

Station name		ation mber	Date	Depth of well, feet below LSD (72008)	Alti- tude of land surface feet (72000)	Tur- bidity, water, unfltrd field, NTU (61028)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 deg C (00095)
				GREEN	NE COUNTY				
GR-670	3950260	84004800	12-02-02	94	920	.1	.2	7.7	659
GR-671	3943070	084003600	12-12-02	77	808	.2	. 4	7.3	848
GR-672	3942370	084021700	12-19-02	125	800	.2	.1	7.5	661
GR-673	3948420	084024300	01-07-03	94	809	.2	4.3	7.0	1080
				MONTGON	MERY COUNTY				
MT-1270	3940240	84251800	11-21-02	148	844	1.0	.1	7.2	650
MT-1271	3938100	84174400	11-26-02	123	692	.1	.1	7.2	1010
MT-1272	3948230	84101900	12-03-02	157	770	1.0	.1	7.4	847
MT-1273	3949220	84090800	12-04-02	146	758	.2	.2	7.0	780
MT-1274	3947390	084063400	12-05-02	158	782	.2	.1	7.2	736
MT-1275	3943470	084095100	12-11-02	80	890	.2	. 4	7.1	1180
MT-1276	3948360	84091100	12-17-02	136	750	1.2	5.3	7.6	810
MT-1277	3947240	084061300	12-18-02	60	792	.2	3.4	7.3	792
MT-1278	3943590	084105300	01-06-03	83	785	.3	.5	7.3	1460
MT-1279	3951400	084161700	11-25-02	84	780	2.3	.5	7.3	767
MT-1280	3947100	084072700	01-08-03	152	776	.1	.1	7.1	962
Station name	Temper- ature, water, deg C (00010)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)
				GREEN	NE COUNTY				
GR-670	12.8	81.0	32.5	1.74	11.3	260	.05	26.6	.49
GR-671	11.7	116	35.4	1.67	10.4	348	.05	31.0	.17
GR-672	12.1	77.5	33.5	1.07	15.2	378	.06	6.37	.39
GR-673	14.2	103	35.5	7.37	64.6	330	.07	120	.17
				MONTGON	MERY COUNTY				
MT-1270	12.0	75.6	31.6	1.24	11.3	302	.06	5.78	.72
MT-1271	13.3	106	31.2	3.26	44.0	307	.11	87.8	.25
MT-1272	14.1	104	30.0	2.58	27.6	377	.06	49.2	.38
MT-1273	11.5	90.2	32.9	2.51	22.5	306	.06	42.1	.57
MT-1274	12.9	85.1	33.1	2.39	19.6	289	.06	39.7	.41
MT-1275	14.3	116	40.5	2.25	69.8	378	.08	134	.22
MT-1276	11.6	98.4	30.4	2.65	22.7	323	.09	42.8	.39
MT-1277	15.6	89.8	32.2	2.68	28.9	290	.05	49.3	.29
MT-1278	12.7	123	42.3	2.39	116	383	.11	207	.25
MT-1279	12.8	74.9	30.9	2.22	38.6	235	.08	69.7	.19
MT-1280	13.0	114	39.6	1.98	33.5	344	.08	66.7	.26

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00955), USGS National Water Information System parameter code; mg/L, milligrams per liter; deg C, degrees Celsius; col/100mL, colonies per 100 milliliters; E, estimated; <, concentration or value reported is less than that indicated; pres, present; abs, absent; M, presence of compound verified but concentration not quantified]

			,1,1	Residue	Ammonia		Nitrite	1	Ortho-
Station name	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Sulfide water, fltrd, field, mg/L (99118)	on evap. at 180 deg C wat flt mg/L (70300)	+ org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	+ nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	phos- phate, water, fltrd, mg/L as P (00671)
				GREENE	COLINTY				
GR-670	11.8	56.9	.000	397	E.08	E.04	<.06	<.008	<.02
GR-671	11.5	60.2	.005	520	<.1	< .04	2.87	E.005	<.02
GR-672	15.7	.9	.005	382	1.3	1.3	< .06	<.008	.02
GR-673	11.3	54.9	.004	618	E.08	< .04	2.71	<.008	<.02
				MONTGOMER	V COLINTY				
MT-1270	15.0	22.6	.000	371	.2	.2	<.06	<.008	<.02
MT-1271	9.06	61.8	.001	556	E.07	E.02	1.02	.019	<.02
MT-1272	10.7	80.5	.004	513	.2	.09	<.06	<.008	<.02
MT-1273	11.1	55.1	.000	473	<.1	E.02	.20	<.008	<.02
MT-1274	12.0	68.0	.001	456	E.09	.1	<.06	E.004	<.02
MT-1275	14.2	55.1	.005	722	<.1	<.04	.50	<.008	<.02
MT-1276	11.4	57.8	.003	494	.1	.07	.10	<.008	<.02
MT-1277	11.0	48.1	.000	462	.1	<.04	2.41	<.008	<.02
MT-1278	14.3	81.5	.004	857	E.06	< .04	1.26	<.008	<.02
MT-1279	8.80	39.5	.003	441	E.07	.05	.14	<.008	<.02
MT-1280	14.5	78.7	.000	578	.2	.2	<.06	<.008	<.02
Station name	Organic carbon, water, fltrd, mg/L (00681)	Colipge F-spec, FAMP, 2-step, pres(1) abs(2) /L (99335)	Colipge som, Ec CN13hst 2-step, pres(1) abs(2) /L (99332)	E coli, MI MF, water, col/ 100 mL (90901)	Total coli-form, MI MF, water, col/100 mL (90900)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)
				GREENE	COUNTY				
GR-670	.5	2	2	<1	<1	<2	<.30	1.2	120
GR-671	.9	2	2	<1	<1	<2	<.30	E.2	152
GR-672	1.0	2	2	<1	<1	<2	<.30	29.7	206
GR-673	.6	2	2	<1	<1	<2	<.30	<.3	167
				MONTGOMER	RY COUNTY				
MT-1270	.6	2	2	<1	<1	<2	<.30	10.3	489
MT-1271	.8	2	2	<1	<1	<2	<.30	1.2	144
MT-1272	.8	2	2	<1	<1	<2	<.30	8.0	129
MT-1273	1.1	2	2	<1	<1	<2	<.30	.9	164
MT-1274	.6	2	2	<1	1	<2	<.30	15.0	164
MT-1275	.8	2	2	<1	<1	М	<.30	.3	213
MT-1276	.7	2	2	<1	<1	<2	<.30	1.1	214
MT-1277	.7	2	2	<1	<1	<2	<.30	.3	122
MT-1278	.6	2	2	<1	<1	<1	<.05	<.2	121
MT-1279	.9	2	2	<1	1	E1	<.30	E.2	145
MT-1280	.6	2	2	<1	<1	<2	<.30	4.4	302

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(01010), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated]

		•	,	0 , 0					•
	Beryll- ium,	Boron,	Cadmium	Chrom- ium,	Cobalt	Copper,	Iron (II), water,	Iron,	Lead,
Station name	water, fltrd,	water, fltrd,	water, fltrd,	water, fltrd,	water, fltrd,	water, fltrd,	fltrd, field,	water, fltrd,	water, fltrd,
	ug/L (01010)	ug/L (01020)	ug/L (01025)	ug/L (01030)	ug/L (01035)	ug/L (01040)	mg/L (99114)	ug/L (01046)	ug/L (01049)
				GREENE	COUNTY				
GR-670	<.06	29	< .04	<.8	.15	. 4	.240	210	<.08
GR-671	<.06	27	E.03	<.8	.35	2.0	.050	12	.16
GR-672	<.06	46	E.03	<.8	.37	E.2	2.63	2480	<.08
GR-673	<.06	72	E.02	<.8	.22	1.4	.010	<10	.43
					RY COUNTY				- 44
MT-1270	<.06	53	E.03	<.8	.14	.3	3.30	1710	E.06
MT-1271 MT-1272	<.06 <.06	85 76	E.02	<.8 <.8	.52 .20	1.6	.440 3.28	459 3100	.09 <.08
MT-1272 MT-1273	<.06	64	E.03	<.8	.44	1.2	.140	141	<.08 E.07
MT-1273 MT-1274	<.06	56	E.03	<.8	.17	.4	1.58	141	E.07
MT-1275	<.06	48	E.03	<.8	.30	9.7	.010	12	.31
MT-1276	<.06	52	E.03	<.8	.42	1.1	.610	538	.20
MT-1277	<.06	49	E.02	<.8	.16	3.1	.010	<10	.35
MT-1278	<.06	82	E.03	<.8	.43	3.8	.030	<10	.11
MT-1279	<.06	54	<.04	<.8	.15	1.8	.010	11	.26
MT-1280	<.06	35	< .04	<.8	.32	.6	2.95	2760	<.08
Station name	Lithium water, fltrd,	Mangan- ese, water, fltrd,	Molyb- denum, water, fltrd,	Nickel, water, fltrd,	Selen- ium, water, fltrd,	Silver, water, fltrd,	Stront- ium, water, fltrd,	Thall- ium, water, fltrd,	Vanad- ium, water, fltrd,
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	(01130)	(01056)	(01060)	(01065)	(01145)	(01075)	(01080)	(01057)	(01085)
GR-670	2.7	44.3	4.8	GREENE 3.12	COUNTY <.5	<.20	661	<.04	.7
GR-671	3.0	216	1.8	6.00	E.4	<.20	404	.06	1.8
GR-672	1.7	10.8	12.3	2.22	.5	<.20	1810	.07	1.0
GR-673	3.2	<.2	2.2	5.01	1.9	<.20	181	<.04	1.8
				MONITICOME	RY COUNTY				
MT-1270	3.7	18.3	13.7	2.83	<.5	<.20	5410	<.04	2.3
MT-1271	4.1	161	2.3	5.12	.6	<.20	709	.06	2.1
MT-1272	4.4	178	4.0	4.30	<.5	<.20	1310	<.04	.9
MT-1273	5.9	78.2	5.8	5.16	.6	<.20	2240	.10	4.1
MT-1274	5.4	156	5.9	5.04	<.5	<.20	992	E.02	3.7
MT-1275	4.8	23.6	3.1	5.76	.9	<.20	204	.04	2.3
MT-1276	5.0	422	3.8	8.35	<.5	<.20	1480	E.03	.2
MT-1277	3.1	<.2	4.0	2.95	1.3	<.20	542	.06	.6
MT-1278	7.5	23.6	2.1	6.60	1.0	<1	326	.06	2.0
MT-1279	2.0	.9	2.4	3.40	<.5	<.20	224	.09	2.2
MT-1280	4.7	205	3.5	5.62	<.5	<.20	442	<.04	.5

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(01090), USGS \ National \ Water \ Information \ System \ parameter \ code; \ ug/L, \ micrograms \ per \ liter; \ E, \ estimated; \ <, \ concentration \ or \ value \ reported \ is \ less \ than \ that \ indicated; \ M, \ presence \ of \ compound \ verified \ but \ concentration \ not \ quantified]$

Station name	Zinc, water, fltrd, ug/L (01090)	1,4-Di- chloro- benzene water, fltrd, ug/L (34572)	1- Methyl- naphth- alene, water, fltrd, ug/L (62054)	1-Naph- thol, water, fltrd 0.7u GF ug/L (49295)	2,4-D water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	2,6-Di- methyl- naphth- alene, water, fltrd, ug/L (62055)
				GREENE	COUNTY				
GR-670	M	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
GR-671	26	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
GR-672	M	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
GR-673	7	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
				MONTGOME	RY COUNTY				
MT-1270	4	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1271	4	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1272	18	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1273	2	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1274	8	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1275	M	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1276	1	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1277	3	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1278	3	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1279	9	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
MT-1280	6	<.5	<.5	<.09	<.009	<.02	<.02	<.006	<.5
Station name	2-[(2- Et-6-Me -Ph)- -amino] propan- 1-ol, ug/L (61615)	2Chloro -2',6'- diethyl acet- anilide wat flt ug/L (61618)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	2-Ethyl -6- methyl- aniline water, fltrd, ug/L (61620)	OIET, water, fltrd, ug/L (50355)	2- Methyl- naphth- alene, water, fltrd, ug/L (62056)	3,4-Di- chloro- aniline water fltrd, ug/L (61625)	3-beta- Copros- tanol, water, fltrd, ug/L (62057)
				GREENE	COUNTY				
GR-670	<.1	<.005	<.006	< .04	< .004	<.008	<.5	< .004	<2
GR-671	<.1	<.005	E.008	< .04	< .004	<.008	<.5	< .004	<2
GR-672	<.1	<.005	<.006	< .04	< .004	<.008	<.5	<.004	<2
GR-673	<.1	<.005	E.001	< .04	<.004	<.008	<.5	< .004	<2
				MONTGOME	RY COUNTY				
MT-1270	<.1	<.005	<.006	< .04	< .004	<.008	<.5	< .004	<2
MT-1271	<.1	<.005	E.011	E.01	< .004	<.008	<.5	< .004	<2
MT-1272	<.1	<.005	<.006	< .04	< .004	<.008	<.5	< .004	<2
MT-1273	<.1	<.005	E.022	E.01	< .004	E.035	<.5	< .004	<2
MT-1274	<.1	<.005	<.006	< .04	<.004	<.008	<.5	<.004	<2
MT-1275	<.1	<.005	<.006	< .04	< .004	<.008	<.5	< .004	<2
MT-1276	<.1	<.005	E.002	< .04	< .004	<.008	<.5	< .004	<2
MT-1277	<.1	<.005	E.029	E.01	< .004	E.011	<.5	< .004	<2
MT-1278	<.1	<.005	<.006	< .04	< .004	<.008	<.5	< .004	<2
MT-1279	<.1	<.005	E.003	< .04	<.004	<.008	<.5	< .004	<2
MT-1280	<.1	<.005	<.006	< .04	<.004	<.008	<.5	<.004	<2

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(49308), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated]

	3 –		3 –	3-tert-					
	Hydroxy	3-Keto-	Methyl-	Butyl-	4Chloro	4-	4 -	4-	4-tert-
Station	carbo- furan,	carbo- furan,	1H- indole,	4-hy- droxy-	2methyl phenol,	Cumyl- phenol,	Octyl- phenol,	Nonyl- phenol,	Octyl- phenol,
name	wat flt	water,	water,	anisole	water,	water,	water,	water,	water,
	0.7u GF	fltrd,	fltrd,	wat flt	fltrd,	fltrd,	fltrd,	fltrd,	fltrd,
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	(49308)	(50295)	(62058)	(62059)	(61633)	(62060)	(62061)	(62085)	(62062)
an 650			.4	GREENE				·e	.4
GR-670	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
GR-671	<.006	<2	<1	< 5	<.006	<1	<1	< 5	<1
GR-672	<.006	<2	<1	< 5	<.006	<1	<1	< 5	<1
GR-673	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
		_		MONTGOMER				_	
MT-1270	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1271	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1272	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1273	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1274	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1275	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1276	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1277	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1278	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1279	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
MT-1280	<.006	<2	<1	<5	<.006	<1	<1	<5	<1
	5-Meth-					Aci-		Aldi-	Aldi-
	yl-1H- benzo-	9,10- Anthra-	Aceto-	Aceto-		fluor- fen,	Ala-	carb sulfone	carb sulf-
Station	tri-	quinone	chlor,	phenone	AHTN,	water,	chlor,	water,	oxide,
name	azole,	water,	water,	water,	water,	fltrd	water,	fltrd	wat flt
	wat flt ug/L	fltrd, ug/L	fltrd, ug/L	fltrd,			fltrd,	0.7u GF	0.7u GF
	(62063)			nc /T	fltrd,	0.7u GF			
		(62066)	(49260)	ug/L (62064)	fltrd, ug/L (62065)	ug/L (49315)	ug/L (46342)	ug/L (49313)	ug/L (49314)
		(62066)			ug/L (62065)	ug/L	ug/L	ug/L	ug/L
GR-670	<2	<.5		(62064)	ug/L (62065)	ug/L	ug/L	ug/L	ug/L
GR-670 GR-671	<2 <2		(49260)	(62064) GREENE	ug/L (62065) COUNTY	ug/L (49315)	ug/L (46342)	ug/L (49313)	ug/L (49314)
		<.5	(49260) <.006	(62064) GREENE <.5	ug/L (62065) COUNTY <.5	ug/L (49315) <.007	ug/L (46342) <.004	ug/L (49313) <.02	ug/L (49314) <.008
GR-671	<2	<.5 <.5	<.006 <.006	(62064) GREENE <.5 <.5	ug/L (62065) COUNTY <.5 <.5	ug/L (49315) <.007 <.007	ug/L (46342) <.004 <.004	ug/L (49313) <.02 <.02	ug/L (49314) <.008 <.008
GR-671 GR-672	<2 <2 <2	<.5 <.5 <.5 <.5	<.006 <.006 <.006	(62064) GREENE <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008
GR-671 GR-672	<2 <2	<.5 <.5 <.5	<.006 <.006 <.006	(62064) GREENE <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007	ug/L (46342) <.004 <.004	ug/L (49313) <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008
GR-671 GR-672 GR-673	<2 <2 <2	<.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 MONTGOMER	ug/L (62065) COUNTY <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008
GR-671 GR-672 GR-673 MT-1270	<2 <2 <2	<.5 <.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008 <.008
GR-671 GR-672 GR-673 MT-1270 MT-1271	<2 <2 <2 <2 <2	<.5 <.5 <.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5 <.5 <.5 RY COUNTY <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008 <.008
GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272	<2 <2 <2 <2 <2 <2 <2	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008 <.008 <.008 <.008
GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273	<2 <2 <2 <2 <2 <2 <2 <2	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<pre><.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006</pre>	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008
GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	ug/L (49315) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008
GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008
GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<pre>ug/L (49314) <.008 <.008</pre>
GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	GREENE <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (62065) COUNTY <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	ug/L (49315) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ug/L (46342) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	ug/L (49313) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	ug/L (49314) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008

PROJECT DATA Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(49312), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated; M, presence of compound verified but concentration not quantified]

Station name	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	Anthra- cene, water, fltrd, ug/L (34221)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl oxon, water, fltrd, ug/L (61635)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Bendio- carb, water, fltrd, ug/L (50299)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)
				GREENE	COUNTY				
GR-670	< .04	<.5	<.007	<.02	<.050	<.03	<.010	<.004	<.02
GR-671	< . 04	<.5	<.007	<.02	<.050	<.03	<.010	<.004	<.02
GR-672	< . 04	<.5	<.007	<.02	<.050	<.03	<.010	<.004	<.02
GR-673	< .04	<.5	E.001	<.02	<.050	<.03	<.010	<.004	<.02
				MONTGOME	RY COUNTY				
MT-1270	< .04	<.5	<.007	<.02	<.050	< .03	<.010	< .004	<.02
MT-1271	< .04	<.5	E.004	<.02	<.050	< .03	<.010	< .004	<.02
MT-1272	< .04	<.5	<.007	<.02	<.050	<.03	<.010	< .004	<.02
MT-1273	< .04	<.5	.041	<.02	<.050	<.03	<.010	<.004	<.02
MT-1274	< .04	<.5	<.007	<.02	<.050	<.03	<.010	< .004	<.02
MT-1275	< .04	<.5	<.007	<.02	<.050	<.03	<.010	<.004	<.02
MT-1276	< .04	<.5	<.007	<.02	<.050	<.03	<.010	<.004	<.02
MT-1277	< .04	<.5	.024	<.02	<.050	<.03	<.010	< .004	<.02
MT-1278	< .04	<.5	<.007	<.02	<.050	< .03	<.010	< .004	<.02
MT-1279	< .04	<.5	E.002	<.02	<.050	<.03	<.010	<.004	<.02
MT-1280	<.04	<.5	<.007	<.02	<.050	<.03	<.010	<.004	<.02
Station name	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)	Benzo- [a]- pyrene, water, fltrd, ug/L (34248)	Benzo- phenone water, fltrd, ug/L (62067)	beta- Sitos- terol, water, fltrd, ug/L (62068)	beta- Stigma- stanol, water, fltrd, ug/L (62086)	Bisphe- nol A, water, fltrd, ug/L (62069)	Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Caf- feine, water, fltrd, ug/L (50305)
				GREENE	COUNTY				
GR-670	<.01	<.5	<.5	<2	<2	<1	<.03	<.02	<.5
GR-671	<.01	<.5							
GR-672			<.5	<2	<2	<1	<.03	<.02	<.5
GR-673	<.01	<.5	<.5	<2 <2	<2 <2	<1 <1	<.03 <.03		<.5 <.5
	<.01 <.01							<.02	
		<.5	<.5	<2 <2	<2 <2	<1	<.03	<.02 <.02	<.5
MT-1270	<.01	<.5 <.5	<.5 <.5	<2 <2 MONTGOME	<2 <2 RY COUNTY	<1 <1	<.03 E.01	<.02 <.02 <.02	<.5 <.5
MT-1270 MT-1271	<.01	<.5 <.5	<.5 <.5	<2 <2 <u>MONTGOME</u> <2	<2 <2 RY COUNTY <2	<1 <1 <1	<.03 E.01 <.03	<.02 <.02 <.02 <.02	<.5 <.5
MT-1271	<.01 <.01 <.01	<.5 <.5 <.5 <.5	<.5 <.5 <.5	<2 <2 <u>MONTGOME</u> <2 <2	<2 <2 RY COUNTY <2 <2	<1 <1 <1 <1	<.03 E.01 <.03 <.03	<.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5
	<.01	<.5 <.5	<.5 <.5	<2 <2 <u>MONTGOME</u> <2	<2 <2 RY COUNTY <2	<1 <1 <1	<.03 E.01 <.03	<.02 <.02 <.02 <.02	<.5 <.5
MT-1271 MT-1272	<.01 <.01 <.01 <.01	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	<2 <2 <u>MONTGOME</u> <2 <2 <2	<2 <2 RY COUNTY <2 <2 <2	<1 <1 <1 <1 <1	<.03 E.01 <.03 <.03 <.03	<.02 <.02 <.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5 <.5 <.5
MT-1271 MT-1272 MT-1273 MT-1274	<.01 <.01 <.01 <.01 <.01 <.01 <.01	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<2 <2 MONTGOME! <2 <2 <2 <2 <2	<2 <2 RY COUNTY <2 <2 <2 <2 <2 <2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<.03 E.01 <.03 <.03 <.03 <.03 <.03	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5
MT-1271 MT-1272 MT-1273 MT-1274 MT-1275	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<2 <2 <2 MONTGOME! <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 RY COUNTY <2 <2 <2 <2 <2 <2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.03 E.01 <.03 <.03 <.03 <.03 <.03	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5
MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<2 <2 <2 MONTGOME <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.03 E.01 <.03 <.03 <.03 <.03 <.03 <.03 <.03	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5
MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<2 <2 <2 MONTGOME <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.03 E.01 <.03 <.03 <.03 <.03 <.03 <.03 <.03 <.0	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5
MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277 MT-1278	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<2 <2 <2 MONTGOME <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.03 E.01 <.03 <.03 <.03 <.03 <.03 <.03 <.03 <.0	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5
MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5	<2 <2 <2 MONTGOME <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.03 E.01 <.03 <.03 <.03 <.03 <.03 <.03 <.03 <.0	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(62070), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated]

Station name	Camphor water, fltrd, ug/L (62070)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carba- zole, water, fltrd, ug/L (62071)	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)	Chloro- amben methyl ester, water, fltrd, ug/L (61188)	Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- thalo- amino- s-tri- azine, wat flt ug/L (04039)	Chlor- nil, water, fltrd 0.7u GF ug/L (49306)
CD 670		. 02	. 041		COUNTY	. 00	- 010	- 01	. 0.4
GR-670 GR-671	<.5 <.5	<.03 <.03	<.041 <.041	<.5 <.5	<.006 <.006	<.02 <.02	<.010 <.010	<.01 <.01	<.04 <.04
GR-671 GR-672	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.01	<.04
GR-673	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.01	<.04
010 073						1102	1.010		
1050			0.44		RY COUNTY		010	. 01	
MT-1270	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.01	<.04
MT-1271	<.5	<.03 <.03	<.041	<.5	<.006	<.02 <.02	<.010	<.01 <.01	<.04
MT-1272 MT-1273	<.5 <.5	<.03	<.041 <.041	<.5 <.5	<.006 <.006	<.02	<.010 <.010	<.0020	<.04 <.04
MT-1273 MT-1274	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.0020	<.04
M1-12/4	<.5	<.03	<.041	<.5	<.000	<.02	<.010	<.0029	<.04
MT-1275	<.5	<.03	< .041	<.5	< .006	<.02	<.010	<.01	< .04
MT-1276	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.01	<.04
MT-1277	<.5	<.03	<.041	<.5	<.006	<.02	<.010	E.01	< .04
MT-1278	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.01	< .04
MT-1279	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.01	< .04
MT-1280	<.5	<.03	<.041	<.5	<.006	<.02	<.010	<.01	<.04
Station name	Chlor- pyrifos oxon, water, fltrd, ug/L (61636)	Chlor- pyrifos water, fltrd, ug/L (38933)	Choles- terol, water, fltrd, ug/L (62072)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cot- inine, water, fltrd, ug/L (62005)	Cyclo- ate, water, fltrd, ug/L (04031)	Cyflu- thrin, water, fltrd, ug/L (61585)	Cyper- methrin water, fltrd, ug/L (61586)
GR-670	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
GR-671	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
GR-672	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
GR-673	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
				MONTGOME	RY COUNTY				
MT-1270	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1271	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1272	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1273	< .06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1274	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1275	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1276	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1277	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1278	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1279	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009
MT-1280	<.06	<.005	<2	<.006	<.01	<1	<.01	<.008	<.009

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(49304), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated; -- no data]

, no dataj									
Station	Dacthal mono- acid, water,	DCPA, water	DEET,	Desulf- inyl fipro- nil,	Diaz- inon oxon,	Diazi- non,	Dicamba water	Di- chlor- prop, water,	Dicro- tophos,
name	fltrd 0.7u GF ug/L (49304)	fltrd 0.7u GF ug/L (82682)	water, fltrd, ug/L (62082)	water, fltrd, ug/L (62170)	water, fltrd, ug/L (61638)	water, fltrd, ug/L (39572)	fltrd 0.7u GF ug/L (38442)	fltrd 0.7u GF ug/L (49302)	water fltrd, ug/L (38454)
				GREENE	COUNTY				
GR-670	<.01	<.003	<.5	< .004		<.005	<.01	<.01	<.08
GR-671	<.01	<.003	<.5	< .004	< .04	<.005	<.01	<.01	<.08
GR-672	<.01	<.003	<.5	< .004		<.005	<.01	<.01	<.08
GR-673	<.01	<.003	<.5	<.004		<.005	<.01	<.01	<.08
				MONTGOME	RY COUNTY				
MT-1270	<.01	<.003	<.5	< .004	==	<.005	<.01	<.01	<.08
MT-1271	<.01	<.003	<.5	< .004		<.005	<.01	<.01	<.08
MT-1272	<.01	<.003	<.5	< .004		<.005	<.01	<.01	<.08
MT-1273	<.01	<.003	<.5	< .004		<.005	<.01	<.01	<.08
MT-1274	<.01	<.003	<.5	<.004		<.005	<.01	<.01	<.08
MT-1275	<.01	<.003	<.5	< .004	< .04	<.005	<.01	<.01	<.08
MT-1276	<.01	<.003	<.5	< .004	< .04	<.005	<.01	<.01	<.08
MT-1277	<.01	<.003	<.5	< .004		<.005	<.01	<.01	<.08
MT-1278	<.01	<.003	<.5	< .004		<.005	<.01	<.01	<.08
MT-1279	<.01	<.003	<.5	< .004	< .04	<.005	<.01	<.01	<.08
MT-1280	<.01	<.003	E.1	<.004		<.005	<.01	<.01	<.08
Station name	Diel- drin, water, fltrd, ug/L (39381)	Di- ethoxy- nonyl- phenol, water, fltrd, ug/L (62083)	Di- ethoxy- octyl- phenol, water, fltrd ug/L (61705)	Dimeth- oate, water, fltrd 0.7u GF ug/L (82662)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)	Diuron, water, fltrd 0.7u GF ug/L (49300)	D-Limo- nene, water, fltrd, ug/L (62073)	Ethion monoxon water, fltrd, ug/L (61644)
				GREENE	COUNTY				
GR-670	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
GR-671	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
GR-672	<.005	<5	<1	<.006	<.01	< .03	<.01	<.5	<.03
GR-673	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
				MONTGOME	RY COUNTY				
MT-1270	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1271	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	< .03
MT-1272	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1273	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1274	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1275	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1276	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1277	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1278	<.005	<5	<1	<.006	<.01	< .03	<.01	<.5	< .03
MT-1279	<.005	<5	<1	<.006	<.01	<.03	<.01	<.5	<.03
MT-1280	<.005	<5	<1	<.006	<.01	<.03	<.02	<.5	<.03

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82346), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated]

Station Ribinor, Pipes	2(· · · · · · · · · · · · · · · · · · ·	Fenami-	1 , ,	ated, concentra	Desulf-		
Station Richion, Paper			Ethoxy-	Fenami-					Finro-	Finro-
Station name Water,						Fenami-	Fenuron			
Fireday	Station	Ethion,			oxide,	phos,			sulfide	sulfone
	name									
Carrier Carr										
GREEN COUNTY										
CRR-670		(02340)	(61706)	(01045)			(49297)	(02109)	(02107)	(02100)
CR-671										
GR-672 <.004										
MT-1270										
MT-1270	GR-672	< .004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
MT-1270	GR-673	<.004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
MT-1271					MONTGOME	RY COUNTY				
MT-1272	MT-1270	< .004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
MT-1273	MT-1271	< .004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
MT-1273	MT-1272	< .004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
MT-1274										
MT-1275										
MT-1276										
MT-1277										
MT-1278										
MT-1279 C.004 C1 C.008 C.03 C.03 C.03 C.009 C.005 C.005 MT-1280 C.004 C1 C.008 C.003 C.03 C.03 C.03 C.009 C.005 C.005 MT-1280 C.004 C.005 C.005 C.005 C.005 MT-1280 C.004 C.005 C.005 C.005 C.005 C.005 MT-1280 C.005 C.005 C.005 C.005 C.005 C.005 MT-1280 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1270 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1271 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1271 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1271 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1271 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1272 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1273 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1274 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1274 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1275 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1276 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1277 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1278 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1276 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1277 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1278 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1278 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1278 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 MT-1278 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 C.02 MT-1278 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 C.02 MT-1278 C.007 C.01 C.03 C.5 C.002 C.003 C.5 C.02 C.02 C.02 C.02 C.02 C.0	MT-1277			<.008	<.03			<.009	<.005	
MT-1280 Color Color MT-1280 Color	MT-1278	< .004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
Station name	MT-1279	< .004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
Station name	MT-1280	<.004	<1	<.008	<.03	<.03	<.03	<.009	<.005	<.005
Station name										
Station name				Fluo-						
Name Name Water, fltrd,										
name Water, ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Station									
ug/L (62166) ug/L (61694) ug/L (38811) ug/L (34377) ug/L (61649) ug/L (04095) ug/L (62075) ug/L (50356) ug/L (50407) GREENE COUNTY GR-670 <.007										
Color										
GR-670										
GR-671					GREENE	COUNTY				
GR-672	GR-670	< .007	<.01	<.03	<.5	<.002	<.003	<.5	<.02	<.02
GR-672	GR-671	<.007	<.01	<.03	<.5	<.002	<.003	<.5	<.02	<.02
GR-673 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02 MONTGOMERY COUNTY MT-1270 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02 MT-1271 <.007	GR-672	<.007	<.01	<.03	<.5	<.002	<.003	<.5	<.02	<.02
MT-1270 <.007										
MT-1270 <.007					MONTGOME	RY COUNTY				
MT-1271 <.007	MT-1270	< .007	< .01	< .03			< .003	<.5	< .02	< .02
MT-1272 <.007										
MT-1273 <.007										
MT-1274 <.007										
MT-1275										
MT-1276 <.007 <.01 <.03 <.5 <.002 <.003 <.5 E.01 <.02 MT-1277 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02 MT-1278 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02 <.02 <.02 <.02 <.03 <.5 <.02 <.02 <.03 <.5 <.02 <.02 <.03 <.5 <.02 <.03 <.5 <.02 <.02 <.03 <.03 <.03 <.03 <.03 <.03 <.03 <.03	111-12/4									
MT-1277 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02 MT-1278 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02	MT-1275				<.5					
MT-1278 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02	MT-1276	< .007	<.01	<.03	<.5	<.002	<.003	<.5	E.01	<.02
	MT-1277	< .007	<.01	<.03	<.5	<.002	<.003	<.5	<.02	<.02
MT-1279 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02	MT-1278	<.007	<.01	<.03	<.5	<.002	<.003	<.5	<.02	<.02
	MT-1279	<.007	<.01	<.03	<.5	<.002	<.003	<.5	<.02	<.02
MT-1280 <.007 <.01 <.03 <.5 <.002 <.003 <.5 <.02 <.02	MT-1280	<.007	<.01	<.03	<.5	<.002	<.003	<.5	<.02	<.02

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(61695), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated]

Station name	Imida- cloprid water, fltrd, ug/L (61695)	Indole, water, fltrd, ug/L (62076)	Ipro- dione, water, fltrd, ug/L (61593)	Isobor- neol, water, fltrd, ug/L (62077)	Isofen- phos, water, fltrd, ug/L (61594)	Iso- phorone water, fltrd, ug/L (34409)	Iso- propyl- benzene water, fltrd, ug/L (62078)	Iso- quin- oline, water, fltrd, ug/L (62079)	Linuron water fltrd 0.7u GF ug/L (38478)
CD (70	. 007		-1		COUNTY				. 01
GR-670 GR-671	<.007 <.007	<.5 <.5	<1 <1	<.5 <.5	<.003 <.003	<.5 <.5	<.5 <.5	<.5 <.5	<.01 <.01
GR-672	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
GR-673	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1270	<.007	<.5	<1	MONTGOME:	<.003	<.5	<.5	<.5	<.01
MT-1270 MT-1271	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1271	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1272	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1274	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1275	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1276	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1277	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1278	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1279	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
MT-1280	<.007	<.5	<1	<.5	<.003	<.5	<.5	<.5	<.01
Station name	Mala- oxon, water, fltrd, ug/L (61652)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Menthol water, fltrd, ug/L (62080)	Meta- laxyl, water, fltrd, ug/L (50359)	Meta- laxyl, water, fltrd, ug/L (61596)	Methi- althion water, fltrd, ug/L (61598)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)
				GREENE	COUNTY				
GR-670	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
GR-671	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
GR-672	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
GR-673	<.008	<.027	<.02	< .01	<.5	<.02	<.005	<.006	<.008
				MONTGOME	RY COUNTY				
MT-1270	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1271	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1272	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1273	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1274	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1275	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1276	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1277	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1278	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1279	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008
MT-1280	<.008	<.027	<.02	<.01	<.5	<.02	<.005	<.006	<.008

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(49296), USGS\ National\ Water\ Information\ System\ parameter\ code; ug/L,\ micrograms\ per\ liter; <, concentration\ or\ value\ reported\ is\ less\ than\ that\ indicated]$

	Meth-		Mathani	Methyl	Matheal				
	omyl,	Methyl	Methyl para-	para- thion,	Methyl salicy-	Metola-	Metri-	Metsul-	Myclo-
Station	water,	acetate	oxon,	water,	late,	chlor,	buzin,	furon,	butanil
name	fltrd	water	water,	fltrd	water,	water,	water,	water,	water,
	0.7u GF ug/L	unfltrd ug/L	fltrd, ug/L	0.7u GF ug/L	fltrd, ug/L	fltrd, ug/L	fltrd, ug/L	fltrd, ug/L	fltrd, ug/L
	(49296)	(77032)	(61664)	(82667)	(62081)	(39415)	(82630)	(61697)	(61599)
					COUNTY				
GR-670	< .004	<.4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
GR-671	< .004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
GR-672	<.004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
GR-673	<.004	<.4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
					RY COUNTY				
MT-1270	<.004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1271	<.004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1272	<.004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1273 MT-1274	<.004 <.004	<.4	<.03 <.03	<.006 <.006	<.5 <.5	.031 <.013	<.007 <.006	<.03 <.03	<.008 <.008
MT-12/4	<.004	<.4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1275	< .004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1276	< .004	<.4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1277	< .004	<.4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1278	< .004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1279	<.004	<.4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
MT-1280	< .004	< . 4	<.03	<.006	<.5	<.013	<.006	<.03	<.008
Station name	N-(4-Chloro-pheny1) -N'-methy1-urea, ug/L(61692)	Naphth- alene, water, fltrd, ug/L (34443)	Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	p- Cresol, water, fltrd, ug/L (62084)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)
	Chloro- phenyl) -N'- methyl- urea, ug/L	alene, water, fltrd, ug/L	water, fltrd 0.7u GF ug/L	sul- furon, water, fltrd, ug/L (50364)	azon, water, fltrd 0.7u GF ug/L	zalin, water, fltrd 0.7u GF ug/L	water, fltrd 0.7u GF ug/L	Cresol, water, fltrd, ug/L	meth- alin, water, fltrd 0.7u GF ug/L
	Chloro- phenyl) -N'- methyl- urea, ug/L	alene, water, fltrd, ug/L	water, fltrd 0.7u GF ug/L	sul- furon, water, fltrd, ug/L (50364)	azon, water, fltrd 0.7u GF ug/L (49293)	zalin, water, fltrd 0.7u GF ug/L	water, fltrd 0.7u GF ug/L	Cresol, water, fltrd, ug/L	meth- alin, water, fltrd 0.7u GF ug/L
name GR-670 GR-671	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02	alene, water, fltrd, ug/L (34443)	water, fltrd 0.7u GF ug/L (49294) <.01 <.01	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292)	water, fltrd 0.7u GF ug/L (38866) <.01 <.01	Cresol, water, fltrd, ug/L (62084)	meth- alin, water, filtrd 0.7u GF ug/L (82683)
name GR-670 GR-671 GR-672	Chloro- phenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5	water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02	water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01	Cresol, water, fltrd, ug/L (62084)	meth- alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022
name GR-670 GR-671	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02	alene, water, fltrd, ug/L (34443)	water, fltrd 0.7u GF ug/L (49294) <.01 <.01	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292)	water, fltrd 0.7u GF ug/L (38866) <.01 <.01	Cresol, water, fltrd, ug/L (62084)	meth- alin, water, filtrd 0.7u GF ug/L (82683)
GR-670 GR-671 GR-672 GR-673	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5	water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <ry county<="" td=""><td>zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02</td><td>water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01</td><td>Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1</td><td>meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022</td></ry>	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02	water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5	water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 RY COUNTY <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02	water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5	water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02	water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5	water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	<pre>water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	<pre>water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <022 <
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	<pre>water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<pre>water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	<pre>water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	sul-furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<pre>water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	<pre>water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<pre>water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277 MT-1278	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	<pre>water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<pre>water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022
GR-670 GR-671 GR-672 GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277	Chlorophenyl) -N'- methyl- urea, ug/L (61692) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	alene, water, fltrd, ug/L (34443) <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.	<pre>water, fltrd 0.7u GF ug/L (49294) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	sul- furon, water, fltrd, ug/L (50364) GREENE <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	azon, water, fltrd 0.7u GF ug/L (49293) COUNTY <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	zalin, water, fltrd 0.7u GF ug/L (49292) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<pre>water, fltrd 0.7u GF ug/L (38866) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.0</pre>	Cresol, water, fltrd, ug/L (62084) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	meth-alin, water, fltrd 0.7u GF ug/L (82683) <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(34459), USGS\ National\ Water\ Information\ System\ parameter\ code;\ ug/L,\ micrograms\ per\ liter;\ E,\ estimated;\ <,\ concentration\ or\ value\ reported\ is\ less\ than\ that\ indicated;\ M,\ presence\ of\ compound\ verified\ but\ concentration\ not\ quantified]$

Station name	Penta- chloro- phenol, water, fltrd, ug/L (34459)	Phenan- threne, water, fltrd, ug/L (34462)	Phenol, water, fltrd, ug/L (34466)	Phorate oxon, water, fltrd, ug/L (61666)	Phorate water fltrd 0.7u GF ug/L (82664)	Phosmet oxon, water, fltrd, ug/L (61668)	Phosmet water, fltrd, ug/L (61601)	Pic- loram, water, fltrd 0.7u GF ug/L (49291)	Prome- ton, water, fltrd, ug/L (04037)
					COUNTY				
GR-670	<2	<.5	<.5	<.10	<.011	<.06	<.008	<.02	<.01
GR-671	<2	<.5	. 7	<.10	<.011	<.06	<.008	<.02	<.01
GR-672	<2	<.5	<.5	<.10	<.011	<.06	<.008	<.02	<.01
GR-673	<2	<.5	<.5	<.10	<.011	<.06	<.008	<.02	E.01
				MONTGOME	RY COUNTY				
MT-1270	<2	<.5	E.4	<.10	<.011	<.06	<.008	<.02	<.01
MT-1271	<2	<.5	E.2	<.10	<.011	< .06	<.008	<.02	M
MT-1272	<2	<.5	<.5	<.10	<.011	< .06	<.008	<.02	<.01
MT-1273	<2	<.5	E.4	<.10	<.011	<.06	<.008	<.02	E.01
MT-1274	<2	<.5	. 5	<.10	<.011	<.06	<.008	<.02	<.01
MT-1275	<2	<.5	E.5	<.10	<.011	<.06	<.008	<.02	M
MT-1276	<2	<.5	<.5	<.10	<.011	<.06	<.008	<.02	<.01
MT-1277	<2	<.5	<.5	<.10	<.011	<.06	<.008	<.02	.04
MT-1278	<2	<.5	<.5	<.10	<.011	<.06	<.008	<.02	<.01
MT-1279	<2	<.5	.6	<.10	<.011	< .06	<.008	<.02	M
MT-1280	<2	<.5	<.5	<.10	<.011	<.06	<.008	<.02	<.01
	Prome- tryn,	Pron- amide, water,	Propham water	Propi- cona- zole,	Pro- poxur, water,	Pyrene,	Siduron	Sima- zine,	Sulfo- met- ruron,
Station name	water, fltrd, ug/L (04036)	fltrd 0.7u GF ug/L (82676)	fltrd 0.7u GF ug/L (49236)	water, fltrd, ug/L (50471)	fltrd 0.7u GF ug/L (38538)	water, fltrd, ug/L (34470)	water, fltrd, ug/L (38548)	water, fltrd, ug/L (04035)	water, fltrd, ug/L (50337)
GR-670	<.005	< .004	<.010	<.02	<u>COUNTY</u> < .008	<.5	<.02	<.005	<.009
GR-671	<.005	<.004	<.010	<.02	<.008	<.5	<.02	<.005	<.009
GR-672	<.005	<.004	<.010	<.02	<.008	<.5	<.02	<.005	<.009
GR-673	<.005	<.004	<.010	<.02	<.008	<.5	<.02	E.002	<.009
					RY COUNTY	_			
MT-1270	<.005	< .004	<.010	<.02	<.008	<.5	<.02	<.005	<.009
MT-1271	<.005	< .004	<.010	<.02	<.008	<.5	<.02	E.002	<.009
MT-1272	<.005	< .004	<.010	<.02	<.008	<.5	<.02	<.005	<.009
MT-1273 MT-1274	<.005	<.004	<.010	<.02 <.02	<.008	<.5	<.02	.009	<.009
MI-TZ/4	<.005	< .004	<.010	∼. ∪∠	<.008	<.5	<.02	<.005	<.009
MT-1275	<.005	< .004	<.010	<.02	<.008	<.5	<.02	<.005	<.009
MT-1276	<.005	< .004	<.010	<.02	<.008	<.5	<.02	<.005	<.009
MT-1277	<.005	< .004	<.010	<.02	<.008	<.5	<.02	.007	<.009
MT-1278	<.005	< .004	<.010	<.02	<.008	<.5	<.02	E.002	<.009
MT-1279	<.005	< .004	<.010	<.02	<.008	<.5	<.02	<.005	<.009
MT-1280	<.005	< .004	<.010	<.02	<.008	<.5	<.02	<.005	<.009

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(82670), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated; M, presence of compound verified but concentration not quantified]

	Tebu- thiuron	Terba-	Ter- bufos oxon	Terbu- fos,	Ter- buthyl-	tert- Amyl	tert- Butyl-	Tetra- chloro-	Tri- bromo-
Station name	water fltrd	cil, water,	sulfone water,	water, fltrd	azine, water,	alcohol water	alcohol water	ethene, water,	methane water,
	0.7u GF ug/L	fltrd, ug/L	fltrd, ug/L	0.7u GF ug/L	fltrd, ug/L	unfltrd ug/L	unfltrd ug/L	fltrd, ug/L	fltrd, ug/L
	(82670)	(04032)	(61674)	(82675)	(04022)	(77073)	(77035)	(34476)	(34288)
				GREENE	COUNTY				
GR-670	<.02	<.010	< .07	<.02	<.01	< . 4	<1	<.5	<.5
GR-671	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
GR-672	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
GR-673	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
				MONTGOME	RY COUNTY				
MT-1270	<.02	<.010	< .07	<.02	<.01	< .43	<1	<.5	<.5
MT-1271	<.02	<.010	<.07	<.02	<.01	< .43	<1	<.5	<.5
MT-1272	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
MT-1273	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
MT-1274	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
MT-1275	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
MT-1276	<.02	<.010	< .07	<.02	<.01	< . 4	<1	<.5	<.5
MT-1277	M	<.010	<.07	<.02	<.01	< . 4	<1	E.1	<.5
MT-1278	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
MT-1279	<.02	<.010	<.07	<.02	<.01	< . 4	<1	E.1	<.5
MT-1280	<.02	<.010	<.07	<.02	<.01	< . 4	<1	<.5	<.5
Station name	Tri- butyl phos- phate, water, fltrd, ug/L (62089)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Triclo- san, water, fltrd, ug/L (62090)	Tri- ethyl citrate water, fltrd, ug/L (62091)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- phenyl phos- phate, water, fltrd, ug/L (62092)	Tris(2-butoxy-ethy1) phos-phate, wat flt ug/L (62093)	Tris(2- chloro- ethy1) phos- phate, wat flt ug/L (62087)	Tris(di chloro- i-Pr) phos- phate, wat flt ug/L (62088)
				GREENE	COUNTY				
GR-670	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
GR-671	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
GR-672	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
GR-673	<.5	<.02	<1	<.5	<.009	<.5	<.5	M	<.5
				MONTGOME	RY COUNTY				
MT-1270	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1271	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1272	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1273	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1274	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1275	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1276	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1277	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1278	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1279	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5
MT-1280	<.5	<.02	<1	<.5	<.009	<.5	<.5	<.5	<.5

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(77562), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated; --- no data]

Station name	1,1,1,2 -Tetra- chloro- ethane, water, unfltrd ug/L (77562)	1,1,1- Tri- chloro- ethane, water, unfiltrd ug/L (34506)	1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516)	CFC-113 water unfltrd ug/L (77652)	1,1,2- Tri- chloro- ethane, water, unfltrd ug/L (34511)	1,1-Di- chloro- ethane, water unfltrd ug/L (34496)	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501)	1,1-Di- chloro- propene water unfltrd ug/L (77168)	1,2,3,4 Tetra- methyl- benzene water unfltrd ug/L (49999)
				GREENE	COUNTY				
GR-670	<.03	<.03	<.09	< .06	<.06	< .04	< .04	<.05	<.2
GR-671	<.03	< .03	<.09	< .06	<.06	< .04	< .04	<.05	<.2
GR-672	<.03	< .03	<.09	< .06	< .06	< .04	< .04	<.05	<.2
GR-673	<.03	.21	<.09	< .06	<.06	< .04	< .04	<.05	<.2
				MONTGOME	RY COUNTY				
MT-1270	<.03	<.03	<.09	<.06	<.06	< .04	< .04	<.05	<.2
MT-1271	<.03	E.09	<.09	<.06	<.06	E.04	< .04	<.05	<.2
MT-1272	<.03	<.03	<.09	<.06	<.06	< .04	< .04	<.05	<.2
MT-1273	<.03	<.03	<.09	<.06	<.06	< .04	< .04	<.05	<.2
MT-1274	<.03	<.03	<.09	<.06	<.06	< .04	< .04	<.05	<.2
MT-1275	<.03	<.03	<.09	<.06	==	< .04	< .04	<.05	<.2
MT-1276	<.03	<.03	<.09	<.06	<.06	<.04	<.04	<.05	<.2
MT-1277	<.03	E.05	<.09	<.06	<.06	< .04	<.04	<.05	<.2
MT-1278	<.03	E.01	<.09	<.06	<.06	< .04	< .04	<.05	<.2
MT-1279	<.03	E.03	<.09	<.06	<.06	E.02	< .04	<.05	<.2
MT-1280	<.03	<.03	<.09	<.06	<.06	<.04	<.04	<.05	<.2
Station name	1,2,3,5 Tetra- methyl- benzene water unfilrd ug/L (50000)	1,2,3- Tri- chloro- benzene water unfltrd ug/L (77613)	1,2,3- Tri- chloro- propane water unfltrd ug/L (77443)	1,2,3- Tri- methyl- benzene water unfilrd ug/L (77221)	1,2,4- Tri- chloro- benzene water unfltrd ug/L (34551)	1,2,4- Tri- methyl- benzene water unfltrd ug/L (77222)	Dibromo chloro- propane water unfltrd ug/L (82625)	1,2-Di- bromo- ethane, water, unfiltrd ug/L (77651)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)
				GREENE	COUNTY				
GR-670	<.2	<.3	<.16	<.1	<.1	<.06	<.5	< .04	<.03
GR-671	<.2	<.3	<.16	<.1	<.1	<.06	<.5	< .04	<.03
GR-672	<.2	<.3	<.16	<.1	<.1	<.06	<.5	< . 04	<.03
GR-673	<.2	<.3	<.16	<.1	<.1	<.06	<.5	<.04	<.03
				MONTGOME	RY COUNTY				
MT-1270	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	<.03
MT-1271	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	<.03
MT-1272	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	<.03
MT-1273	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	<.03
MT-1274	<.2	<.3	<.16	<.1	<.1	<.06	<.5	<.04	<.03
MT-1275	<.2	<.3	<.16	<.1	<.1	<.06	<.5	< .04	<.03
MT-1276	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	< .03
MT-1277	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	< .03
MT-1278	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	<.03
MT-1279	<.2	<.3	<.16	<.1	<.1	< .06	<.5	< .04	<.03
MT-1280	<.2	<.3	<.16	<.1	<.1	<.06	<.5	<.04	<.03

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(32103), USGS\ National\ Water\ Information\ System\ parameter\ code; ug/L,\ micrograms\ per\ liter;\ E,\ estimated;\ <,\ concentration\ or\ value\ reported\ is\ less\ than\ that\ indicated]$

[(32103), 0303			1,3,5-						
	1,2-Di-	1,2-Di-	Tri-	1,3-Di-	1,3-Di-	1,4-Di-	2,2-Di-	2 –	2 –
G+-+:	chloro-	chloro-	methyl-	chloro-	chloro-	chloro-	chloro-	Chloro-	Ethyl-
Station name	ethane, water,	propane water	benzene water	benzene water	propane water	benzene water	propane water	toluene water	toluene water
name	unfltrd	unfltrd	unfltrd	unfltrd	unfltrd	unfltrd	unfltrd	unfltrd	unfltrd
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	(32103)	(34541)	(77226)	(34566)	(77173)	(34571)	(77170)	(77275)	(77220)
				· · · · · · · · · · · · · · · · · · ·	COUNTY				
GR-670	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
GR-671	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
GR-672	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
GR-673	<.1	<.03	<.04	<.03	<.1	<.05	<.05	<.04	<.06
					RY COUNTY				
MT-1270	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1271	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1272	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1273	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1274	<.1	<.03	< .04	<.03	<.1	<.05	<.05	<.04	<.06
MT-1275	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1276	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1277	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1278	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1279	<.1	<.03	< .04	<.03	<.1	<.05	<.05	< .04	<.06
MT-1280	<.1	<.03	<.04	<.03	<.1	<.05	<.05	<.04	<.06
	3-	4-	4-Iso-		200		D	Bromo-	Bromo- di-
Station name	Chloro- propene water unfltrd ug/L (78109)	Chloro- toluene water unfltrd ug/L (77277)	propyl- toluene water unfltrd ug/L (77356)	Acetone water unf1trd ug/L (81552)	Acrylo- nitrile water unfltrd ug/L (34215)	Benzene water unf1trd ug/L (34030)	Bromo- benzene water unfltrd ug/L (81555)	chloro- methane water unfltrd ug/L (77297)	chloro- methane water unfltrd ug/L (32101)
				GREENE					
GR-670	<.12			GIGHLIVE	COUNTY				
GR-671		<.05	<.12	<7	COUNTY <1	<.04	<.04	<.12	<.05
	<.12	<.05 <.05	<.12 <.12	· · · · · · · · · · · · · · · · · · ·		<.04 <.04	<.04 <.04	<.12 <.12	<.05 <.05
GR-672	<.12 <.12			<7	<1				
GR-672 GR-673		<.05	<.12	<7 <7	<1 <1	<.04	< .04	<.12	<.05
GR-673	<.12 <.12	<.05 <.05 <.05	<.12 <.12 <.12	<7 <7 <7 <7 <7 <u>MONTGOME</u> J	<1 <1 <1 <1 <1	<.04 <.04 <.04	<.04 <.04 <.04	<.12 <.12 <.12	<.05 <.05 <.05
	<.12	<.05 <.05	<.12 <.12	<7 <7 <7 <7	<1 <1 <1 <1	<.04 <.04	<.04 <.04	<.12 <.12	<.05 <.05
GR-673 MT-1270 MT-1271	<.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 <u>MONTGOME</u> <7	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05
GR-673 MT-1270	<.12 <.12 <.12	<.05 <.05 <.05	<.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 <u>MONTGOME</u>	<1 <1 <1 <1 <1 RY COUNTY <1	<.04 <.04 <.04	<.04 <.04 <.04	<.12 <.12 <.12 <.12	<.05 <.05 <.05
GR-673 MT-1270 MT-1271	<.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 <u>MONTGOME</u> <7	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05
GR-673 MT-1270 MT-1271 MT-1272	<.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 MONTGOME! <7 <7 <7	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.04 <.04 <.04 <.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05
GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05
GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 MONTGOME! <7 <7 <7 <7 <7 <7 <7 <7 <7	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05
GR-673 MT-1270 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05
MT-1270 MT-1271 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 MONTGOME! <7 <7 <7 <7 <7 <7 <7 <7 <7	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05
MT-1270 MT-1271 MT-1271 MT-1272 MT-1273 MT-1274 MT-1275 MT-1276 MT-1277	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<7 <7 <7 <7 <7 MONTGOME! <7 <7 <7 <7 <7 <7 <7 <7 <7	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	<.12 <.12 <.12 <.12 <.12 <.12 <.12 <.12	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(50002), USGS National Water Information System parameter code; ug/L, micrograms per liter; E, estimated; <, concentration or value reported is less than that indicated]

Station name	Bromo- ethene, water, unfltrd ug/L (50002)	Bromo- methane water unfltrd ug/L (34413)	Carbon di- sulfide water unfltrd ug/L (77041)	Chloro- benzene water unfltrd ug/L (34301)	Chloro- ethane, water, unfltrd ug/L (34311)	Chloro- methane water unfltrd ug/L (34418)	cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)	cis- 1,3-Di- chloro- propene water unfltrd ug/L (34704)	Di- bromo- chloro- methane water unfltrd ug/L (32105)
				GREENE	COUNTY				
GR-670	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
GR-671	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
GR-672	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
GR-673	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
				MONTGOME	RY COUNTY				
MT-1270	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
MT-1271	<.1	<.3	<.07	<.03	<.1	<.2	E.03	<.09	<.2
MT-1272	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
MT-1273	<.1	<.3	<.07	<.03	<.1	<.2	.14	<.09	<.2
MT-1274	<.1	<.3	<.07	<.03	<.1	<.2	E.05	<.09	<.2
MT-1275	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
MT-1275	<.1	<.3	<.07	<.03	<.1	<.2	<.04	<.09	<.2
MT-1277	<.1	<.3	<.07	<.03	<.1	<.2	<.04	<.09	<.2
MT-1278	<.1	<.3	<.07	<.03	<.1	<.2	< .04	<.09	<.2
MT-1279	<.1	<.3	<.07	<.03	<.1	<.2	<.04	<.09	<.2
		_				_			
MT-1280	<.1	<.3	.21	<.03	<.1	<.2	< .04	<.09	<.2
Station name	Di- bromo- methane water unfltrd ug/L (30217)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl methac- rylate, water, unfltrd ug/L (73570)	Ethyl methyl ketone, water, unfltrd ug/L (81595)	Ethyl- benzene water unfltrd ug/L (34371)	Hexa- chloro- buta- diene, water, unfltrd ug/L (39702)
				GREENE	COUNTY				
GR-670	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	< .03	<.1
GR-671	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
GR-672	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
GR-673	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
				MONTGOMER	RY COUNTY				
MT-1270	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1271	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1272	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1273	<.05	<.18	<.2	<.2	< .10	<.2	<5.0	<.03	<.1
MT-1274	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1275	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1275	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1277	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1278	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1279	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1
MT-1280	<.05	<.18	<.2	<.2	<.10	<.2	<5.0	<.03	<.1

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(34396), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; M, presence of compound verified but concentration not quantified]

•		• -							
Station name	Hexa- chloro- ethane, water, unfltrd ug/L (34396)	Iodo- methane water unfltrd ug/L (77424)	Iso- butyl methyl ketone, water, unfltrd ug/L (78133)	Iso- propyl- benzene water unfltrd ug/L (77223)	Meth- acrylo- nitrile water unfltrd ug/L (81593)	Methyl acryl- ate, water, unfltrd ug/L (49991)	Methyl methac- rylate, water, unfltrd ug/L (81597)	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)	meta- + para- Xylene, water, unfltrd ug/L (85795)
				CDEENE	COLINIEN				
GR-670	<.2	<.35	< . 4	<u>GREENE</u> <.06	<.6	<2.0	<.3	<.08	<.06
GR-671	<.2	<.35	< . 4	<.06	<.6	<2.0	<.3	<.08	<.06
GR-672	<.2	<.35	< . 4	<.06	<.6	<2.0	<.3	<.08	<.06
GR-673	<.2	<.35	< . 4	<.06	<.6	<2.0	<.3	<.08	<.06
				MONTGOME					
MT-1270	<.2	<.35	< . 4	<.06	< . 6	<2.0	<.3	<.08	<.06
MT-1271	<.2	<.35	< . 4	<.06	< . 6	<2.0	<.3	<.08	<.06
MT-1272	<.2	<.35	< . 4	<.06	< . 6	<2.0	<.3	<.08	<.06
MT-1273	<.2	<.35	< . 4	<.06	< . 6	<2.0	<.3	<.08	<.06
MT-1274	<.2	<.35	< . 4	<.06	<.6	<2.0	<.3	<.08	<.06
MT-1275	<.2	<.35	< . 4	<.06	<.6	<2.0	<.3	<.08	< .06
MT-1276	<.2	<.35	< . 4	< .06	<.6	<2.0	<.3	<.08	<.06
MT-1277	<.2	<.35	< . 4	< .06	<.6	<2.0	<.3	<.08	< .06
MT-1278	<.2	<.35	< . 4	< .06	<.6	<2.0	<.3	<.08	< .06
MT-1279	<.2	<.35	< . 4	<.06	<.6	<2.0	<.3	<.08	<.06
MT-1280	<.2	<.35	<.4	<.06	<.6	<2.0	<.3	<.08	<.06
Station name	Naphth- alene, water, unfltrd ug/L	Methyl n-butyl ketone, water, unfltrd ug/L	n-Butyl benzene water unfltrd ug/L	n- propyl- benzene water unfltrd ug/L	o- Xylene, water, unfltrd ug/L	sec- Butyl- benzene water unfltrd ug/L	Styrene water unfltrd ug/L	t-Butyl ethyl ether, water, unfltrd ug/L	Methyl t-butyl ether, water, unfltrd ug/L
	(34696)	(77103)	(77342)	(77224)	(77135)	(77350)	(77128)	(50004)	(78032)
				GREENE	COUNTY				
GR-670	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
GR-671	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
GR-672	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
GR-673	<.5	<.7	<.2	<.04	<.07	<.06	< .04	<.05	<.2
				MONTGOME	RY COUNTY				
MT-1270	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1271	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1272	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1273	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1274	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1275	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1276	<.5	<.7	<.2	< . 04	<.07	<.06	<.04	<.05	M
MT-1277	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1278	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1279	<.5	<.7	<.2	< .04	<.07	<.06	< .04	<.05	<.2
MT-1280	<.5	<.7	<.2	<.04	<.07	<.06	<.04	<.05	<.2

Results from Selected Sites in the White, Great, and Little Miami River Basins (National Water-Quality Assessment Program)

WATER-QUALITY OF PUBLIC-SUPPLY WELLS IN THE GLACIAL DEPOSITS AQUIFER NEAR DAYTON, OHIO—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(77353) LISGS National Water Information System parameter code: ue/L_micrograms per liter: E_estimated: < concentration or value reported is less than that indicated]

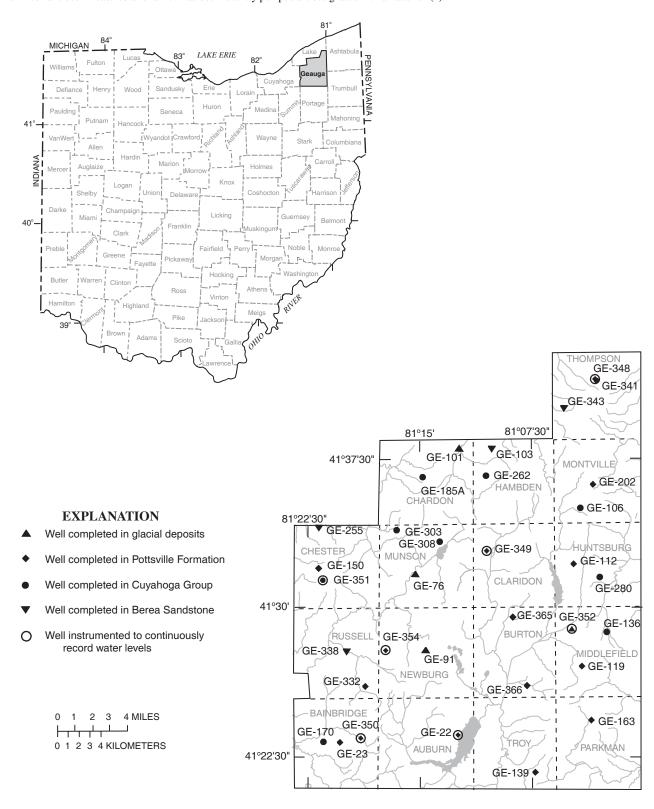
						1	1	1	
Station name	tert- Butyl- benzene water unfltrd	Tetra- chloro- ethene, water, unfltrd	Tetra- chloro- methane water unfltrd	Tetra- hydro- furan, water, unfltrd	Toluene water unfltrd	trans- 1,2-Di- chloro- ethene, water, unfltrd	trans- 1,3-Di- chloro- propene water unfltrd	trans- 1,4-Di- chloro- 2- butene, wat unf	Tri- bromo- methane water unfltrd
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	(77353)	(34475)	(32102)	(81607)	(34010)	(34546)	(34699)	(73547)	(32104)
				GREENE	COUNTY				
GR-670	<.10	<.03	< .06	<2	<.05	< .03	<.09	<.7	<.10
GR-671	<.10	<.03	<.06	<2	<.05	<.03	<.09	<.7	<.10
GR-672	<.10	<.03	<.06	<2	<.05	<.03	<.09	<.7	<.10
GR-673	<.10	E.06	.68	<2	<.05	<.03	<.09	<.7	<.10
				MONTGOME	RY COUNTY				
MT-1270	<.10	<.03	< .06	<2	<.05	< .03	<.09	<.7	<.10
MT-1271	<.10	<.03	<.06	<2	<.05	< .03	<.09	<.7	< .10
MT-1272	<.10	<.03	<.06	<2	<.05	< .03	<.09	<.7	<.10
MT-1273	<.10	<.03	< .06	<2	<.05	< .03	<.09	<.7	<.10
MT-1274	<.10	<.03	<.06	<2	<.05	<.03	<.09	<.7	<.10
MT-1275	<.10	<.03	<.06	<2	<.05	<.03	<.09	<.7	<.10
MT-1276	<.10	<.03	<.06	<2	E.03	<.03	<.09	<.7	<.10
MT-1277	<.10	.11	<.06	<2	E.04	<.03	<.09	<.7	<.10
MT-1278	<.10	<.03	<.06	<2	<.05	< .03	<.09	<.7	<.10
MT-1279	<.10	.13	< .06	<2	<.05	< .03	<.09	<.7	< .10
MT-1280	<.10	<.03	<.06	<2	<.05	<.03	<.09	<.7	<.10
Station name	Tri- chloro- ethene, water,	Tri- chloro- fluoro- methane water	Tri- chloro- methane water	Vinyl chlor- ide, water,	Di- chlor- vos, water	Uranium natural water, fltrd,			
Traine	unfltrd ug/L (39180)	unfltrd ug/L (34488)	unfltrd ug/L (32106)	unfltrd ug/L (39175)	fltrd, ug/L (38775)	ug/L (22703)			
			GREENE COUNTY						
GR-670	< .04	<.09	E.03	<.1	<.01	1.13			
GR-671	< .04	<.09	<.02	<.1	<.01	1.63			
GR-672	<.04	<.09	<.02	<.1	<.01	E.02			
GR-673	4.82	<.09	1.40	<.1	<.01	.81			
		MOM	TGOMERY COU	YTY					
MT-1270	< .04	<.09	<.02	<.1	<.01	.65			
MT-1271	E.02	<.09	E.02	<.1	<.01	1.59			
MT-1272	< .04	<.09	<.02	<.1	<.01	1.22			
MT-1273	E.04	<.09	<.02	<.1	<.01	2.13			
MT-1274	< .04	<.09	<.02	<.1	<.01	1.44			
	. 0.4	<.09	E.04	<.1	<.01	1.16			
MT-1275	< . 0.4								
MT-1275 MT-1276	<.04 <.04		<.02	<.1	<.01	2.17			
MT-1276	< .04	<.09	<.02 E.05	<.1 <.1	<.01 <.01	2.17 1.71			
					<.01 <.01 <.01				

MT-1280

< .04

<.09

<.02


<.1

<.01

.52

PROJECT DATA Ground-Water Data for Geauga County, Ohio

Ground-water-level data were collected as part of a USGS cooperative study with the Geauga County Planning Commission and the Board of County Commissioners. Measurements from 33 wells that comprise the long-term ground-water monitoring network in Geauga County are shown on the following pages. The purpose of the water-level study is to determine whether fluctuations in water levels represent consistent, long-term trends caused by human activity or are predominantly the result of seasonal and annual variations in recharge. Land-surface datums are accurate within ± 5 ft. Water levels known to have been measured after a well had been recently pumped are designated with an asterisk (*).

PROJECT DATA Ground-Water Data for Geauga County, Ohio

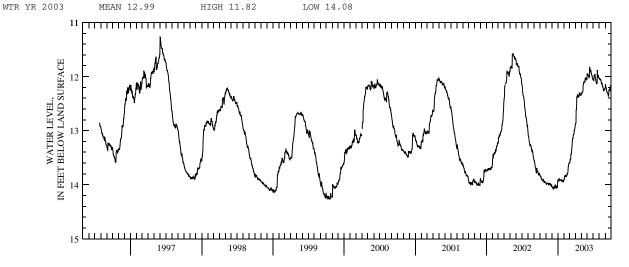
412331081123000. LOCAL NUMBER, GE-22

LOCATION.—Latitude 41°23′31″, longitude 81°12′30″, Geauga County, west of Valley View Road by La Due Reservoir at old Sugar House, Auburn Township. Owner City of Akron.

AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Water-supply well not currently in use; diameter 6.25 in., depth 80 ft.

INSTRUMENTATION.—Pressure transducer and CR10 data logger (records hourly) with SM192 storage module.


DATUM.—Elevation of land-surface datum is 1,160 ft above sea level. Measuring point: mark on wooden base of instrument shelter; changed from 3.96 ft below land-surface datum to 3.20 ft above land-surface datum on May 13, 1997.

PERIOD OF RECORD.—Periodic water-level measurements from June 8, 1978 through September 8, 1994. Continuous water-level data from July 24, 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.26 ft below land-surface datum, June 2, 1997; lowest measured, 14.34 ft below land-surface datum, Nov. 12, 1980.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13.83 13.84 13.84 13.83 13.85	13.97 13.98 13.98 14.00 13.99	14.02 14.04 14.05 14.05	13.91 13.90 13.92 13.92 13.92	13.91 13.91 13.90 13.84 13.85	13.60 13.60 13.60 13.57 13.53	12.88 12.88 12.87 12.85 12.61	12.33 12.31 12.32 12.31 12.29	11.94 11.96 11.95 11.95	12.05 12.05 12.07 12.07 12.02	12.04 12.04 12.05 12.04 12.05	12.21 12.14 12.15 12.18 12.20
6 7 8 9 10	13.85 13.88 13.88 13.90	13.98 13.98 13.98 13.98 13.98	14.05 14.06 14.08 14.08	13.94 13.93 13.89 13.89 13.90	13.84 13.82 13.83 13.83 13.84	13.55 13.53 13.52 13.44 13.44	12.61 12.51 12.38 12.37 12.37	12.29 12.29 12.29 12.28 12.21	11.98 11.98 11.98 12.01 12.00	12.03 11.97 11.99 11.97 11.95	12.06 12.06 12.04 12.05 12.06	12.21 12.24 12.25 12.27 12.28
11 12 13 14 15	13.90 13.90 13.91 13.92 13.91	13.97 13.98 13.99 13.99 14.01	14.07 14.05 14.03 14.02 14.02	13.91 13.91 13.91 13.91 13.92	13.83 13.84 13.83 13.83 13.84	13.41 13.41 13.36 13.32 13.26	12.33 12.38 12.39 12.37 12.34	12.16 12.15 12.11 12.12 12.12	12.01 12.00 11.82 11.85 11.89	11.98 12.03 12.05 12.06 12.06	12.08 12.12 12.14 12.14 12.14	12.29 12.30 12.31 12.31 12.31
16 17 18 19 20	13.91 13.91 13.92 13.91 13.92	13.99 13.97 14.00 13.99 14.00	14.05 14.06 14.05 14.03 14.00	13.91 13.93 13.92 13.91 13.93	13.83 13.79 13.80 13.80 13.80	13.19 13.14 13.15 13.15 13.12	12.37 12.37 12.37 12.37 12.35	12.08 12.09 12.09 12.09 12.10	11.91 11.91 11.87 11.89 11.91	12.11 12.11 12.11 12.13 12.13	12.13 12.15 12.18 12.19 12.19	12.34 12.36 12.35 12.30 12.25
21 22 23 24 25	13.93 13.95 13.96 13.96	14.00 13.97 13.98 13.99 14.01	14.02 14.03 14.05 14.05 14.05	13.92 13.92 13.93 13.94 13.91	13.77 13.75 13.69 13.66 13.66	13.08 13.08 13.07 13.06 13.05	12.29 12.32 12.33 12.32 12.30	12.04 12.03 12.02 12.02 12.04	11.92 11.94 11.96 11.98 11.98	12.12 11.88 11.91 11.97 12.00	12.20 12.23 12.25 12.25 12.27	12.25 12.24 12.22 12.23 12.26
26 27 28 29 30 31	13.93 13.94 13.96 13.96 13.96 13.97	14.01 14.02 14.01 14.00 14.01	14.06 14.05 14.04 14.06 14.04 13.93	13.94 13.94 13.91 13.94 13.93 13.91	13.61 13.59 13.60 	13.00 13.01 12.98 12.97 12.94 12.90	12.34 12.34 12.32 12.35 12.34	12.06 12.06 12.03 12.05 12.05 11.99	11.99 12.02 12.03 12.05 12.05	12.01 12.00 11.97 12.00 12.02 12.03	12.26 12.23 12.24 12.24 12.22 12.22	12.26 12.23 12.16 12.18 12.20
MEAN MAX MIN	13.91 13.97 13.83	13.99 14.02 13.97	14.04 14.08 13.93	13.92 13.94 13.89	13.79 13.91 13.59	13.26 13.60 12.90	12.44 12.88 12.29	12.14 12.33 11.99	11.96 12.05 11.82	12.03 12.13 11.88	12.15 12.27 12.04	12.25 12.36 12.14
CAL YR 20		MEAN 13.10		HIGH 11.57		LOW 14.08						

Ground-Water Data for Geauga County, Ohio

412309081202400. LOCAL NUMBER, GE-23

LOCATION.—Latitude 41°23′09", longitude 81°20′24", Geauga County, Alltel building on Bainbridge Road, west of State Route 306, Bainbridge Township. Owner: Alltel Telephone Company.

OWIEL After Telephone Company.

AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Commercial water-supply well; diameter 5.63 in., depth 40 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,162 ft above sea level. Measuring point: top of casing, 1.32 ft above land-surface datum.

PERIOD OF RECORD.—April 26, 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.46 ft below land-surface datum, Apr. 26, 1978; lowest measured, 20.61 ft below land-surface datum, Nov. 6, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	20.61
01/08/03	20.23
03/12/03	20.25
05/20/03	19.67
07/22/03	18.90
09/08/03	19.35

413138081152000. LOCAL NUMBER, GE-76

LOCATION.—Latitude 41°31′38″, longitude 81°15′20″, Geauga County, 10755 Mayfield Road, Munson Township. Owner: Fowler's Mill Christian Church. AQUIFER.—Sand and gravel of Quaternary age.

WELL CHARACTERISTICS.—Private water-supply well; diameter 6 in., depth 150 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,170 ft above sea level. Measuring point: top of casing, 1.68 ft above land-surface datum.

PERIOD OF RECORD.—June 15, 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 21.19 ft below land-surface datum, June 15, 1978; lowest measured, 25.29 ft below land-surface datum, July 11, 2001.

DATE	WATER LEVEL
11/07/03	24.94
01/09/03	24.55
03/13/03	24.58
05/21/03	24.20
07/23/03	24.04
09/09/03	24.59

PROJECT DATA Ground-Water Data for Geauga County, Ohio

412748081143900. LOCAL NUMBER, GE-91

LOCATION.—Latitude 41°27'48", longitude 81°14'39", Geauga County, northeast corner of Auburn Road and State Route 87 intersection, Newbury Township. Owner: Dairy Mart.
AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Commercial water-supply well; diameter 5.63 in., depth 85 ft. INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,250 ft above sea level. Measuring point: top of casing, 1.16 ft above land-surface datum.

PERIOD OF RECORD.—October 19, 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 40.10 ft below land-surface datum, Oct. 19, 1978; lowest measured, 47.73* ft below land-surface datum, May 21, 2003.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/03	46.81*
01/09/03	47.09*
03/13/03	47.42*
05/21/03	47.73*
07/22/03	47.52*
09/08/03	46.72*

413757081122300. LOCAL NUMBER, GE-101

LOCATION.—Latitude 41°37′57″, longitude 81°12′23″, Geauga County, 12080 Clark Road, Chardon Township. Owner: privately owned. AQUIFER.—Sand and gravel of Quaternary age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6.25 in., depth 48 ft.
INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 990 ft above sea level. Measuring point: top of casing, 0.90 ft above land-surface datum.

PERIOD OF RECORD.—May 7, 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 20.81 ft below land-surface datum, Mar. 17, 1997; lowest measured, 25.46 ft below land-surface datum, Sept. 23, 2002.

DATE	WATER LEVEL
11/06/02	25.09
01/08/03	23.23
03/12/03	22.88
05/21/03	22.09
07/23/03	23.71
09/08/03	24.29

Ground-Water Data for Geauga County, Ohio

413755081101200. LOCAL NUMBER, GE-103

LOCATION.—Latitude 41°37′55″, longitude 81°10′12″, Geauga County, 8755 Old State Road (State Route 608), Hambden Township. Owner: privately owned.

AQUIFER.—Berea Sandstone of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 136 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,158 ft above sea level. Measuring point: top of casing, 0.40 ft above land-surface datum.

PERIOD OF RECORD.—May 7, 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 79.44 ft below land-surface datum, May 7, 1980; lowest measured, 92.71 ft below land-surface datum, May 20, 2003.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	91.94
01/08/03	91.58
03/12/03	92.30
05/20/03	92.71
07/23/03	92.21
09/08/03	92.40

413456081035600. LOCAL NUMBER, GE-106

LOCATION.—Latitude 41°34′56″, longitude 81°03′56″, Geauga County, 10691 Clay Street, Montville Township. Owner: privately owned. AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 72 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,255 ft above sea level. Measuring point: top of casing, 1.20 ft above land-surface datum.

PERIOD OF RECORD.—May 7, 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 30.84 ft below land-surface datum, May 7, 1980; lowest measured, 37.44 ft below land-surface datum, May 29, 1906. land-surface datum, May 29, 1996.

DATE	WATER LEVEL
11/06/02	36.53
01/08/03	36.74
03/12/03	37.11
05/20/03	36.94
07/23/03	36.66
09/08/03	36.73

PROJECT DATA Ground-Water Data for Geauga County, Ohio

413207081044400. LOCAL NUMBER, GE-112

LOCATION.—Latitude 41°32′07″, longitude 81°04′44″, Geauga County, by golf course maintenance building at 15900 Mayfield Road, Huntsburg Township. Owner: Rolling Green Golf Course.

AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Commercial water-supply well for shop and house (not used for irrigation); diameter 5.63 in., depth 80 ft. INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,265 ft above sea level. Measuring point: top of casing, 1.30 ft above land-surface datum.

PERIOD OF RECORD.—May 8, 1980 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 43.86 ft below land-surface datum, May 5, 1980; lowest measured, 50.61 ft below land-surface datum, Jan. 15, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	49.65
01/08/03	49.45
03/12/03	49.89
05/20/03	49.96
07/22/03	49.90
09/08/03	49.94

412657081040500. LOCAL NUMBER, GE-119

LOCATION.—Latitude 41°26′58″, longitude 81°04′12″, Geauga County, 15400 State Route 608, Middlefield Township. Owner: Geauga County Airport. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Commercial water-supply well; diameter 5.63 in., depth 79 ft.
INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,185 ft above sea level. Measuring point: top of casing, 1.50 ft above land-surface datum.

PERIOD OF RECORD.—August 20, 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.96 ft below land-surface datum, Aug. 20, 1980; lowest measured, 16.61 ft below land-surface datum, Mar. 12, 2003.

DATE	WATER LEVEL
11/06/02	16.21
01/08/03	16.36
03/12/03	16.61
05/20/03	16.39
07/22/03	16.28
09/08/03	16.41

Ground-Water Data for Geauga County, Ohio

412841081023200. LOCAL NUMBER, GE-136

LOCATION.—Latitude 41°28′41", longitude 81°02′32", Geauga County, 16826 Nauvoo Road, Middlefield Township. Owner: privately owned. AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 58 ft; water level not static in spring and summer months (pump removes approximately 1 gallon per minute of water from well during the growing season).

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,130 ft above sea level. Measuring point: top of casing 1.20 ft above land-surface datum.

PERIOD OF RECORD.—August 8, 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 13.31 ft below land-surface datum, May 8, 1986; lowest measured, 24.27* ft below land-surface datum, May 28, 1996.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	20.75
01/08/03	20.92
03/12/03	21.41*
05/20/03	19.25
07/22/03	18.69
09/08/03	19.10

412138081072000. LOCAL NUMBER, GE-139

LOCATION.—Latitude 41°21′38″, longitude 81°07′20″, Geauga County, 14515 Hoover Road, Troy Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 90 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,171 ft above sea level. Measuring point: top of casing, 0.37 ft above land-surface datum.

PERIOD OF RECORD.—August 15, 1985 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 32.85 ft below land-surface datum, May 14, 1997; lowest measured, 39.94 ft below land-surface datum, Oct. 26, 1999.

DATE	WATER LEVEL
11/06/02	38.84
01/08/03	38.07
03/12/03	36.81
05/20/03	35.25
07/22/03	34.63
09/08/03	34.65

PROJECT DATA Ground-Water Data for Geauga County, Ohio

413155081214900. LOCAL NUMBER, GE-150

LOCATION.—Latitude 41°31′55″, longitude 81°21′49″, Geauga County, 12390 Caves Road, Chester Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age. WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6.63 in., depth 90 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,220 ft above sea level. Measuring point: top of casing, 1.55 ft above land-surface datum.

PERIOD OF RECORD.—February 13, 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.07 ft below land-surface datum, May 14, 1997; lowest measured, 30.75 ft below land-surface datum, Sept. 19, 2001 (water level has been lower than 30.75 but blockage prevents measurement beyond this point).

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
05/21/03 07/23/03	28.79 29.26
09/09/03	29.55

412415081033500. LOCAL NUMBER, GE-163

LOCATION.—Latitude 41°24′15″, longitude 81°03′35″, Geauga County, 17115 Madison Road, Parkman Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age. WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 60 ft.

WELL CHARACTERISTICS.—Dolliestic water-supply well, dialited 3.05 lil., depth of it.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,182 ft above sea level. Measuring point: top of casing, 1.10 ft above land-surface datum.

PERIOD OF RECORD.—February 5, 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 8.17 ft below land-surface datum, Feb. 5, 1986; lowest measured, 17.11 ft below land-surface datum, Sept. 23, 2002.

DATE	WATER LEVEL
11/06/03	16.95
01/08/03	16.20
03/12/03	15.88
05/20/03	15.44
07/22/03	15.05
09/08/03	15.30

Ground-Water Data for Geauga County, Ohio

412311081213000. LOCAL NUMBER, GE-170

LOCATION.—Latitude 41°23'11", longitude 81°21'30", Geauga County, 7956 Bainbridge Road, Bainbridge Township. Owner: privately owned.

AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age. WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 92 ft. INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,110 ft above sea level. Measuring point: top of casing, 1.47 ft above land-surface datum.

PERIOD OF RECORD.—February 4, 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 43.82 ft below land-surface datum, Nov. 19, 1996; lowest measured, 51.66 ft below land-surface datum, Nov. 6, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	51.66
01/08/03	48.38
03/12/03	46.22
05/20/03	45.34
07/22/03	46.02
09/08/03	46.83

413630081145001, LOCAL NUMBER, GE-185A

LOCATION.—Latitude 41°36′30″, longitude 81°14′50″, Geauga County, 9673 Mentor Road, Chardon Township. Owner: privately owned. AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age. WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.5 in., depth 90 ft. INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,260 ft above sea level. Measuring point: top of casing 0.84 ft above land-surface datum. PERIOD OF RECORD.—January 1, 1996 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 32.39 ft below land-surface datum, Nov. 21, 1996; lowest measured, 37.19 ft below land-surface datum, Dec. 15, 1998.

DATE	WATER LEVEL
11/06/02	35.81
01/08/03	34.51
03/12/03	34.11

PROJECT DATA Ground-Water Data for Geauga County, Ohio

413607081032500. LOCAL NUMBER, GE-202

LOCATION.—Latitude 41°36′07″, longitude 81°03′25″, Geauga County, 9915 Plank Road, Montville Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 74 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,247 ft above sea level. Measuring point: top of casing, 1.60 ft above land-surface datum.

PERIOD OF RECORD.—February 10, 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 27.60 ft below land-surface datum, Feb. 10, 1986; lowest measured, 30.81 ft below land-surface datum, Oct. 27, 1999.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	30.71
01/08/03	30.16
03/12/03	30.35
05/20/03	30.18
07/23/03	30.27
09/08/03	30.49

413357081214800. LOCAL NUMBER, GE-255

LOCATION.—Latitude 41°33′57″, longitude 81°21′48″, Geauga County, 11240 Caves Road, Chester Township. Owner: privately owned. AQUIFER.—Berea Sandstone of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 123 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,075 ft above sea level. Measuring point: Top of casing, 2.08 ft above land-surface datum.

PERIOD OF RECORD.—September 8, 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 51.32 ft below land surface datum, May 14, 1997; lowest measured, 55.82* ft below land-surface datum. In 15, 2002 below land-surface datum, Jan. 15, 2002.

DATE	WATER LEVEL
11/07/03	53.25
01/09/03	52.85
03/13/03	53.86*
05/21/03	55.72*
07/23/03	52.76
09/09/03	53.49

Ground-Water Data for Geauga County, Ohio

413634081103500. LOCAL NUMBER, GE-262

LOCATION.—Latitude 41°36′34″, longitude 81°10′35″, Geauga County, 9593 Wildwood Road, Hambden Township. Owner: privately owned. AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in., depth 100 ft. INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,200 ft above sea level. Measuring point: top of casing 1.60 ft above land-surface datum.

PERIOD OF RECORD.—September 7, 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 34.19 ft below land-surface datum, Sept. 10, 1996; lowest measured, 42.55 ft below land-surface datum, Jan. 16, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	41.19
01/08/03	42.15
03/12/03	41.43
05/21/03	40.59
07/23/03	38.37
09/08/03	37.65

413127081025900, LOCAL NUMBER, GE-280

LOCATION.—Latitude 41°31′27″, longitude 81°02′59″, Geauga County, 12972 Madison Road, Huntsburg Township. Owner: privately owned. AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age. WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in., depth 162 ft. INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,145 ft above sea level. Measuring point: top of casing 1.45 ft above land-surface datum. PERIOD OF RECORD.—September 8, 1994 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 32.26 ft below land-surface datum, Apr. 20, 1998; lowest measured, 35.96 ft below land-surface datum. Dec. 14, 1998. below land-surface datum, Dec. 14, 1998.

DATE	WATER LEVEL
11/06/02	35.41
01/08/03	35.15
03/12/03	34.56
05/20/03	33.52
07/22/03	33.71
09/08/03	34.04

413350081163500. LOCAL NUMBER, GE-303

LOCATION.—Latitude 41°33′50″, longitude 81°16′35″, Geauga County, 10250 Mulberry Road, Munson Township. Owner: privately owned.

AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age. WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in., depth 95 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,230 ft above sea level. Measuring point: top of casing 1.60 ft above land-surface datum.

PERIOD OF RECORD.—September 7, 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 57.23 ft below land-surface datum, May 14, 1997; lowest measured, 63.15 ft below land-surface datum, Jan. 15, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02	62.80
01/09/03	62.82
03/13/03	62.71
05/21/03	62.32
07/23/03	62.28
09/09/03	62.55*

413315081134200. LOCAL NUMBER, GE-308

LOCATION.—Latitude 41°33′15″, longitude 81°13′42″, Geauga County, 11675 Chestnutdale Drive, Munson Township. Owner: privately owned. AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age. WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in., depth 98 ft. INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel. DATUM.—Elevation of land-surface datum is 1,165 ft above sea level. Measuring point: top of casing 1.68 ft above land-surface datum. PERIOD OF RECORD.—September 7, 1994 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 20.05 ft below land-surface datum, Apr. 20, 1999; lowest measured, 27.74 ft below land-surface datum. Sept. 24, 2002 below land-surface datum, Sept. 24, 2002.

DATE	WATER LEVEL
11/07/02	26.68
01/09/03	25.94
03/13/03	26.07
05/21/03	24.73
07/23/03	24.24
09/09/03	25.15

PROJECT DATA

Ground-Water Data for Geauga County, Ohio

412558081184200. LOCAL NUMBER, GE-332

LOCATION.—Latitude 41°25′58″, longitude 81°18′42″, Geauga County, 103 Silver Springs, Russell Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 104 ft.
INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.
DATUM.—Elevation of land-surface datum is 1,180 ft above sea level. Measuring point: top of casing, 1.14 ft above land-surface datum.

PERIOD OF RECORD.—September 8, 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 33.83 ft below land-surface datum, May 14, 1997; lowest measured, 36.10 ft below land-surface datum, Jan. 16, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/03	36.08
01/09/03	35.95
03/13/03	36.00
05/22/03	35.66
07/23/03	35.60*
09/09/03	35.55

412743081195700, LOCAL NUMBER, GE-338

LOCATION.—Latitude 41°27′43″, longitude 81°19′57″, Geauga County, 14940 Surrey Downs, Russell Township. Owner: privately owned. AQUIFER.—Berea Sandstone of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.56 in., depth 160 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,078 ft above sea level. Measuring point: top of casing, 1.38 ft above land-surface datum.

PERIOD OF RECORD.—September 8, 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 58.84 ft below land-surface datum, Sept. 8, 1994; lowest measured, 73.29 ft below land-surface datum. Ian 22, 1997 below land-surface datum, Jan. 22, 1997.

DATE	WATER LEVEL
11/07/03	60.95
01/09/03	61.78
03/13/03	61.38
05/21/03	60.39*
07/23/03	59.44
09/09/03	60.76

414121081030800. LOCAL NUMBER, GE-341

LOCATION.—Latitude 41°41′21", longitude 81°03′08", Geauga County, 6758 Madison Road, Thompson Township. Owner: Thompson United Methodist Church.

AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age.

WELL CHARACTERISTICS.—Private water-supply well; diameter 6.63 in., depth 120 ft.
INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.
DATUM.—Elevation of land-surface datum is 1,267 ft above sea level. Measuring point: top of casing 2.00 ft above land-surface datum.

PERIOD OF RECORD.—September 7, 1994 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.12 ft below land-surface datum, Nov. 20, 1996; lowest measured, 10.11 ft below land-surface datum, Sept. 7, 1994.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/06/02	9.20
01/08/03	5.76
03/12/03	5.07
05/20/03	5.27
07/23/03	5.91*
09/08/03	6.59

413957081052100. LOCAL NUMBER, GE-343

LOCATION.—Latitude 41°39′57″, longitude 81°05′21″, Geauga County, 15554 Valentine Road, Thompson Township. Owner: privately owned. AQUIFER.—Berea Sandstone of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in., depth 120 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,145 ft above sea level. Measuring point: top of casing, 1.60 ft above land-surface datum.

PERIOD OF RECORD.—September 7, 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 69.40 ft below land-surface datum, May 14, 1997; lowest measured, 72.93 ft below land-surface datum, Sept. 7, 1994.

DATE	WATER LEVEL
11/06/02	72.85
01/08/03	71.26
03/13/03	70.83
05/20/03	70.39
07/23/03	70.52
09/08/03	71.71

PROJECT DATA

Ground-Water Data for Geauga County, Ohio

414125081031500. LOCAL NUMBER, GE-348

LOCATION.—Latitude 41°41′25″, longitude 81°03′15″, Geauga County, 16506 W. Thompson Road, Thompson Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age. WELL CHARACTERISTICS.—Domestic water-supply well, not currently in use; diameter 6 in., depth 53 ft. INSTRUMENTATION.— Instumentation removed on May 21, 2002 due to new owner use of the well. Periodic water level measurements by steel or electric

tape will continue.

DATUM.—Elevation of land-surface datum is 1,265 ft above sea level. Measuring point: mark on wooden base of instrument shelter, 2.55 ft above landsurface datum.

PERIOD OF RECORD.—July 23, 1996 to current year.

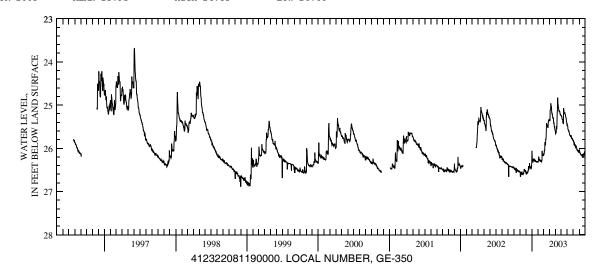
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 0.93 ft below land-surface datum, June 2, 1997; lowest measured, 7.74 ft below land-surface datum, Sept. 11, 2001.

DATE	WATER LEVEL
11/06/02	6.43
01/08/03	2.33
03/12/03	1.77
05/20/03	2.58
07/23/03	2.35
09/08/03	4.30

413247081103300. LOCAL NUMBER, GE-349

LOCATION.—Latitude 41°32′47″, longitude 81°10′33″, Geauga County, 121 Berkshire Drive, Aquilla Village, Claridon Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Domestic water-supply well, not currently in use; diameter 5.63 in., depth 58.19 ft.


INSTRUMENTATION.—Pressure transducer and CR10 data logger (records hourly) with SM192 storage module.

DATUM.—Elevation of land-surface datum is 1,190 ft above sea level. Measuring point: mark on wooden base of instrument shelter, 1.05 ft above land-

PERIOD OF RECORD.--July 24, 1996 to current year.

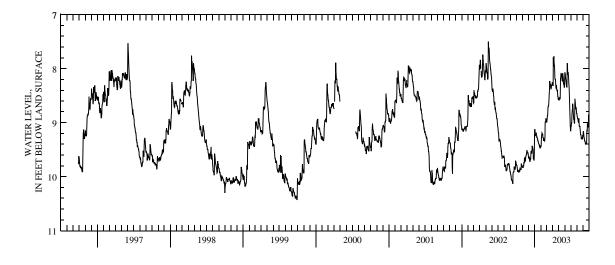
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 23.68 ft below land-surface datum, June 3, 1997; lowest measured, 26.89 ft below land-surface datum, Nov. 30, 1998.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.47	26.54	26.56	26.06	26.32	26.16	25.33	25.61	25.24	25.44	25.81	26.08
2	26.48	26.55	26.58	26.14	26.32	26.14	25.35	25.62	25.26	25.44	25.82	26.04
3	26.46	26.66	26.59	26.22	26.31	26.15	25.36	25.66	25.26	25.48	25.84	26.05
4	26.45	26.56	26.57	26.28	26.27	26.14	25.36	25.65	25.27	25.49	25.84	26.10
5	26.48	26.55	26.55	26.28	26.21	26.10	25.12	25.64	25.32	25.56	25.92	26.11
6	26.47	26.60	26.55	26.33	26.22	26.04	25.11	25.63	25.33	25.57	25.87	26.11
7	26.48	26.61	26.55	26.31	26.25	26.07	25.09	25.49	25.33	25.57	25.87	26.13
8	26.49	26.57	26.58	26.28	26.26	26.04	24.96	25.56	25.33	25.59	25.89	26.13
9	26.48	26.58	26.57	26.26	26.27	25.86	25.00	25.54	25.40	25.61	25.94	26.13
10	26.49	26.57	26.55	26.24	26.28	25.88	25.02	25.41	25.41	25.59	25.90	26.15
11	26.48	26.54	26.54	26.27	26.27	25.91	25.03	25.17	25.43	25.62	25.92	26.15
12	26.50	26.56	26.56	26.28	26.29	25.93	25.12	25.15	25.43	25.65	25.95	26.14
13	26.57	26.59	26.53	26.27	26.29	25.80	25.18	24.83	25.07	25.67	25.98	26.16
14	26.51	26.60	26.49	26.28	26.28	25.80	25.19	24.94	25.15	25.69	25.97	26.16
15	26.48	26.60	26.41	26.29	26.30	25.73	25.18	25.01	25.18	25.70	25.98	26.18
16	26.49	26.58	26.45	26.28	26.30	25.55	25.22	24.99	25.19	25.71	25.95	26.17
17	26.51	26.62	26.48	26.29	26.28	25.43	25.24	25.04	25.19	25.71	25.96	26.18
18	26.53	26.59	26.47	26.28	26.31	25.43	25.29	25.08	25.18	25.71	25.99	26.19
19	26.49	26.58	26.45	26.27	26.30	25.46	25.31	25.13	25.18	25.74	26.00	26.13
20	26.51	26.58	26.34	26.31	26.31	25.46	25.29	25.13	25.21	25.73	26.04	26.16
21	26.51	26.55	26.40	26.30	26.29	25.47	25.30	25.13	25.21	25.71	26.02	26.22
22	26.53	26.54	26.41	26.30	26.27	25.47	25.37	25.15	25.22	25.71	26.04	26.15
23	26.54	26.48	26.42	26.29	26.06	25.50	25.41	25.14	25.25	25.73	26.07	26.12
24	26.54	26.50	26.43	26.31	26.13	25.51	25.43	25.15	25.28	25.78	26.05	26.14
25	26.53	26.51	26.45	26.31	26.17	25.53	25.40	25.18	25.30	25.78	26.05	26.16
26 27 28 29 30 31	26.52 26.53 26.53 26.54 26.55 26.54	26.51 26.53 26.54 26.50 26.55	26.46 26.45 26.44 26.46 26.44 26.34	26.32 26.32 26.30 26.33 26.31 26.31	26.17 26.17 26.18 	25.41 25.38 25.37 25.38 25.34 25.33	25.50 25.50 25.53 25.56 25.57	25.21 25.22 25.21 25.23 25.25 25.25	25.30 25.34 25.39 25.41 25.45	25.78 25.77 25.78 25.82 25.80 25.81	26.05 26.06 26.07 26.06 26.10 26.10	26.16 26.12 26.08 26.11 26.07
MEAN	26.51	26.56	26.49	26.28	26.25	25.70	25.28	25.27	25.28	25.67	25.97	26.13
MAX	26.57	26.66	26.59	26.33	26.32	26.16	25.57	25.66	25.45	25.82	26.10	26.22
MIN	26.45	26.48	26.34	26.06	26.06	25.33	24.96	24.83	25.07	25.44	25.81	26.04
CAL YR WTR YR		MEAN 26.08 MEAN 25.95		HIGH 25.05 HIGH 24.83		LOW 26.66 LOW 26.66						

 $LOCATION. \\ -Latitude~41^{\circ}23'32'', longitude~81^{\circ}19'00'', Geauga~County, 9100~Bainbridge~Road, Bainbridge~Township.~Owner:~privately~owned.~AQUIFER. \\ --Pottsville~Formation~(sandstone)~of~Pennsylvanian~age.~$

WELL CHARACTERISTICS.—Domestic water-supply well, not currently in use; diameter 6 in., depth 59.87 ft.

INSTRUMENTATION.—Pressure transducer and CR10X data logger (records hourly).


DATUM.—Elevation of land-surface datum is 1,120 ft above sea level. Measuring point: mark on wooden base of instrument shelter, 0.77 ft above land-

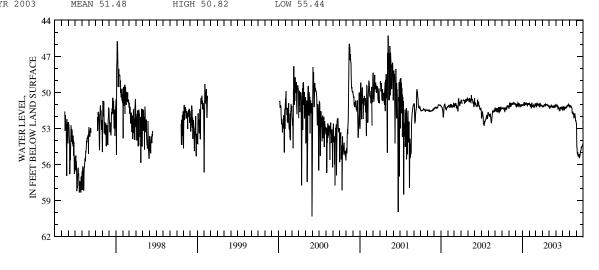
Seriace datum.

PERIOD OF RECORD.—September 26, 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.50 ft below land-surface datum, May 14, 2002; lowest measured, 10.41 ft below land-surface datum, Sept. 27, 1999.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.78	9.81	9.60	9.17	9.44	8.99	8.26	8.57	8.07	9.15	8.83	9.25
2	9.78	9.83	9.65	9.12	9.44	8.99	8.29	8.54	8.09	9.08	8.86	9.16
3	9.79	9.83	9.66	9.15	9.43	8.99	8.31	8.58	8.08	9.06	8.89	9.17
4	9.79	9.83	9.65	9.19	9.33	8.94	8.32	8.58	8.11	9.06	8.91	9.21
5	9.81	9.83	9.63	9.20	9.23	8.92	7.79	8.58	8.16	9.00	8.93	9.24
6	9.84	9.80	9.65	9.25	9.22	8.87	7.95	8.53	8.20	9.01	8.94	9.27
7	9.90	9.80	9.68		9.19	8.87	7.95	8.54	8.23	8.88	8.96	9.28
8	9.90	9.73	9.72	9.19	9.20	8.84	7.77	8.56	8.25	8.82	8.98	9.32
9	9.88	9.75	9.72	9.19	9.22	8.71	7.90	8.56	8.29	8.76	9.00	9.34
10	9.90	9.75	9.69	9.22	9.22	8.71	7.94	8.42	8.31	8.74	8.92	9.34
11	9.90	9.65	9.68	9.26	9.22	8.69	7.99	8.18	8.34	8.65	8.95	9.35
12	9.90	9.65	9.69	9.28	9.28	8.69	8.11	8.18	8.34	8.72	9.00	9.38
13	9.92	9.66	9.64	9.27	9.28	8.67	8.19	8.08	7.90	8.79	9.05	9.38
14	9.92	9.67	9.55	9.28	9.29	8.57	8.20	8.09	7.91	8.83	9.07	9.40
15	9.88	9.71	9.52	9.30	9.33	8.49	8.19	8.14	8.00	8.87	9.07	9.40
16 17 18 19 20	9.88 9.90 9.90 9.87 9.84	9.70 9.65 9.63 9.62 9.60	9.53 9.57 9.54 9.51 9.43	9.30 9.34 9.34 9.33 9.37	9.33 9.29 9.33 9.33	8.39 8.23 8.24 8.28 8.29	8.24 8.28 8.34 8.37 8.36	8.10 8.13 8.18 8.22 8.23	8.08 8.11 8.07 8.12 8.16	8.93 8.95 8.96 9.00 9.01	9.06 9.13 9.18 9.23 9.22	9.37 9.39 9.39 9.37 9.13
21	9.84	9.58	9.45	9.38	9.30	8.29	8.31	8.09	8.20	9.01	9.22	9.17
22	9.86	9.56	9.46	9.39	9.25	8.33	8.38	8.09	8.28	8.56	9.25	9.15
23	9.87	9.51	9.48	9.40	8.99	8.36	8.41	8.11	8.36	8.59	9.30	9.02
24	9.87	9.54	9.49	9.42	8.99	8.37	8.41	8.14	8.43	8.65	9.29	9.03
25	9.86	9.54	9.52	9.41	8.98	8.38	8.39	8.20	8.55	8.71	9.30	9.08
26 27 28 29 30 31	9.76 9.78 9.79 9.79 9.80 9.82	9.54 9.56 9.57 9.55 9.59	9.67 9.67 9.67 9.70 9.60 9.29	9.45 9.46 9.42 9.46 9.46 9.46	8.94 8.92 8.96 	8.34 8.31 8.31 8.30 8.26 8.26	8.47 8.52 8.51 8.56 8.57	8.27 8.29 8.27 8.31 8.35 8.33	8.73 8.90 9.00 9.07 9.15	8.74 8.75 8.71 8.76 8.82 8.83	9.30 9.27 9.30 9.30 9.23 9.25	9.08 9.08 8.85 8.88 8.91
MEAN	9.85	9.67	9.59	9.32	9.22	8.54	8.24	8.30	8.32	8.85	9.10	9.21
MAX	9.92	9.83	9.72	9.46	9.44	8.99	8.57	8.58	9.15	9.15	9.30	9.40
MIN	9.76	9.51	9.29	9.12	8.92	8.23	7.77	8.08	7.90	8.56	8.83	8.85
CAL YR 2 WTR YR 2		MEAN 9.09 MEAN 9.02		HIGH 7.50 HIGH 7.77		LOW 10.13 LOW 9.92						

413119081213200. LOCAL NUMBER, GE-351


LOCATION.—Latitude 41°31′19", longitude 81°21′32", Geauga County, south side of State Route 322, east of intersection with Caves Road and west of Bloom Brothers Hardware, Chester Township. Owner: privately owned. AQUIFER.—Cuyahoga Group (interbedded shales and sandstones) of Mississippian age.

WELL CHARACTERISTICS.—Domestic water-supply well, not currently in use; diameter 6 in., depth 126.5 ft. INSTRUMENTATION.—Pressure transducer and CR10X data logger (records hourly).

DATUM.—Elevation of land-surface datum is 1,135 ft above sea level. Measuring point: mark on wooden base of instrument shelter, 1.25 ft above land-

PERIOD OF RECORD.—May 15, 1997 through February 16, 1999, and January 6, 2000 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 45.27 ft below land-surface datum, May 8, 2001; lowest measured, 60.33 ft below land-surface datum, May 31, 2000.

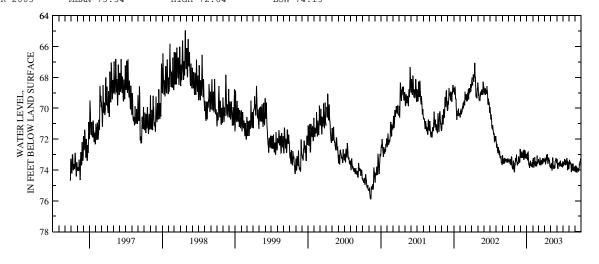
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	51.32 51.29	51.32 51.32	51.04 51.04	51.09 51.00	50.87 51.03	51.07 51.08	51.18 51.16	51.14 51.13	51.10 51.04	51.47 51.47	51.10 51.09	52.59 53.67
3	51.35	51.15	51.04	51.09	51.05	50.99	51.18	51.25	51.12	51.25	51.18	54.51
4 5	51.36 51.32	50.87 50.97	51.20 51.21	51.11 51.05	50.98 51.02	51.01 51.20	51.24 51.14	51.32 51.29	51.12 51.00	51.16 51.29	51.16 51.13	54.67 55.10
6 7	51.33 51.30	51.14 51.19	51.08 50.95	50.95 51.00	51.16 51.15	51.20 50.93	51.11 51.15	51.11 51.22	51.20 51.20	51.29 51.34	51.21 51.22	55.12 54.97
8	51.36	51.18	51.05	50.98	51.01	50.86	51.16	51.22	51.08	51.44	51.16	55.29
9	51.40	51.01	51.15	50.82	50.99	51.04	51.10	51.15	51.25	51.39	51.18	55.29
10	51.40	50.87	51.13	51.08	51.29	51.02	51.03	51.14	51.33	51.18	51.27	55.29
11 12	51.33 51.26	51.07	50.94	51.10 50.98	51.28 50.90	50.93 51.06	51.04 51.04	51.14 51.10	51.26 51.19	51.31 51.30	51.31 51.32	55.19 55.14
13	51.26	51.11 51.03	50.86	50.98	50.86	51.06	50.98	51.10	51.19	51.30	51.32	55.41
14	51.59	50.97	50.93	51.01	51.10	51.06	51.13	51.19	51.24	51.34	51.75	55.44
15	51.53	51.01	51.01	51.01	51.18	51.02	51.13	51.10	51.27	51.33	51.65	55.40
16	51.38	51.01	51.18	50.93	51.18	51.09	50.98	51.22	51.44	51.20	51.64	55.32
17 18	51.27 51.36	50.90 50.93	51.20 51.13	50.94	51.11 51.13	51.14 51.10	51.00 51.02	51.22 51.13	51.39 51.39	51.28 51.27	51.80 51.79	55.26 55.19
19	51.35	50.95	50.92	50.95 50.85	51.13	50.98	51.02	51.13	51.39	51.27	51.79	55.19
20	51.30	50.99	51.05	50.99	51.15	51.02	51.02	51.25	51.47	51.16	52.03	54.84
21	51.39	50.99	51.08	51.01	51.06	51.16	51.00	51.10	51.21	51.18	52.10	54.81
22	51.42	50.97	51.04	51.05	51.08	51.14	51.04	51.23	51.30	51.09	52.06	54.76
23 24	51.38 51.14	50.87 50.92	51.04 51.16	51.11 51.07	51.18 51.22	50.96 51.02	51.11 51.11	51.23 51.12	51.32 51.21	51.06 51.14	52.10 51.81	54.59 54.57
25	51.14	50.92	51.10	50.90	51.24	51.02	51.11	51.12	51.21	51.14	51.79	54.57
26	51.19	50.98	51.00	50.98	51.21	51.01	51.09	51.22	51.30	51.06	51.93	54.51
27	51.21	50.92	51.08	51.02	51.07	51.13	51.08	51.19	51.19	50.98	52.08	54.45
28	51.21	50.97	51.12	51.01	50.92	51.13	51.16	51.15	51.37	51.04	52.36	54.40
29	51.15	50.97	51.06	50.90		51.11	51.18	51.18	51.40	50.99	52.38	54.33
30 31	51.11 51.24	50.95	50.97 51.09	51.00 51.00		51.09 51.17	51.16	51.10 51.04	51.29	51.10 51.16	52.34 52.54	54.36
MEAN MAX	51.32 51.59	51.02 51.32	51.06 51.21	50.99 51.11	51.09 51.29	51.06 51.20	51.09 51.24	51.18 51.32	51.26 51.49	51.22 51.47	51.67 52.54	54.80 55.44
MIN	51.39	50.87	50.86	50.82	50.86	50.86	50.98	51.04	51.49	50.98	51.09	52.59
CAL YR 20 WTR YR 20		MEAN 51.24 MEAN 51.48		HIGH 50.24 HIGH 50.82		LOW 52.75 LOW 55.44						

412851081045200. LOCAL NUMBER, GE-352

LOCATION.—Latitude 41°28′51″, longitude 81° 04′52″, Geauga County, west side of State Route 608, north of Middlefield Village, by hunters' parking lot, Middlefield Township. Owner: City of Akron.

AQUIFER.—Glacial deposits of Quaternary age.

WELL CHARACTERISTICS.—Domestic water-supply well, not currently in use; diameter 6 in., depth 122.3 ft.


INSTRUMENTATIO.— Pressure transducer and CR 10X data logger (records hourly).

DATUM.—Elevation of land-surface datum is 1,140 ft above sea level. Measuring point: mark on wooden base of instrument shelter, 1.15 ft above landsurface datum.

PERIOD OF RECORD.—September 25, 1996 to current year.

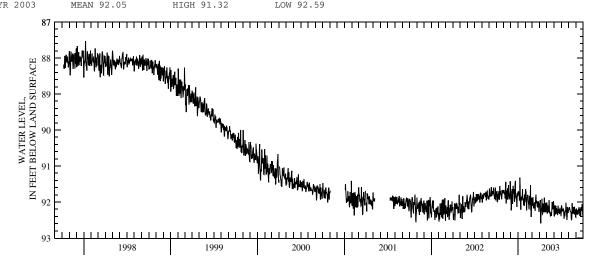
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 64.96 ft below land-surface datum, Apr. 26,1998; lowest measured, 75.90 ft below land-surface datum, Nov. 11, 2000.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	73.36	74.08	72.84	73.17	73.35	73.52	73.44	73.75	73.57	73.69	73.93	73.78
2	73.49	74.08	72.68	72.97	73.47	73.31	73.39	73.65	73.46	73.42	73.88	73.74
3	73.51	73.79	73.16	72.94	73.46	73.46	73.42	73.86	73.30	73.59	73.51	73.84
4	73.28	73.63	73.21	73.09	73.22	73.49	73.20	73.87	73.53	73.71	73.39	73.97
5	73.40	73.64	73.02	73.05	73.73	73.43	73.39	73.63	73.78	73.70	73.42	74.13
6	73.47	73.24	72.89	73.31	73.83	73.56	73.64	73.55	73.91	73.48	73.55	74.13
7	73.34	73.39	72.91	73.38	73.82	73.66	73.52	73.73	73.90	73.55	73.62	73.79
8	73.42	73.40	73.04	72.85	73.66	73.66	73.30	74.01	73.90	73.63	73.54	73.81
9	73.56	73.34	73.16	72.84	73.69	73.19	73.38	74.00	73.59	73.57	73.51	74.00
10	73.58	73.27	73.13	73.38	73.46	73.41	73.37	73.70	73.55	73.58	73.62	74.14
11	73.45	73.02	72.90	73.62	73.18	73.41	73.02	73.62	73.63	73.29	73.57	74.15
12	73.32	73.33	73.19	73.65	73.48	73.42	73.25	73.19	73.64	73.51	73.76	74.00
13	73.65	73.51	73.19	73.64	73.55	73.61	73.30	73.46	73.64	73.69	74.08	74.03
14	73.66	73.48	72.80	73.68	73.64	73.71	73.18	73.78	73.49	73.64	74.14	73.89
15	73.36	73.62	72.77	73.82	73.76	73.47	72.98	73.89	73.65	73.38	74.01	73.91
16	73.27	73.70	73.03	73.87	73.73	73.40	73.25	73.90	73.77	73.54	73.92	73.92
17	73.15	73.52	73.28	73.70	73.50	73.41	73.52	73.86	73.76	73.63	73.61	74.04
18	73.18	73.61	73.35	73.60	73.54	73.48	73.60	73.91	73.70	73.63	73.81	74.11
19	73.34	73.58	73.10	73.47	73.67	73.61	73.52	73.78	73.40	73.59	74.02	73.92
20	73.64	73.62	72.70	73.44	73.76	73.61	73.36	73.67	73.50	73.60	74.03	74.02
21	73.81	73.38	72.88	73.69	73.55	73.27	73.28	73.82	73.66	73.34	73.80	74.03
22	73.81	73.12	72.86	73.73	73.41	73.56	73.19	73.86	73.74	73.22	73.59	73.84
23	73.93	73.27	73.19	73.60	73.07	73.60	73.34	73.84	73.67	73.50	73.90	73.59
24	73.96	73.33	73.24	73.70	73.43	73.41	73.38	73.44	73.68	73.70	74.04	73.71
25	73.75	73.30	72.76	73.73	73.62	73.23	73.37	73.40	73.77	73.95	74.00	73.49
26 27 28 29 30 31	73.48 73.40 73.59 73.58 74.08 74.11	73.39 73.54 73.49 72.96 72.64	73.08 73.16 72.97 73.26 73.26 73.14	73.76 73.75 73.51 73.77 73.83 73.77	73.50 73.46 73.49 	73.46 73.50 73.35 73.37 73.36 73.44	73.51 73.72 73.79 73.78 73.81	73.44 73.36 73.23 73.25 73.33 73.48	73.76 73.55 73.57 73.75 73.84	74.01 73.93 73.49 73.52 73.74 73.88	73.85 73.94 74.04 73.82 74.08 74.08	73.44 73.43 73.43 73.27 73.59
MEAN	73.55	73.44	73.04	73.49	73.54	73.46	73.41	73.65	73.66	73.60	73.81	73.84
MAX	74.11	74.08	73.35	73.87	73.83	73.71	73.81	74.01	73.91	74.01	74.14	74.15
MIN	73.15	72.64	72.68	72.84	73.07	73.19	72.98	73.19	73.30	73.22	73.39	73.27
CAL YR 20 WTR YR 20		MEAN 71.10 MEAN 73.54		HIGH 67.07 HIGH 72.64		LOW 74.11 LOW 74.15						

412748081172000. LOCAL NUMBER, GE-354

LOCATION.—Latitude 41°27′48", longitude 81°17′20", Geauga County, northwest corner of intersection of Sperry Road and State Route 87, Newbury Township. Owner: privately owned.

AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.


WELL CHARACTERISTICS.—Domestic water-supply well, not currently in use; diameter 6 in., depth 113.9 ft. INSTRUMENTATION.—Pressure transducer and CR10X data logger (records hourly).

DATUM.—Elevation of land-surface datum is 1,275 ft above sea level. Measuring point: mark on wooden base of instrument shelter, 4.15 ft above landsurface datum.

PERIOD OF RECORD.—October 7, 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 87.53 ft below land-surface datum, Jan. 8, 1998; lowest measured, 92.59 ft below land-surface datum, Apr. 6, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	91.72	91.68	91.90	91.71	91.64	91.95	92.06	92.01	92.37	92.30	92.21	92.24
2	91.72	91.68	91.97	91.73	91.73	91.94	92.03	92.22	92.40	92.09	92.18	92.19
3	91.71	91.74	92.23	91.71	91.72	92.11	92.05	92.32	92.26	92.10	92.19	92.19
4	91.69	91.77	92.14	91.83	91.93	91.86	91.94	92.28	92.09	92.15	92.15	92.22
5	91.99	91.77	91.69	91.78	92.23	91.94	92.45	92.09	92.26	92.26	92.15	92.35
6	91.99	91.73	91.71	91.94	92.20	92.17	92.59	92.18	92.34	92.24	92.19	92.32
7	91.88	91.90	91.64	91.93	91.88	92.16	92.38	92.23	92.17	92.19	92.22	92.22
8	91.92	91.66	92.04	91.32	91.88	92.04	92.19	92.28	92.10	92.26	92.26	92.25
9	91.77	91.58	92.04	91.57	91.88	92.07	92.18	92.26	92.30	92.20	92.27	92.32
10	91.82	91.44	91.68	91.97	91.80	92.17	92.13	92.06	92.32	92.19	92.27	92.34
11	91.77	92.03	91.55	92.11	91.84	92.05	91.91	91.95	92.18	92.19	92.28	92.31
12	91.70	92.03	91.76	92.21	91.95	92.00	92.17	92.17	92.18	92.38	92.43	92.19
13	91.91	91.85	91.72	91.87	92.02	92.22	92.33	92.30	92.21	92.46	92.50	92.18
14	91.93	91.68	91.65	91.85	92.04	92.24	92.32	92.31	92.30	92.40	92.48	92.14
15	91.62	91.74	91.64	91.94	92.20	91.95	92.07	92.26	92.34	92.27	92.32	92.19
16	91.56	91.73	91.97	91.94	92.18	91.88	92.04	92.39	92.36	92.35	92.03	92.28
17	91.75	91.62	91.99	91.83	91.83	91.79	92.06	92.39	92.30	92.36	92.20	92.38
18	91.78	91.93	91.83	91.81	91.93	91.98	92.26	92.34	92.10	92.23	92.29	92.28
19	91.69	91.80	91.54	91.64	92.00	92.03	92.28	92.31	92.20	92.26	92.32	92.19
20	91.78	91.75	91.41	91.83	92.08	91.98	92.14	92.29	92.30	92.21	92.25	92.40
21	91.84	91.53	91.70	91.92	91.86	92.00	91.88	92.38	92.23	92.02	92.14	92.38
22	91.77	91.72	91.83	91.91	91.53	92.12	92.15	92.27	92.20	92.15	92.19	92.14
23	91.92	91.83	91.89	91.91	92.19	92.13	92.27	92.12	92.23	92.27	92.30	92.19
24	91.90	91.83	91.90	92.09	92.25	92.10	92.27	92.00	92.33	92.42	92.33	92.23
25	91.72	91.91	91.84	91.90	92.41	91.98	92.02	92.12	92.28	92.49	92.14	92.23
26 27 28 29 30 31	91.66 91.76 91.73 91.70 91.67 91.75	91.91 91.77 91.72 91.42 91.69	92.13 92.10 91.76 91.84 91.80 91.72	91.97 92.10 91.79 91.99 91.99 91.80	92.18 91.88 91.96 	92.08 92.14 91.98 92.26 92.26 92.13	92.16 92.28 92.17 92.25 92.22	92.18 92.20 92.08 91.97 92.02 92.18	92.16 92.23 92.28 92.28 92.39	92.40 92.14 92.16 92.25 92.30 92.25	92.14 92.27 92.36 92.21 92.41 92.42	92.22 92.05 92.14 92.38 92.40
MEAN	91.78	91.75	91.83	91.87	91.97	92.06	92.17	92.20	92.26	92.26	92.26	92.25
MAX	91.99	92.03	92.23	92.21	92.41	92.26	92.59	92.39	92.40	92.49	92.50	92.40
MIN	91.56	91.42	91.41	91.32	91.53	91.79	91.88	91.95	92.09	92.02	92.03	92.05
CAL YR 20 WTR YR 20		MEAN 91.99 MEAN 92.05		HIGH 91.41 HIGH 91.32		LOW 92.54 LOW 92.59						

PROJECT DATA

Ground-Water Data for Geauga County, Ohio

412934081084600. LOCAL NUMBER, GE-365

LOCATION.—Latitude 41°29′34″, longitude 81°08′46″, Geauga County, 13800 Claridon-Troy Road, Burton Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in., depth 57 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,190 ft above sea level. Measuring point: top of casing 1.17 ft above land-surface datum.

PERIOD OF RECORD.—March 21, 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 13.08 ft below land-surface datum, May 22, 2002; lowest measured, 14.83 ft below land-surface datum, Sept. 24, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02	14.70
01/09/03	14.10
03/13/03	13.66*
05/21/03	13.16
07/22/03	13.89
09/09/03	14.48

412603081074000. LOCAL NUMBER, GE-366

LOCATION.—Latitude 41°26′03″, longitude 81°07′40″, Geauga County, 14350 Hubbard Road, Burton Township. Owner: privately owned. AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

AQUIFER.—Pottsville Formation (sandstone) of Pennsylvanian age.

WELL CHARACTERISTICS.—Private water-supply well; diameter 5.63 in., depth 86 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

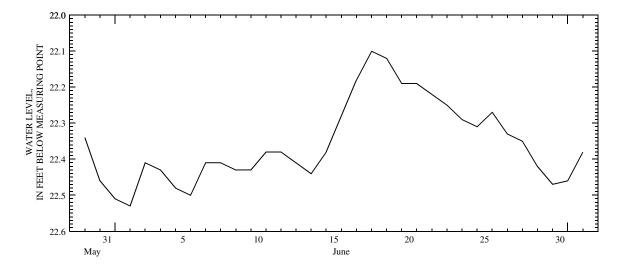
DATUM.—Elevation of land-surface datum is 1,170 ft above sea level. Measuring point: top of casing 1.45 ft above land-surface datum.

PERIOD OF RECORD.—May 22, 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.87 ft below land-surface datum, July 22, 2003; lowest measured, 27.63* ft below land-surface datum. Nov. 7, 2002 below land-surface datum, Nov. 7, 2002.

DATE	WATER LEVEL
11/07/02	27.63*
01/09/03	27.13
03/13/03	26.54*
05/21/03	24.04*
07/22/03	22.87
09/09/03	23.62

The following tables contain ground-water-level data collected as part of a cooperative study with the U. S. Environmental Protection Agency. The location of the study area is shown below.

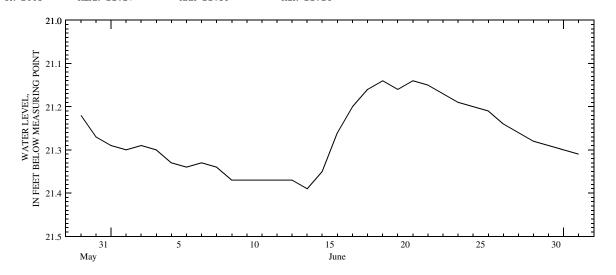

SHORT-TERM GROUND-WATER MONITORING NETWORK

391411084264000. LOCAL NUMBER, AF-3S

LOCATION.—Latitude 39°14′11″, longitude 84°26′40″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 52 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 560.40 ft above sea level. Measuring point: top of casing, 1.94 ft above land-surface datum. PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to July 2, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.10 ft below measuring point, June 18, 2003; lowest measured, 22.53 ft below measuring point, June 2, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									22.51	22.46		
2									22.53	22.38		
3									22.41			
4									22.43			
5									22.48			
6									22.50			
7									22.41			
8									22.41			
9									22.43			
10									22.43			
11									22.38			
12									22.38			
13									22.30			
14									22.41			
15									22.38			
1.5									22.30			
16									22.28			
17									22.18			
18									22.10			
19									22.12			
20									22.19			
0.1									00.40			
21									22.19			
22									22.22			
23									22.25			
24									22.29			
25									22.31			
26									22.27			
27									22.33			
28									22.35			
29									22.42			
30								22.34	22.47			
31								22.46				
MEAN								22.40	22.35	22.42		
MAX								22.46	22.53	22.46		
MIN								22.34	22.10	22.38		
WTR YR 2	003	MEAN 22.36		MAX 22.53		MIN 22.10						


SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391411084264001. LOCAL NUMBER, H-41

LOCATION.—Latitude 39°14′11″, longitude 84°26′40″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 31 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 559.38 ft above sea level. Measuring point: top of casing, 1.93 ft above land-surface datum. PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to July 2, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 21.14 ft below measuring point, June 19, 2003; lowest measured, 21.39 ft below measuring point, June 14, 2003.

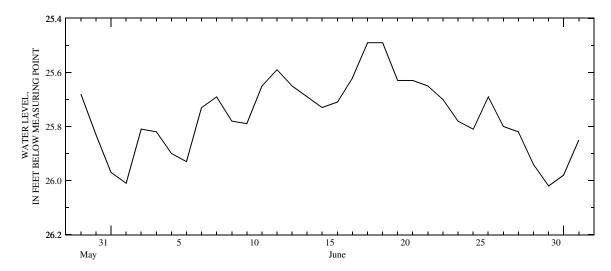
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									21.29	21.30		
2									21.30	21.31		
3									21.29			
4									21.30			
5									21.33			
6									21.34			
7									21.33			
8									21.34			
9									21.37			
10									21.37			
11									21.37			
12									21.37			
13									21.37			
14									21.39			
15									21.35			
16									21.26			
17									21.20			
18									21.16			
19									21.14			
20									21.16			
21									21.14			
22									21.15			
23									21.17			
24									21.19			
25									21.20			
26									21.21			
27									21.24			
28									21.26			
29									21.28			
30								21.22	21.29			
31								21.27				
MEAN								21.25	21.27	21.30		
MAX								21.27	21.39	21.30		
MIN								21.27		21.31		
								21.22	21.14	21.50		
WTR YR 20	003	MEAN 21.27		MAX 21.39		MIN 21.14						

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391403084264300. LOCAL NUMBER, H-47

LOCATION.—Latitude 39°14′03″, longitude 84°26′43″, Hamilton County, Ohio.

WELL CHARACTERISTICS.—Monitoring well, diameter 4 in.; depth 119 ft.

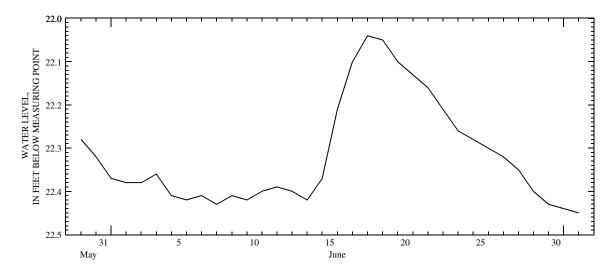

INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 559.63 ft above sea level. Measuring point: top of casing, 1.60 ft above land-surface datum.

PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to July 2, 2003.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 25.49 ft below measuring point, June 18 and 19, 2003; lowest measured, 26.02 ft below measuring point, June 30, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									25.97	25.98		
2									26.01	25.85		
3									25.81			
4									25.82			
5									25.90			
									05 00			
6									25.93			
7									25.73			
8									25.69			
9									25.78			
10									25.79			
11									25.65			
12									25.59			
13									25.65			
14									25.69			
15									25.73			
16									25.71			
17									25.62			
18									25.49			
19									25.49			
20									25.63			
21									25 62			
21									25.63			
22									25.65			
23									25.70			
24									25.78			
25									25.81			
26									25.69			
27									25.80			
28									25.82			
29									25.94			
30								25.68	26.02			
31								25.83				
MEAN								25.75	25.75	25.91		
MAX								25.83	26.02	25.98		
MIN								25.68	25.49	25.85		
WTR YR 2003	3	MEAN 25.76		MAX 26.02		MIN 25.49						

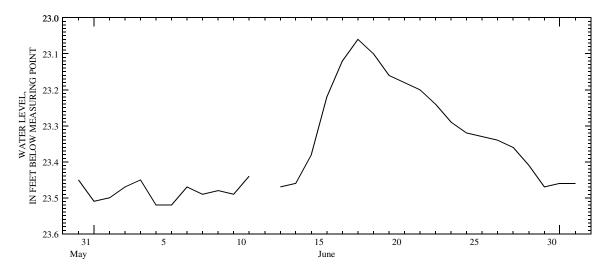

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391403084264301. LOCAL NUMBER, H-48

LOCATION.—Latitude 39°14′03″, longitude 84°26′43″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 36.5 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals...

DATUM.—Elevation of land-surface datum is 559.37 ft above sea level. Measuring point: top of casing, 1.70 ft above land-surface datum. PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to July 2, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.04 ft below measuring point, June 18, 2003; lowest measured, 22.45 ft below measuring point, July 2, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									22.37	22.44		
2									22.38	22.45		
3									22.38			
4									22.36			
5									22.41			
									00 40			
6									22.42			
7									22.41			
8									22.43			
9									22.41			
10									22.42			
11									22.40			
12									22.39			
13									22.40			
14									22.42			
15									22.37			
4.6									00 01			
16									22.21			
17									22.10			
18									22.04			
19									22.05			
20									22.10			
21									22.13			
22									22.16			
23									22.21			
24									22.26			
25									22.28			
0.6									00 00			
26									22.30			
27									22.32			
28									22.35			
29									22.40			
30								22.28	22.43			
31								22.32				
MEAN								22.30	22.31	22.45		
MAX								22.32	22.43	22.45		
MIN								22.28	22.04	22.44		
WTR YR 2	003	MEAN 22.32		MAX 22.45		MIN 22.04						

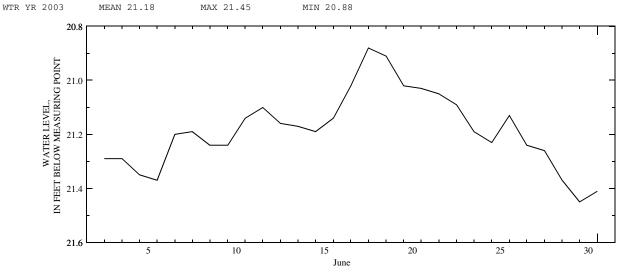

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391403084264302. LOCAL NUMBER, H-49

LOCATION.—Latitude 39°14′03″, longitude 84°26′43″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 55 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 559.58 ft above sea level. Measuring point: top of casing, 2.44 ft above land-surface datum. PERIOD OF RECORD.—Continuous water-level data from May 31, 2003 to July 2, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 23.06 ft below measuring point, June 18, 2003; lowest measured, 23.52 ft below measuring point, June 5, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									23.51	23.46		
2									23.50	23.46		
3									23.47			
4									23.45			
5									23.52			
6									23.52			
7									23.47			
8									23.49			
9									23.48			
10									23.49			
11									23.44			
12												
13									23.47			
14									23.47			
15									23.40			
13									23.30			
16									23.22			
17									23.12			
18									23.06			
19									23.10			
20									23.16			
21									02 10			
21									23.18			
									23.20 23.24			
23												
24 25									23.29			
25									23.32			
26									23.33			
27									23.34			
28									23.36			
29									23.41			
30									23.47			
31								23.45				
MEAN								23.45	23.36	23.46		
MAX								23.45	23.52	23.46		
MIN								23.45	23.06	23.46		
WTR YR	2003	MEAN 23.37		MAX 23.52		MIN 23.06						


SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391417084262300. LOCAL NUMBER, H-85

LOCATION.—Latitude 39°14′17″, longitude 84°26′23″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 4 in.; depth 111.3 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 558.70 ft above sea level. Measuring point: top of casing, 1.41 ft above land-surface datum. PERIOD OF RECORD.—Continuous water-level data from June 2, 2003 to July 1, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 20.88 ft below measuring point, June 18, 2003; lowest measured, 21.45 ft below measuring point, June 30, 2003.

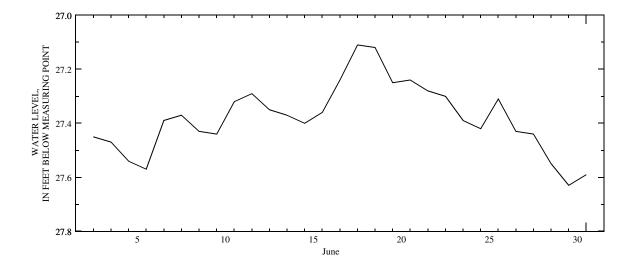
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										21.41		
2												
3									21.29			
4									21.29			
5									21.35			
5									21.55			
6									21.37			
7									21.20			
8									21.19			
9									21.24			
10									21.24			
10									21.24			
11									21.14			
12									21.10			
13									21.16			
14									21.17			
15									21.19			
13									21.17			
16									21.14			
17									21.02			
18									20.88			
19									20.91			
20									21.02			
20									21.02			
21									21.03			
22									21.05			
23									21.09			
24									21.19			
25									21.23			
23									21.23			
26									21.13			
27									21.24			
28									21.26			
29									21.37			
30									21.45			
31												
31												
MEAN									21.18	21.41		
MAX									21.45	21.41		
MIN									20.88	21.41		
									20.00	21.41		
TIME ITE	000	3577337 01 11	^	36337 01 45		34737 00 00						

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391419084262900. LOCAL NUMBER, H-178

LOCATION.—Latitude 39°14′19″, longitude 84°26′29″, Hamilton County, Ohio.

WELL CHARACTERISTICS.—Monitoring well, diameter 4 in.; depth 124 ft.

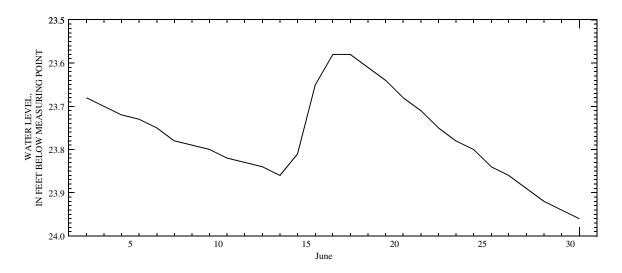

INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 564.10 ft above sea level. Measuring point: top of casing, 1.71 ft above land-surface datum.

PERIOD OF RECORD.—Continuous water-level data from June 3, 2003 to July 1, 2003.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 27.11 ft below measuring point, June 18, 2003; lowest measured, 27.63 ft below measuring point, June 30, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										27.59		
2												
3									27.45			
4									27.47			
5									27.54			
6									27.57			
7									27.39			
8									27.37			
9									27.43			
10									27.44			
11									27.32			
12									27.29			
13						-:			27.35			
14									27.37			
15									27.40			
16									27.36			
17									27.24			
18									27.11			
19									27.12			
20									27.25			
21									27.24			
22									27.28			
23									27.30			
24									27.39			
25									27.42			
26									27.31			
27									27.43			
28									27.44			
29									27.55			
30									27.63			
31												
MEAN									27.37	27.59		
MAX									27.63	27.59		
MIN									27.11	27.59		
WTR YR 2	003	MEAN 27.38		MAX 27.63		MIN 27.11						


SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391418084262800. LOCAL NUMBER, H-185

LOCATION.—Latitude 39°14′18″, longitude 84°26′28″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 29 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

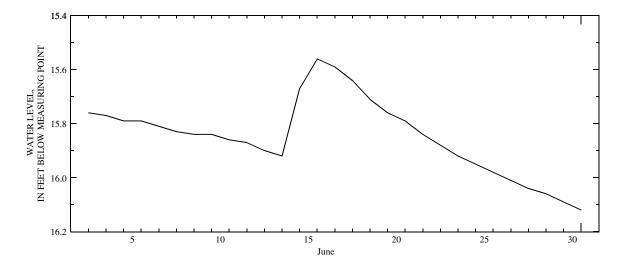
DATUM.—Elevation of land-surface datum is 564.40 ft above sea level. Measuring point: top of casing, 2.32 ft above land-surface datum. PERIOD OF RECORD.—Continuous water-level data from June 3, 2003 to July 1, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 23.58 ft below measuring point, June 17 and 18, 2003; lowest measured, 23.96 ft below measuring point, July 1, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										23.96		
2												
3									23.68			
4									23.70			
5						===			23.72			
6									23.73			
7									23.75			
8									23.78			
9									23.79			
10									23.80			
11									23.82			
12									23.83			
13									23.84			
14									23.86			
15									23.81			
16									23.65			
17									23.58			
18									23.58			
19									23.61			
20									23.64			
21									23.68			
22									23.71			
23									23.75			
24									23.78			
25									23.80			
26									23.84			
27									23.86			
28									23.89			
29									23.92			
30									23.94			
31												
31												
MEAN									23.76	23.96		
MAX									23.94	23.96		
MIN									23.58	23.96		
WTR YR 2	003	MEAN 23.77		MAX 23.96		MIN 23.58						

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391418084262300. LOCAL NUMBER, H-192

LOCATION.—Latitude 39°14′18″, longitude 84°26′23″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 23 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

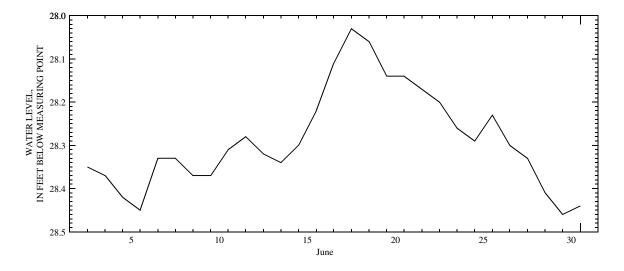

DATUM.—Elevation of land-surface datum is 559.0 ft above sea level. Measuring point: top of casing, 1.62 ft above land-surface datum.

PERIOD OF RECORD.—Continuous water-level data from June 3, 2003 to July 1, 2003.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 15.56 ft below measuring point, June 16, 2003; lowest measured, 16.12 ft below

measuring point, July 1, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										16.12		
2												
3									15.76			
4									15.77			
5									15.79			
6									15.79			
7									15.81			
8									15.83			
9									15.84			
10									15.84			
11									15.86			
12									15.87			
13									15.90			
14									15.92			
15									15.67			
16									15.56			
17									15.59			
18									15.64			
19									15.71			
20									15.76			
21									15.79			
22									15.84			
23									15.88			
24									15.92			
25									15.95			
26									15.98			
27									16.01			
28									16.04			
29									16.06			
30									16.09			
31												
MEAN									15.84	16.12		
MAX									16.09	16.12		
MIN									15.56	16.12		
WTR YR 20	003	MEAN 15.85		MAX 16.12		MIN 15.56						


SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391418084262700. LOCAL NUMBER, H-209

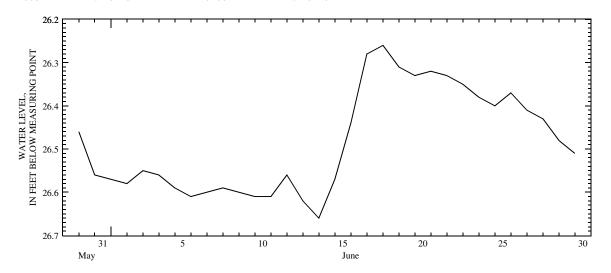
LOCATION.—Latitude 39°14′18″, longitude 84°26′27″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 57 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 565.80 ft above sea level. Measuring point: top of casing, 2.81 ft above land-surface datum. PERIOD OF RECORD.—Continuous water-level data from June 3, 2003 to July 1, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 28.03 ft below measuring point, June 18, 2003; lowest measured, 28.46 ft below measuring point, June 30, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										28.44		
2												
3									28.35			
4									28.37			
5									28.42			
6									28.45			
7									28.33			
8									28.33			
9									28.37			
10									28.37			
11									20 21			
11									28.31			
12									28.28			
13									28.32			
14									28.34			
15									28.30			
16									28.22			
17									28.11			
18									28.03			
19									28.06			
20									28.14			
0.4									00.44			
21									28.14			
22									28.17			
23									28.20			
24									28.26			
25									28.29			
26									28.23			
27									28.30			
28									28.33			
29									28.41			
30									28.46			
31												
MEAN									28.28	28.44		
MAX									28.46	28.44		
MIN									28.03	28.44		
WTR YR 2	003	MEAN 28.29)	MAX 28.46		MIN 28.03						

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391338084265701. LOCAL NUMBER, H-219


LOCATION.—Latitude 39°13′37″, longitude 84°26′57″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 58 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

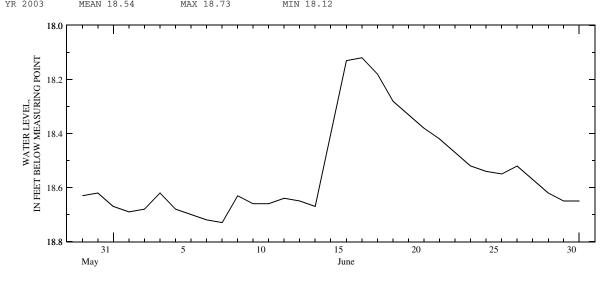
DATUM.—Elevation of land-surface datum is 559.08 ft above sea level. Measuring point: top of casing, 0.27 ft below land-surface datum.

PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to June 30, 2003.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 26.26 ft below measuring point, June 18, 2003; lowest measured, 26.66 ft below measuring point, June 14, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									26.57			
2									26.58			
3									26.55			
4									26.56			
5									26.59			
6									26.61			
7									26.60			
8									26.59			
9									26.60			
10									26.61			
11									26.61			
12									26.56			
13									26.62			
14									26.66			
15									26.57			
16									26.44			
17									26.28			
18									26.26			
19									26.31			
20									26.33			
21									26.32			
22									26.33			
23									26.35			
24									26.38			
25									26.40			
26									26.37			
27									26.41			
28									26.43			
29									26.48			
30								26.46	26.51			
31								26.56				
MEAN								26.51	26.48			
MAX								26.56	26.66			
MIN								26.46	26.26			
WTR YR 2	003	MEAN 26.4	8	MAX 26.66		MIN 26.26						

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED


391354084264600. LOCAL NUMBER, H-221

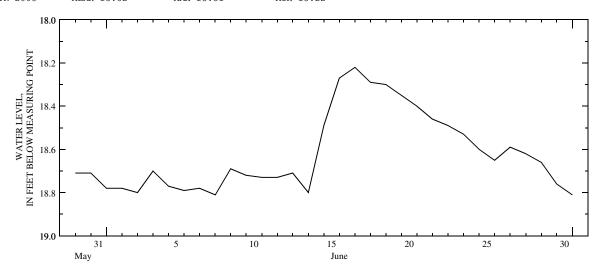
LOCATION.—Latitude 39°13′54″, longitude 84°26′46″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 30 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 554.74 ft above sea level. Measuring point: top of casing, 0.37 ft below land-surface datum. PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to July 1, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 18.12 ft below measuring point, June 17, 2003; lowest measured, 18.73 ft below

measuring point, June 8, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									18.67	18.65		
2									18.69			
3									18.68			
4									18.62			
5									18.68			
6									18.70			
7									18.72			
8									18.73			
9									18.63			
10									18.66			
11									10 66			
12									18.66 18.64			
13									18.65			
14												
14 15									18.67 18.40			
15									18.40			
16									18.13			
17									18.12			
18									18.18			
19									18.28			
20									18.33			
21									18.38			
22									18.42			
23									18.47			
24									18.52			
25									18.54			
26									18.55			
27									18.52			
28									18.57			
29									18.62			
30								18.63	18.65			
31								18.62				
31								10.02				
MEAN								18.62	18.54	18.65		
MAX								18.63	18.73	18.65		
MIN								18.62	18.12	18.65		
WTR YR 2	003	MEAN 18.54		MAX 18.73		MIN 18.12						

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

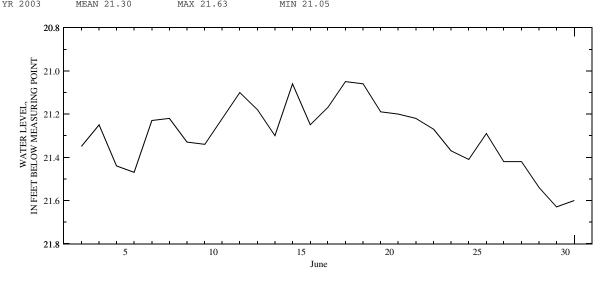

391354084264601. LOCAL NUMBER, H-222

LOCATION.—Latitude 39°13′54″, longitude 84°26′46″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 48 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 554.73 ft above sea level. Measuring point: top of casing, 0.31 ft below land-surface datum. PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to July 1, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 18.22 ft below measuring point, June 17, 2003; lowest measured, 18.81 ft below

measuring point, July 1, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									18.78	18.81		
2									18.78			
3									18.80			
4									18.70			
5									18.77			
6									18.79			
7									18.78			
8									18.81			
9									18.69			
10									18.72			
11									18.73			
12									18.73			
13									18.71			
14									18.80			
15									18.49			
13									10.47			
16									18.27			
17									18.22			
18									18.29			
19									18.30			
20									18.35			
0.1									10 40			
21									18.40			
22									18.46			
23									18.49			
24									18.53			
25									18.60			
26									18.65			
27									18.59			
28									18.62			
29									18.66			
30								18.71	18.76			
31								18.71				
MEAN								18.71	18.61	18.81		
MAX								18.71	18.81	18.81		
MIN								18.71	18.22	18.81		
WTR YR 2	003	MEAN 18.6	2	MAX 18.81		MIN 18.22						


SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391354084264602. LOCAL NUMBER, H-223

LOCATION.—Latitude 39°13′54″, longitude 84°26′46″, Hamilton County, Ohio. WELL CHARACTERISTICS.—Monitoring well, diameter 2 in.; depth 162 ft. INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 554.96 ft above sea level. Measuring point: top of casing, 0.32 ft below land-surface datum. PERIOD OF RECORD.—Continuous water-level data from June 3, 2003 to July 1, 2003. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 21.05 ft below measuring point, June 18, 2003; lowest measured, 21.63 ft below measuring point, June 30, 2003.

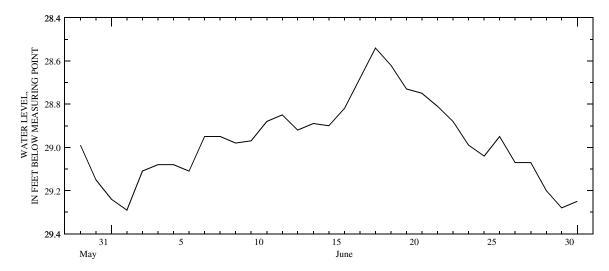
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										21.60		
2												
3									21.35			
4									21.25			
5									21.44			
6									21.47			
7									21.23			
8									21.22			
9									21.33			
10									21.34			
4.4									01 00			
11									21.22			
12									21.10			
13									21.18			
14									21.30			
15									21.06			
16									21.25			
17									21.17			
18									21.05			
19									21.06			
20									21.19			
21									21.20			
22									21.22			
23									21.27			
24									21.37			
25									21.41			
26									21.29			
27									21.42			
28									21.42			
29									21.54			
30									21.63			
31												
MEAN									21.29	21.60		
MAX									21.63	21.60		
MIN									21.05	21.60		
WTR YR 20	003	MEAN 21.30)	MAX 21.63		MIN 21.05						

SHORT-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

391412084263700. LOCAL NUMBER, H-225

LOCATION.—Latitude 39°14′12″, longitude 84°26′37″, Hamilton County, Ohio.

WELL CHARACTERISTICS.—Monitoring well, diameter 4 in.; depth 66 ft.


INSTRUMENTATION.—Pressure transducer data logger, records in 15 min intervals.

DATUM.—Elevation of land-surface datum is 565.8 ft above sea level. Measuring point: top of casing, 2.32 ft above land-surface datum.

PERIOD OF RECORD.—Continuous water-level data from May 30, 2003 to July 1, 2003.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 28.54 ft below measuring point, June 18, 2003; lowest measured, 29.29 ft below measuring point, June 2, 2003.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									29.24	29.25		
2									29.29			
3									29.11			
4									29.08			
5									29.08			
6									29.11			
7									28.95			
8									28.95			
9									28.98			
10									28.97			
11									28.88			
12									28.85			
13									28.92			
14									28.89			
15									28.90			
16									28.82			
17									28.68			
18									28.54			
19									28.62			
20									28.73			
21									28.75			
22									28.81			
23									28.88			
24									28.99			
25									29.04			
26									28.95			
27									29.07			
28									29.07			
29									29.20			
30								28.99	29.28			
31								29.15				
MEAN								29.07	28.95	29.25		
MAX								29.15	29.29	29.25		
MIN								28.99	28.54	29.25		
WTR YR 20	003	MEAN 28.9	7	MAX 29.29		MIN 28.54						

WATER LEVELS IN WELLS IN THE EVENDALE, LOCKLAND, AND READING, OHIO, AREA, JULY 2-3, 2003

[ft, feet; BMP, below measuring point; ASL, above sea level; BLS, below land surface; MP, measuring point; W, water-table aquifer; S, shallow aquifer; L, lower aquifer; AF, Former Air Force Plant 36; GE, General Electric Aircraft Engines; MI, Morton International, Inc.; PR, Pristine Superfund Site; RL, Reading/Lockland; --, no data]

Tomici 7th Tolec	riant 50, GL,	General Electric	7 tirerart Engines	, 1411, 141011011	micriational, mc	ic., FK, Flistine Superfund Site, KL, Keading/Lockland,, no dataj				·J
Well	Aquifer	Location	Date	Time	Water level, in ft BMP	Water altitude, in ft ASL	Northing	Easting	Well depth, in ft BLS	MP altitude, in ft ASL
AF-10P	W	AF	7/3/2003	1013	20.93	540.48	456127.6	1416977.8	22.4	561.41
AF-12P	W	AF	7/2/2003	1340	11.88	562.89	456296.4	1416183.2	19.5	574.77
AF-14P	W	AF	7/3/2003	1103	14.22	544.21	456528.8	1416790.6	27.5	558.43
AF-16P	W	AF	7/3/2003	1330	20.63	541.88			30.5	562.51
AF-17P	W	AF	7/3/2003	1058	20.56	540.40	456483.2	1417474.1	31.5	560.96
AF-18P	W	AF	7/2/2003	1333	12.51	565.46	457042.9	1415971.4	24.1	577.97
AF-1P	W	AF	7/3/2003	1312	18.50	540.88	456926.9	1417966.2	29.0	559.38
AF-2P	W	AF	7/3/2003	1054	22.77	540.44		1418008.9	33.0	563.21
AF-3P	W	AF	7/3/2003	0910	21.34	540.28	456297.2	1417884.3	31.0	561.62
AF-4P	M	AF	7/3/2003	1050	21.62	540.10	456180.6	1417877.6	34.5	561.72
AF-5P	W	AF	7/3/2003	1042	21.61	539.62	455882.6	1417831.5	33.0	561.23
AF-6P	W	AF	7/3/2003	1038	21.78	539.82	456059.7	1417402.7	33.0	561.60
AF-7P	W	AF	7/3/2003	0927	22.47	538.61	455478.1	1417577.2	36.5	561.08
123-MW1S	W	GE	7/3/2003	1508	17.09	542.78	458092.3	1418919.4	24.7	559.87
18-MW1S	W	GE	7/2/2003	1525	16.71	542.81	456875.3	1419560.6	33.6	559.52
20-MW1S	W	GE	7/3/2003	1610	12.30	553.27	461568.6	1418761.2	23.5	565.57
20-MW3S	W	GE	7/2/2003	1421	13.95	555.35	461702.3	1418616.9	22.4	569.30
27_28-MW1S	W	GE	7/2/2003	1507	16.96	546.71	457643.3	1419566.1	22.9	563.67
32-MW1S	W	GE	7/3/2003	1602	16.88	550.51	461133.0	1419209.0	27.9	567.39
61_67-MW1S	W	GE	7/3/2003	1550	16.15	551.19	460996.8	1419376.0	28.0	567.34
61_67-MW3S	W	GE	7/3/2003	1559	14.08	550.39	461084.2	1419409.4	25.2	564.47
62_63-MW2S	W	GE	7/3/2003	1359	18.40	542.90	457548.0	1418590.0		561.30
62_63-MW4S	W	GE	7/3/2003	1404	18.98	542.49	457528.6	1418586.9	28.8	561.47
64_68-MW1S	W	GE	7/3/2003	1450	17.84	544.06	459124.1		24.5	561.90
70-MW1S	W	GE	7/3/2003	1540	20.55	540.80	460440.0	1419626.1	24.6	561.35
O.C. MEJA.C.	7-7	Q.F.	7/2/2002	1520	10.40	E 47 04	460140 0	1410600 7	25.6	ECO 40
86-MW4S	W	GE GE	7/3/2003 7/3/2003	1538 1530	12.48 20.22	547.94 542.48	460142.8 458959.4	1419608.7 1419111.9	25.6 29.7	560.42 562.70
93_94-MW2S										
98_99-MW1S	W	GE	7/3/2003	1504 1411	17.29	542.72	458160.7		27.0	560.01
AOCLD-MW2S AOCLD-MW3S	W W	GE GE	7/3/2003 7/3/2003	1411	13.93 13.68	542.21 543.11	457825.5 457883.5	1417836.0 1417368.1	24.6 22.5	556.14 556.79
AOCPST-MW1	W	GE	7/3/2003	1430	13.55	542.73	459053.5	1417796.7	20.1	556.28
AOCPST-MW2S	W	GE	7/3/2003	1439	17.11	542.59	459057.0	1417960.4	26.1	559.70
AOCPST-MW3S	W	GE	7/3/2003	1427	15.13	542.75	459065.0	1417684.4	25.9	557.88
AOCW6-MW1S	W	GE	7/3/2003	1502	17.13	542.63	458281.6	1418822.0	28.8	559.76
EBG-MW3S	M	GE	7/2/2003	1535	13.30	546.30	457133.9	1420054.1	17.7	559.60
EBG-MW4S	W	GE	7/2/2003	1450	10.07	553.15	458181.6	1420083.6	17.7	563.22
EBG-MW5S	W	GE	7/2/2003	1240	13.92	541.74	456843.2	1418466.0	21.3	555.66
GM-10P	W	GE	7/2/2003	1215	15.91	544.71	456971.6	1419129.0	24.2	560.62
GM-11P	W	GE	7/2/2003	1240	23.97	542.75	456978.5	1418810.5	30.8	566.72
GM-1P	W	GE	7/2/2003	1521	18.03	546.58	457105.9	1419565.5	24.1	564.61
GM-3P	W	GE	7/3/2003	1345	18.66	540.58	457074.6	1418304.2	29.3	559.24
GM-4	W	GE	7/3/2003	1457	18.75	542.32	458770.2	1418874.2	37.0	561.07
GM-6P	W	GE	7/2/2003	1456	10.11	552.69	457944.9		20.1	562.80
GM-9P	W	GE	7/3/2003	1150	18.42	541.53		1417244.4	28.0	559.95
NEBG-MW1S	W	GE	7/3/2003	1537	15.43	552.28	461485.4		28.0	567.71
NWBG-MW1	W	GE	7/2/2003	1426	12.42	558.68	462331 5	1418673.8	22.0	571.10
WBG-MW2S	W	GE	7/3/2003	1420	16.66	554.62		1416931.0	28.0	571.28
H-221	W	RL	7/2/2003	0802	18.68	535.69		1417263.9	30.0	554.37
AF-10S	S	AF	7/3/2003	1013	26.80	535.10		1416979.3	71.0	561.90
AF-11S	S	AF	7/3/2003	1017	30.53	534.46	456094.7		63.0	564.99
	S	AF	7/2/2003	1340	40.93	534.19		1416186.0	74.0	575.12
AF-12S AF-14S	S S	AF AF	7/2/2003	1103	23.40	534.19		1416789.3	65.0	558.45
AF-14S AF-15S	S S	AF AF	7/3/2003	1103	25.40	536.56		1416789.3	54.0	561.96
AF-19S	S	AF	7/3/2003	1005	29.62	534.17		1417037.9	62.4	563.79
AF-19S AF-1S	S	AF	7/3/2003	1313	19.84	539.61	456921.2	1417037.9	48.5	559.45
111. 10	۵	AII	1/3/2003	T) T)	17.04	JJJ.U1	4JUJZ1.Z	±=±1311.∠	40.3	222.43

WATER LEVELS IN WELLS IN THE EVENDALE, LOCKLAND, AND READING, OHIO, AREA, JULY 2-3, 2003—Continued

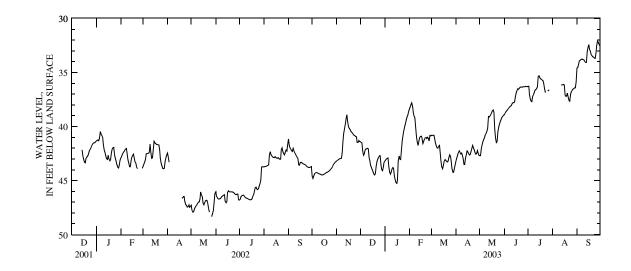
[ft, feet; BMP, below measuring point; ASL, above sea level; BLS, below land surface; MP, measuring point; W, water-table aquifer; S, shallow aquifer; L, lower aquifer; AF, Former Air Force Plant 36; GE, General Electric Aircraft Engines; MI, Morton International, Inc.; PR, Pristine Superfund Site; RL, Reading/Lockland; --, no data]

Well	Aquifer	Location	Date	Time	Water level,	Water altitude,	Northing	Easting	Well depth,	MP altitude,
Mell	Aquitei	посастоп	Date	TIME	in ft BMP		NOTCHING	Easting	in ft BLS	
AF-20S	S	AF	7/3/2003	1008	27.56	534.82	455927.7	1416940.5	69.0	562.38
AF-22S	S	AF	7/3/2003	1620	33.40	535.12	457011.5	1416445.7	77.5	568.52
AF-2S	S	AF	7/3/2003	1053	23.08	539.39	456373.8	1418005.8	49.0	562.47
AF-3S	S	AF	7/3/2003	0904	22.46	539.33	456296.0	1417879.8	52.0	561.79
AF-4S	S	AF	7/3/2003	1050	22.89	539.18	456183.3	1417880.1	53.0	562.07
AF-5S	S	AF	7/3/2003	1042	22.68	538.88	455886.7	1417833.2	51.0	561.56
AF-6S	S	AF	7/3/2003	1038	23.60	538.99	456056.3	1417402.7	51.0	562.59
AF-7S	S	AF	7/3/2003	0935	23.43	538.47	455482.2	1417577.6	55.0	561.90
AF-8S	S	AF	7/3/2003	0958	25.67	535.40	455524.8	1417088.3	60.0	561.07
AF-9S	S	AF	7/3/2003	1030	29.54	534.54	455790.5	1416793.3	60.0	564.08
GM-1	S	GE	7/2/2003	1521	20.66	543.75	457082.5	1419573.7	57.0	564.41
GM-11S	S	GE	7/2/2003	1234	28.33	540.28	456983.3	1418868.8	60.9	568.61
GM-3S	S	GE	7/3/2003	1345	21.93	540.93	457151.7	1418264.4	55.6	562.86
GM-5S	S	GE	7/2/2003	1328	26.26	538.06	457228.9	1416751.8	61.7	564.32
GM-6S	S	GE	7/2/2003	1457	18.71	544.88	457931.7	1420510.3	47.4	563.59
GM-7S	S	GE	7/2/2003	1445	24.90	545.01	458741.5	1420167.2	54.4	569.91
GM-8S	S	GE	7/2/2003	1405	24.62	537.93	457988.5	1416732.5	70.3	562.55
GM-9S	S	GE	7/3/2003	1150	20.12	540.53	457094.3	1417248.6	55.2	560.65
H-219	S	RL	7/1/2003	1345	26.47	532.34	452896.2	1416419.7	58.0	558.81
H-222	S	RL	7/2/2003	0807	18.74	535.68	454552.1	1417266.2	48.0	554.42
AF-11D	L	AF	7/3/2003	1017	31.63	534.45	456088.0	1416583.9	102.0	566.08
AF-12D	L	AF	7/2/2003	1340	41.05	534.09	456298.1	1416192.1	112.0	575.14
AF-15B	L	AF	7/3/2003	1138	23.35	536.12	457003.2	1416853.7	186.8	559.47
AF-15D	L	AF	7/3/2003	1125	24.93	536.57	456991.9	1416852.2	113.0	561.50
AF-16D	L	AF	7/3/2003	1330	25.20	537.22	457003.9	1417280.7	101.0	562.42
AF-17D	L	AF	7/3/2003	1058	25.00	536.16	456484.5	1417468.2	100.0	561.16
AF-18D	L	AF	7/2/2003	1333	43.93	534.56	457036.6	1415970.5	80.0	578.49
AF-19D	L	AF	7/3/2003	1005	29.14	534.88	455818.2	1417039.4	91.1	564.02
AF-1D	L	AF	7/3/2003	1311	22.24	537.42	456926.7	1417977.6	118.0	559.66
AF-20D	L	AF	7/3/2003	1008	27.58	534.84	455933.7	1416941.3	91.1	562.42
AF-21D	L	AF	7/3/2003	1026	24.86	534.61	455941.1	1416777.2	90.1	559.47
AF-22D	L	AF	7/3/2003	1620	32.73	535.41	457010.5	1416451.5	126.0	568.14
AF-5D	L	AF	7/3/2003	1042	25.75	535.90	455889.4	1417834.6	110.0	561.65
AF-7D	L	AF	7/3/2003	0929	25.86	535.24	455489.1	1417578.8	119.0	561.10
AF-8D	L	AF	7/3/2003	0957	26.11	534.65	455517.7	1417092.1	96.0	560.76
20-MW3D	L	GE	7/2/2003	1421	22.15	546.92	461643.0	1418599.1	131.3	569.07
27_28-MW1D	L	GE	7/2/2003	1506	22.08	541.14	457657.3	1419571.9	151.0	563.22
27_28-MW2D	L	GE	7/2/2003	1251	27.44	538.37	457008.9	1418666.3	123.4	565.81
27_31-MW5D	L	GE	7/2/2003	1220	21.26	538.85	456884.1	1419199.6	111.3	560.11
EBG-MW4D	L	GE	7/2/2003	1439	13.98	544.14	459067.0	1419613.9	101.8	558.12
GM-3D	L	GE	7/3/2003	1345	23.85	538.62	457163.3	1418266.1	147.1	562.47
GM-5D	L	GE	7/2/2003	1327	27.41	536.66	457241.0	1416753.8	117.9	564.07
GM-6D	L	GE	7/2/2003	1458	19.03	543.79	457934.5	1420519.8	160.0	562.82
GM-7D	L	GE	7/2/2003	1445	24.03	545.15	458766.3	1420096.1	112.0	569.18
GM-8D	L	GE	7/2/2003	1405	24.57	537.98	457997.9	1416733.3	112.0	562.55
GM-9D	L	GE	7/3/2003	1150	23.38	537.34	457099.8	1417254.0	111.5	560.72
H-7 ODNR	L	GE	7/3/2003	1448	19.84	543.34	459390.7	1418915.0	180.0	563.18
NEBG-MW1D	L	GE	7/3/2003	1537	19.14	547.86	461481.4	1419853.8	132.0	567.00
WBG-MW2D	L	GE	7/3/2003	1420	31.05	539.75		1416931.0	121.1	570.80
H-217	L	RL	7/2/2003	0835	34.45	525.01	452491.1	1416290.5	150.0	559.46
H-218	L	RL	7/1/2003	1500	32.92	525.36	452888.1	1416421.1	108.5	558.28
H-220	L	RL	7/1/2003	1500	33.22	525.40	452892.0	1416429.8	152.0	558.62
H-223	L	RL	7/2/2003	0755	21.43	533.21	454519.1	1417253.3	162.0	554.64
H-224	L	RL	7/1/2003	1740	29.42	524.73		1417714.3	151.0	554.15
H-78	L	RL	7/2/2003	0858	23.53	533.24	454266.0	1416763.3	150.0	556.77

The following tables contain ground-water-level measurements from a network of wells in southern Franklin County. The data were collected as part of a cooperative study with the City of Columbus.

395039082585800. LOCAL NUMBER, FR-115

LOCATION.—Latitude 39°50′39″, longitude 82°58′58″, Hydrologic Unit 05060001, near Hamilton Meadows. Owner: City of Columbus. AQUIFER.—Sand and gravel of Quaternary age.


WELL CHARACTERISTICS.—Drilled observation well, diameter 6 in., depth 116 ft.

INSTRUMENTATION.—Data logger and pressure transducer, 60-minute record.

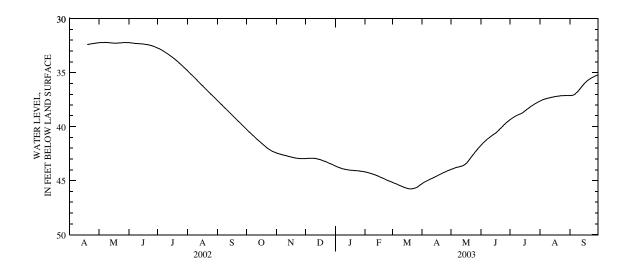
DATUM.—Elevation of land-surface datum is 720.52 ft above sea level. Measuring point: Floor of instrument shelter, 2.10 ft above land-surface datum. PERIOD OF RECORD.—August 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 48.35 ft below land-surface datum, May 27, 2002; minimum daily low, 27.21 ft below land-surface datum, May 3, 1984.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	44.60 44.81 44.58 44.37 44.29	43.18 43.12 43.08 43.01 42.96	41.40 41.47 41.52 42.27 42.66	43.18 43.08 42.98 42.94 42.89	38.37 38.19 37.99 37.81 38.16	40.81 40.83 40.82 40.80 41.14	43.17 42.91 42.64 42.41 42.24	42.70 42.70 42.07 41.70 41.41	38.92 38.77 38.64 38.55 38.46	36.29 36.27 37.00 37.42 37.66	 	34.60 34.54 34.26 33.91 33.88
6 7 8 9 10	44.25 44.27 44.30 44.34 44.37	42.96 42.93 42.39 41.28 40.64	42.51 42.17 42.08 42.05 42.00	43.69 44.20 44.41 44.23 43.92	38.70 39.03 39.21 40.04 40.96	41.50 41.80 41.98 42.00 41.85	42.40 42.54 42.45 42.60 42.98	41.20 41.02 40.76 40.62 40.44	38.35 38.27 38.16 38.09 38.05	37.69 37.19 37.04 36.86 36.64	 	33.80 33.75 33.77 33.81 33.84
11 12 13 14 15	44.41 44.44 44.48 44.48 44.46	40.16 39.71 39.28 38.91 39.56	42.07 42.88 43.19 43.59 43.83	43.79 43.89 44.58 44.94 45.18	41.44 41.75 41.35 41.01 40.92	41.74 42.39 43.19 43.74 43.92	43.51 43.51 42.95 42.57 42.26	40.16 39.07 39.11 39.00 38.84	37.87 37.78 37.80 37.71 37.27	36.55 36.51 36.30 35.34 35.29	36.15 36.16 36.13 36.09	34.01 34.06 34.07 33.08 32.69
16 17 18 19 20	44.41 44.36 44.32 44.26 44.22	40.01 40.19 40.28 40.45 40.54	44.02 44.17 44.38 44.47 44.34	45.26 44.98 43.16 42.71 43.01	40.89 41.03 41.57 41.39 41.19	43.62 43.20 43.05 43.15 43.23	42.35 42.52 42.62 42.59 42.31	38.74 38.56 38.47 38.67 40.21	36.97 36.69 36.49 36.55 36.46	35.50 35.56 35.64 35.71 35.73	36.15 37.10 37.23 37.13 36.92	32.42 32.89 33.05 33.36 33.46
21 22 23 24 25	44.18 44.12 44.07 43.99 43.90	40.60 40.75 40.80 40.85 40.94	43.67 43.25 43.03 42.85 42.69	43.05 42.17 41.32 40.79 40.36	41.04 41.00 41.11 40.98 41.08	43.28 43.18 42.89 42.62 42.81	42.03 41.76 41.97 42.16 42.41	41.05 41.47 41.37 40.46 40.04	36.37 36.35 36.35 36.36 36.34	35.99 36.53 36.82 36.83	37.34 37.61 37.65 37.01 36.74	33.55 33.58 33.66 33.69 33.17
26 27 28 29 30 31	43.78 43.66 43.50 43.41 43.30 43.26	40.95 41.47 41.47 41.29 41.40	42.70 43.53 44.01 44.10 43.74 43.31	40.02 39.76 39.39 39.13 38.93 38.66	41.33 40.82 40.86 	43.19 43.90 44.24 44.22 43.87 43.51	42.55 42.49 42.22 42.43 42.65	39.77 39.53 39.33 39.15 39.08 38.93	36.31 36.32 36.29 36.30 36.32	36.73 36.64 36.63 	36.63 36.54 36.48 36.43 36.43 35.85	32.54 32.12 32.22 32.41 32.53
MEAN MAX	44.17 44.81	41.17 43.18	43.03 44.47	42.60 45.26	40.33 41.75	42.66 44.24	42.54 43.51	40.18 42.70	37.31 38.92	36.46 37.69	36.69 37.65	33.42 34.60
WTR YR 2	2003	MEAN 40.2	21	LOW 45.26								

395058083002400. LOCAL NUMBER, FR-119

LOCATION.—Latitude 39°50′58″, longitude 83°00′24″, Hydrologic Unit 05060001. Owner: Franklin County. AQUIFER.—Sand and gravel of Quaternary age.
WELL CHARACTERISTICS.—Drilled observation water well, diameter 2 in., depth 85 ft.


INSTRUMENTATION.—Data logger and pressure transducer, 60-minute record.

DATUM.—Elevation of land-surface datum is 700 ft above sea level. Measuring point: Floor of shelter, 2.48 ft above land-surface datum.

PERIOD OF RECORD.—January 1982 to current year.

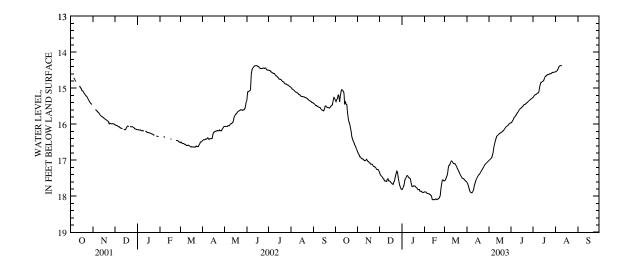
EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 52.34 ft below land-surface datum, Mar. 4-7, 1992; minimum daily low, 11.10 ft below land-surface datum, June 17, 1981.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	40.25 40.34 40.43 40.51 40.59	42.45 42.48 42.50 42.53 42.55	42.96 42.95 42.95 42.94 42.94	43.64 43.68 43.72 43.76 43.80	44.20 44.22 44.24 44.26 44.29	45.16 45.19 45.23 45.27 45.30	45.26 45.21 45.15 45.10 45.06	43.96 43.92 43.89 43.86 43.83	41.72 41.62 41.53 41.44 41.36	39.35 39.29 39.23 39.17 39.11	37.63 37.59 37.55 37.52 37.48	37.13 37.13 37.12 37.10 37.06
6 7 8 9 10	40.67 40.76 40.84 40.92 41.01	42.58 42.61 42.63 42.66 42.68	42.93 42.93 42.93 42.93 42.94	43.83 43.86 43.89 43.91 43.93	44.31 44.34 44.37 44.40 44.43	45.34 45.38 45.42 45.46 45.49	45.01 44.97 44.92 44.88 44.84	43.80 43.77 43.75 43.73 43.71	41.28 41.20 41.12 41.05 40.98	39.06 39.01 38.97 38.92 38.88	37.45 37.42 37.40 37.37 37.36	37.01 36.94 36.85 36.77 36.67
11 12 13 14 15	41.09 41.17 41.25 41.33 41.40	42.70 42.72 42.74 42.77 42.79	42.95 42.97 42.98 43.01 43.03	43.96 43.97 43.99 44.00 44.02	44.46 44.50 44.53 44.57 44.61	45.53 45.57 45.61 45.64 45.68	44.80 44.75 44.71 44.66 44.62	43.68 43.66 43.62 43.58 43.52	40.92 40.85 40.79 40.72 40.66	38.85 38.81 38.76 38.70 38.64	37.33 37.32 37.29 37.27 37.26	36.57 36.45 36.34 36.22 36.12
16 17 18 19 20	41.48 41.56 41.64 41.72 41.79	42.82 42.84 42.86 42.88 42.90	43.05 43.08 43.11 43.14 43.18	44.03 44.04 44.05 44.05 44.06	44.65 44.69 44.73 44.77 44.81	45.70 45.73 45.75 45.76 45.76	44.57 44.52 44.47 44.43 44.38	43.45 43.36 43.26 43.15 43.03	40.60 40.54 40.46 40.37 40.28	38.57 38.50 38.43 38.36 38.29	37.24 37.22 37.21 37.19 37.18	36.02 35.93 35.85 35.77 35.69
21 22 23 24 25	41.87 41.94 42.01 42.08 42.13	42.92 42.93 42.94 42.95 42.96	43.21 43.25 43.28 43.32 43.36	44.07 44.08 44.09 44.09	44.85 44.89 44.94 44.98 45.01	45.76 45.75 45.74 45.71 45.67	44.34 44.30 44.26 44.22 44.18	42.91 42.79 42.68 42.56 42.44	40.19 40.09 40.00 39.90 39.81	38.23 38.16 38.10 38.04 37.98	37.17 37.15 37.14 37.14 37.14	35.62 35.56 35.50 35.46 35.41
26 27 28 29 30 31	42.18 42.24 42.29 42.33 42.37 42.41	42.96 42.96 42.96 42.96 42.96	43.40 43.44 43.48 43.52 43.56 43.60	44.11 44.13 44.14 44.15 44.17 44.18	45.05 45.08 45.11 	45.63 45.58 45.52 45.45 45.39 45.33	44.14 44.10 44.06 44.03 43.99	42.34 42.23 42.12 42.01 41.91 41.81	39.73 39.65 39.57 39.50 39.42	37.93 37.87 37.82 37.77 37.72 37.67	37.13 37.13 37.13 37.13 37.13 37.13	35.36 35.32 35.28 35.24 35.20
MEAN MAX WTR YR	41.44 42.41 2003	42.77 42.96 MEAN 41.8	43.14 43.60	43.98 44.18 LOW 45.76	44.62 45.11	45.53 45.76	44.60 45.26	43.17 43.96	40.58 41.72	38.52 39.35	37.28 37.63	36.16 37.13

395131082592400. LOCAL NUMBER, FR-123

LOCATION.—Latitude 39°51′31″, longitude 82°59′24″, Hydrologic Unit 05060001, near Hamilton Meadows. Owner: Franklin County. AQUIFER.—Sand and gravel of Quaternary age.

WELL CHARACTERISTICS.—Drilled observation water well, diameter 2 in., depth 36.5 ft.


INSTRUMENTATION.—Data logger and pressure transducer, 60-minute record.

DATUM.—Elevation of land-surface datum is 705.87 ft above sea level. Measuring point: Floor of shelter, 2.25 ft above land-surface datum.

PERIOD OF RECORD.—April 1982 to current year.

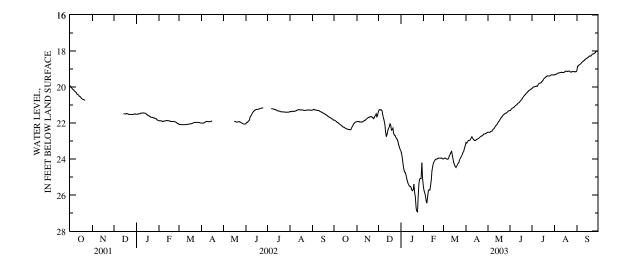
EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 18.55 ft below land-surface datum, May 12, 1992; minimum daily low, 6.87 ft below landsurface datum, Apr. 1, 1980.

DAY	OCT	NOV	DEG	7227	EED	MAD	7 DD	34737	TITAL	77.77	7110	GED
DAY	OC1	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15.34	16.77	17.33	17.81	17.88	17.57	17.62	17.01	15.96	15.26	14.54	
2	15.38	16.82	17.39	17.79	17.88	17.55	17.66	16.99	15.93	15.22	14.53	
3	15.31	16.85	17.43	17.74	17.88	17.50	17.72	16.97	15.90	15.20	14.52	
4	15.28	16.90	17.44	17.68	17.91	17.44	17.80	16.95	15.86	15.18	14.50	
5	15.19	16.91	17.47	17.56	17.92	17.39	17.86	16.93	15.82	15.17	14.45	
6	15.21	16.95	17.50	17.50	17.92	17.21	17.89	16.86	15.79	15.16	14.40	
7	15.38	16.96	17.52	17.47	17.93	17.14	17.90	16.79	15.76	15.14	14.38	
8	15.22	16.96	17.57	17.42	17.94	17.13	17.90	16.63	15.74	15.13	14.37	
9	15.09	16.98	17.57	17.43	17.95	17.07	17.86	16.53	15.70	15.10	14.37	
10	15.04	17.01	17.58	17.47	17.98	17.02	17.82	16.46	15.67	14.99	14.38	
11	15.05	17.01	17.59	17.49	17.99	17.02	17.72	16.39	15.63	14.89		
12	15.08	17.00	17.52	17.50	18.09	17.05	17.64	16.33	15.60	14.84		
13	15.13	16.97	17.52	17.54	18.10	17.09	17.58	16.31	15.58	14.83		
14	15.42	17.00	17.57	17.66	18.09	17.09	17.52	16.29	15.56	14.81		
15	15.38	17.03	17.57	17.73	18.10	17.10	17.47	16.27	15.54	14.80		
16	15.44	17.04	17.59	17.73	18.08	17.12	17.44	16.26	15.52	14.78		
17	15.46	17.07	17.62	17.71	18.07	17.16	17.40	16.24	15.50	14.71		
18	15.67	17.08	17.64	17.71	18.09	17.20	17.39	16.23	15.47	14.67		
19	15.84	17.11	17.66	17.72	18.08	17.25	17.35	16.21	15.45	14.66		
20	15.93	17.11	17.67	17.74	18.08	17.28	17.32	16.19	15.45	14.64		
21	15.99	17.11	17.60	17.76	18.05	17.33	17.28	16.18	15.43	14.62		
22	16.08	17.15	17.57	17.78	18.04	17.38	17.25	16.15	15.41	14.62		
23	16.20	17.17	17.45	17.82	17.97	17.42	17.21	16.12	15.39	14.61		
24	16.34	17.17	17.37	17.81	17.79	17.45	17.18	16.09	15.38	14.60		
25	16.42	17.19	17.30	17.81	17.64	17.49	17.14	16.07	15.36	14.60		
26	16.47	17.21	17.33	17.86	17.55	17.50	17.11	16.05	15.34	14.59		
27	16.51	17.25	17.48	17.86	17.55	17.51	17.09	16.04	15.32	14.57		
28	16.57	17.26	17.60	17.86	17.57	17.53	17.07	16.02	15.30	14.56		
29	16.61	17.26	17.69	17.89		17.56	17.05	15.99	15.29	14.56		
30	16.68	17.29	17.75	17.89		17.57	17.03	15.97	15.27	14.56		
31	16.72		17.80	17.89		17.59		15.96		14.55		
MEAN	15.72	17.05	17.54	17.70	17.93	17.31	17.48	16.37	15.56	14.83	14.44	
MAX	16.72	17.29	17.80	17.89	18.10	17.59	17.90	17.01	15.96	15.26	14.54	
WTR YR 2	003	MEAN 16.67		LOW 18.10								

395055082592400. LOCAL NUMBER, FR-271

LOCATION.—Latitude 39°50′55″, longitude 82°59′24″, Hydrologic Unit 0506000. Owner: Franklin County. AQUIFER.—Sand and gravel of Quaternary age.

WELL CHARACTERISTICS.—Drilled observation water well, diameter 2 in., depth 86 ft..


INSTRUMENTATION.—Data logger and pressure transducer, 60-minute record.

DATUM.—Elevation of land-surface datum is 708.28 ft above sea level. Measuring point: Top of PVC casing, 2.53 ft above land-surface datum.

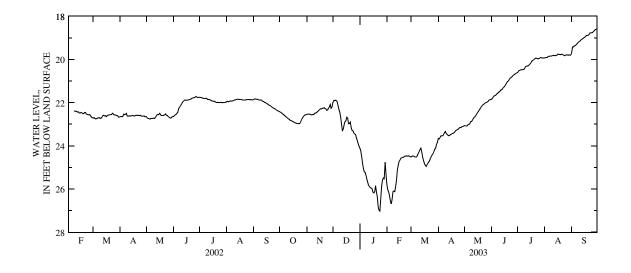
PERIOD OF RECORD.—September 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 26.93 ft below land-surface datum, Jan. 24, 2003; minimum daily low, 13.92 ft below landsurface datum, Mar. 18, 1991.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	21.83 21.85 21.88 21.91 21.96	21.93 21.92 21.91 21.93 21.92	21.35 21.26 21.27 21.25 21.27	23.57 23.68 23.97 24.33 24.55	25.49 25.74 25.88 26.03 26.33	23.99 23.95 23.95 23.97 24.00	23.08 23.11 23.04 22.96 22.97	22.51 22.52 22.52 22.51 22.48	21.31 21.25 21.20 21.17 21.15	20.08 20.03 19.99 19.99	19.32 19.31 19.29 19.28 19.25	19.07 18.84 18.83 18.77 18.76
6 7 8 9 10	21.98 22.02 22.05 22.08 22.11	21.95 21.95 21.93 21.94 21.90	21.31 21.52 21.72 21.86 22.09	24.72 24.74 24.89 25.08 25.24	26.45 26.10 25.73 25.71 25.73	24.01 24.00 23.93 23.81 23.72	22.96 22.90 22.82 22.76 22.85	22.45 22.44 22.35 22.33 22.28	21.13 21.08 21.04 21.00 20.98	19.96 19.94 19.96 19.91 19.82	19.23 19.22 19.20 19.20 19.19	18.72 18.67 18.62 18.59 18.56
11 12 13 14 15	22.14 22.17 22.22 22.23 22.24	21.87 21.87 21.83 21.79 21.76	22.48 22.76 22.61 22.43 22.28	25.37 25.46 25.51 25.52 25.57	25.49 25.14 24.65 24.39 24.22	23.63 23.56 23.78 24.00 24.20	22.90 22.95 22.97 22.96 22.92	22.21 22.14 22.11 22.05 21.98	20.93 20.89 20.87 20.82 20.77	19.80 19.78 19.78 19.73 19.69	19.18 19.19 19.20 19.19 19.16	18.53 18.48 18.45 18.42 18.39
16 17 18 19 20	22.28 22.30 22.32 22.34 22.35	21.72 21.69 21.69 21.66 21.66	22.22 22.05 22.11 22.39 22.36	25.73 25.76 25.69 25.39 25.88	24.13 24.06 24.02 24.00 23.99	24.32 24.42 24.47 24.39 24.31	22.90 22.87 22.86 22.83 22.79	21.92 21.86 21.79 21.73 21.67	20.73 20.67 20.60 20.54 20.50	19.64 19.57 19.52 19.48 19.45	19.12 19.12 19.13 19.14 19.12	18.36 18.33 18.29 18.28 18.29
21 22 23 24 25	22.36 22.37 22.38 22.36 22.27	21.64 21.67 21.68 21.75 21.73	22.27 22.56 22.67 22.70 22.79	26.09 26.71 26.89 26.93 26.04	23.96 23.95 23.95 23.95 23.96	24.23 24.20 24.05 23.95 23.89	22.75 22.72 22.71 22.68 22.62	21.63 21.57 21.53 21.50 21.47	20.45 20.39 20.34 20.31 20.27	19.41 19.38 19.39 19.39	19.11 19.13 19.17 19.18 19.15	18.24 18.18 18.16 18.16 18.14
26 27 28 29 30 31	22.18 22.10 22.03 21.99 21.95 21.94	21.64 21.57 21.48 21.65 21.58	22.87 22.90 23.05 23.21 23.35 23.47	25.32 25.11 25.08 25.09 24.21 25.04	23.94 23.97 23.99 	23.81 23.72 23.61 23.55 23.36 23.27	22.60 22.60 22.57 22.55 22.53	21.45 21.44 21.40 21.34 21.33 21.31	20.22 20.19 20.16 20.13 20.11	19.38 19.34 19.33 19.33 19.34 19.33	19.14 19.14 19.16 19.14 19.16 19.15	18.10 18.05 18.02 18.01 18.00
MEAN MAX	22.14 22.38	21.77 21.95	22.27 23.47	25.26 26.93	24.82 26.45	23.94 24.47	22.82 23.11	21.93 22.52	20.71 21.31	19.65 20.08	19.18 19.32	18.41 19.07
WTR YR 2	2003	MEAN 21.9	90	LOW 26.93	3							

395055082592401. LOCAL NUMBER, FR-272

LOCATION.—Latitude 39°50′55″, longitude 82°59′24″, Hydrologic Unit 05060001. Owner: City of Columbus. AQUIFER.—Sand and gravel of Quaternary age.
WELL CHARACTERISTICS.—Drilled observation water well, diameter 2 in., depth 45 ft.

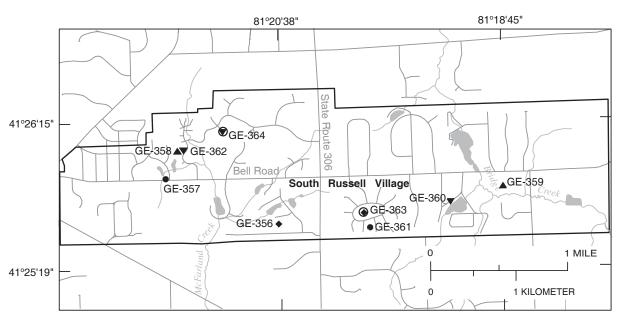

INSTRUMENTATION.—Data logger and pressure transducer, 60-minute record.

DATUM.—Elevation of land-surface datum is 708.87 ft above sea level. Measuring point: Floor of shelter, 2.36 ft above land-surface datum.

PERIOD OF RECORD.—August 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily low, 27.02 ft below land-surface datum, Jan. 24, 2003; minimum daily low, 12.43 ft below landsurface datum, June 19, 1996.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22.42 22.44 22.47 22.51 22.55	22.54 22.53 22.53 22.54 22.53	21.99 21.90 21.91 21.88 21.91	24.11 24.21 24.48 24.82 25.04	25.80 26.03 26.14 26.30 26.56	24.51 24.47 24.47 24.48 24.52	23.66 23.68 23.61 23.53 23.54	23.06 23.07 23.08 23.07 23.02	21.85 21.79 21.74 21.69 21.67	20.60 20.54 20.51 20.49 20.49	19.93 19.92 19.91 19.91 19.86	19.71 19.43 19.43 19.37 19.37
6 7 8 9 10	22.57 22.62 22.64 22.68 22.72	22.57 22.56 22.54 22.55 22.50	21.95 22.15 22.34 22.46 22.68	25.20 25.22 25.35 25.55 25.69	26.69 26.50 26.12 26.09 26.12	24.52 24.51 24.45 24.34 24.25	23.53 23.46 23.39 23.33 23.42	23.00 22.99 22.89 22.87 22.82	21.65 21.60 21.57 21.52 21.50	20.47 20.46 20.46 20.42 20.33	19.86 19.85 19.84 19.84 19.83	19.33 19.28 19.23 19.20 19.16
11 12 13 14 15	22.75 22.77 22.82 22.83 22.85	22.48 22.47 22.43 22.39 22.34	23.04 23.32 23.19 23.01 22.88	25.82 25.89 25.94 25.95 25.98	25.91 25.58 25.13 24.89 24.72	24.16 24.10 24.29 24.50 24.69	23.46 23.51 23.53 23.51 23.48	22.74 22.68 22.65 22.59 22.52	21.45 21.41 21.39 21.33 21.29	20.32 20.31 20.30 20.26 20.22	19.81 19.82 19.83 19.82 19.80	19.13 19.08 19.06 19.03 18.99
16 17 18 19 20	22.88 22.90 22.92 22.94 22.95	22.32 22.28 22.29 22.26 22.26	22.83 22.67 22.72 22.98 22.97	26.13 26.18 26.11 25.84 26.15	24.64 24.57 24.55 24.53 24.53	24.81 24.90 24.95 24.87 24.80	23.46 23.43 23.42 23.39 23.34	22.46 22.40 22.33 22.27 22.20	21.24 21.18 21.11 21.04 21.01	20.17 20.10 20.05 20.03 20.00	19.75 19.76 19.77 19.78 19.77	18.97 18.94 18.89 18.89
21 22 23 24 25	22.96 22.97 22.98 22.96 22.88	22.23 22.28 22.29 22.35 22.34	22.89 23.17 23.28 23.30 23.40	26.36 26.80 26.98 27.02 26.44	24.49 24.48 24.46 24.47 24.48	24.73 24.70 24.56 24.47 24.41	23.29 23.26 23.25 23.22 23.17	22.16 22.10 22.07 22.04 22.01	20.95 20.89 20.85 20.82 20.78	19.95 19.94 19.95 19.97	19.75 19.78 19.81 19.83 19.80	18.85 18.78 18.77 18.77
26 27 28 29 30 31	22.79 22.71 22.64 22.61 22.57 22.56	22.25 22.18 22.09 22.26 22.20	23.45 23.47 23.62 23.76 23.90 24.01	25.86 25.60 25.49 25.52 24.76 25.38	24.46 24.49 24.51 	24.34 24.26 24.15 24.10 23.92 23.82	23.15 23.15 23.12 23.10 23.08	22.00 21.97 21.94 21.88 21.87 21.85	20.73 20.70 20.67 20.64 20.62	19.95 19.92 19.92 19.93 19.94 19.93	19.79 19.79 19.81 19.78 19.81 19.79	18.71 18.66 18.62 18.61 18.59
MEAN MAX	22.74 22.98	22.38 22.57 MEAN 22.4	22.87 24.01	25.67 27.02 LOW 27.02	25.26 26.69	24.45 24.95	23.38 23.68	22.47 23.08	21.22 21.85	20.19 20.60	19.82 19.93	19.02 19.71
WIR YR 2	2003	MEAN 22.4	44	LOW 27.02	3							


PROJECT DATA Ground-Water Data for South Russell Village, Ohio

The following tables contain ground-water-level data collected as part of a cooperative study with the Village of South Russell, Ohio. Data-collection sites are shown below.

EXPLANATION

- ▲ Well completed in glacial deposits
- ◆ Well completed in Pottsville Formation
- Well completed in Cuyahoga Group
- ▼ Well completed in Berea Sandstone
- O Well instrumented to continuously record water levels

PROJECT DATA

Ground-Water Data for South Russell Village, Ohio

LONG-TERM GROUND-WATER MONITORING NETWORK

Ground-water-level measurements from the 9 wells that comprise the long-term ground-water monitoring network in South Russell Village are shown on the following pages. The purpose of the water-level study is to determine whether fluctuations in water levels represent consistent, long-term trends caused by human activity or are predominantly the result of seasonal and annual variations in recharge. Land-surface datums are accurate within ±5 ft. Water levels known to have been measured after a well had been recently pumped are designated with an asterisk (*).

412536081203800. LOCAL NUMBER. GE-356

LOCATION.—Latitude 41°25'36", longitude 81°20'38", Geauga County, 6006 Parkland Drive, South Russell Village. Owner: Privately owned. AQUIFER.—Pottsville Formation (sandstone).

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in.; depth 80 ft.
INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.
DATUM.—Elevation of land-surface datum is 1,155 ft above sea level. Measuring point: top of casing, 1.30 ft above land-surface datum.
PERIOD OF RECORD.—May 2, 2000 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.31 ft below land-surface datum, May 2, 2000; lowest measured, 13.25 ft below land-surface datum, Nov. 7, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02 01/09/03 03/13/03 05/22/03 07/23/03	13.25 12.48 12.22* 11.74 11.70
09/09/03	12.29

412553081213500. LOCAL NUMBER. GE-357

LOCATION.—Latitude 41°25′53", longitude 81°21′35", Geauga County, 101 Spring Drive, South Russell Village. Owner: Privately owned. AQUIFER.—Cuyahoga Formation (shale).

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in.; depth 71 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,120 ft above sea level. Measuring point: top of casing, 1.40 ft above land-surface datum.

PERIOD OF RECORD.—May 3, 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 12.43 ft below land-surface datum, May 23, 2001; lowest measured, 14.32 ft below land-surface datum, Nov. 14, 2001.

DATE	WATER LEVEL
11/07/02	14.02
01/09/03	14.21
03/13/03	14.07
05/22/03	13.21
07/23/03	12.63
09/09/03	12.84

Ground-Water Data for South Russell Village, Ohio

LONG-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

412604081212600. LOCAL NUMBER, GE-358

LOCATION.—Latitude 41°26'04", longitude 81°21'26", Geauga County, 127 Alderwood Drive, South Russell Village. Owner: Privately owned. AQUIFER.—Berea Formation (sandstone).

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in.; depth 258 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,105 ft above sea level. Measuring point: top of casing, 1.35 ft above land-surface datum.

PERIOD OF RECORD.—May 3, 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 163.27 ft below land-surface datum, May 3, 2000; lowest measured, 177.21* ft below land-surface datum, July 31, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02	168.37
01/09/03	172.41
03/13/03	172.46
05/22/03	168.97*
07/23/03	171.51
09/09/03	171.49

412548081184300. LOCAL NUMBER, GE-359

LOCATION.—Latitude 41°25'48", longitude 81°18'43", Geauga County, 1478 Bell Road, South Russell Village. Owner: Privately owned.

AQUIFER.—Sand and gravel.
WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in.; depth 90 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,153 ft above sea level. Measuring point: top of casing, 2.05 ft above land-surface datum.

PERIOD OF RECORD.—August 29, 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.14 ft below land-surface datum, May 23, 2002; lowest measured, 12.87 ft below land-surface datum, Nov. 14, 2001.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02	12.06
01/09/03	11.78
03/13/03	11.70
05/22/03	11.40
07/23/03	11.42
09/09/03	11.66

Ground-Water Data for South Russell Village, Ohio

LONG-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

412545081191000. LOCAL NUMBER, GE-360

LOCATION.—Latitude 41°25′45", longitude 81°19′10", Geauga County, 55 Garden Park, South Russell Village. Owner: Privately owned. AQUIFER.—Berea Formation (sandstone).

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in.; depth 290 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,162 ft above sea level. Measuring point: top of casing, 1.05 ft above land-surface datum.

PERIOD OF RECORD.—August 29, 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 151.17 ft below land-surface datum, May 23, 2002; lowest measured, 164.50* ft below land-surface datum, Sept. 20, 2001.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02	153.88
01/09/03	153.85
03/13/03	155.46
05/22/03	157.55*
07/23/03	156.39
09/09/03	154.94

412533081195100. LOCAL NUMBER, GE-361

LOCATION.—Latitude 41°25'33", longitude 81°19'51", Geauga County, 60 Potomac Drive, South Russell Village. Owner: Privately owned. AQUIFER.—Cuyahoga Formation (shale).

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 6 in.; depth 120 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,240 ft above sea level. Measuring point: top of casing, 2.10 ft above land-surface datum.

PERIOD OF RECORD.—August 29, 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 67.55 ft below land-surface datum, Jan. 5, 2001; lowest measured, 69.69 ft below land-surface datum, Jan. 9, 2003.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02	68.88
01/09/03	69.69
03/13/03	69.44
05/22/03	69.56
07/23/03	69.20
09/09/03	69.15

PROJECT DATA Ground-Water Data for South Russell Village, Ohio

LONG-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

412604081212700. LOCAL NUMBER, GE-362

LOCATION.—Latitude 41°26′04″, longitude 81°21′27″, Geauga County, 125 Button Bush Circle, South Russell Village. Owner: Privately owned. AQUIFER.—Sand and gravel.

WELL CHARACTERISTICS.—Domestic water-supply well; diameter 5.63 in.; depth 35 ft.

INSTRUMENTATION.—Periodic measurement with steel or electric tape by USGS personnel.

DATUM.—Elevation of land-surface datum is 1,106 ft above sea level. Measuring point: top of casing, 1.90 ft above land-surface datum.

PERIOD OF RECORD.—August 29, 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.68 ft below land-surface datum, Feb. 28, 2001; lowest measured, 9.51 ft below land-surface datum, Sept. 24, 2002.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM INSTANTANEOUS OBSERVATION

DATE	WATER LEVEL
11/07/02	9.00
01/09/03	8.31
03/13/03	8.60
05/22/03	7.82
07/23/03	8.57
09/09/03	9.02

PROJECT DATA Ground-Water Data for South Russell Village, Ohio

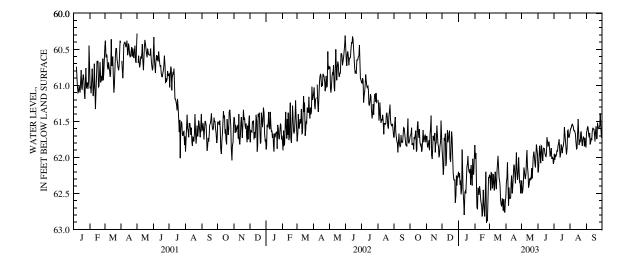
LONG-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

412541081194500. LOCAL NUMBER, GE-363

 $LOCATION.\\ -Latitude~41^{\circ}25'41'', longitude~81^{\circ}19'45'', Geauga~County,~Kensington~Green,~South~Russell~Village.~Owner:~$

INSTRUMENTATION.—Pressure transducer data logger (records hourly).

DATUM.—Elevation of land-surface datum is 1,232 ft above sea level. Measuring point: top of casing.


PERIOD OF RECORD.—Continuous water-level data from January 6, 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 60.28 ft below land-surface datum, May 1, 2001; lowest measured, 62.91 ft below land-surface datum, Feb. 23, 2003.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	61.72 61.69 61.67 61.59 61.83	61.71 61.71 61.85 61.86 61.81	61.91 62.01 62.24 62.15 61.73	62.20 62.28 62.22 62.38 62.32	61.83 62.02 61.94 62.33 62.69	62.24 62.26 62.46 62.21 62.22	62.55 62.36 62.28 62.07 62.48	62.32 62.50 62.46 62.38 62.14	62.21 62.19 62.00 61.84 61.99	62.06 61.95 62.03 61.96 61.99	61.64 61.60 61.59 61.55 61.54	61.66 61.63 61.57 61.59 61.69
6 7 8 9 10	61.81 61.81 61.89 61.72 61.75	61.76 61.90 61.68 61.61 61.42	61.77 61.67 62.12 62.08 61.81	62.51 62.44 61.89 62.10 62.48	62.72 62.42 62.44 62.52 62.40	62.43 62.40 62.23 62.35 62.46	62.67 62.42 62.57 62.57	62.19 62.26 62.30 62.22 62.01	62.08 61.84 61.85 62.02 62.05	61.95 61.90 61.92 61.84 61.80	61.56 61.58 61.63 61.63	61.72 61.66 61.82 61.78 61.73
11 12 13 14 15	61.68 61.63 61.92 61.89 61.57	61.97 62.02 61.88 61.70 61.75	61.62 61.79 61.73 61.66 61.63	62.63 62.80 62.49 62.47 62.50	62.46 62.59 62.64 62.68 62.82	62.27 62.20 62.40 62.44 62.18	62.36 62.25 62.50 62.42 62.23	61.90 62.12 62.22 62.42 62.37	61.88 61.87 61.88 61.94 61.98	61.75 61.89 62.00 61.94 61.82	61.68 61.78 61.88 61.87 61.65	61.76 61.64 61.59 61.61 61.61
16 17 18 19 20	61.50 61.67 61.73 61.61 61.79	61.76 61.66 61.93 61.80 61.80	62.01 62.06 61.87 61.64 61.72	62.34 62.12 62.09 61.98 62.13	62.77 62.45 62.64 62.72 62.82	62.08 61.98 62.09 62.29 62.32	62.10 62.12 62.23 62.36 62.17	62.29 62.32 62.29 62.30 62.15	61.99 61.94 61.72 61.79 61.85	61.88 61.94 61.86 61.84 61.77	61.47 61.66 61.83 61.77 61.79	61.68 61.78 61.65 61.57 61.74
21 22 23 24 25	61.83 61.81 61.92 61.88 61.74	61.56 61.68 61.82 61.85 62.00	62.04 62.22 62.31 62.31 62.32	62.20 62.21 62.16 62.38 62.11	62.54 62.20 62.91 62.86 62.87	62.40 62.59 62.66 62.68 62.57	61.93 62.16 62.31 62.25 62.00	62.29 62.15 62.00 61.92 61.98	61.80 61.78 61.91 61.99 61.92	61.58 61.66 61.76 61.88 61.96	61.66 61.64 61.76 61.84 61.75	61.74 61.52 61.59 61.60 61.58
26 27 28 29 30 31	61.62 61.79 61.76 61.70 61.69 61.79	61.97 61.83 61.79 61.49 61.66	62.63 62.53 62.25 62.39 62.28 62.26	62.23 62.39 62.02 62.22 62.24 62.03	62.54 62.28 62.28 	62.64 62.74 62.58 62.76 62.76 62.61	62.14 62.34 62.33 62.50 62.42	62.09 62.14 61.95 61.82 61.90 61.96	61.87 62.02 62.00 62.01 62.09	61.87 61.63 61.62 61.72 61.72 61.68	61.71 61.74 61.85 61.73 61.83 61.86	61.56 61.39 61.51 61.72 61.73
MAX	61.92	62.02	62.63	62.80	62.91	62.76	62.67	62.50	62.21	62.06	61.88	61.82

WTR YR 2003 LOW 62.91

PROJECT DATA Ground-Water Data for South Russell Village, Ohio

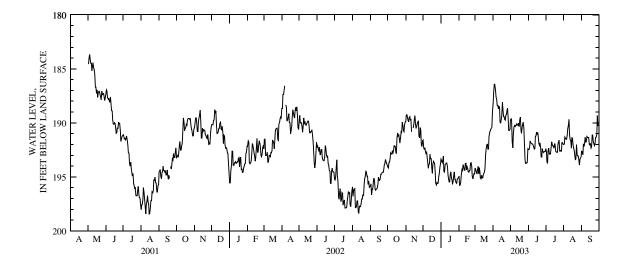
LONG-TERM GROUND-WATER MONITORING NETWORK—CONTINUED

412611081210600. LOCAL NUMBER, GE-364

LOCATION.—Latitude 41°26′11", longitude 81°21′06", Geauga County, cul-de-sac at the end of Fawn Court, South Russell Village.

Owner: South Russell Village.

AQUIFER.—Berea Formation (sandstone).


WELL CHARACTERISTICS.—Monitoring well; diameter 5.63 in.; depth 241.2 ft. INSTRUMENTATION.—Pressure transducer data logger (records hourly). DATUM.—Elevation of land-surface datum is 1,130 ft above sea level. Measuring point: top of casing, 1.22 ft above land-surface datum.

PERIOD OF RECORD.—Continuous water-level data from May 2, 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 183.65 ft below land-surface datum, May 4, 2001; lowest measured, 198.46 ft below land-surface datum, Aug. 15, 2001.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	194.07 194.17 193.64 193.64 193.31	189.86 189.27 189.24 189.45 189.76	191.57 192.31 192.41 192.34 192.65	193.36 193.49 193.67 193.46 193.07	194.92 195.77 195.73 195.49 194.80	194.18 194.34 194.55 194.74 194.35	188.19 187.22 186.42 186.42 187.02	189.71 189.61 189.73 191.72 192.32	192.46 192.46 192.23 191.67 191.86	192.38 192.66 193.63 193.74 192.59	192.00 191.95 191.32 191.43 191.52	192.59 192.76 192.94 191.94 192.19
6 7 8 9 10	192.78 192.86 192.86 192.57 192.76	189.90 189.49 189.40 189.71 189.69	192.82 192.64 193.12 193.62 194.19	194.50 194.54 193.85 193.80 193.72	194.31 194.39 193.86 194.00 194.38	194.01 194.71 194.12 194.46 195.09	187.57 187.81 188.36 188.38 188.71	191.04 190.39 190.24 190.33 190.21	191.86 191.95 191.95 192.07 192.20	192.32 192.87 192.84 192.87 192.46	191.50 191.14 190.52 190.24 189.66	191.96 191.33 191.77 191.73 191.26
11 12 13 14 15	192.59 192.11 192.15 192.17 192.74	190.83 190.46 190.14	193.85 193.75 192.90 193.32 193.31	193.72 194.00 194.83 195.14 195.47	194.38 193.75 193.73 194.33 194.05	195.18 194.84 195.08 195.09	188.48 188.56 189.94 189.99	190.21 190.08 190.19 190.25 190.01	192.41 192.34 191.25 191.17 190.85	191.74 191.99 192.14 192.15 192.33	191.04 191.56 191.62 192.33 191.38	191.33 191.35 191.35 191.99 192.04
16 17 18 19 20	192.84 191.38 190.92 191.20 191.10	189.60 189.32 190.13 190.51 190.31	194.10 194.67 193.85 193.55	195.47 194.75 194.53 195.08 195.29	194.22 194.52 194.55 194.41 194.37	194.63 194.52 194.18 192.90 192.41	189.25 188.09 188.73 189.42 189.42	190.34 189.74 189.46 190.65 190.95	191.02 190.88 191.31 191.90	191.91 192.03 192.61 192.70 192.71	191.42 192.00 192.32 192.57 192.98	191.88 192.32 192.22 191.12 191.14
21 22 23 24 25	191.38 191.87 191.39 190.81 190.86	190.06 189.90 189.85 191.20 191.39	193.76 194.55 195.62 195.75 195.53	195.69 195.37 194.82 194.53 195.24	193.70 193.67 193.98 194.88 195.18	192.03 191.97 192.43 192.43 191.25	189.69 189.74 189.28 189.23 188.81	190.40 190.17 189.93 190.50 191.66	191.84 192.33 193.15 193.15 192.38	192.72 191.98 191.75 191.60 192.60	193.43 193.31 192.01 192.95 193.06	191.78 191.96 192.10 191.90
26 27 28 29 30 31	189.92 190.23 190.72 190.83 190.17 189.93	190.42 190.72 192.02 192.19 191.64	195.59 195.58 194.96 194.62 194.11 193.78	195.24 195.54 195.60 195.18 195.13 195.08	194.92 194.70 194.72 	190.90 190.72 190.58 190.46 190.38 188.89	188.65 189.62 190.69 190.69 190.61	193.33 193.74 193.74 193.68 193.68	192.66 192.74 192.66 192.63 192.64	192.56 192.61 192.61 191.77 191.88 191.98	193.07 193.36 193.89 193.34 193.24 193.10	191.32 191.05 189.33 190.26 190.26
MAX	194.17	192.19	195.75	195.69	195.77	195.18	190.69	193.74	193.15	193.74	193.89	192.94
WTR YR 2	2003	LOW 195.7	77									

Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

The following tables include data from a water-quality study in two counties in southwestern Ohio where elevated arsenic concentrations had been previously detected. Twenty-eight domestic wells that derive water from carbonate bedrock or glacial deposits were sampled for arsenic and other water-quality constituents. The goal was to determine which aquifer types, hydrogeologic settings, or depth intervals were most (and least) likely to produce water with elevated concentrations of arsenic.

PROJECT DATA Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

WATER-QUALITY RECORDS

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(72008), USGS National Water Information System parameter code; LSD, land-surface datum; NTU, Nephelometric turbidity units; *, sample affected by water softener]

Local number	Identification number	Date	Geologic unit	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Tur- bidity, water, unfltrd field, NTU (61028)
			PREBLE COU	JNTY			
PR-29	395427084415200	07-09-03	1120TSH	42	24.95	1150	4.6
PR-70	395435084414100	07-10-03	355LCKP	102	22.36	1150	80
PR-83	395425084415100	07-10-03	355LCKP	101	24.83	1150	6.0
PR-212	395310084421600	07-07-03	350SLRN	121	60.02	1195	4.7
PR-213	395252084420600	07-08-03	350SLRN	141	49.09	1185	4.0
PR-214	395250084415200	07-08-03	1120TSH	98	38.73	1175	11
PR-215	395316084421200	07-09-03	350SLRN	141	54.30	1178	5.5
PR-219	395428084425300	07-11-03	350SLRN	131	33.92	1173	62
PR-219		08-19-03	350SLRN	131	34.79	1173	1.8
PR-220	395333084404900	07-28-03	1120TSH	56	15.52	1140	3.7
PR-221	395338084403700	07-29-03	350SLRN	57	9.89	1129	6.3
PR-222*	395237084403600	07-29-03	1120TSH	93	15.89	1132	14
PR-222*		08-19-03	1120TSH	93	16.12	1132	2.0
PR-223	395408084411100	07-30-03	1120TSH	55	13.76	1140	17
PR-224	395223084421400	07-30-03	350SLRN	141	33.73	1175	8.6
			SHELBY COU	JNTY			
SH-116	401523084180600	08-11-03	350SLRN	106	56.02	972	20
SH-117	401336084161600	08-12-03	1120TSH	181	66.31	972	1.6
SH-118	401551084165800	08-12-03	1120TSH	127	69.76	975	11
SH-119	401546084164800	08-13-03	1120TSH	123	67.89	982	4.0
SH-120	401447084175800	07-31-03	1120TSH	123	76.62	980	2.5
SH-121	401425084180500	07-31-03	1120TSH	152	69.40	982	2.4
SH-122	401459084174200	08-01-03	1120TSH	115	81.21	985	5.6
SH-123	401351084161900	08-13-03	1120TSH	119	60.58	970	10
SH-124	401407084174200	08-14-03	1120TSH	159	91.46	995	6.7
SH-125	401527084164100	08-14-03	350SLRN	200	47.21	952	1.8
SH-126	401339084160100	08-18-03	1120TSH	130	61.60	960	16
SH-127	401537084162400	08-20-03	350SLRN	221	52.80	982	1.2
SH-128	401442084175900	08-20-03	1120TSH	132	74.35	979	2.9
SH-129	401432084190800	08-21-03	1120TSH	185	52.75	976	3.7
SH-130	401420084162700	08-21-03	350SLRN	118	87.00	982	1.3

Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00300), USGS National Water Information System parameter code; mg/L, milligrams per liter; uS/cm, microsiemens per centimeter; $deg\ C$, $degrees\ Celsius$; *, $sample\ affected$ by water softener; M, presence verified but not quantified; --, no data]

Local number	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conductance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
				PREBLE COUNTY				
PR-29	.2	7.1	936	16.4	107	69.9	2.20	18.2
PR-70	.1	7.3	752	16.6	84.5	38.9	1.54	15.6
PR-83	.1	7.3	735	14.1	73.3	39.2	1.54	17.1
PR-212	M	7.4	654	17.0	72.2	38.1	1.45	15.1
PR-213	.1	7.4	632	15.9	81.2	36.7	1.32	11.0
PR-214	.5	7.2	620	15.8	80.4	34.4	1.37	10.1
PR-215	.1	7.4	625	17.1	78.7	37.2	1.30	15.1
PR-219	.1	7.3	656	13.6	76.8	31.7	1.31	12.7
PR-219	.3	7.3	647	14.3	==	==	==	==
PR-220	.1	7.4	698	16.7	73.5	41.7	1.59	16.8
PR-221	.1	7.4	704	15.5	72.0	44.4	1.55	16.9
PR-222*	.2	7.8	638	17.0	.09	.014	.17	165
PR-222*	.1	7.7	619	13.8				
PR-223	.1	7.3	834	16.3	98.6	55.7	1.84	17.4
PR-224	.1	7.3	594	13.3	86.9	33.5	1.02	6.53
				SHELBY COUNTY				
SH-116	.1	7.2	790	15.0	83.7	37.5	1.75	49.6
SH-117	.1	7.4	633	14.9	65.0	28.9	1.59	36.9
SH-118	.1	7.2	904	14.0	99.4	51.7	2.11	27.8
SH-119	.1	7.1	922	17.9	104	51.0	2.40	27.0
SH-120	.1	7.6	820	15.6	74.5	42.9	2.01	45.0
SH-121	.1	7.3	841	13.7	20.2	7.69	.38	7.72
SH-122	.1	7.1	1040	13.7	39.4	21.3	.84	5.77
SH-123	.1	7.2	646	14.5	84.6	31.6	1.47	16.4
SH-124	.1	7.3	801	15.4	91.2	38.6	1.82	25.3
SH-125	.1	7.0	914	13.6	97.6	51.4	2.27	17.9
SH-126	.1	7.3	745	13.3	81.3	34.6	1.41	32.2
SH-127	.1	7.1	1030	14.6	111	71.5	3.07	22.1
SH-128	.1	7.6	950	12.5	94.3	47.5	2.46	58.1
SH-129	.1	7.1	762	14.8	107	44.0	1.63	10.5
SH-130	.1	7.1	765	13.9	77.6	30.3	1.98	45.5

PROJECT DATA Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(39086), USGS National Water Information System parameter code; mg/L, milligrams per liter; uS/cm, microsiemens per centimeter; $deg\ C$, $degrees\ Celsius$; *, $sample\ affected$ by water softener; --, no data; <, concentration or value reported is less than that indicated; E, estimated]

Local number	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Sulfide water, fltrd, field, mg/L (99118)
				PREBLE COUNTY				
PR-29	373	453	.06	4.80	1.4	20.9	123	.053
PR-70	305	371	.04	3.98	1.3	18.6	57.3	.006
PR-83	332	403	.05	1.94	1.5	17.1	56.8	.006
PR-212	328	398	.04	1.19	1.5	17.1	11.1	.023
PR-213	326	395	.05	2.12	1.2	19.3	14.8	.002
PR-214	292	355	.03	2.17	1.1	16.6	12.6	.022
PR-215	297	361	.03	1.20	1.4	17.0	10.0	.033
PR-219	299	364	.03	1.35	1.2	17.8	33.6	.253
PR-219	317	386						.029
PR-220	338	410	.03	1.64	1.5	18.8	22.1	.011
PR-221	338	410	.05	2.04	1.5	20.3	24.9	.032
PR-222*	307	372	<.02	4.30	1.2	13.1	.4	.039
PR-222*	338	410						.026
PR-223	366	445	.05	2.55	1.5	22.4	45.5	.660
PR-224	305	371	.03	1.86	.9	17.8	13.3	.002
				SHELBY COUNTY				
SH-116	321	391	.07	4.52	.9	20.5	54.8	.122
SH-117	291	354	.06	2.03	1.1	17.5	2.3	.007
SH-118	352	428	.08	3.39	1.5	19.6	116	.013
SH-119	326	396	.04	3.10	1.5	20.8	119	.002
SH-120	E423	E513	.31	4.86	.9	17.4	<.2	.030
SH-121	445	541	.57	2.91	1.0	4.10	E.2	.019
SH-122	474	576	.36	3.44	1.7	8.96	97.8	.009
SH-123	307	373	.03	4.26	.8	21.8	26.3	.020
SH-124	404	492	.05	3.68	1.3	23.5	41.0	.155
SH-125	430	520	.05	3.99	1.6	22.4	82.8	.030
SH-126	421	512	.03	2.41	.9	18.7	2.1	.013
SH-127	476	579	.05	3.05	1.7	23.5	115	.022
SH-128	484	585	E.01	4.35	.7	16.6	39.4	.034
SH-129	378	460	.04	4.06	1.1	23.2	44.5	.010
SH-130	404	492		2.52	.7	14.1	E.1	.023

Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(70300), USGS National Water Information System parameter code; mg/L, milligrams per liter; deg C, degrees Celsius; *, sample affected by water softener; M, presence verified but not quantified; --, no data; <, concentration or value reported is less than that indicated; E, estimated]

	Residue	Ammonia		Nitrite		Ortho-		
	on evap.	+ org-N,	Ammonia	+ nitrate	Nitrite	phos- phate,	Organic	Alum-
Local	at	water,	water,	water	water,	water,	carbon,	inum,
number	180 deg C	fltrd,	fltrd,	fltrd,	fltrd,	fltrd,	water,	water,
	wat flt mg/L	mg/L as N	mg/L as N	mg/L as N	mg/L as N	mg/L as P	fltrd, mg/L	fltrd, ug/L
	(70300)	(00623)	(00608)	(00631)	(00613)	(00671)	(00681)	(01106)
				PREBLE COUNTY				
PR-29	614	.5	.37	<.06	<.008	<.02	1.4	<2
PR-70	473	.6	.53	<.06	<.008	<.02	1.3	E1
PR-83	459	.7	.69	<.06	<.008	<.02	1.5	E2
PR-212	375	1.2	1.1	<.06	<.008	<.02	1.6	<2
PR-213	374	.6	.50	E.04	E.004	<.02	1.5	E1
DD 014	260		4.2	. 06	. 000	. 00		-0
PR-214	360	.5	.43 1.2	<.06	<.008	<.02	1.5	<2
PR-215	363	1.3	.33	<.06	<.008	<.02	2.1	<2
PR-219	405	. 4	.33	<.06	<.008	<.02	1.3	E1
PR-219								<2
PR-220	412	1.1	.99	<.06	<.008	<.02	1.4	E1
PR-221	398	1.1	1.0	<.06	<.008	<.09	1.4	<2
PR-222*	402	.2	< .04	< .06	<.008	.13	4.1	E1
PR-222*								<2
PR-223	540	.7	.63	<.06	E.005	<.02	1.3	E1
PR-224	362	.3	.23	< .06	<.008	<.02	1.3	E1
				SHELBY COUNTY				
SH-116	491	1.0	.83	<.06	<.008	<.02	2.3	E1
SH-117	385	1.2	1.1	<.06	<.008	<.18	2.1	2
SH-118	617	.8	.71	<.06	<.008	<.18	1.7	2
SH-119	615	1.0	.88	<.06	<.008	<.18	1.9	M
SH-120	477	5.8	5.0	< .06	<.008	.05	5.1	E1
SH-121	500	7.0	6.3	.18	<.008	.36	5.4	М
SH-122	105	1.0	.93	<.06	<.008	.02	1.5	<2
SH-123	400	.5	.39	<.06	<.008	<.18	1.4	<2
SH-124	518	1.0	.83	<.06	<.008	<.18	2.0	E2
SH-125	610	.6	.55	<.06	<.008	<.18	1.5	M
av. 106	445	4.0	0.0	. 0.5	0.00		0.4	
SH-126	445	1.0	.89	<.06	<.008	<.02	2.4	<2
SH-127	712	1.0	.77	<.06	E.005	.02	1.8	E1
SH-128	561	7.1	5.6	<.06	<.008	<.02	5.7	E1
SH-129	486	.5	.41	<.06	<.008	<.18	1.5	<2
SH-130	432	13	11	<.06	<.008	1.6	9.0	2

PROJECT DATA Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(01095), USGS National Water Information System parameter code; ug/L, micrograms per liter; *, sample affected by water softener; M, presence verified but not quantified; --, no data; <, concentration or value reported is less than that indicated; E, estimated]

Local number	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)
				PREBLE COUNTY	<u> </u>			
PR-29	<.30	22.5	23	59	<.06	85	.04	<.8
PR-70	<.30	8.6	33	102	< .06	94	.07	<.8
PR-83	<.30	10.9	9	89	< .06	126	.10	<.8
PR-212	<.30	4.4	5	143	< .06	93	.04	<.8
PR-213	<.30	4.2	4	223	<.06	49	.05	<.8
PR-214	E.20	.7	М	217	<.06	46	.04	<.8
PR-215	<.30	1.9	<2	183	< .06	77	E.03	<.8
PR-219	<.30	11.5	23	135	< .06	78	.09	<.8
PR-219	<.30	11.1	10	141	< .06	79	.06	<.8
PR-220	<.30	9.8	9	206	<.06	109	.06	<.8
PR-221	<.30	7.7	9	181	<.06	94	E.04	<.8
PR-222*	<.30	82.5	94	M	< .06	149	.04	<.8
PR-222*	<.30	67.6	67	M	< .06	171	.04	<.8
PR-223	<.30	21.2	34	118	< .06	98	.05	<.8
PR-224	<.30	6.0	5	290	<.06	33	E.02	<.8
				SHELBY COUNTY	<u>7</u>			
SH-116	<.30	4.8	6	133	< .06	166	.04	<.8
SH-117	<.30	E.2	<2	305	< .06	151	E.03	<.8
SH-118	<.30	6.4	7	63	< .06	146	.08	<.8
SH-119	<.30	3.0	4	68	< .06	149	.05	<.8
SH-120	<.30	27.0	27	592	<.06	137	< .04	<.8
SH-121	<.30	.3	<2	254	<.06	106	< .04	<.8
SH-122	<.30	7.1	7	104	< .06	77	.05	<.8
SH-123	<.30	1.8	3	221	< .06	66	.04	<.8
SH-124	<.30	4.0	4	104	< .06	105	.04	<.8
SH-125	<.30	14.8	12	58	<.06	101	.06	<.8
SH-126	<.30	1.6	E1	239	<.06	133	< .04	<.8
SH-127	<.30	5.1	22	43	< .06	139	.12	<.8
SH-128	<.30	18.0	15	490	< .06	192	E.03	<.8
SH-129	<.30	10.1	10	172	< .06	55	.05	<.8
SH-130	<.30	49.1	52	138	< .06	228	E.03	1.2

Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(01035), USGS National Water Information System parameter code; ug/L, micrograms per liter; mg/L, milligrams per liter; *, sample affected by water softener; --, no data; <, concentration or value reported is less than that indicated; E, estimated]

Local number	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron (II) water, fltrd, field mg/L (99114)	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Molyb- denum, water, fltrd, ug/L (01060)
				PREBLE COUNTY				
PR-29	.24	. 4	3.12	3610	<.08	37.2	22.0	24.7
PR-70	.40	.5	1.70	1730	<.08	7.8	60.6	23.5
PR-83	.30	.5	1.20	1120	<.08	11.1	31.6	28.9
PR-212	.30	.3	.430	574	<.08	7.0	49.5	19.2
PR-213	.24	18.1	.270	463	.11	7.6	72.1	24.7
PR-214	.78	.7	.230	313	E.04	7.5	395	18.6
PR-215	.12	<.2	.460	451	<.08	5.4	26.2	13.5
PR-219	.43	.5	1.61	1460	.11	6.1	24.5	26.6
PR-219	.34	. 4	1.43		E.06	6.1	23.4	26.6
PR-220	.18	.3	1.97	2150	<.08	10.2	43.7	22.6
PR-221	.18	. 4	2.20	2240	E.05	11.2	35.9	22.6
PR-222*	.07	<.2	.020	37	.20	E.4	E.1	20.5
PR-222*	.07	E.2	.010		<.08	<.5	<.2	19.5
PR-223	.24	.5	2.91	3190	<.08	18.3	21.9	23.2
PR-224	.25	.3	1.14	1230	<.08	5.5	33.5	12.5
				SHELBY COUNTY	• -			
SH-116	.45	.6	.510	598	E.07	11.7	19.6	18.8
SH-117	.29	.3	1.17	1270	<.08	7.5	19.4	10.8
SH-118	.38	1.0	2.10	2140	<.08	18.6	30.2	31.4
SH-119	.22	.6	1.41	1420	<.08	18.1	33.1	25.0
SH-120	.28	.2	2.54	3390	<.08	6.4	9.5	8.6
SH-121	.32	.2	4.68	1080	<.08	5.4	54.8	.7
SH-122	.28	.5	3.04	1050	<.08	34.3	35.2	25.8
SH-123	.19	. 4	1.31	1350	<.08	7.6	45.3	18.9
SH-124	.22	. 4	2.74	2580	<.08	11.4	40.1	18.5
SH-125	.22	.7	1.94	1890	<.08	25.2	22.1	29.6
SH-126	.24	.3	2.31	2090	<.08	8.7	31.7	8.1
SH-127	.30	1.1	2.06	2350	<.08	42.5	25.0	36.3
SH-128	.37	.7	1.38	1580	<.08	6.0	8.3	10.4
SH-129	.26	.5	1.97	2100	<.08	17.6	16.4	24.2
SH-130	.27	.3	7.80	9600	.12	1.5	59.2	11.8

PROJECT DATA Water Quality of Domestic Wells in Selected Parts of Preble and Shelby Counties

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(01065), USGS National Water Information System parameter code; ug/L, micrograms per liter; *, sample affected by water softener; M, presence verified but not quantified; --, no data; <, concentration or value reported is less than that indicated; E, estimated]

Local number	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	Uranium natural water, fltrd, ug/L (22703)
				PREBLE COUNTY				
PR-29	2.17	<.5	<.20	7220	< .04	.3	17	2.43
PR-70	2.52	<.5	<.20	13800	< .04	1.3	7	.65
PR-83	2.30	<.5	<.20	18800	< .04	1.3	2	.52
PR-212	3.23	<.5	<.20	14500	< .04	1.9	28	1.65
PR-213	1.87	E.3	<.20	6990	< .04	2.0	6	.75
PR-214	2.91	E.3	<.20	6200	< .04	2.2	143	3.09
PR-215	1.50	<.5	<.20	12100	< .04	.6	2	.35
PR-219	2.52	<.5	<.20	10400	< .04	.8	86	.45
PR-219	2.58	<.5	<.20	9830	< .04	.9	94	.47
PR-220	.71	<.5	<.20	14100	< .04	1.5	4	.60
PR-221	1.11	<.5	<.20	13600	< .04	.3	21	.63
PR-222*	.20	<.5	<.20	4.29	< .04	.7	55	.02
PR-222*	.16	<.5	<.20	2.35	< .04	.8	20	.02
PR-223	1.41	<.5	<.20	10200	< .04	.9	24	1.04
PR-224	1.52	<.5	<.20	2790	< .04	. 9	M	.53
				SHELBY COUNTY	<u>.</u>			
SH-116	2.71	<.5	<.20	5170	< .04	2.2	52	.61
SH-117	1.82	<.5	<.20	5350	< .04	. 4	10	.02
SH-118	2.74	<.5	<.20	20900	< .04	.6	M	.47
SH-119	3.44	<.5	M	22900	< .04	2.5	2	.78
SH-120	1.10	<.5	<.20	4910	< .04	.5	11	E.01
SH-121	1.46	<.5	<.20	6790	< .04	.7	<1	<.02
SH-122	1.73	<.5	<.20	42800	< .04	. 4	5	.71
SH-123	2.74	<.5	M	4780	< .04	1.7	M	.32
SH-124	3.30	<.5	<.20	10000	< .04	1.6	6	.44
SH-125	3.44	<.5	<.20	21200	< .04	1.9	2	1.13
SH-126	3.04	<.5	<.20	4620	< .04	1.2	1	.07
SH-127	1.14	<.5	<.20	34400	< .04	1.7	6	.73
SH-128	1.18	<.5	<.20	2730	< .04	2.2	M	.28
SH-129	3.47	<.5	<.20	7160	< .04	1.0	3	.54
SH-130	2.47	<.5	<.20	2730	< .04	1.7	24	<.02

PROJECT DATA Ohio Department of Health—Septic System

The following table contains data from an investigation of ground-water quality near residential septic systems. Temporary drive-point wells were installed to various depths near systems in three different soil regions. When water was available, samples were analyzed for nutrients, chloride, *Escherichia coli* bacteria, and coliphage.

PROJECT DATA Ohio Department of Health—Septic System

[(72008), USGS National Water Information System parameter code; uS/cm, microsiemens per centimeter; deg. C, degrees Celsius; mg/L, milligrams per liter; plaques/100 mL, plaques per 100 milliliters; MPN/100 mL, most probable number per 100 milliliter; col/100 mL, colonies per 100 milliliters; --, no data; <, concentration or value reported is less than that indicated; >, concentration or value reported is greater than that indicated; E, estimated]

Site id	Local well number	Date	Depth of well, feet below land surface (72008)	Specific conductance, wat, unf, lab uS/cm 25 deg.C (90095)	Chloride water flitered mg/L (00940)	Ammonia water filtered mg/L as N (00608)	Nitrite + nitrate water, filtered mg/L as N (00631)
393617083461601	GR-750 01	Jul 30	8	3330	984	0.51	<.06
393617083461602	GR-750 02	Jul 31	16	952	126	0.7	< .06
393617083461603	GR-750 03	Sep 15	8	3650	950	0.15	< .06
393617083461603	GR-750 03	Sep 17	8				
393617083461604	GR-750 04	Sep 15	8	4050	1050	0.23	<.06
393617083461604	GR-750 04	Sep 17	8				:
393617083461605	GR-750 05	Sep 16	8	2780	834	E.03	< .06
393617083461606	GR-750 06	Sep 16	8	4040	1120	E.02	< .06
393617083461607	GR-750 07	Sep 16	8	3480	1090	< .04	< .06
393617083461608	GR-750 08	Sep 16	8	3920	1150	0.12	< .06
393742083460802	GR-751 02	Jul 31	16	1600	312	1.96	<.06
393647083582201	GR-752 01	Aug 1	8	2320	468	2.08	< .06
393647083582202	GR-752 02	Aug 1	16	810	24.1	0.53	< .06
394416083411801	GR-753 01	Aug 1	8	566	18.4	E.03	0.28
394416083411802	GR-753 02	Aug 1	16	748	31.8	0.34	4.41
403423083434801	HN-139 01	Aug 7	8	1080	26.4	0.59	<.06
402744082183001	K-10 01	Aug 26	7			0.12	0.86
402744082183002	K-10 02	Aug 26	13			0.13	<.06
403123082293702	K-11 02	Aug 29	16				

Local well number	Nitrite water filtered mg/L as N (00613)	Ortho- phosphate water filtered mg/L as P (00671)	Coliphage e. coli c13host mf plaques/100mL (90903)	Coliphage e. coli famp mf plaques/100mL (90904)	E. coli colilert quantry water MPN/100mL (50468)	E. coli m-tec mf water col/100mL (31633)	Total coliform colert quantry MPN/100 mL (50569)
GR-750 01	<.008	<.02	E2	<1		E160	
GR-750 02	<.008	<.02	<1	<1	<.18	<100	<1
GR-750 03	<.008	<.02	==	==	==	590	==
GR-750 03	==	==	==	==	==	E4500	==
GR-750 04	<.008	<.18				<3	
GR-750 04						510	
GR-750 05	E.004	<.18				<1	
GR-750 06	E.004	<.18	==	==	==	<2	==
GR-750 07	E.004	<.18				E 8	
GR-750 08	E.006	<.18			==	E3600	==
GR-751 02	<.008	<.02				<4	
GR-752 01	<.008	<.02	<1	<1	54	870	>2400
GR-752 02	<.008	<.02	<1	<1	<1	<3	<1
GR-753 01	0.025	<.02	<1	<1	10	<30	64
GR-753 02	0.19	<.02	<1	<1	<1	<7	<1
HN-139 01	<.008	<.02				E3	
K-10 01	0.023	<.02				<1	
K-10 02	<.008	<.02				<2	
K-11 02			<1	<1	<1		>49

Low-Flow Magnitude and Frequency of Ohio Streams

The low-flow network is part of a cooperative study with the Ohio Department of Natural Resources to define the low-flow characteristics of 180 sites that have essentially unregulated streamflow and drainage areas less than 150 square miles. The following table lists the sites of the low-flow partial record network including discharge measurements made in the 2003 water year. The second table lists the discontinued streamflow-gaging stations for which a discharge measurement was performed in 2003 that were used for index stations for this project. The discontinued stations are not shown.

Low-Flow Magnitude and Frequency of Ohio Streams

LOW-FLOW PARTIAL-RECORD STATIONS

Station	Station		Drainage	Period of	Measurements		
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft ³ /s)	
03092754	Eagle Creek at Mahoning, Ohio	BEAVER RIVER BASIN Latitude 41°16′19″, longitude 81°03′00", Portage County, Hydrologic Unit 05030103, at Silica Sand Road bridge, just east of Parkman Road, 1.1 mi uptream from Mahoning Creek, 0.7 mi north of Mahoning, 2.7 mi east, southeast of Garrettsville, Ohio. (Garrettsville 1:24000 quad)	38.4	2002-03	09/12/03	21.3	
03098390	Mill Creek near Youngstown, Ohio	Latitude 41°02′00″, longitude 80°41′37", Mahoning County, Hydrologic Unit 05030103, at pedestrian bridge over Mill Creek at end of extra parking lot next to Mill Creek Park Golf Course, 0.8 mi northeast of park entrance at State Route 224, 0.8 mi downstream of Indian Run, 3.1 mi upstream of Newport Lake Dam, 3 mi southwest of South Side Youngstown, Ohio. (Youngstown 1:24000 quad)	51.5	1995-99 2001-03	09/12/03	24.0	
03110950	Cross Creek at Broadacre, Ohio	CROSS CREEK BASIN Latitude 40°21′56″, longitude 80°47′05", Jefferson County, Hydrologic Unit 05030101, at State Route 152 bridge, 0.3 mi upstream of Clay Lick Creek, 1.4 mi downstream of Salem Creek, at Broadacre, Ohio. (Smithfield 1:24000 quad)	53.5	1981-82 1986 2002			
03114241	Sunfish Creek at Coats, Ohio	SUNFISH CREEK BASIN Latitude 39°46′14″, longitude 81°02′34", Monroe County, Hydrologic Unit 05030201, at riffle beside Sunfish Creek Road, 800 ft downstream from confluence of unnamed tributary, 0.7 mi downstream from confluence of Standingstone Run, 1.0 mi southeast of Coats, 4.0 mi east of Woodsfield, Ohio. (Woodsfield 1:24000 quad)	51.3	1995 1997-99 2001-02			
03115385	Clear Fork near Rinard Mills, Ohio	LITTLE MUSKINGUM RIVER BASIN Latitude 39°36′08″, longitude 81°09′17", Monroe County, Hydrologic Unit 05030201, at State Route 26 bridge over Clear Fork, 0.3 mi above confluence with Little Muskingum River, 1.2 mi north of Rinard Mills, Ohio. (Rinard Mills 1:24000 quad)	I 48.8	1997-99 2001-02			
03123166	South Fork Sugar Creek near Sugarcreek, Ohio	MUSKINGUM RIVER BASIN Latitude 40°31′25″, longitude 81°36′52″, Tuscarawas County, Hydrologic Unit 05040001, at Tuscarawas County Road 75, 0.2 mi downstream from confluence with East Branch, 0.2 mi northeast of Sugarcreek, Ohio. (Strasburg 1:24000 quad)	63.3	1997-00 2002-03	09/11/03	38.4	
03123299	Walnut Creek at Dundee, Ohio	Latitude 40°35'12", longitude 81°37'16", Tuscarawas County, Hydrologic Unit 05040001, at private road bridge, 0.5 mi upstream from mouth, 0.7 mi.west of Dundee, Ohio. (Strasburg 1:24000 quad)	48.0	1997-00 2002-03	09/11/03	24.2	

Low-Flow Magnitude and Frequency of Ohio Streams

LOW-FLOW PARTIAL-RECORD STATIONS—Continued

Station	Station		Drainage	Period of	Measurements	
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft ³ /s)
03129205	Black Fork Mohican River near Shelby, Ohio	MUSKINGUM RIVER BASIN—CONTIN Latitude 40°54′57″, longitude 82°38′02″, Richland County, Hydrologic Unit 05040002, at bridge on Plymouth-Spring Road, 0.3 mi downstream from Bear Run, 2.8 mi northeast of Shelby, 2000 ft north of London, Ohio. (Shelby 1:24000 quad)	<u>UED</u> 60.4	2000-03	09/10/03	8.81
03133950	Jerome Fork near Ashland, Ohio	Latitude 40°53'02", longitude 82°17'03", Ashland County, Hydrologic Unit 05040002, at bridge on U.S. Highway 42, 0.7 mi upstream from Lang Creek, 2.0 mi northeast of Ashland, 1000 ft north of Cleveland Ave., concrete block building on downstream, left of bridge (gray-no paint), at entrance to well-field. (Ashland North 1:24000 quad)	38.6	2000-02		
03136142	Kokosing River at Chesterville, Ohio	Latitude 40°28′28″, longitude 82°41′02″, Morrow County, Hydrologic Unit 05040003, at State Route 314 bridge, 0.5 mi downstream from confluence with South Branch, 0.4 mi south of Chesterville, Ohio. (Chesterville 1:24000 quad)	38.7	1996 1998-00 2002-03	08/26/03	2.64
03142185	Salt Fork Creek near Old Washington, Ohio	Latitude 40°03'27", longitude 81°24'53", Guernsey County, Hydrologic Unit 05040005, just upstream from outlet of wetland, 2.8 miles upstream of Coon Run, 4.3 miles upstream from Salt Fork Reservoir, 2.1 miles northeast of Old Washington, Ohio. (Old Washington 1:24000 quad)	44.6	2002		
03144471	Little Wakatomika Creek near Trinway, Ohio	Latitude 40°09'18", longitude 82°01'55", Muskingum County, Hydrologic Unit 05040004, at new road bridge just upstream of new State Route 16 bridge, 0.8 mi upstream from mouth, 1.4 miles northwest of Trinway, 2.3 mi northwest of Dresden, Ohio. (Trinway 1:24000 quad)	40.6	2002-03	09/11/03	19.6
03145329	Raccoon Creek at Alexandria, Ohio	Latitude 40°05′05″, longitude 82°36′18″, Licking County, Hydrologic Unit 05040006, at State Route 37 bridge over Raccoon Creek, 0.8 mi above confluence with Lobdell Creek, 0.9 mi below confluence with Simpson Run, 0.7 mi north of intersection of State Route 37 and 161, 0.2 mi southeast of Alexandria, Ohio. (Granville 1:24000 quad)	40.6	1997-99 2002-03	09/18/03	7.21
03145533	Raccoon Creek at Newark, Ohio	Latitude 40°02'34", longitude 82°24'44", Licking County, Hydrologic Unit 05040006, at West Main Street bridge over Raccoon Creek, 0.7 mi. above confluence with South Fork Licking River, in Newark, Ohio. (Newark 1:24000 quad)	101	1997-99 2002-03	09/18/03	30.9

Low-Flow Magnitude and Frequency of Ohio Streams

LOW-FLOW PARTIAL-RECORD STATIONS—Continued

Station	Station		Drainage	Period of	Measur	ements
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft ³ /s)
03150200	Meigs Creek near Reinersville, Ohio	MUSKINGUM RIVER BASIN—CONTIN Latitude 39°37'43", longitude 81°43'12", Morgan County, Hydrologic Unit 05040004, at county road bridge at Unionville, 0.1 mi upstream from Dyes Fork, 5.1 mi southwest of Reinersville, Ohio. (Reinersville 1:24000 quad)	<u>UED</u> 73.0	1981-82 1996 1998-99 2002-03	09/16/03	8.45
03158165	Monday Creek near Greendale, Ohio	HOCKING RIVER BASIN Latitude 39°36'08", longitude 81°09'17", Latitude 39°31'24", longitude 82°16'17", Hocking County, Hydrologic Unit 05030204, at Dawley Road over Monday Creek, 0.7 mi above confluence with Sand Run, 0.9 mi above proposed reservoir site, 1.3 mi southeast of Greendale, 4 mi northeast of Haydenville, Ohio. (Gore 1:24000 quad)	67.2	1995-96 1998-99 2001-023	09/17/03	15.2
03205260	Symmes Creek near Centerpoint, Ohio	SYMMES CREEK BASIN Latitude 38°52′12″, longitude 82°28′44″, Jackson County, Hydrologic Unit 05090101, at Jenkins Alban Road bridge over Symmes Creek, 2.5 mi above confluence with Black Fork, 1.9 mi northwest of Centerpoint, Ohio.(Patriot 1:24000 quad)	45.9	1997-99 2001-03	09/15/03	1.34
03216620	Pine Creek near South Webster, Ohio	PINE CREEK BASIN Latitude 38°46′12″, longitude 82°42′25″, Scioto County, Hydrologic Unit 05090103, at Lick Run Lyra Road bridge over Pine Creek, 3.0 mi southeast of South Webster, Ohio. (South Webster 1:24000 quad)	33.2	1998-99 2001-03	09/15/03	4.05
03216662	Little Scioto River near Mabee Corner, Ohio	Latitude 38°54'18", longitude 82°46'46", Scioto County, Hydrologic Unit 05090103, at Sulphur Spring Road bridge, just west of White Gravel Road, 0.6 mi downstream from Buckhorn Creek, 0.9 mi from intersection of State Route 139 and White Gravel Road, 3.1 mi west of Mabee Corner, Ohio. (Stockdale 1:24000 quad)	60.5	2000-03	09/15/03	5.40
03216673	Little Scioto River at Wallace Mills, Ohio	Latitude 38°51'06", longitude 82°47'36", Scioto County, Hydrologic Unit 05090103, 1000 ft upstream of the confluence with Rocky Fork, near Kentucky Trail Road, 0.5 mi north of Wallace Mills, Ohio. Site can be reached 2.1 mi from State Route 139 on Stockham Road and right 0.3 mi on Kentucky Trail Road. (Minford 1:24000 quad)	108	2000-03	09/15/03	8.75
03216689	Rocky Fork at Wallace Mills, Ohio	Latitude 38°51'27", longitude 82°47'47", Scioto County, Hydrologic Unit 05090103, from State Route 139, heading southeast on Stockham Road about 0.4 mi to Glades Road, head south on Glades Road about 1.3 mi to bridge, at Glades Road bridge, 0.6 mi above mouth in Wallace Mills, Ohio. (Minford 1:24000 quad)	68.8	2000-03	09/15/03	5.94

Low-Flow Magnitude and Frequency of Ohio Streams

LOW-FLOW PARTIAL-RECORD STATIONS—Continued

Station	Station		Drainage	Period of	Measurements	
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft ³ /s)
03219838	Mill Creek near New Dover, Ohio	SCIOTO RIVER BASIN Latitude 40°13′39″, longitude 83°17′52″, Union County, Hydrologic Unit 05060001, at Hinton Mill Road bridge, 0.4 miles upstream from Tombstone Creek, 1.4 miles south of New Dover, 3.5 miles east of Marysville, Ohio. (Marysville 1:24000 quad)	102	2002-03	09/12/03	16.7
03230088	Big Darby Creek near Milford Center, Ohio	Latitude 40°11'42", longitude 83°28'27", Union County, Hydrologic Unit 05060001, just upstream of unnamed tributary, near intersection of Middleburg Road and Collins Road, 2.3 miles northwest of Milford Center, Ohio. (Milford Center 1:24000 quad)	66.0	2002-03	09/12/03	17.1
03232170	West Branch Rattlesnake Creek at Glendon, Ohio	Latitude 39°30'40", longitude 83°33'54", Fayette County, Hydrologic Unit 05060003, at West Fork Road bridge, 0.2 mi upstream from mouth, 0.8 mi west of Glendon, 4.0 mi east of Sabina, 6.6 mi west of Washington Court House, Ohio. (Milledgeville 1:24000 quad)	59.8	2000 2002-03	09/17/03	3.76
03232171	Rattlesnake Creek at Glendon, Ohio	Latitude 39°30'20", longitude 83°33'18", Fayette County, Hydrologic Unit 05060003, at State Route 3 bridge in Glendon, 4.4 mi east of Sabina, 6.2 mi west of Washington Court House, Ohio. (Milledgeville 1:24000 quad)	106	2000 2002-03	09/17/03	11.7
03232295	Lees Creek near Leesburg, Ohio	Latitude 39°20'39", longitude 83°30'33", Highland County, Hydrologic Unit 05060003, at bridge on Monroe Road, 1.2 mi upstream from mouth, 2.4 mi east of Leesburg, Ohio. (Leesburg 1:24000 quad)	74.3	1981-82 2000 2002-03	09/17/03	4.37
03234050	North Fork Paint Creek near Plano, Ohio	Latitude 39°30'19", longitude 83°16'22", Ross County, Hydrologic Unit 05060003, at Dogtown Road bridge, 0.6 mi above confluence with Compton Creek, 1.2 mi northeast of Plano, Ohio. (New Holland 1:24000 quad)	60.4	2000 2002-03	09/17/03	12.4
03234066	Compton Creek near Plano, Ohio	Latitude 39°30′54″, longitude 83°17′47″, Fayette County, Hydrologic Unit 05060003, at Good Hope-New Holland Road bridge, 3.4 mi above mouth, 1.7 mi north of Plano, Ohio. (New Holland 1:24000 quad)	49.8	2000-03	09/17/03	11.2
03237288	Ohio Brush Creek at Louden, Ohio	OHIO BRUSH CREEK BASIN Latitude 39°01'48", longitude 83°27'19", Adams County, Hydrologic Unit 05090201, at Ford on Heron Road, 0.3 mi north- northwest of Louden, 4.8 mi southwest of Sinking Springs, Ohio. (Sinking Spring 1:24000 quad)	64.9	2000 2002		

Low-Flow Magnitude and Frequency of Ohio Streams

LOW-FLOW PARTIAL-RECORD STATIONS—Continued

Station	Station		Drainage	Period of	Measurements	
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft ³ /s)
		OHIO BRUSH CREEK BASIN—CONTIN	NUED			
03237289	Baker Fork near Louden, Ohio	Latitude 39°02′29″, longitude 83°25′21″, Adams County, Hydrologic Unit 05090201, at Horner Chapel Road bridge, 1.3 mi north of Serpent Mound State Memorial, 2.0 mi northeast of Louden, 3.0 mi southwest of Sinking Springs, Ohio. (Sinking Spring 1:24000 quad)	43.1	2000 2002		
03237400	West Fork Ohio Brush Creek at Lawshe, Ohio	Latitude 38°56'22", longitude 83°28'28", Adams County, Hydrologic Unit 05090201, at Township Road C-13 bridge in Lawshe, 0.4 mi upstream from mouth, 1.1 mi southwest from Peebles on State Highway 41 to Township Road C-13, turn right, 3.6 mi to bridge and station. (Peebles 1:24000 quad)	134	1959-60 1972-77 2000-02		
03243150	Todd Fork near Clarksville, Ohio	Little MIAMI RIVER BASIN Latitude 39°26′10″, longitude 83°56′41″, Clinton County, Hydrologic Unit 05090202, at U.S. Highway 22 bridge, 1.0 mi upstream from Lytle Creek, 2.7 mi northeast of Clarksville, Ohio. (Clarksville 1:24000 quad)	56.6	1981-82 1995-96 1998-00 2002		
03244950	O'Bannon Creek at Loveland, Ohio	Latitude 39°16'08", longitude 84°15'21", Clermont County, Hydrologic Unit 05090202, at State Route 48 bridge, in Loveland, Ohio. (Mason 1:24000 quad)	59.0	1956 1980-83 1996 1998-00 2002		
03247300	Stonelick Creek near Perintown, Ohio	Latitude 39°07'20", longitude 84°11'56", Clermont County, Hydrologic Unit 05090202, at U.S. Highway 50 bridge, 1.9 mi east of Perintown, Ohio. (Batavia 1:24000 quad)	76.0	1981-82 1996 1998-00 2002		
		GREAT MIAMI RIVER BASIN				
03263168	Stillwater River near Ansonia, Ohio	Latitude 40°13'01", longitude 84°36'44", Darke County, Hydrologic Unit 05080001, at Beisner Road over Stillwater River, 0.1 mi north of State Route 47, 1.2 mi east of Ansonia, 1.8 mi west of Dawn, Ohio. (Dawn 1:24000 quad	74.3	1995-99 2002-03	08/26/03	3.35
03272429	Four Mile Creek near College Corner, Ohio	Latitude 39°35'31", longitude 84°46'14", Preble County, Hydrologic Unit 05080002, at bridge over Four Mile Creek, 0.1 mi below confluence with East Fork Four Mile Creek, 0.8 mi above confluence with Little Four Mile Creek, 0.8 mi northwest from Acton Lake, in Hueston Woods State Park, 3 mi northeast of College Corner, Ohio & Indiana.(College Corner 1:24000 quad)	50.1	1996 1998-99 2001-02		
03276588	Dry Fork Whitewater River at New Haven, Ohio	Latitude 39°15'57", longitude 84°44'54", Hamilton County, Hydrologic Unit 05080003, at Mt. Hope Road bridge, 0.9 mi below confluence with Howard Creek, 1.2 mi.above confluence with Lee Creek, next to Miami Whitewater Forest, 0.8 mi southwest of New Haven, Ohio.(Shandon 1:24000 quad)	59.8	1996 1998-00 2002		

Low-Flow Magnitude and Frequency of Ohio Streams

LOW-FLOW PARTIAL-RECORD STATIONS—Continued

 $\left[\text{mi}^2,\text{square miles};\text{wy},\text{water year};\text{ft}^3/\text{s},\text{cubic foot per second};\text{--},\text{no data}\right]$

Station	Station		Drainage	Period of	Measurements	
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft ³ /s)
04180911	St. Marys River above Kopp Creek at St. Marys, Ohio	MAUMEE RIVER BASIN Latitude 40°32'07", longitude 84°22'38", Auglaize County, Hydrologic Unit 04100004, at Aqueduct Road over St. Mary's River, 150 ft upstream of Miami and Erie Canal aqueduct, 0.3 mi above confluence of Kopp Creek, 2.1 mi east of Grand Lake, 0.5 mi. southeast of St. Mary's, Ohio. (St. Marys 1:24000 quad)	67.0	1994-99 2002-03	09/26/03	3.51
04185299	Brush Creek at Evansport, Ohio	Latitude 41°26'00", longitude 84°23'24", Williams County, Hydrologic Unit 04100006, at county road over Brush Creek, 1.0 mi above mouth, 0.4 mi north of Williams/Defiance county line, 0.6 mi northeast of Evansport, Ohio. (Evansport 1:24000 quad)	64.8	1994-96 1998-99 2001-03	09/12/03	8.63
04185410	Lick Creek near Brunersburg, Ohio	Latitude 41°22'08", longitude 84°26'17", Defiance County, Hydrologic Unit 04100006, at bridge on Trinity Road, 1.2 mi upstream from mouth, 5.0 mi northwest of Brunersburg, Ohio. (Defiance West 1:24000 quad)	105	1980-82 2001-03	09/12/03	14.4
04185498	Mud Creek near Brunersburg, Ohio	Latitude 41°20'34", longitude 84°26'51", Defiance County, Hydrologic Unit 04100006, at bridge on State Route 15, 2.4 mi upstream from mouth, 4.0 mi northwest of Brunersburg, Ohio. (Defiance West 1:24000 quad)	58.0	1980-82 2001-03	09/12/03	15.8
04187995	Sugar Creek near Kalida, Ohio	Latitude 40°57′16″, longitude 84°10′45″, Putnam County, Hydrologic Unit 04100007, at bridge on Putnam County Road 16P, 0.6 mi upstream from mouth, 2.2 mi southeast from Kalida, Ohio. (Kalida 1:24000 quad)	64.2	1981-82 2000-03	09/17/03	5.55
04188097	Plum Creek at Kalida, Ohio	Latitude 40°59'12", longitude 84°12'33", Putnam County, Hydrologic Unit 04100007, at State Route 114, 0.3 mi northwest of Kalida, Ohio. (Kalida 1:24000 quad)	39.8	1999-03	09/16/03	1.75
04189172	Riley Creek near Bluffton, Ohio	Latitude 40°54'12", longitude 83°56'19", Allen County, Hydrologic Unit 04100007, at Phillips Road bridge over Riley Creek, 3.7 mi downstream from confluence of Little Riley Creek, 2.5 mi northwest of Bluffton, Ohio. (Bluffton 1:24000 quad)	64.4	1994-96 1999-03	09/12/03	5.58
04191007	Town Creek near Hoaglin, Ohio	Latitude 40°58′36″, longitude 84°28′36″, Van Wert County, Hydrologic Unit 04100007, at State Route 637 bridge over Town Creek, 2.1 mi above confluence with Maddox Creek, 0.9 mi south of Paulding/Van Wert County line, 2.3 mi northeast of Hoaglin, 3.1 mi north of State Route 224, 10 mi northeast of Van Wert, Ohio. (Wetsel 1:24000 quad)	51.7	1995-96 1998-99 2002-03	09/16/03	13.3

Low-Flow Magnitude and Frequency of Ohio Streams

LOW-FLOW PARTIAL-RECORD STATIONS—Continued

[mi², square miles; wy, water year; ft³/s, cubic foot per second; --, no data]

Station	Station		Drainage		Measurements	
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft³/s)
		MAUMEE RIVER BASIN—CONTINUE	₹D			
04191100	Flatrock Creek near Payne, Ohio	Latitude 41°05′57″, longitude 84°40′06″, Paulding County, Hydrologic Unit 04100007, at Township Road 71 bridge, 2.0 mi downstream from Wildcat Creek, 3.5 mi northeast of Payne, Ohio. Proceed 3.4 minortheast from Payne on State Highway 500 to Township Road 71, turn right and go 0.1 mi to bridge and station. (Payne 1:24000 quad)	147	1972-77 1995-96 1998-99 2003	09/16/03	11.7
04192600	South Turkeyfoot Creek near Malinta, Ohio	Latitude 41°22′15″, longitude 84°01′22″, Henry County, Hydrologic Unit 04100009, at U.S. Highway 6 bridge, 1.8 mi upstream from Little Turkeyfoot Creek, 3.5 mi north of Malinta. Proceed north from Malinta on State Highway 109 for 3.4 mi to U.S. Highway 6, turn right and go 0.8 mi to bridge and station. (Malinta 1:24000 quad)	121	1955-56 1972-77 2001-03	09/10/03	3.49
04192710	Bad Creek at Colton, Ohio	Latitude 41°27′29″, longitude 83°57′34″, Henry County, Hydrologic Unit 04100009, at County Road U bridge, 0.5 mi southwest of Colton, Ohio, 2.0 mi south of Fulton/Henry county line, and 3.9 mi upstream from confluence with Maumee River. (Colton 1:24000 quad)	56.5	1999 2001-03	09/10/03	7.47
04192782	Yellow Creek near Deshler, Ohio	Latitude 41°12′16", longitude 83°51′39", Wood County, Hydrologic Unit 04100009, at State Route 18 bridge, 1.9 mi east of Deshler, 4.1 mi.west of Hoytville. (Hoytville 1:24000 quad)	53.3	2000-03	09/12/03	1.08
04194362	South Branch Portage River near Jerry City, Ohio	PORTAGE RIVER BASIN Latitude 41°16′22″, longitude 83°30′56″, Wood County, Hydrologic Unit 04100010, at Portage View Road over South Branch Portage River, 0.6 mi above confluence with East Branch, 2.1 mi southeast of Six Points, 4.5 mi northeast of Jerry City, Ohio. (Jerry City 1:24000 quad)	54.0	1995-96 1999-03	09/12/03	0.46
04196580	Little Tymochtee Creek near Marseilles, Ohio	SANDUSKY RIVER BASIN Latitude 40°41'13", longitude 83°24'44", Marion County, Hydrologic Unit 04100011, at County Road 22 bridge, 1.3 mi above mouth, 1.4 mi southwest of Marseilles, Ohio. (Marseilles 1:24000 quad)	43.7	1978 1980-82 1997-03	09/11/03	1.46
04198017	West Branch Huron River near New Haven, Ohio	HURON RIVER BASIN Latitude 41°03′08″, longitude 82°39′37″, Huron County, Hydrologic Unit 04100012, at Boughtonville Road bridge, 0.5 mi below confluence with Marsh Run, 3.3 mi east of Willard, Ohio. (Willard 1:24000 quad)	69.4	1981-82 1997-03	09/10/03	11.7

Low-Flow Magnitude and Frequency of Ohio Streams

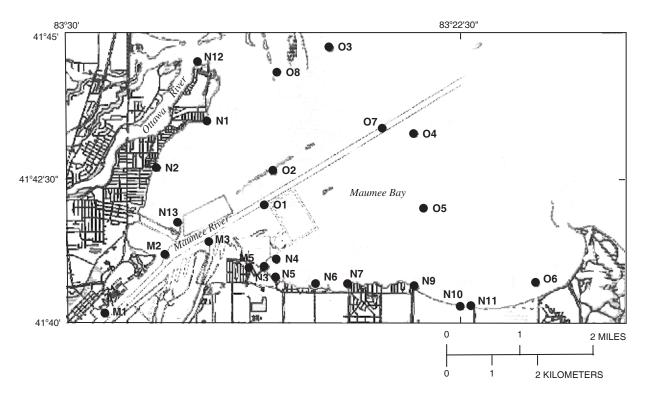
LOW-FLOW PARTIAL-RECORD STATIONS—Continued

 $\left[\text{mi}^2,\text{square miles};\text{wy},\text{water year};\text{ft}^3/\text{s},\text{cubic foot per second};\text{--},\text{no data}\right]$

Station	Station		Drainage		Measurements	
number	name	Location	Area (mi²)	record (wy)	Date	Discharge (ft ³ /s)
04199251	Vermilion River near New London, Ohio	VERMILION RIVER BASIN Latitude 41°03′51″, longitude 82°27′10″, Huron County, Hydrologic Unit 04100012, at U.S. Route 250 bridge, 0.8 mi west of New London Reservior, 0.2 mi north of Akron Canton Youngstown Penn Central Railroad, 3.0 mi southwest of New London, Ohio. (New London 1:24000 quad)	68.9	1997-03	09/10/03	2.79
04199617	West Fork East Branch Black River at Lodi, Ohio	BLACK RIVER BASIN Latitude 41°01'36", longitude 82°02'29", Medina County, Hydrologic Unit 04110001, at bridge of State Route 421, 0.6 mi east of intersection of State Route 42 and 224, 1.6 mi west of Lodi, Ohio. (Lodi 1:24000 quad)	40.6	2000-03	09/12/03	1.61
04199706	East Branch Black River near Penfield, Ohio	Latitude 41°08'12", longitude 82°07'00", Medina/Lorain County, Hydrologic Unit 04110001, at Smith Road bridge over East Branch Black River, on Medina/Lorain county line, 0.3 mi east of State Route 301, 2.2 mi south of Penfield, 3.2 mi north of Spencer, Ohio. (Lagrange 1:24000 quad)	105	1995-96 1998-03	09/12/03	5.71
04201079	West Branch Rocky River near Medina, Ohio	ROCKY RIVER BASIN Latitude 41°09'09", longitude 81°50'02", Medina County, Hydrologic Unit 04110001, at Weymouth Road bridge over West Branch Rocky River, 0.3 mi below confluence with North Branch, 1.9 mi northeast of Medina, Ohio. (Medina 1:24000 quad)	61.2	1995-96 1998-99 2001-02		
04205645	Little Cuyahoga River above Ohio & Erie Canal at Akron, Ohio	CUYAHOGA RIVER BASIN Latitude 41°05′27″, longitude 81°30′40″, Summit County, Hydrologic Unit 04110002, in Akron. Station is reached by driving east on State Route 18 (West Market Street). Turn right (north) onto North Main Street. Travel for 0.4 mi. Turn right (east) onto East North Street. Travel for 0.2 mi to station at Stuber Street bridge on left (north). (Akron West 1:24000 quad)	55.1	1998-99 2001-02		
04212453	Ashtabula River near Kelloggsville, Ohio	ASHTABULA RIVER BASIN Latitude 41°50'00", longitude 80°37'13", Ashtabula County, Hydrologic Unit 04110003, at Root Road Covered Bridge over Ashtabula River, 1.7 mi downstream of confluence of East and West Branches of Ashtabula River, 1.6 mi south of Kelloggsville, 2.4 mi east of Sheffield Center, 7.5 mi southeast of Ashtabula, Ohio. (Pierpont 1:24000 quad)	66.5	1995-99 2001-03	09/12/03	1.33

Low-Flow Magnitude and Frequency of Ohio Streams

DISCONTINUED STREAMFLOW-GAGING STATIONS


 $[mi^2, square miles; wy, water year; ft^3/s, cubic foot per second]$

Station			Drainage	Period of	Measurements		
number	Station name	Location	area (mi²)	record (wy)	Date	Discharge (ft3/s)	
03123000	Sugar Creek above Beach City Dam at Beach City, Ohio	MUSKINGUM RIVER BASIN Latitude 40°39′24″, longitude 81°34′37″, in NE 1/4 sec. 35, T. 11 N., R. 10 W., Stark County, on right bank at downstream side of 3rd Avenue bridge at Beach City, 2.3 mi upstream from Beach City Dam.	160	1945-75	09/11/03	55.5	
03223000	Olentangy River at Claridon, Ohio	SCIOTO RIVER BASIN Latitude 40°34′58″, longitude 82°59′20″, in NW 1/4 sec. 26, T.5 S., R.16 E., Marion County, Hydrologic Unit 05060001, on left bank 900 ft downstream from bridge on State Highway 95, 0.5 mi east of Claridon, 0.8 mi downstream from Otter Creek, and 1.4 mi upstream from Beaver Run.	157	1947-98			
03242050	Little Miami River near Spring Valley, Ohi	LITTLE MIAMI RIVER BASIN Latitude 39°35'00", longitude o 84°01'49", (SE 14 sec Waynesville Quadrangle) in Greene County on right bank at downstream side of bridge on New Burlington Road, 3/4 mi west of Roxanna, and 2.2 mi southwest of Spring Valley, Ohio.	366	1968-85			
03271800	Twin Creek near Ingomar, Ohio	GREAT MIAMI RIVER BASIN Latitude 39°42′28″, longitude 84°31′30″, in sec. 15, T.5 N., R.3 E., Preble County, Hydrologic Unit 05080002, on left bank at downstream side of bridge on Halderman Road, 0.5 mi downstream from Bantas Fork, 1.4 mi west of Ingomar, and 4.8 mi upstream from Aukerman Creek.	197	1963-98			

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

Field studies were done during the recreational season of 2003 (April through September) at 24 sampling sites within Maumee Bay and in the lower Maumee and Ottawa Rivers. These sites included nearshore and offshore locations. Bed-sediment and lake-water samples were collected at each site and analyzed for *Escherichia coli* concentrations. These analyses were conducted as part of a study to identify proximate sources of fecal contamination to Maumee Bay so that future corrective measures can be taken and (or) accurate and timely predictions of recreational water quality can be made.

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

WATER-QUALITY RECORDS

The following tables list the results of bacteriological, water-quality, and physical measurements of water samples collected in the nearshore and offshore sites within Maumee Bay and in the lower Maumee and Ottawa Rivers, June through September 2003.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00076), USGS National Water Information System parameter code; NTU, nephelometric turbidity units; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter; deg C, degrees Celsius; *E. coli, Escherichia coli*; col/100mL, colonies per 100 milliliters; --, no data; E, estimated; <, concentration or value is less than that indicated]

Date	Time	Turb- idity (NTU) (00076)	Dis- solved oxygen (mg/L) (00300)	pH water, unfiltered field (standard units) (00400)	Specific conduct- ance water unfiltered (µS/cm) (00095)	Temper- ature water (deg C) (00010)	E. coli, modified MTEC, water (col/100 mL) (90902)
	(M1) 4140	59083290500-	MAUMEE RIVE	R UPSTREAM TO	LEDO WASTEWAY	TER PLANT	
JUN							
24	1133	180	7.4	7.3	360	24.0	120
JUL 29	0820	64	6.2	7.6	392	23.0	250
30	0830	61	0.2	7.7	388	23.0	130
SEP	0030	01		, . ,	300		130
07	1009	62	6.4	7.6	362	20.4	87
11	0909	70	6.4	7.0	444	22.2	220
	(N10)	41411108322	23200-MAUMEE	BAY AT MAUM	EE BAY STATE	PARK	
JUN							
24	1015	14	5.4	7.1	429	23.8	E53
JUL							
29	0910	12		8.3	366		93
30	1012	13	7.9	8.3	365	23.5	22
SEP 07	0942	27	10.2	8.9	450	20.8	130
11	1009	28		8.4	432	22.5	E19
	2003	20		0.1	132	22.0	223
	(N11)	41411208322	22000-MAUMEE	BAY AT MOUT	H OF BERGER D	<u>ITCH</u>	
JUN	0005	1.0			454	0.4. 5	000
25 JUL	0905	19	5.5	7.0	451	24.7	220
29	0915	14		8.3	354		E14
30	1016	14	7.5	8.2	408	23.1	150
AUG	1010		,.,	0.2	100	23.1	100
14	0953		7.8	8.1	371	25.2	24
SEP							
07	0935	22	7.5	8.4	505	20.9	42
11	1000	35		8.3	435	22.3	40
	(N9) 4	4141260832322	200-MAUMEE B	BAY NEAR MOUT	H OF MCHENRY	DITCH	
JUN							
25	0913	21	3.0	7.0	417	23.6	29
JUL							
29	0920	18		8.2	391		49
30 SEP	1007	15	6.5	8.0	398	23.3	E12
07	0948	26	7.5	8.4	493	21.0	E16
11	1018	72		8.7	418	23.1	21
71737	<u>(N7)</u>	41412708324	13800-MAUMEE	BAY NEAR MO	UTH OF BIG DI	TCH	
JUN 24	1028	50	5.4	7.5	413	25.7	E61
JUL	1020	20	J.4	7.9	413	43.1	FOT
29	0936	40		8.1	399		70
30	1001	23	6.1	7.9	397	24.6	42
SEP							
07	0958	24	9.9	8.7	507	22.0	62
11	1034	45		8.2	409	23.8	E32

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00076), USGS National Water Information System parameter code; NTU, nephelometric turbidity units; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter; deg C, degrees Celsius; *E. coli, Escherichia coli*; col/100mL, colonies per 100 milliliters; --, no data; E, estimated; <-, concentration or value is less than that indicated]

Date	Time	Turb- idity (NTU) (00076)	Dis- solved oxygen (mg/L) (00300)	pH water, unfiltered field (standard units) (00400)	Specific conduct- ance water unfiltered (µS/cm) (00095)	Temper- ature water (deg C) (00010)	E. coli, modified MTEC, water (col/100 mL) (90902)
		(N6) 41412	8083251200-M	IAUMEE BAY NE	AR BAYSHORE		
JUN							
25	0924	15	2.0	7.1	434	23.3	<1
JUL 29	0943	39		8.1	397		64
30	0953	30	6.0	7.8	390	25.5	55
AUG	0,555	30	0.0	7.0	350	23.3	33
14	1008		8.8	8.1	378	27.8	240
SEP							
07	1002	34	9.7	8.8	487	23.0	65
11	1041	33		7.9	403	25.3	23
	(N5)	414131083255	700-MAUMEE B	BAY NEAR MOUT	H OF HECKMAN	DITCH	
JUN							
16	1015	65	9.7	8.6	513	21.9	120
24 JUL	1123	58	3.0	7.6	415	25.5	680
29	0948	50		8.1	396		97
30	0935	29	5.2	7.6	396	26.0	E22
AUG							
14	1014		8.6	8.0	389	27.5	23
SEP							
07	1136	19	6.7	8.0	487	23.8	E37
11	1250	58		8.4	405	26.0	E52
7177	(06) 4	1141330832109	00-MAUMEE B	AY NEAR MOUTH	OF ANDERSON	DITCH	
JUN 25	1010	19	8.6	8.2	418	25.5	45
JUL	1010	10	0.0	0.2	410	23.3	40
29	1134	8	5.8	8.0	384	22.8	E2
30	1236	4.7		7.8	371		E2
SEP							_
07	1404	11	8.7	8.4	396	21.7	E5 E3
11	1332	20	9.2	8.5	398	23.0	E3
	(N3) 4141	L40083260900-	MAUMEE BAY I	NEAR OUTFALL	BAY SHORE POV	VER PLANT	
JUN							
16 25	1000 1008	50 76	10.1 5.2	8.2 7.7	605 407	24.2 25.8	77 93
JUL	1006	76	5.2	7.7	407	25.0	93
29	0957	50		8.1	393		120
30	0943	34	6.3	7.8	397	27.1	35
SEP							
07	1130	52	5.8	7.9	429	24.9	110
11	1244	56		8.0	411	28.2	80
7177	(M5) 4141	40083262700-1	MAUMEE RIVER	NEAR INTAKE	BAY SHORE PO	WER PLANT	
JUN 25	1248	150	7.3	7.4	396	25.3	57
JUL	2240	100		, • •	330	23.3	5,
29	0928	68	5.0	7.5	404	23.0	170
30	0936	53		7.5	398		100
SEP					0.0-		
07	1119	57	6.2	7.6	383	20.8	87
11	1014	53	6.4	7.7	400	22.4	130

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00076), USGS National Water Information System parameter code; NTU, nephelometric turbidity units; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter; deg C, degrees Celsius; *E. coli, Escherichia coli*; col/100mL, colonies per 100 milliliters; --, no data; E, estimated; <, concentration or value is less than that indicated]

Date	Time	Turb- idity (NTU) (00076)	Dis- solved oxygen (mg/L) (00300)	pH water, unfiltered field (standard units) (00400)	Specific conduct- ance water unfiltered (µS/cm) (00095)	Temper- ature water (deg C) (00010)	E. coli, modified MTEC, water (col/100 mL) (90902)
	(N4) 41414	7083255600-м	AUMEE BAY N	EAR OUTFALL O	REGON WASTEWA	ATER PLANT	
JUN			-				
24	1118	130	3.6	7.6	409	26.0	E40
JUL							
29	1117	61		8.1	381		200
30	0946	56	4.7	7.6	395	26.7	77
AUG 14	1027	==	7.1	7.8	390	30.5	90
SEP	1027		/.1	7.0	390	30.5	90
07	1125	64	6.0	7.9	395	25.8	82
11	1235	54		8.1	408	27.4	E53
JUN		(M2) 41414	9083280000-	MAUMEE RIVER	NEAR MOUTH		
25	1224	170	6.6	7.3	403	24.4	64
JUL	1221	270	0.0	,	103	21.1	01
29	0842	58	5.4	7.5	410	22.9	200
30	0855	56		7.6	398		110
AUG							
14	1055		8.9	8.0	382	25.2	130
SEP	1000	66	C 1	7.6	204	20.5	100
07 11	1029 0933	66 55	6.1 6.5	7.6 7.7	384 400	20.5	100 220
11	0,555	33	0.5	7.7	400	22.5	220
	(M3)	4142010832712	200-MAUMEE R	IVER NEAR MOU	JTH OF OTTER	CREEK	
JUN	1000	4.60			265	0.4.0	-05
24 JUL	1223	160	7.2	7.4	365	24.0	E85
29	0902	62	4.8	7.5	403	23.0	180
30	0910	41		7.6	382		83
SEP							
07	1051	71	6.1	7.6	369	20.5	90
11	0948	48	6.4	7.7	397	22.4	E57
	(N1	3) 414215083	274600-MAUM	EE BAY WEST O	F GRASSY TSLA	AND	
JUN							
24	1100	170	5.8	7.8	407	23.4	80
JUL							
29	1100	67		8.2	396		180
30 AUG	1110	53	8.0	8.3	396	24.2	220
14	1101		10.7	8.4	369	26.1	87
SEP	1101		10.7	0.1	303	20.1	0.7
07	1107	74	5.5	8.0	421	20.8	150
11	1208	97		8.4	403	23.3	240
		(01) 4142	33083261100.	-MAUMEE BAY N	FAD CDOTT.		
JUN		1017 4142	55005201100	THIOTHER DITT IV	DIME DIOID		
25	1312	140	7.3	7.4	404	23.8	33
JUL							
29	0945	52	4.7	7.5	405	23.2	100
30	1001	37		7.6	388		E51
AUG	1040		0 4	0 0	274	26.2	C1
14 SEP	1042		8.4	8.0	374	26.2	61
07	1230	54	6.3	7.6	381	21.0	62
11	1042	51	7.2	7.8	398	22.8	68

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00076), USGS National Water Information System parameter code; NTU, nephelometric turbidity units; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter; deg C, degrees Celsius; *E. coli, Escherichia coli*; col/100mL, colonies per 100 milliliters; --, no data; E, estimated; <-, concentration or value is less than that indicated]

Date	Time	Turb- idity (NTU) (00076)	Dis- solved oxygen (mg/L) (00300)	pH water, unfiltered field (standard units) (00400)	Specific conduct- ance water unfiltered (µS/cm) (00095)	Temper- ature water (deg C) (00010)	E. coli, modified MTEC, water (col/100 mL) (90902)
		(02) 4142	59083260300-	-MAUMEE BAY N	EAR SHOAL		
JUN							
24	1247	160	6.5	7.3	378	23.0	E46
JUL 29	1002	56	4.6	7.5	409	22.9	72
30	1002	44	4.0	7.6	399	22.9	67
SEP	1020	44		7.0	3,7,7		07
07	1140	64	6.0	7.6	371	20.8	74
11	1104	41	7.1	7.8	395	23.0	58
		(N2) 4143000	03701700 <u>-</u> mai	TMEE DAY NEAD	POINT PLACE		
JUN		(112) 4143000	03201200—MAI	JMEE DAI NEAR	FOINT FLACE		
24	1050	22	9.5	8.7	472	22.6	E7
JUL							
29	1050	57		8.5	381		E14
30	1104	63	7.2	8.1	375	24.7	22
SEP	1100	4.0	10.0	0.1	450	00.1	= -
07 11	1100 1156	48 56	10.2	9.1 9.4	472 373	22.1 23.7	73 E19
11	1136	50		9.4	3/3	23.1	ETA
	(04	1) 4143340832	232800-MAUME	E BAY NEAR S	HIPPING CHANN	EL	
JUN							
25	1037	16	10.1	8.5	436	24.7	<1
JUL	4404	40	- 4		204	00 5	
29 30	1104 1150	42 19	5.4	7.8 7.9	381 373	22.7	E9 E5
SEP	1150	19		7.9	3/3		ED
07	1307	26	6.1	7.0	380	20.4	E13
11	1131	28	10.5	8.6	413	22.5	E4
	405		40400				
JUN	(05	5) 4143340832	240100-MAUME	E BAY NORTH	OF TOBIAS DIT	<u>CH</u>	
25	1100	46	7.9	7.8	412	24.4	E7
JUL	1100			,		21.1	2,
29	1118	20	5.3	7.8	393	23.0	E3
30	1215	8.4		7.8	384	==	E3
SEP							
07	1343	24	7.3	7.9	466	21.4	E24
11	1306	20	11.8	8.7	413	23.2	E3
	_(0	7) 414334083	3240200-MAUM	EE BAY AT SH	IPPING CHANNE	L	
JUN							
25	1130	24	9.1	8.2	444	25.1	E4
JUL	1004	F 2	F 3	7. ^	200	22.2	2.2
29 30	1024	53 19	5.3	7.8 7.7	380	22.9	20 E4
AUG	1106	19		/ . /	378		Ľ4
14	0904		8.1	8.0	371	25.0	E13
SEP	0001		0.1	0.0	J. ±	23.0	213
07	1231	47	6.2	7.6	378	20.4	48
11	1213	38	8.7	8.0	408	23.0	E5

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00076), USGS National Water Information System parameter code; NTU, nephelometric turbidity units; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter; deg C, degrees Celsius; *E. coli, Escherichia coli*; col/100mL, colonies per 100 milliliters; --, no data; E, estimated; <, concentration or value is less than that indicated]

Date	Time	Turb- idity (NTU) (00076)	(mg/L)	pH water, unfiltered field (standard units) (00400)	water unfiltered (µS/cm)	Temper- ature water (deg C) (00010)	E. coli, modified MTEC, water (col/100 mL) (90902)
		N1) 41434008	3271700-MAUN	MEE BAY NEAR I	DRY TREE POIN	T	
JUN							
25	0942	12	8.8	8.2	485	25.2	E4
JUL							
29	1043	15		8.1	388		E11
30	1100	16	6.2	7.9	367	24.1	E5
SEP	1050	21	10.4	0.0	470	22.0	F1.0
07 11	1052 1147	21 45	10.4	9.0 9.2	478 365	22.0	E12 <1
11	114/	45		9.2	300	23.4	<1
	(08) 41	442108326010	0-MAUMEE BAY	SOUTHWEST OF	F WOODTICK PE	NINSULA	
JUN							
25	1152	6.0	8.1	8.1	470	25.3	<1
JUL							
29	1030	5.9					E2
30	1044	8.1	9.0	8.6	346	23.0	<1
SEP							
07	1026	24	10.5	9.1	464	21.0	E3
11	1117	23		8.2	365	22.9	E2
		(N12) 4144	28083273000-	-OTTAWA RIVER	NEAR MOUTH		
JUN		(1112) 1111	20003273000	011111111111111111111111111111111111111	1,2111 1100111		
25	0950	27	9.1	8.2	625	25.4	36
JUL							
29	1036	18		8.6	413		40
30	1052	19	10.8	9.0	421	24.0	E12
SEP							
07	1045	20	9.0	8.7	500	21.2	29
11	1131	38		8.8	524	23.0	53
	(03)	111113003350	1400_MAIIMEE	BAY EAST OF W	IOODTICE DENIT	ACTIT A	
JUN	(03)	414445005250	J400 MAONEE	DAI BASI OF W	OODIICK IENII	NOULA	
24	1332	5.6	11.8	8.8	445	25.0	<1
JUL	1332	3.0	11.0	0.0	110	23.0	
29	1048	8.8	5.9	8.0	348	22.7	<1
30	1132	16		7.8	364		E7
SEP							
07	1206	22	15.5	9.7	323	21.2	E7
11	1240	15	7.4	7.8	382	22.7	E3

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

SEDIMENT-QUALITY RECORDS

The following tables list the results of bacteriological and physical measurements of bed-sediment samples collected in the nearshore and offshore sites within Maumee Bay and in the lower Maumee and Ottawa Rivers April through September 2003. Samples were collected as part of a study to investigate the spatial and temporal distribution of *Escherichia coli* (*E. coli*) in sediments of Maumee Bay.

SEDIMENT-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Depth at sample location feet (81903)	E coli, Colilert Quantitray bed sediment MPN/gpW (50467)	Bed sediment, fall diameter (deionized water), percent < .125mm (80165)	Bed sediment, fall diameter (deionized water), percent < .031mm (80283)	Bed sediment, fall diameter (deionized water), percent < .016mm (80282)	Bed sediment, fall diameter (deionized water), percent < .008mm (80293)	Bed sediment, fall diameter (deionized water), percent < .004mm (80157)	Bed sediment, fall diameter (deionized water), percent < .002mm (80294)
		(M1) 4140	59083290500-	MAUMEE RIVER	UPSTREAM TO	LEDO WASTEWA	TER PLANT		
APR									
28	1105	4	4						
JUN									
24	1143	10							
JUL		_							
29	0830	3	280	63	51	48	43	40	37
30	0840	3	190						
SEP 07	1019	4	290						
11	0919	3	290 87						
11	0919	3	0 /						
		(N10)	41411108322	3200-MAUMEE	BAY AT MAUMI	EE BAY STATE	PARK		
MAY									
28	0949		1						
JUN									
24	1025	3	1						
JUL									
29	0920	3	6	69	63	53	42	39	35
30	1022	3	4						
SEP	0050	2							
07	0952	3	4		==			==	
11	1019	3	4						
		(N11)	41411208322	22000-MAUMEE	BAY AT MOUTE	H OF BERGER	DITCH		
JUN									
25	0915	4	11						
JUL									
29	0925	4	110	7.3	5.3	4.0	3.2	2.9	2.6
30	1026	3	120						
AUG									
14	1003	4	660					==	
SEP	0045	4	260						
07	0945	4 2	260	==			==		==
11	1010	2	33						
		(N9)	1141260832322	00-MAUMEE BA	AY NEAR MOUTE	H OF MCHENRY	DITCH		
JUN									
25	0923	4	86						
JUL									
29	0930	3	40	74	64	50	42	36	31
30	1017	4	35						
SEP									
07	0958	3	30						
11	1028	2	100						

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

SEDIMENT-QUALITY RECORDS—CONTINUED

SEDIMENT-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

Date	Time	Depth at sample location feet (81903)	E coli, Colilert Quantitray bed sediment MPN/gDW (50467)	Bed sediment, fall diameter (deionized water), percent < .125mm (80165)	Bed sediment, fall diameter (deionized water), percent < .031mm (80283)	Bed sediment, fall diameter (deionized water), percent < .016mm (80282)	Bed sediment, fall diameter (deionized water), percent < .008mm (80293)	Bed sediment, fall diameter (deionized water), percent < .004mm (80157)	Bed sediment, fall diameter (deionized water), percent < .002mm (80294)
		(N7) 41412708324	13800-MAUMEE	BAY NEAR MOU	UTH OF BIG D	<u>ITCH</u>		
JUN									
24	1038	3	4						
JUL									
29	0946	4	82	2.5	0.8	0.7	0.6	0.5	0.4
30 SEP	1011	3	42						==
07	1008	3	13						
11	1044	4	26						
11	1044	-							
JUN			(N6) 414128	3083251200-M2	AUMEE BAY NE	AR BAYSHORE			
25	0934	4	28		==				==
JUL	0331	-	20						
29	0953	3	280	7.5	1.6	1.1	1.0	0.9	0.8
30	1003	3	63						
AUG									
14	1018	3	18						
SEP									
07	1012	4	52						
11	1051	4	46		==	==	==		==
		(N5)	4141310832557	700-MAUMEE BA	AY NEAR MOUTE	H OF HECKMAN	DITCH		
JUN									
16	1025	3	21						
24	1133	3	18						
JUL 29	0050	3	34	2.1	F 0	2.5	2.2	2 2	1 0
30	0958 0945	3	34 25	31	5.0	2.5	2.3	2.2	1.9
AUG	0945	3	25						
14	1024	2	13						
SEP									
07	1146	2	32						
11	1300	1	20						
		(06) 4	141330832109	00-MAUMEE BA	Y NEAR MOUTH	OF ANDERSON	I DITCH		
APR		<u> </u>					<u></u>		
28	1030	4	<1						
JUN									
25	1010	5	3						
JUL									
29	1144	5	<1	76	71	64	50	44	42
30	1246	5	1						
SEP 07	1414	4	36						
11	1342	4	20						
11	1342	*	20						

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

SEDIMENT-QUALITY RECORDS—CONTINUED

SEDIMENT-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

,									
Date	Time	Depth at sample location feet (81903)	E coli, Colilert Quantitray bed sediment MPN/gpW (50467)	Bed sediment, fall diameter (deionized water), percent < .125mm (80165)	Bed sediment, fall diameter (deionized water), percent < .031mm (80283)	Bed sediment, fall diameter (deionized water), percent < .016mm (80282)	Bed sediment, fall diameter (deionized water), percent < .008mm (80293)	Bed sediment, fall diameter (deionized water), percent < .004mm (80157)	Bed sediment, fall diameter (deionized water), percent < .002mm (80294)
		(N3) 4141	40083260900-	MAUMEE BAY N	EAR OUTFALL	BAY SHORE PO	WER PLANT		
JUN									
16	1010	4	120						
25 JUL	1018	4	46						
29	1007	3	24	60	24	6.9	6.1	5.7	5.2
30	0953	3	12						
SEP									
07	1140	3	170						
11	1254	3	26						
		(M5) /1/1	40083262700—N	ANIMEE DIVED	MEAD INTAKE	RAV CHOPE D	OWED DIANT		
JUN		(113) 4141	40003202700 P	HOHEL KIVEK	NEAK INTAKE	DAT SHOKE I	SWERT LEARLE		
25	1258	14							
JUL									
29	0938	14	130	99	95	87	80	77	69
30	0946	13	68						
SEP									
07	1129	14	330		==				
11	1024	5	64						
		(N4) 41414	7083255600-M	AUMEE BAY NE	AR OUTFALL C	REGON WASTEW	ATER PLANT		
JUN									
24	1128	5	27						
JUL	1100	4	110	2.0	1.0	1.5	1.4	1.4	1.2
29 30	1127 0956	4	110 66	38	18	15	14	14	13
AUG	0956	4	00						
14	1037	4	54						
SEP									
07	1135	4	86						
11	1245	5	120						
			(M2) /1/1/	9083280000-M	AIIMEE DIVED	NEAD MOUTH			
JUN			1112 / 11111	<u> </u>	TIOTHE REVER	1411111 1100111			
25	1234	4	==						
JUL									
29	0852	4	74	88	74	62	55	52	46
30	0905	4	65						
AUG	4405	_	2						
14 SEP	1105	6	3						
07	1039	26	560						
11	0943	26	1900						
	0313								
		(M3)	4142010832712	200-MAUMEE RI	IVER NEAR MOU	UTH OF OTTER	CREEK		
JUN	1000	-	2.4						
24 JUL	1233	7	34						
29	0912	3	72	89	76	67	57	54	48
30	0920	2	53						
SEP		_							
07	1101	4	36						
11	0958	4	54						

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

SEDIMENT-QUALITY RECORDS—CONTINUED

SEDIMENT-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

Date	Time	Depth at sample location feet (81903)	E coli, Colilert Quantitray bed sediment MPN/g _{DW} (50467)	Bed sediment, fall diameter (deionized water), percent < .125mm (80165)	Bed sediment, fall diameter (deionized water), percent < .031mm (80283)	Bed sediment, fall diameter (deionized water), percent < .016mm (80282)	Bed sediment, fall diameter (deionized water), percent < .008mm (80293)	Bed sediment, fall diameter (deionized water), percent < .004mm (80157)	Bed sediment, fall diameter (deionized water), percent < .002mm (80294)
		<u>(N1</u>	3) 414215083	274600-MAUME	E BAY WEST O	F GRASSY ISI	AND		
JUN									
24 JUL	1110	4	31						==
29	1110	3	85	47	42	34	28	25	23
30	1120	3	120						
AUG									
14	1111	2	36						
SEP	4445	2	0.0						
07 11	1117 1218	3	82 120						
11	1210	3							
			(01) 4142	33083261100-	MAUMEE BAY N	EAR SPOIL			
JUN 25	1322	29	200						
JUL	1322	23	200						
29	0955	28	53	95	89	78	72	68	63
30	1011	28	120						
AUG	1050	10	5 4						
14 SEP	1052	10	54						
07	1240	7	320						
11	1052	13	140						
			(02) 4142	E00033260300	MAIRMEE DAY N	EAD CHOAT			
JUN			(02) 4142	59083260300-	MAUMEE BAY N	EAR SHUAL			
24	1257	6	30						==
JUL									
29	1012	4	240	5.6	4.4	4.0	3.6	3.4	3.1
30 SEP	1038	4	150						==
07	1150	4	70						==
11	1114	5	29						==
			(370) 4143000	02001000 2027	Day 3103.D	DOTAM DI AGE			
JUN			(N2) 4143000	832812UU—MAU	MEE BAY NEAR	POINT PLACE	<u> </u>		
24	1100	4	2						
JUL									
29	1100	3	7	86	61	28	23	21	19
30	1114	3	38						
SEP 07	1110	4	17						==
11	1206	4	5						
JUN		<u>(O</u>	4) 4143340832	232800-MAUMEE	E BAY NEAR SI	HIPPING CHAN	NEL		
25	1047	6	7						
JUL	101,	ŭ	•						
29	1114	8	15	1.0					==
30	1200	7	3						
SEP	1217	-	1.5						
07 11	1317 1141	6 6	15 2						
	1141	O .	۷						

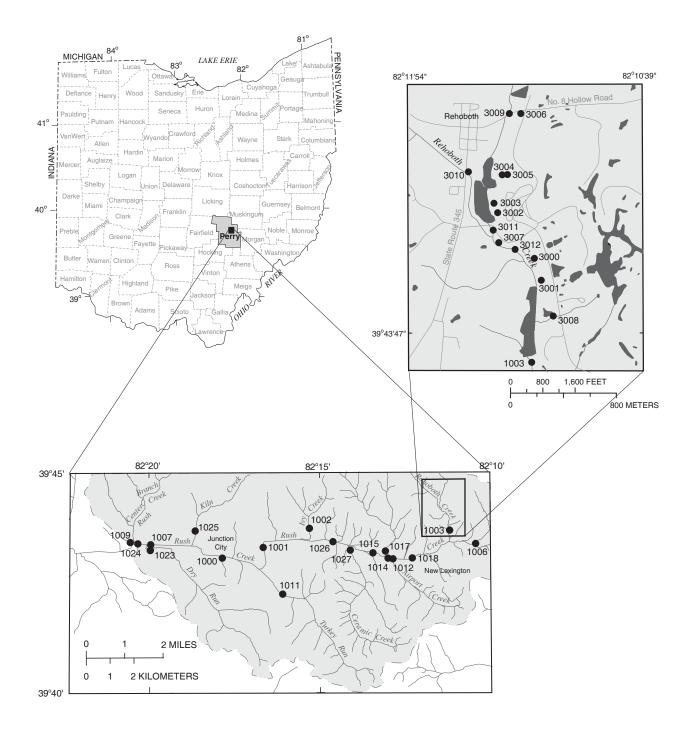
Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio

SEDIMENT-QUALITY RECORDS—CONTINUED

SEDIMENT-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

Date	Time	Depth at sample location feet (81903)	E coli, Colilert Quantitray bed sediment MPN/gpw (50467)	Bed sediment, fall diameter (deionized water), percent < .125mm (80165)	Bed sediment, fall diameter (deionized water), percent < .031mm (80283)	Bed sediment, fall diameter (deionized water), percent < .016mm (80282)	Bed sediment, fall diameter (deionized water), percent < .008mm (80293)	Bed sediment, fall diameter (deionized water), percent < .004mm (80157)	Bed sediment, fall diameter (deionized water), percent < .002mm (80294)
		(0	5) 4143340832	240100-MAUMEI	E BAY NORTH (OF TOBIAS DI	TCH		
JUN									
25	1110	8	6						
JUL									
29	1128	8	30	44	38	32	30	28	27
30	1225	8	180						
SEP									
07	1353	6	4						
11	1316	6	38						
		_(07) 414334083	3240200-MAUM	EE BAY AT SH	IPPING CHANN	EL		
JUN									
25	1140	29	>660						
JUL									
29	1034	32	140	98	93	84	78	68	53
30	1116	27	720						
AUG									
14	0914	29	200						
SEP									
07	1241	30	730						
11	1223	30	390						
		_(:	N1) 414340083	3271700-MAUMI	EE BAY NEAR	DRY TREE POI	NT		
JUN		_							
25	0952	3	4						
JUL									
29	1053	3	13	2.8	1.8	1.5	1.3	1.2	1.1
30	1110	3	84						
SEP									
07	1102	3	37						==
11	1157	3	27						
		(08) 41	4421083260100)_MAIIMEE BAY	SOUTHWEST O	F WOODTICK P	ENTNSIII.A		
JUN									
25	1202	8	16						
JUL									
29	1040	4	2	4.6	2.1	1.6	1.4	1.4	1.3
30	1054	4	6	77	46	37	33	32	31
SEP									
07	1036	5	3						
11	1127	3	1						==
			(N12) /1//	28083273000-0	סקוום משמחיים	MEAD MOUTH			
JUN			(N12) 41442	.0003273000	JIIAWA KIVEK	NEAR MOOTH			
25	1000	3	11						
JUL		-							
29	1046	4	16	8.7	5.7	4.5	4.0	3.8	3.4
30	1102	4	22						
SEP									
07	1055	4	130						
11	1141	3	10						

Escherichia coli in Water and Bed Sediments in Maumee Bay, Toledo and Oregon, Ohio


SEDIMENT-QUALITY RECORDS—CONTINUED

SEDIMENT-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(81903), USGS National Water Information System parameter code; E. coli, Escherichia coli; MPN/g_{DW}, most probable number of colonies per gram dry weight of sediment; mm, millimeters; --, no data]

Date	Time	Depth at sample location feet	E coli, Colilert Quantitray bed sediment MPN/gnw	Bed sediment, fall diameter (deionized water), percent < .125mm	Bed sediment, fall diameter (deionized water), percent < .031mm	Bed sediment, fall diameter (deionized water), percent < .016mm	Bed sediment, fall diameter (deionized water), percent < .008mm	Bed sediment, fall diameter (deionized water), percent < .004mm	Bed sediment, fall diameter (deionized water), percent < .002mm
		(81903)	(50467)	(80165)	(80283)	(80282)	(80293)	(80157)	(80294)
		(03)	414443083250	400-MAUMEE B	AY EAST OF W	OODTICK PENI	NSULA		
APR									
28	1210	5	1						==
JUN									
24	1342	8	1						
JUL									
29	1058	6	9	18	6.4	3.3	2.9	2.7	2.3
30	1142	6	6						
SEP									
07	1216	5	11						
11	1250	5	4						

The following tables contain water-quality data for the main stem of and tributaries to Rush Creek in southeastern Ohio. The data are being collected in cooperation with the Ohio Department of Natural Resources, Division of Minerals Resources Management, to help identify specific sources of acid mine drainage and assess their relative influence on the overall water quality within the Rush Creek Watershed.

WATER-QUALITY RECORDS

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

[(00061), USGS National Water Information System parameter code; cfs, cubic feet per second; mi2, square mile; mg/L, milligrams per liter; uS/cm, microsiemens per centimeter; deg C, degrees Celsius; E, estimated; --, no data; *, indicates volumetric measurement]

Map identifier	Station number	Date	Instan- taneous dis- charge, cfs (00061)	Drain- age area, mi2 (81024)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd lab, std units (00403)	Specif. conduc- tance, wat unf lab, uS/cm 25 deg C (90095)	Temper- ature, water, deg C (00010)	Calcium water, fltrd, mg/L (00915)
1000	394307082175400	08-06-03	10	35.3	8.0	3.8	1090	19.1	88.5
1001	394317082164300	08-06-03	8.3	28.10	10.2	3.5	1200	19.2	97.6
1001	394317082164300	09-24-03	37	28.10	9.5	5.4	602	14.4	55.0
1002	394344082152200	08-05-03	.23	1.7	7.5	7.1	505	19.4	49.8
1003	394339082111500	07-15-03	2.0	3.9	7.9	2.8	2150	28.4	127
1003	394339082111500	08-05-03	2.2	3.9	7.1	2.7	2290	23.3	137
1003	394339082111500	09-10-03	2.2	3.9	8.0	2.9	1940	23.7	124
1006	394324082102900	08-05-03	1.4	2.6	8.6	3.6	1990	20.0	179
1007	394323082200000	08-06-03	10	39.5	9.3	4.5	1000	20.1	95.8
1007	394323082200000	09-24-03	52	39.5	9.0	6.0	530	14.4	52.2
1009	03156549	08-06-03	6.2	24.90	7.7	E6.8	376	21.1	35.7
1011	394214082160900	08-06-03	1.4	4.70	8.1	4.7	857	18.9	77.8
1012	394302082125500	08-05-03	1.2	2.4	8.8	3.8	1010	19.1	64.5
1014	394305082130000	08-05-03	5.5	12.2	8.6	3.0	1820	20.8	122
1015	394312082132800	08-05-03	7.1	16.8	9.1	3.1	1640	20.7	108
1017	394313082130600	08-05-03	.94	4.70	9.5	7.1	605	19.8	54.6
1018	394306082121900	08-05-03	4.0	9.40	7.7	2.9	2070	21.4	148
1018	394306082121900	09-24-03	10	9.40	9.0	3.1	1400	15.8	89.9
1023	394316082200000	08-06-03	1.1	5.2	7.4	6.9	427	21.4	38.7
1024	394324082202400	08-06-03	12	45.3	9.2	4.5	940	20.4	79.2
1025	394341082184300	08-06-03	.36	2.1	9.8	7.2	353	19.4	37.9
1026	394327082143800	08-05-03	9.1	23.0	9.3	3.4	1250	20.8	87.3
1027	394314082140900	08-05-03	1.2	3.8	8.2	E6.9	436	20.0	38.4
3000	394404082111400	08-26-03	.04*		5.5	2.8	4750	26.0	473
3001	394359082111200	08-26-03	.02*		5.6	2.7	3480	25.9	329
3002	394416082112600	08-27-03	.004*		1.2	2.8	8180	20.1	472
3003	394418082112700	08-27-03	.002*		8.2	2.8	9980	27.8	443
3004	394425082112300	08-27-03	.07*		2.2	2.9	6370	15.5	443
3005	394426082112200	08-27-03	.004*		3.9	2.6	3900	25.9	414
3006	394441082111800	08-27-03	.07*		7.1	2.8	2060	24.0	132
3007	394409082112500	08-29-03	.003*		6.0	2.9	3660	22.3	493
3008	394351082110800	08-29-03	.04		6.4	2.8	2230	22.1	160
3009	394440082112300	09-09-03	.61			3.5	1180	20.6	103
3010	394426082113600	09-09-03	1.1	1.60		3.2	1520	19.7	105
3011	394412082112800	09-09-03	.72			2.8	2150	24.1	141
3012	394407082112000	09-10-03	1.5		8.1	2.9	1930	23.3	128

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(00925), USGS National Water Information System parameter code; mg/L, milligrams per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Map identifier	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Acidity water, unfltrd heated, mg/L as CaCO3 (70508)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)
1000	52.5	4.69	32.1	52	==		.18	43.5	.6
1001	54.1	5.11	33.5	81			.14	41.4	.6
1001	28.6	3.77	17.5	4	4	4	.13	29.4	.3
1002	23.3	2.52	11.6		48	59	.06	20.3	.2
1003	79.8	1.72	12.6	276			.27	26.9	.8
1003	85.7	5.88	14.2	311			.40	28.8	.8
1003	73.6	5.68	12.0	272			.30	22.8	.9
1006	101	6.43	68.5	50			.13	20.5	.5
1007	51.1	5.12	33.9	38			.16	43.8	.6
1007	25.6	3.91	16.6		E8	E10	.11	30.0	.2
1009	13.7	3.13	15.5		86	104	.07	34.2	.2
1011	41.3	3.46	15.2	16	1	2	.27	32.9	.5
1012	38.7	3.25	22.4	114		==	.21	49.6	.8
1014	70.1	5.22	30.5	183			.22	35.7	.7
1015	60.6	4.80	28.9	153			.16	35.3	.6
1017	24.7	2.91	25.6	==	74	90	.13	46.5	.3
1018	87.7	6.27	30.2	226			.24	26.1	.7
1018	53.1	4.84	13.4	69			.11	20.8	.6
1023	19.6	2.96	13.5		65	79	.05	26.6	.2
1024	46.0	4.49	30.0	23			.16	43.1	.6
1025	13.0	2.75	14.9		72	88	.10	32.4	<.2
1026	48.0	4.82	34.9	73			.14	42.8	.6
1027	21.1	2.55	10.8		48	58	.04	20.2	.3
3000	235	14.1	21.1	1853			10.7	27.9	1.9
3001	180	10.0	21.8	608	==	==	3.02	31.8	.8
3002	228	34.0	17.5	6910			35.6	24.1	1.4
3003	235	62.2	20.5	983			110	34.8	2.9
3004	167	66.5	37.8	4560			11.4	71.9	<.8
3005	49.3	3.35	2.75	1070			1.05	12.8	1.2
3006	82.0	5.72	7.60	282			.31	9.40	.9
3007	239	11.7	25.9	490		==	3.14	21.9	.4
3008	97.0	10.2	9.69	246	==	==	.38	13.9	.6
3009	61.9	4.50	13.1	46	==	==	.07	21.0	.6
3010	75.3	3.98	10.2	146			.13	16.7	1.2
3011	65.5	6.88	12.4	449		==	.57	23.6	.6
3012	75.4	5.51	12.6	298			.26	22.9	.9

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

 $[(00955), USGS\ National\ Water\ Information\ System\ parameter\ code;\ mg/L,\ milligrams\ per\ liter;\ ug/L,\ micrograms\ per\ liter;\ <,\ concentration\ or\ value\ reported\ is\ less\ than\ that\ indicated;\ E,\ estimated;\ --,\ no\ data]$

Map identifier	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue on evap. at 180degC wat flt mg/L (70300)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)	Arsenic water, fltrd, ug/L (01000)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)
1000	18.4	526		5800			100		
1001	20.9	577	889	8190	7400	<2	120	<2	E4
1001	14.4	268		380			70		
1002	11.5	173		3			40		
1003	21.2	1060		13200			170		
1003	24.2	1190		15600			230		
1003	21.5	1340	1360	14400	13000	E2	170	<2	6
1006	13.9	1180		2550			150		
1007	20.6	494	780	6090	5280	<2	110	<2	E4
1007	13.9	215		60			70		
1009	5.00	46.4		6			40		
1011	15.9	405		1810			60		
1012	26.4	492		23600			70		
1014	23.4	949		17800			150		
1015	21.3	834		16200			130		
1017	10.8	158		26			50		
1018	25.3	1050	1410	13100	11400	<2	200	<2	6
1018	17.4	737		8190			120		
1023	6.78	103		4			40		
1024	16.1	437		3260			90		
1025	9.26	48.0		4			40		
1026	18.2	584		6800			110		
1027	11.8	132		3			40		
3000	45.6	4660	5670	33900	29300	3	4020	<6	<15
3001	31.0	2380	3050	5760	6980	E2	1220	<6	E13
3002	57.7	10100	14000	394000	401000	29	11300	<10	<25
3003	43.8	13200	18600	520000	489000	39	14600	<10	<25
3004	84.1	6780	9660	299000	256000	27	9210	<6	<15
3005	28.0	2710	3490	72500	91500	12	1330	<6	61
3006	38.8	1150	1400	10500	11900	E2	220	<2	E13
3007	39.1	2840	3590	11100	11200	E2	900	<6	25
3008	24.8	1170	1450	2310	2260	<2	220	<6	E8
3009	19.5	636	896	7580	2400	2	110	<2	E4
3010	23.4	902	1190	27500	10800	E1	70	E2	9
3011	21.8	1230	1580	23300	19700	3	480	<6	E8
3012	23.1	1100	1390	16800	18500	<2	250	2	9

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(01035), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; --, no data; M, presence verified but not quantified]

Map identifier	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Nickel, water, fltrd, ug/L (01065)
1000			974				8800		
1001	85	<7	1700	3110	3	72	8610	7800	100
1001			466				3700		
1002			12				546		
1003		==	20700		==	==	13900	==	
1003			31700				14400		
1003	128	<7	27100	25700	2	114	13800	15300	700
1006			7680				23900		
1007	75	<7	240	510	2	62	6780	6510	90
1007	==	==	300		==	==	2870	==	==
1009			11				76.9		
1011			333				7750		
1012			1920				9050		
1014			19200				14800		
1015			16800				14000		
1017		==	16		==	==	614	==	
1018	155	<7	18600	20000	3	113	15700	15000	160
1018			13500				10500		
1023			E8				428		
1024			196				8000		
1025			9				152		
1026			3940				9410		
1027			18				463		
3000	531	<21	887000	840000	2	245	37700	36300	560
3001	447	<21	271000	273000	3	152	33300	35100	460
3002	794	<35	2650000	2500000	2	1010	51600	55400	1150
3003	692	<35	3970000	4010000	6	1350	51300	51600	1220
3004	89	<21	1810000	1760000	4	1360	22500	19200	250
3005	102	78	96000	120000	M	279	3630	3740	240
3006	123	<7	29700	30000	2	146	12600	14300	180
3007	91	<21	168000	155000	M	96	29900	29800	100
3008	149	<21	26700	30900	2	81	17800	20300	160
3009	39	<7	7680	7220	1	63	5520	5030	190
3010	175	<21	6410	6220	1	112	16600	15600	540
3011	58	<21	88700	79900	1	126	7460	7600	870
3012	127	<21	45700	57600	2	126	13700	13800	420

WATER-QUALITY RECORDS—CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003—Continued

[(01145), USGS National Water Information System parameter code; ug/L, micrograms per liter; <, concentration or value reported is less than that indicated; E, estimated; --, no data]

Map identifier	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)
1000					
1001	<3	<5	389	<6	184
1001					
1002					
1003					
1003					
1003	3	<5	371	<6	283
1006					
1007	<3	<5	384	<6	164
1007		==			
1009					
1011					
1012					
1014					
1015					
1017					
1018	<3	<5	592	<6	293
1018					
1023					
1024					
1025					
1026					
1027					
3000	6	<15	1090	<18	1430
3001	4	<15	822	<18	840
3002	14	<25	1070	<30	3910
3003	18	<25	999	<30	4670
3004	11	<15	1230	<18	1470
3005	5	<15	562	<18	640
3006	<3	<5	342	<6	276
3007	4	<15	1530	<18	157
3008	E2	<15	412	<18	205
3009	3	<5	280	<6	90
3010	<3	<5	360	<6	348
3011	4	<15	353	<18	227
3012	<3	<5	376	<6	291

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

Since 1989, the Toxic Substances Hydrology Program has studied periodic reconnaissance of streams in 10 states in the Midwest to determine the geographic and seasonal distribution of herbicide compounds. Early studies indicate peak herbicide concentrations during the first runoff event after herbicide application. Herbicide concentrations can be high after runoff events for several weeks to several months. More recent studies have focused on collecting water samples during these post-application runoff events.

In Ohio, nine streams have been sampled as part of the Midwest herbicide investigation. Data presented in the following tables list chemical analyses of surface-water samples collected to characterize trends in herbicide use.

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

03157000. CLEAR CREEK NEAR ROCKBRIDGE, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH water whole field (standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
OCT 26	1300	78	9.8	8.0	506	11.9	11.1	.11	.07	<.05
Date	Alachlor oa fltrd 0.7 um gf rec (ug/L) (61031)	Alachlor esa wat flt gf 0.7u rec (ug/L) (50009)	Alachlor water, diss, rec (ug/L) (46342)	Ametryn water, diss, rec, (ug/L) (38401)	Amino- methyl- phos- phonic acid, wat flt (ug/L) (62649)	Atra- zine, water, diss, rec (ug/L) (39632)	Cyana- zine, water, diss, rec (ug/L) (04041)	Cyana- zine- amide water fltrd rec (ug/L) (61709)	Deethyl atra- zine, water, diss, rec (ug/L) (04040)	Deiso- propyl atrazin water, diss, rec (ug/L) (04038)
OCT 26	<.05	.08	<.05	<.05	<.1	.04	<.02	<.02	.04	<.02
Date	Dimeth- enamid oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	Di- methen- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	Flufe- nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	Glufo- sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	Glypho- sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	Metola- chlor esa fltrd 0.7 um gf rec (ug/L) (61043)	Metola- chlor oa fltrd 0.7 um gf rec (ug/L) (61044)
OCT 26	<.05	<.05	<.05	<.05	<.05	<.05	<.1	<.1	.49	.12
Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)		
OCT 26	<.05	<.05	<.05	<.05	<.05	<.02	.14	<.05		

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

03219500. SCIOTO RIVER NEAR PROSPECT, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH water whole field (standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
OCT										
01	1030	188	7.6	7.3	521	22.0	18.2	1.20	1.67	.05
Date	Alachlor oa fltrd 0.7 um gf rec (ug/L) (61031)	Alachlor esa wat flt gf 0.7u rec (ug/L) (50009)	Alachlor water, diss, rec (ug/L) (46342)	Ametryn water, diss, rec, (ug/L) (38401)	Amino- methyl- phos- phonic acid, wat flt (ug/L) (62649)	Atra- zine, water, diss, rec (ug/L) (39632)	cYana- zine, water, diss, rec (ug/L) (04041)	Cyana- zine- amide water fltrd rec (ug/L) (61709)	Deethyl atra- zine, water, diss, rec (ug/L) (04040)	Deiso- propyl atrazin water, diss, rec (ug/L) (04038)
OCT										
01	.17 Dimeth- enamid	.29	<.05 Di- methen-	<.05	.5	.60	<.02	<.02	.17 Metola- chlor	.11 Metola- chlor
Date	oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	mether- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	esa fltrd 0.7 um gf rec (ug/L) (61043)	oa fltrd 0.7 um gf rec (ug/L) (61044)
OCT	11	1.0	- OF	0.7	0.5	- OF	. 1	2	2.20	1 76
O1 Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)	2.30	1.76
OCT										
01	.44	<.05	<.05	<.05	<.05	<.02	.06	<.05		

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

03223000. OLENTANGY RIVER AT CLARIDON, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH water whole field (standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
OCT 26	1500	5.3	8.7	7.9	772	9.8	8.7	.18	.18	<.05
					Amino-			Cyana-	Deethyl	Deiso-
	Alachlor oa fltrd	Alachlor esa wat flt	Alachlor water,	Ametryn water,	methyl- phos- phonic	Atra- zine, water,	Cyana- zine, water,	zine- amide water	atra- zine, water,	propyl atrazin water,
Date	0.7 um gf rec	gf 0.7u rec	diss, rec	diss, rec,	acid, wat flt	diss, rec	diss, rec	fltrd rec	diss, rec	diss, rec
	(ug/L) (61031)	(ug/L) (50009)	(ug/L) (46342)	(ug/L) (38401)	(ug/L) (62649)	(ug/L) (39632)	(ug/L) (04041)	(ug/L) (61709)	(ug/L) (04040)	(ug/L) (04038)
ОСТ 26	.05	.20	<.05	<.05	.1	.12	<.02	<.02	.03	<.02
20	.05	.20	1.05	7.03	• ±	.12	1.02	1.02	.03	V.02
Date	Dimeth- enamid oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	Di- methen- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	Flufe- nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	Glufo- sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	Glypho- sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	Metola- chlor esa fltrd 0.7 um gf rec (ug/L) (61043)	Metola- chlor oa fltrd 0.7 um gf rec (ug/L) (61044)
OCT 26	<.05	.05	<.05	<.05	<.05	<.05	<.1	<.1	.69	.33
20	Meto-	.05 Metri- buzin	Pro-meton,	Pro-metryn,	Propa- chlor,	Prop- azine	Si- mazine,	Ter- butryn	.69	
Date	lachlor water dissolv (ug/L) (39415)	sencor water dissolv (ug/L) (82630)	water, diss, rec (ug/L) (04037)	water, diss, rec (ug/L) (04036)	water, diss, rec (ug/L) (04024)	water diss, rec (ug/L) (38535)	water, diss, rec (ug/L) (04035)	water, diss, rec (ug/L) (38888)		
OCT 26	.06	<.05	<.05	<.05	<.05	<.02	.02	<.05		

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

03230500. BIG DARBY CREEK AT DARBYVILLE, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH water whole field (standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
OCT										
01	1105	195	8.1	7.8	488	25.5	18.5	.57	.76	<.05
Date	Alachlor oa fltrd 0.7 um gf rec (ug/L) (61031)	Alachlor esa wat flt gf 0.7u rec (ug/L) (50009)	Alachlor water, diss, rec (ug/L) (46342)	Ametryn water, diss, rec, (ug/L) (38401)	Amino- methyl- phos- phonic acid, wat flt (ug/L) (62649)	Atra- zine, water, diss, rec (ug/L) (39632)	Cyana- zine, water, diss, rec (ug/L) (04041)	Cyana- zine- amide water fltrd rec (ug/L) (61709)	Deethyl atra- zine, water, diss, rec (ug/L) (04040)	Deiso- propyl atrazin water, diss, rec (ug/L) (04038)
OCT										
01	.07	.13	<.05	<.05	.3	.12	<.02	<.02	.15	.05
Date	Dimeth- enamid oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	Di- methen- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	Flufe- nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	Glufo- sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	Glypho- sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	Metola- chlor esa fltrd 0.7 um gf rec (ug/L) (61043)	Metola- chlor oa fltrd 0.7 um gf rec (ug/L) (61044)
OCT										
01	.14	.15	<.05	<.05	<.05	<.05	<.1	.2	1.35	.90
Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)		
OCT	4.5		. 0=	. 05		. 00	. 00			
01	.16	<.05	<.05	<.05	<.05	<.02	<.02	<.05		

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

03234500. SCIOTO RIVER AT HIGBY, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH water whole field (standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
OCT 28	1000	1910	11.0	8.0	610	8.3	12.7	.19	.22	<.05
					Amino-			Cyana-	Deethyl	Deiso-
Daha	Alachlor oa fltrd	Alachlor esa wat flt	Alachlor water,	Ametryn water,	methyl- phos- phonic	Atra- zine, water,	Cyana- zine, water,	zine- amide water	atra- zine, water,	propyl atrazin water,
Date	0.7 um gf rec (ug/L)	gf 0.7u rec (ug/L)	diss, rec (ug/L)	diss, rec, (ug/L)	acid, wat flt (ug/L)	diss, rec (ug/L)	diss, rec (ug/L)	fltrd rec (ug/L)	diss, rec (ug/L)	diss, rec (ug/L)
OCT	(61031)	(50009)	(46342)	(38401)	(62649)	(39632)	(04041)	(61709)	(04040)	(04038)
28	.05	.09	<.05	<.05	.9	.72	<.02	<.02	.23	.16
Date	Dimeth- enamid oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	Di- methen- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	Flufe- nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	Glufo- sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	Glypho- sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	Metola- chlor esa fltrd 0.7 um gf rec (ug/L) (61043)	Metola- chlor oa fltrd 0.7 um gf rec (ug/L) (61044)
OCT 28	<.05	.05	<.05	<.05	<.05	<.05	<.1	.3	.37	.25
Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)	.3/	.23
OCT 28	.59	<.05	<.05	<.05	<.05	<.02	.12	<.05		

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

03240000. LITTLE MIAMI RIVER NEAR OLDTOWN, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH water whole field (standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
OCT 27	0700	149	9.7	7.9	628	7.6	9.9	.28	.30	<.05
27	0700	149	3.7	,.5	020	7.0	3.3	.20	.30	1.03
Date	Alachlor oa fltrd 0.7 um gf rec (ug/L) (61031)	Alachlor esa wat flt gf 0.7u rec (ug/L) (50009)	Alachlor water, diss, rec (ug/L) (46342)	Ametryn water, diss, rec, (ug/L) (38401)	Amino- methyl- phos- phonic acid, wat flt (ug/L) (62649)	Atra- zine, water, diss, rec (ug/L) (39632)	Cyana- zine, water, diss, rec (ug/L) (04041)	Cyana- zine- amide water fltrd rec (ug/L) (61709)	Deethyl atra- zine, water, diss, rec (ug/L) (04040)	Deiso- propyl atrazin water, diss, rec (ug/L) (04038)
OCT										
27	.08	.19	<.05	<.05	. 2	.09	<.02	<.02	.12	.08
Date	Dimeth- enamid oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	Di- methen- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	Flufe- nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	Glufo- sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	Glypho- sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	Metola- chlor esa fltrd 0.7 um gf rec (ug/L) (61043)	Metola- chlor oa fltrd 0.7 um gf rec (ug/L) (61044)
ОСТ 27	<.05	<.05	<.05	<.05	<.05	<.05	<.1	F	1.34	.70
Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)	1.34	.70
OCT										
27	.25	.32	<.05	<.05	<.05	<.02	<.02	<.05		

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

03267900. MAD RIVER AT ST. PARIS PIKE AT EAGLE CITY, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date OCT	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH, water whole field (standard units) (00400)	spec- ific conduc- tance uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
27	0800	240	10.0	7.4	739	8.7	10.9	.06	<.05	<.05
					Amino-			Cyana-	Deethyl	Deiso-
	Alachlor oa fltrd	Alachlor esa wat flt	Alachlor water,	Ametryn water,	methyl- phos- phonic	Atra- zine, water,	Cyana- zine, water,	zine- amide water	atra- zine, water,	propyl atrazin water,
Date	0.7 um gf rec	gf 0.7u rec	diss, rec	diss, rec,	acid, wat flt	diss, rec	diss, rec	fltrd rec	diss, rec	diss, rec
	(ug/L) (61031)	(ug/L) (50009)	(ug/L) (46342)	(ug/L) (38401)	(ug/L) (62649)	(ug/L) (39632)	(ug/L) (04041)	(ug/L) (61709)	(ug/L) (04040)	(ug/L) (04038)
OCT 27	<.05	.17	<.05	<.05	<.1	<.02	<.02	<.02	.02	<.02
27	1.03	/	1.03	1.03	\. <u>+</u>	1.02	1.02	1.02	.02	1.02
Date	Dimeth- enamid oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	Di- methen- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	Flufe- nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	Glufo- sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	Glypho- sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	Metola- chlor esa fltrd 0.7 um gf rec (ug/L) (61043)	Metola- chlor oa fltrd 0.7 um gf rec (ug/L) (61044)
OCT										
27	<.05	<.05	<.05	<.05	<.05	<.05	<.1	<.1	.39	.12
Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)		
OCT 27	<.05	<.05	<.05	<.05	<.05	<.02	<.02	<.05		
27		~.05		1.05	····	1.02	1.02			

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

04185000. TIFFIN RIVER AT STRYKER, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH, water whole field (standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
NOV	1000	5.6	7. 4		705	4.6	4.2	0.6	. 05	. 05
06	1200	56	7.4	7.7	785	4.6	4.3	.06	<.05	<.05
Date	Alachlor oa fltrd 0.7 um gf rec (ug/L) (61031)	Alachlor esa wat flt gf 0.7u rec (ug/L) (50009)	Alachlor water, diss, rec (ug/L) (46342)	Ametryn water, diss, rec, (ug/L) (38401)	Amino- methyl- phos- phonic acid, wat flt (ug/L) (62649)	Atra- zine, water, diss, rec (ug/L) (39632)	Cyana- zine, water, diss, rec (ug/L) (04041)	Cyana- zine- amide water fltrd rec (ug/L) (61709)	Deethyl atra- zine, water, diss, rec (ug/L) (04040)	Deiso- propyl atrazin water, diss, rec (ug/L) (04038)
NOV 06	<.05	.23	<.05	<.05	<.1	<.02	<.02	<.02	<.02	.02
Date	Dimeth- enamid Oa, Water Flt, Rec (Ug/1)	Dimeth- enamid, Esa, Wat Flt (Ug/1)	Di- methen- amid Water Fltrd Rec (Ug/1)	Flufe- nacet, Esa, Wat Flt (Ug/1)	Flufe- nacet Oa, Water Flt, Rec (Ug/1)	Flufe- nacet, Water, Flt, Rec (Ug/1)	Glufo- sinate, Water, Fltrd, Gf 0.7u Rec (Ug/1)	Glypho- sate, Water, Fltrd, Gf 0.7u Rec (Ug/1)	Metola- chlor Esa Fltrd 0.7 Um Gf Rec (Ug/1)	Metola- chlor Oa Fltrd 0.7 Um Gf Rec (Ug/1)
	(62482)	(61951)	(61588)	(61952)	(62483)	(62481)	(62721)	(62722)	(61043)	(61044)
NOV 06	<.05	<.05	<.05	<.05	<.05	<.05	<.1	<.1	.24	.08
Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)		
NOV										
06	<.05	<.05	<.05	<.05	<.05	<.02	<.02	<.05		

Determining the Presence of Glyphosate and Other Herbicides in Midwest Streams

04186500. AUGLAIZE RIVER NEAR FORT JENNINGS, OHIO

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Dis- charge, inst. (cubic feet per second) (00061)	Oxygen, dis- solved (mg/L) (00300)	pH, water whole (field standard units) (00400)	Spe- cific conduc- tance (uS/cm) (00095)	Temper- ature air (deg C) (00020)	Temper- ature water (deg C) (00010)	Aceto- chlor esa fltrd 0.7 um gf rec (ug/L) (61029)	Aceto- chlor oa fltrd 0.7 um gf rec (ug/L) (61030)	Aceto- chlor, water fltrd rec (ug/L) (49260)
OCT										
30	1300	39	9.0	7.7	1900	9.5	7.4	.08	.08	<.05
Date	Alachlor oa fltrd 0.7 um gf rec (ug/L) (61031)	Alachlor esa wat flt gf 0.7u rec (ug/L) (50009)	Alachlor water, diss, rec (ug/L) (46342)	Ametryn water, diss, rec, (ug/L) (38401)	Amino- methyl- phos- phonic acid, wat flt (ug/L) (62649)	Atra- zine, water, diss, rec (ug/L) (39632)	Cyana- zine, water, diss, rec (ug/L) (04041)	Cyana- zine- amide water fltrd rec (ug/L) (61709)	Deethyl atra- zine, water, diss, rec (ug/L) (04040)	Deiso- propyl atrazin water, diss, rec (ug/L) (04038)
	(01031)	(3000)	(40342)	(30401)	(0204))	(33032)	(04041)	(01705)	(04040)	(04030)
OCT 30	.05	.13	<.05	<.05	. 3	.11	<.02	<.02	<.02	<.02
Date	Dimeth- enamid oa, water flt, rec (ug/L) (62482)	Dimeth- enamid, esa, wat flt (ug/L) (61951)	Di- methen- amid water fltrd rec (ug/L) (61588)	Flufe- nacet, esa, wat flt (ug/L) (61952)	Flufe- nacet oa, water flt, rec (ug/L) (62483)	Flufe- nacet, water, flt, rec (ug/L) (62481)	Glufo- sinate, water, fltrd, gf 0.7u rec (ug/L) (62721)	Glypho- sate, water, fltrd, gf 0.7u rec (ug/L) (62722)	Metola- chlor esa fltrd 0.7 um gf rec (ug/L) (61043)	Metola- chlor oa fltrd 0.7 um gf rec (ug/L) (61044)
OCT										
30	<.05	<.05	<.05	<.05	<.05	<.05	<.1	<.1	.25	.23
Date	Meto- lachlor water dissolv (ug/L) (39415)	Metri- buzin sencor water dissolv (ug/L) (82630)	Pro- meton, water, diss, rec (ug/L) (04037)	Pro- metryn, water, diss, rec (ug/L) (04036)	Propa- chlor, water, diss, rec (ug/L) (04024)	Prop- azine water diss, rec (ug/L) (38535)	Si- mazine, water, diss, rec (ug/L) (04035)	Ter- butryn water, diss, rec (ug/L) (38888)		
OCT										
30	.11	<.05	<.05	<.05	<.05	<.02	<.02	<.05		

INDEX

_	Page		Page
A		Black River at Elyria, surface-water records for Blanchard River near Findlay,	73
Acid neutralizing capacity, definition of	29	surface-water records for	55
Acre-foot, definition of	29	Blue-green algae, definition of	30
Adenosine triphosphate, definition of	29	Bottom material, definition of	30
Algae,		Botzum, Yellow Creek at,	
Blue-green, definition of	30	surface-water records for	83
Fire, definition of	34	Bucyrus, Sandusky River near,	
Green, definition of	34	surface-water records for	64
Algal growth potential, definition of		Bulk electrical conductivity, definition of	30
Alkalinity, definition of		•	
Annual 7-day minimum, definition of		С	
Annual runoff, definition of	29		
Aquifer, water table, definition of		Cells volume, definition of	31
Aroclor		Cells/volume, definition of	
Artificial substrate, definition of		Cfs-day, definition of	
Ash mass, definition of		Chagrin River at Willoughby,	
Aspect, definition of		surface-water records for	88
Auglaize River		Chagrin River Basin,	
near Defiance, surface-water records for	56	surface-water records for	88
near Fort Jennings, surface-water records for		Channel bars, definition of	31
2 /		Chemical oxygen demand, definition of	
В		City of Akron water diversion, project data for	
		Cleveland, Cuyahoga River at LTV Steel at,	
Bacteria,		surface-water records for	87
definition of	30	Clostridium perfringens, definition of	
Enterococcus, definition of		Coliphages, definition of	
Escherichia coli, definition of		Color unit, definition of	
Fecal coliform, definition of		Columbus well field, southern Franklin County,	
Fecal streptococcal, definition of		Ohio, project data for	227
Total coliform, definition of		Confined aquifer, definition of	
Bankfull stage, definition of		Conneaut Creek at Conneaut,	
Base discharge, definition of		surface-water records for	90
Base flow, definition of		Conneaut Creek Basin, surface-water records for	
Bath Center, North Fork at,		Conneaut, Conneaut Creek at,	
surface-water records for	82	surface-water records for	90
Bean Creek at Powers, surface-water records for		Contents, definition of	
Bed load, definition of		Continuous-record station, definition of	
Bed material, definition of		Control structure, definition of	
Bedford, Tinkers Creek at,		Control, definition of	
surface-water records for	84	Cooperation	
Bed-load discharge, definition of		Crawford County, ground-water records for	
Benthic organisms, definition of		Crawford, Tymochtee Creek at,	/ 0
Berea, Rocky River near, surface-water records for		surface-water records for	66
Biochemical oxygen demand, definition of		Crystal Creek at Stow, surface-water records for	
Biomass pigment ratio, definition of		Cubic foot per second per square mile, definition of .	
Biomass, definition of		Cubic foot per second, definition of	
,			

	Page		Page
Cubic foot per second-day, definition of	31	Elyria, Black River at, surface-water records for	
Cuyahoga Falls, Mud Brook at,		Embeddedness, definition of	
surface-water records for	81	Enterococcus bacteria, definition of	
Cuyahoga River		EPT Index, definition of	33
at Hiram Rapids, surface-water records for	75	Escherichia coli in water and bed sediments	
at Independence, surface-water records for	85	in Maumee Bay, Toledo and Oregon,	
at Old Portage, surface-water records for	76	Ohio, project data for	260
Cuyahoga River at LTV Steel at Cleveland,		Escherichia coli, definition of	33
surface-water records for	87	Estimated (E) concentration value, definition of	33
Cuyahoga River Basin,		Euglenoids, definition of	33
surface-water records for	75	Extractable organic halides, definition of	33
D		F	
Daily mean suspended-sediment concentration,		Farmer, unnamed tribrutary to Lost Creek near,	
definition of		surface-water records for	
Daily-record station, definition of	32	Fecal coliform bacteria, definition of	33
Data collection platform, definition of	32	Fecal streptococcal bacteria, definition of	34
Data logger, definition of	32	Findlay, Blanchard River near,	
Datum, definition of	32	surface-water records for	55
Defiance,		Fire algae, definition of	34
Auglaize River near, surface-water records for	56	Flow, definition of	32
Maumee River near, surface-water records for	57	Flow-duration percentiles, definition of	34
Definition of terms	29	Fort Jennings, Auglaize River near,	
Determining of presence of glyphosate and		surface-water records for	54
other herbicides in midwest streams,		Fremont, Sandusky River near,	
project data for	278	surface-water records for	69
Diatom, definition of	32		
Diel, definition of	32	G	
Discharge, definition of	32	G .	
Discontinued surface-water-discharge stations,		Gage datum, definition of	34
list of	xii	Gage height, definition of	
Discontinued surface-water-quality stations,		Gage values, definition of	
list of	xiv	Gaging station, definition of	
Dissolved oxygen, definition of		Garfield Heights, Mill Creek at,	
Dissolved, definition of		surface-water records for	86
Dissolved-solids concentration, definition of	32	Gas chromatography/flame ionization detector,	
Diversity index, definition of	32	definition of	34
Drainage area, definition of		Geauga County, ground-water records for	
Drainage basin, definition of		Geographic distribution	
Dry mass, definition of		of principal aquifers in Ohio	10
Dry weight, definition of		Geomorphic channel units, definition of	
<i>y</i> y,		Grand River Basin, surface-water records for	
E		Grand River near Painesville,	07
-		surface-water records for	89
Elmore, Portage River at,		Green algae, definition of	
	63		
surface-water records for	63	Ground water, summary of	

	Page		Page
Ground-water data for former Air Force Plant 36,		Streamflow during water year compared	
project data for	209	with median streamflow for period 1971-2000	
Ground-water data for Geauga County, Ohio,		for four representative gaging stations	5
project data for	188	System for numbering wells	
Ground-water data for South Russell Village,		and miscellaneous sites	13
Ohio, project data for	233	Inch, definition of	35
Ground-water levels, summary of	9	Independence, Cuyahoga River at,	
Ground-water records	95	surface-water records for	85
		Instantaneous discharge, definition of	35
H		Introduction	1
		Island, definition of	35
Habitat quality index, definition of	34		
Habitat, definition of	34	L	
Hancock County, ground-water records for	97	_	
Hardin County, ground-water records for		Laboratory reporting level, definition of	35
Hardness, definition of		Land-surface datum, definition of	
Henry County, ground-water records for		Latent heat flux, definition of	
High tide, definition of		Light-attenuation coefficient, definition of	
Hilsenhoff's Biotic Index, definition of		Lipid, definition of	
Hiram Rapids, Cuyahoga River at,		List of:	
surface-water records for	75	discontinued surface-water-discharge stations	xii
Honey Creek at Melmore,		discontinued surface-water-quality stations	
surface-water records for	67	Location of data-collection stations and wells,	
Horizontal datum, definition of		map of	х
Hudson, Powers Brook at,		Long-term method detection level, definition of	
surface-water records for	77	Low flow, 7-day, 10-year, definition of	
Huron River at Milan, surface-water records for		Low tide, definition of	
Huron River Basin, surface-water records for		Low-flow magnitude and frequency	
Huron, Old Woman Creek at Berlin Road near,	, 0	of Ohio streams, project data for	250
surface-water records for	71	Lucas County, ground-water records for	
Hydrologic conditions, summary of		Edeas County, ground water records for	100
Hydrologic index stations, definition of		M	
Hydrologic unit, definition of		IVI	
Try drotogic unit, definition of	33	Macrophytes, definition of	36
I		Map of location of data-collection	50
1		stations and wells	vi
Illustrations:		Maumee River	A
Geographic distribution		at Waterville, surface-water records for	50
of principal aquifers in Ohio	10	near Defiance, surface-water records for	
	10		
Physiographic divisions and location	2	Maumee River Basin, surface-water records for	31
of hydrologic index stations	3	Mean concentration of suspended sediment,	26
Sample of 1-year and 5-year hydrographs		definition of	
of well H-1, completed in a unconfined	1.1	Mean discharge, definition of	
unconsolidated aquifer	11	Mean high tide, definition of	
Sample of 1-year and 5-year hydrographs		Mean low tide, definition of	
of well U-4, completed in a confined	10	Mean sea level, definition of	
carbonate-rock aquifer	12	Measuring point, definition of	36

	Page		Page
Medina County, ground-water records for	101	Organic carbon, definition of	
Melmore, Honey Creek at,		Organic mass, definition of	37
surface-water records for	67	Organism count/area, definition of	37
Membrane filter, definition of	36	Organism count/volume, definition of	
Metamorphic stage, definition of	36	Organochlorine compounds, definition of	37
Method detection limit, definition of	36	Ottawa County, ground-water records for	104
Methylene blue active substances, definition of	36	Ottawa River at Toledo,	
Micrograms per gram, definition of	36	surface-water records for	50
Micrograms per kilogram, definition of	36	Ottawa River Basin, surface-water records for	50
Micrograms per liter, definition of	36		
Microsiemens per centimeter, definition of	36	P	
Milan, Huron River at, surface-water records for	70		
Mill Creek at Garfield Heights,		Painesville, Grand River near,	
surface-water records for	86	surface-water records for	89
Milligrams per liter, definition of	36	Parameter Code, definition of	37
Minimum reporting level, definition of	36	Partial-record station, definition of	37
Miscellaneous site, definition of	36	Particle size, definition of	37
Most probable number (MPN), definition of	37	Particle-size classification, definition of	38
Mud Brook		Peak discharges and stages at continuous-record	
at Cuyahoga Falls, surface-water records for	81	surface discharge stations	91
at Stow, surface-water records for		Peak flow, definition of	
Multiple-plate samplers, definition of		Percent composition, definition of	
		Percent shading, definition of	
N		Periodic station, definition of	
••		Periphyton, definition of	
Nanograms per liter, definition of	37	Pesticides, definition of	
National Geodetic Vertical Datum of 1929,		pH, definition of	
definition of	37	Physiographic divisions and location	
Natural substrate, definition of		of hydrologic index stations	3
Nekton, definition of		Phytoplankton, definition of	
Nephelometric turbidity unit, definition of		Picocurie, definition of	
North American Vertical Datum of 1988,		Plankton, definition of	
definition of	37	Polychlorinated biphenyls (PCB s), definition of	
North Fork at Bath Center,		Polychlorinated naphthalenes, definition of	
surface-water records for	82	Pool, definition of	
3421400 (140011401010101010101010101010101010101	٥ ـ	Portage County, ground-water records for	
0		Portage River	100
O		at Elmore, surface-water records for	63
Ohio Department of Healthseptic system,		at Woodville, surface-water records for	
project data for	248	Portage River Basin, surface-water records	
Old Portage, Cuyahoga River at,	240	Powers Brook	02
surface-water records for	76	at Hudson, surface-water records for	77
Old Woman Creek at Berlin Road near Huron,	70	at Stow, surface-water records for	
urface-water records for	71	Powers, Bean Creek at,	/ 0
Old Woman's Creek Basin,	/ 1	surface-water records for	51
surface-water records for	71	Precipitation, summary of	
Open or screened interval, definition of		Preface	
Open of screened interval, definition of	31	1 101act	11.

	Page		Page
Primary productivity, definition of	39	Rock Creek at Tiffin, surface-water records for	68
Carbon method, definition of	39	Rocky River Basin, surface-water records for	74
Oxygen method, definition of	39	Rocky River near Berea,	
Project data:		surface-water records for	74
City of Akron water diversion	118	Run, definition of	40
Columbus well field,		Runoff, definition of	
southern Franklin County, Ohio	227	Rush Creek watershed assessment,	
Determining of presence of glyphosate and other		project data for	272
herbicides in midwest streams	278	1 3	
Escherichia coli in water and bed sediments in		S	
Maumee Bay, Toledo and Oregon, Ohio	260	•	
Ground-water data for former	200	Sample of 1-year and 5-year hydrographs	
Air Force Plant 36	209	of well H-1, completed in a unconfined	
Ground-water data for Geauga County, Ohio		unconsolidated aquifer	11
Ground-water data for Geauga County, Onto	100	Sample of 1-year and 5-year hydrographs	11
South Russell Village, Ohio	222		
	233	f well U-4, completed in a confined	10
Low-flow magnitude and frequency	250	carbonate-rock aquifer	
of Ohio streams		Sandusky County, ground-water records for	107
Ohio Department of Health—septic system	248	Sandusky River	
Results from selected sites in	100	near Bucyrus, surface-water records for	
the Lake Erie-Lake St. Clair Drainages	122	near Fremont, surface-water records for	65
Results from selected sites in the White,		near upper Sandusky,	
Great, and Little Miami River Basin		surface-water records for	
Rush Creek watershed assessment	272	Sandusky River Basin, surface-water records for	
Water quality of domestic wells in selected		Sea level, definition of	
parts of Preble and Shelby Counties	240	Sediment, definition of	
Publications on Techniques of		Seneca County, ground-water records for	
Water-Resources Investigations		Sensible heat flux, definition of	
Putnam County, ground-water records for	106	Shelves, definition of	40
		Sodium adsorption ratio, definition of	40
R		Soil heat flux, definition of	40
		Soil-water content, definition of	40
Radioisotopes, definition of	39	Specific conductance, definition of	41
Reach, definition of		Stable isotope ratio, definition of	41
Recoverable, bottom material, definition of	39	Stage (see gage height)	41
Recurrence interval, definition of	39	Stage-discharge relation, definition of	
Replicate samples, definition of		Stow,	
Report documentation page		Crystal Creek at, surface-water records for	80
Results from selected sites in the		Mud Brook at, surface-water records for	
Lake Erie-Lake St. Clair Drainages,		Powers Brook at, surface-water records for	
project data for	122	Streamflow during water year compared with	, 0
Results from selected sites in the White, Great,	122	median streamflow for period 1971-2000	
and Little Miami River Basin,		for four representative gaging stations	5
project data for	146	Streamflow, definition of	
Return period, definition of		Surface water, summary of	
Riffle, definition of		Stryker, Tiffin River at, surface-water records for	
River mileage, definition of			
Kivei iiiieage, uciiiiiiioii oi	40	Substrate embeddedness class, definition of	41

	Page		Page
Substrate,		Total, definition of	
Artificial, definition of	29	Transect, definition of	43
definition of	41	Turbidity, definition of	43
embeddedness class, definition of	41	Tymochtee Creek at Crawford,	
Natural, definition of		surface-water records for	66
Summary of hydrologic conditions			
Summit County, ground-water records for		U	
Surface area, definition of		U	
Surface water, summary of		Illtraviolat (IIV) absorbance (absorption)	
•		Ultraviolet (UV) absorbance (absorption),	4.4
Surficial bed material, definition of		definition of	
Suspended sediment, definition of	41	Unconfined aquifer, definition of	44
Suspended solids, total residue		Unnamed triburary to Lost Creek near Farmer,	
at 105 °C concentration, definition of		surface-water records for	53
Suspended, definition of		Upper Sandusky, Sandusky River near,	
Recoverable, definition of	41	surface-water records for	65
Total, definition of			
Suspended-sediment concentration, definition of	41	V	
Suspended-sediment discharge, definition of	42		
Suspended-sediment load, definition of		Van Wert County, ground-water records for	112
Synoptic studies, definition of		Vermilion River Basin, surface-water records for	
System for numbering wells		Vermilion River near Vermilion,	
and miscellaneous sites	13	surface-water records for	72
and importaneous sites	10	Vermilion, Vermilion River near,	, _
Т		surface-water records for	72
1		Vertical datum, definition of	
Taxa (Species) richness, definition of	42	Volatile organic compounds, definition of	
Taxonomy, definition of		volatile organic compounds, definition or	77
		147	
Thalweg, definition of		W	
Thermograph, definition of		Water anality of demostic multiplication and acute	
Tiffin River at Stryker, surface-water records for		Water quality of domestic wells in selected parts	
Tiffin, Rock Creek at, surface-water records for		of Preble and Shelby Counties,	246
Time-weighted average, definition of	42	project data for	
Tinkers Creek at Bedford,		Water quality, suface water, summary of	
surface-water records for	84	Water table, definition of	
Toledo, Ottawa River at University of Toledo,		Water year, definition of	
surface-water records for	50	Water-table aquifer, definition of	4 4
Tons per acre-foot, definition of	42	Waterville, Maumee River at,	
Tons per day, definition of	42	surface-water records for	58
Total coliform bacteria, definition of	43	WDR, definition of	44
Total discharge, definition of	43	Weighted average, definition of	44
Total length, definition of		Wet mass, definition of	
Total load, definition of		Wet weight, definition of	
Total organism count, definition of		Williams County, ground-water records for	
Total recoverable, definition of		Willoughby, Chagrin River at,	
Total sediment discharge, definition of		surface-water records for	88
Total sediment load, definition of		Woodville, Portage River at,	
Total, bottom material, definition of		surface-water records for	62
10mi, cottom material, acrimition of	1.5	builded water records for	02

WSP, definition of	
Υ	
Yellow Creek at Botzum, surface-water records for	83
Z	
Zooplankton, definition of	44

Conversion Factors

Multiply	Ву	To obtain
	Length	
inch (in.)	2.54×10^{1}	millimeter (mm)
men (m.)	2.54×10^{-2}	meter (mm)
foot (ft)	3.048×10^{-1}	meter (m)
mile (mi)	1.609×10^{0}	kilometer (km)
mile (mi)	1.007X10	Knoneer (kin)
	Area	
acre	4.047×10^3	square meter (m ²)
	4.047×10^{-1}	square hectometer (hm ²)
	4.047×10^{-3}	square kilometer (km ²)
square mile (mi ²)	2.590×10^{0}	square kilometer (km²)
square filite (filit)	2.570x10	square knometer (km)
	Volume	
gallon (gal)	3.785×10^{0}	liter (L)
B (B)	3.785×10^{-3}	cubic meter (m ³)
	3.785×10^{0}	cubic decimeter (dm ³)
million gallons (Mgal)	3.785×10^3	cubic meter (m ³)
(ingui)	3.785×10^{-3}	cubic hectometer (hm ³)
cubic foot (ft ³)	2.832×10^{-2}	cubic meter (m ³)
cubic foot (it)	2.832×10^{1}	cubic decimeter (dm ³)
cubic-foot-per-second-per-day	2.032X10	cubic decimeter (din)
[(ft ³ /s/d]	2.447×10^3	cubic meter (m ³)
	2.447×10^{-3}	cubic hectometer (hm ³)
acre-foot (acre-ft)	1.223×10^3	cubic meter (m ³)
	1.223×10^{-3}	cubic hectometer (hm ³)
	1.223×10^{-6}	cubic kilometer (km ³)
	Flow rate	
2		
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter (L/s)
	2.832×10^{-2}	cubic meter per second (m ³ /s)
	2.832×10^{1}	cubic decimeter per second (dm ³ /s)
gallon per minute (gal/min)	6.309×10^{-2}	liter per second (L/s)
	6.309×10^{-5}	cubic meter per second (m ³ /s)
	6.309×10^{-2}	cubic decimeter per second (dm ³ /s)
million gallons per day (Mgal/d)	4.381×10^{-2}	cubic meter per second
	4.381×10^{1}	cubic decimeter per second (dm ³ /s)
	Mass	
ton, short (2,000 lb)	9.072x10 ⁻¹	megagram (Mg) or metric ton
/ C / /	—	

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 6480 Doubletree Avenue Columbus, OH 43229-1111

1879–2004