
Water Resources Data Tennessee Water Year 2003

By D.F. Flohr, J.W. Garrett, J.T. Hamilton, and T.D. Phillips

Water-Data Report TN-03-1

U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, SECRETARY U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director

For information on the water program in Tennessee write to:

District Chief, Water Resources Division

U.S. Geological Survey

640 Grassmere Park, Suite 100

Nashville, Tennessee 37211

2004

PREFACE

This volume of the annual hydrologic data report of Tennessee is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, most of the data were collected, computed, and processed from the subdistrict offices. The following individuals supervised the collection, processing, and tabulation of the data:

Terry D. Phillips, Knoxville Jerry W. Garrett, Memphis J. Tim Hamilton, Nashville

The following individuals contributed to the collection, processing, and preparation of the data:

M.W. Bennett J.A. Kingsbury H.L. Shook D.E. Butner D.E. League R. Thomas N.H. Craig P.Powers T.D. Turner

C.F. Glover T.L. Scheff K.A. Waltenbaugh

This report was prepared in cooperation with the State of Tennessee and with other agencies under the general supervision of Paul S. Hampson, Data Management Section Chief, and W. Scott Gain, District Chief, Tennessee.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 2004	3. REPORT TYPE AND I	DATES COVERED 2002 to September 30, 2003
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Water Resources Data - Tennesso	ee, Water Year 2003		
6. AUTHOR(S) D.F. Flohr, J.W. Garrett, J.T. Han	milton, T.D. Phillips		
7. PERFORMING ORGANIZATION NAME(S) A US Geological Survey, Water Re 640 Grassmere Park, Suite 100 Nashville, TN 37211			B. PERFORMING ORGANIZATION REPORT NUMBER USGS-WDR-TN-03-1
9. SPONSORING / MONITORING AGENCY NA US Geological Survey, Water Re 640 Grassmere Park, Suite 100 Nashville, TN 37211			10. SPONSORING / MONITORING AGENCY REPORT NUMBER USGS-WDR-TN-03-1
11. SUPPLEMENTARY NOTES Prepared in cooperation with the Authority; and with other State, I			servation; the Tennessee Valley
12a. DISTRIBUTION / AVAILABILITY STATEM	ENT		12b. DISTRIBUTION CODE
No restriction on distribution. TI National Technical Information S			
Water resources data for the 2003 of streams; stage, contents, and water. This report contains reconvation and contents for 32 lakes observation wells; and 1 precipits ditional water data were collected are published as miscellaneous in Data System operated by the US	vater quality of lakes and a rds for water discharge at a reservoirs; water quality at ation station. Also included at various stream sites not neasurements and analyse	reservoirs; and water level 102 gaging stations; stage 13 gaging stations and dare data for 95 crest stations involved in the systematics. These data represent	rels and water quality of ground ge only for 1 gaging station, ele- 16 wells; and water levels for 8 rage partial-record stations. Adtic data-collection program, and that part of the National Water eral agencies in Tennessee.
*Tennessee, *Hydrologic data, * rate, Gaging stations, Lake, Rese temperature, Sampling sites, Wat	rvoirs, Chemical analyses	1	
		19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT

CONTENTS

	Pag
Preface	ii
Report documentation page	
List of surface-water stations, in downstream order, for which records are published in this volume	
List of ground-water wells for which records are published in this volume	
List of discontinued streamflow stations	
List of discontinued surface-water quality stations	
Introduction	
Cooperation	
Summary of hydrologic conditions	
Surface-water conditions	
Streamflow	
Water quality	
Ground-water	
Ground-water levels	
Downstream order and station numbers.	
Numbering system for wells	
· ·	
Special networks and programs	
Explanation of stage- and water-discharge records.	
Data collection and computation	
Data presentation	
Station manuscript	
Peak discharge greater than base discharge	
Data table of daily mean data	
Summary statistics	
Identifying estimated daily discharge	
Accuracy of field data and computed results	14
Other data available	
Explanation of precipitation records	
Data collection and computation	
Data presentation	15
Explanation of water-quality records	
Collection and examination of data	15
Water analysis	15
Surface-water quality records	16
Classification of records	16
Accuracy of the records	16
Arrangement of records	17
On-site measurements and sample collection	17
Water temperature	17
Sediment	
Laboratory measurements	
Data presentation	
Remark codes	
Water-quality control data	
Blank samples	
Reference samples	
Replicate samples	
Spike samples	
Explanation of ground-water level records	
Site identification numbers	
Records of ground-water levels.	
1000/100 VI ETVHIN WHAT ICYCID	44

			Page
Е	Data (collection and computation	22
		presentation	23
]	Water-level tables	24
		Hydrographs	24
Ground-	-wate	er-quality data	24
		collection and computation	24
		atory measurements	24
		SGS water data	25
		f terms	26
		on techniques of water-resources investigations	41
		rds, surface water	52
		arge at partial-record stations	354
		-stage partial-record stations	354
		ellaneous sites	368
		ellaneous temperature measurements and field determinations	371
V	Vater	-level data for a wetland area near Millington	384
		ds, ground-water	397
C	Groui	nd-water-levels	397
P	Perio	dic measurements of ground-water levels	413
Ç	Quali	ty of ground water	417
Chemic	al qu	ality of precipitation	423
Index			425
		ILLUSTRATIONS	
			Page
Figure	1.	Ground-water levels for the 2003 water year compared to the maximum, minimum, and median water levels for the period of record (Hamilton County)	5
	2.	Hydrograph of well Sh:Q-1 in Shelby County showing a long-term decline	
		in the water level	5
	3.	System for numbering wells	6
	4.	Map showing location of streamflow gaging stations in Tennessee	47
	5.	Map showing location of crest-stage stations in Tennessee	49
	6.	Map showing location of water-quality and ground-water wells in Tennessee	51
	7	Man showing location of study area and data-collection sites	384

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORD ARE PUBLISHED IN THIS VOLUME

[Letter after station name designates type of data: (d) discharge, (c) chemical, (b) biological, (t) water temperature, (s) sediment, (e) elevation, gage heights, or contents]

	Station number	Page
OHIO RIVER BASIN		
Ohio River:		
CUMBERLAND RIVER BASIN Cumberland River:		
New River (head of South Fork Cumberland River):	02409500	50
New River at New River (d)		52
Clear Fork near Robbins (d)		54
South Fork Cumberland River at Leatherwood Ford (d)		56
East Fork Obey River near Jamestown (d)		58
West Fork Obey River near Alpine (d)		62
Cumberland River at Celina (c,t)	03417500	64
Roaring River above Gainesboro (d)		70
Cumberland River below Cordell Hull Dam (c,t)	03418420	72
Caney Fork:		
Collins River near McMinnville (d)		78
Smith Fork at Temperance Hall (d)		80
Cumberland River at Old Hickory Dam (Tailwater), TN (d,c,t)	03426310	82
Stones River:		
Mansker Creek above Goodletsville (d)	03426385	92
Dry Creek near Edenwold (d)	03426470	96
East Fork Stones River near Lascassas (d,c,t)	03427500	98
West Fork Stones River at Murfreesboro (d,c,t)	03428200	100
Stoners Creek near Hermitage (d)		108
Mill Creek near Nolensville (d)		110
Mill Creek at Thompson Lane near Woodbine (d)		114
Cumberland River at Omohundro Water Plant at Nashville (c,t)		116
Browns Creek at State Fairgrounds at Nashville (d)		122
Cumberland River at Woodland Street at Nashville (d)		124
Cumberland River near Bordeaux (c,t)		126
Whites Creek:	05751517	120
Whites Creek near Bordeaux (d)	03431500	132
Richland Creek at Charlotte Avenue at Nashville (d)		134
		134
Harpeth River at Franklin (d)	03432330	138
Harpeth River Tributary at Mack Hatcher Pkwy (d)		
Harpeth River Tributary at Mt Hope Road at Franklin (d)		140
South Prong Spencer Creek near Franklin (d)		142
Spencer Creek near Franklin (d)		144
Harpeth River below Franklin (d)		146
Harpeth River at Bellevue (d)		148
Harpeth River near Kingston Springs (d)		150
Cumberland River below Cheatham Dam (c,t)	03435000	154
Red River:		
Red River below Highway 161 near Barren Plains (d)	03435305	160
Millers Creek at Turnersville (d)		162
Red River at Port Royal (d)		164
Yellow Creek at Ellis Mills (d)		168
Reservoirs in Cumberland River Basin		170
TENNESSEE RIVER BASIN		
French Broad River near Newport (d)	03455000	174
Pigeon River:		
Pigeon River at Newport (d,)	03461500	176
Nolichucky River at Embreeville (d)		178
Big Limestone Creek near Limestone (d,c,b,s)		180
Nolichucky River near Lowland (d,c,b,s)		186
Little Pigeon River above Sevierville (d)		192
Holston River:		
Big Creek near Rogersville (d)	03491000	194
88 (-/,		-/.

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

	Station number	Page
OHIO RIVER BASINContinued	Hullibel	rage
Ohio RiverContinued		
TENNESSEE RIVER BASINContinued		
Tennessee RiverContinued		
Little River about Townsend (d)		196
Little River near Maryville (d)		198
Little River near Alcoa (d)		200
Tellico River at Tellico Plains (d)		202
Clinch River above Tazewell (d)		204
Powell River near Arthur (d)		206
Bullrun Creek near Halls Crossroad (d)	03535000	208
Beaver Creek: Beaver Creek at Solway (d)	02525400	212
	05555400	212
Poplar Creek: East Fork Poplar Creek at Bear Creek Road at Oak Ridge (d)	03538235	214
Daddys Creek:	05556255	214
Daddys Creek near Hebbertsburg (d)	03539600	216
Clear Creek:	03337000	210
Clear Creek at Lilly Bridge near Lancing (d,c,t,b,s)	03539778	218
Emory River:	00007770	-10
Obed River near Lancing (d)	03539800	222
Emory River at Oakdale (d)	03540500	224
Hiwassee River:		
Hiwassee River at Charleston (d)	03566000	226
North Mouse Creek near Rocky Mount Hollow near Athens (d)	035661285	228
North Chickamauga Creek near Montlake (d)		230
North Chickamauga Creek at Hwy 27 near Daisy (d)	0356653019	234
Tennessee River at Chattanooga (d,c,b,s)	03568000	238
Sequatchie River near Dunlap (d)		240
Sequatchie River near Whitwell (d)	03571000	244
Elk River:		
Elk River near Pelham (d)		244
Spring Creek off Spring Creek Road (d)		246
Richland Creek at Hwy 64 near Pulaski (d)		248
Elk River at Prospect (d)		250 252
Shoal Creek at Iron City (d)		252 254
Duck River:	03393300	234
Little Duck River southeast of Manchester (d)	03595100	256
Crumpton Creek at Rutledge Falls (d)		257
Garrison Fork above L&N Railroad at Wartrace (d)		258
Wartrace Creek below County Road at Wartrace (d)	03597590	260
Duck River at Shelbyville (d,t)		262
Flat Creek at Hwy 231 below Shelbyville (d)	03597898	268
Duck River near Shelbyville (d)	03598000	270
North Fork Creek near Poplins Crossroads (d,c,t,b,s)	03598250	272
Big Rock Creek at Double Bridges (d)	03599100	274
Duck River above Milltown (d)		275
Duck River at Carpenters Bridge near Pottsville (d)	03599408	276
Fountain Creek near Fountain Heights (d)	03599450	277
Duck River at Columbia (d)	03599500	278
Carters Creek at Petty Lane near Carters Creek (c,b,s)		280
Carters Creek Tributary near Carters Creek (c,b,s)		282
Carters Creek at Butler Road at Carters Creek (d,c,b,s)		286
Duck River at Highway 100 at Centerville (d)		288
Piney River at Cedar Hill (d)		290 292
Buffalo River near Flat Woods (d)		294
Cypress Creek at Camden (d)		296
Big Sandy River at Bruceton (d)		298
Reservoirs in Tennessee River basin.		300

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

	Station	
	number	Page
LOWER MISSISSIPPI RIVER BASIN		
Mississippi River:		
OBION RIVER BASIN		
Crooked Creek (head of Obion River):		
Beaver Creek at Hwy 22 Bypass near Huntingdon (d)	07024305	308
South Fork Obion River near Greenfield (d)		312
North Fork Obion River near Martin (d)		314
Obion River at Hwy 51 (d)		316
Reelfoot Lake near Tiptonville (e)		318
South Fork Forked Deer River near Owl City (d)		320
North Fork Forked Deer River at Trenton (d)	07028500	324
Middle Fork Forked Deer River near Fairview (d)	07028960	326
HATCHIE RIVER BASIN	07020700	320
Hatchie River at Bolivar (d)	07020500	328
Hatchie River at Rialton (d)		330
LOOSAHATCHIE RIVER BASIN	07030030	330
	07020240	222
Loosahatchie River near Arlington (d)	07030240	332
WOLF RIVER BASIN	07020202	224
Wolf River at LaGrange (d,c,t,s)		334
Wolf River at Rossville (d)		338
Wolf River at Germantown (d)		340
Fletcher Creek at Sycamore View Road (d)	07031692	344
Wolf River at Hollywood Street at Memphis (d)	07031740	350
NONCONNAH CREEK BASIN		
Nonconnah Creek near Germantown (d)	07032200	352
GROUND-WATER WELLS, FOR WHICH RECORDS ARE PUBLISHED IN THIS VO	LUME	
GROUND-WATER LEVELS		
HAMILTON COUNTY		
Well 351428085003600 Local number Hm:O-15		
Well 350750085045802 Local number Hm:O-19		398
HAYWOOD COUNTY		
Well 353232089115601 Local number Ha:H-007		399
LAUDERDALE COUNTY		
Well 353839089493500 Local number Ld:F-4		400
LINCOLN COUNTY		
Well 350034086422800 Local number Li:G-1		401
SEVIER COUNTY		
Well 353922083345600 Local number Sv:E-2		402
SHELBY COUNTY		
Well 350857089591401 Local number Sh:P-99		403
Well 351113089583101 Local number Sh:P-151		404
Well 351102089582701 Local number Sh:P-152		405
Well 350900089482300 Local number Sh:Q-1		
Well 352042089523401 Local number Sh:U-100		407
Well 352042089523402 Local number Sh:U-101		408
Well 352042089523403 Local number Sh:U-102		
Well 351917089515101 Local number Sh:V-211		
Well 351916089515101 Local number Sh:V-212		411
Well 351917089515102 Local number Sh: V-222		412
Co 1/1/00/010101 Does named on 1 222 minimum		114

GROUND-WATER WELLS, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

PERIODIC MEASUREMENTS OF GROUND-WATER LEVELS

FAYETTE COUNTY	
Well 352226089330101 Local number Fa:R-1	413
Well 352226089330102 Local number Fa:R-2	413
SHELBY COUNTY	
Well 350514089553700 Local number Sh:K-75	414
Well 351435090005200 Local number Sh:O-1	414
Well 350735089593300 Local number Sh:P-76	415
Well 352112089571200 Local number Sh:U-1	415
Well 352112089571300 Local number Sh:U-2	416
CRITTENDEN COUNTY, AK	
Well 350344090130000 Local number Ar:H-2	416
QUALITY OF GROUND WATER, 2003 WATER YEAR	
SHELBY COUNTY	
Well 350114090071701 Local number Sh:J-146	417
Well 350446090013500 Local number Sh:J-154	417
Well 350642089555000 Local number Sh:K-142	418
Well 350218089511701 Local number Sh:L-36	418
Well 350507089482401 Local number Sh:L-090	419
Well 350449089480501 Local number Sh:L-092	420
Well 350913090100801 Local number Sh:O-207	421
Well 351440089572301 Local number Sh:P-134	421
Well 351054089515301 Local number Sh:Q-33	422
Well 350835089434100 Local number Sh:R-29	422
QUALITY OF PRECIPITATION	
HAYWOOD COUNTY	
Hatchie National Wildlife Refuge rain gage at Hillville	423

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Tennessee have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations.

Station name	Station number	Agency	Drainage area (mi ²)	Period of record
led Boiling Spring at Red Boiling Springs (d)	03312250	USGS		1986
alt Lick Creek at Red Boiling Springs (d)	03312255	USGS	12.6	1991-97
Crabapple Branch near La Follette (d)	03403718	USGS	1.07	1981-84
ndian Fork above Braytown (d)	03407804	USGS	4.32	1975-78
Green Branch near Hembree (d)	03407874	USGS	1.38	1976-78
moky Creek above Hembree (361240084245800) (d)	034078745	USGS	8.07	1982-83
sills Branch near Hembree (d)	03407875	USGS	.67	1975-83
hack Creek at Hembree (361341084253900) (d)	034078755	USGS	5.08	1982-84
moky Creek near Hembree (d)	03407876	USGS	17.2	1977-84
Sowling Branch above Smoky Junction (d)	03407877	USGS	2.19	1976-81
anderson Branch near Montgomery (d)	03407881	USGS	.69	1976-80
owe Branch near Montgomery (d)	03407882	USGS	.92	1975-80
lew River at Cordell (d)	03407908	USGS	198	10/75-77,
				5/77-12/87
Tew River near New River (d)	03408000	USGS	314	1923-35
ong Branch near Grimsley (d)	03408600	USGS	1.11	1976-81
Crooked Creek tributary near Allardt (d)	03408810	USGS	.25	1976-79
Crooked Creek near Allardt (d)	03408815	USGS	3.62	1976-81
White Oak Creek at Sunbright (d)	03409000*	USGS	13.5	1932-33
White Oak Creek at Rugby (d)	03409400	USGS	98.0	1980-82
ast Branch Bear Creek near Oneida (d)	03409700	USGS		1994-95
ast Branch Bear Creek Tributary near Oneida (d)	03409710	FUSGS		1994-95
ine Creek tributary at Oneida (d)	03410000	USGS	1.21	1932-33
outh Fork Cumberland River at Leatherwood Ford (d)	03410210	USGS	806	1983-87
Vest Fork Obey River near Alpine (d)	03415000	USGS	115	1943-71,
				1980-81
Obey River near Byrdstown (d)	03415500	USGS	445	1919-43
Obey River below Dale Hollow Dam (d)	03417000	USGS	936	1939-42,
				1945-58
oaring River near Hilham (d)	03418000	USGS	78.7	1932-75
oaring River near Gainesboro (d)	03418188	USGS	276	1975
umberland River below Cordell Hull (d)	03418420	USGS	8,095	1980-97
aney Fork at Clifty (d)	03418500	USGS	111	1931-49
ee Creek at Herbert (d)	03419000	USGS	101	1931-37
alfkiller River at Sparta (d)	03419500	USGS	157	1932-41
alfkiller River below Sparta (d)	03420000	USGS	175	1940-71
follins River at Beersheba Springs (d)	03420185	USGS	157	1994-95
Collins River near Tarlton (d)	03420200	USGS	174	1994-95
arren Fork near Trousdale (d)	03420500	USGS	126	1932-57
follins River near Rowland (d)	03421500	USGS	755	1916-24
alling Water River near Cookeville (d)	03423000	USGS	67.0	1932-56
alling Water River below Burgess Falls Dam (d)	03423152	USGS	124	1990-93
aylor Creek near Cassville (d)	03423400	USGS	34.2	1989-93
aney Fork below Center Hill Dam, near Lancaster (d)	03424500	USGS	2,183	1923-58
pring Creek near Lebanon (d)	03425500	USGS	35.3	1955-61
own Creek at Maple Street at Gallatin (d)	03425646	USGS	4.74	1984
Orakes Creek above Hendersonville (d)	03426000	USGS	19.2	1955-61
Cumberland River at Dam 3, near Old Hickory (d)	03426210	USGS	11,688	1931-42,
				1947-53

			Drainage	Period
	Station		area	of
Station name	number	Agency	(mi ²)	record
ast Fork Stones River at Woodbury (d)	03426800*	USGS	39.1	1932-33, 1950
				1954, 1962-89
radley Creek at Lascassas (d)	03427000	USGS	37.0	1955-61
ushman Creek at Pitts Lane Ford near Compton (d)	03427690	USGS	9.67	1989-92
est Fork Stones River near Murfreesboro (d)	03428000	USGS	128	1932-69
tle Creek at Sanbyrn Drive at Murfreesboro (d)	03428043	USGS	17.6	1990-92
ox Camp Spring at Mankinville (d)	03428047	USGS		1978-80
est Fork Stones River at Manson Pike, at Murfreesboro (d)	03428070	USGS	165	1973-81
ones River near Smyrna (d)	03429000	USGS	571	1925-67
ewart Creek near Smyrna (Smyrna Airport) (d)	03429500	USGS	69.7	1953-58
ones River below J. Percy Priest Dam (d)	03430100	USGS	892	1939-67
ollins Creek at Bell Road, near Antioch (d)	03430800	USGS	3.61	1976-77
ill Creek near Antioch (d)	03431000	USGS	64.0	1954-61,
				1964-75
rowns Creek at State Fairgrounds, at Nashville (d)	03431300	USGS	11.8	1964-75
umberland River at Nashville (d)	03431500	USGS	12,856	1893-54
ummings Branch at Lickton (d)	03431517	USGS	2.40	1976-90
hites Creek at Tucker Road, near Bordeaux (d)	03431600	USGS	51.6	1965-75
ichland Creek at Charlotte Ave, at Nashville (d)	03431700	USGS	24.3	1964-90
Vest Harpeth River near Leipers Fork (d)	03432500	USGS	66.9	1955-61
ed River near Portland (d)	03435030	USGS	15.1	1967-75
ed River near Adams (d)	03435500	USGS	706	1920-69
alphur Fork Red River near Adams (d)	03436000	USGS	186	1938-91
ney River at Ft. Campbell, KY-TN (d)	03436420	USGS	50.2	1993-96
ittle West Fork near Ft. Campbell, KY-TN (d)	03436426	USGS	128	1993-96
umberland River at Clarksville (lock C) (d)	03436500	USGS	15,897	1925-44
ellow Creek near Shiloh (d)	03436700*	USGS	124	1958-80
umberland River at Dover (gaging station) (d)	03437000	USGS	16,437	1938-65
ench Broad River near Newport (d)	03455000	TVA	1,858	1900
				1901
				1902-05,
				1907
goon Divor at Houtford (d)	03461000	USGS	547	1920-94 1925-48
geon River at Hartford (d) osby Creek above Cosby (d)	03461200	USGS	10.1	1923-48
geon River at Newport (d)	03461500	USGS	666	1900-29,
geon River at Newport (d)	03401300	0303	000	1945-46,
				1948-82,
		TVA		1982-83
orth Indian Creek near Unicoi (d)	03465000	USGS	15.9	1944-57
(uddy Fork near Leesburg (d)	03465830	USGS	13.5	1994-95
ckey Creek near Mount Bethel Church near Limestone (d)	03466098	USGS	18.5	1994-95
nking Creek at Afton (d)	03466228	USGS	13.7	1977-2000
olichucky River below Nolichucky Dam (d) (e)	03466500	USGS	1,184	1902-09,
onemach, raver octors monenacky Dami (a) (c)	05 100500	0000	1,107	1919-26,
				1946-73
ck Creek near Holland Mill (d)	03466825	USGS	53.0	1994-95
ck Creek at Mohawk (d)	03467000	USGS	220	1946-71
olichucky River near Morristown (d)	03467500	USGS	1,679	1921-57
ong Creek near White Pine (d)	03468050	TVA	30.8	1964-81
ench Broad River below Douglas Dam (d)	03469000	USGS	4,543	1919-74
		TVA	4.22	1942-62
fillican Creek near Douglas Dam (d)	(774()9()1()			
fillican Creek near Douglas Dam (d) oaring Fork Creek at Hwy 441, at Gatlinburg (d)	03469010 03469282	TVA	7.23	1977-82

Station name	Station	A	Drainage area (mi ²)	Period of
Station name	number 	Agency	(IIII) 	record
West Prong Little Pigeon River near Pigeon Forge (d)	03469500	USGS	76.2	1946-49
		TVA		1967-69
Little Pigeon River at Sevierville (d)	03470000	USGS	353	1921-82
South Fork Holston River below South Holston Dam (d)	03476500	USGS	703	1951-74
South Fork Holston River at Bluff City (d)	03477000	USGS	813	1900-53
Beaver Creek at Bristol (d)	03478500	USGS	44.8	1932-34
Beaver Creek at Buffalo School, near Bluff City (d)	03478620	TVA	108	1934-38
Watauga River at North Carolina-Tennessee State Line (d)	03479500	USGS	152	1943-55
Watauga River at Stump Knob (d)	03480000	USGS	171	1928-31,
				1934-45
Roan Creek near Neva (d)	03482000	USGS	102	1942-55
Roan Creek at Butler (d)	03482500	USGS	166	1901-02,
				1934-48
Watauga River at Butler (d)	03483000	USGS	427	1900-02,
			-	1921-48
Watauga River below Wilbur Dam (d)	03484000	USGS	471	1903-09,
<u> </u>			, -	1948-82
Watauga River at Siam (d)	03484110	TVA	480	1946
Ooe River at Old Hopson School (d)	03484490	TVA	59.3	1967-69
Doe River at Blevins (d)	03484500	USGS	60.8	1912-15
Laurel Fork above Braemar (d)	03484900	TVA	23.0	1945-51
Laurel Fork above Hampton (d)	03484910	TVA	25.3	1948-52
Doe River at Elizabethton (d)	03485500	USGS	137	1912-16,
over at the about the first the firs	03103300	CDGD	137	1921-82
Watauga River at Elizabethton (d)	03486000	USGS	692	1926-49,
The date of the Englace of the Control of the Contr	02.00000	0505	0, <u>-</u>	1953-82
Buffalo Creek at Milligan College (d)	03486200	TVA	28.1	1965-81
Brush Creek at Johnson City (Tennessee Street) (d)	03486490	TVA	6.78	1969-73
Brush Creek at Johnson City (Elm Street) (d)	03486495	TVA	9.58	1969-72
Brush Creek at Johnson City (d)	03486500	USGS	10.3	1932-34
Fall Creek near Fort Patrick Henry Dam (d)	03486900	TVA	13.1	1953-56
South Fork Holston River at Kingsport (d)	03487500	USGS	1,935	1926-77
South Fork Holston River at Kingsport (d) South Fork Holston River at Kingsport (auxiliary channel) (d)	03487501	USGS	1.0	1953-77
Reedy Creek at Orebank (d)	03487550*	USGS	36.3	1963-89
South Fork Holston River near Ridgefields Bridge, at Kingsport (d)		TVA	2,047	1968-69
Holston River at Surgoinsville (d)	03490500	USGS	2,874	1941-88
Beech Creek at Kepler (d)	03491300	USGS	47.0	1965-87
Holston River near Rogersville (d)	03491500	USGS	3,035	1903-87
Poor Valley Creek near Mooresburg (near Spruce Pine School) (d)	03491800	USGS	32.3	1958-61
Poor Valley Creek near Mooresburg (d)	03491800	TVA	43.3	1959-60
Holston River near Morristown (d)	03492000	USGS	3,244	1937-42
Mossy Spring near Jefferson City (d)	03492500	USGS	3,477	1950-59
Mossy Creek at Jefferson City (d)	03492300	USGS	30.8	1930-39
Holston River near Jefferson City (d)	03493000	USGS	3,429	1932-34
Mill Spring near Jefferson City (d)	03494000	TVA	3,449	1937-74
on spring hear refreson eny (u)	03434300	USGS		1941-48
Holston River near Knoxville (d)	03495500	USGS	3,747	1931-39
ioision river ileat riioaviile (u)	0.5473.300	USUS	3,141	1978-93
First Creek at Mineral Springs Avenue, at Knoxville (d)	03496000	USGS	15.7	1978-93
First Creek at Willerar Springs Avenue, at Knoxville (d)	03496000	USGS	17.2	1964-70
First Creek at Fifth Avenue, at Knoxville (d)	03496500	USGS	21.1	1904-70
not creek at Firth Avenue, at Knoxville (u)	03470300	USUS	41.1	1932-34, 1945-59
Fennessee River at Knoxville (Gay Street Bridge) (d)	03497000	USGS	8,934	1943-39
Fourth Creek at Knoxville (d)	03497110	TVA	9.65	1942-43

			Drainage	Period	
Station name	Station	A	area	of	
Station name	number	Agency	(mi ²)	record	
ittle River at Walland (d)	03497500	USGS	175	1925-31	
ittle River near Walland (d)	03498000	USGS	192	1931-52	
istol Creek at Maryville (d)	03499000	USGS	13.5	1932-33	
ittle River below Rockford Dam, at Rockford (d)	03499100	TVA	346	1940-44	
ittle River near Rockford (d)	03499110	TVA	352	1936-37	
en Mile Creek near Ebenezer (d)	03499200	TVA	13.2	1941-45	
Iuddy Creek near Fort Loudon Dam (d)	03499600	TVA	10.7	1941-59	
ittle Tennessee River at Calderwood (d)	03518000	USGS	1,862	1912-19,	
Telmossoc In (et al Caladi Wood (a)	00010000	0505	1,002	1921-57	
ttle Tennessee River below Chilhowee Dam (d)	03518300	USGS	1,987	1958-79	
orth Fork Citico Creek near Tellico Plains (d)	03518400	TVA	7.04	1960-71	
ellico River at Tellico Plains (d)	03518500	USGS	118	1925-82	
ttle Tennessee River at McGhee (d)	03519500	USGS	2,443	1905-69	
aker Creek near Greenback (d)	03519640*	USGS	16.0	1966-75	
ennessee River at Loudon (d)	03520000	USGS	12,220	1923-55	
veetwater Creek below Sweetwater (d)	03520045	TVA	26.4	1970-81	
weetwater Creek near Sweetwater (d)	03520050	TVA	28.2	1964-70	
ig Sycamore Creek near Sneedville (d)	03528100	TVA	5.49	1935-45	
ig Barren Creek near New Tazewell (d)	03528300	TVA	22.5	1935-45	
Thite Creek near Sharps Chapel (d)	03528400	TVA	2.68	1935-72	
owell River near Arthur (d)	03532000	USGS	685	1920-82	
avis Creek near Speedwell (d)	03532100	TVA	31.2	1936-37	
g Creek near La Follette (d)	03532220	TVA	26.2	1936-38	
inch River below Norris Dam (d)	03533200	USGS	2,913	1904-74	
lear Creek near Norris (d)	03533100	TVA	2.83	1934-38	
oal Creek at Lake City (d)	03534000*	USGS	24.5	1932-34	
uffalo Creek at Norris (d)	03534500	USGS	9.92	1947-51	
ullrun Creek near Halls Crossroads (d)	03535000	USGS	68.5	1957-86	
carboro Creek Tributary near Haw Ridge near Oak Ridge (d)	03535102	USGS	0.41	1989-91	
carboro Creek Tributary near Oak Ridge (d)	03535102	USGS	0.41	1989-91	
Thiteoak Creek near Melton Hill (d)	03536320	USGS	1.31	1987-95	
Thiteoak Creek near Wheat (d)	03536380	USGS	2.10	1986-95	
orthwest Tributary near Oak Ridge (d)	03536440	USGS	0.67	1987-95	
rst Creek near Oak Ridge (d)	03536450	USGS	0.33	1987-96	
Thiteoak Creek at ORNL, near Oak Ridge (d)	03536500	USGS	2.08	1950-55	
Thiteoak Creek at OKIVE, hear Oak Ridge (d) Thiteoak Creek below Melton Valley Drive near Oak Ridge (d)	03536550	USGS	3.28	1987-96	
Thiteoak Creek below ORNL, near Oak Ridge (d)	03537000	USGS	3.62	1950-53,	
integar creek below ORIVE, hear Oak Ridge (d)	03337000	0303	3.02	1955-64	
lelton Branch tributary (East Seven) near Oak Ridge (d)	03537050	USGS	.24	1987-91	
enton Branch (Houtary (East Seven) hear Oak Ridge (d)	03337030	0303	.24	1992-93	
elton Branch near Melton Hill, near Oak Ridge (d)	03537100	USGS	0.52	1992-93	
(elton Branch tributary (Center Seven) near Oak Ridge (d)	03537100	USGS	.07	1985-95	
chon Branch thoulary (Center Seven) hear Oak Kiuge (a)	03337200	USUS	.07	1987-91	
Calton Branch tributary (Wast Savan) poor Oak Didge (4)	03537200	USGS	15	1992-93 1987-89	
elton Branch tributary (West Seven) near Oak Ridge (d)	03537300	USUS	.15		
altan Branch near Oak Bidga (d)	02527500	Hece	1 40	1992-93	
elton Branch near Oak Ridge (d)	03537500	USGS	1.48	1955-64	
hiteoak Creek at Whiteoak Dam, near Oak Ridge (d)	03538000	USGS	6.01	1953-55,	
in the Division many Colle Di 1997 (18)	02520150	HOOG	2 205	1960-64	
linch River near Oak Ridge (d)	03538150	USGS	3,385	1937-64,	
	02520225	11000	00.5	1968	
oplar Creek near Oak Ridge (d)	03538225	USGS	82.5	1960-89	
ast Fork Poplar Creek at Y-12 at Oak Ridge (d)	03538231	USGS	0.81	1992-96	
ast Fork Poplar Creek near Oak Ridge (d)	03538250	USGS	19.5	1960-88	
ear Creek at Bear Creek Road near Oak Ridge (d)	03538256	USGS	0.42	1993-96	

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only); Agency designations: USGS, U.S. Geological Survey; TVA, Tennessee Valley Authority]

Drainage Period Station area (mi²) of Station name number Agency record Bear Creek at County Line near Oak Ridge (d) 03538260 USGS 1.57 1993-96 Bear Creek tributary above Bear Creek Road near Wheat (d) 035382672 USGS 1986-91 .30 Bear Creek near Wheat (d) 035382673 USGS 3.20 1986-91 Bear Creek tributary near Wheat (d) 035382677 USGS .14 1986-89 1992-93 Bear Creek at State Hwy 95 near Oak Ridge (d) 03538270 USGS 4.34 1985-2000 Bear Creek tributary at Hwy 95 near Wheat (d) 03538272 USGS .14 1986-89 Bear Creek at Pine Ridge near Wheat (d) 03538273 USGS 5.0 1986-91 Bear Creek near Oak Ridge (d) 03538275 USGS 7.15 1960-64 Emory River near Wartburg (d) 03538500 USGS 83.2 1934-57, 1966-68 Obed River at Crossville (d) 03538600 USGS 12.0 1950-51, 1955-85, 1991-95 03539000 USGS Daddys Creek near Grassy Cove (d) 51.2 1925-30 Daddys Creek near Crab Orchard (d) 03539500 USGS 93.5 1931-58 Daddys Creek near Hebbertsburg (d) 03539600 USGS 139 1957-68 Clear Creek near Lancing (d) 03539750 USGS 153 1966-68 Obed River near Lancing (d) 03539800 USGS 518 1956-68, 1973-88 Crooked Fork near Wartburg (d) 03539860 **USGS** 50.3 1966-68 Emory River at Deermont (d) 03540000 USGS 704 1920-28 Crab Orchard Creek near Deermont (d) 03540100 USGS 1966-68 33.7 Bitter Creek near Oakdale (d) 03541300 USGS 12.6 1967-75 Kingston Creek at Kingston (d) 03541400 TVA .74 1940-41 Whites Creek near Glen Alice (d) 108 1934-55 03541500 USGS Whites Creek at Glen Alice (d) 1931-34 03542000 USGS 120 Piney River at Spring City (d) 03542500 USGS 95.9 1927-31 03543500 Sewee Creek near Decatur (d) USGS 117 1934-94 Tennessee River at Breedenton (d) 03544000 USGS 17,440 1934-40 Richland Creek near Dayton (d) 03544500 USGS 50.2 1927-31, 1934-55, 1979-82 Turtletown Creek at Turtletown (d) 03556000 USGS 26.9 1934-71 Hiwassee River near McFarland (d) 03556500 USGS 1,136 1943-81 Hiwassee River near Reliance (d) 03557000 USGS 1,233 1900-14, 1918-48 Ocoee River at Copperhill (d) 03559500 USGS 352 1903-14, 1943-70 North Potato Creek tributary, Copper Basin area 6, 03560700 TVA .01 1940-51 near Ducktown (d) Burra-burra Creek tributary, Copper Basin area 5, 03560800 TVA .02 1940-51 near Ducktown (d) North Potato Creek near Ducktown (d) 03561000 USGS 13.0 1934-70 North Potato Creek tributary No. 2, Copper Basin area 1-W, 03561200 TVA .01 1942-52 near Ducktown (d) North Potato Creek tributary No. 3, Copper Basin area 1-E, 03561300 TVA .01 1942-52 near Ducktown (d) Ocoee River at McHarg (d) 03561500 USGS 447 1917-43 Walkertown Branch tributary, Copper Basin area 4, 03561700 1940-45 TVA .01 near Ducktown (d) Ocoee River tributary, Copper Basin area 3, near Ducktown (d) 03561800 TVA .01 1940-51 Brush Creek near Ducktown (d) 03562000 USGS 14.4 1934-42 Hiwassee River above Charleston (d) 03565000 USGS 2,001 1954-76 Chestuee Creek above Englewood (d) 03565040 TVA 14.8 1944-57

	Station		Drainage area	Period of
Station name	number	Agency	(mi ²)	record
Little Chestuee Creek below Wilson Station (d)	03565080	TVA	8.54	1947-57
Chestuee Creek at Zion Hill (d)	03565120	TVA	37.8	1944-62
Middle Creek below Hwy 39 near Englewood (d)	03565160	TVA	32.7	1944-62
Chestuee Creek near Athens (d)	03565200	TVA	77.9	1944-54
Chestuee Creek at Dentville (d)	03565250	USGS	114	1944-62
South Chestuee Creek near Benton (d)	03565300	USGS	31.8	1957-86
Oostanaula Creek near Sanford (d)	03565500	USGS	57.0	1954-89
Oostanaula Creek near Calhoun (d)	03565700	TVA	67.0	1940-44
Wolftever Creek near Ooltewah (d)	03566420*	USGS	18.8	1964-89
Long Savannah Creek near Snow Hill (d)	03566450	TVA	28.3	1939-44
North Chickamauga Creek at Upper Mill, near Hixson (d)	03566600	TVA	99.5	1937-43
North Chickamauga Creek near Hixson (d)	03566630	TVA	114	1937-43
South Chickamauga Creek near Chickamauga (d)	03567500	TVA	428	1928-78
				1980-94
South Chickamauga Creek near McCarty (d)	03567600	TVA	458	1937-45
Sequatchie River near College Station (d)	03570650	USGS	154	1966-68
Sequatchie River near Whitwell (d)	03571000	TVA	402	1920-94
Little Sequatchie River at Sequatchie (d)	03571500*	USGS	116	1932-34
Tennessee River at South Pittsburg (d)	03571850	USGS	22,640	1930-87
Elk River near Pelham (d)	03578000	USGS	65.6	1952-88
Bradley Creek Tributary at AEDC near Manchedster	03578455	USGS		1993-96
Bradley Creek near Prairie Plains (d)	03578500	USGS	41.3	1952-60
Brumalow Creek at AEDC near Manchester (d)	03578600	USGS		1993-96
Rowland Creek at AEDC near Manchester (d)	03578970	USGS		1994-96
Elk River near Estill Springs (d)	03579100	USGS	275	1921-81
Rock Creek at Tullahoma (d)	03579620	USGS	12.3	1991-96
Boiling Fork Creek south of Cowan (d)	03580000	USGS	20.2	1932
Boiling Fork Creek above Winchester (d)	03580300	USGS	55.9	1962-70
Boiling Fork Creek at Winchester (d)	03580500	USGS	77.1	1932-34
Elk River below Tims Ford Dam (d)	03580750	USGS	534	1966-76
Tack Daniel Spring at Lynchburg (d)	03580990	USGS		1970-78
East Fork Mulberry Creek below Jack Daniel Distillery at Lynchburg (d)	03580995	USGS	23.4	1987-94
East Fork Mulberry Creek at Lynchburg (d)	03581000	USGS	23.1	1932
East Fork Mulberry Creek near Lynchburg (d)	03581100	TVA	29.5	1967-69
East Fork Mulberry Creek near Mulberry (d)	03581200	TVA	49.4	1967-69
West Fork Mulberry Creek near Booneville at Mt. Herman (d)	03581400	TVA	17.4	1967-69
West Fork Mulberry Creek at Mulberry (d)	03581500	USGS	41.2	1954-62,
				1966-68
Elk River above Fayetteville (d)	03582000	USGS	827	1934-82
Union Branch below Belleville (d)	03582140	USGS	2.37	1977
Elk River near Fayetteville (d)	03582500	USGS	897	1926-34
Bradshaw Creek at Frankewing (d)	03583000	USGS	36.5	1955-61, 1966-68
Richland Creek near Cornersville (d)	03583300*	USGS	47.5	1961-68
Factory Creek (head of Big Creek) near Campbellsville (d)	03583330	USGS	38.2	1966-68
Yokley Creek near Campbellsville (d)	03583360	USGS	20.2	1966-68
Weakley Creek near Bodenham (d)	03583500	USGS	24.4	1955-61,
			•	1966-68
Richland Creek near Pulaski (d)	03584000	USGS	366	1934-75
Elk River at Prospect (d)	03584600	USGS	1805	1904-08,
* * * *				1919-94

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only); Agency designations: USGS, U.S. Geological Survey; TVA, Tennessee Valley Authority]

Drainage Period Station of area (mi^2) Station name record number Agency Shoal Creek at Lawrenceburg (d) 03588000 USGS 55.4 1932-34 1967-91 Chisholm Creek at Westpoint (d) 03588400 USGS 43.0 1962-88 Shoal Creek at Iron City (d) 03588500 USGS 348 1925-94 Snake Creek near Adamsville (d) 03593300 TVA 49.4 1940-59 Holland Creek near Lowryville (d) 03593700 TVA 14.9 1965-78 Horse Creek near Savannah (d) 03594000 **USGS** 114 1929-34 Turkey Creek near Savannah (d) 03594040 TVA 53.7 1940-59 White Oak Creek near Milledgeville (d) 03594058 TVA 46.1 1940-59 White Oak Creek at Milledgeville (d) 03594110 TVA 49.2 1961-65 Middleton Creek near Milledgeville (d) 03594120 TVA 45.5 1940-59 Indian Creek near Cerro Gordo (d) 03594160 TVA 201 1940-59 Banjo Branch near Waynesboro (d) 03594164 **USGS** 2.14 1988-89 Beech River near Lexington (d) 03594415 TVA 15.9 1953-63 Wolf Creek at Graper Springs (d) 03594420 TVA11.7 1953-55 Pine Tree Branch near Lexington (d) 03594425 TVA .14 1941-78 Harmon Creek near Lexington (d) 03594430 TVA 6.87 1953-73 Piney Creek at Hwy 104 near Lexington (d) 03594435 TVA 19.2 1953-55, 1957-73 Cane Creek near Shady Hill (d) 03594437 TVA 20.7 1966-73 Haley Creek near Chesterfield (d) 03594441 TVA 8.30 1953-55 11.5 Beech River near Chesterfield (old channel before 03594445 TVA 1940-54, channelization) (d) 1960-65 Browns Creek near Chesterfield (d) 03594450 TVA 202 1953-63 Cane Creek near Shady Hill (d) 03594455 TVA 16.8 1953-64 Cane Creek near Chesterfield (old channel before 03594460 222 1940-54 TVA channelization) (d) Beech River near Darden (old channel before channelization) (d) 03594465 TVA 165 1954-60 Flat Creek near Middleburg (d) 03594470 TVA 13.8 1953-55 Big Creek near Darden (d) 03594475 10.6 1953-55, TVA 1966-73 TVA 8.40 Turkey Creek near Decaturville (d) 03594480 1953-63 Turkey Creek at Middleburg Road, near Decaturville (d) 03594482 TVA 11.5 1964-73 Rushing Creek near Decaturville (d) 03594485 TVA 17.0 1953-55 Tennessee River at Perryville (d) 03594500 34,550 1931-32 USGS Duck River near Manchester (d) 03595000 USGS 1932-34 55.2 Little Duck River at Manchester (d) 03595500 **USGS** 40.4 1932-34 Duck River below Manchester (d) 03596000 USGS 107 1934-88 Duck River at Normandy (d) 03596500 USGS 208 1920-31, 1972-75 Garrison Fork at Fairfield (d) 03597000 USGS 66.3 1953-58, 1966-68 Wartrace Creek at Bell Buckle (d) USGS 03597500 16.3 1953-61, 1966-75 Wartrace Creek at Wartrace (d) 03597600 USGS 36.4 1966-68 1994-95 Fall Creek near Deason (d) 03598173 USGS 16.4 Fall Creek near Halls Mill (d) 03598179 USGS 39.0 1994-95 North Fork Creek near Poplins Crossroad (d) USGS 1994-95 03598250 71.9 Big Rock Creek at Lewisburg (d) 03599000 USGS 24.9 1953-61, 1966-68 1995-2000 Fountain Creek near Culleoka (d) 03599430 USGS 26.9 1966-68 Fountain Creek near Fountain Heights (d) 03599450 USGS 74.0 1966-68 Rutherford Creek near Carters Creek (d) 03600000 **USGS** 68.8 1953-58 Rutherford Creek (No. 4) near Columbia (d) 03600100 TVA 112 1948-53

			Drainage	Period
	Station		area	of
Station name	number	Agency	(mi ²)	record
utherford Creek (No. 3) near Columbia (d)	03600200	TVA	116	1948-49
ttle Bigby Creek at Experiment Lane at Columbia (d)	03600258	USGS	42.6	1990-92
g Bigby Creek at Sandy Hook (d)	03600500	USGS	17.5	1953-87,
				1988-89
g Bigby Creek near Mount Pleasant (d)	03601000	USGS	25.8	1953-57
g Bigby Creek at Cross Bridges (d)	03601500	USGS	112	1938-39
ack River at Centerville (d)	03602000	USGS	2,048	1919-55
ney River at Vernon (d)	03602500	USGS	193	1925-93
ck River above Hurricane Mills (d)	03603000	USGS	2,557	1925-94
rricane Creek at Hurricane Mills (d)	03603500	USGS	75.1	1932-33
on Creek near Hohenwald (d)	03604100	USGS	10.0	1967-74
ffalo River below Lobelville (d)	03604400	USGS	702	1927-89,
				1989-94
ffalo River near Lobelville (d)	03604500	USGS	707	1987-89
ne Creek at State Hwy 13 near Waverly (d)	03604600	TVA	24.8	1964-71
dsong Creek near Holladay (d)	03604800	TVA	44.9	1940-68
ace Creek at Waverly (d)	03605500	USGS	20.1	1932-33
tton Creek near Camden (d)	03606400	TVA	.43	1941-45
g Sandy River at Big Sandy (d)	03607000	USGS	379	1935-44
ifty Creek at Clifty Creek Road near Paris (d)	03607198	USGS	8.06	1994-95
lly Fork Creek at Nobles (d)	03607225	USGS	26.8	1994-95
averdam Creek at Sulphur Well Road near Nobles (d)	03607232	USGS	6.69	1994-95
nnessee River near Buchanan (d)	03607500	USGS	39,730	1930-43
ooked Creek at Highway 22 near Huntingdon (d)	07024200	USGS	89.8	1994-95
eaver Creek at Huntingdon (d)	07024300*	USGS	55.5	1946, 1948,
				1952-54,
				1958-88
aver Creek at Hwy 22 Bypass near Huntingdon (d)	07024305	USGS	58.6	1994-96
uth Fork Obion River near Greenfield (d)	07024500*	USGS	383	1929-89
therford Fork Obion River near Bradford (d)	07025000	USGS	201	1929-57
orth Fork Obion River near Union City (d)	07025500	USGS	480	1929-71
				1989-93
oion River at U.S. Highway 51 near Obion (d)	07026040	USGS	1,875	1929-1958,
				1966-1995
orth Reelfoot Creek at State Hwy 22 near Clayton (d)	07026370	USGS	56.3	1980-83,
				1984-89
uth Reelfoot Creek near Clayton (d)	07026400	USGS	36.6	1984-89
elfoot Creek near Samburg (d)	07026500	USGS	110	1951-73
elfoot Lake near Phillippy (e)	07026690	USGS	240	1984-88
lian Creek near Samburg (d)	07026795	USGS	8.01	1982-86
uth Fork Forked Deer River at Jackson (d)	07027500	USGS	495	1929-73
				1988-91
uth Fork Forked Deer River at Chestnut Bluff (d)	07028000	USGS	1,003	1929-57
orth Fork Forked Deer River at Trenton (d)	07028500	USGS	73.5	1950-71
ddle Fork Forked Deer River near Alamo (d)	07029000	USGS	369	1929-73
tchie River near Stanton (d)	07030000	USGS	1,975	1929-58
ne Creek at Three Point (d)	07030137	USGS	79.8	1985-87
lly Branch near Clopton (d)	07030245	USGS	7.79	1975-76
aver Creek near Arlington (d)	07030250	USGS	148	1994-95
osahatchie River tributary at New Allen Road at Memphis (d)	07030295	USGS	1.26	1977-83
olf River at Rossville (d)	07030500	USGS	503	1929-72
arys Creek at Pisgah Road, near Fisherville (d)	07031500	USGS	13.6	1955-57
etcher Creek near Cordova (d)	07031680	USGS	1.45	1974-83
etcher Creek at Whitten Road at Memphis (d)	07031683	USGS	21.4	1978-82

Station name	Station number	Agency	Drainage area (mi ²)	Period of record
Jnnamed tributary at Charles Bryan Road, near Cordova (d)	07031685	USGS	3.18	1975-77
ick Creek at Dickinson Street, at Memphis (d)	07031777	USGS	2.96	1975-83
Jonconnah Creek near Germantown (d)	07032200	USGS	68.2	1969-1985
				1985-1995
ohns Creek tributary at Holmes Road, near Memphis (d)	07032222	USGS	5.83	1975-85
ohns Creek at Raines Road, at Memphis (d)	07032224	USGS	19.4	1975-82,
				1985
lack Bayou at Southern Avenue, at Memphis (d)	07032241	USGS	.59	1975-83
ane Creek at East Person Avenue, at Memphis (d)	07032248	USGS	4.98	1975-85
ypress Creek at Neely Road, at Memphis (d)	07032260	USGS	3.18	1975-85

DISCONTINUED SURFACE-WATER QUALITY STATIONS

The following stations were discontinued as continuous-record surface-water-quality stations prior to the 1991 water year. Water-quality data (daily or periodic samples with collection frequency not less than quarterly) were collected and published for the period of record shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Chief at the address given on the back of the title page of this report.

[Agency designations: USGS, U.S. Geological Survey; TVA, Tennessee Valley Authority. Type of record: (B) biological, (C) chemical, (S) sediment, (T) temperature.]

Station name	Station number	Agency	Drainage area (mi ²)	Type of record	Period of record (water years)
Crabapple Branch near La Follette	03403718	USGS	1.07	C,T	1981-84
* *	03407804	USGS	4.32	C	1975-81
	03407850	USGS	66.0	C,S	1975-77, 1979-81
Green Branch near Hembree	03407874	USGS	1.38	C,S	1975-81
Smoky Creek above Hembree (361240084245800)	034078745	USGS	8.07	S	1982-83
	03407875	USGS	.67	C,S	1975-83
		USGS		C,S,T	1980-83
Shack Creek at Hembree (361341084253900)	034078755	USGS	5.08	C,S,T	1982-84
	03407876	USGS	17.2	S	1978-84
·		USGS		C,T	1980-84
Bowling Branch above Smoky Junction	03407877	USGS	2.19	C,S	1975-83
	03407879	USGS	32.8		1975-77, 1979-81
	03407881	USGS	.69	C	1975-81
	03407882	USGS	.92	С	1975-81
	03407908	USGS	198		1976-77, 1979-82
New River at New River	03408500	USGS	382	C,T	1977-86
		USGS			1965-67, 1975-77,
					1979-81
Clear Fork near Robbins	03409500	USGS	272	T	1982-86
		USGS		С	1982, 1984-86
		USGS		C,S	1964-65, 1976-77,
				- /	1979-82, 1984
South Fork Cumberland River at Leatherwood Ford	03410210	USGS	806	C,S,T	1986
		USGS			1979-80, 1984-85
Cumberland River at Celina	03417500	USGS	7,307	C,T	1991-97
Roaring River near Hilham	03418000	USGS	78.7	T	1969-71
=	03418070	USGS	210	C,S	1980-83
=	03418420	USGS	8,095	CT	1980-97
	03421000	USGS	640	C,S	1964-67,1979-82
	03425000	USGS	10,690	C,T	1975-81
ε	03427500	USGS	262	C,T	1975-1990
	03428000	USGS	128	C	1964-68
West Fork Stones River at Manson Pike, at Murfreesboro		USGS	165	C,T	1973-82
	03428500	USGS	237	T	1974-1990
· · · · · · · · · · · · · · · · · · ·	03431700	USGS	24.3	C,S	1901, 1979-83
	03434500	USGS	681	C,S	1979-83
	03435000	USGS	14,163	C,T	1993-97
	03435637	USGS	34.9	T	1976-78
1	03435700	USGS	49.1	T	1975-77
. •	03435770	USGS	65.6	C,S	1976-83
	03436000	USGS	186	C,S	1964, 1979-83
1	03436100	USGS	935	C,S	1979-83
	03436421	USGS	, , , ,	C,T	1994-96
	03436700	USGS	124		1964-65, 1979-81
	03454757	USGS	1,712	C,S	1970-73

DISCONTINUED SURFACE-WATER QUALITY STATIONS--Continued

[Agency designations: USGS, U.S. Geological Survey; TVA, Tennessee Valley Authority. Type of record: (B) biological, (C) chemical, (S) sediment, (T) temperature.]

Drainage Period of Station area Type of record (mi²)Station name number record (water years) Agency TVA 1,858 1946-47, 1960-61, French Broad River near Newport 03455000 C 1969-70, 1974-75, 1979-80 USGS 13.5 C,S,TMuddy Fork near Leesburg 03465830 1993-95 Nolichucky River at Embreeville 805 1979-82 03465500 **USGS** C,S1993-95 Jockey Creek near Mount Bethel Church near Limestone 03466098 **USGS** 18.5 C,S,TBig Limestone Creek near Limestone 03466208 **USGS** 79.0 Т 1996-2000 Nolichucky River below Nolichucky Dam TVA C 1974-79 03466500 1,184 TVA Τ 1962 Lick Creek near Holland Mill 03466825 **USGS** 53.0 C,S,T1993-95 Nolichucky River near Lowland 03467609 **USGS** T 1998-2000 1,687 French Broad River at Douglas Dam (tailwater) 03468510 TVA 4,541 \mathbf{C} 1975-80 Little Pigeon River at Sevierville 03470000 353 C TVA 1967-68, 1970 TVA Т 1969-74 **USGS** C,S1979-82 French Broad River near Knoxville 03470500 USGS 5,101 C,T1975-82 USGS B,C,S,T1975-86 703 South Fork Holston River at South Holston Dam 03476010 TVAC 1975-80 Watauga River at Stump Knob 03480000 TVA 171 Т 1962 Elk River at Elk Mills 03481450 TVA 74.0 C 1975-76 Roan Creek near Doeville 03482100 TVA 110 Τ 1962, 1971-74 TVA C 1975-76 Watauga River below Watauga Dam 03483950 TVA 468 C 1973, 1975-80 Т Doe River at Hampton 03484800 TVA 100 1968-73 Doe River at Elizabethton 03485500 TVA 137 C 1967-68, 1971 TVA Τ 1954-63 **USGS** C,S1979-82 South Fork Holston River at Boone Dam (tailwater) 03486810 TVA 1,840 \mathbf{C} 1975-78 South Fork Holston River at Ft. Patrick Henry Dam 03487010 TVA 1,903 C 1975-80 Τ Reedy Creek at Orebank 03487550 TVA 36.3 1964-66 TVA C 1964-67 **USGS** C,S1979-82 Holston River near Church Hill 03490350 2,819 TVA C 1974-78 Holston River at Surgoinsville 03490500 **USGS** 2,874 T 1975-82 TVA C 1974-80 Т Big Creek near Rogersville 03491000 **USGS** 47.3 1972-75, 1977-79 Beech Creek at Kepler 03491300 TVA 47.0 T 1966-68 Holston River near Rogersville 03491500 TVA 3,035 Τ 1966-75 Holston River at Cherokee Dam (tailwater) 03493510 TVA 3,428 C 1975-80 C,B,SHolston River near Knoxville 03495500 USGS 3,747 1977-93 First Creek above Powers Avenue, at Knoxville 03496200 **USGS** 17.2 Τ 1969-71 Τ Tennessee River below Knoxville 03497100 TVA 8,963 1970-80 Τ Little River above Townsend 03497300 **USGS** 106 1964-82 C USGS 1982 C Little River near Maryville 03498500 TVA 269 1967-68 USGS C,S1979-82 9,550 Tennessee River at Fort Loudon Dam (tailwater) 03499510 TVA C 1975-80 Little Tennessee River at Calderwood Dam TVA 1,977 C 1977-80 03518210 Т Little Tennessee River below Chilhowee Dam 03518300 TVA 1,987 1964-78 Tellico River at Tellico Plains Τ 03518500 TVA 118 1964-78 TVAC 1969-70, 1973-76 1979-82 **USGS** C.S Τ Little Tennessee River at McGhee 03519500 TVA 1963 2,443 Little Tennessee River near Centersville 03519740 TVA T 1976-79 T Clinch River above Tazewell 03528000 TVA 1,474 1962-66, 1971-75 TVA C 1971-80

DISCONTINUED SURFACE-WATER QUALITY STATIONS--Continued

[Agency designations: USGS, U.S. Geological Survey; TVA, Tennessee Valley Authority. Type of record: (B) biological, (C) chemical, (S) sediment, (T) temperature.]

Drainage Period of Station area Type of record (mi^2) Station name number Agency record (water years) Powell River near Arthur 03532000 TVA 685 C,S1965, 1969-72, 1974-82 TVA T 1963-66, 1971-75 Ollis Creek at Ivydell C 1974-78 03532190 TVA 13.3 Clinch River below Norris Dam 03533000 TVA 2.913 C 1968-70, 1972-80 Clinch River at Coal Creek 03533500 TVA 2,921 Τ 1976-79 Clinch River near Clinton TVA 2,980 C 1971-74, 1977 03534100 Clinch River at Edgemoor 03534900 TVA 3,089 C 1969-78 Т Bullrun Creek near Halls Crossroads 03535000 **USGS** 68.5 1967-74 Clinch River near Eaton Crossroads 03535915 TVA 3,346 Τ 1963-79 Poplar Creek near Oak Ridge 03538225 **USGS** 82.5 C,S1961-65, 1979-81 **USGS** Τ 1962-65 East Fork Poplar Creek near Oak Ridge 03538250 **USGS** 19.5 Τ 1962-68 Bear Creek near Oak Ridge 03538275 **USGS** 7.15 Τ 1962-63 Emory River near Wartburg 83.2 03538500 TVA C 1965-68, 1975-76 Obed River near Lancing 03539800 TVA 518 Τ 1965-66 TVA C 1965-68 Crooked Fork near Wartburg 03539860 TVA 50.3 C 1965-68 USGS C,S1979-81 Crab Orchard Creek near Deermont 03540100 TVA33.7 C 1966-68 TVA Т 1967-68 **USGS** C,S1979-81 Emory River at Oakdale 03540500 TVA764 1965-67, 1974-81 C,STennessee River at Watts Bar Dam (tailwater) 03543005 **USGS** 17,310 B,C,S,T 1975-86 **USGS** T,C 1976-81 Richland Creek near Dayton 03544500 TVA 50.2 C 1966-67 **USGS** C,S1979-82 Hiwassee River near Wetmore 03557050 TVA 1,233 C 1973-74, 1976 Т 1976-78 TVA 1,358 Hiwassee River at Patty 03557400 C Hiwassee River near Benton 03557405 TVA 1,362 1978-80 Ocoee River at Parksville 03564500 TVA595 C 1971-72, 1976-80 C,S,TOostanaula Creek near Sweetwater 03565428 USGS 1993-95 Oostanaula Creek below Johnson Branch near Athens 1993-95 **USGS** C,S,T03565430 Oostanaula Creek near Sanford **USGS** 57.0 C,S1979-82 03565500 Tennessee River at Sequoyah Nuclear Plant C 1975-78 03566404 TVA20,630 Tennessee River near Harrison Bay State Park 03566405 TVA 20,650 C 1969-73 C TVA 20,790 Tennessee River at Chickamauga Dam (tailwater) 03566510 1975-80 C Tennessee River at Nickajack Dam (tailwater gage) TVA 21,849 1975-78 03570525 C Sequatchie River near Dunlap TVA 292 1975-78 03570835 Т Sequatchie River near Whitwell 03571000 TVA 402 1962-71 TVA C 1965, 1970, 1974-75 **USGS** C,S1979-82 Sequatchie River at Whitwell Waterworks C 1975-79 03571200 TVA410 near Whitwell Tennessee River at South Pittsburg 03571850 USGS 22,640 Т 1975-82 **USGS** C 1975-79, 1981 **USGS** B,C,S,T1974-86 Bradley Creek Tributary at AEDC near Manchester **USGS** 1993-95 03578455 Т Brumalow Creek at AEDC near Manchester Т 03578600 **USGS** 1993-95 Rowland Creek at AEDC near Manchester 03578970 USGS T 1993-95 Elk River near Estill Springs 03579100 TVA 275 C 1974-78 TVA T 1971-77

DISCONTINUED SURFACE-WATER QUALITY STATIONS--Continued

[Agency designations: USGS, U.S. Geological Survey; TVA, Tennessee Valley Authority. Type of record: (B) biological, (C) chemical, (S) sediment, (T) temperature.]

Drainage Period of Station area Type of record (mi^2) Station name number Agency record (water years) Boiling Fork Creek near Decherd 03580110 TVA 37.7 Т 1975-77 Elk River below Tims Ford Dam 03580750 TVA 534 T 1971-79 TVA C 1966-67, 1973 1975-80 Elk River above Fayetteville 03582000 TVA 827 C 1974, 1977-80 USGS Τ 1961-64 Elk River at Fayetteville 03582400 TVA 895 Τ 1976-78 Cane Creek near Fayetteville 03582600 TVA 106 Τ 1969-73 Richland Creek near Pulaski Т 03584000 TVA 366 1965-73 Elk River near Prospect 03584500 TVA 1,784 Τ 1961-64 Shoal Creek at Iron City 03588500 TVA 348 C,S1974-80 **USGS** C,S1980-83 Tennessee River at Pickwick Landing Dam 03593005 **USGS** 32,820 C,T1976-82 Beech River near Chesterfield 03594439 TVA 121 C 1969-71, 1976 Duck River below Manchester 03596000 TVA 107 C 1967-68, 1970-71 TVA Τ 1976-80 **USGS** C,S1975, 1979-83 Duck River at Normandy 03596500 TVA 208 Τ 1969-75 Duck River at Shelbyville Waterworks 03597850 TVA 425 C 1975-80 Duck River near Shelbyville 03598000 TVA 481 T 1961-64, 1976-78 Т Duck River near Columbia 03599460 TVA 1,176 1974-82 Duck River at Columbia Waterworks 03599482 TVA 1,195 C 1975-80 Piney River at Vernon 03602500 TVA 193 T 1964-67 Duck River above Hurricane Mills 03603000 TVA 2,557 C 1966-67, 1974-80 TVA Т 1961-64 Buffalo River near Flat Woods 03604000 TVA 447 T 1964-68 Τ Buffalo River near Lobelville 03604500 TVA 707 1961-64 C TVA 1967-68, 1973-76 C Trace Creek above Denver 03605555 **USGS** 31.9 1979-83 T Big Sandy River at Bruceton 03606500 TVA 205 1971-78 TVA C 1968, 1970-72 C,S1976, 1979-83 USGS 54.7 C,SNorth Reelfoot Creek at Clayton 07026360 USGS 1982-84 North Reelfoot Creek at State Hwy 22 near Clayton 56.3 C,S1983-89 07026370 **USGS** Obion River at Hwy 51 near Obion 1,875 1975-95 07026040 **USGS** C,S,TSouth Reelfoot Creek near Clayton 07026400 USGS 38.6 C,S1984-89 27.8 C,T1986-88 Bayou Du Chien near Walnut Log 07026695 **USGS** Indian Creek near Samburg **USGS** 8.01 C,S1982-84 07026795 Reelfoot Lake Spillway near Tiptonville USGS 240 C,T1975-76, 1986-88 07027002 1961, 1963, 1977-78 Mosses Creek near Pocahontas 07029410 **USGS** 47.6 C,SC,S1977-78 Hatchie River near Lacy 07029425 USGS 1,033 Big Muddy Creek at Stanton USGS C,S1977-78 07030010 84.4 Cane Creek at Ripley 07030100 USGS 33.9 S 1985-87 79.8 Cane Creek at Three Point 07030137 USGS S 1985-87 Loosahatchie River near Arlington 07030240 USGS 262 C,S1979-82 Wolf River at Rossville 07030500 USGS 503 C 1961, 1963-68 Nonconnah Creek near Germantown 07032200 USGS 68.2 C,S1979-82

1

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey (USGS), in cooperation with State, local, and Federal agencies, obtains a large amount of data pertaining to the water resources of Tennessee each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled "Water Resources Data - Tennessee."

This report consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains discharge records for 102 gaging stations; stage only at 1 gaging station; stage and contents at 32 lakes and reservoirs; water quality for 13 stations, and 16 wells; and water levels at 8 observation wells. Also included are data for 95 crest-stage partial-record stations. Locations of these sites are shown on figures 4 through 6. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and miscellaneous analyses or as seepage investigations.

This series of annual reports for Tennessee began with the 1961 water year with a report that contained only data relating to the quantities of surface water. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several years concurrent with it, water-resources data for Tennessee were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States." For the 1961 through 1970 years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Water of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

Publications similar to this report are published annually by the USGS for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report TN-03-1." For archiving and general distribution, the reports for the 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (615) 837-4700.

COOPERATION

The USGS and agencies of the State of Tennessee have had cooperative agreements for the systematic collection of streamflow records since 1918, for ground-water levels since 1946, and for water-quality records since 1960. Organizations that assisted in collecting data contained in this report through cooperative agreement with the Survey are:

Athens Utility District

Tennessee Department of Environment and Conservation

Tennessee Department of Transportation

Tennessee Wildlife Resources Agency

Duck River Development Agency

Harpeth Valley Utility District

Hixson Utility District

Savannah Valley Utility District

Cities, Towns, or Counties;

Alcoa

Blount

Camden

Dickson

Franklin

Germantown

Harriman

Jackson

Knox

Lewisburg

Lincoln

Maryville

Medina

Memphis

Metropolitan Government of Nashville and Davidson County

Murfreesboro

Rogersville

Sevierville

Shelby

Springfield

Wartrace

Assistance in the form of funds or services was given by the Corps of Engineers, U.S. Army, Memphis and Nashville District, the Tennessee Valley Authority, and by the U.S. Department of Energy. All data are published in this report.

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

The State of Tennessee derives many benefits from an abundance of water found in many streams, rivers, and lakes throughout the area. Excluding the Mississippi River, which flows south along Tennessee's western border, the largest rivers in the State are the Tennessee and Cumberland Rivers. Other large rivers in Tennessee include the Caney Fork, Holston, French Broad, Little Tennessee, Hiwassee, Ocoee, Sequatchie, Elk, Duck, Buffalo, Obion, Forked Deer, and Hatchie Rivers. Tennessee shares many of the benefits of these rivers with neighboring states. The quantity and quality of water in Tennessee's river systems are dependent upon rainfall, runoff, and wise use and management by Federal, State, and local government authorities. The streamflow, ground-water, and water-quality information contained in this report can be used by engineers, scientists, and others as part of their efforts to ensure the continued wise use and management of the rivers, streams, and water resources of Tennessee.

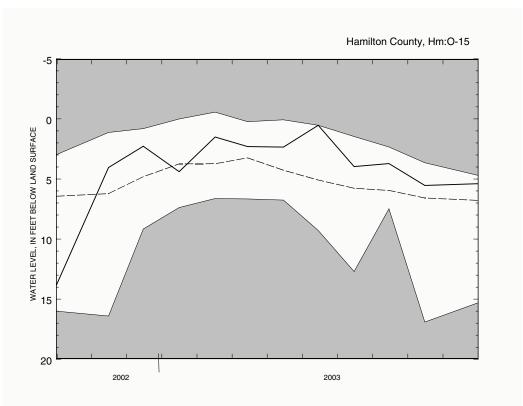
Rainfall amounts during the calendar year 2003, although returning to normal in west Tennessee, remained significantly above average across the middle and eastern parts of the State. Rainfall measured by the National Weather Service (NWS) at Memphis during the year matched the long-term average of 52 inches. Rainfall measured by the NWS in 2003 at Nashville and Morristown totaled 59.5 and 58.7 inches, respectively, or a robust 10 inches over the long-term normal of 48 inches for these areas. Comparison of annual runoff for the 2003 water year with means for the period-of-record for unregulated streams in Tennessee indicates that streamflow was well above average across the State. Streamflows in the western parts of Tennessee were about the same as the previous year. In the central portions of Tennessee, streams and rivers were typically flowing well above both the rates seen in 2002 and long-term averages. Eastern Tennessee streamflows, continuing a trend of strong recovery, were well above both the rates seen in 2002 and long-term averages.

The western portion of Tennessee was not affected by significant flood-producing storms during the 2003 water year. Minor storms were recorded in the region on October 9-10, 2002, December 19-22, 2002, and May 5-6, 2003. No significant flooding was reported.

The central regions of Tennessee received flood-producing rains on February 14-16, 2003 and May 5-7, 2003. The February storm dropped about 5 inches of rain and produced minor flooding throughout the region. The May storm was much heavier in the southern portion of middle Tennessee. In general this storm produced 6 to 10 inches of rain across southern middle Tennessee. Flooding having a recurrence interval of 20 years was reported on the Duck River at Columbia. Many smaller streams, such as Shoal Creek in Lawrence County, Richland Creek in Giles County, and Garrison Fork in Bedford County recorded 10-year floods for the May storm.

Eastern parts of Tennessee experienced significant flooding on February 15-17, 2003 and May 5-8, 2003. The February storm generally struck hardest across the northern parts of both the Cumberland Plateau and the Tennessee Valley. The storm dropped 5 to 7 inches of rain and produced significant flooding from Knoxville north to the Cumberland Gap region. The Powell River in Claiborne County recorded a 20-year flood on February 17, 2003. In the Knoxville area, Bullrun Creek in Union and Knox Counties recorded a 30-year flood on February 16, 2003. The storm of May 5-8, 2003 was very intense in the southern parts of east Tennessee. The May storm had intense embedded cells that produced from 6 to 10 across much of the area. The Sequatchie River in Sequatchie and Marion Counties, Tellico River in McMinn County, and Pigeon River in Cocke County recorded flooding in excess of the 50-year event. The Tennessee River in Chattanooga crested at a level not seen since the flood of March 1973.

Ground Water


Ground-water levels at key aquifers throughout Tennessee were affected by rainfall during the 2003 water year. Ground-water levels are recorded continuously at a series of observation wells across the State (fig. 1). Water levels at well Hm:O-15 (Hamilton County) are representative of conditions in East Tennessee and show above normal water levels during most of the year. Water levels recorded from wells throughout Middle and East Tennessee generally respond faster with larger fluctuations than wells drilled into the sand and gravel aquifers of West Tennessee. Observation wells in Shelby County show that ground-water levels are strongly affected by ground-water withdrawals by the City of Memphis and surrounding communities. At well Sh:Q-1 (fig. 2), near downtown Memphis, water levels declined steadily since 1972. Ground-water levels in Sh:Q-1 have shown a general upward trend since about 2001. The decline in ground-water levels in the Memphis area are not indicative of a reduction in the available ground-water supplies, but the response of the aquifer to additional withdrawals. Hydrographs showing lowest monthly water levels for each of the continuous recording observation wells are included in the body of this report.

Ground-water levels in the observation wells in Middle (Lincoln County) and East Tennessee (Hamilton and Sevier Counties) were generally about the same or higher for 2003 than water levels in 2002. The ground-water levels in West Tennessee (Shelby and Lauderdale Counties) were also generally higher in 2003. Several observations wells in the shallow aquifers in Shelby County had ground-water levels that were near or above the record high water levels.

Water Quality

Water-quality data were collected at 8 surface-water sites and 10 ground-water sites during the 2003 water year. Some of these sites were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Other water-quality activities included:

- o Operation of four continuous monitors to measure temperature, dissolved oxygen, pH, and specific conductance in the Cumberland River Basin in support of the U.S. Army Corps of Engineers, Nashville District operations.
- o Operation of a continuous monitor to measure temperature, dissolved oxygen, pH, and specific conductance in the West Fork Stones River in support of a water-resources program in cooperation with the City of Murfreesboro, Tennessee.
- o Operation of a continuous monitor to measure temperature and dissolved oxygen in the Duck River in cooperation with the Duck River Development Agency.
- o Operation of two continuous monitors in the Cumberland River, one in the Stones River, and one in Mill Creek, to measure temperature, dissolved oxygen, pH, and specific conductance in the Cumberland River at Nashville in cooperation with the Davidson County Metropolitan area, Tennessee.
- o Quarterly samples at three sites for the determination of water quality in Carter's Creek in Maury County, Tennessee.

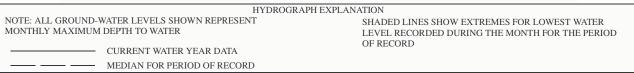
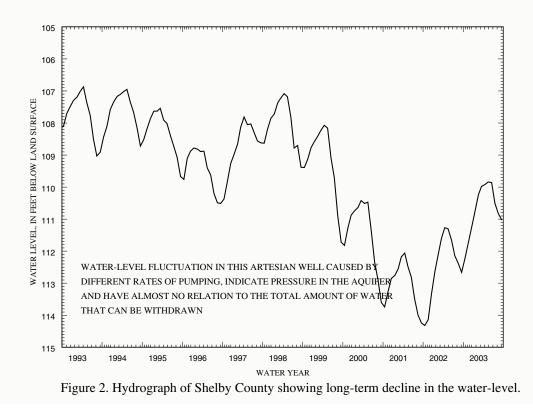



Figure 1. Ground-water levels for the 2003 water year compared to the maximum, minimum, and median water levels for the period of record.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two main-stream stations is listed between those stations. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is located with respect to the stream to which it is immediately tributary is indicated by an indention in that list of stations in the front of this report. Each indentation represents one rank. This downstream order and system of indentation indicates which stations are on tributaries between any two stations and the rank of the tributary on which each station is located.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These station numbers are in the same downstream order used in this report. In assigning a station number, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list composed of both types of stations. Gaps are consecutive. The complete 8-digit (or 10-digit) number for each station such as 09004100, which appears just to the left of the station name, includes a 2-digit part number "09" plus the 6-digit (or 8-digit) downstream order number "004100." In areas of high station density, an additional two digits may be added to the station identification number to yield a 10-digit number. The stations are numbered in downstream order as described above between stations of consecutive 8-digit numbers.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The USGS well and miscellaneous site-numbering system is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude; the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and miscellaneous site are the same, a sequential number such as "01," "02," and so forth, would be assigned as one would for wells (see fig. 3). The 8-digit, downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

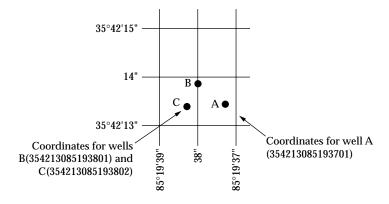


Figure 3.--System for numbering wells (latitude and longitude).

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 61 sites in small drainage basins in 39 States that was established in 1963 to provide consistent streamflow data representative of undeveloped watersheds nationwide, and from which data could be analyzed on a continuing basis for use in comparison and contrast with conditions observed in basins more obviously affected by human activities. At selected sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program may be accessed from http://water.usgs.gov/hbn/.

National Stream-Quality Accounting Network (NASQAN) is a network of sites used to monitor the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande River basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia Rivers so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment (NAWQA) Program; (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of offcontinent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program may be accessed from http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a network of monitoring sites that provide continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead Federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from this network of 250 precipitation-chemistry monitoring sites. The USGS supports 74 of these 250 sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as data from the individual sites, may be accessed from http://bqs.usgs.gov/acidrain/.

The USGS National Water-Quality Assessment (NAWQA) Program is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; to provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and to provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 42 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents is measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a

wide range of spatial and temporal scales will provide information for water-resources managers to use in making decisions and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and Federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key Federal, State, and local water-resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program may be accessed from http://water.usgs.gov/nawqa/.

The USGS National Streamflow Information Program (NSIP) is a long-term program with goals to provide framework streamflow data across the Nation. Included in the program are creation of a permanent Federally funded streamflow network, research on the nature of streamflow, regional assessments of streamflow data and databases, and upgrades in the streamflow information delivery systems. Additional information about NSIP may be accessed from http://water.usgs.gov/nsip/.

EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS

Data Collection and Computation

The base data collected at gaging stations (fig. 4) consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and volume of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, USGS Water-Supply Paper 2175, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

For stream-gaging stations, discharge-rating tables for any stage are prepared from stage-discharge curves. If extensions to the rating curves are necessary to express discharge greater than measured, the extensions are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, or computation of flow over dams and weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features of the stream channel, the daily mean discharge is computed by the shifting-control method in which correction factors based on individual discharge measurements and notes by engineers and observers are used when applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the controlling section, the daily mean discharge is computed by the shifting-control method.

The stage-discharge relation at some stream-gaging stations is affected by backwater from reservoirs, tributary streams, or other sources. Such an occurrence necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage at some distance from the base gage.

An index velocity is measured using ultrasonic or acoustic instruments at some stream-gaging stations and this index velocity is used to calculate an average velocity for the flow in the stream. This average velocity along with a stage-area relation is then used to calculate average discharge.

At some stations, stage-discharge relation is affected by changing stage. At these stations, the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations in the northern United States, the stage-discharge relation is affected by ice in the winter; therefore, computation of the discharge in the usual manner is impossible. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter-discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge from other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the volume or contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some stream-gaging stations, periods of time occur when no gage-height record is obtained or the recorded gage height is faulty and cannot be used to compute daily discharge or contents. Such a situation can happen when the recorder stops or otherwise fails to operate properly, the intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records from other stations in the same or nearby basins. Likewise, lake or reservoir volumes may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

Data Presentation

The records published for each continuous-record surface-water discharge station (stream-gaging station) consist of five parts: (1) the station manuscript or description; (2) the data table of daily mean values of discharge for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period, by water year; (4) a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration; and (5) a hydrograph of discharge.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments follow that clarify information presented under the various headings of the station description.

LOCATION.—Location information is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This term indicates the time period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its flow reasonably can be considered equivalent to flow at the present station.

REVISED RECORDS.—If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

GAGE.—The type of gage in current use, the datum of the current gage referred to a standard datum, and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.—All periods of estimated daily discharge either will be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See section titled Identifying Estimated Daily Discharge.) Information is presented relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, the outlet works and spillway, and the purpose and use of the reservoir.

COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.—Information here documents major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS.

REVISIONS.—Records are revised if errors in published records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb (http://water.usgs.gov/nwis/nwis). Users are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent data updates. Updates to NWISWeb are made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because no current or, possibly, future station manuscript would be published for these stations to document the revision in a REVISED RECORDS entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were revised after the station was discontinued. If, however, the data for a discontinued station were obtained by computer retrieval, the data would be current. Any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the REMARKS and in the inclusion of a stage-capacity table when daily volumes are given.

Peak Discharge Greater than Base Discharge

Tables of peak discharge above base discharge are included for some stations where secondary instantaneous peak discharge data are used in flood-frequency studies of highway and bridge design, flood-control structures, and other flood-related projects. The base discharge value is selected so an average of three peaks a year will be reported. This base discharge value has a recurrence interval of approximately 1.1 years or a 91-percent chance of exceedence in any 1 year.

Data Table of Daily Mean Values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed TOTAL gives the sum of the daily figures for each month; the line headed MEAN gives the arithmetic average flow in cubic feet per second for the month; and the lines headed MAX and MIN give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month is expressed in cubic feet per second per square mile (line headed CFSM); or in inches (line headed IN); or in acre-feet (line headed AC-FT). Values for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if extensive regulation or diversion is in effect or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir volumes are given. These values are identified by a symbol and a corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed MEAN), maximum (MAX), and minimum (MIN) of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those values. The designated period will be expressed as FOR WATER YEARS __-__, BY WATER YEAR (WY), and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. The designated period will consist of all of the station record within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled SUMMARY STATISTICS follows the statistics of monthly mean data tabulation. This table consists of four columns with the first column containing the line headings of the statistics being

reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, WATER YEARS ____, will consist of all of the station records within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When the dates of occurrence do not fall within the selected water years listed in the heading, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration-curve statistics and runoff data also are given. Runoff data may be omitted if extensive regulation or diversion of flow is in effect in the drainage basin.

The following summary statistics data are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the SUMMARY STATISTICS table.

ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year.

ANNUAL MEAN.—The arithmetic mean for the individual daily mean discharges for the year noted or for the designated period.

HIGHEST ANNUAL MEAN.—The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.—The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.—The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.—The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.—The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. This value should not be confused with the 7-day 10-year low-flow statistic.

MAXIMUM PEAK FLOW.—The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.

MAXIMUM PEAK STAGE.—The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.—The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.—Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicate the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.—The discharge that has been exceeded 10 percent of the time for the designated period.

50 PERCENT EXCEEDS.—The discharge that has been exceeded 50 percent of the time for the designated period.

90 PERCENT EXCEEDS.—The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first table lists annual maximum stage and discharge at crest-stage stations, and the second table lists discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are often made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for a special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified. This identification is shown either by flagging individual daily values with the letter "e" and noting in a table footnote, "e–Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The degree of accuracy of the records is stated in the REMARKS in the station description. "Excellent" indicates that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair," within 15 percent. "Poor" indicates that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record.

Values of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to the nearest tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge values listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Records Available

Information of a more detailed nature than that published for most of the stream-gaging stations such as discharge measurements, gage-height records, and rating tables is available from the District office. Also, most stream-gaging station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the District office (see address that is shown on the back of the title page of this report).

EXPLANATION OF PRECIPITATION RECORDS

Data Collection and Computation

Rainfall data generally are collected using electronic data loggers that measure the rainfall in 0.01-inch increments every 15 minutes using either a tipping-bucket rain gage or a collection well gage. Twenty-four hour rainfall totals are tabulated and presented. A 24-hour period extends from just past midnight of the previous day to midnight of the current day. Snowfall-affected data can result during cold weather when snow fills the rain-gage funnel and then melts as temperatures rise. Snowfall-affected data are subject to errors. Missing values are indicated by this symbol "---" in the table.

Data Presentation

Precipitation records collected at surface-water gaging stations are identified with the same station number and name as the stream-gaging station. Where a surface-water daily-record station is not available, the precipitation record is published with its own name and latitude-longitude identification number.

Information pertinent to the history of a precipitation station is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, period of record, and general remarks.

The following information is provided with each precipitation station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

INSTRUMENTATION.—Information on the type of rainfall collection system is given.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of records.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and Examination of Data

Surface-water samples for analysis usually are collected at or near stream-gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, water temperature, sediment discharge, and so forth); extremes for the current year; and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, sampling date, or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water Analysis

Most of the methods used for collecting and analyzing water samples are described in the TWRIs. A list of TWRIs is provided in this report.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross-section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled at several verticals to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values (and sometimes mean or median values) for each constituent measured, and are based on 15-minute or 1-hour intervals of recorded data beginning at 0000 hours and ending at 2400 hours for the day of record.

SURFACE-WATER-QUALITY RECORDS

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because discharge data is useful in the interpretation of surface-water quality. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A *continuous-record station* is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A *partial-record station* is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A *miscellaneous sampling site* is a location other than a continuous- or partial-record station, where samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between *continuous records* as used in this report and *continuous recordings* that refer to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figures 6.

Accuracy of the Records

One of four accuracy classifications is applied for measured physical properties at continuous-record stations on a scale ranging from poor to excellent. The accuracy rating is based on data values recorded

before any shifts or corrections are made. Additional consideration also is given to the amount of publishable record and to the amount of data that have been corrected or shifted.

Rating classifications for continuous water-quality records

[≤, less than or equal to; ±, plus or minus value shown; °C, degree Celsius; >, greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured physical	Rating						
property	Excellent	Good	Fair	Poor			
Water temperature	≤ ±0.2 °C	> ±0.2 to 0.5 °C	> ±0.5 to 0.8 °C	> ±0.8 °C			
Specific conductance	≤ ±3%	> ±3 to 10%	>±10 to 15%	>±15%			
Dissolved oxygen	≤ ±0.3 mg/L	$> \pm 0.3$ to 0.5 mg/L	> ±0.5 to 0.8 mg/L	> ±0.8 mg/L			
рН	≤ ±0.2 unit	$> \pm 0.2$ to 0.5 unit	> ±0.5 to 0.8 unit	> ±0.8 unit			
Turbidity	≤ ±5%	> ±5 to 10%	>±10 to 15%	>±15%			

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represent the naturally occurring quality of the water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made on site when the samples are taken. To assure that measurements made in the laboratory also represent the naturally occurring water, carefully prescribed procedures must be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1-A9. These TWRIs are listed in this report. Also, detailed information on collecting, treating, and shipping samples can be obtained from the USGS District office (see address that is shown on the back of title page in this report).

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may be collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples are collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical oxygen demand (BOD) and indicator bacteria are analyzed locally. All other samples are analyzed in the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRIs, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information is provided

with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

DRAINAGE AREA.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.—This indicates the time periods for which published water-quality records for the station are available. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. For parameters measured weekly or less frequently, true maximums or minimums may not have been obtained. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.—Records are revised if errors in published water-quality records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Webbased National data system, NWISWeb (http://waterdata.usgs.gov/nwis). Users of USGS water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent updates. Updates to the NWISWeb are made on an annual basis.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this section:

Printed Output	Remark
E or e	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
K	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
V	Analyte was detected in both the environmental sample and the associated blanks.
&	Biological organism estimated as dominant.

Water-Quality Control Data

The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDLs) and laboratory reporting levels (LRLs). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year.

This reporting procedure limits the occurrence of false positive error. Falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less.

Accordingly, concentrations are reported as less than LRL for samples in which the analyte was either not detected or did not pass identification. Analytes detected at concentrations between the LT-MDL and the LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the E remark code.

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District office are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. These data are not presented in this report but are available from the District office.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated in the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank

sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. Many types of blank samples are possible; each is designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

Field blank—A blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank—A blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank—A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank—A blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank—A blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank—A blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank—A blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory. The reference material composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. Many types of replicate samples are possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent samples—A type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating the collection of samples into two or more compositing containers.

Sequential samples—A type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample—A type of replicate sample in which a sample is split into subsamples, each subsample contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

EXPLANATION OF GROUND-WATER-LEVEL RECORDS

Generally, only ground-water-level data from selected wells with continuous recorders from a basic network of observation wells are published in this report. This basic network contains observation wells located so that the most significant data are obtained from the fewest wells in the most important aquifers.

Site Identification Numbers

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is produced for local needs.

Data Collection and Computation

Measurements are made in many types of wells, under varying conditions of access and at different temperatures; hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Most methods for collecting and analyzing water samples are described in the TWRIs referred to in the On-site Measurements and Sample Collection and the Laboratory Measurements sections in this report. In addition, TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1 through A9. The values in this report represent water-quality conditions at the time of sampling, as much as possible, and that are consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. Trained personnel collected all samples. The wells sampled were pumped long enough to ensure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum above sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth of water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Data Presentation

Water-level data are presented in alphabetical order by county. The primary identification number for a given well is the 15-digit site identification number that appears in the upper left corner of the table. The secondary identification number is the local or county well number. Well locations are shown in figures 6; each well is identified on the map by its local well or county well number.

Each well record consists of three parts: the well description, the data table of water levels observed during the water year, and, for most wells, a hydrograph following the data table. Well descriptions are presented in the headings preceding the tabular data.

The following comments clarify information presented in these various headings.

LOCATION.—This paragraph follows the well-identification number and reports the hydrologic-unit number and a geographic point of reference. Latitudes and longitudes used in this report are reported as North American Datum of 1927 unless otherwise specified.

AQUIFER.—This entry designates by name and geologic age the aquifer that the well taps.

WELL CHARACTERISTICS.—This entry describes the well in terms of depth, casing diameter and depth or screened interval, method of construction, use, and changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on continuous, monthly, or some other frequency of measurement.

DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The altitude of the land-surface datum is described in feet above the altitude datum; it is reported with a precision depending on the method of determination. The measuring point is described physically (such as top of casing, top of instrument shelf, and so forth), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD 29); it is reported with a precision depending on the method of determination.

REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level, when various methods of measurement were begun, and the network (climatic, terrane, local, or areal effects) or the special project to which the well belongs.

PERIOD OF RECORD.—This entry indicates the time period for which records are published for the well, the month and year at the start of publication of water-level records by the USGS, and the words "to current year" if the records are to be continued into the following year. Time periods for which water-level records are available, but are not published by the USGS, may be noted.

EXTREMES FOR PERIOD OF RECORD.—This entry contains the highest and lowest instantaneously recorded or measured water levels of the period of published record, with respect to land-surface datum or sea level, and the dates of occurrence.

Water-Level Tables

A table of water levels follows the well description for each well. Water-level measurements in this report are given in feet with reference to either sea level or land-surface datum (lsd). Missing records are indicated by dashes in place of the water-level value.

For wells not equipped with recorders, water-level measurements were obtained periodically by steel or electric tape. Tables of periodic water-level measurements in these wells show the date of measurement and the measured water-level value.

Hydrographs

Hydrographs are a graphic display of water-level fluctuations over a period of time. In this report, current water year and, when appropriate, period-of-record hydrographs are shown. Hydrographs that display periodic water-level measurements show points that may be connected with a dashed line from one measurement to the next. Hydrographs that display recorder data show a solid line representing the mean water level recorded for each day. Missing data are indicated by a blank space or break in a hydrograph. Missing data may occur as a result of recorder malfunctions, battery failures, or mechanical problems related to the response of the recorder's float mechanism to water-level fluctuations in a well.

GROUND-WATER-QUALITY DATA

Data Collection and Computation

The ground-water-quality data in this report were obtained as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some wells within a county but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of groundwater quality Statewide.

Most methods for collecting and analyzing water samples are described in the TWRIs. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. Also, detailed information on collecting, treating, and shipping samples may be obtained from the USGS District office (see address shown on back of title page in this report).

Laboratory Measurements

Analysis for sulfide and measurement of alkalinity, pH, water temperature, specific conductance, and dissolved oxygen are performed on site. All other sample analyses are performed at the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used by the USGS laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed from http://water.usgs.gov.

Water-quality data and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on various media. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each Water Discipline District Office (See address that is shown on the back of the title page of this report.)

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, and precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units. Other glossaries that also define water-related terms are accessible from http://water.usgs.gov/glossaries.html.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphaterich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Adjusted discharge is discharge data that have been mathematically adjusted (for example, to remove the effects of a daily tide cycle or reservoir storage).

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acrefeet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most

low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that purposely is placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from a dry-mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

Aspect is the direction toward which a slope faces with respect to the compass.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Bedload is material in transport that primarily is supported by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to the top of the bedload sampler nozzle (an elevation ranging from 0.25 to 0.5 foot). These particles are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This also is called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton and periphyton organisms with a blue pigment in addition to a green pigment called chlorophyll. Blue-green algae can cause nuisance water-quality conditions in lakes and slow-flowing rivers; however, they are found com-

monly in streams throughout the year. The abundance of blue-green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μ m³/mL). The abundance of blue-green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μ m³/cm²). (See also "Phytoplankton"and "Periphyton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved-solids content of the pore water, and the lithology and porosity of the rock.

Canadian Geodetic Vertical Datum 1928 is a geodetic datum derived from a general adjustment of Canada's first order level network in 1928.

Cell volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are used frequently in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$.

pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and generally are reported as cells or units per milliliter (mL) or liter (L).

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and the presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables numerically are equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted mean concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

Daily record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to data collection on a daily or near-daily basis.

Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data usually are downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or Universal Transverse Mercator (UTM) coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Verti-

cal Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms (*Bacillariophyta*) are unicellular or colonial algae with a siliceous cell wall. The abundance of diatoms in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μm³/mL). The abundance of diatoms in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μm³/cm²). (See also "Phytoplankton" and "Periphyton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, and so forth, within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alterna-

tively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n},$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria commonly are found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus*

feacium, Streptococcus avium, and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that generally are considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an E code will be reported with the value. If the analyte is identified qualitatively as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an E code even though the measured value is greater than the MDL. A value reported with an E code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). For bacteriological data, concentrations are reported as estimated when results are based on non-ideal colony counts.

Euglenoids (*Euglenophyta*) are a group of algae that usually are free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus

0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum is not an actual physical object, the datum is usually defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae (*Chlorophyta*) are unicellular or colonial algae with chlorophyll pigments similar to those in terrestrial green plants. Some forms of green algae produce mats or floating "moss" in lakes. The abundance of green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μm³/mL). The abundance of green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μm³/cm²). (See also "Phytoplankton" and "Periphyton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat typically are made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA Web site:*

http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N},$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), in reference to streamflow, as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were distributed uniformly on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

International Boundary Commission Survey Datum refers to a geodetic datum established at numerous monuments along the United States-Canada boundary by the International Boundary Commission.

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year, on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) generally is equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. The LRL replaces the term 'non-detection value' (NDV).

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_{o}e^{-\lambda L}$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o}.$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike-sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA Web site:

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or **low tide** is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Megahertz is a unit of frequency. One megahertz equals one million cycles per second.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Method of Cubatures is a method of computing discharge in tidal estuaries based on the conservation of mass equation.

Methylene blue active substances (MBAS) indicate the presence of detergents (anionic surfactants). The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.

Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD 29) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It formerly was called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA Web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")

Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

Nekton are the consumers in the aquatic environment and consist of large, free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

North American Datum of 1927 (NAD 27) is the horizontal control datum for the United States that was defined by a location and azimuth on the Clarke spheroid of 1866.

North American Datum of 1983 (NAD 83) is the horizontal control datum for the United States, Canada, Mexico, and Central America that is based on the adjustment of 250,000 points including 600 satellite Doppler stations that constrain the system to a geocentric origin. NAD 83 has been officially adopted as the legal horizontal datum for the United States by the Federal government.

North American Vertical Datum of 1988 (NAVD 88) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.

Open or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method uses the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measure-

ments are made one or more times during a year but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They usually are microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one-trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light- and dark-bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light- and dark-bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative

sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within

soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heatflux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2 mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Surrogate is an analyte that behaves similarly to a target analyte, but that is highly unlikely to occur in a sample. A surrogate is added to a sample in known amounts before extraction and is measured with the same laboratory procedures used to measure the target analyte. Its purpose is to monitor method performance for an individual sample.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and, thus, the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocityweighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (**Species**) **richness** is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropeda
Class: Insecta

Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia

Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric ton per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge

of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the

digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution because of the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to USEPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (**UV**) **absorbance** (**absorption**) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absor-

bance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of path length of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and, subsequently, analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They often are components of fuels, solvents, hydraulic fluids, paint thinners, and dry-cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human-health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

Watershed (See "Drainage basin")

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

Techniques of Water-Resources Investigations of the U.S. Geological Survey

The USGS publishes a series of manuals, the Techniques of Water-Resources Investigations, describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

Reports in the Techniques of Water-Resources Investigations series, which are listed below, are online at http://water.usgs.gov/pubs/twri/. Printed copies are for sale by the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office), telephone 1-888-ASK-USGS. Please telephone 1-888-ASK-USGS for current prices, and refer to the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Products can then be ordered by telephone, or online at http://www.usgs.gov/sales.html, or by FAX to (303)236-469 of an order form available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2–D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. *Application of seismic-refraction techniques to hydrologic studies*, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2–E1. *Application of borehole geophysics to water-resources investigations*, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Al0. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3–B1. *Aquifer-test design, observation, and data analysis,* by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. *Regression modeling of ground-water flow,* by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.

- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. *Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction*, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.
- 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3–C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. *Determination of minor elements in water by emission spectroscopy*, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.

- 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5–C1. *Laboratory theory and methods for sediment analysis*, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density groundwater flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

Map number	Station number and name	Page	Map number	Station number and name	Page
	W RIVER AT NEW RIVER, TN	52	52 03540500	EMORY RIVER AT OAKDALE	224
	EAR FORK NEAR ROBBINS, TN	54	53 03566000	HIWASSEE RIVER AT CHARLESTON	226
	OUTH FORK CUMBERLAND RIVER AT LEATHERWOOD FORD	56	54 035661285	NORTH MOUSE CR NR ROCKY MTN. HOLLOW NR ATHENS	228
	AST FORK OBEY RIVER NEAR JAMESTOWN	58		NORTH CHICKAMAUGA CREEK NEAR MONTLAKE	230
	EST FORK OBEY RIVER NEAR ALPINE	62		9 NORTH CHICKAMAUGA CREEK AT HWY 27 NEAR DAISY	234
	OARING RIVER ABOVER GAINESBORO	70		TENNESSEE RIVER AT CHATTANOOGA	238
	DLLINS RIVER NEAR MCMINNVILLE	78		SEQUATCHIE RIVER NEAR DUNLAP	240
	MITH FORK AT TEMPERANCE HALL	80		SEQUATCHIE RIVER NEAR WHITWELL	242
	JMBERLAND RIVER AT OLD HICKORY DAM	82		ELK RIVER NEAR PELHAM	244
	ANSKER CREEK ABOVE GOODLETTSVILLE	92		SPRING CREEK OFF SPRING CREEK RD AT AEDC	246
	RY CREEK NEAR EDENWOLD	96		RICHLAND CREEK AT HWY 64 NEAR PULASKI	248
	ST FORK RIVER NEAR LASCASSAS	98		ELK RIVER AT PROSPECT	250
	EST FORK STONES RIVER AT MURFREESBORO	100		SHOAL CREEK AT IRON CITY	252
	ONERS CREEK NEAR HERMITAGE	108		TENNESSEE RIVER AT SAVANNAH	254
	ILL CREEK NEAR NOLENSVILLE	110		LITTLE DUCK RIVER SOUTHEAST OF MANCHESTER	256
	LL CREEK AT THOMPSON LANE NEAR WOODBINE	114		CRUMPTON CREEK AT RUTLEDGE FALLS	257
	OWNS CR AT STATE FAIRGROUND AT NASHVILLE	122		GARRISON FORK ABOVE L&N RAILROAD AT WARTRACE	258
	JMBERLAND RIVER AT WOODLAND ST AT NASHVILLE	124		WARTRACE CREEK BELOW COUNTY ROAD AT WARTRACE	260
	HITES CREEK NEAR BORDEAUX	132		DUCK RIVER AT SHELBYVILLE	262
	CHLAND CREEK AT CHARLOTTE AVE AT NASHVILLE	134		FLAT CREEK AT HWY 231 BELOW SHELBYVILLE	268
	ARPETH RIVER AT FRANKLIN	136		DUCK RIVER NEAR SHELBYVILLE	270
	ARPETH RIVER TRIB AT MACK HATCHER PKWY.	138		NORTH FORK CREEK NEAR POPLINS CROSSROADS	272
	ARPETH RIVER TRIB AT MT. HOPE ROAD AT FRANKLIN	140		BIG ROCK CREEK AT DOUBLE BRIDGE	274
	OUTH PRONG SPENCER CREEK NEAR FRANKLIN	142		DUCK RIVER ABOVE MILLTOWN	275
	ENCER CREEK NEAR FRANKLIN	144		DUCK RIVER AT CARPENTERS BRIDGE NEAR POTTSVILLE	276
	ARPETH RIVER BELOW FRANKLIN ARPETH RIVER AT BELLEVUE	146 148		FOUNTAIN CREEK NEAR FOUNTAIN HEIGHTS	277
	ARPETH RIVER AT BELLEVUE ARPETH RIVER NEAR KINGSTON SPRINGS	150		DUCK RIVER AT COLUMBIA	278
	ED RIVER BELOW HWY 161 AT BARREN PLAINS	160		CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK	284
	LLERS CREEK AT TURNERSVILLE	162		DUCK RIVER AT HWY 100 AT CENTERVILLE	288
	ED RIVER AT PORT ROYAL	164		PINEY RIVER AT CEDAR HILL	290 292
	LLOW CREEK AT ELLIS MILLS	168		PINEY RIVER AT VERNON	292
	ENCH BROAD RIVER NEAR NEWPORT	174		BUFFALO RIVER NEAR FLATWOODS	294
	GEON RIVER AT NEWPORT	176		CYPRESS CREEK AT CAMDEN, TN	
	DLICHUCKY RIVER AT EMBREEVILLE	178		BIG SANDY RIVER AT BRUCETON	298 308
	G LIMESTONE CREEK NEAR LIMESTONE	180		BEAVER CREEK AT HWY 22 BYPASS NEAR HUNTINGDON SOUTH FORK OBION RIVER NEAR GREENFIELD	312
	DLICHUCKY RIVER NEAR LOWLAND	186		NORTH FORK OBION RIVER NEAR GREENFIELD NORTH FORK OBION RIVER NEAR MARTIN	314
	TTLE PIGEON RIVER ABOVE SEVIERVILLE	192		OBION RIVER AT US HWY 51 NEAR OBION	316
	G CREEK NEAR ROGERSVILLE	194		REELFOOT LAKE NEAR TIPTONVILLE	318
	TTLE RIVER ABOVE TOWNSEND	196		SOUTH FOR FORKED DEER RIVER NEAR OWL CITY	320
	TTLE RIVER NEAR MARYVILLE	198		NORTH FORK FORKED DEER RIVER AT TRENTON	324
	ΓTLE RIVER NEAR ALCOA	200		MIDDLE FORK FORKED DEER RIVER NEAR FAIRVIEW	326
	LLICO RIVER AT TELLICO PLAINS	202		HATCHIE RIVER AT BOLIVAR	328
	INCH RIVER ABOVE TAZEWELL	204		HATCHIE RIVER AT RIALTON	330
	WELL RIVER NEAR ARTHUR	206		LOOSAHATCHIE RIVER NEAR ARLINGTON	332
	LLRUN CREEK NEAR HALLS CROSSROAD	208		WOLF RIVER AT LAGRANGE	334
	EAVER CREEK AT SOLWAY	212		WOLF RIVER AT ROSSVILLE	338
	ST FORK POPLAR CR AT BEAR CR RD AT OAK RIDGE	214		WOLF RIVER AT GERMANTOWN	340
	DDY'S CREEK NEAR HEBBERTSBURG	216		FLETCHER CREEK AT SYCAMORE VIEW	344
50 03539778 CLI	EAR CREEK AT LILLY BRIDGE NEAR LANCING	218		WOLF RIVER AT HOLLYWOOD STREET AT MEMPHIS	350
	ED RIVER NEAR LANCING, TN	222		NONCONNAH CREEK NEAR GERMANTOWN	352

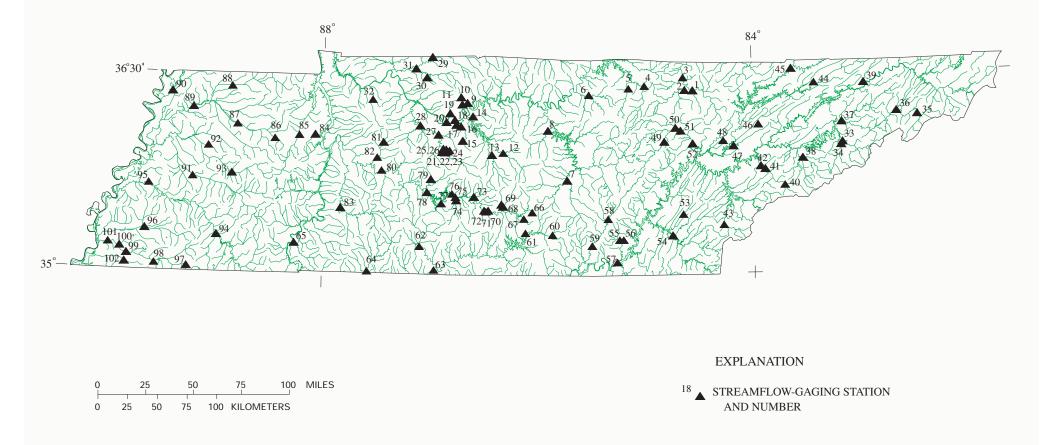


Figure 4. Location of streamflow-gaging stations in Tennessee.

Map			Map		
	Station number and name	Page	number	Station number and name	Page
0340900	0 WHITE OAK CREEK NEAR SUNBRIGHT	354	48 034668	90 LICK CREEK NEAR ALBANY	361
0341600	0 WOLF RIVER NEAR BYRDSTOWN	354	49 034674	80 BENT CREEK AT TAYLOR GAP	361
0341820	1 DOE CREEK AT GAINESBORO	354	50 034679	92 CARTER BRANCH NEAR WHITE PINE	361
	0 CANE CREEK NEAR SPENCER	354		93 CEDAR CREEK NEAR VALLEY HOME	361
	0 CHARLES CREEK NEAR MCMINNVILLE	355		98 SINKING FORK AT WHITE PINE	362
	0 MULHERRIN CREEK NEAR GORDONSVILLE	355		15 DUMPLIN CREEK AT MT. HAREB	362
	0 PEYTON CREEK NEAR MONOVILLE	355		60 INDIAN CREEK AT CHILDRESS	362
	5 SECOND CREEK NEAR WALNUT GROVE	355		50 REEDY CREEK AT OREBANK	362
	7 STATION CAMP CREEK AT COTTONTOWN	355		22 FORGEY CREEK AT ZION HILL	362
	0 EAST FORK STONES RIVER AT WOODBURY	355		40 ROBERTSON CREEK NEAR PERSIA	362
	4 BRAWLEYS FORK BELOW BRADYVILLE	355		14 DRY LAND CREEK TRIB NEAR NEW MARKET	362
	24 REED CREEK NEAR BRADYVILLE	355		90 FLAT CREEK AT LUTTRELL	363
	0 BUSHMANN CREEK AT PITTS LANE FORD NEAR COMPTON	356		10 LITTLE ELLEJOY CREEK AT PROSPECT	363
	3 LYTLE CREEK SANBYRNE DRIVE AT MURFREESBORO	356		105 STOCK CREEK AT PICKENS GAP RD NR HIGH BLUFF	363
	6 UNNAMED SINK NEAR ALMAVILLE 0 WEST FORK STONES RIVER NEAR SMYRNA	356 356		75 TEN MILE CREEK AT ROBINSON ROAD NEAR KNOXVILLE 10 BAKER CREEK TRIB NEAR BINFIELD	363 363
	3 UNNAMED SINK ON I-840 AT LEANNA	356		00 BIG WAR CREEK AT LUTHER	363
	8 MCCRORY CREEK AT IRONWOOD DRIVE AT DONELSON	357		90 CROOKED CREEK NEAR MAYNARDVILLE	363
	0 MILL CREEK AT NOLENSVILLE	357		00 COAL CREEK AT LAKE CITY	363
	0 MILL CREEK NEAR ANTIOCH	357		80 WILLOW FORK NEAR HALLS CROSSROAD	363
	0 SEVENMILE CREEK AT BLACKMAN ROAD	357		830 BEAVER CREEK NR WILLOW FORK AT HALLS CROSSROAD	364
	2 MILL CREEK TRIB AT GLENROSE AVENUE AT WOODBINE	357		95 BEAVER CREEK AT BRICKYARD ROAD NEAR POWELL	364
	0 WEST FK BROWNS CR @ GEN. BATES DR @ NASHVILLE	358		17 CONNER CREEK AT STEELE ROAD NEAR SOLWAY	364
	2 EAST FORK BROWNS CREEK AT 100 OAKS MALL AT NASHVILLE	358		00 COKER CREEK NEAR IRONSBURG	364
	0 BROWNS CREEK AT FACTORY STREET AT NASHVILLE	358		20 WOLFTEVER CREEK NEAR OOLTEWAH	364
0343149	0 PAGES BRANCH AT AVONDALE	358	73 035665	99 NORTH CHICKAMAUGA CR AT GREENS MILL NR HIXSON	364
0343155	0 EARTHMAN FORK AT WHITES CREEK	358	74 035691	68 STRINGERS BRANCH AT LEAWOOD DRIVE AT RED BANK	364
0343158	1 EWING CREEK BELOW KNIGHT ROAD NEAR BORDEAUX	358	75 035715	00 LITTLE SEQUATCHIE RIVER AT SEQUATCHIE	364
0343167	7 SUGARTREE CR @ YMCA ACCESS RD @ GREEN HILLS	358	76 035717	30 STANDIFER BRANCH AT JASPER	365
0343167	9 SUGARTREE CR @ ABBOTT MARTIN RD @ GREEN HILLS	359	77 035718	00 BATTLE CREEK NEAR MONTEAGLE	365
0343180	0 SYCAMORE CREEK NEAR ASHLAND CITY	359	78 035833	00 RICHLAND CREEK NEAR CORNERSVILLE	365
)343247	0 MURFREES FORK ABOVE BURWOOD	359	79 035941	53 INDIAN CREEK AT HWY 64 NEAR OLIVEHILL	365
	5 LITTLE HARPETH RIVER AT GRANNY WHITE PIKE	359		242 OWL CREEK AT LEXINGTON	365
	0 JONES CREEK NEAR BURNS	359		00 WARTRACE CREEK ABOVE BELL BUCKLE	365
	21 BARTONS CREEK NEAR CUMBERLAND FURNACE	359		430 FOUNTAIN CREEK NEAR CULLEOKA	365
	35 LOUISE CREEK NEAR GREYS CHAPEL	359		70 WEST PINEY RIVER NEAR DICKSON	366
	05 HONEY RUN CREEK NEAR CROSS PLAINS	360		90 COON CREEK ABOVE CHOP HOLLOW NEAR HOHENWALD	366
	13 HONEY RUN CREEK BELOW CROSS PLAINS	360		80 BLUE CREEK NEAR NEW HOPE	366
	9 BEAVER DAM CREEK ABOVE SPRINGFIELD	360		55 TRACE CREEK ABOVE DENVER	366
	0 SULPHUR FORK RED RIVER ABOVE SPRINGFIELD	360		80 CANE CREEK NEAR STEWART	366
	0 SPRING CREEK TRIB NEAR CEDAR HILL	360		25 NEIL DITCH NEAR HENRY	366
	2 SULPHUR FORK CREEK ABOVE PORT ROYAL 5 CLIMMINGS CREEK NEAR DOTSONVILLE	360		70 LITTLE REEDY CREEK NEAR HUNTINGDON	366 367
	5 CUMMINGS CREEK NEAR DOTSONVILLE 0 YELLOW CREEK NEAR SHILOH	360 361		60 SPRING CREEK NEAR GREENFIELD 00 NORTH FORK OBION RIVER NEAR UNION CITY	367 367
	0 YELLOW CREEK NEAR SHILOH 0 CANEY CREEK NEAR COSBY	361		00 NORTH FORK OBION RIVER NEAR UNION CITY 05 NORTH FORK FORKED DEER RIVER AT TRENTON	367 367
	7 CHEROKEE CREEK NEAR EMBREEVILLE	361		90 LEWIS CREEK NEAR DYERSBURG	367 367
	7 CHEROKEE CKEEK NEAK ENIDKEE VILLE	301			307
	0 CLEAR FORK NEAR FAIRVIEW	361	94 070299	00 HATCHIE RIVER AT SUNNYHILL	367

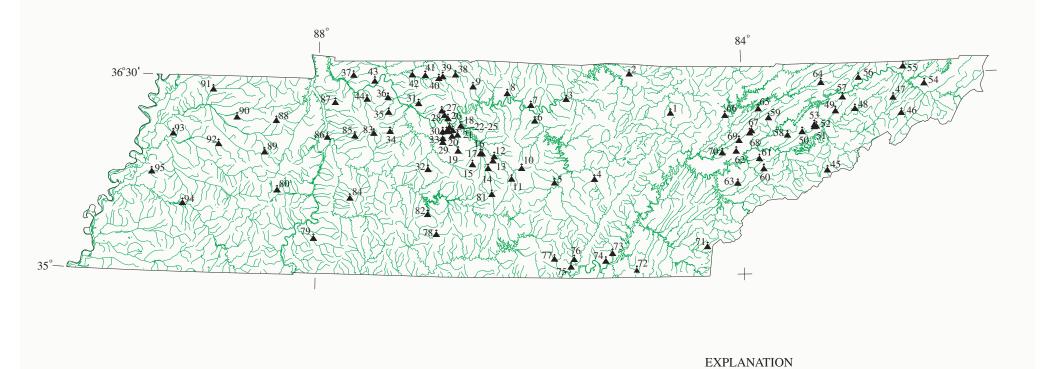
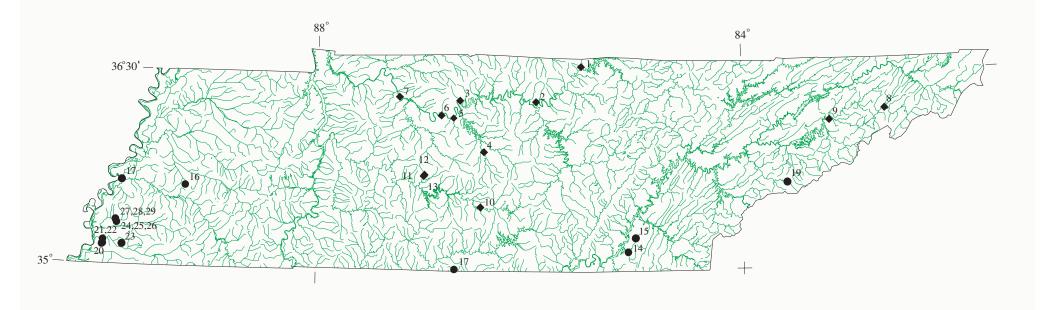
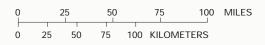


Figure 5. Location of crest-stage stations in Tennessee.


CREST-STAGE STATION AND NUMBER


100 MILES

75

75 100 KILOMETERS

Map number Station number and name	Page	Map number Station number and name	Page
1 03417500 CUMBERLAND RIVER AT CELINA 2 03418420 CUMBERLAND RIVER BELOW CORDELL HULL DAM 3 03426310 CUMBERLAND RIVER AT OLD HICKORY DAM 4 03428200 WEST FORK STONES RIVER AT MURFREESBORO 5 03431091 CUMBERLAND RIVER AT OMAHUNDRO WATER PLANT 6 03431514 CUMBERLAND RIVER NEAR BORDEAUX 7 03435000 CUMBERLAND RIVER BELOW CHEATHAM DAM 8 03466208 BIG LIMESTONE CREEK NR LIMESTONE 9 03467609 NOLICHUCKY RIVER NR LOWLAND 10 03597860 DUCK RIVER AT SHELBYVILLE 11 03600085 CARTERS CREEK AT PETTY LANE NR CARTERS CREEK 12 03600086 CARTERS CREEK TRIB NR CARTERS CREEK 13 03600088 CARTERS CREEK AT BUTLER ROAD AT CARTERS CREEK 14 350750085045802 Hm:O-19 15 351428085003600 Hm:O-15	64 72 84 102 116 126 154 182 188 264 280 282 286 398 397	16 353232089115601 Ha:H-007 17 353839089493500 Ld:F-4 18 350034086422800 Li:G-1 19 353922083345600 Sv:E-2 20 350857089591401 Sh:P-99 21 351113089583101 Sh:P-151 22 351102089582701 Sh:P-152 23 350900089482300 Sh:Q-1 24 352042089523401 Sh:U-100 25 352042089523402 Sh:U-101 26 352042089523403 Sh:U-102 27 351917089515101 Sh:V-211 28 351916089515101 Sh:V-212 29 351917089515102 Sh:V-222	399 400 401 402 403 404 405 406 407 408 409 410 411 412

EXPLANATION

- 11 ◆ WATER-QUALITY STATION AND NUMBER
- 27 ACTIVE OBSERVATION WELL AND NUMBER

Figure 6. Location of water-quality stations and active observation wells in Tennessee.