

Water Resources Data Alaska Water Year 2003

Water-Data Report AK-03-1

U.S. Department of the Interior

U.S. Geological Survey

Prepared in cooperation with the State of Alaska and with other agencies

CALENDAR FOR WATER YEAR 2003

2002

		00	TOB	ER					NO	VEMI	BER					DE	СЕМ	BER		
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
		1	2	3	4	5						1	2	1	2	3	4	5	6	7
6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14
13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21
20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28
27	28	29	30	31			24	25	26	27	28	29	30	29	30	31				
										2003	3									
		JA	NUA	RY					FEI	BRUA	RY				MARCH					
S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S
			1	2	3	4							1							1
5	6	7	8	9	10	11	2	3	4	5	6	7	8	2	3	4	5	6	7	8
12	13	14	15	16	17	18	9	10	11	12	13	14	15	9	10	11	12	13	14	15
19	20	21	22	23	24	25	16	17	18	19	20	21	22	16	17	18	19	20	21	22
26	27	28	29	30	31		23	24	25	26	27	28		23	24	25	26	27	28	29
														30	31					
		ı	APRIL	•						MAY						J	UNE			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
		1	2	3	4	5					1	2	3	1	2	3	4	5	6	7
6	7	8	9	10	11	12	4	5	6	7	8	9	10	8	9	10	11	12	13	14
13	14	15	16	17	18	19	11	12	13	14	15	16	17	15	16	17	18	19	20	21
20	21	22	23	24	25	26		19	20	21	22	23		22	23	24	25	26	27	28
27	28	29	30				25	26	27	28	29	30	31	29	30					
		,	JULY						Αl	JGUS	Т					SEP1	ГЕМВ	ER		
S	M		W	Т	F	S	S	M		W		F	S	S	M		W	Т	F	S
		1	2	3	4	5						1	2		1	2	3	4	5	6
6	7	8	9	10	11	12	3	4	5	6	7	8	9	7	8	9	10	11	12	13
13	14	15	16	17	18	19	10	11	12	13	14	15	16	14	15	16	17	18	19	20
20	21	22	23	24	25	26	17	18	19	20	21	22	23	21	22	23	24	25	26	27
27	28	29	30	31			24	25	26	27	28	29	30	28	29	30				
							31													

U.S. Department of the Interior U.S. Geological Survey

Water Resources Data Alaska Water Year 2003

D.F. Meyer, D.P. Bartu, J.D. Eash, W.A. Swenson

Water Data Report AK-03-1

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For additional information write to:
Chief, Water Resources Office, Alaska Science Center
U.S. Geological Survey
4230 University Drive -- Suite 201
Anchorage, Alaska 99508 - 4664
Electronic mail: ak_dc@usgs.gov

See additional USGS information on water resources of Alaska on the World Wide Web at http://ak.water.usgs.gov

PREFACE

This volume of the annual hydrologic data report of Alaska is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

The report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey (USGS) who collected, compiled, analyzed, verified, and organized the data, and who revised, edited, typed, illustrated, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Most of the data were collected, computed, and processed from field offices. Chiefs-in-charge of the field offices are:

Dan Hess, Juneau (acting) Matt Schellekens, Fairbanks Ronald Rickman, Anchorage

The data were collected, computed, and processed by the following personnel:

J.A. Bjorholm**	J.M. Goetz	R.S. March	C.W. Smith
B.B. Bigelow	L.L. Harris	J.A. McIntire	R.L. Snyder**
T.P. Brabets	D.L. Hess	D.F. Meyer	G.L. Solin
B.A. Carr**	R.H. Host	E.H. Moran	F.W. Sondrud
M.R. Carr	G.R. Jackson	R.P. Murray	P.M. Strelakos
M.E. Castor	M.L. Jackson	E.G. Neal	N.D. Stucki**
C.H. Coffeen	M.C. Kane	R.T. Ourso	W.C. Swanner**
J.S. Conaway	R.T. Kemnitz**	L.D. Patrick	W.A. Swenson
C.S. Couvillion	B.W. Kennedy	F.S. Peters	A.H. Thomas
D.G. Dowling	E.L. Kletka	L. J. Pickrell	D.S. Thomas
J.S. Drewel	A.E. Knust	J.A. Roberts	D.C. Trabant
J.D. Eash	D.E. Langley	M.F. Schellekens	N.C. Wardwell
D.M. Evetts	D. Long	T.C. Schwarz	M.S. Whitman
Z. Frederick	J.G. Luna	C.M. Severtson	J.M. Wiles
R.L. Glass			

^{**} Volunteer

This report was prepared in cooperation with the State of Alaska and with other agencies under the general supervision of Steven A. Frenzel, Chief, Water Resources Office, and William Sexton, Regional Hydrologist, Western Region.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 2004	3. REPORT TYPE AND DATES Annual October 1, 2	COVERED 2002 to September 30, 2003			
4. TITLE AND SUBTITLE	I	5. FU	NDING NUMBERS			
Water Resources Data for A	laska, Water Year 2003					
6. AUTHOR(S) D.F. Meyer, D.P. Bartu, J.D.	Eash, W.A. Swenson					
U.S. Geological Survey, Water						
7. PERFORMING ORGANIZATION NAME(S) U.S. Geological Survey, Water 4230 University Drive, Suite 20 Anchorage, Alaska 99508-4664	REFORMING ORGANIZATION PORT NUMBER SGS-WRD-AK-03-1					
9. SPONSORING / MONITORING AGENCY N.			PONSORING / MONITORING GENCY REPORT NUMBER			
U.S. Geological Survey, Water 4230 University Drive, Suite 20 Anchorage, AK 99508-4664		US	SGS-WRD-AK-03-1			
11. SUPPLEMENTARY NOTES Prepared in cooperation with the						
12a. DISTRIBUTION / AVAILABILITY STATI			DISTRIBUTION CODE			
No restriction on distribution. Technical Information Service,						
13. ABSTRACT (Maximum 200 words)						
Water resources data for the 2003 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 118 gaging stations; stage or contents only at 4 gaging stations; water quality at 28 gaging stations; and water levels for 53 observation wells. Also included are data for 66 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. Some data collected during 2003 will be published in subsequent reports. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.						
14. SUBJECT TERMS *Alaska, *Hydrologic data, *Su	urface water. *Ground water	, *Water quality, Flow rate.	15. NUMBER OF PAGES 477			
Gaging stations, Lakes, Chemic sites, Water levels, Water analy	cal analyses, Sediments, Wa					
17. SECURITY CLASSIFICATION OF REPORT Unclassified	8. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT			

CONTENTS

Preface	111
List of surface-water stations, in downstream order, for which records are published in	
this volume	vii
List of ground-water wells, by subregion, for which records are published in this volume	
List of discontinued surface-water discharge or stage-only stations	
List of discontinued surface-water-quality stations	xviii
Introduction	1
Cooperation	2
Acknowledgments	3
Summary of hydrologic conditions	4
Surface water	4
Ground water	6
Water quality	6
General overview	6
Remark codes	8
Dissolved trace-element concentrations	8
Water quality-control data	8
Water use	10
Special networks and programs	13
Explanation of the records	15
Station identification numbers	15
Downstream order system	15
Latitude-longitude system	16
Local number	16
Records of stage and water discharge	17
Data collection and computation	17
Methodology	17
Computation	17
Winter discharge measurements	18
Estimates for periods of no data	18
Data presentation	18
Station manuscript	19
Data table of daily mean values	21
Statistics of monthly mean data	21
Summary statistics	21
Identifying estimated daily discharge	24
Accuracy of the records	24
Other data available	
Records of surface-water quality	25
Classification of records.	25
Arrangement of records	25
On-site measurements and sample collection	25
Water temperature	27
Sediment	
~~~:::::v:::	<u>~</u> ,

Laboratory measurements	28
Records of ground-water levels	
Data collection and computation	
Data presentation	
Records of ground-water quality	30
Data collection and computation	30
Data presentation	30
Access to USGS water data	30
Definition of terms	31
Publications on Techniques of Water-Resources Investigations	46
Station records, surface water	52
Discharge at partial-record stations and miscellaneous sites	326
Crest-stage partial record stations	326
Miscellaneous sites	339
Analyses of samples collected at miscellaneous sites	360
Station records, ground water levels	395
Quality of Ground Water	436
Index	438
FIGURES  Figure 1. Map showing locations of gaging stations	50
Figure 2. Map showing locations of crest-stage partial-record stations	324
Figure 3. Map showing locations of ground-water wells	392
ILLUSTRATIONS	
Graph of monthly mean water withdrawal rate for public supply in the Anchorage, Fairbanks, and Juneau areas, 1990-2003	11
	111
	148
Map showing location of the Bradley Lake Hydroelectric Project area	160
· · · · · · · · · · · · · · · · · · ·	243
	394
wap showing locations of wens in the Mendellian valley	J74
TABLES	
Peak gage heights and streamflows during October and November 2002	5

# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

Note--Data for partial-record stations and miscellaneous sites for both surfacewater quantity and quality are published in separate sections of the data report. See end of this list for page numbers for these sections.

[Letters after station name designate type of data: (d) discharge, (c) chemical,

- (t) water temperature, (s) sediment, (e) elevation, gage height,
- (b) biological or contents]

Station number

### SOUTHEAST ALASKA

SOCITIE/IST TIE/ISIN'T		
MAINLAND STREAMS		
Unuk River Below Blue River Near Wrangell (t, c)	15015595	52
Tyee Lake Outlet near Wrangell (d, e)	15019990	55
Harding River near Wrangell (d)	15022000	58
Stikine River near Wrangell (d)		60
Dorothy Lake Outlet (head of Dorothy Creek) near Juneau (d)		61
Dorothy Creek near Juneau (d)		62
Taku River near Juneau (d, t, c)	15041200	64
Gold Creek at Juneau (d)	15050000	71
Salmon Creek near Juneau (d)	15051010	73
Lemon Creek near Juneau (d)	15052000	74
Jordan Creek below Egan Drive near Auke Bay (d, t)	15052475	76
Mendenhall River		
Nugget Creek above Diversion near Auke Bay (d)	15052495	80
Mendenhall River near Auke Bay (d)	15052500	81
Montana Creek near Auke Bay (d)	15052800	83
Duck Creek below Nancy Street near Auke Bay (d)	15053200	85
Antler River below Antler Lake near Auke Bay (d)	15055500	86
Kakuhan Creek near Haines (d, t)	15056030	87
Kahtaheena River above Upper Falls near Gustavus (d)	15057580	91
STREAMS ON REVILLAGIGEDO ISLAND		
Swan Lake near Ketchikan (d, e)	15070000	92
Fish Creek near Ketchikan (d)	15072000	93
STREAMS ON PRINCE OF WALES ISLAND		
Staney Creek		
North Fork Staney Creek near Klawock (d, t)	15081495	95
Staney Creek near Klawock (d, t)	15081497	99
Threemile Creek near Klawock (d)	15081610	103
Halfmile Creek above diversion near Klawock (d)	15081614	104
Reynolds Creek below Lake Mellen near Hydaburg (d)	15081995	105
Old Tom Creek near Kasaan (d, t)		107
Indian River near Sitka (d)	15087690	112

Indian River at Sitka (d)	15087700	114
Sawmill Creek near Sitka (d)	15088000	115
Silver Bay Tributary at Bear Cove near Sitka (d)	15088200	117
STREAMS ON BARANOF ISLAND		
Green Lake near Sitka (d, e)	15090000	118
STREAMS ON ADMIRALTY ISLAND		
Greens Creek at Greens Creek Mine near Juneau (d)	15101490	119
STREAMS ON CHICHAGOF ISLAND		
Favorite Creek near Angoon (d, c)	15102200	121
Kadashan River above Hook Creek near Tenakee (d, t)		
Middle Basin Creek near Tenakee (d, t)		
STREAMS ON DOUGLAS ISLAND		
Peterson Creek below North Fork near Auke Bay (d)	15109048	132
MAINLAND STREAMS		
Alsek River near Yakutat (d)	15129000	134
Situk River near Yakutat (d, t)		
Old Situk River near Yakutat (d, t)		
Ophir Creek near Yakutat (d)		
· · · · · · · · · · · · · · · · · · ·		
SOUTH-CENTRAL ALASKA		
MAINLAND STREAMS		
Copper River		
Chistochina River		
Sinona Creek near Chistochina (d)	15199500	142
Gulkana River at Sourdough (d)	15200280	144
Nicolet Creek near Cordova (d)	15215990	146
Solomon Lake (head of Solomon Gulch) near Valdez (e)	15225990	149
Solomon Gulch tailrace near Valdez (d)	15225996	150
Solomon Gulch at top of falls near Valdez (d)	15225997	151
Solomon Gulch near Valdez (d)		
Nellie Juan River		
Wolverine Creek near Lawing (d)	15236900	154
Resurrection River		
Salmon Creek		
Lost Creek		
Grouse Creek at Grouse Lake Outlet near Seward (d)	15237730	156
Spruce Creek near Seward (d)		
Upper Nuka River near park boundary near Homer (d)		
Battle Creek		
Battle Creek diversion above Bradley Lake near Homer (d)	15238978	163
Bradley River		
Upper Bradley River near Nuka Glacier near Homer (d)	15238990	165
Bradley River near Homer (d, e)		
Bradley River below dam near Homer (d)		
Middle Fork Bradley River near Homer (d)		

Middle Fouls Duedley Divon below North Fouls Duedley Divon noon		
Middle Fork Bradley River below North Fork Bradley River near	15220060	171
Homer (d)		
Bradley River near Tidewater near Homer (d)		172
Ninilchik River at Ninilchik (d, t)	.13241000	174
Kenai River	1.50.42000	1.77
Snow River near Seward (d)		177
Kenai River at Cooper Landing (d, t)		178
Cooper Creek at mouth near Cooper Landing (d, t)		182
Kenai River below Skilak Lake Outlet near Sterling (d)		186
Kenai River below mouth of Killey River near Sterling (d)		187
Kenai River at Soldotna (d)		188
Sixmile Creek near Hope (d)		189
Portage Creek at Portage Lake outlet near Whittier (d)	.15272280	191
Twentymile River below Glacier River near Portage (d, t)		193
Ship Creek near Anchorage (d)		197
Ship Creek at Glenn Highway near Anchorage (d)	.15276200	199
Ship Creek below Fish Hatchery near Anchorage (d)	.15276320	200
Eklutna Lake (head of Eklutna River) near Palmer (e)	.15278000	201
Eklutna River at Old Glenn Highway at Eklutna (d)	.15280200	202
Knik River near Palmer (d, s)	.15281000	203
Matanuska River		
Camp Creek near Sheep Mountain Lodge (d, t)	15281500	207
Matanuska River at Palmer (d, s)		214
Little Susitna River near Palmer (d)		218
Susitna River at Gold Creek (d)		220
Talkeetna River near Talkeetna (d)		
Willow Creek near Willow (d)		
Johnson River above Lateral Glacier near Tuxedni Bay (d)		
STREAMS ON KODIAK ISLAND	.102> 1,00111	
Terror River at mouth near Kodiak (d, t)	15295700	226
Terror at moduli near research (a, t)	.10250700	
SOUTHWEST ALASKA		
MAINLAND STREAMS		
Russell Creek near Cold Bay (d, t)	15297610	230
Kvichak River	.13277010	230
Iliamna River near Pedro Bay (d)	15300300	234
Nuyakuk River near Dillingham (d)		
Kuskokwim River	.13302000	233
Takotna River		
	15202700	226
Tatalina River near Takotna (d, t)		
Kuskokwim River at Liskys Crossing near Stony River (e)		
Kuskokwim River at Crooked Creek (d)		
Kuskokwim River at Aniak (e, t)	.15304060	242

YUKON ALASKA	
Yukon River	
Fortymile River	
South Fork Fortymile River	
Walker Fork	
Wade Creek	
Wade Creek Tributary near Chicken (d)	15320100 246
Yukon River at Eagle (d, c, s)	
Nation River near Nation (d)	
Kandik River below Threemile Creek near Nation (d)	15388070 256
Porcupine River near International Boundary, Yukon Territory (d).	
Yukon River near Stevens Village (d, c, s)	
Tanana River	
Goodpaster River	
Liese Creek near Big Delta (d)	15477730 264
Goodpaster River near Big Delta (d)	15477740 265
Central Creek	
Sonora Creek above tributary near Big Delta (d)	15477768 260
Sonora Creek near Big Delta (d)	15477770 26
Central Creek near Big Delta (d)	
Delta River	
Phelan Creek near Paxson (d)	15478040 269
Salcha River near Salchaket (d)	
Tanana River at Fairbanks (d)	
Chena River near Two Rivers (d)	
Little Chena River near Fairbanks (d)	
Chena River at Fairbanks (d)	
Tanana River at Nenana (d, c, s)	
Nenana River at Healy (d)	
Lignite Creek above mouth near Healy (d, s)	
Koyukuk River	
Middle Fork Koyukuk River	
Slate Creek at Coldfoot (d, t)	15564879 288
Anvik River near Anvik (d)	
Yukon River at Pilot Station (d,c,s)	
NORTHWEST ALASKA	
Unalakleet River above Chiroskey River near Unalakleet (d, t)	15565700 300
Kobuk River	
Dahl Creek near Kobuk (d)	
Kobuk River near Kiana (d)	
Wulik River above Ferric Creek near Kivalina (d)	
Ikalukrok Creek below Red Dog Creek near Kivalina (d)	
Wulik Piyar balow Tutak Craek near Kiyalina (d)	15747000 300

## ARCTIC SLOPE ALASKA

vak Creek near Barrow (d)
gavanirktok River Tributary near Pump Station 3 (d)
anirktok River near Pump Station 3 (d)
* * * * * * * * * * *
rge at partial-record stations and miscellaneous sites
rest-stage partial-record stations
fiscellaneous sites
es of samples collected at water-quality miscellaneous sites
d-water Level Data
of Ground Water 436

# GROUND-WATER WELLS, BY HYDROLOGIC SUBREGION, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

## **GROUND-WATER LEVELS**

SOUTHEAST ALASKA	
Juneau	
WELL 582136134344802. Local number, CD04006631ACBC1015	395
WELL 582146134351701. Local number, CD04006631BBDD1016	395
WELL 582147134351401. Local number, CD04006631BBDB1017	396
WELL 582154134350501. Local number, CD04006630CDCB1027	396
WELL 582156134351701. Local number, CD04006631BBBA1018	397
WELL 582158134352001. Local number, CD04006630CCCD2017	397
WELL 582203134351601. Local number, CD04006630CCDB1028	398
WELL 582203134351701. Local number, CD04006630CCBD3015	398
WELL 582203134351901. Local number, CD04006630CCBD2015	399
WELL 582206134351401. Local number, CD04006630CCAC1029	399
WELL 582208134351201. Local number, CD04006630CCAB1030	400
WELL 582208134352601. Local number, CD04006630CCBB1031	400
WELL 582215134350501. Local number, CD04006630CBAD1032	401
WELL 582240134344501. Local number, CD04006630BADA2033	401
WELL 582240134352901. Local number, CD04006630BBCB1036	402
WELL 582306134344001. Local number CD04006619DBCB1056	402
WELL 582314134344801. Local number, CD04006619BDDD1055	403
WELL 582314134351201. Local number, CD04006619BCDD2020	404
WELL 582322134341001. Local number, CD04006619ACAB1050	405
WELL 582326134341901. Local number, CD04006619ADBA1011	405
WELL 582359134352103. Local number, CD04006618CBCA3019 85177	406
SOUTH-CENTRAL ALASKA	
Municipality of Anchorage	
WELL 611725149335401. Local number, SB01400223BCCD1003	407
7 222 011 221 1/222 1011 20001 number, 5201 1002222 202 21002 1111 1111 1111 1	
YUKON ALASKA	
Fairbanks North Star Borough	
WELL 644321147163801. Local number, FD00200223DDBA1003	408
WELL 644331147183901. Local number, FD00200222DABD1006	409
WELL 644345147172101. Local number, FD00200223BDAD1002	410
WELL 644401147193801. Local number, FD00200222BABA1005	411
WELL 644400147151501. Local number, FD00200224ABBB1001 51659	412
WELL 644402147132801. Local number, FD00200319BAAB1001	413
WELL 644402147150401. Local number, FD00200224ABBA1002	414
WELL 644402147182601. Local number, FD00200222AAAA1004	415
WELL 644403147112901. Local number, FD00200317CDDD1005	416
WELL 644408147162001. Local number, FD00200214DDDA1003	417
WELL 644423147124601. Local number, FD00200318DABC1006	418
WELL 644435147141901. Local number, FD00200213ADAD1007	419

## YUKON ALASKA—Continued

Fairbanks North Star Borough—Continued

WELL 644435147141902. Local number, FD00200213ADAD2007	420
WELL 644435147172001. Local number, FD00200214ACBC1002	421
WELL 644444147143901. Local number, FD00200213AACD1005	422
WELL 644446147120901. Local number, FD00200317BBCA1001	423
WELL 644450147131201. Local number, FD00200318ABBD1005	424
WELL 644454147151701. Local number, FD00200213ABBB1006	425
WELL 644528147131201. Local number, FD00200307ACBD1001 51660	426
WELL 644531147130801. Local number, FD00200307ACBA1007	427
WELL 644547147141801. Local number, FD00200306CCCC1002	428
WELL 644603147131401. Local number, FD00200306DBCA1001	429
WELL 644603147151801. Local number, FD00200201DBCB1002	430
WELL 645434147385101. Local number, FB00100113DDBC2001 50673	431
Anaktuvuk Pass	
WELL 680838151434901. Local number, UB01500218CCDC1001	432
WELL 680832151434301. Local number, UC01500217BBDA1001	432
WELL 680809151443101. Local number, UA01500219ABAB1001	433
WELL 680805151443001.Local number, UA01500219ABCC1001	433
WELL 680750151450501.Local number, UA01500219CBDC1001	434
WELL 680737151454701.Local number, UC01500219ABCC1001	434
WELL 680735151453901 Local number, UC01500219ACAB1001	435

#### DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Alaska have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Short-term, seasonal, and fragmented records for data collected at 190 sites in Alaska west of 141 degrees longitude during water years 1906-14 have not been entered into NWIS and are not included in this list. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

Currently operated as a crest-stage partial-record station
Discontinued surface-water discharge or stage-only stations

[Footnotes at end of table on p. xxv]

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTHEAST	ALASKA		
Salmon River near Hyder (d)	15008000	a94	1963-73
Davis River near Hyder (d)	15010000	a80	1930-40
Red River near Metlakatla (d)	15011500	45.3	1963-78
White Creek near Ketchikan (d)	15011870	2.70	1977-84
Keta River near Ketchikan (d)	15011880	74.2	1977-84
Blossom River near Ketchikan (d)	15011894	68.1	1981-84
Winstanley Creek near Ketchikan (d)	15012000	15.5	1936-38 1947-75
Punchbowl Lake Outlet near Ketchikan (d)	15014000	a12	1924-30
Klahini River near Bell Island (d)	15015600	58.0	1967-73
Short Creek near Bell Island at Short Bay (d)	15016000	a20	1922-26
Shelokum Lake Outlet near Bell Island (d)	15018000	15.6	b1915-25
Tyee Creek near Wrangell (d)	15020000	ar15.2	c1922-27
Tyee Creek at Mouth near Wrangell (d)	15020100	16.1	1963-69
East Fork Bradfield River near Wrangell (d)	15020500	63.3	1979-81
Mill Creek near Wrangell (d)	15024000	a37	1915-17 c1923-28
Goat Creek near Wrangell (d)	15024750	17.3	1976-86
Cascade Creek near Petersburg (d)	15026000	23.0	1918-29 1947-73
Scenery Creek near Petersburg (d)	15028000	30.0	1949-52
Farragut River near Petersburg (d)	15028300	151	1977-93
Sweetheart Falls Creek near Juneau (d)	15030000	r36.3	b1915-27
Long Lake near Juneau (e)	15031700	30.2	1965-75
Long Lake Outlet near Juneau (d)	15032000	30.2	1913-16
Long River near Juneau (d)	15034000	32.5	1916-24 b1927-33 1952-68 R1969-73
Speel River near Juneau (d)	15036000	226	1916-18 1960-75
Crater Creek near Juneau (d)	15038000	11.4	b1913-21 c1923-24 1927-33
Carlson Creek at Sunny Cove near Juneau (d)	15042000	22.3	c1914 b1916-21

# Discontinued surface-water discharge or stage-only stations--Continued $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTHEAST ALA	SKA—Continued		
Carlson Creek near Juneau (d)	15044000	24.3	1951-61
Grindstone Creek near Juneau (d)	15046000	r3.75	1916-21
Sheep Creek near Juneau (d)	15048000	4.57	1911-14 1916-21 1947-73
Gold Creek near Juneau (d)**	15049900	8.41	1984-97
Salmon Creek above Canyon Mouth near Juneau (d)	15051008	9.50	R1982-90
Lemon Creek near Mouth near Juneau (d)	15052009	22.9	1983-86
Montana Creek near Auke Bay (d)	15052800*	15.5	1965-75 1983-87
Lake Creek at Auke Bay (d)	15053800	2.50	1964-73
Auke Creek at Auke Bay (d)	15054000	3.96	1947-50 1962-75
Herbert River near Auke Bay (d)	15054200	56.9	1967-71
Bridget Cove Tributary near Auke Bay (d)	15054600	0.95	1971-73
Davies Creek near Auke Bay (d)	15054990	15.2	1970-72
Sherman Creek at Comet (d)	15056000	3.65	1914-17
Dayebas Creek near Haines (d)	15056070	9.33	1980-81
Goat Lake Outlet near Skagway (d)	15056095	2.92	1991-97
Skagway River at Skagway (d)	15056100	a145	1964-86
West Creek near Skagway (d)	15056200	43.2	1962-77
Taiya River near Skagway (d)	15056210*	179	1970-78
Upper Chilkoot Lake Outlet near Haines (d)	15056280	4.59	1993-97
Chilkat River at Gorge near Klukwan (d)	15056400	a190	1962-68
Chilkat River near Klukwan (d)	15056500	a760	1959-61
Klehini River near Klukwan (d)	15056560	284	1982-93
Kahtaheena River near Gustavus	15057590	10.7	1998-2001
Purple Lake Outlet near Metlakatla (d)	15058000	6.67	1947-56
Whipple Creek near Ward Cove (d)	15059500	5.29	1968-80
Perseverance Creek near Wacker (d)	15060000	2.81	b1932-39 1947-69
Ward Creek near Wacker (d)	15062000	14.0	1949-53 R1954-58
Ketchikan Creek at Ketchikan (d)	15064000	13.5	R1910-12 bR1915-20 R1965-67
Beaver Falls Creek near Ketchikan (d)	15066000	5.8	c1917 1920-26 1928-32
Upper Mahoney Lake Outlet near Ketchikan (d)	15067900	2.03	1977-89

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTHEAST ALA	ASKA—Continued		
Mahoney Creek near Ketchikan (d)	15068000	5.70	b1920-34 1948-58 1978-81
Swan Lake (Falls Creek) near Ketchikan (d)	15070000#	36.5	b1916-34 1947-59
Ella Creek near Ketchikan (d)	15074000	19.7	1928-38 1947-58
Manzanita Creek near Ketchikan (d)	15076000	33.9	1928-37 1947-67
Grace Creek near Ketchikan (d)	15078000	30.2	1928-37 1964-69
Orchard Creek near Bell Island (d)	15080000	a59	1915-27
Traitors River near Bell Island (d)	15080500	20.8	1964-68
Staney Creek near Craig (d)	15081500	51.6	1965-81
Bonnie Creek near Klawock (d)	15081510	2.72	1981
Black Bear Lake Outlet near Klawock (d)	15081580	1.82	1980-91
Klawak River near Klawock (d)	15081620	46.1	1977
North Branch Trocadero Creek near Hydaburg (d)	15081800	17.4	1967-73
Reynolds Creek near Hydaburg (d)	15082000	a5.7	1951-56
Perkins Creek near Metlakatla (d)	15083500	3.38	1976-93
Myrtle Creek at Niblack (d)	15084000		1917-21
Saltery Creek near Kasaan (d)	15085000	5.53	1962-64
Cabin Creek near Kasaan (d)	15085300	8.83	1962-64
Virginia Creek near Kasaan (d)	15085400	3.08	1962-64
Indian Creek near Hollis (d)	15085600	8.82	1949-64
Harris River near Hollis (d)	15085700	28.7	1949-64
Maybeso Creek at Hollis (d)	15085800	15.1	1949-63
Wolf Lake Outlet near Hollis (d)	15085900	1.64	1995-98
Karta River near Kasaan (d)	15086000	49.5	1915-23
Neck Creek near Point Baker (d)	15086500	17.0	1960-67
Big Creek near Point Baker (d)	15086600	11.2	1964-81
Sunrise Lake Outlet near Wrangell	150086960	1.17	1976-80 1997-2001
Mill Creek at Wrangell (d)	15087000	0.09	1965-67
Hammer Slough at Petersburg (d)	15087200	1.46	1965-67
Municipal Watershed Creek near Petersburg (d)	15087545	2.20	1979-88
No Name Creek near Petersburg (d)	15087560	3.17	1971-73
Hamilton Creek near Kake (d)	15087570	65.0	1977-86 1988-96
Rocky Pass Creek near Point Baker (d)	15087590	2.72	1977-88
Nakwasina River near Sitka (d)	15087610	31.9	1977-82

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTHEAST ALASKA—	-Continued		
Green Lake (outlet) near Sitka (d)	15090000#	r22.8	1915-25
Maksoutof River near Port Alexander (d)	15092000	a26	1951-56
Betty Lake Outlet near Port Armstrong (d)	15093200	2.66	1978-81
Sashin Creek near Big Port Walter (d)	15093400	3.72	1965-73 1975-80
East Branch Lovers Cove Creek Diversion near Big Port Walter (d)	15093600		1965-71
Deer Lake Outlet near Port Alexander (d)	15094000	7.41	1951-68
Coal Creek near Baranof (d)	15096000	28.5	b1922-27
Baranof River at Baranof (d)	15098000	32.0	1915-28 1958-74
Takatz Creek near Baranof (d)	15100000	17.5	1951-69
Nichols Creek near Angoon (d)	15100500	a0.12	1981
Stephens Creek near Angoon (d)	15100510	a0.14	1981
Kalinin Bay Tributary near Sitka (d)	15101200	2.28	1976-80
Greens Creek near Juneau (d)	15101500	22.8	1979-92
Hasselborg Creek near Angoon (d)	15102000	56.2	1951-68
Porcupine River near Chichagof (d)	15104000	7.12	1918-20
Falls Creek near Chichagof (d)	15106000	6.48	1918-20
Black River near Pelican (d)	15106100	24.7	1978-82
Hook Creek above Tributary near Tenakee (d)	15106940	4.48	1967-80
Hook Creek near Tenakee (d)	15106960	8.00	1966-80
Tonalite Creek near Tenakee (d)	15106980	14.5	1968-88
Kadashan River near Tenakee (d)	15107000	37.7	1964-79
West Fork Indian River near Tenakee (d)	15107910	3.02	1979-81
Indian River near Tenakee (d)	15107920	12.9	1976-82
Pavlof River near Tenakee (d)	15108000	24.3	1957-81
Hilda Creek near Douglas (d)	15108600	2.62	1967-71
Lawson Creek at Douglas (d)	15108800	2.98	1967-71
Fish Creek near Auke Bay (d)	15109000	13.6	1959-78
SOUTH-CENTRAL AI	LASKA		
Dick Creek near Cordova (d)	15195000	7.95	1970-81
Gakona River at Gakona (d)	15200000	a620	c1970
Tazlina River near Glennallen (d)	15202000	a2670	1949-50 1952-72
Klutina River at Copper Center (d)	15206000	a880	c1913 1949-67 c1970
Little Tonsina River near Tonsina (d)	15207800	22.7	1972-78

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTH-CENTRAL AL	ASKAContinued		
Tonsina River at Tonsina (d)	15208000	a420	b1950-82
Squirrel Creek at Tonsina (d)	15208100	70.5	1965-75
West Fork Kennicott River at McCarthy (d)	15209700		c1992-95
East Fork Kennicott River at McCarthy (d)	15209800		c1991-92
Tebay River near Chitina (d)	15211500	a55.4	1962-65
Copper River near Chitina (d)	15212000	a20600	c1950 c1952-53 1956-90
Copper River at Million Dollar Bridge near Cordova (d)	15214000	24200	b1907-10 c1913 1988-95
Heney Creek at canyon mouth near Cordova (d)	15215992	1.53	1992-93
Power Creek near Cordova (d)	15216000	20.5	c1913 1947-95
Middle Arm Eyak Lake Tributory near Cordova (d)	15216003	2.90	1992-93
Murchison Creek near Cordova (d)	15216008	a0.37	1992-93
Humpback Creek near Cordova (d)	15216100	4.37	c1913 1974-75
West Fork Olsen Bay Creek near Cordova (d)	15219000	4.78	1964-81
Duck River at Silver Lake Outlet near Valdez (d)	15223900	25.1	1982-85
Duck River near Tidewater near Valdez (d)	15224000	26.7	c1913-14 1982-85
Solomon Gulch Bypass near Valdez (d)	15225998		c1986-94
Lowe River near Valdez (d)	15226500	201	1971-74
Lowe River in Keystone Canyon near Valdez (d)	15226600	222	1975-76
Hobo Creek near Whittier (d)	15236000	5.53	c1913 1990-2000
Nellie Juan River near Hunter (d)	15237000	133	1961-65
Main Bay Creek near Port Nellie Juan (d)	15237020	5.93	1981-84
San Juan River near Seward (d)	15237360	12.4	1986-96
Resurrection River at Seward (d)	15237700	169	1965-68
Bear Creek Tributary near Seward (d)	15237800	1.63	1967-68
Lost Creek near Seward (d)	15238000	8.42	1948-50
Lowell Creek above city wells at Seward (d)	1523849020	3.73	1993-95
Lowell Creek at Seward (d)	15238500	4.02	1965-68 1991-93
Nuka River near Tidewater near Homer (d)	15238653	a38	1984-85
Seldovia River near Seldovia (d)	15238795	26.2	1979-80
Barabara Creek near Seldovia (d)	15238820	20.7	1972-92
Tutka Lagoon Creek near Homer (d)	15238860	10.8	1973-76

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTH-CENTRAL ALA	ASKAContinued		
Battle Creek below Glacier near Homer (d)	15238982	g11.8	1991-93
South Fork Battle Creek near Homer (d)	15238984	a6.5	1991-93
Battle Creek near Tidewater near Homer (d)	15238985	ag21	1991-93
Fritz Creek near Homer (d)	15239500*	10.4	1967-70 1986-92
Twitter Creek near Homer (d)	15239880	16.1	1971-73
Anchor River near Anchor Point (d)	15239900*	137	1965-73 1979-86 1991-92
Anchor River at Anchor Point (d)	15240000	224	1953-66
Kasilof River near Kasilof (d)	15242000	738	1949-70
Snow River near Divide (d)	15243500	a99.8	1961-65
Ptarmigan Creek at Lawing (d)	15244000	32.6	1947-58
Grant Creek near Moose Pass (d)	15246000	44.2	1947-58
Trail River near Lawing (d,e)	15248000	181	d1947-74 e1975-77
Crescent Creek near Moose Pass (d)	15253000	21.4	1957-60
Crescent Creek near Cooper Landing (d)	15254000	31.7	1949-66
Cooper Creek near Cooper Landing (d)	15260000	31.8	1949-59
Stetson Creek near Cooper Landing (d)	15260500	a8.6	1958-63
Russian River near Cooper Landing (d)	15264000	61.8	1947-54
Beaver Creek near Kenai (d)	15266500	a51	1968-78
Bernice Lake near Kenai (e)	15266895		1977-79
Bishop Creek near Kenai (d)	15267000	a24.2	1977-79
Resurrection Creek near Hope (d)	15267900	149	1968-86
Resurrection Creek at Hope (d)	15268000	162	1950-51
Glacier Creek at Girdwood (d)	15272550	r58.2	1965-78
Rabbit Creek at Anchorage (d)	15273050	a15	1979-80 1984-85
Little Rabbit Creek above Goldenview Drive at Anchorage (d)	15273095	5.06	1981-85
Little Rabbit Creek at Anchorage (d)	15273102	5.94	1979-80
Rabbit Creek at New Seward Highway at Anchorage (d)	15273105	a24.5	1984-86
South Fork Campbell Creek at Canyon Mouth near Anchorage (d)	15273900	25.2	1967-79
South Fork Campbell Creek near Anchorage (d)	15274000	29.2	1947-71 1999-2001
North Fork Campbell Creek near Anchorage (d)	15274300	13.4	1974-84
Little Campbell Creek at Nathan Drive near Anchorage (d)	15274550	a15	c1981 1986-92
Campbell Creek near Spenard (d)	15274600	69.7	1966-93
Sand Lake near Spenard (e)	15274700		c1967-74

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTH-CENTRAL ALASKA0	Continued		
South Branch South Fork Chester Creek near East 20th Ave. at Anchorage (d)	15274798	9.39	1981-84
Chester Creek at Anchorage (d)	15275000	20.0	1958-76
Chester Creek at Arctic Boulevard near Anchorage (d)	15275100	27.4	1966-86 1987-93 1999-2001
Ship Creek at Elmendorf Air Force Base near Anchorage (d)	15276500	113	1963-71
Ship Creek below Power Plant at Elmendorf Air Force Base (d)	15276570	115	1971-81
Ditch on Elmendorf Air Force Base (d)	15276650	3.73	1973-75
Eagle River at Eagle River (d)	15277100	a192	1966-81
Peters Creek near Birchwood (d)	15277410	87.8	1973-83
East Fork Eklutna Creek near Palmer (d)	15277600	538.2	1960-62 1985-89
West Fork Eklutna Creek near Palmer (d)	15277800	25.4	1960-62 1985-89
Eklutna Creek near Palmer (d)	15280000	119	1947-54 R1955-62
Knik River near Palmer (d)	15281000	a1180	1960-88 1992
Caribou Creek near Sutton (d)	15282000	289	1955-78
Moose Creek near Palmer	15283700	47.3	1997-200
Palmer Hayflat at railroad near Palmer (e)	15284500		1992-97
Cottonwood Creek near Wasilla (d)	15286000	28.5	1949-54 1998-2000
Susitna River near Denali (d)	15291000	a950	1957-66 1968-86
Maclaren River near Paxson (d)	15291200	a280	1958-86
Susitna River near Cantwell (d)	15291500	a4140	1961-72 1980-86
Chulitna River near Talkeetna (d)	15292400	a2570	1958-72 1980-86
Susitna River at Sunshine (d)	15292780	a11100	1981-86
Deception Creek near Willow (d)	15294010	48.0	1978-85
Deshka River near Willow (d)	15294100	591	1979-86 1999-200
Skwentna River near Skwentna (d)	15294300	a2250	1960-82
Yentna River near Susitna Station (d)	15294345	a6180	1981-86
Susitna River at Susitna Station (d)	15294350	a19400	1975-93
Capps Creek below North Capps Creek near Tyonek (d)	15294410	10.5	1979-85
Chuitna River near Tyonek (d)	15294450	131	1976-86
Chakachatna River near Tyonek (d)	15294500	a1120	1959-72
Montana Bill Creek at pipeline near Kenai (d)	15294585		c1991-92

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTH-CENTRAL ALA	ASKAContinued		
Paint River near Kamishak (d)	15294900	205	1983-85 1989 1991-95
Little Kitoi Creek near Afognak (d)	15295500	2.63	1960-61
Terror River near Kodiak (d)	15295600	15.0	1962-68 1978-82 R1983-86
Uganik River near Kodiak (d)	15296000	123	1951-78
Spiridon Lake Outlet near Larsen Bay (d)	15296300	23.3	1962-65
Larsen Bay Creek near Larsen Bay (d)	15296480	3.92	1980-84
Falls Creek near Larsen Bay (d)	15296500	5.67	1974-75
Canyon Creek near Larsen Bay (d)	15296520	8.82	1974-76
Upper Thumb River near Larsen Bay (d)	15296550	18.8	1974-82
Karluk River at Outlet near Larsen Bay (d)	15296600	100	1975-76 1979-82
Akalura Creek at Olga Bay (d)	15296950	18.4	1975-76
Dog Salmon Creek near Ayakulik (d)	15297000	72.9	1960-61
Hidden Basin Creek near Port Lions (d)	15297100	3.01	1982-84
Hidden Basin Creek near Mouth near Kodiak (d)	15297110	11.9	1983-84
Myrtle Creek near Kodiak (d)	15297200*	4.74	1963-86
Middle Fork Pillar Creek near Kodiak (d)	15297450	2.02	1969-70
Monashka Creek near Kodiak (d)	15297470	5.51	1972 R1973-76
Falls Creek near Port Lions (d)	15297482	a4.3	1981-83
Kizhuyak River near Port Lions (d)	15297485	42.5	1980-94
SOUTHWEST A	ALASKA		
Whiskey Bills Creek near Sand Point (d)	15297602	a0.30	1983-84
Humboldt Creek at Sand Point (d)	15297603	a5.2	1983-84
Sweeper Creek at Adak (d)	15297617	1.0	1992-96
Moffett Creek at Adak (d)	15297625	4.5	1993-96
Limpet Creek on Amchitka Island (d)	15297640	1.69	1968-72
Falls Creek on Amchitka Island (d)	15297650	0.86	1968-72
Clevenger Creek on Amchitka Island (d)	15297655	0.28	1968-74
Constantine Spring Creek on Amchitka Island (d)	15297660		1968-73
Bridge Creek on Amchitka Island (d)	15297680	3.03	1968-74
White Alice Creek on Amchitka Island (d)	15297690	0.79	1968-74
Lake Creek at Shemya Air Force Base (d)	15297767	a1.0	1971-73
Gallery Spring at Shemya Air Force Base (d)	15297771		1971-72
Gallery Creek at Shemya Air Force Base (d)	15297773	a1.0	1971-73

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
SOUTHWEST ALASI	KAContinued		
Eskimo Creek at King Salmon (d)	15297900	16.1	1973-76 1978-84
Tanalian River near Port Alsworth (d)	15298000	a200	1951-56
Tazimina River near Nondalton (d)	15299900	327	1981-86
Newhalen River near Iliamna (d)	15300000	3478	1951-67 1982-86
Kvichak River at Igiugig (d)	15300500	a6500	1967-87
Allen River near Aleknagik (d)	15301500	278	1963-66
Nushagak River at Ekwok (d)	15302500	a9850	1978-93
Grant Lake Outlet near Aleknagik (d)	15302800	r34.3	1959-65
Elva Lake Outlet near Aleknagik (d)	15302840	9.00	1980-82
Wood River near Aleknagik (d)	15303000	a1110	1957-70
Silver Salmon Creek near Aleknagik (d)	15303010	4.46	1985-86 c1988-89
Wood River Tributary near Aleknagik (d)	15303011	3.35	c1990 c1992-93
East Creek near Dillingham (d)	15303100	2.12	1973-75
Snake River near Dillingham (d)	15303150	113	1973-83
Kuskokwim River at McGrath (d)	15303600	a11700	1963-73
Kisaralik River near Akiak (d)	15304200	265	1980-87
Browns Creek near Bethel (d)	15304293	4.79	c1985-94
Browns Creek at Bethel (d)	15304298	10.5	c1985
YUKON ALA	ASKA		
King Creek near Dome Creek (d)	15344000*	5.87	1983-90
Fortymile River near Steele Creek (d)	15348000	a5880	c1910-12 1976-82
Kandik River near Nation (d)	15388060	1084	1991-2000
Kandik River below Threemile Creek near Nation (d)	15388070	1176	2002
Porcupine River at Old Crow, Yukon Territory, Canada (d)	15388950	a21400	f1980-89
Porcupine River near Fort Yukon (d)	15389000	a29500	1964-79
Chandalar River near Venetie (d)	15389500	a9330	1963-73
Boulder Creek near Central (d)	15439800*	31.3	1966-82 1984-86
Hess Creek near Livengood (d)	15457800	662	1970-78 1982-86
Yukon River at Rampart (d)	15468000	a199400	1955-67
Chisana River at Northway Junction (d)	15470000	a3280	1949-71
Tanana River near Tok Junction (d)	15472000	a6800	1950-53
Tok River near Tok Junction (d)	15474000	a930	1952-54

# Discontinued surface-water discharge or stage-only stations--Continued $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$

Station name	Station number	Drainage area (mi ² )	Period of record
YUKON ALASKAC	Continued		
Tanana River near Tanacross (d)	15476000	a8550	1953-90
Berry Creek near Dot Lake (d)	15476300*	65.1	1971-81
Dry Creek near Dot Lake (d)	15476400	57.6	1966-69
Clearwater Creek near Delta Junction (d)	15477500	a360	1977-79
Upper West Creek near Big Delta (d)	15477761	1.64	1999-2002
Tanana River at Big Delta (d)	15478000	a13500	1949-52 1954-57
Tanana River near Harding Lake (e)	15481000	17240	c1968-82
Moose Creek at Eielson Air Force Base (d)	15485000	136	1964-65
Garrison Slough at Eielson Air Force Base (d)	15485200	6.24	1964-65
Chena River near North Pole (d)	15493500	r1445	1972-80
Chena River below Moose Creek Dam (d)	15493700	1,460	1979-96
Wood River near Fairbanks (d)	15514500	855	1968-78
Seattle Creek near Cantwell (d)	15515800	36.2	1966-75
Nenana River near Windy (d)	15516000	a710	1950-56
Nenana River near Healy (d)	15518000	a1910	1951-79
Healy Creek at Suntrana	15518020	a110	1998-2001
Nenana River at Healy (d)	15518040	a2100	1990-91
Nenana River near Rex (d)	15518300	a2450	1965-68
Teklanika River near Lignite (d)	15518350	490	1965-74
Chatanika River above Poker Creek near Chatanika (d)	15534800	419	1996
Poker Creek near Chatanika (d)	15534900	23.1	1971-78
Caribou Creek near Chatanika (d)	15535000	9.19	1970-84
Long Creek at Long near Ruby	15564450	25.4	1995-97
Melozitna River near Ruby (d)	15564600	2693	1961-73
Yukon River at Ruby (d)	15564800	a259000	1957-78
Middle Fork Koyukuk River near Wiseman (d)	15564875	a1200	1970-78 1984-87
Wiseman Creek at Wiseman (d)	15564877	49.2	1970-78
Jim River near Bettles (d)	15564885	465	1970-77
Koyukuk River at Hughes (d)	15564900	a18400	1960-82
Yukon River near Kaltag (d)	15565200	a296000	1957-66
Ophir Creek near Takotna (d)	15565235	6.19	1975-80

Discontinued surface-water discharge or stage-only stations--Continued  $[Footnotes \ at \ end \ of \ table \ on \ p. \ xxv]$ 

Station name	Station number	Drainage area (mi ² )	Period of record
NORTHWEST A	ALASKA		
Snake River near Nome (d)	15621000	85.7	1965-81 1982-91
Eldorado Creek near Teller (d)	15635000	5.83	1988-90 1992-98
Gold Run Creek near Teller (d)	15637000*	24.2	c1986-88
Crater Creek near Nome (d)	15668200	21.9	1975-85
Kuzitrin River near Nome (d)	15712000	a1720	c1908-10 1962-73
Humboldt Creek near Serpintine Hot Springs near Nome (d)	15716010	8.15	c1992-93
June Creek near Kotzebue (d)	15743000	10.9	1965-67
Kobuk River at Ambler (d)	15744000	a6570	1965-78
Noatak River at Noatak (d)	15746000	a12000	c1965-71
Ikalukrok Creek above Red Dog Creek near Kivalina(d)	15746980	59.2	1991-92
Red Dog Mine clean water ditch near Kivalina(d)	15746983	4.74	1991-92
North Fork Red Dog Creek near Kivalina (d)	15746988*	15.9	1991-92
Red Dog Creek above mouth near Kivalina(d)	15746990	24.6	1991-92
Ogotoruk Creek near Point Hope (d)	15748000	a35	c1958-62
ARCTIC SLOPE	ALASKA		
Esatkuat Creek near Barrow (d)	15799000	a1.46	c1972-73
Esatkuat Lagoon Outlet at Barrow (d)	15799300	a3.52	c1972-73
Meade River at Atkasuk (d)	15803000	a1800	c1977
Teshekpuk Lake Outlet near Lonely (e)	15829995	a1400	c1977
Miguakiak River near Teshekpuk Lake near Lonely (d)	15830000	a1460	c1977
Colville River near Nuiqsut (d)	15880000	20670	c1977
Putuligayuk River near Deadhorse (d)	15896700	a176	1970-79 c1980 1982-86 c1987-95
Atigun River near Pump Station 4 (d)	15904800	48.7	1991-94
Atigun River Tributary near Pump Station 4 (d)	15904900*	32.6	1977-86
Sagavanirktok River near Sagwon (d)	15910000	2208	1970-78
Chamberlin Creek near Barter Island (d)	15975000	1.46	c1958
Neruokpukkoonga Creek near Barter Island (d)	15976000	123	c1958

## Discontinued surface-water discharge or stage-only stations--Continued

## [Footnotes at end of table on p. xxv]

	Station name	Station number	Drainage area (mi ² )	Period of record
Foo	tnotes			
**	Currently operated as a water-quality partial record station			
#	Currently operated as a monthly discharge and reservoir elevation staion			
a	Approximately			
b	Break in record			
c	Fragmentary or seasonal			
f	Additional record for water years 1961-79 available from discharge records of Water Survey of Canada			
g	Prior to diversion upstream			
r	Revised			
R	Regulated			

### DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following continuous-record surface-water-quality stations in Alaska have been discontinued. Daily records of temperature, specific conductance, or sediment were collected and published for the period of record shown for each station. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Type of record: Temp. (temperature), S.C. (specific conductance), Sed. (sediment)]

# Discontinued continuous record surface-water-quality stations [Footnotes at end of table on p. xxx]

Station name	Station number	Drainage area (mi ² )	Type of record	Period of record (water years)
	SOUTHEAST ALASKA	A		
White Creek near Ketchikan	15011870	2.70	Temp., S.C.	1978-83
Keta River near Ketchikan	15011880	74.2	Temp., S.C.	1978-81, 1983-84
Blossom River near Ketchikan	15011894	68.1	Temp., S.C.	1981-84
Stikine River near Wrangell	15024800	a19,920	Temp. Sed.	1976-82 1982
Speel River near Juneau	15036000	226	Temp., Sed.	1960
Dorothy Lake Outlet (head of Dorothy Creek) near Juneau	15039900	11.0	Temp	1996-99
Duck Creek below Nancy Street near Auke Bay	15053200		Temp	1997-99
Lake Creek at Auke Bay	15053800	2.50	Temp	1963-73
Auke Creek at Auke Bay	15054000	3.96	Temp.	1962-75
Davies Creek near Auke Bay	15054990	15.2	Temp.	1969-72
Skagway River at Skagway	15056100	a145	Temp., S.C.	1979-82 1980-82
Taiya River near Skagway	15056210	149	Temp.	1971-74, 1977
Chilkat River at Gorge near Klukwan	15056400	a190	Temp.	1962-67
Chilkat River near Klukwan	15056500	a760	Temp., Sed., S.C.	1960
Kahtaheena River near Gustavus	15057590	10.7	Temp.	1998-2001
Grace Creek near Ketchikan	15078000	30.2	Temp.	1965-69
Traitors River near Bell Island	15080500	20.8	Temp.	1965-68
Staney Creek near Craig	15081500	51.6	Temp.	1966-79
Klawak River near Klawock	15081620	46.1	Temp.	1976-77
Perkins Creek near Metlakatla	15083500	3.38	Temp.	1976-93
Saltery Creek near Kasaan	15085000	5.53	Temp.	1962-64
Cabin Creek near Kasaan	15085300	8.83	Temp.	1962-64
Virginia Creek near Kasaan	15085400	3.08	Temp.	1962-64
Big Creek near Point Baker	15086600	11.2	Temp.	1963-80
Sunrise Lake Outlet near Wrangell	15086960	1.17	Temp.	1978, 1980, 1998- 2001
Zarembo Creek near Point Baker	15087110	1.27	Temp.	1979-80
Hamilton Creek near Kake	15087570	65.0	Temp.	1982-86, 1989-96
Rocky Pass Creek near Point Baker	15087590	2.72	Temp.	1978-79, 1981-82
Nakwasina River near Sitka	15087610	31.9	Temp.	1976-82
Indian River near Sitka	15087690		Temp., S.C.	2001-2002

# Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxx]

Station name	Station number	Drainage area (mi ² )	Type of record	Period of record (water years)
SOL	UTHEAST ALASKA—Co	ntinued		
Indian River at Sitka	15087700		Temp., S.C.	2001-2002
Betty Lake outlet at Port Armstrong	15093200	2.66	Temp.	1978-81
Sashin Creek near Big Port Walter	15093400	3.72	Temp.	1966-77
East Branch Lovers Cove Creek Diversion near Big Port Walter	15093600		Temp.	1965-71
Kalinin Bay tributary near Sitka	15101200	2.28	Temp.	1976-79
Greens Creek near Juneau	15101500	22.8	Temp. S.C.	1978-84 1979-85
Wheeler Creek near Douglas	15101600	57.1	Temp.	1970-73
North Arm Creek near Angoon	15102350	8.64	Temp.	1971-78
Hood Bay Creek near Angoon	15102400		Temp.	1970-71
Hook Creek above tributary near Tenakee	15106940	4.48	Temp.	1967-80
Hook Creek near Tenakee	15106960	8.00	Temp.	1966-78
Tonalite Creek near Tenakee	15106980	14.5	Temp. S.C., Sed.	1968-84, 1986-88 1972
Kadashan River near Tenakee	15107000	37.7	Temp.	1966-79
,	SOUTH-CENTRAL ALAS	KA		
Dick Creek near Cordova	15195000	7.95	Temp.	1971-79
Gakona River at Gakona	15200000	a620	Temp., S.C.	1953-54
Gulkana River at Sourdough	15200280	1,770	Temp.	1972-78
Klutina River at Copper Center	15206000	a880	Temp, S.C.	1953
Little Tonsina River near Tonsina	15207800	22.7	Temp.	1973-78
Tonsina River at Tonsina	15208000	a420	Temp., S.C.	1953, 1959-66
Copper River near Chitina	15212000	a20,600	Temp Sed. S.C.	1957, 1964-65, 1979-81 1957, 1963-65
Humpback Creek near Cordova	15216100	4.37	Temp.	1973-75
West Fork Olsen Bay Creek near Cordova	15219000	4.78	Temp.	1964-79
Duck River at Silver Lake outlet near Valdez	15223900	25.1	Temp.	1982-84
Duck River near tidewater near Valdez	15224000	26.7	Temp.	1982-84
Duck River above the Lagoon near Valdez	15224002		Temp.	1982-84
Lowe River in Keystone Canyon near Valdez	15226600	222	Temp.	1975-76
Tutka Lagoon Creek near Homer	15238860	10.8	Temp.	1973-76
Upper Bradley River near Homer	15238990	a10.0	Temp.	1979-90
Bradley River below dam near Homer	15239001	a66.0	Temp	1990-99
Bradley River near Tidewater near Homer	15239070		Temp	1986-99
Anchor River at Anchor Point	15240000	224	Temp., S.C.	1954, 1959-66

# Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxx]

Station name	Station number	Drainage area (mi ² )	Type of record	Period of record (water years)
SOUTH-CE	ENTRAL ALASKA—C	Continued		
Ninilchik River at Ninilchik	15241600	131	Temp. Sed.	1963, 1965 1963-65
Trail River near Lawing	15248000	181	Temp.	1959-67
Kenai River at Cooper Landing	15258000	634	Temp., S.C.	1950
Kenai River below Skilak Lake Outlet near Sterling	15266110	1206	Temp.	1999-2001
Kenai River at Soldotna	15266300	1,950	Temp. Sed.	1999-2001 1979-80, 1999-2001
Beaver Creek near Kenai	15266500	a51	Temp.	1970-75
Bishop Creek near Kenai	15267000	a24.2	S.C.	1977-79
Rabbit Creek at Anchorage	15273050	a15	Temp.	1984-86
Little Rabbit Creek above Goldenview Drive at Anchorage	15273095	5.06	Temp.	1983-86
Rabbit Creek at New Seward Highway at Anchorage	15273105	a24.5	Temp.	1984-86
South Fork Campbell Creek near Anchorage	15274000	29.2	Temp.	1999-2001
Little Campbell Creek at Nathan Drive near Anchorage	15274550	a15.0	Temp. Sed.	1986-87 b1988-91
Campbell Creek near Spenard	15274600	69.7	Sed.	1986, 1988
Middle Fork Chester Creek at Nichols Street at Anchorage	611207149483600		Temp.	1982
Chester Creek at Anchorage	15275000	20.0	Temp.	1982
Chester Creek at Arctic Boulevard at Anchorage	15275100	27.4	Temp. Sed. S.C.	1981-86, 1999-2001 b1988-91 1981-86, 2000-01
Ship Creek near Anchorage	15276000	90.5	Temp.	1949-50
Ship Creek below powerplant at Elmendorf Air Force Base	15276570	115	Temp.	1970-80
Eagle River at Eagle River	15277100	a192	Temp. Sed., S.C.	1968-69, 1971 1967-69, 1971
East Fork Eklutna Creek near Palmer	15277600	38.2	Sed.	1985-87
West Fork Eklutna Creek near Palmer	15277800	25.4	Sed.	1985-87
Eklutna Creek near Palmer	15280000	119	Temp.	1950
Knik River near Palmer	15281000	a1,180	Temp. Sed. S.C.	1963, 1965 1962-66 1972
Chickaloon River near Sutton	15282800		Temp.	1953-54
Matanuska River at Palmer	15284000	a2,070	Temp. Sed. S.C.	1952-53, 1959-66 1953-54, 1959-66 1965-67, 1972
Susitna River near Denali	15291000	a950	Temp.	1974-82
Susitna River near Cantwell	15291500	a4,140	Temp.	1980, b1982-86
Susitna River at Gold Creek	15292000	a6,160	Temp. Sed.	1957, 1974-80, 1982-85 1952, 1957
Chulitna River near Talkeetna	15292400	a2,570	Temp.	b1982-86

# Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxx]

Station name	Station number	Drainage area (mi ² )	Type of record	Period of record (water years)
SOUT	H-CENTRAL ALASKA—	Continued		
Talkeetna River near Talkeetna	15292700	2,006	Temp.	1954
Susitna River at Sunshine	15292780	a11,100	Temp.	b1981-85
Willow Creek near Willow	15294005	166	Temp.	b1978-90
Deception Creek near Willow	15294010	48.0	Temp.	b1978-85
Deshka River near Willow	15294100	591	Temp.	1999-2001
Yentna River near Susitna Station	15294345	a6,180	Temp.	b1981-86
Susitna River at Susitna Station	15294350	a19,400	Temp.	1975-80, b1983-86
Chuitna River near Tyonek	15294450	131	Temp.	1976-78
Falls Creek near Larsen Bay	15296500	5.67	Temp.	1974-75
Canyon Creek near Larsen Bay	15296520	8.82	Temp.	1974-76
East Fork Upper Thumb River near Larsen Bay	15296545	8.99	Temp.	1979-82
Upper Thumb River near Larsen Bay	15296550	18.8	Temp.	1974-82
Thumb River near Larsen Bay	15296554	25.3	Temp.	1979-82
Karluk River at outlet near Larsen Bay	15296600	100	Temp.	1975-76, 1978-82
Akalura Creek at Olga Bay	15296950	18.4	Temp.	1975-76
Kizhuyak River near Port Lions	15297485	c42.5	Temp.	b1980-86, 1987-94
	SOUTHWEST ALASKA	Λ.		
Tazimina River near Nondalton	15299900	327	Temp.	1982-86
Nushagak River at Ekwok	15302500	a9,850	Temp.	1979-80, 1982
East Creek near Dillingham	15303100	2.12	Temp.	1973-76
Snake River near Dillingham	15303150	113	Temp.	1974-80
Kuskokwim River at Medfra	630615154424500		Temp.	1954
Kuskokwim River at Crooked Creek	15304000	a31,100	Temp. S.C.	1957-67, 1977-79 1957-67
	YUKON ALASKA			
Yukon River at Eagle	15356000	a113,500	Temp.	1951-52, 1962-63, 1965-66
			Sed.	1962-66
Hess Creek near Livengood	15457800	662	Temp.	1971-72, 1976-77
Yukon River at Rampart	15468000	a199,400	Temp., S.C.	1954-56, 1961-64
Tanana River near Tok Junction	15472000	a6,800	Temp., S.C.	1951-53
Tanana River near Tanacross	15476000	a8,550	Temp., S.C. Sed.	1954, 1957-66
Tanana River at Big Delta	15478000	13,500	Temp. S.C.	1949-51 1949-52
Chena River near North Pole	15493500	1,430	Temp.	1972-79
Little Chena River near Fairbanks	15511000	372	Temp.	1972-81

## Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxx]

Station name	Station number	Drainage area (mi ² )	Type of record	Period of record (water years)
	YUKON ALASKA—Conti	nued		
Chena River at Fairbanks	15514000	a1,980	Temp. Sed. S.C.	1953, 1962-66, 1969-71 1962-71 1968-71
Tanana River at Nenana	15515500	a25,600	Temp. S.C.	1954-56 1954-57
Nenana River near Healy	15518000	a1,910	Temp. Sed., S.C.	1957-66 1953-66
Nenana River at Healy	15518040	a2,100	Temp.	1949
Caribou Creek near Chatanika	15535000	9.19	Temp.	1972-73
Long Creek at Long near Ruby	15564450	25.4	Temp.	1995-97
Yukon River at Ruby	15564800	a259,000	Temp. S.C.	1966-67, 1969-74 1966-74
Yukon River at Galena	15564860		Temp., S.C.	1954
Middle Fork Koyukuk River near Wiseman	15564875	a1,200	Temp.	1971-72, 1976-79
Wiseman Creek at Wiseman	15564877	49.2	Temp.	1973, 1976
Jim River near Bettles	15564885	11.7	Temp.	1971-76
Yukon River at Pilot Station	15565447	a321,000	Temp.	1976, 1978
	NORTHWEST ALASK	A		
Eldorado Creek near Teller	15635000	5.83	Temp.	b1995-98
Kobuk River near Kiana	15744500	a9,520	Temp.	1978-81
Ogotoruk Creek near Hope	15748000	a35	Temp., Sed.	1959
	ARCTIC SLOPE ALASE	KΑ		
Kuparuk River near Deadhorse	15896000	3,130	Temp.	1971-72, 1976, 1978-79
Putligayuk River near Deadhorse	15896700	a176	Temp.	1976
Sagavanirktok River near Sagwon	15910000	229	Temp.	1971

Approximately Seasonal After diversion upstream beginning 1985

#### 1

#### INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State and other agencies, obtains a large amount of data pertaining to the water resources of Alaska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Alaska."

Water resources data for the 2003 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 118 gaging stations; stage or contents only at 4 gaging stations; water quality at 28 gaging stations; and water levels for 53 observation wells. Also included are data for 66 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. Some data collected during 2003 will be published in subsequent reports. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

Records of discharge and stage of streams, stage of lakes, chemical quality, water temperatures, and suspended sediment were first published in U.S. Geological Survey Water-Supply Papers. Through September 30, 1960, these data were published in seven Water-Supply Papers entitled "Quantity and Quality of Surface Waters of Alaska" (through 1950, 1951-53, 1954-56, 1957, 1958, 1959, 1960). Since 1960, streamflow records and related data were published in a five-year series of Water-Supply Papers for 1961-65 and 1966-70 entitled "Surface Water Supply of the United States." Water-quality records were published in a Water-Supply Paper entitled "Quality of Surface Waters of Alaska, 1961-63" and after then until 1970 in an annual series of Water-Supply Papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1949 to 1974 in a series of Water-Supply Papers entitled "Ground-Water Levels in the United States." Water-Supply Papers may be consulted in the libraries of the principal cities in the United States or may be purchased from U.S. Geological Survey, Branch of Information Services, Box 25286, Denver, CO 80225.

For water years 1961 through 1970, streamflow data were also released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report AK-03-1." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the Water Resources Office Chief at the address given on the back of the title page or by telephone (907) 786-7100.

The USGS is continually updating the availability of its information on the World Wide Web. Current streamflow conditions (via satellite) for Alaska and other Alaskan water resource information can be found at http://ak.water.usgs.gov/

Nationwide information on water resources, including real-time and historic streamflow data, water-use data, publications and USGS program activities, can be found at http://water.usgs.gov/

#### **COOPERATION**

The U.S. Geological Survey and organizations of the State of Alaska have had cooperative agreements since 1958 for the systematic collection of streamflow records, water-quality records, and ground-water levels. Organizations that assisted in collecting data contained in this report through cooperative agreements with the USGS are:

Alaska Department of Community and Economic Development, Edgar Blatchford, Commissioner

Alaska Industrial Development and Export Authority, Alaska Energy Authority, Ronald W. Miller, Executive Director

Alaska Department of Environmental Conservation, Ernesta Ballard, Commissioner

Alaska Department of Fish and Game, Kevin C. Duffy, Commissioner

Alaska Department of Natural Resources, Division of Mining and Water Management, Tom Irwin, Commissioner

Alaska Department of Transportation and Public Facilities, Mike Barton, Commissioner, in cooperation with the U.S. Department of Transportation, Federal Highway Administration

Central Council of Tlingit and Haida Indian Tribes of Alaska, Desiree Welch, Native Lands and Resources Manager

City and Borough of Juneau, Sally Smith, Mayor

City and Borough of Sitka, Valorie Nelson, Mayor

City and Borough of Yakutat, Tom Maloney, Mayor

City of Klawock, Donna Williams, Mayor

City of Wrangell, Fern Neimeyer, Mayor

Alaska Native Tribal Health Consortium, Paul Sherry, President/CEO

Haida Corporation, John Bruns, Resource Manager

Cheesh-na Tribal Council, Elaine Sinyon, Chief Executive Officer

Native Village of Eklutna, Lee Stephan, Chief Executive Officer

Kenai Peninsula Borough, Dale Bagley, Mayor

Municipality of Anchorage, Mark Begich, Mayor

University of Alaska Southeast, John Pugh, Chancellor

The following Federal agencies assisted in the data-collection program by providing funds or services:

- U.S. Army Corps of Engineers
- U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory
- U.S. Department of Agriculture, Forest Service
- U.S. Department of the Interior, Bureau of Land Management
- U.S. Department of the Interior, National Park Service

#### **ACKNOWLEDGMENTS**

Assisting in the collection of the data were the following gage observers:

Richard Kemnitz, Colville River at Umiat

Ed LaChapelle, McCarthy Creek near McCarthy

Dick Levitt, Kahtaheena River near Gustavus

Brian Omann, Sawmill Creek and Blue Lake near Sitka

Dean Orbison, Sawmill Creek and Green Lake near Sitka

Steve Paustian, Kadashan River near Tenakee

Alan Peck, Moody Creek near Aleknagik

Eric Sundberg, Greens Creek at Greens Creek Mine near Juneau

Tom Walters, Terror River near Kodiak

Bob Walworth, Tatalina River near Takotna

Ray Williams, Iliamna River near Pedro Bay

John Borg, Yukon River at Eagle

Rob Gieck, Sagavanirktok River Tributary near Pump Station 3

Sandy Hamilton, Nation and Kandik Rivers near Nation, and Kobuk River near Kiana

John Martinisko, Ikalukrok River below Red Dog Creek near Kivalina

Lorry Schuerch, Kobuk River near Kiana

Organizations that supplied data are acknowledged in station descriptions.

#### SUMMARY OF HYDROLOGIC CONDITIONS

#### Surface Water

Alaska contains more than 40 percent of the Nation's surface-water resources. The highest runoff rates per unit area are in southeast Alaska and in other areas influenced by the maritime climate of the Northern Pacific Ocean and the Gulf of Alaska. In the interior and northern parts of the State, runoff rates are markedly lower than in the maritime-influenced areas. Runoff generally increases with altitude throughout the State, and year-to-year runoff variability increases from south to north.

Seasonal runoff characteristics differ from southern to northern Alaska. Areas influenced by maritime climates usually have two periods with high runoff: a spring snowmelt period and a fall rainfall period. High water can occur throughout the year, but the highest instantaneous peak discharges are more prevalent in the fall months; low-water periods usually occur in late spring and mid-summer, prior to the rainy fall period. Farther north, most of the total runoff and floods occur in the period from May through September; low-flow periods usually occur during late winter, shortly before spring snowmelt.

Record-setting precipitation and unusually warm temperatures produced widespread flooding in south-central Alaska in the fall of 2002. The unusual weather patterns persisted in the region for more than two months. On the Kenai Peninsula, heaviest rainfall and most severe flooding occurred October 22-24, and November 23, 2002. Flooding was most severe on the western part of the peninsula, especially between Ninilchik and Homer. Floods on eight streams exceeded previous record peak streamflows and many others reached near-record streamflows (table 1). The flooding destroyed critical portions of the limited road system, isolated communities, damaged private property, and damaged spawning and riparian habitat.

The same weather patterns were responsible for remarkably high winter flows throughout Alaska. In Southeast Alaska, 46 percent of the monthly mean discharges were at levels equalled or exceeded less than 25 percent of the time during October through January. In Southcentral and Southwestern Alaska and in the Yukon Basin, nearly all rivers measured for more than 10 years experienced flows in the upper 25th percentile for the most of the fall and winter, and 32 percent of the monthly mean discharges were record highs. Even streams in Northwestern Alaska and on the Arctic Slope were affected. Of those streams that did not freeze completely during the winter, most experienced flows in the upper 25th percentile all the winter. Warm fall rains resulted in generally low winter snowpack, and the resulting spring runoff was relatively low throughout the state. Summer rain in the Chena Basin and the Arctic Slope resulted in higher than normal flows, and flows in the Chena basin were restricted by Moose Creek dam during July 29 to August 2 and again during September 4-5.

Table 1. Peak gage heights and streamflows during October and November, 2002, and 100-year flood magnitude for selected stations on the Kenai Peninsula, Alaska.

Sadion   Station name   age   Pend of Record for   Drain   Age   Pend of Record for   Drain   Drain   Pend of Record for   Drain   Drain   Pend of Record for   Drain   Dra						Oct	обет 2002 п	October 2002 maximum peak data	data	Nove	ember 2002	November 2002 maximum peak data	data	$100 \text{ yr flood } (\text{ft}^3/\text{s})^1$	d (ft ³ /s) ¹
Grouse Creek a Lake Outliet         6.24         1997-P         1024         8.05         451*         72.3         1123         7.87         401         64.5         1,080 ³ Sprace Creek a near Seward         9.26         1967-P         1072.3         6.63         1,560         168         1123         6.04         83.5         90.2         4,090           Barabura Creek near Seward         9.26         1992-P         1072.3         4.00         1,450         70.0         -         -         -         -         2,640           Barabura Creek near Homer         9.25         1992-P         1072.3         4.00         1,450         70.0         -         -         -         -         2,640           Barabura Creek near Homer         10.4         10.24         12.1         70e         67.3         11.23         6.04         8.3         1,660         1,69         -         -         -         -         2,640           Barabura Creek near Homer         10.4         10.24         12.1         70e         67.3         11.23         13.9         13.9         1,69         1,69         1,69         1,69         1,69         1,69         1,69         1,69         1,69         1,69<	Site No. (fig. 1)	Station no.	Station name	Drain age area (mi ² )	Period of Record for peak data	Date (month /day)	Gage height (ft)	Streamflo w (ft ³ /s)	Peak basin yield (ft ³ /s)/ mi ²	Date (month /day)	Gage height (ft)	Streamflow (ft ³ /s)	Peak basin yield [(ft ³ /s)/ mi ² ]	For data through 1999	For data through 2002
1523860         Spruce Creek near Seward         9.26         1967-P         1023         6.63         1.56         162         6.04         8.35         9.02         4,090           15238820         Baradward creek near Selovais         20.7         1972-29         1023         4.00         1.450         70         -         -         -         -         6.04         835         9.02         4,090           15238820         Baradward creek near Homer         1.02         1982-P         1023         4.50         1310         142         1123         6.04         80         116         1594-P         150           15239800         Fariat Creek near Homer         1.04         1963-P         1024         15.20         3.00         84         1123         6.09         80         1.60           15239800         Archer Rear Homer         1.3         1965-P         1024         15.2         1074         15.0         3.00         8.2         1.02         1.60           1523900         Archer Rear Homer         1.3         1965-P         1024         15.2         1.04         1.02         3.0         3.0         25.0         1.60         9.0         1.60         9.0         1.60         9.0		15237730	Grouse Creek at Lake Outlet near Seward	6.24	д-7661	10/24	8.05	451*	72.3	11/23	7.87	401	64.5	$1,080^{2}$	:
1523832   Barabara Creek near Seldovia   20.7   1972-92   1023   4.00   1.450   700           2.640   1.538878   Barabara Creek near Seldovia   20.7   1922-92   1023   7.50   151*   159   1123   6.60   80   11.6   1.59*   1.538978   Barabara Creek near Homer   15.39870   Middle Fork Bandley River   1.04   1.963-81   1.024   1.21   700e   67.3   11/23   8.99   2.59   2.80   1.600   1.5239800   Daimond Creek near Homer   1.37   1964-81   1.024   1.550   1.37*   1.43   1.433   1.433   1.433   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1.434   1		15238600	Spruce Creek near Seward	9.26	1967-P	10/23	6.63	1,560	168	11/23	6.04	835	90.2	4,090	3,910
1523906   Middle Fork Bardley Mixer and Anchor River at Anch		15238820	Barabara Creek near Seldovia	20.7	1972-92	10/23	4.00	1,450	70.0			1		2,640	$2.640^{3}$
1529905   History Randley River at Anchor Point   1963-P   1024   121   1700   142   11123   1137   1390   1590   1660   15239800   History cear Homer   104   1963-P   1074   121   1700   172   1123   1137   1390   1390   1965-81   1074   121   122   122   1123   1137   1390   1390   1965-81   1074   121   122   122   1123   1123   1433   282   22.7   342   15239800   Anchor River at Anchor Point   1991-92, 2000-P   1074   1716   359*   1123   9.60   14,500*   66.7   16.00   1524000   1524000   1906-81   1074   1716   359*   122   1123   9.60   14,500*   66.7   16.00   1123   15.72   12.00   12.00   15.24100   15.44100   1904-74, 1977   1074   13.0   13.0   13.0   13.0   10.0   11.2   12.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0		15238978	Battle Creek diversion above Bradley Lake near Homer	0.95	1992-P	10/23	7.50	151*	159	11/23	09.9	08	11.6	1594	188
15239500         Fritz Creek near Homer         104         1963-P         10/24         12.1         700e         67.3         11/23         11.37         530         51.0         664           15239800         Daimond Creek near Homer         5.35         1963-81         10/24         15.50         357*         66.7         11/23         14.33         28.2         52.7         342           15239800         Anchor River at Anchor Point         124         1963-86, 1984-92         10/24         9.30         8,000         58.4         11/23         9.60         14,500*         65.7         342           15240500         Anchor River at Anchor Point         2.4         1953-66, 1984-92         10/24         17.16         359*         72.2         11/23         9.60         14,500*         65.1         86.00           15240500         Anchor River at Anchor Point         2.1         1966-81         10/24         17.16         359*         72.2         11/23         9.60         14,500*         66.1         86.00           15241500         Cook Inlet Though of Point River at Anchor Point         1.35         1963-85, 1999-P         10/24         5.70         7.70         10         11/23         11/23         11/23         11/23		15239050	Middle Fork Bradley River near Homer	9.25	1980-P	10/23	9.49	1,310	142	11/23	8.99	259	28.0	1,660	1,770
15239800         Diamond Creek near Homer         5.35         196.3 81         10/24         15.50         357*         66.7         11/23         14.33         28.2         52.7         34.2           15239900         Anchor River near Anchor River at Anchor Point         137         1967-41,1978-87         10/24         9.30         8,000         58.4         11/23         9.60         14,500*         65.7         6,090           15240000         Anchor River at Anchor Point         224         1953-66, 1984-92         10/24         9.38         13,400         59.8         11/23         9.60         14,500*         66.1         8,600           15240500         Cook Inlet Tributary near Anchor Point         224         1953-66, 1984-92         10/24         23.2         22,000         100         11/23         15.7         25.5         49.1         169           15241500         Deep Creek near Ninicletik         138         1949-74, 1977         10/24         5.70         7.700         10.4         -         -         -         -         1,400           15243000         Snow River near Kasilof         738         1949-74, 1977         10/24         1.540         9.23         6.60         3.20         1,780         1,780      <		15239500	Fritz Creek near Homer	10.4	1963-P	10/24	12.1	700e	67.3	11/23	11.37	530	51.0	664	819
Anchor River near Anchor         137         1965-74, 1978-87, 10/24         9.30         8,000         58.4         11/23         9.10         9,000*         65.7         6,090           Anchor River near Anchor Point Step Indept River at Anchor Point Cook Indept Tributary near Anchor Point Step Indept River at Anchor Point Step Indept River and Anchor Point Step Indept River Indep		15239800	Diamond Creek near Homer	5.35	1963-81	10/24	15.50	357*	2.99	11/23	14.33	282	52.7	342	418
15240000   Anchor River at Anchor Point   224   1953-66, 1984-92   10/24   17.16   359*   11/23   15.72   15.50*   66.1   8,670     15240500   Cook Intel Tributary near   5.19   1966-81   10/24   17.16   359*   17.2   11/23   15.72   25.5   49.1   169     15241500   Deep Creek near Ninichtik River at Ninichtik River at Ninichtik River at Seward   128   1963-85, 1999-P   10/24   5.70   7.700   10.4     1.4400     15243900   Snow River near Eawing   181   1947-74, 1987   10/24   15.20   12.50   24.1     1.4400     15248000   Trail River near Lawing   181   1947-74, 1987   10/24   15.30   12.30   24.1       4.550     15261000   Cooper Creek near Portage   28.2   1967-81   2.5   10/24   13.50   12.30   24.1           4.550     15265000   Granite Creek near Portage   28.2   1967-81   2.5   10/24   13.50   12.45   11.30   24.1         -   -   -   -		15239900	Anchor River near Anchor Point	137	1965-74, 1978-87, 1991-92, 2000-P	10/24	9.30	8,000	58.4	11/23	9.1	*000'6	65.7	060'9	8,300
Cook Intel Tributary near         5.19         1966-81         1074         17.16         359*         72.2         11/23         15.72         255         49.1         169           Ninitchik         Deep Ceeva Numitchik         22         -         10/24         23.2         22,000         100         11/23         21.2         -         7,300²           Ninitchik River an Ninitchik         135         1963-85,1999-P         10/24         5.30         6.600*         48.8         11/23         6.96         3.200         23.7         1,780           Kasilof River near Kasilof         738         1949-74,1977         10/24         5.70         7,700         10.4         -         -         -         -         14,400           Snow River near Kasilof         128         1974-1977         10/24         13.22         12600         98.4         11/23         10.95         6,870         5.37         -         -         -         -         14,400           Snow River near Sward         18         1947-71,1987         10/24         12.40         92.3         -         -         -         -         -         -         -         -         -         -         -         -         -		15240000	Anchor River at Anchor Point	224	1953-66, 1984-92	10/24	9.38	13,400	59.8	11/23	9.60	14,500*	1.99	8,670	14,000
Deep Creek near Ninitchik 220 — 10/24 23.2 22,000 100 11/23 21.2 — 7,300 7/300 100 11/23 21.2 — 7,300 23.7 1,780		15240500	Cook Inlet Tributary near Ninilchik	5.19	1966-81	10/24	17.16	359*	72.2	11/23	15.72	255	49.1	169	284
Nimilchik River at Nimilchik River ard Nimilchik River near Kasilof         135         1963-85, 1999-P         10/24         5.70         7,000         10.4         -         -         -         -         1,780           Snow River near Kasilof         138         1949-74, 1977         10/24         15.70         17,00         10.4         -         -         -         -         -         14,400           Snow River near Kasilof         128         1904-1977         10/24         13.22         12,600         98.4         11/23         10.95         6,870         53.7         -         -         -         14,400           Porcupine Creek near Primrose         16.8         1963-89         10/24         11.09         8,200*         45.3         -         -         -         -         4,550           Kenai River at Cooper Landing         634         1947-77, 1987         10/26         14.64         15,300         24.1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		15241500	Deep Creek near Ninilchik	220	1	10/24	23.2	22,000	100	11/23	21.2	1	1	$7,300^{2}$	1
Kasilof River near Kasilof         738         1949-74, 1977         10724         5.70         7,700         10.4         -         -         -         14,400           Snow River near Seward         128         1970, 1974, 1977, 10/24         13.22         12600         98.4         11/23         10.95         6,870         5.3.7         -           Porcupine Creek near Printrose         16.8         1963-89         10/24         13.24         13.60         92.3         -         -         -         4.550           Kenai River and Cooper Landing         634         1947-77, 1987         10/24         11.69         8,200*         45.3         -         -         -         -         4,550           Cooper Creek an mouth near         48.6         1958-64, 1998 to P         10/25         12.45         1,230*         25.3         11,28         33.7         6.9           Cooper Creek an mouth near         48.6         1958-64, 1998 to P         10/23         12.45         1,230*         25.3         11,28         33.7         6.9           Cooper Creek near Portage         28.2         1967-81         -         -         -         -         -         -         -         -         -         -         - <td></td> <td>15241600</td> <td>Ninilchik River at Ninilchik</td> <td>135</td> <td>1963-85, 1999-P</td> <td>10/24</td> <td>9.39</td> <td>*009'9</td> <td>48.8</td> <td>11/23</td> <td>96.9</td> <td>3,200</td> <td>23.7</td> <td>1,780</td> <td>4,880</td>		15241600	Ninilchik River at Ninilchik	135	1963-85, 1999-P	10/24	9.39	*009'9	48.8	11/23	96.9	3,200	23.7	1,780	4,880
Snow River near Seward         128         1974, 1974, 1977,         10/24         13.22         12,600         98.4         11/23         10.95         6,870         53.7         —           Porcupine Creek near Primrose         16.8         1963-89         10/24         20.64         1,540         92.3         —         —         4,550           Kenai River near Lawing         181         1947-77, 1987         10/24         11,09         8,200*         45.3         —         —         —         4,550           Kenai River at Cooper Landing         634         1947-P         10/26         14,44         15,30*         24.1         —         —         —         —         8,890           Cooper Landing         Gooper Landing         Gooper Landing         —         10,23         12,45         1,230*         63.8         —         —         —         26,400*           Grainie Creek near Portage         28.2         1967-81         —         10,800*         63.8         —         —         —         3,090           Sixmile Creek near Hope         234         1979-90, 1997-P         10/24         13.56         10,800*         46.2         11/23         11.68         4,170         17.8         10,600		15242000	Kasilof River near Kasilof	738	1949-74, 1977	10/24	5.70	7,700	10.4	;	;	1	1	14,400	$14,400^3$
Porcupine Creek near Primrose         16.8         1963-89         10/24         2.0.64         1.540         92.3         -         -         -         4,550           Trail River near Lawing         181         1947-77, 1987         10/24         11.09         8,200*         45.3         -         -         -         -         8,890           Kenai River and Cooper Landing         634         1947-P         10/26         14.64         15,300         24.1         -         -         -         8,890           Cooper Landing         48.6         1988-64, 1998 to P         10/23         12.45         1,230*         25.3         11.28         337         6.9           Cooper Landing         28.2         1967-81         -         -         -         -         -         -         -         -         3,090           Sixmile Creek near Portage         234         1979-90, 1997-P         10/24         13.56         10,800*         46.2         11/23         11.68         4,170         17.8         10,600		15243900	Snow River near Seward	128	1970, 1974, 1977, 1997-P	10/24	13.22	12,600	98.4	11/23	10.95	6,870	53.7	ı	1
Trail River near Lawing         181         1947-77, 1987         10/24         11.09         8,200*         45.3         -         -         -         8,890           Kenai River at Cooper Landing         634         1947-7, 1987 or 10/26         14.64         15.300         24.1         -         -         -         -         26,400°           Cooper Landing         48.6         1958-64, 1998 to P         10/23         12.45         1,230*         25.3         11.28         337         6.9           Cooper Landing         Cooper Landing         -         -         -         -         -         -         -         -         3,090           Granite Creek near Portage         28.2         1967-81         -         -         -         -         -         -         -         -         -         -         -         -         3,090           Sixmile Creek near Horpe         234         1979-90, 1997-P         10/24         13.56         10,800*         46.2         11/23         11.68         4,170         17.8         10,600		15243950	Porcupine Creek near Primrose	16.8	1963-89	10/24	20.64	1,540	92.3	1	1	1	1	4,550	$4,550^3$
Kenai River at Cooper Landing         634         1947-P         10/26         14.64         15.300         24.1         -         -         -         26,400 ⁶ Cooper Creek at mouth near Cooper Landing         48.6         1958-64, 1998 to P         10/23         12.45         1,230*         25.3         11,28         337         6.9           Granuite Creek near Portage         28.2         1967-81         -         -         1,800         63.8         -         -         -         3,090           Sixmile Creek near Hope         234         1979-90, 1997-P         10/24         13.56         10,800*         46.2         11/23         11.68         4,170         17.8         10,600		15248000	Trail River near Lawing	181	1947-77, 1987	10/24	11.09	8,200*	45.3	;	;	1		8,890	9,360
Cooper Landing     48.6     1958-64, 1998 to P     10/23     12.45     1,230*     25.3     11.28     337     6.9       Cooper Landing     Cooper Landing    5     1967-81    5     10.85     1,800     63.8        3,090       Gramite Creek near Portage     23.4     1979-90, 1997-P     10/24     13.56     10,800*     46.2     11/23     11.68     4,170     17.8     10,600		15258000	Kenai River at Cooper Landing	634	1947-P	10/26	14.64	15,300	24.1	1	1	1	1	26,4006	$26,100^{6}$
Granite Creek near Portage 28.2 1967-81\$ 10.85 1,800 63.8 3,090		15261000	Cooper Creek at mouth near Cooper Landing	48.6	1958-64, 1998 to P	10/23	12.45	1,230*	25.3		11.28	337	6.9		
Sixmile Creek near Hope 234 1979-90, 1997-P 10/24 13.56 10,800* 46.2 11/23 11.68 4,170 17.8 10,600		15269500	Granite Creek near Portage	28.2	1967-81	5	10.85	1,800	8.69		;	1	,	3,090	$3.090^3$
		15271000	Sixmile Creek near Hope	234	1979-90, 1997-P	10/24	13.56	*008,01	46.2	11/23	11.68	4,170	17.8	10,600	13,000

¹⁰⁰⁻year flood calculated using observed station data and regional weighted skew from Curran and others (2003), unless otherwise noted.

(mi², square miles; ft, feet; ft³/s, cubic feet per second; (ft³/s)/mi², cubic feet per second per square mile; --, no data; *, new peak of record)

² Less than 10 years of systematic observed peak flow data, used regional flood-frequency equation from Curran and others, 2003.

October and November, 2002 peaks are less than highest systematic peak and not used in computations following Bulletin 17-B guidelines (Interagency Committee on Water Data, 1982).

⁴ Used data through 2001.

⁵ Exact date of peak unknown, but did occur on October 23 or 24, 2002.

 $^{^{6}}$  100-year flood calculated using only observed station data. See Curran and others (2003) for details.

e Estimated.

Present

### **Ground Water**

Alaska's vast area and small population preclude a comprehensive evaluation of its ground-water resources. Throughout much of the State, aquifers are poorly defined. In many areas, wells have not been drilled and little is known about seasonal and long-term changes in ground-water storage. During water year 2003, the long-term monitoring of water levels in one well in Juneau, one well in Anchorage, and three wells in Fairbanks continued. Water levels were also measured in 19 wells in Fairbanks to monitor ground water levels in the vicinity of the Chena River dam. Water levels were measured intermittently in 18 wells and continuously in 3 wells in Juneau for studies of the interaction between ground water and water in anadromous fish streams. Water levels were measured intermittently at Anaktuvuk Pass during the summer for a study of surface water-ground water interactions affected by permafrost.

Water levels in the long-term monitoring wells in Juneau, Anchorage, and Fairbanks were within the range of historical values. Water levels in most of the 19 short-term wells in Fairbanks recorded the highest levels since the summer of 2001 during August and September, following a period during which flows were impounded behind Moose Creek Dam. Water levels in wells in the Duck and Jordan Creek watersheds in Juneau are closely related to the infiltration of rain and snowmelt and the level of water in nearby streams. Some of these wells are in stream channels or on flood plains and are intermittently flooded; most water levels in these wells were within 10 feet of land surface.

# **Water Quality**

#### General Overview

Information on the concentration and composition of constituents in Alaska's surface water is markedly variable in coverage. Some subregions have had regular or periodic sampling for many years at many stream points and at a number of lakes. Information in other subregions consists of only a few miscellaneous samples. Although the chemical characteristics of water in the streams and lakes of Alaska seem variable, the ranges in concentration are not as great as those found in the conterminous United States. Most Alaskan streams above tidal reaches contain water of a calcium bicarbonate type, generally containing less than 200 mg/L dissolved solids. In these streams, the hardness generally increases with increased dissolved-solids content. The streams draining lowlands and intermontane basins usually contain harder water than the streams in the higher mountains. Some streams, especially those draining areas overlain by organic-rich deposits, can have excessive iron content.

In Alaska, the mineral content of water in lakes is more variable than that in rivers. The water in some mountain lakes is very low in dissolved-solids content and is little more concentrated than rainwater. Other lakes occupying lowlands near the sea, including many near the Arctic coastal plain, have become mineralized periodically by salts brought in from the sea either by overland flooding during storms or as ocean spray. The water in lakes in the lowlands remote from the sea is commonly very similar in chemical character to water in the larger rivers adjacent to them.

The character and distribution of suspended sediment are relatively complex in Alaska because glaciers contribute large amounts of very fine material (glacial flour) to many streams. In general, during the summer, suspended-sediment concentrations in nonglacial streams seldom exceed

100 mg/L, but can be greater than 2,000 mg/L for glacial streams. Nonglacial streams often transport the highest sediment loads during the spring breakup or during periods of high rainfall, whereas glacial streams transport the greatest sediment loads during periods of maximum glacial melting, usually in middle or late summer. The normal suspended-sediment concentration between January and April is usually less than 20 mg/L for most nonurban streams. Thus, less than 15 percent of the annual suspended-sediment load is carried during this period. The percentage of material finer than 0.062 millimeter (the silt-clay fraction as generally defined) transported by nonglacial streams is less than 50 percent in contrast to more than 50 percent for glacial streams.

Outside of the major urban areas, almost all ground water is obtained from unconsolidated aquifers. Most sampled water contains less than the State's recommended limit of 500 mg/L dissolved solids. Calcium and magnesium, which along with bicarbonate contribute to the hardness of water, are the major dissolved ions. In most wells, hardness concentrations are about 60 to 80 percent of dissolved-solids concentrations. Water of sodium bicarbonate or sodium chloride type is present in numerous community wells drilled near the coast.

Iron is present in high concentrations in a large number of shallow wells in most areas of the State. Concentrations in excess of 1.0 mg/L are common. Iron concentrations of more than about 0.3 mg/L can cause staining of laundry and plumbing fixtures and impart an unpleasant taste to the water.

The bedrock aquifers in most of Alaska are undeveloped and very little is known about their water quality. In general, the concentration of dissolved solids in water from bedrock aquifers is higher than that found in the unconsolidated aquifers and the chemical quality of water in bedrock aquifers is more variable.

Most of the State's ground-water resources have, for the present, been unaffected by humans. However, in the major urban areas and in some outlying villages, ground-water quality has been locally degraded, primarily from septic systems, landfills, and abandoned fuel storage tanks. Most ground-water contamination problems in Alaska are caused by petroleum products, primarily from leaky fuel tanks.

In 2003 as part of the Clean Water Action Plan, water-quality, and bed-material samples were collected at sites in Gates of the Arctic National Park and Preserve, Cape Krusenstern National Monument, and Lake Clark National Park and Preserve.

In 2003 sampling at 5 stations in the Yukon Basin continued as part of the National Stream-Quality Assessment Program (NASQAN), the third year of a five year monitoring program. The Alaska Water Resources Office is also collecting samples for personnel from the National Research Program to help extend the normal NASQAN data and assisted on 2 synoptic sampling trips from Yukon River near Stevens Village to Yukon River near Pilot Station.

Water-quality sampling is also done for projects throughout Alaska. The analyses for these samples are published in reports discussing these projects. For more information on reports published in 2003, contact the Chief, Water Resources Office (see p. ii) or the Alaska Water Resources Office webpage at http://ak.water.usgs.gov.

#### Remark Codes

The following remark codes may appear with the water-quality data in this section:

## PRINTED OUTPUT REMARK

E	Value is estimated.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
M	Presence of material verified, but not quantified.
N	Presumptive evidence of presence of material.
U	Material specifically analyzed for, but not detected.
A	Value is an average.
V	Analyte was detected in both the environmental sample and
	the associated blanks.
S	Most probable value.

### **Dissolved Trace-Element Concentrations**

Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ( $\mu$ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the  $\mu$ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes. However, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year.

# Quality-control data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this office are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

BLANK SAMPLES – blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank samples for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall

data-collection process. The types of blank samples collected in the Alaska Water Resources Office are:

<u>Source solution blank</u> – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes.

<u>Ambient blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions.

<u>Field blank</u> – a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

<u>Trip blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

<u>Equipment blank</u> – a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office.)

<u>Sampler blank</u> – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

<u>Pump blank</u> – a blank solution that is processed through the same pump-and-tubing system used for an environmental sample.

<u>Standpipe blank</u> – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank.

<u>Filter blank</u> – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

<u>Splitter blank</u> - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

<u>Preservation blank</u> – a blank solution that is treated with the sampler preservatives used for an environmental sample.

<u>Canister blank</u> – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample.

REFERENCE SAMPLES – Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

REPLICATE SAMPLES – Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in The Alaska Water Resources Office are:

<u>Concurrent sample</u> – a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

<u>Sequential sample</u> – a type of replicate sample in which the samples are collected one after the other, typically over a short time.

<u>Split sample</u> – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

SPIKE SAMPLES – Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

<u>Concurrent sample</u> – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

<u>Split sample</u> – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

#### Water Use

Water use in the broad sense deals with man's interaction with and influence on the hydrologic cycle. In a technical sense, water use refers to water that is actually used for a specific purpose, such as domestic use, commercial needs, or industrial processing. The offstream water use for the state of Alaska was estimated for the year 2000. Fewer water use categories were estimated in 2000 than in previous surveys.

The largest water uses are probably instream uses for hydroelectric power generation, and fish and wildlife resources. The Alaska Water Use Act was amended in 1980 to include instream flow as a use. The amendments provide the opportunity for private individuals, and local, State, and Federal governments to legally acquire instream flow water rights. Either one or a combination of the four following types of uses can be acquired: 1) protection of fish and wildlife habitat, migration, and propagation; 2) recreation and parks; 3) navigation and transportation; and 4) sanitation and water quality. Eleven instream flow rights applications have been granted.

From 1990-2003, Alaska's population increased 18 percent, which was one of the Nation's larger percentage increases. In 2003, Alaska's population increased by 1 percent. In 2003, about 60 percent of the State's population lived in the Anchorage, Fairbanks, and Juneau areas.

Because of the population increase and building water supply distribution systems in many villages in rural Alaska, public-supply use of water is also increasing. In 2000, 67 percent of the State's population received their water from a public-supply utility; the remainder supplied their own water. Mining was the largest category of water use in 2000 when including saline water use. This use was mostly production of hard rock minerals and fossil fuels.

In 2000, the water utilities in the Anchorage, Fairbanks, and Juneau areas used 61 percent of all water withdrawn in the State for public supply. The monthly mean rate of water withdrawn by the principal public-supply utilities servicing these three areas from January 1990 to September 2003 is shown in figure 1. (Data are from Municipality of Anchorage, Fort Richardson, City of Fairbanks, and City and Borough of Juneau.) The higher usage shown during the summer months in Anchorage and Fairbanks is probably due to tourism and other commercial activity, increased industrial activity, and seasonal climatic effects.

The State's 2000 average use from public supply was 190 gallons per day per person, while the nation's average is 180 gallons per day. One of the nation's lowest per capita use of all public-supply customers of 10 gallons per day has been reported on the North Slope.

Surface water is the source for around 60 percent of the 2003 State's public-water supply in these three cities, while ground water is the source for the remainder. Anchorage receives 85 percent of its water from surface-water sources. Surface water became the primary source when water from Eklutna Lake was brought into production in 1988. Juneau obtained 70 percent of public-supply water from ground-water sources in 2003. Juneau has reduced using its surface-water source because of cost to meet water-quality regulations. Fairbanks obtains 100 percent of public-supply water from ground-water sources. Of the water withdrawn in Fairbanks, about two-thirds is treated to be suitable for domestic use, and the other one-third is for thermoelectric power use.

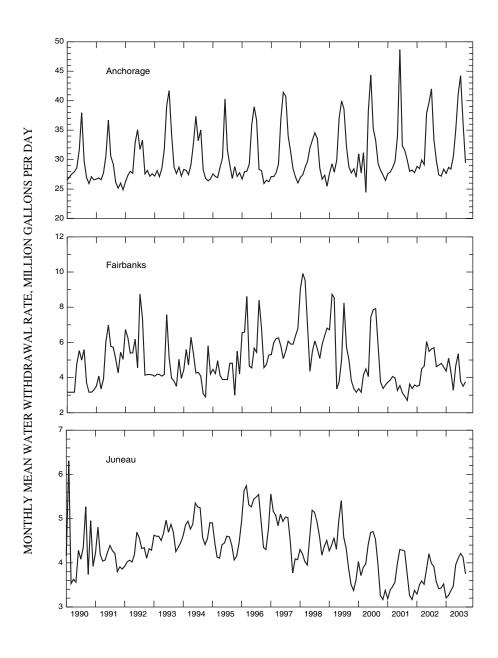



Figure 1. Monthly mean water withdrawal rate for public supply in the Anchorage, Fairbanks, and Juneau area, 1990 to 2003.

#### SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative of undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/.

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will

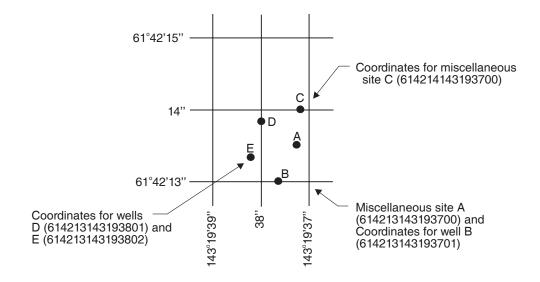
provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/.

#### **EXPLANATION OF THE RECORDS**

The surface-water and ground-water records published in this report are for the 2003 water year that began October 1, 2002, and ended September 30, 2003. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 1, 2 and 3. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

# **Station Identification Numbers**

Each data station, whether stream site, lake, reservoir, spring, or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells, lakes, reservoirs, springs, and for surface-water stations where only miscellaneous measurements and/or water-quality samples are collected.


# Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in USGS reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indentation in the "List of Stations" in the front of this report. Each indentation represents one rank. This downstream order and system of indentation show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. Stations located on islands in Alaska are in downstream order starting at the most westerly point on the island and moving around the island in a counterclockwise direction (stations on Kodiak Island start at the most northerly point).

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between regular stations and partial-record stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Water-quality stations located at or near regular stations or partial-record stations have the same number as the regular or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 15303600, which appears just to the left of the station name, includes the two-digit Part number "15" plus the six-digit downstream order number "303600." The Part number designates the State of Alaska. Occasionally, the downstream order number consists of eight digits.

# Latitude-Longitude System

The identification numbers for miscellaneous surface-water sites, wells, springs, lakes, and reservoirs are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description and also stored in the computerized data base files. See the accompanying diagram.



Local Number

The local number, which is assigned to well and spring sites, is derived in part from the rectangular subdivision of public lands and is used in Alaska as the site name. The first two letters indicate the principal meridian and the quadrant formed by the intersection of the base line and the principal meridian. The first three digits indicate the township in which the well or spring is located, the next three digits the range, and the last two digits the section. The letters following the section number indicate the quarter section, the quarter-quarter section, and so forth to the fourth order subdivision. Each of these subdivisions is lettered counter-clockwise, from the northeast corner. Each site within the smallest order of subdivision is then given a sequential number. Finally, each well within a section is assigned a sequential map number indicated by the last three digits. Thus, SB00601115BCAD1 001 denotes the Seward meridian (S), the northwest quadrant (B), township 6 north, range 11 west, section 15; and the site is in the SE¹/₄ of NE¹/₄ of the SW¹/₄ of the NW¹/₄ (BCAD) of the section. It was the first site in the 2.5 acre "D" subdivision assigned a sequential number (1). The next space is left blank. The next three digits, 001, indicate the sequence in which a site was located on a map. Thus, 001 indicates the first site plotted in the one-square-mile section. The next space is left blank. The last five digits, such as 00114, are the Alaska (AK) register number. Therefore, the local number is SB00601115BCAD1 001 00114. The local number for springs

is the same, except for the last three digits and the Alaska (AK) register number, as indicated by the following example: SB00601115BCAD1S 4065S. Note: Public-land surveys have not been completed for a large portion of Alaska, therefore, some "local numbers" reflect this in an abbreviated form, e.g., SB00601115.

# Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those at which daily mean discharges can be computed or estimated with reasonable accuracy from the supporting data and information. Because the daily mean discharges commonly are published, the stations are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records" or "Low-flow partial records." Records of miscellaneous discharge measurements or from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Periodic lake-level measurements are also presented separately. Locations of all complete-record and crest-stage partial record stations for which data are given in this report are shown in figures 2 and 3, respectively.

# **Data Collection and Computation**

# **Methodology**

The base data collected at gaging stations consist of stage records and discharge measurements of streams, and stage of lakes. In addition, observations of factors affecting the stage-discharge relation, weather records, and other information are used to supplement base data in determining the daily flow. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, USGS Water-Supply Paper 2175, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

## **Computation**

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) results of indirect measurements of peak discharge, such as slope-area or flow-through-culvert measurements and computations of flow-over-dams or weirs; (3) step-backwater techniques; or (4) velocity-area studies.

Daily mean discharges are computed from gage heights and stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by shifting control method, in which correction factors based on the individual discharge measurements and notes of the person who made the measurement are added (or subtracted) to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of debris or aquatic growth on the control.

In computing records of reservoir contents, it is necessary to have curves or tables defining the relation of stage and contents (from prior survey and computations). The application of stage to stage-content curves or tables gives the contents from which daily, monthly, or yearly changes can be determined. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed. Discharge through hydro-power plants can be calculated indirectly by using the theoretical relation of flow-rates with the amount of power being generated by each turbine, the reservoir level, and the estimated efficiency of each turbine. It is necessary to have tables, curves, or formulas relating the above variables (usually supplied by the manufacturer of the turbine). It is also necessary to have records of reservoir elevation, either from periodic observations or continuous records, and power-generation records (usually furnished by the operators of the power plant).

## Winter discharge measurements

At most stream-gaging stations in Alaska, the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed or estimated on the basis of the available gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrographers, and comparable records of discharge for other stations in the same or nearby basins. Determinations of 0.0 or no flow may indicate a lack of distinguishable velocity, but do not necessarily describe a dewatered channel.

# Estimates for periods of no data

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge. This happens when the recorder is stopped for the winter or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" ("REMARKS" paragraph) and "Identifying Estimated Daily Discharge."

#### **Data Presentation**

Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteris-

tics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data presentation.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimum, and flow duration. Occasionally, data for other than the current year are published, usually to present unpublished data.

# Station manuscript

The manuscript provides, under various headings, descriptive information, such as location of station; drainage area; period of record; record accuracy; and other remarks pertinent to station operation and regulation. For some stations, historical extremes outside the period of record and peak discharges greater than base discharge for the station are given. The following information, as appropriate, is provided with each continuous record of discharge, stage, or reservoir contents. Comments to clarify information presented under the various headings of the station description follow:

LOCATION.--Information on locations is obtained from the most accurate maps available. The USGS topographic map showing the location of the station is included in parentheses for many sites, e.g. (Livengood E-1). The location of the gage with respect to the cultural and physical features nearby and to the reference place mentioned in the station name is given.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another or because of difficulties in determining drainage boundaries, the accuracy of drainage-area determinations likewise varies. As appropriate, some drainage-area figures are qualified by "approximately." Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which published records are available for the station or for an equivalent station. An equivalent station is one that was in operation at a time the present station was not, and whose location was such that records from it can be considered reasonably equivalent with records from the current station. Some daily stations were previously operated as partial-record stations or had only monthly discharge records published. These periods are included in the paragraph.

REVISED RECORDS.--Published records occasionally are found to be incorrect, usually because of new information, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual discharge figures, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak dis-

charges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--Periods of estimated daily discharge will be identified by date in this paragraph for selected stations. For all stations, estimated daily discharge will be flagged in the daily discharge table. (See next section "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, this information would be the first entry. This paragraph is also used to present information relative to the accuracy of the records, to the special methods of computation, to conditions that affect natural flow at the station, and to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose (use) of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. Also, if data or information are supplied which aid in the computation of the record, the agency providing the information is named.

EXTREMES FOR PERIOD OF RECORD.--This paragraph is included in the station manuscript for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow.

EXTREMES OUTSIDE PERIOD OF RECORD.--Information about floods or unusually low flows that have occurred outside the stated period of record is included. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR or EXTREMES FOR CURRENT PERIOD.--This paragraph is included in the station manuscript for selected sites where peaks above base discharge are published and for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow. For records that meet certain criteria, all peak discharges and stages greater than a selected base discharge during the water year are given. The peaks greater than the base discharge, excluding the highest one, are called secondary peaks. The time that the peak occurred is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030 and 1:30 p.m. is 1330. Except for stations for which tabular summary statistics are not appropriate, the maximum and minimum for the current water year appears below the daily values table in the tabular summaries.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. For these stations, there may be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry; users of data for these stations who obtained the record for previously published data reports may wish to contact the Water Resources Office Of-

fice (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. If the data for a discontinued station were obtained by computer retrieval, the data would be current because any previously published data are automatically accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings that appeared in reports before water year 1991 for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate, except for stations for which tabular summary statistics are not appropriate. No changes have been made to the data presentation of lake contents.

# Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives the mean discharge for each day of the water year. In the monthly summary for the daily table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also may be expressed in acre-feet (line headed "AC-FT"), in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the contributing drainage area or boundaries are unknown, or if the flow is mostly from a spring. At some stations, monthly and (or) yearly discharges are adjusted for diversions or changes in reservoir contents.

# Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all the station records within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

# **Summary statistics**

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the sta-

tistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS ______" will consist of all of the station records within the specific water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. The comments clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the annual mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

MAXIMUM PEAK FLOW.--The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rist toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.

MAXIMUM PEAK STAGE.--The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. (For Alaska, a second line heading, MAXIMUM PEAK STAGE, is used for stations where the peak stage was from a backwater condition and had a different date from the peak discharge.)

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.

50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.

90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. In prior years, data for low-flow partial-record stations have been published, but no stations were in operation in the current water year. Data are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage partial-record stations. The second is a table of discharge measurements made at crest-stage partial-record stations and miscellaneous sites. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are given in special tables following the listing of miscellaneous measurements. Lake-level data collected at miscellaneous selected lakes are included. The data are being collected at these selected lakes to define lake-level changes in response to seasonal variations, the effects of man, droughts, and changes in the ground-water system. The lake-level data follow the water-quality data tables for miscellaneous sites.

# Identifying Estimated Daily Discharge

Estimated daily-discharge values in the current annual data report are identified by the "e" notation next to each mean daily discharge in the daily values tables. Prior to the report for the 1985 water year, estimated daily-discharge values were not specifically identified.

## Accuracy of the Records

The accuracy of streamflow data depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair" within 15 percent. Records are rated as "poor" when they do not meet the criteria above. Different accuracies may be attributed to different parts of a given record.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures above 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous measurement sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, flow from springs, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions or for other factors that might affect the flows. At those stations where adjustments are made, large errors in computed runoff may occur if adjustments are large in comparison to observed discharge. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents.

### Other Data Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables, is filed in the field offices at Anchorage, Fairbanks, and Juneau for their areas of responsibility. Also, most of the daily mean discharges are in computer files and can be retrieved for statistical analyses. Information on the availability of unpublished data or statistical analyses may be obtained from the Water Resources Office in Anchorage.

# **Records of Surface-Water Quality**

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

## Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained by continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

## Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

## On-Site Measurements and Sample Collection

To assure the data obtained represent the *in situ* quality of the water, certain measurements, such as water temperature, pH, alkalinity, and dissolved oxygen, are made onsite when the samples are collected. To assure that measurements made in the laboratory also represent the *in situ* water, pre-

scribed procedures are followed in collecting, treating, and shipping the samples to prevent changes in quality pending analysis in the laboratory. These procedures are given in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4.

One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. For the tables of surface-water quality that are published in this report, parameter code 82398 (SAMPLING METHOD, CODES) lists a numeric value which corresponds to the following explanation:

```
10 - Equal width increment (EWI)
```

- 20 Equal discharge increment (EDI)
- 25 Timed sampling interval
- 30 Single vertical
- 40 Multiple verticals
- 50 Point sample
- 60 Weighted bottle
- 70 Grab sample (dip)
- 80 Discharge integrated, equal transit rate (ETR)
- 90 Discharge integrated, centroid
- 100 Van Dorn sampler
- 110 Sewage sampler
- 120 Velocity integrated
- 8010 Other

To better define the sample, parameter code 84164 (SAMPLER TYPE) lists a numeric value which corresponds to the following explanation:

100 - Van Dorn sampler	3050 - Collpsible Teflon Bag in Frame Sampler
110 - Sewage sampler	3053 - US D-95 Teflon bottle
3001 - Sampler, US DH-48	3054 - US D-95 Plastic bottle
3002 - Sampler, US DH-59	3055 - US D-96 Bag Sampler
3003 - Sampler, US DH-75P	3056 - US D-96-A1 Bag Sampler
3004 - Sampler, US DH-75Q	3060 - Weighted Bottle Sampler
3007 - Sampler, US D-49	3070 - Grab Sampler
3009 - Sampler, US D-74	3071 - Open Mouth Bottle
3011 - Sampler, US D-77	3080 - VOC Hand Sampler
3015 - Sampler, US P-63	4020 - Open top bailer
3016 - Sampler, US P-72	4025 - Double valve bailer
3042 - Sampler, US P-61	4041 - Submersible Helical Rotor Pump
3044 - US DH-81	4080 - Peristaltic pump
3045 - US DH -81 with Teflon cap	4100 - Flowing Well
8010 - Other	

For further explanation on sampling methods, see Techniques of Water-Resources Investigations, Book 3, Chapter C2, "Field Methods for Measurement of Fluvial Sediment."

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

# Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are sometimes taken at the time of discharge measurements at water-discharge stations. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where temperature recording instruments are used, maximum and minimum temperatures for each day are published. Mean temperatures are published when diurnal variations are greater than 2.0 °C for more than 5 percent of the water year. Water temperatures measured at the time of water-discharge measurements are on file in the Alaska Science Center, Water Resources field offices.

## Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the

time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of quantities of suspended sediment, records of periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

# Laboratory Measurements

Sediment samples are analyzed in the U.S. Geological Survey laboratory in Vancouver, Washington. Methods used in analyzing sediment samples and computing sediment records are given in Techniques of Water-Resources Investigations, Book 5, Chapter C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4.

## **Records of Ground-Water Levels**

Ground-water level data from a statewide network of observation wells are published in this report. This network consists of observation wells (figure 3) located either in important aquifers or in areas of significant water use.

# **Data Collection and Computation**

Water-level measurements are made in many types of wells, under varying conditions of access and weather conditions. However, the equipment and measuring techniques used at each observation well assure that the measurements are of consistent accuracy and reliability.

Tables of water-level data are presented by Hydrologic Subregion. The station-identification number for a given well is the 15-digit number that appears in the upper left corner of the station description. The secondary identification number is the local number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape, battery-operated electric tape, or from data stored at selected time intervals on an electronic data logger. The water-level measurements in this report are given in feet with reference to either sea level or land-surface datum. Sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is also given in each well description. Water levels in wells equipped with recording gages are the highest ground-water level recorded in the well on the day indicated.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet and if an electric water sensor is used, the error in determining the absolute value of the total depth to water may be a few tenths of a foot. However, the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some may be given only to a tenth of a foot.

### **Data Presentation**

Each well record consists of the station description and the data table of water levels observed during the water year. The description of the well is presented through use of descriptive headings preceding the tabular data. Clarification of each heading is given below.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the Hydrologic Unit; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above sea level; it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the U.S. Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum or sea level, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet above or below land-surface datum. Water levels that are above land-surface datum have negative values. For wells equipped with recorders, water level values listed are the highest recorded in the well on the day indicated. Missing records are indicated by dashes in place of the water level.

Information of a more detailed nature than that published, such as well depths and water levels from other ground-water sites throughout the State, is filed in the Anchorage field office. Much of the data are in computer files and can be retrieved for analysis. Information on the availability of unpublished data may be obtained from the Water Resources Office Office in Anchorage.

# **Records of Ground-Water Quality**

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes slowly; therefore, for most general purposes one annual sampling, or a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

# **Data Collection and Computation**

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some areas but none for other areas. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other areas in earlier years.

# **Data Presentation**

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed by Hydrologic Subregion, and are identified by well number. The station-identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water.

## ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the Internet. These data may be accessed at:

## http://water.usgs.gov

Some water-quality and ground-water data also are available through the Internet. In addition, data can be provided in various machine-readable formats on compact disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division offices (see address on the back of the title page).

#### **DEFINITION OF TERMS**

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, and precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units. Other glossaries that also define water-related terms are accessible from <a href="http://water.usgs.gov/glossaries.html">http://water.usgs.gov/glossaries.html</a>.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphaterich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

**Adjusted discharge** is discharge data that have been mathematically adjusted (for example, to remove the effects of a daily tide cycle or reservoir storage).

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

**Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acrefeet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

**Annual 7-day minimum** is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most

low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

**Aroclor** is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that purposely is placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

**Ash mass** is the mass or amount of residue present after the residue from a dry-mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

**Aspect** is the direction toward which a slope faces with respect to the compass.

**Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

**Bankfull stage,** as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

**Base discharge** (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

**Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

**Bed material** is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Bedload is material in transport that primarily is supported by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to the top of the bedload sampler nozzle (an elevation ranging from 0.25 to 0.5 foot). These particles are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

**Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

**Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

**Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

**Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This also is called the Autotrophic Index.

**Blue-green algae** (*Cyanophyta*) are a group of phytoplankton and periphyton organisms with a blue pigment in addition to a green pigment called chlorophyll. Blue-green algae can cause nuisance water-quality conditions in lakes and slow-flowing rivers; however, they are found com-

monly in streams throughout the year. The abundance of blue-green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter ( $\mu$ m³/mL). The abundance of blue-green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter ( $\mu$ m³/cm²). (See also "Phytoplankton" and "Periphyton")

Bottom material (See "Bed material")

**Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved-solids content of the pore water, and the lithology and porosity of the rock.

Canadian Geodetic Vertical Datum 1928 is a geodetic datum derived from a general adjustment of Canada's first order level network in 1928.

Cell volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are used frequently in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere  $4/3 \pi r^3$  cone  $1/3 \pi r^2 h$  cylinder  $\pi r^2 h$ .

pi  $(\pi)$  is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume ( $\mu$ m³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

**Cells/volume** refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and generally are reported as cells or units per milliliter (mL) or liter (L).

Cfs-day (See "Cubic foot per second-day")

**Channel bars**, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and the presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

**Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

**Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

**Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

**Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

**Control** designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

**Control structure**, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables numerically are equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

**Cubic foot per second per square mile** [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted mean concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

**Daily record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to data collection on a daily or near-daily basis.

**Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

**Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data usually are downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or Universal Transverse Mercator (UTM) coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

**Diatoms** (*Bacillariophyta*) are unicellular or colonial algae with a siliceous cell wall. The abundance of diatoms in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μm³/mL). The abundance of diatoms in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μm³/cm²). (See also "Phytoplankton" and "Periphyton")

**Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, and so forth, within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

**Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

**Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

**Diversity index** (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n},$$

where  $n_i$  is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

**Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

**Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

**Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

**Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria commonly are found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")

**EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that generally are considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an E code will be reported with the value. If the analyte is identified qualitatively as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an E code even though the measured value is greater than the MDL. A value reported with an E code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). For bacteriological data, concentrations are reported as estimated when results are based on non-ideal colony counts.

**Euglenoids** (*Euglenophyta*) are a group of algae that usually are free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

**Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

**Fecal streptococcal bacteria** are present in the intestines of warmblooded animals and are ubiquitous in the environ-

ment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

**Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

**Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum is not an actual physical object, the datum is usually defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

**Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

**Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

**Green algae** (*Chlorophyta*) are unicellular or colonial algae with chlorophyll pigments similar to those in terrestrial green plants. Some forms of green algae produce mats or floating "moss" in lakes. The abundance of green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (μm³/mL). The abundance of green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (μm³/cm²). (See also "Phytoplankton" and "Periphyton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat typically are made over a wider geographic scale than are measurements of species distribution.

**Habitat quality index** is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

**Hardness** of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

**High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA Web site*:

http://www.co-ops.nos.noaa.gov/tideglos.html

**Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N},$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

**Hydrologic index stations** referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

**Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

**Inch** (IN., in.), in reference to streamflow, as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were distributed uniformly on it. (See also "Annual runoff")

**Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge")

International Boundary Commission Survey Datum refers to a geodetic datum established at numerous monuments along the United States-Canada boundary by the International Boundary Commission.

**Island**, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year, on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) generally is equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. The LRL replaces the term 'non-detection value' (NDV).

**Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

**Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_{o}e^{-\lambda L}$$
,

where  $I_o$  is the source light intensity, I is the light intensity at length L (in meters) from the source,  $\lambda$  is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o}.$$

**Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spikesample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

**Low tide** is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. *See NOAA Web site:* 

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

**Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

**Mean high** or **low tide** is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

**Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

**Megahertz** is a unit of frequency. One megahertz equals one million cycles per second.

**Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

**Method of Cubatures** is a method of computing discharge in tidal estuaries based on the conservation of mass equation.

Methylene blue active substances (MBAS) indicate the presence of detergents (anionic surfactants). The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

**Micrograms per gram** (UG/G,  $\mu$ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

**Micrograms per kilogram** (UG/KG, μg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

- Micrograms per liter (UG/L, μg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.
- Microsiemens per centimeter (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.
- Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.
- **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.
- Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.
- Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD 29) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It formerly was called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide

- stations, it does not necessarily represent local mean sea level at any particular place. See NOAA Web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")
- Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")
- **Nekton** are the consumers in the aquatic environment and consist of large, free-swimming organisms that are capable of sustained, directed mobility.
- **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.
- **North American Datum of 1927** (NAD 27) is the horizontal control datum for the United States that was defined by a location and azimuth on the Clarke spheroid of 1866.
- North American Datum of 1983 (NAD 83) is the horizontal control datum for the United States, Canada, Mexico, and Central America that is based on the adjustment of 250,000 points including 600 satellite Doppler stations that constrain the system to a geocentric origin. NAD 83 has been officially adopted as the legal horizontal datum for the United States by the Federal government.
- North American Vertical Datum of 1988 (NAVD 88) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.
- **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).
- Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")
- **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or

hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

**Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

**Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

**Parameter code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method uses the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

**Particle-size classification**, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

**Peak flow (peak stage)** is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

**Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

**Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

**Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

**Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

**Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

**pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They usually are microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

**Picocurie** (PC, pCi) is one-trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

**Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

**Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

**Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

**Pool**, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

**Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

**Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light- and dark-bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light- and dark-bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

**Reach**, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals

whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow  $(7Q_{10})$  is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the  $7Q_{10}$ .

**Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

**Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

**River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

**Run**, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

**Sea level,** as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

**Sediment** is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical pre-

cipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

**Seven-day, 10-year low flow**  $(7Q_{10})$  is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the  $7Q_{10}$  is 10 years; the chance that the annual 7-day minimum flow will be less than the  $7Q_{10}$  is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

**Shelves**, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

**Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

**Soil heat flux** (often used interchangeably with soil heatflux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

**Soil-water content** is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

**Stable isotope ratio** (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

**Stage-discharge relation** is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

**Substrate** is the physical surface upon which an organism lives.

**Substrate embeddedness class** is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2 mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

 0
 no gravel or larger substrate
 3
 26-50 percent

 1
 > 75 percent
 4
 5-25 percent

 2
 51-75 percent
 5
 < 5 percent</td>

**Surface area of a lake** is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

**Surficial bed material** is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

**Surrogate** is an analyte that behaves similarly to a target analyte, but that is highly unlikely to occur in a sample. A surrogate is added to a sample in known amounts before extraction and is measured with the same laboratory procedures used to measure the target analyte. Its purpose is to monitor method performance for an individual sample.

**Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and, thus, the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

**Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

# Suspended-sediment concentration is the velocity-

weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

**Suspended-sediment discharge** (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

# Suspended solids, total residue at $105\ ^{\circ}\text{C}$ concentration is the concentration of inorganic and organic material

retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

**Taxa** (**Species**) **richness** is the number of species (taxa) present in a defined area or sampling unit.

**Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropeda
Class: Insecta
Order: Ephemeroptera

Family: Ephemeropters
Genus: Hexagenia

Species: Hexagenia limbata

**Thalweg** is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

**Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

**Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the

composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

**Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

**Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric ton per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

**Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

**Total in bottom material** is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology

used, is required to judge when the results should be reported as "total in bottom material."

**Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

**Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

**Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

**Total sediment discharge** is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

**Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

**Turbidity** is the reduction in the transparency of a solution because of the presence of suspended and some dissolved substances. The measurement technique records the collec-

tive optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to USEPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of path length of UV light through a sample.

**Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and, subsequently, analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They often are components of fuels, solvents, hydraulic fluids, paint thinners, and dry-cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human-health concern because many are toxic and are known or suspected human carcinogens.

**Water table** is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

Watershed (See "Drainage basin")

**WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

**WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

#### TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The USGS publishes a series of manuals, the Techniques of Water-Resources Investigations, describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

Reports in the Techniques of Water-Resources Investigations series, which are listed below, are online at http:// water.usgs.gov/pubs/twri/. Printed copies are for sale by the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office), telephone 1-888-ASK-USGS. Please telephone 1-888-ASK-USGS for current prices, and refer to the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Products can then be ordered by telephone, or online at http://www.usgs.gov/sales.html, or by FAX to (303)236-469 of an order form available online at http:// mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

# **Book 1. Collection of Water Data by Direct Measurement**

## Section D. Water Quality

- 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

## **Book 2. Collection of Environmental Data**

## Section D. Surface Geophysical Methods

- 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

## Section E. Subsurface Geophysical Methods

- 2–E1. Application of borehole geophysics to waterresources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

# Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

# **Book 3. Applications of Hydraulics**

#### Section A. Surface-Water Techniques

- 3–A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. *Measurement of peak discharge at width contractions by indirect methods,* by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3–Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS–TWRI book 3, chap. A10. 1984. 59 p.

- 3–A11. *Measurement of discharge by the moving-boat method,* by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3–A17. *Acoustic velocity meter systems*, by Antonius Laenen: USGS–TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3–A19. *Levels at streamflow gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3–A21 Stream-gaging cableways, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p.

## Section B. Ground-Water Techniques

- 3–B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.

- 3–B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and threedimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

### Section C. Sedimentation and Erosion Techniques

- 3–C1. *Fluvial sediment concepts*, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p.
- 3–C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3–C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p.

# **Book 4. Hydrologic Analysis and Interpretation**

## Section A. Statistical Analysis

- 4–A1. *Some statistical tools in hydrology*, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p.
- 4–A2. *Frequency curves*, by H.C. Riggs: USGS–TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

#### Section B. Surface Water

- 4–B1. *Low-flow investigations*, by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973.

  15 p.

## Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

## **Book 5. Laboratory Analysis**

### Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments,* by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples,* by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

## Section C. Sediment Analysis

5–C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

## **Book 6. Modeling Techniques**

#### Section A. Ground Water

- 6–A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS—TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS-TWRI book 6, chap. A7. 2002. 77 p.

# **Book 7. Automated Data Processing and Computations**

# Section C. Computer Programs

- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. Computer model of two-dimensional solute transport and dispersion in ground water, by

- L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

#### **Book 8. Instrumentation**

# Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

## Section B. Instruments for Measurement of Discharge

8–B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

# **Book 9. Handbooks for Water-Resources Investiga-**

# Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. National field manual for the collection of water-quality data: Preparations for water sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. National field manual for the collection of water-quality data: Selection of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. National field manual for the collection of water-quality data: Cleaning of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. National field manual for the collection of water-quality data: Collection of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. National field manual for the collection of water-quality data: Processing of water samples, edited by F.D. Wilde, D.B. Radtke,

- Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. National field manual for the collection of water-quality data: Field measurements, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. National field manual for the collection of water-quality data: Biological indicators, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. National field manual for the collection of water-quality data: Bottom-material samples, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. National field manual for the collection of water-quality data: Safety in field activities, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

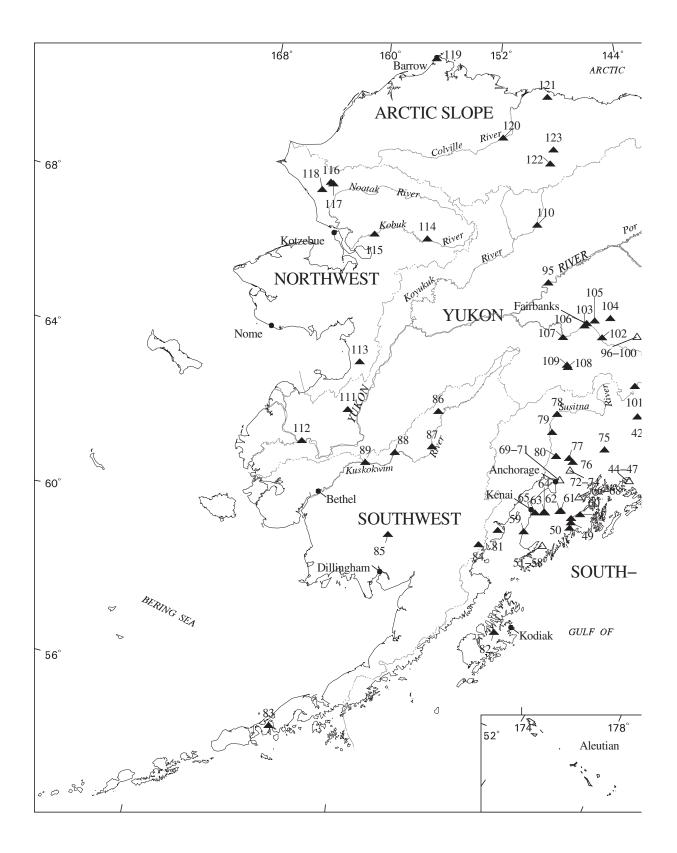
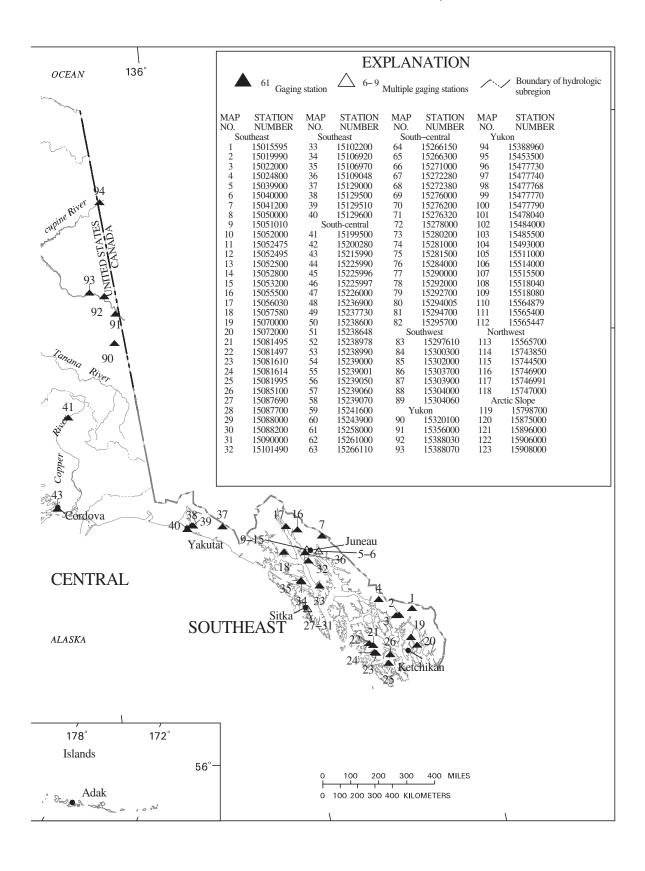




Figure 1. Locations of gaging stations



## 15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April to September 2003.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: April to September 2003.

INSTRUMENTATION. -- Digital water-temperature recorder with 15-minute recording interval.

REMARKS.--Probe installed on April 30. Missing record from July 23-29 and August 1-25 due to buried probe. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on August 26. No variation was found in the temperature cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded,  $10.0^{\circ}$ C, June 5, July 12, 18, and 30; minimum recorded,  $5.5^{\circ}$ C May 1, 4, and 25.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Locatn in X-sect. looking dwnstrm ft from 1 bank (00009)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
AUG								
26	1815	14.0	85	7.3	9.5	754	11.1	98
26	1816	42.0	85	7.3	9.5	754	10.9	96
26	1817	70.0	85	7.3	9.5	754	11.0	97
26	1818	98.0	85	7.3	9.5	754	11.0	97
26	1819	126	85	7.3	9.5	754	11.0	97

TEMPERATURE WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	F	EBRUARY			MARCH			APRIL			MAY	
1										5.5	3.5	4.5
2										6.0	2.5	4.5
3										6.0	2.5	4.0
4										5.5	2.5	4.0
5										6.5	3.0	4.5
6										7.0	3.5	5.0
7										7.5	4.0	5.5
8										8.0	4.0	6.0
9										8.0	4.5	6.0
10										8.0	4.0	6.0
11										8.0	4.0	6.0
12										6.5	4.5	5.0
13										6.0	4.0	5.0
14										6.0	4.0	5.0
15										6.0	4.5	5.0
16										7.0	4.5	5.5
17										8.0	5.0	6.5
18										8.0	5.0	6.5
19										8.5	5.0	6.5
20										8.5	4.5	6.5
21										7.5	5.0	5.5
22										7.0	5.0	6.0
23										6.5	5.0	5.5
24										6.5	4.5	
												5.5
25										5.5	4.5	5.0
26										7.0	4.5	5.5
27										7.0	4.5	5.5
28										7.5	5.0	6.5
29										7.5	5.0	6.5
30										8.0	4.5	6.5
31										8.5	5.5	7.0
MONTH										8.5	2.5	5.6

# 15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL—Continued

TEMPERATURE WATER,	(DEGREES	CELSIUS),	WATER	YEAR	OCTOBER	2002	ТО	SEPTEMBER	2003	

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		i	AUGUST		5	SEPTEMBE	R
1 2 3 4 5	7.0 8.5 9.0 8.5 10.0	5.0 5.0 4.5 5.5 6.0	6.0 6.5 7.0 7.0 8.0	7.0 7.0 7.5 8.0 8.5	5.5 6.0 6.0 5.5	6.0 6.5 6.5 6.5 7.0	  	  	  	7.0 8.0 8.0 7.5 7.0	6.0 6.5 6.0 6.5	6.5 7.0 7.0 6.5 6.5
6 7 8 9 10	9.5 9.0 9.0 9.5 9.5	5.5 5.0 4.5 5.0	7.5 7.0 7.0 7.0 7.5	8.0 9.5 8.5 9.5	6.0 6.0 6.0 6.0	7.0 7.5 7.0 7.5 8.0	  	  	  	7.5 7.0 7.0 7.0 7.0	6.5 6.0 6.0 6.0	7.0 6.5 6.5 6.5 6.5
11 12 13 14 15	8.5 7.5 7.0 7.5 6.5	5.5 5.5 5.0 5.0	7.0 6.5 6.5 6.5 5.5	9.5 10.0 8.5 7.5 7.0	6.0 6.0 6.0 6.0	8.0 8.0 7.0 6.5	  	  	  	7.0 8.0 7.0 7.0 7.5	6.5 6.5 6.5 6.5	6.5 7.0 6.5 7.0 7.0
16 17 18 19 20	7.5 7.0 8.0 7.5 8.5	5.0 6.0 5.5 5.0	6.5 6.5 6.0 7.0	7.0 7.5 10.0 8.5 7.5	6.0 6.0 6.0 6.5	6.5 6.5 7.5 7.5	  	  	  	8.0 7.0 6.5 7.0 6.5	6.0 5.5 5.5 6.0	7.0 6.5 6.0 6.5 6.0
21 22 23 24 25	8.5 9.0 8.5 7.5 7.0	5.5 6.0 6.0 6.0	7.0 7.5 7.0 6.5	7.5 7.5 	6.0 6.0 	6.5 6.5 	  	  	  	6.5 7.5 6.5 6.0 7.0	6.0 6.0 5.5 5.5	6.5 6.5 6.0 6.0
26 27 28 29 30 31	8.5 7.5 7.5 8.0 7.0	6.0 5.5 5.5 5.6	7.0 6.5 6.5 6.5	  10.0 9.0	  6.0 6.5	   7.5	9.5 8.5 9.0 9.5 8.5 7.0	6.5 6.5 6.5 6.5 6.0	7.5 8.0 8.0 7.0 6.5	6.5 7.0 8.0 7.5 7.5	6.0 6.0 6.0 5.5	6.5 7.0 7.0 6.5
MONTH	10.0	4.5	6.8							8.0	5.5	6.6

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Meduim code	Sample type	Stream width, feet (00004)	Gage height, feet (00065)	Instan- taneous dis- charge, cfs (00061)	Sam- pling method, code (84398)	Sampler type, code (84164)	Specif. conduc- tance, wat unf uS/cm 25 deg C (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00030)	Temper- ature, water deg C (00010)	Baro- metric pres- sure, mm Hg (00025)
AUG 26	1800	9	9	136	23.77	5320	10	8010	85	7.3	14.0	9.5	754
Date	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)		Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	Potas- sium, water, fltrd, mg/L (00935)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Specif.p H Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd mg/L (00955)
AUG 26	11.0	97	35	12.3	1.09	1.28	.70	31	25	12.6	.26	<.2	3.06

# 15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL—Continued

	Residue	Residue		Nitrite		Ammonia	Ammonia			Ortho-			
	on evap.	water,	Nitrite	+	Ammonia	+	+	Phos-	Phos-	phos-	Iron,	Mangan-	Organic
	at 180	fltrd,		nitrate	water,	org-N,	org-N,	phorus,	phorus,	phate,	water,	ese,	carbon,
Date	deg C	sum of	fltrd,	water	fltrd,	water,	water,	water	water,	water,	fltrd,	water,	water,
	wat flt	consti-	mg/L as	fltrd,	mg/L as	unfltrd	-	unfltrd	fltrd,	fltrd,	ug/L	fltrd,	fltrd,
	mg/L	tuents mg/L	N (00613)	mg/L as N	N (00608)	mg/L as N	mg/L as N	mg/L (00665)	mg/L (00666)	mg/L as P	(01046)	ug/L (01056)	mg/L (00681)
	(70300)	(70301)	(00013)	(00631)	(00000)	(00625)	(00623)	(00003)	(00000)	(00671)		(01030)	(00001)
AUG		(70301)		(00051)		(00023)	(00023)			(00071)			
26	59	47	<.002	.025	<.015	E.05	<.10	.044	<.004	<.007	<8	11.2	.5
	Inor	_		Partic-									
	gani			ulate									
	carbo: susp												
	sedim	nt sedim	nt sedimn	t susp,									
Date	tota mg/												
	(0068												
AUG													
26	<.1	<.1	<.1	<.02									

#### 15019990 TYEE LAKE OUTLET NEAR WRANGELL

LOCATION.--Lat  $56^{\circ}12'00''$ , long  $131^{\circ}30'24''$ , in  $SE^{1}/_{4}$   $SW^{1}/_{4}$  sec. 28, T. 65 S., R. 90 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on left bank at outlet of Tyee Lake, 1.5 mi south of Bradfield Canal and 37 mi southeast of Wrangell, Alaska.

DRAINAGE AREA. -- 14.7 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1979 to September 1981 and June 1992 to current year. Records for November 1922 to September 1927 and August 1963 to October 1969, published as Tyee Creek at Mouth near Wrangell (station 15020100) are not equivalent owing to inflow between sites.

E.--Water-stage recorder. Elevation of gage is 1,370 ft above sea level from topographic map. Prior to June 9, 1992, at site 500 ft downstream at datum 13.66 ft lower.

REMARKS.--Records fair, except for estimated daily discharges and discharges below 10 ft³/s, which are poor. Water for power generation is diverted from Tyee Lake and discharged into Bradfield Canal. Diversion to hydropower plant began February 1984, and is not included in the discharge records.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003  DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	105	6.6	84	5.8	18	0.00	0.00	0.00	284	137	22	99
2	122	4.2	66	6.0	13	0.00	0.00	0.00	277	129	22	262
3	105	e3.2	49	5.6	10	0.00	0.00	0.00	261	137	24	269
4	86	2.2	33	21	7.0	0.00	0.00	0.00	240	178	19	217
5	74	1.3	20	62	4.7	0.00	0.00	0.00	237	186	13	181
6	115	4.9	12	226	3.0	0.00	0.00	0.00	270	168	9.2	184
7	127	9.3	14	269	1.7	0.00	0.00	0.00	303	148	6.6	197
8	132	9.2	47	229	0.70	0.00	0.00	0.00	303	132	5.2	201
9	132	7.3	128	178	0.19	0.00	0.00	0.00	289	115	4.2	168
10	116	5.9	153	135	0.00	0.00	0.00	0.00	283	101	3.1	205
11	94	4.3	143	103	0.00	0.00	0.00	0.00	283	93	1.8	283
12	76	10	164	78	0.00	0.00	0.00	0.00	291	86	0.89	246
13	72	40	167	58	0.00	0.00	0.00	0.00	313	87	0.54	303
14	65	68	140	42	0.00	0.00	0.00	0.13	304	85	0.34	422
15	60	76	132	28	0.00	0.00	0.00	0.37	314	74	1.2	381
16	55	74	119	20	0.00	0.00	0.00	0.51	304	74	5.1	315
17	51	63	97	26	0.00	0.00	0.00	0.74	299	91	10	248
18	43	54	76	33	0.00	0.00	0.00	1.5	336	88	25	270
19	39	78	58	38	0.00	0.00	0.00	2.8	331	78	40	332
20	61	107	42	48	0.00	0.00	0.00	4.7	298	79	44	308
21	60	290	28	42	0.00	0.00	0.00	9.6	256	96	54	363
22	51	257	18	32	0.00	0.00	0.00	44	220	106	54	354
23	42	201	25	23	0.00	0.00	0.00	122	193	91	47	291
24	32	152	40	17	0.00	0.00	0.00	290	166	75	39	349
25	23	120	39	13	0.00	0.00	0.00	347	152	62	29	437
26 27 28 29 30 31	16 24 26 20 15	147 148 128 107 97	33 24 17 12 8.8 6.7	21 34 29 28 28 24	0.00 0.00 0.00 	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	349 314 287 303 284 279	157 146 143 149 142	53 48 44 39 33 26	20 14 11 8.2 13 49	382 315 258 207 162
TOTAL	2049	2275.4	1995.5	1902.4	58.29	0.00	0.00	2639.35	7544	2939	595.37	8209
MEAN	66.1	75.8	64.4	61.4	2.08	0.000	0.000	85.1	251	94.8	19.2	274
MAX	132	290	167	269	18	0.00	0.00	349	336	186	54	437
MIN	10	1.3	6.7	5.6	0.00	0.00	0.00	0.00	142	26	0.34	99
AC-FT	4060	4510	3960	3770	116	0.00	0.00	5240	14960	5830	1180	16280
STATIST	FICS OF	MONTHLY	MEAN DATA	A FOR WATER	YEARS 19	92 - 2003,	BY WAT	ER YEAR (V	JY)#			
MEAN	153	48.8	14.0	6.55	0.21	0.000	2.89	69.9	265	182	112	190
MAX	264	108	64.4	61.4	2.08	0.000	24.8	247	367	305	216	298
(WY)	2000	1993	2003	2003	2003	1993	1993	1993	1999	1999	2000	2001
MIN	66.1	5.10	0.000	0.000	0.000	0.000	0.000	0.000	176	55.2	19.2	41.5
(WY)	2003	1997	1995	1993	1993	1993	1994	2002	1994	1998	2003	1993

Record for 1980 and 1981 water years, prior to diversion of 1984, not included. See Period of Record.

# 15019990 TYEE LAKE OUTLET NEAR WRANGELL—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1992 - 2003#
ANNUAL TOTAL	36708.60	30207.31	
ANNUAL MEAN	101	82.8	86.7
HIGHEST ANNUAL MEAN			113 2001
LOWEST ANNUAL MEAN			56.5 1995
HIGHEST DAILY MEAN	553 Aug 27	437 Sep 25	710 Oct 27 1993
LOWEST DAILY MEAN	a0.00 Jan 1	b0.00 Feb 10	c0.00 Dec 30 1992
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 1	0.00 Feb 10	0.00 Dec 30 1992
MAXIMUM PEAK FLOW		452 Sep 25	d975 Oct 26 1993
MAXIMUM PEAK STAGE		23.97 Sep 25	28.62 Oct 26 1993
INSTANTANEOUS LOW FLOW		b0.00 Feb 10	c0.00 Dec 30 1992
ANNUAL RUNOFF (AC-FT)	72810	59920	62790
10 PERCENT EXCEEDS	318	283	276
50 PERCENT EXCEEDS	26	33	19
90 PERCENT EXCEEDS	0.00	0.00	0.00

## PRIOR TO DIVERSION OF 1984

SUMMARY STATISTICS	WATER YEARS	1980 - 1981
ANNUAL MEAN HIGHEST ANNUAL MEAN	179 213	1981
LOWEST ANNUAL MEAN	146	1980
HIGHEST DAILY MEAN	1690	Oct. 7 1980
LOWEST DAILY MEAN	f1.4	Apr. 2 1980
ANNUAL SEVEN-DAY MINIMUN	2.0	Mar.31 1980
INSTANTANEOUS PEAK FLOW	1910	Oct. 7 1980
INSTANTANEOUS PEAK STAGE	12.72	Oct. 7 1980
ANNUAL RUNOFF (AC-FT)	130000	
10 PERCENT EXCEEDS	457	
50 PERCENT EXCEEDS	86	
90 PERCENT EXCEEDS	11	

# 15019990 TYEE LAKE OUTLET NEAR WRANGELL—Continued LAKE-STAGE RECORDS

PERIOD OF RECORD.-- June of 1992 to Sept.2002 (fragmentary) during many winter months when lake level was below the point of Zero flow at the outlet. The 2003 WY is complete when sensor was lowered below the PZF.

GAGE.-- Water-stage recorder. Datum of gage is mean low low water (GPS survey of Aug.21,2003 by USGS using NADD 83) lake outlet at a datum of 1,368.80 ft. above mean low low water at the point of zero flow.

REMARKS.-- Lake outlet consists of Large boulders and log jams with uncontrolled spillway at elev 1368.80 ft. Water for power generation is diverted from Tyee lake and discharged into Bradfield Canal. Diversion to power plant began in February 1984.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 1383.02 ft. Oct. 26, 1993: minimum observed unknown until 2003 wy

EXTREMES FOR CURRENT YEAR.-- Maximum elevation, 1378.37 ft. September 25,2003; minimum 1357.51 ft.April 14,2003

ELEVATION OF RESERVOIR WATER SURFACE ABOVE DATUM, FEET WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1373.06	1369.94	1372.42	1369.87	1370.60	1364.28	1359.83	1363.57	1376.05	1373.60	1370.78	1372.76
2	1373.28	1369.68	1371.97	1369.89	1370.41	1364.08	1359.68	1364.05	1375.95	1373.42	1370.78	1375.70
3	1372.91	1369.58	1371.52	1369.85	1370.21	1363.84	1359.49	1364.32	1375.70	1373.59	1370.83	1375.82
4	1372.46	1369.40	1371.09	1370.63	1369.98	1363.65	1359.29	1364.47	1375.37	1374.36	1370.65	1375.00
5	1372.19	1369.23	1370.70	1371.87	1369.75	1363.48	1359.07	1364.52	1375.32	1374.48	1370.41	1374.41
6	1373.12	1369.72	1370.35	1375.12	1369.53	1363.22	1358.87	1364.58	1375.84	1374.17	1370.15	1374.45
7	1373.38	1370.16	1370.41	1375.83	1369.32	1362.93	1358.70	1364.64	1376.34	1373.82	1369.94	1374.67
8	1373.49	1370.15	1371.44	1375.19	1369.08	1362.62	1358.50	1364.78	1376.34	1373.49	1369.81	1374.74
9	1373.49	1370.01	1373.40	1374.35	1368.85	1362.31	1358.29	1365.07	1376.12	1373.13	1369.69	1374.17
10	1373.15	1369.88	1373.92	1373.56	1368.61	1361.99	1358.09	1365.51	1376.04	1372.83	1369.54	1374.80
11	1372.66	1369.70	1373.71	1372.86	1368.38	1361.69	1357.90	1366.08	1376.04	1372.64	1369.34	1376.03
12	1372.23	1370.19	1374.10	1372.28	1368.14	1361.39	1357.72	1367.10	1376.15	1372.48	1369.13	1375.47
13	1372.12	1371.28	1374.15	1371.77	1367.91	1361.22	1357.59	1368.32	1376.48	1372.49	1369.03	1376.32
14	1371.96	1372.02	1373.66	1371.31	1367.67	1361.21	1357.53	1368.79	1376.35	1372.45	1368.95	1378.01
15	1371.83	1372.24	1373.50	1370.96	1367.46	1361.09	1357.58	1368.96	1376.49	1372.17	1369.15	1377.45
16	1371.69	1372.18	1373.21	1370.69	1367.27	1361.00	1357.76	1369.02	1376.35	1372.17	1369.80	1376.50
17	1371.58	1371.91	1372.72	1370.88	1367.10	1360.84	1357.79	1369.10	1376.28	1372.58	1370.22	1375.49
18	1371.35	1371.68	1372.23	1371.10	1366.91	1360.69	1357.72	1369.28	1376.81	1372.52	1370.83	1375.83
19	1371.23	1372.27	1371.77	1371.23	1366.76	1360.49	1357.66	1369.50	1376.74	1372.28	1371.28	1376.76
20	1371.85	1372.91	1371.34	1371.50	1366.56	1360.31	1357.65	1369.76	1376.25	1372.30	1371.40	1376.41
21	1371.81	1376.14	1370.94	1371.33	1366.30	1360.17	1357.72	1370.16	1375.63	1372.70	1371.67	1377.19
22	1371.59	1375.64	1370.63	1371.04	1366.03	1360.04	1357.86	1371.37	1375.05	1372.92	1371.65	1377.07
23	1371.33	1374.74	1370.84	1370.79	1365.76	1359.89	1357.90	1373.23	1374.60	1372.59	1371.47	1376.15
24	1371.06	1373.89	1371.28	1370.58	1365.49	1359.62	1358.03	1376.13	1374.15	1372.19	1371.26	1376.98
25	1370.79	1373.25	1371.25	1370.38	1365.28	1359.36	1358.72	1376.97	1373.90	1371.88	1370.98	1378.18
26 27 28 29 30 31	1370.56 1370.82 1370.88 1370.70 1370.47 1370.21	1373.78 1373.81 1373.40 1372.94 1372.73	1371.08 1370.83 1370.59 1370.35 1370.12 1369.96	1370.70 1371.12 1370.99 1370.95 1370.96 1370.82	1365.03 1364.78 1364.52 	1359.09 1358.83 1358.58 1358.55 1359.23 1359.87	1359.98 1360.87 1361.47 1362.08 1362.82	1377.00 1376.49 1376.10 1376.34 1376.06 1375.98	1373.98 1373.77 1373.71 1373.84 1373.69	1371.65 1371.49 1371.37 1371.24 1371.08 1370.90	1370.70 1370.46 1370.26 1370.07 1370.32 1371.53	1377.46 1376.51 1375.65 1374.84 1374.08
	1371.91	1371.82	1371.79	1371.63	1367.63	1361.15	1358.81	1369.59	1375.51	1372.61	1370.39	1375.83
	1373.49	1376.14	1374.15	1375.83	1370.60	1364.28	1362.82	1377.00	1376.81	1374.48	1371.67	1378.18
	1370.21	1369.23	1369.96	1369.85	1364.52	1358.55	1357.53	1363.57	1373.69	1370.90	1368.95	1372.76

Record for 1980 & 1981 water years, prior to diversion of 1984, not included. See PERIOD OF RECORD Jan.1 to Jun. 2,2002 Feb. 10 to May 13 No flow many days during winter months most years From rating extended above 400 cfs Apr. 2-3 1980

b

## 15022000 HARDING RIVER NEAR WRANGELL

LOCATION.--Lat  $56^{\circ}12'48''$ , long  $131^{\circ}38'12''$ , in  $SW^{1}/_{4}$   $SW^{1}/_{4}$  sec. 22, T. 65 S., R. 89 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on right bank 1 mi upstream from mouth on north shore of Bradfield Canal, 4 mi downstream from Fall Lake, and 34 mi southeast of Wrangell.

DRAINAGE AREA.--67.4 mi².

PERIOD OF RECORD. -- August 1951 to current year.

REVISED RECORDS. -- WSP 1640: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to September 30, 1960, at site 300 ft upstream at datum 0.12 ft lower. October 1, 1960, to August 23, 1975, at prior site and present

REMARKS.--Records fair except for estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 ft3/s and maximum (*):

	Date	e	Time D	ischarge (ft³/s)	Gage height (ft)		Dat	е	Time	Discharge (ft ³ /s)	Gage height (ft)	
	Nov.	21	0430	6290	10.43		Sept.	.14	0230	*6950	*10.87	
	Jan	06	0700	4250	9.00		Sept	21	2030	4310	9.04	
	Sept	02	0515	6850	10.80		Sept	24	1145	5420	9.83	
DAY	OCT	DIS	CHARGE, C	UBIC FEET 1		), WATER Y LY MEAN V MAR		BER 2002 MAY	2 TO SEPT JUN	EMBER 2003	AUG	SEP
1	716	194	600	327	280	99	391	949	1360	1250	671	2420
2 3 4 5	1360 611 454 561	174 160 150 175	416 332 277 239	436 403 1130 1360	244 349 265 216	128 128 185 242	269 204 166 142	716 527 398 326	1290 937 833 1090	1190 1510 2960 1580	1130 1040 638 499	5150 1740 905 866
6 7 8 9 10	2520 2620 2880 1850 935	546 525 315 247 220	217 526 1150 1580 1060	2760 1720 733 473 368	189 172 161 150 143	169 e140 e125 e114 e106	125 140 156 151 142	302 298 330 431 566	1680 1630 1250 1080 1190	1110 922 929 859 853	432 464 509 542 488	1160 1200 1130 677 1360
11 12 13 14 15	593 488 758 620 633	217 461 912 1070 794	724 1040 934 605 608	308 268 235 208 193	137 130 123 113 111	e100 e94 e105 e118 e135	157 178 208 267 334	668 1160 1220 770 560	1210 1120 1260 1180 1400	950 906 1080 962 756	409 398 459 518 822	3070 1540 3050 4930 2100
16 17 18 19 20	747 997 601 572 1130	571 535 507 978 1100	520 466 385 324 272	193 655 643 692 823	107 120 158 263 237	e250 175 212 209 183	504 406 328 275 273	444 383 431 481 510	1070 1300 2320 1800 1150	1870 2200 1270 934 1300	1240 1180 984 1040 1200	1000 645 1390 2230 1750
21 22 23 24 25	678 528 434 359 305	3540 988 586 430 414	232 219 654 614 440	463 306 261 251 247	145 e140 e128 e116 e108	229 278 292 213 181	339 400 332 394 1250	556 955 1520 2740 1850	867 790 797 712 906	1880 1490 833 669 658	1260 774 546 471 412	3230 1730 845 3140 4210
26 27 28 29 30 31	268 558 440 318 259 221	2350 1220 830 588 724	354 290 251 221 202 208	476 512 354 372 495 385	101 101 97  	166 158 180 465 1200 773	1550 1180 914 854 929	1620 1120 1120 1740 1180 1300	1300 957 1210 1230 1030	692 783 816 716 670 623	388 380 343 370 929 2060	2090 1320 945 777 629
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	26014 839 2880 221 601 51600 12.5 14.36	21521 717 3540 150 541 42690 10.6 11.88	15960 515 1580 202 416 31660 7.64 8.81	18050 582 2760 193 403 35800 8.64 9.96	4604 164 349 97 141 9130 2.44 2.54	7152 231 1200 94 175 14190 3.42 3.95	12958 432 1550 125 301 25700 6.41 7.15	27171 876 2740 298 668 53890 13.0 15.00	35949 1198 2320 712 1190 71300 17.8 19.84	35221 1136 2960 623 934 69860 16.9 19.44	22596 729 2060 343 542 44820 10.8 12.47	57229 1908 5150 629 1470 113500 28.3 31.59
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 195	1 - 2003,	BY WATER	R YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	1074 2152 1962 610 1970	501 1252 1970 118 1986	341 1065 1990 102 1984	259 819 1981 50.6 1969	235 655 1954 46.7 1969	202 510 1986 54.8 1969	361 733 1994 90.0 1954	918 1357 1956 624 1977	1385 1896 1996 960 1981	1340 1878 1972 861 1995	1137 1871 2002 601 1993	1161 2039 2001 507 1965

See period of record; partial years used in monthly statistics Estimated

# 15022000 HARDING RIVER NEAR WRANGELL—Continued

SUMMARY STATISTICS	FOR 2002 CALEND	AR YEAR	FOR 2003 WAT	FER YEAR	WATER YEARS	1951 - 2003#
ANNUAL TOTAL ANNUAL MEAN	321989.0 882		284425 779		747	
HIGHEST ANNUAL MEAN	002		,,,,		921 558	1992 1995
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	6190	Aug 23	5150	Sep 2	11400	Oct 14 1961
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	a57 59	Mar 24 Mar 18	94 107	Mar 12 Feb 23	b35 35	Jan 23 1969 Jan 23 1969
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE			6950 10.87	Sep 14 Sep 14	c15300 d16.22	Oct 26 1993 Oct 14 1961
INSTANTANEOUS LOW FLOW	620700		f	50p 11	35	Jan 23 1969
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM)	638700 13.1		564200 11.6		541100 11.1	
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	177.71 2010		156.98 1580		150.56 1610	
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	582 84		561 157		544 110	

[#] See Period of Record; partial years used in monthly statistics
a Mar. 24 & Apr. 9
b From Jan. 23 to Feb. 11, 1969
c From rating curve extended above 5,000 ft³/s on basis of slope-area measurement at gage height, 13.90 ft
d At site then in use
f Not determined, see lowest daily mean

## 15024800 STIKINE RIVER NEAR WRANGELL (International gaging station)

 $\texttt{LOCATION.--Lat 56°42'29'', long 132°07'49'', in SE$^{1}\!\!/_{4} sec. 35, T. 59 S., R. 84 E. (Petersburg C-1 quad), Hydrologic Approximation (Petersburg C-1) and (Petersburg C-1) approximation (Petersburg C-1) and (Petersburg C-1) approximation ($ Unit 19010201, on right bank about 10 mi upstream from mouth near Point Rothsay, 11 mi west of Alaska-British Columbia boundary, and 18 mi northeast of Wrangell.

DRAINAGE AREA.--19,920 mi², approximately.

PERIOD OF RECORD. -- July 1976 to current year.

REVISED RECORDS.--WDR AK-78-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges during periods of ice effect, Nov. 26 to Apr. 18, which are poor. GOES satellite telemetry at station.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DATLY MEAN VALUES

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58800 62700 56000 49200 45500	21600 e19300 e18900 e18200 e18300	e25500 e22500 e18600 e17000 e16800	e12200 e12200 e11900 e14500 e18200	e13000 e12700 e12400 e12000 e11500	e6000 e6200 e6200 e6100 e5800	e10000 e9000 e8500 e8200 e7900	51700 53700 49300 43200 37200	112000 116000 112000 103000 99100	120000 139000 146000 153000 146000	122000 116000 108000 96900 89900	88100 127000 136000 108000 87700
6 7 8 9 10	56500 70500 79900 77500 63400	e20700 e22000 e21300 e19700 18600	29500 47600 e41000 e37000 e29000	38900 e37100 e28000 21200 e19500	e11000 e10200 e9500 e9000 e8600	e5500 e5200 e5000 e4800 e4700	e7900 e9800 e10000 e9500 e9300	33000 30800 30100 31600 36200	115000 141000 152000 151000 149000	134000 130000 129000 133000 143000	83500 86200 93100 99000 95800	84000 93400 93800 77900 74200
11 12 13 14 15	52200 45500 44800 41100 38900	17600 17500 20500 23800 e23900	e25600 25300 26800 22800 e19800	e18000 e17000 e16000 e15500 e14600	e8100 e7800 e7500 e7300 e7000	e4600 e4500 e4700 e4900 e5700	e9200 e9100 e9000 e9950 e11200	42300 52200 60900 58000 51900	152000 152000 151000 145000 140000	152000 157000 154000 149000 142000	81200 79800 88500 100000 102000	102000 91000 92300 129000 103000
16 17 18 19 20	40400 45800 45500 46200 55500	e22800 e21800 e20800 e21400 22500	e19300 e17900 e16700 e15100 e13700	e14200 e15200 e17000 e20000 e21000	e6700 e6200 e5800 e5900 e6100	e6800 e7600 e7300 e7000 e7200	e12000 e12800 e12300 e12300 e12300	e45500 e41400 e40200 42000 44000	124000 115000 128000 133000 124000	138000 148000 146000 142000 142000	120000 124000 108000 98200 88900	77500 64400 62200 69300 65900
21 22 23 24 25	56400 53400 50200 44700 39800	36300 30600 22400 18800 17500	e12800 e12400 e13400 e16100 e14600	e19000 e18000 e17000 e16000 e16000	e5900 e5800 e5600 e5400 e5400	e7000 e6900 e6900 e6900 e6900	e12600 e14400 e15000 15600 23000	46500 51900 59400 80700 93500	113000 107000 105000 100000 104000	146000 141000 127000 116000 115000	84600 75300 65100 61100 59400	78300 79400 61700 74500 111000
26 27 28 29 30 31	35400 35100 33400 30100 27600 24600	28900 34200 34000 28100 26400	e14100 e13600 e13000 e12300 e11700 e11600	e15200 e14800 e14100 e14000 e13800 e13300	e5400 e5600 e5800 	e6700 e7000 e7200 e8500 e10300 e11600	36900 43100 44600 43700 46600	101000 103000 95800 96200 98700 104000	108000 108000 105000 108000 106000	123000 121000 116000 115000 120000 119000	59400 61900 62400 62900 70200 86600	100000 85400 82100 87300 89700
MEAN MAX MIN MED	1506600 48600 79900 24600 45800 2988000 2.44 2.81	688400 22950 36300 17500 21500 1365000 1.15 1.29	633100 20420 47600 11600 17000 1256000 1.03 1.18	553400 17850 38900 11900 16000 1098000 0.90 1.03	223200 7971 13000 5400 7150 442700 0.40 0.42	201700 6506 11600 4500 6700 400100 0.33 0.38	495750 16520 46600 7900 11600 983300 0.83 0.93	1805900 58250 104000 30100 51700 3582000 2.92 3.37	3678100 122600 152000 99100 115000 7296000 6.15 6.87	4202000 135500 157000 115000 139000 8335000 6.80 7.85	2729900 88060 124000 59400 88500 5415000 4.42 5.10	2676100 89200 136000 61700 87500 5308000 4.48 5.00
STATIS	STICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 197	6 - 2003	B, BY WATE	ER YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	57070 113300 1987 30590 1986	24640 58280 1979 10010 1986	14150 25780 1990 5593 1997	11720 39450 1981 5958 1978	9254 19080 1977 5111 1999	10000 42340 1992 4719 1978	16490 31960 1992 7292 2002	66170 119100 1993 32260 1982	134600 199900 1992 103400 1978	134400 163800 1985 109100 1983	107200 134200 1977 76770 1995	80630 128600 1981 50760 1986
SUMMAI	RY STATIS	TICS	FOI	R 2002 CAL	ENDAR YEAR			WATER YEA	R	WATER YE	ARS 1976	- 2003#
ANNUAI HIGHES LOWESS ANNUAI MAXIMU MAXIMU ANNUAI ANNUAI ANNUAI 10 PEI 50 PEI	HEST ANNUAL MEAN EST ANNUAL MEAN HEST DAILY MEAN EST DAILY MEAN EST DAILY MEAN 226000 Aug 2 EST DAILY MEAN a5300 Mar 2			Aug 28 Mar 23 Apr 5		19394150 53130 157000 Jul 12 4500 Mar 12 4740 Mar 8 158000 Jul 12 22.08 Jul 12 38470000 2.67 36.22 125000 36900 7000				55710 72870 42100 324000 Sep 23 1994 4000 Feb 12 1988 4090 Mar 8 1999 351000 Sep 23 1994 30.60 Sep 23 1994 40360000 2.80 38.00 136000 316000 7200		

See Period of Record; partial years used in monthly statistics Mar.  $23-24\,\mathrm{Apr}$ . 6-11

## 15039900 DOROTHY LAKE OUTLET NEAR JUNEAU

LOCATION.--Lat  $58^{\circ}14'56''$ , long  $133^{\circ}58'54''$ , in  $NE^{1}_{/4}$   $NW^{1}_{/4}$  sec. 9, T. 42 S., R. 70 E.(Taku River A-6 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on right bank 3 mi upstream from mouth at Taku Inlet, and 16.4 mi east of Juneau.

PERIOD OF RECORD. -- October 1986 to January 2003 (discontinued).

GAGE.--Water-stage recorder. Datum of gage is 2,410.78 ft above sea level.

REMARKS.--Records fair, except for discharges under  $50~{\rm ft}^3/{\rm s}$  and estimated discharges, which are poor. Gage discontinued on Jan.3,2003.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 907 ft³/s, October 22, 2002, gage height, 12.58 ft.

		DISC	HARGE,	CUBIC FEET	PER SECOND,	WATE	R YEAR OCT	OBER 2002	TO JANU	ARY 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	129	81	199									
2	144 126	69 e61	156 122									
4	111	52	e98									
5	102	48	e78									
6	153	54	69									
7	220	60	70									
8	258	53	104									
9 10	236 e188	49 48	159 171									
		49										
11 12	151 135	49 45	140 136									
13	133	58	e101									
14	116	73	86									
15	113	71	87									
16	192	62	77									
17 18	370 323	55 51	67 e61									
19	290	50	e51									
20	396	48	e40									
21	692	49	e35									
22	850	45	e31									
23	609	40	43									
24 25	415 296	34 39	46 43									
26 27	238 214	114 e202	e40 e31		===		===			===		
28	178	193	e30									
29	143	165	e29									
30	116	210	29									
31	96		29									
TOTAL	7733	2228	2466									
MEAN MAX	249 850	74.3 210	79.5 199									
MIN	96	34	29									
AC-FT	15340	4420	4890									
CFSM TN.	22.7	6.75	7.23									
TIM.	26.15	7.53	8.34									
STATIS	STICS OF	MONTHLY ME	EAN DAT	A FOR WATER	YEARS 1987	- 200	3, BY WATER	R YEAR (W	Y)#			
MEAN	164	49.6	37.6	21.5	20.7	17.3	18.8	86.2	218	271	264	261
MAX	249	88.7	80.8	38.1	40.8	59.2	36.9	140	275	364	417	387
(WY)	2003	1994	2000		1993	1992	1994	1993	2002	2000	2002	1991
MIN (WY)	90.9 1993	21.2 1996	16.9 1995		11.3 1998	4.65 1989	4.88 2002	35.5 2001	181 1996	210 1993	194 1995	177 1992
	RY STATIS		1000	100.	FOR 2002 (			2001	2330	WATER YEA		
		TICS					AR YEAR			WATER YEA	ARS 1987	- 2003#
ANNUAL ANNUAL	TOTAL				52347 143					119		
	T ANNUAL	MEAN			143	)				141		1990
	ANNUAL						Oct 22			97.6		1996
	T DAILY				850 a4	915 Sep 11 1995						
	DAILY M	EAN AY MINIMUM	Л		4.2 Mar 13 1989 4.2 Mar 10 1989							
	M PEAK F		-		-	1.4	Apr 13			b990		0 1995
MAXIMU	M PEAK S	TAGE								13.0		0 1995
	TANEOUS RUNOFF				103800	)				86080		
	RUNOFF					3.0				10.8	3	
ANNUAL	RUNOFF	(INCHES)			177	7.03				146.7		
	CENT EXC				329					286		
	RCENT EXC				77	, 5.4				54 12		
J	CLIVI LAC					,				12		

See Period of Record; partial years used in monthly statistics Apr. 16-17 and 19th From rating curve extended above 350 cfs Not determined; see lowest daily mean

Estimated

## 15040000 DOROTHY CREEK NEAR JUNEAU

LOCATION.--Lat  $58^\circ13'40''$ , long  $134^\circ02'25''$ , in  $NW^{\frac{1}{2}}_4$  sec.18, T. 42 S., R. 70 E.(Juneau A-1 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on right bank 0.7 mi downstream from Bart lake, 0.8 mi upstream from the mouth at Taku Inlet, and 14.4 mi east of Juneau.

DRAINAGE AREA.--15.2 mi².

PERIOD OF RECORD.--Station originally established 100ft upstream from mouth Oct 1,1929 by private company and operated by the U.S.Forest Service until USGS assumed operations in 1946. Station was discontinued in 1967. Restablished on Dec 21,2001 by the USGS and discontinued on Nov.5,2003

 ${\tt GAGE.--Water-stage\ recorder.\ Altitude\ of\ gage\ is\ 350\ ft.\ (from\ topographic\ map).}$ 

REMARKS.--Records fair except estimated daily discharges, which are poor.

		DISC	HARGE, (	CUBIC FEET	PER SECONI DAII	O, WATER LY MEAN V		OBER 2002	TO OCTOR	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e180 e190 e165 e147 e133	179 160 132 109 98	205 204 193 180 163	48 47 45 52 59	40 39 39 39 38	16 16 16 18 17	20 20 19 19	82 83 82 80 77	209 215 216 210 205	289 282 283 299 312	277 287 293 292 288	224 306 387 422 392
6 7 8 9 10	e117 e160 e200 e290 e260	91 86 80 75 70	147 132 139 161 176	79 78 76 74 71	36 34 33 31 30	16 15 15 14 14	18 18 18 17 18	73 70 67 66 66	212 224 230 231 230	314 306 294 282 275	278 268 256 245 235	363 338 382 444 421
11 12 13 14 15	e215 e180 e154 e146 e140	68 66 71 76 76	180 200 194 180 168	68 64 59 54 51	28 27 26 24 23	13 12 13 13	18 20 21 21 23	67 83 88 96 95	232 237 244 248 251	275 276 276 277 275	224 211 202 200 229	405 392 418 498 468
16 17 18 19 20	e220 e405 e380 e345 e320	75 74 71 71 71	156 142 126 112 100	48 49 53 58 63	22 21 20 19 18	13 13 14 14 14	24 24 23 24 25	92 90 87 85 83	249 245 247 257 270	273 271 267 263 260	275 355 403 391 375	395 339 297 273 264
21 22 23 24 25	e500 e760 e900 e640 e490	73 69 66 61 62	90 82 79 75 71	60 58 55 53 51	17 17 16 16	14 15 15 15 15	25 26 28 32 42	83 84 93 116 155	275 274 268 263 263	265 274 277 273 266	378 358 321 290 268	276 273 262 279 295
26 27 28 29 30 31	e360 e390 e330 e270 e240 e200	91 115 141 154 189	66 62 58 54 52 50	49 48 46 44 43 42	16 16 15 	15 14 15 18 24 21	51 59 67 72 78	182 196 199 204 206 207	276 297 308 308 299	257 250 244 263 273 275	250 230 212 196 186 190	325 411 485 453 396
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	9427 304 900 117 240 18700 20.0 23.07	2820 94.0 189 61 75 5590 6.18 6.90	3997 129 205 50 139 7930 8.48 9.78	1745 56.3 79 42 53 3460 3.70 4.27	716 25.6 40 15 23 1420 1.68 1.75	470 15.2 24 12 15 932 1.00 1.15	888 29.6 78 17 23 1760 1.95 2.17	3337 108 207 66 85 6620 7.08 8.17	7493 250 308 205 248 14860 16.4 18.34	8566 276 314 244 275 16990 18.2 20.96	8463 273 403 186 268 16790 18.0 20.71	10883 363 498 224 384 21590 23.9 26.63
STATIS	TICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 1930	0 - 2003,	BY WATER	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	228 455 1937 97.5 1951	107 355 1950 31.7 1951	51.1 129 2003 14.3 1951	28.2 59.3 1957 10.0 1934	22.8 70.9 1931 10.0 1935	22.6 85.9 1947 10.2 1933	26.7 62.3 1943 13.0 1967	92.4 140 1946 51.8 1964	245 336 1944 150 1933	306 419 1961 241 1954	310 465 1961 198 1954	282 432 1967 142 1964

See period of record; partial years used in monthly statistics Estimated

# 15040000 DOROTHY CREEK NEAR JUNEAU—Continued

SUMMAR	RY STATISTI	CS	FOR :	2002 CALE	NDAR YEAR	FC	OR 2003 W	ATER YEAR		WATER YEAR	S 1930 -	2003#
ANNUAI HIGHES LOWEST ANNUAI MAXIMU MAXIMU INSTAN ANNUAI ANNUAI ANNUAI 10 PEI 50 PEI	TOTAL MEAN T ANNUAL ME T ANNUAL ME T ANNUAL ME T DAILY ME A SEVEN-DAY IM PEAK FLO M PEAK STA WTANEOUS LO RUNOFF (C R	AN AN N MINIMUM W GE W FLOW C-FT) FSM) NCHES) DS		900 a12 13 124000 11.3 153.09 362 132	Aug 28 Apr 8 Apr 12		58805 161 900 12 13 b c12 116600 10.6 143.92 327 126 18	Oct 23 Mar 12 Mar 11 Mar 12		144 184 108 1690 6.0 6.6 d1780 5.85 f6.0 104200 9.46 128.55 326 92		1933 1933 1949 1949
				WATER Y	EAR OCTOE DAIL	BER 2003 T		BER 2004				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	359 315 289 268 257 252 254 253 249 239 224 203 184 172 156 141 125 113 115 120	193 170 150 130 	DEC					MAY			AUG	
26 27 28 29 30 31 TOTAL MEAN MAX MIN MED AC-FT CFSM	200 249 264 256 241 218 6317 204 359 109 218 12530 13.4											
IN.	15.46											

[#] See period of Record; partial years used in monthly statistics a Apr. 8, 12, 15-19
b Not determined; see highest daily mean c Mar. 12-13
d From a rating curve extended above 560 ft³/s
e Estimated
f Mar. 23, 25 and 28, 1933

## 15041200 TAKU RIVER NEAR JUNEAU (International gaging station)

LOCATION.--Lat  $58^{\circ}32'19''$ , long  $133^{\circ}42'00''$ , in  $NE^{1}_{/4}$   $NW^{1}_{/4}$  sec. 33, T. 38 S., R. 71 E. (Taku River C-6 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on left bank, 1.5 mi upstream from Wright River, and 31 mi northeast of Juneau.

DRAINAGE AREA.--6,600 mi², approximately.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1987 to current year.

REVISED RECORD.--WDR AK-98-1, 1987-1997; WDR AK-00-1 1989-90 (M), 1992-95 (M).

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of  $50,000~{\rm ft^3/s}$  and maximum (*).

Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Aug 11	0345	*70,700	*40.95

DISCHARGE, in CFS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
												15400
1 2	10800 11000	7410 6980	11400 9170	e2300 e2200	e2800 e2700	e1400 e1400	e2150 e2050	16800 16500	33400 24400	24700 29000	25100 24300	15400 23700
3	10300	6620	7300	e2100	e2600	e1400	e1900	13900	20200	31100	22500	30000
4	9490	6490	e5500	e2700	e2700	e1400	e1700	11700	18500	32800	20800	25200
5	8740	6350	e4540	e4600	e2600	e1400	e1650	10300	18600	30700	19300	18800
6	9650	6330	e4550	e6200	e2400	e1400	e1600	9290	24900	29600	19700	16400
7	13200	6300	e4600	e7100	e2100	e1300	e1600	8700	31800	28000	21800	16800
8	17900	5930	e5900	e5600	e1960	e1300	e1850	8460	30700	28600	26800	17900
9 10	16600 12900	5670 5390	e8600 e10000	e5000 e4400	e1900 e1800	e1300 e1200	1990 2020	8990 10200	28500 28700	31600 34000	37400 57700	17000 14500
10	12900	3390	610000	64400	61000	e1200	2020	10200	20700	34000	37700	14300
11	10600	5110	e6700	e4200	e1900	e1200	2110	11400	30300	35200	44800	14900
12	9960	4880	e7200	e4000	e1800	e1200	2270	13300	30600	36000	20800	15500
13	9950	4870	e6100	e3900	e1800	e1200	2430	13900	31500	35000	22000	17600
14 15	9230 8980	4980 5020	e5500 e5000	e3600	e1700	e1200 e1300	2610 2860	12800 11500	31700 27400	35400 34600	23800 27700	20700 15800
15	8980	5020	e5000	e3100	e1700	e1300	2800	11300	27400	34600	27700	12800
16	12300	4880	e4700	e2700	e1700	e1400	3230	10500	25000	33100	37800	12500
17	23200	4830	e4300	e3000	e1600	e1400	3380	9980	23700	31900	37800	10800
18	21900	4860	e4100	e3400	e1500	e1500	3490	9790	25500	31800	28400	9950
19	17300	4650	e3900	e4000	e1500	e1440	3450	10000	25400	30700	23700	9670
20	17600	4600	e3600	e4600	e1500	e1440	3530	10500	22200	31500	20900	9890
21	25300	4910	e3400	e4400	e1400	e1450	3760	11300	19900	32600	18700	12100
22	28100	4740	e3200	e4100	e1400	e1440	4030	12300	19600	30400	16000	11600
23	21700	4150	e3400	e3800	e1400	e1420	4120	15300	19900	26500	14200	10200
24	16400	3730	e3500	e3600	e1300	e1400	5060	16800	19600	24900	13100	10600
25	13500	3530	e3400	e3400	e1300	e1400	7250	20000	19700	25600	13200	14900
26	12100	6720	e3100	e3300	e1300	e1390	10200	19800	21600	26000	13000	20300
27	11800	16100	e2800	e3100	e1300	e1400	12400	18100	21200	25400	13500	19600
28	10900	15200	e2600	e3000	e1400	e1450	13300	17300	19600	25300	14000	24400
29	9920	11500	e2400	e3000		e1600	13600	17800	20300	26800	14200	24800
30 31	8970 8000	11600	e2200 e2200	e2900 e2900		e1900 e2200	14900	20700 24900	22200	28100 25400	14800 15800	22700
31	8000		e2200	62300		62200		24900		23400	13000	
	428290	194330	154860	116200	51060	43830	136490	422810	736600	932300	723600	504210
MEAN	13820	6478	4995	3748	1824	1414	4550	13640	24550	30070	23340	16810
MAX	28100	16100	11400	7100	2800	2200	14900	24900	33400	36000	57700	30000
MIN	8000	3530 385500	2200	2100 230500	1300 101300	1200 86940	1600 270700	8460 838600	18500	24700 1849000	13000 1435000	9670 1000000
CFSM	849500 2.09	0.98	307200 0.76	0.57	0.28	0.21	0.69	2.07	1461000 3.72	4.56	3.54	2.55
IN.	2.41	1.10	0.70	0.65	0.20	0.25	0.03	2.38	4.15	5.25	4.08	2.84
TIV.	2.41	1.10	0.07	0.03	0.25	0.23	0.77	2.50	4.13	3.23	4.00	2.04
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	988 - 2003	3, BY WAT	ER YEAR (	WY)#			
MEAN	11630	4729	3451	2288	1930	2501	4291	19540	33680	31620	26310	19130
MAX	17250	8633	6613	4223	3682	10500	6815	33800	49280	41080	33330	26550
(WY)	1992	1994	2000	2000	1992	1992	1992	1993	1992	1992	2002	1994
MIN	6265	2488	1256	1125	1041	1359	1870	9652	23170	25040	18610	11180
(WY)	1997	1997	1997	1988	1999	1991	2002	2001	1995	1996	1995	1992

See Period of Record; partial years used in monthly statistics  ${\tt Estimated}$ 

# 15041200 TAKU RIVER NEAR JUNEAU—Continued

SUMMARY STATISTICS	FOR 2002 CALENI	DAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1988 - 2003#
ANNUAL TOTAL	4685750		4444580			
ANNUAL MEAN	12840		12180		13490	
HIGHEST ANNUAL MEAN					16820	1992
LOWEST ANNUAL MEAN					10800	1996
HIGHEST DAILY MEAN	69200	Aug 17	57700	Aug 10	93100	Jul 26 2000
LOWEST DAILY MEAN	a1300	Mar 23	b1200	Mar 10	710	Feb 12 1988
ANNUAL SEVEN-DAY MINIMUM	1300	Apr 5	1230	Mar 8	721	Feb 8 1988
MAXIMUM PEAK FLOW			c70700	Aug 11	c110000	Aug 17 1989
MAXIMUM PEAK STAGE			40.95	Aug 11	44.13	Aug 17 1989
INSTANTANEOUS LOW FLOW			đ		710	Feb 12 1989
ANNUAL RUNOFF (AC-FT)	9294000		8816000		9773000	
ANNUAL RUNOFF (CFSM)	1.95		1.84		2.04	
ANNUAL RUNOFF (INCHES)	26.41		25.05		27.77	
10 PERCENT EXCEEDS	30500		28200		33000	
50 PERCENT EXCEEDS	7300		9790		7290	
90 PERCENT EXCEEDS	1470		1500		1600	

[#] See Period of Record; partial years used in monthly statistics
a Mar. 23 and Apr. 6 to 11
b Mar. 10 to 14
c Result of Tulsequah River glacier dam breakout
d Not determined see lowest daily mean

## 15041200 TAKU RIVER NEAR JUNEAU—Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: June 1999 to current year

INSTRUMENTATION. -- Electronic water-temperature recorder set for 15-minute recording interval.

REMARKS.- Records good. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the average ofr the river by cross sections on April 9, May 20, June 18, August 10, and September 29. The outburst peak of the lake dammed by Tulsequah Glacier occurred on August 10-11. The temperature cross sections showed variations of  $2.0^{\circ}$ C during sampling on August 10 and  $1.0^{\circ}$ C on April 9th.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum recorded,  $12.5^{\circ}$ C, July 14, 1999 , July 20 and 21, 2001, and July 9-10,12-13, and 18, 2003; minimum,  $0.0^{\circ}$ C, many days during most winters. EXTREMES FOR CURRENT YEAR.--

WATER TEMPERATURE: Maximum recorded, 12.5°C, July 9-10,12-13,and 18; minimum, 0.0°C, many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Loca- tion in X-sect. looking dwnstrm ft from 1 bank (00009)	conduc- tance,	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
APR								
09 09 09 09	1658 1707 1710 1715 1720	50.0 200 240 278 305	219 237 242 244 247	7.9 8.0 8.1 8.1 8.1	3.0 2.5 2.0 2.0 2.0	751 751 751 751 751	11.5 11.4 11.7 11.4 11.4	87 85 86 84 84
MAY								
20 20 20	1050 1051 1052	55.0 165 275	175 175 175	7.8 7.9 7.9	7.5 7.5 7.5	747 747 747	10.6 10.6 10.5	90 90 89
20	1053 1054	385 495	175 175	7.9 7.9	7.5 7.5	747 747	10.5 10.5	89 89
JUN								
18 18 18 18	1234 1236 1238 1240 1241	70.0 210 350 490 630	124 124 125 125 124	7.9 7.8 7.8 7.8 7.8	9.0 9.0 9.0 9.0	734 734 734 734 734	10.6 10.6 10.6 10.6	95 95 95 95 96
AUG	1241	030	124	7.0	5.0	734	10.7	50
10 10 10 10	1941 1943 1945 1947 1948	450 397 286 126 48.0	64 65 65 68 71	8.2 8.1 8.1 8.1 8.0	3.5 3.5 3.5 4.5 5.5	759 759 759 759 759	12.6 12.6 12.5 12.4 12.2	95 95 94 96 97
29 29 29 29	0940 0941 0942 0943 0944	75.0 150 225 300 375	113 113 113 113 114	8.2 8.2 8.2 8.2 8.3	6.0 6.0 6.0 6.0	765 765 765 765 765	12.0 11.9 11.8 11.8	96 95 94 94 94

									Specif.	pН,			
									conduc-	water,			
						Instan-			tance,	unfltrd	Temper-	Temper-	Baro-
				Stream	Gage	taneous	Sampling	Sampler	wat unf	field,	ature,	ature,	metric
				width,	height,	discharg	method,	type,	uS/cm 25	std	air,	water,	pressure
		Medium	Sample	feet	feet	e, cfs	code	code	degC	units	deg C	deg C	, mm Hg
Date	Time	Code	type	(00004)	(00065)	(00061)	(82398)	(84164)	(00095)	(00400)	(00020)	)00010)	(00025)
DEC													
05	1530	9	9	330		4540	8010	8010	186	8.4		.5	766
APR													
09	1645	9	9	305	28.82	1950	10	3053	238	8.0	6.5	2.5	751
MAY													
20	1120	9	9	567	31.94	10900	20	3053	175	7.9		7.5	747
JUN													
18	1200	9	9	680	35.42	26500	20	3053	124	7.8		9.0	734
JUL													
11	9050	9	9	600	36.95	36600	20	3053	111	7.7		10.5	750
AUG													
10	1115	9	9	774	40.41	65200	20	3053	67	8.1	17.5	4.0	759
11	1115	9	9	726	38.04	45500	20	3053	85	7.8	20.0	5.5	773
SEP													
29	0950	9	9	525	35.35	25400	10	3044	113	8.2	12.0	6.0	765

6150

# 15041200 TAKU RIVER NEAR JUNEAU—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	oxygen, mg/L	of sat- uration	unfltrd mg/L as CaCO3	Calcium water unfltrd recover- able, mg/L (00916)	water fltrd, mg/L	unfltrd recover- able, mg/L	water, fltrd, mg/L	unfltrd recover- able, mg/L	water, fltrd, mg/L	Potas- sium, water, unfltrd recover- able, mg/L (00937)	water, fltrd, mg/L	<pre>wat flt incrm. titr., field, mg/L</pre>	field, mg/L as CaCO3
DEC 05 APR	12.7	88	86		26.0		5.1		2.6		.9	71	58
09	11.5	86	110	33.2	32.0	8.5	8.1	4.7	4.6	.9	.92	187	153
MAY 20	10.5	89	86	27.0	25.1	6.1	5.70	2.5	2.54	.8	.79	88	72
JUN 18	10.5	94	59	19.1	17.8	5.0	3.53	1.7	1.57	1.1	.73	64	52
JUL 11	10.7	97	51	19.7	15.8	7.1	2.91	1.9	1.30	1.7	.73	56	46
AUG 10	12.5	96	31	17.3	9.8	9.4	1.44	1.9	.65	3.1	.78	29	24
11 SEP	11.9	93	41	16.0	12.9	6.2	2.17	1.5	.84	2.1	.86	41	34
29	11.9	95	61	21.7	19.1	6.8	3.22	2.3	1.52	2.2	.85	59	49
Date	water, fltrd, mg/L	Sulfate water unfltrd mg/L (00946)	mg/L	ide, water, unfltrd mg/L	mg/L	ide, water, unfltrd mg/L	water, fltrd, sum of consti- tuents mg/L	water unfltrd mg/L as N	+ nitrate water fltrd, mg/L as N	Ammonia water, unfltrd mg/L as N (00610)	water, fltrd, mg/L as N	phorus, water, unfltrd mg/L	recover- able, ug/L
DEC 05		16.8		1.71		.1		.266		.060		.018	773
APR 09	19.5	19.8	4.0	4.2	<.10	<.1	162	.155	.154	<.040	<.040	.019	269
MAY 20	14.4	14.4	.7	.70	.10	.1	93	.182		.074		.029	546
JUN 18		11.2		.30		.1		.046		.027		.099	2120
JUL 11	8.0	8.1	.2	.20	<.10	<.1	57	.034	.033	<.050		.443	5750
AUG 10	8.4	8.3	. 4	.20	.05	.1	36	.031	.024	<.050	==	.723	12000
11 SEP	9.6	9.6	.3	.30	.05	.1	47	.033	.030	<.050	==	.433	6300

29... -- 10.3 -- .40 -- .1 -- .091 -- <.100 -- .315

# 15041200 TAKU RIVER NEAR JUNEAU—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

								Chrom-					
				Barium,				ium,		Copper,		Iron,	
	Alum-			water,				water,	Chrom-	water,		water,	
	inum,	Arsenic	Arsenic	unfltrd	Barium,	Cadmium	Cadmium	unfltrd	ium,	unfltrd	Copper,	unfltrd	Iron,
	water,	water	water,	recover-	water,	water,	water,	recover-	water,	recover-	water,	recover-	water,
	fltrd,	unfltrd	fltrd,	able,	fltrd,	unfltrd	fltrd,	able,	fltrd,	able,	fltrd,	able,	fltrd,
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Date	(01106)	(01002)	(01000)	(01007)	(01005)	(01027)	(01025)	(01034)	(01030)	(01042)	(01040)	(01045)	(01046)
DEC													
05	40	1	.6	49.4	36.4	<.10	<.10	1		2.3	<1.0	970	20
APR													
09	30	1	. 4	51.2	44.0	<.10	< .10	1	<1.0	1.8	<1.0	745	< 50
MAY													
20	43	1.4	1.2	39.9	33.0	<.10	<.10	1	<1.0	2.1	<1.0	740	20
JUN													
18	38	1.9	1.2	62.2	39.0	<.10	<.10	4	<.1.0	6.1	<1.0	3140	<10
JUL	4.5	4 7	7.2	100	0.4 5	17	. 10	10	-1 0	15 1	- 1	0700	-10
11 AUG	45	4.7	.73	122	24.5	.17	<.10	12	<1.0	15.1	<1	8720	<10
10	48	9.7	1.1	267	21.1	.45	<.10	22	<1.0	35.8	<1.0	17500	<10
11	50	6	.5	157	24.7	.23	<.10	11	<1.0	19.2	<1.0	9610	<10
SEP	50	3		137	24.7	.23	*****		-1.0	17.2	-1.0	2010	-10
29	51	5	1.2	130	28.8	.19	<.10	9	<1.0	12.4	<1.0	8370	<10

			Mangan-									
	Lead,		ese,		Nickel,		Silver,		Zinc,			
	water,		water,	Mangan-	water,		water,		water,		Organic	Organic
	unfltrd	Lead	unfltrd	ese,	unfltrd	Nickel,	unfltrd	Silver,	unfltrd	Zinc,	carbon,	carbon,
	recover-	water,	recovera	water,	recover-	water,	recover-	water,	recover-	water,	water,	water,
	able,	fltrd,	ble,	fltrd,	able,	fltrd	able,	fltrd,	able,	fltrd,	unfltrd,	fltrd,
	ug/L	ug/L	mg/L	mg/L								
Date	(01051)	(01049)	(01055)	(01056)	(01067)	(01065)	(01077)	(01075)	(01092)	(01090)	(00680)	(00681)
DEC												
05	.7	<.10	40	20	2.7	.77	< .10	<.1	5	<4	1.9	1.8
APR												
09	.5	<.10	52	40.1	2	.62	<.10	<.10	4	<4	.8	.7
MAY	-	. 10	_	F 2	2	0.6	. 10	. 10	- 4	- 4	2 2	2 0
20	.5	<.10	5	5.3	3	.86	<.10	<.10	<4	<4	2.2	2.0
JUN 18	2	<.10	88	4.4	7	.48	.10	<.10	11	<4	<.5	
JUL	2	V.10	00	4.4	,	.40	.10	V.10	11	~4	<b>\.</b> 5	
11	6	.29	259	5.3	15	.41	.17	<.10	26	<4	1.4	. 9
AUG												
10	12	<.10	502	6.7	31.7	.31	.25	<.1	69	<4	. 9	.6
11	6	<.10	257	9.1	15	.44	.16	<.10	40	<4	.7	.7
SEP												
29	7	< .10	245	6.5	12	.50	.10	<.10	32	<4	<1.0	<1.0

# 15041200 TAKU RIVER NEAR JUNEAU—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER TEMPERATURE in (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN										
		OCTOBER		NO	NOVEMBER			CEMBER			JANUARY		
1 2 3 4 5	5.5 6.0 5.5 5.5 4.5	5.0 5.5 4.5 4.5	5.5 5.5 5.0 5.0 4.0	1.5 1.5 1.5 2.0 2.5	1.0 1.0 1.0 1.5 2.0	1.0 1.0 1.5 2.0	2.0 1.5 0.5 0.5	1.0 0.5 0.0 0.0	1.5 1.0 0.0 0.5	1.0 1.0 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	
6 7 8 9 10	6.0 6.5 6.5 5.5 4.5	4.0 6.0 5.5 4.5 3.0	5.0 6.0 6.0 5.0 3.5	3.0 3.0 2.5 2.5 2.0	2.5 2.5 2.0 2.0 1.5	2.5 2.5 2.0 2.0 1.5	0.5 0.5 0.5 0.0	0.5 0.0 0.0 0.0	0.5 0.5 0.0 0.0	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.5 0.5	
11 12 13 14 15	3.5 4.0 5.0 5.0	2.5 3.5 4.0 4.5	3.0 3.5 4.5 4.5	1.5 1.5 2.0 2.0	1.5 1.0 1.5 1.5 2.0	1.5 1.5 1.5 2.0 2.0	0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.0 0.0	0.5 0.5 0.5 0.5	
16 17 18 19 20	6.0 6.5 6.0 4.5 5.0	5.0 5.5 4.5 4.5	5.5 6.0 5.0 4.5 4.5	2.0 2.0 2.0 1.5	1.5 2.0 1.5 0.0 0.5	2.0 2.0 2.0 0.5 1.0	1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.0 0.5 0.0	0.5 0.5 0.5 0.5	
21 22 23 24 25	5.0 5.0 5.0 4.5 4.0	4.5 4.5 4.5 4.0 3.5	5.0 4.5 5.0 4.0 3.5	1.5 1.5 1.5 1.0	1.0 1.0 0.5 0.5	1.0 1.5 1.0 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
26 27 28 29 30 31	4.0 4.5 4.5 4.0 3.0	3.5 4.0 4.0 2.5 1.5	4.0 4.0 4.0 3.0 2.0	1.5 2.0 2.0 2.0 2.0	0.0 0.5 1.5 1.5	0.5 1.5 1.5 2.0 2.0	0.5 0.5 0.5 0.5 1.0	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	0.5 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	
MONTH	6.5	1.0	4.4	3.0	0.0	1.6	2.0	0.0	0.5	1.0	0.0	0.3	

# 15041200 TAKU RIVER NEAR JUNEAU—Continued

WATER TEMPERATURE, in (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		
	FE	BRUARY		MARCH			APRIL				MAY			
1 2 3 4 5	0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 1.5 1.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.5 0.5	7.0 6.0 6.0 6.0	5.0 4.5 4.0 3.5 4.0	6.0 5.0 5.0 4.5 5.0		
6 7 8 9 10	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.5 0.5	1.5 3.5 4.0 3.5 5.0	0.5 0.5 1.5 2.0	1.0 2.0 2.5 2.5 3.0	7.5 8.0 9.0 9.5 9.5	5.0 5.5 6.0 6.5 7.0	6.0 6.5 7.5 8.0 8.5		
11 12 13 14 15	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.5 0.5 0.0	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.5 5.0 5.5 5.0 4.5	2.0 2.5 2.5 2.5 3.0	3.0 3.5 3.5 3.5 3.5	9.0 7.0 7.5 7.5 8.0	6.5 6.5 6.0 6.0	7.0 6.5 7.0 6.5 7.0		
16 17 18 19 20	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.5 0.5 1.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	4.0 5.0 4.0 5.0 5.5	3.0 2.5 3.0 2.5 3.0	3.5 3.5 3.5 3.5 4.5	8.5 9.0 10.0 10.0 10.5	6.0 6.0 7.0 7.5 7.5	7.5 7.5 8.5 9.0 9.0		
21 22 23 24 25	0.0 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5	1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0 0.5	5.0 4.5 6.0 6.5 6.0	3.5 3.5 3.5 4.0 4.0	4.5 4.0 4.5 5.5 5.0	10.0 10.0 10.0 8.5 8.5	8.0 8.5 8.0 7.0 7.5	9.0 9.5 8.5 8.0 8.0		
26 27 28 29 30 31	0.5 0.5 0.5 	0.0 0.0 0.0 	0.5 0.0 0.0 	1.5 1.0 1.5 1.0 1.0	0.0 0.5 0.0 0.0 0.0	0.5 0.5 0.5 0.5 0.0	5.0 5.5 6.0 7.0 7.0	3.0 3.5 4.0 4.5	4.0 4.5 4.5 5.5 6.0	9.0 9.5 9.5 10.0 10.5 9.5	7.0 7.0 7.5 7.5 7.5 7.5	8.0 8.5 8.5 8.5 9.0 8.5		
MONTH	0.5	0.0	0.1	1.5	0.0	0.2	7.0	0.0	3.2	10.5	3.5	7.5		
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX A	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN R		
1 2 3 4 5	8.5 10.0 10.5 10.0 11.0	6.0 7.0 7.5 7.5 8.5	7.0 8.0 9.0 9.0 9.5	12.0 11.0 10.0 9.5 10.0	8.0 9.5 9.5 8.5 8.0	9.5 10.0 9.5 9.0 9.0	10.5 10.0 11.5 11.0	9.0 9.0 9.0 9.0 8.5	9.5 9.5 10.0 9.5 9.5	7.0 7.0 7.5 8.0 7.5	6.5 6.0 6.5 6.0	6.5 6.5 6.5 7.0		
6 7 8 9 10	11.0 10.5 11.0 11.5 12.0	9.0 8.5 8.5 8.5 9.0	10.0 9.5 9.5 10.0 10.5	10.5 12.0 11.5 12.5 12.5	9.0 8.5 9.5 9.5 10.0	9.5 10.0 10.5 10.5	11.0 10.5 9.5 7.5 6.5	9.0 8.5 7.5 5.5 4.5	10.0 9.5 8.5 6.5 5.0	7.0 8.0 8.0 8.0 7.5	6.5 6.5 7.0 7.0 6.5	7.0 7.0 7.5 7.5 7.0		
11 12 13 14 15	11.5 11.0 9.5 9.5 10.0	9.0 9.0 8.0 8.0	10.0 9.5 9.0 8.5 9.0	12.0 12.5 12.5 12.0 11.5	10.5 10.0 10.0 10.0	11.0 11.0 11.0 11.0	9.0 10.0 10.0 10.0 8.5	4.0 8.0 9.0 8.5 7.5	6.0 9.0 9.5 8.5 8.0	7.5 8.0 7.5 6.5	6.5 7.0 6.5 6.0 5.5	7.0 7.5 7.0 6.5 6.0		
16 17 18 19 20	11.0 10.5 9.5 9.5 8.5	8.5 9.0 8.5 8.0 7.0	9.5 9.5 9.0 8.0 7.5	11.5 11.0 12.5 12.0 11.0	10.5 10.0 10.0 10.0	10.5 10.5 11.0 11.0	8.0 8.5 8.5 8.5	7.0 6.5 7.0 7.5 7.0	7.0 7.0 7.5 8.0 7.5	6.0 6.0 6.5 6.5	5.0 5.0 5.5 5.5 6.0	5.5 5.5 5.5 6.0 6.0		
21 22 23 24 25	10.0 11.5 11.0 10.0 9.5	7.5 8.5 9.0 9.0 8.5	8.5 10.0 9.5 9.5 9.0	11 0	9.5 9.5 9.0 9.5 10.0	10.0 10.0 10.5 10.5 11.0	9.0 9.0 8.5 8.0 8.5	7.0 7.0 7.0 7.0 7.0	7.5 8.0 7.5 7.5 8.0	6.5 6.0 5.5 6.0	6.0 5.0 4.5 5.0 5.0	6.0 6.0 5.0 5.0		
26 27	9.0	8.0	8.0 8.5	11.5 10.5	9.5	10.5 10.0	9.5 9.0 9.5 9.0	6.5 8.0	8.0	6.0 6.0 7.0	5.5 5.5	6.0 5.5		
28 29 30 31	9.5 10.0 11.5 11.0	8.0 8.5 8.5	8.5 9.0 10.0 9.5	11.5 10.5 10.5 10.5 11.5	9.5 9.5 9.0 9.0	10.0 10.0 10.0 10.0	9.5 9.0 8.5 8.0	7.5 7.5 7.5 7.0	8.5 8.5 8.0 7.5	7.0 7.5 7.0	5.5 6.0 6.0	6.0 6.5 6.5		

Discharge Gage height

(ft)

(ft³/s)

#### 15050000 GOLD CREEK AT JUNEAU

LOCATION.--Lat  $58^{\circ}18'25''$ , long  $134^{\circ}24'05''$ , in  $NW^{1}/_{4}$  NE $^{1}/_{4}$  sec. 23, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, on left bank, 150 ft upstream from Alaska Electric Light and Power Company dam and diversion, 0.5 mi northeast of Juneau, and 1 mi upstream from mouth at Gastineau Channel.

DRAINAGE AREA. -- 9.76 mi².

Date

PERIOD OF RECORD.--July 1916 to December 1920 (monthly discharge only), October 1946 to September 1948, October 1949 to September 1982. Annual maximums, water years 1991, 1994, 1996. October 1997 to current year.

REVISED RECORDS. -- WSP 1372: Drainage area.

Time

GAGE.--Water-stage recorder. Elevation of gage is 245 ft above sea level, from topographic map. July 20, 1916 to December 31, 1920, at site 50 ft upstream at different datum. September 11, 1946 to September 30, 1948, nonrecording gage at site 0.7 mi downstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Water may be diverted about 0.5 mi upstream and three wells, located upstream from the gage in Last Chance Basin, pump water for municipal use and may decrease flow during winter periods.

Date

Time

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 900 ft³/s and maximum (*):

Discharge Gage height

(ft)

 $(ft^3/s)$ 

				(IC /S)	(10)					(IL /S)	(10)	
	Oct 1 Oct 2 Nov 2	21	1945 0930 1115	1200 1200 1480	4.95 4.94 5.43		Sept Sept Sept	25	0645 1630 1615	*1490 918 1280	*5.44 4.43 5.09	
		DIS	CHARGE, C	UBIC FEET	PER SECON			BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	DA FEB	ILY MEAN MAR	VALUES APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	207 137 95 91 96	27 23 19 17 21	201 130 86 62 45	13 14 13 70 113	15 15 15 19 16	8.0 7.7 8.0 9.8 8.8	8.8 7.9 7.5 7.2 7.0	81 56 38 26 21	130 165 111 88 137	118 136 354 207 130	88 146 97 102 106	312 420 238 166 124
6 7 8 9	221 344 312 183 120	27 21 15 14 13	37 83 237 288 180	205 137 70 42 31	14 13 12 11	e7.0 e2.6 e1.5 e1.6 e1.5	7.0 7.0 7.0 7.0 7.2 7.0	17 16 17 21 24	190 116 76 88 99	104 91 91 89 83	78 65 57 47 36	140 175 883 298 195
11 12 13 14 15	93 223 180 162 213	14 13 26 41 27	125 165 125 81 71	23 20 17 15 14	11 11 10 9.8 9.4	e1.7 e1.5 e1.4 e2.5 e3.1	7.1 7.3 7.8 8.5	36 139 87 57 41	108 96 108 78 64	89 75 69 81 55	30 36 48 152 252	281 203 417 274 167
16 17 18 19 20	747 632 264 223 405	19 20 23 37 45	55 42 33 24 21	15 75 98 145 122	8.9 8.7 8.5 8.0 e6.0	e3.7 e4.5 e5.2 5.6 5.8	10 9.9 9.5 9.9	30 25 26 27 28	56 94 151 208 180	83 200 108 68 75	391 282 144 112 241	114 85 90 98 294
21 22 23 24 25	864 682 284 168 124	47 33 24 24 71	19 19 20 27 21	58 36 25 22 20	e5.0 e4.8 e5.3 e6.5 e7.0	6.1 6.1 5.7 5.6 5.6	11 12 15 44 184	32 61 136 286 224	112 92 73 113 189	162 99 57 45 36	164 106 83 90 70	228 134 98 388 607
26 27 28 29 30 31	136 131 86 61 44 33	841 431 293 217 391	17 15 14 13 12	18 17 15 16 26 18	7.6 7.1 6.9 	5.5 5.6 5.9 8.3 16 11	194 158 122 99 93	168 110 112 172 136 144	211 145 143 111 106	83 129 81 246 106 78	53 70 52 44 173 221	280 633 345 204 137
TOTAL MEAN MAX MIN MED AC-FT	7561 244 864 33 180 15000	2834 94.5 841 13 25 5620	2281 73.6 288 12 42 4520	1523 49.1 205 13 23 3020	282.5 10.1 19 4.8 9.6 560	172.9 5.58 16 1.4 5.6 343	1096.6 36.6 194 7.0 9.7 2180	2394 77.2 286 16 41 4750	3638 121 211 56 111 7220	3428 111 354 36 89 6800	3636 117 391 30 90 7210	8028 268 883 85 216 15920
STATIS	TICS OF	MONTHLY	MEAN DATA	A FOR WATE	R YEARS 19	16 - 2003	B, BY WATE	R YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	160 349 2000 62.6 1952	82.4 206 1947 18.1 1976	37.3 202 2000 6.22 1956	22.7 170 1981 1.71 1974	14.4 81.4 1977 0.48 1972	12.3 137 1947 0.055 1974	24.5 91.7 1947 3.78 1954	125 220 1948 64.5 1920	224 326 2002 121 2003	226 364 1975 111 2003	191 374 1961 85.4 1968	185 302 1999 73.7 1978

See Period of Record; partial years used in monthly statistics  $\ensuremath{\mathsf{Estimated}}$ 

# 15050000 GOLD CREEK AT JUNEAU—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1916 - 2003#
ANNUAL TOTAL	55229.8	36875.0	109
ANNUAL MEAN	151	101	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN			155 2000 77.5 1951
HIGHEST DAILY MEAN	901 Aug 21	883 Sep 8	1830 Aug 12 1961
LOWEST DAILY MEAN	3.2 Apr 9	a1.4 Mar 13	b0.00 Mar 4 1951
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	3.6 Apr 5	1.7 Mar 8 1490 Sep 8	0.00 Mar 4 1951 2950 Sep 25 1996
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW		5.44 Sep 8	8.14 Sep 25 1996 b0.00 Mar 4 1951
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	109500	73140	79130
	379	232	265
50 PERCENT EXCEEDS	79	61	67
90 PERCENT EXCEEDS	6.9	7.1	5.0

[#] See Period of Record; partial years used in monthly statistics
a May have been lower during period of ice affect
b No flow at times during winter
c Not determined, see lowest daily discharge

#### 15051010 SALMON CREEK NEAR JUNEAU

LOCATION.--Lat  $58^{\circ}19'57''$ , long  $134^{\circ}27'57''$ , in  $NE^{1}_{/4}$   $SE^{1}_{/4}$   $NW^{1}_{/4}$  sec. 9, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, in Tongass National Forest, on left bank, about 0.3 mi upstream from mouth and 2.5 mi northwest of Juneau.

DRAINAGE AREA. -- 9.69 mi².

PERIOD OF RECORD.--October 1990 to current year. Daily discharge record previously collected 0.5 mi upstream at station number 15051008 "above canyon mouth" during water-years 1982-90. Drainage area, 9.50 mi².

REVISED RECORDS. -- WDR AK 93-1: 1991 (m).

GAGE. -- Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges which are poor. Flow regulated by Salmon Creek Reservoir 2.5 mi upstream. Diversions upstream for off-stream hydropower plant; outflow from the plant goes into Gastineau Channel and is not included in the discharge records. Diversions upstream into Twin Lakes via a pipeline are also not included in the discharge records.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY ОСТ NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e11 e16 2.2 69.5 2.1 e8.2 e7.4 e7.4 7 2.0 2.5 e10 e7.3 2.2 2.8 e7.0 e7.3 e6.8 e8.7 e6.4 2.7 e6.0 e8.2 e6.0 e8.0 e5.7 e8.7 e5.6 e9.9 e6.6 e12 e7.4 e13 9.8 e7.3 e14 9.4 e7.3 e12 9.2 2.3 2.7 e6.9 e10 3.0 e6.8 e10 e7.5 e11 e6.5 e7.0 e6.8 e12 e6.5 e6.9 ₽14 e6.5 e20 e6.4 e18 2.3 e18 e16 e7.1 e6.1 e36 5.8 2.6 e14 8.3 e6.2 e34 3.8 9.5 e13 e6.2 e25 e15 e9.0 e23 3.8 e11 e2.7 e20 e26 e16 TOTAL 322.4 276.1 429.8 MEAN 69.2 42.9 35.0 30.2 11.5 21 8.91 14.3 29.0 71 31.7 21.9 26.5 71 MAX 2.45 2.0 7.3 5.6 6.5 MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 2003, BY WATER YEAR (WY)# 63.4 30.9 27.0 19.1 21.0 16.2 23.0 54.6 62.0 MEAN 44.3 38.7 82.9 45.0 69.0 76.1 MAX 76.9 69.5 33.5 39.0 38.6 71.3 (WY) 21.9 MTN 36.2 16.3 12.7 9.65 9.16 8.91 9.52 29.0 31.7 18.2 41.0 (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1991 - 2003# ANNUAL TOTAL ANNUAL MEAN 14327.7 11729.3 37.4 39.3 32.1 HIGHEST ANNUAL MEAN 48.6 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 29.7 Oct 20 1998 Oct 21 Oct 21 7.7 Apr 15 LOWEST DAILY MEAN 5.6 Mar 13 5.6 Mar 13 2003 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW 8.1 Apr 10 6.2 Mar 6.2 Mar 8 2003 Nov 26 Sep 25 a4.65 Sep 25 1996 MAXIMUM PEAK STAGE 3.16 Nov 26 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) b 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 

8.4

8.7

⁹⁰ PERCENT EXCEEDS See Period of Record

From flood marks

Undetermined, see lowest daily mean

Estimated

## 15052000 LEMON CREEK NEAR JUNEAU

LOCATION.--Lat  $58^{\circ}23'30''$ , long  $134^{\circ}25'15''$ , in  $SE^{1}/_{4}$   $NW^{1}/_{4}$  sec. 19, T. 40 S., R. 67 E. (Juneau B-2 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on left bank 0.3 mi upstream from Canyon Creek, 4.5 mi upstream from the mouth at Gastineau Channel, and 6 mi north of Juneau.

PERIOD OF RECORD. -- August 1951 to November 1953, July 1954 to September 1973, annual maximum 1999, May 2002 to

GAGE.--Water-stage recorder. Elevation of gage is 650 ft above sea level, from topographic map. Prior to Oct.1967 same site and datum about 6.94 ft lower; Oct.1967 to Sept 1973 at same site at datum about 5.85 ft lower.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. Large diurnal fluctuations caused by glacier melt at source.

EXTREMES FOR WATER YEAR 2002.--Maximum discharge during period May to September, 2,750 ft³/s, August 12, gage height, 11.58 ft, believed to be the maximum discharge for the 2002 water year; minimum not determined.

		DISCHA	ARGE, CU	BIC FEET		D, WATER ILY MEAN	YEAR OCTO	BER 2001	TO SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e25	231	376	312	501
2								e23	246	589	305	391
3								e20	244	427	277	350
4								e18	323	463	286	281
5								e16	349	444	280	215
6							===	e14	286	348	270	210
7						+3.8		13	252	322	767	361
8								15	268	332	1360	371
9								18	332	336	1210	346
10								27	487	341	810	325
11								27	420	352	C1.C	217
11 12								27	420 295	352 326	616 1600	317 257
13								49	272	323	1320	188
14								44	347	453	702	174
15								42	435	443	373	299
									100		3.3	2,0
16								58	421	390	244	305
17								78	399	455	190	321
18								76	364	471	273	482
19								121	322	409	318	339
20								208	351	299	424	333
21								247	282	367	859	302
22								205	261	436	845	184
23								190	310	460	981	194
24								149	343	709	554	219
25								156	529	803	383	231
26								170	F 2.7	705	602	244
26 27								179 178	537 433	795 620	603 1090	244 359
28								274	360	564	1260	304
29								352	331	407	1030	185
30								327	314	328	620	122
31								256		314	564	
TOTAL								3434	10344	13702	20726	8710
MEAN								111	345	442	669	290
MAX								352	537	803	1600	501
MIN								13	231	299	190	122
AC-FT CFSM								6810 9.15	20520 28.5	27180 36.5	41110 55.3	17280 24.0
IN.								10.56	31.80	42.13	63.72	26.78
TIV.								10.50	31.00	42.13	03.72	20.70
STATIST	rics of	MONTHLY ME	AN DATA	FOR WATE	R YEARS 19	51 - 2002	2, BY WATE	R YEAR (W	Y)#			
MEAN	147	49.2	17.6	8.00	5.49	5.76	12.9	86.5	265	419	464	356
MAX	350	129	67.0	25.8	13.6	23.5	23.4	189	382	557	718	544
(WY)	1953	1970	1963	1965	1968	1968	1969	1963	1969	1961	1961	1957
MIN	50.8	16.4	4.71	1.50	1.00	1.50	4.50	42.6	158	310	324	205
(WY)	1957	1972	1962	1952	1952	1952	1955	1971	1952	1952	1954	1964

Result of discharge measurement Estimated

# 15052000 LEMON CREEK NEAR JUNEAU—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	195 191 121 96 87	57 50 44 40 44	168 101 74 61 53	21 21 19 76 71	17 17 19 24 18	e9.1 e9.8 e12 e14 e12	e9.0 e8.2 e7.5 e7.2 e7.0	e115 e90 e75 e60 e50	e185 e210 e175 168 228	366 341 463 504 359	379 497 342 328 331	918 1300 660 387 323
6 7 8 9 10	370 661 552 308 188	93 72 47 41 44	48 84 198 268 156	98 65 39 29 e24	16 15 14 14 16	e9.4 e7.2 e6.3 e6.0 e5.5	e6.8 e6.8 e7.0 e7.1 e7.3	e43 e42 e48 e60 e70	323 273 232 250 272	310 330 396 417 358	332 356 387 410 320	475 508 975 498 429
11 12 13 14 15	135 147 127 99 175	48 45 62 65 46	104 117 83 64 64	e21 e19 e18 e17 e16	21 17 15 15	e5.3 e5.1 e5.0 e5.4 e5.8	e8.0 e9.0 e11 e14 e18	e80 e107 e98 e82 e70	274 267 311 278 248	380 385 350 324 325	285 295 451 823 1690	644 554 1150 470 204
16 17 18 19 20	918 1210 522 585 1120	33 34 37 55 55	57 46 38 33 28	e15 e41 e58 e73 e50	14 13 13 12 e12	e6.2 e6.0 e5.8 e5.8 e6.0	e17 e15 e14 e15 e16	e60 e56 e60 e62 e68	238 316 362 377 396	315 416 400 411 419	1480 1000 459 387 531	129 103 110 104 264
21 22 23 24 25	2500 1160 454 320 215	46 32 27 29 69	27 29 32 40 28	39 e32 e27 e24 e21	e11 e11 e10 e10 e9.8	e6.4 e6.2 e6.0 e5.6 e5.5	e18 e21 e32 e83 e250	e77 e100 e153 e282 e186	304 283 232 242 330	522 484 340 288 264	390 266 205 277 298	307 154 114 366 686
26 27 28 29 30 31	236 212 139 98 77 64	376 355 178 140 317	24 23 22 20 18 19	e19 e17 18 22 26 19	e9.2 e8.9 e8.7 	e5.6 e5.8 e6.4 e8.0 e15 e12	e210 e160 e150 e138 e140	e140 e114 e129 e137 e152 e194	456 366 351 281 310	312 434 441 989 540 374	241 250 271 320 536 560	433 1020 817 647 436
TOTAL MEAN MAX MIN AC-FT CFSM IN.	13282 428 2500 64 26340 35.4 40.83	2581 86.0 376 27 5120 7.11 7.93	2127 68.6 268 18 4220 5.67 6.54	1055 34.0 98 15 2090 2.81 3.24	394.6 14.1 24 8.7 783 1.16 1.21	230.2 7.43 15 5.0 457 0.61 0.71	1412.9 47.1 250 6.8 2800 3.89 4.34	3060 98.7 282 42 6070 8.16 9.41	8538 285 456 168 16940 23.5 26.25	12557 405 989 264 24910 33.5 38.60	14697 474 1690 205 29150 39.2 45.18	15185 506 1300 103 30120 41.8 46.68
STATIS	STICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	51 - 200	3, BY WATE	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	159 428 2003 50.8 1957	50.8 129 1970 16.4 1972	19.9 68.6 2003 4.71 1962	9.18 34.0 2003 1.50 1952	5.88 14.1 2003 1.00 1952	5.84 23.5 1968 1.50 1952	14.4 47.1 2003 4.50 1955	87.0 189 1963 42.6 1971	266 382 1969 158 1952	419 557 1961 310 1952	464 718 1961 324 1954	362 544 1957 205 1964
SUMMAR	RY STATIS	TICS			FOR	2003 WAT:	ER YEAR			WATER YE	ARS 1951	- 2003#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			м		2 2 149	119.7 206 500 5.0 5.4 960 11.71 000 17.0 230.95 472 93 9.0	Oct 21 Mar 13 Mar 9 Oct 21 Oct 21				70 Feb 1 73 Feb 1 Oct 2 9 45	2003 1952 3 1961 3 1966 3 1966 0 1998

See Period of Record, partial years used in monthly summary statistics From rating curve extended above 1,200  ${\rm ft}^3/{\rm s}$ , from flood marks, at datum then in use Not determined Estimated

#### 15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY

LOCATION.--Lat  $58^{\circ}21'59''$ , long  $134^{\circ}34'34''$ , in  $SW^{1}/_{4}$   $SW^{1}/_{4}$  sec. 30, T. 40 S., R. 66 (Juneau B-2 SW quad), Hydrologic Unit 19010301, City and Borough of Juneau on right bank at downstream side of footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3 mi east of Auke Bay Post Office.

DRAINAGE AREA. -- 2.60 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1997 to current year. Prior to October 1996, published as miscellaneous site 15052482 Jordan Creek at Trout Street Bridge near Auke Bay, at site about 500 ft downstream at different datum.

GAGE.--Water-stage recorder. Datum of gage is 19.80 ft above sea level, determined by levels survey.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

EXTEREMES OUTSIDE PERIOD OF DAILY RECORD.--Flood of September 25, 1996, reached a stage of 4.34 ft, site and datum then in use, from floodmarks, discharge 140 ft³/s; no flow observed March 2, 1989, March 5, 1996, and January 15, 1997.

		DISCH	HARGE, CU	BIC FEET		D, WATER ILY MEAN	YEAR OCTO	DBER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.7 e9.9 6.3 5.8 7.1	8.2 7.4 6.7 6.1 5.8	27 17 13 11 8.9	6.1 6.3 5.0 15 21	e4.4 e6.3 e7.9 e7.1 e5.4	e4.8 e4.2 e3.7 e5.6 e5.1	e1.6 e1.4 e1.3 e1.2 e1.0	2.0 1.8 1.7 1.6 1.5	1.2 2.3 1.2 0.88 0.80	1.3 1.2 3.9 3.3 2.3	2.6 4.6 3.6 2.9 2.6	7.6 21 9.5 6.9 5.4
6 7 8 9 10	19 18 19 19	5.6 5.1 4.7 4.3 4.0	7.9 7.9 9.0 15	24 16 10 8.1 6.7	e4.5 e4.1 e3.7 e3.5 e3.6	e3.6 e2.1 e0.80 e1.0 e1.0	e1.0 e0.90 e0.90 e0.80 e0.90	1.3 1.3 1.1 0.89 0.77	1.2 0.80 0.69 0.59 0.49	2.0 1.8 1.5 1.3	2.2 2.0 1.8 1.6 1.3	5.5 5.4 26 22 11
11 12 13 14 15	8.4 12 13 8.6 8.9	4.0 3.7 4.0 3.5 3.4	8.9 19 17 10 9.6	5.7 5.1 4.8 e4.4 3.9	e3.6 e3.4 e3.2 e3.0 e2.9	e0.90 e0.90 e0.90 e1.5 e1.9	e0.90 e0.90 e1.0 e1.1 e1.3	0.77 1.4 2.5 5.5 5.3	0.39 0.35 0.81 0.47 0.34	0.97 0.85 0.75 0.83 0.71	1.1 1.0 1.3 1.8 3.1	19 15 29 32 19
16 17 18 19 20	34 84 32 25 27	3.1 4.0 6.3 16	8.7 8.4 7.2 6.3 5.4	4.5 11 9.3 12 17	e2.8 e2.7 e2.0 e1.8 e1.6	e2.3 e2.6 e3.1 e2.6 e2.9	e1.4 e1.4 e1.4 e1.4	3.0 2.2 1.8 1.6 1.5	0.34 0.41 1.8 6.7 5.6	0.69 0.97 0.79 0.56 0.47	3.8 6.5 3.3 2.6 4.4	13 9.8 9.2 8.8 10
21 22 23 24 25	27	11 7.4 6.2 6.0 7.0	4.5 4.4 9.8 12 7.7	8.3 e5.0 e3.5 e2.8 e1.8	e1.3 e1.1 e1.0 e1.0	e3.2 e3.1 e2.5 e1.9 e1.5	e1.2 e1.5 e1.9 1.9 3.2	1.4 1.4 1.4 1.5	2.7 2.1 1.8 1.8 2.0	0.91 1.3 0.71 0.52 0.43	4.5 3.1 2.6 2.6 2.4	11 9.7 7.5 19 18
26 27 28 29 30 31	18 20 15 12 10 9.1	43 28 21 15 50	6.0 5.2 4.8 4.5 4.2	e1.5 e1.3 2.0 e3.9 e6.3 e5.3	e1.2 e2.2 e2.3 	e1.3 e1.3 e1.3 e1.8 e2.4 e2.2	3.4 2.9 2.6 2.3 2.2	1.2 1.1 1.0 1.0 0.87 0.87	2.3 1.9 2.5 1.9 2.4	0.82 2.0 1.1 14 4.5 2.7	2.1 2.5 2.5 2.0 4.6 5.9	13 52 44 21 16
TOTAL MEAN MAX MIN AC-FT CFSM IN.	717.8 23.2 89 5.8 1420 8.91 10.27	311.5 10.4 50 3.1 618 3.99 4.46	294.3 9.49 27 4.0 584 3.65 4.21	237.6 7.66 24 1.3 471 2.95 3.40	88.7 3.17 7.9 1.0 176 1.22 1.27	74.00 2.39 5.6 0.80 147 0.92 1.06	46.30 1.54 3.4 0.80 92 0.59 0.66	52.57 1.70 5.5 0.77 104 0.65 0.75	48.76 1.63 6.7 0.34 97 0.63 0.70	56.28 1.82 14 0.43 112 0.70 0.81	88.9 2.87 6.5 1.0 176 1.10	496.3 16.5 52 5.4 984 6.36 7.10

e Estimated

## 15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY—Continued

STATISTICS OF MONTHLY ME	N DATA FOR WATER	YEARS 1997 - 2003	. BY WATER YEAR (WY)#

MEAN 17.7 8.40 MAX 23.2 11.2 (WY) 2003 2000 MIN 11.1 4.21 (WY) 1998 1999	10.3 6.39 20.8 11.3 2000 1999 2.67 3.52 1999 1998	2.73 5.25 2001 0.47 1999	2.94 4.74 2001 1.62 1998	4.37 12.1 1999 0.72 2002	6.92 13.7 1999 1.70 2003	4.63 10.2 1999 1.63 2003	8.49 2000 1.82	7.01 15.0 2002 1.79 2001	14.0 18.7 1999 7.68 1997
SUMMARY STATISTICS	FOR 2002 CALE	NDAR YEAR		FOR 2003 WAT	TER YEAR		WATER YEARS	1997 -	2003#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	3004.0 8.2 89 a0.0 0.0 5960 3.1 42.9 19 5.2 1.3	Oct 21 0 Apr 8 0 Apr 8		2513.01 6.88 89 b0.34 0.44 114 6.93 d0.31 4980 2.65 35.96 17 3.3 0.90	Jun 11 Oct 17 Oct 17		7.61 9.87 5.95 129 c0.00 0.00 149 7.59 c0.00 5510 2.93 39.78 17 4.9	Mar 3 Dec 28 Dec 28	1999 1999 1999

[#] See Period of Record; partial year used in monthly statistics
a Apr. 8 to Apr. 18
b Jun. 15 and Jun. 16
c Mar. 3 to Mar. 9, 1999 and Apr. 8 to Apr. 18, 2002
d Jun. 16 and Jun. 17

### 15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY—Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1997 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1999 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval started on July 15, 1999.

REMARKS.-- Record is missing from February 21 to April 28 due to recorder malfunction, and August 26, 29-30, September 2, and 12-16, due to thermistor malfunction. Partial days of record retained February 21, 27, April 28, and August 26. Records represent water temperature at the sensor within 0.5°C.

EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum,  $15.5^{\circ}$ C, on June 10 and July 12, 2003, ; minimum,  $0^{\circ}$ C, many days during winters.

EXTREMES FOR CURRENT PERIOD.-- WATER TEMPERATURE: Maximum, 15.5°C, June 10 and July 12; minimum, 0°C, many days during winter.

WATER TEMPERATURE, in (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	7.5 7.5 7.5 7.0	6.5 7.0 6.5 6.5	7.0 7.0 7.0 7.0 6.0	5.0 5.0 5.0 5.0	4.0 5.0 4.0 4.5 5.0	4.5 5.0 4.5 5.0 5.5	5.5 4.5 3.0 2.0 2.5	4.5 3.0 2.0 1.5	5.0 3.5 2.5 2.0 2.0	1.5 2.0 2.5 2.5 2.5	0.5 1.5 2.0 1.5	1.5 2.0 2.0 2.0 2.0
6 7 8 9 10	7.5 8.0 8.0 7.0 5.5	6.0 7.5 7.0 5.5 4.0	7.0 7.5 7.5 6.5 4.5	6.5 6.0 4.0 4.5 4.5	5.5 4.0 3.0 3.0 4.5	6.0 5.0 3.5 4.0 4.5	2.5 3.5 4.5 5.0	2.0 2.5 3.5 4.5	2.5 3.0 4.0 5.0	3.5 3.5 2.5 1.5	2.5 2.5 1.5 0.5 0.0	3.0 3.0 2.0 1.0 0.5
11 12 13 14 15	6.0 6.0 7.0 7.0	5.0 6.0 6.0 6.0	5.5 6.0 6.5 6.5 7.0	4.5 4.5 5.5 6.0 5.5	4.5 4.0 4.5 5.5 4.5	4.5 4.5 5.0 5.5	5.0 4.5 4.0 3.0 3.5	4.5 4.0 3.0 2.5 2.5	4.5 4.5 4.0 3.0 3.0	1.0 2.0 2.5 1.5 2.0	0.5 0.5 1.5 0.0 1.0	1.0 1.5 2.0 0.5 1.5
16 17 18 19 20	8.0 8.0 7.5 8.0	7.0 7.5 6.5 7.5 8.0	7.5 8.0 7.0 7.5 8.5	4.5 4.5 4.5 5.0	3.5 3.5 4.0 4.0 4.5	4.0 4.0 4.0 4.0 5.0	3.0 3.5 3.5 3.0 1.0	2.5 3.0 3.0 1.0 0.5	3.0 3.0 3.5 2.0 0.5	2.5 2.5 3.0 3.0	2.0 1.0 2.0 2.5 2.0	2.0 1.5 3.0 3.0 2.5
21 22 23 24 25	8.5 8.5 8.0 7.5	8.0 8.0 7.0 6.5	8.5 8.0 7.5 7.0 6.5	5.0 4.5 3.5 4.5 5.0	4.5 3.5 2.5 2.5 4.5	5.0 4.0 3.0 3.0 5.0	0.5 2.0 2.0 2.0 2.0	0.0 0.5 1.0 1.0	0.5 1.0 1.5 1.5	2.0 0.5 0.5 0.0	0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0
26 27 28 29 30 31	7.0 7.0 7.0 6.0 4.5 4.0	7.0 6.5 6.0 4.5 3.5 3.5	7.0 7.0 6.5 5.0 4.0	7.0 7.0 5.5 6.5	5.0 5.5 5.0 5.0 5.5	6.0 6.0 5.5 6.0	2.5 1.5 1.5 1.0 1.0	1.5 1.5 1.0 1.0 0.5	2.0 1.5 1.0 1.0 1.0	1.0 1.0 2.0 2.0 2.0 1.5	0.0 0.0 1.0 1.5 1.5	0.5 0.5 1.5 2.0 2.0
MONTH	8.5	3.5	6.7	7.0	2.5	4.8	5.5	0.0	2.5	3.5	0.0	1.5

## 15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY—Continued

WATER TEMPERATURE, in (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.0 2.5 2.0 2.5 2.0	1.5 1.5 1.5 2.0	2.0 2.0 2.0 2.0 2.0	  	  	  	  	  	  	8.5 7.5 7.0 6.5 6.5	6.0 4.0 4.0 3.0 3.0	7.5 5.5 5.5 5.0
6 7 8 9 10	2.0 2.5 2.5 3.0 3.0	1.0 1.5 2.0 2.0 2.5	1.5 2.0 2.5 2.5 2.5	  	  	  	  	  	  	6.5 8.0 9.0 10.0 9.5	5.0 3.5 4.5 5.5	5.5 5.5 7.0 8.0 8.0
11 12 13 14 15	3.5 3.0 2.5 2.0 2.0	2.5 2.0 2.0 0.5 1.5	3.0 2.5 2.5 1.0 2.0	  	  	  	  	  	  	8.5 7.0 6.0 5.5 7.0	7.0 6.0 5.0 4.0 3.5	7.5 6.5 6.0 5.0
16 17 18 19 20	2.0 2.0 1.5 1.5 0.0	1.5 1.5 1.0 0.0	1.5 1.5 1.5 0.5	  	  	  	  	  	  	8.0 8.5 9.0 9.5 10.0	4.5 4.5 5.0 5.5 6.0	6.5 6.5 7.0 8.0 8.5
21 22 23 24 25	  	0.0	  	  	  	  	  	  	  	10.5 10.0 9.5 10.0 9.5	7.0 8.5 8.5 8.0	8.5 9.0 8.5 9.0 8.5
26 27 28 29 30 31	  	0.0  	  	  	  		8.0 8.5 9.0	4.5 5.0	  7.0 7.0	10.0 10.0 10.5 11.5 12.5 12.0	7.5 7.5 8.0 9.5 9.5	8.5 8.5 9.5 10.5 11.0
MONTH										12.5	3.0	7.5
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBI	MEAN ER
1 2 3 4 5	10.0 10.5 12.0 11.5 12.5	8.5 8.0 8.5 8.5	9.5 9.0 10.0 10.0	14.0 13.0 11.0 10.5	10.5 11.0 9.5 9.5 9.5	12.0 12.0 10.0 10.0	11.0 10.5 11.0 10.5 11.5	10.0 9.5 9.0 9.5 9.0	10.5 10.0 10.0 10.0	9.5  10.0 10.0 9.5	9.0  9.5 9.0 7.5	9.5  9.5 9.5 8.5
6 7 8 9 10	13.5 12.0 13.5 14.5 15.5	11.0 10.5 9.0 9.5 10.5	12.0 11.0 11.0 11.5 12.5	11.0 12.0 13.5 15.0 14.5	9.5 8.5 10.5 12.0 11.0	10.5 10.5 12.0 13.0 12.5	11.5 11.5 12.0 12.5 11.5	8.5 9.0 9.0 9.5 9.0	10.0 10.0 10.5 11.0 10.5	9.0 9.5 9.5 9.5 9.5	8.5 8.5 9.0 9.0	8.5 9.0 9.5 9.5
11 12 13 14 15	13.5 12.5 13.5 13.5 12.0	11.5 11.5 11.0 11.0	12.5 12.0 12.0 12.0 11.5	14.0 15.5 15.0 13.5 13.0	12.0 11.5 12.0 12.0 11.5	13.0 13.5 13.0 12.5 12.0	12.0 11.5 11.5 11.5 12.5	9.0 11.0 10.5 11.0 11.5	10.5 11.0 11.0 11.0	9.5   	7.5   	9.0
16 17 18 19 20	14.5 13.0 11.5 9.5 9.5	10.0 11.5 9.5 8.5 8.5	12.0 12.0 10.5 9.0 9.0	12.0 11.5 14.5 14.0 13.5	11.0 10.5 10.5 11.0 12.5	11.5 11.0 12.0 12.5 13.0	12.0 11.5 11.0 11.0	11.0 10.5 9.5 9.5 9.5	11.5 11.0 10.5 10.5	7.5 7.5 7.5 8.0	6.0 7.0 6.5 7.5	7.0 7.0 7.0 7.0
21 22 23 24 25	10.5 11.0 10.5 10.0 10.0	8.5 9.0 9.5 9.0	9.5 10.0 10.0 9.5 9.5	13.0 12.5 13.0 12.5 12.5	11.5 10.5 10.5 11.5 11.0	12.5 11.5 12.0 12.0	10.0 10.5 9.5 10.0 10.5	9.0 8.5 8.0 9.0	9.5 9.5 9.0 9.5 10.0	8.0 8.0 7.5 8.0 8.5	7.5 7.0 6.0 7.0 8.0	7.5 7.5 7.0 7.0 8.0
26 27 28 29 30 31	9.5 10.0 10.0 11.0 12.0	9.0 8.5 8.5 8.0 9.5	9.0 9.0 9.5 9.5 10.5	12.0 11.5 11.5 11.0 11.5	11.0 10.5 10.0 10.5 10.0 9.5	11.5 11.0 11.0 11.0 10.5	10.0 10.0  10.0	7.5 8.5 6.5  9.5	9.5 9.0  9.5	8.5 8.5 9.0 8.5 8.5	7.5 7.5 8.0 7.0 7.0	8.0 8.5 8.0 7.5
MONTH	15.5	8.0	10.6	15.5	8.5	11.7						

### 15052495 NUGGET CREEK ABOVE DIVERSION NEAR AUKE BAY

LOCATION.--Lat  $58^{\circ}25'25''$ , long  $134^{\circ}31'25''$ , in  $SE^{1}_{/4}$   $SE^{1}_{/4}$   $SW^{1}_{/4}$  sec. 4, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, City and Borough of Juneau, on left bank, 1,200 ft upstream from old diversion dam, 3,000 ft upstream from mouth at Mendenhall Lake and 5.2 mi northeast of Auke Bay.

DRAINAGE AREA.-- 15.8 mi².

PERIOD OF RECORD. -- March 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 590 ft above sea level, from topographic map.

REMARKS.--Records fair except estimated daily discharges, which are poor.

		DISCHA	ARGE, (	CUBIC FEET		D, WATER		DBER 2002	TO SEPTI	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	216 184 128 113 116	71 63 57 55 57	192 125 96 77 67	29 29 27 89 101	29 28 28 31 28	17 17 18 26 20	15 14 14 13 13	129 101 84 70 62	173 201 146 130 171	251 242 435 435 263	218 277 204 188 178	471 610 413 257 201
6 7 8 9 10	394 714 520 278 175	81 64 49 44 45	61 105 180 230 144	155 102 64 49 44	25 24 23 22 22	e16 e12 e12 e11 e11	12 13 13 13 13	56 54 60 73 80	253 188 161 177 198	210 193 204 216 225	179 187 198 190 158	241 233 802 326 245
11 12 13 14 15	139 190 160 144 217	48 45 56 56 51	106 148 109 82 76	39 36 32 30 31	25 23 21 20 19	e10 e10 e10 e11 e11	14 15 18 21 27	82 128 105 94 82	197 190 231 180 156	238 233 211 201 203	147 153 258 491 676	255 196 e623 e338 e186
	1320 1150 382 385 690	43 44 54 81 77	66 59 52 45 40	32 122 130 143 116	19 18 18 16 14	12 11 11 11 11	26 22 21 22 23	73 72 75 78 83	153 214 277 326 338	207 295 263 240 248	816 579 262 222 379	e126 e100 e103 e104 e249
21 22 23 24 25	1540 932 325 203 159	77 57 47 55 125	39 42 43 52 42	67 54 43 e38 e34	e13 e12 e12 e13 e14	12 12 11 11 11	25 28 40 78 258	90 112 157 282 205	232 209 175 193 252	340 299 192 165 149	238 168 138 179 160	e239 e150 e113 e327 e540
26 27 28 29 30 31	179 167 130 103 89 77	1220 444 241 179 470	36 34 32 30 27 28	e32 e30 32 35 41 33	15 15 14 	11 11 12 15 26 20	236 197 150 134 136	159 124 134 158 156 184	348 249 240 193 220	204 287 254 712 301 217	133 156 152 161 291 303	e330 e682 e497 e378 e266
TOTAL 1 MEAN MAX MIN MED AC-FT 2 CFSM IN. 2	372 1540 77 190	4056 135 1220 43 57 8050 8.56 9.55	2465 79.5 230 27 61 4890 5.03 5.80	1839 59.3 155 27 39 3650 3.75 4.33	561 20.0 31 12 20 1110 1.27 1.32	420 13.5 26 10 11 833 0.86 0.99	1624 54.1 258 12 22 3220 3.43 3.82	3402 110 282 54 90 6750 6.95 8.01	6371 212 348 130 197 12640 13.4 15.00	8133 262 712 149 238 16130 16.6	8039 259 816 133 190 15950 16.4 18.93	9601 320 802 100 256 19040 20.3 22.60
STATIST	TICS OF	MONTHLY ME	AN DAT	A FOR WATE	R YEARS 20	00 - 200	3, BY WATE	ER YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	250 372 2003 143 2002	91.4 135 2003 35.7 2002	55.6 79.5 2003 26.6 2002	47.6 59.3 2003 28.5 2002	23.0 37.3 2001 11.5 2002	15.4 22.3 2001 10.4 2002	28.9 54.1 2003 12.6 2002	133 183 2002 95.2 2001	359 476 2000 212 2003	426 586 2000 262 2003	397 575 2002 259 2003	332 438 2000 243 2002
SUMMARY	Y STATIS	TICS	F	OR 2002 CAI	LENDAR YEA	ıR	FOR 2003	WATER YE	AR	WATER YE	ARS 2000	- 2003#
ANNUAL ANNUAL HIGHESTI LOWEST HIGHESTI LOWEST ANNUAL MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 90 PERC		MEAN MEAN MEAN MEAN LEAN LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS EEDS	ı	73552 202 1610 6 6 145900 12 173 484 96 8		2 2 8	58030 159 1540 a100 111 2240 24. 115100 10. 136. 326 109	Oct Mar Mar Nov 88 Nov 1	21 11 9 26 26	169 178 159 1610 6. 2940 25. 122400 10. 145. 413 80	Aug 4 Mar 7 Mar Aug 57 Aug 7 27	2001 2003 12 2002 22 2002 18 2002 12 2002 12 2002

See period of Record; partial years used in monthly statistics Mar. 11-13 Estimated

Discharge Gage Height

7.21

 $(ft^3/s)$  (ft)

6130

#### 15052500 MENDENHALL RIVER NEAR AUKE BAY

LOCATION.--Lat  $58^{\circ}25'47''$ , long  $134^{\circ}34'22''$ , in  $NW^{1}_{4}$  SE $^{1}_{4}$  sec. 6, T. 40 S., R. 66 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301, at the north end of Mendenhall Lake, 1.2 mi north of Mendenhall Lake Outlet and 4.1 mi northeast of Auke Bay, and 7 mi upstream from mouth at Fritz Cove.

DRAINAGE AREA. -- 85.1 mi².

Date

Oct. 17

Time

1100

PERIOD OF RECORD.--May 1965 to October 1994, annual maximum, water years 1995-96, October 1996 to current year. Prior to April 15, 1983, at site 1.3 mi southeast at east end of Mendenhall Lake, same datum.

REVISED RECORDS. -- WDR AK-95-1: 1981(M)

GAGE.--Water-stage recorder. Elevation of gage is 60 ft above sea level, from topographic map.

7.03

Discharge Gage Height

 $(ft^3/s)$  (ft)

5770

REMARKS.--Records fair except estimated daily discharges, which are poor. Streamflow is augmented and diurnal fluctuations caused by melting from Mendenhall Glacier, which covers two-thirds of the basin. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—During late summer 1961, flood flows of  $27,000~{\rm ft}^3/{\rm s}$  were estimated at the mouth of the Mendenhall River. For discussion of this flood, see USGS Hydrologic Atlas HA-259.

Date

Sept 03

Time

0915

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,600 ft3/s and maximum (*):.

	*Oct : Jul : Aug	22 0	445 830 000	*11000 5600 10800	*9.23 6.94 9.14		Sept Sept Sept	: 08 : 13 : 27	2215 1930 2030	5450 4630 4810	6.86 6.41 6.51	
		DISC	HARGE, C	UBIC FEET	PER SECONI	), WATER		DBER 2002	2 TO SEPTE	MBER 2003	<b>;</b>	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1090 1390 1430 1160 838	532 467 410 363 e346	1550 1290 1150 751 505	143 146 139 161 267	164 156 154 158 151	74 83 87 104 111	72 68 64 62 60	687 676 680 725 811	1330 1420	3370 3320 3490 4210 3220	3250 3150 2800 2540 2320	3460 4840 6010 4760 2860
6 7 8 9 10	1010 1790 3540 3310 2530	e340 e300 e250 e200 e180	421 430 638 1030 1170	407 447 361 289 251	137 123 111 103 97	94 82 72 65 59	58 57 59 61 63		1920 1940 1660 1730 2020	2760 2630 2980 3300 3350	2450 2930 3240 3430 2850	2790 3210 4660 4240 2790
11 12 13 14 15	2170 1820 1430 1090 1000	e160 e140 e160 e160 e140	1250 1320 1100 683 513	239 232 231 217 189	97 97 95 91 88	55 51 55 54 51	66 71 77 86 97	515 579 654 632 562	2270 2210 2280 2150 1980	3650 3610 3600 3300 3000	2550 2680 2830 3610 6330	3270 3840 4160 3280 1980
16 17 18 19 20	2320 5320 4380 4090 5110	e120 e140 e190 e210 e210	435 381 340 291 238	167 201 308 385 484	77	49 46 46 46 47	106 106 105 105 109	490 462 467 494 537	2130 2710 3230 3320	2790 3050 3440 3490 3820	9780 9560 5010 3710 3950	1310 1020 944 932 1150
21 22 23 24 25	8820 9120 4760 2780 1940	e180 e170 e160 e220 e400	205 189 202 208 205	386 308 267 253 255	e75 e71 e67 65 69	50 54 54 52 51	117 126 137 165 289	595 669 760 1050 1260				1620 1700 1270 1380 2180
26 27 28 29 30 31	1760 1950 1540 994 762 627	1540 1980 2080 1520 1750	189 174 164 156 144 139	247 222 192 174 176 176	66 69 68 	49 48 50 55 65 74	524 596 595 587 636	1440 1480 1490 1560 1450 1510	2760 2940 2630 2390 2540	2500 3200 3440 5040 4760 3370	2100 1950 2160 2270 2770 3660	3290 3840 4600 4490 3460
MEAN MAX MIN	167400	15018 501 2080 120 29790 5.88 6.56	17461 563 1550 139 34630 6.62 7.63	7920 255 484 139 15710 3.00 3.46	2779 99.2 164 65 5510 1.17 1.21	3030	5324 177 636 57 10560 2.09 2.33	49200		105410 3400 5040 2500 209100	3422 9780 1950 210400	89336 2978 6010 932 177200 35.0 39.05

e Estimated

## SOUTHEAST ALASKA

## 15052500 MENDENHALL RIVER NEAR AUKE BAY—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1965 - 2003, BY WATER YEAR (WY)#

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN	1374 2649 1987 532	350 920 1977 110	167 563 2003 40.0	117 600 1981 30.8	90.8 254 1977 21.5	91.0 379 1992 22.3	139 313 1994 46.9	652 1227 1993 268	1888 2819 1969 732	3017 3835 1979 1939	3360 4701 1990 2025	2673 4100 1991 1380
(WY)	1969	1986	1984	1969	1969	1974	2002	1985	1985	1985	1985	1984
SUMMARY	Y STATIS'	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAR		WATER YEARS	1965	- 2003#
				511311 1401			522769 1432			1172 1547 758		1990 1985
HIGHEST	DAILY M	MEAN EAN		10100 28	Aug 13 Mar 22		9780 a46	Aug 16 Mar 17		13700 19	Sep Mar	8 1981 1 1969
MAXIMUN	SEVEN-DA M PEAK F M PEAK S'			29	Mar 19		48 11000 9.	Mar 15 Oct 22 .23 Oct 22		19 16000 b11.18		5 1974 11 1995 11 1995
	FANEOUS I	LOW FLOW (AC-FT)		1014000			c44 1037000			d19 848900	Mar	1 1969
	RUNOFF RUNOFF			16. 223.			16. 228.			13.8 187.08		
	CENT EXC			3260 524			3490 669			3230 392		
90 PERG	CENT EXC	EEDS		44			69			49		

[#] See Period of Record; partial years used in monthly summary statistics and break in record
a Mar. 17-19
b From flood marks
c Mar. 12, 17, and 19
d Mar. 1-3, 1969, and Mar. 7-11, 1974

Discharge Gage Height

(ft)

14.45

 $(ft^3/s)$ 

1020

## 15052800 MONTANA CREEK NEAR AUKE BAY

LOCATION.--Lat  $58^{\circ}23'53''$ , long  $134^{\circ}36'34''$ , in  $SE^{1}_{/4}$   $SW^{1}_{/4}$  sec. 13, T. 40 S., R. 65 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301,On right bank 30 ft upstream from bridge on Mendenhall Loop Road, 1.2 mi upstream from mouth at Mendenhall River, 1.5 mi northeast of Auke Lake, and 3.9 mi downstream from McGinnis Creek.

DRAINAGE AREA. -- 14.1 mi².

Date

Oct 16

PERIOD OF RECORD. -- August 1965 to September 1975, July 1983 to September 1987, Annual Maximum 1996 to 2000, November 2000 to current year.

REVISED RECORDS.--WDR-99-1: 1996-98 (M).

Time

1615

GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level, from topographic map.

Discharge Gage Height

(ft)

15.57

 $(ft^3/s)$ 

1700

REMARKS.--Records fair, except estimated daily discharges, which are poor. GOES satellite telemetry at station.

Date

Sep 2

 ${\tt Time}$ 

0045

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of  $800~{\rm ft}^3/{\rm s}$  and maximum (*)

	000 10		13	1700	13.37		дор	_	0045	1020	11.13	
	Oct 21	. 05	00	1120	14.67		Sep	8	0830	910	14.18	
	Nov 26	14:	15	*1820	*15.73		Sep	27	1730	1450	15.23	
	Nov 30	07	30	1060	14.55							
		DISCH	ARGE, CU	BIC FEET	PER SECOND,	WATER Y MEAN		BER 2002	2 TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	171 175 77 63 67	43 38 33 31 30	184 118 90 e69 e54	64 74 46 115 142	40 39 58 97 61	84 105 64 123 69	39 43 40 28 20	76 60 50 42 38	88 112 73 61 65	70 71 199 198 96	69 79 64 53 49	213 464 243 126 87
6 7 8 9 10	195 289 297 217 104	33 31 26 23 23	e40 e47 e130 355 166	225 146 73 54 e47	46 e34 e28 e30 e36	112 51 25 e15 e15	16 17 20 25 26	35 32 33 37 43	118 81 60 63 71	73 62 59 56 54	43 41 39 38 34	83 84 594 253 127
11 12 13 14 15	76 218 148 93 107	27 25 32 30 34	111 192 154 87 74	e42 e37 33 e30 e33	e40 e30 e27 26 24	e14 e14 e13 e14 e15	33 36 39 41 52	43 77 104 115 90	74 64 76 66 57	53 50 46 47 43	31 32 42 119 159	239 156 287 205 124
16 17 18 19 20	942 719 201 236 399	27 37 112 173 96	68 60 54 46 41	38 217 159 209 220	23 21 21 e18 e16	e15 e16 e16 e25 42	54 40 34 35 41	56 47 43 43	53 60 152 286 257	40 64 61 48 44	216 239 99 74 218	83 66 63 68 315
21 22 23 24 25	944 531 191 126 95	95 54 37 43 108	e36 e50 70 95 59	95 e70 e50 e33 e35	e15 19 25 30 33	47 52 47 34 28	41 45 50 68 122	48 57 85 100 87	134 101 79 72 96	89 94 59 47 39	132 80 64 62 57	258 144 93 326 560
26 27 28 29 30 31	101 152 109 73 57 48	935 480 298 168 533	44 38 37 35 33 33	e36 e41 e47 90 107 63	33 41 38 	21 18 21 34 73 53	127 108 89 79 80	79 63 56 78 74 85	167 102 103 82 69	39 97 64 289 105 69	49 49 49 46 145 126	216 629 263 139 103
TOTAL MEAN MAX MIN AC-FT CFSM IN.	7221 233 944 48 14320 16.5 19.05	3655 122 935 23 7250 8.64 9.64	2670 86.1 355 33 5300 6.11 7.04	2671 86.2 225 30 5300 6.11 7.05	949 33.9 97 15 1880 2.40 2.50	1275 41.1 123 13 2530 2.92 3.36	1488 49.6 127 16 2950 3.52 3.93	1919 61.9 115 32 3810 4.39 5.06	2942 98.1 286 53 5840 6.96 7.76	2425 78.2 289 39 4810 5.55 6.40	2597 83.8 239 31 5150 5.94 6.85	6611 220 629 63 13110 15.6 17.44
STATIS	TICS OF M	ONTHLY ME	EAN DATA	FOR WATER	R YEARS 1965	- 2003	, BY WATE	R YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	162 285 1975 89.7 1969	75.9 138 1975 21.4 1986	47.2 112 1986 15.9 1972	45.4 186 1985 5.02 1974	38.7 121 1971 7.52 1972	47.5 195 1972 9.64 1974	52.3 88.5 1969 25.0 2002	128 185 1972 61.9 2003	160 207 1967 71.1 1971	144 213 1975 52.5 1971	159 246 1972 69.2 1968	167 263 1987 70.9 1984

# SOUTHEAST ALASKA

## 15052800 MONTANA CREEK NEAR AUKE BAY—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1965 - 2003#
ANNUAL TOTAL	40620.4	36423	
ANNUAL MEAN	111	99.8	103
HIGHEST ANNUAL MEAN			131 1975
LOWEST ANNUAL MEAN			80.8 1971
HIGHEST DAILY MEAN	944 Oct 21	944 Oct 21	1350 Sep 29 1970
LOWEST DAILY MEAN	9.1 Apr 10	13 Mar 13	3.4 Feb 8 1972
ANNUAL SEVEN-DAY MINIMUM	9.5 Apr 7	14 Mar 9	3.5 Jan 13 1974
MAXIMUM PEAK FLOW		1820 Nov 26	3800 Oct 20 1998
MAXIMUM PEAK STAGE		15.73 Nov 26	17.36 Oct 20 1998
INSTANTANEOUS LOW FLOW		a	3.2 Feb 8 1972
ANNUAL RUNOFF (AC-FT)	80570	72250	74920
ANNUAL RUNOFF (CFSM)	7.89	7.08	7.33
ANNUAL RUNOFF (INCHES)	107.17	96.09	99.65
10 PERCENT EXCEEDS	223	216	222
50 PERCENT EXCEEDS	76	62	75
90 PERCENT EXCEEDS	13	27	14

a Not determined, see lowest daily mean
# See Period of Record, partial years used in monthly statistics

0.96

#### 15053200 DUCK CREEK BELOW NANCY STREET NEAR AUKE BAY

LOCATION.--Lat  $58^{\circ}22'31''$ , long  $134^{\circ}34'38''$ , in  $NW^{1}_{/4}$   $SW^{1}_{/4}$   $NE^{1}_{/4}$  sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW), Hydrologic Unit 19010301, City and Borough of Juneau, on right bank, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, and 1.44 mi upstream from mouth.

DRAINAGE AREA. -- 1.30 mi².

PERIOD OF RECORD. -- December 1993 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 21.87 ft above sea level, determined by levels survey.

REMARKS. -- Records fair except for estimated record, which is poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY NOV APR OCT DEC JAN FEB MAR JUN JUL AUG SEP MAY 5.7 3.5 12 3.8 3.1 3.7 e1.0 e0.63 0.93 1.5 2.2 4.8 6.7 9.0 4.3 4.2 3.7 e0.80 e0.63 1.3 1.5 3.6 3 5.4 3.9 3.0 6.7 5.3 3.6 5.6 5.5 3.1 e0.68 e0.58 e0.58 e0.58 1.2 2.1 2.5 5.7 2.2 8.9 5.0 4.3 4 4.2 2.0 5 4.4 3.1 4.2 13 3.9 e0.45 e0.51 0.99 1.9 4.3 8.1 2.7 3.6 3.4 e0.40 e0.49 1.1 1.7 6 14 2.8 1.7 4.1 3.6 10 2.4 9.8 3.0 e0.36 0.45 4.1 1.7 1.1 1.6 1.1 1.1 8 12 2.6 4.3 6.8 2.7 e1.2 e0.36 0.40 1.5 1.5 14 2.3 e0.85 12 10 7.6 2.0 5.4 4.6 2.5 e0.66 e0.31 0.36 0.99 1.3 1.5 8.0 e0.31 0.91 11 5.0 2.3 5.1 3.9 2.5 e0.52 0.36 1.2 1.4 9.8 12 6.2 2.1 15 3.5 2.4 e0.500.34 0.58 0.89 1.1 1.2 8.4 7.5 18 3.3 0.99 1.3 e0.59 0.38 13 1.3 1.0 14 e0.75 6.0 1.7 2.9 2.0 0.46 2.5 0.95 1.1 1.6 14 14 10 7.0 15 5.7 2.1 2.8 1.9 e1.0 0.58 2.2 0.97 1.1 2.2 10 1.3 0.73 1.0 2.4 7.7 15 1.9 5.0 1.9 0.92 16 4.0 1.6 2.4 2.5 5.8 11 1.8 0.76 0.95 2.9 17 1.6 1.4 1.1 6.5 0.71 13 1.2 19 11 8.5 e3.0 8.1 1.6 1.8 1.1 1.9 0.95 2.4 6.0 0.77 20 11 6.2 e2.9 9.7 1.5 1.9 1.0 2.2 0.95 3.1 7.2 21 22 6.3 e2.8 6.4 0.62 1.0 1.8 1.1 1.3 2.1 3.1 8.4 22 24 4.9 4.8 2.2 0.76 0.99 1.6 1.2 2.7 4.3 1.1 1.5 2.3 23 15 4.4 8.5 3.9 0.95 1.7 0.76 0.95 1.2 24 10 3.7 8.5 e3.1 0.90 1.3 e0.80 0.95 1.1 13 4.6 1.6 25 8.1 6.2 e2.8 1.1 0.92 e0.90 1.0 2.0 12 26 7.7 15 4.7 e2.6 0.99 0.71 e1.3 0.89 1.7 1.1 1.8 9.7 2.7 9.2 13 3.8 e2.4 1.8 0.64 e1.0 0.85 1.8 22 2.8 7.7 6.5 15 3.3 e2.2 1.8 0.59 e0.82 0.80 1.8 1.3 1.9 1.7 17 0.88 e0.68 1.6 3.9 29 8.3 2.3 0.81 10 3.0 18 2.7 4.3 1.5 e0.63 0.78 1.5 2.9 3.1 7.1 31 4.0 2.6 4.0 e1.4 0.77 2.3 3.9 TOTAL 299.5 155.8 187.1 169.6 66.14 51.81 19.31 27.97 38.99 45.50 67.1 272.6 5.47 14 2.36 5.6 1.30 MEAN 9.66 5.19 6.04 1.67 0.64 0.90 1.47 2.16 9.09 24 18 4.3 1.3 2.5 3.9 18 2.6 MIN 3.9 1.7 2.2 0.90 0.50 0.31 0.36 0.89 0.95 1.2 4.1 AC-FT 594 309 371 336 131 103 38 55 77 90 133 541 1.00 1.13 CFSM 7.43 3.99 4.64 4.21 1.82 1.29 0.50 0.69 IN. 8.57 4.46 5.35 4.85 1.89 1.48 0.55 0.80 1.12 1.30 1.92 7.80 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 2003, BY WATER YEAR (WY)# 2.61 MEAN 9.38 4.90 5.29 2.92 2.37 2.34 2.66 2.16 2.72 3.96 7.66 8.09 MAX 18.1 10.3 12.2 5.47 3.97 5.08 6.16 4.97 3.47 4.23 14.5 2002 (WY) 2000 2000 2000 2003 1994 1999 1999 1999 1997 2002 2000 5.29 2.36 1.95 0.85 0.79 0.94 0.64 1.20 1.47 MIN 0.86 1.31 3.81 (WY) 1998 1996 1996 1997 1999 1995 2003 2002 1998 2003 1994 1997 FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR SUMMARY STATISTICS WATER YEARS 1994 - 2003# ANNUAL TOTAL 1614.57 1401.42 ANNUAL MEAN 4.42 3.84 HIGHEST ANNUAL MEAN 6.90 2000 LOWEST ANNUAL MEAN 3.26 1995 a24 Dec 28 1999 HIGHEST DAILY MEAN 24 Oct 17 68 0.25 May 0.19 LOWEST DAILY MEAN b0.31 Apr 9 Apr 7 7 Mar 15 2000 ANNUAL SEVEN-DAY MINIMUM 0.32 0.34 0.26 Mar 10 May MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE Sep 27 35 80 Dec 28 5.98 Sep 27 c7.59 Sep 25 1996 INSTANTANEOUS LOW FLOW d f0.18 Mar 8 1999 ANNUAL RUNOFF (AC-FT) 3200 2780 2980 ANNUAL RUNOFF (CFSM) 3.40 2.95 3.17 46.20 ANNUAL RUNOFF (INCHES) 40.10 43.04 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 9.7 10 8.6 2.9 2.6

90 PERCENT EXCEEDS

See period of Record; partial years used in monthly summary statistics

Oct. 17 and 22 Apr. 9-11 Backwater caused by culvert, which was removed Apr. 1998 Undertermined, see lowest daily mean

Mar. 8, 1999 and Mar. 14 and 15, 2000

### 15055500 ANTLER RIVER BELOW ANTLER LAKE NEAR AUKE BAY

LOCATION.--Lat  $58^{\circ}51'07''$ , long  $134^{\circ}42'31''$ , in  $NE^{1}/_{4}$   $SE^{1}/_{4}$   $NE^{1}/_{4}$  sec. 10, T. 35 S., R. 64 E. (Juneau D-3 quad), Hydrologic Unit 19010301, in Tongass National Forest, 200 ft below outlet of Antler Lake, 10 mi northeast of Berners Bay, and located 32 mi northwest of Auke Bay.

DRAINAGE AREA.--26.0  $\min^2$ , approximately.

PERIOD OF RECORD. -- May 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map.

REMARKS.--Records fair, except for estimated daily discharges, which are poor.

	WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	93 91 84 77 71	86 77 69 62 58	292 213 162 130 108	40 39 37 48 84	38 36 36 35 34	17 17 17 17 17	22 21 20 19 19	162 152 135 118 103	199 188 174 164 163	224 238 230 239 223	213 202 194 181 168	166 254 281 249 211
6 7 8 9 10	72 92 143 150 134	59 63 60 56 55	93 85 101 138 156	134 153 133 111 94	33 31 30 28 27	17 16 16 15 15	18 18 18 18	91 83 80 83 90	215 241 221 218 239	204 196 200 209 218	165 168 174 175 169	186 178 168 160 148
11 12 13 14 15	116 114 121 112 107	54 52 54 58 57	142 138 144 125 110	81 71 63 56 51	26 25 25 23 22	14 14 14 15 14	18 19 19 20 22	94 109 123 120 110	263 257 270 261 236	229 225 223 220 210	161 156 149 156 330	167 183 215 241 220
16 17 18 19 20	182 335 314 270 375	55 52 52 53 56	101 91 81 72 63	48 52 71 84 92	22 21 21 20 20	14 14 15 15 14	24 e25 e26 e25 e26	99 91 87 87 90	223 224 256 258 255	198 186 180 185 195	465 467 354 268 226	175 143 121 110 114
21 22 23 24 25	769 743 469 310 224	59 58 54 51 53	57 53 58 59 58	87 76 67 59 54	19 18 18 18	15 15 15 15 15	27 27 29 36 58	95 107 124 173 226	235 220 216 200 193	208 213 198 187 173	199 169 149 135 126	165 167 145 179 283
26 27 28 29 30 31	182 168 146 126 109 96	147 378 360 266 323	54 50 46 43 40 39	51 49 45 42 42	18 17 17 	15 15 15 15 19 23	97 126 142 145 153	269 232 196 181 182 193	223 224 210 202 200	162 164 170 233 250 223	119 116 115 118 131 156	326 330 274 257 237
TOTAL MEAN MAX MIN AC-FT CFSM IN.	6395 206 769 71 12680 7.93 9.15	2937 97.9 378 51 5830 3.77 4.20	3102 100 292 39 6150 3.85 4.44	2154 69.5 153 37 4270 2.67 3.08	696 24.9 38 17 1380 0.96 1.00	484 15.6 23 14 960 0.60 0.69	1255 41.8 153 18 2490 1.61 1.80	4085 132 269 80 8100 5.07 5.84	6648 222 270 163 13190 8.52 9.51	6413 207 250 162 12720 7.96 9.18	6074 196 467 115 12050 7.54 8.69	6053 202 330 110 12010 7.76 8.66
							, BY WATER					
MEAN MAX (WY) MIN (WY)	172 240 1999 104 1998	66.8 97.9 2003 39.4 2002	72.5 134 2000 30.6 2002	43.1 69.5 2003 21.2 1999	24.4 35.0 2001 11.5 1999	19.7 29.1 2001 14.6 1999	38.1 55.8 1999 14.5 2002	137 204 1998 90.1 2001	301 330 1999 222 2003	265 327 2000 207 2003	227 317 2002 189 1998	221 271 1999 160 2002
SUMMAF	RY STATIS'	TICS	FOR	2002 CALE	NDAR YEAR		FOR 2003 W	TER YEA	R	WATER YE	ARS 1997	- 2003#
ANNUAI HIGHES LOWEST HIGHES LOWEST ANNUAI MAXIMU MAXIMU INSTAN ANNUAI ANNUAI ANNUAI 10 PEF 50 PEF	ST ANNUAL I ANNUAL I ANNUAL I ST DAILY ME SEVEN-DI JM PEAK FOR THE STATE OF THE STA	MEAN MEAN EAN AY MINIMUM LOW TAGE LOW FLOW (AC-FT) (CFSM) (INCHES) EEDS EEDS		51039 140 869 a13 13 101200 5.3 73.0 313 92 15	Aug 13 Mar 20 Apr 5		46296 127 769 b14 14 889 33.24 10 91830 4.88 66.24 241 110 18		1 1 1 1 1 1 1 2	132 147 121 993 7. 8. c1300 34. 79590 5. 69.3 305 88 18		2000 2002 20 1998 9 1999 5 1999 20 1998 20 1998 9 1999

See period of record; partial years used in monthly statistics
Mar. 20-24 and Apr. 5-18
Mar. 11-13, 15-17 and 20
From rating curve extended above 600 cfs on basis of slope-area measurement at gage height 34.07 ft.

### 15056030 KAKUHAN CREEK NEAR HAINES

LOCATION.--Lat  $59^{\circ}00'19''$ , long  $135^{\circ}11'02''$ , in  $SW^{1}/_{4}$   $NE^{1}/_{4}$   $SE^{1}/_{4}$  sec. 14, T. 33 S., R. 61 E. (Skagway A-1 quad), Hydrologic Unit 19010301, in Tongass National Forest, about 500 ft upstream from mouth on east side of Lynn Canal, 19 mi southeast of Haines, and 60 mi northwest of Juneau.

DRAINAGE AREA.--1.53 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 45 ft above sea level, from topographic map.May 1997 to May 15,2003, at a site 300 ft down stream at a different datum.

REMARKS. -- Records poor.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50 ft³/s and maximum (*):

Date	Time	Discharge ( (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 21	0800	176	a8.63	Jul. 21	0130	67	11.43
Nov. 26	1600	253	a8.79	Aug. 15	unknown	*313	*12.49
May 24	0400	64	11.41	Sep. 04	1545	92	11.62
Jul. 13	1700	67	11.43	Sep. 20	2230	51	11.40
	DISCHARGE,	CUBIC FEET		WATER YEAR OCTOBER Y MEAN VALUES	. 2002 TO SEP	TEMBER 2003	

		DIBCI	minon, con	TC IBBI	DA	ILY MEAN	VALUES	DBR 2002	10 001101	IDDIC 2005		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.5 6.3 5.7 6.1 5.5	6.3 6.4 6.2 8.8 8.7	8.7 7.5 e7.0 e6.6 e6.3	2.6 2.9 2.5 5.8 5.2	1.8 1.8 1.9 1.9	0.91 0.95 0.94 0.96 0.90	0.80 e0.78 e0.77 e0.76 e0.78	e14 e11 e7.8 e5.9 e4.4	19 15 15 16 23	37 40 45 39 36	e19 e25 e18 e15 e13	e34 e40 43 36 e26
6 7 8 9 10	9.9 9.6 8.4 7.1 8.5	8.6 5.6 4.4 3.5 3.4	7.3 9.2 12 13 9.9	7.0 5.1 3.3 2.8 2.7	1.7 1.6 1.6 1.5	e0.85 e0.80 e0.75 e0.72 e0.68	e0.80 e0.86 e0.89 0.94 1.0	e3.3 e2.8 e2.8 e2.9 e3.0	34 25 24 27 30	33 36 39 44 46	e14 e15 e16 e14 e12	29 31 33 28 25
11 12 13 14 15	9.1 11 9.5 9.2 12	3.5 5.2 4.2 4.5 4.3	8.7 9.3 8.0 6.5 6.3	2.7 2.5 2.3 2.2 2.2	1.5 1.4 1.3 1.3	e0.65 e0.63 e0.64 e0.66 e0.68	1.2 1.4 1.6 1.7	e3.6 e4.5 e5.8 e6.8 e5.2	34 36 40 31 26	46 48 49 46 42	e11 e10 e12 e30 e90	27 24 41 27 20
16 17 18 19 20	21 19 16 37 73	4.6 4.0 3.9 3.4 3.7	5.9 5.3 5.1 4.4 3.6	2.3 3.3 4.6 4.2 3.4	1.3 e1.2 e1.2 e1.1 e1.0	e0.70 0.75 0.72 0.71 0.72	1.4 1.3 1.3 1.5 2.2	4.4 4.3 5.6 8.7 9.6	25 35 38 30 28	36 33 35 40 47	56 33 22 23 24	15 12 10 8.4 13
21 22 23 24 25	111 44 27 17	3.5 3.1 3.0 3.0 4.7	e3.3 e3.1 e3.0 3.8 3.5	2.5 e2.3 e2.1 e1.9 e1.7	e0.96 e0.93 e0.93 e0.94 e0.94	0.74 0.73 0.72 0.73 0.71	2.8 3.8 e3.5 e3.7 e4.5	11 14 26 43 29	25 24 22 22 31	51 40 34 35 32	22 e19 e16 e13 e11	15 8.0 7.8 15 26
26 27 28 29 30 31	18 14 10 8.4 7.1 6.5	60 29 12 12 17	3.1 e2.7 e2.5 e2.3 e2.3	e1.7 e1.8 e1.8 1.9 2.0	0.93 0.93 0.87 	0.73 0.74 0.80 0.89 0.99 0.83	e11 e30 e21 e15 e15	21 18 17 19 19	34 26 28 26 28	32 40 38 e69 e50 e17	8.8 9.3 10 13 25 23	17 31 33 30 28
TOTAL MEAN MAX MIN AC-FT CFSM IN.	570.4 18.4 111 5.5 1130 12.0 13.87	250.5 8.35 60 3.0 497 5.46 6.09	182.7 5.89 13 2.3 362 3.85 4.44	91.1 2.94 7.0 1.7 181 1.92 2.21	37.13 1.33 1.9 0.87 74 0.87 0.90	23.93 0.77 0.99 0.63 47 0.50 0.58	134.08 4.47 30 0.76 266 2.92 3.26	355.4 11.5 43 2.8 705 7.49 8.64	817 27.2 40 15 1620 17.8 19.86	1255 40.5 69 17 2490 26.5 30.51	642.1 20.7 90 8.8 1270 13.5 15.61	733.2 24.4 43 7.8 1450 16.0 17.83

At site 300 ft. downstream, at different datum Estimated

# SOUTHEAST ALASKA

#### 15056030 KAKUHAN CREEK NEAR HAINES—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2003, BY WATER YEAR (WY)# DAY ОСТ NOV DEC FEB JUN JUL AUG JAN MAR APR MAY SEP 2.43 23.0 27.2 1.8.5 MEAN 10.9 3.89 3.34 1.54 1.02 1.02 8.16 31.9 28.2 2.94 1.33 43.9 18.4 5.89 4.47 40.5 24.4 MAX 8.35 1.76 11.5 (WY) 2003 2003 2003 2003 2003 2003 2003 2003 2003 2002 2003 0.58 MTN 4.70 1.72 0.89 0.88 0.50 0.70 4.87 20.9 22.9 20.7 11.7 2002 (WY) 1998 2002 2002 2002 2002 2001 2000 2002 2003 2002 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1997 - 2003# ANNUAL TOTAL 4512.79 5092.54 ANNUAL MEAN 12.4 14.0 11.3 HIGHEST ANNUAL MEAN 14.0 2003 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 9.66 1998 155 Aug 13 0.40 Mar 22 155 Aug 13 2002 0.36 Feb 24 2001 155 111 Oct 21 0.63 Mar 12 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 0.41 Feb 19 2001 c415 Aug 31 1998 a8.77 Aug 31 1998 0.42 Mar 18 0.66 Mar 10 b313 Aug 15 12.49 Aug 15 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 8950 10100 8180 9.12 7.38 8.08 100.26 ANNUAL RUNOFF (INCHES) 109.72 123.82 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 36 7.8 31 4.3 28 6.5 0.51 0.92 0.75

See period of Record; partial years used in monthly statistics At site 300 ft. downstream, at different datum From a rating curve extemded above 33  $\rm ft^3/s$ 

h

From rating curve extended above 51 ft3/s C

### 15056030 KAKUHAN CREEK NEAR HAINES—Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1998 to current year.

INSTRUMENTATION. -- Electronic water-temperature recorder set for 15-minute recording interval.

 ${\tt REMARKS.--} \ {\tt Records} \ {\tt represent} \ {\tt water} \ {\tt temperature} \ {\tt at} \ {\tt the} \ {\tt sensor} \ {\tt within} \ {\tt 0.5°C.Sensor} \ {\tt was} \ {\tt moved} \ {\tt upstream} \ {\tt 200ft} \ {\tt on} \ {\tt May} \ {\tt moved} \ {\tt moved} \ {\tt upstream} \ {\tt 200ft} \ {\tt on} \ {\tt May} \ {\tt on} \ {$ 

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum,  $15.0^{\circ}$ C, August 1-2, 1999; minimum,  $0.0^{\circ}$ C, on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum,  $14.5^{\circ}$ C, July 10 and July 12; minimum,  $0.0^{\circ}$ C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	8.0 7.5 7.5 6.5 5.5	6.5 5.5 5.5 5.5 4.5	7.0 6.5 6.5 6.5 5.0	4.0 4.0 4.0 4.5 5.5	3.5 3.0 3.5 3.5 4.5	3.5 3.5 3.5 4.0 5.0	4.5 3.0 2.5 1.5	3.0 2.0 1.5 0.5	4.0 2.5 2.0 1.0 0.5	0.5 0.5 0.5 2.0 2.5	0.0 0.5 0.5 0.5	0.5 0.5 0.5 1.0
6 7 8 9 10	8.5 8.5 7.0 5.5 4.0	5.0 7.0 5.5 3.0 2.0	7.0 8.0 6.5 4.5 3.0	7.0 6.5 5.0 3.5 3.0	5.5 5.0 3.5 2.5 2.5	6.5 5.5 4.0 3.0 2.5	1.5 4.0 5.0 5.0	0.5 1.5 4.0 4.5 4.5	1.0 2.5 4.0 4.5	3.0 3.0 1.5 1.0 0.5	2.5 1.5 1.0 0.5 0.0	3.0 2.5 1.5 0.5
11 12 13 14 15	5.0 6.0 6.5 7.0 8.5	3.5 5.0 5.5 6.0 6.5	4.5 5.5 6.0 6.5 7.5	4.0 4.5 5.0 5.5	2.5 3.5 3.5 5.0 4.0	3.5 4.0 4.5 5.5	4.5 4.0 3.0 2.0 2.0	3.5 2.5 2.0 1.5	4.0 3.5 2.5 1.5	0.5 1.0 1.0 0.5	0.0 0.5 0.5 0.0	0.5 1.0 1.0 0.0 0.5
16 17 18 19 20	8.5 8.5 8.0 8.5 8.0	8.0 7.5 6.0 7.5 5.5	8.5 8.0 7.0 8.0 7.0	4.0 4.0 4.5 4.0 4.5	3.5 3.0 4.0 2.5 4.0	3.5 3.5 4.0 3.5 4.5	2.5 2.5 2.5 2.0 0.5	2.0 2.0 2.0 0.5	2.0 2.0 2.0 1.5 0.5	1.5 2.5 3.0 3.5 3.5	0.5 1.5 2.5 3.0 1.0	1.0 2.0 3.0 3.0 3.0
21 22 23 24 25	6.5 7.5 9.0 7.5 7.0	5.5 6.5 6.0 5.5 6.5	6.0 7.0 7.0 6.5 6.5	4.5 4.5 3.0 4.5 5.0	4.0 3.0 2.5 2.5 4.5	4.0 4.0 2.5 3.5 5.0	0.5 0.5 0.5 0.5	0.5 0.0 0.0 0.5	0.5 0.5 0.5 0.5	1.0 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.0 0.5 0.0
26 27 28 29 30 31	7.0 7.0 6.5 5.5 4.0 3.5	6.0 6.0 4.5 3.5 3.0	6.5 6.5 5.5 4.5 3.5 3.0	6.5 6.0 5.0 6.0 5.5	3.5 5.0 4.5 3.5 4.5	5.5 5.0 4.5 5.0 5.5	0.5 0.5 0.5 0.5 0.5	0.5 0.0 0.0 0.0 0.5	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 1.0	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.5 1.0
MONTH	9.0	2.0	6.2	7.0	2.5	4.2	5.0	0.0	1.7	3.5	0.0	1.0

## 15056030 KAKUHAN CREEK NEAR HAINES—Continued

WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER Y												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	1.5 1.5 2.0 2.0 2.0	0.5 1.0 1.0 2.0 1.5	1.0 1.0 1.5 2.0 2.0	1.0 1.0 1.5 1.5	0.5 1.0 1.0 1.0	1.0 1.0 1.5 1.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	6.5 6.0 5.0 4.5 5.0	4.0 3.0 3.0 1.5 2.5	5.0 4.0 3.5 3.0 3.5
6 7 8 9 10	2.0 2.0 1.5 2.0 2.5	1.5 1.0 1.0 1.5	2.0 1.5 1.5 1.5 2.0	0.5 0.5 0.5 0.5	0.0 0.5 0.5 0.0 0.5	0.5 0.5 0.5 0.5	0.5 1.0 1.5 1.5 2.5	0.5 0.5 1.0 1.0	0.5 0.5 1.0 1.5 2.0	5.5 6.5 8.0 8.5 6.5	3.0 3.0 4.0 4.5 5.0	4.0 4.5 5.5 6.0 6.0
11 12 13 14 15	3.0 2.5 2.0 1.5	2.5 2.0 1.0 1.0	2.5 2.0 1.5 1.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	3.0 3.5 4.0 4.0 3.5	2.0 2.0 2.0 2.0 2.5	2.5 2.5 2.5 3.0 3.0	6.5 6.0  5.5	5.5 4.5  3.0	6.0 5.5  4.0
16 17 18 19 20	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	2.5 4.0 3.5 5.0	2.5 2.0 2.5 2.5 3.0	2.5 3.0 3.0 3.5 4.0	6.5 7.0 7.5 7.5	3.0 3.0 4.0 4.0 3.5	4.5 4.5 5.5 5.5
21 22 23 24 25	0.5 0.5 0.5 0.5	0.5 0.0 0.0 0.0	0.5 0.5 0.5 0.5	1.0 1.0 1.0 1.5	0.5 1.0 0.5 1.0	1.0 1.0 1.0 1.0	5.5 6.0 7.5 8.5 9.0	3.5 4.0 4.0 4.0 5.0	4.5 4.5 5.0 5.5 6.5	8.5 8.0 6.0 6.5 6.0	4.0 5.5 5.0 5.0 4.5	6.0 6.5 5.5 5.5
26 27 28 29 30 31	0.5 0.5 1.0 	0.5 0.5 0.5 	0.5 0.5 0.5 	1.0 1.5 1.5 2.0 2.5 1.5	0.5 1.0 1.5 1.5 0.5	1.0 1.5 1.5 1.5 2.0	8.5 7.5 8.0 8.0 8.5	4.5 4.5 4.0 4.5 5.0	6.0 6.0 5.5 5.5 6.0	7.0 8.0 8.5 7.5 9.5	5.0 6.0	6.0 6.0 6.5 7.0 7.0
MONTH	3.0	0.0	1.1	2.5	0.0	0.9	9.0	0.5	3.1			
4		JUNE		42.5	JULY	44.0		AUGUST	10.0		SEPTEMBE	
1 2 3 4 5	7.0 7.5 9.0 9.0	JUNE 5.5 5.5 5.0 5.5 7.0	6.0 6.5 6.5 7.0 8.0	13.5 10.0 9.0 10.0 9.5	JULY  8.5 8.0 7.5 7.0 8.0	11.0 9.0 8.0 8.0 8.5	12.5 10.5 10.5 9.0 12.0	8.5 8.0 8.0 8.0 7.5	10.0 9.0 9.0 8.5 9.5	8.0 9.0 9.0 10.0 11.0	7.5 8.0 7.5 7.5 7.0	7.5 8.5 8.0 8.5 8.0
2 3 4	7.5 9.0 9.0	5.5 5.5 5.0 5.5	6.5 6.5 7.0	10.0 9.0 10.0	8.5 8.0 7.5 7.0	9.0 8.0 8.0	12.5 10.5 10.5 9.0	8.5 8.0 8.0 8.0	9.0 9.0 8.5	8.0 9.0 9.0 10.0	7.5 8.0 7.5 7.0	7.5 8.5 8.0 8.5
2 3 4 5 6 7 8 9	7.5 9.0 9.0 10.0 10.0 9.0 10.5 11.5	5.5 5.5 5.0 5.5 7.0 6.5 6.0 5.0	6.5 6.5 7.0 8.0 8.0 7.5 7.5	10.0 9.0 10.0 9.5 11.5 14.0 14.0	8.5 8.0 7.5 7.0 8.0 7.0 8.0 9.5 9.0	9.0 8.0 8.0 8.5 9.0 10.0 11.0	12.5 10.5 10.5 9.0 12.0 13.0 14.0 13.5 11.5	8.5 8.0 8.0 7.5 8.0 8.5 9.0 7.5	9.0 9.0 8.5 9.5 10.0 10.5 10.5	8.0 9.0 9.0 10.0 11.0 10.0 9.0 9.0	7.5 8.0 7.5 7.0 6.0 8.0 8.0 7.5 7.0	7.5 8.5 8.0 8.5 8.0 9.0 8.5 8.0
2 3 4 5 6 7 8 9 10 11 12 13 14	7.5 9.0 9.0 10.0 10.0 9.0 10.5 11.5 12.0 10.5 11.0 9.5	5.5 5.5 5.0 5.5 7.0 6.5 6.0 7.0 6.5 7.0 6.5	6.5 6.5 7.0 8.0 7.5 7.5 8.5 9.0 8.5 8.5 7.5	10.0 9.0 10.0 9.5 11.5 14.0 14.0 14.5 11.5 14.5	8.5 8.0 7.5 7.0 8.0 7.0 8.0 9.5 9.0 9.0	9.0 8.0 8.5 9.0 11.0 11.5 11.5 11.5 11.5	12.5 10.5 10.5 9.0 12.0 13.0 14.0 13.5 11.5 10.5	8.5 8.0 8.0 7.5 8.0 8.5 9.0 7.5 6.5 7.5 9.0 9.0	9.0 9.0 8.5 9.5 10.0 10.5 9.0 9.0 10.0 9.5 10.0 9.5	8.0 9.0 9.0 10.0 11.0 10.0 9.0 9.0 9.0 9.0 9.0 8.0 6.0	7.5 8.0 7.5 7.0 6.0 8.0 8.0 7.5 7.0 7.0 7.0	7.5 8.5 8.0 8.5 8.0 9.0 8.5 8.0 8.0 8.0 8.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.5 9.0 9.0 10.0 10.5 11.5 12.0 10.5 11.5 12.0 10.5 10.5 8.5	5.5 5.5 5.0 5.0 5.0 6.0 6.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 7.0 8.0 8.0 7.5 7.5 8.5 9.0 8.5 7.5 8.0 7.5 8.0 7.5	10.0 9.0 10.0 9.5 11.5 14.0 14.0 14.5 11.5 14.5 14.5 14.5 14.5 14.5 14.0 11.0 10.5	8.5 8.0 7.5 7.0 8.0 7.0 8.0 9.5 9.0 9.0 9.5 9.0 9.5 9.0	9.0 8.0 8.5 9.0 10.0 11.5 11.5 11.5 10.0 9.5 9.5 10.5 11.0	12.5 10.5 9.0 12.0 13.0 14.0 13.5 11.5 10.5 10.5 10.5 10.5	8.5 8.0 8.0 7.5 8.0 7.5 6.5 7.5 9.0 9.0 8.5 9.0 7.5	9.0 9.0 8.5 9.5 10.0 10.5 10.5 9.0 9.0 10.0 9.5 10.0 9.5 8.5 8.5 8.0 8.0	8.0 9.0 9.0 10.0 11.0 10.0 9.0 9.0 9.0 9.0 9.0 5.0 5.5 5.5 6.0	7.5 8.0 7.5 7.0 6.0 8.0 8.0 7.5 7.0 7.0 7.5 6.0 4.0 3.0	7.5 8.5 8.0 8.5 8.0 9.0 8.0 8.0 8.0 7.0 4.0 4.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.5 9.0 9.0 10.0 10.5 11.5 12.0 10.5 11.5 10.5 8.5 10.0 9.5 8.5 10.0 9.0 9.0	5.5 5.5 5.0 5.0 5.0 6.0 6.0 7.0 6.5 6.5 6.5 6.5 6.0 6.0 7.0 6.5 6.0 6.0 7.0 6.5 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	6.5 6.5 7.0 8.0 8.0 7.5 7.5 8.5 9.0 8.5 7.5 8.0 7.5 8.0 7.5 8.0 8.5 7.0 8.5 7.0 8.0 8.0	10.0 9.0 10.0 9.5 11.5 14.0 14.0 14.5 11.5 14.5 14.5 14.5 14.5 14.0 11.0 10.5 9.5 10.5 13.0 14.0 12.0 9.5	8.5 8.0 7.5 7.0 8.0 9.5 9.0 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0 9.5 9.0	9.0 8.0 8.5 9.0 10.0 11.5 11.5 11.5 10.0 9.5 10.5 11.5 10.5 11.5 9.5 9.5 9.5 10.5 11.0	12.5 10.5 9.0 12.0 13.0 14.0 13.5 11.5 12.0 13.5 10.5 10.5 10.5 10.5 10.0 9.0 9.0	8.5 8.0 8.0 7.5 8.0 7.5 6.5 9.0 9.0 9.0 7.0 7.0 6.5 7.0 7.0 7.0 7.0 7.5	9.0 9.0 8.5 9.5 10.0 10.5 10.5 9.0 10.0 9.5 10.0 9.5 8.5 8.5 8.0 7.5 7.5 8.5 9.0	8.0 9.0 9.0 10.0 11.0 10.0 9.0 9.0 9.0 9.0 9.0 5.5 5.5 5.5 6.5 6.5 6.5 6.5	7.5 8.0 7.5 7.0 6.0 8.0 7.5 7.0 7.0 7.0 7.0 4.0 3.0 4.0 5.5 5.0 4.5 4.5 3.0	7.5 8.5 8.0 8.5 8.0 9.0 8.0 8.0 8.0 8.0 4.0 4.5 6.5 5.5 5.5 5.5 5.5

### 15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS

LOCATION.--Lat  $58^{\circ}26'37''$ , long  $135^{\circ}36'01''$ , in  $SW^{1}/_{4}SE^{1}/_{4}SE^{1}/_{4}$  sec. 36, T. 39 S., R. 59 E. (Juneau B-5 quad), Hydrologic Unit 19010302, in Glacier Bay National Park and Preserve, 1.7 miles above the mouth at Icy Passage, 4.5 mi east of Gustavus, and 44 mi west of Juneau.

DRAINAGE AREA.--10.1  $\min^2$ 

PERIOD OF RECORD. -- August 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 560 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges and those above 180  $\mathrm{ft^3/s}$ , which are poor. GOES satellite telemetry at station.

back	311100 0	DISCHA	ARGE, CUE	BIC FEET PE	R SECOND,	WATER	YEAR OCTOR	BER 2002 T	O SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	50 44 39 37 42	40 35 31 29 27	165 93 63 48 39	20 26 20 165 132	28 29 43 46 35	e49 e33 e40 e48 e28	e18 e14 e11 e8.2 e8.0	71 58 48 40 35	49 45 37 33 32	40 35 63 52 37	44 39 32 28 27	135 244 154 92 63
6 7 8 9 10	102 235 211 118 74	37 34 26 24 23	34 35 91 155 90	168 85 52 e40 e34	28 25 22 21 30	e18 e10 e9.0 e8.3 e7.6	e10 e12 e15 20 20	32 30 30 32 34	46 36 32 29 27	33 30 27 24 22	23 21 19 17 16	49 46 136 81 60
11 12 13 14 15	58 68 66 53 51	25 24 28 30 32	73 109 68 48 45	e30 e27 e25 e23 e22	37 28 27 23 20	e7.3 e7.0 e7.2 e7.4 e7.5	20 19 20 21 23	34 41 41 49 43	26 24 25 23 21	20 19 17 17 16	15 15 17 19 21	67 79 158 115 80
16 17 18 19 20	273 282 155 146 278	27 46 49 95 61	41 35 32 28 e24	23 128 132 122 e80	19 17 16 15 e14	e7.7 e8.0 e8.5 e9.5 e11.5	23 26 24 26 31	34 30 28 27 28	20 28 79 73 67	16 15 14 13	21 27 24 22 36	56 44 43 46 75
21 22 23 24 25	549 321 138 82 58	55 41 35 41 80	e21 e18 e26 34 26	e55 e37 e32 e28 e24	e13 e13 e12 e12 e13	e13 e14 e12 e10 e9.7	28 26 28 34 68	29 33 99 210 131	55 49 46 44 55	29 35 35 25 23	36 29 27 26 30	113 72 60 215 169
26 27 28 29 30 31	86 119 95 68 54 45	802 463 274 173 283	22 20 19 e17 e16 17	e22 e20 e19 27 60 39	e14 e15 e20 	e9.6 e9.5 e19 e47 e48 e27	112 128 109 87 78	111 75 57 48 43 49	141 92 78 68 49	23 27 31 141 69 50	25 30 28 25 66 59	137 294 154 89 62
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	3997 129 549 37 82 7930 12.8 14.72	2970 99.0 802 23 36 5890 9.80 10.94	1552 50.1 165 16 35 3080 4.96 5.72	1717 55.4 168 19 32 3410 5.48 6.32	635 22.7 46 12 21 1260 2.25 2.34	551.3 17.8 49 7.0 10 1090 1.76 2.03	1067.2 35.6 128 8.0 23 2120 3.52 3.93	1650 53.2 210 27 41 3270 5.27 6.08	1429 47.6 141 20 45 2830 4.72 5.26	1011 32.6 141 13 27 2010 3.23 3.72	864 27.9 66 15 26 1710 2.76 3.18	3188 106 294 43 80 6320 10.5
STATIS	TICS OF	MONTHLY ME	AN DATA	FOR WATER Y	EARS 1999	9 - 2003	3, BY WATER	YEAR (WY)	#			
MEAN MAX (WY) MIN (WY)	98.6 129 2003 67.7 2002	56.6 99.0 2003 22.8 2002	58.8 128 2000 20.6 2002	34.8 55.4 2003 18.7 2000	19.0 23.4 2001 11.0 2000	17.3 22.7 2000 8.67 2002	28.2 37.8 2000 15.2 2002	77.2 107 2002 53.2 2003	88.7 114 2000 47.6 2003	63.0 79.1 2000 32.6 2003	61.9 131 2002 26.7 2001	99.5 128 1999 77.5 2002
SUMMAR	Y STATIS	TICS	FOR	2002 CALEN	IDAR YEAR		FOR 2003 W	ATER YEAR		WATER YEAR	RS 1999	- 2003#
ANNUAL HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S	MEAN MEAN EAN AY MINIMUM LOW TAGE LOW FLOW (AC-FT) (CFSM) (INCHES) EEDS EEDS		25431.2 69.7 802 5.5 5.8 50440 6.90 93.67 166 40 8.1	)		20631.5 56.5 802 7.0 7.4 a1510 30.4 b 40920 5.6 75.9 128 34	Nov 26 Mar 12 Mar 10 Nov 26 1 Nov 26		1110 5.0 5.8 a1650 30.52	7	7 1999 0 2000 8 2002 7 1999 7 1999

See period of Record, partial years used in monthly statistics From rating curve extended above 130 cfs Undetermined, See lowest daily value Estimated

#### SOUTHEAST ALASKA

#### 15070000 SWAN LAKE NEAR KETCHIKAN

LOCATION.--Lat  $55^{\circ}36'54''$ , long  $131^{\circ}20'14''$ , in  $SW^{1}_{/4}$  NE $^{1}_{/4}$  sec. 20, T. 72 S., R. 92 E. (Ketchikan C-4 quad), Hydrologic Unit 19010102, Ketchikan Gateway Borough, on Revillagigedo Island, in Tongass National Forest, 0.7 mi upstream from mouth at Carroll Inlet, and 22 mi northeast of Ketchikan.

DRAINAGE AREA. -- 36.5 mi².

PERIOD OF RECORD.--September 1916 to January 1926, September 1927 to December 1933 and October 1946 to September 1959 (discharge). Published as "Swan Lake Outlet at Carroll Inlet" prior to 1946 and as "Falls Creek near Ketchikan" October 1946 to September 1959. Monthly discharges only for some periods, published in WSP 1372. October 1984 to current year (month end reservoir contents and monthly discharges).

REVISED RECORDS. -- WSP 1372: Drainage area, 1918.

GAGE.--Non-recording lake-level staff gage. Datum of lake-level staff gage is at sea level. Totalizing MWH meters on the two turbines in Swan Lake Powerhouse. September 1916 to January 1926 and September 1927 to December 1933 at site 1,500 ft downstream at different datum. October 1946 to September 1959, recording gage at site 2,500 ft downstream, elevation of gage was 130 ft above sea level, from topographic map.

REMARKS.--Reservoir is formed by a concrete arch dam located at the outlet of Swan Lake; construction began in August 1980 and was completed in March 1983. Total and usable capacities below spillway crest of 330 ft are 126,200 and 82,800 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed from relation between discharge, head, and power generation; release flow enters directly into Carroll Inlet and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above crest of the spillway. Turbine and spillway ratings and reservoir capacity table furnished by the City of Ketchikan in 1985.

COOPERATION. -- Reservoir elevations and release flow provided by the City of Ketchikan.

AVERAGE DISCHARGE.--46 years (water years 1917-25, 1928-33, 1947-59, 1985-2003), 445  ${\rm ft}^3/{\rm s}$ , 165.6 in/yr, 322,402 acre-ft/yr. Mean discharge for water years 1985-2002 adjusted for change in contents of Swan Lake.

EXTREMES FOR PERIOD OF RECORD.—Maximum contents observed, 133,256 acre-ft, January 7, 2003, elevation, 334.9 ft; minimum contents observed, 51,770 acre-ft, September 22, 1993, elevation, 278.4 ft. Maximum discharge, about 5,500 ft³/s, November 1, 1917; minimum daily discharge, 19 ft³/s, February 21 to 25, 1925. Maximum daily discharge since construction of dam, 3,680 ft³/s, November 30, 1988; no flow released several days most years.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 133,256 acre-ft, January 7, 2003, elevation, 334.90 ft; minimum contents observed, 91,594 acre-ft, August 30, 2003, elevation, 306.1 ft. Maximum release from reservoir (mean daily, not adjusted for changes in storage),2,659 ft³/s, January 6, 2003; minimum release, 240.0 ft³/s, June 9, 2003.

MONTH END RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

			CHANGE IN
DATE	ELEVATION	CONTENTS	CONTENTS
Sep 30	330.2	126,460	
Oct 31	324.4	188,070	-8,390
Nov 30	330.0	126,170	+8,100
Dec 31	329.1	124,860	-1,310
Jan 31	330.1	126,310	+1,450
Feb 28	318.3	109,240	-17,070
Mar 31	313.7	102,590	-6,650
Apr 30	311.1	98,820	-3,760
May 31	319.0	110,260	+11,440
Jun 30	323.1	116,180	+5,920
Jul 31	315.2	104,760	-11,430
Aug 31	306.7	92,460	-12,300
Sep 30	326.3	120,810	+28,350
		CAL YR 2002	+14,310
		WTR YR 2003	-5,650

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 MEAN VALUES

MONTH	RELEASE	SPILL	TOTAL	ADJUSTED
OCT	417	19	436	300
NOV	424	14	438	574
DEC	435	84	519	498
JAN	426	243	669	693
FEB	434	0	434	127
MAR	435	0	435	327
APR	378	0	378	315
MAY	361	0	361	547
JUN	345	0	345	e300
JUL	59	0	59	e18
AUG	413	0	413	213
SEP	365	0	365	842
CAL YR 2002	318	105	423	443
WTR YR 2003	64	340	404	397

#### 15072000 FISH CREEK NEAR KETCHIKAN

LOCATION.--Lat  $55^{\circ}23'31''$ , long  $131^{\circ}11'38''$ , in  $SW^{1}/_{4}SW^{1}/_{4}$  sec. 6, T. 75 S., R. 94 E. (Ketchikan B-4 quad.), Gateway Borough, Hydrologic Unit 19010102, on Revillagigedo Island, in Tongass National Forest, on right bank 250 ft upstream from outlet of Low Lake, 750 ft upstream from mouth at Thorne Arm, and 18 mi east of Ketchikan.

DRAINAGE AREA. -- 32.1 mi², excludes that of Granite Lake drainage basin.

PERIOD OF RECORD.--May 1915 to October 1936, October 1938 to current year. Prior to October 1945, monthly discharge only. Records of daily discharge prior to October 1945 are available in computer files of the Geological Survey. Prior to January 1921, published as "near Sea Level, Revillagigedo Island."

REVISED RECORDS. -- WSP 1372: 1918.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to October 1935, at site 150 ft downstream at different datum. October 1935 to October 3, 1975, at prior site and present datum.

Discharge

(ft³/s)

3200

Gage

height

(ft)

4.11

REMARKS.--No estimated daily discharges. Records fair. GOES satellite telemetry at station.

Jan. 7 0330

Date

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,200 ft³/s and/or maximum (*):

Time

				uaii.	,	0330	3200	4.11				
		DIS	SCHARGE, C	UBIC FEET	PER SEC	COND, WATER		TOBER 2002	TO SEPT	EMBER 2003		
						DAILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	338	131	293	567	449	145	765	307	459	273	104	522
2	474	122	254	801	428	173	594	299	460	258	99	1140
3	429	115	222	941	379		469	276	440	279	97	1300
4 5	358 336	109 109	198 178	1470 1890	318 274	162 176	378 312	248 222	384 335	450 443	93 88	897 666
6	550	158	163	2800	237	172	287	201	305	376	84	626
7 8	572 508	155 152	185 296	2920 1910	211 189	154 136	331 298	184 170	288 273	315 279	79 74	617 595
9	473	145	559	1220	171	121	357	162	256	251	69	527
10	447	138	688	1220 809	156	112	321	160	236	220	64	640
11	382	144	774	598	145	103	283	161	220	198	60	793
12	331	267	1130	470	134	100	267	176	218	177	56	715
13	405	517	944	376	125	238	253	240	226	174	54	714
14	386	781	815	310	117	313	247	313	242	165	51	800
15	350	916	773	275	118	323	248	332	339	152	61	773
16	308	851	669	261	122	327	261	315	447	139	89	686
17	275	786	606	302	149	327	324	285	451	136	123	550
18	242	711	536	321	182	375	338	255	480	133	353	944
19 20	226 275	760 995	429 352	344 427	245 288	335 348	374 338	231 215	486 467	130 135	350 335	1430 1240
		993										
21	267	1690	297	404	270	396	324	215	411	166	485	1210
22	242 218	1270	288	344 292	237		318 304	298	348 298	187 185	464 406	969 726
23 24	197	853 627	527 655	288	210 187	353 301	291	561 1130	258	174	356	903
25	179	494	642	320	174	279	287	1050	244	159	302	1110
26	165	506	662	635	159	259	298	1000	202	145	257	1010
26 27	174	498	531	804	159		311	1090 886 721 700 605 515	293 286 286 293 280	134	220	786
28	172	469	442	739	147		318	721	286	125	194	608
29	161	407	367	715		411	311	700	293	118	171	470
30	150	342	324	644		666	308	605	280	110	190	370
31	140		423	545		919		515		103	401	
TOTAL	9730	15218	15222	24742	5972	8795	10115	12523	10009	6289	5829	24337
MEAN	314	507	491	798	213	284	337	404	334	203	188	811 1430
MAX	572	1690	1130	2920	449	919	765	1130	486	450	485	1430
MIN MED	140 308	109 482	163	261 567	105	100	24/	70E	20E	103	5 L	370 750
	19300	30180	30190	49080	11850	17440	20060	24840	19850	12470	11560	48270
CFSM	9.78	15.8	15.3	24.9	6.64	8795 284 919 100 259 17440 8.84 10.19	10.5	12.6	10.4	6.32	5.86	25.3
IN.	11.28	17.64	17.64	28.67	6.92	10.19	11.72	14.51	11.60	6.32 7.29	6.76	28.20
STATIS	STICS OF	MONTHLY	MEAN DATA	A FOR WATER	YEARS	1915 - 2003	3, BY WA	TER YEAR (	WY)#			
MEAN	694	567	421	356	316	262	353	503	471	334	333	449
MAX	1326	1767	1081	975	944	673	655	867	764	718	767	966
(WY)	1975	1918	1931	1926	1993	1986	1949	1999	1951	1976	1972	2001
MIN	237	89.2	83.4	37.9	37.8	262 673 1986 71.4 1969	130	182	142	65.3	50.7	80.0
(WY)	1926	1974	1984	1950	1969	1969	1967	1998	1998	1958	1965	1965

[#] See period of record

## 15072000 FISH CREEK NEAR KETCHIKAN—Continued

SUMMARY STATISTICS	FOR 2002 CALENI	DAR YEAR	FOR 2003 WAT	FER YEAR	WATER YEARS	1915 - 2003#
ANNUAL TOTAL	156103		148781			
ANNUAL MEAN	428		408		423	1000
HIGHEST ANNUAL MEAN					556 302	1992 1978
LOWEST ANNUAL MEAN	2260	7 20	2020	7 7	4410	Oct 15 1961
HIGHEST DAILY MEAN LOWEST DAILY MEAN	2260 47	Aug 28 Mar 24	2920 51	Jan 7 Aug 14	20	
ANNUAL SEVEN-DAY MINIMUM	53	Mar 18	59	Aug 14	23	Sep 9 1928 Sep 5 1928
MAXIMUM PEAK FLOW	55	Mai 10	3200	Jan 7	a5400	Oct. 15 1961
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE			4.11	Jan 7	b5.85	Oct 15 1961
INSTANTANEOUS LOW FLOW			48	Aug 15	20	Sep 9 1928
ANNUAL RUNOFF (AC-FT)	309600		295100	Aug 15	306100	5ep 7 1720
ANNUAL RUNOFF (CFSM)	13.3		12.7		13.2	
ANNUAL RUNOFF (INCHES)	180.90		172.42		178.86	
10 PERCENT EXCEEDS	854		796		863	
50 PERCENT EXCEEDS	330		308		320	
90 PERCENT EXCEEDS	116		134		99	

[#] See Period of Record a From rating curve extended above 3,600 ft  $^3/s$  b  $\,$  At site then in use

Discharge

Gago hoight

### 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK

LOCATION.--Lat  $55^{\circ}43'58''$ , long  $132^{\circ}58'02''$ , in  $NE^{1}_{/4}$   $NE^{1}_{/4}$  sec. 10, T. 71 S., R. 81 E. (Craig C-4 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank, immediately upstream from bridge on Forest Road 2050, 6 mi upstream from Middle Fork Staney Creek and 12.4 mi north of Klawock.

DRAINAGE AREA. -- 3.07 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1990 to September 2003 (discontinued).

Discharge

REVISED RECORDS.--WDR AK-92-1: 1991. WDR AK-00-1: 1990(M), 1991-92(P), 1993, 1994-99(P).

GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map.

Caro hoight

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 350  $\mathrm{ft^3}/\mathrm{s}$  (revised) and maximum (*):

Da	ate	Time	Disch (ft³		Gage heig (ft)	ht	Date	Time	2	Discharge (ft ³ /s)		height ft)
0c	t 6	0100		357	4.41		Sept 1	1915	5	362	4	.43
Nov	7 20	1900		380	4.49		Sept 13	1615	5	*440	*,	1.69
Ja	n 6	0115		416	4.61							
		DISC	HARGE, CUI	BIC FEET	PER SECONI	O, WATER		BER 2002	TO SEPTI	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24 16 7.2 5.7 39	3.0 2.8 2.6 2.7 8.6	4.3 3.6 3.1 2.7 2.6	47 52 40 71 116	4.9 22 14 6.8 4.7	15 13 8.5 11 9.2	6.7 4.3 3.0 2.6 2.3	4.2 3.3 2.5 2.0 1.7	6.7 16 5.7 3.5 2.7	2.8 2.5 16 13 5.9	1.5 1.6 1.6 1.4	150 122 47 13 19
6 7 8 9 10	86 17 20 22 9.6	24 8.1 4.3 3.2 2.7	2.7 9.6 25 29 23	91 38 9.4 5.3 4.1	3.5 2.8 2.5 2.3 2.2	3.5 2.5 e1.8 e1.3 e1.1	4.0 12 12 9.0 9.2	1.6 1.5 1.7 2.0 2.3	2.2 1.9 1.7 1.5	3.9 3.4 3.0 2.6 2.1	1.2 1.1 0.96 0.91 0.82	29 22 9.5 5.9 78
11 12 13 14 15	6.1 25 22 17 13	2.7 30 108 30 24	26 65 21 24 77	3.4 3.0 2.6 2.3 2.7	2.1 1.9 2.1 2.1 2.4	e1.0 e1.1 e1.5 e3.5 e8.0	10 8.1 6.5 6.5 8.1	2.2 39 25 18	1.2 1.5 1.8 1.6 4.2	1.9 1.7 2.0 1.8 1.7	0.81 0.81 0.81 0.86 4.4	41 16 204 60 18
16 17 18 19 20	7.7 5.5 4.4 7.6	15 17 12 42 96	17 13 10 6.3 4.5	4.5 29 9.4 25	2.6 11 15 45 11	e6.5 e7.3 e9.0 e6.5	6.4 7.0 8.0 13	9.7 5.9 4.6 3.9 3.0	3.4 48 19 12 8.1	4.5 14 5.3 3.0 4.2	9.2 11 8.3 3.3 3.8	9.3 6.9 90 24 96
21 22 23 24 25	7.1 11 6.9 4.7 3.8	28 9.5 5.8 4.3 16	3.5 6.0 125 39 35	5.7 3.4 2.9 10 28	5.1 3.3 2.6 2.4 2.4	e8.0 e6.5 e5.0 4.5 3.9	8.2 6.2 8.7 8.5	5.1 17 37 24 24	4.6 3.4 2.9 2.6 6.9	5.1 3.8 4.1 2.7 2.1	5.6 5.0 26 6.2 3.2	103 24 12 122 121
26 27 28 29 30 31	12 27 8.1 5.0 3.8 3.3	67 43 18 7.9 5.4	14 7.5 5.5 4.3 4.3	92 36 12 20 24 8.7	2.5 4.6 7.8 	5.4 6.6 15 64 115 14	8.1 9.2 6.6 5.7 5.4	15 10 11 9.9 5.0 5.5	7.4 5.2 11 4.7 3.0	1.8 1.7 1.7 1.6 1.4	2.3 1.9 1.7 1.6 45	22 14 8.8 6.0 4.6
TOTAL MEAN MAX MIN AC-FT CFSM IN.	462.5 14.9 86 3.3 917 4.86 5.60	643.6 21.5 108 2.6 1280 6.99 7.80	675.5 21.8 125 2.6 1340 7.10 8.19	812.4 26.2 116 2.3 1610 8.54 9.84	191.6 6.84 45 1.9 380 2.23 2.32	369.2 11.9 115 1.0 732 3.88 4.47	228.3 7.61 13 2.3 453 2.48 2.77	308.6 9.95 39 1.5 612 3.24 3.74	195.7 6.52 48 1.2 388 2.12 2.37	122.6 3.95 16 1.3 243 1.29 1.49	200.08 6.45 46 0.81 397 2.10 2.42	1498.0 49.9 204 4.6 2970 16.3 18.15
STATIS	TICS OF	MONTHLY M	IEAN DATA	FOR WATE	R YEARS 199	90 - 2003	, BY WATER	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	32.8 61.1 2000 14.9 2003	23.6 40.2 1994 13.0 1997	26.6 49.1 1991 11.5 1997	25.5 48.9 1997 11.7 2002	20.2 51.7 1993 6.84 2003	15.5 35.1 1994 4.99 2002	16.5 29.7 1997 7.61 2003	14.6 33.8 1999 3.87 1998	8.79 21.0 1999 1.59 1993	5.70 11.8 1997 1.46 1993	10.6 24.8 2002 1.80 1993	27.3 49.9 2003 10.4 1993

[#] See Period of Record; partial years used in monthly summary statistics

e Estimated

## 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1990 - 2003#
ANNUAL TOTAL	6274.9	5708.08	
ANNUAL MEAN	17.2	15.6	19.1
HIGHEST ANNUAL MEAN			24.7 1994
LOWEST ANNUAL MEAN			15.4 1996
HIGHEST DAILY MEAN	304 Feb 14	204 Sep 13	793 Oct 26 1993
LOWEST DAILY MEAN	1.7 Jul 15	a0.81 Aug 11	0.38 Jul 21 1993
ANNUAL SEVEN-DAY MINIMUM	1.9 Jul 9	0.85 Aug 8	0.49 Jul 15 1993
MAXIMUM PEAK FLOW		440 Sep 13	b1110 Jan 29 1993
MAXIMUM PEAK STAGE		4.69 Sep 13	6.34 Jan 29 1993
INSTANTANEOUS LOW FLOW		c0.81 Aug 9	d0.37 Jul 20 1993
ANNUAL RUNOFF (AC-FT)	12450	11320	13830
ANNUAL RUNOFF (CFSM)	5.60	5.09	6.22
ANNUAL RUNOFF (INCHES)	76.03	69.17	84.50
10 PERCENT EXCEEDS	37	39	44
50 PERCENT EXCEEDS	8.1	6.5	9.1
90 PERCENT EXCEEDS	3.0	1.7	2.2

[#] See Period of Record; partial years used in monthly summary statistics
a Aug. 11 to Aug. 13
b From rating extended above 140 ft³/s
c Aug. 9 to Aug. 14
d Jul. 20 and 21, 1993

### 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1991 to September 2003 (discontinued).

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: November 1990 to September 2003 (discontinued).

INSTRUMENTATION. -- Electronic water temperature recorder since November 20, 1990, set for 2-hour recording interval. New water temperature recorder installed April 11, 1996 with a 15-minute recording interval.

REMARKS.--Records represent water temperature at sensor within  $0.5^{\circ}$ C. Temperature at the sensor was compared with the stream average by cross sections on November 15 and September 16. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE.—-Maximum recorded, 18.5°C, June 30, 1992, July 16, 1993, and July 2-4, 1998; minimum, 0.0°C, on many days during winters.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE.--Maximum, 17.0°C August 8-9, and 13; minimum, 0.0°C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
Nov							
15	1011	24.8	10.0	2.38	27.0	6.1	6.7
15	1012	24.8	15.0	2.38	27.0	6.1	6.7
15	1013	24.8	20.0	2.38	27.0	6.1	6.7
15	1014	24.8	25.0	2.38	27.0	6.1	6.7
15	1015	24.8	30.0	2.38	27.0	6.1	6.7
Sept							
16	1055	23.9	2.0	2.09	8.6	8.8	6.5
16	1056	23.9	7.0	2.09	8.6	8.8	6.5
16	1057	23.9	12.0	2.09	8.6	8.7	6.5
16	1058	23.9	17.0	2.09	8.6	8.7	6.5

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	8.5 8.5 7.5 7.5 8.5	7.5 7.5 6.0 6.5 7.5	8.0 8.0 7.0 7.0	3.5 4.0 4.0 5.0 6.0	2.5 3.0 3.0 4.0 4.5	3.0 3.5 3.5 4.5 5.5	5.0 4.0 4.0 2.0	4.0 4.0 2.0 1.0	4.5 4.0 3.0 1.5	2.5 2.5 3.0 3.5 4.0	1.5 2.0 2.5 3.0 3.0	2.0 2.0 3.0 3.5 3.5
6 7 8 9 10	9.0 9.0 9.0 8.0 6.5	8.5 8.5 8.0 6.5 5.0	9.0 8.5 8.5 7.5 5.5	7.0 6.5 6.0 5.5 6.0	6.0 6.0 5.0 4.5 5.0	6.5 6.0 5.5 5.0	2.5 4.5 5.5 6.0 5.5	1.5 2.5 4.5 5.5 5.0	2.0 3.5 5.0 5.5	4.0 3.5 2.0 1.0	3.5 2.0 0.5 0.5	4.0 3.0 1.5 0.5
11 12 13 14 15	5.5 6.5 7.5 8.0 8.5	4.5 5.5 6.5 7.5	5.0 6.0 7.0 7.5 8.0	6.5 6.5 7.0 6.5 6.0	5.5 6.0 6.5 6.0	6.0 6.5 6.5 6.0	5.0 5.5 4.0 4.0	4.5 4.0 3.5 3.5 4.0	4.5 5.0 3.5 4.0 4.5	1.0 1.5 0.5 1.0 2.0	0.5 0.5 0.0 0.0	1.0 1.0 0.5 0.5
16 17 18 19 20	8.5 9.0 8.0 9.0	8.0 7.5 7.0 8.0 8.0	8.5 8.5 7.5 8.5 8.5	6.0 5.5 5.0 5.5 6.5	5.0 5.0 5.0 5.0 5.0	5.5 5.0 5.0 5.5	4.0 3.5 3.0 2.5 2.0	3.5 3.0 2.5 2.0 1.0	4.0 3.0 2.5 2.0 1.5	3.0 4.0 4.0 4.5 4.0	2.0 3.0 3.5 4.0 3.0	2.5 3.5 3.5 4.0 3.5
21 22 23 24 25	9.0 9.0 8.5 8.0	8.5 8.5 8.0 7.5	9.0 9.0 8.0 8.0	6.0 5.0 4.0 4.5 5.5	5.0 3.5 3.0 3.5 4.5	6.0 4.5 3.5 4.0 5.0	1.0 2.5 3.5 4.0 3.0	0.5 1.0 2.5 3.0 2.5	1.0 1.5 3.0 3.5 3.0	3.0 1.0 0.5 1.0 2.0	1.0 0.0 0.0 0.0 1.0	2.0 0.5 0.0 0.5 1.5
26 27 28 29 30 31	8.0 7.5 7.0 5.5 4.5 3.5	7.0 7.0 5.5 4.5 3.5 2.5	7.5 7.5 6.0 5.0 4.0 3.0	6.5 6.0 5.5 6.0 5.5	5.5 5.5 5.0 5.5 5.0	6.0 5.5 5.5 5.5 5.5	2.5 2.0 1.0 0.5 1.0	2.0 1.0 0.0 0.0 0.0	2.5 1.5 0.5 0.0 0.5	2.5 3.0 3.5 3.5 3.5 3.5	2.0 2.5 2.5 3.0 3.0	2.5 2.5 3.0 3.5 3.0 2.5
MONTH	9.0	2.5	7.3	7.0	2.5	5.2	6.0	0.0	2.9	4.5	0.0	2.2

## 15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2	2.5	2.0 2.0 2.5 2.5 1.5	2.0 2.5	2.0 2.5 3.0 3.0	1.5	1.5 2.0	3.0 3.0 3.0 2.0 3.5	0.5	2.0 1.5	7.5 8.5 8.0 7.0 8.5	6.0 4.5	7.0 6.5 6.5
3 4	3.0 3.5	2.5 2.5	3.0 3.0	3.0 3.0	2.0 2.5	2.0 2.5 3.0 2.0	3.0 2.0	0.0 0.5	1.5 1.0	8.0 7.0	5.0 4.0	5.5
												6.0
6 7	2.0 2.0 1.5 2.0 2.0	1.0	1.5 1.5	1.5 0.5 0.5 0.5	0.0	0.5 0.0 0.0 0.0	2.0	1.0	1.5	8.5 10.5 10.5 11.0 11.5	5.0	7.0 7.5
8 9	1.5	1.0	1.0	0.5	0.0	0.0	3.0	1.0	2.0	10.5	5.5	8.0
10	2.0	0.5	1.0	0.5	0.0	0.0	4.0	2.0	3.0	11.5	7.5	9.0
11	2.0	1.0	1.5			0.0	4.5	3.0	3.5	9.0	8.0	8.0
12 13	2.0	1.0	1.5 1.5	0.0	0.0	0.0	5.0 5.5	2.0	3.5 4.0	8.0 6.0	5.0 4.5	6.0 5.0
14 15	2.0 2.0 2.0 2.0 2.5	0.5 1.5	1.5 1.5 1.5 2.0	0.5 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	5.0 4.5	2.5 3.5	4.0 4.0	9.0 8.0 6.0 6.0 5.5	4.0	5.0 5.0
17 18	3.0	2.5	3.0	0.5	0.0	0.0	4.5	2.5	3.5	8.0	4.0	6.0
19	2.5 3.0 3.0 3.5 3.5	2.0 2.5 2.5 2.5 2.0	3.0	0.5 0.5 0.5 0.5	0.0	0.5	4.0 4.5 3.5 5.0	2.5	3.5	6.5 8.0 7.5 8.0 10.0	5.0	6.5
21 22	2.0 1.5	0.5 0.0 0.0 0.0	1.5 0.5 0.5 0.5	1.0 1.5 2.0 2.5 2.5	0.0 0.5	0.5 1.0 1.0 1.5 1.5	6.0 5.0	3.5 3.5	4.5 4.0	8.0 7.5 7.0 7.5 7.0	7.0 6.0	7.5 6.5
23 24	1.0	0.0	0.5	2.0	0.0	1.0	5.5 7.5	4.0	4.5	7.0	6.5	6.5 7.0
26	2.0 1.5 2.0	0.5	1.0	3.0 3.0 2.5 2.0 2.0 2.5	1.5	2.0	8.0 6.5 7.5 9.0 9.0	4.5	6.0	8.0 8.5 9.0 8.0 9.5 10.5	6.5	7.0
27 28	2.0	1.0	1.0	2.5	1.5	2.5 2.0	6.5 7.5	4.5 3.5	5.5 6.0	9.0	6.0 7.5	7.5 8.0
29 30				2.0	1.0 1.5	2.0 2.5 2.0 1.5 2.0 1.5	9.0 9.0	4.5 5.5	7.0 7.5	8.0 9.5	7.0 7.0	7.5
31				2.5	1.0	1.5	===	===		10.5	8.5	9.0
MONTH	3.5	0.0	1.7	3.0	0.0	1.0	9.0	0.0	3.7	11.5	4.0	6.9
DAV	M2 W	MTN	MEDN	MAN	MTN	16T7 7 17	MAN	MTN	MEAN	M7.V	MIN	MEAN
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN		MIN	MEAN		MIN SEPTEMBI	
1		JUNE			JULY			AUGUST			SEPTEMBI	ER 10.0
1 2		JUNE			JULY			AUGUST			SEPTEMBI	10.0 10.5
1 2 3 4		JUNE			JULY			AUGUST			SEPTEMBI	10.0 10.5 10.5 10.5
1 2 3 4 5	9.5 8.5 10.0 10.5 13.5	JUNE 8.0 7.0 6.0 9.0 9.0	8.5 8.0 8.5 9.5 11.5	11.0 12.5 11.0 10.0	JULY  10.0 10.5 9.5 9.0 9.0	10.5 11.0 10.5 9.5 10.0	14.5 14.5 14.5 13.5 13.0	13.5 13.0 12.5 11.0	14.0 13.5 13.5 12.5 12.0	10.5 10.5 11.0 11.0	10.0 10.0 10.0 10.0 9.5 10.0	10.0 10.5 10.5 10.5
1 2 3 4 5	9.5 8.5 10.0 10.5 13.5	JUNE 8.0 7.0 6.0 9.0 9.0	8.5 8.0 8.5 9.5 11.5	11.0 12.5 11.0 10.0	JULY  10.0 10.5 9.5 9.0 9.0	10.5 11.0 10.5 9.5 10.0	14.5 14.5 14.5 13.5 13.0	13.5 13.0 12.5 11.0	14.0 13.5 13.5 12.5 12.0	10.5 10.5 11.0 11.0	10.0 10.0 10.0 10.0 9.5 10.0	10.0 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8	9.5 8.5 10.0 10.5 13.5	JUNE 8.0 7.0 6.0 9.0 9.0	8.5 8.0 8.5 9.5 11.5	11.0 12.5 11.0 10.0	JULY  10.0 10.5 9.5 9.0 9.0	10.5 11.0 10.5 9.5 10.0	14.5 14.5 14.5 13.5 13.0	13.5 13.0 12.5 11.0	14.0 13.5 13.5 12.5 12.0	10.5 10.5 11.0 11.0	10.0 10.0 10.0 10.0 9.5 10.0	10.0 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5	9.5 8.5 10.0 10.5 13.5	JUNE 8.0 7.0 6.0 9.0 9.0	8.5 8.0 8.5 9.5 11.5		JULY  10.0 10.5 9.5 9.0 9.0	10.5 11.0 10.5 9.5 10.0	14.5 14.5 14.5 13.5 13.0	13.5 13.0 12.5 11.0	14.0 13.5 13.5 12.5 12.0	10.5 10.5 11.0 11.0	10.0 10.0 10.0 10.0 9.5 10.0	10.0 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5	JUNE  8.0 7.0 6.0 9.0 9.0 11.0 11.5 10.5 11.0 11.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0	11.0 12.5 11.0 10.0 11.0 14.5 14.5 15.5 16.0	JULY  10.0 10.5 9.5 9.0 9.0 10.0 10.5 12.0 11.5 12.5	10.5 11.0 10.5 9.5 10.0 11.0 12.5 13.5 14.5	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 16.5	13.5 13.0 12.5 11.0 11.0 12.5 12.0 12.5 13.0 13.0	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 12.5 11.5	3.0 7.0 6.0 9.0 9.0 11.5 10.5 11.0 11.5 11.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0	11.0 12.5 11.0 10.0 11.0 11.5 14.5 15.5 16.5	JULY  10.0 10.5 9.5 9.0 9.0 10.0 11.5 12.0 11.5 12.5 13.0 13.5 14.0	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 17.0 16.5	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 12.5 13.0 13.0  12.5 13.0 14.5	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5	JUNE  8.0 7.0 6.0 9.0 9.0 11.0 11.5 10.5 11.5 12.5 11.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.0 13.5 14.0	11.0 12.5 11.0 10.0 11.0 11.5 14.0 14.5 15.5 16.0	JULY  10.0 10.5 9.5 9.0 9.0 10.0 10.5 12.0 11.5 12.5	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 16.5	AUGUST  13.5 13.0 12.5 11.0 11.0 10.5 12.0 12.5 13.0 13.0 12.5 13.0	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 12.5 11.0 11.5	3.0 7.0 6.0 9.0 9.0 11.5 11.5 11.0 11.5 12.5 11.5 10.0 9.5 9.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 13.5 12.0 10.0 10.5	11.0 12.5 11.0 10.0 11.0 11.5 14.0 14.5 15.5 16.0 16.5 15.0 15.0 14.0	JULY  10.0 10.5 9.5 9.0 9.0 10.0 10.5 12.0 11.5 12.5 13.0 13.5 14.0 13.0 13.0	10.5 11.0 10.5 9.5 10.0 11.0 12.5 13.5 14.5 15.0 14.5 14.0 13.5	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 16.5 16.5 16.5 16.5 17.0 16.0 15.0	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 12.5 13.0 13.0 14.5 14.5 13.0 11.5	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 15.5 15.0	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 12.5 11.5 11.5	3.0 7.0 6.0 9.0 9.0 11.5 10.5 11.0 11.5 12.5 10.0 9.5 9.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 13.5 12.0 10.0	11.0 12.5 11.0 10.0 11.0 11.5 14.5 15.5 16.0 16.5 15.0 14.0	JULY  10.0 10.5 9.5 9.0 9.0 10.5 12.0 11.5 12.5 13.0 13.5 14.0 13.0 13.0	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5 15.0 14.5 14.0 13.5	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 17.0 16.5 16.5 16.5 17.0 16.5	13.5 13.0 12.5 11.0 11.0 10.5 12.5 13.0 13.0 12.5 13.0 14.5 14.5	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 14.5 15.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 11.5 11.5 11.0 10.5 9.0	3.0 3.0 6.0 9.0 9.0 11.0 11.5 10.5 11.5 11.0 9.5 9.5 10.0 9.5 9.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 13.5 12.0 10.0 10.5	11.0 12.5 11.0 10.0 11.0 11.5 14.0 14.5 15.5 16.0 16.5 16.5 15.0 15.0 14.0	JULY  10.0 10.5 9.5 9.0 9.0 10.0 11.5 12.5 13.0 13.5 14.0 13.0 10.5 11.0 10.5	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5 15.0 14.5 14.0 13.5 11.0 12.5 12.5	14.5 14.5 14.5 13.5 13.0 16.0 17.0 17.0 16.5 16.5 17.0 16.5 17.0 16.5	13.5 13.0 12.5 11.0 11.0 10.5 12.0 12.5 13.0 13.0 14.5 14.5 13.0 11.5 11.0	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 15.5 15.5 14.0	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 11.5 11.5 11.0 10.0 9.5	3.0 7.0 6.0 9.0 9.0 11.5 10.5 11.5 11.5 10.0 9.5 9.5 10.0 8.0 7.5 8.0	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 10.0 10.0 10.5 9.5 9.0 9.0	11.0 12.5 11.0 10.0 11.0 11.5 14.5 15.5 16.0 16.5 15.0 15.0 14.0	JULY  10.0 10.5 9.5 9.0 9.0 10.5 12.0 11.5 12.5 13.0 13.0 13.0 12.0 10.5 11.0 12.0	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5 14.5 14.5 14.0 13.5 12.5 12.5 12.5	14.5 14.5 14.5 13.5 13.0 16.0 17.0 17.0 16.5 16.5 17.0 16.5 17.0 16.0 15.0	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 12.5 13.0 13.0  12.5 13.0 14.5 14.5 14.5 13.0 11.0 11.0 11.0	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 14.5 15.5 14.0 12.5 11.5 11.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5 9.5 9.0 8.0 8.0 8.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 11.5 11.5 11.5 11.5 9.0 10.5 9.5	JUNE  8.0 7.0 6.0 9.0 9.0 11.0 11.5 10.5 11.0 11.5 12.5 11.0 9.5 9.5 10.0 8.0 7.5 8.0 8.0 9.0	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 11.0 11.0 10.5 10.5 9.5 8.5 9.0 9.0	11.0 12.5 11.0 10.0 11.0 11.5 14.0 14.5 15.5 16.0 16.5 15.0 14.0 13.0 12.0 13.0 13.0	JULY  10.0 10.5 9.5 9.0 9.0 10.0 10.5 12.0 13.5 12.5 13.0 13.0 13.0 12.0 10.5 11.0 12.0 11.5	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5 15.0 15.0 14.5 14.0 13.5 12.5 12.5 12.5 12.5	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 16.5 16.5 16.5 16.5 17.0 16.0 15.0	13.5 13.0 12.5 11.0 11.0 10.5 12.0 13.0 12.5 13.0 14.5 14.5 14.5 14.5 11.0 11.0 11.0	14.0 13.5 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 14.5 15.5 14.0 12.5 11.5 11.5 11.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 11.5 11.5 11.0 10.0 9.5	3UNE  8.0 7.0 6.0 9.0 9.0 11.0 11.5 11.5 11.5 11.5 11.5 10.0 9.5 9.5 10.0 8.0 7.5 8.0 8.0 9.0 9.5 10.0	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 10.0 10.5 10.5 9.5 10.5 9.5 10.5 10.5	11.0 12.5 11.0 10.0 11.0 11.5 14.0 14.5 15.5 16.0 16.5 15.0 14.0 13.0 12.0 13.0 13.0 12.0 13.0	JULY  10.0 10.5 9.5 9.0 9.0 10.0 11.5 12.0 11.5 12.5  13.0 13.5 14.0 13.0 12.0 11.5 12.0 11.0 11.0 12.0	10.5 11.0 10.5 9.5 10.0 11.0 12.5 13.5 14.5 15.0 15.0 14.5 14.0 13.5 12.5 12.5 12.5 12.5 12.5	14.5 14.5 14.5 13.5 13.0 16.0 17.0 17.0 16.5 16.5 17.0 16.0 15.0 12.0 12.0 12.0 11.5	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 13.0 13.0 14.5 13.0 14.5 14.5 13.0 11.5 11.0 11.0 11.0 11.0 11.0 5 9.5	14.0 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 15.5 15.5 14.0 12.5 11.5 11.5 11.5 11.5 11.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	9.5 8.5 10.0 10.5 13.5 15.0 15.0 15.0 16.5 11.5 11.5 11.0 10.5 9.0 10.0 9.5	3.0 7.0 6.0 9.0 9.0 11.0 11.5 11.5 11.5 11.5 10.0 9.5 9.5 10.0 8.0 7.5 8.0 9.0 9.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 10.0 10.0 10.5 9.0 9.0 9.0	11.0 12.5 11.0 10.0 11.0 11.5 14.5 15.5 16.0 14.0 13.0 12.0 14.5 13.0 13.0 13.0 14.5 15.5	JULY  10.0 10.5 9.5 9.0 9.0 10.5 12.0 11.5 12.5  13.0 13.0 13.0 12.0 12.0 12.0 12.0 11.0 12.0 12.0 12	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5 14.5 14.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 17.0 16.5 16.5 17.0 16.0 15.0 12.0 12.5 13.0 12.0 12.5 13.0	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 12.5 13.0 13.0  12.5 13.0 14.5 14.5 14.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 5 9.5 9.5	14.0 13.5 13.5 12.5 12.0 13.5 15.0 15.5 15.0 14.5 15.5 14.0 12.5 11.5 11.5 11.5 11.5 11.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5 9.0 8.0 8.0 8.5 8.5 7.5 8.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 11.5 11.5 11.0 10.0 9.5 10.0 10.0 10.0 11.5	3UNE  8.0 7.0 6.0 9.0 9.0 11.0 11.5 10.5 11.5 10.0 9.5 9.5 10.0 8.0 7.5 8.0 8.0 9.0 9.0 9.5 10.0 9.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 10.0 10.5 10.5 9.5 10.5 9.5 10.5 9.5	11.0 12.5 11.0 10.0 11.0 11.5 14.0 14.5 15.5 16.0 14.0 13.0 12.0 13.0 13.0 13.0 13.0 14.5 15.5	JULY  10.0 10.5 9.5 9.0 9.0 10.0 11.5 12.0 11.5 12.5 13.0 13.5 14.0 13.0 12.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0	10.5 11.0 10.5 9.5 10.0 11.0 12.5 13.5 14.5 15.0 14.5 14.0 13.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	14.5 14.5 14.5 13.5 13.0 16.0 17.0 17.0 16.5 16.5 17.0 16.0 15.0 12.0 12.0 12.0 11.5 11.0 11.5 12.0	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 13.0 13.0 14.5 13.0 14.5 14.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	14.0 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 15.5 14.0 12.5 11.5 11.5 11.5 11.0 11.0	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	9.5 8.5 10.0 10.5 13.5 15.0 15.0 15.0 16.0 11.5 11.0 11.5 11.0 10.5 9.0 10.0 9.5 11.5 11.0	3.0 7.0 6.0 9.0 9.0 11.0 11.5 11.5 11.5 12.5 11.5 10.0 9.5 9.5 10.0 8.0 7.5 8.0 9.0 9.0 9.0	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 10.0 10.5 9.5 9.0 9.0 9.5 10.5 10.5 10.5 10.5 10.5 10.5	11.0 12.5 11.0 10.0 11.0 11.5 14.5 15.5 16.0 14.0 13.0 12.0 14.5 13.0 13.0 14.5 15.5 13.0	JULY  10.0 10.5 9.5 9.0 9.0 10.5 12.0 11.5 12.5  13.0 13.0 13.0 12.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0	10.5 11.0 10.5 9.5 10.0 11.0 12.0 12.5 13.5 14.5 14.5 14.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	14.5 14.5 14.5 13.5 13.0 16.0 16.5 17.0 17.0 16.5 16.5 17.0 12.0 12.0 12.5 13.0 12.0 12.5 13.0	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 12.5 13.0 13.0  12.5 13.0 14.5 14.5 14.5 14.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	14.0 13.5 13.5 12.5 12.0 13.5 15.0 15.5 15.0 14.5 15.5 14.0 12.5 11.5 11.5 11.5 11.5 11.5 11.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5 9.0 8.0 8.0 8.0 8.5 7.5 6.5 7.5 8.5 8.5 9.9	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 11.5 11.5 11.0 10.5 9.5 10.0 10.5 11.5 11.0 10.0 10.5 11.5	JUNE  8.0 7.0 6.0 9.0 9.0 11.0 11.5 11.0 11.5 11.5 10.0 9.5 9.5 10.0 8.0 7.5 8.0 8.0 9.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 10.0 10.5 10.5 9.5 8.5 9.5 10.0 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 1	11.0 12.5 11.0 10.0 11.0 11.5 14.5 15.5 16.0 16.5 16.5 15.0 14.0 13.0 13.0 13.0 13.0 14.5 14.5 15.5	JULY  10.0 10.5 9.5 9.0 9.0 10.0 11.5 12.0 11.5 12.5  13.0 13.0 12.0 10.5 14.0 13.0 13.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 13.0 13.0 13.0	10.5 11.0 10.5 9.5 10.0 11.0 12.5 13.5 14.5 14.5 15.0 15.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	14.5 14.5 14.5 13.5 13.0 16.0 17.0 17.0 16.5 16.5 16.5 17.0 12.0 12.0 12.0 12.0 11.5 11.0 12.0 12.0 12.5 12.0 13.5	AUGUST  13.5 13.0 12.5 11.0 10.5 12.0 13.0 12.5 13.0 14.5 13.0 14.5 14.5 13.0 11.5 11.0 11.0 11.0 11.0 11.0 11.0 11	14.0 13.5 12.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 15.5 14.0 12.5 11.5 11.5 11.0 11.0 11.0 11.5 11.5 11	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	9.5 8.5 10.0 10.5 13.5 15.0 15.0 16.0 16.5 14.5 11.5 11.0 10.0 9.5 10.0 10.0 10.0 11.5 11.0	3UNE  8.0 7.0 6.0 9.0 9.0 11.0 11.5 10.5 11.5 10.0 9.5 9.5 10.0 8.0 7.5 8.0 8.0 9.0 9.0 9.5 10.0 9.5 9.5	8.5 8.0 8.5 9.5 11.5 13.0 13.0 13.5 14.0 10.0 10.5 10.5 9.5 9.0 9.0 9.5 10.5 10.5 10.5	11.0 12.5 11.0 10.0 11.0 11.5 14.0 14.5 15.5 16.0 15.0 15.0 14.0 13.0 12.0 14.5 13.0 13.0 13.0 14.5 15.5	JULY  10.0 10.5 9.5 9.0 9.0 10.0 11.5 12.0 11.5 12.5 13.0 13.0 13.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 11.0 12.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13	10.5 11.0 10.5 9.5 10.0 11.0 12.5 13.5 14.5 15.0 14.5 14.0 13.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	14.5 14.5 14.5 13.5 13.0 16.0 17.0 17.0 16.5 16.5 17.0 16.0 15.0 12.0 12.0 12.0 11.5 12.0 12.0 11.5 12.0	AUGUST  13.5 13.0 12.5 11.0 11.0  10.5 12.0 13.0 14.5 13.0 14.5 14.5 13.0  11.5 11.0 11.0 11.0 11.0 11.0 11.0 1	14.0 13.5 12.5 12.0 13.5 14.5 15.0 15.5 15.0 15.5 15.5 14.0 12.5 11.5 11.5 11.5 11.0 11.0 11.0 11.5 10.5	10.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 10.0 10.0 9.5 10.0 10.5 10.0 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5

### 15081497 STANEY CREEK NEAR KLAWOCK

LOCATION.--Lat  $55^{\circ}48'05''$ , long  $133^{\circ}06'31''$ , in  $SW^{1}_{/4}$  NW $^{1}_{/4}$  sec. 14, T. 70 S., R. 80 E. (Craig D-4 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on right bank, approximately 2.9 mi upstream from mouth, and 17 mi north of Klawock.

DRAINAGE AREA. -- 50.6 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—September 1989 to current year. Equivalent daily discharge record collected at station No. 15081500 near Craig during water years 1964-81. Drainage area, 51.6 mi².

GAGE.--Water-stage recorder. Elevation of gage is 47 ft above sea level, by barometer.

 $REMARKS.--Records \ fair, \ except \ for \ discharges \ above \ 6,000 \ ft^3/s, \ and \ estimated \ daily \ discharges, \ which \ are \ poor.$ 

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of  $7,000~{\rm ft}^3/{\rm s}$  and maximum (*):

	Date	è	Time I	Discharge (ft ³ /s)	Gage height (ft)		Dat	e	Time	Discharge (ft ³ /s)	Gage height (ft)	
	Oct	6	0345	8240	14.18		Jan	6	0115	*10800	*15.03	
	Nov 2	20	2115	7120	13.75		Sept	13	2115	9910	14.75	
		DIS	CHARGE, C	UBIC FEET		D, WATER		BER 2002	? TO SEPT	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	404 529 237 183 541	104 95 89 85 211	105 85 70 56 55	942 1310 530 1280 2830	146 583 456 203 143	213 266 168 157 228	220 157 108 84 69	57 47 40 35 32	141 232 141 89 66	51 45 188 259 145	25 25 25 24 22	1790 2840 684 288 324
6 7 8 9 10	3070 633 664 569 266	406 258 166 134 113	49 142 1070 958 454	3280 701 275 167 124	108 88 74 65 59	112 e60 e40 e35 e32	94 354 248 220 171	30 29 28 28 29	53 44 39 35 33	90 71 55 46 39	21 20 19 18 18	454 616 254 155 1350
11 12 13 14 15	181 252 563 312 323	102 292 1480 781 597	544 1120 640 322 1720	101 86 68 65 63	55 51 50 45 45	e30 e32 e57 e340 309	157 151 124 104 110	28 507 447 433 283	29 29 29 27 68	35 32 32 32 e27	17 17 17 18 99	1010 389 3600 1960 523
16 17 18 19 20	237 197 165 184 553	275 453 332 851 1960	425 334 243 171 123	114 488 223 360 389	49 114 227 867 311	324 275 842 303 407	116 156 156 236 209	255 161 102 82 59	76 568 520 261 191	31 114 86 47 45	204 166 155 79 59	261 166 1180 669 1090
21 22 23 24 25	247 390 266 187 154	1050 249 159 116 138	91 144 2830 1340 812	179 116 102 234 707	147 88 71 66 67	413 396 239 162 127	160 121 106 106 126	53 176 611 528 787	114 75 64 54	71 66 86 54 38	84 74 286 140 70	1280 564 250 2060 1860
26 27 28 29 30 31	140 401 226 165 134 116	1050 733 414 192 134	397 210 155 117 118 1270	1710 1140 303 247 437 222	86 127 227  	129 130 169 1030 2030 442	121 95 99 74 67	384 243 168 165 112 115	132 88 135 95 61	32 30 30 28 26 24	46 37 34 31 590 651	530 320 216 156 116
TOTAL MEAN MAX MIN AC-FT CFSM IN.	12489 403 3070 116 24770 7.96 9.18	13019 434 1960 85 25820 8.58 9.57	16170 522 2830 49 32070 10.3 11.89	18793 606 3280 63 37280 12.0 13.82	4618 165 867 45 9160 3.26 3.40	9497 306 2030 30 18840 6.05 6.98	4319 144 354 67 8570 2.85 3.18	6054 195 787 28 12010 3.86 4.45	3550 118 568 27 7040 2.34 2.61	1955 63.1 259 24 3880 1.25 1.44	3091 99.7 651 17 6130 1.97 2.27	26955 898 3600 116 53470 17.8 19.82
STATIS						90 - 2003	B, BY WATER					
MEAN MAX (WY) MIN (WY)	659 1123 2000 403 2003	557 996 1992 201 1997	592 1270 1992 267 1997	463 782 1992 240 1998	385 983 1991 152 1994	337 565 1994 104 2002	296 559 1997 144 2003	231 558 1999 79.0 1998	121 252 1999 26.5 1993	94.1 200 1997 22.1 1993	198 469 2002 26.6 1993	492 898 2003 166 1995

See period of Record; partial years used in monthly summary of statistics  ${\tt Estimated}$ 

## 15081497 STANEY CREEK NEAR KLAWOCK—Continued

SUMMARY STATISTICS	FOR 2002 CALENDA	AR YEAR	FOR 2003 WAT	TER YEAR	WATER YEARS	1990 - 2003#
ANNUAL TOTAL	116966		120510			
ANNUAL MEAN	320		330		369	
HIGHEST ANNUAL MEAN					506	1992
LOWEST ANNUAL MEAN					283	1995
HIGHEST DAILY MEAN	3070	Oct 6	3600	Sep 13	14900	Oct 26 1993
LOWEST DAILY MEAN	a27	Mar 24	b17	Aug 11	4.4	Jul 21 1993
ANNUAL SEVEN-DAY MINIMUM	29	Mar 19	18	Aug 8	6.0	Jul 15 1993
MAXIMUM PEAK FLOW			10800	Jan 6	c19800	Oct 26 1993
MAXIMUM PEAK STAGE			15.03	Jan 6	17.20	Oct 26 1993
INSTANTANEOUS LOW FLOW			d16	Aug 12	4.0	Jul 21 1993
ANNUAL RUNOFF (AC-FT)	232000		239000		267100	
ANNUAL RUNOFF (CFSM)	6.33		6.52		7.29	
ANNUAL RUNOFF (INCHES)	85.99		88.60		98.99	
10 PERCENT EXCEEDS	765		797		881	
50 PERCENT EXCEEDS	175		155		171	
90 PERCENT EXCEEDS	56		32		38	

[#] See Period of Record;partial years used in monthly statistics
a Mar. 24 and 25
b Aug. 11-13
c From rating curve extended above 3300 ft³/sec
d Aug. 12 and 13

### 15081497 STANEY CREEK NEAR KLAWOCK—Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1990 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: January 1990 to current year.

INSTRUMENTATION.--Electronic water temperature recorder since January 11, 1990, set for 2-hour recording interval.

As of April 9, 1996, recorder set to 15-minute recording interval.

REMARKS.-- Records represent water temperature at sensor within  $0.5^{\circ}$ C. Temperature at the sensor was compared with stream average by cross section on November 15, 2003. No variation was found in the temperature cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE. -- Maximum recorded, 26.0°C, June 29, 1990, but may have been higher during period of instrument malfunction July 9 to August 23, 1990; minimum, 0.0°C on many days during winter.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE.--Maximum, 19.5°C, August 8-9; minimum, 0.0°C on many days during the winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

emper-
ature,
air,
deg C
00020)
6.1
6.1
6.1
6.1
6.1
6.1

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DH	ECEMBER			JANUARY	
1 2 3 4 5	9.0 9.0 8.0 8.5 9.5	8.0 8.0 7.0 7.0 8.0	8.5 8.5 7.5 8.0 8.5	5.5 5.5 5.5 6.5 7.0	3.5 3.5 4.0 5.0 5.5	5.0 4.5 5.0 5.5 6.0	6.0 5.5 5.0 3.5 3.0	5.0 4.0 3.5 2.0 2.5	5.5 5.0 4.5 3.0 3.0	3.0 3.0 4.0 4.5 5.0	2.0 2.5 3.0 4.0 4.0	2.5 3.0 3.5 4.5 4.5
6 7 8 9 10	10.0 10.0 9.5 9.0 7.5	9.5 9.5 9.0 7.5 6.0	10.0 9.5 9.5 8.5 6.5	7.5 7.0 6.5 6.5	6.5 6.0 6.0 5.0	7.0 6.5 6.5 6.0 6.5	3.5 4.0 5.5 6.0 6.5	2.5 3.0 4.0 5.5 6.0	3.0 4.0 4.5 6.0	5.5 5.0 4.0 2.5 2.0	5.0 3.5 2.0 1.0 0.5	5.5 4.5 3.0 2.0 1.5
11 12 13 14 15	7.0 7.5 8.5 8.5 9.0	5.5 6.5 7.0 8.0 8.0	6.0 7.0 8.0 8.5 8.5	7.0 7.5 7.5 7.5 7.0	6.0 7.0 7.5 7.0 6.5	7.0 7.0 7.5 7.0	6.0 6.0 5.0 5.0	5.0 5.0 4.5 4.5 5.0	5.5 5.5 4.5 4.5 5.0	2.0 1.5 1.0 0.5 2.0	0.5 0.0 0.0 0.0 0.5	0.5 1.0 0.5 0.5
16 17 18 19 20	9.5 9.0 8.5 10.0 9.5	8.5 8.5 8.0 8.5 9.0	9.0 9.0 8.5 9.0	7.0 6.5 6.5 6.5 7.0	5.5 5.5 5.0 6.0 5.5	6.5 6.0 5.5 6.0	5.0 4.5 4.5 3.5 3.5	4.5 3.5 3.0 2.5 0.5	5.0 4.0 3.5 3.0 2.0	3.0 3.5 3.5 4.0 4.0	2.0 3.0 2.5 3.0 3.5	2.0 3.0 3.0 3.5 3.5
21 22 23 24 25	9.5 10.0 9.5 8.5 8.5	8.5 9.0 8.5 8.0	9.0 9.5 9.0 8.5 8.0	7.0 6.5 5.5 6.0 6.5	6.5 5.0 4.5 4.0 5.5	6.5 5.5 5.0 5.0	1.0 3.0 4.0 4.5 4.0	0.0 0.5 2.5 4.0 3.5	0.5 2.0 3.5 4.0 3.5	3.5 2.0 1.5 2.0 2.5	1.0 0.5 0.0 0.5	2.5 1.0 0.5 1.0 2.0
26 27 28 29 30 31	8.5 8.5 8.0 6.5 5.5	8.0 8.0 6.5 5.5 3.5	8.5 8.5 7.0 6.0 5.0 4.5	7.0 6.5 6.5 7.0 6.5	6.0 6.5 6.0 6.0 5.5	6.5 6.5 6.0 6.5 6.0	4.0 3.5 3.0 2.0 2.0 2.0	3.0 2.0 1.5 0.5 1.0	3.5 3.0 2.0 1.0 1.0	3.5 3.5 4.0 4.5 4.5 3.5	2.5 3.0 3.0 4.0 3.5 2.5	3.0 3.5 4.0 4.0 3.0
MONTH	10.0	3.5	8.1	7.5	3.5	6.1	6.5	0.0	3.6	5.5	0.0	2.6

# SOUTHEAST ALASKA

## 15081497 STANEY CREEK NEAR KLAWOCK—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN		MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	3.0 3.5 4.0 4.5 3.5	2.5 3.0 3.5 3.5 2.0	3.0	4.0 3.5 4.5 5.0 4.0	2.5 2.5 3.0 3.5 2.0	3.0 3.0 4.0 4.5 3.5	4.5 4.0 4.0 4.0 4.5	2.0 1.5 1.5 1.5	3.0 3.0 3.0 3.0 3.5	10.5 11.5 10.0 10.0	7.5 6.0 5.5 5.5	9.0 9.0 8.0 8.0
6 7 8 9 10	3.0 3.0 2.5 2.5 2.5	2.0 2.0 1.5 1.5	2.5 2.5 2.0 2.0 1.5	2.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0	3.5 3.5 4.0 4.5 6.0	2.0 1.5 2.0 2.0 3.5	3.0 2.5 3.0 3.0 4.5	10.5 12.0 13.0 14.5 15.0	6.5 6.5 7.5 8.0 9.5	8.5 9.5 10.5 11.0 12.0
11 12 13 14 15	2.5 2.5 2.5 2.5 3.0	1.0 1.0 1.0 0.0 2.0	2.0 2.0 2.0 1.0 2.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0		7.0 7.5 7.5 7.5 6.5	4.0 3.5 3.5 3.5 4.5	5.5 5.5 5.5 5.5	12.0 10.0 8.0 7.0 6.5	9.5 6.5 6.0 5.5 5.0	10.0 8.0 6.5 6.0
17 18 19 20	3.5 4.0 3.5 4.0 3.5	1.5 3.0 3.0 3.5 2.5	2.5 3.5 3.0 3.5 3.0	0.5 1.0 1.0 2.0 2.5	0.0 0.0 0.0 0.0 1.0	0.0 0.0 0.5 1.0	5.5 7.0 5.0 6.5 6.5	4.0 4.0 3.5 4.0	5.0 5.0 4.5 5.0	7.5 11.0 10.0 11.0 12.5	5.0 5.0 6.0 6.5 6.5	6.5 7.5 8.0 8.5 9.5
23	2.5 1.0 0.5 0.5 2.0	1.0 0.0 0.0 0.0 0.0	2.0 0.5 0.0 0.0	2.5 3.0 3.0 4.0 4.0	1.0 1.5 1.0 1.5 2.0	1.5 2.0 2.0 2.5 3.0	7.5 6.5 7.5 10.5 12.0	4.5 4.5 5.0 4.5 6.5	5.5 5.5 6.0 7.0 8.5	10.0 9.5 8.5 8.5 8.5	8.5 8.0 8.0 8.0 7.5	9.0 9.0 8.5 8.0
26 27 28 29 30 31	3.0 3.0 3.0 	1.5 1.5 2.0 	2.0 2.0 2.5 	5.0 5.5 4.0 3.5 3.0 3.5	2.5 2.5 3.0 2.5 2.5 2.0	3.5 4.0 3.5 3.0 3.0 2.5	11.0 9.0 11.5 12.5 12.5	6.5 7.5 5.5 6.5 7.5	8.5 8.0 8.0 9.5 10.0	9.0 8.5 8.5 8.5 10.5	7.5 7.0 7.0 7.5 7.5	8.0 7.5 8.0 8.0 8.5 9.5
MONTH	4.5	0.0	2.2	5.5	0.0	1.7	12.5	1.5	5.3	15.0	5.0	8.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			UGUST			EPTEMBE	R
1 2 3 4 5	10.0 11.5 13.0 10.5 14.0	8.5 8.5 7.5 8.5 9.0	9.0 9.5 9.5 9.5 11.5	12.5 12.5		11.0 11.5 11.5 11.0 10.5	15.5 15.5 17.0 16.5 15.0	14.5 14.0 13.5 12.5 13.0	15.0 15.0 15.0 14.5 14.0	11.0 11.5 11.5 11.5 12.0	11.0 11.0 10.5 9.5 9.5	11.0 11.5 11.0 10.5 11.0
6 7 8 9 10	16.0 16.5 16.0 16.5 16.0	10.5 10.5 10.5 10.5 11.5	13.0 13.5 13.0 13.5 13.5	14.0	10.0 10.5 11.5 12.0 12.5	11.0 12.5 13.0 14.0 15.0	18.0 19.0 19.5 19.5 18.5	12.0 13.5 14.5 15.0 14.0	15.0 16.5 17.0 17.5 16.5	12.0 12.0 11.0 10.5 11.0	10.0 10.5 10.0 9.0 9.5	11.5 11.0 10.5 10.0 10.5
11 12 13 14 15	13.5 12.0 13.0 12.0 13.5	12.0 11.5 11.0 11.0	12.5 12.0 12.0 11.5 11.5		14.0	15.0 15.0 14.0 14.5 13.5	18.5 16.5 17.5 16.5 15.5	14.0 13.5 15.5 15.5	16.5 15.5 16.5 16.0 15.0	11.0 11.5 11.0 10.5 10.5	10.5 10.0 10.5 10.0 9.5	10.5 10.5 10.5 10.5
16 17 18 19 20	11.0 11.5 10.0 11.0 12.0	10.0 10.0 9.0 9.0 9.0	10.5 10.5 9.5 9.5 10.0	13.5 13.5 15.0 14.5 13.5	12.5 12.0 12.0 13.0 13.0	13.0 12.5 13.5 13.5	14.5 13.5 14.0 14.0 13.5	13.0 12.5 12.5 12.0 12.5	13.5 13.0 13.0 13.0	10.0 9.5 9.5 10.0 9.5	8.5 8.5 8.5 9.0	9.5 9.0 9.0 9.5 9.5
21 22 23 24 25	11.5 12.5 12.0 11.0 12.5	9.5 10.0 10.0 10.0 10.0	10.5 11.0 11.0 10.5 11.0	13.0 12.5 15.5 16.0 17.5	12.5 11.5 11.5 12.0 13.5	13.0 12.0 13.5 14.5 15.5	14.0 13.5 12.5 12.5 13.5	12.0 12.0 11.5 10.0	13.0 12.5 12.0 11.0 12.0	10.0 9.5 8.0 9.5 9.5	9.5 8.0 7.0 8.0 9.0	9.5 9.0 7.5 9.0 9.5
26 27 28 29 30 31	12.0 11.0 12.5 14.0 12.0	10.0 10.0 10.0 10.0 10.5	11.0 10.5 11.0 12.0 11.5	16.5 15.0 19.0 17.5 18.0 16.5	14.0 13.5 14.0 15.5 14.0 15.0	14.5 14.5 16.5 16.5 16.0 15.5	14.0 14.0 14.5 14.5 13.0 11.5	10.0 12.0 11.0 11.5 11.5	12.0 13.0 13.0 12.5 12.0	9.5 11.0 11.0 11.0 10.5	9.0 9.5 9.5 9.0 9.5	9.5 10.0 10.5 10.0 10.0
MONTH	16.5	7.5	11.2	19.0	9.5	13.6	19.5	10.0	14.0	12.0	7.0	10.1

### 15081610 THREEMILE CREEK NEAR KLAWOCK

 $\texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', in SW}^{1}_{/4} \ SE^{1}_{/4} \ \text{sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic } \\ \texttt{LOCATION.--Lat 55°32'06'', long 132°57'17'', long 132°57'', long 132°57'',$ Unit 19010103, on Prince of Wales Island, approximately 2.0 mi upstream from the mouth at Klawock Lake, and 5.2 mi east of the city of Klawock.

DRAINAGE AREA.--6.63 mi².

PERIOD OF RECORD. -- March 1999 to September 2003 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 295 ft above sea level, from topographic map.

REMARKS.-- Records fair, except for those above  $250 \text{ ft}^3/\text{s}$  and estimated daily discharges, which are poor.

		DISCH	ARGE, CUE	BIC FEET P		WATER Y MEAN	YEAR OCTOBI	ER 2002 '	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	121 94 56 46 349	18 18 17 17	28 24 21 19 17	122 97 127 245 303	e27 e67 e45 e30 e23	42 50 32 81 55	41 30 25 22 20	39 33 28 25 21	e46 e39 e34 e31 e29	e31 e33 e87 e100 e47	e13 e15 e17 e13 e12	e111 e289 e200 e83 e92
6 7 8 9 10	426 148 135 136 65	60 27 22 19 18	19 29 84 159 94	235 137 65 44 34	e21 e19 e18 e17 e16	28 20 16 e14 e12	46 47 38 28 25	20 18 18 20 23	e28 e26 e26 e25 e25	e39 e39 e33 e30 e28	e11 e10 e10 e9.7 e9.3	e95 e131 e71 e37 e180
11 12 13 14 15	46 51 49 61 55	18 87 187 114 85	101 194 84 109 240	29 26 22 20 22	16 15 14 14 18	e11 e10 e80 36 54	27 26 26 26 31	24 61 66 55 47	e24 e24 e24 e25 e34	e27 e26 e26 e25 e25	e9.0 e8.7 e9.3 e28 e59	e170 e98 e260 e148 e87
16 17 18 19 20	45 37 31 57 60	73 89 59 111 179	81 54 42 33 28	31 61 45 68 59	17 59 43 96 39	36 59 76 38 59	31 36 47 40 32	39 30 27 25 24	e34 e165 e102 e99 e92	e27 e52 e44 e27 e31	e86 e75 e64 e57 e49	e46 e55 e115 e129 e100
21 22 23 24 25	38 33 29 26 24	121 61 41 32 45	23 44 262 153 125	34 28 25 48 69	25 20 17 16 27	50 43 29 22 20	32 28 30 34 58	37 77 273 123 118	e52 e38 e33 e30 e33	e48 e47 e54 e27 e18	e52 e51 e87 e61 e30	e146 e84 e53 e206 e120
26 27 28 29 30 31	26 35 27 23 21 20	140 95 61 40 32	56 37 30 25 26 121	e200 e120 e40 e38 e70 e45	20 23 54 	21 23 48 129 208 66	58 57 52 46 44	77 51 71 61 e38 e53	e37 e37 e31 e33 e31	e16 e15 e18 e16 e14 e13	e29 e27 e26 e30 e36 e70	e84 e55 e44 e37 e34
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2370 76.5 426 20 4700 11.5 13.30	1905 63.5 187 17 3780 9.58 10.69	2362 76.2 262 17 4690 11.5 13.25	2509 80.9 303 20 4980 12.2 14.08	816 29.1 96 14 1620 4.40 4.58	1468 47.4 208 10 2910 7.14 8.24	1083 36.1 58 20 2150 5.44 6.08	1622 52.3 273 18 3220 7.89 9.10	1287 42.9 165 24 2550 6.47 7.22	1063 34.3 100 13 2110 5.17 5.96	1064.0 34.3 87 8.7 2110 5.18 5.97	3360 112 289 34 6660 16.9 18.85
STATIS	TICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 1999	- 2003	, BY WATER	YEAR (WY	) #			
MEAN MAX (WY) MIN (WY)	81.1 113 2000 59.6 2001	62.1 68.1 2000 57.8 2002	58.4 76.2 2003 48.1 2001	58.9 80.9 2003 36.0 2000	32.3 38.6 2002 26.8 2000	32.3 47.4 2003 16.0 2002	38.4 50.1 1999 25.6 2002	68.9 88.8 1999 52.3 2003	72.4 108 1999 42.9 2003	53.8 68.3 1999 34.3 2003	55.2 90.5 2002 34.3 2003	91.8 118 2002 57.5 2000
SUMMAR	Y STATIS	TICS	FOR	2002 CALE	NDAR YEAR		FOR 2003 WA	TER YEAF	!	WATER YE	ARS 1999	- 2003#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK S TANEOUS RUNOFF RUNOFF	MEAN MEAN IEAN IAY MINIMUM LOW LOW LOW FLOW (AC-FT) (CFSM) (INCHES) EEEDS		22522.8 61.7 426 7.9 8.2 44670 9.3 126.3 125 47	Oct 6 Mar 20 Mar 17			Į.		8.3 a2470	1 8 Oct 2 3 Mar 2 Mar 1 Oct 42 Oct 44 Mar 1	.7 2002 6 2002

See Period of Record

From rating curve extended above  $130~{\rm ft}^3/{\rm s}$  Peak stage of  $11.55~{\rm was}$  recorded on August 21, 2000 due to backwater caused by a log Undetermined, see lowest daily mean Petimand

Estimated

### 15081614 HALFMILE CREEK ABOVE DIVERSION NEAR KLAWOCK

LOCATION.--Lat  $55^{\circ}33'26''$ , long  $133^{\circ}01'01''$ , in  $NW^{1}/_{4}$   $SW^{1}/_{4}$   $NW^{1}/_{4}$  sec. 7, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic Unit 19010103, on Prince of Wales Island, approximately 1.1 mi upstream from the mouth at Klawock Lake, and 2.9 mi east of the city of Klawock.

DRAINAGE AREA.--4.73 mi²

PERIOD OF RECORD. -- December 2000 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 400 ft above sea level, from topographic map.

REMARKS.--Records fair, except for estimated discharges and those above 180 ft³/s, which are poor.

		DISCH	ARGE, CUI	BIC FEET PI	ER SECOND	, WATER	YEAR OCTO	BER 2002 T	O SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	112 58 16 10 174	3.1 2.7 2.5 2.7 6.8	7.5 6.0 5.1 4.2 3.7	131 103 79 171 274	11 49 28 14 9.3	27 30 15 48 34	17 10 7.3 5.6 5.0	5.4 4.7 3.8 3.2 2.9	18 20 11 7.9 6.2	7.5 8.0 47 52 18	e3.2 e3.3 e3.3 e3.1 e3.0	e150 e230 e130 e43 e52
6 7 8 9 10	262 88 76 75 21	49 14 7.2 4.8 3.7	5.1 16 106 124 50	148 85 21 11 7.6	6.9 5.6 4.8 4.6 4.3	11 e8.0 e6.0 e4.6 e3.3	21 33 26 17 13	2.6 2.5 2.3 2.3	5.0 4.2 3.5 3.1 2.7	12 12 8.3 6.6 5.2	e2.8 e2.7 e2.6 e2.5 e2.4	e60 e75 e34 e13 e140
11 12 13 14 15	11 29 30 37 25	3.7 69 157 78 43	48 133 59 63 178	6.1 5.5 4.5 3.9 4.1	4.7 4.3 3.8 3.5 5.1	e2.5 e2.0 e50 52 33	12 11 9.4 8.4 11	2.4 23 37 28 18	2.4 2.4 2.6 3.1 9.7	4.3 3.7 3.8 e3.5 e3.4	e2.4 e2.6 e2.9 e4.1 e24	e110 e53 e220 e110 e48
16 17 18 19 20	15 9.3 6.7 35 35	24 48 22 70 180	51 29 17 10 7.3	7.9 26 13 46 40	5.6 40 37 85 27	22 33 62 21 39	12 20 25 23 20	21 15 10 9.2 6.7	9.1 111 57 51 44	e6.1 e26 e16 e5.0 e8.2	e42 e37 e29 e22 e18	e20 23 112 76 108
21 22 23 24 25	13 11 7.6 5.8 4.6	89 22 11 7.5 31	5.7 32 272 107 99	14 6.3 7.2 22 39	11 6.9 5.1 4.2	40 37 19 13 12	17 11 9.8 9.9	11 41 161 70 64	20 12 8.3 6.6 11	e18 e17 e21 e5.0 e4.0	e21 e20 e54 e26 e7.0	138 50 26 184 136
26 27 28 29 30 31	7.3 19 8.9 5.8 4.3 3.5	115 59 25 12 9.1	32 16 12 9.3 9.4	151 96 24 35 52 17	11 15 30 	15 17 31 98 187 46	9.5 8.7 7.6 6.6 6.0	27 16 25 27 13 21	14 12 13 9.5 7.5	e3.6 e3.5 e3.5 e3.3 e3.1 e3.1	e5.8 e4.6 e3.7 e6.0 e20 e38	49 28 18 13 10
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	1215.8 39.2 262 3.5 16 2410 8.29 9.56	1171.8 39.1 180 2.5 22 2320 8.26 9.22	1661.3 53.6 272 3.7 29 3300 11.3 13.07	1651.1 53.3 274 3.9 24 3270 11.3 12.99	449.7 16.1 85 3.5 8.1 892 3.40 3.54	1018.4 32.9 187 2.0 27 2020 6.95 8.01	403.8 13.5 33 5.0 11 801 2.85 3.18	678.3 21.9 161 2.3 13 1350 4.63 5.33	487.8 16.3 111 2.4 9.3 968 3.44 3.84	341.7 11.0 52 3.1 6.1 678 2.33 2.69	419.0 13.5 54 2.4 4.6 831 2.86 3.30	2459.0 82.0 230 10 56 4880 17.3 19.34
STATIS	STICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 200	1 - 2003	3, BY WATER	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	47.8 56.3 2002 39.2 2003	38.2 39.1 2003 37.3 2002	50.2 53.6 2003 46.8 2002	49.6 59.4 2001 36.2 2002	28.0 40.6 2002 16.1 2003	28.6 39.7 2001 13.3 2002	24.9 36.5 2001 13.5 2003	39.6 59.9 2001 21.9 2003	34.2 69.3 2001 16.3 2003	20.8 32.4 2001 11.0 2003	35.0 61.2 2002 13.5 2003	66.5 82.0 2003 55.3 2002
SUMMAR	RY STATIS	TICS	FOR	2002 CALE	NDAR YEAR		FOR 2003 V	VATER YEAR		WATER YEA	RS 2001	- 2003#
ANNUAI HIGHES LOWEST HIGHES LOWEST ANNUAI MAXIMU MAXIMU INSTAN ANNUAI ANNUAI	T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D JM PEAK F JM PEAK S JTANEOUS RUNOFF RUNOFF	MEAN MEAN EAN AY MINIMUN LOW TAGE LOW FLOW (AC-FT) (CFSM) (INCHES)	1	2.5	Dec 23 Nov 3 Oct 29		2.0 2.5 666	Jan 5 ) Mar 12 5 May 5 Oct 5 23 Oct 5		2.0 2.5 666	Mar 1 Mar 1 May Oct 3 Oct	2 2003 5 2003 5 2002
50 PEF	RCENT EXC RCENT EXC	EEDS		19 6.0			14 3.3			18 4.6		

See Period of Record, partial years used in monthly statistics Undetermined, see lowest daily mean Estimated

### 15081995 REYNOLDS CREEK BELOW LAKE MELLEN NEAR HYDABURG

LOCATION.--Lat  $55^{\circ}13'05''$ , long  $132^{\circ}34'50''$ , in  $SW^{1}/_{4}$   $SE^{1}/_{4}$  sec. 3, T. 77 S., R. 84 E.(Craig A-2 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, 0.1 mi below Lake Mellen, approximately 1 mi upstream from mouth at Copper Harbor in Hetta Inlet, and 10 mi east of Hydaburg.

DRAINAGE AREA. -- 5.20 mi².

PERIOD OF RECORD.--July 1982 to September 1985, October 1997 to July 14, 2003 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level, from topographic map. Prior to January 1, 1984, at datum 2.00 ft higher.

REMARKS.--Records good, except for estimated daily discharges which are poor. GOES satellite telemetry at station. Streamflow affected by storage in lakes, which cover 30 percent of the basin.

EXTREMES FOR CURRENT YEAR.--Maximum discharge for period October 2002 through July 14, 2003, 615 ft³/s, January 6, gage height 8.21, minimum not determined, minimum daily mean discharge 21 ft³/s, July 14.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO JULY 2003

DAILY MEAN VALUES

						DAIDI MBAN	VALOED					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	91	35	74	131	e120	43	73	47	60	33		
2	111	33	67	140	e110	46	62	44	58	30		
3	87	31	59	133	e100	40	54	40	52	36		
4	75	30	53	282	e88	39	49	38	45	46		
5	83	31	48	297	e79	42	45	36	40	43		
6	192	45	46	453	e70	35	50	34	36	34		
7	125	43	54	293	e64	31	68	32	32	31		
8	109	37	91	186	e57	29	59	31	30	28		
9	104	33	121	144	e50	27	53	30	27	26		
10	91	31	113	125	43	28	51	30	25	25		
11	77	31	117	112	41	27	52	29	24	23		
12	71	50	153	100	38	27	51	34	25	22		
13	92	125	130	89	35	39	47	43	30	22		
14	84	113	124	80	33	51	45	44	48	21		
15	83	98	208	80	34	46	46	42	71			
16	73	86	147	88	35	50	49	41	55			
17	65	91	124	102	64	50	54	38	88			
18	58	84	111	87	69	73	58	34	88			
19	75	81	99	92	94	54	68	32	69			
20	115	103	89	92	76	51	59	31	60			
21	83	140	80	76	60	56	56	34	53			
22	70	106	84	66	51	59	55	47	46			
23	62	92	182	62	46	48	80	104	39			
24	55	82	192	65	42	41	68	111	35			
25	50	83	158	e110	41	38	63	103	41			
26	48	148	135	e190	38	39	60	95	50			
27	59	123	116	e170	38	39	56	83	42			
28	51	107	104	e150	43	47	53	77	50			
29	44	92	93	e170		83	51	74	42			
30	40	82	88	e150		113	49	66	35			
31	37		109	e135		94		62				
TOTAL	2460	2266	3369	4450	1659	1485	1684	1586	1396			
MEAN	79.4	75.5	109	144	59.2	47.9	56.1	51.2	46.5			
MAX	192	148	208	453	120	113	80	111	88			
MIN	37	30	46	62	33	27	45	29	24			
AC-FT	4880	4490	6680	8830	3290	2950	3340	3150	2770			
CFSM	15.3	14.5	20.9	27.6	11.4	9.21	10.8	9.84	8.95			
IN.	7.60	16.21	24.10	31.83	11.87	10.62	12.05	11.35	9.99			
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	R YEARS	1982 - 200	3, BY WAT	ER YEAR (	WY)#			
MEAN	94.8	76.6	73.9	94.5	70.7	56.0	60.5	76.9	64.6	46.1	52.3	70.8
MAX	172	142	131	144	107	97.9	90.9	128	103	63.5	78.7	124
(WY)	2000	2000	1998	2003	1984	1984	2000	1999	1999	2001	1983	2002
MIN	71.6	44.1	20.7	61.4	47.7	24.9	23.9	40.4	22.9	20.2	1983	32.2
(WY)	1986	1986	1984	1998	1999	2002	2002	1998	1998	1998	1982	1982
( AA T )	1300	1900	T 2 O 4	1990	エンング	2002	2002	1220	1330	1220	1302	1302

e Estimated

[#] See Period of Record, partial years used in monthly statistics

## 15081995 REYNOLDS CREEK BELOW LAKE MELLEN NEAR HYDABURG—Continued

SUMMARY STATISTICS	FOR 2002 CALE	NDAR YEAR	WATER YEARS	1982 - 2003#
ANNUAL TOTAL	25324			
ANNUAL MEAN	69.4		71.1	
HIGHEST ANNUAL MEAN			88.9	2000
LOWEST ANNUAL MEAN			59.5	1983
HIGHEST DAILY MEAN	217	Sep 22	610	Oct 23 1999
LOWEST DAILY MEAN	14	Mar 24	9.0	Jul 9 1998
ANNUAL SEVEN-DAY MINIMUM	17	Mar 18	9.8	Jul 4 1998
MAXIMUM PEAK FLOW	262	Dec 15	806	Oct 23 1999
MAXIMUM PEAK STAGE	6.91	Dec 15	8.71	Oct 23 1999
INSTANTANEOUS LOW FLOW	a		b8.7	Jul 9 1998
ANNUAL RUNOFF (AC-FT)	50230		51520	
ANNUAL RUNOFF (CFSM)	13.3		13.7	
ANNUAL RUNOFF (INCHES)	181.16		185.83	
10 PERCENT EXCEEDS	127		121	
50 PERCENT EXCEEDS	62		63	
90 PERCENT EXCEEDS	25		30	

[#] See Period of Record; partial years used in monthly summary statistics and break in record a Not determined, see lowest daily mean b Jul. 9 and 10, 1998

Discharge Gage Height

(ft)

5.02

5.50

 $(ft^3/s)$ 

734

912

Time

0745

0130

Date

Jan 4

Jan 6

### SOUTHEAST ALASKA

### 15085100 OLD TOM CREEK NEAR KASAAN

LOCATION.--Lat  $55^{\circ}23'44''$ , long  $132^{\circ}24'25''$ , in  $NW^{1}_{4}$   $SW^{1}_{4}$  sec. 6, T. 75 S., R. 86 E. (Craig B-2 quad) Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank 1,000 ft upstream from mouth at Skowl Arm of Kasaan Bay, 0.4 mi downstream from unnamed tributary, and 10 mi south of Kasaan.

DRAINAGE AREA. -- 5.90 mi².

Date

Nov 13

Nov 20

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1949 to current year.

REVISED RECORDS.--WDR AK-85-1: 1950-1983 (P), 1984.

Time

1330

2100

GAGE.--Water-stage recorder. Elevation of gage is 10 ft above sea level, from topographic map.

(ft)

4.88

4.24

REMARKS.--Records fair except estimated daily discharges, which are poor.

 $(ft^3/s)$ 

685

481

Discharge Gage Height

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450  $\mathrm{ft^3/s}$  and maximum (*):

	Nov 1 Dec Dec 1 Dec 1	12 12 15 08	230 330 300	481 579 *1040 951	4.24 4.56 *5.83 5.60		Jan May Aug Sept	23 23	0130 1715 0830 0645	912 535 652 538	4.42 4.78 4.43	
		DISCH	HARGE, CUI	BIC FEET		ND, WATER T		BER 2002	2 TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 24 15 12 20	8.3 7.7 6.9 6.5	19 17 15 14 13	251 173 275 538 463	30 53 45 28 21	11 12 10 10 9.1	34 23 18 14 12	18 15 12 10 9.1	21 18 16 13 12	9.7 8.9 10 11 8.6	3.5 3.1 2.9 2.7 2.4	89 178 52 29 34
6 7 8 9 10	104 35 23 23 17	74 27 17 13	13 19 52 147 131	370 188 59 35 25	18 16 14 12 11	6.5 5.6 e4.8 e4.4 e4.0	74 97 100 47 56	8.1 7.4 6.9 6.5 6.4	11 9.8 9.2 8.6 8.0	8.0 11 13 11 8.5	2.2 2.2 2.0 1.9 1.8	97 60 36 25 146
11 12 13 14 15	14 21 36 31 28	15 212 310 111 66	261 384 155 230 617	20 18 16 14 46	10 9.0 8.0 7.7 21	e3.7 e3.4 e3.3 e25 125	60 39 28 26 30	6.4 15 17 14 13	7.3 19 51 109 97	7.0 5.9 6.2 5.6 5.3	1.7 1.5 1.4 1.5 3.1	99 50 93 68 40
16 17 18 19 20	19 15 13 31 46	63 64 51 59 193	140 64 49 35 26	59 72 37 35 31	48 73 38 55 30	76 113 158 47 87	25 21 50 62 39	15 12 9.7 8.5 7.1	43 180 88 43 30	6.3 8.3 6.9 5.7	3.5 5.2 19 8.4 6.2	28 26 129 59 48
21 22 23 24 25	23 17 15 12 11	140 45 31 24 29	20 97 537 439 248	22 18 16 26 78	20 16 13 11	101 60 31 22 21	36 47 124 51 38	9.6 19 246 110 98	24 18 15 13	11 8.7 7.8 6.3 5.3	6.1 18 355 75 32	62 39 29 207 109
26 27 28 29 30 31	13 29 16 13 10 9.1	105 49 39 28 22	111 56 36 26 29 238	340 116 73 221 84 46	9.2 10 11 	34 33 57 122 161 62	33 28 24 21 19	66 40 47 39 26 24	15 12 11 9.7 9.1	4.5 4.2 3.9 3.6 3.3 3.1	21 16 14 13 42 49	48 32 23 19 15
TOTAL MEAN MAX MIN AC-FT CFSM IN.	714.1 23.0 104 9.1 1420 3.90 4.50	1842.4 61.4 310 6.5 3650 10.4 11.62	4238 137 617 13 8410 23.2 26.72	3765 121 538 14 7470 20.6 23.74	647.9 23.1 73 7.7 1290 3.92 4.09	1422.8 45.9 161 3.3 2820 7.78 8.97	1276 42.5 124 12 2530 7.21 8.05	941.7 30.4 246 6.4 1870 5.15 5.94	933.7 31.1 180 7.3 1850 5.28 5.89	230.6 7.44 13 3.1 457 1.26 1.45	717.3 23.1 355 1.4 1420 3.92 4.52	1969 65.6 207 15 3910 11.1 12.41

Estimated

#### 15085100 OLD TOM CREEK NEAR KASAAN—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2003, BY WATER YEAR (WY)# NOV DEC FEB APR JUN JUL SEP DAY ОСТ JAN MAR MAY AUG 26.1 1.3.2 15.5 50.9 MEAN 70.1 66.3 59.0 49.9 45.0 38.7 48.1 43.0 32.7 117 122 56.1 93.6 128 99.1 31.0 MAX 163 166 137 86.3 (WY) 1978 2000 2003 1992 1998 1984 1980 1999 1950 2001 2001 5.00 1950 MTN 23.0 17.1 8.29 3.00 10.1 19.1 15.0 5.45 2.66 1.81 2.69 2003 1967 1993 (WY) 1966 1984 1950 1956 1996 1958 1958 1965 FOR 2003 WATER YEAR SUMMARY STATISTICS FOR 2002 CALENDAR YEAR WATER YEARS 1949 - 2003# ANNUAL TOTAL 15635.9 18698.5 ANNUAL MEAN HIGHEST ANNUAL MEAN 42.2 42.8 51.2 63.1 2000 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 25.2 1951 617 858 Oct 23 1990 0.28 Nov 14 1965 Oct 23 1990 617 Dec 15 Dec 15 3.8 1.4 1.7 LOWEST DAILY MEAN Mar 22 Aug 13 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 4.1 Mar 18 Aug 8 Dec 15 0.55 Nov 13 1965 a1490 Apr 16 1952 6.96 Apr 16 1952 1040 5.83 Dec 15 MAXIMUM PLAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (FORM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS b 31010 1.0 Aug 15 0.16 Nov 15 1965 30600 7.16 37090 7.26 8.68 98.59 117.90 97.29 94 123 98 21 21 24 90 PERCENT EXCEEDS 8.3 6.2 6.5

See Period of Record; partial years used in monthly summary statistics

From rating curve extended above 330 ft³/s Undetermined, see lowest daily mean

# SOUTHEAST ALASKA

### 15085100 OLD TOM CREEK NEAR KASAAN—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD.--Water years 1956, 1959, and 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1964, April 1965 to February 1975, June 1975 to April 1978, and November 1978 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15-minute recording interval since April 11,1996.

REMARKS.--Records represent water-temperature at the sensor within  $0.5^{\circ}\text{C}$ . Temperature at the sensor was compared with the stream average by cross section on November 14. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 18.5°C, July 3, 1998; minimum, 0.0°C, on many days during most winter periods.

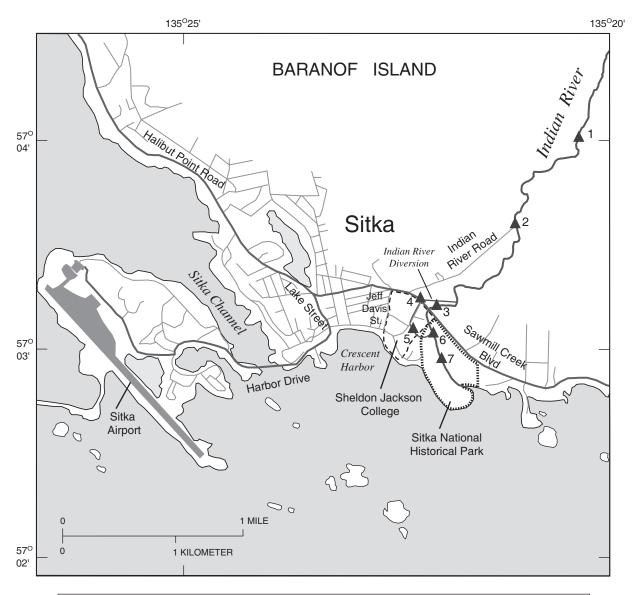
EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum,  $16.0^{\circ}$ C, July 28 and August 10; minimum,  $0.0^{\circ}$ C, on several days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

			SAMPLE		DIS-		
			LOC-		CHARGE,		
			ATION,		INST.		
			CROSS		CUBIC	TEMPER-	TEMPER-
		STREAM	SECTION	GAGE	FEET	ATURE	ATURE
Date	Time	WIDTH	(FT FM	HEIGHT	PER	WATER	AIR
		(FT)	L BK)	(FEET)	SECOND	(DEG C)	(DEG C)
		(00004)	(72103)	(00065)	(00061)	(00010)	(00020)
NOV							
14	0945	44.7	40.0	2.67	90.5	7.0	7.7
14	0946	44.7	35.0	2.67	90.5	7.0	7.7
14	0947	44.7	30.0	2.67	90.5	7.0	7.7
14	0948	44.7	25.0	2.67	90.5	7.0	7.7
14	0949	44.7	20.0	2.67	90.5	7.0	7.7
14	0950	44.7	10.0	2.67	90.5	7.0	7.7
14	0951	44.7	5.0	2.67	90.5	7.0	7.7

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003


DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	9.5 9.5 9.0 9.0	8.5 9.0 7.5 8.0 9.0	9.0 9.0 8.5 8.5 9.0	5.0 5.5 5.5 6.0 7.0	4.5 4.5 5.0 5.0	5.0 5.0 5.0 5.5 6.5	6.0 5.5 5.5 3.5 3.0	5.5 5.5 3.5 2.0 2.0	5.5 5.5 4.0 2.5 2.5	3.0 3.5 3.5 4.0 4.5	3.0 3.0 3.0 3.5 4.0	3.0 3.0 3.5 4.0
6 7 8 9 10	10.5 10.5 10.0 9.5 8.0	9.5 9.5 9.5 8.0 6.0	10.0 10.0 9.5 8.5 7.0	7.5 7.0 7.0 7.0 7.0	7.0 6.5 6.0 6.0 6.5	7.0 7.0 6.5 6.5	3.0 4.5 6.0 6.5	2.5 3.0 4.5 6.0 5.5	3.0 4.0 5.5 6.0	5.0 4.5 3.0 2.5 2.5	4.0 3.0 2.5 2.0 2.0	4.5 4.0 3.0 2.0
11 12 13 14 15	7.0 8.0 8.5 9.0 9.5	5.5 7.0 7.5 8.5 8.5	6.5 7.5 8.0 8.5 9.0	7.5 7.5 7.5 7.0 7.0	6.5 7.0 7.0 6.5 6.5	7.0 7.0 7.5 7.0	5.5 6.0 5.0 5.0	5.0 5.0 4.5 4.5 5.0	5.0 5.5 4.5 5.0 5.0	2.0 2.5 2.5 2.5 3.0	2.0 2.0 2.0 2.0 2.0	2.0 2.5 2.5 2.0 2.5
16 17 18 19 20	9.5 9.5 9.0 10.0 9.5	9.0 8.0 8.0 9.0	9.5 9.0 8.5 9.5 9.0	7.0 6.0 6.5 6.5 7.0	6.0 6.0 6.0 6.0	6.5 6.0 6.0 6.5 6.0	5.0 4.5 4.0 4.0 3.5	4.5 4.0 3.5 3.5 3.0	5.0 4.0 4.0 3.5 3.5	4.0 4.5 4.0 4.5 4.0	3.0 4.0 3.5 4.0 3.5	3.5 4.0 4.0 4.0
21 22 23 24 25	10.0 10.0 9.5 9.0 9.0	9.0 9.5 9.0 8.5 8.5	9.5 9.5 9.0 9.0 8.5	7.0 6.0 5.5 5.0	6.0 5.5 4.0 4.0 5.0	6.5 5.5 4.5 4.5 5.5	3.0 4.0 5.0 5.0 4.5	2.5 2.5 4.0 4.0	2.5 3.0 4.5 4.5	3.5 2.0 2.0 2.5 3.5	2.0 1.5 1.5 2.0 2.5	3.0 2.0 2.0 2.5 3.0
26 27 28 29 30 31	8.5 8.5 7.5 6.0 5.0	8.0 7.5 6.0 5.0 4.5 4.0	8.5 8.0 6.5 5.5 4.5	6.5 6.0 6.0 6.5 6.0	6.0 6.0 6.0 5.5 5.5	6.5 6.0 6.0 6.0	4.0 3.5 2.5 2.0 2.0 3.0	3.5 2.5 2.0 1.5 1.0	4.0 3.0 2.5 1.5 2.5	4.0 4.0 4.0 4.5 4.0	3.0 3.5 3.5 4.0 3.5 3.5	3.5 3.5 4.0 4.0 4.0 3.5
MONTH	10.5	4.0	8.3	7.5	4.0	6.2	6.5	1.0	4.0	5.0	1.5	3.2

# SOUTHEAST ALASKA

## 15085100 OLD TOM CREEK NEAR KASAAN—Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

											2005	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5		3.0 3.5 3.5 3.5 3.5	3.5 3.5 4.0 4.0 3.5	3.5 3.5 4.5 4.5 4.0	MARCH 2.5 3.0 3.5 4.0 2.5	3.0 3.5 4.0 4.0 3.5	4.0 3.5 3.0 3.0 3.5	2.5 1.5 1.5 1.5	3.0 2.0 2.0 2.0 2.5	6.5 6.5 6.0 5.5 5.5	MAY 6.0 5.5 5.0 4.5 4.0	6.5 6.0 5.5 5.0
6 7 8 9 10			3.0 3.0 2.5 2.5 2.5	2.5 0.0 0.0 0.0			3.0 3.5 4.0 4.0			6.0 6.5 7.0 7.5 8.0		5.0 5.5 6.0 6.5 7.0
11 12 13 14 15	3.0 3.5 3.0 3.0	2.0 3.0 2.0 1.5 3.0	2.5 3.0 2.5 2.0 3.0	0.0 0.0 0.0 0.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1.0	4.5 4.5 5.0 5.0 4.5	3.5 3.5 3.5 4.0 4.5	4.0 4.0 4.0 4.5	8.0 7.5 7.5 7.0 6.0	6.5 7.0 6.5 6.0 5.5	7.0 7.5 7.0 6.5 6.0
16 17 18 19 20	4.0 4.0 4.0 4.0	3.0 3.5 3.5 3.5 3.5	3.5 3.5 3.5 4.0 3.5	2.0 2.0 3.0 2.5 3.0	1.5 1.0 1.0 2.0 2.0	1.5 1.5 2.0 2.5 2.5	5.0 5.0 4.5 5.0 5.5	4.0 4.0 4.0 4.0	4.5 4.5 4.0 4.5 5.0	6.0 7.0 7.0 8.0 7.5	5.5 5.0 6.0 6.0	5.5 6.0 6.5 7.0 6.5
21 22 23 24 25	3.5 2.0 1.5 2.0 2.5	2.0 1.5 1.0 0.5 1.5	3.0 2.0 1.0 1.5 2.0	2.5 3.5 3.5 3.5 4.0	2.0 2.0 2.0 2.0 2.5	2.5 3.0 2.5 2.5 3.0	5.5 5.0 5.5 6.0 6.5	4.5 4.5 4.5 5.5	5.0 5.0 5.5 6.0	8.0 8.0 8.0 9.0	7.0 7.0 7.5 8.0 7.5	7.5 7.5 7.5 8.5 8.0
26 27 28 29 30 31	3.0 3.0 3.5 	2.0 2.0 2.5 	2.5 2.5 3.0 	4.0 4.5 3.5 4.0 4.0 3.5	2.5 2.5 2.5 2.5 3.0 3.0	3.0 3.5 3.0 3.0 3.5 3.0	6.5 6.5 6.5 7.0 7.0	5.5 5.5 5.0 5.5 6.0	6.0 6.0 6.0 6.5	9.0 9.0 9.0 9.0 10.5	8.0 8.5 8.0 8.0	8.5 8.5 8.5 9.0 9.5
MONTH	4.0	0.5	2.9	4.5	0.0	2.0	7.0	1.5	4.2	10.5	4.0	6.9
11011111												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
	MAX 9.5 9.5 11.0	JUNE	9.0 9.0 9.0 9.0 9.5	11.0 11.5 11.0 11.0	JULY	MEAN  10.5 11.0 11.0 10.5 11.0		AUGUST 12.5 12.0 11.5	MEAN  13.0 12.5 12.0 12.0		11.5 11.5 12.0	
DAY  1 2 3 4 5	MAX 9.5 9.5 11.0	JUNE 8.5 8.0 7.5 9.0 9.0	9.0 9.0 9.0 9.5 10.5		JULY 10.5 10.5 10.5 10.5 9.5		13.5 13.0 13.0 13.0 12.5	AUGUST  12.5 12.0 11.5 11.0 11.0	13.0 12.5 12.0 12.0	11.5 12.5 12.5 12.0 12.5	SEPTEMBE  11.5 11.5 12.0 11.5 11.5 11.5	11.5 12.0 12.0 12.0 12.0 12.0
DAY  1 2 3 4 5 6 7 8 9 10 11 12	9.5 9.5 11.0 10.5 12.5 14.5 14.0 13.5 14.0 15.0	JUNE  8.5 8.0 7.5 9.0 9.0 10.5 10.5 10.0 10.0 10.0	9.0 9.0 9.0 9.5 10.5 12.0 11.5 11.5 12.5	11.0 11.5 11.0 11.0	JULY  10.5 10.5 10.5 10.5 9.5  11.0 10.5 11.0 10.5 11.0 10.5 11.0	10.5 11.0 11.0 10.5 11.0 11.5 12.5 12.5 12.5	13.5 13.0 13.0 12.5 14.5 15.0 15.5 16.0	AUGUST  12.5 12.0 11.5 11.0 11.0 11.0 11.0 10.5 11.0 11.5 12.0 13.0	13.0 12.5 12.0 12.0 12.0 12.0 13.5 14.0	11.5 12.5 12.5 12.0 12.5 11.5 11.5 11.5	SEPTEMBE  11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	11.5 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.5
DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14	9.5 9.5 11.0 10.5 12.5 14.0 13.5 14.0 15.0	JUNE  8.5 8.0 7.5 9.0 9.0 10.5 10.5 10.0 10.0 10.0 10.0 9.0 8.5	9.0 9.0 9.5 10.5 12.0 11.5 11.5 11.5 12.5	11.0 11.5 11.0 11.0 13.0 11.5 13.0 11.5 14.0 13.5	JULY  10.5 10.5 10.5 9.5  11.0 10.5 11.0 10.5 11.0 12.0 12.0 12.5 12.0	10.5 11.0 11.0 10.5 11.0 11.5 12.0 12.5 12.5 13.0 12.5	13.5 13.0 13.0 12.5 14.5 15.5 15.5 16.0	AUGUST  12.5 12.0 11.5 11.0 11.0 11.0 10.5 11.0 11.5 12.0 13.0 12.0 12.0 13.5 13.5	13.0 12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.0 13.5 13.0	11.5 12.5 12.5 12.0 12.5 12.5 11.5 11.5 11.5 11.5 11.5	SEPTEMBE  11.5 11.5 12.0 11.5 11.5 11.5 11.5 11.5 11.0 11.0 10.5	11.5 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.5
DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	9.5 9.5 9.5 11.0 10.5 12.5 14.5 14.0 15.0 12.0 11.5 10.0 9.0 10.0	JUNE  8.5 8.0 7.5 9.0 9.0 10.5 10.5 10.0 10.0 10.0 10.0 10.0 9.0 8.5 8.5	9.0 9.0 9.5 10.5 12.0 11.5 11.5 11.5 12.5 11.5 11.0 9.5 9.5	11.0 11.5 11.0 11.0 13.0 11.5 13.0 11.5 14.0 13.5 14.0 15.0 14.0 15.0 14.0 14.0 13.5 12.5	JULY  10.5 10.5 10.5 9.5  11.0 10.5 11.5 11.0 12.0 12.0 12.0 12.1 11.5 11.5	10.5 11.0 11.0 10.5 11.0 11.5 11.5 12.0 12.5 13.0 12.5 12.5 12.5 12.5	13.5 13.0 13.0 12.5 14.5 15.5 15.5 16.0 15.5 14.5 15.5 14.5 15.5 14.5 14.5	AUGUST  12.5 12.0 11.5 11.0 11.0 11.0 12.0 13.0 12.0 13.5 13.5 13.5 13.5 13.0	13.0 12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.0 14.5 14.0 12.5 14.0	11.5 12.5 12.5 12.0 12.5 12.5 11.5 11.5 11.5 11.5 11.5 11.5	SEPTEMBE  11.5 11.5 12.0 11.5 11.5 11.5 11.5 11.5 11.0 10.5 11.0 10.5 10.5	11.5 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.5 11.5 11.0 11.0 11
DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.5 9.5 9.5 11.0 10.5 12.5 14.0 13.5 14.0 15.0 12.0 11.5 10.0 9.0 10.0 10.5 10.5 10.5 10.5	JUNE  8.5 8.0 7.5 9.0 9.0 10.5 10.0 10.0 10.5 11.0 10.0 9.0 8.5 8.5 10.0 9.5 9.5 9.5 9.5 9.5	9.0 9.0 9.5 10.5 12.0 11.5 11.5 11.5 12.5 11.5 10.0 9.5 10.0 9.5 10.0 10.0	11.0 11.5 11.0 11.0 13.0 11.5 13.0 11.5 14.0 13.5 14.0 15.0 14.0 14.0 14.0 14.0 14.5 12.5 12.5 12.5	JULY  10.5 10.5 10.5 10.5 9.5  11.0 10.5 11.5 11.5 12.0 12.0 12.0 12.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	10.5 11.0 11.0 10.5 11.0 11.5 11.5 12.0 12.5 12.5 13.0 12.5 12.5 12.5 12.5 12.5 12.5	13.5 13.0 13.0 12.5 14.5 15.0 15.5 16.0 15.5 14.5 15.5 12.0 12.0 12.0 12.0 13.0	AUGUST  12.5 12.0 11.5 11.0 11.0 11.5 11.0 12.0 13.0 12.0 13.5 13.5 13.5 13.0 12.5 11.0 11.5 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	13.0 12.5 12.0 12.0 12.0 12.5 13.5 14.0 13.5 14.0 14.5 14.0 12.5 12.5 14.0	11.5 12.5 12.5 12.0 12.5 12.0 12.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	SEPTEMBE  11.5 11.5 12.0 11.5 11.5 11.5 11.5 11.5 11.0 11.0 10.5 11.0 9.0 9.0 9.0 9.0 9.5 10.0 10.0 9.0 9.5 10.0	11.5 12.0 12.0 12.0 12.0 11.5 11.5 11.5 11.5 11.0 11.0 11.0 11



▲1 Discharge site and map number									
Map No.	Station No.	Station Name	Map No.	Station No.	Station Name				
* 1	15087690	Indian River near Sitka	5	15087735	Indian River Diversion Return				
2	15087695	Indian River above CBS pumphouse near Sitka			Flow from Sheldon Jackson College at Sitka				
* 3	15087700	Indian River at Sitka	6	15087740	Indian River Diversion Return				
4	15087730	Indian River Diversion to			Flow at Mouth at Sitka				
		Sheldon Jackson College at Sawmill Cr Rd at Sitka	7	15087750	Indian River at Mouth at Sitka				

Locations of gaging stations in the Sitka area.

### 15087690 INDIAN RIVER NEAR SITKA

LOCATION.--Lat 57°04′01″, long 135°17′42″, in  $SW^{1}_{/4}$   $SE^{1}_{/4}$  sec. 30, T. 55 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 2 mi upstream from mouth, and 1 mi northeast of Sitka.

DRAINAGE AREA.--10.1 mi2

PERIOD OF RECORD.--August 1980 to September 1993. October 1998 to current year.

REVISED RECORD. -- WDR-82-1: 1980-81.

GAGE.-Water-stage recorder. Elevation of gage is 125 ft above sea level, from topographic map. Prior to October 1998, at site 200 ft upstream and at different datum

REMARKS. -- No estimated daily discharges. Records fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of November 19, 1993, reached a stage of 14.04 ft, site and datum then in use, from recorder, discharge, 6,460  ${\rm ft}^3/{\rm s}$ .

	Date	9	Time	ischarge ( (ft³/s)	Gage height (ft)		Date		Time	Discharge $(ft^3/s)$	Gage height (ft)	5
	Oct 1 Oct 2		1530 2030	*3090 1390	*13.03 11.34		Nov 26 Sep 1		0830 2115	2260 1400	12.31 11.35	
		DIS	SCHARGE, C	UBIC FEET		WATER Y MEAN	YEAR OCTOBE	R 2002	2 TO SEPT	EMBER 2003		
DAY 1 2 3 4 5	OCT 104 96 75 63 83	NOV 44 41 38 36 34	124 95 81	JAN 76 57 51 128 123	FEB 67 90 83 68 61	MAR 85 70 59 94 69	APR 35 31 30 29 29	MAY 36 34 31 29 28	JUN 33 36 33 32 33	JUL 47 45 54 125 69	AUG 25 42 46 33 28	SEP 343 283 166 105 82
6 7 8 9 10	240 503 328 231 129	35 32 30 29 28	58 54 120 106 71	156 130 80 68 63	56 52 49 46 48	51 44 41 40 38	29 29 34 34 31	27 27 27 27 27 28	32 31 29 28 27	54 48 45 42 40	25 22 20 19 18	71 83 340 121 129
11 12 13 14 15	98 94 89 73 64	27 28 39 46 47	64 69 71 60 64	61 57 52 47 44	47 43 40 37 36	36 34 35 33 36	31 31 31 32 34	28 60 53 57 43	27 26 27 25 24	38 36 34 33 31	17 17 17 17 68	237 128 236 288 131
16 17 18 19 20	919 416 120 93 358	37 57 51 126 81		42 121 74 114 128	34 34 41 60 38	34 31 35 31 30	32 31 30 30 29	39 37 35 34 34	24 26 33 57 91	30 30 29 27 28	133 130 68 69 167	97 82 77 83 181
21 22 23 24 25	700 276 136 104 88	88 64 51 48 76	44 67 85 78 57	72 59 53 50 50	33 31 30 44 49	30 35 31 28 28	30 30 32 37 58	35 37 40 43 50	59 55 52 42 46	31 29 29 26 25	101 75 64 58 53	160 106 88 376 691
26 27 28 29 30 31	82 85 70 60 53 48	658 327 154 111 204	49 46 44 42 40 68	65 125 67 59 126 76	39 41 41 	27 27 28 42 82 45	61 54 46 40 38	50 39 37 36 35 34	111 72 76 60 51	24 27 26 72 39 28	48 45 42 40 113 93	188 317 240 122 93
TOTAL MEAN MAX MIN AC-FT CFSM IN.	5878 190 919 48 11660 18.8 21.65	2667 88.9 658 27 5290 8.80 9.82	2081 67.1 124 40 4130 6.65 7.66	2474 79.8 156 42 4910 7.90 9.11	1338 47.8 90 30 2650 4.73 4.93	1329 42.9 94 27 2640 4.24 4.89	1048 34.9 61 29 2080 3.46 3.86	1150 37.1 60 27 2280 3.67 4.24	1298 43.3 111 24 2570 4.28 4.78	1241 40.0 125 24 2460 3.96 4.57	1713 55.3 167 17 3400 5.47 6.31	5644 188 691 71 11190 18.6 20.79
							3, BY WATER Y		•			
MEAN MAX (WY) MIN (WY)	189 293 1988 104 1985	101 218 1990 37.0 1999	99.3 207 1990 21.7 1984	98.7 184 1984 46.3 1988	79.6 154 1993 24.8 1999	61.6 122 1986 19.9 1989	65.3 111 1983 29.0 2002	104 167 1983 37.1 2003	88.6 166 1985 28.8 1993	63.4 111 1985 20.6 1993	89.4 238 1983 30.0 1989	170 295 1991 52.8 1986

[#] See period of record; partial years used in monthly summary statistics and break in record

# 15087690 INDIAN RIVER NEAR SITKA—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1980 - 2003#
ANNUAL TOTAL	34253	27861	
ANNUAL MEAN	93.8	76.3	101
HIGHEST ANNUAL MEAN			123 1987
LOWEST ANNUAL MEAN			76.3 2003
HIGHEST DAILY MEAN	978 Aug 12	919 Oct 16	2000 Oct 12 1982
LOWEST DAILY MEAN	a15 Apr 6	b17 Aug 11	8.6 Jan 18 1989
ANNUAL SEVEN-DAY MINIMUM	16 Apr 2	18 Aug 8	10 Jan 13 1989
MAXIMUM PEAK FLOW		c3090 Oct 16	d5710 Sep 4 1990
MAXIMUM PEAK STAGE		13.03 Oct 16	e13.51 Sep 4 1990
INSTANTANEOUS LOW FLOW		f16	8.2 Jan 19 1989
ANNUAL RUNOFF (AC-FT)	67940	55260	73310
ANNUAL RUNOFF (CFSM)	9.29	7.56	10.0
ANNUAL RUNOFF (INCHES)	126.16	102.62	136.13
10 PERCENT EXCEEDS	157	128	185
50 PERCENT EXCEEDS	68	48	68
90 PERCENT EXCEEDS	26	28	29

[#] See period of record; partial years used in monthly summary statistics and break in record a Apr. 6 to Apr. 8 b Aug. 11-14 c From rating curve extended above 300 ft 3 /s d From rating curve extended above 3,100 ft 3 /s, at site and datum then in use e At site and datum then in use f Aug. 12 and Aug. 14

### 15087700 INDIAN RIVER AT SITKA

LOCATION.--Lat  $57^{\circ}03'12''$ , long  $135^{\circ}18'52''$ , in  $NE^{1}_{4}$   $SW^{1}_{4}$   $SE^{1}_{4}$  sec. 36, T. 55 S., R. 63 E. (Sitka A-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, in Tongass National Forest, on Baranof Island, on right bank 500 ft upstream from Sawmill Creek Road, 600 ft downstream from Sheldon Jackson College Diversion, and 0.6 mi above mouth.

DRAINAGE AREA.--12.0 mi²

PERIOD OF RECORD. -- October 1998 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map.

REMARKS. Records good. Flow is diverted 600 ft upstream to Sheldon Jackson College.

		DISCHA	RGE, CUB	SIC FEET PE			YEAR OCTOB	ER 2002 1	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	96 82 58 47 69	16 14 14 13	104 70 56 48 42	73 45 38 118 121	62 89 81 62 53	73 60 40 76 52	e19 e16 e14 e14 e14	17 16 15 14 14	18 21 19 18 19	41 39 46 122 67	29 47 56 41 36	482 435 185 101 79
6 7 8 9 10	319 753 402 238 94	13 13 14 13 12	37 36 117 100 58	153 134 e75 e52 47	46 42 38 35 38	29 22 19 18 17	e14 e15 e19 e19 e17	14 13 13 13 13	18 17 16 18 20	49 42 39 36 34	31 28 27 26 24	61 72 503 116 109
11 12 13 14 15	66 63 59 46 38	12 12 21 28 29	49 53 61 46 50	45 41 35 30 27	38 33 29 25 22	15 14 15 15 17	e15 e15 e15 e16 e18	13 32 27 33 21	19 19 19 18 18	36 35 33 32 29	23 23 24 23 77	292 117 279 365 122
16 17 18 19 20	1270 604 93 63 515	20 44 35 121 65	48 53 52 36 30	26 124 65 101 125	21 21 26 49 25	15 14 16 14 14	e16 e15 14 14	18 17 16 16 15	17 18 23 45 91	26 26 25 24 24	142 141 65 56 165	81 65 62 66 175
21 22 23 24 25	1260 352 103 85 48	74 47 33 29 57	27 56 85 82 47	62 47 41 38 38	21 20 19 32 36	14 16 15 13	14 15 15 17 28	16 19 23 28 35	57 49 47 42 47	26 25 25 24 23	88 62 49 44 39	167 95 75 490 1010
26 27 28 29 30 31	43 47 33 24 20 17	999 436 137 83 215	34 29 27 25 24 55	57 127 62 51 124 72	26 27 27 	13 e12 e14 e25 e52 e26	34 27 21 19 18	38 25 22 22 20 20	120 80 86 66 49	22 24 23 75 41 32	34 33 31 28 111 82	208 427 303 116 81
TOTAL MEAN MAX MIN MED AC-FT	7007 226 1270 17 69 13900	2632 87.7 999 12 29 5220	1637 52.8 117 24 49 3250	2194 70.8 153 26 57 4350	1043 37.2 89 19 32 2070	768 24.8 76 12 16 1520	521 17.4 34 14 16 1030	618 19.9 38 13 17 1230	1114 37.1 120 16 19 2210	1145 36.9 122 22 32 2270	1685 54.4 165 23 39 3340	6739 225 1010 61 119 13370
STATIS	TICS OF 1	MONTHLY MEA	AN DATA I	FOR WATER Y	ZEARS 1999	- 2003	B, BY WATER	YEAR (WY	)			
MEAN MAX (WY) MIN (WY)	205 248 1999 141 2001	71.1 87.7 2003 38.0 1999	98.4 240 2000 51.0 2002	76.0 125 1999 55.7 2002	49.4 82.7 2002 23.6 1999	48.5 107 2001 24.8 2003	47.7 108 1999 15.2 2002	79.2 139 1999 19.9 2003	80.3 130 1999 37.1 2003	56.0 67.7 2000 36.9 2003	75.7 196 2002 22.0 2001	151 225 2003 78.9 2002
SUMMA	RY STATIS	STICS	FOR	R 2002 CALE	ENDAR YEAR		FOR 2003 1	WATER YEA	R	WATER YEA	ARS 1999	- 2003
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN	MEAN T ANNUAL ANNUAL M T DAILY M DAILY M	MEAN MEAN EAN AY MINIMUM LOW FAGE LOW FLOW		31980.7 87.6 1270 a9.2 9.2	Oct 16 Apr 6 Apr 6		27103 74.3 1270 b12 13 c3890 25.9 d11 53760	Oct 16 Nov 10 Nov 6 Oct 16 3 Oct 16 Nov 11		86.8 103 74.3 2390 a9.2 9.2 c5740 26.84 9.0	Apr Apr Oct 1 4 Oct 1	2000 2003 9 1998 6 2002 6 2002 9 1998 9 1998 9 2002
50 PER	CENT EXCI CENT EXCI CENT EXCI	EEDS		152 48 13			123 35 14			157 50 19		

Apr. 6 to Apr. 9, 2002 Nov. 10 to Nov. 12, and Mar. 27

c From rating curve extended above 1050  $\rm ft^3/s$  d Nov. 11 and 12

#### 15088000 SAWMILL CREEK NEAR SITKA

LOCATION.--Lat  $57^{\circ}03'05''$ , long  $135^{\circ}13'40''$ , in  $NE^{1}/_{4}$  SW $^{1}/_{4}$  sec. 34, T. 55 S., R. 64 E. (Sitka A-4 quad.), Hydrologic Unit 19010401, on Baranof Island, in Tongass National Forest, on left bank 500 ft upstream from mouth, 1.6 mi downstream from Blue Lake, and 4.0 mi east of Sitka.

DRAINAGE AREA. -- 39.0 mi2.

PERIOD OF RECORD.-- September 1920 to December 1923, February 1928 to September 1942, October 1945 to September 1957, 1994 (peak discharge only, published in WRD AK 95-1), and May 2001 to current year. Records prior to 1945 furnished by U.S. Forest Service.

REVISED RECORDS. -- WSP 1372: 1921-22 and 1928-36.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is sea level, from topographic map. Prior to April 1947, staff gages or water-stage recorders at several sites within 1,700 ft of present site at various datums. April 1947 to September 1957 at site about 200 ft upstream at different datum.

REMARKS.--Records good. Minor regulation above station by Sitka Public Utilities hydroelectric plant during periods 1920-23 and 1937-42. In 1959, Blue Lake Dam, 1.6 mi upstream, was completed. The area of the lake is 1225 acres. The dam is concrete with a spillway elevation of 342.0 ft above sea level. In 1960, the Blue Lake Hydro plant, located 400 ft downstream from gage, was put into operation. Water is taken from Blue Lake and piped via a penstock to Blue Lake hydro, through 2-3,000 kw turbines and discharged back into Sawmill Creek just below high tide level. This penstock also provides water for the City of Sitka and for the filter plant for the Sitka Sawmill. In the years following, Campground Hydro, a smaller generation plant was constructed about 1,000 ft below Blue Lake Dam. It also has a penstock from Blue Lake and discharges directly into Sawmill Creek. A fish bypass valve has been installed at Campground Hydro that automatically releases 50  $\mathrm{ft_3/s}$  to the tailrace anytime the hydro plant is shut down. Another small generator was installed just above the Sawmill Filter Plant diversion from Blue Lake Hydro penstock with the capability of bypassing the filter plant and discharging back into Sawmill Creek above the gage site. Water that went to the filter plant was piped to the sawmill and eventually discharged directly into Silver Bay. The sawmill has since closed and water is now supplied to Sawmill Cove Industrial Park. Flow is constantly regulated except when Blue Lake is spilling.

EXTREMES OUTSIDE PERIOD OF RECORD.-- It was reported that in October 1972, a storm produced a peak elevation at The boundary of the spill at the spill way. Extending the spillway rating, this flood was estimated to be  $17,000 \text{ ft}_3/\text{s}$ . It was reported to have been the largest since 1921.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	296 313 281 270 280	241 248 247 188 62	601 279 123 72 69	54 51 64 100 93	78 82 83 77 75	89 88 85 96 88	71 68 67 66 66	65 64 63 63	66 66 66 65	73 73 74 87 79	120 124 123 118 117	e241 e154 e138 e117 e111
6 7 8 9 10	572 2440 2630 1670 841	63 62 62 62 62	68 68 80 87 97	103 93 78 73 72	74 74 73 73 74	80 77 74 74 74	66 66 67 67 66	63 63 62 62 62	65 65 65 55	76 75 74 73 73	116 115 114 114 114	e111 e109 e184 e125 e114
11 12 13 14 15	408 297 297 273 270	62 63 64 65 67	119 120 128 101 98	71 71 70 70 69	75 73 73 73 73	73 73 73 73 74	66 66 66 66	63 65 67 69 67	65 66 66 66	72 72 72 72 72	114 113 113 113 118	e173 e120 e214 e247 e108
16 17 18 19 20	1850 3710 1410 687 791	67 72 72 84 77	116 94 79 73 71	69 80 75 88 93	73 73 77 77 76	73 73 74 73 74	65 64 64 64	66 66 65 65	66 67 69 75 85	72 72 73 72 72	124 126 118 120 127	e104 e105 e107 e110 e131
21 22 23 24 25	2950 2330 1170 616 373	80 75 71 70 71	70 78 86 86 77	79 74 72 71 70	75 74 74 75 78	72 75 74 73 73	64 64 65 67	64 64 64 66	80 81 80 75 74	72 99 116 116 116	108 117 114 112 111	e148 e148 e128 e188 e2540
26 27 28 29 30 31	285 268 257 252 251 249	203 1380 1530 754 702	73 66 70 70 60 53	83 100 81 76 86 79	78 78 80 	72 72 70 70 78 74	68 67 66 64 64	67 66 66 65 66	81 79 81 76 74	116 115 115 122 114 117	e109 e109 e108 e108 e117 e118	e2390 e1240 e2300 e1150 e993
TOTAL MEAN MAX MIN AC-FT CFSM IN.	922 3710 249	6926 231 1530 62 13740 5.92 6.61	3332 107 601 53 6610 2.76 3.18	2408 77.7 103 51 4780 1.99 2.30	2118 75.6 83 73 4200 1.94 2.02	2361 76.2 96 70 4680 1.95 2.25	1974 65.8 71 64 3920 1.69 1.88	2005 64.7 69 62 3980 1.66 1.91	2116 70.5 85 55 4200 1.81 2.02	2696 87.0 122 72 5350 2.23 2.57	3592 116 127 108 7120 2.97 3.43	14048 468 2540 104 27860 12.0 13.40

# 15088000 SAWMILL CREEK NEAR SITKA—Continued

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP MEAN MAX 744 1204 259 818 166 644 202 663 534 861 704 1179 657 976 663 1235 744 1287 473 174 128

(WY	1204	1936	1931	1942	1935	1947	1936	1936	1936	1935	1939		1947
MIN	354	78.5	50.1	29.9	33.1	24.8	61.5	60.3	53.9	87.0	116		359
(WY	) 1923	2002	1951	1956	1951	1922	1948	2002	2002	2003	2003		1941
SUM	MARY STATI	STICS	FO	R 2002 CAL	ENDAR YE	ΔR	FOR 2003	WATER Y	EAR	WATER YEAR	RS 192	0 –	2003#
ANN	UAL TOTAL			108127			72163						
ANN	UAL MEAN			296			198			460			
HIG	HEST ANNUA	L MEAN								715			1936
LOW	EST ANNUAL	MEAN								198			2003
HIG	HEST DAILY	MEAN		4760	Aug 1	.3	3710	Oct	17	5500	Oct	22	1937
LOW	EST DAILY I	MEAN		a47	Jun 1	.8	51	Jan	2	11	Mar	30	1922
ANN	UAL SEVEN-1	DAY MINIM	JM	47	Jun 1	.8	60	Dec	28	12	Mar	25	1922
MAX	IMUM PEAK 1	FLOW					5680	Oct	17	b10700	Nov	19	1993
MAX	IMUM PEAK ;	STAGE						.52 Oct	17	C			
	TANTANEOUS						37	Jun	9	9.1	Mar	4	1951
	UAL RUNOFF			214500			143100			333600			
ANN	UAL RUNOFF	(CFSM)		7.	60		5	.07		11.8			
	UAL RUNOFF			103.	14		68	. 83		160.43	L		
	PERCENT EX			778			271			933			
	PERCENT EX			77			75			346			
90	PERCENT EX	CEEDS		57			64			65			

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 2003, BY WATER YEAR (WY)#

See Period of Record; partial years used in monthly statistics Jun. 18-24
On the basis of a slope-area computation of peak flow below Campground Hydro and adding diversion values at the time of peak between Campground Hydro and gage; peak flow below Blue Lake Tailrace was computed to be 11,100 ft³/s Undetermined

### 15088200 SILVER BAY TRIBUTARY AT BEAR COVE NEAR SITKA

LOCATION.--Lat  $57^{\circ}01'09''$ , long  $135^{\circ}09'45''$ , in  $SW^{1}/_{4}$   $NW^{1}/_{4}$   $NE^{1}/_{4}$  sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 350 ft upstream from mouth, and 6.5 mi southwest of Sitka.

DRAINAGE AREA.--0.38 mi².

PERIOD OF RECORD. -- October 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 110 ft above sea level, from topographic map.

REMARKS. -- Records poor.

		DISCH	ARGE, CU	BIC FEET	PER SECOND,		YEAR OCTO	BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.3 2.5 1.5 1.1 4.5	0.45 0.41 0.38 0.36 0.37	1.4 1.1 0.97 0.88 0.86	1.7 2.1 9.8 8.5	3.2 3.9 1.8 1.3	2.6 4.2 5.6 2.0 1.0	0.72 0.68 0.67 0.64 0.59	0.98 0.75 0.64 0.64	0.75 0.60 0.70 0.65 0.56	0.96 1.5 2.8 1.5	3.8 1.9 1.8 1.4	10 4.1 1.4 0.81 0.58
6 7 8 9 10	12 12 5.0 3.8 1.3	1.00 0.75 0.46 0.43 0.40	1.5 13 4.7 1.9 2.4	2.9 e2.0 e1.2 1.3 2.2	1.00	0.70 0.46 e0.32 e0.21 e0.11	0.66 1.0 0.97 0.98 1.2	0.53 0.72 0.83 0.75 0.77	0.45 0.40 0.38 0.36 0.34	0.80 0.59 0.50 0.40 0.32	0.43 0.30 0.18 0.03 0.00	1.2 7.2 1.6 3.9
11 12 13 14 15	0.93 5.7 1.8 1.1 0.84	1.9 3.4 2.7 2.5 1.4	5.0 2.5 1.8 6.5 2.2	1.5 1.1 0.97 0.94 1.0		e0.03 0.37 0.56 1.2 0.80	1.5 1.9 1.9 1.5 0.98	1.8 1.4 1.5 1.1 0.90	0.38 0.37 0.31 0.29 0.30	0.23 0.20 0.32 0.19 0.05	0.01 0.56 0.36 5.0 2.9	2.7 14 7.1 1.4 0.85
16 17 18 19 20	41 6.3 1.3 1.3	3.2 2.0 6.0 3.9 4.3	1.9 1.8 1.2 1.1	6.2 2.3 8.9 5.4 1.6	0.85 1.5 2.7 1.2 0.99	0.59 0.69 0.58 0.67 0.79	0.85 0.81 0.86 1.1 1.2	0.90 1.0 0.79 0.73 0.81	0.84 1.6 3.1 8.1 6.9	0.02 0.00 0.00 0.03 0.24	2.0 1.3 1.5 4.3 1.5	0.88 3.1 3.0 8.7 3.6
21 22 23 24 25	27 6.4 1.4 1.0 0.80	1.8 1.1 1.4 3.6	6.1 4.0 3.8 1.7	1.0 0.88 0.83 1.2 5.7	0.93 0.88 1.4 1.8	0.96 0.68 0.63 0.61 0.56	0.99 1.5 3.9 5.0 3.5	0.72 1.0 0.95 3.1 1.3	5.2 3.2 2.2 2.6 4.3	0.58 0.50 0.49 0.63 0.54	0.90 0.54 0.36 0.29 0.22	2.3 1.6 21 16 2.8
26 27 28 29 30 31	1.0 2.2 1.1 0.75 0.56 0.50	18 4.1 1.8 6.4 2.3	1.1 0.99 0.91 0.91 1.1	5.7 1.8 2.0 3.4 1.6 1.3	1.9 2.5 3.0	0.68 0.93 2.7 4.3 1.2 0.82	2.7 1.9 1.6 1.3	0.72 0.76 0.65 0.61 0.60 0.48	4.9 3.9 2.1 1.5 1.2	0.69 0.42 3.8 1.1 0.90	0.26 0.29 0.21 5.7 2.4	15 3.8 1.0 0.57 0.42
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	5.74 41	3.23 20	2.49	3.23 13 0.83	1.60 3.9	37.55 1.21 5.6 0.03 0.69 74 3.19 3.68	44.40 1.48 5.0 0.59 1.1 88 3.89 4.35	29.00 0.94 3.1 0.48 0.77 58 2.46 2.84	58.48 1.95 8.1 0.29 0.80 116 5.13 5.72	23.10 0.75 3.8 0.00 0.50 46 1.96 2.26	57.22 1.85 16 0.00 0.78 113 4.86 5.60	150.61 5.02 21 0.42 2.9 299 13.2 14.74
STATIS	STICS OF	MONTHLY ME	EAN DATA	FOR WATER	R YEARS 2000	- 200	3, BY WATE	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	6.56 7.64 2002 5.34 2001	3.46 4.56 2000 2.85 2001	4.17 7.73 2000 2.49 2003	2.73 3.23 2003 1.68 2000	2.16 3.16 2002 1.12 2000	1.79 2.78 2001 0.82 2002	2.16 2.66 2001 1.48 2003	4.66 6.85 2002 0.94 2003	4.02 6.20 2000 1.95 2003	2.70 4.93 2000 0.75 2003	3.07 5.96 2002 0.46 2001	5.06 6.36 2000 3.04 2002
SUMMAR	RY STATIS	TICS	FOF	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEA	R	WATER YEA	ARS 2000	- 2003
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F JM PEAK S	MEAN MEAN EAN AY MINIMUM LOW TAGE LOW FLOW (AC-FT) (CFSM) (INCHES) EEDS EEDS		51 0. 0.	Aug 12 21 Mar 19 23 Mar 15 50 98 2 9		897. 2. 41 a0. 0. 167 19. b0. 1780 6. 87. 5.	0ct 1 00 Jul 1' 00 Jul 1' 0ct 1 67 Oct 1 00 Jul 1' 47 82 66 2	6 7 4 4 6 6 6 6	3.5 4.5 2.4 51 0.0 264 19.6 bc0.0 2570 9.3 127.0 8.1	54 16 Aug : 10 Jul : 108 Jul : 108 Aug : 168 Aug : 100 Dec	2000 2003 12 2002 17 2003 14 2003 12 2002 12 2002 2 2001

Jul. 17-18, and Aug. 10 Jul. 16-19, and Aug. 10-11 Dec.2 and Dec. 3, 2001 Estimated

#### 15090000 GREEN LAKE NEAR SITKA

LOCATION.--Lat  $56^{\circ}59'14''$ , long  $135^{\circ}06'37''$ , in  $SW^{1}_{4}$   $NE^{1}_{4}$  sec. 29, T. 56 S., R. 65 E. (Port Alexander D-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 0.4 mi upstream from mouth at Silver Bay, and 9.4 mi southeast of Sitka.

DRAINAGE AREA. -- 28.8 mi².

- PERIOD OF RECORD.--September 1915 to September 1925 (published as "Green Lake Outlet"); monthly discharges only published in WSP 1372. October 1983 to current year (month end reservoir contents and monthly discharges).
- REVISED RECORDS.--WSP 1372: 1916, 1917, 1922 (monthly discharge). WDR AK-84-1: Drainage area. WDR AK-86-1: 1984, 1985 (month-end reservoir contents, change in month-end and yearly contents, adjusted mean monthly discharges, and extremes). WRD AK-00-01: 1998-1999 (M m).
- GAGE.--Staff gage on upstream face of dam. Datum of gage is at mean low water, which is about 5 ft below sea level. Totalizing MWH meters are on the two turbines in Green Lake powerhouse. September 1915 to September 1925, recording gage at site of present day dam, elevation of gage was 220 ft above sea level, by barometer; prior to December 27, 1916 at datum 1 ft higher. Water years 1983-88, nonrecording remote lake-level indicator at Blue Lake powerhouse (6 mi northwest of gage).
- REMARKS.--Reservoir is formed by concrete arch dam located at the outlet of Green Lake, construction began in 1978 and was completed in 1982. Total and usable capacity below spillway crest elevation of 395 ft is 88,000 and 75,000 acre-ft, respectively. Reservoir is used for power. Discharge released through the turbines is computed from relation between discharge, head, and power generation; release flow empties directly into Silver Bay and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above the crest of the 100 ft wide spillway. Turbine and spillway ratings and reservoir capacity table furnished by City and Borough of Sitka in 1983. Corrected reservoir capacity table furnished in April 1987.
- COOPERATION. -- Daily reservoir elevations and MWH power generation provided by City and Borough of Sitka.
- AVERAGE DISCHARGE.--29 years (water years, 1916-25, 1985-2003), 313 ft³/s, 147.6 in/yr, 226,800 acre-ft/yr. Mean discharge for water years 1985-03 adjusted for change in contents of Green Lake.
- EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 93,780 acre-ft, September 22-23, 1994, elevation, 400.5 ft; minimum contents observed, 23,170 acre-ft, June 1, 1996, elevation, 307.6 ft; Maximum daily discharge, 5,020 ft³/s, September 22-23, 1994; no flow released, February 5-8, 1987 and November 27-29, 1988.
- EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 90,840 acre-ft, October 21-23, elevation 397.7 ft; minimum contents observed, 58,920 acre-ft, April 24, elevation 362.4ft; Maximum daily discharge (not adjusted for storage) 313 ft³/s, December 13; minimum daily discharge, 6.0 ft³/s, December 14.

MONTH END RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET

#### WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
Sep 30	395.6	88,630	
Oct 31	394.8	87,810	-820
Nov 30	396.4	89,470	+1660
Dec 31	393.0	86,100	-3,370
Jan 31	391.6	84,770	-1,330
Feb 28	382.4	76,160	-8,610
Mar 31	370.5	65,680	-10,480
Apr 30	364.4	60,520	-5,160
May 31	370.4	65,590	+5,070
Jun 30	382.5	76,250	+10,660
Jul 31	386.5	79,930	+3,680
Aug 31	392.2	85,340	+5,410
Sep 30	395.4	88,420	+3,080
		CAL YR 2002	+9220
		WTR YR 2003	-210

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 MEAN VALUES

MONTH	RELEASE	SPILL	TOTAL	ADJUSTED
OCT	225	0	225	212
NOV	200	587	787	789
DEC	139	0	139	144
JAN	198	0	198	176
FEB	215	0	215	60
MAR	243	0	243	73
APR	167	0	167	80
MAY	149	0	149	231
JUN	154	0	154	333
JUL	134	0	134	194
AUG	131	0	131	219
SEP	128	133	261	313
CAL YR 2002	231	57.4	289	304
WTR YR 2003	173	59.2	233	235

### 15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU

LOCATION.--Lat  $58^{\circ}05'00''$ , long  $134^{\circ}37'54''$ , in  $NW^{1}_{/4}$  SE $^{1}_{/4}$  sec. 4, T. 44 S., R. 66 E. (Juneau A-2 quad), Hydrologic Unit 19010204, on Admiralty Island, in Admiralty Island National Monument, Tongass National Forest, on right bank, 100 ft upstream from mine portal, 0.3 mi downstream from Big Sore Creek, 7.0 mi upstream from mouth at Hawk Inlet, and 19 mi southwest of Juneau.

DRAINAGE AREA. -- 8.62 mi².

PERIOD OF RECORD. -- August 1989 to current year.

REVISED RECORD.--WRD AK-99-1, 1990-1994(M), 1996-1998(M).

GAGE.--Water-stage recorder. Datum of gage is 890.16 ft above sea level (levels by Greens Creek Mining Company). Prior to February 16, 1999, recording gage at site 30 ft upstream at datum 9.84 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Greens Creek Mining Company pumps water from gage pool for use in mill. Diversion flow is recorded on totalizing meters in gage house. Pump records are available from Greens Creek Mining Company.

		DISCH	ARGE, CUBI	C FEET	PER SECON	D, WATER		BER 2002 T	O SEPTEM	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58 51 43 41 47	25 23 22 21 20	78 48 34 29 26	17 17 16 67 65	15 15 16 17 15	9.1 11 15 20 14	8.9 7.9 9.8 6.4 5.3	69 47 35 29 26	76 69 54 50 72	31 29 34 35 28	25 31 25 26 23	e28 e105 e75 e57 e41
6 7 8 9 10	68 74 84 82 66	23 20 19 18 18	25 27 61 89 65	85 43 27 23 22	14 14 13 13	e12 e10 e7.0 e6.0 e5.4	5.0 5.2 6.4 6.9	24 24 26 30 32	82 67 53 51 51	27 25 23 23 22	20 19 e18 e18 e17	e38 e41 e75 e98 e70
11 12 13 14 15	52 69 67 52 52	18 18 25 23 21	42 90 56 34 47	20 19 18 e17 17	15 14 13 12 12	e5.2 e5.0 e5.0 e5.3	8.5 11 13 14 16	33 52 40 34 32	46 43 42 37 35	21 19 19 19 18	e20 e20 e16 e16 e26	e85 e78 e112 e164 e116
16 17 18 19 20	92 120 87 82 93	20 20 20 27 29	33 27 25 22 20	16 36 31 38 34	11 11 10 e9.6 e8.5	5.7 5.4 5.2 5.2	14 13 12 13 14	29 28 30 31 33	33 53 55 60 73	18 18 17 16 16	e31 e32 e26 e27 e32	e99 e86 e86 e83 e75
21 22 23 24 25	165 132 95 78 55	33 24 20 20 36	20 20 20 42 23	e23 e20 e18 e17 e16	e8.0 e7.8 e8.1 9.6 9.1	5.4 5.4 5.0 4.8 4.6	15 16 20 35 61	40 68 107 122 108	57 52 38 36 45	17 16 15 14 14	e32 e29 e27 e24 e23	e108 e90 e85 e116 e124
26 27 28 29 30 31	53 49 35 31 28 26	137 120 90 69 117	20 18 18 18 16 16	e15 e15 16 20 18 16	8.7 8.8 8.0 	4.7 5.1 6.2 14 17	83 88 77 69 73	86 71 71 81 80 84	44 36 44 35 32	14 17 16 27 19	e23 e20 e21 e20 e18 e27	e101 e93 e129 e82 e75
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2127 68.6 165 26 4220 7.96 9.18	1096 36.5 137 18 2170 4.24 4.73	1109 35.8 90 16 2200 4.15 4.79	822 26.5 85 15 1630 3.08 3.55	330.2 11.8 17 7.8 655 1.37 1.42	246.5 7.95 20 4.6 489 0.92 1.06	734.2 24.5 88 5.0 1460 2.84 3.17	1602 51.7 122 24 3180 6.00 6.91	1521 50.7 82 32 3020 5.88 6.56	645 20.8 35 14 1280 2.41 2.78	732 23.6 32 16 1450 2.74 3.16	2615 87.2 164 28 5190 10.1 11.29
STATIST	TICS OF I	MONTHLY ME	EAN DATA F	OR WATE	R YEARS 19	89 - 2003	B, BY WATE	R YEAR (WY	) #			
MEAN MAX (WY) MIN (WY)	61.7 97.9 1999 34.7 1994	30.2 49.5 1994 14.6 1991	25.9 65.7 1990 8.27 1997	15.6 26.5 2003 5.50 1997	13.1 36.9 1992 3.43 1999	11.2 27.2 1992 2.82 2002	28.3 49.6 1994 3.56 2002	77.4 107 1992 51.7 2003	86.2 147 1992 50.7 2003	54.0 90.5 2000 20.8 2003	40.6 69.7 1991 18.7 1994	62.1 95.0 1991 33.3 1995

[#] See Period of Record, partial years used in monthly statistics

e Estimated

# 15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1989 - 2003#
ANNUAL TOTAL	15112.0	13579.9	
ANNUAL MEAN	41.4	37.2	42.4
HIGHEST ANNUAL MEAN			60.1 1992
LOWEST ANNUAL MEAN			31.8 1998
HIGHEST DAILY MEAN	165 Oct 21	165 Oct 21	465 Oct 20 1998
LOWEST DAILY MEAN	1.2 Apr 3	4.6 Mar 25	a1.2 Apr 3 2002
ANNUAL SEVEN-DAY MINIMUM	1.2 Apr 8	5.0 Mar 21	1.2 Apr 8 2002
MAXIMUM PEAK FLOW		b193 Oct 21	c710 Oct 20 1998
MAXIMUM PEAK STAGE		2.85 Oct 21	d14.79 Oct 20 1998
INSTANTANEOUS LOW FLOW		2.0 Feb 26	f0.98 Mar 20 2002
ANNUAL RUNOFF (AC-FT)	29970	26940	30730
ANNUAL RUNOFF (CFSM)	4.80	4.32	4.92
ANNUAL RUNOFF (INCHES)	65.22	58.60	66.86
10 PERCENT EXCEEDS	93	84	91
50 PERCENT EXCEEDS	32	25	31
90 PERCENT EXCEEDS	1.9	8.8	6.3

[#] a b

See Period of Record, partial years used in monthly statistics Apr. 3-4, 8, and 11-14 May have been higher during period of estimated discarge From rating curve extended above  $140~{\rm ft}^3/{\rm s}$  on basis of slope area measurement of peak flow Same site, different datum Mar. 20, and Apr. 7-11

### SOUTHEAST ALASKA

### 15102200 FAVORITE CREEK NEAR ANGOON

 $\texttt{LOCATION.--Lat 57°26'52'', long 134°27'35'', in SE}^{1}_{/4} \ \texttt{NE}^{1}_{/4} \ \texttt{sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 68 E. (Sitka B-2 quad), Hydrologic Sec. 14, T. 68 E. (Sitka B-2 quad), Hydro$ Unit 19010204, in Tongass National Forest, on Admiralty Island, on right bank 1.2 mi upstream from confluence with North Fork Favorite Creek, 2.2 miles from the mouth of Favorite Creek and about 5.7 mi south east of Angoon.

DRAINAGE AREA.--2.52 mi²

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 2000 to September 2003 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 370 ft above sea level, from topographic map.

 ${\tt REMARKS.--} \ {\tt Records} \ {\tt good}, \ {\tt except} \ {\tt for} \ {\tt discharges} \ {\tt above} \ {\tt 80} \ {\tt ft}^3/{\tt s}, \ {\tt and} \ {\tt estimated} \ {\tt daily} \ {\tt discharges}, \ {\tt which} \ {\tt are} \ {\tt poor.}$ 

DISCURDED CUIDIC DEET DED CECOND MATER VERD OCTORED 2002 TO CERTEMBER 2003

		DISCH	IARGE, CUI	BIC FEET		D, WATER ILY MEAN		DBER 2002	TO SEPTEM	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e10 e8.0 e9.0 e10 e15	e7.5 e6.6 e8.0 e6.6 6.3	18 15 13 11 9.9	17 12 16 83 86	8.0 14 13 12 9.7	5.1 4.7 5.3 7.5 6.1	5.2 4.2 e3.6 3.4 3.3	14 13 11 10 8.8	19 17 15 14 17	9.3 8.7 9.2 10 8.5	3.3 3.1 2.9 3.0 3.2	9.0 19 12 9.5 8.3
6 7 8 9 10	e10 e14 e25 e45 e35	12 10 8.3 7.4 7.0	8.9 9.0 15 21 20	58 25 18 15 13	8.0 6.8 6.1 5.7 5.6	4.3 e2.9 e2.5 e2.4 e2.2	5.6 14 14 8.8	7.9 7.2 7.0 7.3 8.5	18 18 16 16 15	7.6 6.8 6.3 5.7 5.4	2.9 2.7 2.6 2.5 2.4	9.3 16 12 10 11
11 12 13 14 15	e20 e25 e20 e15 e10	6.8 8.3 19 21 14	34 66 25 19 90	12 11 9.3 8.3 8.6	5.4 5.1 4.9 4.6 4.4	e2.2 e2.1 e2.1 e2.3 2.6	7.9 7.7 7.7 7.7 9.3	10 13 13 12 11	14 14 15 14 13	5.0 4.8 4.6 4.4 4.2	2.3 2.3 2.2 2.3 6.3	11 9.1 23 20 15
16 17 18 19 20	e34 e55 e30 e24 e29	11 14 12 17 14	22 16 16 11 8.7	9.4 20 17 18 16	4.3 4.1 4.1 4.1 3.7	2.8 3.2 3.9 3.2 3.1	7.8 7.0 9.3 12 9.0	10 9.1 8.9 9.3	12 17 18 15 14	3.9 3.8 3.6 3.4 3.4	4.8 4.2 4.0 3.7 3.7	13 11 13 12 13
21 22 23 24 25	e70 e35 e20 e16 e14	16 12 10 9.7	7.3 12 19 35 11	13 11 9.8 8.8 8.2	e3.2 3.4 e2.9 3.1 3.1	3.5 3.7 3.4 2.9 2.7	8.4 9.2 9.6 10	11 14 32 53	13 12 12 11 11	3.5 3.8 3.6 3.3 3.1	3.8 3.7 3.5 3.3 3.1	13 12 12 18 15
26 27 28 29 30 31	e17 e20 e16 e13 e11 e8.5	26 28 21 16 24	8.4 7.1 6.3 5.6 5.3	7.7 7.0 8.3 17 13 9.8	3.0 3.1 3.0 	2.7 2.8 8.6 15 15	16 15 14 14 14	24 19 18 19 20 20	11 11 12 11 9.8	3.0 2.9 2.7 3.2 2.9 2.7	3.0 2.9 2.8 2.7 4.8 4.3	14 14 13 12 10
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	683.5 22.0 70 8.0 17 1360 8.75 10.09	393.5 13.1 28 6.3 12 781 5.21 5.81	586.5 18.9 90 5.3 15 1160 7.51 8.66	586.2 18.9 86 7.0 13 1160 7.50 8.65	158.4 5.66 14 2.9 4.5 314 2.24 2.34	138.7 4.47 15 2.1 3.2 275 1.78 2.05	282.7 9.42 16 3.3 9.1 561 3.74 4.17	485.0 15.6 54 7.0 11 962 6.21 7.16	424.8 14.2 19 9.8 14 843 5.62 6.27	153.3 4.95 10 2.7 3.9 304 1.96 2.26	102.3 3.30 6.3 2.2 3.1 203 1.31 1.51	389.2 13.0 23 8.3 12 772 5.15 5.75
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 20	00 - 2003	, BY WATE	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	19.0 22.0 2003 15.9 2002	15.4 17.6 2002 13.1 2003	15.8 18.9 2003 12.4 2002	17.8 22.5 2001 12.0 2002	8.15 10.7 2001 5.66 2003	4.14 5.37 2001 2.57 2002	7.05 9.42 2003 3.25 2002	21.0 28.2 2002 15.6 2003	24.7 30.3 2001 14.2 2003	11.6 18.0 2001 4.95 2003	7.64 12.2 2002 3.30 2003	13.7 16.0 2001 12.2 2002

See Period of Record, partial year used in monthly statistics Estimated

# 15102200 FAVORITE CREEK NEAR ANGOON—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 2000 - 2003#
ANNUAL TOTAL	5309.7	4384.1	
ANNUAL MEAN	14.5	12.0	12.9
HIGHEST ANNUAL MEAN			13.8 2002
LOWEST ANNUAL MEAN			12.0 2003
HIGHEST DAILY MEAN	107 May 29	90 Dec 15	123 Dec 24 2001
LOWEST DAILY MEAN	1.5 Apr 7	a2.1 Mar 12	1.5 Apr 7 2002
ANNUAL SEVEN-DAY MINIMUM	1.5 Apr 5	2.3 Mar 8	1.5 Apr 5 2002
MAXIMUM PEAK FLOW		462 Dec 15	b462 Dec 15 2002
MAXIMUM PEAK STAGE		11.43 Dec 15	11.43 Dec 15 2002
INSTANTANEOUS LOW FLOW		2.1 Aug 13	1.4 Apr 4 2002
ANNUAL RUNOFF (AC-FT)	10530	8700	9360
ANNUAL RUNOFF (CFSM)	5.77	4.77	5.13
ANNUAL RUNOFF (INCHES)	78.38	64.72	69.69
10 PERCENT EXCEEDS	33	20	26
50 PERCENT EXCEEDS	10	9.8	9.8
90 PERCENT EXCEEDS	2.4	3.0	2.7

 $[\]begin{tabular}{lll} $\#$ & See Period of Record, partial year used in monthly statistics \\ a & Mar. 12 and 13 \\ b & From rating curve extended above 80 ft^3/s. \\ \end{tabular}$ 

# 15102200 FAVORITE CREEK NEAR ANGOON—Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 2002 to July 2003.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Medium code	Sample type	Stream width, feet (00004)	Gage height, feet (00065)	Instan- taneous dis- charge, cfs (00061)	Sam- pling method, code (82398)	Sampler type, code (84164)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Turbid- ity, wat unf lab, Hach 2100AN NTU (99872)
NOV											
04	1145	9	9	13.5	10.06	6.6	30	8010	6.0	6.5	<1.0
JAN	1215	0	0	14 5	10 00	1.5	2.0	0010			1 1
09 MAR	1315	9	9	14.5	10.23	15	30	8010			1.1
07	1000	9	9	13.9	10.04	2.9	30	8010	-7.5	.0	3.7
APR											
25	0930	9	9	17.0	10.18	13	30	8010	6.5	3.0	<1.0
JUL		_									
07	1200	9	9	16.0	10.01	6.9	30	8010	15.5	8.0	<1.0

# 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE

LOCATION.--Lat  $57^{\circ}39'46''$ , long  $135^{\circ}11'06''$ , in  $NW^{1}_{/4}$  SE $^{1}_{/4}$  sec. 34, T. 48 S., R. 63 E. (Sitka C-4 quad), Greater Sitka Borough, Hydrologic Unit 19010203, on Chichagof Island, in Tongass National Forest, on right bank 0.6 mi upstream from Hook Creek, 3.5 mi upstream from mouth at Kadashan Bay, and 9 mi south of Tenakee.

DRAINAGE AREA. -- 10.2 mi².

Date

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1968 to September 1978, October 1980 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 100 ft above sea level, from topographic map. Prior to October 24, 1969, at site 90 ft downstream at different datum; October 24, 1969 to September 30, 1978, at site 75 ft downstream at datum 1.89 ft higher.

Date

Time

Discharge Gage Height

 $(ft^3/s)$  (ft)

REMARKS. -- Records good, except for estimated daily discharges, which are poor.

Time

Discharge Gage Height

 $(ft^3/s)$  (ft)

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 500  ${\rm ft^3/s}$  and maximum (*)

				( / - /						,	, _ ,		
	Oct.	16	1415	721	4.05		Sept.	01	2115		748	4.10	
	Oct.	20	2200	977	4.49		Sept.	13	1700		654	3.92	
	Nov.	26	0945	*1100	*4.68		Sept.	24	0500		634	3.88	
				WATER	YEAR OCTO	BER 2002 LY MEAN V		EMBE	R 2003				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR		MAY	JUN	JUL	AUG	SEP
1	121	28	69	55	35	66	31		50	28	18	15	216
2	86	26	48	45	92	43	25		40	37	14	14	206
3	56	24	39	36	96	49	23		33	27	33	12	75
4 5	43 83	23 22	34 30	226 197	72 58	64 41	21 20		29 27	25 28	35 20	11 9.8	43 31
6 7	125 175	24 22	28 33	246 104	44 37	26 e15	23 53		26 26	26 22	16 14	8.9 8.3	30 102
8	195	20	123	65	33	e13	64		28	20	13	7.8	143
9	108	19	141	50	32	e13	52		32	18	12	7.3	53
10	62	20	80	42	38	e12	47		33	17	11	6.9	72
11	56	19	82	37	40	e12	41		34	16	10	6.7	80
12 13	88 68	20 48	125 74	35 32	32 29	e11	39 37		63 49	16	9.8 9.4	6.8 7.1	46 237
14	54	48	49	32 29	29 27	e11 e11	37		38	16 15	9.4	7.1	148
15	48	39	125	29	25	e13	38		35	14	9.0	18	70
16	345	29	74	35	24	e14	38		32	14	8.8	33	47
17	147	75	57	174	23	e15	43		27	31	9.9	22	38
18 19	58 65	63 104	60 39	100 100	24 25	e16 e18	38 53		27 28	54 36	9.3 8.6	14 12	54 60
20	337	93	32	79	21	24	43		28	33	9.8	34	156
21	544	69	28	48	e18	28	43		29	29	14	22	103
22	165	40	49	36	e17	28	41		38	22	12	15	56
23	75	32	59	31	e17	23	46		60	19	13	12	60
24 25	56 46	32 85	77 42	28 27	18 19	19 19	55 77		91 65	19 39	10 9.2	10 9.2	316 221
26	79	482	31	27	19	18	82		62	39	9.3	8.5	76
27	79	386	27	25	21	19	82 76		38	33	13	8.2	161
28	45	115	26	26	21	32	61		32	75	10	8.0	89
29 30	37 33	69 134	24 22	35 73		93 96	56 56		30 28	53 26	21 14	8.0 50	55 43
31	29		28	46		45			30		11	38	
TOTAL	3506	2204	1755	2118	957	907	1359		1188	847	416.5	451.0	3087
MEAN	113	73.5	56.6	68.3	34.2	29.3	45.3		38.3	28.2	13.4	14.5	103
MAX	544	482	141	246	96	96	82		91	75	35	50	316
MIN AC-FT	29 6950	19 4370	22 3480	25 4200	17 1900	11 1800	20 2700		26 2360	14 1680	8.6 826	6.7 895	30 6120
CFSM	11.1	7.20	5.55	6.70	3.35	2.87	4.44	1	3.76	2.77	1.32	1.43	10.1
IN.	12.79	8.04	6.40	7.72	3.49	3.31	4.96	4	4.33	3.09	1.52	1.64	11.26
STATIS	TICS OF I	MONTHLY	MEAN DATA	FOR WATER	YEARS 196	8 - 2003,	BY WAT	ER YI	EAR (WY)	#			
MEAN	117	76.9	63.5	50.2	48.1	43.7	65.9	9	99.7	65.3	30.2	33.1	75.8
MAX (WY)	234 1975	152 1975	147 2000	147 1985	118 1985	129 1994	118 1994		182 1972	151 1972	60.2 1970	79.0 1983	141 1981
MIN	50.6	17.7	8.05	6.15	5.95	9.21	22.7	3	38.3	19.8	6.41	9.44	17.5
(WY)	1970	1974	1978	1969	1969	1974	2002	2	2003	1998	1989	1977	1986

[#] See Period of Record; partial years used in monthly summary statistics

e Estimated

# 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1968 - 2003#
ANNUAL TOTAL	20027.8	18795.5	
ANNUAL MEAN	54.9	51.5	64.1
HIGHEST ANNUAL MEAN			80.8 1992
LOWEST ANNUAL MEAN			44.1 1978
HIGHEST DAILY MEAN	544 Oct 21	544 Oct 21	1010 Oct 19 1998
LOWEST DAILY MEAN	7.7 Mar 20	6.7 Aug 11	a3.2 Jul 28 1989
ANNUAL SEVEN-DAY MINIMUM	8.1 Mar 15	7.2 Aug 8	4.2 Jan 13 1974
MAXIMUM PEAK FLOW		1100 Nov 26	b1970 Oct 8 1990
MAXIMUM PEAK STAGE		4.68 Nov 26	5.83 Oct 8 1990
INSTANTANEOUS LOW FLOW		c6.1 Aug 10	3.2 Jul 28 1989
ANNUAL RUNOFF (AC-FT)	39730	37280	46410
ANNUAL RUNOFF (CFSM)	5.38	5.05	6.28
ANNUAL RUNOFF (INCHES)	73.04	68.55	85.34
10 PERCENT EXCEEDS	114	100	138
50 PERCENT EXCEEDS	35	33	43
90 PERCENT EXCEEDS	13	12	12

[#] See Period of Record; partial years used in monthly summary statistics
a Jul. 28 to Jul. 29, 1989
b From rating curve extended above 330 ft³/s on basis of area-velocity study at
gage height 4.8 ft. and shape of previous rating
c Aug. 10 to Aug. 12, 2003

#### 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD.--Water years 1967-72, 1974-77, 1981-1985, and 1987 to current year.

PERIOD OF DAILY RECORD.

MRIOD OF DAILY RECORD.-WATER TEMPERATURE: November 1967 to September 1978, December 1981 to December 1984, March 1987 to March 1988, and September 1988 to current year.

INSTRUMENTATION.--Digital water-temperature recorder, November 1967 to December 1984, set for 1-hour punch interval. Electronic water-temperature recorder since March 13, 1987, set for 2-hour recording interval. Electronic watertemperature recorder with 15-minute recording interval since July 11, 1996.

REMARKS.--Records represent water temperature at the sensor within  $0.5^{\circ}$ C. Temperature at the sensor was compared with the stream average by cross sections on November 1, and March 7. No variation was found in the temperature cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 16.5°C, July 15, 1993; minimum, 0.0°C, on many days during most winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 14.0°C, July 10-11; minimum, 0.0°C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 Locatn

in X-sect Instanlooking taneous Temper-Temper-Stream dwnstrm Gage disature, ature, Date Time width, ft from 1 bank height, charge, water, air, deg C feet feet deg C cfs (00065) (00061) (00004) (00009) (00010) (00020) NOV 33.0 33.0 2.00 1.53 1.53 1.53 28 28 5.0 5.0 5.8 5.8 01... 1105 01... 1106 01... 1107 33.0 12.0 28 5.0 5.8 17.0 22.0 27.0 1108 1109 33.0 33.0 1.53 1.53 5.0 5.0 5.8 5.8 01... 2.8 28 01... 01... 1110 33.0 1.53 28 5.0 5.8 01... 1111 33.0 32.0 1.53 28 5.0 5.8 MAR 07... 1135 35.0 4.00 1.66 14 .0 -6.5 35.0 35.0 11.0 18.0 1.66 07... 1136 14 . 0 -6.5 07... 1137 14 .0 -6.5 07... 1138 35.0 25.0 1.66 14 .0 -6.5 07... 1139 35.0 32.0 1.66 14 . 0 -6.5

TEMPERATURE WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	8.0 7.5 7.5 7.5 7.0	6.5 7.0 7.0 6.5 6.5	7.5 7.5 7.5 7.0 7.0	5.5 5.5 5.5 5.6	4.5 5.0 5.0 5.0 5.5	5.0 5.0 5.5 5.5	5.5 4.5 3.5 2.5	4.5 3.5 2.5 2.0 2.0	5.0 4.0 3.5 2.5 2.0	1.5 2.0 2.0 2.0 2.5	1.0 1.5 2.0 1.0	1.0 1.5 2.0 1.5 2.0
6 7 8 9 10	8.0 8.5 8.0 7.0 5.5	7.0 8.0 7.0 5.5 4.0	8.0 8.0 7.5 6.5 4.5	6.5 6.0 5.5 5.0	6.0 5.0 5.0 4.5 4.5	6.0 5.5 5.0 5.0 4.5	2.5 3.5 4.5 5.0	2.5 2.5 3.5 4.5 4.5	2.5 3.0 4.0 5.0	3.0 3.0 2.5 2.0 1.5	2.5 2.0 2.0 1.0	2.5 2.5 2.0 1.5 1.0
11 12 13 14 15	6.0 6.5 6.5 7.0 7.5	5.0 6.0 6.0 6.5 7.0	5.5 6.0 6.5 6.5	5.0 5.5 6.0 6.0 5.5	5.0 5.0 5.5 5.5	5.0 5.0 5.5 5.5	4.5 4.5 4.0 3.5 3.5	4.0 4.0 3.5 3.0 3.0	4.5 4.5 3.5 3.0	1.5 2.0 2.0 2.0 2.0	1.0 1.0 2.0 1.5	1.0 1.5 2.0 1.5 2.0
16 17 18 19 20	8.5 8.5 7.5 8.5 9.0	7.5 7.5 7.5 7.5 8.0	8.0 8.0 7.5 8.0	5.5 4.5 4.5 4.5 5.0	4.0 4.0 4.5 4.5	4.5 4.5 4.5 4.5	3.5 3.5 3.0 2.5 2.5	3.0 3.0 2.5 2.5 1.0	3.0 3.5 3.0 2.5 2.0	2.0 2.0 2.5 2.5 2.5	2.0 1.0 2.0 2.5 2.5	2.0 1.5 2.5 2.5 2.5
21 22 23 24 25	8.5 8.5 7.5 7.5	8.5 7.5 7.5 7.0 6.5	8.5 8.0 7.5 7.0	4.5 4.5 4.0 4.5 5.0	4.0 4.0 3.0 3.5 4.5	4.5 4.5 3.5 4.0 5.0	1.5 2.0 2.0 1.5 2.0	1.0 1.0 1.0 0.5 1.5	1.5 1.5 1.5 1.0 2.0	2.5 1.0 1.0 0.5	1.0 0.5 0.5 0.0	1.5 0.5 0.5 0.0 0.5
26 27 28 29 30 31	7.0 7.0 6.5 5.5 4.5	7.0 6.5 5.5 4.0 4.0	7.0 7.0 5.5 5.0 4.5 4.0	6.5 6.5 5.5 6.0 6.0	5.0 5.5 5.5 5.5 5.5	6.0 6.0 5.5 5.5 6.0	2.0 1.5 1.5 1.5 2.0	1.0 1.0 1.0 1.0 1.5	1.5 1.5 1.0 1.0 1.5	1.0 1.0 1.5 1.5 1.5	0.0 0.5 1.0 1.0 0.5	0.5 0.5 1.5 1.0 1.0
MONTH	9.0	4.0	6.9	6.5	3.0	5.0	5.5	0.5	2.7	3.0	0.0	1.5

# SOUTHEAST ALASKA

# 15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE—Continued

TEMPERATURE WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.0 2.0 1.5 2.0 2.0	1.5 0.5 0.5 1.5 2.0	1.5 1.5 1.5 2.0 2.0	1.5 1.5 1.5 2.0 1.5	0.5 0.5 1.0 1.0	1.0 1.0 1.5 1.5	1.5 1.5 1.0 1.5 2.5	0.5 0.5 0.0 0.0	1.0 1.0 0.5 1.0	6.5 6.0 5.5 5.5	4.5 3.5 3.5 3.0 3.0	5.5 5.0 4.5 4.0 4.5
6 7 8 9 10	2.5 2.5 2.5 2.5 3.0	2.0 2.0 2.0 2.0 2.5	2.0 2.0 2.0 2.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 1.5 2.0 2.0 3.0	1.0 1.0 1.0 1.0	1.5 1.5 1.5 1.5 2.0	6.0 6.5 7.0 7.5 7.0	4.0 3.5 4.0 4.5 5.0	5.0 5.0 5.5 6.0
11 12 13 14 15	2.5 2.0 2.5 2.0 2.0	1.5 1.5 2.0 1.5	2.0 2.0 2.0 2.0 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.5 3.5 3.5 3.5 4.0	1.5 1.5 1.5 1.5 2.5	2.5 2.5 2.5 2.5 3.0	6.5 6.0 6.0 6.0		6.0 5.5 5.5 5.5
16 17 18 19 20	2.5 2.5 2.5 1.5	2.0 2.0 1.5 0.5	2.0 2.0 2.0 1.0 0.5	0.0 0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.5 4.0 3.5 4.0 4.5	2.5 2.5 2.5 2.5 2.5	3.0 3.0 3.0 3.0 3.5	6.0 6.5 7.0 8.0 8.5	4.0 4.0 4.5 4.5	5.0 5.5 6.0 6.5 7.0
21 22 23 24 25	0.0 0.5 0.0 0.5 1.5	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.5 1.0	1.5 1.5 1.5 2.0 2.0	0.5 1.0 0.5 1.0 0.5	1.0 1.0 1.0 1.5	4.5 4.5 5.0 5.5	2.5 3.5 3.5 3.0 3.0	3.5 4.0 4.0 4.0	7.5 8.0 7.0 8.0 7.0	6.0 6.5 6.5 6.5	7.0 7.0 7.0 7.0 7.0
26 27 28 29 30 31	1.5 1.5 2.0 	1.0 1.0 1.0	1.5 1.0 1.5 	2.0 2.0 2.0 1.0 1.0	1.0 1.0 0.0 0.0 0.5	1.5 1.5 1.5 0.5 0.5	6.0 6.0 6.5 6.5	3.5 3.5 3.5 3.5 4.0	4.5 5.0 4.5 5.0 5.5	7.5 8.5 8.5 9.0 9.5 8.5	6.5 6.0 7.0 8.0 7.5 8.0	7.0 7.0 8.0 8.5 8.5
MONTH	3.0	0.0	1.5	2.0	0.0	0.6	6.5	0.0	2.9	9.5	3.0	6.2
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMB	MEAN ER
1 2 3 4 5	8.5 9.0 9.0 9.0	7.0 7.5 7.5 7.5 8.0	8.0 8.5 8.5 9.0	12.5 11.5 11.0 11.5 11.0	10.0 10.5 10.0 10.0	11.0 11.0 10.5 10.5	12.0 12.0 11.5 11.5 11.5	11.5 11.0 10.5 11.0 10.0	11.5 11.5 11.0 11.0	11.0 11.0 10.5 10.5	10.5 10.5 10.0 9.5 9.0	11.0 10.5 10.5 10.0 9.5
6 7 8 9 10	11.0 10.0 11.5 11.5 12.0	9.0 9.0 8.5 8.5	10.0 9.5 10.0 10.0 10.5	11.5 12.5 13.0 12.5 14.0	10.0 10.5 11.0 11.5	11.0 11.5 12.0 12.0 12.5	12.5 13.0 13.0 13.5 13.5	9.5 10.0 10.5 11.0	11.0 11.5 12.0 12.0 11.5	10.0 11.0 10.5 10.5	9.5 10.0 10.0 10.0	10.0 10.5 10.5 10.0
11 12 13 14 15	11.5 11.5 11.5 12.0 12.0	9.5 10.0 10.0 9.5 10.0	10.5 10.5 10.5 10.5 11.0	14.0 13.5 13.0 12.5 13.0	12.0 12.0 12.0 12.0 11.0	13.0 13.0 12.5 12.5 12.0	13.0 12.0 13.5 12.5	10.5 11.5 11.5 12.0 12.0	11.5 12.0 12.5 12.0	10.5 10.0 10.5 10.0 9.5	10.0 9.5 10.0 9.5 8.0	10.0 10.0 10.0 9.5 8.5
16 17 18 19 20	11.0 10.5 10.5 10.0 10.0	10.0 10.0 9.5 9.0 9.0	10.5 10.5 10.0 9.5 9.5	12.0 11.5 12.5 12.5 12.0	11.5 11.0 11.0 10.5 11.5	11.5 11.5 11.5 11.5 12.0	12.5 12.5 12.0 11.5 11.5	12.0 11.5 11.0 11.0	12.0 12.0 11.5 11.0	8.0 7.5 8.0 8.0 9.0	7.0 6.5 7.5 7.5 8.0	7.5 7.0 7.5 7.5 8.5
21 22 23 24 25	10.5 10.5 10.5 10.0 10.0	9.5 9.5 9.5 9.0 9.5	10.0 10.0 10.0 9.5 9.5	12.0 11.5 12.0 12.0	11.0 11.0 11.0 11.5	11.5 11.5 11.5 11.5	11.0 11.0 10.5 11.0	10.0 10.0 9.0 10.0 9.0	10.5 10.5 10.0 10.5 10.0	9.0 8.0 7.5 8.5 9.0	8.0 7.5 7.0 7.5 8.5	8.5 7.5 7.5 8.0 8.5
26 27 28 29 30 31	10.0 9.5 10.5 11.0 11.0	9.5 9.0 9.5 9.5	9.5 9.5 9.5 10.0 10.5	11.5 11.5 11.5 12.5 12.5 12.5	11.5 11.0 10.5 11.5 11.0	11.5 11.5 11.0 11.5 11.5	10.5 10.5 11.5 11.0 11.5 11.0	9.0 10.0 9.5 10.0 10.5	10.0 10.5 10.5 10.5 11.0	8.5 9.5 9.5 9.0	8.0 8.0 9.0 8.5 8.5	8.0 9.0 9.0 8.5 8.5
MONTH	12.0	7.0	9.8	14.0	10.0	11.6	13.5	9.0	11.2	11.0	6.5	9.1

### SOUTHEAST ALASKA

### 15106970 MIDDLE BASIN CREEK NEAR TENAKEE

LOCATION.--Lat  $57^{\circ}41'33''$ , long  $135^{\circ}12'06''$ , in  $NE^{1}_{/4}$   $NE^{1}_{/4}$   $SE^{1}_{/4}$  sec. 21, T. 48 S., R. 63 E. (Sitka C-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Chichagof Island, on left bank 0.3 mi upstream from confluence with Kadashan River, and about 7 mi south of Tenakee.

DRAINAGE AREA. -- 0.12 mi2

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1981 to July 1987(unpublished fragmentary records provided by the U.S. Forest Service). July 1999 to current year.

 ${\tt GAGE.--Water-stage\ recorder.\ Elevation\ of\ gage\ is\ 190\ ft\ above\ sea\ level,\ from\ topographic\ map.}$ 

REMARKS.-- Records fair, except for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.53 0.43 0.39 0.39 0.58	0.78 0.71 0.66 0.64 0.64	1.7 1.5 1.2 0.93 0.83	0.82 0.80 0.77 1.5	0.58 0.83 0.81 0.70 0.65	0.46 0.39 0.39 0.42 0.37	0.27 0.25 0.23 0.23 0.25	0.64 0.61 0.59 0.53 0.49	0.29 0.28 0.26 0.25 0.27	0.25 0.22 0.24 0.22 0.20	0.16 0.13 0.11 0.11 0.10	0.28 0.41 0.22 0.17 0.16
6 7 8 9 10	0.68 0.76 0.98 1.1 1.0	0.64 0.58 0.55 0.49	0.78 0.79 1.1 1.4	2.3 2.1 1.7 1.3	0.62 0.59 0.57 0.56 0.55	0.30 0.23 0.21 0.28 0.22	0.28 0.33 0.36 0.33 0.33	0.48 0.42 0.40 0.39 0.38	0.28 0.24 0.24 0.25 0.26	0.22 0.25 0.23 0.21 0.22	0.11 0.11 0.12 0.13 0.11	0.20 0.31 0.30 0.26 0.31
11 12 13 14 15	0.96 0.91 0.80 0.73 0.68	0.42 0.47 0.48 0.41 0.40	1.6 1.2	0.92 0.85 0.79 0.71 0.68	0.52 0.51 0.51 0.49 0.49	0.24 e0.24 e0.29 0.29 0.34	0.30 0.27 0.28 0.28 0.29	0.39 0.43 0.40 0.39 0.37	0.26 0.28 0.26 0.23 0.20	0.23 0.22 0.21 0.19 0.18	0.10 0.11 0.12 0.12 0.17	0.33 0.27 0.75 1.0 0.95
16 17 18 19 20	1.6 1.4 1.5 1.3 2.0	0.38 0.48 0.47 0.59 0.68	1.4 1.2 1.1 0.94 0.87	0.66 1.0 0.81 0.82 0.80	0.48 0.45 0.45 0.42 0.36	0.32 0.32 0.32 0.29 0.30	0.28 0.29 0.29 0.29 0.29	0.34 0.32 0.31 0.30 0.31	0.20 0.30 0.30 0.22 0.21	0.18 0.15 0.17 0.18 0.19	0.14 0.12 0.10 0.08 0.09	0.83 0.73 0.74 0.63 0.79
21 22 23 24 25	4.8 4.9 3.3 2.5 2.0	0.65 0.50 0.46 0.44 0.52	0.87 1.0 1.0 1.2	0.81 0.81 0.76 0.71	0.30 0.29 0.29 0.33 0.37	0.31 0.31 0.25 0.25 0.24	0.27 0.30 0.30 0.29 0.31	0.32 0.32 0.38 0.45 0.44	0.20 0.20 0.20 0.18 0.20	0.18 0.15 0.15 0.15 0.15	0.08 0.08 0.07 0.07	0.84 0.73 0.78 2.1 2.1
26 27 28 29 30 31	1.9 1.5 1.1 1.00 0.89 0.83	2.6 4.2 3.9 2.7 2.4	0.84 0.74 0.72 0.67 0.69	0.73 0.64 0.65 0.69 0.71 0.63	0.35 0.38 0.35 	0.23 0.22 0.28 0.46 0.44 0.34	0.30 0.40 0.57 0.62 0.64	0.48 0.43 0.45 0.41 0.39 0.35	0.17 0.17 0.23 0.24 0.24	0.14 0.11 0.10 0.15 0.12 0.14	0.07 0.07 0.06 0.07 0.15 0.11	1.7 2.2 1.9 1.7 1.3
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	43.44 1.40 4.9 0.39 1.00 86 11.7 13.47	29.29 0.98 4.2 0.38 0.56 58 8.14 9.08	33.61 1.08 1.8 0.67 1.0 67 9.03 10.42	30.08 0.97 2.3 0.63 0.80 60 8.09 9.32	13.80 0.49 0.83 0.29 0.49 27 4.11 4.28	9.55 0.31 0.46 0.21 0.30 19 2.57 2.96	9.71 0.32 0.64 0.23 0.29 19 2.70 3.01	12.91 0.42 0.64 0.30 0.40 26 3.47 4.00	7.11 0.24 0.30 0.17 0.24 14 1.98 2.20	5.70 0.18 0.25 0.10 0.18 11 1.53 1.77	3.24 0.10 0.17 0.06 0.11 6.4 0.87	24.99 0.83 2.2 0.16 0.74 50 6.94 7.75
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	99 - 2003	BY WATE	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	1.70 2.98 2000 1.16 2001	1.34 2.65 2000 0.83 2001	1.52 3.75 2000 0.45 2002	0.69 0.97 2003 0.47 2000	0.47 0.57 2001 0.30 2000	0.37 0.51 2001 0.26 2002	0.30 0.43 2000 0.17 2002	0.61 0.92 2002 0.42 2003	0.78 1.31 2002 0.24 2003	0.36 0.65 1999 0.18 2003	0.28 0.40 2002 0.10 2003	0.90 1.34 2000 0.59 2002

[#] See Period of Record; partial years used in monthly statistics

e Estimated

# 15106970 MIDDLE BASIN CREEK NEAR TENAKEE—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1999 - 2003#
ANNUAL TOTAL	254.37	223.43	
ANNUAL MEAN	0.70	0.61	0.77
HIGHEST ANNUAL MEAN			1.20 2000
LOWEST ANNUAL MEAN			0.61 2003
HIGHEST DAILY MEAN	4.9 Oct 22	4.9 Oct 22	31 Dec 27 1999
LOWEST DAILY MEAN	0.14 Apr 1	0.06 Aug 28	0.06 Aug 28 2003
ANNUAL SEVEN-DAY MINIMUM	0.15 Apr 1	0.07 Aug 23	0.07 Aug 23 2003
MAXIMUM PEAK FLOW		7.2 Nov 26	a66 Dec 27 1999
MAXIMUM PEAK STAGE		4.43 Nov 26	5.16 Dec 27 1999
INSTANTANEOUS LOW FLOW		b0.05 Aug 23	b0.05 Aug 23 2003
ANNUAL RUNOFF (AC-FT)	505	443	557
ANNUAL RUNOFF (CFSM)	5.81	5.10	6.40
ANNUAL RUNOFF (INCHES)	78.85	69.26	86.99
10 PERCENT EXCEEDS	1.5	1.3	1.3
50 PERCENT EXCEEDS	0.47	0.39	0.48
90 PERCENT EXCEEDS	0.18	0.15	0.21

[#] See Period of Record; partial years used in monthly statistics a From rating curve extended above 3.0  $ft^3/s$  b Aug. 23, 25, 26, and 28-29

### 15106970 MIDDLE BASIN CREEK NEAR TENAKEE—Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1981 to July 1987 (unpublished fragmentary records provided by the U.S. Forest Service), July 2000 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: July 2000 to current year.

INSTRUMENTATION. -- Electronic water-temperature recorder with 15-minute recording interval since July 09, 2000.

REMARKS.--Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with stream average by cross section on January 9, 2003. No variation was found in the temperature cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum,  $9.5^{\circ}$ C, August 12, 2002, August 8, 2003; minimum,  $0.0^{\circ}$ C, on many days during most winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 9.5°C, August 8; minimum, 0.0°C, on several days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		SAMPLE		DIS-		
		LOC-		CHARGE,		
		ATION,		INST.		
			CROSS		CUBIC	TEMPER-
		STREAM	SECTION	GAGE	FEET	ATURE
Date	Time	WIDTH	(FT FM	HEIGHT	PER	WATER
		(FT)	L BANK)	(FEET)	SECOND	(DEG C)
		(00004)	(00009)	(00065)	(00061)	(00010)
		JAN				
09	1100	4.10	1.00	4.02	1.4	2.5
09	1111	4.10	2.00	4.02	1.4	2.5
09	1112	4.10	3.00	4.02	1.4	2.5

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	7.0 6.5 7.0 6.5 6.5	6.5 6.5 6.5 6.5	6.5 6.5 6.5 6.5	5.0 5.0 5.0 5.5	5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 4.5 4.0 3.5 3.0	4.5 4.0 3.5 3.0 3.0	5.0 4.0 4.0 3.0 3.0	3.0 3.0 3.5 3.5	2.5 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.5 3.5
6 7 8 9 10	7.0 7.0 7.0 6.0 5.5	6.5 7.0 6.0 5.0 4.5	7.0 7.0 6.5 6.0 5.0	6.0 5.5 5.5 5.5 5.0	5.5 5.0 5.0 5.0	5.5 5.5 5.0 5.0	3.5 4.0 5.0 5.0	3.0 3.5 4.0 4.5 4.5	3.0 3.5 4.5 5.0	4.0 3.5 3.0 3.0 2.5	3.5 3.0 3.0 2.0 2.0	4.0 3.5 3.0 2.5 2.0
11 12 13 14 15	5.5 6.0 6.0 6.0	5.0 5.5 5.5 5.5 6.0	5.5 5.5 6.0 6.0	5.5 5.5 5.5 5.5	5.0 5.0 5.0 5.5 5.5	5.0 5.0 5.5 5.5	4.5 5.0 4.5 4.0	4.5 4.5 4.0 3.5 4.0	4.5 4.5 4.0 4.0	2.0 3.0 3.0 2.5 3.0	2.0 2.0 2.5 2.0 2.0	2.0 2.5 2.5 2.5 2.5
16 17 18 19 20	7.0 7.0 6.5 6.5	6.0 6.5 6.0 6.5	7.0 6.5 6.5 6.5 7.0	5.5 5.0 5.0 5.0	4.5 4.5 5.0 5.0	5.0 5.0 5.0 5.0	4.0 4.0 4.0 3.5 3.0	4.0 4.0 3.5 3.0 2.5	4.0 4.0 3.5 3.5 3.0	3.0 3.5 3.5 3.5 3.5	2.5 3.0 3.5 3.5	3.0 3.0 3.5 3.5 3.5
21 22 23 24 25	7.5 6.5 6.0 6.0	6.5 6.0 6.0 6.0 5.5	7.0 6.5 6.0 6.0	5.0 5.0 4.5 5.0 5.0	5.0 4.5 4.0 4.5 5.0	5.0 4.5 4.5 4.5 5.0	2.5 3.0 3.0 3.0 3.0	2.5 2.5 3.0 2.5 3.0	2.5 2.5 3.0 3.0 3.0	3.5 2.0 2.0 1.5 2.0	2.0 2.0 1.5 1.0	2.5 2.0 1.5 1.5 2.0
26 27 28 29 30 31	6.0 6.0 5.5 5.5 5.0	6.0 5.5 5.0 5.0 4.5 4.5	6.0 6.0 5.5 5.0 4.5	6.0 6.0 5.5 5.5	5.0 5.5 5.0 5.0 5.0	6.0 5.5 5.0 5.5 5.5	3.0 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.0 2.0 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5	2.0 2.0 2.5 2.5 2.5 2.5	1.5 1.0 2.0 2.0 2.5 2.5	2.0 2.0 2.0 2.5 2.5 2.5
MONTH	7.5	4.5	6.1	6.0	4.0	5.1	5.0	2.0	3.5	4.0	1.0	2.7

# 15106970 MIDDLE BASIN CREEK NEAR TENAKEE—Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.5 2.5 3.0 3.0	2.5 2.5 2.5 3.0 3.0	2.5 2.5 3.0 3.0	2.5 2.5 3.0 3.0 2.5	2.0 2.0 2.5 2.5 1.5		1.5 1.5 1.5 2.0 2.0		1.5 1.5 1.0 1.5	5.0 5.0 4.5 4.5 4.5	4.5 4.0 4.0 3.5 3.0	4.5 4.5 4.0 4.0
6 7 8 9 10	3.0 3.0 3.0 3.5 3.5	2.5 3.0 2.5 3.0 3.0	3.0 3.0 3.0 3.0 3.5	1.5 1.0 0.5 1.0	1.0 0.0 0.0 0.5 0.0	1.5 0.5 0.0 0.5 0.5	2.0 2.0 2.5 2.5 3.0	1.5 2.0 2.0 2.0 2.0	1.5 2.0 2.0 2.0 2.5	4.5 4.5 5.0 5.5	3.5 3.5 3.5 4.0 4.0	4.0 4.0 4.5 4.5
11 12 13 14 15	3.5 3.0 3.0 3.0 3.0	3.0 2.5 3.0 2.5 2.5	3.0 3.0 3.0 3.0 3.0	1.0 0.5 0.5 1.0	0.0 0.0 0.0 0.5 1.0		3.0 3.0 3.0 3.0 3.0		2.5 2.5 2.5 2.5 3.0	5.0 5.0 5.0 5.0 4.5	4.5 4.5 4.5 4.5	5.0 5.0 4.5 4.5
	3.0 3.0 3.0 2.5 2.0			1.5 1.5 1.5 2.0 2.0		1.5 1.5 1.5 1.5	3.0 3.0 3.0 3.5 3.5	2.0 2.5 2.5 2.5 3.0		5.0 5.0 5.0 5.5		4.5 4.5 4.5 5.0
21 22 23 24 25	1.5 1.5 1.5 2.0 2.0	1.0 1.0 1.0 1.5 2.0		2.0 2.0 2.0 2.0 2.0		2.0 2.0 1.5 2.0	3.5 3.5 4.0 4.5 5.0	2.5 3.0 3.0 3.0 3.0	3.0 3.5 3.5 3.5 4.0	5.5 5.5 5.5 5.5	4.5 5.0 5.0 5.5	5.0 5.0 5.5 5.5
26 27 28 29 30 31	2.0 2.0 2.5 	2.0 1.5 2.0 	2.0 2.0 2.0 	2.0 2.5 2.5 2.5 2.5 2.5	1.5 1.5 1.5 1.5 2.0 1.5	2.0 2.0 2.0 2.0 2.0 2.0	5.0 4.5 4.5 5.0 5.0	3.5 3.5 3.5 3.5 4.0	4.0 4.0 4.5 4.5	5.5 6.0 6.0 6.5 6.0	5.0 5.5 5.5 5.5 5.5	5.5 5.5 6.0 6.0
MONTH	3.5	1.0		3.0	0.0		5.0	0.5		6.5	3.0	4.8
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
	6.0	JUNE		8.0 7.5 7.5 7.5 7.5	JULY 7.0 7.0 7.0 7.0 7.0			AUGUST	8.5		SEPTEMBE	
1 2 3 4	6.0 6.0 6.5 6.0	JUNE 5.5 5.5 5.5 6.0	6.0 6.0 6.0 6.0	8.0 7.5 7.5 7.5	JULY 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.0 7.5 7.5	1	8.0 8.0 8.0 8.0 8.0 7.5	8.5 8.0 8.0 8.0	9.0	8.5 8.5 8.5 8.0 7.5	8.5 9.0 8.5 8.5
1 2 3 4 5 6 7 8 9	6.0 6.5 6.5 6.5 6.5 7.0 7.5	JUNE 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0	6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5	8.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.0	JULY  7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5	7.5 7.0 7.0 7.5 7.5 7.5 8.0 8.0	8.5 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 7.5	8.5 8.0 8.0 8.0 8.5 8.5 9.0 8.5	9.0 9.0 9.0 8.5 8.5	8.5 8.5 8.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5	8.5 9.0 8.5 8.5 8.0 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.0 6.0 6.5 6.0 6.5 6.5 7.0 7.0 7.0 7.0	JUNE 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.5 6.5 6.5	6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 6.5 7.0 6.5	8.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.5 8.5	JULY  7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.0 8.0 8.0 8.0	7.5 7.0 7.0 7.5 7.5 7.5 8.0 8.0 8.0 8.0 8.0	8.5 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 7.5 7.5 8.0 8.5 7.5	8.5 8.0 8.0 8.0 8.5 8.5 9.0 8.5 8.5 9.0	9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5	SEPTEMBE  8.5 8.5 8.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	6.0 6.0 6.5 6.0 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	JUNE 5.55.55 6.0 6.00 6.55.55 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0	8.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	JULY  7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.0 8.0 8.0 7.5 8.0 8.0 7.5	7.5 7.0 7.5 7.5 7.5 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 7.5 7.5 8.0 8.5 7.5 8.0 8.5 7.5 8.5 8.5 8.5 8.5 8.5	8.5 8.0 8.0 8.0 8.5 8.5 9.0 8.5 9.0 9.0 8.5 8.5 9.0 9.0 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	SEPTEMBE  8.5 8.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.6 7.0 6.5 6.5	8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 7.5 7.0 6.5 6.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6.0 6.0 6.5 6.0 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	JUNE 5.5.5.5.6.0 0.00 6.00 6.5.5.5.5.5 5.5.5.5 6.0 6.5.5.5.5 6.5.5.5.5 6.5.5.5 6.5.5.5 6.5.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6.5.5 6	6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 6.5 7.0 7.0 6.5	8.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	JULY  7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.0 8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.5 7.0 7.5 7.5 7.5 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 7.5 7.5 8.0 8.5 7.5 8.0 8.5 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	8.5 8.0 8.0 8.0 8.5 8.5 9.0 8.5 8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	SEPTEMBE  8.5 8.5 8.0 7.5 8.55 8.55 8.55 8.55 8.6 6.5 6.5 6.5 6.5 6.5 6.5	8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 7.5 7.0 6.5 6.5 7.0

### 15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY

LOCATION.(REVISED) -- Lat  $58^{\circ}17'00''$ , long  $134^{\circ}39'54''$ , in  $\text{SE}^1/_4$   $\text{NW}^1/_4$   $\text{SW}^1/_4$  sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW), Hydrologic Unit 19010301, City and Borough of Juneau, on Douglas Island, in Tongass National Forest, on left bank 100 ft downstream from North Fork Peterson Creek, 1.25 mi upstream from mouth, 7.2 mi south of Auke Bay, and 9.6 mi west of Douglas.

DRAINAGE AREA. -- 4.33 mi²,

PERIOD OF RECORD. -- November 1998 to current year.

REVISED RECORDS.--WDR AK-00-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor.

			DISCH	HARGE, in	CFS, WA		OCTOBER 20		PTEMBER 2	003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 12 10 9.3	e9.8 e9.0 8.3 e7.0 e6.5	33 19 13 e10 9.6	15 16 13 40 53	8.9 12 18 19 15	7.5 8.5 9.5 19	8.1 6.2 e5.3 e4.5 3.9	11 8.5 6.6 4.9 3.9	4.8 5.5 4.8 4.1 3.9	2.8 2.6 2.7 2.8 2.9	6.6 14 12 9.7 8.1	5.2 8.0 7.9 8.1 6.5
6 7 8 9 10	25 19 25 25 17	5.7 5.5 4.9 4.5 4.2	8.7 e8.5 9.2 23	50 30 21 15 e12	12 9.5 8.4 7.6 7.9	8.9 e5.0 e3.9 e3.4 e3.1	3.8 4.2 4.8 5.5 5.5	3.3 3.0 2.8 3.1 3.4	4.3 4.1 3.6 3.0 2.9	2.6 2.4 2.3 2.2 2.1	6.9 6.0 5.2 4.7 4.3	6.2 6.2 17 20 15
11 12 13 14 15	13 11 11 9.9 9.3	4.3 4.0 4.4 4.6 4.5	15 42 30 17 16	e10 e9.0 e8.0 e6.5 5.4	8.9 8.7 7.6 6.7 5.9	e2.8 e2.6 e2.5 e2.4 e2.6	5.5 5.5 5.8 6.3 7.9	3.9 5.6 6.8 10 9.8	2.8 2.6 2.8 2.6 2.5	2.0 2.0 1.9 1.9	4.2 4.1 4.1 3.9 3.8	22 15 40 34 23
16 17 18 19 20	48 84 27 18 26	3.9 4.6 e9.0 20	16 12 10 e8.5 7.3	5.1 22 25 27 27	5.5 4.9 e4.3 e4.0 e3.7	e3.5 7.3 8.1 7.7 7.1	8.9 7.4 6.5 5.8 5.6	6.7 5.4 5.0 4.8 4.6	2.3 2.5 6.3 7.3 8.2	1.9 1.9 1.9 1.8	4.0 4.0 4.1 4.0	16 11 10 11
22	225 104 34 23 16	37 e19 e13 e10 e9.5	6.1 6.2 15 34 20	17 11 e7.0 e5.5 e4.6	e3.5 e3.3 e3.2 e3.1 e3.2	8.4 9.4 6.4 5.4 4.9	5.8 6.4 6.9 8.8 17	4.7 5.4 6.6 10 8.3	6.5 5.0 3.9 3.3 3.2	2.0 2.0 2.0 1.9	4.8 5.5 5.2 4.6 4.1	11 10 9.0 23 23
26 27 28 29 30 31	15 22 20 15 12 e11	81 54 33 20 94	14 10 8.3 7.2 6.5 6.2	e3.9 e3.8 5.3 6.1 13	4.5 4.5 4.7 	4.3 4.2 4.7 10 17	23 22 17 14 12	6.9 5.9 5.0 4.6 4.4 4.7	3.3 3.3 4.1 3.7 3.2	1.9 2.1 2.1 8.1 5.8 6.0	3.9 3.5 3.6 3.3 3.9 4.5	21 189 61 26 18
MEAN MAX MIN	917.5 29.6 225 9.3 1820 6.84 7.88		462.3 14.9 42 6.1 917 3.44 3.97	499.2 16.1 53 3.8 990 3.72 4.29	208.5 7.45 19 3.1 414 1.72 1.79	218.1 7.04 19 2.4 433 1.62 1.87			120.4 4.01 8.2 2.3 239 0.93 1.03	80.2 2.59 8.1 1.8 159 0.60 0.69	165.4 5.34 14 3.3 328 1.23 1.42	684.1 22.8 189 5.2 1360 5.27 5.88
STATI	STICS OF	MONTHLY	MEAN DATA	A FOR WATE	ER YEARS	1999 - 20	03, BY WA	TER YEAR	(WY)#			
MEAN MAX (WY) MIN (WY)	20.7 29.6 2003 15.9 2001	12.4 19.7 2000 4.99 1999	17.0 43.2 2000 8.30 2002	10.3 16.1 2003 5.57 2000	6.35 12.2 2002 2.00 1999	6.46 7.96 2001 4.14 2002	8.74 19.2 1999 3.02 2002	12.7 18.1 1999 5.79 2003	11.8 14.9 1999 4.01 2003	8.52 15.9 2000 2.59 2003	9.51 16.6 2002 3.95 2001	17.7 22.8 2003 13.2 1999
MEAN MAX MIN	517.4 16.69 45 6.7 1030 3.85 4.45	260.5 8.683 30 2.1 517 2.01 2.24	257.3 8.300 37 1.7 510 1.92 2.21	261.0 8.419 16 5.0 518 1.94 2.24	342.3 12.22 48 3.0 679 2.82 2.94	128.47 4.144 29 0.90 255 0.96 1.10	90.5 3.017 7.1 2.2 180 0.70 0.78	486.9 15.71 29 3.5 966 3.63 4.18	393.2 13.11 34 5.0 780 3.03 3.38	251.1 8.100 17 4.5 498 1.87 2.16	514.6 16.60 60 3.2 1020 3.83 4.42	454.9 15.16 76 5.4 902 3.50 3.91

[#] See Period of Record

e Estimated

# 15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1999 - 2003#
ANNUAL TOTAL	4818.97	4301.4	
ANNUAL MEAN	13.2	11.8	12.0
HIGHEST ANNUAL MEAN			15.5 2000
LOWEST ANNUAL MEAN			9.84 2001
HIGHEST DAILY MEAN	225 Oct 21	225 Oct 21	364 Dec 27 1999
LOWEST DAILY MEAN	0.90 Mar 17	a1.8 Jul 19	0.90 Mar 17 2002
ANNUAL SEVEN-DAY MINIMUM	0.97 Mar 16	1.9 Jul 14	0.97 Mar 16 2002
MAXIMUM PEAK FLOW		452 Sep 27	616 Dec 28 1999
MAXIMUM PEAK STAGE		10.34 Sep 27	10.80 Dec 28 1999
INSTANTANEOUS LOW FLOW		b1.8 Jul 13	С
ANNUAL RUNOFF (AC-FT)	9560	8530	8690
ANNUAL RUNOFF (CFSM)	3.05	2.72	2.77
ANNUAL RUNOFF (INCHES)	41.40	36.95	37.63
10 PERCENT EXCEEDS	26	23	22
50 PERCENT EXCEEDS	8.8	6.6	7.7
90 PERCENT EXCEEDS	2.5	2.8	2.9

[#] See Period of Record
a Jul. 19 and 20
b Jul. 13-20, Jul. 25 and 26
c Not determined; see lowest daily mean

### 15129000 ALSEK RIVER NEAR YAKUTAT (International gaging station)

LOCATION.--Lat  $59^{\circ}23'42''$ , long  $138^{\circ}04'55''$ , in  $NW^{1}/_{4}$   $NE^{1}/_{4}$  sec. 19, T. 29 S., R. 44 E. (Yakutat B-1 quad), Hydrologic Unit 19010401, in Glacier Bay National Park, on right bank across from terminus of Walker Glacier, 33 mi upstream from Dry Bay, and 55 mi southeast of Yakutat.

DRAINAGE AREA.--10,820 mi².

PERIOD OF RECORD. -- July 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					Di	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26500 27900 26000 24200 22500	17000 16200 15500 15000 14800	31700 24600 21400 18500 16300	e6150 e6240 6530 7470 9350	e5080 e4970 e4800 e4830 e4960	e3740 e3670 e3490 e3190 e3000	3920 3860 3810 3830 3850	20400 19600 18400 17000 15800	33800 32900 33100 34300 36100	75600 86100 87000 88200 90800	69600 71000 70700 68600 61800	52900 56000 64200 61100 54900
6 7 8 9 10	23600 28500 35700 31200 27200	14800 15100 14500 14000 13700	15000 14900 15000 14700 14300	12700 10200 8470 7030 6830	e4710 e4530 e4410 e4300 e4220	e2920 e2760 e2640 e2640 e2620	3910 3970 4360 4690 4910	14900 14700 15100 16000 17100	41300 51400 55600 57200 60200	87400 87200 92700 96500 98600	60700 63700 69900 75400 73500	49900 51800 51300 49100 45500
11 12 13 14 15	24900 27300 28200 25200 23400	13100 12700 12500 12500 12300	13700 13700 13800 12900 12300	e6120 e5590 e5400 e5310 e4770	e4160 e4030 e3910 e3740 e3630	e2640 e2610 e2580 e2640 e2800	5140 5270 5360 5600 5890	18600 20600 19900 18700 17800	65000 68600 70800 68000 66800	99800 103000 105000 106000 103000	72600 78800 85600 89300 103000	43000 44100 45300 43200 35300
16 17 18 19 20	31200 34100 30500 29400 38000	12000 11700 11700 11700 12200	12000 11600 11200 10700 10200	e4290 e5630 e6540 e7700 e7500	e3460 e3310 e3070 e3040 e3000	e3010 e3180 e3350 e3380 e3350	6180 6230 6420 6440 6980	17400 17100 17600 18200 18600	65100 67000 67400 65000 62000	94800 90900 92400 93900 97400	118000 113000 99900 84500 72300	29600 26300 24300 22300 21400
21 22 23 24 25	42900 35500 30700 27600 25500	11600 11000 10300 10500 11200	9700 8810 8300 8370 7950	e6700 e6500 e6000 e5900 e5850	e2940 e2880 e2830 e2730 e2760	e3230 e3180 e3290 e3350 e3400	7570 8080 8900 10500 12000	19000 19900 21100 22500 24000	63000 65100 66100 66800 64500	101000 94600 82500 82400 82800	60200 50600 48100 49700 49500	22500 e23400 e26500 e33000 e40600
26 27 28 29 30 31	24500 24100 22300 20400 18900 17700	26500 74500 64400 44500 37200	7230 6960 e6750 e6520 e6420 e6420	e5810 e5810 e5650 e5530 e5420 e5200	e3060 e3250 e3490 	e3600 e4000 4110 4360 4850 4520	14100 15900 17000 18000 18700	25100 26100 28100 28900 30700 33600	60900 58200 56600 57900 62600	78100 73200 76100 79700 81700 78100	49000 51300 52100 54400 55500 56400	e52000 e49700 e54800 e59300 e57400
MEAN MAX MIN	855600 27600 42900 17700 697000 2.55 2.94	574700 19160 74500 10300 1140000 1.77 1.98	391930 12640 31700 6420 777400 1.17 1.35	204190 6587 12700 4290 405000 0.61 0.70	106100 3789 5080 2730 210400 0.35 0.36	102100 3294 4850 2580 202500 0.30 0.35	231370 7712 18700 3810 458900 0.71 0.80	632500 20400 33600 14700 1255000 1.89 2.17	1723300 57440 70800 32900 3418000 5.31 5.92	2786500 89890 106000 73200 5527000 8.31 9.58	2178700 70280 118000 48100 4321000 6.50 7.49	1290700 43020 64200 21400 2560000 3.98 4.44
STATIS	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 1	991 - 200	3, BY WAT	ER YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	24140 40300 1995 12040 1997	9897 19160 2003 5828 1997	7123 12640 2003 3229 1997	5221 9118 2001 3045 1995	4263 6625 1993 2707 1995	4070 6619 1992 3033 1995	6520 10870 1992 4379 2002	25580 40100 1993 16770 2001	67060 83970 1993 53490 1996	86130 98590 1993 73510 1996	76210 99370 1994 59750 1996	49020 76330 1995 29040 1992
SUMMAR	RY STATI	STICS	FO	R 2002 CAL	ENDAR YE	AR	FOR 2003	WATER YE	AR	WATER Y	EARS 1991	- 2003#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU	T ANNUAL T ANNUAL T DAILY DAILY SEVEN- JM PEAK JM PEAK	MEAN MEAN MEAN DAY MINIM	UM	11346160 31090 175000 a2900 2950	Aug : Mar : Apr	13 23 4	11077690 30350 118000 2580 2620 121000 85		16 13 8 17 17	30480 35850 23920 175000 2280 2310 b178000 89 22080000 2 38 82400 12800 3500		1993 1996 13 2002 13 1999 8 1999 13 2002 13 2002
ANNUAL ANNUAL 10 PEF 50 PEF	RUNOFF	C (AC-FT) C (CFSM) C (INCHES) CCEEDS CCEEDS CCEEDS		22510000 2. 39. 78400 16000 3300	87 01			.80		22080000 2 38 82400 12800 3500	.82	

See Period of Record; partial years used in monthly summary statistics Mar. 23-24 and Apr. 8
From rating extended above 100,000 cfs
Estimated

### 15129500 SITUK RIVER NEAR YAKUTAT

LOCATION.--Lat  $59^{\circ}35'00''$ , long  $139^{\circ}29'31''$ , in  $SE^{1}/_{4}$  SW $^{1}/_{4}$  sec. 9, T. 27 S., R. 35 E. (Yakutat C-4 quad.), Yakutat Borough, Hydrologic Unit 19010401, in Tongass National Forest, on left bank 20 ft downstream from Alsek Road bridge, 3.5 mi downstream from Situk Lake, 8.8 mi northeast of Yakutat, and 10 mi upstream from mouth.

DRAINAGE AREA.--36  $\min^2$ , approximately.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1988 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level, by U.S. Forest Service.

REMARKS.--Records good, except for estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of  $1,000~{\rm ft}^3/{\rm s}$  and maximum(*):

	Dat	е	Time	Discharge (ft ³ /s)	Gage Height (ft)		Date	Э	Time	Discharge $(ft^3/s)$	Gage Height (ft)	:
	Oct Oct Nov	20	1415 1900 0145	1000 1080 3070*	68.22 68.41 71.95*		Jan 1 Aug 1		0700 2145	1170 1440	68.62 69.21	
		DIS	CHARGE, (	CUBIC FEET	PER SECOND,		YEAR OCTOB	BER 2002	TO SEPT	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	394 406 369 341 315	284 268 253 262 307	903 682 541 446 382	160 155 246	241 324 304 371 330	e280 e270 e260 e250 e240	180 158 141 126 114	77 76 74 72 71	168 174 187 178 195	155 148 187 204 191	141 133 126 129 116	326 506 599 512 420
6 7 8 9 10	441 679 899 848 662	292 285 265 249 236	336 355 365 391 401	552 457 380	330 295 265 242 240	e236 e230 e220 e212 e204	105 98 99 105 105	70 70 68 67 78	249 262 230 206 187	176 161 149 138 128	106 98 92 87 82	351 312 287 264 240
11 12 13 14 15	537 833 822 676 572	223 213 214 268 268	346 327 331 300 274	259 238 218	255 256 248 231 215	e198 e185 e165 e152 e141	97 92 89 86 84	209 329 297 289 290	170 158 151 152 147	120 113 106 102 99	78 81 84 154 1010	217 201 190 176 162
16 17 18 19 20	799 690 599 695 1000	246 236 253 280 284	244 238	246 785 506	201 189 178 169 162	e130 120 124 125 120	83 83 81 80 79	278 251 222 199 181	138 132 145 168 169	96 94 90 86 85	1350 1360 1050 704 538	149 140 131 e118 e151
21 22 23 24 25	872 679 553 464 401	267 252 238 252 346	265	367 317 280	156 148 141 148 155	115 112 112 117 114	82 85 81 79 77	165 155 151 203 212	160 153 145 140 143	97 120 123 118 112	434 347 287 245 217	e230 e212 e186 e248 e293
26 27 28 29 30 31	403 409 373 341 314 293	1680 2710 1850 1440 1180	224 210 199 190 181 173	214 207 209 255	158 198 188 	109 106 104 130 297 212	76 76 77 78 78 	257 237 213 194 181 172	173 216 203 187 169	104 111 136 169 168 155	202 297 297 270 303 380	e286 e264 e237 e219 e197
TOTAL MEAN MAX MIN AC-FT CFSM IN.	17679 570 1000 293 35070 15.8 18.27	15401 513 2710 213 30550 14.3 15.91	9946 321 903 173 19730 8.91 10.28	323 785 155 19860 8.97	6338 226 371 141 12570 6.29 6.55	5390 174 297 104 10690 4.83 5.57	2874 95.8 180 76 5700 2.66 2.97	5408 174 329 67 10730 4.85 5.59	5255 175 262 132 10420 4.87 5.43	4041 130 204 85 8020 3.62 4.18	10798 348 1360 78 21420 9.68 11.16	7824 261 599 118 15520 7.24 8.08
STATIS	TICS OF	MONTHLY	MEAN DAT	A FOR WATE	ER YEARS 1989	- 2003	B, BY WATER	YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	544 878 2000 283 1998	357 598 1993 173 1999	382 739 2000 142 1991	620 2001 131	240 471 1997 81.2 1999	233 516 1992 54.2 1989	228 370 1998 73.6 2002	270 418 1991 160 1996	229 345 1991 127 1993	188 292 1991 77.7 1993	285 612 2002 105 1994	492 838 1991 261 2003

See Period of Record

Estimated

# 15129500 SITUK RIVER NEAR YAKUTAT—Continued

SUMMARY STATISTICS	FOR 2002 CALENI	DAR YEAR	FOR 2003 WAT	TER YEAR	WATER YEARS	S 1989 - 2003#
ANNUAL TOTAL	115429		100967			
ANNUAL MEAN	316		277		312	
HIGHEST ANNUAL MEAN					382	1992
LOWEST ANNUAL MEAN					230	1996
HIGHEST DAILY MEAN	2710	Nov 27	2710	Nov 27	2850	Dec 27 1999
LOWEST DAILY MEAN	a48	Apr 14	67	May 9	b47	Mar 5 1989
ANNUAL SEVEN-DAY MINIMUM	48	Apr 11	70	May 3	48	Mar 3 1989
MAXIMUM PEAK FLOW			3070	Nov 27	3840	Oct 18 1999
MAXIMUM PEAK STAGE			71.95	Nov 27	72.99	Oct 18 1999
INSTANTANEOUS LOW FLOW			66	May 10	47	cMar 5 1989
ANNUAL RUNOFF (AC-FT)	229000		200300		225900	
ANNUAL RUNOFF (CFSM)	8.78		7.68		8.66	
ANNUAL RUNOFF (INCHES)	119.28		104.33		117.66	
10 PERCENT EXCEEDS	607		517		594	
50 PERCENT EXCEEDS	245		212		236	
90 PERCENT EXCEEDS	88		91		112	

[#] See Period of Record
a Apr. 14-17
b Mar. 5-7, 1989
c Mar. 5, 1989 and Apr. 15 and 17, 2002

### SOUTHEAST ALASKA

### 15129500 SITUK RIVER NEAR YAKUTAT—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971 to 1973 and 1988 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1970 to September 1973 (fragmentary) and May 1988 to current year.

INSTRUMENTATION.--Water-temperature recorder October 1970 to September 1973, at a site 500 ft downstream. Electronic water-temperature recorder since May 1988, set for 2-hour recording interval. Recording interval changed to 15minutes on March 6, 1996.

REMARKS.--Records represent water temperature at sensor within 0.5°C. water year. Missing record September 19-30 due to recorder malfunction.

EXTREMES FOR PERIOD OF DAILY RECORD.— WATER TEMPERATURE: Maximum,  $20.0^{\circ}$ C, July 4, 1997; minimum,  $0.0^{\circ}$ C, on many days during winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum,  $18.5^{\circ}$ C, July 1, 10, and 12; minimum,  $0.0^{\circ}$ C on several days during winter.

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	9.0 9.5 9.0 9.0	8.0 8.0 7.5 8.0	8.5 8.5 8.5 8.5 8.0	7.5 7.0 6.5 7.0	7.0 6.5 6.0 6.5 6.5	7.0 6.5 6.5 6.5	5.5 5.0 5.0 4.5 4.5	5.0 4.5 4.5 4.0 4.0	5.5 5.0 4.5 4.5	2.0 2.0 2.5 3.0 2.5	1.5 1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.5 2.0
6 7 8 9 10	8.5 9.0 8.5 8.0	8.0 8.5 8.0 7.0	8.5 8.5 8.5 7.5	7.0 7.0 5.0 5.0	6.5 5.0 4.5 4.0 4.5	6.5 6.0 5.0 4.5 5.0	4.0 5.0 5.0 5.0 5.0	3.5 4.0 4.5 4.5	3.5 4.5 5.0 4.5 4.5	2.0 2.0 2.5 2.0 2.0	2.0 1.5 2.0 1.5 1.0	2.0 2.0 2.5 1.5
11 12 13 14 15	8.0 8.0 8.5 8.0	7.0 7.5 7.5 7.5 7.5	7.5 7.5 8.0 8.0	4.5 5.0 5.5 5.5	4.0 4.0 5.0 5.0 4.5	4.0 4.5 5.5 5.5	4.5 4.5 4.5 3.5 3.5	4.5 4.0 3.5 2.5 2.5	4.5 4.5 4.0 3.0 3.5	2.0 2.5 2.5 1.0 2.5	1.5 1.5 1.0 0.5 1.0	1.5 2.0 2.0 1.0 2.0
16 17 18 19 20	8.0 8.0 8.0 8.5 8.5	8.0 8.0 7.5 8.0	8.0 8.0 7.5 8.0 8.5	4.5 4.5 4.5 5.0	3.5 3.5 4.0 4.0 4.0	4.0 4.0 4.5 4.5	3.5 4.0 3.5 3.0 2.0	3.0 3.5 2.5 2.0 1.5	3.5 3.5 3.0 2.5 1.5	3.0 3.0 2.5 2.5 2.5	2.5 2.5 1.0 2.0 2.0	2.5 2.5 1.5 2.5 2.5
21 22 23 24 25	8.0 8.0 8.0 8.0	7.0 7.0 7.0 7.0 7.5	7.5 7.5 7.0 7.5 7.5	4.5 5.5 4.5 5.0 5.0	4.0 4.5 4.0 4.5 5.0	4.5 5.0 4.0 5.0	2.0 3.0 3.0 3.0 2.5	1.5 2.0 2.0 2.5 1.5	2.0 2.5 2.5 2.5 2.5	2.0 2.0 1.5 2.0 2.5	1.5 1.5 1.0 1.5 2.0	2.0 1.5 1.5 2.0 2.5
26 27 28 29 30 31	7.5 7.5 7.5 7.0 7.5 7.5	7.0 7.0 6.0 7.0 6.5 7.0	7.0 7.0 6.5 7.0 7.0	7.0 7.0 6.0 6.5 6.5	5.0 6.0 5.5 5.5 5.5	6.5 6.5 6.0 6.0	1.5 2.0 2.0 2.5 2.5 2.5	1.0 1.5 2.0 1.5 1.5	1.5 2.0 2.0 2.0 2.0 1.5	2.5 3.0 3.0 3.0 3.0 2.5	1.5 2.0 2.5 2.5 2.0 1.5	2.0 2.5 2.5 3.0 2.5 2.0
MONTH	9.5	6.0	7.7	7.5	3.5	5.3	5.5	1.0	3.3	3.0	0.5	2.1

# SOUTHEAST ALASKA

# 15129500 SITUK RIVER NEAR YAKUTAT—Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		TEMPER	ATURE,	WAIER (DEC	KEES CEI	JOIUS),	WATER YEAR	OCTOBER	2002 10	SEFIEMBER	2003	
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5		2.0 2.0 2.0 2.0 2.5 2.5	2.0 2.5 2.5 2.5 3.0	3.5 3.5 4.0 4.0 3.0		3.0 3.0 3.5 3.5 2.0	3.5 4.0 3.0		1.5 1.5 2.0 2.0 2.5	11.5 11.5 9.5 8.5 9.0	8.0 7.0 6.5 5.0 5.5	10.0 9.0 8.5 7.0 7.5
6 7 8 9 10	3.0 3.0 3.0 3.5 3.5	3.0 2.5 2.5 2.5 3.0	3.0 3.0 2.5 3.0 3.5	2.0	0.5 0.0 0.0 0.0	1.0 0.5 0.0 0.0	5.0 5.0 4.5	1.5 2.5 3.0 2.5 2.5	2.5 3.5 4.0 3.5 4.5	9.5 11.5 12.0 12.0	6.5 5.5 6.0 6.5 7.0	8.0 8.0 9.0 9.5 8.0
11 12 13 14 15	4.0 3.5 3.0 2.5 2.5	3.0 3.0 2.5 1.5	3.5 3.0 3.0 2.0 2.0	0.5 0.0 0.0 0.0 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6.5 6.5 7.0 7.0	2.5 2.5 4.0 4.5 4.0	4.5 4.5 5.5 6.0 5.5	7.0 8.0 9.0 7.5 8.0	5.5 5.5 6.5 6.5	6.5 6.5 7.5 7.5
16 17 18 19 20	2.5 2.5 3.0 2.5 2.0	1.5 1.5 2.5 1.5	2.0 2.0 2.5 2.0 2.0	2.5 3.0 2.0 3.5 3.5	0.5 0.5 1.5 1.0	1.5 1.5 2.0 2.5 2.0	5.5 6.5 6.5	4.0 3.5 3.5 4.5 4.5	5.0 4.5 5.0 5.5	8.5 10.5 11.5 13.0 13.5	6.5 7.0 7.5 7.0	7.5 8.5 9.5 9.5
21 22 23 24 25	2.5 2.5 2.5 3.0 4.0	1.5 1.5 1.0 1.5 2.5	2.0 2.0 2.0 2.5 3.0	4.5 3.5 2.0 3.0 3.5	1.5 2.0 0.5 0.0	3.0 2.5 1.5 1.5 2.0	8.0 9.5 10.0	4.0 4.5 4.5 4.5	5.0 6.0 7.0 7.5 8.0	14.0 11.5 10.5 10.0 9.5	7.5 9.0 9.0 8.5 8.0	10.5 10.0 10.0 9.0 9.0
26 27 28 29 30 31	4.0 4.0 3.5 	3.0 2.5 2.5 	3.5 3.0 3.0 	4.0 4.0 4.5 3.5 3.0 3.5	0.5 1.0 1.5 2.0 1.5	2.5 2.5 3.0 3.0 2.0 2.0	11.5 11.0	6.0 6.5 7.0 7.5 7.5	8.5 9.0 9.0 9.5	10.0 12.0 13.5 12.0 13.0	8.0 7.5 8.0 10.0 9.0 9.0	9.0 9.5 10.5 11.0 10.5 10.0
MONTH	4.0	1.0	2.6	4.5	0.0	1.7	11.5	0.0	5.2	14.0	5.0	8.8
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5	11.0 11.0 12.5 12.5	8.5 9.0 9.0 9.0 10.0	10.0 10.0 10.5 10.5	18.5 16.0 13.0 15.0 14.5	12.5 12.5 12.0 12.0 13.0	15.5 13.5 12.5 13.5 13.5	16.5 15.5 14.5	12.5 13.5 12.5 13.0 11.5	14.5 15.0 14.0 13.5 14.0	13.0 12.0 13.0 13.5 13.5	12.0 11.5 12.0 11.5 11.0	12.5 12.0 12.5 12.5 12.0
6 7 8 9 10	11.5 12.5 14.0 13.0 14.5	9.5 10.0 9.5 10.5 11.0	10.5 11.0 11.5 11.5 12.5	16.5 17.0 16.0 17.5 18.5	12.5 13.0	14.0 14.5 14.5 15.0 16.0	17.0	11.5 12.0 13.5 12.5	14.5 14.5 15.5 15.0 15.0	13.5 14.0 13.5 12.0 12.5	11.0 12.0 12.0 11.5 10.0	12.5 13.0 12.5 12.0 11.5
12	13.0 16.5 14.5 13.0 14.0	11.0	12.0 13.5 12.5 12.0 12.5	18.0 18.5 18.0 16.5 15.0	14.0	15.5 16.0 15.5 15.0 14.5		13.5 12.5 12.5 13.0 13.5	14.0 13.0 13.5 13.0 14.0	12.5 12.5 11.5 10.5 9.5	10.5 11.0 10.5 9.0 7.5	11.5 11.5 11.0 10.0 8.5
16 17 18 19 20	15.5 14.0 12.5 13.0 15.0	11.5 11.5 11.5 11.0 11.5	13.5 12.5 12.0 12.0 13.0	14.0 14.5 17.5 17.5 16.5	13.0 12.5 12.5 12.0 14.0	13.5 13.5 14.5 15.0 15.0	15.0 15.0 15.5 15.0 14.5	14.5 14.5 14.0 14.0	15.0 14.5 14.5 14.5 14.0	9.0 9.0 9.5 	6.5 6.5 8.0 	7.5 8.0 8.5 
21 22 23 24 25	14.0 15.0 14.0 13.0 12.5	12.0 12.0 12.0 11.5 11.0	13.0 13.0 13.0 12.0 11.5	14.5 14.0 16.5 15.5 14.5	13.0 12.5 13.0 13.5 13.5	13.5 13.0 14.5 14.5 14.0	15.0 15.0 15.0 15.0 15.0	12.5 12.0 12.0 13.0 12.0	13.5 13.5 13.5 14.0 13.5	  	  	  
26 27 28 29 30	11.5 12.5 14.0 16.5 18.0	11.0 10.5 11.0 11.5 12.0	11.0 11.5 12.5 14.0 14.5	14.5 14.0 13.5 14.5	13.0 12.5 13.0 13.0	13.5 13.5 13.5 14.0	13.5 13.0	12.5 12.0 12.5 12.5	13.0 12.5 13.5 13.0 12.5	  	  	  
31 MONTH	18.0	8.5	12.0	16.0 18.5	13.0	14.5 14.3	13.5 17.5	12.0 11.5	12.5			

### 15129510 OLD SITUK RIVER NEAR YAKUTAT

LOCATION.--Lat  $59^{\circ}34'14''$ , long  $139^{\circ}26'18''$ , in  $NW^{1}_{4}$   $NE^{1}_{4}$   $NW^{1}_{4}$  sec. 23, T. 27 S., R. 35 E. (Yakutat C-4 quad.), Yakutat Borough, Hydrologic Unit 19010401, in Tongass National Forest, on right bank 100 ft downstream from Forest Hwy. 10, 10.5 mi northeast of Yakutat.

DRAINAGE AREA.--3.0 mi², approximately.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June to September 2003.

GAGE.--Water-stage recorder. Elevation of gage is 77 ft above sea level, from topographic map.

REMARKS. -- Records fair.

EXTREMES FOR CURRENT YEAR - Maximum discharge during period June to September, 74  ${\rm ft}^3/{\rm s}$ , August 15, gage height 14.82 ft; minimum discharge, 12  ${\rm ft}^3/{\rm s}$ , August 9-11, gage height 14.35 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										19	16	30
2										20	16	42
3										23	15	41
4										22	15	37
5										21	14	35
5										21	14	33
6										20	14	33
7										20	14	32
8										19	13	33
9										19	13	31
10										18	13	30
10										10	13	30
11										18	13	28
12										17	14	28
13										17	14	27
14										17	20	26
15												
15										17	53	25
16										16	55	24
17										16	46	24
18										16	40	23
19										15		23
											36	
20										15	35	29
21										16	32	29
22										17	29	27
23										16	28	26
24										15	26	27
25										14	26	30
26										14	26	31
27										16	31	29
28									20	16	28	28
29									20		27	
										18		28
30									19	19	31	27
31										18	32	
TOTAL										544	785	883
MEAN										17.5	25.3	29.4
MAX										23	55	42
MIN										14	13	23
AC-FT										1080	1560	1750
CFSM										3.67	5.30	6.16
IN.										4.23	6.11	6.87

4 5

6 7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

MONTH

___

9.0

10.0

13.0

13.5

# SOUTHEAST ALASKA

# 15129510 OLD SITUK RIVER NEAR YAKUTAT—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- June to September 2003.

PERIOD OF DAILY RECORD. - WATER TEMPERATURE: J June to September 2003.

___

8.5

9.5

10.5

___

___

6.5

7.0

INSTRUMENTATION. -- Water-temperature recorder set for 15 minute recording interval.

REMARKS.--Records represent water temperature at sensor within 0.5°C. No temperature cross sections were taken in the 2003 water year.

TEMPERATURE, WATER, DEGREES CELSIUS, JUNE TO SEPTEMBER 2003

6.0

6.0

6.5

6.5

6.5

6.0 7.5

9.0

8.0

7.5

6.5

6.0

6.5

6.0

5.5

6.0

6.5

6.0

6.5 7.0

7.0 7.0

7.0

6.5

5.5

7.5

8.0

8.0

7.5

8.5

10.0

9.5 9.0

9.0

8.5

9.5 10.0

9.0 9.5

7.5

8.0

8.0

8.0

9.0

10.5

10.5

6.5

7.0 7.0

7.0

6.5 8.0

9.5

9.0

8.0

7.5

7.5 7.5

7.5 7.5 7.5

7.5 7.5

7.0

8.0

7.5 7.5

7.4

MEAN

7.5 7.5 7.5

7.0

7.0 7.5 7.5

6.5

7.0

7.0 7.0

5.5

5.0

5.5

6.0

6.0

6.0

6.0

6.5

7.0 7.0

6.5

6.5

MTN SEPTEMBER

7.0

5.5

6.5

6.5

5.5

6.0

6.5

4.5

4.0

5.5

4.0

5.5

5.5 4.0

5.0

5.5

6.0

6.0

6.0

6.0

9.0

9.0

8.5

7.5

8.5

8.5 7.5

7.5

7.0

6.5

7.0

6.5

7.0 7.0

6.5

7.0 7.0

7.5 7.0

8.0

8.0

6.5

9.5

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum recorded, 14.0°C July 1 and 10; minimum recorded, 3.5°C on September 16, 2003.

8.5

9.5

11.0

11.0

10.5 10.5

9.0

8.5

8.5

9.5

10.0

10.0

8.5

8.0

9.0

8.5

8.0

8.0

8.5

8.0

8.0

8.0

8.5

9.1

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX
		JUNE			JULY			AUGUST		
1				14.0	8.5	11.0	10.5	7.0	8.5	7.5
2				11.0	8.0	9.0	9.5	6.0	6.5	8.5
3				8.5	7.5	8.0	6.5	6.0	6.5	8.5
4				10.5	7.0	8.5	6.5	6.0	6.5	9.5
_				0 -		0 -				0 0

7.5 7.0 7.5

7.5

7.5

8.5

8.5

9.0

8.0

8.0

7.5 8.0

8.0

8.5 7.5 7.0

8.0 7.5

7.5

7.5 7.5

7.0

7.0

9.5

11.5

12.0

10.5

12.5

14.0

13.5

13.5

13.0

11.0

10.0

9.0

9.5

12.5

13.0

11.0

9.5 8.5

10.5

9.5 8.5

9.0

9.0

8.5

9.0

10.0

14.0

### 15129600 OPHIR CREEK NEAR YAKUTAT

 $\text{LOCATION.--Lat 59°31'26'', long 139°44'37'', in SW}^{1}_{/4} \quad \text{NW}^{1}_{/4} \quad \text{NE}^{1}_{/4} \quad \text{sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), }$ Hydrologic Unit 19010401, in Tongass National Forest, on right bank 0.8 mi upstream from Summit Lake and 2 mi south of Yakutat.

DRAINAGE AREA.-- 2.5 mi², approximately.

PERIOD OF RECORD. -- October 1991 to current year.

GAGE.--Water-stage recorder. Datum of gage is 9.05 ft above sea level, determined by levels survey.

REMARKS.--Records fair, except for estimated daily discharges, which are poor.

		DISCH	ARGE, CUB	IC FEET PI		O, WATER	YEAR OCTOR	BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 24 20 17 16	16 15 14 15 17	56 49 43 39 35	13 13 12 16 21	13 18 20 26 24	15 15 13 13	6.7 6.0 5.6 5.2 4.9	2.8 2.7 2.7 2.5 2.5	5.6 5.9 5.6 5.4 6.1	4.3 4.3 6.4 6.3 5.6 5.1 4.8 4.5 4.2	2.7 3.0 2.8 3.7 3.3	17 22 21 19 17
6 7 8 9 10	18 25 27 22 19	16 15 14 12 11	31 31 31 32 32	30 26 23 21 20	25 23 20 19 18	10 9.7 e9.1 e8.3 7.8	4.8 4.7 4.8 4.8 5.2	2.5 2.4 2.4 2.3 2.7	7.1 6.6 6.1 5.7 5.4	5.1 4.8 4.5 4.2 3.8	3.0 2.8 2.5 2.3 2.2	16 14 13 12 14
11 12 13 14 15	17 36 31 25 23	10 9.9 9.9 13 15	24	18 17 16 15	18 18 17 16 15	e6.8 e6.7 6.6 6.3	4.9 4.6 4.6 4.4 4.3	9.9 9.3 8.1 7.3	4.8 4.5 4.3 4.0	3.6 3.4 3.2 3.2 3.0	2.1 2.2 2.1 4.3	12 10 9.8 8.8 8.1
16 17 18 19 20	42 35 31 37 47	14 13 12 13 13	23 22 21 20 19	14 16 45 34 31	14 13 12 11 10	6.0 5.8 5.8 5.6 5.1	4.2 4.1 4.0 4.0 3.8	6.6 6.1 5.7 5.4 5.1	3.9 3.8 4.2 4.1 3.9	2.9 2.8 2.7 2.5 2.5	18 22 19 17 16	7.5 7.1 6.7 6.0 7.4
21 22 23 24 25	42 35 30 27 23	13 12 11 12 19	18 19 22 21 20	26 23 21 18 17	9.6 8.9 8.4 8.9 8.4	4.8 4.6 4.6 4.6 4.4	3.8 3.7 3.7 3.5 3.5	4.8 4.6 4.6 5.5 6.0	3.7 3.5 3.4 3.4 3.5	2.8 2.9 2.5 2.3 2.2	16 14 13 12 10 9.4	11 10 8.9 11 13
26 27 28 29 30 31	24 25 23 20 19 17	72 98 71 69 64	19 18 17 16 15	16 14 13 13 15	8.4 12 12 	4.3 4.1 4.0 5.2 9.9 7.9	3.3 3.2 3.0 3.0 3.0	9.1 8.1 7.0 6.4 5.9 5.7	3.9 5.5 5.5 5.0 4.6	2.3 2.4 2.6 3.5 3.4 3.0	9.3 13 12 11 13 20	13 12 11 10 9.4
TOTAL MEAN MAX MIN AC-FT CFSM IN.	822 26.5 47 16 1630 10.6 12.23	708.8 23.6 98 9.9 1410 9.45 10.55	816 26.3 56 14 1620 10.5 12.14	605 19.5 45 12 1200 7.81 9.00	426.6 15.2 26 8.4 846 6.09 6.35	232 /	129 3	163 2	1/// 2	109.0 3.52 6.4 2.2 216 1.41 1.62	286 7	357.7 11.9 22 6.0 709 4.77 5.32
STATIS	TICS OF I	MONTHLY ME	EAN DATA F	OR WATER	YEARS 19	92 - 2003	, BY WATER	R YEAR (W	")			
MEAN MAX (WY) MIN (WY)	31.5 60.7 2000 20.5 1998	25.4 43.8 2000 12.6 1996	23.2 49.1 2000 8.96 1996	19.2 42.7 2001 5.13 1993	15.6 35.9 1997 3.31 1999	15.3 38.3 1992 4.13 1999	14.4 28.3 1998 2.68 2002	13.2 34.4 1999 5.26 2003	6.80 19.7 1999 2.01 1993	4.37 9.67 1998 0.66 1993	9.11 19.4 1998 1.32 1993	18.5 30.8 1998 5.90 1993
SUMMAR	Y STATIS	TICS	FOR	2002 CALE	NDAR YEAI	R	FOR 2003 W	VATER YEAR	3	WATER YEA	RS 1992	- 2003
LOWEST HIGHES LOWEST ANNUAL MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL T DAILY DAILY SEVEN-D M PEAK F M PEAK S'	MEAN MEAN EAN AY MINIMUM LOW TAGE LOW FLOW (AC-FT) (CFSM) (INCHES) EEDS EEDS	1	5098.3 14.0 98 a1.8 1.8 10110 5.5 75.8 29 9.9	9	7 4 4 2	4800.9 13.2 98 b2.1 2.3 116 12.2 1.9 9520 5.2 71.4 26 10	Nov 27 Aug 11 Aug 17 Nov 27 Nov 27 Aug 14	7 7 7 7 4	16.4 23.3 10.9 e118 0.2 0.3 c159 c12.5 d0.2 11870 6.5 89.0 35	Dec 2 7 Jul 3 9 Jul 2 Oct 1 5 Oct 1 1 Jul 2	2001 1993 7 1999 1 1993 8 1993 8 1999 8 1999 8 1999

a Apr. 14-18, and Jul. 21-22
b Aug. 11 and Aug. 13
c May have been exceeded during period of gage malfunction from Dec. 25 to 28, 1999
d Minimum recorded, Jul. 28, Aug. 2, Aug. 7 to Aug. 10, 1993, but may have been less during period water was below intake Jul. 28, Aug. 2, and Aug. 8 to Aug. 10, 1993
e Estimated

#### 15199500 SINONA CREEK NEAR CHISTOCHINA

LOCATION.--Lat 62°35′28″, long 144°38′48″, in SW¹/₄ of NW¹/₄ sec. 3, T. 9 N., R. 4 E., (Gulkana C-2 quad), Hydrologic Unit 19020101, on downstream left bank, at Glenn Highway/Tok Cutoff (Alaska Route 1) bridge, 1.8 miles NE of Chistochina.

DRAINAGE AREA.-- 167 mi²

PERIOD OF RECORD. -- September 2002 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,900 ft. above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR JUN JUL SEP APR MAY AUG 1 90 84 68 4 5 63 6 59 59 ___ 8 9 ___ ___ ___ ___ 58 65 10 11 80 12 ___ ___ ___ 13 ___ 88 14 91 16 81 ___ 18 ___ ‡28 ___ 69 20 21 63 22 59 23 57 25 68 26 2.7 55 28 **‡163** 70 29 30 65

---

---

2123

70.8

55 4210

---

---

---

---

31 TOTAL

MEAN

AC-FT

MAX MIN

[#] Result of discharge measurement

# 15199500 SINONA CREEK NEAR CHISTOCHINA—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	64 73 85 104 100	60 e58 e55 e52 e50	e14 e13 e12 e11 e10	e5.7 e5.7 e5.7 e5.7	e5.5 e5.5 e5.6 e5.8 e6.0	e13 e13 e13 e12 e12	e6.1 e6.1 e6.1 e6.1 e6.3	e25 e28 e35 e40 e46	66 68 76 73 64	18 20 20 21 20	15 14 14 15 15	17 16 16 16 15
6 7 8 9 10	87 86 96 95 91	e48 e45 e42 e40 e36	e9.8 e9.5 e9.0 e8.5 e8.0	e5.7 e5.7 e5.6 e5.6	e7.1 e8.0 e9.0 e10 e12	e11 e11 e10 e9.2 e8.5	e6.3 e6.8 e7.3 e7.5 e7.7	e54 e65 e77 e100 145	58 51 58 58 50	19 18 17 17	14 13 12 12 11	15 14 14 14 14
11 12 13 14 15	72 65 63 65 67	e33 e29 e27 e25 e23	e7.7 e7.3 e7.0 e6.8 e6.5	e5.6 e5.6 e5.6 e5.6	e14 e14 e14 e14 e13	e7.9 e7.2 e6.8 e6.4 e6.3	e8.0 e8.2 e8.3 e8.5 e8.8	180 205 206 180 163	43 39 35 34 34	16 16 15 16	11 13 12 12 12	14 15 17 16 16
16 17 18 19 20	78 104 118 131 146	e21 e19 e18 e17 e16	e6.2 e6.0 e5.9 e5.8 e5.8	e5.6 e5.6 e5.5 e5.5	e12 e12 e11 e11 e10	e6.2 e6.2 e6.2 e6.4 e6.5	e9.0 e9.3 e9.5 e9.8	e156 e149 e140 e134 e131	31 29 27 26 29	16 14 14 13	13 13 13 12 11	15 15 15 15 15
21 22 23 24 25	163 149 127 111 97	e16 e15 e15 e15 e15	e5.8 e5.8 e5.8 e5.8	e5.5 e5.5 e5.5 e5.5	e10 e10 e10 e10 e12	e6.7 e6.7 e6.5 e6.4 e6.3	e11 e11 e12 e13 e14	e126 e120 e117 e114 e116	28 27 29 26 23	14 15 15 14 14	12 13 12 12 12	15 15 14 15 15
26 27 28 29 30 31	81 73 e70 67 62 60	e16 e16 e15 e15	e5.8 e5.8 e5.7 e5.7	e5.5 e5.5 e5.5 e5.5 e5.5	e12 e13 e13	e6.2 e6.3 e6.2 e6.2 e6.1	e15 e16 e18 e20 e22	e127 125 122 102 88 76	22 21 21 20 19	14 13 13 13 13	12 12 12 11 12 16	16 15 15 15 15
TOTAL MEAN MAX MIN AC-FT	2850 91.9 163 60 5650	868 28.9 60 15 1720	233.3 7.53 14 5.7 463	172.9 5.58 5.7 5.5 343	289.5 10.3 14 5.5 574	248.7 8.02 13 6.1 493	307.7 10.3 22 6.1 610	3492 113 206 25 6930	1185 39.5 76 19 2350	487 15.7 21 13 966	393 12.7 16 11 780	454 15.1 17 14 901

SUMMARY STATISTICS

FOR 2003 WATER YEAR

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMU
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
MAXIMUM PEAK STAGE
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

10981.1 30.1	
206 a5.5 5.5 231 7.23 b9.63 21780 0.18 2.45 87 14 5.7	May 13 Jan 18 Jan 18 May 13 May 13 Apr 27

a Jan. 18 to Feb. 2 b Backwater from ice e Estimated

#### SOUTH-CENTRAL ALASKA

#### 15200280 GULKANA RIVER AT SOURDOUGH

LOCATION.--Lat  $62^{\circ}31'15''$ , long  $145^{\circ}31'51''$ , in  $SE^{1}_{/4}$  NE $^{1}_{/4}$  sec. 35, T. 9 N., R. 2 W. (Gulkana C-4 quad), Hydrologic Unit 19020102, near left bank on downstream side of pier of Alyeska Pipeline Service Company bridge, 0.3 mi downstream from Sourdough Creek and 0.8 mi southwest of Sourdough.

DRAINAGE AREA. -- 1,770 mi².

PERIOD OF RECORD.--October 1972 to September 1978, May to September 1982, October 1988 to September 1993, May 1997 to current year.

REVISED RECORDS. -- WRD AK-75-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,845.96 ft above sea level (levels of Alyeska Engineering).

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY NOV FER JUL SEP OCT DEC JAN MAR APR MAY JUN AUG 2340 1670 e1200 6880 e720 e620 e530 e1150 2770 1200 1280 1330 3690 1640 e1150 e870 e720 e520 e1250 3060 1160 1240 1790 e620 4050 e870 e720 2800 e620 e1400 1280 1150 1860 4 3500 1750 e1150 e870 e720 e610 e520 e1550 2480 1690 1070 2110 5 3040 1760 e1100 e870 e590 e520 e1700 2250 1840 2010 e720 1010 6 7 2770 1670 e1100 e860 e710 e580 e520 e1900 2150 1660 964 1790 2600 1570 e1100 e850 e700 e580 e520 e2050 2150 1500 911 1600 e1050 e580 e520 8 2590 1550 e840 e690 2300 2060 1390 863 1450 2510 e1500 e1050 e840 e690 e570 e520 2450 1920 1290 822 1340 10 2210 e1400 e1050 e570 e520 1810 1190 1290 e830 e680 2120 e1400 e1050 e820 e680 e570 e520 2490 1730 1120 751 1230 11 2060 735 12 e1400 e1000 e820 e680 e570 e520 2600 1690 1060 1180 e520 13 1990 e1400 e1000 e820 e680 e570 2740 1660 1020 719 1210 14 1940 e1300 e1000 e820 e670 e560 e520 2940 1570 983 720 1240 e1000 e560 1930 e990 e800 1630 923 1120 16 e1300 e660 e560 e530 2690 722 17 2080 e1300 e990 e800 e560 e535 2700 1630 883 718 1070 18 2170 e1200 e990 e800 e650 e560 e540 3220 1590 854 702 1030 2230 e970 e800 e550 e545 1550 707 19 e1200 e640 3270 832 963 20 2360 e550 1600 924 e1100 e800 21 e790 1820 914 2590 e1100 e950 e640 e550 e565 2640 785 692 22 2630 e1100 e950 e780 e640 e550 e595 2450 2010 770 700 883 2.3 2490 e1200 e950 e760 e640 e540 e630 2330 2000 780 692 853 2360 e750 e540 1930 24 e1200 e930 e640 e680 2270 807 685 849 25 2200 e1200 e930 e740 e540 e720 2350 1820 785 875 26 2080 e1200 e920 e730 e630 e540 e770 2540 1660 768 736 935 e630 27 1970 e1200 e900 e720 e530 e830 2740 1530 770 771 957 796 2.8 1730 e1200 e890 e720 e630 e530 e900 2680 1420 843 976 e1200 1810 e890 e720 e530 e980 980 797 29 2520 1340 1020 ---3.0 1800 e1200 e890 e720 e530 e1050 2460 1260 1040 792 1140 31 1730 e890 e720 ___ e530 2480 1190 899 TOTAL 73450 40870 31140 24820 18760 17460 18240 74140 56430 33138 25542 37139 MEAN 2369 1362 1005 801 670 563 608 2392 1881 1069 824 1238 MAX 4050 1200 880 620 1050 3270 3060 1840 1280 2110 MTN 1730 1100 890 720 630 530 520 1150 1260 768 685 849 61770 49230 37210 36180 65730 50660 73670 AC-FT 145700 81070 34630 147100 111900 CFSM 0.45 0.38 1.06 0.60 TN. 1.54 0.86 0.65 0.52 0.39 0.37 0.38 1.56 1.19 0.70 0.54 0.78 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 2003, BY WATER YEAR (WY)# 3074 598 373 327 315 476 2709 1485 MEAN 1064 444 1335 1440 MAX 2369 1362 1005 801 670 563 1344 5630 4969 2696 2821 4253 2003 (WY) 2003 2003 2003 2003 2003 1993 1989 1977 1992 1992 1990 437 287 208 200 200 200 2.2.7 1150 637 714 505 MIN 836 (WY) 1975 1976 1974 1974 1974 1974 2000 2002 1998 1976 1989 1974

# 15200280 GULKANA RIVER AT SOURDOUGH—Continued

SUMMARY STATISTICS	FOR 2002 CALEN	DAR YEAR	FOR 2003 WAT	ER Y	EAR	WATER YEARS	1973	-	2003#
ANNUAL TOTAL	467513		451129						
ANNUAL MEAN	1281		1236			1138			
HIGHEST ANNUAL MEAN						1564			1992
LOWEST ANNUAL MEAN						658			1998
HIGHEST DAILY MEAN	7070	Aug 22	4050	Oct	3	12100	Sep	12	1990
LOWEST DAILY MEAN	a270	Apr 16	b520	Apr	2	c200	Dec	6	1973
ANNUAL SEVEN-DAY MINIMUM	270	Apr 16	520	Apr	2	200	Dec	6	1973
MAXIMUM PEAK FLOW			4290	Oct	3	d12700	Sep	12	1990
MAXIMUM PEAK STAGE			8.01	Oct	3	11.26	Sep	12	1990
MAXIMUM PEAK STAGE			f11.12	Apr	29				
ANNUAL RUNOFF (AC-FT)	927300		894800	_		824400			
ANNUAL RUNOFF (CFSM)	0.72		0.70			0.64			
ANNUAL RUNOFF (INCHES)	9.83		9.48			8.74			
10 PERCENT EXCEEDS	2600		2360			2620			
50 PERCENT EXCEEDS	1000		980			650			
90 PERCENT EXCEEDS	290		560			250			

[#] See period of record, partial years used in monthly statistics
a Apr. 16-28
b Apr. 02-14
c Dec. 6, 1973 to Apr. 12, 1974
d From rating curve extended above 4,600 ft³/s
e Estimated
f Backwater from ice

#### 15215990 NICOLET CREEK NEAR CORDOVA

LOCATION.--Lat  $60^{\circ}31'09''$ , long  $145^{\circ}47'23''$ , in  $SW^{1}/_{4}$   $SW^{1}/_{4}$  Sec. 32, T. 15 S., R. 3 W. (Cordova C-5 quad), Hydrologic Unit 19020201, on right bank 275 ft upstream from culvert for Whitshed Road, 475 ft upstream from mouth and 2.1 mi southwest of Cordova.

DRAINAGE AREA. -- 0.75 mi².

PERIOD OF RECORD.--Annual maximum, water years 1991-99. September 1999 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records good except for discharges greater than  $60 \text{ ft}^3/\text{s}$ , which are fair; and estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP MAR 25 20 2.1 9.7 13 0.44 0.37 e9.5 e2.0 2.2 3.7 1.7 2 34 9.2 4.5 1.2 14 4.0 0.45 0.32 e3.0 e3.5 1.6 1.9 3 20 65 0.46 0.29 18 e2.0 e2.5 1.0 9.2 32 23 80 0.40 0.35 e1.0 e2.0 0.81 5 2.5 5.4 3.3 4.5 124 0.98 0.36 7.1 e22 e1.5 0.64 2.3 2.6 0.38 6 14 14 11 12 34 2.5 5.6 1.6 2.9 1.9 12 0.65 0.37 e8.0 e1.0 0.45 1.2 10 0.97 8 0.63 1.8 e4.0 e1.0 0.39 3.9 e2.5 1.3 1.2 e0.50 e1.0 0.34 2.9 10 0.97 1.5 18 1.1 84 e0.50 7.1 68 e2.0 e0.50 0.31 1.6 4.1 e0.50 e0.50 0.30 14 11 2.2 24 7.9 18 4.1 2.1 12 3.6 4.1 e0.10 13 e1.0 e0.50 12 1.0 5.9 2.8 48 0.97 13 16 e0.10 4.1 e1.0 e0.50 8.1 2.2 2.2 1.9 2.5 e0.50 0.73 15 52 12 1.3 1.7 1.3 3.2 1.6 2.9 e1.0 e0.50 73 0.61 21 2.2 4.8 1.0 3.3 e2.5 e2.0 76 0.55 5.0 7.1 1.3 0.89 0.72 3.1 2.1 e0.50 e0.50 17 3.8 33 e2.0 e6.0 50 0.51 18 e2.0 5.2 0.46 18 24 e2.0 19 1.9 42 37 0.99 22 0.78 e1.5 e0.50 e1.0 2.9 0.46 2.0 46 24 0.88 25 0.60 3.9 6.9 e1.5 e1.0 e0.80 14 14 21 17 6.2 0.64 3.0 0.56 2.6 48 e1.5 e1.0 2.5 30 5.0 22 43 4.2 1.4 1.7 0.55 0.84 0.91 9.4 e1.5 e1.0 2.2 2.1 2.1 23 2.6 14 2.3 e1.5 e1.0 1.4 4.3 2.4 12 22 0.99 15 4.8 1.4 e1.5 e7.5 0.99 1.1 1.9 7.2 25 57 15 e1.5 0.70 3.1 1.0 e1.5 e27 2.3 3.4 7.2 37 2.3 5.8 2.6 3.5 52 e1.5 0.58 1.4 0.85 e1.5 e7.0 81 e2.5 2.8 3.4 57 e1.0 2.2 13 0.71 e1.0 e5.0 27 18 e1.5 28 6.8 9.1 e0.50 5.2 16 0.62 e1.0 e4.0 26 13 3.7 6.5 7.2 3.3 29 33 53 e0.50 0.54 e1.0 e3.0 15 e43 21 30 43 e7.0 0.44 e1.5 e2.5 28 e14 31 25 12 3.2 0.65 e7.0 2.9 4.9 TOTAL 521.97 593.8 165.21 216.87 580.24 71.77 106.72 194.33 148.00 120.19 472.47 200.76 MEAN 16.8 19.8 5.33 7.00 20.7 2.32 3.56 4.93 3.88 15.2 6.27 MAX 57 57 2.1 33 124 13 48 68 2.7 2.8 81 43 1.3 0.50 0.58 0.55 0.10 0.36 0.29 0.50 0.50 0.30 0.46 MIN AC-FT 1040 1180 328 430 1150 142 212 385 294 238 937 398 7.11 9.33 5.17 27.6 3.09 4.74 8.36 6.58 20.3 CFSM 22.5 26.4 8.92 28.78 7.34 25.89 29.45 8.19 3.56 5.29 9.64 5.96 23.43 9.96 IN. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2000 - 2003, BY WATER YEAR (WY)# 16.7 12.7 15.5 10.5 MEAN 13.9 9.93 5.92 8.78 6.12 5.31 9.66 8.89 20.7 9.35 2002 15.2 2003 MAX 20.2 19.8 20.4 26.6 10.2 11.3 16.1 6.79 10.9 2001 2001 2000 2001 2003 2002 (WY) 2003 2000 2000 2002 MIN 10.4 6.88 5.33 7.00 2.00 2.32 3.56 6.27 1.59 3.88 4.97 6.69

2003

2001

2003

2001

2003

2002

2003

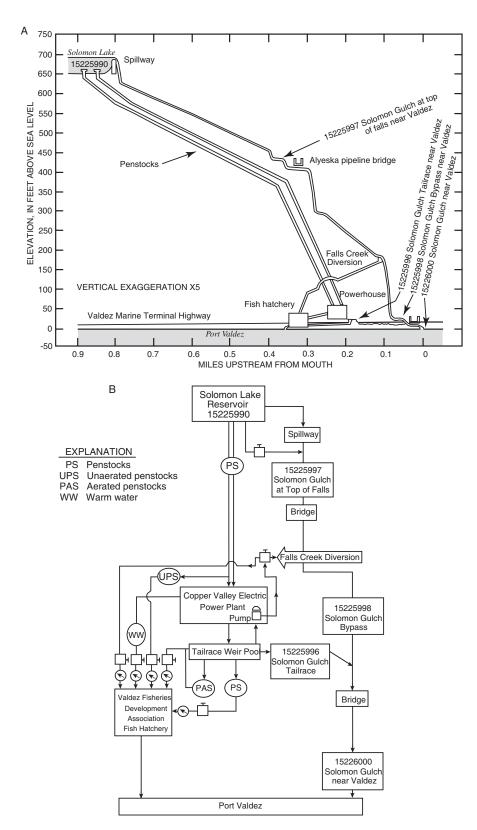
2003

2002

2003

2003

2002


(WY)

See Period of Record and Remarks Estimated

# 15215990 NICOLET CREEK NEAR CORDOVA—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 2000 - 2003#
ANNUAL TOTAL ANNUAL MEAN	3749.65 10.3	3392.33 9.29	10.3
HIGHEST ANNUAL MEAN	10.3	3.25	11.7 2001
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	144 Apr 19	124 Feb 5	9.06 2002 144 Apr 19 2002
LOWEST DAILY MEAN	0.36 Jul 17 0.73 Jul 11	a0.10 Mar 12	a0.10 Mar 12 2003 0.19 Jun 27 2001
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	0.73 Jul 11	0.41 Apr 1 b301 May 10	cd988 Nov 3 1994
MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT)	7440	f25.00 May 10 6730	d19.60 Nov 3 1994 7500
ANNUAL RUNOFF (AC-F1) ANNUAL RUNOFF (CFSM)	13.7	12.4	13.8
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	185.98 32	168.26 26	187.47 31
50 PERCENT EXCEEDS	3.9	2.5	4.0
90 PERCENT EXCEEDS	0.89	0.52	0.92

[#] See Period of Record and Remarks
a Mar. 12 and 13
b From rating curve extended above 33 ft³/s on basis of step-backwater analysis
c From rating curve extended above 66 ft³/s on basis of slope-area measurement of peak flow
d Site and datum then in use
f From crest-stage gage



Solomon Gulch (A) profile and (B) schematic diagram of flows.

### 15225990 SOLOMON LAKE NEAR VALDEZ

LOCATION.--Lat  $61^{\circ}04'25''$ , long  $146^{\circ}18'08''$ , in  $NE^{1}_{/4}$  SW $^{1}_{/4}$  sec. 21, T. 9 S.,R. 6 W.(Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, at outlet of Solomon Lake, 0.7 mi upstream from mouth of Solomon Gulch, and 4.6 mi southeast of Valdez.

DRAINAGE AREA. -- 19.2 mi².

PERIOD OF RECORD.--October 1991 to current year. Additional unpublished records prior to period of record available from Copper Valley Electric Association and in station files of Geological Survey.

REMARKS.--Reservoir is formed by a rockfill dam at outlet of Solomon Lake. Reservoir is used for power; power-plant operation began January 6, 1982. Usable capacity is 31,500 acre-feet below spillway crest at 685 ft. Discharge released to the penstocks is accounted for at Solomon Gulch Tailrace (station 15225996). Releases through the dam to maintain minimum flows, spillway releases, and incremental flow are accounted for at the Solomon Gulch at top of falls gage (station 15225997).

COOPERATION. -- Reservoir contents furnished by Copper Valley Electric Association.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents 32,500 acre-ft, September 21, 1993, from crest-stage gage and rating extended above 31,500 acre-ft; minimum contents, 2,167 acre-ft, May 1, 1995.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 31,900 acre-ft October 21, elevation, 685.87 ft, from crest-stage gage and rating extended above 31,500 acre-ft; minimum contents, 4,430 acre-ft, April 29, elevation, 626.7 ft.

MONTH END RESERVOIR ELEVATION, IN FEET, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	ELEVATION	CONTENTS	CHANGE IN
SEP 30 OCT 31 NOV 30 DEC 31 JAN 31 FEB 28 MAR 31 APR 30 MAY 31 JUN 30 JUL 31 AUG 31 SEP 30	685.1 685.4 684.8 673.6 669.6 664.3 645.9 627.8 644.6 667.2 682.1 685.4 684.6	31,500 31,700 31,300 24,000 21,800 19,200 11,000 4,700 10,400 20,600 29,100 31,700 31,100	+200 -400 -7,300 -2,200 -2,600 -8,200 -6,300 +5,700 +10,200 +8,500 +2,600 -600
		CAL YR 2002 WTR YR 2003	+4,600 -400

### 15225996 SOLOMON GULCH TAILRACE NEAR VALDEZ

LOCATION.--Lat  $61^{\circ}05'01''$ , long  $146^{\circ}18'10''$ , in  $NE^{1}/_{4}$   $SE^{1}/_{4}$   $SW^{1}/_{4}$  sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on left wingwall of tailrace pool of Copper Valley Electric Association powerhouse facility, 350 ft upstream from mouth at Solomon Gulch, and 3.8 mi southeast of Valdez.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- September 1986 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records fair. Discharge shown herein is flow through the Solomon Gulch Power Plant turbines. Solomon Lake, 0.8 mi upstream, supplies water to the power-plant through two 48-in. diameter penstocks. Water for the fish hatchery, diverted upstream from the gage, is not included in these published daily values. Annual mean discharge for these diversions for 2003 water year was 12.0 ft³/s.

COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 293  ${\rm ft}^3/{\rm s}$ , January 2 and 3, 1992, gage height, 3.04 ft; no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 274 ft³/s, November 13, December 12 and 13, gage height, 3.03; no flow for periods on November 26, May 20, and 22.

		DISCH	ARGE, CUB	IC FEET	PER SECONI DAI	D, WATER		BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	205 201 199 193 188	210 210 202 203 201	201 218 216 214 216	74 91 94 88 71	41 42 41 40 41	92 93 107 107	221 208 207 218 208	106 106 98 96 106	189 201 200 204 204	217 218 215 204 210	195 198 201 202 204	205 211 180 173 140
6 7 8 9 10	189 200 192 190 195	211 211 220 213 211	220 221 212 225 215	58 52 48 43 39	39 40 39 36 40	109 106 80 83 123	209 221 220 219 118	109 107 105 111 112	180 196 194 191 200	210 218 176 223 223	208 201 142 153 181	187 188 196 197 191
11 12 13 14 15	193 181 175 185 194	219 209 222 165 74	198 230 226 224 223	40 38 46 49 52	44 43 42 40 38	123 135 132 125 123	55 63 69 65 68	132 195 191 195 135	160 129 148 200 197	223 219 221 214 186	202 203 208 207 135	197 184 180 177 185
16 17 18 19 20	192 191 187 181 183	75 75 83 85 83	220 219 145 89 89	46 46 40 40 38	38 41 113 151 123	109 114 111 90 109	62 68 67 65 64	95 93 97 99 53	200 205 193 210 211	190 188 188 182 185	156 211 213 214 219	179 183 152 88 67
21 22 23 24 25	193 122 162 167 97	98 112 101 90 93	93 107 102 95 90	42 44 44 48 43	87 116 113 119 116	110 99 100 112 107	79 72 71 78 89	89 86 101 123 159	214 197 223 223 188	186 188 186 190 185	217 211 205 168 208	56 59 56 60
26 27 28 29 30 31	104 129 171 213 214 209	100 150 170 205 199	79 83 80 81 80 75	40 44 43 44 45 43	111 106 105 	172 214 209 206 211 217	94 93 104 104 104	195 198 196 199 159	201 165 163 209 219	180 174 186 189 189	217 217 212 215 206 211	63 64 71 115 169
TOTAL MEAN MAX MIN AC-FT	5595 180 214 97 11100	4700 157 222 74 9320	4986 161 230 75 9890	1573 50.7 94 38 3120	1945 69.5 151 36 3860	3935 127 217 80 7810	3583 119 221 55 7110	4041 130 199 53 8020	5814 194 223 129 11530	6147 198 223 174 12190	6140 198 219 135 12180	4233 141 211 56 8400

CAL YR 2002 TOTAL 49914 MEAN 137 MAX 230 MIN 41 AC-FT 99000 WTR YR 2003 TOTAL 52692 MEAN 144 MAX 230 MIN 36 AC-FT 104500

### 15225997 SOLOMON GULCH AT TOP OF FALLS NEAR VALDEZ

LOCATION.--Lat  $61^{\circ}04'45''$ , long  $146^{\circ}18'11''$ , in  $SE^{1}_{/4}$   $NE^{1}_{/4}$   $NW^{1}_{/4}$  sec. 21, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on right bank, 72 ft above Alyeska Pipeline Service Company Bridge, 150 ft upstream from top of falls, 0.3 mi upstream from mouth, and 4.2 mi southeast of Valdez.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- September 1986 to current year.

REVISED RECORDS. -- WDR AK-00-1: 1999.

GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. Prior to October 1, 1991, discharge computed for site 150 ft downstream at datum 72.00 ft higher.

REMARKS.--Records fair except for periods of, August 13-19, August 27 to September 5, and September 30, which are poor and periods of estimated daily discharges, which are poor. Discharge shown herein represents controlled releases from bypass valve and flow over the spillway of dam at Solomon Lake, 0.5 mi upstream, plus inflow between the spillway and the gage. Spillway crest elevation is 685 ft above sea level, from construction plans. Water for power generation is diverted from Solomon Lake (see records for station 15225996). Water is diverted for fish hatchery use 1,150 ft downstream from gage. Reservoir spilled most of October, November 1-7, 30, December 1, August 13-21, 26-31, September 1-6, and 30.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,280 ft³/s, October 11, 1986, by computation of peak flow by several indirect measurement methods; gage height, 82.20 ft from water surface profiles for 1986 flood at top of falls and at datum 72.00 ft lower (12.90 ft from profile at present site and datum); minimum daily discharge, about 0.20 ft³/s, January 23 to April 6, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,210  $\rm ft^3/s$ , October 21, gage height, 8.07 ft; minimum daily discharge, 2.7  $\rm ft^3/s$ , July 01.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAILY MEAN VALUES

NOW DEC. IAN FEB. MAD. ADD. MAY. JUN. THE

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	191 106 7.8 5.7 5.6	172 186 225 421 301	161 9.2 7.3 10 8.0	e4.9 e4.8 e5.8 6.6 6.7	3.8 3.6 3.6 5.8 9.5	3.1 3.2 3.6 4.3 4.2	3.8 4.2 4.4 4.4	13 11 11 9.3 9.6	4.0 4.2 3.9 3.7 4.6	2.7 3.0 4.1 3.3 3.1	7.4 6.9 5.9 5.7	118 34 45 76 57
6 7 8 9 10	7.2 89 350 45 5.9	63 18 7.1 6.3 5.8	7.1 6.5 6.3 5.9 5.6	4.7 5.9 5.9 5.9	8.1 6.2 5.7 5.5 5.4	4.2 4.2 4.2 4.2 3.9	4.3 4.1 3.9 3.9 4.3	10 9.7 9.0 9.5 15	7.0 6.1 4.8 4.2 4.0	2.9 3.1 3.7 3.6 3.7	4.7 4.4 4.3 4.2 4.1	6.9 4.8 4.6 4.8 4.6
11 12 13 14 15	7.7 11 8.3 197 208	5.7 5.6 5.1 5.1 5.2	5.5 5.8 5.7 5.4 5.3	5.9 5.9 5.0 4.4 4.5	5.3 5.8 5.6 5.1 4.6	3.9 e3.8 e3.7 e3.6 3.5	4.3 4.2 4.4 5.5 5.5	12 11 9.2 8.4 8.7	3.7 3.7 3.6 5.1 4.3	3.7 3.6 3.5 3.7 3.9	4.1 7.7 25 208 285	4.5 4.4 4.7 5.0 4.8
16 17 18 19 20	572 193 151 278 710	5.0 4.9 4.8 4.7 5.4	5.3 5.5 5.2 5.2 5.1	4.4 4.5 5.4 4.8 4.4	4.3 4.1 3.9 3.8 3.7	3.4 3.5 3.4 3.5 3.4	5.0 5.5 5.8 6.1 6.7	8.8 8.5 8.3 7.8 7.1	4.1 3.9 4.1 4.8 8.0	3.9 4.1 4.2 4.0 4.0	438 363 206 117 33	4.7 4.7 4.7 4.5 4.6
21 22 23 24 25	790 277 148 51 432	5.0 14 12 12 10	e5.2 e5.1 e5.8 e6.0 e5.7	4.4 4.3 4.3 4.2 4.2	3.5 3.3 3.3 3.3 3.2	3.6 3.7 3.7 3.8 4.0	7.4 6.6 7.6 8.5 9.0	6.8 6.5 5.9 6.3 5.4	7.6 7.4 6.6 7.0 6.1	6.2 6.0 5.1 4.7 5.1	9.3 5.1 4.6 4.4 4.4	4.7 4.6 4.4 4.7
26 27 28 29 30 31	668 241 71 456 435 378	30 51 11 37 257	e5.3 e5.1 e5.1 e5.0 e4.4 e5.0	4.1 3.9 3.9 3.8 3.8 3.8	3.2 3.2 3.2 	3.8 3.7 3.9 4.3 3.9 3.9	18 15 13 16 16	5.2 4.6 4.0 3.7 4.4 4.2	6.4 5.8 4.9 3.8 2.9	5.0 5.6 7.6 7.4 6.5	9.8 193 205 146 167 209	4.8 4.5 5.4 19 32
TOTAL MEAN MAX MIN AC-FT	7096.2 229 790 5.6 14080	1895.7 63.2 421 4.7 3760	338.6 10.9 161 4.4 672	151.0 4.87 6.7 3.8 300	129.6 4.63 9.5 3.2 257	117.1 3.78 4.3 3.1 232	211.8 7.06 18 3.8 420	253.9 8.19 15 3.7 504	150.3 5.01 8.0 2.9 298	136.0 4.39 7.6 2.7 270	2697.0 87.0 438 4.1 5350	490.8 16.4 118 4.4 974

CAL YR 2002 TOTAL 14969.6 MEAN 41.0 MAX 1110 MIN 2.3 AC-FT 29690 WTR YR 2003 TOTAL 13668.0 MEAN 37.4 MAX 790 MIN 2.7 AC-FT 27110

e Estimated

### 15226000 SOLOMON GULCH NEAR VALDEZ

LOCATION.--Lat  $61^{\circ}05'02''$ , long  $146^{\circ}18'13''$ , in  $NE^{1}/_{4}$   $SE^{1}/_{4}$   $SW^{1}/_{4}$  sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, at bridge crossing at mouth and 3.8 mi southeast across Port Valdez from Valdez.

DRAINAGE AREA. -- 19.7 mi²

PERIOD OF RECORD. -- July to December 1948, October 1949 to September 1956, and September 1986 to current year.

GAGE.--Nonrecording gage. Elevation of gage is at sea level. July 9, 1948 to May 21, 1950, nonrecording gage, and May 22, 1950 to September 30, 1956, water-stage recorder at about present site and datum.

REMARKS.-- Records fair. Discharge data represent the flow at mouth which includes Solomon Gulch at top of falls (station 15225997), power plant tailrace (station 15225996), and all fish hatchery diversions. Water for power generation is diverted by a dam at Solomon Lake, 0.8 mi upstream. Water is diverted for the fish hatchery by a 24-in. penstock aeration system, and a 24-in. penstock line from the tailrace weir pool. An unaerated penstock and an 8-in. pipe for warm water supply are upstream. Additional water is diverted to the fish hatchery from Solomon Gulch bypass channel about 750 ft above gage, by means of a 12-in. diameter pipe. The fish hatchery discharges water directly into Port Valdez. Average daily diversion to fish hatchery for 2003 water year was 12.0 ft³/s. Power generation began January 6, 1982.

COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines and monthly storage values for Solomon Lake.

		DISCH	ARGE, CU	BIC FEET		, WATER LY MEAN	YEAR OCTOBI	ER 2002 T	O SEPTEME	BER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	424	390	370	e87	52	102	235	124	195	222	226	352
2	335	404	235	e103	53	103	219	122	207	223	232	274
3	235	435	231	e107	52	118	218	115	206	221	234	254
4	227	632	232	102	54	119	229	111	210	209	235	278
5	222	510	232	86	58	118	218	122	211	215	236	227
6	224	282	235	71	55	120	219	125	189	215	240	224
7	317	237	236	66	55	117	231	121	203	223	232	222
8	570	235	226	61	53	91	230	118	200	182	173	231
9	263	227	239	56	50	94	229	125	196	229	185	230
10	229	225	229	52	53	135	127	131	204	229	213	224
11	229	233	212	53	57	134	64	149	164	229	233	230
12	221	223	244	51	57	e146	72	209	133	224	238	216
13	211	236	240	58	56	e143	78	203	152	225	260	213
14	410	180	237	60	53	e136	75	206	205	240	442	210
15	430	87	236	63	51	133	80	147	201	212	448	218
16	792	89	233	57	50	119	73	107	204	216	621	212
17	412	89	232	57	52	125	80	105	209	214	602	216
18	366	96	158	52	125	122	79	108	197	214	446	185
19	487	98	102	52	162	101	77	110	215	208	358	120
20	921	96	102	50	134	119	76	63	219	211	279	100
21	1010	111	e106	54	98	121	91	99	222	214	253	89
22	427	134	e120	56	127	110	84	95	204	217	243	92
23	338	121	e116	56	124	111	85	110	230	214	237	88
24	246	110	e109	60	131	124	92	132	230	218	199	92
25	557	110	e103	54	127	118	104	166	194	213	239	93
26 27 28 29 30 31	800 398 270 677 657 595	138 209 189 250 464	e92 e96 e93 e94 e91 e88	51 55 55 56 57 55	122 118 116 	185 226 220 218 223 229	118 114 123 126 126	202 205 202 205 165 201	207 171 168 213 222	208 202 215 220 219 214	253 437 446 390 401 449	96 96 104 162 231
TOTAL	13500	6840	5569	1953	2295	4280	3972	4403	5981	6715	9680	5579
MEAN	435	228	180	63.0	82.0	138	132	142	199	217	312	186
MAX	1010	632	370	107	162	229	235	209	230	240	621	352
MIN	211	87	88	50	50	91	64	63	133	182	173	88
AC-FT	26780	13570	11050	3870	4550	8490	7880	8730	11860	13320	19200	11070
				ADJUSTED	FOR CHANG	GE IN STO	ORAGE IN SC	DLOMON LAK	Œ			
MEAN AC-FT CFSM IN	439 26980 22.27 25.71	221 13170 11.23 12.55	61.0 3750 3.10 3.57	27.2 1670 1.38 1.59	1950 1.78	4.7 290 0.24 0.28		235 14430 11.91 13.75	18.82	355 21820 18.01 20.79	354 21800 18.00 20.77	8.93

e Estimated

# 15226000 SOLOMON GULCH NEAR VALDEZ—Continued

STATISTICS OF MONTHLY MEA	N DATA FOR WATER	YEARS 1986	- 2003,	BY WATER	YEAR (WY)	#			
MEAN 197 109 MAX 435 228 (WY) 2003 2003 MIN 97.2 77.1 (WY) 1997 1993	99.9 94.0 180 138 2003 1995 69.0 63.0 2002 2003	90.3 130 1987 58.9 2002	83.8 138 2003 5.08 1991	75.6 132 2003 26.2 1991	151 213 1993 103 1992	184 229 1990 145 1988	269 410 2001 177 1991	299 462 1993 152 1996	332 501 1989 152 1996
SUMMARY STATISTICS	FOR 2002 CALE	ENDAR YEAR	FC	OR 2003 W	ATER YEAR		WATER YEARS	1986	- 2003#
ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (IN) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	69111 189 *194 1330 53 55 137100 *141700 *141700 135.6 324 188 60	37	ę	70767 194 *192 1010 50 54 140400 140000 *9.75 *133.33 344 199 58	Feb 11		166 *166 197 125 2270 1.0 2.3 120600 *120300 *8.43 *114.43 287 124 69	Apr	1990 1996 24 1989 12 1989 24 1991

# PRIOR TO CONSTRUCTION OF SOLOMON GULCH HYDROELECTRIC PROJECT

		STATIS'	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS	1948 - 1956	, BY	WATER YEAR	(WY)#	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	124	58.9	18.3	13.3	10.4	8.82	10.9	102	370	385	322	260
MAX (WY)	304 1953	131 1953	35.6 1950	20.9 1956	12.2 1954	11.1 1953	18.3 1953	224 1953	544 1953	514 1955	442 1956	574 1951
MIN (WY)	48.0 1951	21.7 1951	4.00 1949	1.40 1951	3.57 1951	7.19 1951	6.57 1950	36.5 1955	261 1951	277 1950	254 1950	126 1955

SUMMARY STATISTICS		WATER YEARS 1948 - 1956#
ANNUAL MEAN	143	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	194 126	1953 1950
HIGHEST DAILY MEAN LOWEST DAILY MEAN	1530 .50	Sep 4 1951 Dec 31 1950
ANNUAL SEVEN-DAY MINIMUM	1.0	Jan 10 1951
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW	a2420 b6.50 c.00	Sep 4 1951 Sep 4 1951 Feb 20 1954
	103900 7.28 98.89	
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	396 49 8.0	

See Period of Record and Remarks. Values shown on this page are unadjusted for change in storage in Solomon Lake, unless otherwise noted Adjusted for change in storage in Solomon Lake From rating curve extended above 620 ft³/s Site and datum then in use
No flow sometime during period Feb. 20 to Mar. 3, 1954, caused by temporary storage upstream

### 15236900 WOLVERINE CREEK NEAR LAWING

LOCATION.--Lat  $60^{\circ}22'14''$ , long  $148^{\circ}53'48''$ , in  $NE^{1}_{4}$   $NE^{1}_{4}$  sec. 10, T.3 N., R.3 E. (Seward B-6 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on the left bank, approximately 0.1 mi downstream from terminus of Wolverine Glacier, 2.0 mi upstream from mouth, 16 mi east of Lawing, Alaska.

DRAINAGE AREA. -- 9.51 mi².

PERIOD OF RECORD.--October 1966 to September 1978, October 1980 to September 1981, May 1997 to September 1997, October 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,200 ft above sea level, from topographic map.

REMARKS.--Records are poor due to large fluctuations from ice melt and alternate damming and storage releases during the melt season. Stream flow is modified by runoff from the melting of Wolverine Glacier, which covers 6.8 mi², more than 70% of the drainage basin. Precipitation gage and air temperature recorded at station is available from computer files at the Alaska Science Center, Water Resources Office. GOES satellite telemetry at station transmits every 4 hours. At 3,250 feet of elevation, there is a weather station recording air temperature, wind speed, and precipitation. In addition to the weather station, there are also three snow and ice balance measurement sites located in the basin. Combined snow, ice, and water balance data of the basin are published in other reports of the Geological Survey.

Date	Time	Discharge (ft ³ /s)	Gage Height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jun 05	1300	659	2.92	Aug 12	0215	863	3.18
Jul 13	1800	567	2.78	Aug 14	1800	1270	3.59
Jul 19	1615	659	2.92	Aug 20	0500	1320	3.63
Jul 25	1400	561	2.77	Aug 29	1900	1670	3.91
Jul 29	1515	782	3.08	Sep 30	2000	*a1720	*a3.95
Aug 09	1500	975	3.30				

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	113 80 56 48 39	e80 e90 e70 e90	e100 e90 e200 e70 e40	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e4.0 e3.0 e3.0 e2.0	28 21 20 15 13	127 104 96 106 311	308 351 357 359 326	367 329 288 317 352	298 291 231 195 192
6 7 8 9 10	46 74 48 32 24	e300 e200 e100 e90 e80	e20 e10 e9.0 e8.0 e7.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	8.3 8.0 9.3 23	252 200 152 152 180	350 348 388 405 356	396 385 489 609 590	202 203 195 199 212
11 12 13 14 15	51 53 139 79 48	e70 e60 e50 e40 e40	e6.0 e6.0 e5.0 e5.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	9.5 8.8 9.4 7.7 9.9	221 279 320 291 266	339 338 415 431 369	470 569 482 878 778	200 192 199 141 111
16 17 18 19 20	34 24 45 128 229	e30 e30 e30 e40 e50	e4.0 e4.0 e4.0 e4.0 e3.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0	15 19 21 19 20	252 222 230 220 218	314 289 338 450 454	511 408 299 327 592	103 101 94 73 65
21 22 23 24 25	180 e300 e500 e400 e300	e60 e80 e200 e100 e70	e3.0 e3.0 e3.0 e3.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e3.0 e3.0	e2.0 e2.0 e3.0 e4.0 e5.0	25 35 54 80 92	212 230 217 290 307	384 357 329 308 349	320 314 274 250 243	56 46 43 49 85
26 27 28 29 30 31	e200 e100 e100 e300 e200 e100	e100 e80 e70 e300 e200	e2.0 e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0	e4.0 e4.0 e4.0 e4.0 e4.0 e4.0	e10 e30 e60 40 33	72 84 83 76 103 142	249 231 266 315 325	339 306 393 465 322 356	281 364 622 982 643 379	83 75 136 264 679
TOTAL MEAN MAX MIN AC-FT CFSM IN.	4070 131 500 24 8070 13.8 15.92	3000 100 300 30 5950 10.5 11.74	626.0 20.2 200 2.0 1240 2.12 2.45	62.0 2.00 2.0 2.0 123 0.21	56.0 2.00 2.0 2.0 111 0.21 0.22	76.0 2.45 4.0 2.0 151 0.26 0.30	233.0 7.77 60 2.0 462 0.82 0.91	1151.9 37.2 142 7.7 2280 3.91 4.51	6841 228 325 96 13570 24.0 26.76	11193 361 465 289 22200 38.0 43.78	14108 455 982 243 27980 47.9 55.19	5013 167 679 43 9940 17.6 19.61

a Maximum observed, may have been higher during estimated periods

e Estimated

# 15236900 WOLVERINE CREEK NEAR LAWING—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2003, BY WATER YEAR (WY)# 1.53 2.71 1970 1.59 7.77 2003 MEAN 42.5 13.0 3.64 1.16 0.99 23.0 143 297 347 195 2.00 1970 0.000 89.3 1967 100 375 1967 MAX 131 20.2 2.45 262 494 351 2003 2003 (WY) 2003 1967 1981 1974 2.01 0.51 0.39 0.000 0.000 0.61 176 MTN 13.1 31.1 146 80.0 2001 2001 2001 1971 1997 (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1967 - 2003# ANNUAL TOTAL 37132.20 46429.9 ANNUAL MEAN 102 127 91.2 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 127 66.6 1970 679 Jul 24 b0.00 Jan 25 0.00 Jan 25 679 982 1930 Aug 28 2001 Aug 29 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW b0.00 Dec 25 Dec 25 b0.00 Dec 2 2000 0.00 Dec 2 2000 c2.0 2.0 d1720 Sep 30 d4160 Aug 28 2001 MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 3.95 Sep 30 f6.28 Aug 21 1981 66100 9.59 73650 10.7 13.4 145.25 130.35 ANNUAL RUNOFF (INCHES) 181.62 ANNUAL RUNOFF (INCE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 356 279 315 6.0 46 90 PERCENT EXCEEDS 0.00 2.0 0.80

See Period of Record; partial years used in monthly statistics No flow most days during winter Dec. 25 to Mar. 23, and Apr. 4-22

From rating curve extended above 1,290 ft³/s From floodmarks, date approximate: flow over dense snow

# 15237730 GROUSE CREEK AT GROUSE LAKE OUTLET NEAR SEWARD

LOCATION.--Lat  $60^{\circ}11'54''$ , long  $149^{\circ}22'24''$ , in  $NE^1/_4$   $NE^1/_4$   $NW^1/_4$  sec. 12, T. 1 N., R. 1 W. (Seward A-7 NE quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on right bank, 200 ft downstream from Grouse Lake outlet, 0.2 mi upstream from Seward Highway, 7 mi north of Seward.

DRAINAGE AREA.--6.22 mi².

PERIOD OF RECORD. -- June 1997 to current year.

GAGE.--Water stage recorder and crest-stage gage. Elevation of gage is 250 ft above sea level from topographic map.

 ${\tt REMARKS.--Records\ good\ except\ for\ estimated\ daily\ discharges,\ which\ are\ poor.\ Rain\ gage\ recorder\ at\ station.\ {\tt GOES\ satellite\ telemetry\ and\ phone\ modem\ at\ station.}$ 

EXTREMES FOR 1998-2003 YEAR.--Peak discharge greater than base discharge of 100  ${\rm ft}^3/{\rm s}$  and water year maximums (*).

Date	Time	Discharge (ft ³ /s)	Gage Height(ft)	Date	Time	Discharge (ft ³ /s)	Gage Height(ft)
Nov. 12, 1997	22:00	145	6.68	Dec. 27, 2001	03:45	*114	*6.36
May 09, 1998	18:00	137	6.62	May 19, 2002	22:15	106	6.29
May 30, 1998	21:15	119	6.47	Oct. 24, 2002	11:15	451	8.05
Jun. 08, 1998	06:00	*184	*6.96	Oct. 29, 2002	07:20	249	7.20
Oct. 24, 1998	17:00	112	6.41	Nov. 05, 2002	24:00	231	7.10
Sep. 22, 1999	18:15	*113	*6.42	Nov. 23, 2002	21:45	401	7.87
Jun. 07, 2000	22:15	*100	*6.30	Nov. 30, 2002	09:00	311	7.51
Nov. 20, 2000	00:15	145	6.81	Dec. 03, 2002	20:30	182	6.80
Dec. 29, 2000	22:00	140	6.78	Feb. 05, 2003	01:30	*478	*8.14
Jan. 15, 2001	09:30	227	7.11	May 10, 2003	11:15	123	6.36
Jan. 19, 2001	06:15	*269	*7.32				

		DISCHA	ARGE, CU	BIC FEET		D, WATER ILY MEAN	YEAR OCTO	DBER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22 20 17 15 15	64 61 51 68 132	123 83 114 121 94	12 12 12 12 11	13 12 13 109 277	19 18 19 18	7.7 7.7 7.6 7.5 7.4	36 34 33 31 32	14 14 13 e13 e13	6.7 8.0 8.0 7.5 7.3	5.3 5.1 5.0 5.0 4.9	10 9.4 8.7 8.2 7.9
6 7 8 9 10	15 17 16 14 13	168 105 73 56 48	70 56 49 44 44	9.3 9.4 10 12 12	116 66 56 53 49	15 14 14 13 12	7.3 7.3 7.4 7.5 8.1	31 25 22 45 100	e12 e12 e12 e11 e11	7.3 7.1 7.0 6.8 6.7	4.8 4.8 4.7 4.7	7.5 7.3 7.1 6.9 6.7
11 12 13 14 15	15 18 24 31 28	43 39 35 33 30	40 36 33 31 26	13 12 12 11 11	47 46 44 40 36	12 10 9.3 10	8.6 8.9 9.4 9.7 9.3	67 54 42 35 32	e10 e10 e9.5 e9.5 e9.0	6.6 6.5 6.4 6.2 6.2	4.7 5.9 6.6 8.5 8.5	6.4 6.3 6.2 5.9
16 17 18 19 20	27 22 20 19 38	27 25 24 31 45	23 20 20 18 17	11 11 13 12 14	33 29 24 20 18	11 11 10 10	9.1 9.3 9.5 9.5	28 26 23 21 20	e8.5 8.3 8.2 7.9 7.7	6.2 6.1 6.0 5.9 5.8	11 12 9.7 8.5 9.8	5.7 5.7 5.7 5.6 6.6
21 22 23 24 25	46 53 283 295 156	50 80 326 208 118	17 18 20 19 16	14 14 13 13	17 16 19 19 20	9.6 9.2 9.0 9.0	14 30 30 27 26	19 18 18 19 20	7.7 7.5 7.3 7.3	5.9 5.8 5.7 5.8 5.9	8.6 7.8 7.3 6.9	7.0 6.3 6.1 5.9 5.9
26 27 28 29 30 31	117 77 67 157 138 90	103 80 60 84 233	14 14 12 14 13	12 12 12 12 13 13	24 23 21 	8.7 8.7 8.9 8.5 8.1 7.8	29 33 35 36 37	18 18 16 15 15	7.4 7.4 7.2 7.0 6.8	5.8 5.6 5.7 5.7 5.7	9.9 9.3 11 12 13	6.0 5.7 6.2 11 15
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1885 60.8 295 13 3740 9.78 11.27	2500 83.3 326 24 4960 13.4 14.95	1231 39.7 123 12 2440 6.38 7.36	372.7 12.0 14 9.3 739 1.93 2.23	1260 45.0 277 12 2500 7.23 7.54	359.7 11.6 19 7.8 713 1.87 2.15	465.8 15.5 37 7.3 924 2.50 2.79	928 29.9 100 15 1840 4.81 5.55	286.6 9.55 14 6.8 568 1.54 1.71	197.4 6.37 8.0 5.5 392 1.02 1.18	237.8 7.67 13 4.6 472 1.23 1.42	214.6 7.15 15 5.6 426 1.15 1.28

# 15237730 GROUSE CREEK AT GROUSE LAKE OUTLET NEAR SEWARD—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2003, BY WATER YEAR (WY)# ОСТ NOV APR NUL JUL SEP DAY DEC JAN FEB MAR MAY AUG 26.3 20.3 38.3 70.7 MEAN 31.7 18.9 14.4 8.96 17.3 49.0 11.1 8.06 17.8 19.2 14.3 58.0 45.0 38.6 67.9 35.3 MAX 83.3 39.7 15.6 (WY) 2003 2003 2003 2001 2003 1998 1998 1998 1998 2001 1997 5.81 2002 9.55 MTN 11.8 7.41 8.89 5.23 3.34 2.69 29.9 6.11 6.04 6.66 1999 2003 (WY) 1998 2002 1999 1998 1999 1999 1997 2000 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1997 - 2003# ANNUAL TOTAL 9960.6 9938.6 ANNUAL MEAN 27.2 22.0 HIGHEST ANNUAL MEAN 27.3 2001 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 15.4 2002 Nov 23 2002 Mar 9 1999 Nov 23 Nov 23 326 a2.1 326 326 3.3 4.6 LOWEST DAILY MEAN Mar 28 Aug 10 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE Mar 22 4.7 Aug 5 2.2 Mar 4 1999 478 478 Feb Feb 5 2003 5 2003 7 1999 b8.14 Feb b8.14 Feb MAXIMUM PLAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (FORM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS c4.6 Aug 9 d1.5 Apr 19760 19710 15970 4.39 4.38 3.54 59.57 59.44 48.14 60 69 55 13 13 12 90 PERCENT EXCEEDS 4.5 6.1 5.5

See Period of Record, partial year used in monthly statistics Mar. 9 and 10, 1999 From crest-stage gage. Aug. 9, 10, and 11

From temporary blockage of channel upstream from gage

### 15238600 SPRUCE CREEK NEAR SEWARD

LOCATION.--Lat  $60^{\circ}04'10''$ , long  $149^{\circ}27'08''$ , in  $SW^{1}/_{4}$   $SE^{1}/_{4}$  sec. 21, T. 1 S., R. 1 W. (Seward A-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on left bank 0.7 mi upstream from mouth at Resurrection Bay and 2.4 mi south of Seward.

DRAINAGE AREA. -- 9.26 mi².

PERIOD OF RECORD.--September 1967 to September 1979, annual maximum, water years 1980-90. October 1990 to current

REVISED RECORDS.--WDR AK-76-1: 1966-67(M), 1970(M), 1972(M). WDR AK-77-1: 1969(M).

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 75 ft above sea level, from topographic map.

REMARKS.--Records good, except estimated daily discharges and discharges below 7.0  ${\rm ft}^3/{\rm s}$ , which are poor. Precipitation gage at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of August 21, 1966, reached a stage of 10.1 ft, from floodmarks; discharge, 3,090  $\mbox{ft}^3/\mbox{s,}$  by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000  ${\rm ft}^3/{\rm s}$ , and maximum (*):

	Date		Time I	Discharge (ft ³ /s)	Gage Height (ft)		Dat	е	Time	Discharge (ft ³ /s)	Gage Height (ft)	
	Oct. 2		0645	1560	6.63		Nov.	29	2045	*1850	*6.82	
	Oct. 2	29	1900	1110	6.30							
		DIS	CHARGE, C	UBIC FEET	PER SECOND,	, WATER LY MEAN		BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	7 DEG	C JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	127 91 74 63 57	205 244 196 336 527	e24 6 e48 6 e32	e16 e16 16	26 23 28 248 220	19 17 19 18 16	2.4 2.2 2.2 2.0 1.8	77 78 81 74 74	113 107 111 113 160	184 191 173 198 164	100 89 77 68 68	96 88 84 69 59
6 7 8 9 10	58 84 71 57 48	620 385 e160 e120 e96	e14 e12 e9!	13 13 5 24	96 58 65 57 72	14 12 11 11 9.9	1.5 1.4 1.5 1.5	64 57 54 113 161	250 185 141 128 152	154 196 240 187 151	64 65 79 79 73	56 55 47 48 46
11 12 13 14 15	69 83 209 212 181	e86 78 65 58	e5! 6 e5! 8 e4!	5 24 0 24 4 20	90 66 50 42 35	9.2 10 e9.0 e8.0 7.1	2.1 2.4 3.5 e5.0 e6.0	92 72 58 48 45	171 189 234 207 158	130 119 175 173 129	72 138 312 368 422	44 39 36 33 29
16 17 18 19 20	156 110 101 186 482	46 44 45 55	e3 6 e2 6 e2	20 3 26 5 22	28 25 21 18 16	6.9 6.6 6.5 6.4 6.0	e7.0 e7.0 e7.0 7.4 7.8	49 53 51 49 53	145 142 137 145 144	123 129 112 97 97	334 213 141 148 227	25 23 22 20 21
21 22 23 24 25	403 528 985 881 633	93 270 702 292 206	e2: e2: e2:	2 27 0 22 0 20	16 15 25 31 29	5.5 5.1 4.7 4.4 4.1	e10 e24 e22 e20 e30	59 68 86 114 121	162 154 142 127 240	95 85 79 105 169	131 103 86 73 102	18 16 15 15
26 27 28 29 30 31	387 209 209 615 351 334	e380 e180 e130 e900 e800	e18 e18 e18 e18	3 16 3 15 3 16 3 21	35 29 22  	3.7 3.6 3.4 2.9 2.6 2.5	e35 50 57 71 78	119 147 145 116 110	169 219 186 194 194	120 95 177 154 135 109	215 177 263 212 184 123	15 16 94 220 465
TOTAL MEAN MAX MIN AC-FT CFSM IN.	8054 260 985 48 15980 28.1 32.36	7462 249 900 44 14800 26.9 29.98	89.0 480 480 1 10 5470 9.63	20.8 20.49 5 13 0 1280 1 2.25	1486 53.1 248 15 2950 5.73 5.97	265.1 8.55 19 2.5 526 0.92 1.06	470.3 15.7 78 1.4 933 1.69 1.89	2604 84.0 161 45 5170 9.07 10.46	4919 164 250 107 9760 17.7 19.76	4445 143 240 79 8820 15.5 17.86	4806 155 422 64 9530 16.7 19.31	1829 61.0 465 15 3630 6.58 7.35
STATIST	TICS OF I	MONTHLY	MEAN DATA	A FOR WATE:	R YEARS 196'	7 - 2003	, BY WATER	R YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	91.9 333 1970 17.0 1997	44.8 249 2003 9.40 1974	89.0 8 2003 3.53	0 46.1 3 2001 2 0.65	11.3 53.1 2003 0.000 1972	4.10 15.3 1970 0.000 1971	12.5 35.6 1969 0.12 1972	73.4 135 1993 30.6 1971	200 318 2001 116 1972	189 371 1977 104 1997	148 323 1977 56.9 1969	167 372 1995 48.8 2000

See Period of Record, partial year used in monthly statistics  $\ensuremath{\mathsf{Estimated}}$ 

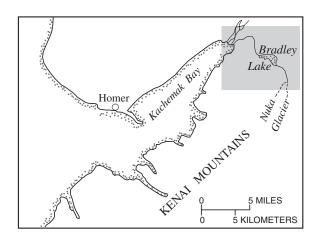
# 15238600 SPRUCE CREEK NEAR SEWARD—Continued

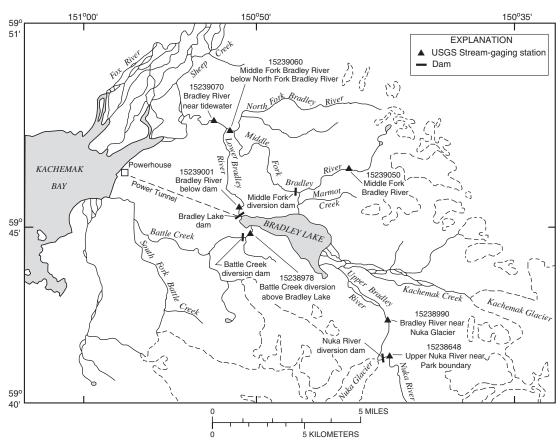
SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1967 - 2003#
ANNUAL TOTAL	41014.20	39744.4	
ANNUAL MEAN	112	109	80.7
HIGHEST ANNUAL MEAN			123 1977
LOWEST ANNUAL MEAN			50.6 1996
HIGHEST DAILY MEAN	985 Oct 23	985 Oct 23	1650 Oct 11 1969
LOWEST DAILY MEAN	a0.00 Mar 17	1.4 Apr 7	b0.00 Mar 1 1969
ANNUAL SEVEN-DAY MINIMUM	0.00 Mar 17	1.6 Apr 4	0.00 Mar 1 1969
MAXIMUM PEAK FLOW		1850 Nov 29	c13600 Oct 11 1986
MAXIMUM PEAK STAGE		d6.82 Nov 29	f13.96 Oct 11 1986
INSTANTANEOUS LOW FLOW		g1.1 Apr 7	0.00 Mar 1 1969
ANNUAL RUNOFF (AC-FT)	81350	78830	58480
ANNUAL RUNOFF (CFSM)	12.1	11.8	8.72
ANNUAL RUNOFF (INCHES)	164.77	159.66	118.45
10 PERCENT EXCEEDS	227	230	207
50 PERCENT EXCEEDS	72	66	34
90 PERCENT EXCEEDS	0.10	7.6	1.5

[#] See Period of Record, partial year used in monthly statistics

No flow Mar. 17 to Apr. 17

No flow many days in water years 1969, 1971-76, 1992, 1996, 1999, and 2002


Slope-area measurement of the release of water temporarily stored behind a debris-avalanche dam. Inflow into the ponded area was 5,420 ft³/s, from a slope-area measurement made about 0.3 mi upstream at a site with a drainage area of 8.98 mi²


From crest-stage gage

From floodmarks

Apr. 7 to 10, 2003







Location of the Bradley Lake Hydroelectric Project area.

### 15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER

LOCATION.--Lat 59°41'04", long 150°42'12" (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on left bank, 0.4 mi downstream from terminus of Nuka Glacier, 4.9 mi southeast of Bradley Lake, and 29 mi east of Homer, Alaska.

DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 3 mi² and varied according to position of glacier terminus.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1980-81, prior to shift in glacier terminus; September 1984 to current year. Records prior to July 29, 1990, are not equivalent. Published as "Upper Nuka River near Homer" prior to October 1989. Low-flow records not equivalent prior to November 1987 because most low-flow measurements were made at site 0.5 mi downstream.

REVISED RECORDS.--WDR AK-89-1: 1985 (M), 1986-88.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,300 ft above sea level, from topographic

REMARKS.--Records fair except estimated daily discharges, which are poor. Water is diverted, 300 ft upstream from gage, into Bradley River drainage since July 29, 1990. Precipitation gage and air temperature recorder at station; daily values of precipitation and air temperature are available from the computer files of the Alaska Science Center, Water Resources Office. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24 16 12 10 9.2	90 111 121 152 191	6.4 2.5 14 10 4.7	e0.30 e0.30 e0.30 e0.20 e0.20	e0.10 e0.20 e1.0 e3.0 e2.0	e0.40 e0.40 e0.50 e0.40 e0.30	e0.00 e0.00 e0.00 e0.00 e0.00	e0.60 e0.80 e1.0 e1.5 e3.0	15 12 6.9 5.1	41 47 47 31 26	27 27 27 27 27	21 20 19 19
6 7 8 9 10	9.6 11 7.7 6.4 4.9	119 42 35 12 3.5	3.0 2.0 1.9 3.1 2.7	e0.20 e0.20 e0.20 e0.20 e0.10	e1.8 e1.8 e1.6 e1.6 e1.4	e0.25 e0.20 e0.20 e0.10 e0.10	e0.00 e0.00 e0.00 e0.00 e0.00	e6.0 e9.0 11 26 25	24 25 19 16 18	28 34 44 38 25	26 26 27 27 27	19 19 19 19
11 12 13 14 15	5.9 7.2 15 16 15	1.9 1.9 1.8 1.7	e2.5 e2.0 e1.6 e1.5 e1.2	e0.10 e0.10 e0.10 e0.10 e0.10	e1.3 e1.3 e1.2 e1.2 e1.1	e0.10 e0.00 e0.00 e0.00 e0.00	e0.10 e0.10 e0.10 e0.10 e0.10	17 13 6.0 3.4 4.4	23 25 27 26 27	15 16 38 31 20	28 29 34 38 46	19 19 19 17
16 17 18 19 20	10 8.2 10 19 37	1.7 1.7 1.7 1.9 2.6	e1.0 e0.80 e0.70 e0.60 e0.50	e0.10 e0.10 e0.10 e0.10 e0.10	e1.1 e1.0 e1.0 e0.90 e0.80	e0.00 e0.00 e0.00 e0.00 e0.00	e0.10 e0.10 e0.10 e0.10 e0.10	6.0 5.5 3.9 5.2 6.1	27 27 26 29 28	14 8.1 6.5 4.3 3.8	37 38 41 34 28	10 6.9 3.9 4.1 2.7
21 22 23 24 25	45 132 389 277 142	3.6 22 96 17 15	e0.40 e0.40 e0.40 e0.40 e0.40	e0.10 e0.00 e0.00 e0.00 e0.00	e0.70 e0.60 e0.50 e0.50 e0.40	e0.00 e0.00 e0.00 e0.00 e0.00	e0.10 e0.20 e0.20 e0.20 e0.20	5.4 5.5 9.5 16 18	34 34 32 38 49	3.3 2.8 2.8 4.6 8.7	27 27 27 27 28	2.2 2.4 2.2 2.1 4.7
26 27 28 29 30 31	126 91 91 134 118 125	14 4.6 2.0 14 19	e0.40 e0.30 e0.30 e0.30 e0.30 e0.30	e0.00 e0.00 e0.00 e0.00 e0.00	e0.40 e0.30 e0.30	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00	e0.25 e0.30 e0.30 e0.40 e0.40	15 17 17 16 19	45 47 45 42 39	6.6 6.9 22 28 28 28	28 32 54 52 34 22	8.6 15 34 50 94
TOTAL MEAN MAX MIN AC-FT	1924.1 62.1 389 4.9 3820	1102.4 36.7 191 1.7 2190	66.60 2.15 14 0.30 132	3.30 0.11 0.30 0.00 6.5	29.10 1.04 3.0 0.10 58	2.95 0.095 0.50 0.00 5.9	3.55 0.12 0.40 0.00 7.0	308.80 9.96 26 0.60 613	821.0 27.4 49 5.1 1630	659.4 21.3 47 2.8 1310	979 31.6 54 22 1940	519.8 17.3 94 2.1 1030
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	R YEARS 19	991 - 2003	, BY WAT	ER YEAR (W	TY)#			
MEAN MAX (WY) MIN (WY)	7.51 62.1 2003 0.000 1992	4.28 36.7 2003 0.000 1992	0.28 2.15 2003 0.000 1991	0.039 0.16 1995 0.000 1991	0.20 1.56 1994 0.000 1991	0.007 0.095 2003 0.000 1991	0.012 0.12 2003 0.000 1992	1.38 9.96 2003 0.000 1998	28.7 209 1999 1.06 1992	38.4 272 1999 2.96 1991	19.7 53.1 1998 0.97 1991	13.3 41.1 2002 1.72 1991

See Period of Record and Remarks. Not adjusted to account for changes in drainage area  $\ensuremath{\mathsf{Estimated}}$ 

# 15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1991 - 2003#
ANNUAL TOTAL	8724.00	6420.00	
ANNUAL MEAN	23.9	17.6	9.54
HIGHEST ANNUAL MEAN			a45.6 1999
LOWEST ANNUAL MEAN			1.09 1991
HIGHEST DAILY MEAN	389 Oct 23	389 Oct 23	389 Oct 23 2002
LOWEST DAILY MEAN	b0.00 Jan 4	c0.00 Jan 22	d0.00 Nov 3 1990
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 4	0.00 Jan 22	0.00 Nov 3 1990
MAXIMUM PEAK FLOW		565 Oct 23	565 Oct 23 2002
MAXIMUM PEAK STAGE		f4.48 Oct 23	f4.48 Oct 23 2002
ANNUAL RUNOFF (AC-FT)	17300	12730	6910
10 PERCENT EXCEEDS	70	38	17
50 PERCENT EXCEEDS	2.2	4.7	0.25
90 PERCENT EXCEEDS	0.00	0.00	0.00
	DDIOD MO DECILIAMION AND	DIVERSION OF NUKA RIVER	

STATISTICS OF MONT	ILY MEAN DATA	FOR WATER	YEARS 1985	- 1989,	BY WATER	YEAR	(WY)#
--------------------	---------------	-----------	------------	---------	----------	------	-------

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUGSEP
MEAN	47.6	7.01	2.83	1.48	.49	.21	.22	23.8	34.7	141	180	131
MAX	72.0	24.9	9.00	5.79	2.24	.87	.72	117	81.2	307	432	321
(WY)	1987	1987	1987	1985	1985	1985	1985	1986	1989	1989	1989	1989
MIN	3.84	.024	.000	.000	.000	.000	.000	.016	.76	6.41	12.1	7.08
(WY)	1989	1989	1989	1989	1988	1988	1988	1987	1987	1988	1986	1988

# SUMMARY STATISTICSWATER YEARS 1985 - 1989#

ANNUAL MEAN	47.9	
HIGHEST ANNUAL MEAN	96.2	1989
LOWEST ANNUAL MEAN	8.60	1988
HIGHEST DAILY MEAN	1240	Aug 25 1989
LOWEST DAILY MEAN	g.00	May 6 1987
ANNUAL SEVEN-DAY MINIMUM	.00	May 6 1987
INSTANTANEOUS PEAK FLOW	h1630	Aug 25 1989
INSTANTANEOUS PEAK STAGE	5.47	Aug 25 1989
ANNUAL RUNOFF (AC-FT)	34700	

1.0	PERCENT	FYCFFDS	183
	PERCENT		1.1
90	PERCENT	EXCEEDS	.00

See Period of Record and Remarks. Not adjusted to account for changes in drainage area Diversion dam failed Jun. 17, 1999; repaired Sep. 25, 1999
From Jan. 4 - May 12
From Jan. 22-31 and Mar. 12 - Apr. 10
No flow most days during winter
From crest-stage gage
No flow many days each year since 1987 during winter through Jun
See Period of Record for remark on low-flow records
From rating curve extended above 380 ft³/s

# 15238978 BATTLE CREEK DIVERSION ABOVE BRADLEY LAKE NEAR HOMER

LOCATION.--Lat  $59^{\circ}44'45''$ , long  $150^{\circ}50'22''$ , in  $SW^{1}_{/4}$  NE $^{1}_{/4}$  sec. 17, T. 5 S., R. 9 W. (Seldovia C-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 0.6 mi upstream from Bradley Lake and 25 mi east of Homer.

DRAINAGE AREA. -- 0.95 mi²

PERIOD OF RECORD. -- August 1992 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,350 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. The entire flow of Battle Creek at the station has been diverted into Bradley Lake since October 1991.

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 50 ft³/s and maximums (*).

Date	Time	Discharge (ft ³ /s)	Gage Height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 13	1030	56	6.19	Nov. 30	0315	62	6.29
Oct. 22	2345	137	7.35	Dec. 03	1545	80	6.59
Oct. 23	2300	151*	7.50*	Feb. 04	1300	61	6.27
Oct. 29	1700	80	6.60	Sep. 28	2315	61	6.28
Nov. 05	2130	107	6.98	Sep. 30	2345	117	7.11
Nov. 23	1530	80	6.60				

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.2 3.1 2.1 1.7 1.6	9.9 11 13 30 74	14 6.4 42 22 17	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.02 26 7.8	0.00 0.00 0.05 0.03 0.00	0.00 e0.00 0.00 e0.00 e0.00	0.86 1.1 1.3 1.1	9.5 8.1 8.0 8.3	14 23 18 13	2.1 1.8 1.5 1.3	4.0 3.0 2.4 1.9
6 7 8 9 10	1.6 1.9 1.9 1.3	48 18 8.3 4.9 2.9	14 7.3 4.7 3.7 3.3	0.00 0.00 0.00 0.00 0.07	1.7 0.76 1.2 1.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.71 0.55 0.64 3.9 4.9	20 14 12 22 27	10 9.8 11 11 8.7	1.3 1.2 1.6 1.8 1.6	1.3 1.2 0.98 0.92 0.87
11 12 13 14 15	2.6 3.4 24 12 9.2	2.6 2.3 1.7 1.4	2.4 2.0 1.5 1.0 0.87	0.64 0.73 0.61 0.35 0.22	1.7 1.1 0.58 0.34 0.12	0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	1.8 1.1 0.71 0.47 0.32	21 20 22 30 27	9.0 9.0 7.8 8.3 7.2	2.4 3.2 3.1 4.7 5.5	0.69 0.57 0.47 0.34 0.18
16 17 18 19 20	6.5 5.1 4.1 7.0 23	0.81 0.50 1.2 1.3	0.72 0.78 0.70 0.62 0.56	0.34 1.2 0.95 0.49 0.46	0.01 0.00 0.00 0.00 0.00	e0.00 e0.05 e0.03 e0.02 e0.00	e0.00 e0.00 e0.00 0.00 0.01	0.27 0.50 0.69 0.91 1.3	21 14 14 13 9.7	9.5 7.9 7.8 5.3 4.3	6.7 4.6 2.8 3.6 7.4	0.12 0.07 0.02 0.00 0.01
21 22 23 24 25	14 64 121 57 24	2.1 13 62 26 16	0.60 0.58 0.45 0.26 0.13	0.40 0.19 0.06 0.00	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.07 0.14 0.13 0.35 0.55	1.6 1.9 3.4 4.7 5.0	13 11 10 12 15	4.5 4.2 4.9 7.0 5.3	3.4 2.6 2.1 1.9 2.0	0.12 0.06 0.05 0.13 0.65
26 27 28 29 30 31	15 8.4 10 44 18 23	21 10 5.6 20 43	0.05 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 	0.00 0.00 0.00 0.00 0.00	0.63 0.84 0.93 0.77 0.82	7.1 13 13 8.8 11 9.9	11 10 10 10 11	3.6 3.3 4.0 2.9 2.3 2.1	3.3 5.0 17 11 13 5.8	0.43 0.19 8.2 18 29
TOTAL MEAN MAX MIN AC-FT CFSM IN.	516.0 16.6 121 1.3 1020 17.5 20.21	453.41 15.1 74 0.50 899 15.9 17.75	147.62 4.76 42 0.00 293 5.01 5.78	6.71 0.22 1.2 0.00 13 0.23 0.26	44.23 1.58 26 0.00 88 1.66 1.73	0.18 0.006 0.05 0.00 0.4 0.01	5.24 0.17 0.93 0.00 10 0.18 0.21	103.63 3.34 13 0.27 206 3.52 4.06	451.6 15.1 30 8.0 896 15.8 17.68	251.7 8.12 23 2.1 499 8.55 9.86	126.6 4.08 17 1.2 251 4.30 4.96	77.47 2.58 29 0.00 154 2.72 3.03

e Estimated

# 15238978 BATTLE CREEK DIVERSION ABOVE BRADLEY LAKE NEAR HOMER—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 2003, BY WATER YEAR (WY)# 5.72 MEAN 3.85 2.24 0.59 0.056 0.25 0.002 0.13 14.1 23.5 6.76 11.3 MAX 16.6 15.1 4.76 0.22 1.58 0.015 0.67 7.67 20.1 14.5 16.9 2003 2001 (WY) 2003 2003 2003 2003 1998 1997 1993 1998 2001 1995 0.21 0.009 0.000 0.000 0.000 0.21 0.000 0.000 0.094 MTN 5.55 1.83 0.91 2000 1996 1996 1996 1994 1999 1999 1996 1996 (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1992 - 2003# ANNUAL TOTAL 2326.86 2184.39 ANNUAL MEAN 6.37 4.02 5.98 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 1.23 1996 121 Oct 23 121 Oct 23 121 Oct 23 2002 Dec 27 Dec 27 c0.00 Jun 3 1992 0.00 Jan 11 1993 LOWEST DAILY MEAN a0.00 Jan b0.00 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW 0.00 Jan 1 0.00 151 Oct 23 2002 7.50 Oct 23 2002 d8.06 May 20 1999 151 Oct 23 MAXIMUM PEAK STAGE 7.50 Oct 23 MAXIMIM PEAK STAGE ANNUAL RUNOFF (AC-FT) 4620 4330 2910 ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 6.71 6.30 85.54 4.24 57.55 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 16 2.0 0.00 17 13 1.3 0.41 0.00 0.00

a b

See Period of Record and Remarks, partial years used in summary statistics
No flow many days during the winter
No flow many days during the winter, and Sep. 19
No flow many days most winters, and Jun. 3, 1992 (observation), Aug. 4, Aug. 5, Aug. 9, and Aug. 14 - Sep. 11, 1986.
Backwater from ice jam

### 15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER

LOCATION.--Lat 59°42'02", long 150°42'09", (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 1.0 mi downstream from Nuka Glacier terminus, 2.7 mi upstream from confluence with Kachemak Creek, 3.7 mi southeast of Bradley Lake, and 29 mi east of Homer. Prior to July 22, 1991 at site 0.2 mi downstream.

DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 10  $\mathrm{mi}^2$  and varied according to position of glacier terminus.

PERIOD OF RECORD.--October 1979 to current year. Prior to October 1989, published as Upper Bradley River near Homer. REVISED RECORDS. -- WDR AK-86-1: 1980-85, WRD AK-96-1: 1991-95.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,250 ft above sea level, from topographic map. Prior to July 22, 1991 at site 0.2 mi downstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow diverted from Upper Nuka River into Upper Bradley River drainage since July 29, 1990. Air temperature recorder at station, daily values of air temperature available from the computer files of the Alaska Science Center, Water Resources Office. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003  DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	189	e75	151	e2.0	e0.30	e0.80	0.00	e8.0	117	292	407	315
2	99	124	105	e1.5	e1.0	e0.80	0.00	e10	98	351	350	304
3	65	174	439	e1.5	e3.0	e1.0	0.00	e13	97	364	293	228
4	55	323	225	e1.5	e15	e0.80	0.00	e16	92	388	280	183
5	61	983	255	e1.0	e12	e0.70	0.00	e22	148	343	292	147
6	81	548	201	e1.0	e10	e0.60	0.00	e29	200	332	278	184
7	153	269	120	e0.90	e8.0	e0.50	0.00	38	171	387	309	188
8	e70	151	97	e0.80	e8.0	e0.50	0.00	41	142	517	433	145
9	e60	125	110	e0.70	e7.0	e0.45	0.00	103	134	485	459	186
10	e45	97	76	e0.60	e7.0	e0.35	e0.00	78	175	434	408	197
11	e55	88	54	e0.60	e6.0	e0.30	e0.10	43	207	425	450	183
12	e65	81	48	e0.50	e6.0	e0.30	e0.25	36	222	421	622	154
13	e140	62	43	e0.50	e5.0	e0.25	e0.25	32	261	493	1070	162
14	e150	53	e35	e0.50	e5.0	e0.25	e0.25	31	261	550	1150	100
15	e140	47	e25	e0.40	e4.0	e0.20	e0.25	36	244	488	937	75
16	e90	41	e20	e0.40	e4.0	e0.20	e0.25	37	236	484	718	62
17	e75	37	e20	e0.40	e3.5	e0.10	e0.30	34	218	469	426	61
18	e90	35	e15	e0.40	e3.5	e0.10	e0.40	32	217	508	284	55
19	e180	34	e15	e0.40	e3.0	e0.10	e0.50	33	225	435	474	44
20	e340	44	e10	e0.40	e2.5	e0.00	e0.70	35	210	416	445	41
21 22 23 24 25	e420 e1200 e1800 e700 e120	52 180 670 260 172	e10 e9.0 e8.0 e7.0 e6.0	e0.40 e0.40 e0.40 e0.40 e0.40	e2.0 e1.5 e1.5 e1.0 e1.0	e0.00 e0.00 e0.00 0.00	e0.90 e1.0 e1.5 e1.5	37 42 58 71 80	239 223 214 270 321	396 368 379 558 648	287 272 215 191 309	37 33 34 34 43
26 27 28 29 30 31	e110 e75 e75 e110 e100 e110	263 127 78 247 413	e5.0 e4.0 e3.5 e3.0 e2.5 e2.0	e0.30 e0.30 e0.30 e0.30 e0.30 e0.30	e0.90 e0.60 e0.70 	0.00 0.00 0.00 0.00 0.00	e2.5 e3.0 e4.0 e5.0 e6.0	80 122 118 114 122 116	233 238 233 248 262	591 495 543 443 397 420	563 780 1100 963 695 421	42 48 313 728 1280
TOTAL	7023	5853	2124.0	19.80	123.00	8.30	30.65	1667.0	6156	13820	15881	5606
MEAN	227	195	68.5	0.64	4.39	0.27	1.02	53.8	205	446	512	187
MAX	1800	983	439	2.0	15	1.0	6.0	122	321	648	1150	1280
MIN	45	34	2.0	0.30	0.30	0.00	0.00	8.0	92	292	191	33
AC-FT	13930	11610	4210	39	244	16	61	3310	12210	27410	31500	11120
STATIS	TICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	91 - 2003	, BY WATE	ER YEAR (W	Y)#			
MEAN	85.4	28.7	7.71	0.56	0.69	0.021	0.15	22.5	218	407	448	348
MAX	227	195	68.5	4.75	4.39	0.27	1.02	93.6	363	763	597	851
(WY)	2003	2003	2003	2001	2003	2003	2003	1993	2001	2001	1993	1995
MIN	12.9	2.40	0.000	0.000	0.000	0.000	0.000	0.008	94.4	106	293	117
(WY)	1997	2000	1995	1991	1991	1991	1992	1998	1999	1999	1998	1992

See Period of Record and Remarks. Not adjusted to account for changes in drainage area

Estimated

# 15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1991 - 2003#
ANNUAL TOTAL	58972.80	58311.75	
ANNUAL MEAN	162	160	131
HIGHEST ANNUAL MEAN			181 2001
LOWEST ANNUAL MEAN			91.1 1998
HIGHEST DAILY MEAN	a1800 Oct 23	a1800 Oct 23	b3600 Sep 21 1995
LOWEST DAILY MEAN	c0.00 Feb 3	d0.00 Mar 20	f0.00 Dec 5 1990
ANNUAL SEVEN-DAY MINIMUM	0.00 Feb 3	0.00 Mar 20	0.00 Dec 5 1990
MAXIMUM PEAK FLOW		2930 Sep 30	g4100 Sep 20 1995
MAXIMUM PEAK STAGE		h14.46 Sep 30	i15.10 Sep 20 1995
ANNUAL RUNOFF (AC-FT)	117000	115700	95210
10 PERCENT EXCEEDS	430	441	422
50 PERCENT EXCEEDS	55	58	6.5
90 PERCENT EXCEEDS	0.00	0.30	0.00

### PRIOR TO DIVERSION FROM UPPER NUKA RIVER

STATISTICS	OF	MONTHLY	MEAN	DATA	FOR	WATER	YEARS	1980	-	1989,	BY	WATER	YEAR	(WY)#	

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	106	22.8	10.2	4.67	1.74	1.35	1.29	38.3	161	290	349	292
MAX	279	75.7	54.6	15.1	4.82	6.50	4.67	92.0	270	458	595	673
(WY)	1980	1980	1987	1981	1981	1984	1981	1986	1988	1981	1986	1982
MIN	26.3	2.60	.50	.000	.000	.000	.000	.33	102	149	133	63.1
(WY)	1986	1988	1989	1989	1989	1989	1986	1987	1985	1985	1985	1983
(WY) MIN	1980 26.3	1980 2.60	1987 .50	1981	1981	1984	1981	1986 .33	1988 102	1981 149	1986 133	198 63.

SUMMARY STATISTICS		WATER YEARS 1980 - 1989
ANNUAL MEAN	107	
HIGHEST ANNUAL MEAN	154	1986
LOWEST ANNUAL MEAN	49.6	1985
HIGHEST DAILY MEAN	1890	Aug 27 1986
LOWEST DAILY MEAN	f.00	Dec 25 1979
ANNUAL SEVEN-DAY MINIMUM	.00	Dec 25 1979
INSTANTANEOUS PEAK FLOW	j2530	Oct 10 1986
INSTANTANEOUS PEAK STAGE	k9.86	Oct 10 1986
ANNUAL RUNOFF (AC-FT)	77650	
10 PERCENT EXCEEDS	338	
50 PERCENT EXCEEDS	15	
90 PERCENT EXCEEDS	.50	

See Period of Record and Remarks. Not adjusted to account for changes in drainage area
Estimated discharge, but may have been higher during period of no gage-height record, Oct. 8 to Nov. 1
Estimated discharge, but may have been higher during period of no gage-height record, Sep. 21 to Sep. 22, 1995
From Feb. 3 to Apr. 27
From Mar. 20 to Apr. 10
No flow in winter most years
From rating curve extended above 400 ft³/s on basis of slope-area measurement of peak flow
From crest-stage gage
From floodmarks
From rating curve extended above 400 ft³/s on basis of slope area measurement of peak flow

From rating curve extended above  $440~{\rm ft}^3/{\rm s}$  on basis of slope-area measurement of peak flow Site and datum then in use

### 15239000 BRADLEY RIVER NEAR HOMER

LOCATION.--Lat  $59^{\circ}45'30''$ , long  $150^{\circ}51'02''$ , in  $SW^{1}/_{4}$   $SE^{1}/_{4}$   $NW^{1}/_{4}$  sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, about 1,300 ft downstream from Bradley Lake dam, 3.3 mi upstream from confluence with Middle Fork Bradley River, and 26 mi northeast of Homer.

DRAINAGE AREA.--About 65 mi² since July and August 1990, when additional water was diverted into the basin. Prior drainage area was about 54 mi².

PERIOD OF RECORD.--July to August 1955, October 1957 to September 1990 (discharge). October 1991 to current year (beginning month reservoir contents and monthly discharges).

REVISED RECORDS.--WSP 2136: 1960(M), 1965. WDR AK-77-1: 1958, 1961, 1963(M), 1966, 1967, 1970, 1972, 1974, 1976.

GAGE.--Nonrecording gage. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority). Totalizing flow meters on penstocks to two turbines in Bradley powerhouse. Lake-level sensor. July 13-22, 1955, non-recording lake gage at site 1 mi upstream and July 23 to August 5, 1955, at site 3 mi upstream at different datum. Prior to November 4, 1980, and April 29 to October 5, 1986, water-stage recorder at site 500 ft upstream at different datum and November 4, 1980 to April 28, 1986, water-stage recorder 1,300 ft upstream at different datum. April 29, 1986 to September 30, 1989, water-stage recorder at present site and datum.

REMARKS.--Reservoir is formed by an earthen dam with impermeable core and concrete face at the outlet of Bradley Lake. Construction began November 1986 and was completed in April 1991. Total and usable capacities below the spillway crest of 1,180 ft are 547,500 and 284,200 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed using totalizing flow meters; release flow enters Kachemak Bay and is not returned to stream. Spill, dam seepage, and fish-water bypass are measured at Bradley River below Dam (15239001) gage. Reservoir capacity table furnished by the Alaska Energy Authority.

COOPERATION.--Reservoir elevations and power generation discharge provided by the Homer Electric Association, for the Alaska Energy Authority.

AVERAGE DISCHARGE.--44 years (water years 1958 to 1989, and 1992 to current year), 461 ft³/s, 334,000 acre-ft/yr. The inflow diversions from Middle Fork Bradley River and Battle Creek into the reservoir are excluded. Flow diverted from Upper Nuka River into Upper Bradley since July 29, 1990 was not measurable and is included in the following tabulations.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 557,700 acre-ft, November 6, 2002, elevation 1182.6 ft; minimum contents observed, 246,600 acre-ft, April 23, 1997, elevation 1069.3 ft. Maximum computed discharge, 8,800 ft³/s, October 10, 1986, gage height, 10.90 ft from floodmarks, site and datum then in use. Maximum discharge, September 21-22, 1995 was probably higher, as indicated by extremes for period of record on these dates for other sites in the Bradley River basin; minimum daily, about 9.0 ft³/s, December 7, 1986, result of power tunnel construction at dam site.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 557,700 acre-ft, November 6, elevation 1182.6 ft; minimum contents not determined.

BEGINNING OF MONTH RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
Oct 1	1,164.3	489,800	
Nov 1	1,179.5	545,500	+55,700
Dec 1	1,178.8	542,700	-2,800
Jan 1	1,170.8	512,500	-30,200
Feb 1	1,163.0	485,200	-27,300
Mar 1	1,156.3	461,400	-23,800
Apr 1	no data	414,000e	-47,400e
May 1	no data	384,000e	-30,000e
Jun 1	1,126.6	366,600	-17,400e
Jul 1	1,138.7	404,200	+37,600
Aug 1	1,158.7	469,900	+65,700
Sep 1	1,175.3	529,000	+59,100
Oct 1	1,171.9	516,800	-12,200
		CAL YR 2002	+45,800
		WTR YR 2003	+27,000

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 MEAN VALUES

MONTH	CHANGE IN CONTENTS	POWER GENERATION	BRADLEY RIVER BELOW DAM 15239001	MIDDLE FORK BRADLEY RIVER 15239050	BATTLE CREEK DIVERSION 15238978	BRADLEY RIVER 15239000
OCT	+906	681	38.8	136	16.6	1,470
NOV	-47	1,210	217	106	15.1	1,260
DEC	-490	932	28.1	37.5	4.76	427
JAN	-444	560	43.1	8.86	0.22	149
FEB	-428	641	40.4	22.9	1.58	228
MAR	-771	786	38.0	5.59	0.01	47
APR	-504	672	38.8	4.11	0.17	203e
MAY	-283	499	48.2	20.4	3.34	241e
JUN	+632	597	36.3	126	15.1	1,120
JUL	+1,070	460	55.7	202	8.12	1,370
AUG	+961	789	85.5	162	4.08	1,670
SEP	-205	909	85.3	66.6	2.58	720
CAL YR 2002	+59	679	49.2	68.6	6.37	713
WTR YR 2003	+33	728	62.8	75.3	5.98	743

### 15239001 BRADLEY RIVER BELOW DAM NEAR HOMER

LOCATION.--Lat  $59^{\circ}45'30''$ , long  $150^{\circ}51'02''$ , in  $SW^{1}/_{4}$   $SE^{1}/_{4}$   $NW^{1}/_{4}$  sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank about 1,300 ft downstream from Bradley Lake Dam, 3.3 mi upstream from Middle Fork Bradley River, and 26 mi northeast of Homer.

DRAINAGE AREA.--About 66  $\mathrm{mi}^2$  since October 1991, when additional water was diverted into the basin. Prior drainage area was about 54  $\mathrm{mi}^2$ .

PERIOD OF RECORD.--October 1989 to current year. Prior to 1990 water year, records are equivalent to "Bradley River near Homer" (station no. 15239000).

GAGE.--Water-stage recorder. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority).

REMARKS.--No estimated daily discharges. Records fair. Nuka River and Middle Fork Bradley River were diverted into Bradley Lake, upstream from dam, beginning July 29 and August 7, 1990, respectively. Reservoir began filling April 26, 1991. Water has been diverted out of the basin through the turbines since hydro-power generation began on June 28, 1991. Battle Creek was diverted into reservoir in October 1991. Rain gage and air temperature recorder at station, daily values of precipitation and air temperature available from the computer files of the Alaska Science Center, Water Resources Office.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,480 ft³/s November 6, 2002 gage height, 7.15 ft; minimum, 0.00 ft³/s, from rating curve extended below 0.18 ft³/s, most likely ponded water, but no measurable flow, June 9 and June 10, 1997.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,480 ft³/s, Nov. 6, gage height, 7.15 ft; minimum, 0.26 ft³/s, Nov. 16., gage-height 1.67 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUE

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	57 57	8.3 8.5	0.96	43 43	42 42	40 40	37 38	48 48	49 49	44 32	83 83	80 81
3	57	11	1.0 13	43	42	39	38	48	49	32	84	85
4 5	57 57	14 765	1.5 27	43 43	28 19	39 39	38 38	48 47	49 50	45 45	87 91	93 91
5	57	705	21	43	19	39	38	4 /	50	45	91	91
6 7	57 57	2350 1790	9.6 0.49	43 43	43 43	39 39	38 38	47 46	36 38	45 45	92 91	90 91
8	56	1010	0.47	43	43	39	38	46	41	35	91	91
9 10	56 57	426 80	0.45 0.45	44 44	43 42	38 38	38 38	43 38	46 28	35 45	87 88	91 94
10		80	0.45	44								
11 12	56 54	14 0.70	3.1 12	45 44	42 42	38 38	39 39	37 48	21 24	48 48	89 86	99 103
13	55	0.35	13	44	42	38	38	53	23	48	86	103
14 15	55 55	0.42	33 46	43 43	42 42	38 38	38 38	52 53	20 11	49 49	85 86	108 107
16 17	55 55	0.28	46 45	44 45	41 41	38 38	38 38	53 57	19 25	50 54	81 80	108 107
18	55	0.43	45	44	41	38	38	64	27	60	88	107
19 20	55 29	0.61 1.3	45 45	43 43	41 41	38 38	38 39	56 57	29 32	59 59	88 87	108 97
21 22	7.3 11	1.4 3.2	45 45	43 43	41 41	38 38	39 39	56 56	34 32	59 61	88 90	89 80
23	11	6.9	45	43	42	37	39	56	37	66	93	67
24 25	4.8 14	5.9 2.7	45 44	42 42	41 41	37 37	40 40	51 45	45 39	63 61	92 93	59 55
26 27	2.9 0.98	5.6 0.67	44 44	42 42	41 41	37 37	40 40	44 40	46 47	66 83	92 90	57 57
28	20	0.72	43	42	41	37	40	36	53	86	67	59
29 30	5.5 17	5.7 2.8	43 43	42 42		37 37	41 43	40 40	47 43	88 83	69 69	50 47
31	16	2.0	43	42		37		41		83	75	
тотат.	1202.48	6517.15	872.02	1337	1132	1179	1163	1494	1088	1726	2651	2559
MEAN	38.8	217	28.1	43.1	40.4	38.0	38.8	48.2	36.3	55.7	85.5	85.3
MAX MIN	57 0.98	2350 0.28	46 0.45	45 42	43 19	40 37	43 37	64 36	53 11	88 32	93 67	108 47
AC-FT	2390	12930	1730	2650	2250	2340	2310	2960	2160	3420	5260	5080

CAL YR 2002 TOTAL 17955.00 MEAN 49.2 MAX 2350 MIN 0.04 AC-FT 35610 WTR YR 2003 TOTAL 22920.65 MEAN 62.8 MAX 2350 MIN 0.28 AC-FT 45460

Gage

height

Discharge

 $(ft^3/s)$ 

# 15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER

LOCATION.--Lat  $59^{\circ}46'42''$ , long  $150^{\circ}45'15''$ , in  $NW^{1}/_{4}$   $NE^{1}/_{4}$  sec.2, T.5 S., R.9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 6.0 mi upstream from mouth and 27 mi east of Homer.

DRAINAGE AREA.--9.25 mi².

Date

Time

PERIOD OF RECORD.--October 1979 to current year. Published as Bradley River tributary near Homer prior to October 1989.

REVISED RECORDS.-- WDR AK-86-1: 1980(P), 1981-82(M), 1984(M). WRD AK-2000-1: 1995-1997.

GAGE.--Water-stage recorder. Elevation of gage is 2,300 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station; daily values of air temperature and precipitation are available from the computer files of the Alaska Science Center, Water-Resources office.

Date

Time

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300  $\mathrm{ft^3}/\mathrm{s}$  and maximums (*)

Gage

Height

Discharge

 $(ft^3/s)$ 

			'	(IC /S)	(ft)					(10 /5)	(ft)	
	Oct.23	2330	)	*1310	9.49		Dec.	3	1300	385	9.28	
	Oct. 29	1630	)	316	9.14		Aug.	28	1630	445	9.37	
	Nov. 5	2000	)	1020	*10.09							
		DISCHA	RGE, CU	BIC FEET I		D, WATER Y		BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	64	98	70	e11	7.3	6.7	e4.2	e5.4	46	170	146	136
2	54 47	97 107	53 242	e10 e10	7.2 120	7.4 7.3	e4.2 e4.2	e5.8 e6.1	46 49	238 228	134 124	126 114
4	43	160	125	e9.5	156	6.9	e4.1	e6.5	49	213	119	103
5	43	525	90	e9.5	64	7.0	e4.1	e6.8	67	207	118	88
6 7	44 53	387 174	68 54	e9.5 e9.5	19 12	6.7 6.6	e4.0 e4.0	e7.3 e7.8	74 66	195 195	118 118	82 80
8	48	115	43	e9.0	11	6.5	e4.0	e8.3	60	229	141	73
9 10	44 38	90 74	36 33	e9.0 e9.0	11 12	6.5 6.5	e4.0 e4.0	e8.8 e9.2	79 120	238 220	158 160	73 70
11	46	65	e29	e10	12	6.4	e3.9	e10	153	210	206	66
12 13	52 99	58 51	e26 e23	e10 e9.5	11 10	e6.2 e5.7	e3.9 e3.8	e10 e11	185 184	216 213	225 222	62 61
14	83	47	e21	e9.5	9.4	e5.7	e3.8	e12	190	224	228	50
15	66	e42	e19	e9.5	9.0	e5.5	e3.8	14	196	217	224	40
16 17	65 56	e37 e34	e17 e17	9.3 9.6	8.6 8.3	e5.5 e5.2	e3.8 e3.8	15 15	176 162	218 226	210 165	37 34
18	57	e32	e17	8.8	8.0	e5.1	e3.8	16	152	228	129	32
19 20	90 128	e30 e29	e16 e16	8.6 8.6	7.8 7.5	e5.0 e5.0	e3.8 e3.8	18 20	160 148	200 195	139 155	31 31
21	100	e28	e16	8.3	7.4	e4.9	e3.8	22	151	185	120	28
22	322	80	e15	8.2	7.3	e4.8	e3.9	25	149	172	113	27
23 24	909 577	210 112	e15 e14	8.0 7.9	25 48	e4.7 e4.6	e4.0 e4.2	29 34	146 148	180 220	104 100	25 24
25	204	72	e14	7.7	15	e4.6	e4.3	35	148	210	121	24
26	156	97	e13	7.7	12	e4.5	e4.4	38	135	182	150	23
27 28	119 116	71 49	e13 e12	7.7 e7.5	8.0 8.8	e4.5 e4.4	e4.6 e4.8	49 48	127 128	170 186	165 271	22 46
29	208	72	e12	e7.5		e4.4	e5.0	44	142	169	269	151
30 31	164 128	136	e11 e11	7.5 7.4		e4.2 e4.2	e5.2	47 47	148	150 144	220 161	240
TOTAL	4223	3179	1161	274.8	642.6	173.2	123.2	631.0	3784	6248	5033	1999
MEAN MAX	136 909	106 525	37.5 242	8.86 11	22.9 156	5.59 7.4	4.11 5.2	20.4 49	126 196	202 238	162 271	66.6 240
MIN	38	28	11	7.4	7.2	4.2	3.8	5.4	46	144	100	22
AC-FT CFSM	8380 14.7	6310 11.5	2300 4.05	545 0.96	1270 2.48	344 0.60	244 0.44	1250 2.20	7510 13.6	12390 21.8	9980 17.6	3970 7.20
IN.	16.98	12.78	4.67	1.11	2.58	0.70	0.50	2.54	15.22	25.13	20.24	8.04
STATIS	TICS OF MC	NTHLY MEA	N DATA	FOR WATER	YEARS 19	80 - 2003,	BY WATE	R YEAR (	WY)			
MEAN	47.4	20.5	9.65	5.88	5.40	3.70	3.33	16.9	96.9	163	144	103
MAX (WY)	144 1987	106 2003	37.5 2003	17.0 1981	23.0 2003	7.17 1981	4.42 2001	44.5 1990	162 1998	221 2001	204 2001	220 1995
MIN	15.6 1997	5.29 1985	4.45 1985	3.82 1991	2.86 1991	1.30 1986	2.38	5.45 1987	44.7 1985	111 1996	86.9 1996	38.7 1992
(WY)	エフフ /	1303	TAQD	TAAT	TAAT	T 2 8 0	エコヨヨ	198/	T 3 0 0	T330	エカカロ	1337

e Estimated

### 15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 2003, BY WATER YEAR (WY) NOV APR NUL JUL AUG SEP ОСТ DEC JAN FEB MAR MAY MEAN 47.4 20.5 9.65 5.88 5.40 3.70 3.33 16.9 96.9 163 144 103 37.5 2003 17.0 23.0 7.17 162 204 MAX 144 1987 106 4.42 44.5 221 220 (WY) 2003 1981 2003 1981 2001 1990 1998 2001 2001 5.29 1985 2.38 1999 MTN 15.6 4.45 3.82 2.86 1.30 5.45 44.7 111 86.9 38.7 1997 1991 (WY) 1985 1991 1986 1987 1985 1996 1996 1992 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1980 - 2003 ANNUAL TOTAL 25024.4 27471.8 ANNUAL MEAN HIGHEST ANNUAL MEAN 52.0 68.6 75.3 75.3 2003 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 34.6 Sep 20 1995 Mar 28 1986 909 909 966 c1.1 Oct 23 Oct 23 a2.5 3.8 3.8 d1310 b3.8 LOWEST DAILY MEAN Apr 20 Apr 13 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 1.1 Mar 28 1986 1470 Sep 20 1995 10.09 Nov 5 2002 1.1 2.5 Apr 20 Apr 13 Oct 23 Nov 5 MAXIMUM PEAK STAGE
MAXIMUM PEAK STAGE
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (FORM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS f16.16 May 12 1998 49640 54490 37640 5.62 76.31 7.41 100.64 8.14 110.48 161 202 155 12

4.8

3.3

3.2

90 PERCENT EXCEEDS

a b

Apr. 20-27 Apr. 13-21 From Mar. 28 to Apr. 10, 1986 Oct. 23-24 Backwater from ice

### 15239060 MIDDLE FORK BRADLEY RIVER BELOW NORTH FORK BRADLEY RIVER NEAR HOMER

LOCATION.--Lat  $59^{\circ}47'54''$ , long  $150^{\circ}51'48''$ , in  $SE^{1}/_{4}$   $NE^{1}/_{4}$   $SW^{1}/_{4}$  sec. 29, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 100 ft upstream from confluence with the main stem Bradley River, 0.2 mi below the mouth of the North Fork Bradley River, 5.5 mi downstream from the Middle Fork Bradley River diversion dam, and 25 mi east of Homer.

DRAINAGE AREA.--24.8 mi²

PERIOD OF RECORD. -- August 1996 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Water from upper Middle Fork Bradley River (15239050) is diverted into Bradley Lake at Middle Fork Bradley River diversion dam, located 5.5 mi upstream. Air temperature recorder at station, daily values of air temperature are available from the computer files of the Alaska Science Center, Water Resources Office.

		DISCHA	RGE, CU	JBIC FEET			YEAR OCTOBER	2002 T	O SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	90 78 70 62 61	203 161 142 205 1520	417 252	e13 e14 e13 e13 e12	e18 20 24 363 423	21 27 31 27 e26	5.2 5.1 5.0 4.8 4.7	83 84 88 81 77	75 71 72 72 87	71 87 83 74 72	27 26 24 22 21	47 41 36 32 29
6 7 8 9 10	56 62 55 49 46	937 400 249 160 118	169 124 101 89 80	e11 e10 e9.5 e10 e11	178 105 109 108 124	e24 e22 e20 e18 e17	4.5 4.4 4.4 4.5 4.5	65 58 59 98 122	104 90 80 82 99	67 68 77 76 67	21 20 22 28 26	27 25 24 22 21
11 12 13 14	54 58 121 130	97 84 74 e65	70 64 56 43	e10 e10 e9.0 e10	117 92 75 65	e16 e15 e14 e13	6.0 9.4 12 11	88 73 63 57	103 104 117 120	62 61 62 65	29 35 32 34	20 19 18 17 15
16 17 18 19 20	107 95 85 92 127	55 53 52 53 61	e28 e28 e27 e26 e25	e9.0 e9.0 e9.0 e9.0	44 45 39 33 30	e12 e12 11 10 e9.5	9.0 8.9 10 12 14	53 52 53 57 61	96 83 77 77 71	58 55 53 48 45	40 34 24 22 38	14 14 14 13
21 22 23 24 25	124 344 1950 1610 541	82 210 1810 537 368	e23 e21 e19 e18 e18	e8.0 e8.0 e8.0 e7.0 e7.0	e29 27 28 29 27	e9.0 e8.5 e8.0 e7.5 7.1	15 19 23 34	63 65 73 78 77	73 72 71 70 68	43 39 39 48 45	28 24 22 21 21	16 14 14 15
26 27 28 29 30 31	243 268 498 410 289	220 138 271 505	e16 e14 e13 e13 e13	e8.0 e10 e12 e14 e16	24 22  	6.8 6.4 6.1 5.7 5.4	60 66 70 81	94 93 81 84 81	61 61 67 67	34 37 34 29 27	30 58 69 68 55	17 15 23 68 86
TOTAL MEAN MAX MIN AC-FT CFSM IN.	8263 267 1950 46 16390 10.7 12.39	9265 309 1810 52 18380 12.5 13.90	2960 95.5 726 13 5870 3.85 4.44	314.5 10.1 16 7.0 624 0.41 0.47	2280 81.4 423 18 4520 3.28 3.42	435.2 14.0 31 5.4 863 0.57 0.65	614.4 20.5 81 4.4 1220 0.83 0.92	2295 74.0 122 52 4550 2.99 3.44	2470 82.3 120 61 4900 3.32 3.71	1724 55.6 87 27 3420 2.24 2.59	982 31.7 69 20 1950 1.28 1.47	749 25.0 86 13 1490 1.01 1.12
							3, BY WATER Y					
MEAN MAX (WY) MIN (WY)	79.5 267 2003 23.2 1997	83.7 309 2003 16.2 2000	31.4 95.5 2003 7.69 1997	20.0 75.3 2001 2.68 1999	21.3 81.4 2003 2.00 1999	10.0 20.7 1998 2.74 1999	36.4 1998 9.59	111 155 2002 74.0 2003	178 277 2001 82.3 2003	104 193 2001 45.7 1997	48.2 120 2001 12.5 1996	69.2 116 1997 25.0 2003
SUMMAF	RY STATIS	TICS	FO	R 2002 CAL	ENDAR YEAR		FOR 2003 WAT	ER YEAR		WATER YEAR	s 1996	- 2003#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU	T ANNUAL ANNUAL T DAILY DAILY SEVEN-E JM PEAK F	MEAN MEAN IEAN DAY MINIMUM 'LOW		38288. 105 1950 5. 5. 75940 4. 57. 227	Oct 23 2 Apr 17 4 Apr 11		32352.1 88.6 1950 a4.4 4.5 c3940 16.27 64170 3.57 48.53	Oct 23 Apr 7 Apr 4 Oct 24 Oct 24		65.7 90.8 44.0 1950 b1.0 1.0 c3940 16.27 47620 2.65 36.01 158	Oct 2 Feb Feb Oct 2 Oct 2	2001 1997 13 2002 5 1999 5 1999 14 2002 14 2002
50 PEF	RCENT EXC	EEDS		54 6.			44 9.0			33 6.0		

See Period of Record; partial years used in monthly statistics

Apr. 7-8 Feb. 5-12, 1999

From rating curve extended above 32 ft³/s on basis of comparison of instantaneous discharge of Bradley River below Dam (15239001) and instantaneous discharge of Bradley River near Tidewater (15239070)

Estimated

### 15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER

LOCATION.—Lat  $59^{\circ}48'06''$ , long  $150^{\circ}52'58''$ , in  $SE^{1}/_{4}$   $NE^{1}/_{4}$  sec. 30, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 0.7 mi upstream from mouth, 0.8 mi downstream from Middle Fork Bradley River, 4.3 mi downstream from Bradley Lake outlet and dam site, and 25 mi east of Homer.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- May 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS.--Records good, except for November 5 to 20 and estimated daily discharges, which are poor. occasionally affected by high tides. Intermittent regulation during construction at the Bradley River dam site began in November 1986. Flow has been regulated since the reservoir began filling April 26, 1991. (See station 15239001.) Upper Nuka River was diverted into Upper Bradley River on July 29, 1990; flow from about 10 mi2 of Middle Fork Bradley River upstream drainage has been seasonally diverted into the Bradley Lake reservoir since August 7, 1990. Battle Creek was diverted into the reservoir in October 1990. Water has been diverted out of the basin through the turbines since hydropower generation began June 28, 1991. Rain gage and air temperature recorder at station; daily values of precipitation and air temperature available from the computer files of the Alaska Science Center, Water Resources Office. GOES satellite telemetry at station.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	153	226	291	e58	e61	50	e45	149	140	126	119	134
2	140	197	197	e59	e68	54	47	149	133	138	118	123
3	131	177	913	e59	e76	56	47	156	134	126	117	124
4	123	251	458	e58	e400	53	47	145	135	132	118	132
5	122	2390	271	e57	503	49	46	139	162	129	121	126
6 7 8 9 10	116 124 116 108 105	3490 2240 1430 654 260	200 136 108 95 86	e56 e55 e55 e56 e57	218 141 146 144 158	e49 e48 e48 e48 e48	46 46 46 46	119 109 110 168 219	178 158 147 157	121 121 125 118 119	123 121 123 124 123	123 122 120 118 121
11	115	134	72	e57	149	e47	48	162	158	117	126	124
12	116	99	76	e56	124	e47	55	148	152	116	130	125
13	187	82	69	e55	103	e47	60	139	172	116	126	131
14	199	72	92	e55	90	e47	58	128	174	120	129	128
15	183	67	82	e55	79	e47	57	125	156	114	129	127
16	172	58	79	e55	71	e47	56	122	136	113	132	125
17	158	57	e78	e56	72	e60	55	123	131	111	117	124
18	149	57	e76	e55	e70	e52	56	138	122	118	120	123
19	157	64	e75	e54	e90	e51	57	130	126	110	118	123
20	182	92	e73	e53	e70	e50	60	137	117	105	133	118
21	149	137	e72	e53	54	e50	65	139	126	103	123	106
22	433	305	e70	e53	53	e49	74	141	117	100	121	94
23	1950	2240	e68	e53	59	e48	74	150	122	107	123	79
24	1460	737	e67	e51	60	e47	85	153	131	113	120	70
25	647	434	e66	e51	57	e47	95	142	121	109	120	69
26 27 28 29 30 31	418 253 307 574 449 319	412 255 177 336 679	e64 e62 e59 e58 e58	e51 e53 e54 e55 e56 e59	56 53 52 	e47 e46 e46 e46 e46 e46	105 112 119 124 140	143 159 151 140 146 140	123 118 127 127 120	107 123 132 132 121 119	126 127 139 146 144 133	67 66 75 114 125
TOTAL	9815	17809	4229	1710	3277	1516	2017	4419	4176	3661	3889	3356
MEAN	317	594	136	55.2	117	48.9	67.2	143	139	118	125	112
MAX	1950	3490	913	59	503	60	140	219	178	138	146	134
MIN	105	57	58	51	52	46	45	109	117	100	117	66
AC-FT	19470	35320	8390	3390	6500	3010	4000	8770	8280	7260	7710	6660
					R YEARS 19		•		•			
MEAN	112	130	70.9	64.2	67.5	52.4	69.1	159	186	142	132	135
MAX	317	594	136	137	117	70.5	93.8	205	263	185	178	224
(WY)	2003	2003	2003	2001	2003	1998	1993	1992	1998	2001	1995	1995
MIN	64.0	51.2	47.1	41.6	42.2	43.9	50.5	120	114	115	105	104
(WY)	1998	2000	1998	1999	1999	1999	1999	1996	1997	1997	2002	1993

See Period of Record and Remarks Estimated

# 15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER—Continued

SUMMARY STATISTICS	FOR 2002 CALEN	IDAR YEA	R	FOR 2003 WATE	ER YEAR	WATER YEARS	1992 - 2003#
ANNUAL TOTAL	61874			59874			
ANNUAL MEAN	170			164		110	
HIGHEST ANNUAL MEAN						164	2003
LOWEST ANNUAL MEAN						83.8	1996
HIGHEST DAILY MEAN	3490	Nov	6	3490	Nov 6	3490	Nov 6 2002
LOWEST DAILY MEAN	44	Apr	8	45	Apr 1	a40	Dec 15 1992
ANNUAL SEVEN-DAY MINIMUM	45	Apr	4	46	Mar 26	40	Jan 28 1999
MAXIMUM PEAK FLOW				6200	Nov 5	6200	Nov 5 2002
MAXIMUM PEAK STAGE				b10.83	Nov 5	b10.83	Nov 5 2002
INSTANTANEOUS LOW FLOW						17	Mar 28 1989
ANNUAL RUNOFF (AC-FT)	122700			118800		79870	
10 PERCENT EXCEEDS	262			198		177	
50 PERCENT EXCEEDS	108			118		92	
90 PERCENT EXCEEDS	50			51		48	

# PRIOR TO REGULATION AND DIVERSION OF BRADLEY DAM

TRIOR TO REGULATION AND DIVERSION OF BRADELT DAM												
STATIST	ICS OF	MONTHLY	MEAN DA	TA FOR WAT	ER YEARS	1983 - 1	.989, BY V	VATER YEA	R (WY)#			
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	808	224	198	145	82.1	74.0	72.8	462	1032	1390	1318	966
MAX (WY)	1908 1987	480 1984	503 1987		114 1985	163 1984	101 1989	676 1987		1577 1988		1746 1989
MIN (WY)				72.5 1989		27.4 1989	42.5 1985				907 1983	
				SUMMARY S	STATISTIC	CS		WAT	ER YEARS	1983 - 1	989#	
				3								
				HIGHEST A							1987 1985	
							10000 Oct 19 Dec			Oct 11 Dec 7		
				ANNUAL SE	EVEN-DAY	MINIMUM	2:	2		Mar 26	1989	
				MAXIMUM E MAXIMUM E INSTANTAN	EAK STAC	GE	b1:	3.73		Oct 11 Oct 11 Mar 28	1986	
				ANNUAL RU ANNUAL RU ANNUAL RU	NOFF (CE	FSM)	42270	7.11				
				10 PERCEN 50 PERCEN 90 PERCEN	IT EXCEEI	os	1470 388 52	8				

[#] See Period of Record and Remarks
a Dec. 15 to Dec. 18, 1992; Apr. 20 to Apr. 21, 1995; Jan. 9 and Apr. 22, 1997; Mar. 5, 1998; Jan. 16 to Jan. 20, and Jan. 28 to Feb. 12, 1999
b From floodmarks

From rating curve extended above 2,400 ft³/s on basis of runoff comparisons with nearby stations d Minimum recorded, but may have been less during period of ice effect, Mar. 28 to Mar. 31, 1989

# 15241600 NINILCHIK RIVER AT NINILCHIK

LOCATION.--Lat  $60^{\circ}02'56''$ , long  $151^{\circ}39'48''$ , in  $NE^{1}/_{4}$  sec. 34, T. 1 S., R. 14 W. (Kenai A-5 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 60 ft downstream from bridge, 0.9 mi upstream from mouth, at Ninilchik.

DRAINAGE AREA. -- 135 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1963 to September 1985, October 1998 to September 2003 (discontinued).

REVISED RECORDS. -- WDR AK-01-1: Drainage area.

GAGE.--Water-stage-recorder. Datum of gage is 8.37 ft above NAVD of 1988. Prior to October 1, 1965, at site 0.2 mi upstream at different datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHA	ARGE,	CUBIC	FEET	PER		WATER Y MEAN	YEAR OCTOBE	ER 2002 T	O SEPTEI	MBER 2003		
DAY	OCT	NOV	DEC	C	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	235 258 198 164 139	e270 e240 e210 e170 e210	278 236 235 254 223	5 5 4	e64 e62 e60 e60 e58		e66 e64 e62 e100 e140	e120 e120 e120 e120 e120	e110 e110 e110 e110 e110	121 116 119 118 130	83 89 88 84 86	76 117 129 101 81	60 56 54 53	67 65 62 61 64
6 7 8 9 10	175 189 175 144 119	e320 332 233 159 128	194 171 155 144 140	1 5 4	e58 e56 e54 e60	6	e150 e160 e160 e160 e160	e120 e120 e110 e110 e110	e110 e120 e120 e120 e120	123 115 108 125 170	95 112 102 96 114	76 71 67 64 61	52 52 52 51 51	65 62 61 61 63
11 12 13 14 15	127 222 209 178 167	158 146 118 146 143	134 131 134 98 e94	1 e 4 e 3 e	160 160 160 150 140	6	e160 e160 e150 e150 e150	e110 e110 e100 e94 e110	e130 e140 e150 e150 e140	186 156 142 155 148	208 246 197 156 123	61 63 61 58 56	52 63 64 69 137	61 60 59 59 58
16 17 18 19 20	209 192 190 181 169	127 124 127 e150 e160	e88 e84 e80 e80	4 e 2 e 0 e	130 120 120 110 110	6	e140 e130 e130 e120 e120	e130 e130 e120 e110 e110	e140 e140 e150 159 153	140 126 120 118 116	108 110 99 98 92	55 56 56 54 54	187 163 130 105 93	58 59 60 61 62
21 22 23 24 25	153 147 576 e5400 2010	154 165 650 1610 1190	e78 e78 e78 e78	3 3 3	e95 e90 e80 e78 e76	6	e120 e110 e110 e110 e110	e110 e96 e96 e96 e96	153 176 190 186 173	106 107 111 109 102	89 109 103 90 85	55 56 56 58 64	82 73 67 63 62	63 62 62 63 70
26 27 28 29 30 31	e1050 e700 e500 e300 e500 e300	671 463 313 265 281	e76 e76 e76 e76 e76	5 4 2 0	e74 e72 e70 e70 e68 e66	6	e110 e110 e120	e98 e100 e100 e100 e100 e100	154 159 153 148 137	103 115 99 e90 84 84	103 111 102 88 78	66 61 60 65 73 68	90 114 97 84 77 72	78 72 73 90 108
TOTAL MEAN MAX MIN AC-FT CFSM IN.	15276 493 5400 119 30300 3.65 4.21	9433 314 1610 118 18710 2.33 2.60	3859 124 278 68 7650 0.92	4 9 3 3 0 5 2 0	841 1.6 160 54 640 .68	. (	3532 126 160 62 7010 0.93 0.97	3386 109 130 94 6720 0.81 0.93	4221 141 190 110 8370 1.04 1.16	3762 121 186 84 7460 0.90 1.04	3344 111 246 78 6630 0.83 0.92	2099 67.7 129 54 4160 0.50 0.58	2478 79.9 187 51 4920 0.59 0.68	1969 65.6 108 58 3910 0.49 0.54
STATIS	TICS OF	MONTHLY ME	AN DAT	ra for	WATE	R YE	ARS 1963	3 - 2003	B, BY WATER	YEAR (WY)	#			
MEAN MAX (WY) MIN (WY)	143 493 2003 78.2 1969	105 314 2003 41.1 1964	66.2 124 2003 42.0 1966	4 9 3 2 0 3	7.3 1.6 003 6.8 974	1	59.6 126 2003 36.0 1974	65.7 109 2003 36.9 1974	158 548 1974 41.4 1985	229 488 1977 81.7 1969	117 238 1964 62.2 1969	86.3 151 1980 57.6 1983	88.0 155 1981 47.8 1969	115 204 1982 54.6 1969
SUMMAR	Y STATIS	STICS	Ι			LENDA	AR YEAR		FOR 2003 WA	TER YEAR		WATER YEAR	RS 1963	2003#
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL T DAILY DAILY SEVEN-D M PEAK RUNOFF RUNOFF	MEAN MEAN MEAN AY MINIMUM PLOW STAGE (AC-FT) (CFSM) (INCHES) EEEDS		10		.12	Oct 24 Mar 22 Mar 22		56200 154 5400 a51 52 b6600 9.39 111500 1.14 15.49 202 110 60	Oct 24		108 154 55.4 5400 30 32 b6600 9.33 78110 0.85 197 76 49	) Oct 24	1966 9 1983 1 2002

See Period of Record, partial years used in monthly statistics

From rating curve extended above 700  ${\rm ft}^3/{\rm s}$  on basis of slope-area measurement of peak flow  ${\rm Estimated}$ 

# 15241600 NINILCHIK RIVER AT NINILCHIK—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD.--Water years 1952-53, 1955-58, 1963-65, 1967-68, 1975, 1978-79, and 1998 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: May to September 1963, October 1964 to July 1965, and October 1998 to September 2003

SEDIMENT: October 1963 to July 1965.

INSTRUMENTATION. -- Electronic water temperature recorder set for one-hour recording interval, October 1 to 29, and 15-minute recording interval, October 20 to September 30.

REMARKS.--Records represent water temperature at sensor within  $0.5^{\circ}$ C. Temperature at the sensor was compared with the average for the river by cross sections on May 29 and July 21. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.— WATER TEMPERATURE: Maximum, 20.5°C, July 4, 1999 and July 15, 2003; minimum, 0.0°C on many days during fall and winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 20.5°C, July 15; minimum, 0.0°C on many days during fall and winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Location

Date	Time	Stream width,	in X-sect. looking downstrm ft from	Gage	Instan- taneous dis- charge,	Temper- ature, water,	ature,
		feet (00004)	1 bank (00009)		cfs (00061)		
MAY 2003							
29	1421	40.5	6.00	3.31	89	12.0	15.0
29	1422	40.5	14.0	3.31	89	12.0	15.0
29	1423	40.5	22.0	3.31	89	12.0	15.0
29	1424	40.5	30.0	3.31	89	12.0	15.0
29	1425	40.5	38.0	3.31	89	12.0	15.0
JUL							
21	1718	37.4	32.0	3.02	55	16.0	15.0
21	1719	37.4	25.0	3.02	55	16.0	15.0
21	1720	37.4	18.0	3.02	55	16.0	15.0
21	1721	37.4	11.0	3.02	55	16.0	15.0
21	1722	37.4	4.00	3.02	5.5	16.1	15.0

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	8.0 7.0 5.5 4.5 5.0	6.5 5.5 4.0 3.5 4.0	7.0 6.0 4.5 4.0 4.5	3.5 3.5 3.5 4.0 4.5	3.0 3.0 3.0 3.5 4.0	3.5 3.5 3.0 3.5 4.0	1.5 1.0 2.0 1.0	0.5 0.5 1.0 0.5 0.5	1.0 0.5 1.5 1.0	0.5 0.5 0.5 0.5	0.0 0.5 0.0 0.0	0.5 0.5 0.5 0.5
6 7 8 9 10	5.5 7.0 6.0 4.5 3.0	4.5 5.0 4.5 2.5 1.5	5.0 6.0 5.0 3.5 2.5	5.0 4.5 3.5 	4.5 3.5 2.5 	4.5 4.0 3.0	0.5 0.5 0.5 0.5	0.5 0.0 0.0 0.0	0.5 0.5 0.5 0.0	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.5 0.5 0.0 0.0
11 12 13 14 15	3.5 4.5 5.0 5.0	3.0 3.5 4.0 3.5 4.0	3.5 4.0 4.5 4.5 4.5	  	  	  	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	5.0 4.5 5.0 6.0	4.0 3.5 4.0 5.0	4.5 4.0 4.5 5.0	  	  	  	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	5.5 5.5 6.0 6.0 5.5	4.5 4.5 5.5 5.0	5.0 4.5 5.5 6.0 5.0	0.0 1.0 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	5.0 4.5 3.0 4.0 3.5 3.5	4.5 3.0 2.5 3.0 3.0	4.5 3.5 3.0 3.5 3.5 3.5	0.5 0.5 0.5 1.0	0.0 0.0 0.0 0.5 1.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	8.0	1.5	4.5				2.0	0.0	0.3	0.5	0.0	0.1

31

MONTH

18.5

10.5

13.3

### SOUTH-CENTRAL ALASKA

### 15241600 NINILCHIK RIVER AT NINILCHIK—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MIN MEAN FEBRUARY MARCH APRIL MAY 9.0 1 0.0 0.0 0.0 0.5 0.0 0.0 2.0 0.0 0.5 6.0 7.5 0.0 0.0 0.5 0.0 8.0 0.0 0.0 0.0 1.0 0.0 10.0 6.5 0.0 0.5 0.0 1.5 0.0 6.5 8.5 0.0 0.0 0.5 0.0 10.0 0.0 0.0 0.0 9.5 4 0.0 0.0 6.5 5 0.5 0.0 0.0 0.5 0.0 1.5 0.5 8.5 6 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 9.5 6.0 7.5 0.5 0.0 0.0 0.5 0.0 1.0 0.0 0.5 9.5 6.0 8 0.0 0.0 0.0 0.5 0.0 0.0 1.0 0.0 0.5 9.5 7.5 7.5 8.5 0.0 0.0 0.0 0.5 1.0 0.0 9.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 9.0 10 0.5 11 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.5 9.5 6.5 8.0 0.0 0.0 0.5 0.0 0.5 0.5 0.0 0.0 9.0 12 0.0 0.0 0.0 0.5 1.5 8.5 8.5 7.0 7.0 13 0.0 0.0 0.5 0.0 0.5 1.5 6.0 0.5 0.0 0.5 5.5 0.0 0.0 15 0.5 0.0 0.5 0.5 0.0 0.0 2.0 1.0 1.5 10.0 8.0 0.5 0.5 1.0 0.0 0.0 3.0 1.0 1.5 11.0 9.5 16 0.0 17 0.5 0.0 0.0 1.0 0.0 0.0 3.5 1.5 2.5 10.5 8.0 9.5 0.5 4.5 18 0.0 0.0 0.0 0.0 0.0 1.5 3.0 9.5 7.0 8.5 0.0 20 0.5 0.0 0.0 0.5 0.0 0.0 4.0 2.5 3.0 12.5 8.0 10.5 21 0.5 0.0 0.0 0.0 0.0 0.0 3.5 2.5 3.0 12.5 9.0 11.0 0.5 2.5 9.5 11.0 22 0.0 0.0 0.0 0.0 0.0 3.5 3.0 13.0 11.0 0.0 0.5 0.0 6.0 4.0 23 0.0 0.0 13.5 12.0 0.0 3.5 10.5 2.5 0.0 0.0 0.0 1.0 0.0 0.0 7.0 4.0 5.5 14.0 10.0 12.0 26 0.5 0.0 0.0 1.0 0.0 0.0 8.0 4.5 6.5 13.5 11.0 12.0 0.5 0.0 0.0 8.5 5.5 5.5 7.0 7.0 27 0.0 0.0 0.0 12.0 10.0 10.5 28 0.5 0.0 0.0 13.5 9.5 9.0 29 1.5 0.0 0.5 9.0 14.0 11.0 12.5 3.0 ___ ---1.0 0.0 0.5 9.0 6.0 7.5 14.0 12.0 13.0 31 0.0 11.5 12.5 0.5 13.5 0.5 0.0 0.0 1.5 0.0 9.0 0.0 2.5 14.0 5.5 9.5 MONTH 0.1 MTN MTN MEAN MEAN DAY MAX MEAN MAX MAX MTN MAX MTN MEAN JUNE JULY AUGUST SEPTEMBER 13.0 18.0 16.0 16.5 13.5 15.5 12.5 2 13.5 10.5 12.0 17.0 14.0 15.5 16.5 13.5 15.0 12.5 10.0 11.5 16.0 12.5 14.5 14.5 11.0 17.5 14.0 15.5 13.0 12.5 10.5 11.5 18.0 16.0 10.0 5 12.5 11.0 12.0 17.5 15.5 16.0 16.5 13.0 15.0 11.0 9.5 10.5 12.5 18.5 14.5 6 14.0 10.5 12.0 19.5 15.5 17.5 17.0 14.0 15.5 11.0 8.5 10.0 16.5 13.5 12.5 20.0 18.0 16.0 10.5 8.0 9.5 8 12.0 18.5 14.5 10 12.0 11.5 11.5 18.5 17.0 17.5 18.0 15.0 17.0 10.5 8.5 9.5 10.5 11.5 11.0 11 11.0 18.0 16.5 17.0 17.5 15.5 16.0 8.0 9.5 12 14.5 11.0 12.0 18.5 15.0 16.5 16.0 14.0 15.0 10.5 8.5 9.5 16.0 14.0 15.5 15.5 8.5 10.0 13 13.0 19.5 17.5 14.0 14.5 10.5 20.0 17.0 18.5 14.0 10.0 15 15.0 14.0 14.5 20.5 17.0 18.5 13.0 12.5 13.0 8.5 6.0 7.0 16 14.5 12.5 13.5 20.0 17.0 18.0 13.0 12.5 12.5 7.0 5.0 6.0 17 15.0 12.5 13.5 17.0 15.5 16.0 13.5 11.5 12.5 6.5 5.0 6.0 15.0 12.5 14.0 18.0 15.0 13.0 11.0 12.0 6.5 4.5 18 16.0 11.5 1 0 16.0 12.5 14.0 18.0 15.0 16.5 12.0 10.5 5.5 4.0 5.0 20 16.5 13.0 15.0 17.5 15.5 16.5 11.5 10.0 11.0 5.5 4.5 5.0 17.0 15.5 15.5 13.5 13.5 5.5 5.5 21 16.0 13.5 14.5 16.0 10.5 12.0 6.5 5.0 12.0 22 16.0 12.5 14.0 18.0 16.5 10.5 6.0 4.5 17.5 13.5 15.0 13.0 10.5 12.0 4.0 5.0 16.0 14.5 16.5 5.5 24 15.0 13.0 13.5 17.5 15.0 16.0 13.5 11.5 12.5 5.5 6.5 4.5 5.0 25 14.5 13.5 12.5 5.0 14.0 12.0 12.5 13.0 15.0 6.0 14.5 26 13.5 12.0 13.0 16.5 13.5 15.0 12.5 11.0 12.0 6.5 5.0 5.5 14.0 14.0 7.0 27 12.0 13.0 16.0 14.5 12.0 11.5 11.5 5.0 6.0 12.5 13.5 12.5 7.0 28 16.5 13.0 11.5 6.0 12.5 13.0 11.5 10.5 11.5 11.5 7.5 7.5 7.0 7.5 29 17.0 13.5 15.5 14.5 13.0 13.5 6.5 16.5 13.0 7.0 30 15.5 14.0 18.5 14.5

10.0

10.0

11.5

13.5

12.5

4.0

7.9

12.5

18.5

17.0

20.5

13.5

13.0

15.0

16.2

### 15243900 SNOW RIVER NEAR SEWARD

LOCATION.--Lat  $60^{\circ}17'42''$ , long  $149^{\circ}20'38''$ , in  $NE^{1}/_{4}$  SW $^{1}/_{4}$  sec. 6, T. 2 N., R. 1 E. (Seward B-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on left bank, 0.5 mi below the Alaska Railroad bridge, 3.0 mi upstream from the mouth at Kenai Lake, and 13.5 mi north of Seward.

DRAINAGE AREA.--128 mi² (revision pending).

PERIOD OF RECORD.--August to September of 1970, 1974, 1977 and April 1997 to current year.

GAGE.--Water stage recorder. Elevation of gage is 470 ft above sea level, from topographic map. Prior to April 9, 1998 at site 0.5 mi upstream at different datum.

REMARKS.--Record poor. Rain gage at station. GOES satellite telemetry at station.

rating curve extended above  $27,000 \text{ ft}^3/\text{s}$ , gage-height 42.60 ft from floodmarks, site and datum then in use.

		DISCH	ARGE, (	CUBIC FEET	PER SECOND	, WATER LY MEAN		BER 2002	TO SEPT	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e1550 e950 e720 e480 e390	2280 3770 1920 3280 6470	2030 1390 2030 2400 2000	e150 e140 e130	e230 e200 e200 e1200 2580	e200 e200 e190 e180 e170	e90 e90 e85 e85 e85	625 573 570 551 557	1300 1190 1100 1100 1480	2550 2860 2940 2950 2870	2640 2440 2160 1910 1930	2730 2460 2330 1900 1600
6 7 8 9 10	e440 e510 e440 e360 e340	7160 3660 2460 1880 1550	1480 1120 894 780 750	e120 e110 e120 e120 e130	1170 741 617 e500 e420	e160 e150 e140 e130 e120	e85 e85 e85 e85 e85	526 463 450 646 1100	1890 1730 1610 1450 1570	2730 2970 3280 3470 3350	2100 2320 2730 3030 3220	
11 12 13 14 15	e400 e520 1110 1880 e1200	1400 1280 1170 1100 1040	674 609 560 e480 e440	e130 e150 e140 e140 e130	e380 e360 e340 e320 e300	e120 e100 e100 e100 e100	e85 e90 e95 e100 e100	892 763 659 589 550	1800 2000 2400 2560 2290	3360 3370 3600 3950 3890	3070 3640 3570 4160 4830	1330 1270 1280 1060 799
16 17 18 19 20			e400 e380 e400 e380 e340	e130 e130	e280 e260 e240 e220 e200	e100 e100 e100 e95 e95	e100 e100 e100 e110 e100	563 629 607 577 586	2110 2050 2020 2020 1990	3540 3270 3300 3260 3390	4410 3500 2730 2500 3660	683 621 581 514 514
23	3490 3780 10600 10600 6950	3200 2040	e340 e300 e260 e250 e240	e180 e160	e220	e90 e100 e105 e95 e90	e280 e290	606 642 741 932 1050		3390 3140 3010 2980 3130		
26 27 28 29 30 31	4860 3030 2470 5090 4080 2700	2700 1870 1370 1790 4090	e230 e220 e190 e200 e180 e170	e140 e130 e130 e150 e190 e210	e240 e240 e220 	e90 e90 e90 e90 e90	e360 473 534 580 627	1060 1030 981 929 1000 1210	2130 2090 2010 2130 2360	3120 2970 3140 3320 2980 2680	2820 3130 4070 4640 4780 3490	551 522 849 2080 3140
MEAN MAX MIN AC-FT	76250 2460 10600 340 151200	932 141200		110 8810	12438 444 2580 180 24670 R YEARS 197	7280	5829 194 627 85 11560	44940	112400	98760 3186 3950 2550 195900	95020 3065 4830 1910 188500	36246 1208 3140 377 71890
MEAN MAX (WY) MIN (WY)	1175 2506 1999 279 1998				172 444 2003 42.0 1999		•	•	•	3169 3281 1998 2866 1999	2993 5598 1977 1764 1998	3009 6294 1974 1157 2000
SUMMAR	RY STATI	STICS			NDAR YEAR	FC	OR 2003 WAT	TER YEAR		WATER YEAR	S 1970 -	2003#
ANNUAI HIGHES LOWEST HIGHES	T ANNUAL	L MEAN MEAN MEAN MEAN		568072 1556 a10600 65	Oct 23 Mar 16 Mar 16		505250 1384 a10600 85	Oct 23 Apr 3		1177 1412 965 b23800 c36	Sep 20 Mar 3	2001 2000 1974 1999
MAXIMU MAXIMU INSTAN ANNUAI	JM PEAK I JM PEAK ; NTANEOUS L RUNOFF	(AC-FT)		1127000	Mar 16		.002000	Apr 3 Nov 6 Nov 6		852600	Feb 26 Sep 20 Sep 20 Mar 3	1999 1974 1974 1999
50 PER	RCENT EXC RCENT EXC RCENT EXC	CEEDS		3350 1100 70			3330 780 100			3130 450 72		

See Period of Record, partial years used in monthly summary statistics Oct. 23 and Oct. 24, 2002
Result of release of stored water from glacier-dammed lake Mar. 3 and Mar. 4, 1999
Site and datum then in use Estimated

a b

### 15258000 KENAI RIVER AT COOPER LANDING

LOCATION.--Lat  $60^{\circ}29'34''$ , long  $149^{\circ}48'28''$ , in  $SE^{1}/_{4}$  sec. 28, T. 5 N., R. 3 W. (Seward B-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on right bank 10 ft downstream from bridge on Sterling Highway, 0.9 mi upstream from Bean Creek, 0.9 mi east of Cooper Landing, and at Kenai Lake outlet.

DRAINAGE AREA. -- 634 mi².

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1947 to current year.

REVISED RECORDS. -- WSP 2136: 1964 (M).

GAGE.--Water-stage recorder. Datum of gage is 419.92 ft above sea level (levels by Alaska Department of Transportation). See WSP 2136 for history of changes prior to August 28, 1965. August 28, 1965 to January 21, 1974, at site 10 ft upstream at present datum. January 22, 1974 to September 30, 1981, non-recording gage at site 40 ft upstream at present datum.

REMARKS.--Records good. Diversion from Cooper Lake to Kenai Lake above gage through Cooper Lake power plant began May 1961. No diversions occurred during November. Rain gage at station. GOES satellite telemetry and telephone modem at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

COOPERATION. -- Records of diversion provided by Chugach Electric Association.

		DIS	CHARGE, C	JBIC FEET	D.	AILY MEAN		OBER 2002	10 SEFIE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3930	10900	7280	1600	1060	1480	775	1280	3360	5850	5770	6320
2	3830	10100	7010	1560	1030	1470	760	1380	3490	6140	5600	5990
3	3620	9450	6750	1530	1060	1410	739	1490	3590	6470	5420	5690
4	3360	8730	6920	1490	1220	1360	728	1590	3670	6790	5190	5390
5	3160	8910	6860	1430	1990	1320	713	1660	3760	7000	4950	5040
6	2940	11100	6510	1390	2470	1290	694	1750	4020	7000	4800	4680
7	2800	11500	6020	1350	2670	1250	679	1810	4290	7020	4710	4420
8	2680	10700	5540	1320	2760	1220	671	1860	4450	7150	4700	4210
9	2560	9470	5070	1310	2760	1180	664	1940	4510	7410	4850	4010
10	2470	8310	4650	1280	2740	1150	652	2030	4560	7590	5050	3810
11	2380	7290	4290	1260	2700	1120	643	2130	4740	7710	5260	3670
12	2320	6420	3960	1240	2620	1080	654	2200	4970	7720	5500	3540
13	2330	5710	3700	1210	2560	1050	653	2240	5380	7740	5780	3330
14	2440	5120	3420	1190	2460	1010	652	2250	5870	7940	6020	3170
15	2510	4620	3160	1170	2360	1010	662	2240	6180	8130	6480	3040
16	2510	4230	2930	1150	2280	1010	661	2230	6320	8120	6980	2910
17	2540	3900	2780	1140	2190	1000	678	2240	6350	7940	7100	2730
18	2550	3620	2650	1160	2110	983	680	2240	6310	7670	6860	2570
19	2550	3430	2530	1160	2030	976	689	2220	6230	7430	6490	2460
20	2750	3340	2410	1160	1960	955	705	2210	6150	7280	6270	2350
21	3200	3240	2300	1130	1890	938	722	2220	6120	7230	6150	2280
22	3640	3220	2250	1120	1820	928	736	2250	6030	7090	5900	2190
23	6350	4280	2230	1110	1780	909	758	2270	5980	6930	5600	2100
24	11300	5920	2170	1110	1730	898	787	2340	5880	6730	5300	2010
25	14700	6380	2110	1090	1680	880	814	2460	5870	6550	5080	1950
26 27 28 29 30 31	15200 13900 12200 11700 12600 12000	6540 6570 6320 6030 6810	2020 1920 1830 1770 1720 1660	1080 1100 1090 1050 1060 1060	1630 1560 1540 	866 860 850 826 808 793	855 912 984 1060 1170	2600 2730 2850 2960 3060 3200	5880 5820 5700 5640 5670	6460 6360 6210 6200 6130 5940	5010 5030 5160 5560 6150 6460	1930 1870 1870 1990 2300
MEAN MAX MIN MED	173020 5581 15200 2320 3160 343200 8.80 10.15	202160 6739 11500 3220 6400 401000 10.6 11.86	116420 3755 7280 1660 2930 230900 5.92 6.83	38100 1229 1600 1050 1160 75570 1.94 2.24	56660 2024 2760 1030 2010 112400 3.19 3.32	32880 1061 1480 793 1010 65220 1.67 1.93	22550 752 1170 643 709 44730 1.19 1.32	67930 2191 3200 1280 2230 134700 3.46 3.99	156790 5226 6350 3360 5680 311000 8.24 9.20	217930 7030 8130 5850 7020 432300 11.1 12.79	175180 5651 7100 4700 5560 347500 8.91 10.28	99820 3327 6320 1870 2970 198000 5.25 5.86
				ADJUSTE	D TO EXCL	UDE DIVER	SION FRO	M COOPER I	LAKE			
MEAN	5551	6670	3648	1122	1852	933	639	2070	5123	6919	5559	3246
CFSM	8.76	10.52	5.75	1.77	2.92	1.47	1.01	3.26	8.08	10.91	8.77	5.12
IN	10.09	11.74	6.63	2.04	3.04	1.70	1.13	3.76	9.01	12.58	10.11	5.71
AC-FT	341330	396890	224280	68980	102840	57360	38050	127260	304840	425430	341840	193180
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATE	R YEARS 1	947 - 2003	B, BY WAT	ER YEAR (	WY)#			
MEAN	3314	1872	1169	835	682	524	549	1928	5433	7002	6354	5254
MAX	8955	6739	3755	2807	2066	1122	1071	3508	10010	10480	11430	11490
(WY)	1980	2003	2003	1981	1981	1977	1980	1990	1953	1980	1977	1967
MIN	1264	654	364	310	251	208	262	658	3268	4868	3651	2629
(WY)	1956	1951	1951	1951	1949	1951	1952	1952	1972	1996	1969	1969

[#] See Period of Record and Remarks; partial years used in monthly statistics

# 15258000 KENAI RIVER AT COOPER LANDING—Continued

SUMMARY STATISTICS	FOR 2002 CALEN	IDAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1947 - 2003#
ANNUAL TOTAL	1398984		1359440			
ANNUAL MEAN	3833		3724		2928	
ANNUAL MEAN	*3695		*3622		*2853	
HIGHEST ANNUAL MEAN					4499	1977
LOWEST ANNUAL MEAN					2102	1969
HIGHEST DAILY MEAN	15200	Oct 26	15200	Oct 26	22500	Sep 21 1974
LOWEST DAILY MEAN	478	Apr 16	643	Apr 11	100	Mar 28 1964
ANNUAL SEVEN-DAY MINIMUM	484	Apr 12	654	Apr 10	190	Mar 15 1951
MAXIMUM PEAK FLOW			15600	Oct 26	a23100	Sep 21 1974
MAXIMUM PEAK STAGE			14.74	Oct 26	17.18	Sep 21 1974
INSTANTANEOUS LOW FLOW			635	Apr 11	b0.00	Mar 27 1964
ANNUAL RUNOFF (AC-FT)	2775000		2696000		2121000	
ANNUAL RUNOFF (AC-FT)	*2680000		*2620000		*2067000	
ANNUAL RUNOFF (CFSM)	*5.83	1	*5.71		*4.50	
ANNUAL RUNOFF (INCHES)	*79.10	)	*77.54		*61.11	
10 PERCENT EXCEEDS	7120		7050		6980	
50 PERCENT EXCEEDS	3570		2730		1660	
90 PERCENT EXCEEDS	583		922		419	

See Period of Record and Remarks; partial years used in monthly statistics
Values shown on this page are unadjusted for inflow from diversion, unless otherwise noted
Adjusted to account for inflow from diversion, see Remarks
Result of release of stored water from glacier-dammed lake at head of unnamed glacier in the Snow River Basin
No flow, Mar. 27 and Mar. 28, 1964, caused by earthquake

# 15258000 KENAI RIVER AT COOPER LANDING—Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1950-53, 1955-60, 1966-74, 1976, 1994, and December 2002 to current year.

PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Water year 1950, and December 2002 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15 minute recording interval.

REMARKS.--Probe installed on December 21, 2002. No record January 7-27, April 11-14, 23 to May 3 due to probe problems. Records represent water temperature at the sensor within  $0.5^{\circ}$ C. Light shore ice occurs near the gage.

EXTREMES FOR PERIOD OF DAILY RECORED. -

WATER TEMPERATURE: Maximum, 16.5°C, August 10, 2003; minimum, 0.0°C, several days in January and March, 2003.

EXTREMES FOR CURRENT PERIOD.-- WATER TEMPERATURE: Maximum, 16.5°C, August 10; minimum, 0.0°C, several days in January and March.

WATER TEMPERATURE (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DI	ECEMBER			JANUARY	
1										2.0	1.0	1.5
2										2.0	0.5	1.5
3										1.5	0.5	1.0
4										1.5	0.5	1.0
5										1.0	0.0	0.5
3										1.0	0.0	0.5
6										1.0	0.0	0.5
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21							3.0	2.5	2.5			
22							3.0	2.0	2.5			
23							3.0	2.0	2.5			
24							3.0	2.0	2.5			
25							2.5	1.5	2.0			
26							2.5	1.5	2.0			
27							2.0	1.0	1.5			
28							2.5	1.0	1.5	2.0	1.0	1.5
29							2.5	1.5	2.0	2.0	0.5	1.5
30							2.0	1.5	2.0	2.5	1.5	2.0
31							2.0	1.0	1.5	2.0	1.5	2.0
J ±							2.0	1.0	1.5	2.0	1.5	2.0
MONTH												

# 15258000 KENAI RIVER AT COOPER LANDING—Continued

WATER TEMPERATURE (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

				, -								
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1	2.0	1.5	1.5	3.0	1.5	2.5	2.5	0.5	1.5			
2	2.0 2.5	1.0 1.5	1.5 2.0	3.0 3.5	2.0 1.0	2.5 2.5	3.0 4.0	0.5 0.5	2.0			
4 5	2.5	2.0	2.0	3.0	0.5 0.5	2.0 1.5	3.5 3.5	1.5 1.5	2.0 2.5	5.5 5.5	4.5 4.5	5.0 5.0
6	2.5	1.5	2.0	2.5	1.0	1.5	3.0	1.5	2.0	7.0	4.0	5.0
7	2.5	1.5	2.0	3.0	1.0	1.5	3.0	1.5	2.0	6.0	4.0	5.0
8 9	2.5 2.5	2.0	2.0 2.5	2.5	1.0	1.5 1.0	3.0 3.0	1.5 2.0	2.5 2.5	7.0 6.0	5.0 5.0	6.0 5.5
10	2.5	2.0	2.0	2.5	0.5	1.5	3.0	2.0	2.5	6.0	4.5	5.0
11 12	2.5	2.0	2.5	2.5	0.5	1.5 1.0				6.5 6.0	4.5 4.5	5.0 5.5
13	2.5	1.5	2.0	2.0	0.5	1.0				7.0	4.5	5.5
14 15	2.5 2.5	1.5 1.5	2.0	1.5 2.0	1.0	1.5 1.5	3.0	2.5	2.5	6.5 6.5		5.5 5.0
16	2.5	1.5	2.0	2.0	1.0	1.5	3.5	2.0	3.0	6.0	4.5	5.0
17 18	2.5 2.5	1.5 1.5	2.0	2.5	1.0	1.5 1.5	4.0 4.5	2.5 2.5	3.0 3.0	7.0 7.5	4.0 4.5	5.5 6.0
19 20	2.5	1.5	2.0	1.5	1.0	1.5	4.5	2.5	3.5	8.0		6.5
21 22	2.5	1.5 1.5	2.0	3.0 3.0	1.0	1.5 2.0	3.5 4.0	2.5 3.0	3.0 3.5	8.0 9.0	6.0	7.0 7.0
23 24	2.5 2.5	1.5 1.5	2.0	2.5 2.0	1.5 1.0	2.0 1.5				9.0 7.5		7.5 6.0
25	2.5	1.5	2.0	3.5	1.0	2.0				7.5	5.5	6.5
26 27	3.0	2.0 1.5	2.0	3.5 3.0	2.0 1.5	2.5				8.5 7.5	5.5 6.5	7.0 7.0
28	3.0	2.0	2.0	3.5	1.5	2.0				8.0	6.0	7.0
29 30				3.5 2.0	0.0	1.5 1.0				9.0 8.0		7.0 7.5
31				2.5	0.0	1.0				8.0	6.5	7.0
MONTH	3.5	1.0	2.0	3.5	0.0	1.6						
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
1	7.5	JUNE 6.5	7.0	9.0	JULY 6.5	7.5	12.0	AUGUST	11.0	12.5	SEPTEMBE	12.0
1 2 3	7.5 7.0 8.0	JUNE 6.5 6.5 6.5	7.0 7.0 7.0	9.0 9.5 10.0	JULY 6.5 8.0 7.0	7.5 8.5 9.0	12.0 11.5 12.0	AUGUST 10.5 9.0 9.0	11.0 10.5 10.5	12.5 12.0 12.0	11.5 11.0 10.5	12.0 11.5 11.5
1 2	7.5 7.0	JUNE 6.5 6.5	7.0 7.0	9.0 9.5	JULY 6.5 8.0	7.5 8.5	12.0 11.5	AUGUST	11.0 10.5	12.5 12.0	SEPTEMBE 11.5 11.0	12.0 11.5
1 2 3 4 5	7.5 7.0 8.0 8.5 8.0	JUNE 6.5 6.5 7.5 7.0	7.0 7.0 7.0 8.0 7.5	9.0 9.5 10.0 9.5 10.5	JULY 6.5 8.0 7.0 7.5 9.0	7.5 8.5 9.0 8.5 10.0	12.0 11.5 12.0 12.0 11.0	10.5 9.0 9.0 10.0 9.5	11.0 10.5 10.5 10.5 10.0	12.5 12.0 12.0 12.5 12.5	SEPTEMBE 11.5 11.0 10.5 11.5 11.5	12.0 11.5 11.5 12.0 12.0
1 2 3 4 5	7.5 7.0 8.0 8.5 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5	7.0 7.0 7.0 8.0 7.5	9.0 9.5 10.0 9.5 10.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5	7.5 8.5 9.0 8.5 10.0	12.0 11.5 12.0 12.0 11.0	10.5 9.0 9.0 10.0 9.5	11.0 10.5 10.5 10.5 10.0	12.5 12.0 12.0 12.5 12.5	SEPTEMBE 11.5 11.0 10.5 11.5 11.5	12.0 11.5 11.5 12.0 12.0
1 2 3 4 5 6 7 8 9	7.5 7.0 8.0 8.5 8.0 7.5 8.0 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.0 7.0	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0	12.0 11.5 12.0 11.0 11.0 12.5 13.5 12.0 15.0	10.5 9.0 9.0 10.0 9.5 9.5 10.0 10.5 10.0	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0	12.5 12.0 12.0 12.5 12.5 12.5	11.5 11.0 10.5 11.5 11.5 11.5 11.5	12.0 11.5 11.5 12.0 12.0 11.5 10.5 11.5
1 2 3 4 5 6 7 8 9	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.0 7.5 7.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0	9.0 9.5 10.0 9.5 10.5 11.0 9.0 10.5 12.0	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0	12.0 11.5 12.0 12.0 11.0 12.5 13.5 12.0 15.0 16.5	10.5 9.0 9.0 10.0 9.5 9.5 10.0 10.5 10.0	11.0 10.5 10.5 10.0 10.5 11.5 11.0 12.0	12.5 12.0 12.5 12.5 12.5 12.5 12.0 11.5 12.0	11.5 11.0 10.5 11.5 11.5 11.5 11.5 10.5 9.0 11.0 11.0	12.0 11.5 11.5 12.0 12.0 11.5 10.5 11.5
1 2 3 4 5 6 7 8 9 10	7.5 7.0 8.0 8.5 8.0 7.5 8.0 8.0 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 6.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 8.0 8.0 7.5	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0	12.0 11.5 12.0 12.0 11.0 12.5 13.5 12.0 15.0 16.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 10.5 10.0 14.0	11.0 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0	11.5 11.0 10.5 11.5 11.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0	12.0 11.5 11.5 12.0 12.0 11.5 10.5 11.5 11.5 11.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0 8.5 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0 7.5 8.0	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0 11.5 12.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 16.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 10.5 10.0 14.0	11.0 10.5 10.5 10.5 10.0 11.5 11.0 12.0 15.0 15.5 14.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 11.5 11.5	\$\text{SEPTEMBE}\$  11.5 11.0 10.5 11.5 11.5 11.5  10.5 9.0 11.0 11.0 11.0 10.5 9.0 7.5	12.0 11.5 11.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5
1 2 3 4 5 6 7 8 9 10	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 5.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.0 10.5 10.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5	12.0 11.5 12.0 11.0 11.0 12.5 13.5 12.0 15.0 16.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 10.5 10.0 14.0  15.0 14.5 14.0	11.0 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 15.5 15.5 14.5	12.5 12.0 12.5 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0	11.5 11.0 10.5 11.5 11.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 10.5 10.5	12.0 11.5 11.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0 8.5 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0 7.5 8.0 8.0 7.5	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0 11.5 12.5 12.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 10.0 11.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 10.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 16.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 10.5 10.0 14.0  15.0 14.0 13.0	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 14.5 14.5 14.0 13.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 12.0 11.5 10.0 8.5	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 7.5 9.0 7.5	12.0 11.5 11.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	7.5 7.0 8.0 8.5 8.0 7.5 8.0 8.0 8.5 8.0 8.5 8.0 9.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 8.0 7.5 8.0 8.0 7.5 8.0 8.0 8.5	9.0 9.5 10.0 9.5 10.5 11.0 9.0 10.5 12.0 11.5 12.5 11.0 12.5 12.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 11.0 11.5 11.5	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 11.5	12.0 11.5 12.0 12.0 11.0 12.5 13.5 12.0 15.0 16.5 16.0 15.0 14.5 14.0	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 10.5 10.0 14.0 14.0 13.0 13.0 12.5 12.0	11.0 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 15.5 14.0 13.5 13.5 13.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 11.5 11.5 10.0 8.5	\$\text{SEPTEMBE}\$  11.5 11.0 10.5 11.5 11.5 11.5  10.5 9.0 11.0 11.0 10.5 10.5 9.0 7.5 8.6 8.5 8.6	12.0 11.5 11.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 9.0 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0 8.5 8.0 8.5 8.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0 7.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0 11.5 12.5 11.0	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.0 11.5 11.5	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 10.5 11.5	12.0 11.5 12.0 12.0 11.0 12.5 13.5 12.0 15.0 16.5 16.0 15.0 14.5 14.0	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 10.5 10.0 14.0  15.0 14.0 13.0 13.0	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 15.0 14.5 14.0 13.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 11.5 11.5 10.0 8.5	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 10.5 9.0 7.5 8.5	12.0 11.5 11.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0 7.5 8.0 7.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.5 8.5 8.5	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.5 12.5 12.5 12.5 12.5 12.5 14.0	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 11.0 11.5 11.5 11.5 11.5 11	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.0 11.5 10.5 11.5 12.0 12.0 12.0 12.0 12.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 15.0 15.0 14.5 14.0 13.5 14.0	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 14.0 14.0 14.0 13.0 13.0 12.5 12.0 12.5	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 14.5 14.0 13.5 13.5 13.0 12.5 12.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 12.0 15.5 10.0 8.5	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 7.5 9.0 7.5 7.0 7.5 8.5 8.0 7.5 7.5	12.0 11.5 11.5 11.5 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20	7.5 7.0 8.0 8.5 8.0 7.5 8.0 8.0 8.5 8.0 8.5 8.9 9.0 9.0 9.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0 7.5 8.0	7.0 7.0 7.0 8.0 7.5 7.0 7.5 8.0 7.5 8.0 8.0 7.5 8.0 8.5 8.5 8.5	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0 11.5 12.5 11.0 12.5 12.5 12.5 12.5 12.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 11.5 11.5 11.5 11.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 10.5 11.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 16.5 14.5 14.5 14.5 14.5 13.5 13.5 13.5	10.5 9.0 9.0 10.0 9.5 9.5 10.0 10.5 10.0 14.0 14.0 14.0 13.0 13.0 12.5 12.5	11.0 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 14.5 14.0 13.5 13.5 13.5 13.0 12.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 11.5 11.5 10.0 8.5	11.5 11.0 10.5 11.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 7.5 7.0 7.5 8.0 8.0 7.5	12.0 111.5 111.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 9.0 8.0 8.5 9.0 8.5 8.5 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0 8.0 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0	JUNE 6.5 6.5 7.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0 7.5 8.0 7.5 8.5 9.0	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0 7.5 8.0 8.0 7.5 8.0 8.5 8.0 8.5 8.5 9.5 9.5 9.5 9.5	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 13.5 14.0 14.0 13.5 13.5 13.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 11.0 11.5 11.5 11.5 11.5 11	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.0 11.5 10.5 11.5 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 15.0 15.0 14.5 14.0 13.5 13.5 13.5 13.5 13.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 14.0 14.0 13.0 13.0 12.5 12.0 11.5 11.5 10.0	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 14.5 14.0 13.5 13.5 13.0 12.5 13.0 12.5 12.5 12.0 12.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 12.0 12.0 11.5 10.0 8.5	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 7.5 9.0 7.5 7.5 8.5 8.0 7.5 7.5 7.5 8.0 8.0 8.0	12.0 11.5 11.5 11.5 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	7.5 7.0 8.0 8.5 8.0 7.5 7.5 8.0 8.0 8.5 8.5 8.0 9.0 9.0 9.0 9.0 9.0 10.0 10.0 10.0 9.5 9.5	JUNE 6.5 6.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0 7.5 7.5 8.0 7.5 8.5 8.5 9.0 8.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 8.0 7.5 8.0 8.5 8.0 8.5 8.5 8.5 9.5 9.5 9.5 9.5	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0 11.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 13.5 13.5 13.5 13.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 11.0 11.5 11.5 11.0 12.0 13.0 12.5 12.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 11.5 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0 13.0	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 15.0 15.0 14.5 14.0 13.5 13.5 13.5 13.5 13.5 13.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 10.5 10.0 14.0  15.0 14.0 13.0  13.0 12.5 12.0 12.5 12.0 11.5 11.5 10.0 12.0	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 14.5 14.0 13.5 13.0 12.5 13.0 12.5 12.5 12.0 12.5	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 12.0 15.5 10.0 8.5 9.0 9.5 9.0 9.0 8.5 8.5	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 10.5 9.0 7.5 7.5 8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 8.0 8.0	12.0 11.5 11.5 11.5 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	7.5 7.0 8.0 8.5 8.0 7.5 8.0 8.0 8.5 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.0	JUNE 6.55 6.55 7.00 7.05 7.55 7.55 7.55 7.55 8.00 7.55 8.5 8.5 8.5 8.5 8.5 8.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0 8.0 7.5 8.0 8.5 8.0 8.5 8.5 9.5 9.5 9.5 9.5 9.0 9.0	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 11.0 11.5 11.5 11.5 11.5 11	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 11.5 12.0 12.0 12.0 12.0 12.5 13.0 13.0 13.0 12.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 15.0 15.0 14.5 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 14.0  15.0 14.5 14.0 13.0  12.5 12.0 12.5 12.5 12.0 11.5 10.0 12.5 12.0 12.0 12.0	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 15.5 15.0 14.5 13.5 13.0 12.5 13.0 12.5 12.0 12.0 12.0	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 12.0 12.0 15.5 10.0 8.5 9.0 9.5 9.0 8.5 8.5 8.5	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 17.5 9.0 7.5 9.0 7.5 7.5 8.0 8.0 8.0 8.0 8.0 7.5 8.0	12.0 11.5 11.5 11.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7.5 7.0 8.5 8.0 7.5 7.5 8.0 8.0 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.5 9.5 9.0 9.0 9.5 9.5	JUNE 6.55 6.55 7.0 7.05 7.55 7.55 7.55 7.55 7.55 8.0 7.55 7.55 8.55 7.50 8.55 8.55 7.0	7.0 7.0 7.0 8.0 7.5 7.5 8.0 7.5 8.0 7.5 8.0 8.5 8.5 8.5 9.5 9.5 9.5 9.0 9.0 8.0	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 11.0 11.5 11.5 11.5 11.5 11	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.05 10.5 11.5 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0 13.0 12.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 15.0 15.0 14.5 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 14.0 15.0 14.0 13.0 13.0 12.5 12.5 12.0 11.5 10.0 12.0 12.0 12.0 12.0 12.0 11.5	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 14.5 14.0 13.5 13.0 12.5 13.0 12.5 12.0 12.0 12.0 12.0	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 12.0 12.0 8.5 9.0 9.0 8.5 9.0 8.5 8.5 8.5 9.0 9.5 9.0	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 11.0 7.5 9.0 7.5 7.5 8.5 8.0 8.0 7.5 7.5 8.0 8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0	12.0 11.5 11.5 11.5 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	7.5 7.0 8.0 8.5 8.0 7.5 8.0 8.0 8.5 8.0 8.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.5 9.5	JUNE 6.5 6.5 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0 7.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.7 8.5 7.5 8.7 8.5 8.5 9.0 8.5 7.5	7.0 7.0 7.0 8.0 7.5 7.0 7.5 8.0 7.5 8.0 8.5 8.5 8.5 8.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.0 11.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 13.5 13.5 13.5 13.5 13.0	JULY  6.5 8.0 7.0 7.5 9.0  9.5 8.5 6.5 7.0 10.0  10.5 11.0  11.5 11.5 11.0 12.0 13.0 12.0 12.0	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 11.5 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0 13.0 13.5 12.5 12.5 12.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 15.0 15.0 14.5 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 14.0  15.0 14.0 13.0 13.0 12.5 12.0 12.5 12.0 11.5 10.0 12.5 12.0 12.5	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 14.5 14.0 13.5 13.0 12.5 13.0 12.5 13.0 12.5 12.0 12.0 12.0	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 11.5 11.5 10.0 8.5 9.0 9.5 9.0 9.0 8.5 8.5 8.5 9.0	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 10.5 9.0 7.5 8.5 8.0 8.0 8.0 7.5 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0	12.0 11.5 11.5 11.5 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7.5 7.0 8.0 8.5 8.0 7.5 8.0 8.0 8.5 8.5 8.5 9.0 9.0 9.0 9.0 9.0 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	JUNE 6.55 6.55 7.00 7.05 7.55 7.55 7.55 7.55 8.00 7.55 8.55 7.55 8.55 7.50 8.55 7.65 8.55 7.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8	7.0 7.0 7.0 8.0 7.5 7.0 7.5 7.5 8.0 8.0 7.5 8.0 8.5 8.0 8.5 9.5 9.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9.0 9.5 10.0 9.5 10.5 11.0 10.0 9.0 10.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 13.5 13.5 13.5 13.5 13.0 13.0 13.0 13.0 12.5 12.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	JULY 6.5 8.0 7.0 7.5 9.0 9.5 8.5 6.5 7.0 10.0 10.5 11.0 11.5 11.5 11.5 11.5 11	7.5 8.5 9.0 8.5 10.0 10.5 9.5 8.0 9.0 11.0 11.5 10.5 11.5 12.0 12.0 12.0 12.0 13.0 13.0 13.0 12.5 12.5 12.5 12.5 12.5	12.0 11.5 12.0 11.0 12.0 11.0 12.5 13.5 12.0 15.0 15.0 15.0 15.0 14.5 14.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	AUGUST  10.5 9.0 9.0 10.0 9.5  9.5 10.0 14.0  15.0 14.0 13.0 12.5 12.0 12.5 12.5 12.5 12.5 12.5 12.5 11.5 11.5	11.0 10.5 10.5 10.5 10.0 10.5 11.5 11.0 12.0 15.0 15.5 13.0 12.5 13.0 12.5 13.0 12.5 12.0 12.0 12.0 12.0	12.5 12.0 12.5 12.5 12.5 12.0 11.5 12.0 12.0 12.0 12.0 12.0 15.5 10.0 8.5 9.0 9.5 9.0 8.5 8.5 8.5 9.0 9.0 8.5 9.0 9.0	SEPTEMBE  11.5 11.0 10.5 11.5 11.5 10.5 9.0 11.0 11.0 11.0 11.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.5	12.0 11.5 11.5 11.5 12.0 12.0 12.0 11.5 10.5 11.5 11.5 11.5 11.5 11.5 11

### 15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING

LOCATION.--Lat  $60^{\circ}28'50''$ , long  $149^{\circ}52'50''$ , in  $NW^{1}/_{4}$  SW $^{1}/_{4}$  sec. 31, T. 5 N., R. 3 W. (Seward B-8 quad), Hydrologic Unit 19020302 Kenai Peninsula Borough, on left bank, approximately 0.5 mi upstream from mouth, and 1.5 mi west of Cooper Landing.

DRAINAGE AREA. -- 48.6 mi².

# WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1957 to January 1965, August 1998 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. From October 1957 to January 1965, 0.4 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Since July 1959, entire flow from 31.8 mi² of drainage area has been regulated by dam at Cooper Lake outlet. No spilling since 1959 except for period May 1961 to October 1962. GOES satellite telemetry at station.

		DISC	HARGE, C	JBIC FEET		D, WATER ILY MEAN		OBER 2002 '	TO SEPTEM	IBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	54 52 45 41 40	174 144 129 138 195	118 93 128 124 107	e25 e25 e25 e27 e25	14 14 14 129 187	25 26 26 24 e23	e12 e12 e12 e12 e12	52 50 52 51 49	77 72 72 72 72 86	89 113 102 81 82	52 50 46 42 41	36 34 34 34 32
6 7 8 9 10	39 43 42 45 46	228 119 96 80 69	111 102 90 78 70	e24 e23 e23 e32 e28	110 81 72 64 64	e22 e21 e19 e18 e17	12 12 11 11	42 39 40 52 62	105 93 82 82 102	77 77 94 102 100	41 41 43 44 46	31 30 29 28 28
11 12 13 14 15	53 59 79 104 101	57 51 46 40 36	65 60 53 e51 e47	e25 e24 e22 e21 e20	61 58 51 45 41	e17 e16 e16 e15 e15	10 9.5 11 11 13	53 50 48 44 41	112 120 124 122 118	96 93 87 98 100	49 55 51 50 50	27 27 26 26 25
16 17 18 19 20	98 97 98 105 150	34 33 31 29 32	e44 e41 e39 e38 e36	e20 20 19 18 18	e39 e38 e36 e34 e33	e15 e15 e14 e14	13 15 15 16 17	43 42 42 45 48	106 99 97 101 100	92 90 82 77 74	55 54 47 41 41	25 24 23 22 25
21 22 23 24 25	153 165 649 554 277	30 57 188 142 76	e33 e31 e28 e28	18 17 e17 e18 e20	e31 e30 e29 29 28	e14 e14 e13 e13	18 19 20 22 24	51 53 59 69 72	102 94 87 77 73	75 72 66 70 72	38 36 35 34 35	28 26 25 25 26
26 27 28 29 30 31	226 141 145 314 277 236	84 71 57 87 184	e28 e27 e27 e26 e26	e23 e21 16 16 16	28 27 26 	e13 e13 e13 e12 e12 e12	30 39 46 51 52	71 74 73 71 75 78	70 67 65 68 78	66 62 64 64 60 54	42 41 41 44 43 40	24 23 24 31 29
TOTAL MEAN MAX MIN AC-FT	4528 146 649 39 8980	2737 91.2 228 29 5430	1803 58.2 128 26 3580	661 21.3 32 15 1310	1413 50.5 187 14 2800	515 16.6 26 12 1020	567.5 18.9 52 9.5 1130	1691 54.5 78 39 3350	2723 90.8 124 65 5400	2531 81.6 113 54 5020	1368 44.1 55 34 2710	827 27.6 36 22 1640
MEAN MAX (WY) MIN (WY)	77.5 264 1958 20.7 1964	53.3 285 1958 11.9 1964	27.1 82.9 1958 10.0 1964	20.3 58.9 1958 8.00 1964	R YEARS 19 16.8 50.5 2003 6.43 1999	12.1 28.0 1958 4.50 1999	18.4 50.3 1958 9.00 1960	97.0 219 1961 42.6 1964	187 412 1958 73.7 1963	142 326 1961 68.1 1960	80.8 226 1961 38.0 1963	72.5 309 1961 21.6 1963

[#] See Period of Record, partial years used in monthly statistics

e Estimated

# 15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING—Continued

SUMMARY STATISTICS	FOR 2002 CALENDA	R YEAR	FOR 2003 WATE	R YEAR	WATER YEARS	1958 - 2003#
ANNUAL TOTAL	21807.3		21364.5			
ANNUAL MEAN	59.7		58.5		68.1	
HIGHEST ANNUAL MEAN					a174	1958
LOWEST ANNUAL MEAN					29.9	1963
HIGHEST DAILY MEAN	174	May 26	649	Oct 23	ab810	Sep 22 1961
LOWEST DAILY MEAN	7.8	Apr 16	9.5	Apr 12	c4.0	Mar 19 1999
ANNUAL SEVEN-DAY MINIMUM	8.1	Apr 11	10	Apr 8	4.0	Mar 19 1999
MAXIMUM PEAK FLOW	d213	May 23	f1230	Oct 23	f1230	Oct 23 2002
MAXIMUM PEAK STAGE	d10.92	May 23	f12.45	Oct 23	f12.45	Oct 23 2002
MAXIMUM PEAK STAGE			g13.60	Jan 8	g13.60	Jan 8 2003
INSTANTANEOUS LOW FLOW	h		i7.3	Apr 10	j3.1	Mar 1 1960
ANNUAL RUNOFF (AC-FT)	43250		42380		49350	
10 PERCENT EXCEEDS	141		106		174	
50 PERCENT EXCEEDS	39		42		35	
90 PERCENT EXCEEDS	9.5		15		10	

- See Period of Record, partial years used in monthly statistics Includes natural flow or spill from area upstream from Cooper Lake dam Caused by release of water behind log jam upstream. Site and datum then in use From Mar. 19 to Apr. 14, 1999
  Also occurred on May 25, 2002
  From high water mark
  Backwater from ice
  Not determined. See Lowest Daily Mean
  Also occurred on Apr. 11
  Caused by temporary storage behind ice jam upstream (observed)

# 15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING—Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1998 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15 minute recording interval.

REMARKS.--Records represent water temperature at the sensor within 0.5°C. No record from January 22-27 due to dead batteries. Temperature at the sensor was compared with the average for the stream by cross section on April 16. No variations were found within the cross section. No variation was found between mean stream temperature and sensor temperature. Heavy shore ice occurs near the gage.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 11.5°C, July 14, 1999 and August 8-9, 2003; Minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 11.5°C, August 8-9; Minimum, 0.0°C on many days during winter.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Stream width, feet (00004)	X-sect. looking dwnstrm ft from 1 bank (00009)	Gage height, feet (00065)	Instan- taneous dis- charge, cfs (00061)	Sam- pling method, code (82398)	Sampler type, code (84164)	Temper- ature, water, deg C (00010)	Temper- ature, air, deg C (00020)
APR									
16	1600	31.3	5.00	9.80	15	10	8010	2.0	3.0
16	1602	31.3	10.0	9.80	15	10	8010	2.0	3.0
16	1604	31.3	15.0	9.80	15	10	8010	2.0	3.0
16	1606	31.3	20.0	9.80	15	10	8010	2.0	3.0
16	1608	31.3	25.0	9.80	15	10	8010	2.0	3.0

### WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	5.0 4.5 3.5 4.0 4.5	4.0 2.5 1.5 2.0 3.0	4.5 3.5 2.5 3.0 4.0	4.5 4.5 4.5 4.5 5.0	3.0 4.0 3.5 4.0 4.0	3.5 4.0 4.0 4.5 4.5	3.0 3.0 4.0 3.5 3.5	2.5 2.5 3.0 3.0	2.5 3.0 3.5 3.0 3.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	5.0 5.0 4.0 1.5 3.5	4.0 4.0 1.5 0.5	4.5 4.5 3.0 1.0 2.0	4.5 4.0 2.0 1.5	4.0 2.0 1.5 0.5	4.0 3.0 2.0 1.0 0.5	3.5 2.5 2.5 3.0 3.0	2.5 1.5 2.0 2.0 2.0	3.0 2.0 2.5 2.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	4.0 4.5 5.0 4.5 5.0	3.0 3.5 3.5 3.0 3.5	3.5 4.0 4.5 3.5 4.0	2.5 2.0 2.0 2.0 2.0	0.5 1.0 0.5 1.5	1.5 1.5 1.5 2.0 1.5	2.0 1.0 1.0 0.0	1.0 1.0 0.0 0.0	1.0 1.0 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	5.0 4.5 5.5 6.0 5.5	3.0 2.5 4.0 5.0 4.5	3.5 3.5 5.0 5.5 5.0	1.5 2.0 2.0 1.5	1.0 1.5 1.0 1.0	1.5 2.0 1.5 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.5 1.0 1.0	0.0 0.5 0.5 0.5	0.5 1.0 0.5 1.0
21 22 23 24 25	4.5 5.0 5.0 5.0 4.5	4.0 4.0 4.5 4.0 3.5	4.5 4.5 5.0 4.5 4.0	2.0 2.5 2.5 3.0 3.0	1.5 1.0 1.0 2.0 2.5	2.0 2.0 2.0 2.5 3.0	0.0 1.0 1.0 0.5	0.0 0.0 0.0 0.0	0.0 0.5 0.5 0.5	1.0	0.0	0.5
26 27 28 29 30 31	3.5 3.0 4.0 4.5 4.5	3.0 2.0 2.0 3.5 4.0	3.5 2.5 3.0 4.0 4.0	3.5 3.0 2.5 3.0 3.5	2.5 2.0 2.0 2.5 3.0	3.0 2.5 2.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.0 1.5 1.5	0.5 1.0 1.0	1.0 1.0 1.0
MONTH	6.0	0.5	3.8	5.0	0.5	2.4	4.0	0.0	1.0			

# 15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING—Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	1.0 1.0 1.5 1.5	1.0 0.0 0.0 0.0 0.0	0.5 1.0 0.5 0.5	2.5 2.0 1.0 0.0	1.0 1.0 1.0 0.0	1.0 1.5 1.5 0.5 0.0	0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5	5.0 5.0 5.0 4.5 3.5	1.5 1.5 1.5 2.0 2.5	3.0 3.0 3.0 3.5 3.0
6 7 8 9 10	1.5 2.0 2.0 2.0 2.0	1.0 1.5 2.0 1.5	1.0 1.5 2.0 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 1.5 1.5	0.0 0.5 0.5 1.0	0.5 0.5 1.0 1.0	5.0 5.5 4.5 4.5	1.0 1.5 2.0 3.0 2.5	2.5 3.0 4.0 4.0 3.5
13	2.5 2.5 2.0 1.5 0.5	2.0 1.5 1.0 0.5	2.0 2.0 1.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 1.5 1.5 2.5 1.5	1.0 1.0 1.0 0.5		4.5 4.0 5.5 5.0		3.5 3.0 3.5 3.5 4.0
19	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		2.0 2.5 3.0 2.5 2.5		1.5 1.5 1.5 1.5	5.0 5.0 5.5 6.0 6.5	2.5 2.0 2.0 1.5 1.5	4.0 3.5 3.5 3.5 4.0
21 22 23 24 25	0.0 0.0 1.0 1.5 2.0	0.0 0.0 0.0 0.5 1.0	0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 2.5 4.0 4.0	1.5 1.5 1.5 1.0	2.0 2.0 2.5 2.5 2.5	6.5 7.0 7.0 6.5 7.5	3.0	4.0 4.5 5.0 4.5 5.0
26 27 28 29 30 31	2.0 1.5 2.0 	1.0 1.0 1.0 	1.5 1.0 1.5 	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	4.5 5.0 5.5 5.0 5.0	1.5 1.5 1.5 1.5	2.5 3.0 3.0 3.0 3.0	7.0 5.0 7.0 7.5 6.5	3.0 4.0 2.0 2.5 3.5 3.5	5.0 4.5 4.5 4.5 5.0
MONTH	2.5	0.0	0.9	2.5	0.0		5.5	0.0	1.5	7.5	1.0	3.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		JUNE			JULY			AUGUST	MEAN		SEPTEMBE	
DAY  1 2 3 4 5								AUGUST	7.0 7.0 7.0 7.0 7.0		5.0 6.0 6.5 5.0	
1 2 3 4	6.0 7.5 7.5 6.5 6.0	JUNE	4.5 5.0 5.0 4.5 5.0	7.5 6.5 7.0 9.0	JULY 5.0 5.0 3.5 4.0	6.5 6.0 5.0 6.5	9.0 9.0 8.5 9.0 9.5	5.0 4.5 5.5 5.0 5.0 6.0 6.5	7.0 7.0 7.0 7.0	7.5 8.5 8.0 7.5	5.0 6.0 6.5 5.0 4.5 4.5 4.0 4.5 5.5	6.5 7.0 7.0 6.5
1 2 3 4 5 6 7 8 9	6.0 7.5 7.5 6.5 6.0	JUNE 3.0 3.0 3.0 2.5 4.0	4.5 5.0 5.0 4.5 5.0 4.5 5.5 5.5	7.5 6.5 7.0 9.0 8.0	JULY 5.0 5.0 3.5 4.0 5.0 5.0 5.0 5.0 5.0	6.5 6.0 5.0 6.5 6.5	9.0 9.0 8.5 9.0 9.5 10.0 11.0 11.5 11.5	5.0 4.5 5.5 5.0 5.0 6.0 6.5	7.0 7.0 7.0 7.5 8.0 8.5 9.5	7.5 8.5 8.0 7.5 7.5 7.0 7.0 7.5	5.0 6.0 6.5 5.0 4.5 4.5 4.5 4.5 4.5	6.5 7.0 7.0 6.5 6.0 6.0 5.5 6.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.0 7.5 7.5 6.5 6.0 7.5 6.5 7.5 6.5 7.5 7.5	JUNE 3.0 3.0 3.0 2.5 4.0 4.0 2.5 3.0 4.0 4.0 4.0 3.5 4.0	4.5 5.0 4.5 5.0 4.5 5.5 5.5 5.5 5.5 5.5	7.5 6.5 7.0 9.0 8.0 9.0 10.5 10.0 9.0 8.5 10.0 10.5 10.5	JULY 5.0 5.0 3.5 4.0 5.0 5.0 5.0 5.5 6.0 4.5 6.0	6.5 6.0 6.5 6.5 7.0 7.5 7.5 7.0 7.0 7.0 7.5 8.0	9.0 9.0 8.5 9.0 9.5 10.0 11.0 11.5 11.5 11.0	5.0 4.5 5.5 5.0 5.0 6.0 6.5 7.5 7.5 7.5 7.5	7.0 7.0 7.0 7.5 8.0 8.5 9.5 9.5 9.5 9.5	7.5 8.5 8.0 7.5 7.0 7.0 7.0 7.5 7.0 6.5 7.0 5.0	5.0 6.0 6.5 5.0 4.5 4.5 4.5 4.5 4.5 5.5 4.5	6.5 7.0 7.0 6.5 6.0 6.5 6.0 5.5 6.0 6.5 6.0 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.0 7.5 7.5 6.5 6.0 7.5 6.5 7.5 6.5 7.0 8.5 7.5 7.0 7.5 7.0	JUNE 3.0 3.0 3.0 2.5 4.0 4.0 2.5 3.0 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0	4.50 5.00 4.50 4.55 5.5 5.5 5.00 5.50 5.5	7.5 6.5 7.0 9.0 8.0 9.0 10.5 10.0 9.0 8.5 10.0 10.5 10.5 10.5	JULY 5.0 5.0 5.0 5.0 5.0 5.0 5.5 6.0 4.5 6.0 5.5 6.0 5.5	6.5 6.0 6.5 6.5 7.0 7.5 7.5 7.0 7.0 7.0 7.5 8.0 7.5 7.5 7.5 7.5	9.0 9.0 8.5 9.0 9.5 10.0 11.0 11.5 11.5 11.0 10.0 9.0 8.5 8.5 9.0	5.0 4.5 5.5 5.0 5.0 6.0 6.5 7.5 7.5 7.5 7.5 7.5 7.0 6.5 5.0	7.0 7.0 7.0 7.5 8.0 8.5 9.5 9.5 9.5 9.5 8.0 8.0 8.0 8.0 7.5 7.0 7.0	7.5 8.5 8.0 7.5 7.0 7.0 7.5 7.0 6.5 7.0 5.0 3.0 3.5 3.5	5.0 6.0 6.5 5.0 4.5 4.5 4.5 5.5 4.5 4.5 1.0	6.5 7.0 7.0 6.5 6.0 6.5 6.0 6.5 6.0 6.5 6.0 6.5 6.0 2.5 2.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6.0 7.5 7.5 6.5 6.0 7.5 6.5 7.0 8.5 7.5 7.0 7.5 7.0 7.5 7.0 7.5 8.0 6.5	JUNE  3.0 3.0 3.0 2.5 4.0 4.0 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.5 4.5 4.5 4.5 4.5	4.50 5.00 4.55 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	7.5 6.5 7.0 9.0 8.0 9.0 10.5 10.0 9.0 8.5 10.0 10.5 10.5 10.0 9.5 8.0 9.5 10.0	JULY 5.0 5.0 5.0 5.0 5.0 5.5 6.0 5.5 6.0 5.5 6.0 6.5 6.0 7.0	6.5 6.0 6.5 6.5 7.0 7.5 7.5 7.0 7.0 7.0 7.5 8.0 7.0 8.0 7.0 8.0 7.0	9.0 9.0 8.5 9.0 9.5 10.0 11.5 11.5 11.5 11.0 10.0 9.0 8.5 8.5 9.0 8.0 8.0 8.0 7.5 8.5 9.0	AUGUST  5.0 4.55 5.0 5.0 6.0 6.5 7.5 7.5 7.5 7.5 7.5 6.0 6.0 5.0 6.0 5.0 6.0	7.0 7.0 7.0 7.5 8.0 8.5 9.5 9.5 9.5 9.5 8.0 8.0 7.0 6.5 6.5 7.5	7.5 8.5 8.0 7.5 7.0 7.0 7.5 7.0 6.5 7.0 5.0 3.0 3.5 3.5 3.0 4.0 5.0	SEPTEMBE  5.0 6.0 6.5 5.0 4.5 4.5 4.5 5.5 4.5 1.0 1.0 1.0 1.0 2.0 2.0 1.5 3.0	6.5 7.0 7.0 6.5 6.0 6.5 6.0 6.5 6.0 6.5 6.0 2.5 2.5 2.0 2.0 2.0 2.5 4.0

#### 15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING

LOCATION.--Lat  $60^{\circ}28'00''$ , long  $150^{\circ}35'56''$ , in  $SW^{1}/_{4}$   $NW^{1}/_{4}$  sec. 1, T. 4 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 3.5 mi downstream from Skilak Lake, 7 mi southeast of Sterling.

PERIOD OF RECORD. -- June 1997 to current year.

REVISED RECORDS. -- WRD-AK-00-1: Drainage area.

GAGE. -- Water stage recorder. Elevation of gage is 240 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage recorder at station. GOES satellite telemetry and phone modem at station.

See Period of Record, partial year used in monthly statistics

Apr. 19 and 23 Mar. 12 and 13, 1998 and Apr. 20, 2002

### 15266150 KENAI RIVER BELOW MOUTH OF KILLEY RIVER NEAR STERLING

LOCATION.--Lat  $60^{\circ}29'28''$ , long  $150^{\circ}37'50''$ , in  $NW^{1}_{/4}$   $SW^{1}_{/4}$   $SE^{1}_{/4}$  sec. 26, T. 5 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 1.5 mi downstream from Killey River, 4.5 mi southeast of

DRAINAGE AREA.--1,496 mi².

PERIOD OF RECORD. -- June 1997 to current year.

GAGE.--Water stage recorder. Elevation of gage is 230 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry and phone modem at station.

		DIS	CHARGE, CU	JBIC FEET		ND, WATER AILY MEAN		OBER 2002	TO SEPTI	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9890 9720 9270 8790 8270	22400 21100 19800 19400 19600	18000 16200 15300 16300 15200	3310 3200 3110 3030 2930	1920 1850 1950 2050 2300	2610 2560 2500 2420 2350	e1450 e1400 e1400 e1350 e1350	1620 1690 1760 1890 1910	4600 4700 4800 4910 5150	11100 11800 12600 12600 12800	14300 13900 13600 13200 12800	13200 13200 13000 12800 12200
6 7 8 9 10	7930 7540 7220 6840 6510	24100 24600 22000 20400 18800	14200 13200 12300 11500 10800	2840 2730 2650 2700 2700	2730 2980 3240 3310 3500	2230 2160 2100 2030 1980	e1300 e1300 e1250 e1250 e1200	1940 1980 2050 2280 2360	5690 5930 6030 6300 6770	13100 13300 13700 14100 14600	12400 12100 11900 11800 11900	11600 10900 10300 9850 9320
11 12 13 14 15	6340 6120 6060 6180 5870	17200 15900 14400 13300 12300	10100 9480 8940 8460 7860	2670 2630 2560 2500 2430	3670 3750 3760 3740 3710	1930 1890 1310 2050 2060	e1200 e1150 e1150 e1140 1160	2390 2440 2510 2590 2680	7370 7900 8460 9360 10100	14800 15100 15300 15600 16100	12200 12700 13100 13500 14200	8880 8410 8100 7750 7340
16 17 18 19 20	5800 5680 5600 5610 5840	11500 10800 10100 9820 9660	7280 6940 6560 6090 5690	2390 2350 2350 2320 2280	3590 3480 3410 3320 3210	1890 1890 1920 1900 1880	1200 1230 1230 1240 1260	2740 2820 2910 2940 2990	10300 10500 10700 10900 11100	16400 16800 16800 16700 16500	15100 15600 15800 16100 16100	6950 6560 6180 5910 5660
21 22 23 24 25	5990 6170 9180 19700 22600	9570 9810 12800 17800 17900	5440 5270 5130 4920 4740	2240 2200 2130 2090 2060	3120 3060 e3000 3020 2910	1840 1770 1680 1640 e1600	1280 1270 1280 1290 1320	3060 3140 3210 3320 3410	11300 11300 11300 11200 11200	16600 16400 16100 16200 16200	15600 14900 14100 13500 12900	5440 5110 4820 4580 4380
26 27 28 29 30 31	21400 21400 21400 22000 24600 23800	20500 24100 23400 20600 19500	4450 4180 3970 3760 3570 3460	2040 2000 1980 1970 1940 1920	2880 2780 e2700 	e1600 e1550 e1550 e1500 e1500 e1450	1330 1380 1430 1490 1550	3580 3850 3990 4050 4220 4440	11000 10800 10700 10700 10900	15900 15500 15400 15300 15000 14700	12800 12500 12300 12800 13000 13200	4240 4040 3990 4060 4570
MEAN MAX MIN	339320 10950 24600 5600 673000 7.32 8.44	513160 17110 24600 9570 1018000 11.4 12.76	269290 8687 18000 3460 534100 5.81 6.70	76250 2460 3310 1920 151200 1.64 1.90	84940 3034 3760 1850 168500 2.03 2.11	59340 1914 2610 1310 117700 1.28 1.48	38830 1294 1550 1140 77020 0.87 0.97	86760 2799 4440 1620 172100 1.87 2.16	261970 8732 11300 4600 519600 5.84 6.51	463100 14940 16800 11100 918600 9.99 11.52	419900 13550 16100 11800 832900 9.05 10.44	233340 7778 13200 3990 462800 5.20 5.80
STATIS	STICS OF	MONTHLY	MEAN DATA	FOR WATE	R YEARS 1	997 - 200	3, BY WAT	ER YEAR (V	VY)#			
MEAN MAX (WY) MIN (WY)	6990 10950 2003 4291 2001	5469 17110 2003 2139 2002	3022 8687 2003 1633 2002	2052 3140 2001 1126 1999	1766 3034 2003 989 1998	1275 1914 2003 926 1999	1240 1490 1998 1010 1999	2877 3823 2002 2456 1999	9400 11080 1998 7701 1997	14580 18240 2001 12580 1999	12950 15930 2001 11020 1998	10200 14240 2001 6196 2000
SUMMAI	RY STATI	STICS	FO					WATER YEA	AR	WATER YE	ARS 1997	- 2003#
ANNUAL HIGHES LOWES ANNUAL MAXIMO MAXIMO ANNUAL ANN	JM PEAK JM PEAK L RUNOFF	MEAN MEAN MEAN DAY MINIM FLOW STAGE (AC-FT)		a24600 963 978	Oct Apr Apr	16	7798  a24600 1140 1170 27300 13 5645000	Oct 3 Apr 1 Apr 1 Nov .52 Nov	L4 L0 6	a24600 b800 836 27300 13. 4349000	Apr Nov 52 Nov	30 2002 19 1997 1 1999 6 2002
ANNUAL 10 PEI 50 PEI		CEEDS		5 71 15000 8270 1120	.41		5 70 16200 5690 1580	.77		4. 54. 14000 3320 1150		

See Period of Record, partial year used in monthly statistics Oct. 30 and Nov. 7 Apr. 19, 1997 and Apr. 6-7, 1999 Estimated

#### 15266300 KENAI RIVER AT SOLDOTNA

LOCATION.--Lat  $60^{\circ}28'39''$ , long  $151^{\circ}04'46''$ , in  $\mathbb{W}^{1}/_{2}$  SW $^{1}/_{4}$  sec. 32, T. 5 N., R. 10 W. (Kenai B-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, near center of span on downstream side of bridge on Sterling Highway, 1.0 mi southwest of Soldotna.

DRAINAGE AREA.--1,951 mi²

PERIOD OF RECORD. -- May 1965 to current year.

REVISED RECORDS. -- WRD AK-00-1 drainage area.

GAGE.--Water-stage recorder. Datum of gage is 35.34 ft above sea level. Prior to May 1, 1997, non-recording gage at same site and datum.

REMARKS .-- Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry and phone modem at station.

90 PERCENT EXCEEDS

See Period of Record; partial years used in monthly statistics

Apr. 8 to Apr. 10 Apr. 1 to Apr. 4, 1966 Backwater from ice

Not determined, see lowest daily mean

Gage

Height

(ft)

Discharge

 $(ft^3/s)$ 

### 15271000 SIXMILE CREEK NEAR HOPE

LOCATION.--Lat  $60^{\circ}49'15''$ , long  $149^{\circ}25'31''$ , in  $SW^{1}/_{4}$   $SE^{1}/_{4}$  sec. 34, T. 8 N., R. 1 W. (Seward D-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on left bank, 6.0 mi upstream from mouth at Turnagain Arm, and 10.6 mi southeast of Hope.

DRAINAGE AREA. -- 234 mi²

Date

Time

PERIOD OF RECORD.--June 1979 to September 1990, August 1997 to current year.

Discharge

 $(ft^3/s)$ 

GAGE. -- Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map. Prior to November 26, 1979, recording gage at site 0.8 mi downstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

Date

Time

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 3,500  ${\rm ft}^3/{\rm s}$  and maximum (*)

Gage

Height

(ft)

	Oct.	24	1700	*10800	*13.56		Nov.	23	1830	4170	11.68	
	Oct.	29	2130	5220	12.08		Jun.	13	2315	4170	11.68	
	Nov.	06	0415	6030	12.35							
		DIS	SCHARGE, C	UBIC FEET	PER SECONI	O, WATER		BER 2002	2 TO SEPTE	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	750 694 621 585 559	1980 1850 1590 2030 3370	1300 1380 1400	e280 e280 e440 e400 e360	246 239 235 484 1480	238 236 233 228 214	176 178 173 172 172	1300 1220 1270 1250 1180	2470 2010 1850 1910 2270	2540 2970 2820 2440 2370	886 829 761 697 685	709 666 646 607 554
6 7 8 9 10	571 611 609 549 531	4890 3150 2330 1850 1510	968 885 830	e320 e360 466 400 341	863 648 609 577 564	201 201 199 195 194	171 170 171 173 176	1050 938 938 1070 1150	2770 2550 2260 2150 2610	2180 2220 2350 2400 2350	708 746 808 858 879	518 506 490 485 466
11 12 13 14 15	526 546 533 589 577	1360 1210 1080 983 904	694 640 572	292 274 262 241 305	544 517 478 443 397	199 194 198 218 253	185 202 217 230 231	1060 988 958 890 851	2910 3200 3660 3690 3250	2230 2080 2000 2090 2020	904 1020 909 968 1120	451 437 432 404 369
16 17 18 19 20	579 557 554 607 1100	842 801 762 753 708	522 527 474	262 274 288 269 274	363 335 339 306 297	237 218 212 202 197	226 234 249 258 276	894 971 967 981 1050	2880 2640 2480 2480 2440	1890 1680 1520 1440 1430	1140 952 794 702 1030	350 334 321 306 320
21 22 23 24 25	1010 1060 5030 6550 4660	669 820 3340 2460 1840	434 434 438	262 e260 e260 e260 e260	295 286 280 273 263	190 189 207 195 184	294 388 448 496 562	1120 1210 1430 1680 1820	2490 2330 2330 2340 2460	1430 1330 1230 1320 1340	797 686 629 604 646	327 315 301 303 364
26 27 28 29 30 31	3520 2490 2130 3220 3310 2430	2260 1660 1300 1490 2260	e340 e320 e320 e300	e260 255 257 255 262 254	259 252 246  	181 181 181 180 178 177	687 881 1040 1250 1310	1920 1940 1770 1740 1930 2280	2130 1940 1890 2070 2360	1180 1080 1030 1050 970 894	880 822 940 1060 1020 814	361 325 365 526 628
TOTAL MEAN MAX MIN AC-FT CFSM IN.	47658 1537 6550 526 94530 6.57 7.58	52052 1735 4890 669 103200 7.41 8.27	687 1630 300 42250 2.94	9233 298 466 241 18310 1.27 1.47	12118 433 1480 235 24040 1.85 1.93	6310 204 253 177 12520 0.87 1.00	11396 380 1310 170 22600 1.62 1.81	39816 1284 2280 851 78980 5.49 6.33	74820 2494 3690 1850 148400 10.7 11.89	55874 1802 2970 894 110800 7.70 8.88	26294 848 1140 604 52150 3.62 4.18	13186 440 709 301 26150 1.88 2.10
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATE	R YEARS 19	79 - 2003	, BY WATE	R YEAR (	WY)#			
MEAN MAX (WY) MIN	915 1777 1981 500	492 1735 2003 221	687 2003	242 528 1981 133	191 433 2003 113	157 240 1984 106	252 397 1990 119	1269 1811 1981 748	2711 3957 2001 1736	2226 3986 1980 1166	1282 2699 1981 760	996 1556 1999 440

See Period of Record; partial years used in monthly statistics  ${\tt Estimated}$ 

# 15271000 SIXMILE CREEK NEAR HOPE—Continued

SUMMARY STATISTICS	FOR 2002 CALEN	DAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1979 - 2003#
ANNUAL TOTAL	378708		370060			
ANNUAL MEAN	1038		1014		929	
HIGHEST ANNUAL MEAN					1335	1980
LOWEST ANNUAL MEAN					675	1986
HIGHEST DAILY MEAN	6550	Oct 24	6550	Oct 24	7570	Jul 12 1980
LOWEST DAILY MEAN	126	Apr 15	170	Apr 7	a80	Apr 1 1986
ANNUAL SEVEN-DAY MINIMUM	130	Mar 19	172	Apr 3	80	Apr 1 1986
MAXIMUM PEAK FLOW			10800	Oct 24	10800	Oct 24 2002
MAXIMUM PEAK STAGE			13.56	Oct 24	13.56	Oct 24 2002
INSTANTANEOUS LOW FLOW			b149	Apr 4	c29	Nov 26 1979
ANNUAL RUNOFF (AC-FT)	751200		734000		673400	
ANNUAL RUNOFF (CFSM)	4.43		4.33		3.97	
ANNUAL RUNOFF (INCHES)	60.20		58.83		53.97	
10 PERCENT EXCEEDS	2610		2350		2430	
50 PERCENT EXCEEDS	656		685		535	
90 PERCENT EXCEEDS	142		218		142	

See Period of Record; partial years used in monthly statistics Apr. 1 to Apr. 9, 1986 Apr. 4 and Apr. 5 Sometime between Nov. 26, 1979 and Jan. 9, 1980, during release from storage behind snow-avalanche dam upstream from former gage site, site and datum then in use

Discharge

 $(ft^3/s)$ 

Gage

Height

### 15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER

LOCATION.--Lat  $60^{\circ}47'07''$ , long  $148^{\circ}50'20''$ , in  $SW^{1}/_{4}$  NE $^{1}/_{4}$  sec. 13, T. 8 N., R. 3 E. (Seward D-5 SW quad), Municipality of Anchorage, Hydrologic Unit 19020302, on left bank at lake outlet, 5.0 mi west of Whittier, 5.8 mi southeast of Portage, and 6.5 mi upstream from mouth.

DRAINAGE AREA. -- 40.5 mi².

Date

PERIOD OF RECORD. -- March 1989 to current year.

Time

GAGE.--Water-stage recorder. Elevation of gage is 95 ft above sea level, from topographic map.

Gage

Height

REMARKS.--Records good except for estimated daily discharges, which are poor.

Discharge

 $(ft^3/s)$ 

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 12,500 ft³/s, August 19, 1984 (elevation about 97.05 ft above sea level from USFS levels) by contracted-opening measurement of peak flow.

Date

Time

EXTREMES FOR CURRENT YEAR.—Peak discharge greater than base discharge of 4,600  ${\rm ft}^3/{\rm s}$  and maximum (*).

	Oct	24	1330	*7730	*8.78		Aug	15	0700	6440	8.24	
	Nov	6	0115	6500	8.27		Aug	28	1215	6190	8.13	
		DIS	CHARGE, C	JBIC FEET		D, WATER		BER 200	2 TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1330 1040 693 514 432	1670 2210 1930 3220 4850	1600 974 1330 1630 1380	99 91 102 118 108	299 268 318 980 2370	183 171 148 132 117	40 39 37 36 34	296 284 289 291 424	1490 1430 1120 922 1480	1770 2050 2360 2110 1900	1610 1430 1280 1140 1140	1670 1360 1330 1210 1070
6 7 8 9 10	407 455 472 399 332	4910 2610 1310 818 586	1020 671 537 510 578	99 91 99 153 154	1310 720 565 514 451	104 94 86 79 73	34 33 34 39 50	446 361 315 410 831	2920 2710 1740 1240 1150	1680 1780 1980 2070 2050	1220 1300 1510 1730 1760	914 883 883 1280 1450
11 12 13 14 15	348 560 933 1790 1210	460 402 346 313 342		154 149 172 154 136	412 423 359 290 237	69 64 60 60 74	51 53 60 67 74	738 552 440 370 324	1180 1250 1480 1630 1610	1990 1880 1970 2150 1990	1790 2280 2370 4340 6220	1150 1030 979 826 622
16 17 18 19 20	1050 779 831 1800 4030	328 331 381 574 616	187 193 197 177 160	135 216 399 e330 e370	195 167 145 128 116	75 63 63 69 76	88 91 100 100 119	313 314 313 305 299	1630 1460 1260 1190 1150	1870 1820 1920 1830 1820	4560 3320 2150 1900 3360	494 423 369 326 328
21 22 23 24 25	3210 3620 6500 6550 4230	565 1110 2760 2010 1540	171 234 315 317 250	e360 e250 e200 e170 e150	102 103 138 167 150	69 62 62 62 60	227 432 394 308 256	290 301 333 403 547	1230 1340 1350 1700 2900	1800 1630 1540 1670 2200	2250 1590 1310 1200 1420	339 303 273 e262 e325
26 27 28 29 30 31	2950 1450 1170 2150 2770 2420	1830 1270 822 1190 2380	196 163 141 132 119 107	e140 e140 203 245 289 289	150 151 173 	55 51 49 46 43 41	241 245 253 272 291	694 964 1000 876 796 955	3010 3230 2290 1870 1790	2610 2120 2320 2780 2250 1830	2960 3700 5450 4620 4080 2440	e440 e410 e525 e1050 e2500
TOTAL MEAN MAX MIN AC-FT CFSM IN.	56425 1820 6550 332 111900 44.9 51.83	43684 1456 4910 313 86650 36.0 40.12	14947 482 1630 107 29650 11.9	5765 186 399 91 11430 4.59 5.30	11401 407 2370 102 22610 10.1 10.47	2460 79.4 183 41 4880 1.96 2.26	4098 137 432 33 8130 3.37 3.76	15074 486 1000 284 29900 12.0 13.85	50752 1692 3230 922 100700 41.8 46.62	61740 1992 2780 1540 122500 49.2 56.71	77430 2498 6220 1140 153600 61.7 71.12	25024 834 2500 262 49640 20.6 22.99
STATIS	STICS OF	MONTHLY	MEAN DATA	FOR WATER	R YEARS 19	89 - 2003	, BY WATE	R YEAR (	(WY)#			
MEAN MAX (WY) MIN (WY)	636 1820 2003 136 1997	316 1456 2003 90.5 1991		150 460 2001 26.0 1991	135 407 2003 26.0 1991	83.7 189 1998 26.0 1991	223 393 1995 36.7 2002	591 1158 1995 286 2001	1456 1728 1990 1178 2001	2084 2518 1990 1714 1999	2058 3164 1989 1409 1998	1785 3583 1995 649 1992

[#] See Period of Record: partial years used in monthly statistics

e Estimated

# 15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER—Continued

SUMMARY STATISTICS	FOR 2002 CALENI	DAR YEAR	FOR 2003 WAT	TER YEAR	WATER YEARS	1989 - 2003#
ANNUAL TOTAL	349774		368800			
ANNUAL MEAN	958		1010		799	
HIGHEST ANNUAL MEAN					1010	2003
LOWEST ANNUAL MEAN					656	2000
HIGHEST DAILY MEAN	6550	Oct 24	6550	Oct 24	10700	Sep 20 1995
LOWEST DAILY MEAN	27	Mar 13	33	Apr 7	a26	Dec 5 1990
ANNUAL SEVEN-DAY MINIMUM	29	Mar 8	35	Apr 2	26	Dec 5 1990
MAXIMUM PEAK FLOW			7730	Oct 24	13000	Sep 20 1995
MAXIMUM PEAK STAGE			8.78	Oct 24	10.66	Sep 20 1995
INSTANTANEOUS LOW FLOW			30	Apr 9	26	Dec 5 1990
ANNUAL RUNOFF (AC-FT)	693800		731500		578800	
ANNUAL RUNOFF (CFSM)	23.7		24.9		19.7	
ANNUAL RUNOFF (INCHES)	321.27		338.75		268.04	
10 PERCENT EXCEEDS	2140		2360		2000	
50 PERCENT EXCEEDS	671		504		320	
90 PERCENT EXCEEDS	33		76		55	

[#] See Period of Record: partial years used in monthly statistics
a From Dec. 5, 1990 to Mar. 31, 1991
e Estimated

### 15272380 TWENTYMILE RIVER BELOW GLACIER RIVER NEAR PORTAGE

 $\texttt{LOCATION.--Lat } \ 60^{\circ}53'53'', \ \texttt{long } \ 148^{\circ}55'19'', \ \texttt{in } \ \mathsf{SW}^{1}/_{4} \ \mathsf{SE}^{1}/_{4} \ \texttt{sec. 4, T. 9 N., R. 3 E. (Seward D-6 quad), Hydrologic Bernell Property of the property of$ Unit 19020401, on right bank, 0.1 miles downstream from Glacier River, 4.0 miles upstream from mouth at Seward Highway, and 6.0 miles northeast of Portage.

DRAINAGE AREA.--141 mi².

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 2001 to current year.

REVISED RECORDS. -- WDR AK-02-1: 2001.

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DIS	CHARGE,	CUBIC FEET		ND, WATER AILY MEAN		OBER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2030 1570 1160 906 733	2630 2770 2500 3920 6470	3230 2020 2070 2410 2000	254 335 400	557 540 550 2260 6180	333 301 286 266 250	e160 e150 142 e140 e140	984 983 1000 1000 1040	2660 2460 2100 1900 2610	3390 3870 4250 3850 3580	2990 2620 2360 2110 2210	3710 3040 3010 2780 2340
6 7 8 9 10	679 769 802 671 578	8410 4650 2640 1810 1350	1590 1190 986 922 986	435 442 353	2740 1500 1180 1070 1030	255 237 224 e220 e220	e140 e145 144 151 203	998 1070 999 966 1400	4570 4410 3210 2630 2580	3290 3510 3900 4100 4060	2450 2660 3050 3400 3460	2030 1880 1740 1780 1880
11 12 13 14 15	524 798 960 1700 1410	1080 929 800 727 761	971 801 718 610 496	321 322 328	987 1010 e900 e700 e550	e210 e210 e210 e210 e210	231 248 269 282 257	1330 1290 1150 969 849	2640 2990 3550 3610 3190	3960 3790 4010 4330 4030	3520 4250 4550 7160 11200	1780 1700 1640 1380 1100
16 17 18 19 20	1390 1180 1110 2090 6800	708 681 729 1030 1240	460 e440 e410 e380 371	466 809 673	e450 e400 e350 e330 299	e200 e200 e220 237 305	245 257 277 282 293	880 898 883 875 891	2890 2780 2740 2650 2530	3840 3860 3960 3750 3710	9530 7000 4630 3820 5600	928 813 724 619 578
21 22 23 24 25	5660 4960 8540 11000 8270	1170 2120 4400 3670 2660	360 515 724 601 490	634 513 488	281 269 337 351 308	328 203 e200 e205 210	438 730 563 575 603	891 1020 1140 1240 1360	2800 2630 2790 3040 4190	3530 3170 3030 3380 3650	4140 3130 2730 2530 2710	557 501 452 429 646
26 27 28 29 30 31	6010 3090 2210 3680 4530 3550	3340 2650 1760 2380 4900	458 e440 e410 e380 350 282	345 419 437 499	324 328 329 	e205 e200 e190 e185 181 e175	652 766 848 936 971	1530 1810 1840 1800 1820 1880	4010 3880 3300 3160 3340	3520 3310 3780 4540 3840 3330	4250 5320 8390 7960 7800 5150	833 817 962 2570 5220
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	89360 2883 11000 524 1570 177200 20.4 23.58	74885 2496 8410 681 2250 148500 17.7 19.76	28071 906 3230 282 601 55680 6.42 7.41	435 809 254 400 26770 3.09	26110 932 6180 269 545 51790 6.61 6.89	7086 229 333 175 210 14060 1.62 1.87	11238 375 971 140 263 22290 2.66 2.96	36786 1187 1880 849 1020 72970 8.42 9.71	91840 3061 4570 1900 2840 182200 21.7 24.23	116120 3746 4540 3030 3790 230300 26.6 30.64	142680 4603 11200 2110 3820 283000 32.6 37.64	48439 1615 5220 429 1510 96080 11.5 12.78
STATIS	STICS OF	MONTHLY	MEAN DAT	A FOR WATE	R YEARS 2	001 - 2003	, BY WATE	ER YEAR (W	TY)#			
MEAN MAX (WY) MIN (WY)	2059 2883 2003 1235 2002	1469 2496 2003 442 2002	834 906 2003 763 2002	735 2002 435	530 932 2003 127 2002	153 229 2003 77.1 2002	269 375 2003 121 2002	1118 1373 2002 796 2001	2799 3061 2003 2513 2002	3263 3746 2003 2796 2002	3708 4603 2003 2700 2002	2132 2613 2001 1615 2003

See Period of Record, partial years used in monthly statistics Estimated

# 15272380 TWENTYMILE RIVER BELOW GLACIER RIVER NEAR PORTAGE—Continued

SUMMARY STATISTICS	FOR 2002 CALEN	DAR YEA	ıR	FOR 2003 WAT	TER YEAR	WATER YEARS	2001 - 2003#
ANNUAL TOTAL	578067			686112			
ANNUAL MEAN	1584			1880		1571	
HIGHEST ANNUAL MEAN						1880	2003
LOWEST ANNUAL MEAN						1263	2002
HIGHEST DAILY MEAN	11000	Oct 2	4	11200	Aug 15	11200	Aug 15 2003
LOWEST DAILY MEAN	60	Mar 1	.3	a140	Apr 4	60	Mar 13 2002
ANNUAL SEVEN-DAY MINIMUM	66	Mar	7	143	Apr 2	66	Mar 7 2002
MAXIMUM PEAK FLOW				12700	Oct 24	12700	Oct 24 2002
MAXIMUM PEAK STAGE				24.87	Oct 24	25.47	Aug 29 2001
ANNUAL RUNOFF (AC-FT)	1147000			1361000		1138000	
ANNUAL RUNOFF (CFSM)	11.2			13.3		11.1	
ANNUAL RUNOFF (INCHES)	152.51			181.02		151.42	
10 PERCENT EXCEEDS	3080			4120		3580	
50 PERCENT EXCEEDS	1270			1020		967	
90 PERCENT EXCEEDS	80			249		140	

 $^{{\}rm \#}$   $\;$  See Period of Record, partial years used in monthly statistics a  $\;$  Apr. 4-6

### 15272380 TWENTYMILE RIVER BELOW GRANITE RIVER NEAR PORTAGE—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- April 2002 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: April 2002 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15 minute recording interval.

REMARKS.--Records represent water temperature at the sensor within  $0.5^{\circ}$ C. No record February 16-18 due to dead batteries. Temperature at the sensor was compared with the average for the stream by cross section on May 1 and August 6. No variation more than  $0.6^{\circ}$ C was found within the cross sections. No variation more than  $0.4^{\circ}$ C was found between mean stream temperature and sensor temperature. Heavy shore ice occurs near the gage.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 9.5°C, several days in May, June and July, 2003; Minimum, 0.0°C on many days during winter.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 9.5°C, several days in May, June and July; Minimum, 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Stream width, feet (00004)	Sample loc- ation, cross section ft from rt bank (72103)	Gage height, feet (00065)	Instan- taneous dis- charge, cfs (00061)	Sam- pling method, code (82398)	Sampler type, code (84164)	Temper- ature, water, deg C (00010)	Temper- ature, air, deg C (00020)
MAY									
01	1143	123	10.0	16.77	989	10	8010	4.4	10.8
01	1145	123	30.0	16.77	989	10	8010	4.5	10.8
01	1147	123	50.0	16.77	989	10	8010	4.7	10.8
01	1149	123	70.0	16.77	989	10	8010	4.8	10.8
01	1151	123	90.0	16.77	989	10	8010	5.0	10.8
AUG									
06	1707	200	12.0	18.52	2390	10	8010	8.8	16.1
06	1709	200	25.0	18.52	2390	10	8010	8.7	16.1
06	1711	200	75.0	18.52	2390	10	8010	8.6	16.1
06	1713	200	125.0	18.52	2390	10	8010	8.4	16.1
06	1715	200	175.0	18.52	2390	10	8010	8.5	16.1

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	4.5 5.0 4.5 4.5	4.0 3.5 2.5 3.0 3.5	4.5 4.0 3.5 4.0	4.0 4.5 4.0 4.5 5.0	3.0 4.0 4.0 4.0 4.0	3.5 4.0 4.0 4.5 4.5	3.5 3.0 3.5 3.5	3.0 2.5 3.0 3.0 3.0	3.0 3.0 3.5 3.5 3.5	0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.5 0.5
6 7 8 9 10	6.0 5.5 5.0 4.0 4.0	4.0 4.5 3.0 2.0 2.0	4.5 5.0 4.0 3.0 3.0	5.0 4.5 3.5 2.5 2.0	4.0 3.5 2.5 2.0 1.0	4.5 4.0 3.0 2.0 1.5	3.5 3.0 3.0 3.0	3.0 2.0 2.5 2.5 1.0	3.0 2.5 2.5 3.0 2.0	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.5 0.5
11 12 13 14 15	4.5 5.5 5.0 5.0 4.5	3.5 4.0 4.0 3.5 3.5	4.0 4.5 4.5 4.0	3.0 3.0 2.5 3.0 3.0	2.0 2.0 2.5 2.5 3.0	2.5 2.5 2.5 3.0 3.0	2.0 2.0 1.5 1.5	0.5 1.5 0.5 0.5	1.5 2.0 1.0 1.0	0.5 1.5 1.0 0.0	0.5 0.5 0.0 0.0	0.5 1.0 0.5 0.0
16 17 18 19 20	5.0 4.5 5.0 5.0	4.0 4.0 4.0 4.5 4.5	4.5 4.0 4.5 4.5	3.0 3.0 3.0 3.0 2.5	2.5 2.0 2.5 2.5 2.5	3.0 2.5 2.5 2.5 2.5	0.5 1.0 1.0 1.0	0.0 0.0 0.5 0.5	0.0 0.5 1.0 1.0 0.5	1.5 1.5 0.5 1.5	0.5 0.5 0.0 0.5 1.0	1.0 1.5 0.5 1.0
21 22 23 24 25	5.0 4.5 5.0 5.5 4.5	4.0 4.0 4.0 4.5 4.0	4.5 4.5 5.0 5.0	3.0 3.5 3.5 3.5 3.5	2.5 3.0 3.0 3.0 3.0	2.5 3.0 3.5 3.0	1.0 1.0 1.5 1.5	0.5 0.5 0.5 0.5	1.0 1.0 1.0 1.0	1.5 1.0 0.5 0.5	1.0 0.5 0.0 0.0	1.0 0.5 0.0 0.5
26 27 28 29 30 31	4.5 3.5 4.0 4.0 4.5 4.5	3.5 2.5 3.0 3.5 4.0 4.0	4.0 3.0 3.5 4.0 4.0	4.0 3.0 3.0 4.0 4.0	3.0 3.0 3.0 3.0 3.0	3.5 3.0 3.0 3.5 3.5	0.5 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.0 1.5 1.5 1.5 1.5	0.5 0.5 1.5 1.0 1.0	0.5 1.0 1.5 1.5 1.5
MONTH	6.0	2.0	4.1	5.0	1.0	3.1	3.5	0.0	1.4	2.0	0.0	0.6

3.0

MONTH

9.5

9.5

5.0

4.0

7.0

5.8

# SOUTH-CENTRAL ALASKA

#### 15272380 TWENTYMILE RIVER BELOW GRANITE RIVER NEAR PORTAGE—Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN FEBRUARY MARCH APRIL MAY 1 1.5 1.0 1.5 3.0 1.0 2.0 2.5 0.0 1.0 7.5 2.5 4.5 2.0 2.0 2.5 8.0 5.0 1.0 1.0 2.5 1.5 0.0 1.0 2.5 1.5 1.5 2.5 3.5 1.5 2.5 5.0 3 1.5 1.5 4.0 0.0 8.0 1.0 2.5 0.5 4 0.0 6.0 5 1.5 0.5 2.0 1.0 4.0 1.5 5.0 6 2.0 1.0 1.5 1.5 0.0 0.5 3.5 0.0 1.5 6.5 2.5 4.5 2.0 1.5 1.5 0.5 4.0 1.0 8.5 8 2.0 1.5 2.0 1.0 0.0 0.5 4.5 1.5 1.5 3.0 8.0 3.5 5.5 4.5 2.0 2.0 4.0 1.5 1.0 0.0 0.0 2.5 5.5 10 2.0 0.5 5.0 2.0 2.0 0.5 0.0 11 2.0 0.0 6.5 1.5 3.5 6.0 3.5 4.5 2.0 0.5 0.0 0.0 4.0 12 1.0 6.5 2.5 2.0 3.5 6.5 13 1.5 0.0 0.0 0.0 2.0 2.5 8.5 3.5 5.5 0.0 0.0 1.0 3.0 5.0 0.0 7.0 15 1.5 1.0 1.0 0.0 0.0 0.0 3.5 1.0 2.0 4.5 5.5 0.0 0.0 0.0 5.0 1.5 3.0 7.0 5.5 16 17 0.5 0.0 0.0 4.5 2.0 3.0 7.0 4.0 5.5 7.5 7.5 2.0 8.5 9.5 18 1.0 0.0 0.5 4.0 4.0 6.0 1.0 0.5 4.0 20 1.0 0.0 0.5 1.5 0.0 0.5 5.0 2.5 3.5 9.5 3.0 6.0 21 2.0 0.5 1.0 1.0 0.0 0.5 3.5 2.0 3.0 9.0 6.0 2.0 1.0 1.5 22 1.5 1.5 0.0 0.5 4.0 2.5 9.0 3.5 6.0 1.0 1.5 0.0 0.0 4.5 4.5 23 0.0 8.0 9.5 6.5 0.5 0.0 2.0 8.0 2.5 2.0 1.0 1.5 2.0 0.5 1.0 8.5 2.0 4.5 9.5 4.5 6.5 26 2.5 1.5 2.0 2.5 0.0 1.0 8.5 2.5 5.0 6.5 5.0 5.5 3.0 2.0 1.5 0.5 2.5 4.5 5.5 27 1.5 1.0 8.0 7.0 5.0 2.0 4.0 28 8.5 1.0 8.0 29 3.5 0.5 2.0 8.0 2.5 5.0 8.0 4.0 6.0 3.0 ___ ---2.0 0.0 1.0 8.0 2.5 5.0 9.0 4.5 6.0 2.0 4.5 31 0.0 0.5 6.0 5.5 4.0 0.0 0.7 8.5 0.0 9.5 2.5 5.4 MONTH ___ ---3.1 DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN JUNE JULY AUGUST SEPTEMBER 7.0 5.5 5.0 6.0 8.0 6.0 8.0 5.0 6.0 1 4.5 6.5 4.5 8.5 7.0 7.0 8.5 4.5 6.0 5.5 5.5 6.0 4.5 6.0 7.0 5.0 3 9.0 4.5 6.5 5.0 6.0 5.0 6.0 6.5 5.0 6.0 8.0 4.0 9.0 4.5 9.0 6.0 5.0 4 6.5 5.0 6.5 4.5 6.0 7.5 6.5 5.0 7.0 6 6.0 4.5 5.0 8.5 5.0 6.5 8.5 5.0 6.5 7.5 4.5 5.5 9.0 5.5 9.5 5.0 7.0 9.0 7.0 4.0 5.5 6.5 8.5 8 4.0 9.0 5.5 9.0 5.0 6.5 6.5 4.5 5.0 6.0 5.0 9.5 6.5 6.0 4.5 7.0 8.5 5.0 10 5.0 8.5 9.0 7.0 11 8.5 4.5 6.0 8.0 6.0 7.0 6.5 5.5 6.0 7.0 4.0 5.5 12 9.0 4.5 9.5 5.0 7.0 6.0 5.5 7.0 4.5 13 9.0 4.5 6.5 9.5 5.5 5.5 7.0 6.0 5.0 5.5 7.5 5.5 6.5 9.0 7.0 5.5 5.0 5.0 6.5 14 5.0 15 6.5 5.5 9.0 5.5 7.0 6.0 5.0 5.5 6.0 3.0 4.0 5.5 16 8.0 4.5 6.0 7.0 6.0 6.5 6.5 5.0 6.5 3.0 4.5 7.5 7.5 5.5 6.5 7.0 7.5 5.5 17 4.5 6.0 5.0 6.5 3.0 4.5 5.0 6.0 4.5 3.0 4.0 18 6.0 7.0 5.0 9.0 5.0 6.5 5.0 6.0 5.5 20 7.0 5.0 6.0 7.5 5.5 6.5 6.0 4.5 5.0 4.5 3.0 3.5 5.5 4.0 21 6.5 5.0 5.5 6.5 6.0 6.0 7.0 4.5 5.5 3.0 22 9.0 4.5 5.0 6.5 7.0 9.0 5.5 5.5 6.0 7.0 8.0 4.5 4.5 6.0 6.5 5.5 4.0 5.0 4.5 23 6.0 5.0 6.0 6.5 6.0 25 6.0 4.5 5.0 6.5 5.0 5.5 5.5 5.0 5.5 5.5 4.5 5.0 26 6.0 5.0 7.0 5.0 6.0 6.0 5.0 5.5 4.0 4.5 6.5 8.5 5.5 6.0 5.5 5.0 5.5 5.5 6.0 5.0 4.5 5.5 5.0 3.5 4.5 4.5 5.5 27 4.5 6.0 28 4.0 6.5 29 9.0 4.5 6.5

5.0

5.0

4.5

5.5

6.5

6.4

6.5

7.0

9.0

4.5

5.0

4.5

5.0

5.5

5.8

5.5

8.0

4.5

3.0

5.0

4.9

7.0

8.5

9.5

### 15276000 SHIP CREEK NEAR ANCHORAGE

LOCATION.--Lat 61°13'32", long 149°38'06", in  $SW^{1}_{/4}$   $SE^{1}_{/4}$  sec. 9, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, Hydrologic Unit 19020401, in Fort Richardson Military Reservation, on left bank, 800 ft downstream from diversion dam, 3.3 mi upstream from North Fork Ship Creek, and 7.8 mi east of intersection of Seward and Glenn Highways in Anchorage.

DRAINAGE AREA. -- 90.5 mi².

PERIOD OF RECORD. -- October 1946 to current year.

REVISED RECORDS.--WSP 1936: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 490 ft above sea level, from topographic map. Prior to August 22, 1985, water-stage recorder at dam 800 ft upstream. See WSP 1936 for history of changes prior to October 1, 1954.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge data represent the net flow remaining after diversion for water supply to Fort Richardson, Elmendorf Air Force Base, and Municipality of Anchorage. Average diversion for water year 2003 was 6.23 ft³/s. Diversion began in 1944. Magnitude of discharges downstream of dam may be affected by periodic spillway adjustment.

COOPERATION.--Gage inspected and records of diversion provided by Office of Post Engineers, Fort Richardson.

		DISCH	ARGE, CUB	IC FEET	PER SECONI DAI	, WATER LY MEAN		BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	398 369 300 275 260	307 289 276 265 266	166 155 153 151 146	e95 e90 e90 e90	e65 e65 e65 e65	e60 e60 e55 e55 e55	e44 e44 e42 e42 e40	141 146 155 155	347 321 315 316 337	266 329 368 320 282	125 121 118 115 111	153 147 150 142 136
6 7 8 9 10	266 390 416 356 324	270 254 237 219 202	141 138 135 130 131	e85 e85 e85 e85 e85	e65 e65 e65 e65 e60	e55 e55 e55 e55 e50	e40 e38 e38 e36 e34	139 129 133 143 143	356 340 322 312 363	268 251 239 223 228	108 105 104 103 102	130 126 122 120 116
11 12 13 14 15	309 305 286 272 275	207 205 192 187 180	130 124 e120 e120 e110	e85 e80 e80 e80 e80	e60 e60 e60 e60	e50 e50 e50 e50 e50	e34 e36 e36 e36	139 133 128 121 127	407 438 471 480 459	233 220 207 188 187	107 148 163 191 189	113 109 112 107 104
16 17 18 19 20	295 296 311 315 428	176 172 166 162 157	e110 e110 e110 e110 e110	e80 e80 e80 e75 e75	e60 e60 e60 e60	e50 e50 e50 e48 e48	e36 e36 e38 e40	146 162 148 144 148	401 364 351 342 340	194 183 170 150 151	260 263 234 209 194	104 104 102 100
21 22 23 24 25	451 419 405 466 502	152 152 167 154 149	e100 e100 e100 e100 e100	e75 e75 e75 e75 e70	e60 e60 e60 e60 e60	e48 e48 e46 e46 e46	e45 e45 e50 57 61	163 192 221 261 281	335 318 307 292 277	161 159 152 156 160	175 163 151 146 154	101 97 95 95 103
26 27 28 29 30 31	491 418 380 380 361 326	158 153 144 155 188	e100 e160 e680 e540 e95 e95	e70 e70 e70 e70 e70 e65	e60 e60 e60 	e46 e46 e46 e44 e44	68 82 102 119 135	280 282 282 297 341 350	262 240 227 229 245	148 144 140 138 132 130	206 194 178 172 167 161	101 94 97 100 107
TOTAL MEAN MAX MIN AC-FT	11045 356 502 260 21910	5961 199 307 144 11820	4770 154 680 95 9460	2460 79.4 95 65 4880	1725 61.6 65 60 3420	1555 50.2 60 44 3080	1526 50.9 135 34 3030	5779 186 350 121 11460	10114 337 480 227 20060	6277 202 368 130 12450	4937 159 263 102 9790	3387 113 153 94 6720
					ADJUSTED		UDE DIVER	SION				
MEAN CFSM IN AC-FT	362 4.00 4.61 22240	204 2.26 2.52 12170	160 1.76 2.03 9815	85.1 0.94 1.08 5230	67.2 0.74 0.77 3730	56.0 0.62 0.71 3440	56.7 0.63 0.70 3380	193 2.14 2.46 11890	345 3.81 4.25 20530	211 2.33 2.69 12980	165 1.82 2.10 10160	118 1.31 1.46 7040
STATIS	TICS OF	MONTHLY MI	EAN DATA F	OR WATER	YEARS 194	17 - 2003	B, BY WATE	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	152 356 2003 48.7 1969	79.5 199 2003 24.3 1969	49.1 154 2003 13.9 1969	32.1 79.4 2003 7.13 1956	22.9 61.6 2003 5.36 1983	17.4 50.2 2003 3.61 1956	25.4 69.7 1990 4.77 1954	167 456 1990 39.9 1971	452 798 1977 132 1996	304 645 1980 72.0 1996	207 510 1981 73.0 1996	209 471 1967 55.8 1969

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

# 15276000 SHIP CREEK NEAR ANCHORAGE—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1947 - 2003#
ANNUAL TOTAL	61275	59536	
ANNUAL MEAN	168	163	143
ANNUAL MEAN	*174	*169	*162
HIGHEST ANNUAL MEAN			223 1980
LOWEST ANNUAL MEAN			67.3 1969
HIGHEST DAILY MEAN	680 Dec 28	ae680 Dec 28	1420 Aug 9 1971
LOWEST DAILY MEAN	22 Apr 8	b34 Apr 10	c0.00 Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	24 Apr 4	35 Apr 9	0.43 Jan 9 1956
MAXIMUM PEAK FLOW		d	1860 Jun 21 1949
MAXIMUM PEAK STAGE			f3.44 Jun 21 1949
MAXIMUM PEAK STAGE			g6.52 Jun 21 1949
MAXIMUM PEAK STAGE		h8.54 Dec 29	h8.54 Dec 29 2002
ANNUAL RUNOFF (AC-FT)	121500	118100	103900
ANNUAL RUNOFF (AC-FT)	*126800	*122600	*117400
ANNUAL RUNOFF (CFSM)	*1.93	*1.86	*1.79
ANNUAL RUNOFF (IN)	*26.3	*25.4	*24.3
10 PERCENT EXCEEDS	394	336	368
50 PERCENT EXCEEDS	149	133	78
90 PERCENT EXCEEDS	28	50	14

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Adjusted to account for diversion, see Remarks From winter flood event Apr. 10 and Apr. 11
No flow during one or more days in water years 1956, 1960, 1969, and 1971
Not determined, see highest daily mean Estimated
Site and datum then in use
Current site and datum
From CSG mark from ice-affected winter breakout event, at current site and datum

### 15276200 SHIP CREEK AT GLENN HIGHWAY NEAR ANCHORAGE

LOCATION.--Lat 61°14′20″, long 149°41′45″, on line between sec. 6 and 7, T. 13 N., R. 2 W. (Anchorage A-8NE quad), Municipality of Anchorage, Hydrologic Unit 19020401, in Fort Richardson Military Reservation, on right bank, just downstream from the Glenn Highway Bridge, 2.6 mi downstream from the Ship Creek diversion dam, and 6.0 mi east of intersection of Seward and Glenn Highways in Anchorage.

DRAINAGE AREA. -- 103.4 mi².

PERIOD OF RECORD. -- October 2002 to September 2003.

GAGE.--Water-stage recorder. Elevation of gage is 279 ft. above sea level, from topographic map.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. Discharge data represent the net flow remaining after diversion for water supply to Fort Richardson, Elmendorf Air Force Base, and Municipality of Anchorage. Average diversion for water year 2003 was 6.23 ft³/s. Diversion began in 1944. Magnitude of discharges downstream of dam may be affected by periodic spillway adjustment.

COOPERATION .-- Gage inspected and records of diversion provided by Office of Post Engineers, Fort Richardson.

EXTREMES FOR CURRENT YEAR.-- Maximum daily discharge, 680  $\mathrm{ft}^3/\mathrm{s}$  (estimated), December 28, 2002, maximum gage height 9.2  $\mathrm{ft}$ , from floodmarks, December 28, 2002; minimum daily discharge 37  $\mathrm{ft}^3/\mathrm{s}$ , April 12, 2003.

				WATER	YEAR OCT	OBER 2002 ILY MEAN		EMBER 200	13			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e400 e370 e300 e270 e260	e305 e290 e275 e265 e265	e170 e160 e155 e155 e150	e100 e95 e90 e90	e65 e65 e65 e65	61 62 63 60 54	40 44 44 42 43	133 138 151 152 146	329 296 304 302 314	e270 e320 e360 e310 e270	124 121 118 116 110	146 142 149 141 135
6 7 8 9 10	e260 e390 e410 e350 e320	e270 e250 e235 e220 e200	e145 e140 e140 e135 e130	e85 e85 e85 e85	e65 e60 e60 e60	49 e45 e45 e45 e45	44 45 44 43	138 128 130 138 137	343 e330 e320 295 327	e260 e240 e230 e220 e220	107 104 103 102 101	132 127 120 116 110
11 12 13 14 15	e310 e300 e280 e270 e270	e205 e205 e190 e185 e185	e130 e125 e115 e115 e110	e85 e80 e80 e80	e60 e55 e55 e55	e45 e45 e45 e45 e55	38 37 42 41 38	135 134 127 122 123	397 449 e480 e490 e470	e230 e220 e210 209 195	106 140 151 172 172	107 103 105 101 99
16 17 18 19 20	e290 e295 e310 e315 e425	e180 e175 e170 e165 e160	e110 e110 e110 e110 e110	e80 e80 e80 e75 e75	e55 e55 e55 e55	e55 e55 e55 45 40	38 41 42 41 43	134 147 138 132 139	399 354 337 314 317	200 184 171 155 156	e240 e250 e225 208 176	97 95 94 92 93
21 22 23 24 25	e450 e420 e405 e460 e500	e155 e155 e170 e155 e150	e100 e100 e100 e100 e100	e75 e75 e75 e70	e55 e55 e55 e55	39 44 e45 e45 e45	45 46 49 55 60	152 164 182 203 236	314 296 289 280 267	164 163 151 153 157	162 155 153 145 153	94 92 91 92 98
26 27 28 29 30 31	e490 e420 e380 e380 e360 e325	e160 e155 e145 e155 e190	e100 e160 e680 e540 127 124	e70 e70 e70 e70 e70 e65	e55 e55 e55 	e45 42 41 39 40 40	65 77 105 115 123	255 263 266 302 285 302	253 229 219 225 248	147 142 137 136 130 128	187 185 168 158 157 147	97 91 93 97 103
TOTAL MEAN MAX MIN AC-FT CFSM IN.	10985 354 500 260 21790 3.43 3.95	5985 200 305 145 11870 1.93 2.15	4856 157 680 100 9630 1.51 1.75	2470 79.7 100 65 4900 0.77 0.89	1625 58.0 65 55 3220 0.56 0.58	1479 47.7 63 39 2930 0.46 0.53	1570 52.3 123 37 3110 0.51 0.56	5332 172 302 122 10580 1.66 1.92	9787 326 490 219 19410 3.16 3.52	6238 201 360 128 12370 1.95 2.24	4716 152 250 101 9350 1.47 1.70	3252 108 149 91 6450 1.05 1.17
WTR YF	2003	TOTAL 582	95 MEAN	160 MAX	680 MIN	37 AC-FT	115600	CFSM 1.5	4 IN. 20	.97		
ADJU	JSTED TO	INCLUDE D	IVERSIONS									
MEAN CFSM IN AC-FT	360 3.48 4.01 22120	205 1.98 2.22 12220	162 1.57 1.81 9990	85.4 0.83 0.95 5250	63.6 0.62 0.64 3530	53.5 0.52 0.60 3290	58.2 0.56 0.63 3460	179 1.73 2.00 11010	334 3.23 3.61 19880	210 2.03 2.34 12900	158 1.53 1.76 9720	114 1.10 1.23 6770

e Estimated

### 15276320 SHIP CREEK BELOW FISH HATCHERY NEAR ANCHORAGE

LOCATION.--Lat  $61^{\circ}14'36''$ , long  $149^{\circ}43'19''$ , in  $SW^{\frac{1}{2}}_{4}$   $NE^{\frac{1}{2}}_{4}$  sec. 1, T. 13 N., R. 3 W. (Anchorage A-8NE quad), Municipality of Anchorage, Hydrologic Unit 19020401, in Fort Richardson Military Reservation, on left bank, 0.5 mi downstream from fish hatchery, 0.8 mi upstream of the Fort Richardson Elmendorf border, 3.3 mi downstream from diversion dam, and 6.0 mi east of intersection of Seward and Glenn Highways in Anchorage.

DRAINAGE AREA .-- Pending.

PERIOD OF RECORD. -- October 2002 to September 2003.

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Discharge data represent the net flow remaining after diversion for water supply to Fort Richardson, Elmendorf Air Force Base, and Municipality of Anchorage. Average diversion for water year 2003 was 6.23 ft³/s. Diversion began in 1944. Magnitude of discharges downstream of dam may be affected by periodic spillway adjustment.

EXTREMES FOR CURRENT YEAR.--Maximum discharge and gage-height unknown, minimum daily discharge,  $34 \text{ ft}^3/\text{s}$ , April 10 and 11.

COOPERATION. -- Gage inspected and records of diversion provided by Office of Post Engineers, Fort Richardson.

		DISCHA	RGE, CUBI	C FEET P			YEAR OCTOBE	R 2002	TO SEPTEMBE	ER 2003		
					DAI	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e380	e280	e160	e90	e60	e55	e44	121	325	258	120	152
2	e360	e260	e150	e85	e60	e55	e44	120	305	313	117	147
3	e280	e240	e150	e85	e60	e50	e42	129	301	355	114	149
4	e260	e240	e150	e85	e60	e50	e42	132	306	306	111	143
5	e240	e240	e140	e85	e60	e50	e40	127	325	271	107	136
6	e240	e240	e140	e80	e60	e50	e40	120	344	257	103	131
7	e380	e220	e130	e80	e60	e50	e38	112	330	240	101	127
8	e400	e220	e130	e80	e60	e50	e38	114	314	228	99	123
9	e340	e200	e120	e80	e60	e50	e36	123	306	217	98	120
10	e300	e200	e120	e80	e55	e50	e34	124	353	224	97	118
11	e280	e200	e120	e80	e55	e50	e34	125	422	231	102	115
12	e280	e200	e120	e75	e55	e50	e36	124	471	214	140	111
13	e260	e190	e110	e75	e55	e50	e36	119	507	201	155	113
14	e260	e190	e110	e75	e55	e50	e36	117	517	186	182	108
15	e260	e180	e100	e75	e55	e50	e36	118	499	186	180	105
16	e280	e170	e100	e75	e55	e50	e36	132	414	191	245	103
17	e280	e170	e100	e75	e55	e50	e36	149	375	179	252	101
18	e300	e160	e100	e75	e55	e50	e36	138	355	166	224	99
19	e300	e160	e100	e70	e55	e48	e36	136	342	147	201	97
20	e400	e150	e100	e70	e55	e48	e38	140	336	147	186	98
21	e440	e150	e95	e70	e55	e48	e40	151	333	155	171	98
22	e400	e150	e95	e70	e55	e48	e42	165	315	154	159	97
23	e380	e160	e95	e70	e55	e46	e46	188	302	147	148	94
24	e440	e150	e95	e70	e55	e46	e50	207	287	150	142	94
25	e480	e140	e95	e65	e55	e46	55	221	276	156	146	101
26	e470	e150	e95	e65	e55	e46	61	244	261	143	196	101
27	e400	e150	e160	e65	e55	e46	71	253	241	138	187	94
28	e360	e140	e680	e65	e55	e46	87	257	231	135	172	96
29	e360	e150	e540	e65		e44	102	268	231	133	166	100
30	e340	e180	e90	e65		e44	113	316	243	126	162	107
31	e300		e90	e60		e44		328		124	159	
TOTAL	10450	5630	4580	2305	1585	1510	1425	5118	10167	6078	4742	3378
MEAN	337	188	148	74.4	56.6	48.7	47.5	165	339	196	153	113
MAX	480	280	680	90	60	55	113	328	517	355	252	152
MIN	240	140	90	60	55	44	34	112	231	124	97	94
AC-FT	20730	11170	9080	4570	3140	3000	2830	10150		12060	9410	6700

WTR YR 2003 TOTAL 56968 MEAN 156 MAX 680 MIN 34 AC-FT 113000

e Estimated

### 15278000 EKLUTNA LAKE NEAR PALMER

LOCATION.--Lat  $61^{\circ}24'39''$ , long  $149^{\circ}07'20''$ , in  $NE^{1}/_{4}$  NE $^{1}/_{4}$  sec. 18, T. 15 N., R. 2 E. (Anchorage B-6 quad), Municipality of Anchorage, Hydrologic Unit 19020402, on north shore, 0.7 mi upstream from lake outlet, 12 mi upstream from mouth of Eklutna River, and 14 mi south of Palmer.

DRAINAGE AREA. -- 119 mi².

PERIOD OF RECORD.--November 1946 to September 1962 (fragmentary after January 1955), June 1983 to current year. Fragmentary records for the period October 1962 to June 1983 available from Eklutna Hydroelectric Project.

GAGE.--Water-stage recorder. Datum of gage is sea level (levels by Alaska Power Administration). Prior to June 1983, non-recording gage at lake outlet at datum of 859.8 ft above sea level.

REMARKS.--Lake outlet consists of earth and rockfill dam with uncontrolled spillway crest at an elevation of 871 ft. Prior to 1965, control structure 1400 ft upstream with spillway crest at elevation of 867.5 ft which could be flash-boarded to elevation of 871 ft. Outflow was controlled by the flash boards and sluice gates. Dead storage below elevation of 859 ft. Reservoir is used for power generation and water supply. GOES satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 877.68 ft, September 25, 1995; minimum observed, 814.2 ft, June 1, 1962.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 867.15 ft, September 8; minimum, 831.29 ft, June 5.

GAGE-HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	864.13	863.26	861.44	857.80	852.95	848.36	841.19	834.60	831.78	837.56	855.58	866.36
2	864.10	863.18	861.37	857.66	852.78	848.12	840.99	834.40	831.67	838.08	855.83	866.45
3	863.98	863.11	861.27	857.56	852.62	847.86	840.79	834.20	831.58	838.70	856.07	866.65
4	863.88	863.02	861.14	857.46	852.43	847.60	840.61	834.04	831.49	839.25	856.24	866.84
5	863.80	863.01	861.02	857.31	852.28	847.35	840.42	833.92	831.41	839.78	856.42	866.93
6 7 8 9	863.75 863.71 863.65 863.58 863.50	863.16 863.17 863.13 863.08 863.03	860.91 860.85 860.76 860.64 860.54	857.16 857.01 856.85 856.70 856.53	852.10 851.91 851.71 851.56 851.46	847.10 846.87 846.63 846.40 846.14	840.26 840.09 839.87 839.67 839.42	833.98 834.03 834.07 834.12 834.15	831.43 831.45 831.45 831.46 831.59	840.40 840.92 841.51 842.12 842.77	856.65 856.92 857.26 857.69 858.14	866.98 867.07 867.10 867.09 867.03
11	863.39	862.98	860.48	856.36	851.33	845.92	839.16	834.20	831.76	843.46	858.65	866.93
12	863.29	862.90	860.42	856.18	851.27	845.72	838.93	834.26	831.96	844.20	859.39	866.85
13	863.18	862.80	860.31	855.99	851.21	845.50	838.76	834.30	832.27	844.87	860.07	866.83
14	863.04	862.71	860.16	855.85	851.07	845.28	838.58	834.26	832.72	845.63	860.73	866.80
15	862.96	862.61	860.02	855.73	850.91	845.00	838.37	834.15	833.15	846.39	861.54	866.69
16	862.88	862.51	859.87	855.57	850.73	844.71	838.15	834.00	833.50	847.17	862.26	866.53
17	862.79	862.41	859.74	855.41	850.58	844.47	837.94	833.83	833.77	847.88	862.76	866.43
18	862.65	862.29	859.60	855.27	850.52	844.24	837.73	833.68	833.95	848.48	863.08	866.29
19	862.52	862.16	859.48	855.08	850.54	844.00	837.53	833.58	834.21	849.03	863.35	866.18
20	862.56	862.04	859.35	854.93	850.56	843.76	837.35	833.48	834.43	849.63	863.57	866.07
21 22 23 24 25	862.63 862.61 862.60 862.80 863.07	861.95 861.86 861.79 861.74	859.22 859.14 859.13 859.01 858.87	854.79 854.63 854.45 854.28 854.07	850.44 850.21 849.97 849.67 849.38	843.57 843.38 843.15 842.92 842.71	837.13 836.78 836.44 836.17 835.95	833.33 833.07 832.83 832.68 832.59	834.65 834.86 835.12 835.43 835.74	850.27 850.88 851.45 852.08 852.71	863.74 863.92 864.05 864.21 864.42	865.96 865.78 865.58 865.42 865.25
26 27 28 29 30 31	863.28 863.34 863.36 863.34 863.33 863.31	861.58 861.55 861.49 861.42 861.45	858.68 858.53 858.37 858.21 858.04 857.90	853.88 853.70 853.54 853.43 853.30 853.13	849.12 848.87 848.61	842.47 842.28 842.07 841.81 841.61 841.39	835.73 835.49 835.17 834.99 834.79	832.48 832.38 832.25 832.13 832.01 831.86	835.98 836.21 836.47 836.80 837.15	853.21 853.69 854.15 854.56 854.92 855.26	864.71 864.98 865.28 865.61 865.95 866.21	865.07 864.89 864.75 864.69 864.84
MEAN	863.26	862.44	859.82	855.54	850.96	844.79	838.15	833.51	833.51	846.81	861.14	866.21
MAX	864.13	863.26	861.44	857.80	852.95	848.36	841.19	834.60	837.15	855.26	866.21	867.10
MIN	862.52	861.42	857.90	853.13	848.61	841.39	834.79	831.86	831.41	837.56	855.58	864.69

#### 15280200 EKLUTNA RIVER AT OLD GLENN HIGHWAY AT EKLUTNA

LOCATION.--Lat  $61^{\circ}27'01''$ , long  $149^{\circ}22'02''$ , in  $NE^{1}/_{4}$   $SW^{1}/_{4}$   $NE^{1}/_{4}$  sec. 25, T. 16 N., R. 1 W. (Anchorage B-7 quad), Municipality of Anchorage, Hydrologic Unit 19020402, on right bank, 1.3 mi upstream from mouth, 0.7 mi south of

DRAINAGE AREA. -- 172 mi².

PERIOD OF RECORD. -- May 1 2002 to current year

GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Records are fair except for estimated daily discharges, which are poor. Flow regulated by Eklutna Reservoir, 11 mi upstream, for power generation and water supply. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY AUG SEP JAN MAR APR JUN JUL 1 71 63 33 e20 21 22 e15 24 28 81 49 40 2 73 32 e23 21 23 e14 22 28 50 39 60 90 62 57 32 e22 22 23 e14 22 88 47 39 24 22 45 4 63 55 31 e22 e14 e21 29 89 39 5 55 31 e22 26 23 32 42 62 e20 88 35 e14 6 61 55 30 e22 23 e22 e14 e19 35 84 40 34 70 52 29 e21 22 e21 e14 19 35 84 38 34 15 17 8 66 48 30 e21 24 e18 1 Q 38 82 37 33 25 65 e45 29 e21 e12 19 38 78 36 32 10 64 e44 29 e22 28 e7.0 17 19 46 36 32 11 65 e45 29 e22 26 e7.0 20 19 55 74 37 31 12 64 e44 26 e22 25 e10 28 20 65 66 43 30 13 63 e43 e25 e22 25 e12 27 19 81 65 40 32 42 23 28 14 63 e24 e22 e15 18 93 38 30 23 27 39 15 63 42 e23 e22 e16 19 111 e60 16 64 41 e15 e22 e22 e16 27 20 104 67 39 29 e40 e21 38 64 e10 e22 e16 22 21 106 28 18 66 e39 e15 e22 e20 e16 22 2.0 99 62 3.8 28 38 e20 e22 e19 20 19 99 59 38 67 e15 20 68 37 e24 e22 e19 e15 20 19 101 59 38 27 21 70 37 22 21 19 38 27 e24 e18 e14 102 59 22 69 36 e24 e21 e18 e14 22 20 99 58 39 26 23 69 36 e25 e21 ₽19 e13 25 2.0 100 57 36 26 e25 68 36 e20 e20 e13 e19 25 69 35 e25 e21 e14 29 22 97 58 37 26 26 70 35 e20 e19 e21 e14 29 22 87 38 26 29 27 37 40 27 67 35 e12 e19 22 e15 2.3 80 54 25 e8.0 28 67 34 e20 22 e15 24 79 53 25 29 35 e10 e21 24 26 52 39 3.0 66 36 e15 e21 e15 25 27 78 50 39 26 29 39 31 64 e22 22 e15 50 ΤΟΤΔΙ. 2050 1300 727.0 661 620 488 N 648 650 2157 2077 1227 908 15.7 71.9 23.5 21.3 22.1 21.6 21.0 67.0 39.6 30.3 MEAN 66.1 43.3 MAX 63 33 23 28 23 29 29 111 90 50 40 8.0 7.0 MTN 61 34 19 18 14 18 2.7 50 36 2.5 4070 2580 1440 1310 1230 1290 1290 4280 4120 1800 AC-FT 968 2430 CFSM 0.38 0.25 0.14 0.12 0.13 0.09 0.13 0.12 0.42 0.39 0.23 0.18 TN. 0.44 0.28 0.16 0.14 0.13 0.11 0.14 0.14 0.47 0.45 0.27 0.20 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2002 - 2003, BY WATER YEAR (WY)# 74.7 77.5 23.5 MEAN 43.3 21.3 22.1 15.7 47.3 66.1 36.7 60.1 51.4 MAX 66.1 43.3 21.3 22.1 15.7 21.6 52.5 67.0 63.2 64.4 2003 2002 2003 2003 2003 2002 2003 2003 2003 2003 2002 2002 (WY) 21.3 71.9 MIN 66.1 23.5 22.1 21.6 53.3 30.3 (WY) 2003 2003 2003 2003 2003 2003 2003 2003 2003 2002 2003 2003 SUMMARY STATISTICS FOR 2003 WATER YEAR ANNUAL TOTAL 13513.0 ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 111 LOWEST DAILY MEAN a7.0 Mar 10 ANNUAL SEVEN-DAY MINIMUM Mar 11 Jun 21 MAXIMUM PEAK FLOW 131 85.87 MAXIMIM PEAK STAGE Jun 21 MAXIMUM PEAK STAGE b87.68 Mar 13 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 26800 69 50 PERCENT EXCEEDS 28 90 PERCENT EXCEEDS

See Period of Record. Partial years used in monthly statistics

Mar. 10 and 11 Backwater from ice

Estimated

#### 15281000 KNIK RIVER NEAR PALMER

LOCATION.--Lat 61°30′18″, long 149°01′50″, in NE¹/4 SE¹/4 sec. 2, T.16 N., R.2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, near the right bank on downstream side of bridge on Old Glenn Highway, 7 mi south of Palmer, 7 mi upstream from Alaska Railroad bridge, 9 mi downstream from Friday Creek, and about 17 mi downstream from Knik Glacier.

DRAINAGE AREA. -- 1,180 mi², approximately.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1959 to January 1988, annual maximum, water year 1989, October 1991 to September 1992, and April, 2001 to current year.

REVISED RECORDS. -- WRD-AK-77-1: 1974-75 (M).

GAGE.--Water-stage recorder. Datum of gage is 33.68 ft above North American Vertical Datum of 1988. Prior to June 27, 1960, nonrecording gage, and June 27, 1960 to Apr. 25,1974, water-stage recorder at old bridge 100 ft upstream at original 1929 datum. Apr. 26, 1974 to Apr. 18, 1976, recording gage at site 0.4 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Flood peaks due to outbreak of glacier-dammed Lake George, 1948-62, 1964, 1965, published in WSP 1936. Streamflow augmented by glaciers, which cover 54 percent of the basin.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1948, 359,000 ft³/s, July 18, 1958, gage height, 25.30 ft, at site in use beginning 1959, from outbreak of glacier-dammed Lake George.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES JUN AUG DAY ОСТ NOV DEC JAN FEB MAR APR MAY JUL SEP e4000 e2200 e2000 e640 e2400 2890 25100 e3800 e2200 e640 e3500 e2200 e620 e2200 e620 e3100 e2200 e620 e2200 e600 e2900 e2200 e1100 e600 e2900 e2200 e1000 e600 e2200 e2800 e2200 e900 e620 e2200 e9700 e2700 e860 e630 789 e2700 e2200 e860 e9400 e2600 e2200 e800 e10000 e800 e2600 e2200 e2500 e2100 e800 e2500 e2000 e740 e2100 e2400 e2100 e1800 e740 e740 e2400 e2100 e1600 e2400 e1500 e720 e2100 2.0 e3470e2400 e2100 e1450 e720 e720 e3470 e2400 e1400 e2100 e3400 e2400 e2100 e1350 e700 e3400 e2400 e2100 e1300 e700 e3500 e2400 e2100 25 e1300 e700 e3800 e2300 e2100 e1300 e680 27 e4000 e2300 e2000 e1250 e4000 e2300 e2000 e1240 e680 e3700 e4100 e2300 e2000 e660 e4100 e2300 **_2000** e2000 e660 e4200 e2300 e2300 e2000 e640 тотат, 280790 MEAN MAX MIN AC-FT 556900 2.27 2.17 CFSM 7.68 5.04 1.80 0.71 0.98 4.06 13.5 23.9 20.3 7.29 0.82 1.10 27.59 23.39 8.14 IN. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1960 - 2003. BY WATER YEAR (WY)# MEAN MAX (WY) MTN (WY) 

[#] See Period of Record; partial years used in monthly statistics

e Estimated

# 15281000 KNIK RIVER NEAR PALMER—Continued

SUMMARY STATISTICS	FOR 2002 CALEN	DAR YEAR	FOR 2003 WAS	TER YEAR	WATER YEARS	1960	- 2003#
ANNUAL TOTAL	3091880		3244489				
ANNUAL MEAN	8471		8889		7004		
HIGHEST ANNUAL MEAN					8889		2003
LOWEST ANNUAL MEAN					5590		1973
HIGHEST DAILY MEAN	33600	Jul 25	41500	Aug 16	341000	Jul 2	6 1961
LOWEST DAILY MEAN	a850	Feb 11	b600	Apr 6	c260	Mar	1 1962
ANNUAL SEVEN-DAY MINIMUM	850	Feb 11	609	Apr 3	260	Mar	1 1962
MAXIMUM PEAK FLOW			d42700	Aug 16	fg355000	Jul 2	6 1961
MAXIMUM PEAK STAGE			d13.06	Aug 16	24.35	Jul 1	7 1960
ANNUAL RUNOFF (AC-FT)	6133000		6435000		5074000		
ANNUAL RUNOFF (CFSM)	7.18		7.53		5.94		
ANNUAL RUNOFF (INCHES)	97.47		102.28		80.65		
10 PERCENT EXCEEDS	23000		24800		21100		
50 PERCENT EXCEEDS	4140		4000		2100		
90 PERCENT EXCEEDS	850		976		500		

See Period of Record; partial years used in monthly statistics
Feb. 11 to Mar. 19
Apr. 6-9
Mar. 1-31, 1962
Aug. 16 and 17
Site then in use, caused by release of stored water from outbreak of glacier-dammed Lake George
Gage height, 24.3 ft a b c d f

# 15281000 KNIK RIVER NEAR PALMER—Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1948-1958, 1961-1972, 1974-1975, 1989 and current year.

PERIOD OF DAILY RECORD.--SUSPENDED-SEDIMENT DISCHARGE: Water years 1962-1966.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	Strem	Loca- tion in X-sect. looking dwnstrm ft from 1 bank (00009)	Gage height, feet (00065)	Starting time, 24 hour clock, hr:min (82074)	_	Instan- taneous dis- charge, cfs (00061)	Sampling method code (82398)	Sampler type, code (84164)	Temper- atire. water. deg C (00010)	Temper- ature air deg C (00020)	Sus- pended sediment concen- tration mg/L (80154)	Sus- pended sediment load tons/d (80155)
JUN													
13	1311	397		10.14	1311.00	1425.00	19000	20	3055	5.5	17.0		
13	1500	397	510	10.18	1507.00	1811.00	17800	1000	1100	5.5	17.0		
JUL 03	1410	400		11.04	1410.00	1515.00	24700	20	3055	5.5	19.0	364	24300
03	1540	400	510	10.99	1540.00	1721.00	24700	1000	1100	5.5	19.0	364	24300
12	1456	400	210	10.99	1456.00	1531.00	30000	20	3055	8.5	22.0	711	57800
12	1555	400	510	11.64	1555.00	1706.00	29800	1000	1100	8.5	22.0		
12	1728	400		11.58	1728.00	1920.00	29800		8010	8.5	22.0		
AUG	1720	400		11.50	1720.00	1920.00	23000		0010	0.5	22.0		
14	1234	390		11.70	1234.00	1303.00	30200	20	3055	4.0	13.0	610	49700
14	1316	390	510	11.71	1316.00	1417.00	30300	1000	1100	4.0	13.0		
SEP													
19	1410	388		6.96	1410.00	1434.00	4820	20	3055	1.5	.0	205	2670
19	1512	388	702	6.98	1512.00	1728.00	4820	1000	1100	1.5	.0		
Pata	Suspnd. sedi- ment, seive diametr percent <.063mm	Bedload sediment dis- charge, tons/d	unit cmposit t/d/ft	samples in x-sec bedload measmnt number	Number of sampling points, count	sample, number	Hori- zontal width of verti- cal, feet	bed for bed load sample, seconds	sampler mm	Tether line used in sampling (yes=1) code	percent <.25mm	sedi- ment, sieve diametr percent <.5mm	sedi- ment, sieve diametr percent <1mm
Date	sedi- ment, seive diametr percent	sediment dis- charge,	sedimnt dschrge average unit cmposit	samples in x-sec bedload measmnt	of sampling points,	cals in composite sample,	zontal width of verti- cal,	time on bed for bed load sample,	size, bedload sampler	line used in sampling (yes=1)	sedi- ment, sieve diametr percent	sedi- ment, sieve diametr percent	sedi- ment, sieve diametr percent
JUN	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in compo- site sample, number (04119)	zontal width of verti- cal, feet (04121)	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	line used in sampling (yes=1) code (04117)	sedi- ment, sieve diametr percent <.25mm (80228)	<pre>sedi- ment, sieve diametr percent &lt;.5mm (80229)</pre>	<pre>sedi- ment, sieve diametr percent &lt;1mm (80230)</pre>
JUN 13	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	line used in sampling (yes=1) code (04117)	sedi- ment, sieve diametr percent <.25mm (80228)	sedi- ment, sieve diametr percent <.5mm (80229)	sedi- ment, sieve diametr percent <1mm (80230)
JUN 13 13	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in compo- site sample, number (04119)	zontal width of verti- cal, feet (04121)	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	line used in sampling (yes=1) code (04117)	sedi- ment, sieve diametr percent <.25mm (80228)	<pre>sedi- ment, sieve diametr percent &lt;.5mm (80229)</pre>	<pre>sedi- ment, sieve diametr percent &lt;1mm (80230)</pre>
JUN 13 13 JUL	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121) 20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	line used in sampling (yes=1) code (04117)	sedi- ment, sieve diametr percent <.25mm (80228)	sedi- ment, sieve diametr percent <.5mm (80229)	sedi- ment, sieve diametr percent <1mm (80230)
JUN 13 13 JUL 03	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121) 20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	line used in sampling (yes=1) code (04117)	sedi- ment, sieve diametr percent <.25mm (80228)	sedi- ment, sieve diametr percent <.5mm (80229)	sedi- ment, sieve diametr percent <1mm (80230)
JUN 13 13 JUL 03	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)  8760	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)  .025	line used in sampling (yes=1) code (04117)  1	sedi- ment, sieve diametr percent <.25mm (80228)	sedi- ment, sieve diametr percent <.5mm (80229)	sedi- ment, sieve diametr percent <1mm (80230) 46 35
JUN 13 13 JUL 03 03 12	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)  8760  6700	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  20.0  20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)  .025	line used in sampling (yes=1) code (04117)  1	sedi- ment, sieve diametr percent <.25mm (80228)	sedi- ment, sieve diametr percent <.5mm (80229)	sedi- ment, sieve diametr percent <1mm (80230)
JUN 13 13 JUL 03 03 12	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)  8760  6700  9010	sedimnt dschrge average unit cmposit t/d/ft (04122)  22.1  16.8  22.5	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  20.0  20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)  .025  .025	line used in sampling (yes=1) code (04117)  1	sedi-ment, sieve diametr percent <.25mm (80228) 0 0	sedi-ment, sieve diametr percent <.5mm (80229)  15  13 12	sedi-ment, sieve diametr percent <1mm (80230)  46  35 38
JUN 13 13 JUL 03 03 12	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)  8760  6700	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  20.0  20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)  .025	line used in sampling (yes=1) code (04117)  1	sedi- ment, sieve diametr percent <.25mm (80228)	sedi- ment, sieve diametr percent <.5mm (80229)	sedi- ment, sieve diametr percent <1mm (80230)
JUN 13 13 JUL 03 03 12 12	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)  8760  6700  9010	sedimnt dschrge average unit cmposit t/d/ft (04122)  22.1  16.8  22.5	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  20.0  20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)  .025  .025	line used in sampling (yes=1) code (04117)  1	sedi-ment, sieve diametr percent <.25mm (80228) 0 0	sedi-ment, sieve diametr percent <.5mm (80229)  15  13 12	sedi-ment, sieve diametr percent <1mm (80230)  46  35 38
JUN 13 13 JUL 03 12 12 12 AUG	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)  8760  6700  9010	sedimnt dschrge average unit cmposit t/d/ft (04122)  22.1	samples in x-sec bedload measmnt number (04118) 2 2 2	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  20.0  20.0	time on bed for bed load sample, seconds (04120)  20 15 15	size, bedload sampler mm (30333)  .025  .025  .025	line used in sampling (yes=1) code (04117)  1 1 1	sedi- ment, sieve diametr percent <.25mm (80228) 0 0 0	sedi- ment, sieve diametr percent <.5mm (80229)  15  13 12	sedi- ment, sieve diametr percent <1mm (80230)  46  35 38
JUN 13 13 JUL 03 03 12 12 AUG 14	sedi- ment, seive diametr percent <.063mm (70311)  86 86 64	sediment dis- charge, tons/d (80225) 8760 6700 9010	sedimnt dschrge average unit cmposit t/d/ft (04122)  22.1  16.8  22.5 	samples in x-sec bedload measmnt number (04118) 2 2 2	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121) 20.0 20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)  .025  .025 	line used in sampling (yes=1) code (04117)  1 1 1	sedi-ment, sieve diametr percent <.25mm (80228) 0 00	sedi-ment, sieve diametr percent <.5mm (80229)  15  13 12	sedi-ment, sieve diametr percent <1mm (80230)  46  35 38
JUN 13 13  JUL 03 12 12 12 14  AUG 14	sedi- ment, seive diametr percent <.063mm (70311)  86 86 64	sediment dis- charge, tons/d (80225) 8760 6700 9010	sedimnt dschrge average unit cmposit t/d/ft (04122)  22.1  16.8  22.5 	samples in x-sec bedload measmnt number (04118) 2 2 2	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121) 20.0 20.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)  .025  .025 	line used in sampling (yes=1) code (04117)  1 1 1	sedi-ment, sieve diametr percent <.25mm (80228) 0 00	sedi-ment, sieve diametr percent <.5mm (80229)  15  13 12	sedi-ment, sieve diametr percent <1mm (80230)  46  35 38

# 15281000 KNIK RIVER NEAR PALMER—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	Bedload	Bedoad	Bedoad	Bedoad	Bedoad	Bed							
	sedi-												
	ment,												
	sieve	sieve	sieve	sieve	sieve	dry svd							
	diametr	diametr	diametr	diametr	diametr	sve dia	dve dia						
	percent												
	<2mm	<4mm	<8mm	<16mm	<32mm	<.25mm	<.5mm	<1mm	<2mm	<4mm	<8mm	<16mm	<32mm
Date	(80231)	(80232)	(80233)	(80234)	(80235)	(80166)	(80167)	(80168)	(80169)	(80170)	(80171)	(80172)	(80173)
JUN													
13													
13	74	90	98	100									
JUL													
03													
03	66	85	95	100									
12													
12	66	83	94	99	100								
12						. 0	13	35	59	77	91	99	100
AUG													
14													
14	65	83	95	99	100								
SEP													
19													
19	82	91	97	100	100								

### 15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE

LOCATION.--Lat  $61^{\circ}50'20''$ , long  $147^{\circ}24'31"$ , in  $SE^{1}_{/4}$   $SE^{1}_{/4}$   $NW^{1}_{/4}$  sec. 11, T. 20 N., R. 11 E. (Anchorage D-2 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, on left bank 5 ft downstream from culvert on old alignment (1/2 mile upstream from new alignment) Glenn Highway, and 3.5 mi northeast of Sheep Mountain Lodge.

DRAINAGE AREA.--1.09 mi²

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Annual maximum, water years 1968-69, 1971, 1989-95. October 1995 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 2,950 ft above sea level, from topographic map. Prior to 1971 crest-stage gage at site above culvert at different datum, June 2, 1989 to September 30, 1995, crest-stage gage at same site and datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

REMARKS.--Records are poor. Goes satellite telemetry at station. Rain gauge at station.

		DISC	HARGE, CU	BIC FEET		D, WATER ILY MEAN		DBER 2001	TO SEPTEM	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e0.75 e0.63 0.63 0.64 0.65	e0.21 e0.21 e0.20 e0.20 e0.19	e0.03 e0.03 e0.03 e0.03	e0.01 e0.01 e0.01 e0.01 e0.01	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.02 e0.02 e0.03 e0.03 e0.04	0.77 0.81 0.68 0.63 0.82	0.26 0.26 0.27 0.27 0.25	0.22 0.20 0.21 0.22 0.25	0.45 0.42 0.39 0.38 0.39
6 7 8 9 10	0.60 0.57 0.56 0.54 0.53	e0.19 e0.17 e0.15 e0.13 e0.12	e0.03 e0.03 e0.02 e0.02 e0.02	e0.01 e0.01 e0.01 e0.01 e0.01	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.04 e0.05 e0.06 e0.07 e0.09	1.1 1.5 1.2 0.93 0.82	0.23 0.19 0.18 0.16 0.15	0.27 0.30 0.32 0.32 0.34	0.43 0.40 0.39 0.41 0.42
11 12 13 14 15	0.49 e0.45 e0.43 e0.42 e0.42	e0.11 e0.10 e0.09 e0.08 e0.07	e0.02 e0.02 e0.02 e0.02 e0.02	e0.01 e0.01 e0.01 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.11 e0.15 0.22 0.59 0.69	0.74 0.64 0.58 0.57 0.54	0.17 0.16 0.17 0.18 0.17	0.42 0.43 0.41 0.35 0.35	0.43 0.42 0.40 0.40 0.42
16 17 18 19 20	e0.41 e0.40 e0.39 e0.37 e0.35	e0.07 e0.06 e0.06 e0.05 e0.05	e0.02 e0.02 e0.02 e0.02 e0.02	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	0.51 1.0 1.8 2.4 2.7	0.51 0.51 0.52 0.55 0.54	0.16 0.19 0.21 0.24 0.20	0.40 0.40 0.40 0.40 0.46	0.41 0.40 0.38 0.37 0.36
21 22 23 24 25	e0.32 e0.31 e0.30 e0.29 e0.28	e0.05 e0.04 e0.04 e0.04 e0.04	e0.02 e0.02 e0.02 e0.02 e0.02	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.01 e0.01	2.9 2.6 2.3 2.3	0.46 0.40 0.36 0.37 0.40	0.19 0.20 0.21 0.22 0.25	0.45 0.48 0.46 0.43 0.44	0.35 0.33 0.32 0.30 0.28
26 27 28 29 30 31	e0.27 e0.26 e0.25 e0.24 e0.23 e0.22	e0.04 e0.04 e0.03 e0.03	e0.02 e0.02 e0.02 e0.02 e0.02 e0.01	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.01 e0.01 e0.01 e0.02 e0.02	1.7 1.2 1.0 0.94 0.88 0.74	0.35 0.35 0.37 0.33 0.27	0.24 0.25 0.27 0.28 0.27 0.23	0.45 0.47 0.47 0.46 0.48 0.47	0.27 0.26 0.26 0.26 0.26
TOTAL MEAN MAX MIN AC-FT CFSM IN.	13.20 0.43 0.75 0.22 26 0.39 0.45	2.89 0.096 0.21 0.03 5.7 0.09 0.10	0.68 0.022 0.03 0.01 1.3 0.02 0.02	0.13 0.004 0.01 0.00 0.3 0.00 0.00	0.0 0.000 0.00 0.00 0.00 0.00	0.0 0.000 0.00 0.00 0.00 0.00	0.09 0.003 0.02 0.00 0.2 0.00	29.18 0.94 2.9 0.02 58 0.86 1.00	18.62 0.62 1.5 0.27 37 0.57 0.64	6.68 0.22 0.28 0.15 13 0.20 0.23	11.73 0.38 0.48 0.20 23 0.35 0.40	10.96 0.37 0.45 0.26 22 0.34 0.37
STATIS	TICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	96 - 2002	, BY WATE	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	0.53 1.12 1998 0.17 1997	0.24 0.65 1998 0.000 2001	0.088 0.39 1998 0.000 2001	0.009 0.042 1999 0.000 1996	0.000 0.000 1996 0.000 1996	0.000 0.000 1996 0.000 1996	0.017 0.058 1996 0.000 1999	0.89 1.55 1998 0.25 1999	3.95 8.58 2001 0.56 1996	1.69 2.97 2001 0.22 2002	1.35 3.58 1997 0.38 2002	1.13 2.63 2000 0.37 2002

e Estimated

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1996 - 2002#
ANNUAL TOTAL	453.53	94.16	
ANNUAL MEAN	1.24	0.26	0.82
HIGHEST ANNUAL MEAN			1.46 2000
LOWEST ANNUAL MEAN			0.26 2002
HIGHEST DAILY MEAN	14 Jun 9	2.9 May 21	17 Jun 7 1997
LOWEST DAILY MEAN	a0.00 Jan 1	b0.00 Jan 14	c0.00 Dec 6 1995
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 1	0.00 Jan 14	0.00 Dec 6 1995
MAXIMUM PEAK FLOW		6.1 May 20	d46 Jul 21 1992
MAXIMUM PEAK STAGE		f15.08 May 20	15.49 Jun 28 2000
MAXIMUM PEAK STAGE		fg17.02 Apr 28	
ANNUAL RUNOFF (AC-FT)	900	187	598
ANNUAL RUNOFF (CFSM)	1.14	0.24	0.76
ANNUAL RUNOFF (INCHES)	15.48	3.21	10.28
10 PERCENT EXCEEDS	4.6	0.57	2.3
50 PERCENT EXCEEDS	0.10	0.12	0.21
90 PERCENT EXCEEDS	0.00	0.00	0.00

See Period of Record Jan. 1 to May 12 Jan. 14 to Apr. 23 No flow most days during winter From rating curve extended above 0.8 ft³/s From crest-stage gage Flow over ice

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.28 0.27 0.26 0.25 0.25	0.16 0.16 0.16 0.16 0.17	e0.05 e0.05 e0.05 e0.05 e0.05	e0.03 e0.03 e0.02 e0.02 e0.02	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.02 e0.03 e0.03 e0.03 e0.04	2.8 2.5 2.0 2.2 2.3	0.68 0.73 0.74 0.72 0.70	0.43 0.41 0.39 0.41 0.38	1.00 0.83 0.71 0.66 0.60
6 7 8 9 10	0.24 0.24 0.23 0.21 0.20	0.16 0.15 0.15 0.15 e0.14	e0.05 e0.05 e0.04 e0.04	e0.02 e0.02 e0.02 e0.02 e0.02	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.05 e0.05 e0.07 e0.07 e0.10	2.6 2.2 2.0 2.6 4.5	0.71 0.73 0.70 0.70 0.69	0.34 0.34 0.33 0.31	0.52 0.49 0.46 0.43 0.42
11 12 13 14 15	0.20 0.21 0.22 0.21 0.20	e0.14 e0.13 e0.12 e0.12 e0.11	e0.04 e0.04 e0.04 e0.04 e0.04	e0.02 e0.02 e0.02 e0.02 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.12 e0.15 e0.20 e0.30 e0.34	3.2 2.8 2.0 1.6 1.4	0.64 0.61 0.59 0.59 0.57	0.32 0.33 0.32 0.31 0.32	0.41 0.39 0.39 0.36 0.32
16 17 18 19 20	0.21 0.20 0.20 0.21 0.23	e0.10 e0.09 e0.08 e0.07 e0.07	e0.04 e0.03 e0.03 e0.03 e0.03	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.37 e0.39 e0.42 e0.50 e0.55	1.3 1.2 1.2 1.2 1.1	0.56 0.53 0.52 0.47 0.47	0.28 0.28 0.28 0.27 0.26	0.31 0.30 0.30 0.28 0.30
21 22 23 24 25	0.21 0.19 0.19 0.19 0.19	e0.07 e0.06 e0.06 e0.06 e0.06	e0.03 e0.03 e0.03 e0.03 e0.03	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.59 e0.64 e0.70 e0.78 e0.87	1.2 1.2 1.1 1.1 0.98	0.52 0.55 0.51 0.51 0.53	0.27 0.26 0.24 0.25 0.24	0.32 0.31 0.29 0.30 0.29
26 27 28 29 30 31	0.19 0.18 0.18 0.18 0.17	e0.06 e0.06 e0.05 e0.05	e0.03 e0.03 e0.03 e0.03 e0.03	e0.01 e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.02 e0.02 e0.02 e0.02	1.5 2.2 2.6 3.0 3.2 3.2	0.93 0.89 0.84 0.79 0.70	0.52 0.52 0.51 0.50 0.46 0.46	0.22 0.22 0.22 0.23 0.25 0.91	0.29 0.27 0.27 0.30 0.30
TOTAL MEAN MAX MIN AC-FT CFSM IN.	6.56 0.21 0.28 0.17 13 0.19 0.22	3.18 0.11 0.17 0.05 6.3 0.10 0.11	1.16 0.037 0.05 0.03 2.3 0.03 0.04	0.47 0.015 0.03 0.01 0.9 0.01 0.02	0.28 0.010 0.01 0.01 0.6 0.01 0.01	0.31 0.010 0.01 0.01 0.6 0.01 0.01	0.34 0.011 0.02 0.01 0.7 0.01 0.01	23.11 0.75 3.2 0.02 46 0.68 0.79	52.43 1.75 4.5 0.70 104 1.60 1.79	18.24 0.59 0.74 0.46 36 0.54 0.62	9.93 0.32 0.91 0.22 20 0.29 0.34	12.42 0.41 1.0 0.27 25 0.38 0.42
STATIST	TICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	96 - 2003	, BY WATE	R YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	0.49 1.12 1998 0.17 1997	0.23 0.65 1998 0.000 2001	0.082 0.39 1998 0.000 2001	0.010 0.042 1999 0.000 1996	0.001 0.010 2003 0.000 1996	0.001 0.010 2003 0.000 1996	0.016 0.058 1996 0.000 1999	0.87 1.55 1998 0.25 1999	3.67 8.58 2001 0.56 1996	1.56 2.97 2001 0.22 2002	1.22 3.58 1997 0.32 2003	1.04 2.63 2000 0.37 2002
SUMMARY	Y STATIS	TICS	FOR	R 2002 CAL	ENDAR YEA	R	FOR 2003	WATER YEA	R	WATER YEA	ARS 1996	- 2003#
LOWEST HIGHEST LOWEST ANNUAL	MEAN F ANNUAL ANNUAL F DAILY	MEAN MEAN EAN AY MINIMU	JM	2. a0.	24 9 May 2	1 4 4	128. 0. 4. b0.	35	0 5 5	0.7 1.4 0.2 17 c0.0	16 26	2000 2002 7 1997 6 1995 6 1995
MAXIMUM ANNUAL ANNUAL 10 PERC 50 PERC	W DEAR C	TAGE (AC-FT) (CFSM) (INCHES) EEDS		0.	22 01 51		4. 0. 0.	38 85	Ö	17 c0.( 0.0 d46 15.4 555 0.7 9.5 2.2 0.2	55 2 20	28 2000

[#] See Period of Record
a Jan. 14 to Apr. 23
b Jan. 15 to Apr. 26
c No flow most days during winter
d From rating curve extended above 2 ft³/s
e Estimated
f From crest-stage gage

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1996 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1996 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--No record from October 16 to May 15 due to probe froze in ice or no flow conditions. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on July 10. No variation was found within the cross section. No variation was found between mean stream temperature and temperature at the sensor. Large stream icing forms near the gage.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 10.0°C, on July 15, 2003; minimum, 0.0°C, on many days during fall, winter, and spring breakup periods.

EXTREMES FOR 2002.-WATER TEMPERATURE: Maximum, 8.5°C, July 23, and August 4-5; minimum, 0.0°C, on several days during fall, and spring breakup periods.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			SAMPLE		DIS-				
			LOC-		CHARGE,				
			ATION,		INST.				
			CROSS		CUBIC	TEMPER-	TEMPER-	SAM-	
		STREAM	SECTION	GAGE	FEET	ATURE	ATURE	PLING	SAMPLER
Date	Time	WIDTH	(FT FM	HEIGHT	PER	WATER	AIR	METHOD,	TYPE
		(FT)	R BK)	(FEET)	SECOND	(DEG C)	(DEG C)	CODES	(CODE)
		(00004)	(72103)	(00065)	(00061)	(00010)	(00020)	(82398)	(84164)
JUL									
10	1302	3.60	0.6	14.36	.16	7.0	18.0	10	8010
10	1304	3.60	1.6	14.36	.16	7.0	18.0	10	8010
10	1306	3.60	2.6	14.36	.16	7.0	18.0	10	8010
10	1308	3.60	3.6	14.36	.16	7.0	18.0	10	8010

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3	2.5 2.5 1.5	1.5 0.5 0.5	1.5 1.5 1.0			 	 		 	 		
4 5	2.0	1.0	1.5									
6 7 8 9	2.5 1.5 1.5 1.5	0.5 0.5 0.5 0.5	1.5 1.0 1.0	  		  	 		  	  		  
11 12 13	0.5 0.5 0.0	0.0	1.0 0.0 0.0 0.0	  		  	  		  	  		
14 15	0.5	0.0	0.0									
17 18 19 20		 	  				  					
21 22 23 24 25	  	  	  	  	  	  	  	 		  	  	
26 27 28 29	  	  	  	  	  	  	  	  		  		  
31 MONTH												

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	FEBRUARY			MARCH			APRIL			MAY		
1												
2												
4												
5												
6									===			
7 8												
9												
10												
11												
12 13												
14												
15												
16										1.0	0.0	0.5
17										1.5	0.0	0.5
18 19										2.0 3.0	0.0	0.5 1.0
20										3.5	0.0	1.5
21										4.0	0.5	1.5
22										4.0	0.5	2.0
23 24										5.0 5.0	1.0 1.0	2.5 2.5
25										5.5	1.0	3.0
26										5.0	1.5	3.0
27										3.5	2.0	2.5
28 29										3.5 4.5	2.0	2.5
30										3.5	2.0	3.0
31										3.5	2.0	2.5
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX		MEAN			MEAN			
		JUNE			JULY		A	UGUST		S	EPTEMBER	3
1	3.0	JUNE 2.0	2.5	7.5	JULY 5.0	6.0	7.5	UGUST	6.5	s 6.5	EPTEMBER 5.5	R 5.5
		JUNE			JULY		A	UGUST		S	EPTEMBER	3
1 2 3 4	3.0 3.5 3.5 3.5	JUNE 2.0 1.0 1.5 1.5	2.5 2.5 2.5 2.5	7.5 7.0 7.0 6.5	JULY 5.0 5.5 5.5	6.0 6.0 6.0 5.5	7.5 7.5 8.0 8.5	UGUST 5.5 5.5 6.0 6.0	6.5 6.5 7.0 7.0	6.5 6.5 6.0 6.0	5.5 5.0 4.5 5.0	5.5 5.5 5.5 5.5
1 2 3	3.0 3.5 3.5	JUNE 2.0 1.0 1.5	2.5 2.5 2.5	7.5 7.0 7.0	JULY 5.0 5.5 5.5	6.0 6.0 6.0	7.5 7.5 8.0	UGUST 5.5 5.5 6.0	6.5 6.5 7.0	6.5 6.5 6.0	5.5 5.0 4.5	5.5 5.5 5.5
1 2 3 4 5	3.0 3.5 3.5 3.5 4.0	JUNE 2.0 1.0 1.5 1.5 2.0	2.5 2.5 2.5 2.5 3.0	7.5 7.0 7.0 6.5 6.5	JULY 5.0 5.5 5.5 4.5	6.0 6.0 6.0 5.5 5.5	7.5 7.5 8.0 8.5 8.5	5.5 5.5 6.0 6.0 6.0	6.5 6.5 7.0 7.0 7.0	6.5 6.5 6.0 6.0 6.0	5.5 5.0 4.5 5.0 5.0	5.5 5.5 5.5 5.5 5.5
1 2 3 4 5	3.0 3.5 3.5 3.5 4.0	JUNE 2.0 1.0 1.5 1.5 2.0 2.0 2.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0	7.5 7.0 7.0 6.5 6.5 7.5	JULY 5.0 5.5 5.5 5.5 5.5 4.5 5.0 5.0	6.0 6.0 6.0 5.5 5.5	7.5 7.5 8.0 8.5 8.5 8.0	UGUST 5.5 5.5 6.0 6.0 6.0 6.5 6.5	6.5 6.5 7.0 7.0 7.0	6.5 6.5 6.0 6.0 6.0	5.5 5.0 4.5 5.0 5.0 5.0	5.5 5.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9	3.0 3.5 3.5 3.5 4.0 3.0 4.5 3.0	JUNE 2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5	2.5 2.5 2.5 2.5 3.0	7.5 7.0 7.0 6.5 6.5 7.5 7.5 7.5	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 5.5	6.0 6.0 6.0 5.5 5.5 6.0 6.5 6.0	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0	UGUST 5.5 6.0 6.0 6.5 6.5 6.5 6.0	6.5 6.5 7.0 7.0 7.0 7.0 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5	5.5 5.0 4.5 5.0 5.0 5.0 5.4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0
1 2 3 4 5	3.0 3.5 3.5 3.5 4.0 3.0 4.0	JUNE 2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0	7.5 7.0 7.0 6.5 6.5 7.5 7.5	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0	6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0	5.5 5.5 6.0 6.0 6.5 6.5	6.5 6.5 7.0 7.0 7.0 7.0	6.5 6.5 6.0 6.0 6.0 6.0	5.5 5.0 4.5 5.0 5.0 5.0	5.5 5.5 5.5 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10	3.0 3.5 3.5 3.5 4.0 3.0 4.0 4.5 3.0 4.5	JUNE 2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 2.5 3.0	7.5 7.0 7.0 6.5 6.5 7.5 7.5 7.5 7.5	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.5 6.0	6.0 6.0 5.5 5.5 6.0 6.5 6.0 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0	UGUST 5.5 5.5 6.0 6.0 6.5 6.5 6.5 6.0 5.5	6.5 6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 5.5 6.0 5.5 5.5	5.5 5.0 4.5 5.0 5.0 5.0 5.4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10	3.0 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.5	JUNE  2.0 1.0 1.5 1.5 2.0  2.0 2.0 2.0 1.5 1.5 2.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0	7.5 7.0 7.0 6.5 6.5 7.5 7.5 7.5 7.0	JULY 5.0 5.5 5.5 4.5 5.0 5.0 5.0 5.0 6.0	6.0 6.0 6.5 5.5 6.0 6.5 6.0 6.5 6.0	7.5 7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0	UGUST 5.5 5.5 6.0 6.0 6.5 6.5 6.5 6.0 6.0	6.5 6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 6.0 5.5 5.5	5.5 5.0 4.5 5.0 5.0 5.0 5.4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 4.5
1 2 3 4 5 6 7 8 9 10	3.0 3.5 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.5 4.0	2.0 1.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 2.5 3.0	7.5 7.0 7.0 6.5 6.5 7.5 7.5 7.5 7.0	JULY 5.0 5.5 5.5 4.5 5.0 5.0 5.0 5.0 6.0 6.0	6.0 6.0 6.0 5.5 5.5 6.0 6.5 6.0 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0	UGUST 5.5 5.5 6.0 6.0 6.5 6.5 6.5 6.0 5.5	6.5 6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 6.0 5.5 5.5	5.5 5.0 4.5 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0
1 2 3 4 5 6 7 8 9 10	3.0 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.5	JUNE  2.0 1.0 1.5 1.5 2.0  2.0 2.0 2.0 1.5 1.5 2.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0	7.5 7.0 7.0 6.5 6.5 7.5 7.5 7.5 7.0	JULY 5.0 5.5 5.5 4.5 5.0 5.0 5.0 5.0 6.0	6.0 6.0 6.5 5.5 6.0 6.5 6.0 6.5 6.0	7.5 7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0	UGUST 5.5 5.5 6.0 6.0 6.5 6.5 6.5 6.0 6.0	6.5 6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 6.0 5.5 5.5	5.5 5.0 4.5 5.0 5.0 5.0 5.4.5 4.5 4.5 4.5 4.5	5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.0 3.5 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.5 4.0 5.0 6.0	2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 2.5 3.0 3.0 4.5	7.5 7.0 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	JULY 5.0 5.5 5.5 4.5 5.0 5.0 5.0 5.5 6.0 6.0 6.0 5.5 5.5	6.0 6.0 6.0 5.5 5.5 6.0 6.5 6.0 6.5 6.5 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.5 7.5 6.5	UGUST 5.5 5.5 6.0 6.0 6.5 6.5 6.0 5.5 6.0 6.0 5.5	6.5 6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 5.5 6.0 5.5 5.5 5.0 4.5 5.0	5.5 5.0 4.5 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.55 5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.0 3.5 3.5 4.0 3.0 4.0 4.5 3.0 4.5 4.0 6.0	JUNE  2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 3.5 4.0 4.5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.0 7.5 7.5 7.5 8.0	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 6.0 6.0 6.5 5.5 5.5 6.5	6.0 6.0 6.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5	UGUST 5.5 5.0 6.0 6.5 6.5 6.5 6.5 6.0 5.5 6.0 5.5 6.0 6.0 5.5	6.5 6.5 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0	5.5 5.0 4.5 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	3.0 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.5 4.0 5.0 6.0	2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.0 3.0 4.0 4.5	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 2.5 3.0 3.0 4.5 4.5 5.5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 5.5 6.0 6.0 6.0 5.5 5.5 6.5 6.5	6.0 6.0 6.5 5.5 6.0 6.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5	UGUST 5.55 6.00 6.0 6.55 6.55 6.00 6.05 5.50 6.00 5.50 6.00	6.5 6.5 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.0 4.5 5.0 4.5	5.5 5.0 4.5 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0	5.55 5.55 5.55 5.55 5.50 5.00 4.55 4.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.0 3.5 3.5 4.0 3.0 4.0 4.5 3.0 4.5 4.0 6.0	JUNE  2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 3.5 4.0 4.5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.0 7.5 7.5 7.5 8.0	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 6.0 6.0 6.5 5.5 5.5 6.5	6.0 6.0 6.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5	UGUST 5.5 5.0 6.0 6.5 6.5 6.5 6.5 6.0 5.5 6.0 5.5 6.0 6.0 5.5	6.5 6.5 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0	5.5 5.0 4.5 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20	3.0 3.5 3.5 4.0 4.0 4.5 3.0 4.5 4.0 4.5 4.0 5.0 6.0	JUNE  2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.5 3.0 3.0 4.5 4.5 4.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 3.5 4.0 4.5 5.5 5.0 5.0	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	JULY 5.0 5.5 5.5 4.5 5.0 5.0 5.0 5.5 6.0 6.0 6.0 5.5 5.5 6.5 6.5 6.5 6.5	6.0 6.0 6.55 6.0 6.55 6.0 6.55 6.55 6.55	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5	UGUST 5.5 6.0 6.0 6.5 6.5 6.5 6.0 6.0 5.5 6.0 6.0 5.5 6.0 6.0 5.5 5.0 6.0 6.0 5.5	6.5 6.5 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	6.5 6.5 6.0 6.0 6.0 6.0 5.5 6.0 5.5 5.5 5.0 4.5 5.0 4.5 4.5	5.5 5.0 4.5 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 3.5 3.5	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	3.0 3.5 3.5 3.5 4.0 3.0 4.0 4.5 3.0 4.5 4.0 4.5 4.0 6.0 6.5 7.0 6.0 6.5	JUNE  2.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 3.0 4.0 4.5 4.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.5 4.0 4.5 4.5 5.5 5.0 5.0	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 5.5 6.0 6.0 6.5 5.5 5.5 6.5 6.5 6.5 5.5	6.0 6.0 6.5 5.5 6.0 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 7.5 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5	UGUST 5.5.5.6.0 6.0 6.5.5.6.0 6.0 6.5.5.6.0 6.0 5.5.6.0 6.0 6.5.5.5 6.0 6.0 6.5.5 5.5 6.0 6.0 6.5.5 5.5 6.0 6.0 6.5 5.5	6.5 6.5 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.0 5.5 5.0 4.5 4.5	5.5 5.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	3.0 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.0 4.5 4.0 5.0 6.0 6.5 7.0 7.0 6.0 6.5 5.5	2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.0 3.0 4.5 4.5 4.0 4.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.5 4.5 4.5 5.5 5.0 5.0 5.0	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.5	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 5.5 6.0 6.0 5.5 5.5 6.5 6.5 6.5 6.5 6.5	6.0 6.0 6.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 7.5 6.5 7.5	UGUST 5.55 6.00 6.55 6.00 6.55 6.00 6.55 6.00 6.55 5.55 5	6.5 6.5 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	6.5 6.5 6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.0 4.5 5.0 4.5 4.5 4.5 4.0 4.0	5.5 5.0 4.5 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.0 2.5 2.5	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	3.0 3.5 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.0 4.5 4.0 5.0 6.0 6.5 7.0 7.0 6.0 6.5 6.5 5.5 6.0	JUNE  2.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 3.0 4.0 4.5 4.0 4.0 4.0 4.0 4.5	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 4.5 4.5 5.5 5.0 5.0 5.0 5.0	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.0 8.5 7.5	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 5.5 6.0 6.0 6.5 5.5 5.5 6.5 6.7 6.7	6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 7.5 8.0 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 7.0	UGUST 5.5.0 6.0 6.5.5 6.00 6.5.5 6.00 6.5.5 6.00 6.5.5 6.00 6.5.5 5.5.5 5.5.5	6.5 6.5 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.0 4.5 5.0 4.5 4.0 4.0 4.0	5.5 5.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.3.5 3.5	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	3.0 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.0 4.5 4.0 5.0 6.0 6.5 7.0 7.0 6.0 6.5 5.5	2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.0 3.0 4.5 4.5 4.0 4.0	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.5 4.5 4.5 5.5 5.0 5.0 5.0	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.5	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 5.5 6.0 6.0 5.5 5.5 6.5 6.5 6.5 6.5 6.5	6.0 6.0 6.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 7.5 6.5 7.5	UGUST 5.55 6.00 6.55 6.00 6.55 6.00 6.55 6.00 6.55 5.55 5	6.5 6.5 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	6.5 6.5 6.0 6.0 6.0 6.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.0 4.5 5.0 4.5 4.5 4.5 4.0 4.0	5.5 5.0 4.5 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.0 2.5 2.5	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	3.0 3.5 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.0 4.5 4.0 5.0 6.0 6.5 7.0 7.0 6.0 6.5 5.5 6.0 5.5	JUNE  2.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 3.0 4.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 4.5 4.5 5.5 5.0 5.0 5.0 5.0 4.5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.0 8.5 7.5 8.0	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 6.0 6.0 6.5 5.5 5.5 6.0 6.0 6.5 6.0 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 7.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5 7.0 6.5 6.5	UGUST 5.5.0 0 0 0 5.5.5 0 0 0 0 5 5 5 5 5 5 5	6.5 6.5 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.0 4.5 4.0 4.0 4.0 4.0 4.0 4.5	5.5 5.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.3.5 3.5 3.5	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	3.0 3.5 3.5 3.5 4.0 4.0 4.5 3.0 4.5 4.0 4.5 4.0 6.0 6.5 7.0 6.0 6.5 5.5 6.0 5.5	JUNE  2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5 4.0	2.5 2.5 2.5 2.5 2.5 3.0 3.5 3.0 3.5 3.0 3.5 5.0 4.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.5 8.0 8.5 8.0 7.5 8.0	JULY 5.05 5.55 5.55 4.5 5.00 5.05 5.55 6.00 6.05 5.5 6.55 6.5	6.0 6.0 6.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 8.0 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5	UGUST 55.000 66.05 00005 55.55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55	6.5 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.5 5.0 4.5 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.0 3.5 3.0	5.55.55 5.55.55 5.50 5.00 5.00 4.55.4.55 4.55
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	3.0 3.5 3.5 3.5 4.0 3.0 4.5 3.0 4.5 4.0 4.5 4.0 5.0 6.0 6.5 7.0 7.0 6.0 6.5 5.5 6.0 5.5	JUNE  2.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 3.0 4.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 4.5 4.5 5.5 5.0 5.0 5.0 5.0 4.5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.0 8.5 7.5 8.0	JULY 5.0 5.5 5.5 5.5 4.5 5.0 5.0 5.0 6.0 6.0 6.5 5.5 5.5 6.0 6.0 6.5 6.0 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	7.5 7.5 7.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5 7.0 6.5 6.5	UGUST 5.5.0 0 0 0 5.5.5 0 0 0 0 5 5 5 5 5 5 5	6.5 6.5 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.5 5.0 4.5 4.0 4.0 4.0 4.0 4.0 4.5	5.5 5.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.3.5 3.5 3.5	5.55 5.55 5.55 5.50 5.00 5.00 4.55 4.55
1 2 3 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	3.0 3.5 3.5 3.5 4.0 4.0 4.5 3.0 4.5 4.0 6.0 6.5 7.0 6.0 6.5 5.5 6.0 6.5 7.0 7.0 6.5	JUNE  2.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 3.0 4.0 4.0 4.5 4.0 4.0 4.5 4.5 4.5	2.5 2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.5 3.0 3.5 5.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.6 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	JULY 5.055.55 4.5 5.00 5.55.55 6.00 6.055 5.55 6.00 6.05 6.05	6.00 6.00 6.55 6.00 6.55 6.00 6.55 6.55	7.5 7.5 8.5 8.5 8.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	UG 555000 555505 000050 500005 55555 000055	6.55 7.00 7.05 6.55 6.00 6.55 6.00 6.00 6.00 6.00 6	6.5 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.5 5.0 4.5 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 3.5 3.5 3.0 3.5 3.0 3.0 3.5 3.0	5.55.55 5.55.55 5.50 5.00 5.00 4.55.4.55 4.55
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	3.0 3.5 3.5 3.5 4.0 4.0 4.5 3.0 4.5 4.0 5.0 6.0 6.5 7.0 6.5 5.5 6.0 5.5 6.5 5.5	JUNE  2.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 3.0 4.0 4.5 4.5 4.0 4.0 4.0 4.0 4.5 4.5 4.5	2.5 2.5 2.5 2.5 3.0 2.5 3.0 3.0 3.0 3.0 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.5 8.0 8.5 8.0 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	JULY 5.0 5.5 5.5 5.5 6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	6.0 6.0 6.0 5.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 7.0 6.5 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	7.5 7.5 7.5 8.5 8.0 7.0 7.0 7.0 7.0 7.0 7.5 6.5 6.5 6.5 6.5 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5	UGUST 55.50 66.0 5 5.55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.5 6.5 7.0 7.0 7.0 6.5 6.5 6.5 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	6.5 6.5 6.0 6.0 6.0 6.0 5.5 5.5 5.0 5.5 5.0 4.5 4.0 4.0 4.0 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5.5 5.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.3.5 3.5 3.0 2.5 3.0 3.0 3.5	5.55.55 5.55.55 5.55.55 5.00 5.00 4.55.4.55 4.55

REMARKS.--No record from Jan. 24 to Apr.27 due to probe froze in ice. No record from Jun. 01 to Jun. 03 due to equipment malfunction. Records represent water temperature at the sensor within  $0.5^{\circ}$ C. Large stream icing forms near the gage.

MONTH

### 15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE—Continued

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum,  $10.0^{\circ}C$ , on July 15, 2003 ; minimum,  $0.0^{\circ}C$ , on several days during fall, and spring breakup periods.

Temperature, water, degrees Celsius WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

				WATER	YEAR O	CTOBER 20	02 TO SEPT	rember 2	2003			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOB	ER		NOVEMBE	R		DECEMBE	R		JANUA	RY
1 2 3 4 5	3.0 3.0 2.5 2.5 2.0	2.5 2.0 1.5 2.0 2.0	2.5 2.5 2.0 2.0 2.0	1.5 1.5 1.0 1.5	0.5 1.0 0.5 1.0	1.0 1.5 1.0 1.0	1.0 1.0 1.0 1.0	0.5 0.5 1.0 0.5 0.5	0.5 1.0 1.0 1.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5
6 7 8 9 10	2.5 2.5 2.5 1.5	1.5 1.5 1.5 1.0 0.5	2.0 2.0 2.0 1.0	1.5 1.0 1.0 1.0	1.0 0.5 0.5 0.5	1.0 0.5 1.0 1.0	1.0 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5
11 12 13 14 15	2.0 2.5 2.0 2.5 1.5	1.0 1.5 1.5 1.5	1.5 2.0 2.0 1.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5
16 17 18 19 20	2.0 2.0 2.0 2.0 2.5	1.5 1.0 1.0 1.5	1.5 1.5 1.5 2.0 2.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5
21 22 23 24 25	2.0 1.5 2.0 2.5 2.0	1.0 1.0 1.5 1.5	1.5 1.0 2.0 2.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5	0.5 0.0 0.0 	0.5 0.5 0.0
26 27 28 29 30 31	2.0 1.0 1.0 1.5 1.5	1.0 0.5 0.5 1.0 1.0	1.5 0.5 1.0 1.5 1.0	1.0 1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5	0.5 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5		  	   
MONTH	3.0	0.5	1.6	1.5	0.5	0.7	1.0	0.5	0.6			
							, degrees					
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	02 TO SEPT	MIN	MEAN	MAX	MIN	MEAN
DAI		FEBRUARY				PILAN		APRIL	PIEAN	MAA		HEAN
					MARCH						MAY	
1 2 3 4 5	  	  	  	  	  	  	  	  	  	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	  	  	  	  	  	  	  	  	  	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	  	  	  	  	  	  	  	  	  	0.5 0.5 1.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5
16 17 18 19 20	  	  	  	  	  	  	  	  	  	1.0 2.0 2.0 2.0 2.0	0.0 0.0 0.0 0.0	0.5 1.0 1.0 1.0
21 22 23 24 25	  	  	  	  	  	  	  	  	  	1.5 2.0 2.0 3.0 3.0	0.5 0.5 0.5 0.5	1.0 1.5 1.0 1.5 1.5
26 27 28 29 30 31	  	  	  	  		  	0.0 0.0 0.5	 0.0 0.0 0.0	0.0 0.0 0.0	3.5 3.0 3.5 3.5 3.5 3.5	1.0 0.5 1.5 1.5 1.0	2.0 2.0 2.0 2.0 2.0 2.0

3.5

0.0

0.8

# 15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE—Continued

Temperature, water, degrees Celsius WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEM	BER
1 2 3 4 5	  4.5 5.0	1.0 2.0	  2.5 3.0	8.0 7.0 6.5 8.0 8.5	5.5 6.0 5.5 4.5 5.5	6.5 6.5 6.0 6.5 7.0	7.5 7.5 6.5 7.0 7.5	6.0 5.5 6.0 6.0 5.5	6.5 6.5 6.5 6.5	6.0 6.0 6.0 6.0	5.0 5.0 4.5 4.5	5.5 5.5 5.0 5.0
6 7 8 9 10	5.5 5.0 4.5 5.5 6.5	2.0 1.5 1.5 2.5 3.0	3.5 3.0 3.0 3.5 4.5	8.5 8.5 9.0 9.5 8.5	6.0 6.5 6.5 6.5 7.0	7.0 7.5 7.5 8.0 8.0	8.0 8.0 8.0 8.0	6.0 6.5 6.5 6.5	7.0 7.0 7.5 7.0 7.5	6.0 5.5 6.5 5.5	4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 4.5
11 12 13 14 15	7.0 7.5 7.0 5.0 7.5	3.5 4.0 3.5 3.5 3.5	5.0 5.5 5.0 4.5 5.5	9.0 9.5 9.0 9.5 10.0	7.0 7.0 7.0 7.5 7.5	8.0 8.0 8.0 8.5	8.0 8.0 7.5 7.0 7.5	7.0 7.0 6.5 6.5	7.5 7.5 7.0 7.0	5.5 5.5 4.5 3.5 3.0	3.5 4.0 3.5 2.0 1.5	4.5 4.5 4.0 3.0 2.0
16 17 18 19 20	7.0 6.5 8.0 8.0 7.5	4.0 3.5 4.5 5.0	5.0 5.0 6.0 6.0	9.5 9.0 9.0 9.5 9.5	7.5 7.0 6.5 7.0 7.5	8.5 8.0 8.0 8.0	7.5 7.0 7.0 6.5 6.5	6.0 6.5 6.0 5.5 5.5	7.0 6.5 6.5 6.0	3.0 3.0 2.5 2.0 2.0	1.5 1.5 1.0 1.0	2.0 2.0 1.5 1.5
21 22 23 24 25	6.0 7.5 8.0 7.5 6.5	5.0 4.5 4.5 5.0	5.5 6.0 6.0 6.0 5.5	8.5 9.5 9.5 9.5 8.0	8.0 7.5 7.5 7.0 7.5	8.0 8.0 8.5 8.0 7.5	6.5 6.5 6.5 7.0 6.5	5.5 5.5 5.5 6.0 5.5	6.0 6.0 6.0 6.0	2.5 2.0 2.0 2.0 2.5	1.5 1.0 1.0 1.5	2.0 1.5 1.5 1.5 2.0
26 27 28 29 30 31	7.5 7.0 7.0 8.0 8.0	4.5 4.5 4.5 5.5	6.0 5.5 5.5 6.5 6.5	8.0 7.5 7.5 8.0 8.0 7.5	6.5 6.5 6.0 6.5 6.0	7.5 7.0 7.0 7.0 7.0 7.0	6.0 6.0 6.0 6.0 5.5	5.5 5.0 5.0 5.0 5.0	6.0 5.5 5.5 5.5 5.5	2.5 2.5 2.0 3.5 3.5	1.0 1.5 1.5 2.0 2.5	1.5 2.0 2.0 2.5 3.0
MONTH				10.0	4.5	7.6	8.5	5.0	6.5	6.5	1.0	3.2

### 15284000 MATANUSKA RIVER AT PALMER

LOCATION.--Lat 61°36'33", long  $149^{\circ}04'15$ ", in  $SE^{1}/_{4}$   $NW^{1}/_{4}$  sec. 34, T. 18 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, on downstream left bank of Old Glenn Highway bike path bridge, and 1 mi east of Palmer.

DRAINAGE AREA. -- 2,070 mi², approximately.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1949 to September 1973, May 1985 to September 1986, October 1991 to September 1992, and May 2000 to current year. Annual maximum, water year 1974 and 1995.

GAGE.--Water-stage recorder. Datum of gage is 170.92 ft above National Geodetic Vertical Datum of 1929 (Alaska Railroad Commission benchmark, prior to Mar. 27, 1964 earthquake). Prior to Nov. 2, 1950, non-recording gage at bridge 20 ft upstream at same datum. Nov. 2, 1950 to Apr.30,1952, non-recording gage at current site and same datum. May 1, 1952 to Sep. 30, 1973, July 19 to Oct. 20, 1987, and Oct. 1, 1991 to Sep. 30, 1992, water-stage recorder at site 100 ft downstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Precipitation gage at station. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of  $21,000~{\rm ft}^3/{\rm s}$  and maximums (*).

	Date	Time	Dis e (f	charge t ³ /s)	Gage Height (ft)		Da	ite	Time	Dischard (ft ³ /s)	He He	Gage eight (ft)
J	ful 21	204	5 a2	1,800	11.84		Aug	13	0515	*a24,30	0 *:	12.37
		DIS	CHARGE, CU	JBIC FEET	PER SECON	D, WATER ILY MEAN		OBER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3440	2140	1420	e630	e640	687	559	2020	5080	11600	9610	6430
2	3440	2090	1230	e630	e660	694	590	1720	4670	14100	7520	6130
3	3110	2050	1330	e630	e680	697	571	1720	4360	14500	6030	6400
4	3020	2040	1330	e620	e700	681	571	1620	4540	12500	4770	6030
5	2880	2030	1270	e620	e740	624	559	1500	5310	12800	4290	5300
6	2770	2000	1170	e620	826	531	546	1430	5940	13000	4720	5080
7	2860	1930	1040	e620	778	492	556	1350	6140	13800	5920	4970
8	3040	1820	1020	e620	822	e480	564	1370	5980	14400	7080	4670
9	2680	1800	973	e630	839	e470	569	1490	6120	e15000	9110	4500
10	e2500	1570	940	e640	858	e470	581	1630	7750	e16000	10000	4350
11	e2300	1380	944	e620	850	e460	640	1570	10600	15500	10500	4150
12	2400	1370	948	e620	811	e450	695	1450	13100	15200	14200	3990
13	e2400	1250	905	e620	795	e440	729	1390	15900	15400	18200	4060
14	e2500	1450	e880	e620	740	e450	794	1370	14700	16300	14600	3640
15	e2500	1350	837	e620	616	e460	754	1450	12600	17200	11300	3030
16	e2600	1290	728	e620	e580	e470	750	1610	10900	17000	11500	2750
17	2600	1200	e720	e620	e550	e480	831	1780	10000	16600	9940	2550
18	2590	1190	719	e620	526	e490	829	1770	10400	15000	8110	2430
19	2490	1200	e710	e620	e540	e500	842	1720	e11500	14700	6330	2330
20	2570	1240	e710	e620	e570	e510	856	1730	e11500	18000	5770	2260
21	2640	1190	e700	e620	598	e520	850	1780	e11000	20900	5670	2210
22	2500	1230	e720	e600	685	e540	900	1880	e10500	18700	5120	2170
23	2430	1470	e740	e600	733	e560	1040	2070	e11000	16300	4730	2100
24	2460	1440	e720	e600	784	e580	1160	2290	11900	15400	4790	2080
25	2450	1330	e700	e600	762	585	1370	2490	11000	13300	5180	2080
26 27 28 29 30 31	2420 2350 2140 2230 2260 2200	1460 1520 1490 1470 1580	e680 e660 e640 e640 e640 e630	e600 e600 e600 e620 e620 e620	744 714 688 	595 595 587 593 592 595	1510 2080 2290 2170 2140	3010 3210 3180 3490 4090 4550	9300 8850 8400 8640 10100	10500 10200 11700 10800 9900 9810	5440 5040 4540 4390 4840 6670	2050 2010 2000 2250 2820
TOTAL	80770	46570	27294	19140	19829	16878	28896	63730	277780	446110	235910	106820
MEAN	2605	1552	880	617	708	544	963	2056	9259	14390	7610	3561
MAX	3440	2140	1420	640	858	697	2290	4550	15900	20900	18200	6430
MIN	2140	1190	630	600	526	440	546	1350	4360	9810	4290	2000
AC-FT	160200	92370	54140	37960	39330	33480	57320	126400	551000	884900	467900	211900
CFSM	1.26	0.75	0.43	0.30	0.34	0.26	0.47	0.99	4.47	6.95	3.68	1.72
IN.	1.45	0.84	0.49	0.34	0.36	0.30	0.52	1.15	4.99	8.02	4.24	1.92
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATE	R YEARS 19	49 - 2003	B, BY WAT	ER YEAR (V	√Y)#			
MEAN	1952	1005	734	622	527	476	648	2722	10100	13120	9838	4853
MAX	3093	1793	1024	821	708	583	985	6019	17250	18750	15730	8966
(WY)	2001	1972	1972	1961	2003	2001	1964	1960	1964	2000	1971	1951
MIN	1166	568	440	349	381	360	465	1007	5415	9206	4992	2123
(WY)	1992	1959	1969	1959	1971	1971	1972	1966	1965	1973	1969	1969

See Period of Record; partial years used in monthly statistics Peak discharge adjusted to exclude surge; peak gage-height not adjusted to exclude surge Estimated

# 15284000 MATANUSKA RIVER AT PALMER—Continued

SUMMARY STATISTICS	FOR 2002 CALENI	DAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1949 - 2003#
ANNUAL TOTAL	1343364		1369727			
ANNUAL MEAN	3680		3753		3822	
HIGHEST ANNUAL MEAN					4815	1957
LOWEST ANNUAL MEAN					2562	1969
HIGHEST DAILY MEAN	14700	Jul 18	20900	Jul 21	40700	Aug 10 1971
LOWEST DAILY MEAN	b490	Mar 16	440	Mar 13	234	Apr 25 1956
ANNUAL SEVEN-DAY MINIMUM	490	Mar 16	457	Mar 9	304	Apr 20 1956
MAXIMUM PEAK FLOW			a24300	Aug 13	c82100	Aug 10 1971
MAXIMUM PEAK STAGE			12.37	Aug 13	d13.60	Aug 10 1971
ANNUAL RUNOFF (AC-FT)	2665000		2717000		2769000	
ANNUAL RUNOFF (CFSM)	1.78		1.81		1.85	
ANNUAL RUNOFF (INCHES)	24.14		24.62		25.09	
10 PERCENT EXCEEDS	9850		11500		11700	
50 PERCENT EXCEEDS	2230		1720		1200	
90 PERCENT EXCEEDS	500		591		480	

[#] See Period of Record; partial years used in monthly statistics
a Peak discharge adjusted to exclude surge; peak stage not adjusted to exclude surge
b Mar. 16 to 31
c From rating curve extended above 34,000 ft³/s on basis of velocity-area study, from break-out of natural reservoir on Granite Creek tributary
d Site then in use

# 15284000 MATANUSKA RIVER AT PALMER—Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1948-1954, 1957-1968, 1985-1987, and current year.

PERIOD OF DAILY RECORD.--SUSPENDED-SEDIMENT DISCHARGE: Water year 1953-1954, 1959-1966.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		Strem width, feet	Loca- tion in X-sect. looking dwnstrm ft from l bank	Gage height, feet	Starting time, 24 hour clock, hr:min		Instan- taneous dis- charge, cfs	Sampling method code	Sampler type, code	Temper- atire. water. deg C	Temper- ature air deg C	Sus- pended sediment concen- tration mg/L	Sus- pended sediment load tons/d
Date	Time	(0004)	(00009)	(00065)	(82074)	(82073)	(00061)	(82398)	(84164)	(00010)	(00020)	(80154)	(80155)
JUN													
10	1515	205		10.00	1515.00	1615.00	8650	20	3055	8.5	16.5	2220	51800
11 JUL	1317	205		10.00	1310.00	1430.00	11500			8.5	16.5		
02	1150	286		10.95	1150.00	1229.00	14700	20	3055	7.0		2400	95400
02	1315	286	40.0	10.94	1315.00	1507.00	14500	1000	1170	7.0			
16	1315	396	40.0	11.01	1315.00	1438.00	15500	1000	1170	7.5	16.5		
16	1457	396		11.13	1457.00	1548.00	16200	20	3055	7.5	16.5	2690	118000
AUG													
12	1425	398		11.73	1425.00	1500.00	14700	20	3055	7.0	7.0	2850	113000
12	1627	398	40.0	11.74	1627.00	1653.00	14600	1000	1170	7.0	7.0		
12	1710				1710.00	1740.00			8010				
SEP	4500	400			4500.00	4.500.00	0.44.0		2055				504
18 18	1530 1651	129 129	 27.0	9.64 9.63	1530.00 1651.00	1620.00 1831.00	2410 2360	20 1000	3055 1170	4.5 4.5		77 	501 
	Suspnd. sedi- ment, seive diametr percent <.063mm	Bedload sediment dis- charge, tons/d	Bedload sedimnt dschrge average unit cmposit t/d/ft	samples in x-sec	Number of sampling points, count	Verti- cals in compo- site sample, number	Hori- zontal width of verti- cal, feet		Bag mesh size, bedload sampler	Bedload sedi- ment, sieve diametr percent <.063mm	Bedload sedi- ment, sieve diametr percent <.125mm	Bedload sedi- ment, sieve diametr percent <.25m	Bedload sedi- ment, sieve diametr percent <.5mm
Date	sedi- ment, seive diametr percent	sediment dis- charge,	sedimnt dschrge average unit cmposit	samples in x-sec bedload measmnt	of sampling points,	cals in compo- site sample,	zontal width of verti- cal,	time on bed for bed load sample,	size, bedload sampler	sedi- ment, sieve diametr percent	sedi- ment, sieve diametr percent	sedi- ment, sieve diametr percent	sedi- ment, sieve diametr percent
JUN	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d	sedimnt dschrge average unit cmposit t/d/ft	samples in x-sec bedload measmnt number	of sampling points, count	cals in compo- site sample, number	zontal width of verti- cal, feet	time on bed for bed load sample, seconds	size, bedload sampler mm	sedi- ment, sieve diametr percent <.063mm	sedi- ment, sieve diametr percent <.125mm	sedi- ment, sieve diametr percent <.25m	sedi- ment, sieve diametr percent <.5mm
JUN 10	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in compo- site sample, number (04119)	zontal width of verti- cal, feet (04121)	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL 02	sedi- ment, seive diametr percent <.063mm (70311) 72 	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL 02	sedi- ment, seive diametr percent <.063mm (70311) 72  69	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121) 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL 02 02 16	sedi- ment, seive diametr percent <.063mm (70311)	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121) 10.0 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL 02 02 16	sedi- ment, seive diametr percent <.063mm (70311) 72  69	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121) 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL 02 02 16 16 AUG	sedi- ment, seive diametr percent <.063mm (70311)  72 69 76	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite site sample, number (04119)	zontal width of verti- cal, feet (04121)  10.0 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227) 0 2	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL 02 16 16 AUG 12	sedi- ment, seive diametr percent <.063mm (70311)  72 69 76 67	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  10.0 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228)  1 6	sedi- ment, sieve diametr percent <.5mm (80229) 4 18
JUN 10 11 JUL 02 16 16 AUG 12	sedi- ment, seive diametr percent <.063mm (70311)  72 69 76	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118)	of sampling points, count (00063)	cals in composite site sample, number (04119)	zontal width of verti- cal, feet (04121)  10.0 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227) 0 2	sedi- ment, sieve diametr percent <.25m (80228)	sedi- ment, sieve diametr percent <.5mm (80229)
JUN 10 11 JUL 02 16 16 AUG 12	sedi- ment, seive diametr percent <.063mm (70311)  72 69 76  67	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118) 2 2 1	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  10.0 10.0 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228) 1 6 4	sedi- ment, sieve diametr percent <.5mm (80229)  4 18 17
JUN 10 11  JUL 02 16 16 AUG 12 12	sedi- ment, seive diametr percent <.063mm (70311)  72 69 76  67	sediment dis- charge, tons/d (80225)	sedimnt dschrge average unit cmposit t/d/ft (04122)	samples in x-sec bedload measmnt number (04118) 2 2 1	of sampling points, count (00063)	cals in composite sample, number (04119)	zontal width of verti- cal, feet (04121)  10.0 10.0 10.0	time on bed for bed load sample, seconds (04120)	size, bedload sampler mm (30333)	sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm (80227)	sedi- ment, sieve diametr percent <.25m (80228) 1 6 4	sedi- ment, sieve diametr percent <.5mm (80229)  4 18 17

# 15284000 MATANUSKA RIVER AT PALMER—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	Bedload	Bedoad	Bed	Bed	Bed	Bed							
	sedi-												
	ment,												
	sieve	dry svd	dry svd	dry svd	dry svd								
	diametr	dve dia	dve dia	dve dia	dve dia								
	percent												
	<1mm	<2mm	<4mm	<8mm	<16mm	<32mm	<64mm	<128mm	<256mm	<.063mm	<.125mm	<.25mm	<.5mm
Date	(80230)	(80231)	(80232)	(80233)	(80234)	(80235)	(80236)	(80238)	(69160)	(80164)	(80165)	(80166)	(80167)
JUN													
10													
11													
JUL													
02													
02	5	6	8	14	31	61	89	95	100				
16	21	21	22	25	33	63	90	100					
16													
AUG													
12													
12	19	19	20	22	33	58	87	100					
12										1	3	6	9
SEP													
18													
18	32	40	47	53	69	93	100						

	Bed							
	sedi-							
	ment,							
	dry svd							
	sve dia	dve dia						
	percent							
	<1mm	<2mm	<4mm	<8mm	<16mm	<32mm	<64mm	<128mm
Date	(80168)	(80169)	(80170)	(80171)	(80172)	(80173)	(80174)	(80175)
JUN								
10								
11								
JUL								
02								
02								
16								
16								
AUG								
12								
12								
12	9	9	10	12	24	49	82	100
SEP								
18								
18								

#### 15290000 LITTLE SUSITNA RIVER NEAR PALMER

LOCATION.--Lat  $61^{\circ}42'37''$ , long  $149^{\circ}13'47''$ , in  $SE^{1}{}_{4}NW^{1}{}_{4}$  sec. 26, T. 19 N., R. 1 E. (Anchorage C-6 NW quad), Matanuska-Susitna Borough, Hydrologic Unit 19020505, on right bank 100 ft downstream from highway bridge on Wasilla-Fishhook Road, 1.5 mi north of road junction, 1.8 mi downstream from unnamed tributary, and 8 mi northwest of Palmer. Prior to October 1, 1991 at site 60 ft upstream.

DRAINAGE AREA. -- 61.9 mi².

Date

Time

PERIOD OF RECORD.--July 1948 to current year. Low-flow records not equivalent prior to January 1962 because most measurements below 300  ${\rm ft}^3/{\rm s}$  were made at site 3.4 mi downstream.

GAGE.--Water-stage recorder. Datum of gage is 916.6 ft above sea level (river-profile survey). Prior to August 16, 1948, non-recording gage and August 17, 1948 to May 15, 1972, water-stage recorder on left bank; water-stage recorder on right bank, May 16, 1972 to September 30, 1991, at site 60 ft upstream. Prior to October 1, 1974, at datum 4.00 ft higher; October 1, 1974 to September 30, 1991, at datum 2.00 ft higher.

REMARKS.--Records fair except for estimated daily discharges, and for discharges above 700  ${\rm ft}^3/{\rm s}$ , which are poor. GOES satellite telemetry at station.

Date

Time

Discharge

(ft³/s)

Gage height

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,200 ft3/s and maximum (*).

Discharge Gage Height

(ft³/s)

(ft)

				(16 /	5)	(20)				(10	/5/	(20)	
	Jun.	12	2315	155	0	5.55		Jul. 28	0100	149	90	5.50	
	Jul.	3	0500	*15	80	*5.58							
		DI	SCHARGE,	CUBIC	FEET	PER SECOND	, WATER LY MEAN		BER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NO	V Di	EC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	628	18		6	e41	32	31	27	98	442	476	492	305
2	520	17		4	e41	31	e30	23	98	417	934	411	288
3 4	441 400	17 16		'4 '3	e40 e40	31 e31	e30 e30	23 22	101 94	384 420	1150 684	356 326	340 337
5	369	15		2	e40	e31	e29	22	87	476	548	298	308
6	342	14		59	e39	31	e29	22	82	492	480	279	285
7 8	575 575	13 13		6	e39 e39	31 e32	e29 e29	22 22	86 91	482 428	471 450	271 266	266 248
9	397	12		53	e39	e35	e29	21	114	462	439	262	227
10	357	11			e38	e38	e28	21	99	729	428	258	212
11	349	e11			e38	e36	e28	e22	97	999	423	269	198
12 13	350	e11 e10			e38 39	e32	e28	e24	102	1160	390	453 705	185
14	317 296	e10			39	e31 e30	e28 e28	e24 e26	98 94	1260 1100	360 353	543	213 177
15	291	e10			38	e30	e28	e26	104	774	344	435	163
16	350	10			37	e30	e28	27	113	625	346	490	154
17 18	316 342	10 10			37 37	e30	e28 28	e28 e30	111 106	595 684	398 330	432 385	145 137
19	320	9			37	e30 e30	28 27	e32	109	579	300	346	137
20	323	9			36	e30	e26	33	119	540	301	326	128
21	326	9			36	e30	e26	31	132	501	314	332	125
22 23	305 296	8			35 35	e32 e32	e26 e26	33 43	159 192	520 561	289 280	321 288	122 117
24	290	8			35	e32	e26	54	224	465	266	271	121
25	286	8			34	32	e26	60	248	447	243	343	125
26	274	8			33	32	e26	75	282	396	221	432	119
27 28	248 231	8 7			33 33	31 31	26 25	91 93	274 315	369 368	673 855	367 338	113 120
29	224	8			32	 31	25	90	381	418	488	308	253
30	208	8			32		24	98	417	468	408	290	279
31	196		- e	11	32		24		429		693	322	
TOTAL	10751	336			1142	884	851	1165	5056	17561	14335	11215	5942
MEAN MAX	347 628	11 18		8 '6	36.8 41	31.6 38	27.5 31	38.8 98	163 429	585 1260	462 1150	362 705	198 340
MIN	196	7		1	32	30	24	21	82	368	221	258	113
MED	323	10		0	37	31	28	27	109	487	408	332 22240	181
AC-FT CFSM	21320 5.60	667 1.8			2270	1750 0.51	1690 0.44	2310 0.63	10030 2.63	34830 9.46	28430 7.47	22240 5.84	11790 3.20
IN.	6.46	2.0			0.69	0.51	0.44	0.70	3.04	10.55	8.61	6.74	3.57
STATIS	TICS OF	MONTHL	Y MEAN DA	TA FOR	WATE	R YEARS 194	8 - 2003	3, BY WATER	YEAR (W	Y)#			
MEAN	141	63.			30.8	24.9	20.5	25.4	220	665	495	408	302
MAX	391	13			54.1	41.2	29.7	68.0	649	1215	1047	909	651
(WY) MIN	1984 51.3	198 24.			1961 17.5	1982 14.0	1991 10.0	1990 10.0	1990 52.9	1977 276	1963 193	1971 169	1985 82.2
(WY)	1969	196			1959	1952	1956	1955	1971	1996	1996	1969	1969

[#] See Period of Record for remark on low-flow records; partial years used in monthly statistics

e Estimated

# 15290000 LITTLE SUSITNA RIVER NEAR PALMER—Continued

SUMMARY STATISTICS	FOR 2002 CALENI	DAR YEAR	FOR 2003 WAT	ER Y	EAR	WATER YEARS	1948	3 –	2003#
ANNUAL TOTAL	76674		73966						
ANNUAL MEAN	210		203			203			
HIGHEST ANNUAL MEAN						316			1949
LOWEST ANNUAL MEAN						95.8			1969
HIGHEST DAILY MEAN	1180	Aug 13	1260	Jun	13	5040	Aug	10	1971
LOWEST DAILY MEAN	a18	Mar 28	b21	Apr	9	c8.0	Apr	1	1956
ANNUAL SEVEN-DAY MINIMUM	18	Mar 28	22	Apr	4	8.0	Apr	1	1956
MAXIMUM PEAK FLOW			1580	Jul	3	d7840	Aug	10	1971
MAXIMUM PEAK STAGE			5.58	Jul	3	f13.00	Aug	10	1971
INSTANTANEOUS LOW FLOW			g21	Apr	6	8.0	Apr	1	1956
ANNUAL RUNOFF (AC-FT)	152100		146700			147200			
ANNUAL RUNOFF (CFSM)	3.39		3.27			3.28			
ANNUAL RUNOFF (INCHES)	46.08		44.45			44.60			
10 PERCENT EXCEEDS	523		469			560			
50 PERCENT EXCEEDS	117		106			70			
90 PERCENT EXCEEDS	19		28			21			

[#] See Period of Record for remark on low-flow records; partial years used in monthly statistics
a Mar. 28 to Apr. 25
b Apr. 9 and 10
c Apr. 1 to Apr. 20, 1956; and Mar. 11 and 12, 1957
d From rating curve extended above 4,600 ft³/s on basis of slope-area measurement of peak flow
f Gage height about 13.0 ft, from floodmarks; 9.84 ft in gage well; 12.30 ft at
top of needle peak in gage well; at prior datum (WY 1974-91) at sites then in use
g Apr. 6 - 10

### 15292000 SUSITNA RIVER AT GOLD CREEK

LOCATION.--Lat  $62^{\circ}46'04''$ , long  $149^{\circ}41'28''$ , in  $NW^{1}/_{4}$  sec. 20, T. 31 N., R. 2 W. (Talkeetna Mts. D-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020501, near left bank under Alaska Railroad bridge, 0.1 mi downstream from Gold Creek, 0.9 mi north of Gold Creek railroad station, and 2.0 mi. downstream from Indian River.

DRAINAGE AREA. -- 6,160 mi², approximately.

PERIOD OF RECORD. -- August 1949 to 1996 and May 2001 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 676.50 ft above sea level. Prior to June 6, 1957, non-recording gage at same site and datum. June 7, 1957 to June 2, 1964, water-stage recorder at site 0.3 mi upstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Rain gage at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					DA	THI HEAN	VALOES					
DAY	OCT	VON	7 DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18800	7840	e3900	e2000	e1400	e2400	e1000	e5000	24000	21100	31000	24500
2	19600	7530	e3800	e2000	e1400	e2300	e1000	e4500	25100	24000	26900	24000
3	17700	7400	e3700	e2000	e1400	e2200	e1000	e4500	20900	30300	21800	23900
4 5	14900 13100	7780 8940	e3600 e3500	e2000 e1900	e1500 e1800	e2200 e2100	e1000 e1000	e4200 e4100	17800 18200	32600 29100	19700 17400	25300 25400
3	13100	0340	63300	61300	61000	62100	61000	C4100	10200	27100	17400	25400
6	11900	8910	3460	e1900	e2200	e2080	e900	e4000	22900	26300	15800	22400
7 8	11800 11700	8030 6980	3420 3210	e1800 e1800	e2500 e2700	e2000 e1900	e900 e900	e3800 e4500	25400 23300	25600 25200	14900 15000	19300 16800
9	10700	6000	2600	e1800	e3000	e1700	e900	e5000	20400	24500	15900	15300
10	9380	e5000	e2500	e1700	e3300	e1600	e1000	e5500	20700	23900	16700	14500
11	9010	e4400	e2400	e1700	e3500	e1500	e1000	e6000	26100	24400	17500	13800
12	9260	e4500	e2500	e1700	e3700	e1500	e1000	e6200	31800	23400	21100	13200
13	9400	e4700	e2600	e1700	e3500	e1400	e1100	e5500	32100	22100	25900	13700
14	9350	e4700	e2600	e1600	e3300	e1400	e1100	e5000	28800	21700	28100	13900
15	9000	e4600	e2500	e1600	e3000	e1300	e1200	e4500	26300	21900	27500	12200
16	9290	e4500	e2400	e1600	e2600	e1300	e1300	e4200	25200	25700	28100	10800
17	9190	e4400	e2300	e1600	e2400	e1300	e1400	e5000	24600	42900	32700	10000
18	9410	e4400	e2300	e1600	e2100	e1300	e1500	e5000	24300	43700	31500	9420
19 20	9660 10100	e4400 e4300	e2200 e2200	e1600 e1500	e1800 e1700	e1300 e1300	e1700 e2000	e6000 e7500	25100 25500	36200 29500	26900 22300	8860 8370
2.0	10100	64300	e2200	e1300	e1/00	61300	e2000	e/300	25500	29300	22300	6370
21	11800	e4300	e2200	e1500	e1600	e1200	e2300	e8500	25300	27500	19600	8240
22	12500	e4500	e2100	e1500	e1500	e1200	e2500	e9500	25900	27900	17900	8000 7620
23 24	11400 10400	e4500 e4400	e2100 e2100	e1500 e1500	e1500 e1500	e1200 e1200	e3000 e3500	10600 10900	26500 26000	28100 26100	16700 15900	7620
25	9790	e4200	e2100	e1500	e1700	e1200	e4000	11300	25800	24500	16000	7400
26 27	9620 8980	e4100	e2000 e2000	e1500 e1500	e1900 e2000	e1200 e1100	e5000 e5500	13000 15600	24700 24500	23700 30200	18300 19800	7750 7650
28	7960	e4300 e4200	e2000 e2000	e1500 e1500	e2000 e2300	e1100	e6000	15200	23700	48400	20400	7600
29	7580	e4000	e2000	e1400		e1100	e5500	16200	19300	46600	18000	8470
30	8130	e4000	e2000	e1400		e1100	e5000	18100	19700	35200	16600	9670
31	8140		e2000	e1400		e1100		19700		32900	18800	
TOTAL	339550	161810	80290	51300	62800	46780	65200	248600	729900	905200	654700	405390
MEAN	10950	5394	2590	1655	2243	1509	2173	8019	24330	29200	21120	13510
MAX	19600	8940	3900	2000	3700	2400	6000	19700	32100	48400	32700	25400
MIN	7580	4000	2000	1400	1400	1100	900 129300	3800	17800	21100	14900 1299000	7340 804100
CFSM	673500 1.78	321000 0.88	159300 0.42	101800 0.27	124600 0.36	92790 0.24	0.35	493100 1.30	1448000 3.95	1795000 4.74	3.43	2.19
IN.	2.05	0.98	0.48	0.31	0.38	0.24	0.39	1.50	4.41	5.47	3.95	2.45
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	49 - 2003	, BY WATE	R YEAR (	WY)#			
MEAN	6277	2713	1893	1592	1416	1294	1652	13340	26780	24000	21400	13710
MAX	12680	5394	3264	2452	2243	1900	4250	25630	50580	34400	37870	26510
(WY)	1987	2003	1958	1961	2003	1968	1990	1990	1964	1963	1981	1990
MIN (WY)	3124 1970	1215 1970	866 1970	724 1969	723 1969	713 1964	745 1964	3745 1971	15500 1969	16010 1996	8879 1969	5093 1969
( NN T )	1310	1970	1910	1303	1303	T 2 0 4	1304	1211	1303	1990	1303	± 2 U 2

# SOUTH-CENTRAL ALASKA

# 15292000 SUSITNA RIVER AT GOLD CREEK—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1949 - 2003#
ANNUAL TOTAL	3390150	3751520	
ANNUAL MEAN	9288	10280	9710
HIGHEST ANNUAL MEAN			13020 1990
LOWEST ANNUAL MEAN			5597 1969
HIGHEST DAILY MEAN	34800 Aug 23	48400 Jul 28	85900 Jun 7 1964
LOWEST DAILY MEAN	a1200 Apr 2	b900 Apr 6	c600 Feb 16 1950
ANNUAL SEVEN-DAY MINIMUM	1200 Apr 2	943 Apr 3	614 Feb 16 1950
MAXIMUM PEAK FLOW		51700 Jul 28	90700 Jun 7 1964
MAXIMUM PEAK STAGE		13.39 Jul 28	16.58 Jun 7 1964
MAXIMUM PEAK STAGE			d24.48 May 10 1954
ANNUAL RUNOFF (AC-FT)	6724000	7441000	7035000
ANNUAL RUNOFF (CFSM)	1.51	1.67	1.58
ANNUAL RUNOFF (INCHES)	20.47	22.66	21.42
10 PERCENT EXCEEDS	21000	25600	25400
50 PERCENT EXCEEDS	4600	5000	3400
90 PERCENT EXCEEDS	1300	1400	1100

[#] See Period of Record; partial years used in monthly statistics a Apr. 2-16 b Apr. 6-9 c Feb. 16-20, 1950 d Maximum observed, ice jam e Estimated

### 15292700 TALKEETNA RIVER NEAR TALKEETNA (Hydrologic Bench-Mark Station)

LOCATION.--Lat  $62^{\circ}20'49''$ , long  $150^{\circ}01'01''$ , in  $NE^{1}/_{4}$  sec. 16, T. 26 N., R. 4 W. (Talkeetna B-1 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020503, on left bank 1.7 mi downstream from Chunilna Creek, 3.5 mi northeast of Talkeetna, and about 5 mi upstream from mouth.

DRAINAGE AREA.--1,996 mi².

REVISED RECORDS. -- WRD AK 2000-1: Drainage Area.

PERIOD OF RECORD. -- June 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. From October 1, 1992 to September 30, 1994 at site 0.5 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor.

		DISCHA	RGE, CUB	IC FEET P		WATER MEAN V	YEAR OCTO	BER 2002	TO SEPTEI	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10300 9070 7920 7290 6530	3710 3590 3540 3480 3390	e1800 e1700 e1650 e1650 e1650	e600 e550 e550 e550 e550	e400 e400 e400 e400 e450	e520 e550 e550 e530 e500	e360 e360 e360 e350 e350	3150 2970 3250 3100 3040	11800 9480 7710 7310 8470	9020 11900 16500 13400 11500	10600 9200 8120 7920 7180	7690 6950 7870 8150 7190
6 7 8 9 10	6230 6540 7560 6150 5410	3280 3160 2860 2640 2130	e1600 1580 1450 1240 1080	e500 e500 e500 e500 e470	e550 e600 e650 e700 e750	e470 e450 e420 e420 e400	e350 e350 e350 e360 e370	3100 2880 3010 3330 4000	11600 11000 8650 7800 9700	10300 10400 10100 10100 10200	6990 7250 7420 7670 7850	6500 5960 5600 5290 4940
11 12 13 14 15	5440 5820 5450 5170 4940	e2000 e1900 e2100 e2200 e2200	1030 e1000 e950 e900 e800	e470 e470 e470 e450 e450	e800 e700 e650 e600 e550	e400 e420 e420 e400 e400	e400 e500 e550 e600 e650	4010 4060 3840 3510 3580	13500 16000 14300 11600 10700	9850 9570 9040 9150 9680	8440 10800 12500 11000 9610	4660 4430 4480 4080 3710
16 17 18 19 20	5900 5760 5800 5750 5680	e2100 e2100 e2100 e2000 e2000	e800 e850 e850 e800 e750	e450 e450 e450 e450 e450	e500 e470 e450 e450 e420	e400 e400 e390 e390 e390	e650 e700 e800 e900 e1100	3780 3660 3660 3640 3780	9840 8870 8690 8630 8320	10600 22900 17200 12600 11700	10500 11500 10700 9260 8190	3550 3400 3200 3040 2940
21 22 23 24 25	5510 5050 4810 4750 4620	e2000 e2000 e2100 e2000 e1900	e750 e750 e700 e700 e700	e420 e420 e420 e420 e420	e420 e420 e400 e400 e400	e380 e380 e380 e380 e380	1300 1220 1230 1390 1550	3900 4230 4570 5010 5090	8510 9540 9590 9210 9840	12800 11700 11100 10800 10100	7750 6970 6390 6090 6750	2830 2720 2560 2510 2630
26 27 28 29 30 31	4540 4190 3830 4040 4040 3910	1950 2000 1960 e1800 e1800	e650 e650 e650 e600 e600	e420 e420 e420 e400 e400 e400	e450 e470 e500 	e380 e370 e370 e370 e370 e360	1900 2420 2930 3120 3270	5510 7140 6610 7840 8790 9700	9730 9030 8810 8320 8640	9790 11500 21200 14700 12300 11800	7730 7000 6240 5740 6000 7050	2750 2610 2520 3700 5190
MEAN MAX MIN	178000 5742 10300 3830 353100 2.88 3.32	71990 2400 3710 1800 142800 1.20 1.34	31480 1015 1800 600 62440 0.51 0.59	14390 464 600 400 28540 0.23 0.27	14350 512 800 400 28460 0.26 0.27	12940 417 550 360 25670 0.21 0.24	30740 1025 3270 350 60970 0.51 0.57	137740 4443 9700 2880 273200 2.23 2.57	295190 9840 16000 7310 585500 4.93 5.50	373500 12050 22900 9020 740800 6.04 6.96	256410 8271 12500 5740 508600 4.14 4.78	133650 4455 8150 2510 265100 2.23 2.49
STATIS	TICS OF	MONTHLY ME	AN DATA F	OR WATER	YEARS 1964	- 2003	B, BY WATER	R YEAR (WY	7)#			
MEAN MAX (WY) MIN (WY)	2854 10000 1987 1424 1997	1197 2400 2003 672 1992	834 1122 1987 538 1996	675 996 1990 457 1996	572 990 1990 401 1969	512 1058 1990 285 1982	669 1912 1990 396 1986	4782 11510 1990 2145 1971	10930 19040 1971 5207 1969	10330 15410 1981 7080 1969	9137 16770 1971 3787 1969	5839 12090 1993 2070 1969
SUMMAR	Y STATIS				NDAR YEAR		FOR 2003 W	ATER YEAR	₹	WATER YEA	ARS 1964 -	2003#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S RUNOFF RUNOFF	MEAN MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS EEDS		1557210 4266 20100 a360 374 3089000 2.1 29.0 10000 2200 420			1550380 4248 22900 b350 353 27300 11.0 3075000 2.1 28.8 10200 2970 400	)5 Jul 17	1 2 7	4041 5389 2249 63200 c260 75700 17.3 2927000 27.5 10600 1400 500	88 Oct 11 02	1982 1982 1986

See Period of Record; partial years used in monthly statistics

Apr. 13-14 Apr. 4-8 From Feb. 27 to Mar. 20, 1982

## 15294005 WILLOW CREEK NEAR WILLOW

LOCATION.--Lat  $61^{\circ}46'51''$ , long  $149^{\circ}53'04''$ , in  $NW^{1}/_{4}$  SE $^{1}/_{4}$  sec. 31, T.20 N., R.3 W. (Anchorage D-8 quad), Matanuska—Susitna Borough, Hydrologic Unit 19020505, on the right bank, 0.9 mi downstream from unnamed tributary, 5.5 mi northeast of Willow, and 6.7 mi upstream from Deception Creek.

DRAINAGE AREA.--166 mi².

PERIOD OF RECORD.--June 1978 to September 1993, and May 2001 to current year.

REVISED RECORDS. -- WRD-AK-80-1: 1979 (M).

GAGE.--Water-stage recorder. Elevation of gage is 350 ft above sea level from topographic map. Prior to Apr. 2, 1981 at site 0.2 mi upstream at different datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.—Peak discharge greater than base discharge 2,300  ${\rm ft}^3/{\rm s}$  and maximums (*).

	Dat	e	Time	Discharge (ft ³ /s)	Gage Hei	ght	Date	Time	Discha		age Height (ft)	
	Oct.	07	2115	*1960	*4.52		No peal	ks greater	than b	base discl	narge	
		DIS	CHARGE, C	JBIC FEET	PER SECOND,		YEAR OCTOB	ER 2002 TO	SEPTE	MBER 2003	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1460 1210 967 865 790	427 412 407 384 364	169 142 176 164 174	e110 e110 e110 e110 e100	e80 e80 e80 e110 e130	e110 e100 e100 e90 e90	e34 e32 e32 e32 e32	244 231 230 203 195	813 680 656 645 782	539 1090 1250 861 664	546 442 391 367 338	503 445 708 669 560
6 7 8 9 10	741 1130 1280 877 769	348 329 273 240 221	158 144 128 105 e110	e100 e100 e100 e100 e100	e140 e160 e180 e200 e220	e80 e80 e80 e70 e70	e30 e32 e34 e36 e40	177 180 191 286 286	838 887 738 699 1030	583 548 494 459 447	305 282 265 249 236	498 457 441 442 397
11 12 13 14 15	764 870 751 687 663	e230 e240 e230 e220 e210	e140 e140 e130 e130	e100 e100 e100 e100 e100	e250 e240 e180 e150 e150	e70 e60 e60 e60 e55	e44 e50 e55 e60 e65	273 302 261 236 226	1160 1230 1290 1190 1010	441 421 373 349 333	240 446 913 735 558	368 345 452 373 335
16 17 18 19 20	932 780 922 818 785	e200 e200 e190 e190 e200	e130 e130 e120 e120 e120	e90 e90 e90 e90	e140 e130 e120 e110 e110	e55 e50 e50 e45 e45	e70 e75 e80 80 84	243 237 228 223 248	890 798 916 827 732	325 424 359 294 269	640 682 568 475 435	316 300 284 272 262
21 22 23 24 25	785 713 674 664 630	211 207 202 191 179	e120 e120 e120 e120 e120	e90 e90 e90 e90	e100 e100 e90 e90 e100	e45 e40 e40 e40 e40	87 84 100 156 186	267 316 384 441 435	664 695 731 655 608	285 300 287 266 268	519 482 451 402 448	260 256 239 251 330
26 27 28 29 30 31	600 540 502 509 482 454	186 178 171 169 180	e120 e110 e110 e110 e110 e110	e80 e80 e80 e80 e80 e80	e100 e110 e110 	e38 e38 e36 e36 e34 e34	226 291 291 257 253	500 520 540 644 712 723	540 498 483 494 513	244 577 908 539 472 700	690 547 478 432 417 571	323 284 292 685 677
TOTAL MEAN MAX MIN AC-FT CFSM IN.	24614 794 1460 454 48820 4.78 5.52	7389 246 427 169 14660 1.48 1.66	4030 130 176 105 7990 0.78 0.90	2920 94.2 110 80 5790 0.57 0.65	3760 134 250 80 7460 0.81 0.84	1841 59.4 110 34 3650 0.36 0.41	2928 97.6 291 30 5810 0.59 0.66	328 723 177	23692 790 1290 483 46990 4.76 5.31	15369 496 1250 244 30480 2.99 3.44	14550 469 913 236 28860 2.83 3.26	12024 401 708 239 23850 2.41 2.69
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 1978	- 2003	, BY WATER	YEAR (WY)	#			
MEAN MAX (WY) MIN (WY)	415 1197 1987 177 1985	163 364 1980 81.5 1985	109 152 1980 57.3 1981	85.5 112 1980 57.1 1981	76.6 134 2003 52.9 1981	63.4 97.5 1990 33.7 1982	91.3 205 1990 45.8 2002	619 1578 1990 328 2003	1038 1500 1990 484 1981	688 1287 1980 310 2002	614 1286 1981 307 1978	645 1177 1993 259 1978

See Period of Record; partial years used in monthly statistics  ${\tt Estimated}$ 

# 15294005 WILLOW CREEK NEAR WILLOW—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR	YEAR	FOR 2003 WATER	YEAF		WATER YEARS 1	.978 - 2003#
ANNUAL TOTAL	140257		123299				
ANNUAL MEAN	384		338			393	
HIGHEST ANNUAL MEAN						536	1990
LOWEST ANNUAL MEAN						315	2002
HIGHEST DAILY MEAN	1670	Sep 27	1460	Oct	1	8670	Oct 11 1986
LOWEST DAILY MEAN	a38	Apr 17	30	Apr	6	30	Apr 6 2003
ANNUAL SEVEN-DAY MINIMUM	39	Apr 13	32	Apr	1	32	Apr 1 2003
MAXIMUM PEAK FLOW			1960	Oct	7	b12000	Oct 11 1986
MAXIMUM PEAK STAGE			4.52	Oct	7	9.01	Oct 11 1986
MAXIMUM PEAK STAGE						c9.40	Dec 18 1986
ANNUAL RUNOFF (AC-FT)	278200		244600			284400	
ANNUAL RUNOFF (CFSM)	2.31		2.03			2.36	
ANNUAL RUNOFF (INCHES)	31.43		27.63			32.13	
10 PERCENT EXCEEDS	932		756			984	
50 PERCENT EXCEEDS	224		240			200	
90 PERCENT EXCEEDS	50		70			62	

See Period of Record; partial years used in monthly statistics Apr. 17-19 From rating curve extended above 3,900  ${\rm ft}^3/{\rm s}$  on basis of slope-area measurement of peak flow Backwater from ice

### 15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY

LOCATION.--Lat  $60^{\circ}05'41"$ , long  $152^{\circ}54'38"$ , in  $SW^{1}_{/4}$   $NW^{1}_{/4}$   $NW^{1}_{/4}$  sec. 16, T. 1 S., R. 21 W. (Kenai A-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020602, on the right bank about 20 mi upstream from mouth, 10 mi south of Tuxedni Bay, and 60 mi northeast of Iliamna.

DRAINAGE AREA. -- 24.8 mi².

PERIOD OF RECORD. -- July 1995 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 450 ft above sea level, from topographic map. July 1995 to June 1996, at site 300 ft downstream at same datum.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 9,980  ${\rm ft}^3/{\rm s}$ , September 30, 2003, stage rising, peak occurred October 1, 2003, from rating curve extended above 3,500  ${\rm ft}^3/{\rm s}$  on the basis of slope-area measurement, gage height 16.75 ft., minimum not determined, occurs during the winter.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,980 ft³/s, September 30, stage rising, peak occurred October 1, 2003; maximum peak discharge, 3,630 ft³/s, November 5, gage height, 13.72. minimum discharge 32 ft³/s, April 11, gage height 10.06 ft.

 ${\tt REMARKS.--Records} \ are \ fair \ except \ for \ estimated \ discharges, \ which \ are \ poor. \ Rain \ gage \ at \ station. \ {\tt GOES} \ satellite \ telemetry \ at \ station.$ 

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		DISCHA	NGE, CODI	C FEET TE		Y MEAN V		ER ZUUZ I	O DELTERE	EK 2005		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	213	436	237	e58	e45	50	e48	139	e380	804	648	577
2	161	510	194	e60	e48	53	47	164	e360	856	613	535
3	136	448	540	e70	e60	50	e47	203	e320	862	539	465
4	122	686	343	e80	e150	e50	e47	179	369	864	525	370
5	124	1980	348	e90	e300	e47	e46	165	655	754	520	315
6	126	1450	314	111	e250	e45	e45	141	852	732	529	294
7	185	794	244	117	e220	e45	e44	132	645	853	602	280
8	139	480	180	118	e270	e44	e43	127	491	983	770	251
9	111	331	157	121	e230	e43	e43	249	546	989	867	266
10	105	248	142	134	e210	e42	e42	307	862	1000	819	272
11	192	214	113	206	e200	e42	e41	215	1070	921	878	292
12	139	185	107	134	e180	e41	37	171	1000	868	1170	269
13	560	151	e100	114	e150	e40	40	147	1020	965	1720	239
14	676	130	e95	102	e100	e50	e40	138	948	1160	1730	177
15	725	118	e90	93	e90	70	39	145	831	1260	1330	143
16	364	111	e85	91	e85	64	38	164	664	1020	984	127
17	244	108	e80	100	e80	58	37	164	613	798	727	118
18	318	103	e75	72	80	56	37	150	605	692	566	109
19	554	101	e70	53	80	54	38	159	607	719	794	98
20	998	135	70	52	e78	e53	39	183	577	776	997	89
21 22 23 24 25	1270 1490 2020 1250 1010	150 296 995 511 397	68 e68 e66 e65 e64	e52 e51 e50 e50	77 75 e72 e70 e65	e53 e53 e52 e52 51	44 57 55 58 63	212 e285 e330 e350 e360	642 599 575 627 886	789 769 700 977 1120	659 551 479 461 576	83 78 75 74 74
26 27 28 29 30 31	795 434 464 715 498 708	664 298 187 366 512	e63 e62 e61 e60 e60 e59	47 e47 e46 e46 e45 e45	e60 e55 e53 	50 50 e50 e50 e50 e49	73 88 107 129 134	e365 e400 e420 e400 e390 e380	674 677 618 624 713	918 713 767 897 674 681	966 986 1350 1290 1100 750	79 90 626 1000 3410
TOTAL	16846	13095	4280	2504	3433	1557	1646	7334	20050	26881	26496	10875
MEAN	543	436	138	80.8	123	50.2	54.9	237	668	867	855	362
MAX	2020	1980	540	206	300	70	134	420	1070	1260	1730	3410
MIN	105	101	59	45	45	40	37	127	320	674	461	74
AC-FT	33410	25970	8490	4970	6810	3090	3260	14550	39770	53320	52550	21570
CFSM	21.9	17.6	5.57	3.26	4.94	2.03	2.21	9.54	26.9	35.0	34.5	14.6
IN.	25.27	19.64	6.42	3.76	5.15	2.34	2.47	11.00	30.07	40.32	39.74	16.31

e Estimated

### 15295700 TERROR RIVER AT MOUTH NEAR KODIAK

LOCATION.--Lat  $57^{\circ}41'41''$ , long  $153^{\circ}09'42''$ , in  $SW^{1}/_{4}$   $NE^{1}/_{4}$  sec. 5, T. 29 S., R. 24 W. (Kodiak C-4 quad), Kodiak Island Borough, Hydrologic Unit 19020701, on Kodiak Island, in Kodiak National Wildlife Refuge, on right bank, 0.9 mi upstream from mouth, 7.5 mi downstream from Terror Lake Dam, and 29 mi southwest of Kodiak.

DRAINAGE AREA.--30.7 mi², 45.7 mi² prior to partial diversion of Terror Lake to hydropower plant in February 1985.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1964 to October 1968, October 1981 to current year.

REVISED RECORDS.--WDR AK-84-1: 1982-83. WDR AK-96-1: 1995(M).

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map. Prior to October 1, 1981 at site 0.2 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records fair. Flow from 15 mi² at headwaters regulated by Terror Lake Dam and some flow diverted from Terror Lake to Kizhuyak River. Regulation for construction began in November 1982. Began filling reservoir April 29, 1984. Diversion to hydropower plant began February 12, 1985. GOES satellite telemetry at station.

		DIS	CHARGE, (	CUBIC FEET		D, WATER ILY MEAN		DBER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	181 188 179 198 243	251 215 541 965 2280	441 591 2060 967 534	109	91 89 126 694 522	90 105 112 103 93	113 123 123 123 122	248 358 375 313 225	395 300 266 344 373	381 605 679 601 590	202 200 197 201 213	169 184 206 205 207
6 7 8 9 10	216 221 205 185 239	2080 874 474 311 232	483 394 361 422 274	200 491	334 438 554 421 382	109 122 122 117 114	123 116 121 122 138	171 168 189 207 208	361 307 419 530 458	555 479 513 573 504	219 218 217 210 211	195 187 182 191 195
11 12 13 14 15	314 227 450 271 362	205 170 165 168 159	146 98 91 109 115	381 378	287 205 153 122 105	108 108 106 109 117	165 221 233 164 175	176 149 121 124 155	391 482 476 449 392	493 603 535 501 473	215 208 200 212 200	181 179 173 176 177
16 17 18 19 20	246 227 227 262 330	157 127 175 158 171	134 115 99 99 86		132 142 100 92 85	125 120 112 109 105	155 141 197 162 152	182 170 199 238 198	356 349 319 309 286	403 364 419 361 335	182 174 170 215 367	175 196 181 175 186
21 22 23 24 25	261 1340 510 323 755	202 867 2740 810 809	86 89 80 82 92	113 101 108	80 79 100 90 82	103 102 100 95 133	135 128 154 173 223	192 187 194 225 233	271 248 292 425 396	439 348 312 255 197	250 201 180 175 180	176 172 298 544 284
26 27 28 29 30 31	380 261 822 806 501 309	1110 493 370 905 732	85 76 85 87 84 75	193 148 368 205 146 110	81 83 83 	106 121 92 86 94 102	203 208 215 218 238	233 257 272 236 559 413	304 272 247 258 281	200 213 200 210 195 205	179 173 178 539 253 187	209 179 207 191 888
TOTAL MEAN MAX MIN AC-FT	11239 363 1340 179 22290	18916 631 2740 127 37520	8540 275 2060 75 16940		5752 205 694 79 11410	3340 108 133 86 6620	4884 163 238 113 9690	7175 231 559 121 14230	10556 352 530 247 20940	12741 411 679 195 25270	6726 217 539 170 13340	6868 229 888 169 13620
STATIS	TICS OF	MONTHLY	MEAN DAT	A FOR WATE	R YEARS 19	86 - 2003	, BY WATE	ER YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	278 427 1995 192 1998	209 631 2003 93.8 1995	153 313 1986 78.4 1988	267 2003 81.8	115 205 2003 72.6 1989	101 152 1998 60.9 1986	172 247 1993 115 1986	323 454 1993 231 2003	491 872 1987 305 1990	366 1070 1987 228 1989	282 662 1988 183 1994	286 707 1995 175 2000

[#] See Period of Record and Remarks

# 15295700 TERROR RIVER AT MOUTH NEAR KODIAK—Continued

SUMMARY STATISTICS	FOR 2002 CALE	NDAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1986 - 2003#
ANNUAL TOTAL	103085		105001			
ANNUAL MEAN HIGHEST ANNUAL MEAN	282		288		243 369	1987
LOWEST ANNUAL MEAN					193	2000
HIGHEST DAILY MEAN	2740	Nov 23	2740	Nov 23	4610	Sep 20 1995
LOWEST DAILY MEAN	70	Jan 25	75	Dec 31	a26	Dec 11 1996
ANNUAL SEVEN-DAY MINIMUM	82	Mar 24	83	Dec 26	39	Nov 19 1985
MAXIMUM PEAK FLOW			4410	Nov 23	b10000	Sep 19 1995
MAXIMUM PEAK STAGE			5.57	Nov 23	7.67	Sep 19 1995
INSTANTANEOUS LOW FLOW			c67	Dec 31	a9.8	Dec 11 1996
ANNUAL RUNOFF (AC-FT)	204500		208300		175800	
10 PERCENT EXCEEDS	530		536		464	
50 PERCENT EXCEEDS	202		203		186	
90 PERCENT EXCEEDS	90		99		86	

### PRIOR TO CONSTRUCTION OF TERROR LAKE DAM

SUMMARY STATISTICS, WATER YEARS 1965 - 1983 #

ANNUAL MEAN	293	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	421 230	1983 1967
HIGHEST DAILY MEAN LOWEST DAILY MEAN	2600 d19	Oct 2 1965 Feb 23 1967
ANNUAL SEVEN-DAY MINIMUM	20	Feb 23 1967
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS PEAK STAGE	3820 f6.48 g7.54	
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (IN)	212200 9.54 129.66	
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	774 157 39	

See Period of Record and Remarks
Occurred while dam release valve was closed for repair
From rating curve extended above 960 ft³/s on basis of slope-area measurement of peak flow
Dec. 31, Feb. 28, and Mar. 26
Feb. 23 and Mar. 1, 1967
Site and datum then in use
Site and datum then in use; from tidal wave

## 15295700 TERROR RIVER AT MOUTH NEAR KODIAK—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968, 1982 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: December 1981 to current year.

INSTRUMENTATION.--Water-temperature recorder since December 10, 1981. Electronic water temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the average for the river by cross section on May 21. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum,  $15.0^{\circ}$ C, July 15, 2003; minimum,  $0.0^{\circ}$ C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 15.0°C, July 15, 2003; minimum, 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
MAY							
21	1409	22.0	1.00	2.07	163	6.5	17.0
21	1410	22.0	5.00	2.07	163	6.5	17.0
21	1411	22.0	10.0	2.07	163	6.5	17.0
21	1412	22.0	15.0	2.07	163	6.5	17.0
21	1413	22.0	20.0	2.07	163	6.5	17.0
21	1414	22.0	21.0	2.07	163	6.5	17.0

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN									
		OCTOBER		NO	OVEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	6.5 6.5 6.5 6.0 7.5	5.5 4.5 4.5 5.5 6.0	6.0 5.5 5.5 6.0 6.5	5.5 5.5 7.0 6.0 7.0	4.0 4.5 5.0 5.5 6.0	5.0 5.0 6.0 5.5 6.5	4.5 5.0 5.0 4.5 5.0	3.5 4.0 4.5 4.5	4.0 4.5 4.5 4.5	1.5 2.5 2.0 1.5 0.5	0.0 1.5 1.5 0.5	0.5 2.0 1.5 1.0
6 7 8 9 10	7.5 7.0 6.0 5.0	6.5 5.5 4.5 3.5 4.0	7.0 6.5 5.5 4.5 5.5	6.5 6.0 5.5 4.5 3.5	5.5 5.5 4.0 3.5 3.0	6.0 6.0 5.0 4.0 3.5	4.5 4.5 4.5 4.5 3.5	4.5 4.5 4.0 3.5 1.5	4.5 4.5 4.5 4.0 2.5	0.0 0.0 2.0 1.5	0.0 0.0 0.0 1.0	0.0 0.0 1.5 1.0
11 12 13 14 15	7.0 6.5 7.0 6.5 7.5	5.5 4.5 5.5 5.0 5.5	6.5 5.5 6.5 6.0	4.5 4.5 4.5 4.5	3.5 4.0 4.0 4.0 3.0	4.0 4.0 4.5 4.5 3.5	1.5 1.5 0.5 1.0	1.0 0.5 0.5 0.5	1.5 1.0 0.5 0.5	2.0 2.0 2.0 2.5 2.5	1.0 1.5 1.5 1.5 2.0	2.0 2.0 2.0 2.0 2.0
16 17 18 19 20	6.0 7.0 7.5 7.5	4.0 5.5 7.0 7.0 6.5	5.0 6.5 7.0 7.0	4.0 3.5 3.5 3.5 3.5	2.5 2.5 2.5 2.5 3.0	3.0 3.0 3.0 3.0	1.5 1.5 0.5 2.0	0.5 0.5 0.0 0.5 1.5	1.0 1.0 0.5 1.0 2.0	2.0 2.5 2.0 3.0 2.0	1.5 2.0 1.5 2.0	1.5 2.0 1.5 2.5 2.0
21 22 23 24 25	7.5 7.5 6.5 5.0 5.5	6.5 5.0 5.0 4.0 4.5	7.0 6.5 5.5 4.5 5.0	3.5 4.5 5.0 5.0	2.5 3.0 4.0 4.0 4.0	3.0 3.5 4.5 4.5 4.5	2.0 2.0 2.5 2.0	1.5 2.0 2.0 1.0 0.5	2.0 2.0 2.0 1.5	2.5 2.0 2.5 2.5 2.5	1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.5
26 27 28 29 30 31	5.5 4.5 6.5 6.0 5.5	3.5 3.0 4.5 5.0 5.0	4.5 3.5 5.5 5.5 5.5	5.0 4.0 4.0 4.5 4.5	4.0 3.5 3.0 3.5 3.5	4.5 4.0 3.5 4.5 4.0	1.5 0.5 1.5 2.0 2.5	0.5 0.0 0.0 1.5 1.0	1.0 0.5 0.5 1.5 2.0	2.5 2.5 2.5 2.0 2.0	2.0 1.5 2.0 1.5 1.5	2.5 2.0 2.5 2.0 1.5
MONTH	7.5	3.0	5.8	7.0	2.5	4.3	5.0	0.0	2.1	3.0	0.0	1.6

# SOUTH-CENTRAL ALASKA

# 15295700 TERROR RIVER AT MOUTH NEAR KODIAK—Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.0 2.0 3.0 3.0 2.5	1.5 1.0 2.0 2.0 2.0	1.5 1.5 2.5 2.5 2.5	4.0 5.5 4.0 4.0 3.0	3.0 3.5 3.0 2.0 1.0	3.5 4.0 3.5 3.0 2.0	4.5 4.0 4.5 4.5	2.0 3.0 2.0 2.5 2.5	3.0 3.5 3.0 3.0 3.5	6.5 6.0 7.5 5.5 5.5	3.0 3.5 2.5 3.0 2.5	4.5 4.5 4.5 4.0
6 7 8 9 10	2.5 3.5 3.0 3.5 3.5	2.0 2.5 2.0 2.0 2.5	2.5 3.0 3.0 3.0 3.0	2.5 2.5 3.0 3.0	0.5 1.0 1.5 1.5	1.5 1.5 2.5 2.0	3.0 3.5 4.0 5.0 4.0	2.0 2.0 2.0 2.0 2.5	2.5 2.5 3.0 3.5 3.5	6.0 6.5 7.0 5.5 6.0	3.0 3.0 4.0 3.5 3.0	4.0 4.5 5.0 4.5 4.5
11 12 13 14 15	3.0 3.0 3.0 3.0 3.0	2.5 2.0 2.0 2.0 2.0	3.0 2.5 2.5 2.5 2.5	3.0 2.0 0.5 0.0	1.5 0.5 0.0 0.0	2.0 1.0 0.5 0.0	6.0 5.0 4.0 5.0 5.5	3.0 2.5 1.5 2.0 3.0	4.0 3.5 3.0 3.0 3.5	6.0 5.5 5.5 7.5	3.5 3.0 3.0 2.5 3.0	4.5 4.0 4.0 4.0 5.0
	2.5 2.0 3.0 2.5 2.5	1.0 1.0 2.0 1.0	1.5 1.5 2.5 1.5 2.0	3.0 3.5 3.5 3.0 2.5	1.5 1.5 1.0 1.0	2.0 2.5 2.0 2.0	4.5 3.5 3.5 6.0 6.5	1.5 1.0 2.0 1.5 3.0	3.0 2.5 2.5 3.5 4.5	7.5 7.0 6.5 6.5 8.0	2.5 3.0 4.0 4.0 3.0	5.0 5.0 5.0 5.0
21 22 23 24 25	3.0 2.5 4.0 3.5 3.5	1.5 2.0 2.5 2.5 2.5	2.0 2.0 3.0 3.0 3.0	1.5 2.0 2.5 3.0 2.5	0.0 0.5 0.0 1.0 2.0	1.0 1.0 1.0 2.0 2.5	5.0 4.0 7.0 5.5 5.5	3.0 2.5 3.0 3.0	4.0 3.5 5.0 4.0 4.0	8.0 6.5 7.0 8.5 7.0	2.5 2.5 4.0 3.0 4.0	5.0 4.5 5.5 5.5
26 27 28 29 30 31	3.5 3.0 4.0 	2.5 2.0 2.5 	3.0 2.5 3.0 	3.0 3.5 3.5 4.0 3.5 3.5	1.5 2.0 1.5 1.5 1.0	2.5 2.5 2.5 2.5 2.0 2.0	7.0 7.5 7.0 7.5 8.0	2.5 2.5 2.5 3.0 2.5	4.5 5.0 4.5 5.0 5.0	7.5 6.5 6.0 5.0 5.5	3.5 4.0 4.0 3.5 4.0 3.5	5.5 5.0 5.0 4.5 4.5
MONTH	4.0	1.0	2.4	5.5	0.0	1.9	8.0	1.0	3.6	8.5	2.5	4.7
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		,	SEPTEMBE	R
DAY  1 2 3 4 5	5.5			MAX 8.5 9.5 9.5 10.5 9.0	JULY	7.5 8.0 7.5 8.5 8.5		AUGUST	0.0		SEPTEMBE	
1 2 3 4	5.5 8.0 6.5 6.0 7.5	JUNE 3.5 3.5 4.0 4.5 4.0	4.5 5.5 5.0 5.0 5.5	8.5 9.5 9.5 10.5 9.0 11.0 11.0 12.0 13.0	JULY 7.0 6.5 6.0 6.5 8.0	7.5 8.0 7.5 8.5 8.5	10.0 9.5 10.0 10.0	6.5 6.5 5.5 6.0 6.0	8.0 7.5 7.5 7.5 7.5	0.5	7.0 6.5 6.0 6.5 6.5	7.5 7.5 7.0 7.0
1 2 3 4 5 6 7 8 9	5.5 8.0 6.5 6.0 7.5	JUNE 3.5 3.5 4.0 4.5 4.0	4.5 5.5 5.0 5.0 5.5	8.5 9.5 9.5 10.5 9.0 11.0 12.0 13.0 13.0	JULY 7.0 6.5 6.0 6.5 8.0	7.5 8.0 7.5 8.5 8.5	10.0 9.5 10.0 10.0	6.5 6.5 5.5 6.0 6.0	8.0 7.5 7.5 7.5 7.5	8.5 8.5 8.0 8.0 7.0	7.0 6.5 6.0 6.5 6.5	7.5 7.5 7.0 7.0 6.5 7.0 6.5 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5.5 8.0 6.5 6.0 7.5 7.5 8.5 6.0 6.5 6.5 6.9 9.5	JUNE 3.5 3.5 4.0 4.5 4.0 4.0 5.0 4.5 4.5 4.5 5.0 5.0	4.5 5.5 5.0 5.5 5.5 5.0 5.5 5.0 5.0 5.0 5	8.5 9.5 9.5 10.5 9.0 11.0 11.0 13.0 13.0 11.5 13.5	JULY 7.0 6.5 6.0 6.5 8.0 7.0 7.0 9.0 10.5 9.5 9.5 9.0 10.0	7.5 8.0 7.5 8.5 8.5 8.5 10.0 11.0 11.5	10.0 9.5 10.0 10.0 10.0 10.5 10.5 10.5 9.5 10.5 9.5	6.5 6.5 5.5 6.0 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 7.5 7.5 7.5 7.5 7.5 8.5 8.5 8.5 8.0 8.5	8.5 8.0 8.0 7.0 8.0 7.5 8.0 8.5 7.5 8.5 7.5	7.0 6.5 6.5 6.5 6.5 6.5 5.5 6.5 5.5 6.5	7.5 7.5 7.0 7.0 6.5 7.0 6.5 7.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	5.5 8.0 6.5 6.0 7.5 7.5 8.5 6.0 6.5 6.5 7.5 7.5 7.5 7.5	JUNE 3.5 3.5 4.0 4.5 4.0 4.0 5.0 4.5 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0	4.5 5.0 5.5 5.0 5.5 5.0 5.0 5.0 5.0 5.0 5	8.5 9.5 9.5 10.5 9.0 11.0 11.0 13.0 13.0 11.5 14.5 15.0 11.5 11.0	JULY  7.0 6.5 6.0 6.5 8.0 7.0 7.0 9.0 10.5 9.5 9.5 9.5 10.0 10.5	7.5 8.0 7.5 8.5 8.5 8.5 10.0 11.0 11.5 10.0 12.0 12.0 12.5	10.0 9.5 10.0 10.0 10.0 9.5 10.5 10.5 9.5 9.5 10.0 8.5 8.5 8.5 8.0 7.0	6.5 6.5 5.5 6.0 6.0 6.5 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5	8.0 7.5 7.5 7.5 7.5 7.5 8.5 8.5 8.0 7.5 7.5 7.5	8.5 8.0 7.0 8.0 7.5 8.0 8.5 8.5 7.5 7.5 8.5 7.5 8.5 7.5 8.6 6.5 6.5	7.0 6.5 6.5 6.5 6.5 5.5 6.5 5.5 6.5 4.5 4.5 4.5 4.5	7.5 7.5 7.0 6.5 7.0 6.5 7.0 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.5 8.05 6.00 7.5 7.5 6.00 6.5 6.00 7.5 7.5 7.5 7.5 6.00 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	JUNE  3.5 3.5 4.0 4.5 4.0 4.0 5.0 4.5 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	4.55.005 5.055.55 5.00505 5.00505 5.00505 6.505 6.505 6.505 6.505	8.5 9.5 9.5 10.5 9.0 11.0 11.0 13.0 13.0 11.5 14.5 15.0 13.0 11.5 14.5 11.0 11.0 11.5 11.0 11.5	JULY 7.0 6.5 6.0 6.5 8.0 7.0 7.0 9.0 10.5 9.5 9.5 10.0 10.0 10.0 9.5 10.0 10.0 10.0 10.0 10.0	7.5 8.0 7.5 8.5 8.5 8.5 10.0 11.0 11.5 10.0 12.0 12.5 11.5 10.5 10.5 10.5 10.5 10.5	10.0 9.5 10.0 10.0 10.0 9.5 10.5 10.5 9.5 9.5 9.5 8.5 8.5 8.5 8.5 8.0 8.0 7.0 8.0 8.0 9.0 8.0	AUGUST  6.5 6.5 6.0 6.0 6.5 7.0 6.5 7.0 7.5 7.0 7.0 7.0 6.5 6.0 6.5 6.5 6.5 6.5	8.0 7.5 7.5 7.5 7.5 7.5 8.5 8.5 8.0 7.5 7.5 7.0 6.5 7.0 7.0 7.0	8.5 8.0 7.0 8.0 7.5 8.0 8.0 7.5 8.0 8.5 7.5 7.5 6.5 6.5 6.5 6.0 6.5	7.0 6.5 6.5 6.5 6.5 5.5 6.5 5.5 6.5 4.5 4.5 4.5 4.5 4.0 3.5 4.5	7.5 7.5 7.0 6.5 7.0 6.5 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

### 15297610 RUSSELL CREEK NEAR COLD BAY

LOCATION.--Lat 55°10'40", long 162°41'15", (Cold Bay A-3 quad), Aleutians East Borough, Hydrologic Unit 19030101, on left bank, at Russell Creek Fish Hatchery, 2.1 mi upstream from mouth, and 2.6 mi southeast of Cold Bay. Prior to February 27, 1997, at site 0.2 mi downstream.

DRAINAGE AREA. -- 30.9 mi².

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1981 to December 1986, October 1995 to current year.

REVISED RECORDS. -- WRD AK-97-1: 1996, Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 7.65 ft above sea level. Prior to February 27, 1997, elevation 3.55 ft above sea level at site 0.2 mi downstream (levels by private engineering firm).

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DIS	CHARGE, C	UBIC FEET		ID, WATER		OBER 2002	TO SEPTEI	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	180	358	293	e110	124	323	155	178	151	630	159	239
2	158	302	268	e110	128	771	135	240	146	392	178	194
3	166	418	249	e100	161	377	120	221	143	303	203	169
4	187	628	408	e100	162	312	114	217	143	299	231	174
5	412	635	388	e100	144	272	133	177	143	307	263	187
6	308	463	429	e100	150	242	120	162	145	245	322	172
7	255	437	424	e100	460	222	112	187	174	239	345	254
8	203	349	327	e95	320	206	105	214	416	238	386	385
9	306	290	269	e95	371	193	105	178	293	448	480	235
10	815	256	236	e100	261	194	102	155	226	365	434	246
11	430	235	e230	e110	240	178	132	148	211	369	304	199
12	496	227	e220	e110	208	166	265	146	218	312	429	177
13	842	242	e220	e120	186	e160	176	138	269	274	372	175
14	606	204	e210	126	174	e160	150	133	269	277	343	156
15	468	251	e210	160	163	e150	193	124	235	243	333	154
16	343	613	e200	264	158	e150	150	116	235	239	254	396
17	364	382	e190	190	160	e140	140	124	579	295	212	249
18	368	326	e180	191	153	e140	129	121	453	508	201	183
19	331	302	e180	167	190	e130	137	140	303	412	239	162
20	327	259	e170	211	167	e130	173	152	303	295	254	153
21	339	231	e160	286	192	e130	144	141	275	317	322	142
22	394	226	e150	205	161	e120	144	142	242	276	227	140
23	356	207	e150	177	271	e120	138	147	246	328	204	176
24	318	204	e140	162	348	e120	135	136	217	242	194	142
25	405	200	e140	151	310	e110	123	127	229	205	251	132
26 27 28 29 30 31	294 257 394 574 412 386	188 227 191 196 179	e130 e130 e130 e120 e120 e110	143 138 147 132 130 125	355 251 379 	e110 e110 e110 106 110 155	118 116 119 119 130	120 224 191 157 162 158	284 336 294 371 369	179 168 170 169 167 164	195 203 391 332 253 234	143 202 299 333 288
TOTAL MEAN MAX MIN AC-FT CFSM IN.	11694 377 842 158 23200 12.2 14.08	9226 308 635 179 18300 9.95	6781 219 429 110 13450 7.08 8.16	4455 144 286 95 8840 4.65 5.36	6347 227 460 124 12590 7.34 7.64	5917 191 771 106 11740 6.18 7.12	4132 138 265 102 8200 4.46 4.97	4976 161 240 116 9870 5.19 5.99	7918 264 579 143 15710 8.54 9.53	9075 293 630 164 18000 9.47 10.93	8748 282 480 159 17350 9.13 10.53	6256 209 396 132 12410 6.75 7.53
STATIS	TICS OF	MONTHLY	MEAN DATA	A FOR WATE	R YEARS 19	82 - 2003	B, BY WATE	R YEAR (WY	7)#			
MEAN	282	297	249	163	154	143	141	234	329	338	312	347
MAX	516	530	549	318	272	218	261	575	634	528	403	538
(WY)	1986	1986	1984	1982	1982	1996	1998	2002	2000	1982	2000	1998
MIN	172	168	86.8	59.5	71.2	75.8	80.3	133	208	192	256	170
(WY)	1997	2000	2000	2000	2000	1986	1985	2001	1997	1997	1996	2000

See Period of Record Estimated

# SOUTHWEST ALASKA

# 15297610 RUSSELL CREEK NEAR COLD BAY—Continued

SUMMARY STATISTICS	FOR 2002 CALEND	AR YEAR	FOR 2003 WAT	TER YEAR	WATER YEARS	1982 - 2003#
ANNUAL TOTAL	98162		85525			
ANNUAL MEAN	269		234		249	
HIGHEST ANNUAL MEAN					302	1982
LOWEST ANNUAL MEAN					206	1983
HIGHEST DAILY MEAN	1670	May 24	842	Oct 13	4000	Jun 24 1996
LOWEST DAILY MEAN	a80	Feb 21	b95	Jan 8	c50	Feb 19 1982
ANNUAL SEVEN-DAY MINIMUM	84	Feb 18	99	Jan 3	51	Feb 18 1982
MAXIMUM PEAK FLOW			1490	Oct 10	d6000	Oct 22 1981
MAXIMUM PEAK STAGE			27.49	Oct 10	f11.76	Jun 24 1996
INSTANTANEOUS LOW FLOW					g49	Mar 13 1983
ANNUAL RUNOFF (AC-FT)	194700		169600		180500	
ANNUAL RUNOFF (CFSM)	8.70		7.58		8.06	
ANNUAL RUNOFF (INCHES)	118.18		102.96		109.53	
10 PERCENT EXCEEDS	436		389		430	
50 PERCENT EXCEEDS	229		201		202	
90 PERCENT EXCEEDS	110		120		98	

[#] See Period of Record
a Feb. 21-22
b Jan. 8-9
c Feb. 19-23, 1982
d From rating curve extended above 610 ft³/s on basis of estimate
by slope-area measurement of 6,000 ft³/s and gage height of 11.19 ft
Site and datum then in use; from flood marks
g Mar. 13-14, 1983

## 15297610 RUSSELL CREEK NEAR COLD BAY—Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1982-83, 1996 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1996 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water-temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on August 25. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURE: Maximum, 15.5°C, August 13-14, 2001, July 31 and August 1, 2002; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 15.0°C, May 29 and July 13; minimum 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Stream width, feet (00004)	X-sect. looking dwnstrm ft from 1 bank (00009)	Gage height, feet (00065)	Instan- taneous dis- charge, cfs (00061)	Temper- ature, water, deg C (00010)	Temper- ature, air, deg C (00020)
AUG							
25	1630	72.0	72.0	25.92	247	10.5	13.6
25	1632	72.0	55.0	25.92	247	10.5	13.6
25	1634	72.0	40.0	25.92	247	10.5	13.6
25	1636	72.0	25.0	25.92	247	10.5	13.6
25	1638	72.0	10.0	25.92	247	10.5	13.6
25	1640	72.0	.00	25.92	247	10.5	13.6

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	9.0 8.0 6.0 9.5 8.5	4.0 2.0 5.0 5.5 6.5	6.0 4.5 5.5 7.5	6.0 5.5 6.0 5.5 5.5	5.0 3.5 4.5 4.5	5.5 4.5 5.5 5.0 5.0	4.0 4.0 3.0 4.0	3.0 3.0 2.0 3.0 3.5	3.5 3.5 2.5 3.5 3.5	1.0 1.0 1.0 0.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.0
6 7 8 9 10	8.0 7.0 8.0 7.0	5.0 4.5 3.5 3.0 4.5	6.5 5.5 5.0 5.0 6.5	5.5 5.5 6.0 5.0 4.5	3.5 4.5 4.5 3.5 3.0	4.5 5.0 5.0 4.5 3.5	4.0 3.5 3.0 2.0 2.0	3.5 2.5 2.0 1.0 0.0	3.5 3.0 2.5 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	6.5 7.0 7.0 6.5 7.0	4.5 5.0 5.5 5.0 4.5	5.5 6.0 6.0 5.5 5.5	4.0 4.0 2.5 2.0 4.0	2.5 2.5 0.5 0.0 1.5	3.0 3.5 1.0 1.0 3.0	1.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 1.5 2.0 2.5	0.0 0.5 0.5 1.0	0.5 1.0 1.0 1.5 2.0
16 17 18 19 20	6.5 8.0 8.0 8.0	3.0 5.0 6.5 6.0 3.5	4.5 6.5 7.0 6.5 5.5	4.0 3.0 3.0 3.0 3.5	2.5 2.0 2.0 2.0 2.0	3.0 2.5 2.5 2.5 2.5	0.0 0.0 0.5 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	2.0 3.0 2.5 2.5 3.5	1.5 1.5 1.5 1.0 2.0	1.5 1.5 2.0 2.0 2.5
21 22 23 24 25	5.0 5.5 4.5 4.0 5.5	2.5 4.0 3.0 2.5 3.5	3.5 4.5 4.0 3.5 4.0	3.0 3.0 2.5 3.5 4.0	1.5 1.5 1.5 1.5 2.5	2.0 2.0 2.0 2.5 3.0	1.0 1.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.5 0.0 0.0	3.5 2.0 3.0 2.5 3.5	2.0 0.5 1.0 1.0	3.0 1.5 2.0 1.5 2.5
26 27 28 29 30 31	4.5 4.0 6.0 6.0 5.5 6.0	2.5 2.0 4.0 4.0 4.0	3.5 3.0 5.0 5.0 4.5 4.5	4.0 2.5 1.5 2.0 3.0	1.0 1.5 0.0 1.0 1.0	2.5 2.0 1.0 1.5	0.0 0.0 2.0 2.5 0.5	0.0 0.0 0.0 0.5 0.0	0.0 0.0 1.0 1.5 0.0	3.0 3.5 3.0 3.0 2.5	1.0 2.0 1.5 1.5 1.5	2.0 2.5 2.0 2.0 2.0
MONTH	9.5	2.0	5.3	6.0	0.0	3.1	4.0	0.0	1.1	3.5	0.0	1.3

# SOUTHWEST ALASKA

# 15297610 RUSSELL CREEK NEAR COLD BAY—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	4.0 2.5 4.5 2.5 1.5	1.0 0.0 2.0 1.5 0.0	2.0 1.5 3.0 2.0 0.5	5.5 5.0 4.5 3.5 2.5	2.5 2.0 1.5 1.5	4.0 3.5 2.5 2.5 1.5	6.0 6.5 6.5 7.5 4.0	2.5 1.5 1.5 1.5 2.0	4.0 3.5 3.5 4.0 3.0	7.0 9.0 11.5 9.0 7.0	4.0 4.0 4.0 4.0 2.5	5.5 6.0 7.0 6.0 4.5
6 7 8 9 10	1.5 3.5 3.5 4.5 3.5	0.0 1.5 2.5 2.0 2.0		4.5 4.5 4.0 5.0 2.0	0.0 0.0 0.5 0.0	1.5 1.5 2.0 2.0	5.5 4.5 6.0 4.5 5.0	1.0 0.0 0.0 0.0 0.0	3.0 1.5 2.0 1.5 2.0	6.5 8.5 6.0 6.5 11.5	4.0 4.5 4.0 2.5 1.5	5.0 6.0 5.0 4.5 6.0
11 12 13 14 15	3.5 4.0 4.0 3.0 3.0	2.0 2.0 2.0 1.0 1.5	2.5 3.0 3.0 2.0 2.0	4.0 4.0 0.0 0.0	1.0 0.0 0.0 0.0	2.0 1.5 0.0 0.0	3.5 6.5 8.0 6.0 7.0	0.5 3.5 1.0 3.0 1.5	2.0 4.5 4.0 4.5 4.0	8.0 8.0 8.5 8.0 9.0	3.5 2.5 1.5 1.5	5.0 4.5 4.5 4.5 5.0
16 17 18 19 20	3.0 3.5 2.5 4.0 3.5	1.5 2.0 1.0 1.0	2.5 2.5 2.0 2.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6.5 4.0 5.5 2.5 7.0	1.0 1.5 0.5 0.0 1.0	3.0 2.5 3.0 1.0 3.5	11.5 8.5 8.0 8.5 7.5	1.0 2.5 5.0 5.0 4.5	6.0 5.5 6.5 6.5
21 22 23 24 25	4.5 4.0 4.0 5.5 4.0	2.0 1.5 1.5 2.5 2.0	3.0 2.5 3.0 3.5 3.0	0.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	8.0 8.5 6.0 10.5 9.5	1.5 1.5 2.0 2.0	4.0 4.5 3.5 5.5	14.0 12.0 7.0 7.0 10.5	3.5 3.0 4.0 2.5 3.0	8.0 7.5 5.5 4.5 6.0
26 27 28 29 30 31	4.0 3.0 5.0 	2.0 1.5 2.5 	2.5 2.0 3.5 	3.0 4.0 4.5 4.0 4.5 5.5	0.0 0.0 0.0 1.0 0.5 2.5	0.5 1.0 1.5 2.0 2.0	11.5 9.5 6.0 7.0 10.5	1.0 2.5 2.5 3.5 3.5	5.5 6.0 4.5 5.0 6.0	7.0 5.5 8.0 15.0 13.5 9.5	4.0 4.0 4.0 3.5 4.0 5.0	5.5 4.5 5.5 8.5 8.0 7.5
MONTH										15.0		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMB	
					JULY			AUGUST		MAX 10.0 10.0 9.5 10.0 12.0	SEPTEMB	ER
1 2 3 4 5	11.0 11.0 11.5 10.5 12.5	JUNE	8.0 7.5 7.5 7.5 8.0	8.5 12.0 13.0 8.5 14.0	JULY 5.0 4.5 5.0 5.5 4.5	7.0 7.5 8.0 6.5 8.5	14.5 10.5 11.5 13.5 12.5	AUGUST 6.5 7.0 7.5 8.0 8.5	9.5 9.0 9.5 10.5		7.0 5.5 5.5 6.0 7.0	8.0 7.5 7.0 7.5 9.0
1 2 3 4 5 6 7 8 9	11.0 11.5 10.5 12.5 8.5 7.0 8.0 8.0 8.0	JUNE 5.0 4.0 5.0 5.0 5.0 5.0 4.5 4.5 4.5	8.0 7.5 7.5 7.5 8.0 7.0 6.0 5.5 7.0	8.5 12.0 13.0 8.5 14.0 11.5 12.0 11.0 11.5	JULY 5.0 4.5 5.0 5.5 4.5 5.5 6.0 5.5 7.5 5.0	7.0 7.5 8.0 6.5 8.5 8.0 9.0 7.5	14.5 10.5 11.5 13.5 12.5 11.5 10.5 11.0 12.0	AUGUST  6.5 7.0 7.5 8.0 8.5 9.0 8.5 8.5 8.5 8.5 7.0 7.5	9.5 9.0 9.5 10.5 10.0 10.0 9.5 10.0 9.5	10.0 10.0 9.5 10.0 12.0	7.0 5.5 5.5 6.0 7.0 6.5 7.0 6.5 6.0 7.5	8.0 7.5 7.0 7.5 9.0 9.0 8.0 8.0 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	11.0 11.0 11.5 10.5 12.5 8.5 7.0 8.0 8.0 11.5 12.5 8.0 9.0 14.0	JUNE 5.0 4.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5	8.0 7.5 7.5 8.0 7.0 6.0 5.5 7.0 7.5 6.5 8.0	8.5 12.0 13.0 8.5 14.0 11.5 12.0 11.5 10.5	JULY 5.0 4.5 5.0 5.5 4.5 5.5 6.0 5.5 7.5 5.0 5.5 6.0 5.5	7.0 7.5 8.0 6.5 8.5 8.0 8.5 9.0 7.5 7.5 9.5 9.0	14.5 10.5 11.5 13.5 12.5 11.5 10.5 12.0 11.0 12.5	AUGUST  6.5 7.0 7.5 8.0 8.5 9.0 8.5 8.5 8.5 7.0 7.5 7.0 7.5	9.5 9.0 9.5 10.5 10.0 10.0 9.5 10.0 9.5 9.5	10.0 10.0 9.5 10.0 12.0 13.0 9.0 9.0 10.5 9.5	7.0 5.5 5.5 6.0 7.0 6.5 7.0 6.5 7.5 6.5 4.5 7.0	8.0 7.5 7.0 7.5 9.0 8.0 7.0 8.0 7.5 7.5 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	11.0 11.0 11.5 10.5 12.5 8.5 7.0 8.0 11.5 12.5 8.0 9.0 14.0 14.5 8.5 7.0 9.0	JUNE 5.0 4.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 5.0 4.5 4.5 4.5 4.5 4.5	8.0 7.5 7.5 8.0 7.0 6.5 5.5 7.0 7.5 6.5 8.0 8.5 6.0 6.0 6.0 6.0	8.5 12.0 13.0 8.5 14.0 11.5 12.0 11.5 10.5 9.5 10.0 14.5 14.0	JULY 5.0 4.5 5.0 5.5 4.5 5.5 6.0 5.5 7.5 6.5 7.6 6.5 6.5 6.5	7.0 7.5 8.0 6.5 8.5 8.0 9.0 7.5 7.5 9.0 9.0 7.5 9.0 9.0	14.5 10.5 11.5 13.5 12.5 11.5 10.5 12.0 11.0 12.5 10.0 9.5 10.5 9.5	AUGUST  6.5 7.0 7.5 8.0 8.5 9.0 8.5 8.5 8.5 7.0 7.5 7.0 7.5 7.0 6.0 6.0 6.0	9.5 9.0 9.5 10.5 10.0 10.0 9.5 10.0 9.5 9.5 8.0 8.5 9.0 8.0	10.0 10.0 9.5 10.0 12.0 13.0 9.0 9.0 10.5 9.5 9.5 10.5 8.0 7.5 10.5 10.5 9.0	7.0 5.5 5.5 6.0 7.0 6.5 7.0 6.5 6.0 7.5 6.5 4.5 7.0 4.0 5.5	8.0 7.5 7.0 7.5 9.0 9.0 8.0 7.0 8.5 7.5 6.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	11.0 11.0 11.5 10.5 12.5 8.5 7.0 8.0 11.5 12.5 8.0 9.0 14.0 14.5 8.5 7.0 9.0 7.5 12.0 7.5	JUNE 5.0 4.0 5.0 5.0 5.0 5.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	8.0 7.5 7.5 8.0 7.0 6.5 5.5 7.0 7.5 6.5 8.5 6.0 6.5 6.0 6.5 6.5 6.0 6.5 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	8.5 12.0 13.0 8.5 14.0 11.5 12.0 11.05 9.5 10.0 14.5 14.0 10.0 10.0 7.5 8.5 13.5	JULY 5.0 4.5 5.5 5.5 6.0 5.5 7.5 6.5 5.5 7.6 6.5 5.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 6.6 6.5 7.6 6.6 6.5 7.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	7.0 7.5 8.0 6.5 8.5 8.0 9.0 7.5 7.5 9.0 9.0 7.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	14.5 10.5 11.5 13.5 12.5 11.5 10.5 10.0 11.0 12.5 10.0 11.0 11.0 11.0 11.0 11.0 11.0 11	AUGUST  6.5 7.0 7.5 8.0 8.5 8.5 8.5 7.0 7.5 7.0 7.5 7.0 6.0 6.0 6.5 7.0 6.5	9.5 9.5 9.5 10.5 10.0 10.0 9.5 9.5 8.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5	10.0 10.0 9.5 10.0 12.0 13.0 9.0 10.5 9.5 9.5 10.5 8.0 7.5 10.5 9.0 8.0	7.0 5.5 6.0 7.0 6.5 7.0 6.5 6.0 7.5 6.5 4.5 4.0 5.5 5.0 4.5	8.0 7.5 7.5 9.0 9.0 8.0 7.0 8.0 8.5 7.5 6.5 6.5 6.5 6.5 6.5

## 15300300 ILIAMNA RIVER NEAR PEDRO BAY

LOCATION.--Lat  $59^{\circ}45'31''$ , long  $153^{\circ}50'41''$ , in  $NE^{1}/_{4}$   $SE^{1}/_{4}$  sec. 10, T. 5 S., R. 27 W.(Iliamna D-3 quad), Lake and Peninsula Borough, Hydrologic Unit 19030206, on left bank 100 ft downstream from bridge on road between Pile Bay and Williamsport, 9.2 mi east of Pedro Bay, and 37 mi east of Iliamna.

DRAINAGE AREA.--128 mi².

PERIOD OF RECORD. -- May 1996 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map.

REMARKS.--Records are good except for estimated daily discharges which are poor. GOES satellite telemetry at station. Precipitation gage at station.

DALLY MEAN VALUES	
1       1460       2940       1350       e310       293       404       134       521       2080       2410       945         2       1100       1880       1090       e300       286       413       134       680       1900       2860       879         3       902       1540       2420       e310       297       455       123       837       1700       2900       788         4       772       2580       2490       e300       1020       418       119       780       1610       2470       728         5       718       8000       1960       e290       1870       364       118       678       2200       2060       677         6       769       9470       3060       340       1340       378       115       547       3230       1860       649         7       1050       3970       2180       369       1120       374       115       470       2500       1770       678         8       1230       2100       1630       420       1630       343       113       498       1960       1820       732         9	SEP
11         975         996         1080         538         1120         304         115         1320         3110         1790         878           12         939         944         961         500         1040         285         122         1080         2950         1810         1510           13         2600         866         821         489         807         262         174         937         3180         1670         1890           14         3170         779         738         436         e600         252         166         844         3070         1750         2690           15         2470         707         e700         402         e500         259         159         806         2390         1730         1750           16         2210         631         e650         365         e450         254         168         796         2120         1550         1620           17         1570         636         e600         379         e400         236         154         795         2020         1220         1230           18         1370         593         e550         491	931 822 777 821 932
16         2210         631         e650         365         e450         254         168         796         2120         1550         1620           17         1570         636         e600         379         e400         236         154         795         2020         1220         1230           18         1370         593         e550         491         e380         216         150         748         1990         1240         952           19         1440         643         e500         422         382         205         148         725         1820         1260         995           20         2550         844         e480         418         359         197         166         783         1740         1180         1220           21         5000         860         e450         413         336         e190         262         862         2150         1110         975           22         8970         1680         e420         385         320         e190         311         970         2100         1060         830           23         7370         8570         e410         437	771 693 635 620 604
21     5000     860     e450     413     336     e190     262     862     2150     1110     975       22     8970     1680     e420     385     320     e190     311     970     2100     1060     830       23     7370     8570     e410     437     341     e180     283     1130     1780     1080     742       24     4620     4870     e400     409     390     e180     282     1310     1720     2020     708       25     3750     2520     e390     330     364     e180     318     1300     2870     2290     849	572 540 523 485 454
	430 412 397 381 375
26     3990     2690     e380     311     406     e170     363     1420     2550     1570     1480       27     2350     1910     e370     293     420     e160     390     2030     2540     1170     1370       28     1770     1300     e360     283     415     e160     429     2280     2130     1120     1490	358 341 327 321 313
27     2350     1910     e370     293     420     e160     390     2030     2540     1170     1370       28     1770     1300     e360     283     415     e160     429     2280     2130     1120     1490       29     2730     1290     e350     283      e150     451     1970     1830     1180     1970       30     2830     1940     e330     277      145     470     2010     1950     1050     1400       31     3240      e320     287      145      2060      974     1100	308 337 489 1850 4610
TOTAL 75592 70389 30270 11803 19256 8074 6279 34637 69060 51714 35216 2 MEAN 2438 2346 976 381 688 260 209 1117 2302 1668 1136 MAX 8970 9470 3060 538 1870 455 470 2280 3400 2900 2690 MIN 718 593 320 277 286 145 113 470 1610 974 649 AC-FT 149900 139600 60040 23410 38190 16010 12450 68700 137000 102600 69850 4 CFSM 19.1 18.3 7.63 2.97 5.37 2.03 1.64 8.73 18.0 13.0 8.88	714 4610 308 2500 5.58 6.23
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 2003, BY WATER YEAR (WY)#	
MAX 2438 2346 976 410 688 407 500 1594 3790 2931 1631 (WY) 2003 2003 2003 2002 2003 1998 1998 2002 1998 2001 1999 MIN 289 161 84.5 75.2 61.6 60.6 87.8 752 1716 788 692	1358 2178 1999 627 1996
SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1996 - 2	003#
	997 998 997 997 997 998 998

See Period of Record; partial year used in monthly statistics From Apr. 19-21 From Apr. 8-9 From Jan. 5-6, 1997 Estimated

### 15302000 NUYAKUK RIVER NEAR DILLINGHAM

LOCATION.--Lat  $59^{\circ}56'08''$ , long  $158^{\circ}11'16''$ , in  $NE^{1}/_{4}$   $NE^{1}/_{4}$  sec. 10, T.3 S., R.52 W. (Dillingham D-6 quad), Hydrologic Unit 19030301, on the left bank 350 ft downstream from outlet of Tikchik Lake, about 0.6 mi upstream from unnamed tributary entering from left bank and 62 mi north of Dillingham.

DRAINAGE AREA. -- 1,490 mi², approximately.

PERIOD OF RECORD. -- May 1953 to September 1996 and July 2002 to September 2003 (discontinued).

REVISED RECORDS.--WRD-Alaska 1972; 1971.

GAGE.--Water-stage recorder. Elevation of gage is 325 ft above sea level from topographic map. Prior to Oct.8, 1983, at site 650 ft downstream at different datum, but datum was 2.00 ft higher from May 1953 to Oct. 1. 1957.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Discharge affected by storage in Tikchik Lake, Nuyakuk Lake, Lake Chauekuktuli, and other smaller lakes covering over 170 mi² of the basin.

ove	r 170 mi	$L^2$ of the	basin.			_						
		DISC	CHARGE, C	UBIC FEET		ND, WATER AILY MEAN		OBER 2002	TO SEPT	EMBER 2003	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6090 6090 6100 6100 6080	13600 13800 13900 13600 14300	11000 10700 10800 10900 11000	e7100 e6900 e6700 e6500 e6300	e3900 e3900 e3800 e3800 e3900	e3900 e3900 e4000 e4000	e2400 e2400 e2400 e2300 e2300	e2800 e2900 e3000 e3100 e3200	7150 7510 7840 8210 8620	14800 14800 14800 14500 14300	9450 9240 9000 8770 8570	7420 7320 7180 7090 7040
6 7 8 9 10	6190 6240 6240 6150 5980	14900 15700 15900 15600 15400	11800 12700 13400 14100 14700	e6100 e6000 e5900 e5800 e5800	e4000 e4000 e4100 e4200 e4300	e4000 e3900 e3800 e3700 e3600	e2300 e2300 e2200 e2200 e2200	e3400 e3600 e3800 4110 4310	9190 9590 9910 10700 11600	14000 13900 13600 13200 13100	8360 8180 8030 7880 7650	6970 6850 6710 6560 6480
11 12 13 14 15	6110 6330 6300 6840 7370	15100 14800 14400 13900 13500	15000 15000 e14500 e14000 e13000	e5800 e5800 e5600 e5500 e5400	e4300 e4400 e4400 e4400 e4300	e3600 e3500 e3500 e3400 e3300	e2200 e2200 e2200 e2200 e2200	4390 4430 4490 4600 4600	12200 12700 13300 13900 14300	12900 12600 12500 12200 11900	7570 7630 7660 7820 8070	6310 6180 6040 5970 5780
16 17 18 19 20	7810 8080 8330 8570 8620	13100 12700 12500 12100 11800	e12500 e12000 e11500 e11000 e10600	e5300 e5200 e5100 e5000 e4900	e4300 e4200 e4200 e4100 e4100	e3200 e3200 e3100 e3100 e3000	e2200 e2200 e2300 e2300 e2300	4600 4570 4570 4640 4740	14700 15100 15300 15500 15600	11700 11600 11200 11300 11300	8060 7910 7800 7780 8100	5640 5520 5440 5280 5180
21 22 23 24 25	8620 8710 9410 9560 9900	11500 11300 11200 11300 11400	e10300 e10000 e9600 e9300 e8900	e4800 e4700 e4600 e4500 e4400	e4100 e4000 e4000 e4000 e3900	e3000 e2900 e2800 e2800 e2700	e2300 e2400 e2400 e2400 e2500	4850 4970 5130 5280 5360	15800 15800 15300 15500 15400	11000 10700 10300 10200 10100	8060 7960 7850 7780 7610	4990 4850 4660 4600 4430
26 27 28 29 30 31	10700 11000 11100 11300 12200 13100	11600 11400 11300 11500 11300	e8600 e8300 e8000 e7800 e7600 e7300	e4300 e4200 e4200 e4100 e4100 e4000	e3900 e3900 e3900 	e2700 e2600 e2600 e2500 e2500 e2400	e2500 e2600 e2600 e2700 e2700	5380 5560 5860 6120 6340 6720	15300 15400 15300 15200 15000	9990 9770 9820 9800 9700 9600	7590 7540 7580 7600 7530 7460	4320 4290 4210 4180 4130
MEAN MAX MIN	251220 8104 13100 5980 498300 5.44 6.27	394400 13150 15900 11200 782300 8.82 9.85	345900 11160 15000 7300 686100 7.49 8.64	164600 5310 7100 4000 326500 3.56 4.11	114300 4082 4400 3800 226700 2.74 2.85	101200 3265 4000 2400 200700 2.19 2.53	70400 2347 2700 2200 139600 1.57 1.76	141420 4562 6720 2800 280500 3.06 3.53	386920 12900 15800 7150 767500 8.66 9.66	371180 11970 14800 9600 736200 8.04 9.27	248090 8003 9450 7460 492100 5.37 6.19	171620 5721 7420 4130 340400 3.84 4.28
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	R YEARS 1	953 - 200	3, BY WAT	ER YEAR (	√Y)#			
MEAN MAX (WY) MIN (WY)	7769 13350 1992 3816 1969	5200 13150 2003 2570 1969	3390 11160 2003 1848 1964	2519 5310 2003 1397 1964	2122 4082 2003 1252 1964	1859 3265 2003 990 1976	1797 2692 1993 800 1960	4493 11320 1978 1719 1964	15300 23290 1969 10360 1954	13970 26220 1977 6794 1954	8978 24190 1977 3855 1957	8126 17070 1989 4099 1984
SUMMARY	STATIS	TICS			FOR :	2003 WATE	R YEAR			WATER YEA	ARS 1953	- 2003#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL	T ANNUAL ANNUAL T DAILY DAILY SEVEN- M PEAK M PEAK TANEOUS	MEAN MEAN MEAN DAY MINIM FLOW STAGE LOW FLOW (AC-FT)			1 a : 1	1250 7565 5900 2200 2200 6000 9.07 7000 5.08	Nov 8 Apr 8 Apr 8 Nov 8 Nov 8			770 4586000	Apr Apr Jul .49 Jul	1977 1954 2 1977 16 1960 16 1960 2 1977 2 1977 16 1960
ANNUAL 10 PER 50 PER		(INCHES) CEEDS CEEDS				68.94 4000 6700 2700				57 14300 4400 1700		

See Period of Record

Apr. 8-17
b Apr. 16-30, 1960
c Site and datum then in use
e Estimated

### 15303700 TATALINA RIVER NEAR TAKOTNA

LOCATION.--Lat 62°53′06", long 155°56′22", in  $NW^{1}_{/4}$   $NE^{1}_{/4}$  sec. 12, T.32 N., R.36 W.(McGrath D-6 quad), Hydrologic Unit 19030405, at downstream side of bridge on right bank, 1.2 mi southeast of Tatalina Airstrip, and 8.1 mi southeast of Takotna.

DRAINAGE AREA. -- 76.9 mi².

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1987 to current year (no winter record), except May only in 1989, and annual maximum in water

GAGE.--Water-stage recorder, non-recording gage, and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. Prior to May 9, 1990 at site 20 ft downstream at same datum.

REMARKS. -- Records fair, except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,170 ft³/s, July 8, 1998, gage-height 10.97 ft; maximum gage height 11.46 ft, 1996, date and time unknown, backwater from ice, discharge not determined; minimum discharge not determined, occurs during winter.

EXTREMES FOR CURRENT PERIOD. -- May 2003 to September 2003: maximum discharge during period, 902 ft³/s, July 28, gage height 9.60 ft. Minimum discharge not determined, occurs during winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		21001		210 1221	DA	ILY MEAN	VALUES	02211 2002	10 02111			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e530	189	92	246	98
2								e500	470	427	217	109
3								e520	309	417	194	95
4								e470	225	234	179	116
5								e420	193	183	162	129
_								200	176	1.67	1.47	105
6								e380	176	167	147	105
7								e320	167	159	135	92
8								e370	154	140	136	86
9								e450	143	127	124	81
10								e420	153	121	114	77
11								e360	173	122	109	74
12								e320	198	147	132	74
13								e280	166	122	137	74
14								e250	139	107	176	69
15								e220	124	101	167	e67
16								e200	116	101	205	e66
17								e180	110	93	165	e65
18								e172	105	88	140	e64
19								168	106	82	131	e63
20								158	117	78	119	e62
20								130	11,	7.0	110	COZ
21								153	127	73	109	e61
22								144	114	70	101	e60
23								130	102	70	97	e59
24								121	97	93	95	e58
25								114	92	90	102	e57
26								115	91	88	117	56
27								219	87	494	108	55
28								284	85	751	97	55
29								181	82	346	91	70
30								158	81	312	89	70
31								153		329	90	
-												
TOTAL								8460	4491	5824	4231	2267
MEAN								273	150	188	136	75.6
MAX								530	470	751	246	129
MIN								114	81	70	89	55
AC-FT								16780	8910	11550	8390	4500
CFSM								3.55	1.95	2.44	1.77	0.98
IN.								4.09	2.17	2.82	2.05	1.10

e Estimated

## 15303700 TATALINA RIVER NEAR TAKOTNA—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1992 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1992 to current year (seasonal).

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water temperature at the sensor within  $0.5^{\circ}\text{C}$ . Temperature at the sensor was compared with the average for the river by cross section on July 10. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURE.--Maximum, 16.5°C, July 30 to August 2, and 4, 1997; minimum, 0.0°C, several days in October, May, and September most water years.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 11.5°C, July 21; minimum, 0.0°C, many days in May and September.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)
JULY									
10	1621	32.0	27.0	4.62	120	9.0	16.5	10	8010
10	1622	32.0	22.0	4.62	120	9.0	16.5	10	8010
10	1623	32.0	17.0	4.62	120	9.0	16.5	10	8010
10	1624	32.0	12.0	4.62	120	9.0	16.5	10	8010
10	1625	32.0	7.0	4.62	120	9.0	16.5	10	8010

#### WATER TEMPERATURE (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	F	EBRUARY			MARCH			APRIL			MAY	
1												
2												
3												
4												
5												
6										0.0	0.0	0.0
7										0.0	0.0	0.0
8										0.0	0.0	0.0
9										0.0	0.0	0.0
10										0.0	0.0	0.0
11										0.0	0.0	0.0
12										0.0	0.0	0.0
13										0.0	0.0	0.0
14										0.0	0.0	0.0
15										0.5	0.0	0.0
16										0.5	0.0	0.0
17										1.0	0.0	0.5
18										1.0	0.0	0.5
19										1.5	0.0	1.0
20										2.0	0.5	1.0
21										2.5	0.5	1.5
22										3.0	2.0	2.5
23										4.0	2.0	3.0
24										4.5	2.5	3.5
25										4.5	3.0	4.0
26										4.5	3.0	3.5
27										3.0	2.0	2.0
28										3.5	1.5	2.5
29										6.0	3.0	4.5
30										6.5	4.5	5.5
31										6.5	5.5	6.0
MONTH												

# 15303700 TATALINA RIVER NEAR TAKOTNA—Continued

WATER TEMPERATURE (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		A	UGUST		S	EPTEMBE	R
1 2 3 4 5	6.0 3.0 5.5 6.0	3.0 2.5 3.0 4.0 5.0	4.5 3.0 4.0 5.0 5.5	9.0 8.5 7.0 8.5 8.5	8.5 7.0 6.0 6.5 7.5	9.0 7.5 6.5 7.5 8.0	6.5 6.5 6.5 7.0	5.5 5.0 5.5 5.0 5.5	6.0 6.0 6.0 5.5 6.0	7.5 7.0 6.5 6.0	6.5 6.5 5.0 5.0	7.0 7.0 5.5 5.5 5.5
6 7 8 9 10	5.5 6.0 6.0 6.5	4.5 5.0 5.0 5.5	5.0 5.5 5.5 6.0	8.5 9.5 10.0 10.5 10.0	7.5 7.0 8.0 8.5 8.5	8.0 8.0 9.0 9.5 9.0	7.5 7.5 8.5 9.0 9.0	6.0 6.5 7.0 7.5 7.0	6.5 7.0 7.5 8.0	5.5 5.0 4.5 4.5	4.5 4.0 3.0 3.0 3.0	5.0 4.5 4.0 3.5 3.5
11 12 13 14 15	7.5 8.0 8.5 8.5	6.0 6.5 6.5 6.5	7.0 7.0 7.5 7.5 8.0	8.5 9.0 10.5 10.5	8.0 7.0 8.0 9.5 8.5	8.0 8.0 9.0 10.0 9.0	9.5 9.0 8.5 8.5	8.5 8.5 8.0 7.5 8.0	9.0 8.5 8.0 8.0	4.5 5.0 5.0 3.5 2.0	3.5 4.5 3.5 2.0 0.5	4.0 5.0 4.0 2.5 1.0
16 17 18 19 20	9.0 10.0 9.0 9.5 9.0	8.0 7.5 7.5 7.5 8.0	8.5 8.5 8.5 8.5 8.5	8.5 7.5 9.5 11.0	7.5 6.0 6.5 8.0 8.5	8.0 7.0 8.0 9.5 9.5	8.0 7.0 6.0 6.5 6.5	7.0 6.0 5.5 5.5	7.5 6.5 6.0 6.0	2.0 1.5 1.0 0.5	0.5 0.5 0.0 0.0	1.0 1.0 0.5 0.0
21 22 23 24 25	9.0 9.5 10.0 10.0 9.5	7.5 7.5 8.0 8.0 7.5	8.0 8.5 9.0 9.0	11.5 11.0 10.0 9.0 10.0	9.0 9.0 9.0 8.0 8.0	10.5 10.0 9.5 8.5 9.0	7.5 7.0 6.5 7.0	5.5 5.5 6.0 6.0 6.5	6.5 6.0 6.0 6.5 7.0	0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	9.0 9.0 9.0 8.5 9.5	7.0 7.5 7.0 8.0 7.5	8.0 8.0 8.5 8.5	9.5 8.0 6.5 7.0 7.0 6.5	8.0 6.0 5.5 5.5 6.0 5.5	9.0 7.5 6.0 6.5 6.5	7.5 7.5 7.0 6.5 6.5	6.5 6.0 5.5 5.5 6.0	7.0 7.0 6.5 6.0 6.0	0.5 1.0 1.5 2.5	0.0 0.0 0.0 0.5 1.5	0.0 0.5 0.5 1.0 2.0
MONTH	10.0	2.5	7.1	11.5	5.5	8.3	9.5	5.0	6.8	7.5	0.0	2.5

## 15303900 KUSKOKWIM RIVER AT LISKYS CROSSING NEAR STONY RIVER

LOCATION.--Lat  $62^{\circ}03'07''$ , long  $156^{\circ}12'38''$ , in  $SW^{1}_{/4}$   $NE^{1}_{/4}$   $SE^{1}_{/4}$  sec. 27, T. 23 N., R. 38 W. (Iditarod A-1 quad), Hydrologic Unit 19030405, on the downstream point of the first channel island located 0.25 mi above Lisky's house site (historic, house since destroyed), 22 mi northeast of the village of Stony River.

DRAINAGE AREA. -- 15,600 mi², approximately.

PERIOD OF RECORD.--May 1996 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level from topographic map.

REMARKS. -- Rain gage at station. GOES satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 34.11 ft, August 1, 2003, but may have been higher during a period of missing record. Minimum gage height observed 22.94 ft, October 11, 1997, but may have been lower during a period of missing record.

EXTREMES FOR CURRENT PERIOD.--October 1-19, 2002, June 6 to September 30, 2003; Maximum gage height 34.11 ft, August 1; minimum gage height 24.82 ft, September 28 and 30.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26.45									26.91	34.06	27.20
2	26.84									27.00	33.88	27.04
3	27.11									27.35	33.60	26.95
4	27.14									28.16	33.19	27.10
5	27.04									29.55	32.57	27.36
6	26.87								28.55	30.81	31.74	27.55
7	26.66								28.14	30.89	30.92	27.64
8	26.47								27.60	30.23	30.27	27.69
9	26.25								27.22	29.74	29.69	27.60
10	26.10								27.05	29.50	29.25	27.38
10	20.10								27.05	23.30	27.23	27.50
11	26.10								26.96	29.29	28.96	27.15
12	26.13								27.02	29.21	28.91	26.91
13	25.99								27.05	29.22	28.88	26.67
14	25.89								27.12	29.35	29.02	26.42
15	25.82								27.63	29.45	29.45	26.24
13	23.02								27.05	23.43	20.40	20.24
16	25.83								28.38	29.24	30.09	26.11
17	25.80								28.82	28.88	30.32	25.95
18	25.60								28.70	28.73	30.20	25.78
19	25.44								28.56	29.01	30.19	25.64
20	23.44								28.46	29.74	30.37	25.52
20									20.40	29.74	30.37	23.32
21									28.28	29.56	30.14	25.50
22									28.16	28.75	29.51	25.41
23									28.15	28.23	28.85	25.27
24									28.12	28.04	28.32	25.11
25									28.08	27.94	27.96	25.05
23									20.00	27.54	27.50	23.03
26									27.94	27.90	27.68	24.98
27									27.77	28.20	27.42	24.91
28									27.73	29.15	27.29	24.84
29									27.51	30.50	27.35	24.85
30									27.18	32.38	27.41	24.85
31									27.10	33.81	27.32	24.05
JΤ										JJ.01	21.32	
MEAN										29.25	29.83	26.22
MAX										33.81	34.06	27.69
MIN										26.91	27.29	24.84

## SOUTHWEST ALASKA

## 15304000 KUSKOKWIM RIVER AT CROOKED CREEK

LOCATION.--Lat  $61^{\circ}52'16''$ , long  $158^{\circ}06'03''$ , in  $NE^{1}_{/4}$   $NE^{1}_{/4}$  sec. 32, T. 21 N., R. 48 W. (Sleetmute D-6 quad), Hydrologic Unit 19030501, on right bank at village of Crooked Creek, 0.1 mi upstream from Crooked Creek.

DRAINAGE AREA. -- 31,100 mi², approximately.

PERIOD OF RECORD.--June 1951 to September 1994, October 1995 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map. Prior to August 6, 1977, non-recording gage at site 1,600 ft upstream at same datum. From August 6, 1977, to September 30, 1991, water-stage recorder at site 2,300 ft upstream at same datum. From October 1, 1991 to September 30, 1994, and October 1, 1995 to August 7, 1997 non-recording gage.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DIS	CHARGE, C	UBIC FEET		ND, WATER AILY MEAN		OBER 2002	TO SEPTI	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	67700	68200	e39000	e26000	e20000	e19000	e14000	e64000	52000	55300	127000	67100
2	70700	68700	e38000	e26000	e20000	e19000	e14000	e67000	59800	58600	124000	66400
3	70100	67300	e37000	e26000	e20000	e19000	e14000	e70000	75800	66600	121000	65500
4	68200	65200	e36000	e26000	e19000	e18000	e14000	e75000	80100	80300	115000	64900
5	65500	62900	e35000	e25000	e19000	e18000	e14000	e80000	81600	89500	107000	65300
6	63200	61200	e35000	e25000	e19000	e17000	e15000	e85000	78700	92000	99500	66900
7	61900	57800	e34000	e25000	e19000	e17000	e15000	e90000	76700	92000	92000	67400
8	61300	54400	e34000	e25000	e19000	e17000	e16000	e95000	73300	89200	e86500	65900
9	62000	50200	e33000	e24000	e19000	e16000	e16000	e100000	69800	83500	e83000	64100
10	63300	46500	e33000	e24000	e20000	e16000	e17000	e100000	66700	78500	e80000	62000
11	60700	e43000	e32000	e24000	e21000	e16000	e17000	e100000	65400	76200	e78500	60000
12	58900	e41000	e32000	e24000	e22000	e16000	e18000	e98000	68000	75000	e78000	57700
13	60900	e38000	e31000	e24000	e22000	e15000	e19000	e94000	71300	74600	e78500	55600
14	60100	e36000	e31000	e23000	e22000	e15000	e20000	e90000	70900	74500	e82000	53500
15	58400	e34000	e31000	e23000	e21000	e15000	e21000	e84000	70400	73200	89100	51500
16	57100	e32000	e30000	e23000	e20000	e15000	e23000	e78000	70700	72300	93300	49600
17	56600	e31000	e30000	e23000	e19000	e15000	e24000	e73000	71700	71700	98300	47900
18	57500	e30000	e30000	e23000	e19000	e15000	e25000	e68000	72400	73100	102000	46100
19	57700	e30000	e30000	e22000	e18000	e15000	e27000	63100	72100	73300	98600	44700
20	55500	e30000	e29000	e22000	e18000	e15000	e29000	55400	73100	72200	93800	43400
21	54200	e31000	e29000	e22000	e17000	e15000	e31000	52800	70900	72100	91500	42300
22	50700	e31000	e29000	e22000	e17000	e15000	e33000	51200	69200	70600	87500	41000
23	47500	e32000	e28000	e22000	e17000	e14000	e36000	49100	67700	66500	82200	39900
24	46900	e33000	e28000	e21000	e17000	e14000	e40000	48800	66300	63700	76900	39200
25	52800	e34000	e28000	e21000	e17000	e14000	e45000	48800	65800	62900	72700	38100
26 27 28 29 30 31	64800 70300 72200 72100 71400 69600	e35000 e36000 e37000 e38000 e39000	e28000 e27000 e27000 e27000 e27000 e26000	e21000 e21000 e21000 e20000 e20000 e20000	e18000 e18000 e18000	e14000 e14000 e14000 e14000 e14000 e14000	e55000 e65000 e62000 e60000 e62000	48600 48500 49400 49200 49300 50500	64200 62300 60600 58600 57100	64100 65200 73100 90300 108000 121000	70000 69800 70000 69500 69100 68000	37300 36700 36400 36800 38000
MEAN MAX MIN	1909800 61610 72200 46900 3788000 1.98 2.28	1293400 43110 68700 30000 2565000 1.39 1.55	964000 31100 39000 26000 1912000 1.00 1.15	714000 23030 26000 20000 1416000 0.74 0.85	535000 19110 22000 17000 1061000 0.61 0.64	484000 15610 19000 14000 960000 0.50 0.58	861000 28700 65000 14000 1708000 0.92 1.03	2175700 70180 100000 48500 4316000 2.26 2.60	2063200 68770 81600 52000 4092000 2.21 2.47	2379100 76750 121000 55300 4719000 2.47 2.85	2754300 88850 127000 68000 5463000 2.86 3.29	1551200 51710 67400 36400 3077000 1.66 1.86

e Estimated

### 15304000 KUSKOKWIM RIVER AT CROOKED CREEK—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 2003, BY WATER YEAR (WY)# MEAN MAX (WY) MTN (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1951 - 2003# ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN May 16 Aug 1 Jun 5 1964 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW Mar 23 Mar 23 a8000 Apr 14 b14000 c6100 Mar Apr 14 Mar 1 1966 Aug 2 Jun 5 1964 MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE 11.87 Aug f25.74 Jun 5 1964 6100 Mar 1 1966 d18.86 Apr 27 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 1.42 19.25 1.36 18.50 1.56 21.15 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 

a b

[#] See Period of Record, partial years used in monthly computations
a Apr. 14-24
b Mar. 23 - Apr. 5
c Mar. 1-31, 1966
d From floodmarks, backwater from ice
f From floodmarks, backwater from ice, at different site, same datum

#### 15304060 KUSKOKWIM RIVER AT ANIAK

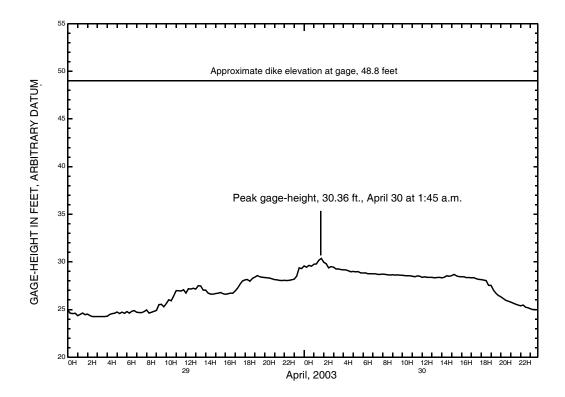
LOCATION.--Lat  $61^{\circ}35'14''$ , long  $159^{\circ}32'54''$ , in  $SE^{1}/_{4}$   $SE^{1}/_{4}$  sec. 2, T. 17 N., R. 57 W. (Russian Mission C-2 quad), Hydrologic unit 19030502, on the left bank near the NW corner of the west end of the runway in the village of Anjak.

#### WATER-STAGE RECORDS

PERIOD OF RECORD. -- May 1996 to September 2003 (discontinued) (no winter record).

GAGE.--Water-stage recorder. A supplementary stage gage was installed April 23, 1998 approximately 1 mi upstream from gage of record. This gage records water elevation at the Aniak city dike system during ice break-up events. Elevation of the gage is 75 ft above sea level from topographic map.

REMARKS.--GOES satellite telemetry at station. Supplementary stage records are available from the computer files of the Alaska Science Center, Water Resources Office.


EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 26.97 ft, May 18,2002, but may have been higher during periods of missing record. Minimum gage height observed 14.37 ft, October 27, 2000, but may have been lower during periods of missing record.

EXTREMES FOR CURRENT PERIOD.--October 1-17, 2002 and May 4 to September 30, 2003: Maximum gage height observed 22.92 ft, August 1, 2, but may have been higher during periods of missing record. Minimum gage height observed 16.15 ft, Sep. 29, but may have been lower during periods of missing record.

GAGE-HEIGHT, IN FEET, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18.95								18.83	18.43	22.76	19.38
2	19.31								19.18	18.52	22.86	19.34
3	19.36								20.35	19.13	22.69	19.25
4	19.22							20.85	20.86	19.75	22.35	19.14
5	19.06							20.72	20.77	20.62	21.93	19.11
6	18.85							20.69	20.71	21.01	21.53	19.14
7	18.70							20.64	20.54	21.07	21.10	19.22
8	18.60							20.16	20.25	20.99	20.72	19.18
9	18.55							19.90	19.97	20.69	20.36	19.04
10	18.68							20.31	19.76	20.29	19.86	18.87
11	18.62							20.57	19.58	20.01	19.52	18.72
12	18.46							20.64	19.58	19.89	19.61	18.54
13	18.38							21.00	19.79	19.81	19.77	18.34
14	18.45							20.92	19.92	19.76	20.30	18.16
15	18.49							20.44	19.81	19.67	20.89	17.98
16	18.42							20.02	19.74	19.60	21.33	17.78
17	18.35							19.51	19.76	19.52	21.53	17.60
18								19.12	19.80	19.47	21.74	17.44
19								18.77	19.95	19.59	21.77	17.29
20								18.53	20.13	19.52	21.47	17.32
21								18.48	19.97	19.42	21.26	17.35
22								18.43	19.70	19.43	21.10	17.29
23								18.46	19.49	19.20	20.68	16.99
24								18.29	19.33	18.87	20.22	16.75
25								18.34	19.17	18.73	19.90	16.71
26								18.26		18.73	19.69	16.61
27								18.26		18.82	19.59	16.64
28								18.47		19.21	19.61	16.67
29								18.48		20.16	19.57	16.74
30								18.51		21.38	19.50	16.84
31								18.67		22.21	19.42	
MEAN										19.79	20.79	17.98
MAX										22.21	22.86	19.38
MIN										18.43	19.42	16.61

# 15304060 KUSKOKWIM RIVER AT ANIAK—Continued



River ice break-up hydrograph for Kuskokwim River at Dike (supplementary gage) at Aniak, 2003

## 15304060 KUSKOKWIM RIVER AT ANIAK—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to September 2003 (discontinued).

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: May 1998 to September 2003 (seasonal).

INSTRUMENTATION.--Electronic water temperature recorder set for 1-hour recording interval on left bank.

REMARKS.--Records represent water temperature from sensor within 0.5°C. No water temperature record December 22 - April 1 due to battery failure. No record from April 30 to June 4 when probe was out of water. No record from June 24-30 when water dropped below probe elevation. Temperature at the sensor was compared with the stream average by cross section on June 7 which found a variation of 1.5°C. The variation found between mean stream temperature and sensor temperature was usually less than 1.0°C.

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum recorded, 16.5°C, July 8-10, 20, 2003, but may have been higher during periods of missing record; minimum, 0.0°C, many days during fall and winter most years.

EXTREMES FOR CURRENT YEAR . --

WATER TEMPERATURE: Maximum recorded, 16.5°C, July 8-10, 20; minimum, 0.0°C, many days during fall and winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

			SAMPLE			
			LOC-			
			ATION,			
			CROSS		TEMPER-	SAM-
		STREAM	SECTION	GAGE	ATURE	PLING
DATE	TIME	WIDTH	(FT FM	HEIGHT	WATER	METHOD,
		(FT)	L BANK)	(FEET)	(DEG C)	CODES
		(00004)	(00009)	(00065)	(00010)	(82398)
JUN						
07	1151	1800	10.0	20.56	9.5	10
07	1152	1800	400	20.56	10.5	10
07	1153	1800	800	20.56	10.5	10
07	1154	1800	1200	20.56	11.0	10
07	1155	1800	1600	20.56	11.0	10

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	7.0 6.0 5.5 4.5	6.0 5.5 4.5 4.0 3.5	6.5 6.0 5.0 4.0 3.5	3.5 3.0 2.5 2.5 3.0	3.0 2.5 2.0 2.0 2.5	3.5 2.5 2.0 2.0 3.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	  	  	  
6 7 8 9 10	4.0 5.0 5.0 4.0 4.0	3.5 4.0 4.0 3.5 3.5	4.0 4.5 4.5 4.0	3.5 3.5 3.0 2.0 1.0	3.0 3.0 2.0 1.0	3.5 3.5 2.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	  	  	  
11 12 13 14 15	5.0 5.5 6.0 6.0	4.0 5.0 5.0 6.0 5.0	4.5 5.0 5.5 6.0 5.5	1.5 1.5 1.5 1.5	1.0 1.5 1.5 0.0	1.0 1.5 1.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	  	  	  
16 17 18 19 20	5.0 4.5 3.5 2.0 0.5	4.5 3.5 2.0 0.5 0.0	5.0 4.0 3.0 1.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	  	  	  
21 22 23 24 25	0.0 0.5 1.5 2.0 3.0	0.0 0.0 0.5 1.0 2.0	0.0 0.0 1.0 1.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	0.0	0.0	  	  	  
26 27 28 29 30 31	3.0 3.0 2.5 3.0 4.0	3.0 2.5 2.0 2.0 3.0 3.5	3.0 2.5 2.0 2.5 3.5 4.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	   		  	   		
MONTH	7.0	0.0	3.5	3.5	0.0	1.0						

# SOUTHWEST ALASKA

# 15304060 KUSKOKWIM RIVER AT ANIAK—Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2							 0.0					
3							0.0	0.0	0.0			
4 5							0.0	0.0	0.0			
6			===				0.0	0.0	0.0		===	
7							0.0	0.0	0.0			
8							0.0	0.0	0.0			
9 10							0.0	0.0	0.0			
11							0.0	0.0	0.0			
12							0.0	0.0	0.0			
13 14							0.0	0.0	0.0			
15							0.0	0.0	0.0			
16							0.0	0.0	0.0			
17							0.0	0.0	0.0			
18 19							0.0	0.0	0.0			
20							0.0	0.0	0.0			
21							0.0	0.0	0.0			
22							0.0	0.0	0.0			
23 24							0.0	0.0	0.0			
25							0.0	0.0	0.0			
26							0.0	0.0	0.0			
27							0.0	0.0	0.0			
28 29							0.0	0.0	0.0			
30												
31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBI	
1		JUNE		11.5	JULY	10.5	13.0	AUGUST	13.0		SEPTEMBI	ER 11.5
1 2		JUNE		11.5 11.0	JULY  10.0	10.5 10.5	13.0 12.5	AUGUST 12.5 12.0	13.0 12.5		SEPTEMBI	ER 11.5 11.0
1		JUNE		11.5	JULY	10.5	13.0	AUGUST	13.0		SEPTEMBI	ER 11.5
1 2 3	 	JUNE  	 	11.5 11.0 11.0	JULY  10.0 10.0	10.5 10.5 10.5	13.0 12.5 12.5	AUGUST 12.5 12.0 12.0	13.0 12.5 12.5	 	SEPTEMBI	11.5 11.0 10.5
1 2 3 4 5	  10.0 9.0	JUNE 9.0 8.5	  9.5 9.0	11.5 11.0 11.0 13.5 14.0	JULY 10.0 10.0 11.0 13.0	10.5 10.5 10.5 12.0 13.5	13.0 12.5 12.5 13.0 13.5	AUGUST  12.5 12.0 12.0 12.0 12.0 13.0	13.0 12.5 12.5 12.5 13.0	  	SEPTEMBI	11.5 11.0 10.5 10.5 10.5
1 2 3 4 5	  10.0 9.0 9.5	JUNE 9.0 8.5 9.0	9.5 9.0	11.5 11.0 11.0 13.5 14.0	JULY 10.0 10.0 11.0 13.0 13.0 13.0	10.5 10.5 10.5 12.0 13.5	13.0 12.5 12.5 13.0 13.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.0	13.0 12.5 12.5 12.5 13.0 13.0	   	SEPTEMBI	11.5 11.0 10.5 10.5 10.5
1 2 3 4 5	  10.0 9.0	JUNE 9.0 8.5	  9.5 9.0	11.5 11.0 11.0 13.5 14.0	JULY 10.0 10.0 11.0 13.0	10.5 10.5 10.5 12.0 13.5	13.0 12.5 12.5 13.0 13.5	AUGUST  12.5 12.0 12.0 12.0 12.0 13.0	13.0 12.5 12.5 12.5 13.0	   	SEPTEMBI	11.5 11.0 10.5 10.5 10.5
1 2 3 4 5	  10.0 9.0 9.5 9.5	JUNE 9.0 8.5 9.0 9.0	9.5 9.0 9.0 9.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5	JULY  10.0 10.0 11.0 13.0 13.0 14.5	10.5 10.5 10.5 12.0 13.5 13.5 14.0 15.5	13.0 12.5 12.5 13.0 13.5 13.5 14.0 14.5	12.5 12.0 12.0 12.0 12.5 13.0 13.0 13.5	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0		SEPTEMBI	11.5 11.0 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10	  10.0 9.0 9.5 9.5 9.5 9.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.0	9.5 9.0 9.0 9.0 9.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5	JULY  10.0 11.0 13.0 13.0 13.0 14.5 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 16.0 15.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5	12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0	==== ==== ==== ====	SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 9.5 9.5
1 2 3 4 5 6 7 8 9 10	  10.0 9.0 9.5 9.5 9.5 9.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.0	9.5 9.0 9.0 9.0 9.0 9.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 14.5	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 14.0 15.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.0 13.5 14.5	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0		SEPTEMBI	11.5 11.0 10.5 10.5 10.0 10.0 9.5 9.5
1 2 3 4 5 6 7 8 9 10	  10.0 9.0 9.5 9.5 9.5 9.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.0	9.5 9.0 9.0 9.0 9.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5	JULY  10.0 11.0 13.0 13.0 13.0 14.5 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 16.0 15.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5	12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 9.5 9.5
1 2 3 4 5 6 7 8 9 10	  10.0 9.0 9.5 9.5 9.5 9.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.0 11.0	9.5 9.0 9.0 9.0 9.0 9.0 10.0 11.5	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 14.5	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.0	10.5 10.5 10.5 12.0 13.5 14.0 15.5 14.0 15.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5	12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5	13.0 12.5 12.5 12.5 13.0 13.5 14.0 15.0 15.0 14.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 9.5 9.5 9.5 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0	JUNE 9.0 8.5 9.0 9.0 9.0 9.0 11.0	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5	JULY  10.0 11.0 13.0 13.0 13.0 14.5 15.5 14.5 14.0 13.5 14.0 15.0	10.5 10.5 10.5 12.0 13.5 14.0 15.5 14.0 15.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	  10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 12.5 11.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.0 11.0 11.5 12.0	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0 12.5	11.5 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 15.0 16.0 15.5	JULY  10.0 10.0 11.0 13.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 14.0 15.0 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 14.0 15.5 14.0 15.5 14.0 15.0 15.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.5 13.0 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.0 14.0		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.0 9.0 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 12.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.0 11.0 11.5 12.0	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0 12.5	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 16.5 14.5 15.0 16.0 16.0 15.5	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 14.0 15.0 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 16.0 15.5 14.0 15.5 14.0 15.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.0 14.0		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 13.0	JUNE 9.0 8.5 9.0 9.0 9.0 9.0 11.0 11.5 12.0 10.5 10.0 11.0	9.5 9.0 9.0 9.0 9.0 10.0 11.5 12.0 12.5	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 15.0 16.0 16.0 15.5	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 14.0 15.0 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 14.0 15.5 14.0 15.5 14.0 15.5 15.0	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5  13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.0 14.0		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 13.0 12.5 11.5 12.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.0 11.0 11.5 12.0 10.5 10.0 11.0 11.0	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0 11.0 11.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 16.5 15.0 16.0 16.0 15.5	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 14.0 15.0 14.5	10.5 10.5 10.5 12.0 13.5 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.0 12.5 12.0 12.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 13.0 12.5 11.5 12.5 11.5 12.0 11.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.0 10.0 10.0	9.5 9.0 9.0 9.0 9.0 11.0 11.5 12.0 12.5 12.0 11.0 11.0 11.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 14.0 13.5 14.0 13.5 14.0	JULY  10.0 10.0 11.0 13.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 12.0 11.5 12.0 11.5 13.5 14.0 13.5 13.5 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 14.0 15.5 14.0 15.0 15.0 14.0 15.5 15.0 14.0 12.5 14.0	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.0 12.5 12.5 12.5 12.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 8.5 8.0 7.5 7.5 7.5 7.5 6.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 12.5 11.5 12.5 11.5 10.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 10.0 9.5	9.5 9.0 9.0 9.0 9.0 9.0 10.0 11.5 12.0 12.5 12.0 11.0 11.0 11.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 15.0 16.0 15.5	JULY  10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.0 13.5 14.0 15.0 14.5 12.0 11.5 13.0 14.5	10.5 10.5 10.5 12.0 13.5 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.0 12.5 12.0 12.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 12.5 11.5 12.0 11.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.0 11.0 11.5	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0 11.0 11.0 11.0 10.0 11.0	11.5 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 15.0 16.0 15.5 14.5 14.5 14.0 13.5 16.0 16.0 15.5	JULY  10.0 10.0 11.0 13.0 13.0 13.0 14.5 15.5 14.5 14.5 14.5 14.0 15.0 14.5 13.5 12.0 11.5 13.0 14.5 13.5 14.0 15.0 14.5	10.5 10.5 10.5 12.0 13.5 14.0 15.5 14.0 15.5 14.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5  13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.0 12.5 12.5 12.0 12.0		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.0 9.0 9.5 7.5 7.0 6.5 6.5 6.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 13.0 12.5 11.5 11.5 11.5 12.0 11.5 10.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.5 10.0 11.5	9.5 9.0 9.0 9.0 9.0 9.0 10.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 14.5 15.0 16.0 16.0 15.5 14.0 16.0 16.0	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 12.0 14.5 12.0 14.5 14.0 13.5 12.0 14.5	10.5 10.5 10.5 12.0 13.5 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0 14.0 15.5 15.0	13.0 12.5 12.5 13.0 13.5 13.5 14.0 14.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.5 12.5 12.5 12.5 12.5 11.5 11.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 8.5 7.5 7.0 6.5 6.5 6.0 6.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 13.0 12.5 11.5 12.0 11.5 12.0 11.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.0 11.5 12.0	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 15.0 16.0 15.5 14.0 13.5 14.0 13.5 14.0	JULY  10.0 11.0 13.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 12.0 11.5 13.0 14.5 12.0 11.5 13.5 12.0 11.5 13.5 14.0 13.5 14.0	10.5 10.5 10.5 12.0 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0 14.0 13.5 14.0 13.5 14.0 13.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 8.5 8.0 7.5 7.5 7.5 7.0 6.5 6.0 6.0 6.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 13.0 12.5 11.5 11.5 11.5 12.0 11.5 10.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.5 10.0 11.5	9.5 9.0 9.0 9.0 9.0 9.0 10.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 14.5 14.5 14.0 16.0 16.0 15.5 14.0 16.0 16.0	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 12.0 14.5 12.0 14.5 14.0 13.5 12.0 14.5	10.5 10.5 10.5 12.0 13.5 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0 14.0 15.5 15.0	13.0 12.5 12.5 13.0 13.5 13.5 14.0 14.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.5 12.5 12.5 12.5 12.5 11.5 11.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 7.5 7.0 6.5 6.0 6.0 6.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 13.0 12.5 11.5 12.0 11.5 12.0 12.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.5 10.0 11.5	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0	11.5 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 15.0 16.0 15.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0	JULY  10.0 11.0 13.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 12.0 11.5 12.0 13.5 12.0 13.5 14.0 13.5 12.0 13.5 14.0 13.5 14.0	10.5 10.5 10.5 12.0 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0 14.0 12.5 14.0 13.5 14.0 13.5 14.0 13.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.0 14.5 14.0 12.5 12.5 12.5 11.5 11.5 11.5 11.5 11.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 12.5 11.5 10.5 11.5 12.0 11.5 12.0 11.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.5 10.0 11.5	9.5 9.0 9.0 9.0 9.0 9.0 10.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0	11.5 11.0 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 14.5 14.5 14.0 16.0 16.0 15.5 14.0 16.0 16.0	JULY  10.0 10.0 11.0 13.0 13.0 14.5 15.5 14.5 14.0 13.5 12.0 14.5 12.0 14.5 12.0 13.5 12.0 14.5	10.5 10.5 10.5 12.0 13.5 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0 14.0 13.0 15.5 14.0 13.0 13.0 14.5 14.0 15.5	13.0 12.5 13.5 13.5 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.5 12.5 12.5 12.5 12.5 11.5 11.5 11.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	10.0 9.0 9.5 9.5 9.5 9.5 11.0 11.5 12.5 13.0 13.0 12.5 11.5 12.0 11.5 12.0 12.5	JUNE 9.0 8.5 9.0 9.0 9.0 9.5 10.0 11.5 12.0 10.5 10.0 11.5 10.0 11.5	9.5 9.0 9.0 9.0 9.0 9.0 11.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0	11.5 11.0 13.5 14.0 13.5 15.0 16.5 16.5 16.5 14.5 15.0 16.0 15.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0	JULY  10.0 11.0 13.0 13.0 13.0 14.5 15.5 14.5 14.5 14.0 13.5 12.0 11.5 12.0 13.5 12.0 13.5 14.0 13.5 12.0 13.5 14.0 13.5 14.0	10.5 10.5 10.5 12.0 13.5 14.0 15.5 16.0 15.5 14.0 15.5 15.0 14.0 15.5 15.0 14.0 12.5 14.0 13.5 14.0 13.5 14.0 13.5	13.0 12.5 12.5 13.0 13.5 14.0 14.5 15.5 15.5	AUGUST  12.5 12.0 12.0 12.0 12.5 13.0 13.5 14.5 15.0	13.0 12.5 12.5 12.5 13.0 13.0 13.5 14.0 15.0 15.0 14.5 14.0 14.5 14.0 12.5 12.5 12.5 11.5 11.5 11.5 11.5 11.5		SEPTEMBI	11.5 11.0 10.5 10.5 10.5 10.0 10.0 10.0

## 15320100 WADE CREEK TRIBUTARY NEAR CHICKEN

LOCATION.-- Lat  $64^{\circ}07'06''$ , Long  $141^{\circ}33'13''$ , in  $SE^{1}/_{4}$  sec. 18, T. 27 N., R. 20 E. (Eagle A-2 quad), Hydrologic Unit 19040104, on left bank, 600 ft upstream from Taylor Highway, 0.4 mi upstream from the culvert at mi 86.1 Taylor Highway and 12 mi northeast of Chicken.

DRAINAGE AREA. -- 4.24 mi².

PERIOD OF RECORD. -- Annual maximum, water year 1995. May 1996 to current year (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 1970 ft above sea level, from topographic map. Prior to June 19, 1997, recording gage was at a site 700 ft downstream at a different datum.

REMARKS.--Records fair, except for discharges below  $0.1 \text{ ft}^3/\text{s}$  and estimated daily discharges which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 236  $\rm ft^3/s$ , June 13, 1997, from rating curve extended above 14  $\rm ft^3/s$  on basis of slope-area measurement of peak flow, gage height, 22.7 ft, from floodmarks; no flow most days during the winter.

EXTREMES FOR WATER YEAR 2002.--Maximum discharge, 34 ft³/s, June 11, gage height, 21.08 ft, no flow most days during the winter.

EXTREMES FOR WATER YEAR 2003.--Maximum discharge, 35 ft³/s, July 3, gage height, 21.10 ft, no flow most days during the winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES DAY ОСТ NOV DEC MAT FEB MAR APR MAY THIN TITT. AUG SEP 4.4 0.85 4.2 15 7.3 2.4 2 ___ ___ ___ ___ ___ ___ 0.63 3.7 3 0.52 3.1 3.8 0.39 5 ___ ___ ___ 2.4 3.6 0.32 2.2 6 2.2 2.2 0.33 4.2 ___ ___ ___ 1.6 0.53 2.1 1.3 10 0.84 8 12 0.79 4.3 7.9 10 6.1 9.1 2.9 15 25 15 11 4.0 1.8 11 2.3 8.1 12 4.6 6.8 13 15 6.4 5.5 14 ---___ ___ 3.9 4.9 5.3 2.0 3.4 2.6 4.3 15 16 17 2.9 1.1 1.8 3.7 0.69 15 1.5 e3.2 0.50 0.93 9.8 18 3.6 ___ ---19 ---0.37 0.66 18 3.8 1.6 20 11 5.2 3.3 21 e3.0 1.9 1.9 19 4.2 1.4 22 3.5 0.91 18 e4.0 2.4 0.86 0.59 e3.7 23 11 ---___ ___ 8.5 2.4 ___ 1.4 0.69 0.55 e3.225 0.95 0.82 10 5.2 e2.8 2.6 0.69 0.92 5.0 8.0 e2.7 0.45 0.76 2.0 6.5 e2.6 28 0.30 0.73 2.9 5.6 e2.2 29 0.19 0.56 4.4 e1.9 30 6.3 3.4 3.6 3.6 e1.6 31 22 1.5 3.7 TOTAL 123.16 107.78 185.17 148.3 MEAN 4.11 3.48 5.97 4.94 MAX 25 15 19 15 MIN 0.37 0.55 0.32 1.6 AC-FT CFSM 244 0.97 214 0.82 ___ 367 294 1.41 1.17 1.08 0.95 1.62 1.30 IN.

e Estimated

# 15320100 WADE CREEK TRIBUTARY NEAR CHICKEN—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	  	  	  	  	  	  	  	  	1.4 0.99 1.1 1.1 0.87	0.14 0.11 15 11 3.6	0.13 0.12 0.12 0.14 0.12	17 13 e6.8 4.4 3.2
6 7 8 9 10	  	  	  	  	  	  	  	  	13 9.6 6.3 3.5 2.0	1.6 2.3 4.3 1.6 0.85	0.16 0.14 0.10 0.08 0.07	2.5 1.8 2.1 2.0 1.6
11 12 13 14 15	  	  	  	  	  	  	  	   e3.1	1.3 0.90 0.63 0.81 0.85	0.78 1.1 0.78 0.72 0.68	0.06 0.05 0.04 0.04 0.04	1.4 2.5 e3.0 e2.0 e1.8
16 17 18 19 20	  	  	  	  	  	  	  	2.9 4.4 5.5 2.6 1.7	0.65 0.48 0.42 0.38 0.33	0.66 0.56 0.42 0.31 0.23	0.03 0.03 0.02 0.02 0.03	e1.5 e1.2 e0.80 e0.70
21 22 23 24 25	  	  	  	  	  	  	  	1.4 1.1 1.4 2.8 3.9	0.28 0.23 0.20 0.19 0.19	0.19 0.23 0.20 0.16 0.14	0.04 0.14 0.11 0.15 0.15	e0.70 e0.60 e0.50 e0.50 e0.50
26 27 28 29 30 31	  	  	  	  	  	  	  	3.3 2.7 1.8 1.7 2.4 1.9	0.18 0.18 0.17 0.17 0.16	0.13 0.12 0.11 0.10 0.10	0.14 0.12 0.11 0.10 0.09 0.33	e6.5 e11 e3.3 e2.0 e1.0
TOTAL MEAN MAX MIN AC-FT CFSM IN.	   	  	  	  	  	  	   	   	48.56 1.62 13 0.16 96 0.38 0.43	48.34 1.56 15 0.10 96 0.37 0.42	3.02 0.097 0.33 0.02 6.0 0.02 0.03	96.60 3.22 17 0.50 192 0.76 0.85

e Estimated

## 15356000 YUKON RIVER AT EAGLE (International Gaging Station)

LOCATION.--Lat  $64^{\circ}47'22''$ , long  $141^{\circ}11'52''$ , in NW $^{1}/_{4}$  sec. 31, T. 1 S., R. 33 E. (Eagle D-1 quad), Hydrologic Unit 19040401, on left bank at Eagle, 0.1 mi upstream from Mission Creek, 1.1 mi downstream from Castalia Creek, and 11 mi downstream from the international boundary.

DRAINAGE AREA. -- 113,500 mi², approximately.

PERIOD OF RECORD. -- January 1911 to December 1913, June 1950 to current year. Monthly discharge only for some periods, published in WSP 1372.

GAGE.--Water-stage recorder. Elevation of gage is 850 ft above sea level, from topographic map. See WSP 1936 for history of changes prior to October 1, 1963. Nonrecording gage prior to June 26, 1982 at same site and datum.

REMARKS. -- Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	98800 97500 96600 95700 94400	65200 62600 61100 60200 59800	e34000 e34000 e33000 e33000 e32000	e29000 e29000 e28000 e28000 e28000	e24000 e23000 e23000 e23000 e23000		e18000 e18000 e18000 e18000 e18000	e56000 e66000 e80000 e90000 e94000	146000 144000 140000 139000 141000	137000 140000 141000 142000 146000	131000 127000 122000 120000 122000	98900 115000 120000 114000 110000
6 7 8 9 10	91600 89200 87800 86700 84800	61000 65800 73700 77000 79200	e32000 e31000 e31000 e31000 e31000	e28000 e28000 e27000 e27000 e27000	e23000 e23000 e23000 e23000 e22000	e20000 e20000 e20000 e20000 e20000		e94000 e93000 e92000 e94000 e95000	146000 159000 169000 174000 177000	160000 180000 177000 173000 173000	120000 119000 120000 118000 114000	109000 108000 110000 112000 112000
11 12 13 14 15	82400 80500 78900 78100 77400	74300 69500 63600 55900 47100	e31000 e31000 e31000 e31000 e31000	e27000 e27000 e27000 e27000 e27000	e22000 e22000 e22000 e22000 e22000	e20000 e20000 e20000 e20000 e20000	e18000 e18000 e18000 e18000 e18000	e98000 e100000 e102000 e100000 99000	184000 190000 194000 194000 191000	180000 174000 167000 164000 162000	111000 108000 106000 106000 108000	109000 107000 105000 103000 101000
16 17 18 19 20	76300 74800 73900 74300 74100	41800 37900 35300 34800 34400	e32000 e32000 e32000 e32000 e32000	e26000 e26000 e26000 e26000 e25000	e22000 e22000 e22000 e22000 e22000	e20000 e20000 e20000 e19000 e19000	e18000 e18000 e18000 e18000 e18000	99200 100000 102000 101000 97600	182000 169000 155000 145000 141000	165000 169000 170000 166000 161000	111000 109000 107000 108000 106000	98400 96000 93500 91700 89400
21 22 23 24 25	73800 73200 72400 71700 71300	e34000 e34000 e35000 e35000	e32000 e31000 e31000 e31000 e30000	e25000 e25000 e25000 e25000 e25000	e21000 e21000 e21000 e21000 e21000	e19000 e19000 e19000 e19000 e19000	e18000	94500 91200 88200 87500 93200	152000 177000 175000 171000 167000	151000 147000 148000 155000 169000	104000 102000 101000 99900 99500	87500 85900 83900 82300 81200
26 27 28 29 30 31	70800 70900 72300 72000 70500 68300	e36000 e36000 e35000 e35000 e35000	e30000 e30000 e30000 e29000 e29000 e29000	e24000 e24000 e24000 e24000 e24000 e24000	e21000	e19000	e23000 e28000 e34000 e41000 e49000	103000 116000 125000 137000 145000 147000	160000 153000 147000 141000 139000	163000 152000 144000 136000 131000 130000	100000 101000 99500 98500 97000 95900	80600 79600 78600 77400 76700
MEAN MAX MIN	481000 80030 98800 68300 921000 0.71 0.81	1510200 50340 79200 34000 2995000 0.44 0.49	34000 29000	29000 24000	618000 22070 24000 21000 1226000 0.19 0.20	19710 21000 19000	631000 21030 49000 18000 1252000 0.19 0.21	99370 147000 56000 6110000	162100 194000 139000	157200 180000 130000 9666000	109400 131000 95900 6727000	97220 120000 76700
STATIS	TICS OF					950 - 200	3, BY WAT	ER YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	74690 133300 2001 45870 1959	38360 62500 1953 24000 1959	25810 38870 2001 13000 1951	21130 30390 2001 9000 1951	18850 28000 1977 7200 1951	17250 25480 1977 7800 1956	19290 41530 1990 8650 1956	124600 201500 1993 61770 1964	222800 456800 1964 120900 1953	181900 269500 1992 108900 1998	144200 200400 2000 88710 1998	112700 187900 2000 70690 1998
SUMMAR	Y STATI					AR	FOR 2003	WATER YE	AR	WATER Y	EARS 1950	- 2003#
ANNUAL ANNUAL HIGHES LOWEST HIGHES	SUMMARY STATISTICS  ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN			31589200 86550 310000	May 1	13	26755500 73300 194000 b18000	Jun	13	84050 110900 61020 545000	Jun :	1964 1958 12 1964 1 1951
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			UM	15000 15000 62660000 0. 10. 184000 68300 16000	Apr Apr 76	5	18000 195000 18 53070000 0 8 152000 70900 19600	Apr Jun .55 Jun .65	1 13 13	7200 7200 545000 33 60890000 0 10 197000 44300 16000	Feb Jun : .85 Jun :	1 1951 12 1964 12 1964

See Period of Record; partial years used in monthly statistics From Apr. 5 - Apr. 21 From Apr. 1 - 22 Feb. 1-28, 1951 Estimated

a b

## 15356000 YUKON RIVER AT EAGLE—Continued (International Gaging Station)

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1950-57, 1962-70, 1974-76, 1978-79 and 2001 to current year.

PERIOD OF DAILY RECORD.--SUSPENDED SEDIMENT: 1962 to 1966

Date	Time	Loca- tion in X-sect. looking dwnstrm ft from 1 bank (00009)		Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	ature, water, deg C	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
APR									
01	1052	100		259		.0	754	10.3	71
01	1122	220		258		.0	754		
01	1152	340			7.9	. 0	754	10.3	71
01	1222	460				.0	754		
01 JUN	1252	620			8.0	.0	754	10.5	73
17	1142		193.0	212	8.1	13.5	748	9.4	92
17	1202		383.0	211	8.1	13.6	748	9.4	97
17	1222		549.0	208	8.1	13.7	748	9.7	95
17	1242		710.0	208	8.2	13.7	748	9.6	94
17	1302		908.0	208	8.2	13.8	748	8.7	86
JUL								***	
17	1442		1180	224	8.1	16.5	732	8.6	92
17	1446		950.0	223	8.2	16.6	732	8.6	92
17	1450		800.0	224	8.2	16.6	732	8.9	95
17	1454		650.0	224	8.2	16.6	732	8.6	92
17	1458		450.0	226	8.2	16.2	732	8.6	91
AUG									
13	1200		375.0	239	8.2	15.4	747	9.8	100
13	1225		575.0	241	8.2	15.4	747	9.9	101
13	1250		725.0	240	8.2	15.4	747	9.9	101
13	1315		850.0	239	8.2	15.4	747	9.9	101
13 SEP	1340		1025	240	8.2	15.4	747	9.9	101
09	1518		360.0	236	7.3	10.3	744	10.8	99
09	1521		560.0	233	7.3	10.3	744	10.7	98
09	1524		700.0	233	7.4	10.4	744	10.7	98
09	1527		850.0	233	7.5	10.4	744	10.7	98
09	1530		1020	233	7.5	10.5	744	10.6	97
24	1158		280.0	246	8.4	2.8	735	12.1	93
24	1213		458.0	241	8.4	2.9	735	12.1	93
24	1228		584.0	240	8.4	3.0	735	12.0	92
24	1243		721.0	240	8.4	3.0	735	11.9	92
24	1258		888.0	240	8.4	2.9	735	12.0	92

													Turbid-	
								Type of	Specif.	pH,			ity,	
					Instan-			sample	conduc-	water,			wat unf	
					taneous	Sam-		related	tance,	unfltrd	Temper-	Temper-	lab,	
				Stream	dis-	pling	Sampler	QA	wat unf	field,	ature,	ature,	Hach	
				width,	charge,	method	type,	data,	uS/cm	std	air,	water,	2100AN	
		Medium	Sample	feet	cfs	code	code	code	25 degC	units	deg C	deg C	NTU	
Date	Time	code	type	(00004)	(00061)	(82398)	(84164)	(99111)	(00095)	(00400)	(00020)	(00010)	(99872)	
APR														
01	1050	9	7	1080	18500	20	3060	100	265	7.7	-10.0	.0	1.1	
MAY														
23	1740	9	9	1180	84500	20	3056	1	210	7.6		8.8	31	
JUN														
17	1220	9	9	1490	163000	20	3056	1	209	8.1	23.4	13.7	130	
JUL														
17	1300	9	7		163000	20	3056	30	224	8.2	25.5	16.6	540	
AUG														
13	1300	9	9		106000	20	3056	1	240	8.2		15.4	220	
SEP														
09	1430	9	9	1240	113000	20	3056	100	234	7.8	7.2	10.4	40	
24	1230	9	9	1160	82300	20	3056	1	240	8.4		2.9	9.9	

# YUKON ALASKA

# 15356000 YUKON RIVER AT EAGLE—Continued (International Gaging Station)

Date	ance, 254 nm, wat flt units /cm	UV absorb- ance, 280 nm, wat flt units /cm (61726)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	percent of sat- uration	water, unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L (00915)	water, fltrd, mg/L	Sodium, water, fltrd, mg/L (00930)	field, mg/L as CaCO3	Potas- sium, water, fltrd, mg/L (00935)	bonate,	flt incrm. titr., field, mg/L
APR 01	.032	.023	752	10.4	72	130	36.7	9.96	2.85	92	1.15	113	.0
MAY 23	.321	.241	739			97	26.0	7.79	2.29		1.05	88	.0
JUN													
17 JUL	.106	.078	748	9.5	93	110	28.3	8.69	2.02		.95	84	.0
17 AUG	.079	.058	732	8.6	92	110	29.0	8.38	2.88		1.64	95	.0
13 SEP	.060	.043	747	9.9	101	120	32.2	8.88	3.16		1.51	100	.0
09	.084	.060	744	10.7	98	120	32.2	10.5	2.45		1.02	100	.0
24	.055	.038	735	12.0	92	130	33.6	10.7	2.52		1.09	105	.0
		Alka- linity,					Residue on	Residue water,		Nitrite +		Ammonia +	Ammonia +
		wat flt fxd end	Sulfate	Chlor- ide,	Flour- ide,	Silica,	evap. at 180	fltrd, sum of	Nitrite water,	nitrate water	Ammonia water,	org-N, water,	org-N, water,
	field,	field, mg/L as	water, fltrd,	water, fltrd,	water, fltrd,	water, fltrd,	deg C wat flt	consti- tuents	fltrd, mg/L	fltrd, mg/L	fltrd, mg/L	unfltrd mg/L	
D. L.	CaCO3	CaCO3	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	as N	as N	as N	as N	as N
Date APR	(39086)	(39036)	(00945)	(00940)	(00950)	(00955)	(70300)	(70301)	(00613)	(00631)	(00608)	(00625)	(00623)
01 MAY	92	93	33.3	.22	.12	6.92	158	147	<.002	.089	<.015	E.06	E.07
23	72	72	29.6	.53	<.2	5.51	137	117	.003	.026	<.015	.28	.26
JUN 17	69	69	33.5	.75	<.2	5.64	127	122	<.002	.038	<.015	.47	E.10
JUL 17	78	78	33.9	.75	<.2	5.97	133	129	<.002	E.018	<.015	.43	.10
AUG 13	82	90	34.6	.93	<.2	6.64	147	137	<.002	E.021	<.015	.22	E.08
SEP 09	0.2	0.0	40 E	67	<.2	6.04	1.47	1.42	- 000	022	- 015	1.0	F 06
24	82 86	80 87	40.5	.67 .62	<.2	6.04 6.08	147 141	143 147	<.002 <.002	.033	<.015 <.015	.19 E.10	E.06
			Ortho- phos-	Phos-	Alum-		Anti-						Beryll-
	Phos- phorus,	Phos- phorus,	phate, water,		inum, suspnd	Alum- inum,	mony, suspnd	Anti- mony,	Arsenic	Arsenic	Barium,	Barium	ium suspnd
	water,	water,	fltrd,	sedimnt	sedimnt	water,	sedimnt	water,	sedimnt	water,	sedimnt	water,	sedimnt
	unfltrd mg/L	mg/L	mg/L as P	total, percent	total, percent	fltrd, ug/L	total, ug/g	fltrd, ug/L	total, ug/g	fltrd, ug/L	total, ug/g	fltrd, ug/L	total, ug/g
Date	(00665)	(00666)	(00671)	(30292)	(30221)	(01106)	(29816)	(01095)	(29818)	(01000)	(29820)	(01005)	(29822)
APR 01	.005	<.004	<.007			2		<.30		.4		61	
MAY 23	.119	.006	<.007	.100	6.5	38	1.6	<.30	14	.5	1100	46	2
JUN 17	.35	E.004		.100	6.6	29	2.2	E.18	17	.6	1200	44	2
JUL 17	1.10	<.004	<.007	.110	7.0	23	1.4	E.23	12	.6	710	39	1
AUG 13	.41	<.004	<.007	.096	7.1	18	1.6	E.20	11	.6	700	40	1
SEP 09 24	.161	<.004 <.004	<.007 <.007	.086	6.4 4.5	 14	1.6 1.3	<.30 <.30	11 9.4	.5	850 300	46 43	1 1

# YUKON ALASKA

# 15356000 YUKON RIVER AT EAGLE—Continued (International Gaging Station)

Date APR 01 MAY 23 JUN 17 JUL 17 AUG	Beryll- ium water, fltrd, ug/L (01010) <.06 <.06 <.06	Boron, water, fltrd, ug/L (01020) 9 11 10	sedimnt total, ug/g	Cadmium water, fltrd, ug/L (01025) < .04 < .04 E.03 < .04	sedimnt total, ug/g (29829)  100 100	fltrd, ug/L (01030) <.8 <.8 <.8	 16 14	.074 .121 .084	Copper, suspnd sedimnt total, ug/g (29832) 37 40 44	fltrd, ug/L (01040) .8 2.7 2.1	Iron, suspnd sedimnt total, percent (30269)	Iron, water, fltrd, ug/L (01046)  E7  78  20  E6	Lead, suspnd sedimnt total, ug/g (29836)  19 14
13 SEP	<.06	13	. 4	< .04	99	<.8	18	.084	43	1.2	4.5	<8	11
09 24	<.06 <.06	7 10	.8 .6	<.04 E.02	110 79	<.8 <.8	15 12	.082	31 30	1.2	3.7 2.6	10 9	14 14
Date APR	Lead water, fltrd, ug/L (01049)	Lithium suspnd sedimnt total, ug/g (35050)	fltrd, ug/L	Mangan- ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L	Mercury suspnd sedimnt total, ug/g (29841)	suspnd sedimnt total, ug/g	Molyb- denum, water fltrd, ug/L (01060)	Nickel, suspnd sedimnt total, ug/g (29845)	fltrd, ug/L	Selen- ium, suspnd sedimnt total, ug/g (29847)	Selen- ium, water, fltrd, ug/L (01145)	Silver, suspnd sedimnt total, ug/g (29850)
01	<.08		2.3		1.8			1.4		1.78		.6	
MAY 23	E.05	28	2.7	970	8.7	.08	4	1.0	61	3.26	М	E.4	1
JUN 17	<.08	29	2.6	840	2.5	.16	4	1.0	58	1.55	М	.6	<.5
JUL 17	<.08	23	3.1	820		.04	2	1.4	55	1.32	М	.5	М
AUG 13 SEP	<.08	25	2.8	820	2.1	.06	2	1.6	55	1.77	М	.5	<.5
09	<.08	22	<.5	800	2.0	.02	4	1.1	55	1.45	М	E.4	<.5
24	<.08	19	2.8	590	4.1	<.01	5	1.2	50	1.77	М	.5	<.5
Date APR	Silver, water, fltrd, ug/L (01075)	Stront- ium, suspnd sedimnt total, ug/g (35040)	fltrd, ug/L	ium, suspnd sedimnt ug/g	sedimnt	<pre>ium, suspnd sedimnt total, ug/g</pre>	fltrd, ug/L	total, ug/g	fltrd, ug/L	suspnd sedimnt total, ug/g	fltrd, ug/L	carbon, water, fltrd, mg/L	Inor- ganic carbon suspnd sedimnt total, mg/L (00688)
01	<.2		171				.2		3		1.31	1.4	<.1
MAY 23	<.2	290	140	<50	.410	130	1.0	180	3	<50	.97	8.5	<.1
JUN 17	<.2	260	129	<50	.420	150	.9	200	1	<50	.76	3.0	1.7
JUL 17	<.2	370	148	<50	.530	140	.6	110	<1	<50	.93	2.8	
AUG 13 SEP	<.2	330	157	<50	.470	130	.9	94	<1	<50	.90	2.2	7.6
09	<.2 <.2	320 440	167 164	<50 <50	.450 .260	130 79	.4	110 120	M M	<50 <50	.98	2.8	.6 <.1

# 15356000 YUKON RIVER AT EAGLE—Continued (International Gaging Station)

Date	Organic carbon, suspnd sedimnt total, mg/L (00689)	Total carbon, suspnd sedimnt total, mg/L (00694)	Total carbon, suspnd sedimnt total, percent (30244)	Organic carbon, suspnd sedimnt percent (50465)	Partic- ulate nitro- gen, susp, water, mg/L (49570)	Suspnd. sedimnt conc, flow through cntrfug mg/L (50279)	Sus- pended sedi- ment concen- tration mg/L (80154)	pended sedi- ment load, tons/d	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)
APR 01	<.1	<.1			<.02		1	50	
MAY									
23 JUN	1.4	1.5	2.9	2.1	.08	7	129	29400	52
17 JUL	4.1	5.9	2.4	1.0	.26	288	312	137000	66
17	5.6		2.5	.5	.32	959	933	411000	84
AUG 13 SEP	.7	8.2	2.3	.6	.15	395	400	114000	78
09	1.5	2.1	2.1	.5	.08	161	157	47900	55
24	.5	.5	4.8	2.3	.03	37	64	14200	42

### 15388030 NATION RIVER NEAR NATION

LOCATION.--Lat  $65^{\circ}14'23''$ , long  $141^{\circ}39'10''$ , in  $NW^{1}/_{4}$   $NW^{1}/_{4}$  sec.30, T.5 N., R.30 E.(Charley River A-2 quad), Hydrologic Unit 19040401, in Yukon-Charley Rivers National Preserve, on left bank, 3.75 mi upstream from mouth, 4.25 mi downstream from mouth of Hard Luck Creek, 5 mi northeast of Nation townsite, and 33 mi northwest of Eagle.

DRAINAGE AREA. -- 931 mi², revised.

PERIOD OF RECORD.--June 1991 to current year (no winter records in water years 1991-97 and 2003).

GAGE.--Water-stage recorder. Elevation of gage is 850 ft. above sea level, from topographic map.

EXTREMES FOR CURRENT YEAR.--Maximum discharge for periods October 1 to 7, 2002, and June 1 to September 30, 2003,  $8940~{\rm ft}^3/{\rm s}$ , September 1, 2003 gage height  $38.44~{\rm ft}$ ; minimum not determined, occurs during winter.

REMARKS.--WY2001, records poor; WY2002, records good, except for estimated daily discharges, which are poor; WY2003, records fair, except for estimated daily discharges, which are poor.

		DISCH	HARGE,	CUBIC FEET	PER SECOND,		YEAR OCTO	BER 2000	TO SEPTE	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1070 930 849 750 761	e360 e350 e340 e340 e330	e230 e220 e220 e220 e220	e180 e170 e170 e170	e150 e150 e150 e150 e140	e130 e130 e130 e130 e130	e110 e110 e110 e110 e110	e130 e140 e140 e150 e150	2890 2950 2850 3050 3300	1010 1230 1260 1200 1380	3790 3090 2610 2280 2040	929 944 983 1090 1070
6 7 8 9 10	947 933 850 776 672	e320 e310 e310 e300	e220 e220 e210 e210	e170 e170 e170 e170	e140 e140 e140 e140 e140		e110 e110 e110 e110 e110	e160 e170 e180 e190 e220	3440 3690 2740 2720 2420	2820 2800 2140 1680 1420	1900 1900 1770 1590 1450	1450 1290 1220 1140 1070
11 12 13 14 15	601 578 571 e550 e540	e300 e290 e290 e280 e280	e210 e210 e200 e200	e170 e170 e160 e160 e160	e140 e140 e140 e140 e140	e120 e120 e120 e120 e120	e110 e110 e110 e110 e110	e290 e390 e540 e750 e900	2220 2080 2390 3980 3360	1260 1180 1130 1080 1160	1350 1490 2000 1840 1970	1000 951 910 875 840
16 17 18 19 20	e520 e510 e490 e480 e470	e270 e270 e270 e260 e260	e200 e200 e200 e190 e190	e160 e160 e160 e160	e140 e140 e140 e140 e130	e120 e120 e120 e120 e120	e120 e120 e120 e120 e120	e1100 e1400 e1900 e2400 2850	2750 2100 1790 1630 1480	1110 1040 1440 1430 1190	2110 2220 2110 1970 1840	806 785 761 737 715
23	e450 e440 e430 e420 e410	e260 e250 e250 e250 e240	e190 e190 e190 e190		e130 e130 e130 e130 e130	e120 e120 e120 e120 e120	e120 e120 e120 e120 e120	3410 3610 5720 5780 4070	1340 1240 1180 1070 991	1080 1110 2110 15300 10700	1630 1460 1350 1250 1210	699 687 679 660 645
26 27 28 29 30 31	e380 e380 e370 e360		e180 e180 e180 e180 e180	e150 e150 e150 e150 e150 e150		e110		3390 3700 3460 2430 2030 2380	927 882 893 861 883	6480 4850 4190 5560 6720 4920	1180 1140 1090 1020 966 939	635 613 591 578 554
MEAN MAX MIN	18278 590 1070 360 36250 0.63 0.73	8470 282 360 230 16800 0.30 0.34	6210 200 230 180 12320 0.22	9940 0.17	3870 138 150 130 7680 0.15	3730 120 130 110 7400 0.13 0.15	3480 116 130 110 6900 0.12 0.14	54130 1746 5780 130 107400 1.88 2.16	64097 2137 3980 861 127100 2.29 2.56	91980 2967 15300 1010 182400 3.19 3.68	54555 1760 3790 939 108200 1.89 2.18	25907 864 1450 554 51390 0.93 1.04
STATIS	TICS OF	MONTHLY M	EAN DAT		R YEARS 1991							
MEAN MAX (WY) MIN (WY)	463 590 2001 293 2000	MONTHLY M 250 282 2001 194 2000	171 215 1998 126 1999	122 162 2001 51.7 1999	94.0 138 2001 25.4 1999	76.5 120 2001 17.2 1999	197 500 1998 28.2 1999	2117 3143 1997 912 1999	1678 3054 2000 759 1996	1346 2967 2001 532 1996	1629 3103 2000 800 1994	1137 1780 1995 543 1996
SUMMAR	Y STATIS	STICS	F	OR 2000 CA	LENDAR YEAR		FOR 2001	WATER YEA	AR			- 2001#
LOWEST HIGHES LOWEST ANNUAL MAXIMU	MEAN T ANNUAL ANNUAL T DAILY DAILY SEVEN-I M PEAK I	MEAN MEAN MEAN DAY MINIMU PLOW		435211 1189 12000 a85 85			339717 931 15300 b110 110 d20400	Jul 2 Mar 2 Mar 2 Jul 2	24 27 27 24	875 1152 445 15300 c16 16 d20400	Jul 2 Mar 2 Mar 2 Jul 2	2000 1999 4 2001 0 1999 0 1999 4 2001 4 2001
MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				863200 1 17 3200 380 90	.28		673800 1. 13. 2410 300 120	000 57		633900 0.12. 2420 292 75	94 77	

See Period of Record; partial years used in monthly statistics

a b

Mar. 16 to Apr. 9
Mar. 27 to Apr. 15
Mar. 20 to Apr. 15
Mar. 20 to Apr. 14
From rating curve extended above 6000 ft³/s on basis of slope-area measurement of peak flow at gage height 40.42 ft Estimated

## 15388030 NATION RIVER NEAR NATION—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

					DAIL	Y MEAN	VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	558	e200	e110	e82	e74	e72	e70	e74	2650	903	985	2300	
2	562 542	e200 e190	e110 e110	e82 e82	e74 e74	e72 e70	e70 e70	e76 e76	2320 1950	839 975	859 789	2270 2060	
4	542	e180	e100	e82	e74	e70	e70	e78	1530	2000	717	1860	
5	544	e180	e100	e80	e72	e70	e70	e78	1370	1790	664	1700	
6	585	e170	e100	e80	e72	e70	e70	e80	1390	1450	625	1610	
7 8	781 808	e170 e170	e100 e100	e80 e80	e72 e72	e70 e70	e70 e70	e84 e90	1310 1190	1810 1400	607 647	1940 2110	
9	741	e160	e98	e80	e72	e70	e68	e96	1100	1190	853	1920	
10	695	e160	e98	e78	e72	e70	e68	e110	1120	1750	1320	1860	
11	643	e160	e96	e78	e72	e70	e68	e120	3240	1500	1320	1980	
12 13	606 547	e150 e150	e96 e94	e78 e78	e72 e72	e70 e70	e68 e68	e140 e170	5030 2920	1290 1080	1340 1550	1810 1640	
14	464	e150	e94	e78	e72	e70	e68	e210	2020	924	2240	1500	
15	401	e140	e92	e76	e72	e70	e68	e400	2160	828	2790	1400	
16	e370	e140	e92	e78	e72	e70	e68	e750	1510	788	6430	1310	
17	e350	e140	e92	e76	e72	e70	e68	e1500	1100	731	14900	1230	
18 19	e340 e320	e130 e130	e90 e90	e76 e76	e72 e72	e70 e70	e68 e68	e4000 6000	875 738	669 696	17600 9770	1180 1130	
20	e310	e130	e90	e76	e72	e70	e68	6520	689	768	6970	1090	
21	e300	e130	e88	e76	e72	e70	e68	6590	2020	838	5070	1030	
22	e280	e120	e88	e76	e72	e70	e68	5480	2510	792	4290	978	
23 24	e270 e260	e120 e120	e86 e86	e76 e76	e72 e72	e70 e70	e68 e70	4810 4220	2210 1430	698 694	3840 3360	936 916	
25	e250	e120	e84	e74	e72	e70	e70	3790	1140	677	3520	907	
26	e240	e120	e84	e74	e72	e70	e70	3900	1050	889	3110	898	
27	e240	e110	e84	e74	e72	e70	e72	2900	898	2370	2630	907	
28 29	e230 e220	e110 e110	e84 e82	e74 e74	e72	e70 e70	e74 e74	1320 e900	772 1160	3260 2320	2360 2130	950 949	
30	e210	e110	e82	e74		e70	e74	e870	1020	1550	2090	e960	
31	e210		e82	e74		e70		1500		1190	2020		
TOTAL	13419	4370	2882	2398	2024	2174	2084	56932	50422	38659	107396	43331	
MEAN	433	146	93.0	77.4	72.3	70.1	69.5	1837	1681	1247	3464	1444	
MAX	808	200	110	82 74	74 72	72 70	74	6590	5030	3260	17600	2300	
MIN	210 26620	110 8670	82 5720	4760	4010	4310	68 4130	74 112900	689 100000	669 76680	607 213000	898 85950	
CFSM	0.46	0.16	0.10	0.08	0.08	0.08	0.07	1.97	1.81	1.34	3.72	1.55	
IN.	0.54	0.17	0.12	0.10	0.08	0.09	0.08	2.27	2.01	1.54	4.29	1.73	
STATIS	STICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 1991	- 2002	2, BY WATE	R YEAR (	WY)#				
MEAN	457	230	155	113	89.7	75.2	172	2070	1678	1338	1782	1168	
MAX	590	282	215	162	138	120	500	3143	3054	2967	3464	1780	
(WY) MIN	2001 293	2001 146	1998 93.0	2001 51.7	2001 25.4	2001 17.2	1998 28.2	1997 912	2000 759	2001 532	2002 800	1995 543	
(WY)	2000	2002	2002	1999	1999	1999	1999	1999	1996	1996	1994	1996	
SUMMAF	RY STATIS	STICS	FOF	FOR 2001 CALENDAR YEAR			FOR 2002	WATER YE	WATER YEARS 1991 - 2002#				
ANNUAL TOTAL			327430			326091							
ANNUAL MEAN HIGHEST ANNUAL MEAN			897			893			879 1152		2000		
	ANNUAL									445		1999	
	T DAILY			15300	Jul 24		17600	Aug	18	17600		18 2002	
LOWEST	DAILY M	LEAN NAV MINITMIIM		a82 83	Dec 29 Dec 25		89d	Apr	9	c16	Mar .	20 1999	
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW				0.5	DGC 23		20000	Aua	18	16 d20400	Jul	24 2001	
MAXIMUM PEAK STAGE						b68 Apr 9 68 Apr 9 20000 Aug 18 41.82 Aug 18				41.92 Jul 24 2001			
		(AC-FT)		649500		646800				636500			
	RUNOFF	(CFSM) (INCHES)		0.9 13.0	7 O		0.96 13.03				0.94 12.82		
	CENT EXC			2410			2220	5.5		2400	~ <u>~</u>		
50 PEF	CENT EXC	EEDS		180			160			280			
90 PERCENT EXCEEDS 110 70 70													

See Period of Record; partial years used in monthly statistics

Dec. 29 to 31

Apr. 9 to 23

Mar. 20 to Apr. 14

From rating curve extended above 6000 ft³/s on basis of slope-area measurement of peak flow at gage height 40.42 ft

Estimated

# YUKON ALASKA

# 15388030 NATION RIVER NEAR NATION—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	977								e3300	634	4250	7960
2	969								e3300	612	2980	7720
3	998								e3000	693	2380	5600
4	e1000								e5700	957	2160	5000
5	875								e4400	900	1990	4260
Э	875								e4400	900	1990	4260
6	762								e3300	784	2780	3540
7	761								e6000	796	3110	2970
8									e6200	1030	2470	2580
9									e6000	1060	2080	2320
10									e5700	908	1810	2160
11									e4000	884	1620	2040
12									e3000	936	1490	2350
13									e2300	1380	1590	2250
14									e1900	2630	1650	1920
15									e1600	4580	1500	1720
16									e1400	5120	1390	1640
17									e1200	4210	1550	1480
18									e1050	3200	2160	e1400
19									e930	2430	2420	e1300
20									840	1960	3440	e1300
21									766	1650	2760	e1200
22									710	1540	2510	e1200
23									672	1370	2280	e1100
24									649	1210	2090	e1100
25									673	1100	2180	e1100
26									661	1050	2130	e1000
27									714	1120	1910	e1000
28									740	1970	1730	e1000
29									736	2190	1590	e900
30									679	1790	1470	e900
31										3300	1570	
TOTAL									72120	53994	67040	72010
MEAN									2404	1742	2163	2400
MAX									6200	5120	4250	7960
MIN									649	612	1390	900
AC-FT									143000	107100	133000	142800
CFSM									2.58	1.87	2.32	2.58
IN.									2.88	2.16	2.68	2.88
STATIST	TICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 1991	- 2003,	BY WATER	YEAR (WY	) #			
A 4 10 7 7 7 7	4	000	4.5.5	4.0			4 = 0	0.0=0	4 = = -	40.00	40	4000
MEAN	457	230	155	113	89.7	75.2	172	2070	1751	1369	1811	1280
MAX	590	282	215	162	138	120	500	3143	3054	2967	3464	2400
(WY)	2001	2001	1998	2001	2001	2001	1998	1997	2000	2001	2002	2003
MIN	293	146	93.0	51.7	25.4	17.2	28.2	912	759	532	800	543
(WY)	2000	2002	2002	1999	1999	1999	1999	1999	1996	1996	1994	1996
CIIMMAD	Y STATISTI	CG		MATED VE	ARS 1991 -	2003#						
JUMMAN.	I SIMILSII	Co		WAIER IEA	402 1991 -	2005#						
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (FSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS				879 1152 445 17600 a16 16 b20400 41.5 636500 0.5 12.8 2400	94	1999 1999 2001						
	CENT EXCEE			280 70								
90 PERCENT EXCEEDS 70												

See Period of Record; partial years used in monthly statistics Mar. 20 to Apr. 14, 1999 From rating curve extended above 6000 ft³/s on basis of slope-area measurement of peak flow at gage height 40.42 ft Estimated

## 15388070 KANDIK RIVER BELOW THREEMILE CREEK NEAR NATION

LOCATION.--Lat  $65^{\circ}23'08''$ , long  $142^{\circ}26'41''$ , in  $SW^{1}/_{4}$   $SW^{1}/_{4}$  sec.32, T.6 N., R.25 E.(Charley River B-3 quad), Hydrologic Unit 19040401, in Yukon-Charley Rivers National Preserve, on right bank, 0.4 mi downstream from Threemile Creek, 2.8 mi upstream from mouth, 23 mi northwest of Nation townsite, and 55 mi northwest of Eagle.

DRAINAGE AREA.--1176 mi²

PERIOD OF RECORD. -- June to September 2002.

GAGE. -- Water-stage recorder. Elevation of gage is 770 ft above sea level, from topographic map.

EXTREMES FOR CURRENT PERIOD.--June 15 to September 30: Maximum discharge not determined, highest daily mean 30,900  ${\rm ft}^3/{\rm s}$ , August 18, 2002 from rating curve extended above 3220  ${\rm ft}^3/{\rm s}$ , gage height 49.27 ft; minimum discharge not determined, occurs during winter.

 ${\tt REMARKS.--Records\ fair,\ except\ for\ discharges\ above\ 8000\ ft^3/s} \quad {\tt and\ estimated\ daily\ discharges,\ which\ are\ poor.}$ 

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										556	918	1650
2										502	748	2010
3										537	633	2080
4										1640	559	1720
5										3850	502	1470
5										3030	302	1470
6										2190	447	1320
7										2010	409	1930
8										1850	401	2830
9										1390	498	2530
10										1090	1270	2070
11										1040	1790	1920
12										1060	1530	1770
13										861	1610	1540
14										738	2150	1360
15									e2300	740	2860	1220
16									e1700	729	4990	1110
17									e1200	691	25400	1020
18									e900	613	30900	949
19									e750	619	12300	906
20									680	749	7220	868
21									1320	905	5110	821
22									4680	856	4010	775
23									3500	746	3880	708
24									2180	668	3330	656
25									1440	711	2950	638
23									1110	,	2550	030
26									1170	929	2850	628
27									1060	1170	2460	625
28									901	2290	2070	628
29									753	2520	1800	667
30									636	1650	1640	680
31										1150	1590	
J ±										1130	1000	
TOTAL										37050	128825	39099
MEAN										1195	4156	1303
MAX										3850	30900	2830
MIN										502	401	625
AC-FT										73490	255500	77550
AC-FT										13490	∠55500	11000

e Estimated

# 15388960 PORCUPINE RIVER NEAR INTERNATIONAL BOUNDARY (International Gaging Station)

 $\label{location.--Lat 67°25'27'', long 140°53'28'', 3.1 mi upstream from old townsite of Ramparts House, at Alaska-Yukon Territory Boundary.$ 

DRAINAGE AREA. -- 23,100 mi², approximately.

PERIOD OF RECORD. -- October 1987 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Differences between data published herein and corresponding data in the reports of the Water Survey of Canada are due to variations in automated program techniques. After December 1978, data published in reports of the Water Survey of Canada are in International System (SI) units, and have been converted to inch-pound units for this report. Formerly the data reported in the USGS Water-Data Report were one year prior to those reported for U.S. gages because the Water Survey of Canada discharge records for the calendar year were not received until the following year. Starting with the 2003 water year, periods of record for this station will be current with U.S. gage reports.

DISCHARGE, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

COOPERATION .-- Discharge records furnished by the Water Survey of Canada.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	5830 5610	e2660 e2620	e1600 e1570	e1030 e1020	e738 e734	e664 e667	e660 e664	e636 e636	22700 17800	32900 32100	18800 15800	17500 15800
3 4	5370 5190	e2570 e2520	e1560 e1530	e1020 e999	e731 e724	e667 e664	e664 e660	e636 e636	15900 19400	31100 29200	13100 11100	14500 14200
5	5010	e2480	e1510	e982	e717	e664	e660	e639	25700	29100	9750	14400
6 7	4870 4870	e2440 e2390	e1490 e1470	e968 e964	e710 e699	e664 e664	e660 e660	e643 e650	31000 35300	31400 31200	8860 8330	15300 17500
8	4700	e2350	e1450	e946	e703	e660	e660	e660	36700	33700	9890	17400
9 10	e4480 e4410	e2310 e2270	e1430 e1410	e932 e915	e699 e696	e664 e664	e657 e653	e674 e692	37800 37400	37400 41000	15500 16300	16200 14900
10	64410	e2270	e1410	6913	6030	6004	6000	6032	37400	41000	16300	14900
11	e4240	e2230	e1390	e900	e692	e667	e653	e713	35700	37400	14500	13600
12	e3950	e2190	e1370	e886	e689	e667	e653	e742	33500	29800	15800	12800
13	e3850	e2150	e1360	e883	e685	e667	e650	e784	32300	23900	22500	12300
14 15	e3990 e3850	e2110 e2080	e1340 e1320	e876 e862	e685 e685	e664 e671	e650 e650	e855 e1170	32300 34800	21600 22800	29800 33500	14500 21900
13	63030	62000	61320	6002	6003	6071	6030	61170	34000	22000	33300	21700
16	e3600	e2040	e1300	e855	e667	e671	e650	e2470	39500	21600	34400	21200
17	e3530	e2000	e1280	e844	e681	e671	e650	e17700	40300	19500	35000	18500
18 19	e3320 e3330	e1970 e1940	e1260 e1240	e837 e830	e681 e677	e674 e678	e650 e646	e26500 e33900	38100 40300	18400 17800	36400 40300	16200 14300
20	e2830	e1940	e1230	e826	e678	e678	e639	e42400	41700	16900	45200	12800
20	02030	01300	01230	0020	2070	00.0	0033	012100	11,00	10300	13200	12000
21	e2660	e1880	e1210	e816	e674	e674	e639	e51200	39500	15300	49100	11700
22 23	e2860 e3140	e1840 e1810	e1190 e1180	e809 e798	e671 e667	e671 e671	e639 e639	e57200 e60700	41700 45600	13300 11600	46600 41700	10800 10200
24	e3140	e1810 e1780	e1180 e1160	e798 e784	e664	e671 e644	e639	e63600	47700	10400	37100	9960
25	e3030	e1760	e1140	e780	e664	e660	e636	e62100	45200	9850	32400	9820
26	e2980	e1730	e1130	e777	e664	e657	e636	e60000	41300	9850	28900	9570
27 28	e2920 e2870	e1700 e1670	e1120 e1100	e766 e759	e664 e660	e657 e653	e636 e636	e56500 e52300	36700 33200	10500 15600	27300 25600	9290 8860
29	e2810	e1650	e1100	e749		e657	e636	e44100	31500	26500	23600	8580
30	e2760	e1620	e1080	e745		e653	e636	37400	31300	25800	21500	8690
31	e2710		e1060	e738		e657		29800		22100	19500	
TOTAL	118670	62660	40570	26896	19299	20604	19461	708636	1041900	729600	788130	413270

665

678

644

40870

0.03

649

664

636

38600

0.03

22860

63600

1406000

636

0.99

1.14

34730

47700

15900

1.50 1.68

2067000

23540

41000

1447000

9850

1.02 1.17 49100

1563000

8330

1.10 1.27 13780

21900

819700

8580

0.60

AC-FT 235400

3828

5830

2660

0.17

2089

2660

1620

0.09

124300

1309

1600

1060

80470

0.06

868

738

1030

53350

0.04

689

738 660

38280

0.03

MEAN

MAX

MIN

CFSM

IN.

e Estimated

# 15388960 PORCUPINE RIVER NEAR INTERNATIONAL BOUNDARY—Continued (International Gaging Station)

STATISTIC	CS OF M	ONTHLY	MEAN DATA	FOR WATER	YEARS 1988	3 - 2002,	BY WATER	R YEAR (WY	<i>(</i> )				
	4462	1778	1083	811	683	649	764	33970	43940		19270		16620
	8241	3161	1479	1049	966	870	1711	63160	86470		37940		34320
	1996	1999	1999	2001	2001	2001	1998	1990	1992	1994	1991		1995
	2571	1122	870	551	398	383	562	1369	20410		10090		7697
(WY) 2	2000	1997	2000	1997	1997	1997	1997	2001	1999	1999	1994		2000
SUMMARY S	STATIST:	ICS	FOI	R 2001 CAL	ENDAR YEAR	F	OR 2002 W	VATER YEAR	}	WATER YEAR	S 1988	-	2002
ANNUAL TO	OTAL			3507903			3989696						
ANNUAL MI	EAN			9611			10930			11670			
HIGHEST A	ANNUAL I	MEAN								16090			1995
LOWEST AN										6569			1999
HIGHEST I				108000	Jun 8		63600		Į.		Jun		1992
LOWEST DA				a809	Apr 23		b636			c367	Mar		1997
ANNUAL SI			UM	811	Apr 20		636	Apr 25	5	369	Mar		1997
MAXIMUM I							d			250000	Jun		1992
MAXIMUM I										50.76			1992
INSTANTA										470	Mar	19	1990
ANNUAL RU				6958000			7914000			8452000			
ANNUAL RU				0.4			0.4			0.51			
ANNUAL RU				5.6	55		6.4	12		6.86			
10 PERCE				24400			36000			33700			
50 PERCEI				1730			2110			1920 639			

From Apr. 23 to 24 From Apr. 25 to May 4 From Mar. 3 to 6, 1997 Undetermined, see highest daily mean

# 15388960 PORCUPINE RIVER NEAR INTERNATIONAL BOUNDARY—Continued (International Gaging Station)

DISCHARGE, in CFs, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

			2111		VIIDODD					
NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
e3780	e2030	e1210	e826	e632	e650	e1190	78700	13900	23600	34100
e3740	e1990	e1190	e816	e629	e653	e1260	73000	15000	23200	31300
e3670	e1950	e1180	e805	e625	e660	e1330	68300	15300	23500	29000
e3570	e1910	e1160	e794	e625	e664	e1410	68000	13200	23600	27000
e3510	e1870	e1140	e784	e621	e671	e1530	65800	11300	22000	27400
e3420	e1840	e1130	e777	e621	e678	e1660	59700	9940	20200	30800
e3340	e1800	e1120	e770	e621	e681	e1800	54000	9160	18800	30500
e3260	e1760	e1100	e763	e621	e689	e1960	47800	9380	21000	29100
e3190	e1730	e1090	e756	e618	e696	e2100	41800	10100	23700	26900
e3120	e1700	e1080	e749	e618	e703	e2240	36700	13200	24400	24900
e3040	e1670	e1060	e745	e621	e710	e2670	33100	19800	23300	23000
e2970	e1650	e1050	e738	e621	e713	e2900	29700	24100	21200	21400
e2910	e1620	e1030	e724	e621	e724	e3150	26000	24200	20000	19700
e2840	e1600	e1020	e710	e621	e734	e3430	22400	22700	31300	19300
e2770	e1570	e1010	e703	e621	e745	e4100	19100	21700	44000	18600
e2720	e1540	e999	e699	e621	e759	e4590	16500	30700	44200	18200
e2670	e1510	e989	e692	e625	e773	e5120	14200	41500	39200	17600
e2620	e1480	e975	e685	e625	e787	e5830	12300	41300	33400	15900
e2570	e1450	e964	e678	e625	e798	e7450	11200	37500	29700	14300
e2520	e1440	e950	e674	e625	e812	e8400	11800	33700	28100	12800
e2480	e1420	e939	e667	e625	e823	e9430	13800	30600	26300	11600
e2430	e1400	e925	e664	e629	e833	e11700	13700	26600	24200	10800
e2380	e1380	e915	e660	e629	e847	e16500	13400	22000	22800	9980
e2340	e1370	e904	e653	e629	e855	e18500	12200	18000	23700	9330
e2290	e1350	e890	e650	e629	e886	e20800	11000	14800	27600	8850
e2240 e2190 e2150 e2110 e2070	e1330 e1310 e1290 e1280 e1270 e1250	e876 e858 e851 e847 e840 e833	e646 e643 e636 	e632 e632 e636 e639 e643	e911 e950 e989 e1030 e1110	e27600 e35300 e42400 54000 63600 76400	9950 9350 9060 9540 11900	12300 10900 9870 10000 14900 22700	32400 43200 45500 43500 39900 37100	8430 7920 7460 7150 6880
84910	48760	31125	20107	19426	23534	440350	904000	610350	904600	560200
2830	1573	1004	718	627	784	14200	30130	19690	29180	18670
3780	2030	1210	826	646	1110	76400	78700	41500	45500	34100
2070	1250	833	636	618	650	1190	9060	9160	18800	6880
168400	96720	61740	39880	38530	46680	873400	1793000	1211000	1794000	1111000
0.12	0.07	0.04	0.03	0.03	0.03	0.61	1.30	0.85	1.26	0.81
0.14	0.08	0.05	0.03	0.03	0.04	0.71	1.46	0.98	1.46	0.90
MONTHLY ME	AN DATA	FOR WATER	YEARS 198	88 - 200	3, BY WATE	ER YEAR (	WY)			
1844	1114	823	685	648	765	32730	43070	15800	19890	16750
3161	1573	1049	966	870	1711	63160	86470	29580	37940	34320
1999	2003	2001	2001	2001	1998	1990	1992	1994	1991	1995
1122	870	551	398	383	562	1369	20410	6041	10090	7697
1997	2000	1997	1997	1997	1997	2001	1999	1999	1994	2000
rics	FOR	2002 CALE	ENDAR YEAR	2	FOR 2003	WATER YE	AR	WATER Y	EARS 1988	- 2003
NUAL TOTAL 4106736  NUAL MEAN 11250  GHEST ANNUAL MEAN WEST ANNUAL MEAN GHEST DAILY MEAN 63600 May 24 WEST DAILY MEAN 6366 Apr 25  NUAL SEVEN-DAY MINIMUM 636 Apr 25  NUAL SEVEN-DAY MINIMUM 636 Apr 25  XIMUM PEAK FLOW XIMUM PEAK STAGE STANTANEOUS LOW FLOW NUAL RUNOFF (AC-FT) 8146000  NUAL RUNOFF (FSM) 0.49  NUAL RUNOFF (INCHES) 6.61  PERCENT EXCEEDS 36000  PERCENT EXCEEDS 2770  PERCENT EXCEEDS 659						Mar Mar Jun .41 May	9 5 1	16090 6569 248000 c367 369 250000 50 470 8402000 6 33400 1970	Jun Mar Mar Jun .76 Jun Mar	1995 1999 1 1992 3 1997 1 1997 1 1992 1 1992 19 1990
	e3780 e3780 e3740 e3670 e3570 e3670 e3670 e3260 e3190 e23190 e2970 e2910 e2840 e2770 e2620 e2570 e2520 e2480 e2430 e2380 e2340 e2190 e2150 e2110 e2070 e2150 e2110 e2070 e168400 0.12 0.14  CONTHLY ME  1844 3161 1999 1122 1997  PICS  MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEA	e3780 e2030 e3740 e1990 e3670 e1990 e3670 e1990 e3670 e1990 e3670 e1990 e3570 e1910 e3510 e1870 e3420 e1840 e3340 e1800 e3260 e1760 e3190 e1730 e3120 e1700 e2970 e1650 e2910 e1620 e2840 e1600 e2770 e1570 e2720 e1540 e2620 e1440 e2670 e1510 e2620 e1440 e2620 e1450 e2520 e1440 e2480 e1600 e2770 e1570 e2120 e150 e2520 e1440 e1330 e2340 e1370 e2290 e1350 e2240 e1330 e2190 e1310 e2150 e1290 e2110 e1280 e2070 e1270 e1250 84910 48760 2830 1573 3780 2030 e2190 e1310 e2150 e1290 e2110 e1280 e2070 e1270 e1250  84910 48760 2830 1573 3780 2030 e210 0.12 0.07 0.14 0.08  CONTHLY MEAN DATA  1844 1114 3161 1573 1999 2003 1122 870 1997 2000  PICS FOR  MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEA	e3780 e2030 e1210 e3740 e1990 e1190 e3670 e1950 e1180 e3570 e1910 e1160 e3570 e1910 e1160 e3510 e1870 e1140 e3420 e1840 e1130 e3340 e1800 e1120 e3260 e1760 e1100 e3190 e1730 e1090 e3120 e1700 e1080 e2970 e1650 e1050 e2910 e1620 e1030 e2840 e1600 e1020 e2770 e1570 e1010 e2720 e1540 e999 e2670 e1510 e989 e2620 e1480 e975 e2570 e1450 e964 e2520 e1440 e950 e2480 e1330 e915 e2340 e1330 e976 e2570 e1350 e890 e2480 e1380 e915 e2380 e1380 e915 e2310 e1320 e887 e2290 e1350 e890 e2480 e1400 e925 e2380 e1380 e915 e2380 e1380 e915 e2340 e1370 e904 e2290 e1350 e890 e2240 e1330 e876 e2190 e1310 e858 e2150 e1290 e851 e2110 e1280 e847 e2070 e1270 e840 e1250 e833  84910 48760 31125 2830 1573 1004 3780 2030 1210 2070 1250 833 168400 96720 61740 0.12 0.07 0.04 0.14 0.08 0.05  MEAN EAN EAN EAN EEAN EEAN EAN EEAN EE	## NOV DEC JAN FEB  ## e3780	NOV DEC JAN FEB MAR  e3780 e2030 e1210 e826 e632 e3740 e1990 e1190 e816 e629 e3670 e1950 e1180 e805 e625 e3570 e1910 e1160 e794 e625 e35510 e1870 e1140 e784 e621  e3420 e1840 e1130 e777 e621 e3340 e1800 e1120 e770 e621 e3260 e1760 e1100 e756 e618 e3120 e1770 e1080 e749 e618 e3120 e1700 e1080 e749 e618 e3120 e1700 e1080 e749 e618 e3120 e1700 e1080 e749 e618 e3040 e1670 e1050 e738 e621 e2970 e1650 e1050 e738 e621 e2970 e1650 e1050 e738 e621 e2770 e1570 e1010 e703 e621 e2770 e1570 e1010 e703 e621 e2720 e1540 e999 e699 e621 e2670 e1510 e989 e692 e625 e2620 e1440 e950 e674 e625 e2520 e1440 e950 e674 e625 e2480 e1420 e939 e667 e625 e2430 e1400 e925 e664 e678 e625 e2380 e1380 e915 e660 e629 e2340 e1370 e904 e653 e629 e2340 e1370 e904 e653 e629 e2240 e1350 e890 e650 e629 e2240 e1350 e890 e650 e629 e2240 e1350 e890 e666 e646 e2150 e1290 e851 e636 e636 e2110 e1280 e847 e639 e2070 e1270 e840 e643 e2150 e1290 e851 e636 e636 e2110 e1280 e847 e639 e2070 e1270 e840 e643 e2150 e1290 e851 e636 e636 e2110 e1280 e847 e639 e2070 e1270 e840 e643 e2150 e1290 e851 e636 e636 e2110 e1280 e847 e639 e2070 e1270 e840 e643 e2150 e1290 e851 e636 e636 e2110 e1280 e847 e639 e2070 e1270 e840 e643 e2150 e1290 e851 e636 e636 e2110 e1280 e847 e639 e2070 e1270 e840 e643 e2170 e1270 e840 e643 e2190 e1350 e890 e650 e629 e2240 e1350 e890 e650 e629 e2240 e1350 e890 e851 e366 e366 e2110 e1280 e847 e639 e2070 e1270 e840 e639 e2070 e1270 e1	e3780 e2030 e1210 e826 e632 e650 e3740 e1990 e1190 e816 e629 e653 e3670 e1950 e1180 e805 e625 e666 e3570 e1910 e1160 e794 e625 e664 e3570 e1910 e1160 e794 e625 e664 e3570 e1870 e1140 e784 e621 e671 e3420 e1870 e1140 e784 e621 e671 e3420 e1870 e1140 e784 e621 e671 e3420 e1870 e1140 e763 e621 e688 e3340 e1800 e1120 e770 e621 e688 e3190 e1730 e1090 e756 e618 e703 e3190 e1730 e1090 e756 e618 e703 e3120 e1700 e1080 e749 e618 e703 e2970 e1650 e1050 e738 e621 e710 e2970 e1650 e1050 e738 e621 e713 e22910 e1620 e1030 e724 e621 e713 e2770 e1570 e1010 e703 e621 e734 e2290 e1350 e999 e699 e621 e759 e2670 e1510 e989 e692 e625 e773 e25570 e1450 e964 e678 e625 e788 e2520 e1440 e950 e674 e625 e812 e2480 e1400 e925 e664 e629 e833 e2380 e1380 e915 e660 e629 e847 e2290 e1350 e890 e650 e629 e886 e2240 e1330 e876 e646 e629 e836 e2240 e1330 e876 e646 e629 e836 e2210 e1280 e847 e643 e1110 e703 e700 e700 e700 e700 e700 e700 e70	NOV   DEC   JAN   FEB   MAR   APR   MAY     e3780   e2030   e1210   e826   e632   e650   e1190     e3740   e1990   e1190   e816   e629   e653   e1260     e3670   e1910   e1160   e794   e625   e664   e1410     e35510   e1870   e1140   e774   e625   e664   e1410     e33510   e1800   e1120   e770   e621   e678   e1660     e3340   e1800   e1120   e770   e621   e681   e1800     e3260   e1760   e1100   e763   e621   e698   e1960     e3120   e1700   e1080   e749   e618   e703   e2240     e3120   e1700   e1080   e749   e618   e703   e2240     e3120   e1700   e1080   e749   e618   e703   e2240     e3261   e1670   e1050   e738   e621   e711   e2570     e2970   e1650   e1050   e738   e621   e713   e2900     e2910   e1620   e1030   e724   e621   e734   e3430     e2770   e1570   e1010   e703   e621   e745   e4100     e2770   e1570   e1010   e703   e621   e745   e4100     e2770   e1570   e1010   e703   e621   e745   e4100     e2720   e1540   e999   e699   e621   e759   e4590     e2670   e1510   e989   e699   e625   e773   e5120     e2570   e1450   e975   e655   e625   e778   e7850     e2520   e1440   e950   e674   e625   e833   e945     e2400   e1400   e939   e667   e625   e833   e945     e2440   e1400   e939   e667   e625   e833   e1700     e2340   e1400   e935   e664   e629   e847   e16500     e2340   e1300   e925   e664   e629   e847   e16500     e2340   e1300   e925   e664   e629   e847   e16500     e2340   e1300   e925   e664   e629   e847   e16500     e2340   e1300   e935   e660   e629   e847   e16500     e2340   e1300   e935   e660   e629   e846   e1800     e2340   e1300   e935   e666   e629   e847   e16500     e2340   e1300   e3350   e3350   e33500     e2240   e1350   e3350   e3350   e33500     e2240   e1350   e3350   e3350   e33500     e3350   e3350   e3350   e3350   e33500     e3350   e3350   e335	NOV   DEC   JAN   FEB   MAR   APR   MAY   JUN   e3780   e2030   e1210   e826   e632   e650   e1190   78700   e3740   e1990   e1190   e816   e629   e653   e1260   73000   e3570   e1910   e1160   e794   e625   e664   e1410   68000   e3570   e1910   e1140   e794   e625   e664   e1410   e8000   e3510   e1870   e1140   e777   e621   e678   e1660   59700   e3340   e1800   e1120   e770   e621   e681   e1800   54000   e3260   e1760   e1100   e736   e621   e681   e1800   54000   e3120   e1770   e1030   e736   e618   e696   e2100   41800   e3120   e1770   e1080   e749   e618   e703   e2240   36700   e2970   e1650   e1050   e738   e621   e710   e2267   33100   e2370   e1650   e1050   e738   e621   e711   e2267   33100   e2970   e1650   e1050   e738   e621   e714   e3150   26000   e2240   e1660   e1020   e774   e621   e724   e3150   26000   e2260   e1510   e999   e699   e621   e745   e4100   e1000   e2670   e1510   e999   e699   e621   e745   e4100   e1000   e2620   e1540   e999   e6692   e625   e773   e5120   e1200   e2250   e1480   e975   e665   e625   e787   e530   e1200   e2250   e1440   e950   e6674   e625   e823   e9430   e1800   e2340   e1400   e925   e664   e629   e833   e11700   e1370   e2340   e1400   e925   e664   e629   e836   e1300   e1300   e2340   e1300   e3760   e669   e629   e847   e16500   e1300   e1300   e2340   e1300   e386   e648   e625   e787   e5300   e2340   e1300   e386   e648   e625   e787   e5300   e2300   e1350   e3800   e650   e629   e836   e20800   e1000   e2340   e1370   e940   e653   e629   e836   e20800   e2340   e1370   e940   e653   e629   e836   e20800   e2340   e1370   e3800   e3350   e33500   e35500   e33500   e35500   e33500   e35500   e33500   e35500   e3	NOV   DEC   JAN   FEB   MAR   APR   MAY   JUN   JUL	NOV   DEC   JAN   FEB   MAR   APR   MAY   JUN   JUL   AUG

a From Apr. 25 to May 4 b From Mar. 9 to 10 c From Mar. 3 to 6, 1997 e Estimated

## 15453500 YUKON RIVER NEAR STEVENS VILLAGE

LOCATION.--Lat  $65^{\circ}52'32''$ , long  $149^{\circ}43'04''$ , in  $SE^{1}/_{4}$  SW $^{1}/_{4}$  sec. 7, T. 12 N., R. 10 W. (Livengood D-6 quad), Hydrologic Unit 19040404, on right bank, 115 ft upstream from bridge at MP 56.0 on Dalton Highway, 0.5 mi downstream from Woodcamp Creek, 2.5 mi upstream from Ray River, and 21 mi southwest of Stevens Village.

DRAINAGE AREA.--196,300  $\mathrm{mi}^2$ , approximately.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1976 to current year.

GAGE.--Water-stage recorder and supplementary water-stage recorder on bridge pier at same site and datum. Datum of gage is 240.68 ft above sea level (revised).

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge observed, 950,000 ft³/s, June 15-16, 1964, "at Rampart" (station 15468000), drainage area, 199,400 mi², approximately.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		2100		210 1221	DA	ILY MEAN	VALUES	102211 200	. 10 0211		3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	140000 138000 135000 133000 132000	e86000 e87000 e87000 e87000 e85000	e41000 e41000 e41000 e41000 e40000	e31000 e30000 e30000 e30000 e30000	e27000 e27000 e27000 e27000 e27000	e26000 e26000 e26000 e26000 e26000		e48000 e60000	222000 244000 266000 288000 301000		197000 197000 195000 195000 196000	210000 213000 208000 207000 227000
6 7 8 9 10	130000 129000 127000 125000 123000	e83000 e81000 e78000 e76000 e75000	e40000 e39000 e38000 e38000 e37000	e30000 e29000 e29000 e29000 e29000	e27000	e26000 e26000 e26000 e26000		e100000 e130000 e170000 e200000 e210000	304000		194000 188000 184000 182000 180000	245000 248000 242000 234000 227000
11 12 13 14 15	119000 114000 110000 107000 105000	e75000 e77000 e84000 e88000 e94000	e37000 e36000 e36000 e36000 e35000	e29000 e29000 e29000 e29000 e29000	e27000 e27000 e27000 e27000 e27000	e26000 e26000 e26000 e26000 e26000	e26000 e26000 e26000 e26000 e26000	e210000 e210000 e210000 203000 e210000	309000 309000 301000 293000 286000	202000 205000 203000 201000 204000	178000 176000 174000 170000 165000	219000 211000 205000 198000 191000
16 17 18 19 20	99200 e98000 e96000 e96000 e94000		e35000 e35000 e35000 e34000	e29000 e29000 e29000 e28000 e28000	e27000 e27000 e27000 e27000 e27000	e26000 e26000 e26000 e26000 e26000	e26000 e26000 e26000 e26000 e26000	e230000 e240000 e250000 e250000 243000		206000 206000 207000 212000 220000	161000 161000 167000 180000 192000	186000 181000 175000 168000 161000
21 22 23 24 25	e93000 e93000 e91000 e90000	e57000 e50000 e47000 e44000 e42000	e34000 e34000 e34000 e33000	e28000 e28000 e28000 e28000 e28000	e27000	e26000 e26000 e26000 e26000 e26000	e26000 e26000 e26000 e26000 e26000	e240000 e240000 e240000 e230000 e220000	223000 210000 197000 188000 188000	230000 236000 235000 227000 214000	195000 193000 188000 183000 176000	154000 147000 140000 134000 128000
26 27 28 29 30 31	e89000 e88000 e88000 e87000 e87000		e33000 e33000 e32000 e32000 e31000	e28000 e28000	e26000 e26000 e26000	e26000 e26000	e27000 e27000 e28000 e30000 e32000	e200000	203000 202000 199000	199000 197000 200000	170000	124000 119000 115000 112000 110000
MEAN MAX MIN	107500 140000 87000	70300 96000 41000	1109000 35770 41000 31000 2200000 0.18 0.21	893000 28810 31000 28000 1771000 0.15 0.17	26860 27000 26000	806000 26000 26000 26000 1599000 0.13 0.15	26470 32000 26000	183600 250000 36000		201500 236000 175000 12390000 1.03	182200 202000 161000	181300 248000 110000
STATIS	STICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 19	77 - 200	3, BY WAT	TER YEAR	(WY)			
MEAN MAX (WY) MIN (WY)	100000 164500 2001 75340 1993	51460 70300 2003 34530 1990	36800 48450 1983 26770 1990	29970 37680 1977 23550 1996	25530 32140 1981 19320 1999	22570 28970 1981 16000 1999		1991	336000 614100 1992 226800 1995	320200 1992		
SUMMAR	RY STATIS	TICS	FOF	R 2002 CAL	ENDAR YEA	R	FOR 2003	WATER YI	EAR	WATER Y	EARS 1977	7 - 2003
ANNUAI ANNUAI HIGHES LOWEST HIGHES LOWEST ANNUAI MAXIMU MAXIMU ANNUAI ANNUAI	TOTAL MEAN T ANNUAL ANNUAL T DAILY DAILY SEVEN-E IM PEAK F JM PEAK S RUNOFF RUNOFF	MEAN MEAN MEAN MEAN JEAN JAY MINIMU LOW THAGE (AC-FT) (CFSM)	ſΜ	42478200 116400 461000 a19000 19000 84260000 0. 8. 256000 81000 20000	May 2 Apr 1 Apr 1	6 2 2	309000 526000 312000 80200000	Jun ) Jun ) Feb ) Jun ) Jun ) Jun	11 25 25 12 12	119300 144400 93910 823000 c14000 14000 827000 86460000	Jun Apr Apr Jun Jun 1.60 Jun	1992 1996 11 1992 14 1997 14 1997 11 1992 11 1992
10 PEF 50 PEF 90 PEF	RCENT EXC RCENT EXC RCENT EXC	CEEDS CEEDS CEEDS		256000 81000 20000	0.5		227000 87000 26000	) ) )		276000 58000 22000	)	

From Apr. 12 to Apr. 28 From Feb. 25 to Apr. 25 From Apr. 14 to 25 Estimated

# 15453500 YUKON RIVER NEAR STEVENS VILLAGE—Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1970-72, 1978, and 2001 to current year.

Date	Time	Sample loc- ation, cross section ft from rt bank (72103)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
MAR 26 26 26 26 MAY	1850 1945 2000 2005 2015	250.0 400.0 475.0 925.0 1600	 286 286 286 287	7.4 7.4 7.5 7.5	0.0 0.0 0.0 0.0	768 771 770 770 772	8.3 10.2 8.4 9.5 8.8	 69 57 64 59
29 29 29 29 29	1755 1800 1803 1806 1809	1650 1250 950.0 650.0 270.0	156 156 156 154 150	7.6 7.6 7.6 7.6 7.6	9.5 9.5 9.5 9.5 9.6	761 761 761 761 761	10.3 10.4 10.5 9.9 10.3	91 91 92 87 91
JUN 12 12 12 12 12	1345 1405 1420 1430 1445	350.0 750.0 1040 1345 1685	179 179 179 181 180	7.8 7.7 7.7 7.8 7.8	14.6 14.7 14.7 14.7	761 761 761 761 761	9.3 9.3 9.3 9.3 9.1	92 92 92 92 90
JUL 15 15 15 24 24 24 24	1710 1715 1720 1725 1730 1500 1505 1510 1515	1700 1350 1050 700.0 350.0 1700 1350 1050 700.0 350.0	223 224 215 222 223 230 228 230 226 229	8.0 8.0 8.0 8.0 7.9 7.9 7.9	16.8 16.8 16.8 16.8 18.0 18.0 18.1 18.0	752 752 752 752 752 761 761 761 761 761	9.9 9.3 9.3 9.0 8.9 8.7 8.9 8.9	104 98 97 94 93 92 94 94 95
21 21 21 21 21	1441 1443 1447 1450 1452	1680 1300 1000 680.0 380.0	226 226 226 226 227	8.2 8.2 8.2 8.2 8.2	14.3 14.3 14.3 14.3	752 752 752 752 752	9.1 9.1 9.1 9.1 9.1	90 90 90 90
SEP 11 11 11 11	1715 1718 1722 1725 1727	350.0 700.0 1020 1350 1700	217 218 218 218 218 218	8.0 8.1 8.1 8.1 8.1	8.8 8.8 8.8 8.8	760 760 760 760 760	10.0 9.9 9.9 9.9 9.9	86 86 86 85 85

Date	Time	Medium code	Sample type	Stream width, feet (00004)	Gage height, feet (00065)	Instan- taneous dis- charge, cfs (00061)	Sam- pling method, code (82398)	Sampler type, code (84164)	Type of sample related QA data, code (99111)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)
MAR													
26	1900	9	9	1900		26500	20	3060	30	286	7.5	-8.0	.0
MAY													
29	1600	9	9	2030	32.00	192000	20	3056	30	156	7.6		9.5
JUN													
12	1420	9	9	2000	39.17	310000	20	3056	10	179	7.8		14.7
JUL													
15	1600	9	9		32.88	204000	20	3056	1	221	8.0		16.8
24	1410	9	9		34.35	227000	20	3056	1	230	8.0		18.0
AUG													
21	1330	9	9		32.25	195000	20	3056	1	226	8.2		14.3
SEP													
11	1610	9	9	2080	33.78	218000	20	3056	30	217	8.1	9.0	8.8

# 15453500 YUKON RIVER NEAR STEVENS VILLAGE—Continued

Date  MAR 26	Turbid- ity, wat unf lab, Hach 2100AN NTU (99872)	absorb- ance, 254 nm, wat flt units /cm (50624)	UV absorb- ance, 280 nm, wat flt units /cm (61726)	Baro-metric pres-sure, mm Hg (00025)			Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L (00915)	water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	Potas- sium, water, fltrd, mg/L (00935)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	ate, wat flt incrm. titr., field, mg/L (00452)
MAY		.039						41.6	10.4				. 0
29 JUN	48	.500	.376	761	10.3	90	89	25.7	6.12	1.98	.93	77	.0
12 JUL	110	.229	.172	761	9.3	92	94	26.5	6.66	2.59	.82	80	.0
15 24	220 390	.149 .155	.110 .114	752 761	9.3 8.9	97 94	110 110	31.1 30.6	8.32 8.07	2.87 2.88	1.29 1.31	95 98	.0
AUG 21	210	.131	.095	752	9.1	90	110	32.2	7.73	2.64	1.12	101	.0
SEP 11	35	.251	.185	760	9.9	85	100	28.4	7.92	2.13	.73	84	.0
		Alka- linity,					on	Residue water,		Nitrite +		Ammonia +	+
Date	inc tit field, mg/L as CaCO3	field, mg/L as CaCO3	Sulfate water, fltrd, mg/L (00945)	ide, water,	fltrd, mg/L	fltrd, mg/L	evap. at 180degC wat flt mg/L (70300)	sum of consti- tuents mg/L	Nitrite water, fltrd, mg/L as N (00613)		Ammonia water, fltrd, mg/L as N (00608)	org-N, water, unfltrd mg/L as N (00625)	org-N, water, fltrd, mg/L as N (00623)
MAR 26 MAY	119	120	34.2	.65	.13	7.06	187	170	<.002	.109	<.015	E.10	E.08
29	63	64	21.7	.96	<.2	4.34	134	100	.003	.025	<.015	.50	.36
JUN 12 JUL	66	66	23.9	.54	<.2	4.33	113	105	<.002	.040	<.015	.65	.17
15 24 AUG	78 81	78 81	31.8 34.0	1.20 1.41	<.2 <.2	6.36 5.80	144 143	130 133	<.002 <.002	.028 .041	<.015 <.015	.33	.14 .18
21	83	83	34.6	.79	<.2	5.65	143	135	<.002	.035	<.015	.29	.11
SEP 11	69	71	31.6	.81	<.2	5.48	149	119	<.002	.080	<.015	.29	.18
Date	Phos- phorus, water, unfltrd mg/L (00665)	water,	water,	Phos- phorus, suspnd sedimnt total,	suspnd sedimnt total, percent	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, suspnd sedimnt total, ug/g (29816)	Anti- mony, water, fltrd, ug/L (01095)	sedimnt	Arsenic	Barium, suspnd sedimnt total, ug/g (29820)		Beryll- ium, suspnd sedimnt total, ug/g (29822)
MAR 26	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	Phos- phorus, suspnd sedimnt total, percent	inum, suspnd sedimnt total, percent	inum, water, fltrd, ug/L	mony, suspnd sedimnt total, ug/g	mony, water, fltrd, ug/L	suspnd sedimnt total, ug/g	Arsenic water, fltrd, ug/L	suspnd sedimnt total, ug/g	water, fltrd, ug/L	ium, suspnd sedimnt total, ug/g
MAR	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, suspnd sedimnt total, percent (30292)	inum, suspnd sedimnt total, percent (30221)	inum, water, fltrd, ug/L (01106)	mony, suspnd sedimnt total, ug/g (29816)	mony, water, fltrd, ug/L (01095)	suspnd sedimnt total, ug/g (29818)	Arsenic water, fltrd, ug/L (01000)	suspnd sedimnt total, ug/g (29820)	water, fltrd, ug/L (01005)	ium, suspnd sedimnt total, ug/g (29822)
MAR 26 MAY	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, suspnd sedimnt total, percent (30292)	inum, suspnd sedimnt total, percent (30221)	inum, water, fltrd, ug/L (01106)	mony, suspnd sedimnt total, ug/g (29816)	mony, water, fltrd, ug/L (01095)	suspnd sedimnt total, ug/g (29818)	Arsenic water, fltrd, ug/L (01000)	suspnd sedimnt total, ug/g (29820)	water, fltrd, ug/L (01005)	ium, suspnd sedimnt total, ug/g (29822)
MAR 26 MAY 29 JUN 12 JUL 15	phorus, water, unfltrd mg/L (00665) .006 .175 .44	phorus, water, fltrd, mg/L (00666) E.003 .008 .006	phos- phate, water, fltrd, mg/L as P (00671) <.007 <.007 <.007	Phos-phorus, suspnd sedimnt total, percent (30292)  .100 .096 .098	inum, suspnd sedimnt total, percent (30221)  6.5  6.4  6.6  7.2	inum, water, fltrd, ug/L (01106) 2 36 25 24	mony, suspnd sedimnt total, ug/g (29816) 1.2 1.6 1.5	mony, water, fltrd, ug/L (01095) <.30 <.30 <.30 E.17	suspnd sedimnt total, ug/g (29818) 16 11 13	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6	suspnd sedimnt total, ug/g (29820) 940 970 920 790	water, fltrd, ug/L (01005) 74 42 40 43	ium, suspnd sedimnt total, ug/g (29822)
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG	phorus, water, unfltrd mg/L (00665) .006 .175 .44	phorus, water, fltrd, mg/L (00666) E.003 .008 .006 E.004	phos- phate, water, fltrd, mg/L as P (00671) <.007 <.007 <.007 <.007	Phos-phorus, suspnd sedimnt total, percent (30292)  .100 .096 .098 .100 .093	inum, suspnd sedimnt total, percent (30221)  6.5  6.4  6.6  7.2  7.1	inum, water, fltrd, ug/L (01106)  2  36  25  24 27	mony, suspnd sedimnt total, ug/g (29816)  1.2 1.6 1.5 1.8	mony, water, fltrd, ug/L (01095) <.30 <.30 <.30 E.17 E.20	suspnd sedimnt total, ug/g (29818)  16 11 13 14 14	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6	suspnd sedimnt total, ug/g (29820) 940 970 920 790 770	water, fltrd, ug/L (01005) 74 42 40 43 44	ium, suspnd sedimnt total, ug/g (29822) 2 2 2 2 1
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21 SEP	phorus, water, unfltrd mg/L (00665) .006 .175 .44 .36 .49	phorus, water, fltrd, mg/L (00666) E.003 .008 .006 E.004 E.004	phos- phate, water, fltrd, mg/L as P (00671) <.007 <.007 <.007 <.007 <.007	Phos-phorus, suspnd sedimnt total, percent (30292)  .100 .096 .098 .100 .093	inum, suspnd sedimnt total, percent (30221)  6.5 6.4 6.6 7.2 7.1	inum, water, fltrd, ug/L (01106)  2  36  25  24  27  22	mony, suspnd sedimnt total, ug/g (29816)  1.2  1.6  1.5  1.8	mony, water, fltrd, ug/L (01095) <.30 <.30 <.30 E.17 E.20	suspnd sedimnt total, ug/g (29818) 16 11 13 14 14	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6 .5	suspnd sedimmt total, ug/g (29820) 940 970 920 790 770 710	water, fltrd, ug/L (01005) 74 42 40 43 44	ium, suspnd sedimnt total, ug/g (29822) 2 2
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21	phorus, water, unfltrd mg/L (00665) .006 .175 .44 .36 .49 .29	phorus, water, fltrd, mg/L (00666) E.003 .008 .006 E.004 E.004 <.004	phos- phate, water, fltrd, mg/L as P (00671) <.007 <.007 <.007 <.007 <.007	Phos-phorus, suspnd sedimnt total, percent (30292)  .100 .096 .098 .100 .093 .092	inum, suspnd sedimnt total, percent (30221)  6.5 6.4 6.6 7.2 7.1 7.0 6.4 Chrom-	inum, water, fltrd, ug/L (01106) 2 36 25 24 27 22	mony, suspnd sedimnt total, ug/g (29816)  1.2 1.6 1.5 1.8 1.6 1.5	mony, water, fltrd, ug/L (01095) <.30 <.30 <.30 E.17 E.20	suspnd sedimnt total, ug/g (29818) 16 11 13 14 14 11	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6	suspnd sedimnt total, ug/g (29820) 940 970 920 790 770 710 830	water, fltrd, ug/L (01005) 74 42 40 43 44	ium, suspnd sedimnt total, ug/g (29822)  2 2 2 1 1 1
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21 SEP	phorus, water, unfltrd mg/L (00665) .006 .175 .44 .36 .49	phorus, water, fltrd, mg/L (00666) E.003 .008 .006 E.004 <.004 <.004	phos- phate, water, fltrd, mg/L as P (00671)  <.007 <.007 <.007 <.007 <.007 <.007 <.007	Phos-phorus, suspnd sedimmt total, percent (30292)  .100 .096 .098 .100 .093 .092 .085	inum, suspnd sedimmt total, percent (30221)  6.5  6.4  6.6  7.2  7.0  6.4  Chromium, suspnd sedimmt total, gug/g	inum, water, fltrd, ug/L (01106) 2 36 25 24 27 22 24 Chrom- ium, water, fltrd, ug/L	mony, suspnd sedimmt total, ug/g (29816)  1.2 1.6 1.5 1.8 1.6 1.5 Cobalt, suspnd sedimmt total, ug/g	mony, water, fltrd, ug/L (01095) <.30 <.30 <.30 E.17 E.20 E.17	suspnd sedimnt total, ug/g (29818)  16 11 13 14 14 13 11  Copper, suspnd sedimnt total, ug/g	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6 .5 .5  Copper, water, fltrd, ug/L	suspnd sedimmt total, ug/g (29820)  940 970 920 790 770 710 830  Iron, suspnd sedimmt total, percent	water, fltrd, ug/L (01005) 74 42 40 43 44 41 44 Iron, water, fltrd, ug/L	ium, suspnd sedimnt total, ug/g (29822)  2 2 2 1 1 1 1 Lead, suspnd
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21 SEP 11  Date	phorus, water, unfltrd mg/L (00665) .006 .175 .44 .36 .49 .29 .106 Beryll- ium, water, fltrd, ug/L	phorus, water, fltrd, mg/L (00666) E.003 .008 .006 E.004 <.004 <.004	phos- phate, water, fltrd, mg/L as P (00671)  <.007 <.007 <.007 <.007 <.007 <.007  Cadmium suspnd sedimnt total, ug/g	Phos-phorus, suspnd sedimmt total, percent (30292)  .100 .096 .098 .100 .093 .092 .085	inum, suspnd sedimmt total, percent (30221)  6.5  6.4  6.6  7.2  7.0  6.4  Chromium, suspnd sedimmt total, gug/g	inum, water, fltrd, ug/L (01106) 2 36 25 24 27 22 24 Chrom- ium, water, fltrd, ug/L	mony, suspnd sedimmt total, ug/g (29816)  1.2 1.6 1.5 1.8 1.6 1.5 Cobalt, suspnd sedimmt total, ug/g	mony, water, fltrd, ug/L (01095) <.30 <.30 <.30 E.17 E.20 E.17 <.30	suspnd sedimnt total, ug/g (29818)  16 11 13 14 14 13 11  Copper, suspnd sedimnt total, ug/g	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6 .5 .5  Copper, water, fltrd, ug/L	suspnd sedimmt total, ug/g (29820)  940 970 920 790 770 710 830  Iron, suspnd sedimmt total, percent	water, fltrd, ug/L (01005) 74 42 40 43 44 41 44 Iron, water, fltrd, ug/L	ium, suspnd sedimnt total, ug/g (29822)  2 2 2 1 1 1 1 Lead, suspnd sedimnt total, ug/g
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21 SEP 11  Date  MAR 26 MAY 29	phorus, water, unfltrd mg/L (00665) .006 .175 .44 .36 .49 .29 .106 Beryll- ium, water, fltrd, ug/L (01010)	phorus, water, fltrd, mg/L (00666) E.003 .008 .006 E.004 <.004 <.004	phos- phate, water, fltrd, mg/L as P (00671)  <.007 <.007 <.007 <.007 <.007 <.007  Cadmium suspnd sedimnt total, ug/g (29826)	Phos-phorus, suspnd sedimmt total, percent (30292)  .100 .096 .098 .100 .093 .092 .085  Cadmium water, fltrd, ug/L (01025)	inum, suspnd sedimmt total, percent (30221)  6.5 6.4 6.6 7.2 7.1 7.0 6.4 Chromium, suspnd sedimnt total, ug/g (29829)	inum, water, fltrd, ug/L (01106)  2 36 25 24 27 22 24 Chromium, water, fltrd, ug/L (01030)	mony, suspnd sedimnt total, ug/g (29816)  1.2 1.6 1.5 1.8 1.6 1.5 Cobalt, suspnd sedimnt total, ug/g (35031)	mony, water, fltrd, ug/L (01095)  <.30 <.30 <.30 E.17 E.20 E.17 <.30  Cobalt water, fltrd, ug/L (01035)	suspnd sedimnt total, ug/g (29818) 16 11 13 14 14 13 11 Copper, suspnd sedimnt total, ug/g (29832)	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6 .5 .5  Copper, water, fltrd, ug/L (01040)	suspnd sedimnt total, ug/g (29820) 940 970 920 790 770 710 830 Iron, suspnd sedimnt total, percent (30269)	water, fltrd, ug/L (01005) 74 42 40 43 44 41 44 Iron, water, fltrd, ug/L (01046)	ium, suspnd sedimnt total, ug/g (29822)  2 2 2 1 1 1 1 Lead, suspnd sedimnt total, ug/g (29836)
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21 SEP 11  Date  MAR 26 MAY 29 JUN 12	phorus, water, unfltrd mg/L (00665) .006 .175 .44 .36 .49 .29 .106 Beryll- ium, water, fltrd, ug/L (01010)	phorus, water, fltrd, mg/L (00666) E.003 .008 .006 E.004 <.004 <.004 <.004	phos- phate, water, fltrd, mg/L as P (00671)  <.007 <.007 <.007 <.007 <.007 <.007  Cadmium suspnd sedimnt total, ug/g (29826)  1.3	Phos-phorus, suspnd sedimnt total, percent (30292)  .100 .096 .098 .100 .093 .092 .085  Cadmium water, fltrd, ug/L (01025) <.04	inum, suspnd sedimnt total, percent (30221)  6.5  6.4  6.6  7.2  7.1  7.0  6.4  Chromium, suspnd sedimnt total, ug/g (29829)	inum, water, fltrd, ug/L (01106)  2  36  25  24  27  22  24  Chromium, water, fltrd, ug/L (01030)  <.8	mony, suspnd sedimnt total, ug/g (29816)  1.2 1.6 1.5 1.8 1.6 1.5 Cobalt, suspnd sedimnt total, ug/g (35031)	mony, water, fltrd, ug/L (01095)  <.30 <.30 <.30 E.17 E.20 E.17 <.30  Cobalt water, fltrd, ug/L (01035) .093	suspnd sedimnt total, ug/g (29818)  16  11  13  14  14  13  11  Copper, suspnd sedimnt total, ug/g (29832)  49	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6 .5 .5  Copper, water, fltrd, ug/L (01040)  1.0	suspnd sedimnt total, ug/g (29820) 940 970 920 790 770 710 830 Iron, suspnd sedimnt total, percent (30269)	water, fltrd, ug/L (01005)  74  42  40  43  44  41  44  Iron, water, fltrd, ug/L (01046)	ium, suspnd sedimnt total, ug/g (29822)  2 2 2 1 1 1 1 Lead, suspnd sedimnt total, ug/g (29836)
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21 SEP 11  Date  MAR 26 MAY 29 JUN 12 JUL 15 24	phorus, water, unfiltrd mg/L (00665)  .006 .175 .44 .36 .49 .29 .106  Beryll-ium, water, fltrd, ug/L (01010) <.06 <.06	phorus, water, fltrd, mg/L (00666)  E.003 .008 .006 E.004 <.004 <.004 <.004  Boron, water, fltrd, ug/L (01020)  12 8	phos- phate, water, fltrd, mg/L as P (00671)  <.007 <.007 <.007 <.007 <.007 <.007  <.007  1.007  Cadmium suspnd sedimnt total, ug/g (29826)  1.3 1.1	Phos-phorus, suspnd sedimnt total, percent (30292)  .100 .096 .098 .100 .093 .092 .085  Cadmium water, fltrd, ug/L (01025) <.04 E.02	inum, suspnd sedimnt total, percent (30221)  6.5 6.4 6.6 7.2 7.1 7.0 6.4 Chromium, suspnd sedimnt total, ug/g (29829)  120 110	inum, water, fltrd, ug/L (01106)  2 36 25 24 27 22 24  Chrom- ium, water, fltrd, ug/L (01030)  <.8 <.8	mony, suspnd sedimnt total, ug/g (29816)  1.2 1.6 1.5 1.8 1.6 1.5 Cobalt, suspnd sedimnt total, ug/g (35031)	mony, water, fltrd, ug/L (01095)  <.30 <.30 <.30 E.17 E.20 E.17 <.30  Cobalt water, fltrd, ug/L (01035)  .093 .138	suspnd sedimnt total, ug/g (29818)  16 11 13 14 14 13 11  Copper, suspnd sedimnt total, ug/g (29832) 49 34	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6 .5 .5  Copper, water, fltrd, ug/L (01040)  1.0 3.4	suspnd sedimnt total, ug/g (29820) 940 970 920 790 770 710 830 Iron, suspnd sedimnt total, percent (30269) 4.1 3.6	water, fltrd, ug/L (01005)  74  42  40  43  44  41  44  Iron, water, fltrd, ug/L (01046)  E7  175	ium, suspnd sedimnt total, ug/g (29822)  2 2 2 1 1 1 1 Lead, suspnd sedimnt total, ug/g (29836)
MAR 26 MAY 29 JUN 12 JUL 15 24 AUG 21 SEP 11  Date  MAR 26 MAY 29 JUN 12 JUN 15	phorus, water, unfiltrd mg/L (00665)  .006 .175 .44 .36 .49 .29 .106  Beryll-ium, water, fltrd, ug/L (01010)  <.06 <.06 <.06 <.06	phorus, water, fltrd, mg/L (00666)  E.003 .008 .006 E.004 <.004 <.004 <.004 Boron, water, fltrd, ug/L (01020)  12 8 E7 9	phos- phate, water, fltrd, mg/L as P (00671)  <.007 <.007 <.007 <.007 <.007 <.007  <.007  1.07 <.007  1.11  7 .5	Phos-phorus, suspnd sedimnt total, percent (30292)  .100 .096 .098 .100 .093 .092 .085  Cadmium water, fltrd, ug/L (01025)  <.04 E.02 <.04 <.04	inum, suspnd sedimnt total, percent (30221)  6.5  6.4  6.6  7.2  7.1  7.0  6.4  Chromium, suspnd sedimnt total, ug/g (29829)  120  110  110  93	inum, water, fltrd, ug/L (01106)  2 36 25 24 27 22 24  Chromium, water, fltrd, ug/L (01030)  <.8 <.8 <.8	mony, suspnd sedimnt total, ug/g (29816)  1.2 1.6 1.5 1.8 1.6 1.5  Cobalt, suspnd sedimnt total, ug/g (35031)  19 15 14	mony, water, fltrd, ug/L (01095)  <.30 <.30 <.30 E.17 E.20 E.17 <.30  Cobalt water, fltrd, ug/L (01035)  .093 .138 .105 .079	suspnd sedimnt total, ug/g (29818)  16 11 13 14 14 13 11  Copper, suspnd sedimnt total, ug/g (29832)  49 34 32 45	Arsenic water, fltrd, ug/L (01000)  .4 .5 .5 .6 .6 .5 .5  Copper, water, fltrd, ug/L (01040)  1.0 3.4 2.5 2.2	suspnd sedimnt total, ug/g (29820)  940  970  920  790  710  830  Iron, suspnd sedimnt total, percent (30269)  4.1  3.6  3.6  4.6	water, fltrd, ug/L (01005)  74  42  40  43  44  41  44  Iron, water, fltrd, ug/L (01046)  E7  175  72  10	ium, suspnd sedimnt total, ug/g (29822)  2

# 15453500 YUKON RIVER NEAR STEVENS VILLAGE—Continued

Date	Lead, water, fltrd, ug/L (01049)	Lithium suspnd sedimnt total, ug/g (35050)	Lithium water, fltrd, ug/L (01130)	suspnd	Mangan- ese, water, fltrd, ug/L (01056)	Mercury suspnd sedimnt total, ug/g (29841)	Molyb- denum, suspnd sedimnt total, ug/g (29843)			Nickel, water, fltrd, ug/L (01065)	Selen- ium, suspnd sedimnt total, ug/g (29847)	Selen- ium, water, fltrd, ug/L (01145)	Silver, suspnd sedimnt total, ug/g (29850)
MAR 26	<.08	31	3.3	2200	8.5	.25	3	1.2	76	1.28	М	. 6	М
MAY 29	.09	32	2.7	790	7.2	.08	5	.6	59	2.72	М	E.4	<.5
JUN 12	E.06	30	2.6	750	4.7	.09	3	.7	54	1.62	М	E.3	<.5
JUL 15	<.08	29	3.1	850	1.1	.03	2	1.0	59	1.98	М	E.3	<.5
24 AUG	<.08	31	3.6	800	1.0	.03	3	1.1	61	2.00	M	.5	M
21 SEP	<.08	31	3.6	810	1.4	.03	3	.9	60	2.17	M	E.3	<.5
11	<.08	26	3.6	750	3.4	.14	3	.8	54	1.93	M	E.3	<.5
Date	Silver, water, fltrd, ug/L (01075)	Stront- ium, suspnd sedimnt total, ug/g (35040)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, suspnd sedimnt ug/g (49955)	Titan- ium, suspnd sedimnt total, percent (30317)	ium, suspnd sedimnt total, ug/g	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, suspnd sedimnt total, ug/g (29855)	fltrd, ug/L	suspnd sedimnt	Uranium natural water, fltrd, ug/L (22703)		Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)
MAR 26	<.2	280	173	<50		130	.7	280	2	<50	1.20	1.8	<.1
MAY 29	<.2	250	93.6	<50	.420	140	.7	160	2	<50	.63	12.9	.2
JUN 12	<.2	260	99.9	<50	.410	130	.8	150	М	<50	.61	5.9	.3
JUL 15 24	<.2 <.2	310 300	137 137	<50 <50	.490	140 140	.9	120 120	<1 M	<50 <50	.82	4.8 5.0	3.4 6.2
AUG 21	<.2	280	136	<50	.450	140	.5	120	M	<50	.67	4.0	4.0
SEP 11	<.2	280	119	<50	.400	120	.4	110	<1	<50	.67	7.1	.3
	1.2	200	117	130	.400	120	• •	110	**	130	.07	, . <del>.</del>	
Date	Organi carbon suspn sedimn total mg/L (00689	d suspn t sedimn , total mg/L	carbor d suspr t sedimr total percer	n, Organ nd carbo nt susp nt, sedim nt perce	n, ger nd susp nt wate nt mg/	te sedir fo- cond i, flo o, throw er, cntri	mnt per c, sec ow me ugh conc fug trat /L mg	di- per ent sec cen- mo cion loc g/L tor	us- se nded me di- si ent dia ad, per ns/d <.0	spnd. edi- ent, eve metr ccent 063mm			
MAR 26	.5	.5			<.02	2	6 1	LO 71	6				
MAY 29	2.7	2.9		2.2	.16					i3			
JUN 12	2.7	3.0		1.5	.19					4			
JUL 15 24	3.6 4.3	7.0 10.5	2.5	.9	.20	) 299	9 32	26 18000	0 8	33			
AUG 21	2.4	6.5	2.3	1.0	.18	3 26'	7 31	16300	0 8	80			
SEP 11	1.7	1.9	2.3	1.5	.09	) 114	4 11	L7 6890	0 5	57			

## 15477730 LIESE CREEK NEAR BIG DELTA

LOCATION.--Lat  $64^{\circ}26'53''$ , long  $144^{\circ}52'59''$ , in  $SW^{1}/_{4}$  sec.25, T.5 S., R.14 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 1.7 mi upstream from mouth, 1.5 mi east of Teck Cominco Corp, Pogo Mine Camp site, and 34 mi northeast of Big Delta.

DRAINAGE AREA. -- 1.08 mi².

PERIOD OF RECORD. -- October 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2200 ft above sea level, from topographic map.

REMARKS.--Records fair except for discharges below 0.1 cfs and estimated daily discharges which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

			DA	ILI MEAN	VALUES					
T NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
7 e0.05 6 e0.05 5 e0.04 6 e0.04 0 e0.04	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e1.0 e0.40 e0.26 e0.16 e0.10	e0.52 e0.44 e0.38 e0.36 e0.34	0.08 0.09 0.25 0.20 0.15	0.92 0.77 0.80 1.5 1.6	7.9 9.6 7.4 5.7 5.3
6 e0.03 8 e0.03 9 e0.03 0 e0.02 0 e0.02	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.16 e0.20 e0.50 e0.80 e1.4	e0.48 e0.64 e0.56 e0.44 e0.34	0.14 0.15 0.13 0.12 0.12	1.6 1.1 0.90 0.78 0.68	4.7 4.0 3.5 3.0 2.6
9 e0.02 8 e0.02 7 e0.01 6 e0.01 5 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.02 e0.02	e1.2 e1.1 e1.1 e0.84 e0.70	00 22	0.13 0.12 0.14 4.2 2.3	0.59 0.55 0.54 0.50 0.47	2.5 2.8 e2.1 e1.8 e1.6
3 e0.01 0 e0.01 8 e0.01 6 e0.01 5 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.02 e0.02 e0.02 e0.02 e0.02	e0.52 e0.40 e0.32 e0.30 e0.30	0.06 0.05 0.07 0.06 0.05	4.5 5.5 3.3 2.0 1.3	0.44 0.43 0.49 0.48 0.46	e1.4 e1.2 e1.1 e1.0 e0.92
3 e0.01 2 e0.01 1 e0.01 0 e0.01 9 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e0.03 e0.05 e0.08 e0.20 e0.50	e0.32 e0.36 e0.50 e0.70 e0.66	0.05 0.04 0.04 0.05 0.05	0.90 0.72 0.57 0.48 0.44	0.43 0.42 0.40 0.43 0.45	e0.88 e0.82 e0.80 e0.78 e0.74
8 e0.01 8 e0.01 7 e0.01 6 e0.01 6 e0.01 5	e0.01 e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01 e0.01	e0.01 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.01	e1.2 e3.0 e4.0 e3.0 e1.6	e0.60 e0.60 e0.56 e0.52 e0.54 e0.58	0.06 0.09 0.08 0.08 0.08	0.41 0.45 1.7 1.0 0.74	0.44 0.42 0.39 0.39 0.38 0.68	e0.70 e0.70 e0.68 e0.68 e0.68
9 0.57 2 0.019 7 0.05 5 0.01 3 0.01 3 1.1 0 0.02 3 0.02	0.31 0.010 0.01 0.01 0.01 0.6 0.01	0.31 0.010 0.01 0.01 0.01 0.6 0.01	0.28 0.010 0.01 0.01 0.01 0.6 0.01 0.01	0.31 0.010 0.01 0.01 0.01 0.6 0.01 0.01	13.93 0.46 4.0 0.01 0.02 28 0.43 0.48	17.70 0.57 1.4 0.10 0.52 35 0.53 0.61	6.24 0.21 0.64 0.04 0.08 12 0.19 0.21	33.43 1.08 5.5 0.08 0.45 66 1.00	20.43 0.66 1.6 0.38 0.49 41 0.61 0.70	77.58 2.59 9.6 0.68 1.5 154 2.39 2.67
OF MONTHLY M	MEAN DATA	FOR WATER	YEARS 20	00 - 2003	3, BY WATE	R YEAR (W	Y)			
2 0.043 7 0.083 1 2001 2 0.000 0 2000	0.009 0.025 2002 0.000 2000	0.005 0.010 2002 0.000 2000	0.005 0.010 2002 0.000 2000	0.005 0.010 2002 0.000 2000	0.13 0.46 2003 0.000 2000	1.26 1.62 2000 0.57 2003	1.11 2.31 2000 0.21 2003	0.96 1.34 2001 0.39 2000	1.53 2.31 2002 0.66 2003	1.40 2.59 2003 0.43 2001
TISTICS	FOF	R 2002 CAL	ENDAR YEA	R	FOR 2003	WATER YEA	R	WATER YE	ARS 2000	- 2003
K STAGE K STAGE FF (AC-FT) FF (CFSM) FF (INCHES) EXCEEDS EXCEEDS		6. a0. 0. 453 0. 7. 2.	8 Aug 1 01 Jan 01 Jan 58 88 1	9 1 1	9. b0. 0. 11 20. 353 0. 6. 1.	6 Sep 01 Nov 1 01 Nov 1 Sep 43 Sep 45 12 1	2 3 3 3 2 2	0 9 c0 11 20 d22 405 0 7	666 45 65 Sep 600 Oct 3 800 Oct 3 Sep 413 Sep 83 May 1 62 63 65	2000 2001 2 2003 0 1999 2 2003 2 2003 8 2000
	8 e0.01 6 e0.01 8 e0.01 9 e0.02 9 e0.02 7 e0.01 8 e0.01 8 e0.01 9 e0.01 8 e0.01 1 e0.01 1 e0.01 1 e0.01 1 e0.01 2 e0.01 2 e0.01 2 e0.01 3 e0.01 5 e0.01 5 e0.01 6 e0.01 7 e0.01 8 e0.01 9 e0.01 9 e0.01 8 e0.01 1 e0.01 9 e0.01 1 e0.0	7	Color	T NOV DEC JAN FEB  7	T NOV DEC JAN FEB MAR  7 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 6 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 5 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 6 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 0 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 0 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 6 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 8 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 9 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 9 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 9 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 6 e0.01 e0.01 e0.01 e0.01 e0.01 9 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 9 e0.02 e0.01 e0.01 e0.01 e0.01 9 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 9 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 10 e0.02 e0.01 e0.01 e0.01 e0.01 10 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 10 e0.01 e0.01 e0.01 e0.01 e0.01 10 e0.01 e0.01 e0.01 e0.01 e0.01 10 e0.01 e0.01 e0.01 e0.01 e0.01 11 e0.01 e0.01 e0.01 e0.01 e0.01 12 e0.01 e0.01 e0.01 e0.01 e0.01 13 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 14 e0.01 e0.01 e0.01 e0.01 e0.01 15 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 16 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 17 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 18 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 19 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 10 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 10 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 11 e0.01 e0.01 e0.01 e0.01 e0.01 12 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 13 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 14 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 15 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 16 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 17 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 18 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 19 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 20 e0.01 e0.01 e0.01 e0.01 e0.01	7	T NOV DEC JAN FEB MAR APR MAY  7 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.0 6 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.06 5 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.06 6 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.16 6 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.16 8 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 99 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.50 0 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.16 99 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.18 8 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.50 0 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  99 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  90 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  90 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  90 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  90 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  90 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  90 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  91 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  92 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4  93 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.5  94 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.5  95 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.01 e0.01 e1.5  96 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.02 e0.52  97 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30  98 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30  99 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.36  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.36  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.36  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.36  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.56  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.56  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.56  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.56  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.05 e0.56  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.55 e0.56  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.55 e0.56  90 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e	T NOV DEC JAN FEB MAR APR MAY JUN  7 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.0 e0.52 66 e0.05 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.0 e0.40 e0.44 55 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.26 e0.38 66 e0.04 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.26 e0.38 67 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.16 e0.36 68 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.16 e0.48 89 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.64 99 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.50 e0.56 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.50 e0.56 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.20 e0.64 89 e0.03 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.50 e0.56 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.50 e0.56 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.80 e0.44 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.80 e0.44 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.80 e0.44 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.80 e0.46 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.80 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.4 e0.34 00 e0.02 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.2 e0.28 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.1 e0.25 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.1 e0.25 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e1.1 e0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.00 e0.00 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.84 0.11 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.30 0.05 00 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.01 e0.02 e0.03 0.05 00 e0.01 e0.01 e0.01 e0.0	T NOV DEC JAN FEB MAR AFR MAY JUN JUL  7	T NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 7 c0.05 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c1.0 c0.04 c0.05 c0.09 c.0.93 6 c0.004 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c1.0 c0.04 c0.04 c0.09 c.77 5 c0.04 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.04 c0.02 c0.38 c0.25 c0.80 6 c0.04 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.03 c0.25 c0.80 6 c0.04 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.03 c0.35 c0.30 6 c0.04 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.01 c0.36 c0.36 c0.25 c0.80 6 c0.03 c0.01 c0.31 c0.01 c0.34 c0.15 l.6 8 c0.03 c0.01

Jan. 1 to Apr. 26 Nov. 13 to Apr. 13 Oct. 30, 1999 to May 7, 2000 and Nov. 30, 2000 to Apr. 21, 2001 Backwater from ice

Estimated

## 15477740 GOODPASTER RIVER NEAR BIG DELTA

LOCATION.--Lat  $64^{\circ}27'02''$ , long  $144^{\circ}56'32''$ , in  $SE^{1}/_{4}$  sec.27, T.5 S., R.14 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on left bank, 0.2 mi northwest of Pogo Mine Camp site, 7 mi upstream from Central Creek, and 34 mi northeast of Big Delta.

DRAINAGE AREA.--677 mi².

PERIOD OF RECORD. -- August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1350 ft above sea level, from topographic map. Prior to August 14, 2000, at site 1000 ft upstream at present datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHA	RGE, CUB	IC FEET			YEAR OCTOB	ER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	575 590 581 533 507	e210 e190 e190 e180 e180	e180 e170 e170 e170 e170	e86 e86 e86 e84 e84	e72 e72 e72 e70 e70	e64 e64 e64 e64	e60 e60 e60 e60	1560 820 622 398 330	938 677 536 530 521	453 415 468 547 479	1160 1010 959 1180 1250	3710 8890 5450 3790 2970
6 7 8 9 10	410 463 510 461 431	e170 e160 e150 e140 e120	e160 e160 e150 e150 e140	e84 e82 e82 e80 e80	e70 e70 e70 e70 e70	e64 e64 e64 e62	e60 e60 e60 e60	317 340 336 477 790	1090 1560 922 709 620	445 538 646 604 501	1450 1330 1110 982 892	2420 2090 1810 1520 1350
11 12 13 14 15	368 447 421 396 386	e110 e100 e90 e90 e100	e140 e130 e130 e120 e120	e78 e78 e78 e76 e76	e70 e70 e70 e70 e70	e62 e62 e62 e62 e62	e60 e62 e64 e66 e68	868 775 764 606 507	604 610 501 428 383	457 442 430 1640 3370	827 788 781 735 695	1290 2150 1810 1370 1270
16 17 18 19 20	394 379 364 e350 e330	e110 e120 e130 e140 e150	e110 e110 e110 e100 e100	e76 e76 e74 e74 e74	e70 e68 e68 e68 e66	e62 e62 e62 e62 e62	e72 e76 e80 e84 e90	448 361 334 340 339	362 360 401 410 370	3630 3800 2390 1590 1270	670 647 668 664 663	1170 1130 930 940 790
21 22 23 24 25	e300 e280 e280 e290 e290	e160 e170 e170 e180 e180	e100 e98 e96 e94 e94	e74 e74 e72 e72 e72	e66 e66 e66 e66	e62 e62 e62 e62 e62	e110 e180 e300 e500 e700	337 343 351 433 477	337 315 305 309 326	1070 1260 1110 879 781	640 723 716 736 788	841 754 696 680 683
26 27 28 29 30 31	e280 e280 e270 e260 e250 e230	e180 e180 e180 e180 e180	e92 e92 e90 e90 e88 e88	e72 e72 e72 e72 e72 e72	e64 e64 e64 	e62 e62 e62 e62 e62	e1000 e1500 e2100 e3000 e2500	465 592 649 716 795 938	355 1030 791 682 539	728 745 1490 1460 1140 1130	758 707 661 627 605 632	639 592 583 583 649
TOTAL MEAN MAX MIN AC-FT CFSM IN.	11906 384 590 230 23620 0.57 0.65	4590 153 210 90 9100 0.23 0.25	3812 123 180 88 7560 0.18 0.21	2390 77.1 86 72 4740 0.11 0.13	1918 68.5 72 64 3800 0.10 0.11	1940 62.6 64 62 3850 0.09 0.11	13212 440 3000 60 26210 0.65 0.73	17428 562 1560 317 34570 0.83 0.96	17521 584 1560 305 34750 0.86 0.96	35908 1158 3800 415 71220 1.71 1.97	26054 840 1450 605 51680 1.24 1.43	53550 1785 8890 583 106200 2.64 2.94
STATIS	STICS OF 1	MONTHLY MEA	AN DATA F	FOR WATER	YEARS 1997	- 2003	3, BY WATER	YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	259 384 2003 149 2000	117 153 2003 90.1 1999	84.6 123 2003 57.5 1999	59.6 90.6 2001 28.9 1999	48.2 82.2 2001 13.6 1999	43.7 76.4 2001 10.5 1999	155 440 2003 52.7 2002	895 1488 2002 562 2003	915 1993 2000 468 1998	844 1158 2003 419 1999	1036 1651 2000 590 1999	816 1785 2003 421 1999
SUMMAF	RY STATIST	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003 W	ATER YEA	R	WATER YEA	ARS 1997	- 2003#
ANNUAI HIGHES LOWEST ANNUAI MAXIMU MAXIMU ANNUAI ANNUAI ANNUAI 10 PEF 50 PEF	ST ANNUAL IN ANNUAL IN TAILY IN SEVEN-DAILY MIDDEN FOR THE PEAK FIRM PEAK STANDARD	MEAN MEAN EAN EAN AY MINIMUM LOW PAGE (AC-FT) (CFSM) (CINCHES) EEDS		205578 563 4950 a38 38 407800 0. 11. 1430 240 40	Mar 20		8890 521 8890 60 11300 17.9 377300 0.7 10.4 1160 290 64	Apr Sep : 7 Sep :	1 1 2	8890 c10 10 11300	Mar Mar Sep 97 Sep	2000 1999 2 2003 8 1999 2 2003 2 2003

See Period of Record; partial years used in monthly statistics
From Mar. 20 to Apr. 18
From Apr. 1 to 11
From Mar. 8 to 24, 1999
19.49 ft recorded Aug. 14, 2000 at previous gage location but corresponds to a lower peak flow c d

## 15477768 SONORA CREEK ABOVE TRIBUTARY NEAR BIG DELTA

LOCATION.--Lat  $64^{\circ}23'22''$ , long  $144^{\circ}46'40''$ , in  $SW^{1}/_{4}$  sec.16, T.6 S., R.15 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 2.5 miles upstream from mouth, 6.3 miles southeast of Pogo Mine Camp site, and 35 miles northeast of Big Delta.

DRAINAGE AREA. -- 6.05 mi².

PERIOD OF RECORD. -- May, 2000 to current year.

 ${\tt GAGE.--Water-stage\ recorder.\ Elevation\ of\ gage\ is\ 1650\ ft\ above\ sea\ level,\ from\ topographic\ map.}$ 

REMARKS.--Records fair except for estimated daily discharges, which are poor.

		DISCHA	RGE, CUB	IC FEET P		WATER LY MEAN	YEAR OCTOB	ER 2002 I	O SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e7.3 e7.5 e7.3 e6.9 e6.3	e3.3 e3.1 e2.9 e2.7 e2.5	e3.4 e3.3 e3.2 e3.1 e3.0	e1.7 e1.7 e1.7 e1.7	e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5	4.7 4.5 4.2 3.7 3.6	2.5 2.3 2.3 2.2 2.1	1.9 2.0 2.2 2.2 2.1	3.9 3.5 3.6 4.6 4.5	17 15 11 8.8 8.1
6 7 8 9 10	e5.6 e6.7 e6.4 e6.0 e5.5	e2.3 e2.2 e2.1 e2.0 e1.9	e3.0 e2.9 e2.8 e2.7 e2.6	e1.6 e1.6 e1.6 e1.6	e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.6 e1.5 e1.6	3.7 3.9 4.2 5.8 6.5	3.1 3.3 2.6 2.3 2.1	2.0 2.0 2.0 1.9	4.6 4.1 3.7 3.5 3.3	7.5 7.1 6.8 6.5 6.2
11 12 13 14 15	e5.1 e4.7 e4.8 e4.9 e4.9	e1.8 e1.9 e2.0 e2.1	e2.5 e2.4 e2.4 e2.3 e2.3	e1.6 e1.6 e1.6 e1.6	e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e1.6 e1.7 e1.7 e1.8	5.6 6.4 5.7 4.5 4.0	2.0 1.8 1.9 2.0 1.9	1.9 1.9 2.0 3.8 4.2	3.2 3.2 3.1 3.0 3.0	6.9 8.9 8.1 7.1 6.7
16 17 18 19 20	e4.8 e4.6 e4.4 e4.2 e4.0	e2.3 e2.5 e2.8 e3.0 e3.2	e2.2 e2.2 e2.1 e2.1 e2.0	e1.6 e1.6 e1.6 e1.6	e1.6 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5	e1.8 e1.9 e2.0 2.2 2.3	3.5 3.0 2.8 2.6 2.5	1.8 1.9 1.8	8.2 7.6 5.1 3.8 3.2	2.9 2.9 3.4 3.3 3.2	6.6 6.5 5.9 6.1 5.8
21 22 23 24 25	e3.8 e3.5 e3.6 e3.7 e3.8	e3.4 e3.5 e3.6 e3.7 e3.8	e2.0 e2.0 e2.0 e1.9	e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5	2.7 3.7 5.3 7.9	2.5 2.6 3.7 3.8 3.3	1.8 1.8 1.8 1.9	2.9 2.7 2.5 2.4 2.4	3.2 3.3 3.2 3.2 3.0	6.0 5.8 5.7 5.8 5.7
26 27 28 29 30 31	e3.8 e3.7 e3.7 e3.6 e3.5 e3.4	e3.8 e3.8 e3.7 e3.6 e3.5	e1.9 e1.8 e1.8 e1.8 e1.7	e1.6 e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 	e1.5 e1.5 e1.5 e1.5 e1.5	15 17 15 9.5 6.4	3.0 2.8 2.6 2.5 2.5 2.7	2.0 2.2 2.1 2.1 2.0	2.4 2.6 4.4 3.8 3.5 4.1	3.0 2.9 2.8 2.8 2.8 3.5	5.6 5.5 5.6 5.7 5.7
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	152.0 4.90 7.5 3.4 4.7 301 0.81 0.93	84.8 2.83 3.8 1.8 2.9 168 0.47 0.52	73.1 2.36 3.4 1.7 2.2 145 0.39 0.45	50.0 1.61 1.7 1.6 1.6 99 0.27 0.31	43.7 1.56 1.6 1.5 1.6 87 0.26 0.27	46.5 1.50 1.5 1.5 1.5 92 0.25 0.29	127.3 4.24 17 1.5 1.8 252 0.70 0.78	117.4 3.79 6.5 2.5 3.7 233 0.63 0.72	63.0 2.10 3.3 1.8 2.0 125 0.35 0.39	95.6 3.08 8.2 1.9 2.4 190 0.51 0.59	104.2 3.36 4.6 2.8 3.2 207 0.56 0.64	219.7 7.32 17 5.5 6.5 436 1.21 1.35
STATIS	TICS OF N	MONTHLY MEA	AN DATA F	FOR WATER	YEARS 2000	0 - 2003	, BY WATER	YEAR (WY	) #			
MEAN MAX (WY) MIN (WY)	4.59 6.03 2001 2.84 2002	2.80 3.89 2001 1.67 2002	2.05 2.63 2001 1.16 2002	1.59 2.03 2001 1.12 2002	1.47 1.68 2001 1.16 2002	1.38 1.50 2003 1.14 2002	2.50 4.24 2003 1.23 2002	6.94 10.7 2002 3.79 2003	3.02 3.95 2000 2.10 2003	3.46 4.58 2001 2.58 2000	5.99 7.97 2002 3.36 2003	6.99 9.42 2000 3.68 2001
SUMMAR	Y STATIST	rics	FOR	2002 CALE	NDAR YEAR		FOR 2003 W	ATER YEAR		WATER YEA	RS 2000	- 2003#
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU	MEAN T ANNUAL ANNUAL T DAILY M DAILY M SEVEN-DA M PEAK FI M PEAK S	MEAN MEAN EAN AY MINIMUM LOW		1462.7 4.0 32 a0.9 0.9	1 Aug 19		1177.3 3.2 17 b1.5 1.5 30 21.0	3		3.4 3.6 3.2 32 0.9 0.9 49 21.5 c0.5	4	2002 2003 9 2002 0 2002 0 2002 4 2002 4 2002
ANNUAL ANNUAL ANNUAL 10 PER 50 PER	RUNOFF RUNOFF RUNOFF CENT EXCI	(AC-FT) (CFSM) (INCHES) EEDS EEDS		2900 0.6 8.9 7.9 2.5 1.1	9		2340 0.5 7.2 6.0 2.4 1.5	3 4		2460 0.5 7.6 6.4 2.5	6 4	2000

See Period of Record; partial years used in monthly statistics

See Period of Record; partial years used in monthly statistics Apr. 20 and 26
Feb. 18 through Apr. 9
Minimum observed outside period of record, result of discharge measurement May have been higher, during period of missing record, Aug. 19, 2002
Estimated

0.70

## 15477770 SONORA CREEK NEAR BIG DELTA

LOCATION.--Lat  $64^{\circ}22'40''$ , long  $144^{\circ}48'41''$ , in  $SE^{1}/_{4}$  sec.20, T.6 S., R.15 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on left bank, 1.2 mi upstream from mouth, 6.5 mi southeast of Pogo Mine Camp site, and 34 mi northeast of Big Delta.

DRAINAGE AREA.--10.5 mi².

PERIOD OF RECORD. -- August 1997 to current year.

REVISED RECORDS.--WDR AK-00-1: 1998 (M). WDR AK-01-1: 2000.

GAGE.--Water-stage recorder. Elevation of gage is 1450 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

		DISCHA	ARGE, CU	BIC FEET P		WATER Y MEAN	YEAR OCTOR	BER 2002 1	O SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.7 9.1 9.4 9.3 8.8	e4.7 e4.6 e4.4 e4.2 e4.0	e5.1 e4.9 e4.8 e4.6 e4.5	e2.1 e2.1 e2.0 e2.0 e1.9	e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e1.5 e1.5 e1.6 e1.6	e9.0 e8.0 e6.5 e5.6 e5.0	3.7 3.4 3.2 3.1 2.9	2.3 2.6 2.9 2.9 2.7	7.3 6.5 6.6 8.4 8.4	47 32 23 18 16
6 7 8 9 10	7.5 9.2 8.7 8.1 e7.7	e3.7 e3.4 e3.1 e2.9 e2.6	e4.3 e4.2 e4.0 e3.9 e3.7	e1.9 e1.9 e1.9 e1.9	e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e1.6 e1.6 e1.7 e1.7	e5.2 5.7 7.1 9.6 11	4.3 4.7 3.7 3.2 2.9	2.7 2.6 2.5 2.4 2.4	8.2 7.2 6.5 6.2 5.8	15 14 13 13 12
11 12 13 14 15	e7.3 e6.7 e6.8 e6.8 e6.6	e2.4 e2.5 e2.7 e2.9	e3.6 e3.5 e3.3 e3.2 e3.1	e1.8 e1.8 e1.8 e1.8	e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e1.7 e1.7 e1.8 e1.9 e2.0	9.8 11 10 7.9 6.8	2.7 2.6 2.6 2.6 2.4	2.4 2.4 2.6 5.7 7.2	5.7 5.6 5.4 5.2 5.1	13 17 16 13
16 17 18 19 20	e6.5 e6.3 e6.1 e5.8 e5.6	e3.1 e3.4 e3.8 e4.1 e4.5	e3.0 e2.9 e2.8 e2.8 e2.7	e1.7 e1.7 e1.7 e1.7 e1.7	e1.6 e1.6 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 e1.5	e2.0 e2.1 e2.2 e2.4 e2.7	5.8 5.0 4.5 4.2 4.0	2.4 2.4 2.5 2.4 2.3	16 15 10 6.8 5.5	4.9 4.9 5.7 5.3 5.2	12 12 10 11
21 22 23 24 25	e5.4 e5.2 e5.1 e5.2 e5.3	e5.3 e5.5 e5.6 e5.7	e2.6 e2.6 e2.5 e2.4 e2.4	e1.7 e1.7 e1.7 e1.7	e1.6 e1.5 e1.5 e1.5	e1.5 e1.5 e1.5 e1.5	e4.0 e5.5 e8.0 e12 e17	4.0 4.1 6.1 6.2 5.5	2.3 2.3 2.4 2.4	4.5 4.1 3.8 3.6 3.6	5.2 5.3 5.3 5.5 5.6	11 9.8 9.7 10 9.4
26 27 28 29 30 31	e5.3 e5.2 e5.1 e5.0 e4.9 e4.8	e5.7 e5.7 e5.6 e5.5 e5.4 e5.2	e2.3 e2.3 e2.2 e2.2 e2.1	e1.7 e1.7 e1.6 e1.6 e1.6	e1.5 e1.5 e1.5 	e1.5 e1.5 e1.5 e1.5 e1.5	e26 e40 e33 e25 e15	4.8 4.3 3.9 3.7 3.7	2.8 2.9 2.6 2.6 2.4	3.6 4.4 8.1 7.3 6.5 7.7	5.5 5.2 5.1 5.1 5.1 6.5	9.1 9.0 9.0 8.9 8.7
TOTAL MEAN MAX MIN AC-FT CFSM IN.	207.5 6.69 9.4 4.8 412 0.64 0.74	1 12	100.6 3.25 5.1 2.1 200 0.31 0.36	55.4 1.79 2.1 1.6 110 0.17 0.20	44.2 1.58 1.6 1.5 88 0.15 0.16	46.5 1.50 1.5 1.5 92 0.14 0.16	222.0 7.40 40 1.5 440 0.70 0.79	192.0 6.19 11 3.7 381 0.59 0.68	85.0 2.83 4.7 2.3 169 0.27 0.30	156.8 5.06 16 2.3 311 0.48 0.56	183.6 5.92 8.4 4.9 364 0.56 0.65	423.6 14.1 47 8.7 840 1.34 1.50
STATIS	TICS OF	MONTHLY ME	AN DATA						) #			
MEAN MAX (WY) MIN (WY)	4.42 8.88 2001 1.63 2000	2.55 4.26 2001 1.31 2000	1.73 3.25 2003 0.98 1998	1.20 1.79 2003 0.71 1998	1.06 1.58 2003 0.56 1998	0.97 1.50 2003 0.45 1998	2.59 7.40 2003 0.91 1998	9.57 16.4 2000 4.27 1998	4.58 7.65 2000 1.74 1998	4.75 6.83 2001 3.11 1998	8.01 16.0 2000 4.29 1998	8.68 18.5 2000 2.69 1999
SUMMAR	Y STATIS	TICS	FOR	2002 CALE	ENDAR YEAR		FOR 2003 W	ATER YEAR		WATER YEA	ARS 1997	- 2003#
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL 10 PER	T ANNUAL ANNUAL T DAILY DAILY DAILY M PEAK F M PEAK S M PEAK S RUNOFF RUNOFF RUNOFF RUNOFF CENT EXC	MEAN MEAN MEAN MEAN MAY MINIMUM LOW STAGE STAGE (AC-FT) (CFSM) (INCHES) MEEDS		3900 0.5 6.9	Aug 19 3 Apr 13 3 Apr 13		1.5 72 29.6 3650 0.4 6.5 9.8	Sep 1 Feb 23 Feb 23 Sep 1 4 Sep 1		0.4 72 29.6 c33.4 3080 0.4 5.5	01 07 May 2 10 Mar 10 Mar Sep 54 Sept 10 May 1 10 10 10 10 10 10 10 10 10 1	7 1998 1 2003 1 2003
10 PER 50 PER		EEDS EEDS									2	

1.5

1.4

90 PERCENT EXCEEDS

See Period of Record; partial years used in monthly statistics From Apr. 13 to 27 From Feb. 23 to Apr. 3 Backwater from snow and ice Estimated

## 15477790 CENTRAL CREEK NEAR BIG DELTA

LOCATION.--Lat  $64^{\circ}22'37''$ , long  $144^{\circ}56'35''$ , in  $SE^{1}/_{4}$  sec. 22, T. 6 S., R. 14 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 0.5 mi upstream from mouth, 5 mi south of Pogo Mine Camp site, and 31 mi northeast of Big Delta.

DRAINAGE AREA.--115 mi².

PERIOD OF RECORD. -- August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1250 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

		DISCHA	ARGE, CU	BIC FEET	PER SECOND,	WATER	YEAR OCTOE	BER 2002 T	O SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	98 105 108 98 85	e35 e33 e33 e33	e29 e28 e27 e26 e25	e9.4 e9.2 e9.0 e8.8 e8.6	e5.4 e5.2 e5.2 e5.2 e5.2	e4.2 e4.2 e4.2 e4.2 e4.2	e4.0 e4.0 e4.0 e4.0 e4.0	150 124 101 80 66	76 63 56 54 49	34 30 36 40 37	111 94 85 128 131	997 969 632 414 292
6 7 8 9 10	67 81 85 74 70	e31 e28 e25 e20 e15	e24 e23 e22 e22 e21	e8.4 e8.2 e8.0 e7.8 e7.6	e5.0 e5.0 e5.0 e5.0 e4.8	e4.2 e4.2 e4.2 e4.2	e4.0 e4.0 e4.0 e4.0 e4.0	63 77 88 133 214	70 109 78 59 48	32 29 28 26 24	143 119 95 80 70	231 193 169 151 138
11 12 13 14 15	59 e58 e60 e60 e59	e11 e11 e12 e13 e15	e20 e20 e19 e18 e17	e7.4 e7.2 e7.2 e7.0 e7.0	e4.8 e4.8 e4.8 e4.8	e4.2 e4.2 e4.2 e4.2 e4.0	e4.0 e4.2 e4.2 e4.2 e4.2	181 164 157 121 101	40 36 32 28 24	23 22 22 120 175	63 59 58 53 48	146 418 282 197 162
16 17 18 19 20	e57 e55 e52 e50 e46	e17 e19 e21 e24 e27	e16 e15 e15 e14 e14	e6.8 e6.6 e6.6 e6.4 e6.4	e4.6 e4.6 e4.6 e4.6	e4.0 e4.0 e4.0 e4.0	e4.4 e4.4 e4.6 e5.0 e6.0	87 66 58 56 54	22 21 21 21 21	595 583 280 141 96	45 42 46 47 46	145 134 110 111 93
21 22 23 24 25	e42 e38 e41 e42 e43	e29 e30 e30 e31 e31	e13 e13 e12 e12 e12	e6.2 e6.2 e6.0 e6.0 e5.8	e4.4 e4.4 e4.4 e4.4	e4.0 e4.0 e4.0 e4.0	e7.0 e11 e20 36 91	55 56 72 101 96	20 19 19 20 26	71 59 51 44 38	46 79 79 76 73	107 93 88 84 89
26 27 28 29 30 31	e42 e41 e40 e39 e38 e36	e31 e31 e30 e30 e30	e11 e11 e10 e10 e9.6	e5.8 e5.6 e5.6 e5.6 e5.4 e5.4	e4.4 e4.4 e4.2	e4.0 e4.0 e4.0 e4.0 e4.0	158 402 593 423 227	88 86 80 76 77 84	27 70 53 50 43	35 37 84 106 90 102	67 64 60 56 54 61	83 77 76 77 78
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1869 60.3 108 36 3710 0.52 0.60	758 25.3 35 11 1500 0.22 0.25	539.6 17.4 29 9.6 1070 0.15 0.17	217.2 7.01 9.4 5.4 431 0.06 0.07	132.8 4.74 5.4 4.2 263 0.04	126.8 4.09 4.2 4.0 252 0.04 0.04	2053.2 68.4 593 4.0 4070 0.60 0.66	3012 97.2 214 54 5970 0.84 0.97	1275 42.5 109 19 2530 0.37 0.41	3090 99.7 595 22 6130 0.87 1.00	2278 73.5 143 42 4520 0.64 0.74	6836 228 997 76 13560 1.98 2.21
					YEARS 1997							
MEAN MAX (WY) MIN (WY)	32.5 60.3 2003 13.8 2000	14.0 30.9 2001 4.71 1999	6.73 17.4 2003 0.75 1999	3.44 11.3 2001 0.026 1999	2.44 8.74 2001 0.000 1999	2.02 7.10 2001 0.000 1999	18.8 68.4 2003 3.83 2002	152 266 2002 81.6 1998	88.6 170 2000 26.3 1998	85.5 128 2001 47.8 1999	121 237 2000 70.1 1998	101 228 2003 37.2 1999
SUMMAR	Y STATIS	TICS	FOI	R 2002 CAL	ENDAR YEAR		FOR 2003 W	ATER YEAR		WATER YEAR	RS 1997	- 2003#
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN F ANNUAL ANNUAL F DAILY DAILY M SEVEN-D M PEAK M PEAK RUNOFF RUNOFF	MEAN MEAN EAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS		29190. 80. 992 a0. 0. 57900 0. 9. 181 32	Aug 17 10 Mar 6 10 Mar 6		4.0	Sep 1 Mar 15 Mar 15 Sep 1 3 Sep 1		53.7 75.7 26.8 997 c0.00 0.00 d1720 45.7 38940 0.4' 6.3 131 21 0.10	Jan Jan Sep Sep	2002 1998 1 2003 8 1999 8 1999 1 2003 1 2003

See Period of Record; partial years used in monthly statistics From Mar. 6 to Apr. 25 From Mar. 15 to Apr. 11 From Jan. 8 to Apr. 11 From Jan. 8 to Apr.17, 1999 and Feb. 18 to Apr. 17, 2000 From rating extended above 395  $\rm ft^3/s$  Estimated

Estimated

#### 15478040 PHELAN CREEK NEAR PAXSON

LOCATION.--Lat  $63^{\circ}14'27''$ , Long  $145^{\circ}28'03''$ , in  $SW^{1}/_{4}$  sec. 28, T. 19 S., R. 12 E. (Mt.Hayes A-3 quad), Hydrologic Unit 19020102, on left bank about 1 mi downstream from terminus of Gulkana Glacier and 14.5 mi north of Paxson, Alaska.

DRAINAGE AREA. -- 12.2 mi².

PERIOD OF RECORD.--October 1966 to September 1978, annual maximums, water years 1984-85, October 1989 to current year. Water year 1994 not published, daily mean values of discharge are available from the computer files of the Alaska Science Center. Prior to October 1968, published as Gulkana Creek near Paxson.

GAGE.--Water-stage recorder. Datum of gage is 3,690.67 ft above sea level.

REMARKS.--Records are poor. Streamflow augmented by Gulkana Glacier and other glaciers that cover 7.5 mi² and 1.1 mi², respectively, of the drainage basin. A recording air temperature and precipitation gage at 4,860 ft above sea level, plus 3 snow and ice balance measurement sites, are located in the basin. Combined snow, ice, and water balances of the basin are published in other reports of the Geological Survey. GOES satellite telemetry at station.

DISCHARGE, CURIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e8.6 e5.9 e3.8 e3.1 e2.9 e2.9 e3.0 67 312 160 216 17 e8.5 e3.8 e3.1 e2.9 e3.6 3 16 e8.3 e5.6 e3.8 e3.1 e2.9 e2.9 e4.5 67 332 342 161 e8.3 e5.5 e2.9 e2.9 e5.0 345 296 18 e3.7 e3.1 61 132 5 29 e3.7 e2.9 67 283 161 e5.3 e3.7 e2.9 e2.9 6 e8.1 e3.1 e4.0 313 199 306 e2.9 e2.9 23 e8.0 e5.2 e3.7 e3.1 e3.7 359 224 194 92 22 e3.0 238 8 e5.1 e3.6 95 431 e7.9 e3.7 e2.9 e2.9 163 e7.9 e5.0 e3.7 e3.0 e2.9 e2.9 e3.5 10 21 e7.8 e5.0 e3.7 e3.0 e2.9 e2.9 e3.6 71 330 182 112 11 19 e7.7 e4.9 e3.7 e3.0 e2.9 e2.9 e3.8 64 341 187 93 12 €18 e7.6 e7.6 e4.8 e4.7 e3.7 e3.0 e3.0 e2.9 e2.9 e2.9 64.0 68 307 228 79 e3.7 e2.9 e17 241 72 13 e5.0 272 109 e7.5 279 72 e16 e4.6 e3.6 e3.0 e2.9 e6.5 15 e16 67.4 e4.6 e3.6 e3.0 e2.9 e2.9 69.0 125 306 136 63 e7.4 e4 5 63 6 e3 0 62 9 62 9 ۵15 145 431 111 5.8 16 ۵15 54 17 e14 e7.3 e4.4 e3.6 e3.0 e2.9 e2.9 e25 181 432 109 e40 e14 e7.3 e4.4 e3.6 e3.0 e2.9 373 115 53 18 e2.9 202 19 e13 e7.2 e4.3 e3.6 e3.0 e2.9 e2.9 e80 214 350 164 55 20 e7.1 e4.3 e3.5 e3.0 e2.9 e2.9 e150 183 330 155 49 e13 174 47 21 e7.1 e4.2 e3.5 e3.0 e2.9 e2.9 160 421 e12 416 e12 e7.0 e4.2 e3.5 e3.0 e2.9 169 46 e2.9 330 23 e11 e7.0 e4.1 e3.4 e3.0 e2.9 e2.9 70 181 271 166 45 359 2.4 e11 e6.9 e4.1 e3.4e3.0e2.9e2.954 241 190 80 25 e10 e6.8 e4.0 e3.4 e3.0 e2.9 e2.9 250 361 269 119 26 e10 e6.7 e4.0 e3.3 e3.0 e2.9 e2.9 86 189 240 171 97 e9.8 201 90 27 e6.5 e4.0 e3.3 e3.0 e2.9 e2.9 122 228 177 28 e9.6 e6.4 e3.9 e3.3 e3.0 e2.9 e2.9 120 302 178 162 71 29 e9.3 e3.9 e3.2 e2.9 e2.9 97 349 192 176 e6.2 50 e3.9 e9.0 e6.0 e2.9 86 156 1 2 / 44 30 e3.2 e2.9 386 31 e8.8 e3.8 e3.2 e2.9 76 152 202 477.5 143.3 84.7 89.9 TOTAL. 222.3 110.2 87.0 1483.5 4587 9641 6313 3120 15.4 7.41 3.02 2.90 47.9 MEAN 4.62 3.55 2.90 153 311 204 104 29 8.6 5.9 3.1 2.9 2.9 174 386 432 416 MAX 306 2.9 MTN 8.8 6.0 3.8 3.2 3.0 2.9 3.0 61 152 109 44 AC-FT 947 219 173 12520 441 284 168 178 2940 9100 19120 6190 CFSM 1.26 0.61 0.38 0.29 0.25 0.24 0.24 3.92 12.5 25.5 TN. 1.46 0.68 0.44 0.34 0.26 0.27 0.27 4.52 13.99 29.40 19.25 9.51 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2002, BY WATER YEAR (WY)# MEAN 11.0 5.74 4.09 3.23 2.71 2.38 2.27 17.4 143 305 249 62.8 MAX 17.4 9 57 6.87 5 32 4.50 4 00 4.00 48.2 247 460 411 129 1972 1996 1996 1996 1996 1971 1971 1995 1976 1972 1995 (WY) 1969 MIN 5.55 2.50 2.00 1.48 1.00 1.00 1.00 2.39 72.9 181 14.3 (WY) 1999 1978 1978 1967 1967 1967 1967 1992 1975 1991 1992 1992 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1967 - 2002# ANNUAL TOTAL 23867.5 26359.4 ANNUAL MEAN 65.4 72.2 68.1 HIGHEST ANNUAL MEAN 1976 91.6 LOWEST ANNUAL MEAN 43.0 HIGHEST DAILY MEAN 616 Jul 22 432 Jul 17 1330 Aug 13 1997 b2.9 1 c1.0 LOWEST DAILY MEAN a2.0 Apr 15 Mar Jan 16 1967 ANNUAL SEVEN-DAY MINIMUM Apr 13 2.9 Mar 1.0 Jan 16 MAXIMUM PEAK FLOW 1420 Aug 21 2320 Aug 13 1967 MAXIMUM PEAK STAGE 9.79 Aug 21 11.51 Aug 13 1967 MAXIMUM PEAK STAGE df14.70 47340 52280 ANNUAL RUNOFF (AC-FT) 49300 ANNUAL RUNOFF (CFSM) 5.36 5.92 5.58 72.78 80.37 75.79 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 224 245 250 50 PERCENT EXCEEDS 7.4 7.6 6.0 90 PERCENT EXCEEDS 2.9 2.0

a b

From Apr. 15 to Apr. 17 From Mar. 1 to Apr. 30 For many days in the winter and spring during water years 1967, 1969, 1978, and 1991 Backwater from snow and ice

Estimated

Occurred in early Jun. as a result of flow over ice

## 15478040 PHELAN CREEK NEAR PAXSON—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

				DAIL	Y MEAN	VALUES					
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
41 37 e35 e33 e31	e20 e19 e19 e19 e19	e11 e11 e11 e11	e5.7 e5.5 e5.4 e5.2 e5.1	e3.1 e3.1 e3.0 e3.0 e3.0	e2.5 e2.5 e2.5 e2.5 e2.5	e2.4 e2.4 e2.4 e2.4	e2.3 e2.3 e2.3 e2.3 e2.3	e6.0 e8.0 e11 e15 e22	159 213 262 218 186	289 265 220 230 224	88 79 101 88 72
e30 e29 e26 e25 e24	e18 e18 e18 e17 e17	e10 e10 e10 e9.9 e9.7	e5.0 e4.9 e4.7 e4.7 e4.5	e2.9 e2.9 e2.9 e2.9 e2.8	e2.5 e2.5 e2.5 e2.5 e2.5	e2.4 e2.4 e2.4 e2.4	e2.3 e2.3 e2.3 e2.3	e30 e45 e65 e100 142	170 207 223 237 233	244 282 326 294 330	65 57 55 50 45
e25 e24 e24 e23 e23	e16 e16 e15 e15 e15	e9.5 e9.4 e9.2 e9.1 e8.9	e4.4 e4.4 e4.3 e4.2 e4.1	e2.8 e2.8 e2.7 e2.7	e2.5 e2.5 e2.5 e2.5 e2.5	e2.3 e2.3 e2.3 e2.3 e2.3	e2.3 e2.3 e2.3 e2.3	200 237 181 119 97	250 282 314 311 271	327 756 744 588 420	46 46 e40 e34 e29
e23 e22 e22 e22 e22	e14 e14 e14 e14 e13	e8.7 e8.6 e8.4 e8.2 e8.1	e4.0 e4.0 e3.9 e3.9 e3.8	e2.7 e2.7 e2.6 e2.6 e2.6	e2.5 e2.5 e2.5 e2.5 e2.5	e2.3 e2.3 e2.3 e2.3	e2.4 e2.4 e2.4 e2.5 e2.5	104 128 134 147 142	e400 e340 e360 e400 e460	333 267 204 148 111	e25 e21 e18 e15 e12
e21 e21 e21 e21 e21	e13 e13 e13 e12 e12	e7.9 e7.7 e7.6 e7.4 e7.1	e3.7 e3.6 e3.6 e3.5 e3.4	e2.6 e2.6 e2.6 e2.6 e2.5	e2.5 e2.5 e2.4 e2.4 e2.4	e2.3 e2.3 e2.3 e2.3	e2.6 e2.7 e2.8 e2.9 e3.0	125 129 133 134 117	530 456 493 522 493	120 107 80 102 105	e9.0 e8.5 e8.0 e8.0
e20 e20 e20 e20 e20 e20	e12 e12 e12 e12 e11	e7.0 e6.7 e6.5 e6.3 e6.1 e5.9	e3.3 e3.3 e3.3 e3.2 e3.2 e3.1	e2.5 e2.5 e2.5 	e2.4 e2.4 e2.4 e2.4 e2.4	e2.3 e2.3 e2.3 e2.3	e3.2 e3.4 e3.6 e3.9 e4.2 e4.8	107 108 130 143 153	525 596 690 747 409 359	175 144 127 106 102 98	e12 e15 24 82 148
766 24.7 41 20 1520 2.03 2.34				76.9 2.75 3.1 2.5 153 0.23 0.23	76.6 2.47 2.5 2.4 152 0.20 0.23	70.0 2.33 2.4 2.3 139 0.19 0.21	83.8 2.70 4.8 2.3 166 0.22 0.26	3212.0 107 237 6.0 6370 8.78 9.79	11316 365 747 159 22450 29.9 34.50	7868 254 756 80 15610 20.8 23.99	1309.0 43.6 148 8.0 2600 3.58 3.99
ICS OF M	ONTHLY MI	EAN DATA	FOR WATER	YEARS 1967	- 2003	, BY WATER	YEAR (V	VY)#			
11.6 24.7 2003 5.55 1999	6.10 15.1 2003 2.50 1978	4.26 8.67 2003 2.00 1978	3.26 5.32 1996 1.48 1967	2.71 4.50 1972 1.00 1967	2.39 4.00 1971 1.00 1967	2.27 4.00 1971 1.00 1967	16.8 48.2 1995 2.39 1992	142 247 1969 72.9 1975	307 460 1976 181 1991	249 411 1972 73.6 1992	62.1 129 1995 14.3 1992
STATIST	TICS					FOR 2003 W	ATER YEA	AR	WATER YEA	ARS 1967	- 2003#
ANNUAL M DAILY ME SEVEN-DA PEAK FI PEAK ST PEAK ST RUNOFF ( RUNOFF ( RUNOFF ( ENT EXCE	MEAN MEAN MAY MINIMUM MAGE MAGE MAGE MAGE MAGE MAGE MAGE MAG	1	74.0 432 a2.9 2.9 53560 6.0 82.3 245	Jul 17 Mar 1 Mar 1		70.2  756 b2.3 2.3 1550 9.8  50830 5.7 78.1 240 10	Aug f Apr f Apr f Aug f 8 Aug f	L1	91.6 43.0 1330 c1.0 1.0 2320 11.5 df14.7 49360 5.5 75.8 249 6.0	Aug (1 ) Jan (1 ) Jan (2 ) Jan (2 ) Jan (2 ) Jan (2 ) Jan (3 ) Jan	16 1967 13 1967 13 1967
	41 37 e35 e33 e31 e30 e29 e26 e25 e24 e25 e24 e22 e22 e22 e22 e22 e22 e22 e21 e21 e21	41 e20 37 e19 e35 e19 e33 e19 e31 e19 e30 e18 e29 e18 e26 e18 e25 e17 e24 e17 e25 e16 e24 e16 e24 e15 e23 e15 e23 e15 e23 e15 e23 e15 e21 e12 e20 e12 e30 e15 e33 e15 e31 e17 e41 20 e766 452 e4.7 15.1 e766 452 e7766	41 e20 e11 37 e19 e11 e35 e19 e11 e33 e19 e11 e33 e19 e11 e33 e19 e11 e31 e19 e11 e30 e18 e10 e26 e18 e10 e26 e18 e10 e25 e17 e9.9 e24 e17 e9.7  e25 e16 e9.5 e24 e16 e9.5 e24 e15 e9.2 e23 e15 e9.1 e23 e15 e8.9  e23 e14 e8.7 e22 e14 e8.6 e22 e14 e8.2 e22 e14 e8.2 e22 e14 e8.2 e21 e13 e7.7 e21 e13 e7.7 e21 e13 e7.7 e21 e13 e7.6 e21 e12 e7.4 e21 e12 e7.4 e21 e12 e6.7 e20 e12 e6.3 e20 e11 e6.1 e20 e5.9  766 452 268.9 24.7 15.1 8.67 41 20 11 20 11 5.9 1520 897 533 2.03 1.23 0.71 2.34 1.38 0.82  ICS OF MONTHLY MEAN DATA  11.6 6.10 4.26 24.7 15.1 8.67 20.3 20.03 20.03 2.03 1.23 0.71 2.34 1.38 0.82  ICS OF MONTHLY MEAN DATA  11.6 6.10 4.26 e24.7 15.1 8.67 2003 2003 2003 2.03 1.23 0.71 2.34 1.38 0.82  ICS OF MONTHLY MEAN DATA  11.6 6.10 4.26 EAN, TASE ENDOFF (CFSM) RUNOFF (INCHES) ENT EXCEEDS ENT EXCEEDS ENT EXCEEDS	41 e20 e11 e5.7 37 e19 e11 e5.5 e35 e19 e11 e5.4 e33 e19 e11 e5.2 e31 e19 e11 e5.2 e31 e19 e11 e5.1 e30 e18 e10 e4.9 e26 e18 e10 e4.7 e25 e17 e9.9 e4.7 e24 e17 e9.7 e4.5 e25 e16 e9.5 e4.4 e24 e16 e9.5 e4.4 e24 e15 e9.2 e4.3 e23 e15 e9.1 e4.2 e23 e15 e8.9 e4.1 e22 e14 e8.6 e4.0 e22 e14 e8.6 e4.0 e22 e14 e8.2 e3.9 e22 e14 e8.2 e3.9 e22 e13 e8.1 e3.8 e21 e13 e7.7 e3.6 e21 e13 e7.7 e3.6 e21 e13 e7.6 e3.6 e21 e13 e7.7 e3.6 e21 e13 e7.7 e3.6 e21 e13 e7.6 e3.6 e21 e12 e6.7 e3.3 e20 e12 e6.5 e3.3 e20 e12 e6.7 e3.9 e3.7 e3.6 e3.7 e3.6 e4.0 e20 e12 e6.7 e3.6 e4.0 e3.6 e4.0	OCT NOV DEC JAN FEB  41 e20 e11 e5.7 e3.1 37 e19 e11 e5.5 e3.1 e35 e19 e11 e5.4 e3.0 e31 e19 e11 e5.2 e3.0 e31 e19 e11 e5.1 e3.0 e30 e18 e10 e5.0 e2.9 e29 e18 e10 e4.9 e2.9 e26 e18 e10 e4.7 e2.9 e25 e17 e9.9 e4.7 e2.9 e24 e17 e9.7 e4.5 e2.8 e24 e16 e9.4 e4.4 e2.8 e24 e15 e9.2 e4.3 e2.7 e23 e15 e9.1 e4.2 e2.7 e23 e15 e8.9 e4.1 e2.7 e22 e14 e8.6 e4.0 e2.7 e22 e14 e8.6 e3.9 e2.6 e22 e13 e8.1 e3.8 e2.6 e21 e13 e7.9 e3.7 e2.6 e21 e13 e7.9 e3.7 e2.6 e21 e13 e7.9 e3.7 e2.6 e21 e13 e7.6 e3.6 e2.6 e21 e13 e7.6 e3.6 e2.6 e21 e12 e7.4 e3.5 e2.6 e21 e12 e7.4 e3.5 e2.6 e21 e12 e7.1 e3.4 e2.5 e20 e12 e6.5 e3.3 e2.5 e20 e12 e6.7 e3.3 e2.5 e20 e12 e6.5 e3.3 e2.5 e20 e12 e6.7 e3.3 e2.5 e20 e12 e6.9 e3.9 e3.1 e20 e20 e20 e20 e3.9 e3.9 e3.1 e3.0 e3.1	OCT NOV DEC JAN FEB MAR  41	41 e20 e11 e5.7 e3.1 e2.5 e2.4 37 e19 e11 e5.5 e3.1 e2.5 e2.4 e35 e19 e11 e5.4 e3.0 e2.5 e2.4 e33 e19 e11 e5.2 e3.0 e2.5 e2.4 e31 e19 e11 e5.1 e3.0 e2.5 e2.4 e31 e19 e11 e5.1 e3.0 e2.5 e2.4 e31 e19 e11 e5.1 e3.0 e2.5 e2.4 e29 e18 e10 e4.9 e2.9 e2.5 e2.4 e29 e18 e10 e4.7 e2.9 e2.5 e2.4 e25 e17 e9.9 e4.7 e2.9 e2.5 e2.4 e25 e17 e9.9 e4.7 e2.9 e2.5 e2.4 e24 e17 e9.7 e4.5 e2.8 e2.5 e2.4 e25 e16 e9.5 e4.4 e2.8 e2.5 e2.4 e24 e16 e9.4 e4.4 e2.8 e2.5 e2.3 e24 e16 e9.9 e4.1 e2.7 e2.5 e2.3 e23 e15 e9.1 e4.2 e2.7 e2.5 e2.3 e23 e15 e8.9 e4.1 e2.7 e2.5 e2.3 e22 e14 e8.6 e4.0 e2.7 e2.5 e2.3 e22 e14 e8.6 e4.0 e2.7 e2.5 e2.3 e22 e14 e8.4 e3.9 e2.6 e2.5 e2.3 e22 e14 e8.4 e3.9 e2.6 e2.5 e2.3 e22 e14 e8.4 e3.9 e2.6 e2.5 e2.3 e21 e13 e7.7 e3.6 e2.6 e2.5 e2.3 e22 e14 e8.2 e3.9 e2.6 e2.5 e2.3 e21 e13 e7.7 e3.6 e2.6 e2.6 e2.4 e2.3 e21 e13 e7.7 e3.6 e2.6 e2.5 e2.3 e22 e14 e8.2 e3.9 e3.7 e2.6 e2.5 e2.3 e23 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e3.	OCT NOV DEC JAN FEB MAR APR MAY  41 e20 e11 e5.7 e3.1 e2.5 e2.4 e2.3  37 e19 e11 e5.5 e3.1 e2.5 e2.4 e2.3  e35 e19 e11 e5.4 e3.0 e2.5 e2.4 e2.3  e33 e19 e11 e5.2 e3.0 e2.5 e2.4 e2.3  e31 e19 e11 e5.2 e3.0 e2.5 e2.4 e2.3  e33 e19 e11 e5.1 e3.0 e2.5 e2.4 e2.3  e30 e18 e10 e4.9 e2.9 e2.5 e2.4 e2.3  e29 e18 e10 e4.9 e2.9 e2.5 e2.4 e2.3  e266 e18 e10 e4.9 e2.9 e2.5 e2.4 e2.3  e25 e17 e9.9 e4.7 e2.9 e2.5 e2.4 e2.3  e24 e17 e9.7 e4.5 e2.8 e2.5 e2.4 e2.3  e25 e16 e9.5 e4.4 e2.8 e2.5 e2.4 e2.3  e24 e16 e9.4 e4.4 e2.8 e2.5 e2.4 e2.3  e23 e15 e8.9 e4.1 e2.7 e2.5 e2.3 e2.3  e23 e15 e8.9 e4.1 e2.7 e2.5 e2.3 e2.3  e23 e14 e8.7 e4.0 e2.7 e2.5 e2.3 e2.3  e22 e14 e8.4 e3.9 e2.6 e2.5 e2.3 e2.3  e22 e14 e8.4 e3.9 e2.6 e2.5 e2.3 e2.4  e22 e14 e8.6 e4.0 e2.7 e2.5 e2.3 e2.4  e22 e14 e8.7 e3.9 e2.6 e2.5 e2.3 e2.4  e22 e14 e8.6 e4.0 e2.7 e2.5 e2.3 e2.4  e22 e14 e8.7 e3.9 e2.6 e2.5 e2.3 e2.4  e22 e14 e8.6 e4.0 e2.7 e2.5 e2.3 e2.4  e22 e14 e8.7 e3.9 e2.6 e2.5 e2.3 e2.4  e22 e14 e8.9 e3.7 e2.6 e2.6 e2.5 e2.3 e2.4  e22 e14 e8.9 e3.7 e2.6 e2.6 e2.5 e2.3 e2.4  e22 e14 e8.9 e3.7 e3.8 e2.6 e2.5 e2.3 e2.6  e21 e13 e7.7 e3.6 e2.6 e2.5 e2.3 e2.4  e22 e14 e3.9 e2.6 e2.5 e2.3 e2.4  e22 e14 e3.9 e2.6 e2.5 e2.3 e2.4  e22 e14 e3.9 e2.6 e2.6 e2.5 e2.3 e2.6  e21 e13 e7.0 e3.3 e2.6 e2.4 e2.3 e3.9  e26 e26 e2.6 e2.5 e2.3 e2.6 e2.4 e2.3  e27 e27 e28	CCT   NOV   DEC   JAN   FEB   MAR   APR   MAY   JUN	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL  41 e20 e11 e5.7 e3.1 e2.5 e2.4 e2.3 e6.0 159 377 e19 e11 e5.5 e3.1 e2.5 e2.4 e2.3 e6.0 159 387 e19 e11 e5.5 e3.1 e2.5 e2.4 e2.3 e6.0 232 3815 e19 e11 e5.2 e3.0 e2.5 e2.4 e2.3 e6.0 232 381 e19 e11 e5.1 e3.0 e2.5 e2.4 e2.3 e15 218 831 e19 e11 e5.1 e3.0 e2.5 e2.4 e2.3 e2.3 e2.2 186 830 e18 e10 e5.0 e2.9 e2.5 e2.4 e2.3 e30 170 866 e18 e10 e4.9 e2.9 e2.5 e2.4 e2.3 e30 170 867 e2.4 e17 e9.9 e4.7 e2.9 e2.5 e2.4 e2.3 e45 223 868 e17 e9.9 e4.7 e2.9 e2.5 e2.4 e2.3 e45 223 862 e17 e9.9 e4.7 e2.9 e2.5 e2.4 e2.3 e100 227 8624 e17 e9.7 e4.5 e2.8 e2.5 e2.4 e2.3 e100 227 8624 e17 e9.7 e4.5 e2.8 e2.5 e2.4 e2.3 142 233 8625 e16 e9.5 e4.4 e2.8 e2.5 e2.4 e2.3 142 233 8626 e16 e9.5 e4.4 e2.8 e2.5 e2.4 e2.3 e100 227 8627 e16 e9.5 e4.4 e2.8 e2.5 e2.4 e2.3 142 233 8628 e16 e9.6 e4.9 e4.7 e2.9 e2.5 e2.4 e2.3 142 233 8629 e18 e10 e5.0 e2.8 e2.5 e2.4 e2.3 142 233 8629 e18 e10 e5.0 e2.8 e2.5 e2.3 e2.3 200 250 8624 e17 e9.7 e4.5 e2.8 e2.8 e2.5 e2.3 e2.3 122 8625 e16 e9.5 e4.4 e2.8 e2.5 e2.3 e2.3 122 8626 e16 e9.5 e4.4 e2.8 e2.5 e2.3 e2.3 200 250 8624 e16 e9.6 e4.9 e4.1 e2.7 e2.5 e2.3 e2.3 129 311 8623 e15 e8.9 e4.1 e2.7 e2.5 e2.3 e2.3 129 311 8623 e14 e8.6 e4.0 e2.7 e2.5 e2.3 e2.3 e2.4 104 e400 8622 e14 e8.6 e4.0 e2.7 e2.5 e2.3 e2.4 104 e400 8622 e14 e8.6 e4.0 e2.7 e2.7 e2.5 e2.3 e2.4 104 e400 8622 e14 e8.6 e4.0 e2.7 e2.7 e2.5 e2.3 e2.4 104 e400 8622 e14 e8.6 e4.0 e2.7 e2.7 e2.5 e2.3 e2.7 129 456 8621 e13 e7.7 e3.6 e2.6 e2.5 e2.3 e2.7 129 456 8621 e13 e7.7 e3.6 e2.6 e2.5 e2.3 e2.7 129 456 8621 e13 e7.7 e3.6 e3.6 e2.6 e2.5 e2.3 e2.7 129 456 8621 e13 e7.7 e3.6 e3.6 e2.6 e2.5 e2.3 e2.7 129 456 8621 e13 e7.7 e3.6 e3.6 e2.6 e2.5 e2.3 e2.7 129 456 8621 e12 e7.1 e3.3 e2.6 e2.6 e2.5 e2.3 e2.7 129 456 8621 e13 e7.7 e3.6 e3.6 e2.6 e2.5 e2.3 e2.7 129 456 8622 e14 e3.6 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG  41

See Period of Record
From Mar. 1 to Apr. 30
From Apr. 11 to May 15
For many days in the winter and spring during water years 1967, 1969, 1978, and 1991
Backwater from snow and ice
Estimated
Occurred in early Jun. as a result of flow over ice

Discharge

Gage

## YUKON ALASKA

#### 15484000 SALCHA RIVER NEAR SALCHAKET

LOCATION.--Lat  $64^{\circ}28'22''$ , long  $146^{\circ}55'26''$ , in NE $^{1}_{/4}$  sec. 22, T. 5 S., R. 4 E. (Big Delta B-6 quad), Fairbanks North Star Borough, Hydrologic Unit 19040505, on right bank 0.2 mi upstream from bridge on Richardson Highway, 0.5 mi east of Sno-Shu Inn, 2 mi upstream from mouth, and 6 mi southeast of Salchaket.

DRAINAGE AREA. -- 2,170 mi², approximately.

PERIOD OF RECORD.--July 1909 to August 1910, published as "at mouth" (no winter records), October 1948 to current year.

GAGE.--Water-stage recorder. Datum of gage is 631.85 ft above sea level. Prior to August 10, 1910, nonrecording gage at site 1.5 mi downstream at different datum. October 1, 1948, to April 24, 1953, nonrecording gage, and April 25, 1953 to October 16, 1967, water-stage recorder at site 800 ft downstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 10,000  $\mathrm{ft^3/s}$  and maximum (*).

Gage

Discharge

	Dat	e	Time	ischarge (ft ³ /s)	Gage Height		Da	ate	Time	Discharge (ft ³ /s)	Gage Height	
	July	18	1330	11,600	11.91		Ser	ot 3	2000	* 23,100	*15.35	
	July		1500	17,300	13.78					,		
				,								
		DIS	CHARGE, C	UBIC FEET		D, WATER ILY MEAN		OBER 2002	TO SEPT	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	2200 2210 2350	e1200 e1100 e1100	e890 e870 e840	e450 e450 e450	e400 e400 e400	e325 e320 e320	e280 e280 e280	4220 3030 2460	2310 2360 1960	1170 1100 1070	6120 5510 4810	3230 10000 19700
3 4 5	2320 2200	e1100 e1100	e820 e810	e440 e440	e400 e400	e320 e320	e280 e280	2050 1680	1700 1660	1070 1130	5050 6210	17200 11100
6 7	2000	e1000	e800	e440	e400	e315	e280	1490 1440	1610	1110 1070	5550	9330 8050
8	1880 1990	e900 e700	e780 e750	e430 e430	e400 e400	e315 e310	e280 e280	1440	3320 4770	1070	5170 4520	6950
9	2210	e600	e730	e430	e400	e310	e280	1440	3060	1090	3960	6160
10	2080	e500	e700	e430	e400	e305	e285	1700	2280	1150	3540	5530
11	1890	e440	e680	e420	e400	e305	e290	2700	1900	1110	3230	5110
12	1800	e400	e650	e420	e400	e300	e295	3100	1710	1070	3000	6250
13 14	1840 1860	e400 e400	e610 e600	e410 e410	e400 e400	e300 e300	e300 e310	3390 3730	1590 1420	1100 1200	2860 3090	7870 6440
15	1760	e420	e590	e400	e400	e300	e325	3000	1280	3360	3020	5280
16 17	1750 1720	e480 e540	e560 e550	e400 e400	e390 e390	e300 e295	e350 e360	2490 2160	1190 1120	7140 8410	2800 2720	4630 4310
18	e1500	e580	e520	e400	e390	e295	e380	1780	1100	10800	2810	3910
19	e1200	e660	e500	e400	e380	e290	e390	1610	1190	7540	2690	3540
20	e1000	e700	e500	e400	e370	e290	e400	1550	1250	5010	2610	3370
21	e900	e750	e500	e400	e370	e290	e450	1560	1150	3730	2550	3160
22	e1000 e1200	e800	e490 e490	e400 e400	e360 e350	e290 e290	e500 e600	1560 1580	1070 1020	2980 3360	2540 2730	3060 2860
23 24	e1300	e850 e890	e490	e400	e340	e290	e700	1570	990	2920	2890	2680
25	e1300	e900	e480	e400	e330	e285	e800	1590	962	2450	4090	2600
26 27	e1300 e1300	e910 e910	e480 e470	e400 e400	e330 e330	e285 e285	e1000 e1500	1600 1610	954 996	2180 2190	5200 4400	2580 2440
28	e1200	e900	e470	e400	e325	e285	e3000	1970	1110	6900	3780	2330
29	e1200	e900	e460	e400		e280	e5700	2130	1320	15600	3360	2270
30 31	e1200 e1200	e890 	e460 e460	e400 e400		e280 e280	6360	2430 2430	1280	9400 6540	3060 2920	2260
TOTAL	50860	23020	19000	12850	10655	9275	26815	66490	49632	116020	116790	174200
MEAN	1641	767	613	415	381	299	894	2145	1654	3743	3767	5807
MAX	2350	1200	890	450	400	325	6360	4220	4770	15600	6210	19700
MIN	900	400 45660	460 37690	400 25490	325 21130	280 18400	280 53190	1440 131900	954 98450	1070 230100	2540 231700	2260 345500
AC-FT CFSM	0.76	0.35	0.28	0.19	0.18	0.14	0.41	0.99	0.76	1.72	1.74	2.68
IN.	0.87	0.39	0.33	0.22	0.18	0.16	0.46	1.14	0.85	1.99	2.00	2.99
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	R YEARS 19	49 - 2003	B, BY WAT	ER YEAR (	WY)#			
MEAN MAX	1092 1969	508 1028	358 730	261 471	212 449	191 377	408 1373	4237 8666	3763 8640	2675 7330	3088 13350	2514 6186
(WY)	1969	1994	1994	1992	1994	1992	1993	1962	1964		1967	1952
MIN	484	230	160	130	62.0	60.0	104	1564	963	568	717	636
(WY)	1959	1954	1954	1954	1953	1953	1974	1964	1969	1958	1966	1966

See Period of Record

Estimated

# 15484000 SALCHA RIVER NEAR SALCHAKET—Continued

SUMMARY STATISTICS	FOR 2002 CALENDA	AR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1949 - 2003#
ANNUAL TOTAL	770180		675607			
ANNUAL MEAN	2110		1851		1617	
HIGHEST ANNUAL MEAN					2957	1967
LOWEST ANNUAL MEAN					796	1999
HIGHEST DAILY MEAN	23900	Aug 19	19700	Sep 3	94100	Aug 14 1967
LOWEST DAILY MEAN	a140	Mar 17	b280	Mar 29	c60	Mar 1 1953
ANNUAL SEVEN-DAY MINIMUM	140	Mar 17	280	Mar 29	60	Mar 1 1953
MAXIMUM PEAK FLOW			23100	Sep 3	97000	Aug 14 1967
MAXIMUM PEAK STAGE			15.35	Sep 3	21.78	Aug 14 1967
INSTANTANEOUS LOW FLOW					60	Mar 1 1953
ANNUAL RUNOFF (AC-FT)	1528000		1340000		1172000	
ANNUAL RUNOFF (CFSM)	0.97		0.85		0.75	
ANNUAL RUNOFF (INCHES)	13.20		11.58		10.13	
10 PERCENT EXCEEDS	5420		4450		3950	
50 PERCENT EXCEEDS	1110		1070		650	
90 PERCENT EXCEEDS	140		310		170	

[#] See Period of Record
a From Mar. 17 to Apr. 22
b From Mar. 29 to Apr. 9
c) Monthly mean published for Mar. 1953

#### 15485500 TANANA RIVER AT FAIRBANKS

LOCATION.--Lat  $64^{\circ}47'34''$ , long  $147^{\circ}50'20''$ , in  $NE^{1}/_{4}$   $SW^{1}/_{4}$  sec. 25, T. 1 S., R. 2 W. (Fairbanks D-2 quad), Fairbanks D-2 quad) North Star Borough, Hydrologic Unit 19040507, on right bank at the end of Groin No. 1 on Corps of Engineers flood-protection levee, 1.0 mi south of Fairbanks International Airport, and 1.0 mi upstream from Chena River.

DRAINAGE AREA.--Undefined. Part of river flows through Salchaket Slough and is ungaged.

PERIOD OF RECORD. -- June 1973 to current year.

GAGE.--Water-stage recorder. Datum of gage is 400 ft above sea level. Prior to September 14, 1973, nonrecording gage, and September 14, 1973 to June 14, 1985, water-stage recorder, at site 2.8 mi upstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 16, 1967 reached a stage of 34.4 ft, from floodmarks at site then in use; discharge, about 125,000 ft³/s, contained in reports of the Corps of Engineers.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

				DE	AILY MEAN	VALUES					
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
26000 25900 25600 24900 24000	17600 17000 16600 16600 17000	e11500 e11500 e11000 e10500 e10000	e6000 e6000 e6000 e6000	e6000 e6000 e6000 e6000 e6200	e6300 e6300 e6300 e6300 e6300	e6100 e6100 e6100 e6100 e6100	e34000 e32000 e28000 e26000 e25000	20500 21400 21800 21200 21100	32100 33100 36000 40000 40500	57700 51000 44800 41400 40500	31800 34200 42200 48800 45600
23100 22700 22500 22500	17300 17400 e17000 e16000	e9400 e8600 e8200 e7600	e6000 e6000 e6000	e6200 e6400 e6400 e6400	e6300 e6300 e6300	e6100 e6100 e6100	e25000 e22000 19300 18000	21700 22300 25400 25500	40700 42100 44200 45700	39400 37900 36600 36100	39400 35500 32500 30000
21600 21000 20700 20600 20300	e14000 e12000 e11000 e10500 e10000 e9800	e7200 e7000 e6800 e6800 e6800	e6000 e6000 e6000 e6000 e6000	e6600 e6600 e6600 e6600 e6400	e6200 e6200 e6200 e6200 e6200	e6100 e6100 e6100 e6200 e6200 e6300	18200 18800 19500 19400 19600 19600	24300 25300 26900 28000 27800	49100 50500 53100 55900 59200	35400 37100 40900 48700 53800	28600 27900 27400 28200 27900 26300
20200 20000 e19500 e19000 e18800	e9600 e9600 e9800 e9800 e10000	e7000 e7000 e6800 e6600	e6000 e6000 e6000 e6000	e6400 e6300 e6300 e6300 e6300	e6200 e6200 e6200 e6200 e6200	e6300 e6400 e6600 e6900 e7200	18800 17900 17000 16700 16600	27300 27200 27800 28500 29400	64700 72100 80500 79300 71500	52900 50400 47900 43400 38900	24800 23700 23100 22200 21400
e18500 e19100 19800 19200 18900	e10000 e10000 e10500 e10500 e10500	e6400 e6400 e6400 e6200 e6200	e6000 e6000 e6000 e6000 e6000	e6300 e6300 e6300 e6300 e6300	e6200 e6100 e6100 e6100 e6100	e7800 e8600 e9600 e10500 e11500	16600 16800 17000 16800 16600	29500 28900 28900 30400 31700	66600 65700 65300 63600 62500	36100 34200 33300 32300 30700	20800 20400 19900 19500 19200
18800 18500 18400 18000 17900 17900	e11000 e11000 e11000 e11000 e11500	e6200 e6000 e6000 e6000 e6000	e6000 e6000 e6000 e6000 e6000	e6300 e6300 e6300	e6100 e6100 e6100 e6100 e6100	e13500 e16000 e19000 e25000 e32000	16800 17100 17500 18100 18600 19600	31600 31200 30500 30700 31300	62900 62900 64000 76300 74500 64700	31100 31100 31300 30900 30200 30100	19000 18700 18400 18200 18500
20840 26000 17900	375600 12520 17600 9600 745000	232100 7487 11500 6000 460400	186000 6000 6000 6000 368900	176800 6314 6600 6000 350700	192200 6200 6300 6100 381200	278800 9293 32000 6100 553000	622900 20090 34000 16600 1236000	802500 26750 31700 20500 1592000	1767000 57000 80500 32100 3505000	1221800 39410 57700 30100 2423000	814100 27140 48800 18200 1615000
STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	973 - 200	3, BY WAT	ER YEAR (	WY)#			
13780 20840 2003 8669 1997	7867 12520 2003 5000 1977	6210 8090 1986 4500 1977	5624 7135 1986 4016 1974	5443 6700 1991 3207 1974	5389 6761 1993 3100 1974	7451 12700 1995 4230 1974	22500 36290 1991 14810 1998	36050 51350 1992 25120 1978	52810 66090 1992 39550 1996	48860 70080 1997 34680 1996	27440 44880 1990 16950 1976
RY STATI:	STICS	FOI	R 2002 CAL	ENDAR YE	AR	FOR 2003	WATER YE	AR	WATER Y	EARS 1973	- 2003#
L TOTAL L MEAN ST ANNUAL ST DAILY T DAILY T DAILY T DAILY UN PEAK UM PEAK L RUNOFF RCENT EX RCENT EX	L MEAN MEAN MEAN MEAN DAY MINIM FLOW STAGE (AC-FT) CEEDS CEEDS	UM	8640600 23670 70500 a6000 6060 17140000 55400 17000	Aug 2 Dec 2		7315900 20040 80500 b6000 6000 83000 25 14510000 42100 17000	Jul Dec Dec Jul .42 Jul		20130 22970 16080 92400 33100 96400 26 14580000 50100 10000	Jul Feb Feb Jul .25 Aug	2002 1996 22 1986 14 1974 14 1974 22 1986
	26000 25900 25900 25900 24900 24000 24000 23100 22500 22500 22500 22500 20000 20700 20600 20700 20800 219500 219500 219500 219500 219500 219500 219500 219500 219500 219500 219500 219500 219000 219500 219500 219500 219500 219500 219500 219500 219500 219500 219500 219500 219500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 218500 21850	26000 17600 25900 17000 25900 17000 25600 16600 24900 16600 24000 17000 23100 17300 22700 17400 22500 e16000 22200 e14000 22500 e16000 22000 e9800 2000 e9800 2000 e9800 2000 e9800 e19500 e9800 e19500 e9800 e19500 e10000 e19500 e9800 e19500 e10000 e19500 e10500 18800 e10000 e18800 e10000 19800 e10500 19800 e10500 19800 e10500 18800 e10500 18800 e10500 18800 e11000 18900 e10500 18900 e10500 18900 e10500 18700 e10500 18800 e11000 18900 e10500 18700 e10500 18700 e10500 18800 e11000 18700 e10500 18800 e11000 18700 e10500 18800 e11000 18700 e10500 18800 e10500 18900 e10500 180	26000 17600 e11500 25900 17000 e11500 25900 17000 e11500 25600 16600 e11000 24900 16600 e10500 24000 17000 e10000  23100 17300 e9400 22700 174400 e8600 22500 e17000 e8200 22500 e16000 e7400  21600 e12000 e7200 21000 e11000 e7000 20700 e10500 e6800 20300 e9800 e6800 20300 e9800 e6800  20200 e9600 e7000 e19500 e9800 e6600 e18800 e10000 e6600 e18800 e10000 e6600 e18800 e10000 e6400 19800 e10500 e6600 e18500 e10000 e6400 19800 e10500 e6200 18800 e10000 e6400 19900 e10500 e6200 18800 e11000 e6000 18800 e11000 e6000 18900 e15500 e6200 18900 e15500 e6200 18900 e15500 e6200 18800 e11000 e6000 17900 e15500 e6000 17900 e150	26000 17600 e11500 e6000 25900 17000 e11500 e6000 25900 16600 e11500 e6000 24900 16600 e10500 e6000 24000 17000 e10000 e6000 24000 17000 e10000 e6000 23100 17300 e9400 e6000 22700 17400 e8200 e6000 22500 e17000 e8200 e6000 22500 e16000 e7400 e6000 22100 e12000 e7200 e6000 21000 e11000 e7000 e6000 20700 e10500 e6800 e6000 20700 e10500 e6800 e6000 20300 e9800 e6800 e6000 20300 e9800 e6800 e6000 20000 e9600 e7000 e6000 e19500 e9800 e6800 e6000 e19500 e9800 e6600 e6000 e19800 e10000 e6600 e6000 e18800 e10000 e6400 e6000 e19900 e7000 e6000 e18800 e10000 e6400 e6000 e18500 e10000 e6400 e6000 e18500 e10000 e6400 e6000 e18500 e10000 e6400 e6000 e19900 e7000 e6000 e19100 e10000 e6400 e6000 e19100 e10000 e6400 e6000 e19100 e10000 e6400 e6000 e19100 e10000 e6400 e6000 e19100 e10500 e6200 e6000 e18800 e11000 e6000 e6000 e1800 e1500 e6200 e6000 e1800 e1500 e6200 e6000 e1800 e11000 e6000 e6000 e1800 e1500 e6200 e6000 e1800 e1500 e6000 e6000 e	OCT NOV DEC JAN FEB  26000 17600 e11500 e6000 e6000 25900 17000 e11500 e6000 e6000 25900 16600 e11000 e6000 e6000 24900 16600 e10500 e6000 e6000 24900 177000 e10000 e6000 e6000 24900 177000 e10000 e6000 e6000 23100 17300 e9400 e6000 e6200  23100 17300 e9400 e6000 e6400 22500 e17000 e8200 e6000 e6400 22500 e17000 e7600 e6000 e6400 22500 e11000 e7400 e6000 e6400 22500 e10000 e7400 e6000 e6400 2200 e14000 e7400 e6000 e6400 2200 e14000 e7000 e6000 e6600 20700 e10500 e6800 e6000 e6600 20700 e10500 e6800 e6000 e6600 20300 e9800 e7000 e6000 e6400 20000 e9600 e7000 e6000 e6300 e19500 e9800 e6600 e6000 e6300 e19800 e10000 e6600 e6000 e6300 e19800 e10000 e6600 e6000 e6300 e19800 e10000 e6600 e6000 e6300 e18800 e10000 e6400 e6000 e6300 e18800 e10000 e6400 e6000 e6300 e18500 e10000 e6400 e6000 e6300 19200 e9600 e7700 e6000 e6300 e18500 e10000 e6400 e6000 e6300 e18500 e10000 e6600 e6000 e6300 e18500 e10000 e6400 e6000 e6300 19200 e10500 e6200 e6000 e6300 19200 e10500 e6200 e6000 e6300 18900 e10500 e6200 e6000 e6300 18900 e10500 e6200 e6000 e6300 18900 e10500 e6200 e6000 e6300 18400 e11000 e6000 e6000 e6300 18500 e11000 e6000 e6000 e6300 18500 e11000 e6000 e6000 e6300 18400 e11000 e6000 e6000 e6300 18500 e11000 e6000 e6000 e6300 18500 e11000 e6000 e6000 e6300  18800 e11000 e6000 e6000 e6300  18800 e10500 e6200 e6000 e6300  18800 e10500 e6200 e6000 e6300  18800 e10500 e6000 e6000 e6300  18900 e10500 e6000 e6000 e6300  18900 e10500 e6000 e6000 e6300  18900 e10500 e6000 e6000 e6000  18900 e10500 e6000 e6000 e6000  18000 e1000 e6000 e6000 e6000  18000 e10000 e6000 e6000 e6000  18000 e10000 e6000 e6000 e6000  18000 e10000 e6000 e60	OCT NOV DEC JAN FEB MAR  26000 17600 e11500 e6000 e6000 e6300 255900 17000 e11500 e6000 e6000 e6300 25500 16600 e11500 e6000 e6000 e6300 24900 17000 e10000 e6000 e6000 e6300 24900 17000 e10000 e6000 e6200 e6300 24000 17300 e9400 e6000 e6200 e6300 22700 17400 e8600 e6000 e6200 e6300 22500 e17000 e8200 e6000 e6400 e6300 22550 e17000 e8200 e6000 e6400 e6300 22550 e17000 e7600 e6000 e6400 e6300 22500 e17000 e7000 e6000 e6400 e6300 22500 e17000 e7000 e6000 e6400 e6300 22500 e14000 e7400 e6000 e6600 e6200 201000 e11000 e7000 e6000 e6600 e6200 20700 e10500 e6800 e6000 e6600 e6200 20300 e9800 e6800 e6000 e6600 e6200 20300 e9800 e6800 e6000 e6600 e6200 20300 e9800 e6800 e6000 e6600 e6200 20100 e11000 e6800 e6000 e6600 e6200 20100 e9600 e7000 e6000 e6300 e6200 20100 e9600 e7000 e6000 e6300 e6200 2019500 e9800 e6800 e6000 e6300 e6200 219500 e9800 e6800 e6000 e6300 e6200 219500 e9800 e6600 e6000 e6300 e6200 219500 e900 e7000 e6000 e6300 e6200 219500 e900 e7000 e6000 e6300 e6200 219500 e9000 e7000 e6000 e6300 e6200 219500 e900 e7000 e6000 e6300 e6200 219500 e900 e7000 e6000 e6300 e6200 219500 e7000 e6000 e6000 e6300 e6100 219200 e10500 e6400 e6000 e6300 e6100 218800 e11000 e6000 e6000 e7000 e6300 e6100 218800 e11000 e6000 e6000 e7000 e7000 e6100 20000 e7000 e7000 e6000 e7000	OCT         NOV         DEC         JAN         FEB         MAR         APR           26000         17600         e11500         e6000         e6000         e6300         e6100           25500         17000         e11500         e6000         e6000         e6300         e6100           25500         16600         e11000         e6000         e6000         e6300         e6100           24900         16600         e10500         e6000         e6200         e6300         e6100           24900         17000         e9400         e6000         e6200         e6300         e6100           23100         17300         e8600         e6000         e6400         e6300         e6100           22200         e17000         e8200         e6000         e6400         e6300         e6100           22200         e16000         e7400         e6000         e6400         e6300         e6100           221600         e12000         e7200         e6000         e6600         e6200         e6100           21600         e1200         e7200         e6000         e6600         e6200         e6100           2000         e1000         e680	OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY           26000         17600         e11500         e6000         e6000         e6300         e6100         a32000           25900         17000         e11500         e6000         e6000         e6300         e6100         a28000           24900         16600         e10500         e6000         e6000         e6300         e6100         a26000           24900         16600         e10000         e6000         e6300         e6100         a25000           23100         17300         e9400         e6000         e6400         e6300         e6100         a2500           22700         17440         e8600         e6000         e6400         e6300         e6100         18200           22500         e16000         e7600         e6000         e6400         e6300         e6100         18800           22200         e14000         e7200         e6000         e6600         e6200         e6100         18800           21000         e15000         e6800         e6000         e6600         e6200         e6100         18800           21600 <t< td=""><td>OCT NOV DEC JAN FEB MAR APR MAY JUN  26000 17600 e11500 e6000 e6000 e6300 e6100 e34000 20500 25900 17000 e11500 e6000 e6000 e6300 e6100 e32000 21400 25900 17000 e10500 e6000 e6000 e6300 e6100 e32000 21400 24900 16600 e10500 e6000 e6000 e6300 e6100 e22000 21200 24900 17000 e10000 e6000 e6000 e6300 e6100 e22000 21200 24000 17000 e10000 e6000 e6000 e6300 e6100 e22000 21200 22700 17400 e8000 e6000 e6400 e6300 e6100 e22000 22000 22700 17400 e8000 e6000 e6400 e6300 e6100 e22000 22000 22500 e17000 e8200 e6000 e6400 e6300 e6100 e22000 22000 22500 e17000 e8200 e6000 e6400 e6300 e6100 19300 25400 22500 e17000 e8000 e6000 e6400 e6300 e6100 19300 25400 22500 e10000 e7000 e6000 e6400 e6300 e6100 19300 25400 221000 e11000 e7000 e6000 e6400 e6300 e6100 18200 24400 21600 e12000 e7000 e6000 e6600 e6200 e6100 18200 24300 2000 e9600 e7000 e6000 e6600 e6200 e6100 18200 24300 2000 e9600 e7000 e6000 e6600 e6200 e6200 19500 25300 2000 e9600 e7000 e6000 e6600 e6200 e6200 19500 27800 2000 e9600 e7000 e6000 e6400 e6200 e6200 19500 27800 2000 e9600 e7000 e6000 e6400 e6200 e6200 19500 27800 2000 e9600 e7000 e6000 e6400 e6200 e6400 17900 27200 e19500 e9800 e6600 e6000 e6400 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6400 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6000 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6000 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6000 e6000 e6300 e6100 e13500 16600 29500 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16600 29500 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16600 29500 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16600 31700 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16800 31700 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16800 31700 e13500 e1000 e6000 e6000 e6000 e6000 e6000 e6000 e6000 e6000 e6000 e6000</td><td>OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY         JUN         JUL           25000         17600         e11500         e6000         e6000         e6300         e6100         e3400         22500         32100         32100         22500         17000         e11500         e6000         e6000         e6100         e2000         21200         21400         33100         32100         32100         32100         32100         32100         32100         32100         32100         32100         32100         32100         21000         21000         21000         21000         21000         46000         e6000         e6300         e6100         e25000         21100         46000         46000         e6200         e6300         e6100         e25000         21700         40700         22000         22000         e6000         e6400         e6300         e6100         22500         26000         22000         e6000         e6400         e6300         e6100         18200         22400         4700         4700         48000         22000         e6000         e6200         e6100         18000         23300         48000         42000         47000         <t< td=""><td>  OCT</td></t<></td></t<>	OCT NOV DEC JAN FEB MAR APR MAY JUN  26000 17600 e11500 e6000 e6000 e6300 e6100 e34000 20500 25900 17000 e11500 e6000 e6000 e6300 e6100 e32000 21400 25900 17000 e10500 e6000 e6000 e6300 e6100 e32000 21400 24900 16600 e10500 e6000 e6000 e6300 e6100 e22000 21200 24900 17000 e10000 e6000 e6000 e6300 e6100 e22000 21200 24000 17000 e10000 e6000 e6000 e6300 e6100 e22000 21200 22700 17400 e8000 e6000 e6400 e6300 e6100 e22000 22000 22700 17400 e8000 e6000 e6400 e6300 e6100 e22000 22000 22500 e17000 e8200 e6000 e6400 e6300 e6100 e22000 22000 22500 e17000 e8200 e6000 e6400 e6300 e6100 19300 25400 22500 e17000 e8000 e6000 e6400 e6300 e6100 19300 25400 22500 e10000 e7000 e6000 e6400 e6300 e6100 19300 25400 221000 e11000 e7000 e6000 e6400 e6300 e6100 18200 24400 21600 e12000 e7000 e6000 e6600 e6200 e6100 18200 24300 2000 e9600 e7000 e6000 e6600 e6200 e6100 18200 24300 2000 e9600 e7000 e6000 e6600 e6200 e6200 19500 25300 2000 e9600 e7000 e6000 e6600 e6200 e6200 19500 27800 2000 e9600 e7000 e6000 e6400 e6200 e6200 19500 27800 2000 e9600 e7000 e6000 e6400 e6200 e6200 19500 27800 2000 e9600 e7000 e6000 e6400 e6200 e6400 17900 27200 e19500 e9800 e6600 e6000 e6400 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6600 17900 27200 e19500 e9800 e6600 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6400 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6000 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6000 e6000 e6300 e6200 e6000 17900 27200 e18800 e10000 e6000 e6000 e6300 e6100 e13500 16600 29500 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16600 29500 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16600 29500 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16600 31700 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16800 31700 e13500 e10000 e6000 e6000 e6300 e6100 e13500 16800 31700 e13500 e1000 e6000	OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY         JUN         JUL           25000         17600         e11500         e6000         e6000         e6300         e6100         e3400         22500         32100         32100         22500         17000         e11500         e6000         e6000         e6100         e2000         21200         21400         33100         32100         32100         32100         32100         32100         32100         32100         32100         32100         32100         32100         21000         21000         21000         21000         21000         46000         e6000         e6300         e6100         e25000         21100         46000         46000         e6200         e6300         e6100         e25000         21700         40700         22000         22000         e6000         e6400         e6300         e6100         22500         26000         22000         e6000         e6400         e6300         e6100         18200         22400         4700         4700         48000         22000         e6000         e6200         e6100         18000         23300         48000         42000         47000 <t< td=""><td>  OCT</td></t<>	OCT

See Period of Record, partial years used in monthly statistics From Dec. 27 to Dec. 31 From Dec. 27 to Feb. 4 From Feb. 14 to Mar. 31, 1974

Estimated

#### 15493000 CHENA RIVER NEAR TWO RIVERS

LOCATION.--Lat  $64^{\circ}54'10''$ , long  $146^{\circ}21'25''$ , in NE $^{1}/_{4}$  sec. 20, T. 1 N., R. 7 E. (Big Delta D-5 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on left bank about 200 ft upstream from bridge at mi 39.5 on the Chena Hot Springs Highway, 15 mi upstream from South Fork Chena River, 22 mi east of Two Rivers, and 41 mi east of Fairbanks.

DRAINAGE AREA. -- 937 mi².

PERIOD OF RECORD. -- October 1967 to current year.

GAGE.--Water-stage recorder. Datum of gage is 719.7 ft above sea level from datum used by Alaska Department of Transportation and Public Facilities. Prior to April 25, 1994, water stage recorder at site 2.5 mi downstream at datum of 700 ft.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 13, 1967 reached a stage of 26.6 ft at site and datum of gage in use prior to April 25, 1994, from floodmarks, discharge not determined.

		DISC	HARGE, CU	BIC FEET	PER SECOND, DAIL		YEAR OCTOR	BER 2002	TO SEPTI	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1150 1160 1220 1190 1100	615 577 560 615 631	e390 e390 e380 e360 e340	e190 e190 e190 e190 e190	e160 e160 e160 e160 e170	e150 e150 e150 e150 e150	e140 e140 e140 e140 e140	1890 e1400 e1100 985 860	913 967 841 794 723	367 363 374 391 391	4880 3680 3250 3710 3450	2420 7400 7260 5300 4400
6 7 8 9 10	913 974 1120 1100 1030	568 530 e420 e330 e280	e310 e280 e260 e240 e230	e180 e180 e180 e180 e180	e170 e170 e170 e170 e170	e150 e150 e150 e150 e150	e140 e130 e130 e130 e130	796 817 760 965 1510	883 2890 1860 1270 996	371 428 467 427 397	3090 2750 2420 2170 1980	3960 3410 3060 2770 2540
11 12 13 14 15	902 964 926 858 846	e270 e280 e300 e320 e350	e230 e230 e230 e220 e220	e170 e170 e170 e170 e170	e170 e170 e170 e170 e160	e150 e150 e150 e150 e140	e170	1830 1820 2250 2000 1590	842 759 664 582 527	393 385 388 459 1970	1840 1740 1660 1580 1490	2550 4040 3660 2970 2550
16 17 18 19 20	803 775 706 690 648	e380 e400 e430 e450 e460	e220 e220 e210 e210 e210	e170 e170 e170 e170 e170	e160 e160 e150 e150 e150	e140 e140 e140 e140 e140	e180 e200 e230 e280 e350	1300 1000 873 800 805	487 462 443 426 410	4080 3980 3980 2390 1730	1410 1390 1450 1370 1300	2350 2160 1960 1860 1740
21 22 23 24 25	685 666 665 677 670	e460 e450 e440 e430 e420	e210 e200 e200 e200 e200	e170 e170 e170 e160 e160		e140		808 803 747 790 818	392 374 360 356 375	1380 1170 1040 940 865	1270 1250 1230 1830 3800	1690 1590 1470 1410 1400
26 27 28 29 30 31	691 691 678 658 656 631	e420 e410 e410 e400 e400	e200 e200 e200 e200 e200 e200	e160 e160 e160 e160 e160 e160	e150 e150 e150 	e140 e140 e140 e140 e140 e140	e4500 e4200 e4000 3490 2570	782 849 915 978 986 888	403 391 388 394 387	885 4430 14200 7690 4470 5540	3110 2470 2120 1890 1750 1660	1350 1280 1220 1210 1200
MEAN MAX MIN	26443 853 1220 631 52450 0.91 1.05	13006 434 631 270 25800 0.46 0.52	7590 245 390 200 15050 0.26 0.30	5340 172 190 160 10590 0.18 0.21	4470 160 170 150 8870 0.17 0.18	4480 145 150 140 8890 0.15 0.18	27360 912 4500 130 54270 0.97 1.09	34715 1120 2250 747 68860 1.20 1.38	21559 719 2890 356 42760 0.77 0.86	66341 2140 14200 363 131600 2.28 2.63	68990 2225 4880 1230 136800 2.38 2.74	82180 2739 7400 1200 163000 2.92 3.26
STATIS	STICS OF	MONTHLY M	MEAN DATA	FOR WATER	YEARS 1968	- 200	3, BY WATER	YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	575 1656 1987 260 1969	276 617 1987 120 1969	188 369 1994 85.5 1977	133 242 1994 38.1 1970	108 246 1994 20.2 1970	95.3 171 1991 21.9 1970	241 912 2003 68.3 1982	1857 4210 1971 625 1998	1341 4038 1992 323 1969	1080 2505 1984 380 1976	1336 3207 1969 437 1976	1189 2739 2003 455 1976
SUMMARY	Y STATIST	CICS	FOR	2002 CALE	NDAR YEAR		FOR 2003 WA	TER YEAR		WATER YEA	RS 1968	- 2003#
ANNUAI HIGHES LOWEST HIGHES	TOTAL MEAN TANNUAL TANNUAL TDAILY TDAILY	MEAN MEAN		373464 1023 9600 a94	Aug 18 Mar 24		362474 993 14200 b130 133	Jul 28	3 7	706 1080 398 17700	Jun Feb	1971 1997 3 1992 6 1970
ANNUAI MAXIMU	SEVEN-I JM PEAK F	DAY MINIMU	)141	740800 1. 14. 2450 631 96			23.5 719000 1.0 14.3	0	5 3 8 8	17700 c20 20 20000 d22. 511200 0.	Feb Jun 04 Jun 75	6 1970 3 1992 3 1992
50 PEF 90 PEF	RCENT EXC RCENT EXC RCENT EXC	EEDS EEDS EEDS		631 96			2540 430 150			1660 330 86		

From Mar. 24 to Apr. 17 From Apr. 7 to Apr. 11 From Feb. 6 to Mar. 12, 1970 At site and datum then in use

Estimated

#### 15511000 LITTLE CHENA RIVER NEAR FAIRBANKS

LOCATION.--Lat  $64^{\circ}53'10''$ , long  $147^{\circ}14'50''$ , in  $SW^{1}/_{4}$  NE $^{1}/_{4}$  sec. 25, T. 1 N., R. 2 E. (Fairbanks D-1 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on downstream side of left bridge abutment at mi 11.9 Chena Hot Springs Highway, 22.5 mi upstream from mouth, and 14 mi northeast of Fairbanks.

DRAINAGE AREA. -- 372 mi².

PERIOD OF RECORD. -- August 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is 458.79 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and NOAA telephone telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAILY MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 578 367 e190 e160 e85 e65 e60 e55 e520 155 90 1680 2 355 e200 e160 e85 e70 e60 e55 e420 170 89 1260 1130 3 348 e210 e155 e85 e70 e60 e55 e340 165 95 1060 1500 334 e220 e150 e70 e55 156 103 1090 1370 4 e85 e60 e300 5 312 e220 e140 e70 e55 149 106 1050 1200 e85 e60 e270 6 284 e220 e135 e80 e70 e60 e55 e240 153 100 953 1110 291 e210 e130 e80 e70 e60 e55 e220 349 102 858 1000 8 315 e190 e125 e80 e70 e60e55 2.03 372 128 764 925 e120 314 e70 e55 214 279 124 691 852 e180 e80 e60 10 292 e150 e115 e80 e70 e60 e55 221 233 116 638 795 e125 11 263 e80 e70 e60 e55 206 119 592 783 12 279 e110 e110 e80 e70 e60 e60 248 e180 120 562 1050 2.67 291 1020 13 e105 e110 e80 e70 e60e60 e160 120 541 14 256 e100 e110 e75 e70 e60 e65 142 15 245 e100 e105 e75 e65 e60 e70 270 131 228 488 785 e105 e75 16 e235 e60 243 17 e220 e110 e105 e75 e60 660 680 211 117 690 436 696 e210 18 e120 e100 e75 e60 e55 e90 199 586 650 113 421 e200 e130 e75 e60 e55 2.0 e205 e140 e100 e75 e60 e55 e110 178 106 354 385 596 21 e220 e140 e100 e120 172 102 291 22 e230 e150 e100 e75 e60 e55 e160 169 99 252 359 549 e230 97 223 355 23 e155 e95 e75 e60 e55 e200 161 518 e230 e55 e200 499 e95 203 25 e225 e170 690 e75 e60 e55 e240 169 95 191 954 498 e170 e300 26 e220 e90 e75 e60 e55 164 97 192 980 479 27 e220 e170 e90 e70 e60 e55 e400 162 95 582 789 463 28 e215 e170 e90 e70 e60 e55 e660 160 94 2290 678 447 29 e210 e170 e90 e70 e55 e700 161 96 2900 608 444 1970 30 e205 e165 e90 e65 e55 e600 160 93 567 437 e200 e90 e65 e55 157 1600 539 31 7997 4755 3470 2380 1825 1790 4532 15296 TOTAL 4895 7098 21544 23183 MEAN 258 158 112 76.8 65.2 163 229 151 493 695 MAY 367 220 160 85 70 60 700 520 372 2900 1680 1500 100 60 93 200 55 55 157 MIN 90 65 89 355 437 6880 9710 8990 30340 42730 AC-FT 15860 9430 4720 3620 3550 14080 45980 CESM 0.69 0.43 0.30 0.21 0.18 0.16 0.44 0.62 0.41 1.33 1.87 2.15 2.08 0.80 0.18 0.49 0.71 0.48 0.24 0.18 0.45 IN. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2003, BY WATER YEAR (WY)#

SUMMARY STATISTICS	FOR 2002 CALEN	DAR YEAR	FOR 2003 WA	TER YEAR	WATER YEARS	1966 - 2003#
ANNUAL TOTAL	91393		98765			
ANNUAL MEAN	250		271		209	
HIGHEST ANNUAL MEAN					414	1967
LOWEST ANNUAL MEAN					103	1997
HIGHEST DAILY MEAN	1300	Aug 18	2900	Jul 29	12000	Aug 13 1967
LOWEST DAILY MEAN	a26	Mar 22	b55	Mar 18	c0.00	Mar 11 1967
ANNUAL SEVEN-DAY MINIMUM	26	Mar 22	55	Mar 18	0.00	Mar 11 1967
MAXIMUM PEAK FLOW			3020	Jul 29	d17000	Aug 13 1967
MAXIMUM PEAK STAGE			26.43	Jul 29	31.95	Aug 13 1967
ANNUAL RUNOFF (AC-FT)	181300		195900		151600	
ANNUAL RUNOFF (CFSM)	0.67		0.73		0.56	
ANNUAL RUNOFF (INCHES)	9.14		9.88		7.64	
10 PERCENT EXCEEDS	602		667		479	
50 PERCENT EXCEEDS	200		150		120	
90 PERCENT EXCEEDS	27		60		25	

31.6

72.0 1993

3.23

1967

270

1993

19.1

1970

1217

1991

1998

338

932

1992

99.2

1998

298

665

1981

85.0

1997

394

2147

1967

1997

332

773

2003

107

1966

MEAN

490

1987

69.8

1967

MAX

(WY)

MIN

(WY)

105

264

1994

32.0

1967

70.9

1986

22.5

1978

176

47.7

1987

7.90

1970

112

36.0

74.8

2001

6.00

1970

See Period of Record; partial years used in monthly statistics

h

From Mar. 22-30 From Mar. 18 to Apr. 11 From Mar. 11 to Apr. 15, 1967

From rating curve extended above  $3,000 \text{ ft}^3/\text{s}$  on basis of contracted-opening determination of peak flow d

#### 15514000 CHENA RIVER AT FAIRBANKS

LOCATION.--Lat  $64^{\circ}50'45''$ , long  $147^{\circ}42'04''$ , in  $NW^{1}/_{4}$  sec. 11, T. 1 S., R. 1 W. (Fairbanks D-2 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on right bank 100 ft downstream from Steese Highway Bridge, 800 ft upstream from Wendell Street bridge, 0.3 mi upstream from Noyes Slough, 11 mi upstream from mouth, and 11 mi downstream from Chena Slough.

DRAINAGE AREA.--1,995 mi².

PERIOD OF RECORD.--July 1947 to September 1948 (no winter records), October 1948 to current year.

GAGE.--Water-stage recorder and supplementary gage. Datum of gage is 422.92 ft above sea level. Supplementary gage, Chena River at Lathrop Street (15514003), 1.6 mi downstream on left bank, used during winter period. See WSP 1936 and 2136 for history of changes prior to April 27, 1968.

REMARKS.--Records are good except for estimated daily discharges, which are fair. Regulation during high-flow periods began July 9, 1981 at Moose Creek Dam 31.8 mi upstream. Flows on July 29 to August 2 and September 4-5 were regulated this year. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD--Outstanding floods occurred in early May 1905 and 1911, late August 1930, and May 11-14, 1937. See WDR AK-90-1 for more information.

May	11-14,	1937. See	e WDR AK-9	0-1 for m	ore inform	ation.						
		DISC	CHARGE, CUI	BIC FEET I	PER SECOND DAII		YEAR OCTO	OBER 2002 1	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2170	e1360	e980	e570	e480	e440	e360	3560	1360	785	9700	3150
2	2220	e1320	e980	e570	e480	e430	e360	2940	1330	781	9240	3680
3 4	2240 2280	e1300 e1280	e960 e930	e560 e550	e490 e500	e430 e430	e350 e350	2550 2310	1370 1340	779 777	7560 6520	6760 8830
5	2280	e1280 e1300	e930	e550	e520	e430	e350	1980	1290	785	6750	9210
6	2140	e1340	e930	e540	e530	e420	e350	1790	1280	789	6800	8290
7	1990	e1350	e920	e530	e540	e420	e340	1680	1290	783	6130	7290
8	1970	e1200	e900	e530	e540	e420	e340	1610	2420	780	5460	6400
9 10	2050 2050	e840 e680	e860 e820	e530 e520	e550 e550	e420 e420	e340 e350	1550 1560	2480 2040	829 848	4860 4350	5710 5200
11 12	1980 1880	e530 e500	e750 e700	e520 e520	e560 e560	e420 e420	e350 e360	1730 2030	1750 1560	831 815	3940 3650	4830 4850
13	1850	e500	e650	e520	e570	e410	e360	2220	1430	813	3430	6080
14	1830	e500	e650	e520	e560	e410	e370	2570	1340	824	3270	6390
15	1770	e510	e640	e520	e540	e410	e380	2560	1240	900	3150	5520
16 17	1730	e560	e640	e520	e500	e400	e390	2270	1160	1700	2980	4850
18	1670 e1560	e600 e680	e630 e630	e520 e520	e470 e460	e400 e390	e410 e460	2020 1790	1100 1050	4060 4640	2820 2700	4440 4170
19	e1430	e740	e620	e520	e450	e380	e490	1630	1010	4990	2650	3870
20	e1250	e780	e620	e520	e450	e380	e520	1520	976	3790	2570	3650
21	e1150	e830	e620	e520	e440	e380	e560	1470	935	2970	2470	3470
22 23	e1230 e1450	e880 e940	e620 e610	e520 e520	e440 e440	e380 e370	e640 e720	1430 1400	900 871	2490 2160	2380 2340	3320 3170
24	e1470	e980	e610	e520	e430	e370	e880	1370	845	1920	2370	3010
25	e1460	e1020	e600	e520	e430	e370	e1100	1340	823	1760	3040	2890
26	e1490	e1020	e600	e520	e430	e370	1490	1350	810	1680	4810	2800
27	e1490	e990	e600	e510	e430	e360	1860	1320	811	1770	4960	2720
28 29	e1470 e1460	e980 e980	e590 e590	e510 e500	e440	e360 e360	2640 4340	1310 1340	810 795	4450 8770	4290 3810	2640 2550
30	e1440	e980	e580	e480		e360	4670	1350	789	10200	3490	2500
31	e1430		e580	e470		e360		1380		9890	3280	
TOTAL	53870	27470	22340	16240	13780	12310	26480	56930	37205	79359	135770	142240
MEAN	1738	916	721	524	492	397	883	1836	1240	2560	4380	4741
MAX MIN	2280 1150	1360 500	980 580	570 470	570 430	440 360	4670 340	3560 1310	2480 789	10200 777	9700 2340	9210 2500
MED	1730	960	640	520	485	400	385	1630	1200	1680	3650	4300
	106900	54490	44310	32210	27330	24420	52520	112900	73800	157400	269300	282100
CFSM IN.	0.87 1.00	0.46 0.51	0.36 0.42	0.26	0.25 0.26	0.20	0.44	0.92 1.06	0.62 0.69	1.28 1.48	2.20 2.53	2.38
					YEARS 1948					1.40	2.55	2.03
										0055	0545	0015
MEAN MAX	1200 2413	597 1231	450 922	344 595	286 509	262 445	473 1406	3624 10250	2532 6721	2055 6133	2517 13120	2215 5735
(WY)	1962	1994	1994	1987	1968	1968	1993	1948	1949	1949	1967	1962
MIN	461	297	194	163	120	120	209	1050	816	665	682	615
(WY)	1967	1959	1977	1977	1953	1958	1977	1998	1969	1958	1957	1957
SUMMAR	Y STATI	STICS	FOR		ENDAR YEAR			WATER YEAR	2	WATER YE	ARS 1948	- 2003#
	TOTAL			636225			623994			1365		
ANNUAL	T ANNUA	I MEAN		1743			1710			2602		1962
										713		1958
HIGHES	T DAILY	MEAN	UM	8890	Aug 21		10200	Jul 30	)	64600	Aug	15 1967
ANNUAL	SEVEN-	MEAN Day minim	TTM	a215 216	Mar 20 Mar 19		b340 346	Apr /		120	Feb	1 1953 1 1953
				210	1101 13		10400	Jul 30 Apr 7 Apr 3 Jul 30 58 Jul 30	)	74400	Aug	15 1967
MAXIMU	M PEAK	STAGE		1060000			9.	58 Jul 30	)	18.	82 Aug	15 1967
ANNUAL	RUNOFF	(AC-FT) (CFSM)		1262000	87		1238000	. 86		989100	68	
ANNUAL	RUNOFF	(INCHES)		11.			11.			9.	00	
10 PER	CENT EX	CEEDS		4090			4220			3100		
90 PER	CENT EX	CEEDS CEEDS		⊥300 225			960 416			720 235		
>				223			410			255		

See Period of Record Mar. 20 to 25 April 7 to 9

a b

Monthly means published for Feb. 1953 and Mar. 1958 Site then in use Estimated

## 15515500 TANANA RIVER AT NENANA

LOCATION.--Lat 64°33'55", long 149°05'30", in SE¹/₄ sec. 14, T. 4 S., R. 8 W. (Fairbanks C-5 quad), Hydrologic Unit 19040507, on left bank on east end of Alaska Railroad dock in Nenana, and 0.3 mi upstream from Nenana River.

DRAINAGE AREA. -- 25,600 mi², approximately.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1962 to current year.

REVISED RECORDS. -- WSP 2136: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 338.50 ft above sea level. Prior to March 10, 1965, on right bank 280 ft downstream from railroad bridge 0.5 mi upstream at present datum. March 10, 1965 to March 23, 1968, nonrecording gage on railroad bridge 0.5 mi upstream at present datum.

REMARKS. -- Records fair. GOES satellite telemetry at station.

EXTREMES OUTSIDE PEROD OF RECORD.—Flood of May 1948 reached a stage of 15.9 ft, discharge, about 135,000  $\rm ft^3/s$ , contained in reports of Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

							***************************************					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	33200	20500	e14000	e8200	e7800	e7900	e7700	e40000	e25000	40100	82400	43000
2	32500	19400	e14000	e8200	e7800	e7900	e7700	e41000	e26900	41700	75500	46000
3	32400	e19000	e13500	e8200	e7800	e7900	e7700	31400	e26900	44800	68700	54200
4	31400	e19000	e13500	e8000	e7800	e7900	e7700	31100	e25600	48600	65100	66100
5	30100	e19000	e13000	e8000	e7800	e7900	e7700	31600	e24300	49100	62900	68600
6	28500	e19500	e12000	e8000	e7800	e7900	e7700	31200	25900	48500	60500	62300
7	27500	e20000	e11500	e8000	e7800	e7900	e7700	26900	28000	49100	56800	54600
8	26900	e20000	e11000	e8000	e8000	e7900	e7700	25200 23700	31000 34400	49800 51500	54200 52600	49200 44800
9 10	26800 26700	e19000 e18000	e10500 e9600	e7800 e7800	e8000 e8000	e7900 e7900	e7700 e7700	23200	32800	52900	51400	41600
11	25800	e16000	e9400	e7800	e8000	e7900	e7700	23500	32900	54200	50500	39300
12	25200	e13000	e9200	e7800	e8200	e7900	e7700	24000	35700	54500	51200	38800
13	24900	e12000	e9000	e7800	e8200	e7800	e7700	24300	38300	55700	55300	39900
14 15	24600 24200	e11500	e9000 e9000	e7800	e8200	e7800	e7800	24400 24900	38800 37900	57700 60700	61700 66900	40900 38100
13	24200	e11000	69000	e7800	e8200	e7800	e7800	24900	3/900	60700	00900	38100
16	23700	e11000	e8800	e7800	e8000	e7800	e8000	24200	36500	65200	67400	34600
17	e23000	e10500	e8800	e7800	e8000	e7800	e8000	22900	36100	78200	65200	31900
18	e22000	e10500	e9000	e7800	e7900	e7800	e8200	21600	36600	88400	65300	29900
19	e21500	e11000	e9000	e7800	e7900	e7800	e8400	20500	37600	92500	60400	28000
20	e21200	e11000	e8800	e7800	e7900	e7800	e8800	20100	38700	88100	54100	26200
21	e21000	e11500	e8600	e7800	e7900	e7800	e9200	20000	38900	79100	49200	25000
22	e21600	e11500	e8600	e7800	e7900	e7800	e9600	19900	38400	75900	45700	24100
23	e22000	e11500	e8600	e7800	e7900	e7800	e10000	20300	38100	74400	43300	23100
24	22100	e12000	e8400	e7800	e7900	e7700	e11000	20200	38900	72300	42300	22300
25	22400	e12000	e8400	e7800	e7900	e7700	e13000	20000	40400	69500	40400	21600
26	22400	e12500	e8400	e7800	e7900	e7700	e15000	20000	40900	68600	40900	21000
27	22000	e12500	e8400	e7800	e7900	e7700	e18000	20500	39300	71400	43600	20500
28	21400	e13000	e8200	e7800	e7900	e7700	e22000	21100	38600	81800	43600	19900
29	21000	e13000	e8200	e7800		e7700	e27000	21800	37700	94400	42500	19600
30	20900	e13500	e8200	e7800		e7700	e35000	22600	38700	96800	40700	20300
31	20800		e8200	e7800		e7700		23600		90800	39500	
TOTAL	769700	433900	304800	244000	222300	242200	326900	765700	1039800	2046300	1699800	1095400
MEAN	24830	14460	9832	7871	7939	7813	10900	24700	34660	66010	54830	36510
MAX	33200	20500	14000	8200	8200	7900	35000	41000	40900	96800	82400	68600
MIN	20800	10500	8200	7800	7800	7700	7700	19900	24300	40100	39500	19600
MED	23700	12800	9000	7800	7900	7800	7900	23500	37100	65200	54100	36300
	1527000	860600	604600	484000	440900	480400	648400	1519000	2062000	4059000	3372000	2173000
CFSM	0.97	0.56	0.38	0.31	0.31	0.31	0.43	0.96	1.35	2.58	2.14	1.43
IN.	1.12	0.63	0.44	0.35	0.32	0.35	0.48	1.11	1.51	2.97	2.47	1.59
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 1	962 - 2003	B, BY WAT	ER YEAR (	WY)#			
MEAN	17140	9432	7444	6778	6571	6504	8757	30880	47280	60090	56950	33720
MAX	26870	14460	10770	9065	8171	8161	15090	62210	87390	76770	98210	57690
(WY)	2001	2003	1986	1986	1986	1993	1995	1963	1962	1988	1967	1990
MIN	11420	5517	4532	4694	4421	4071	5870	16030	29750	44920	41510	21710
(WY)	1977	1977	1977	1977	1974	1974	1974	1964	1970	1996	1996	1976

[#] See Period of Record, partial years used in monthly statistics

e Estimated

# 15515500 TANANA RIVER AT NENANA—Continued

SUMMARY STATISTICS	FOR 2002 CALENDA	R YEAR	FOR 2003 WATE	ER YEAR	WATER YEARS	1962 - 2003#
ANNUAL TOTAL	10029200		9190800			
ANNUAL MEAN	27480		25180		24210	
HIGHEST ANNUAL MEAN					29310	1967
LOWEST ANNUAL MEAN					19530	1970
HIGHEST DAILY MEAN	80800	Aug 20	96800	Jul 30	183000	Aug 18 1967
LOWEST DAILY MEAN	a6800	Jan 22	b7700	Mar 24	c4000	Mar 6 1974
ANNUAL SEVEN-DAY MINIMUM	6800	Jan 22	7700	Mar 24	4000	Mar 6 1974
MAXIMUM PEAK FLOW			97700	Jul 29	186000	Aug 18 1967
MAXIMUM PEAK STAGE			12.79	Jul 29	d18.90	Aug 18 1967
ANNUAL RUNOFF (AC-FT)	19890000		18230000		17540000	
ANNUAL RUNOFF (CFSM)	1.07		0.98		0.95	
ANNUAL RUNOFF (INCHES)	14.57		13.36		12.85	
10 PERCENT EXCEEDS	60500		54900		58100	
50 PERCENT EXCEEDS	19500		20000		12000	
90 PERCENT EXCEEDS	6800		7800		6200	

[#] See Period of Record, partial years used in monthly statistics
a From Jan. 22 to Apr. 5
b From Mar. 24 to Apr. 13
c From Mar. 6 to Mar. 20, 1974
d At site then in use
e Estimated

# 15515500 TANANA RIVER AT NENANA—Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954-57, 1963-64, 1966-75, 1978-1995, and 2001 to current year.

PERIOD OF RECORD.--WATER TEMPERATURE: 1954 to 1956 (seasonal).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Loca- tion in X-sect. looking dwnstrm ft from 1 bank (00009)	Sample loc- ation, cross section ft from rt bank (72103)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
MAR									
19	1712	75.0		321	7.3	. 0	750	7.7	54
19	1722	220		320	7.3	. 0	750	7.8	54
19	1732	400		319	7.3	. 0	750	7.8	54
19	1742	565		320	7.3	. 0	750	7.8	54
19	1752	735		320	7.3	. 0	750	7.8	54
MAY									
08	1535	135		248	8.0	5.7	765	12.1	96
08	1538	245		248	8.0	5.8	765	11.8	94
08	1541	330		248	8.0	5.8	765	12.0	96
08	1544	430		248	8.0	5.8	765	12.0	96
08	1547	540		248	8.0	5.7	765	12.1	96
JUN	101.	310		210	0.0	J.,	, 05		50
11	1250		140.0	272	7.6	16.7	757	9.0	93
11	1310		270.0	272	7.8	16.7	757	9.1	94
11	1331		425.0	273	7.8	16.8	757	9.1	94
11	1350		530.0	271	7.8	16.8	757	9.0	93
11	1410		635.0	270	7.9	16.8	757	9.0	93
JUL	1110		033.0	2.0		10.0		3.0	, ,
22	1312		340.0	222	7.9	16.7	775	9.7	98
22	1322		260.0	221	7.9	16.7	775	9.6	97
22	1332		215.0	220	7.9	16.7	775	9.5	96
22	1342		155.0	221	7.9	16.7	775	9.5	96
22	1352		110.0	220	7.9	16.7	775	9.4	95
AUG	1332		110.0	220	,	10.7	773	J. 4	,,,
15	1302		150.0	237	7.6	13.4	731	9.4	94
15	1304		240.0	236	7.9	13.4	731	9.3	93
15	1304		340.0	237	8.0	13.4	731	9.3	93
15	1308		430.0	236	8.0	13.4	731	9.3	93
15	1310		600.0	236	8.0	13.4	731	9.3	93
SEP	1310		000.0	230	0.0	13.4	131	٠.5	,,
12	1302	576		242	7.8	7.2	768	11.0	90
12	1322	500		242	7.8	7.2	768	10.9	90
12	1342	425		242	7.9	7.2	768	10.7	88
12	1402	330		243	7.9	7.3	768	10.7	88
12	1402	225		243	7.9	7.3	768	10.7	87
±∠	T#77	223		243	1.9	1.3	700	10.0	0 /

													Turbid-
									Specif.	pH,			ity,
					Instan-			sample	conduc-	water,			wat unf
					taneous	Sam-		related	tance,	unfltrd	_	Temper-	lab,
				Stream	dis-	pling	Sampler	QA	wat unf	field,	ature,	ature,	Hach
			_	width,	charge,	method	type,	data,	uS/cm	std	air,	water,	2100AN
		Medium	Sample	feet	cfs	code	code	code	25 degC	units	deg C	deg C	NTU
Date	Time	code	type	(00004)	(00061)	(82398)	(84164)	(99111)	(00095)	(00400)	(00020)	(00010)	(99872)
MAR													
19	1830	9	9	934	7740	20	3044	30	320	7.3	-4.0	.0	9.4
MAY													
08	1440	9	9	638	26200	20	3056	1	248	8.0		5.7	180
28	1530	9	9		19600	20	3056	1	256	7.8		12.4	32
JUN													
11	1330	9	9		31500	20	3056	1	272	7.8		16.8	130
JUL													
22	1330	9	9	638	76200	20		1	221	7.9		16.7	E930
AUG													
15	1130	9	7		66100	20	3056	30	236	7.9		13.4	2000
SEP													
12	1340	9	9	697	38800	20	3056	10	242	7.9		7.3	97

# 15515500 TANANA RIVER AT NENANA—Continued

Date	ance, 254 nm, wat flt units /cm		Baro- metric pres- sure, mm Hg (00025)	oxygen, mg/L	Dis- solved oxygen, percent of sat- uration (00301)	water, unfltrd mg/L as CaCO3	fltrd, mg/L	water, fltrd, mg/L	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, field, mg/L as CaCO3 (00410)	Potas- sium, water, fltrd, mg/L (00935)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	<pre>ate wat   flt incrm. titr., field, mg/L</pre>
MAR 19	.032	.023	750	7.8	54	140	42.3	8.80	3.95	127	2.01	156	.0
MAY 08	.107	.079	765	12.0	95	120	34.2	7.64	3.58		1.79	109	.0
28	.108	.080		9.4		120	35.7	8.24	4.22		1.84	120	.0
JUN 11 JUL	.096	.071	757	9.0	93	130	35.5	8.80	4.36		1.99	107	.0
22	.056	.043	775	9.5	96	110	31.6	6.79	3.46		2.02	88	.0
AUG 15 SEP	.025	.018	731	9.3	93	120	34.1	7.19	3.60		2.98	90	.0
12	.104	.076	768	10.8	89	120	33.7	8.57	3.64		1.67	99	.0
Date	wat flt inc tit field, mg/L as CaCO3	fxd end field,	water, fltrd, mg/L	Chlor- ide, water, fltrd, mg/L (00940)	Flour- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	on evap. at 180 deg C wat flt mg/L	Residue water, fltrd, sum of consti- tuents mg/L (70301)	water, fltrd, mg/L as N	Nitrite + nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	mg/L as N
MAR 19	128	130	34.2	.74	.13	14.5	200	185	<.002	.186	.047	E.09	E.08
MAY 08	90	90	32.8	1.77	<.17	10.2	154	146	.003	.135	.027	.43	.14
28 JUN	98	98	35.4	2.20	<.2	10.0	164	157	.003	.054	<.015	.23	.11
11	88	89	40.6	2.63	<.2	9.13	163	156	E.002	.089	<.015	.36	E.07
JUL 22 AUG	72	72	37.3	1.86	<.2	7.01	138	134	E.002	.091	<.015	.87	<.10
15 SEP	74	74	40.4	1.43	<.2	5.88	143	141	<.002	.087	<.015	1.1	<.10
12	81	82	35.4	1.50	<.2	9.80	155	144	<.002	.145	E.009	.26	.11
Date	water, unfltrd mg/L	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	total,	total, percent	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, suspnd sedimnt total, ug/g (29816)	fltrd, ug/L	sedimnt total, ug/g	Arsenic water, fltrd, ug/L (01000)	sedimnt total, ug/g	water, fltrd, ug/L	Beryll- ium suspnd sedimnt total, ug/g (29822)
MAR 19 MAY	.032	<.004	<.007	.099	7.1	E1	1.2	<.30	39	. 4	890	46	2
08	.62	.007	<.007	.079	7.1	8	1.3	E.23	15	1.0	790	42	1
28 JUN	.25	.005	<.007	.058	5.8	10	.8	E.22	8.5	1.2	640	38	1
11 JUL	.42	E.004	<.007	.078	7.5	17	1.6	E.25	18	1.1	830	39	2
22 AUG	1.55	E.004	<.007	.077	8.0	21	1.4	.42	15	1.1	960	32	1
15 SEP	1.72	<.004	<.007	.070	8.6	18	2.0	.56	19	.9	1100	37	2
12	.50	.007	<.007	.065	6.4	14	1.6	E.17	11	.9	700	30	1

# 15515500 TANANA RIVER AT NENANA—Continued

Date	Beryll- ium water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium suspnd sedimnt total, ug/g (29826)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, suspnd sedimnt total, ug/g (29829)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt, suspnd sedimnt total, ug/g (35031)	Cobalt water, fltrd, ug/L (01035)	Copper, suspnd sedimnt total, ug/g (29832)		Iron, suspnd sedimnt total, percent (30269)	fltrd, ug/L	Lead, suspnd sedimnt total, ug/g (29836)
MAR													
19	<.06	23	1.0	< .04	100	<.08	22	.228	53	1.0	5.4	27	17
MAY 08	<.06	19	. 6	<.04	83	<.08	17	.201	45	2.2	4.1	57	14
28	<.06	32	. 4	<.04	70	<.08	12	.153	24	2.2	2.9	109	13
JUN	V.00	32	• •	1.04	70	1.00	12	.133	24	2.2	2.5	100	13
11	<.06	30	. 4	.04	110	<.08	16	.164	46	2.3	4.1	28	16
JUL													
22	<.06	17	. 4	< .04	92	<.08	18	.102	51	1.4	4.3	E5	14
AUG													
15	<.06	20	.6	< .04	130	<.08	20	.089	55	.8	4.7	E6	20
SEP	. 0.0	4.5	.2	- 00	0.4		4.4	1.50	2.0	4 5	2 2		4.0
12	<.06	17	. 2	E.02	84	<.08	14	.168	30	1.7	3.3	63	13
	Lead water, fltrd, ug/L	sedimnt total, ug/g	Lithium water, fltrd, ug/L	sedimnt total, ug/g	ese, water, fltrd, ug/L	total, ug/g	suspnd sedimnt total, ug/g	Molyb- denum, water fltrd, ug/L	sedimnt total, ug/g	Nickel, water, fltrd, ug/L	Selen- ium, suspnd sedimnt total, ug/g	Selen- ium, water, fltrd, ug/L	Silver, suspnd sedimnt total, ug/g
Date	water, fltrd,	suspnd sedimnt total,	water, fltrd,	ese, suspnd sedimnt total,	ese, water, fltrd,	suspnd sedimnt total,	denum, suspnd sedimnt total,	denum, water fltrd,	suspnd sedimnt total,	water, fltrd,	ium, suspnd sedimnt total,	ium, water, fltrd,	suspnd sedimnt total,
Date MAR 19	water, fltrd, ug/L	suspnd sedimnt total, ug/g	water, fltrd, ug/L	ese, suspnd sedimnt total, ug/g	ese, water, fltrd, ug/L	suspnd sedimnt total, ug/g	denum, suspnd sedimnt total, ug/g	denum, water fltrd, ug/L	suspnd sedimnt total, ug/g	water, fltrd, ug/L	<pre>ium, suspnd sedimnt total, ug/g</pre>	ium, water, fltrd, ug/L	suspnd sedimnt total, ug/g
MAR 19	water, fltrd, ug/L (01049)	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130)	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056)	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065)	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850)
MAR 19 MAY 08 28	water, fltrd, ug/L (01049)	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130)	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056)	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimmt total, ug/g (29843)	denum, water fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065)	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850)
MAR 19 MAY 08 28 JUN	water, fltrd, ug/L (01049) <.08 E.04 E.04	suspnd sedimnt total, ug/g (35050) 23 23 17	water, fltrd, ug/L (01130) 2.7 2.6 3.9	ese, suspnd sedimnt total, ug/g (29839) 4000 930 630	ese, water, fltrd, ug/L (01056) 83.2 41.0 20.0	suspnd sedimnt total, ug/g (29841) .09	denum, suspnd sedimnt total, ug/g (29843) 2 2 2	denum, water fltrd, ug/L (01060) 1.1 1.1 1.3	suspnd sedimnt total, ug/g (29845) 60 45 33	water, fltrd, ug/L (01065) 1.55 2.17 2.12	ium, suspnd sedimnt total, ug/g (29847) M M	ium, water, fltrd, ug/L (01145) .5 .6 .6	suspnd sedimnt total, ug/g (29850) <.5 <.5
MAR 19 MAY 08 28 JUN 11	water, fltrd, ug/L (01049) <.08	suspnd sedimnt total, ug/g (35050) 23	water, fltrd, ug/L (01130) 2.7	ese, suspnd sedimnt total, ug/g (29839) 4000	ese, water, fltrd, ug/L (01056) 83.2	suspnd sedimnt total, ug/g (29841) .09	denum, suspnd sedimnt total, ug/g (29843)	denum, water fltrd, ug/L (01060) 1.1	suspnd sedimnt total, ug/g (29845) 60	water, fltrd, ug/L (01065) 1.55	ium, suspnd sedimnt total, ug/g (29847) M	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850) <.5
MAR 19 MAY 08 28 JUN 11 JUL	water, fltrd, ug/L (01049) <.08 E.04 E.04	suspnd sedimnt total, ug/g (35050) 23 23 17 26	water, fltrd, ug/L (01130) 2.7 2.6 3.9 4.8	ese, suspnd sedimnt total, ug/g (29839) 4000 930 630 840	ese, water, fltrd, ug/L (01056) 83.2 41.0 20.0	suspnd sedimnt total, ug/g (29841) .09 .09 .02	denum, suspnd sedimnt total, ug/g (29843)	denum, water fltrd, ug/L (01060) 1.1 1.1 1.3	suspnd sedimnt total, ug/g (29845) 60 45 33	water, fltrd, ug/L (01065) 1.55 2.17 2.12 1.53	ium, suspnd sedimnt total, ug/g (29847) M M M	ium, water, fltrd, ug/L (01145) .5 .6 .6	suspnd sedimnt total, ug/g (29850) <.5 <.5 <.5
MAR 19 MAY 08 28 JUN 11 JUL 22	water, fltrd, ug/L (01049) <.08 E.04 E.04	suspnd sedimnt total, ug/g (35050) 23 23 17	water, fltrd, ug/L (01130) 2.7 2.6 3.9	ese, suspnd sedimnt total, ug/g (29839) 4000 930 630	ese, water, fltrd, ug/L (01056) 83.2 41.0 20.0	suspnd sedimnt total, ug/g (29841) .09	denum, suspnd sedimnt total, ug/g (29843) 2 2 2	denum, water fltrd, ug/L (01060) 1.1 1.1 1.3	suspnd sedimnt total, ug/g (29845) 60 45 33	water, fltrd, ug/L (01065) 1.55 2.17 2.12	ium, suspnd sedimnt total, ug/g (29847) M M	ium, water, fltrd, ug/L (01145) .5 .6 .6	suspnd sedimnt total, ug/g (29850) <.5 <.5
MAR 19 MAY 08 28 JUN 11 JUL 22 AUG	water, fltrd, ug/L (01049) <.08 E.04 E.04 <.08	suspnd sedimnt total, ug/g (35050) 23 23 17 26	water, fltrd, ug/L (01130) 2.7 2.6 3.9 4.8 3.6	ese, suspnd sedimnt total, ug/g (29839)  4000  930 630  840  720	ese, water, fltrd, ug/L (01056) 83.2 41.0 20.0 13.7	suspnd sedimnt total, ug/g (29841) .09 .09 .02 .06	denum, suspnd sedimnt total, ug/g (29843)	denum, water fltrd, ug/L (01060) 1.1 1.1 1.3	suspnd sedimnt total, ug/g (29845) 60 45 33 51	water, fltrd, ug/L (01065) 1.55 2.17 2.12 1.53 1.65	ium, suspnd sedimnt total, ug/g (29847) M M M	ium, water, fltrd, ug/L (01145) .5 .6 .6 E.5	suspnd sedimnt total, ug/g (29850) <.5 <.5 <.5 <.5
MAR 19 MAY 08 28 JUN 11 JUL 22	water, fltrd, ug/L (01049) <.08 E.04 E.04	suspnd sedimnt total, ug/g (35050) 23 23 17 26	water, fltrd, ug/L (01130) 2.7 2.6 3.9 4.8	ese, suspnd sedimnt total, ug/g (29839) 4000 930 630 840	ese, water, fltrd, ug/L (01056) 83.2 41.0 20.0	suspnd sedimnt total, ug/g (29841) .09 .09 .02	denum, suspnd sedimnt total, ug/g (29843)	denum, water fltrd, ug/L (01060) 1.1 1.1 1.3	suspnd sedimnt total, ug/g (29845) 60 45 33	water, fltrd, ug/L (01065) 1.55 2.17 2.12 1.53	ium, suspnd sedimnt total, ug/g (29847) M M M	ium, water, fltrd, ug/L (01145) .5 .6 .6	suspnd sedimnt total, ug/g (29850) <.5 <.5 <.5

# 15515500 TANANA RIVER AT NENANA—Continued

Date	Silver, water, fltrd, ug/L (01075)	Stront- ium, suspnd sedimnt total, ug/g (35040)	Stront ium, water, fltrd, ug/L (01080	ium, suspnd sedimnt ug/g	suspnd sedimnt total, percent		fltrd, ug/L	Zinc, suspnd sedimnt total, ug/g (29855)	fltrd, ug/L		fltrd, ug/L	carbon, water, fltrd, mg/L	Inor- ganic carbon suspnd sedimnt total, mg/L (00688)
MAR	(	(,	(	, (,	, (000=1,	(=====,	(/	(=====,	(,	(,	(	(	( /
19 MAY	<.2	220	190	<50	.410	120	. 4	180	5	<50	.78	1.6	<.1
08	<.2	250	156	<50	.400	120	1.3	89	3	<50	.85	3.5	.5
28	<.2	220	176	<50	.340	86	2.0	72	2	<50	.92	3.0	<.1
JUN													
11	<.2	250	146	<50	2.3	140	.8	130	3	<50	.95	2.8	.2
JUL													
22	<.2	230	136	< 50	.470	130	.6	100	<1	<50	.88	1.7	2.6
AUG													
15	<.2	220	141	<50	.440	150	.9	120	M	<50	1.08	1.0	E12.0
SEP													
12	<.2	220	140	<50	.410	110	.6	75	<1	<50	.73	3.2	. 4
Date	carl su sed to	oon, casspnd simnt sectal, to	uspnd dimnt s otal, mg/L p	suspnd sedimnt total, percent	Organic carbon, suspnd sedimmt percent (50465)	Partic- ulate nitro- gen, susp, water, mg/L (49570)	Suspnd. sedimnt conc, flow through cntrfug mg/L (50279)	Sus- pended sedi- ment concen- tration mg/L (80154)	pended sedi- ment load, tons/	d ment sieve diame percent d <.063	- , e tr nt mm		
MAR 19		. 3	.3	1.2	1.1	<.02	24	30	627	54			
MAY							24	30	027				
08		. 0	4.5	.70	. 5	.25	870	976	69000	51			
28 JUN	1	. 0	1.0	.50	. 4	.08		342	18100	30			
11 JUL	1	. 8	2.1	.80	.5	.15	545	543	46200	55			
22	6	. 9	9.4	.60	. 4	.44	2600	2940	604000	62			
AUG 15 SEP	E3	.0 E	15.0	.40	. 4	E.64	3790	3960	707000	79			
12	2	. 1	2.5	.60	. 4	.14	654	806	84400	30			

#### 15518040 NENANA RIVER AT HEALY

LOCATION.--Lat  $63^{\circ}51'15''$ , long  $148^{\circ}57'20''$ , in  $SE^{1}/_{4}$  sec. 20, T. 12 S., R. 7 W. (Healy D-4 quad), Denali Borough, Hydrologic Unit 19040508, on left bank upstream side of Healy Spur railroad bridge, 0.3 mi east of Parks Hwy in Healy, 0.4 mi downstream from Healy Creek, and 4 mi upstream of Lignite Creek.

DRAINAGE AREA. -- 2100 mi².

PERIOD OF RECORD. -- April 1990 to September 1991, May to September 2003.

GAGE.--Water-stage-recorder. Datum of gage is 1244.17 ft above NGVD of 1929. Prior to Sept. 26, 1990, non-recording gage site 60 ft downstream at same datum. A National Weather Service wire-weight is attached to the down-stream edge of the highway bridge and was established in June 1972.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge  $31,200 \text{ ft}^3/\text{s}$ , September 15, 1990, gage height, 14.4 ft, from flood marks; minimum daily not determined, occurred during period of ice effect.

EXTREMES FOR CURRENT YEAR.—Maximum discharge 31,000  $\mathrm{ft}^3/\mathrm{s}$ , July 28, 2003, gage height, 14.37 ft, may have been higher during period of no record; minimum daily not determined, occurred during period of ice effect.

DISCHARGE,	CUBIC	FEET	PER	SECOND,	WATER	YEAR	MAY	TO	SEPTEMBER	2003
			D	AILY MEA	N VALU	ES				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e1900	6060	9060	13200	9910
2								e1800	5690	10400	10300	10500
3								e2100	4610	13900	9040	11200
4								e2100	4440	11500	8710	12600
5								e2000	4960	10100	7690	11400
6								e2000	6750	9310	7080	9450
7								e2200	7830	8780	6670	8230
8								e2400	7360	8980	6750	7500
9								e2600	6770	9440	6800	6920
10								e2500	7770	9910	6790	6520
10								62300	7770	2210	0750	0320
11								e2900	10600	8890	7340	6180
12								e2600	12500	8690	8600	6120
1.3								e3000	12200	8660	10500	5990
14								e3000	10400	8960	e13000	5340
15								e3400	9580	9610	e15000	4910
13								e3400	9360	9010	613000	4910
16								3210	9310	16300	13100	4620
17								2850	8460	26000	16200	4430
18								2690	8870	22700	14400	4060
19								2620	9070	19900	10800	3790
20						±950		2650	8630	16900	8720	3730
20						+550		2030	0030	10000	0720	3730
21								2630	8350	14800	7940	3720
22								2840	8280	13200	7570	3680
23								2740	8520	12100	6870	3550
24								2700	9230	10700	6400	3430
25									9370	9870		3490
25								2840	9370	9870	6410	3490
26								3160	8750	9160	7550	3490
27								3390	7560	15100	8330	3390
28								3310	7340	27800	7880	3360
29								3770	7710	21400	7440	3980
30								4250	8280	17300	7250	5310
31								5100		16400	9300	
TOTAL								87150	245250	415820	283630	180800
MEAN								2811	8175	13410	9149	6027
MAX								5100	12500	27800	16200	12600
MIN								1800	4440	8660	6400	3360
AC-FT								172900	486500	824800	562600	358600
CFSM								1.34	3.89	6.39	4.36	2.87
IN.								1.54	4.34	7.37	5.02	3.20

[‡] Result of discharge measurement

e Estimated

## 15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY

LOCATION.--Lat  $63^{\circ}54'17''$ , long  $148^{\circ}59'01''$ , in  $SE^{1}/_{4}$   $NE^{1}/_{4}$  sec. 6, T. 11 S., R. 7 W. (Healy D-4 quad), Hydrologic Unit 19040508, on right bank 300 ft downstream from culverts on access road to Usibelli Coal Mine office, 1,000 ft upstream from mouth, and 3.5 mi north of Healy.

DRAINAGE AREA.--48.1 mi².

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1985 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,300 ft above sea level, from topographic map. Prior to May 22, 1987 on left bank, 400 ft upstream at same datum. From May 22, 1987 to September 30, 1997 on left bank, 300 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges which are poor. Precipitation gage at station; daily values of precipitation are available from the computer files of the Alaska Science Center, Water Resources Office. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 24 24 24 23	e21 e21 e21 e20 e20	e8.0 e7.8 e7.8 e7.8 e7.6	e9.4 e9.6 e9.6 e9.8 e9.8	e9.2 e9.0 e9.0 e9.0	e8.2 e8.2 e8.2 e8.2 e8.2	e7.6 e7.6 e7.6 e7.6	e9.8 e11 e12 e13 e15	79 77 76 74 72	105 143 e270 e200 e540	63 62 63 66 66	63 72 56 53 50
6 7 8 9 10	23 23 21 23 23	e20 e20 e18 e18 e18	e7.6 e7.6 e7.6 e7.4	e9.8 e10 e10 e10 e10	e9.0 e8.8 e8.8 e8.8 e8.8	e8.0 e8.0 e8.0 e8.0	e7.6 e7.6 e7.6 e7.6	e18 e22 e32 e43 e65	72 74 73 70 68	e350 e200 e130 e95 74	76 84 78 85 116	56 56 54 70 68
11 12 13 14 15	20 e19 e18 e18 e18	e17 e16 e16 e15 e14	e7.4 e7.4 e7.4 e7.6	e10 e10 e10 e10 e10	e8.8 e8.8 e8.6 e8.6	e8.0 e8.0 e8.0 e8.0	e7.6 e7.6 e7.6 e7.6	e100 e130 e150 e160 e170	67 73 77 77 64	68 65 62 60	86 83 88 71 67	57 53 50 48 47
16 17 18 19 20	e18 e18 e18 e18	e14 e13 e12 e12 e12	e7.6 e7.6 e7.6 e7.8	e10 e10 e10 e9.8 e9.8	e8.6 e8.6 e8.6 e8.4	e8.0 e8.0 e8.0 e8.0	e7.6 e7.6 e7.8 e7.8 e8.0	e180 e190 e200 e200 e200	57 54 55 112 140	60 61 62 62 62	172 499 301 214 110	48 50 52 98 65
21 22 23 24 25	e18 e18 e19 e19 e20	e11 e10 e9.8 e9.4 e9.0	e7.8 e8.0 e8.2 e8.2 e8.4	e9.8 e9.6 e9.6 e9.6	e8.4 e8.4 e8.4 e8.4	e7.8 e7.8 e7.8 e7.8 e7.8	e8.0 e8.0 e8.0 e8.0 e8.2	e190 e170 e150 130 113	165 193 118 109 105	58 57 57 59 63	107 101 86 81 72	55 54 54 58 54
26 27 28 29 30 31	e20 e20 e20 e20 e21 e21	e8.6 e8.4 e8.2 e8.2	e8.6 e8.8 e8.8 e9.0 e9.2 e9.4	e9.4 e9.4 e9.2 e9.2 e9.2	e8.2 e8.2 e8.2 	e7.8 e7.8 e7.8 e7.8 e7.8 e7.6	e8.2 e8.4 e8.6 e9.0 e9.4	90 85 78 77 87	101 99 97 96 95	60 62 74 68 64	64 65 67 62 57 54	52 50 48 52 48
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	630 20.3 24 18 20 1250 0.42 0.49	429.0 14.3 21 8.2 14 851 0.30 0.33	246.4 7.95 9.4 7.4 7.8 489 0.17 0.19	301.4 9.72 10 9.2 9.8 598 0.20 0.23	242.4 8.66 9.2 8.2 8.6 481 0.18 0.19	246.6 7.95 8.2 7.6 8.0 489 0.17 0.19	236.6 7.89 9.4 7.6 7.6 469 0.16 0.18	3170.8 102 200 9.8 90 6290 2.13 2.45	2689 89.6 193 54 77 5330 1.86 2.08	3413 110 540 57 63 6770 2.29 2.64	3266 105 499 54 78 6480 2.19 2.53	1691 56.4 98 47 54 3350 1.17 1.31
STATIST	rics of	MONTHLY N	MEAN DATA	FOR WATER	YEARS 19	85 - 2002	, BY WATI	ER YEAR (W	Y)#			
MEAN MAX (WY) MIN (WY)	22.7 47.4 1994 10.3 1988	15.9 25.4 1994 4.87 1988	12.0 20.0 1987 1.65 1988	9.98 18.7 1995 0.95 1986	8.44 20.6 1994 0.000 1986	8.44 19.1 1994 0.000 1986	22.4 45.5 1994 0.000 1986	78.5 166 1992 40.1 1999	65.5 145 1989 30.2 2001	48.0 110 2002 25.6 1996	53.3 112 2000 22.7 1999	43.2 134 1990 17.6 1987

See Period of Record, partial years used in monthly statistics Estimated

# 15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY—Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1985 - 2002#
ANNUAL TOTAL	9721.4	16562.2	
ANNUAL MEAN	26.6	45.4	32.1
HIGHEST ANNUAL MEAN			45.4 2002
LOWEST ANNUAL MEAN			21.1 1999
HIGHEST DAILY MEAN	191 Jul 31	e540 Jul 5	852 Jun 25 1989
LOWEST DAILY MEAN	a7.4 Dec 9	a7.4 Dec 9	b0.00 Feb 1 1986
ANNUAL SEVEN-DAY MINIMUM	7.4 Dec 8	7.4 Dec 8	0.00 Feb 1 1986
MAXIMUM PEAK FLOW		c780 Jul 5	d2400 Aug 21 1986
MAXIMUM PEAK STAGE		f5.20 Jul 5	g11.05 Aug 21 1986
MAXIMUM PEAK STAGE		h8.31 May 20	
ANNUAL RUNOFF (AC-FT)	19280	32850	23270
ANNUAL RUNOFF (CFSM)	0.55	0.94	0.67
ANNUAL RUNOFF (INCHES)	7.52	12.81	9.07
10 PERCENT EXCEEDS	49	103	69
50 PERCENT EXCEEDS	20	18	20
90 PERCENT EXCEEDS	9.3	7.8	5.0

a From Dec. 9 to 14
b From Feb. 1 to Apr. 30, 1986
c From rating curve extended above 110 ft³/s on basis of slope-area measurement at gage height of 5.20 ft.
d Estimated discharge from rating curve extended above 280 ft³/s based on surface-float measurement at gage
e Estimated
f From floodmarks
g At site then in use, same datum
h Backwater from snow and ice

## 15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

					DAI	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	53 64 53 50 39	51 57 56 58 56	e21 e21 e20 e20 e20	e15 e15 e15 e15 e15	e12 e12 e12 e12 e12	e10 e10 e10 e10 e10	e9.4 e9.4 e9.4 e9.4	e14 e14 e14 e15 e15	47 44 43 43 43	17 18 20 19 16	e80 e70 e130 e160 97	129 298 170 122 101
6 7 8 9 10	55 58 57 48 42	57 56 47 e42 e38	e19 e19 e19 e19 e18	e15 e15 e14 e14 e14	e12 e12 e11 e11 e11	e10 e10 e9.8 e9.8 e9.8	e9.4 e9.4 e9.4 e9.4	e16 e17 e18 e19 e20	45 88 57 40 37	17 18 15 13	70 56 51 47 44	78 70 65 60 57
11 12 13 14 15	53 54 52 56 52	e37 e38 e36 e34 e32	e18 e18 e18 e18 e18	e14 e14 e14 e14 e14	e11 e11 e11 e11	e9.8 e9.8 e9.8 e9.8	e9.8 e10 e11 e11	e23 e26 e29 e32 e34	41 34 30 26 22	13 11 12 13 16	41 40 38 37 36	69 135 87 64 60
16 17 18 19 20	52 48 e43 e39 e40	e31 e29 e28 e27 e26	e17 e17 e17 e17 e17	e14 e13 e13 e13 e13	e11 e11 e11 e11	e9.6 e9.6 e9.6 e9.6	e11 e11 e11 e11	40 42 47 41 39	19 18 18 21 28	39 93 88 64 57	37 42 39 36 34	e55 e52 e50 e48 e46
21 22 23 24 25	e44 e56 77 87 78	e25 e25 e24 e23 e23	e17 e17 e16 e16 e16	e13 e13 e13 e13 e13	e11 e11 e11 e11 e10	e9.6 e9.6 e9.6 e9.6	e11 e11 e11 e12 e12	42 39 38 38 41	30 29 30 24 22	57 56 51 50 47	34 48 42 52 50	e51 e49 e46 e42 e40
26 27 28 29 30 31	72 63 57 59 60 57	e22 e22 e22 e21 e21	e16 e16 e16 e16 e16 e15	e13 e13 e12 e12 e12 e12	e10 e10 e10 	e9.6 e9.6 e9.6 e9.4 e9.4	e12 e13 e13 e13 e13	43 42 39 41 41 43	23 21 21 20 18	49 95 e120 e70 e60 e120	43 39 36 36 36 107	36 34 36 45 42
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	1718 55.4 87 39 54 3410 1.15 1.33	1064 35.5 58 21 32 2110 0.74 0.82	548 17.7 21 15 17 1090 0.37 0.42	422 13.6 15 12 14 837 0.28 0.33	311 11.1 12 10 11 617 0.23 0.24	301.6 9.73 10 9.4 9.6 598 0.20 0.23	322.8 10.8 13 9.4 11 640 0.22 0.25	962 31.0 47 14 38 1910 0.65 0.74	982 32.7 88 18 29 1950 0.68 0.76	1347 43.5 120 11 39 2670 0.90 1.04	1708 55.1 160 34 42 3390 1.15 1.32	2237 74.6 298 34 56 4440 1.55 1.73
STATIST	TICS OF N	MONTHLY ME	EAN DATA	FOR WATER	YEARS 198	35 - 2003	, BY WATER	R YEAR (WY	) #			
MEAN MAX (WY) MIN (WY)	24.5 55.4 2003 10.3 1988	17.0 35.5 2003 4.87 1988	12.3 20.0 1987 1.65 1988	10.2 18.7 1995 0.95 1986	8.59 20.6 1994 0.000 1986	8.51 19.1 1994 0.000 1986	21.7 45.5 1994 0.000 1986	75.9 166 1992 31.0 2003	63.8 145 1989 30.2 2001	47.8 110 2002 25.6 1996	53.4 112 2000 22.7 1999	44.9 134 1990 17.6 1987
SUMMARY	STATIST	rics	FOR	2002 CAL	ENDAR YEAF	₹	FOR 2003 V	WATER YEAR		WATER YEA	RS 1985	- 2003#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN F ANNUAL ANNUAL F DAILY ME SEVEN-DA F PEAK F P	MEAN MEAN EAN AY MINIMUM LOW FAGE (AC-FT) (CFSM) (INCHES) EEDS			Jul 5 6 Mar 31 6 Mar 31 06 37	5 L L	b9.4 9.4 577 4.6	Sep 2 4 Mar 30 4 Mar 30 Sep 2 52 Sep 2 52 May 1		32.1 45.4 21.1 852 c0.0 0.0 d2400 f11.0 23290 0.6 9.0 68 20 5.5	Jun 2 0 Feb 0 0 Feb Aug 2 5 Aug 2	2002 1999 5 1989 1 1986 1 1986 1 1986 1 1986

[#] See Period of Record, partial years used in monthly statistics
a From Mar. 31 to Apr. 17
b From Mar. 30 to Apr. 10
c From Feb. 1 to Apr. 30, 1986
d Estimated discharge from rating curve extended above 280 ft³/s based on surface-float measurement at gage
e Estimated
At site then in use, same datum
g Backwater from snow and ice
h From floodmarks

# 15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY—Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1980 to 1981, 1986 to current year

Date	Time	Mediu code		height, feet	Instan- taneous dis- charge, cfs (00061)	code	Sampler type, code (84164)		Temper- ature, air, deg C (00020)	Sus- pended sedi- ment concen- tration mg/L (80154)		sedi- ment, falldia dst wat percent <.002mm	Suspnd. sedi- ment, falldia dst wat percent <.004mm (70338)
JUN													
19	1330	9	19.5	2.14	19	10	3001	12.4		294	15	41	54
JUL													
01	1300	9	12.7	2.12	18	10	3001			166	7.9		
17	1424	9	24.7	2.87	113	10	3001	13.5		6900	2110	11	17
AUG 05	1315	9	24.5	2.68	87	10	3001	6.5	12.5	1120	264	18	26
SEP	1315	9	24.5	2.08	87	10	3001	0.5	12.5	1120	204	18	20
04	1353	9	37.9	2.93	117	10	3001	7.0		1330	420	==	==
25	1744	9	12.8	2.37	40	10	3001	2.0	1.0	88	9.5		
23	1/44	9	12.0	2.57	40	10	3001	2.0	1.0	00	9.5		
Date	s fa ds pe <	spnd. sedi- hent, lldia st wat ercent 008mm	Suspnd. sedi- ment, falldia dst wat percent <.016mm (70340)	Suspnd. sedi- ment, falldia dst wat percent <.031mm (70341)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Suspnd. sedi- ment, sieve diametr percent <.125mm (70332)	Suspnd. sedi- ment, sieve diametr percent <.25mm (70333)	sedi- ment, sieve diamet percen <.5 m	sedi ment siev r diame t perce m <1 m	- sed: , ment e siev tr diame nt perce m <2 n	i- pe: t, sed ve si etr dia ent per mm <	us- nded imnt eve metr cent 4mm 314)	
JUN 19		72	83	85	87	91	96	99	100		_		
JUL 01					83	87	93	99	100				
17 AUG		25	35	42	47	63	83	96	99	100	)		
05		35	43	49	51	60	73	93	97	98	3 1	00	
SEP 04 25			 	 	55 72	65 83	81 91	96 97	98 100			00	

## 15564879 SLATE CREEK AT COLDFOOT

LOCATION.--Lat  $67^{\circ}15'17''$ , long  $150^{\circ}10'24''$ , in NW $^{1}/_{4}$  sec. 15, T. 28 N., R. 12 W. (Wiseman B-1 quad), Hydrologic Unit 19040601, on left bank 40 ft downstream from bridge on Dalton Highway, 1.1 mi upstream from mouth and 0.1 mi north of Coldfoot.

DRAINAGE AREA.--73.4 mi².

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Annual maximums, water years 1981-94. May 1995 to current year (no winter records in water years 1995-98).

REVISED RECORDS.--WRD AK-99-1: 1984(M), 1989(M), 1993(M), 1994(M), 1998(M).

GAGE.--Water-stage recorder. Elevation of gage is 1050 ft above sea level, from topographic map. Prior to May 5, 1995, nonrecording gage at site 105 ft upstream at same datum. May 5, 1995 to Present, recording gage at site 60 ft downstream at same datum.

REMARKS.--Records fair, except estimated daily discharges which are poor. GOES satellite telemetry at station.

		DISC	HARGE,	CUBIC FEET		ND, WATER AILY MEAN		TOBER 2002	TO SEPTE	MBER 2003		
DAY	OCT	NOV	DEC	. JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	279 216 181 156 132	e28 e27 e26 e26 e25	e14 e14 e14 e14	e6.3 e6.0 e5.8 e5.4 e5.1	e1.0 e0.90 e0.90 e0.80 e0.80	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e1500 e1200 e1000 824 621	54 81 267 156 114	195 190 190 182 179	206 488 902 527 433
6 7 8 9 10	e120 e100 e95 e90 e80	e24 e24 e23 e23 e22	e13 e13 e13 e13 e13	e4.9 e4.6 e4.4 e4.1 e4.0	e0.70 e0.70 e0.60 e0.60 e0.50	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	721 649 392 287 251	94 83 73 66 62	170 155 142 133 125	370 328 294 283 263
11 12 13 14 15	e75 e70 e65 e60 e60	e21 e21 e20 e20 e19	e13 e12 e12 e12 e12	e3.8 e3.7 e3.5 e3.3 e3.1	e0.50 e0.40 e0.40 e0.30 e0.30	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.10 e0.10 e0.10 e0.20 e0.20	241 211 162 136 128	58 55 54 53 51	138 198 457 419 339	246 226 209 191 180
16 17 18 19 20	e55 e50 e50 e47 e45	e19 e18 e18 e18 e17	e12 e11 e11 e11 e10	e2.9 e2.8 e2.6 e2.5 e2.3	e0.20 e0.20 e0.20 e0.10 e0.10	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.30 e0.50 e0.70 e1.0 e1.3	142 125 115 103 87	50 51 47 44 42	333 404 319 266 232	170 158 e150 142 137
21 22 23 24 25	e43 e40 e39 e37 e36	e17 e17 e16 e16 e16	e10 e9.8 e9.4 e9.0	e1.9 e1.8	e0.10 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e1.7 e2.4 e3.5 e5.0 e8.0	82 77 71 69 68	40 39 39 46 243	208 191 195 272 311	e126 e122 118 113 110
26 27 28 29 30 31	e35 e33 e32 e31 e30 e29	e15 e15 e15 e15 e14	e8.3 e8.0 e7.6 e7.4 e7.0	e1.4 e1.3 e1.2 e1.1	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e14 e25 e48 e100 e200 e440	66 62 60 58 54	1940 606 332 248 218 200	366 356 307 264 237 215	106 e102 e100 107 107
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2411 77.8 279 29 4780 1.06 1.22	595 19.8 28 14 1180 0.27 0.30	342.9 11.1 14 6.7 680 0.15 0.17	3.17 6.3 1.1 195 0.04 0.05	10.30 0.37 1.0 0.00 20 0.01 0.01	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	852.10 27.5 440 0.00 1690 0.37 0.43	9562 319 1500 54 18970 4.34 4.85	5506 178 1940 39 10920 2.42 2.79	7688 248 457 125 15250 3.38 3.90	7014 234 902 100 13910 3.19 3.55
MEAN MAX (WY) MIN (WY)	49.8 88.5 1999 16.2 1997	15.1 30.0 1999 2.28 1998	8.05 17.3 1999 1.41 2002	12.1 1999 0.12	2.38 9.07 1999 0.000 2001	1.85 7.13 1999 0.000 2001	2.90 9.32 1998 0.000 2001	196 378 1998 27.5 2003	220 319 2003 128 1997	108 184 1995 54.7 1996	196 435 1998 52.8 2002	157 234 2003 71.7 1996

e Estimated

# 15564879 SLATE CREEK AT COLDFOOT—Continued

SUMMARY STATISTICS	FOR 2002 CALENDA	R YEAR	FOR 2003 WATE	R YEAR	WATER YEARS	1995 - 2003
ANNUAL TOTAL	26501.90		34079.50			
ANNUAL MEAN	72.6		93.4		76.3	
HIGHEST ANNUAL MEAN					93.4	2003
LOWEST ANNUAL MEAN					65.9	2000
HIGHEST DAILY MEAN	1330	May 26	1940	Jul 26	a2850	May 26 1998
LOWEST DAILY MEAN	b0.00	Jan 21	c0.00	Feb 22	0.00	Jan 13 2001
ANNUAL SEVEN-DAY MINIMUM	0.00	Jan 21	0.00	Feb 22	0.00	Jan 13 2001
MAXIMUM PEAK FLOW			2950	Jul 26	£4930	May 26 1998
MAXIMUM PEAK STAGE			18.52	Jul 26	19.73	May 26 1998
ANNUAL RUNOFF (AC-FT)	52570		67600		55310	
ANNUAL RUNOFF (CFSM)	0.99		1.27		1.04	
ANNUAL RUNOFF (INCHES)	13.43		17.27		14.13	
10 PERCENT EXCEEDS	183		263		197	
50 PERCENT EXCEEDS	20		16		18	
90 PERCENT EXCEEDS	0.00		0.00		0.00	

a Revised in 1999 from 2740 ft³/s
b From Jan. 21 to Apr 25
c From Feb. 22 to May 10
f From rating curve extended above 2,190 ft³/s on basis of slope-area measurement at discharge 4,700 ft³/s, gage height 19.6 ft, at previous site 60 ft downstream

# 15564879 SLATE CREEK AT COLDFOOT—Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water year 1998 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: May 1998 to current year (seasonal).

INSTRUMENTATION.--Water-temperature recorder since May 11, 1998. Electronic water temperature recorder set for 1-hour recording interval.

REMARKS.--No record October 6 to May 21 due to probe frozen in ice. Records represent water temperature at sensor within  $0.5^{\circ}$ C. Temperature at the sensor was compared with the stream average by cross section on July 29th and September 11. Variation within the cross sections was less than  $0.3^{\circ}$ C. The variation found between mean stream temperature and sensor temperature was less than  $0.5^{\circ}$ C.

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum,  $14.5^{\circ}$ C, July 5 and 21, 1998 and July 24, 2002; minimum,  $0.0^{\circ}$ C, on many days during spring break up and winter periods.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 14.0°C, July 8 and 21; minimum, 0°C, October 5, 2002, May 22-31, 2003, on many days during spring breakup and winter periods.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

			Loca- tion in					
			X-sect.		Instan-			
Daha	m:	Stream	looking dwnstrm	Gage	taneous dis-	Sam- pling	Temper- ature,	Temper- ature,
Date	Time	width, feet (00004)	ft from 1 bank (00009)	height, feet (00065)	charge, cfs (00061)	method, code (82398)	water, deg C (00010)	air, deg C (00020)
JUL								
29	0908	63.0	6.00	14.80	257	10	5.4	10.8
29	0911	63.0	18.0	14.80	257	10	5.4	10.8
29	0914	63.0	30.0	14.80	257	10	5.3	10.8
29	0917	63.0	42.0	14.80	257	10	5.5	10.8
29	0920	63.0	54.0	14.80	257	10	5.4	10.8
29	0923	63.0	62.0	14.80	257	10	5.4	10.8
SEP								
07	1837	65.0	2.00	14.98	319	10	4.8	9.5
07	1838	65.0	17.0	14.98	319	10	4.8	9.5
07	1839	65.0	32.0	14.98	319	10	4.8	9.5
07	1840	65.0	47.0	14.98	319	10	4.8	9.5
07	1841	65.0	62.0	14.98	319	10	4.8	9.5

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1 2	3.0	1.5 1.5	2.0									
3	2.5	1.5	2.0									
4	1.5	0.5	1.0									
5	0.5	0.0	0.5									
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
MONTH												

# 15564879 SLATE CREEK AT COLDFOOT—Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	F	EBRUARY			MARCH			APRIL			MAY	
1 2												
3												
4 5												
6 7												
8												
9 10												
11												
12												
13 14												
15												
16												
17 18												
19 20												
21 22											0.0	
23 24										1.5	0.0	0.5
25											0.0	1.0
26										1.5	0.0	0.5
27 28										0.5 1.0	0.0	0.5
29 30											0.0	
31											0.0	
MONTH												
D.111				242.17						262.77		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN		MIN JULY	MEAN		MIN	MEAN		MIN EPTEMBER	MEAN
1	3.0	JUNE 0.5	1.5	10.5	JULY	9.0	9.0	UGUST	7.0	7.0	EPTEMBER	6.0
1 2	3.0 2.5	JUNE 0.5 0.5	1.5 1.5	10.5 9.5	JULY 7.5 8.0	9.0 8.5	9.0 7.5	UGUST 5.0 5.5	7.0 6.0	7.0 6.0	EPTEMBER 5.5 4.5	6.0 5.0
1 2 3 4	3.0 2.5 2.5 5.0	JUNE 0.5 0.5 1.0 0.5	1.5 1.5 1.5 2.5	10.5 9.5 9.5 10.0	JULY 7.5 8.0 6.0 6.0	9.0 8.5 7.5 8.0	9.0 7.5 8.5 10.5	5.0 5.5 5.0 5.5	7.0 6.0 6.5 7.5	7.0 6.0 5.5 5.5	5.5 4.5 4.0 4.0	6.0 5.0 4.5 4.5
1 2 3 4 5	3.0 2.5 2.5 5.0 6.0	JUNE 0.5 0.5 1.0 0.5 1.0	1.5 1.5 1.5 2.5 3.5	10.5 9.5 9.5 10.0 12.5	7.5 8.0 6.0 6.5	9.0 8.5 7.5 8.0 9.0	9.0 7.5 8.5 10.5	5.0 5.5 5.0 5.5 6.5	7.0 6.0 6.5 7.5 8.0	7.0 6.0 5.5 5.5 5.0	5.5 4.5 4.0 4.0 3.5	6.0 5.0 4.5 4.5
1 2 3 4	3.0 2.5 2.5 5.0	JUNE 0.5 0.5 1.0 0.5	1.5 1.5 1.5 2.5	10.5 9.5 9.5 10.0	JULY 7.5 8.0 6.0 6.0	9.0 8.5 7.5 8.0	9.0 7.5 8.5 10.5	5.0 5.5 5.0 5.5	7.0 6.0 6.5 7.5	7.0 6.0 5.5 5.5	5.5 4.5 4.0 4.0	6.0 5.0 4.5 4.5
1 2 3 4 5 6 7 8	3.0 2.5 2.5 5.0 6.0 5.0 8.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0	1.5 1.5 1.5 2.5 3.5 3.5 4.5	10.5 9.5 9.5 10.0 12.5 13.5 11.5	7.5 8.0 6.0 6.5 7.0 8.0 7.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 10.5	9.0 7.5 8.5 10.5 10.5 11.0	5.0 5.5 5.0 5.5 6.5 5.0 4.5	7.0 6.0 6.5 7.5 8.0 7.5 7.5	7.0 6.0 5.5 5.5 5.0 5.0	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5	6.0 5.0 4.5 4.5 4.5 4.5
1 2 3 4 5	3.0 2.5 2.5 5.0 6.0 5.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5	1.5 1.5 1.5 2.5 3.5	10.5 9.5 9.5 10.0 12.5	7.5 8.0 6.0 6.0 6.5 7.0	9.0 8.5 7.5 8.0 9.0	9.0 7.5 8.5 10.5 10.5	5.0 5.5 5.0 5.5 6.5	7.0 6.0 6.5 7.5 8.0 7.5	7.0 6.0 5.5 5.5 5.0 5.0	5.5 4.5 4.0 4.0 3.5 1.5 3.0	6.0 5.0 4.5 4.5 4.5
1 2 3 4 5 6 7 7 8 9 10	3.0 2.5 2.5 5.0 6.0 5.0 8.5 	JUNE  0.5 0.5 1.0 0.5 1.0 2.5 2.0 2.5 2.5	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5	7.5 8.0 6.0 6.0 6.5 7.0 8.0 7.5 9.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.0 10.5 12.0	UGUST  5.0 5.5 5.0 5.5 6.5 5.0 4.5 4.5 6.5 8.5	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 2.0	6.0 5.0 4.5 4.5 4.5 4.5 3.0 4.0 4.0 2.0
1 2 3 4 5 6 7 8 9 10	3.0 2.5 2.5 5.0 6.0 5.0 8.0 8.5  9.5 9.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.5	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 10.5 11.0 10.5	9.0 7.5 8.5 10.5 10.5 11.0 10.0 10.5 12.0	UGUST  5.0 5.5 5.0 5.5 6.5  5.0 4.5 4.5 6.5  8.5 7.5	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 2.0 2.0	6.0 5.0 4.5 4.5 4.5 4.5 4.0 4.0 2.0
1 2 3 4 5 6 7 8 9 10	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.5 2.5 3.0 3.0 2.5	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.0 8.5 9.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 10.5 11.0 9.5 9.5	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.5 12.0 10.5 9.0 8.5 9.0	UGUST  5.0 5.5 5.0 5.5 6.5 5.0 4.5 6.5 8.5 7.5 6.0	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0 7.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 2.0 2.0 0.5 1.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.1
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5 10.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5 3.0 3.0 2.5 3.5	1.5 1.5 2.5 3.5 3.5 4.5 5.0  6.0 6.0 6.0 7.0	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.5	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 9.5 9.5 8.0	9.0 7.5 8.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5	UGUST 5.0 5.5 5.0 5.5 6.5 5.0 4.5 4.5 6.5 8.5 7.5 6.0 6.0	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0 7.0 7.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5	5.5 4.5 4.0 4.0 3.5 1.5 3.5 3.5 2.0 2.0 0.5 1.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.5 2.0 1.0
1 2 3 4 5 6 7 8 9 10	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.5 2.5 3.0 3.0 2.5	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.0 8.5 9.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 10.5 11.0 9.5 9.5	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.5 12.0 10.5 9.0 8.5 9.0	UGUST  5.0 5.5 5.0 5.5 6.5 5.0 4.5 6.5 8.5 7.5 6.0	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0 7.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 2.0 2.0 0.5 1.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.0 8.5  9.5 9.0 9.5 10.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.0 2.5 2.0 1.5 2.5 3.0 3.0 2.5 3.5 4.0 5.0 5.0	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0  6.0 6.0 6.0 7.0 7.0 7.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 12.5 12.0 11.0 10.5 9.0	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5	9.0 8.5 7.5 8.0 9.0 10.0 9.5 10.5 11.0 10.5 11.0 9.5 9.5 8.0	9.0 7.5 8.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 9.0 8.5	UGUST 5.0 5.5 6.5 5.0 5.5 6.5 5.0 4.5 6.5 7.5 6.0 6.0 6.5 5.0	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0 7.0 7.0 7.0 7.0 7.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5 3.0	5.5 4.5 4.0 4.0 3.5 1.5 3.5 3.5 2.0 2.0 0.5 1.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.0 1.0 1.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.0 9.5 10.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5 3.0 3.0 3.0 3.5 4.0 5.0	1.5 1.5 1.5 2.5 3.5 3.5 3.5 4.5 5.0  6.0 6.0 7.0	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.0 11.0 9.0	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 10.5 11.0 7.5 8.0	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5	UGUST  5.0 5.5 5.0 5.5 6.5 5.0 4.5 4.5 6.5 8.5 7.5 6.0 6.0 6.5 5.5	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0 7.0 7.0 7.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 2.0 2.0 0.5 1.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.5 2.0 2.0 1.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5 10.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5 3.0 3.0 2.5 3.5 4.0 5.0 4.5	1.5 1.5 1.5 2.5 3.5 3.5 3.5 4.5 5.0  6.0 6.0 6.0 7.0 7.0 7.5 7.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.0 11.0 9.0 9.5 9.5 9.5	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5	9.0 8.5 7.5 8.0 9.0 10.0 9.5 10.5 11.0 10.5 11.0 9.5 9.5 8.0 7.5 8.0 9.5	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.5 8.5 8.5	UGUST  5.0 5.5 5.0 5.5 6.5 5.0 4.5 4.5 6.0 6.0 6.5 5.5 4.5 3.5	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 7.5 9.0 8.0 7.0 7.0 7.0 7.0 6.5 6.5	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 3.5 2.0 2.0 0.5 1.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.5 2.0 1.0 1.0 1.5 0.5 0.5 0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5 10.0 10.0 9.5 11.0 11.5 12.0	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.5 2.5 2.5 4.0 5.0 4.5 5.0 5.0 5.5	1.5 1.5 1.5 2.5 3.5 3.5 3.5 4.5 5.0  6.0 6.0 7.0 7.0 7.5 8.0 8.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.0 11.0 10.5 9.0 9.5 9.5 12.0 13.0 13.0	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5 5.5 6.0 7.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 9.5 9.5 8.0 7.5 7.5 8.0 9.5	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.5 8.5 8.0 7.5 8.5 8.5	UGUST  5.0 5.5 6.5 5.0 5.0 5.0 5.0 5.0 6.5 6.0 6.5 7.5 6.0 6.5 3.5 4.0 3.5 4.5 5.5	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.0 6.5	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5 3.0 1.5 1.0	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 2.0 2.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.0 2.0 1.0 1.5 0.5 0.5 0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.0 8.5  9.5 9.0 9.5 10.0 11.0 11.5 12.0 12.5 10.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5 3.0 3.0 2.5 3.5 4.0 5.0 5.0 5.5 5.0	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0  6.0 6.0 7.0 7.0 7.5 8.0 8.5 8.5 9.0	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.0 11.0 10.5 9.0 9.5 9.5 12.0 13.0 13.0	7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5 5.5 6.0 7.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 9.5 9.5 8.0 7.5 8.0 9.5	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.5 8.0 7.5 8.5 8.0 7.5	UGUST  5.5.0 5.5.5 6.5 5.0 5.05 4.5.5 6.0 6.5 7.5.5 6.0 6.5 4.5.5 6.0 6.5 5.5 5.0 6.0 6.5 5.5 5.0 6.0	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 7.5 9.0 8.0 7.0 7.0 7.0 7.0 7.0 6.5 6.0 6.5	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5 3.0 1.5 1.0 1.0	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 3.5 2.0 2.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.5 2.0 1.0 1.5 0.5 0.5 0.5
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	3.0 2.5 2.5 5.0 6.0 5.0 8.0 8.5  9.5 9.0 9.5 10.0 10.0 9.5 11.0 11.0 11.5 12.0 12.5 10.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5 3.0 3.0 2.5 3.5 4.0 5.0 4.5 5.0 5.0 5.5 7.0 7.0	1.5 1.5 1.5 2.5 3.5 3.5 3.5 4.5 5.0  6.0 6.0 6.0 7.0 7.0 7.5 7.5 8.0 8.5 9.0 9.0 8.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 12.5 12.0 11.0 10.5 9.0 9.5 9.5 12.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0	JULY  7.5 8.0 6.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5 5.5 6.0 7.0 7.5 8.5 7.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 10.0 9.5 9.5 8.0 7.5 7.5 8.0 9.5 10.0	9.0 7.5 8.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.0 7.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5	UGUST 5.055.55 6.005.555 5.0054.55 8.5556.00 6.555.0054.55 3.555.0054.55	7.0 6.0 6.5 7.5 7.5 7.5 7.5 9.0 9.0 8.0 7.0 7.0 7.0 7.0 6.5 6.5 6.0 6.5	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 4.0 2.5 2.5 3.0 1.5 1.0 1.0 1.0	5.5 4.5 4.0 4.0 3.5 1.5 3.5 3.5 2.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.0 2.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5 10.0 10.0 9.5 11.0 11.0 11.5 12.0 12.5 10.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5 3.0 3.0 2.5 3.5 4.0 5.0 5.0 5.5 5.7 7.0 7.0	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0  6.0 6.0 7.0 7.0 7.5 7.5 8.0 8.5 9.0 8.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.0 11.0 10.5 9.0 9.5 9.5 13.0 13.0 13.0	JULY  7.5 8.0 6.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5 5.5 6.0 7.0 7.5 8.5 7.0 5.5	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 10.5 9.5 9.5 8.0 7.5 7.5 8.0 9.5 10.0	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.5 8.5 8.0 7.5 8.5 8.5	UGUST 5.055.055.5 6.5 5.005.555 6.5 5.005.5556.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5.006.0 6.5 5	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 9.0 8.0 7.0 7.0 7.0 7.0 7.0 6.5 6.0 6.5 7.0 6.5	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5 1.5 1.0 1.0 1.0	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 3.5 2.0 2.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.5 2.0 1.0 1.0 1.5 0.5 0.5 0.5 0.5
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5 10.0 10.0 11.0 11.5 12.5 10.5 10.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.0 2.5 2.0 1.5 2.5 3.0 2.5 3.5 4.0 5.0 5.0 5.5 7.0 7.0 5.5 7.0 7.5	1.5 1.5 1.5 2.5 3.5 3.5 3.5 4.5 5.0  6.0 6.0 6.0 7.0 7.0 7.5 7.5 8.0 8.5 9.0 9.0 8.5 9.5 9.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 12.5 12.0 11.0 10.5 9.0 9.5 12.0 13.0 13.0 14.0 13.0 14.0 15.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	JULY  7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5 5.5 6.0 7.0 7.5 8.5 7.0 8.5 4.0	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 10.5 9.5 8.0 7.5 7.5 8.0 9.5 10.0 9.5 9.5	9.0 7.5 8.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.0 7.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5	UGUST 5.5.055.5 5.055.5 5.0054.5 5.006.0 6.55.005 4.55 5.005 4.55 5.005 4.55 5.005 4.55 5.005 4.55	7.0 6.0 6.5 7.5 7.5 7.5 7.5 9.0 9.0 8.0 7.0 7.0 7.0 7.0 6.5 6.0 6.0 6.0 6.0 6.0	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5 3.0 1.5 1.0 1.0 1.0 1.0 1.0	5.5 4.5 4.0 4.0 3.5 1.5 3.5 3.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 2.0 2.0 1.0 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 28 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5 10.0 10.0 9.5 11.0 11.5 11.5 11.5 11.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.5 2.0 1.5 2.5 3.0 2.5 3.5 4.0 5.0 5.0 5.5 5.0 7.0 7.5 7.5	1.5 1.5 1.5 2.5 3.5 3.5 3.5 4.5 5.0  6.0 6.0 7.0 7.0 7.5 7.5 8.0 8.5 9.0 8.5 9.5 9.5 9.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.0 11.0 10.5 9.0 9.5 9.5 12.0 13.0 13.0 13.0 13.0 14.0 12.0 13.0 13.0	JULY  7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 5.5 6.0 7.0 7.5 8.5 7.0 5.5 4.0 5.5	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 9.5 9.5 8.0 7.5 8.0 9.5 10.0	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.5 12.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5 8.5	UGUST  5.055.55  5.0055.55  5.0055.55  4.55  6.00  5.5005  4.55  5.005  4.55  5.005  4.55  5.005  4.55  5.005  5.005  6.55  6.00	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 8.0 7.0 7.0 7.0 7.0 6.5 6.0 6.0 6.0 6.0 6.0 6.5	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 3.0 4.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.5 4.5 4.0 4.0 3.5 1.5 3.0 3.5 3.5 2.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.5 2.0 1.0 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3.0 2.5 2.5 5.0 6.0 5.0 5.0 8.5  9.5 9.0 9.5 10.0 11.0 11.5 12.5 10.5 11.5 11.5 11.5	JUNE  0.5 0.5 1.0 0.5 1.0 2.0 2.0 2.5 2.0 1.5 2.5 3.0 2.5 3.5 4.0 5.0 5.0 5.5 5.0 7.0 7.5	1.5 1.5 1.5 2.5 3.5 3.5 4.5 5.0  6.0 6.0 6.0 7.0 7.0 7.5 7.5 8.0 8.5 9.0 9.0 8.5 9.5 9.5	10.5 9.5 9.5 10.0 12.5 13.5 14.0 13.5 12.5 13.5 12.0 11.0 10.5 9.0 9.5 9.5 13.0 13.0 13.0 13.0	JULY  7.5 8.0 6.0 6.5 7.0 8.0 7.5 9.0 9.0 8.5 9.0 6.5 5.5 6.0 7.0 7.5 8.5 7.0 5.5 8.5 7.0 5.5 4.5 4.5	9.0 8.5 7.5 8.0 9.0 10.0 9.5 11.0 10.5 11.0 9.5 9.5 8.0 7.5 7.5 8.0 9.5 10.0	9.0 7.5 8.5 10.5 10.5 10.5 11.0 10.0 10.5 12.0 10.5 9.0 8.5 9.0 8.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5 8.0 7.5 8.5	UGUST 5.5.055.6.5 5.055.6.5 5.0055.55 6.506.00 6.55.005.05 4.55 6.00 6.55.005 4.55 5.005 4.55 5.005 4.55	7.0 6.0 6.5 7.5 8.0 7.5 7.5 7.5 9.0 8.0 7.0 7.0 7.0 7.0 6.5 6.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5	7.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0 5.5 3.5 4.0 2.5 2.5 3.0 1.5 1.0 1.0 1.0 1.0 1.0 0.5 2.0	5.5 4.5 4.0 4.0 3.5 1.5 3.5 3.5 2.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.0 5.0 4.5 4.5 4.5 3.0 4.0 4.0 2.0 2.0 1.0 1.5 0.5 0.5 0.5 0.5 0.5 0.5

#### 15565400 ANVIK RIVER NEAR ANVIK

LOCATION.--Lat  $63^{\circ}47'22''$ , long  $160^{\circ}41'49''$ , in  $NW^{1}/_{4}$   $NW^{1}/_{4}$  SE $^{1}/_{4}$  sec. 10, T.31 N., R.61 W. (Holy Cross D-4 quad), Hydrologic Unit 190401801, on the right bank, approximately 25 river mi upstream from mouth, 18 mi northwest of Anvik.

DRAINAGE AREA. -- Pending

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 2001 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 160 ft above sea level from topographic map.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR JUN JUL SEP JAN APR MAY AUG e3100 e2200 2040 2 e3100 1910 e2200 e3200 e1800 e2100 4 e3300 e1700 e2200 5 e3200 e1700 e3300 6 e3000 e5400 e1600 e2800 e1600 e6600 ___ ___ e2700 e2700 8 9 ___ ___ e1500 e6100 e1800 e5500 10 e2800 e2000 e5000 11 e3100 e2100 e4500 3280 12 4220 ___ ___ 13 3190 e2200 3930 e2700 14 3030 3660 2920 e3300 15 3450 3080 3270 16 e3700 17 3380 e3600 3090 ___ ___ 18 ___ 3200 e3400 2950 3160 e3300 2830 20 3810 e3500 2720 21 4030 e3800 2620 22 3770 e3700 2500 23 3440 e3500 2370 3180 e3200 25 2990 e2900 2130 26 2840 e2700 2020 2740 2620 2.7 e2500 1930 28 e2400 1890 29 2430 e2300 1890 2300 2190 3.0 ___ ___ e2200 1780 31 e2100 78750 96610 3220 TOTAL 94580 2540 3051 MEAN MAX 4030 3800 6600 ---MTN ___ ------___ ------2190 1500 1780 2300 MED 3100

187600

156200

191600

AC-FT

e Estimated

## 15565400 ANVIK RIVER NEAR ANVIK—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1690	e700	e380	e260	e210	e190	e160	e190	4660	1200	919	543
2	1670	e700	e360	e260	e210	e190	e160	e200	4510	1130	848	538
3	1630	e680	e360	e250	e210	e190	e160	e220	4840	1110	791	532
4	2010	e660	e360	e250	e210	e180	e160	e240	4870	1140	753	565
5	2490	e640	e340	e250	e210	e180	e160	e260	4410	1110	722	677
6	2300	e640	e340	e250	e210	e180	e160	e280	4050	1050	692	833
7	2090	e620	e340	e250	e200	e180	e160	e300	3710	1030	668	935
8	1900	e600	e340	e240	e200	e180	e160	e320	3540	1010	660	1180
9	1790	e580	e320	e240	e200	e180	e160	e360	3300	988	656	1270
10	1680	e560	e320	e240	e200	e180	e160	e400	3250	958	667	1170
11	e1500	e540	e320	e240	e200	e180	e160	e440	3170	949	718	1080
12	e1450	e540	e320	e240	e200	e180	e160	e500	3390	941	710	1240
13	e1300	e540	e300	e240	e200	e180	e160	e560	3440	936	665	2420
14	e1250	e520	e300	e230	e200	e180	e160	e660	3200	940	638	3410
15	e1200	e520	e300	e230	e200	e180	e160	e800	2960	947	622	2850
16	e1150	e500	e300	e230	e190	e170	e160	e1000	2920	916	614	2410
17	e1100	e500	e290	e230	e190	e170	e160	e1400	2850	879	609	2020
18	e1050	e480	e290	e230	e190	e170	e160	e1800	2730	863	621	1770
19	e1000	e480	e290	e220	e190	e170	e160	e2400	2580	874	631	1610
20	e1000	e460	e280	e220	e190	e170	e160	e3400	2350	848	656	1540
21	e960	e460	e280	e220	e190	e170	e160	e5000	2100	820	669	1480
22	e940	e440	e280	e220	e190	e170	e160	e7000	1860	796	642	1360
23	e920	e440	e280	e220	e190	e170	e160	e10000	1700	787	611	1310
24	e880	e420	e270	e220	e190	e170	e160	e15000	1600	789	588	1360
25	e860	e420	e270	e220	e190	e170	e160	16900	1490	826	577	1400
26 27 28 29 30 31	e840 e800 e760 e720 e720 e700	e400 e400 e400 e380 e380	e270 e270 e270 e260 e260 e260	e220 e220 e220 e220 e220 e210	e190 e190 e190 	e170 e170 e170 e170 e170 e170	e160 e170 e170 e170 e180	13900 13900 12500 9340 7260 5730	1440 1480 1420 1330 1270	913 1050 1300 1250 1150 1010	587 579 568 559 552 547	1420 1980 4530 5360 5740
TOTAL	40350	15600	9420	7210	5530	5450	4850	132260	86420	30510	20339	54533
MEAN	1302	520	304	233	198	176	162	4266	2881	984	656	1818
MAX	2490	700	380	260	210	190	180	16900	4870	1300	919	5740
MIN	700	380	260	210	190	170	160	190	1270	787	547	532
MED	1150	510	300	230	200	170	160	1000	2940	949	642	1380
AC-FT	80030	30940	18680	14300	10970	10810	9620	262300	171400	60520	40340	108200

SUMMARY	STATISTICS

FOR 2002 WATER YEAR 412472 1130

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW MAXIMUM PEAR STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

1.6000	05
16900	May 25
a160	Apr 1
160	Apr 1
20700	May 25
27.40	May 25
160	Apr 1
818100	
2530	
540	
170	

a From Apr. 1 to Apr. 26 e Estimated

## YUKON ALASKA

## 15565400 ANVIK RIVER NEAR ANVIK—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5230 4410 3880 3480 3160	e1700 e1600 e1600 e1500 e1500	e780 e780 e760 e740 e760	e400 e380 e380 e380 e360	e250 e250 e250 e260 e260	e220 e220 e220 e220 e220	e210 e210 e210 e210 e210	4040 5430 7340 7410 6390	7930 8410 8020 7230 7090	3190 4000 4490 4110 3520	2910 2710 2560 2500 2330	3760 3540 3380 3300 3350
6 7 8 9 10	2960 2890 2950 2840 2600	e1400 e1400 e1400 e1300 e1300	e760 e700 e680 e660 e640	e360 e360 e360 e340 e340	e250 e250 e250 e230 e230	e220 e220 e220 e220 e220	e210 e210 e220 e220 e220	5250 4830 5800 9700 12400	6730 6370 5920 5570 5960	3180 2930 2750 2610 2460	2160 2040 2230 2350 2080	3270 3060 2920 2820 2720
11 12 13 14 15	2530 2840 2950 2830 2750	e1300 e1200 e1200 e1200 e1200	e600 e600 e580 e580 e560	e340 e320 e320 e320 e300	e230 e230 e230 e230 e230	e210 e210 e210 e210 e210	e220 e220 e230 e250 e280	8910 5980 5780 5100 4060	5670 6100 6080 5360 4530	2350 2360 2270 2060 1980	1980 2160 2730 3470 5130	2630 2590 2760 2680 2460
16 17 18 19 20	2640 e2200 e1900 e1800 e1700	e1100 e1100 e1100 e1000 e1000	e540 e540 e520 e520 e500	e300 e300 e300 e280 e280	e230 e230 e230 e230 e230	e210 e210 e210 e210 e210	e320 e360 e420 e500 e580	3370 3200 3490 4100 5250	3940 3750 3490 3640 4000	2220 2210 1940 1740 1600	6100 4820 4040 3770 3570	2310 2210 2100 2010 1920
21 22 23 24 25	e1700 e1800 e1900 e2000	e1000 e980 e960 e960 e1000	e500 e480 e480 e460 e460	e280 e280 e280 e280 e260	e230 e230 e230 e230 e230	e210 e210 e210 e210 e210	e680 e800 e960 e1200 e1500	6280 6630 6000 5210 5020	3770 3430 3380 4000 4130	1500 1460 1490 1770 2350	3360 3130 3000 3150 3730	1800 1700 1630 1620 1550
26 27 28 29 30 31	e1900 e1900 e1800 e1800 e1700		e440 e440 e420 e420 e400 e400	e260 e260 e260 e260 e260 e260	e220 e220 e220 	e210 e210 e210 e210 e210 e210	e1900 e2400 e4600 4680 3700	4690 5400 5680 6510 6870 7260	3470 3130 2970 2940 2920	2510 3250 5800 4470 3490 3160	4650 4810 4360 3910 3640 3540	1520 1470 1440 1460 1540
MEAN MAX MIN MED		35440 1181 1700 800 1150 70300	17700 571 780 400 540 35110	9660 312 400 260 300 19160	6590 235 260 220 230 13070	6610 213 220 210 210 13110	27930 931 4680 210 300 55400	183380 5915 12400 3200 5680 363700	149930 4998 8410 2920 4330 297400	85220 2749 5800 1460 2460 169000	102920 3320 6100 1980 3150 204100	71520 2384 3760 1440 2380 141900
STATIS	STICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 200	1 - 2003	B, BY WATE	ER YEAR (V	VY)#			
MEAN MAX (WY) MIN (WY)	1921 2540 2003 1302 2002	851 1181 2003 520 2002	437 571 2003 304 2002	272 312 2003 233 2002	216 235 2003 198 2002	195 213 2003 176 2002	546 931 2003 162 2002	5091 5915 2003 4266 2002	3939 4998 2003 2881 2002	2261 3051 2001 984 2002	2172 3320 2003 656 2002	2474 3220 2001 1818 2002
SUMMAE	RY STATIS	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEA	AR	WATER YE	EARS 2001	- 2003#
ANNUAI HIGHES LOWEST HIGHES LOWEST ANNUAI MAXIMU ANNUAI 10 PEI 50 PEI	JM PEAK F	MEAN MEAN IEAN AY MINIMUL LOW STAGE (AC-FT) EEDS			May 25 Apr 1 Apr 1		775640 2125 12400 b210 210 13200 25. 1538000 5240 1600 220	May 1 Mar 1 Mar 1 May 1 53 May 1	1.0 1.1 1.1 1.0 1.0	1628 2125 1130 16900 a160 20700 27. 1179000 4130 721 190	May : Apr Apr May : 40 May :	2003 2002 25 2002 1 2002 1 2002 25 2002 25 2002

See Period of Record: partial year used in monthly statistics From Apr. 1 to Apr.26 From Mar. 3 to Apr. 7 Estimated

#### 15565447 YUKON RIVER AT PILOT STATION

LOCATION.--Lat  $61^{\circ}56'04''$ , long  $162^{\circ}52'50''$ , in  $SW^{1}/_{4}$  SE $^{1}/_{4}$  sec. 5, T.21 N., R.74 W. (Marshall D-3 quad), Hydrologic Unit 19040805, on the right bank, .2 mi downstream from village of Pilot Station, 2.4 mi downstream from Atchuelinguk River, and 19 mi upstream from Andreafsky River.

DRAINAGE AREA. -- 321,000 mi² approximately.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1975 to September 1996, April 2001 to current year. REVISED RECORDS. -- WRD-AK-99-1: 1998.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level from topographic map.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISC	HARGE, CU	JBIC FEET		D, WATER		TOBER 2002	2 TO SEPT	EMBER 200	3	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	352000		e100000	e75000 e70000 e70000 e70000 e70000	e58000 e58000 e58000 e58000	e52000 e52000 e52000	e48000 e48000 e48000 e48000		432000 428000 423000 420000 418000		421000 417000 414000 407000 411000	396000 397000 398000 400000 402000
6 7 8 9 10	323000 320000 314000	e252000 e250000 e248000 e245000 e240000	e95000 e90000 e90000 e90000 e85000	e70000 e70000 e70000 e70000 e70000	e58000 e58000 e58000 e56000	e52000 e52000 e52000		e130000 e153000 e183000	418000 422000 430000 441000 455000	386000 378000 370000 360000 352000	415000 415000 419000 421000 420000	404000 408000 412000 419000 425000
11 12 13 14 15	305000 303000	e235000 e230000 e225000 e220000 e215000	e85000 e85000 e85000 e85000 e80000	e65000 e65000 e65000	e56000 e56000 e56000 e56000	e52000 e52000 e52000	e48000 e48000 e48000 e48000	e260000 e300000 e340000 e390000 e440000	472000 490000 506000 518000 527000	346000 344000 343000 360000 365000	414000 411000 407000 402000 396000	432000 439000 447000 455000 459000
16 17 18 19 20	284000 276000	e210000 e205000 e200000 e195000 e194000	e80000 e80000 e80000 e80000	e65000 e65000 e60000 e60000	e56000 e56000 e54000 e54000	e50000 e50000 e50000		495000 506000 512000 508000 498000	532000 537000 541000 541000 539000	370000 380000 378000 382000 387000	388000 379000 372000 366000 361000	462000 462000 460000 457000 452000
21 22 23 24 25	e266000 e266000	e193000 e191000 e190000 e189000 e186000	e80000 e75000 e75000 e75000 e75000	e60000 e60000 e60000	e54000 e54000 e54000 e54000 e54000	e50000 e49000 e49000	e48000 e48000 e48000 e48000	485000 474000 466000 460000 454000	537000 533000 527000 519000 510000	387000 388000 392000 401000 407000	357000 353000 351000 352000 356000	446000 438000 431000 423000 412000
26 27 28 29 30 31	e265000 e264000	e183000 e170000 e150000 e130000 e120000	e75000 e75000 e75000 e75000 e75000 e75000	e60000 e60000 e60000	e54000 e54000 e54000	e49000 e49000 e49000 e49000	e48000 e50000 e50000 e50000 e55000		500000 488000 473000 458000 443000	425000 423000	363000 372000 379000 385000 391000 394000	400000 387000 376000 361000 349000
MEAN MAX MIN	294600 360000 261000	211800 261000 120000	83870 110000 75000	60000 3967000	55790 58000 54000	50680 52000 49000	48430 55000 48000	335200 512000 55000	482600 541000 418000 28720000	389000 429000 343000 23920000	390600 421000 351000	420300 462000 349000
STATIS	STICS OF			FOR WATER	YEARS 19	76 - 2003	B, BY WAT					
MEAN MAX (WY) MIN (WY)	253800 335900 1991 170600 1979	130500 211800 2003 72500 1989	76220 94840 1986 50000 1988	76000 1986 50000	53230 65360 1994 38380 1984	48190 56770 1980 35160 1984	46210 55000 1989 38430 1976	275200 501700 1991 100200 1985	844600 1985 364400	314000	515800 1981 315000	481300 1994 252700
SUMMAE	RY STATIS	STICS	FO	R 2002 CAL	ENDAR YEAI	R	FOR 2003	WATER YE	AR	WATER Y	EARS 1976	5 - 2003#
ANNUAI ANNUAI HIGHES LOWEST HIGHES LOWEST ANNUAI MAXIMU MAXIMU	TOTAL MEAN T ANNUAL T DAILY DAILY SEVEN-E JM PEAK F	MEAN MEAN MEAN IEAN JAY MINIMU LOW	IΜ	R 2002 CAL 83865000 229800 884000 38000 38000 0. 9. 441000 225000 40000	May 20 Mar 20 Mar 20	6 9 9	a541000 d48000 a543000 a243000 a222	Jun Apr Apr Jun Jun Jun Jun	18 1 1 18 18	227100 253700 185300 b1100000 f35000 1070000 g27	Jun Feb Feb Jun .50 Jun	1994 1978 5 1985 23 1984 23 1984 9 1985 9 1985
ANNUAI ANNUAI ANNUAI 10 PEI 50 PEI 90 PEI	RUNOFF RUNOFF CENT EXC	(AC-FT) (CFSM) (INCHES) EEDS EEDS		166300000 0. 9. 441000 225000 40000	72 72	1	171200000 10 453000 245000 50000	) ).74 ).00 )		164500000 0 9 500000 130000 48000	.71 .61	23 1303

See Period of Record, partial years used in monthly statistics

b

Jun. 18-19 Jun. 5-8, 1985 Mar. 29 to Apr. 24 Apr. 1-26 Estimated

Feb. 23 to Mar. 27, 1984 Maximum recorded, but may have been higher during period of estimated discharge, Jun. 5-8, 1985 Backwater from ice

## 15565447 YUKON RIVER AT PILOT STATION—Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954-1956, 1975-96 AND April 2001 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: 1976 and 1978, (seasonal).

Date	Time	Locatn in X-sect. looking dwnstrm ft from 1 bank (00009)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
MAR 2003								
25	1850	709	327	7.0	. 0	766	3.6	25
25	1840	1180	324	7.0	.0	766	3.5 3.6	24
25 25	1815 2040	1390 1630	323 320	7.0 7.0	.0	766 766	3.6	24 25
25	1918	1800	309	7.0	.0	766	3.7	25
MAY	1710	1000	303	7.0	.0	700	3.7	23
28	1530	710	156	7.5	7.5	762	10.0	83
28	1540	1210	156	7.5	7.5	762	10.0	83
28	1545	1610	156	7.5	7.5	762	10.0	83
28	1547	1910	155	7.6 7.6	7.5 7.5	762	10.0	83
28 JUN	1549	2260	149	7.6	7.5	762	10.1	84
17	1900	2150	165	8.0	15.0	755	8.6	86
17	1905	1850	165	7.8	15.0	755	8.0	80
17	1908	1600	165	7.7	15.0	755	8.0	80
17	1910	1220	165	7.8	15.0	755	8.0	80
17	1912	700	165	7.8	15.0	755	8.0	80
JUL 10	2010	2000	196	7.7	17.5	764	8.9	93
10	2010	1850	197	7.7	17.5	764	8.8	92
10	2015	1600	206	7.7	17.5	764	8.7	91
10	2018	1220	207	7.7	17.5	764	8.6	90
10	2021	700	208	7.7	17.5	764	8.6	90
JUL	0110	650	222	0 0	16 5	252	0 0	0.2
24	2110 2112	650 1050	222 221	8.0 8.0	16.5 16.5	757 757	9.0 8.9	93 92
24	2114	1400	222	8.1	16.5	757	8.9	92
24	2116	1700	222	8.1	16.5	757	8.9	92
24	2118	2000	220	8.1	16.5	757	8.9	92
AUG								
19	1830	650	218	7.6	14.5	755	9.2	91
19 19	1833 1836	1050 1400	218 217	7.6 7.7	14.5 14.5	755 755	9.1 9.1	90 90
19	1840	1700	217	7.7	14.5	755	9.1	90
19	1843	2000	203	7.7	14.5	755	9.1	90
SEP								
23	1900	2120	209	7.9	6.5	751	11.0	91
23	1903	1820	213	8.0	6.5	751	11.0	91
23	1905	1500	212	7.9	6.5	751	11.0	91
23 23	1907 1910	1130 600	213 213	7.9 7.9	6.5 6.5	751 751	10.9 10.9	90 90
۷۶	1310	000	213	1.3	0.5	131	10.9	30

										Specif.				
									Type of	conduc-	pН			
						Instan-			sample	tance,	water			
						taneous	Sam-		related	wat unf	unfltrd	Tempera	Tempera	
				Stream	Gage	dis-	pling	Sampler	QA	uS/cm	field,	ture	ture,	
				width,	height,	charge	method,	type,	data,	25 deg	std	air,	water	
		Medium	Sample	feet	feet	cfs	code	code	code	C	units	deg C	deg C	
Date	Time	code	type	(00004)	(00065)	(00061)	(82398)	(84164)	(99111)	(00095)	(00400)	(00020)	(00010)	
MAR														
25	1900	9	9	1990		54300	20	3060	30	323	7.0	-8.4	.0	
MAY														
28	1440	9	9	2410	19.59	447000	20	3055	30	156	7.5	11.0	7.5	
JUN														
17	1720	9	9	2600	22.53	539000	20	3055	30	165	7.8	18.0	15.0	
JUL														
10	1820	9	9	2200	17.80	350000	20	3055	30	206	7.7	14.0	17.5	
24	1950	9	9	2300	18.19	404000	20	3055	100	222	8.1	15.0	16.5	
AUG														
19	1710	9	7	2300	18.32	364000	20	3055	100	217	7.7	15.5	14.5	
SEP														
23	1800	9	9	2400	18.98	429000	20	3055	30	213	7.9	5.0	6.5	

## YUKON ALASKA

## 15565447 YUKON RIVER AT PILOT STATION—Continued

Date	Turbid- ity wat unf lab, Hach 2100AN NTU (99872)	UV absorb- ance 254 nm, wat flt units /cm (50624)	ance, 280 nm, wat flt units /cm	Baro- metric pres- sure mm Hg (00025)	oxygen mg/L		water, unfltrd mg/L as CaCO3	fltrd, mg/L	water, fltrd, mg/L	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, field, mg/L as CaCO3 (00410)	Potas- sium, water, fltrd, mg/L (00935)	Bicar- bonate, wat flt incrm titr., field, mg/L (00453)
MAR 25	13	.069	.051	766	3.6	25	150	44.0	10.5	3.50	128	1.20	160
MAY 28	72	.458	.345	762	10.0	83	81	23.7	5.12	1.93	62	.97	74
JUN							82		5.09		68		
17 JUL	150	.372	.279	755	8.0	80		24.2		1.64		.90	80
10 24	150 E270	.183 .149	.136 .109	764 757	8.6 8.9	90 92	100 110	29.0 30.1	7.15 7.65	2.60 2.67	71 72	1.15 1.31	86 87
AUG 19	200	.183	.135	755	9.1	90	100	28.9	7.55	2.98	73	1.47	89
SEP													
23	49	.284	.210	751	11.0	91	110	29.6	7.88	2.53	75	.93	92
	Carbon- ate, wat flt incrm. titr., field	linity wat flt	Sulfate water, fltrd,	Chlor- ide, water, fltrd,	Fluor- ide, water, fltrd,		Residue on evap. at 180degC wat flt	sum of	water,	Nitrite + nitrate water fltrd, mg/L		+ org-N, water,	Ammonia + org-N water, fltrd mg/L
Date	mg/L (00452)	CaCO3 (39086)	mg/L (00945)	mg/L (00940)	mg/L (00950)	mg/L (00955)	mg/L (70300)	mg/L (70301)	as N (00613)	as N (00631)	as N (00608)	as N (00625)	as N (00623)
MAR		124	00.4	0.0	1.0	44.4	0.04	450				1.0	10
25 MAY	.0	131	28.4	.90	.12	11.4	201	179				.19	.19
28 JUN	.0	60	16.7	1.05	<.2	4.87	112	92	.005	.083	<.015	.67	.36
17 JUL	.0	66	16.5	.60	<.2	4.74	112	94	E.002	.057	<.015	.81	.28
10	.0	70	27.2	1.31	<.2	6.29	130	118	E.002	.082	<.015	.55	.14
24 AUG	.0	71	31.2	.99	<.2	6.04	140	123					
19 SEP	.0	74	29.6	1.09	<.2	6.79	114	123	<.002	.079	<.015	.40	.17
23	.0	75	29.5	.83	<.2	7.11	155	125	<.002	.094	<.015	.42	.24
	Phos- phorus, water unfltrd	Phos- phorus, water,	Ortho- phos- phate, water, fltrd		Alum- inum, suspnd sedimnt	Alum- inum, water	Anti- mony, suspnd sedimnt	Anti- mony, water,	sedimnt	Arsenic water,	sedimnt	water,	Beryll- ium, suspnd sedimnt
	mg/L	mg/L	mg/L as P		total percent	fltrd, ug/L	total, ug/g	fltrd, ug/L	total, ug/g	fltrd, ug/L	total, ug/g	fltrd, ug/L	total, ug/g
Date MAR	(00665)	(00666)	(00671)	(30292)	(30221)	(01106)	(29816)	(01095)	(29818)	(01000)	(29820)	(01005)	(29822)
25 MAY	.022	.006	==			3		<.30		.5		86	
28	.28	.013	E.004	.095	7.0	21	1.1	E.18	12	.7	920	35	2
JUN 17	.37	.010	<.007	.073	6.7	18	1.7	E.17	15	.8	710	38	2
JUL 10	.24	.011	<.007	.100	7.9		1.9		18	.9	1100		2
24 AUG	E.34			.090	8.2	12	2.1	E.20	20	.9	1100	44	2
19 SEP	.29	.007	<.007	.089	7.3	13	2.1	E.27	17	.9	880	41	1
23	.170	.010	E.005	.080	6.0	16	1.4	E.18	15	.9	190	37	1

## YUKON ALASKA

## 15565447 YUKON RIVER AT PILOT STATION—Continued

					Chrom-								
	Beryll-		Cadmium		ium,	Chrom-	Cobalt,		Copper,		Iron		Lead
	ium,	Boron,	suspnd	Cadmium	suspnd	ium,	suspnd	Cobalt	suspnd	Copper,	suspnd	Iron,	suspnd
	water,	water,	sedimnt	water,	sedimnt	water	sedimnt	water,	sedimnt		sedimnt	water,	sedimnt
	fltrd,	fltrd,	total,	fltrd,	total,	fltrd	total,	fltrd,	total,	fltrd,	total,	fltrd,	total,
	ug/L	ug/L	ug/g	ug/L	ug/g	ug/L	ug/g	ug/L	ug/g	ug/L	percent	ug/L	ug/g
Date	(01010)	(01020)	(29826)	(01025)	(29829)	(01030)	(35031)	(01035)	(29832)	(01040)	(30269)	(01046)	(29836)
MAR													
25	< .06	12		E.02		<.8		.214		.9		101	
MAY													
28	< .06	8	.8	E.02	110	<.8	15	.138	35	4.5	4.0	303	15
JUN													
17	< .06	<7	. 9	E.03	83	<.8	13	.126	30	4.5	3.0	173	18
JUL													
10		8	.8		110		20		51		4.9	126	14
24	<.06	E6	.6	<.04	110	<.8	20	.100	55	2.5	5.0	43	16
AUG													
19	<.06	9	.5	< .04	110	<.8	19	.089	49	3.1	4.5	91	16
SEP													
23	<.06	7	. 4	< .04	93	<.8	16	.105	36	2.8	3.8	244	7.0
		·											
				Mangan-			Molyb-				Selen-		
		Lithium		ese,	_	Mercury	denum,	Molyb-	Nickel,		ium,	Selen-	Silver,
	Lead,	suspnd	Lithium	ese, suspnd	ese,	suspnd	denum, suspnd	denum,	suspnd	Nickel,	ium, suspnd	ium,	suspnd
	water,	suspnd sedimnt	water,	ese, suspnd sedimnt	ese, water,	suspnd sedimnt	denum, suspnd sedimnt	denum, water,	suspnd sedimnt	water,	ium, suspnd sedimnt	ium, water,	suspnd sedimnt
	water, fltrd,	suspnd sedimnt total,	water, fltrd,	ese, suspnd sedimnt total,	ese, water, fltrd,	suspnd sedimnt total,	denum, suspnd sedimnt total,	denum, water, fltrd,	suspnd sedimnt total,	water, fltrd,	<pre>ium, suspnd sedimnt total,</pre>	<pre>ium, water, fltrd,</pre>	suspnd sedimnt total,
Date	water, fltrd, ug/L	suspnd sedimnt total, ug/g	water, fltrd, ug/L	ese, suspnd sedimnt total, ug/g	ese, water, fltrd, ug/L	suspnd sedimnt total, ug/g	denum, suspnd sedimnt total, ug/g	denum, water, fltrd, ug/L	suspnd sedimnt total, ug/g	water, fltrd, ug/L	<pre>ium, suspnd sedimnt total, ug/g</pre>	ium, water, fltrd, ug/L	suspnd sedimnt total, ug/g
Date	water, fltrd,	suspnd sedimnt total,	water, fltrd,	ese, suspnd sedimnt total,	ese, water, fltrd,	suspnd sedimnt total,	denum, suspnd sedimnt total,	denum, water, fltrd,	suspnd sedimnt total,	water, fltrd,	<pre>ium, suspnd sedimnt total,</pre>	<pre>ium, water, fltrd,</pre>	suspnd sedimnt total,
MAR	water, fltrd, ug/L (01049)	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130)	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056)	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065)	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850)
MAR 25	water, fltrd, ug/L	suspnd sedimnt total, ug/g	water, fltrd, ug/L	ese, suspnd sedimnt total, ug/g	ese, water, fltrd, ug/L	suspnd sedimnt total, ug/g	denum, suspnd sedimnt total, ug/g	denum, water, fltrd, ug/L	suspnd sedimnt total, ug/g	water, fltrd, ug/L	<pre>ium, suspnd sedimnt total, ug/g</pre>	ium, water, fltrd, ug/L	suspnd sedimnt total, ug/g
MAR 25 MAY	water, fltrd, ug/L (01049)	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130)	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056)	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065)	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850)
MAR 25 MAY 28	water, fltrd, ug/L (01049)	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130)	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056)	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065)	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850)
MAR 25 MAY 28 JUN	water, fltrd, ug/L (01049)	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130) 3.1 1.8	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056)	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065)	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850)
MAR 25 MAY 28	water, fltrd, ug/L (01049)	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130)	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056)	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065)	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)	suspnd sedimnt total, ug/g (29850)
MAR 25 MAY 28 JUN	water, fltrd, ug/L (01049) <.08	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130) 3.1 1.8	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056) 96.8	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065) 1.64 2.54	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145) .6 <.5	suspnd sedimnt total, ug/g (29850)
MAR 25 MAY 28 JUN 17	water, fltrd, ug/L (01049) <.08	suspnd sedimnt total, ug/g (35050)	water, fltrd, ug/L (01130) 3.1 1.8	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056) 96.8	suspnd sedimnt total, ug/g (29841)	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060)	suspnd sedimnt total, ug/g (29845)	water, fltrd, ug/L (01065) 1.64 2.54	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145) .6 <.5	suspnd sedimnt total, ug/g (29850)
MAR 25 MAY 28 JUN 17 JUL	water, fltrd, ug/L (01049) <.08 .28	suspnd sedimnt total, ug/g (35050)  31 29	water, fltrd, ug/L (01130) 3.1 1.8	ese, suspnd sedimnt total, ug/g (29839)	ese, water, fltrd, ug/L (01056) 96.8 14.0	suspnd sedimnt total, ug/g (29841)  .06	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060) .8 .6	suspnd sedimnt total, ug/g (29845)  50 40	water, fltrd, ug/L (01065) 1.64 2.54 1.78	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145) .6 <.5 E.4	suspnd sedimnt total, ug/g (29850)  <.5 <.5
MAR 25 MAY 28 JUN 17 JUL 10	water, fltrd, ug/L (01049) <.08 .28 .17	suspnd sedimnt total, ug/g (35050)  31 29	water, fltrd, ug/L (01130) 3.1 1.8 1.9	ese, suspnd sedimnt total, ug/g (29839) 790 680 960	ese, water, fltrd, ug/L (01056) 96.8 14.0	suspnd sedimnt total, ug/g (29841)  .06 .02	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060) .8 .6	suspnd sedimnt total, ug/g (29845)  50 40	water, fltrd, ug/L (01065) 1.64 2.54 1.78	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)  .6 <.5 E.4 <.5	suspnd sedimnt total, ug/g (29850)  <.5 <.5
MAR 25 MAY 28 JUN 17 JUL 10 24	water, fltrd, ug/L (01049) <.08 .28 .17	suspnd sedimnt total, ug/g (35050)  31 29	water, fltrd, ug/L (01130) 3.1 1.8 1.9	ese, suspnd sedimnt total, ug/g (29839) 790 680 960	ese, water, fltrd, ug/L (01056) 96.8 14.0	suspnd sedimnt total, ug/g (29841)  .06 .02	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060) .8 .6	suspnd sedimnt total, ug/g (29845)  50 40	water, fltrd, ug/L (01065) 1.64 2.54 1.78	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)  .6 <.5 E.4 <.5	suspnd sedimnt total, ug/g (29850)  <.5 <.5
MAR 25 MAY 28 JUN 17 JUL 10 24 AUG	water, fltrd, ug/L (01049) <.08 .28 .17  E.07	suspnd sedimnt total, ug/g (35050)  31 29 37 34	water, fltrd, ug/L (01130) 3.1 1.8 1.9 2.4 2.5	ese, suspnd sedimnt total, ug/g (29839)  790 680 960 940	ese, water, fltrd, ug/L (01056) 96.8 14.0 13.0	suspnd sedimnt total, ug/g (29841)06 .02 .09	denum, suspnd sedimnt total, ug/g (29843)	denum, water, fltrd, ug/L (01060) .8 .6 .6	suspnd sedimnt total, ug/g (29845)  50 40 64 57	water, fltrd, ug/L (01065) 1.64 2.54 1.78	ium, suspnd sedimnt total, ug/g (29847)	ium, water, fltrd, ug/L (01145)  .6 <.5 E.4 <.5 E.5	suspnd sedimnt total, ug/g (29850)  <.5 <.5 <.5

## 15565447 YUKON RIVER AT PILOT STATION—Continued

P. 1	Silver, water, fltrd, ug/L	Stront- ium, suspnd sedimnt total, ug/g	fltrd, ug/L	ium, suspnd sedimnt ug/g	Titan- ium, suspnd sedimnt total, percent	sedimnt total, ug/g	fltrd, ug/L	suspnd sedimnt total, ug/g	Zinc, water, fltrd, ug/L	suspnd sedimnt total, ug/g	fltrd, ug/L	carbon, water, fltrd, mg/L	suspnd sedimnt total, mg/L
Date	(01075)	(35040)	(01080)	(49955)	(30317)	(29853)	(01085)	) (29855)	(01090)	(35046)	(22703)	(00681)	(00688)
MAR 25 MAY	<.2		195				1.8		4		.98	2.5	<.1
28	<.2	220	84.2	<50	.420	130	.7	130	2	<50	.50	11.6	<.1
JUN													
17	<.2	180	93.1	< 50	.450	110	.9	120	1	<50	.51	9.4	.2
JUL							_						
10		240	128	< 50	.500	160	.7	140		>50		5.6	.3
24	<.2	230	130	<50	.480	150	.6	150	1	>50	.75	4.6	2.0
AUG													
19	<.2	260	129	<50	.440	140	.8	130	2	<50	.68	5.5	.6
SEP													
23	<.2	260	120	< 50	.350	120	1.1	110	<1	<50	.59	8.7	<.1
Date	Orga carb sus sedi tot mg (006	on, carb pnd sus mnt sedi al, tot /L mg	oon, carl pnd su mnt sed al, to //L per	spnd car imnt su tal, sed cent per	ul anic ni bon, g spnd su imnt wa cent m	ate sector control con	nc, solution inc, solution inc	sedi- p ment s oncen- : ration l mg/L t	Sus-sended medi-sended dioad, peons/d <.	aspnd. sedi- nent, sieve ametr ercent 063mm '0331)			
MAR 25		4	. 4			04		4 5	86	96			
MAY 28	2.			.8 1	.5 .	20		276 3330		78			
JUN 17	2.						05	402 5850		73			
JUL													
10 24	2. 6.						22 72	233 2200 374 4080		91 93			
AUG 19	3.	9 4	.5 2	.0 1	.2 .	18 2	68	275 2700	00	89			
SEP 23	2.	2 2	.3 2	.8 2	.2 .	14 1	.53	152 1760	00	77			

#### 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET

LOCATION.--Lat  $63^{\circ}56'06''$ , long  $160^{\circ}18'18''$ , in  $NW^{1}/_{4}$  NE $^{1}/_{4}$  sec. 18, T.18 S., R.8 W. (Unalakleet D-3 quad), Hydrologic Unit 19050102, on the right bank, 3.5 mi upstream from mouth of the Chiroskey River, 28 mi upstream from mouth, 15 mi east of Unalakleet.

DRAINAGE AREA.--1,048 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1997 to September 1999 (no winter record), October 1999 to current year.

REVISED RECORDS. -- WRD-AK-99-1: 1998.

GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level from topographic map.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	6070	1290	e450	e240	e160	e130	e120	e1200	6590	2080	2670	3510	
2	5140	1220	e450	e240	e160	e130	e120	1530	7400	3780	2440	3260	
3	4200	1130	e400	e240	e160	e130	e120	1940	7020	5660	2270	3000	
4	3600	1130	e400	e240	e170	e130	e120	2320	6350	5190	2150	2920	
5	3050	1130	e450	e240	e170	e130	e120	2580	5950	4030	2020	2800	
6	2670	1090	e450	e240	e160	e130	e120	3030	5890	3300	1910	2620	
7	2620	1040	e400	e220	e160	e130	e120	2770	5520	2830	1820	2480	
8	2720	e1000	e400	e220	e160	e130	e120	3060	5170	2530	1780	2390	
9	2500	e950	e400	e220	e140	e130	e120	5330	4530	2290	1750	2300	
10	2280	e900	e400	e220	e140	e130	e120	7590	4210	2130	1650	2220	
11	2210	e900	e350	e220	e140	e120	e120	6030	4220	2020	1630	2170	
12	2100	e850	e350	e200	e140	e120	e120	4120	4150	1910	1750	2170	
13	e2000	e800	e350	e200	e140	e120	e120	3700	3900	1800	1800	2130	
14	1980	e800	e350	e200	e140	e120	e120	3780	3500	1710	2180	2050	
15	1900	e750	e350	e200	e140	e120	e120	3050	3060	1720	4410	1960	
16	1830	e750	e350	e200	e140	e120	e120	2400	2710	1750	5670	1900	
17	1650	e700	e350	e200	e140	e120	e130	2090	2580	1650	4830	1840	
18	e1520	e700	e300	e200	e140	e120	e140	1990	2490	1550	4220	1780	
19	e1400	e650	e300	e180	e140	e120	e150	2320	2320	1450	3810	1730	
20	e1310	e650	e300	e180	e140	e120	e160	3080	2270	1390	3430	1670	
21	e1350	e600	e300	e180	e140	e120	e170	3920	2200	1330	3100	1600	
22	e1460	e600	e300	e180	e140	e120	e200	4170	2130	1300	2840	1540	
23	e1600	e550	e300	e180	e140	e120	e300	4070	2190	1320	2710	1500	
24	1650	e550	e280	e180	e140	e120	e350	3780	2270	1550	3350	1460	
25	1480	e600	e280	e180	e140	e120	e400	3660	2250	1940	4100	1420	
26 27 28 29 30 31	1390 1320 1250 1200 1180 1250	e600 e550 e500 e500 e450	e280 e280 e260 e260 e260 e260	e180 e180 e160 e160 e160 e160	e130 e130 e130 	e120 e120 e120 e120 e120 e120	e450 e500 e600 e700 e900	3750 4520 4410 4730 5150 5620	2050 1900 1790 1730 1800	2370 3950 4910 3940 3340 2990	5250 5650 5130 4420 3920 3710	1370 1340 1320 1360 1420	
TOTAL	67880	23930		6200	4070	3820	7070	111690	110140	79710	98370	61230	
MEAN	2190	798		200	145	123	236	3603	3671	2571	3173	2041	
MAX	6070	1290		240	170	130	900	7590	7400	5660	5670	3510	
MIN	1180	450		160	130	120	120	1200	1730	1300	1630	1320	
AC-FT	134600	47470		12300	8070	7580	14020	221500	218500	158100	195100	121400	
CFSM	2.09	0.76		0.19	0.14	0.12	0.22	3.44	3.50	2.45	3.03	1.95	
IN.	2.41	0.85		0.22	0.14	0.14	0.25	3.96	3.91	2.83	3.49	2.17	
STATIS	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	997 - 2003,	BY WAT	ER YEAR (V	√Y)#				
MEAN MAX (WY) MIN (WY)	1465 2190 2003 1037 2002	591 798 2003 394 2002	342 2003 198	164 200 2003 147 2002	128 145 2003 116 2001	112 123 2003 98.2 2001	142 236 2003 105 2001	2700 4053 2002 1182 2001	3633 8788 2001 1216 1997	1734 2571 2003 562 1997	2882 5690 1998 809 2002	2679 3890 1998 1385 1999	

## 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

SUMMARY STATISTICS	FOR 2002 CALENI	DAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1997 - 2003#
ANNUAL TOTAL	418968		584720			
ANNUAL MEAN	1148		1602		1389	
HIGHEST ANNUAL MEAN					1656	2001
LOWEST ANNUAL MEAN					1005	2002
HIGHEST DAILY MEAN	17000	May 24	7590	May 10	19600	Jun 8 2001
LOWEST DAILY MEAN	a110	Mar 29	b120	Mar 11	c95	Mar 21 2001
ANNUAL SEVEN-DAY MINIMUM	110	Mar 29	120	Mar 11	95	Mar 21 2001
MAXIMUM PEAK FLOW			7850	May 10	d19700	Jun 8 2001
MAXIMUM PEAK STAGE			93.07	May 10	98.41	Jun 8 2001
MAXIMUM PEAK STAGE					f99.58	May 23 2002
ANNUAL RUNOFF (AC-FT)	831000		1160000		1006000	
ANNUAL RUNOFF (CFSM)	1.10		1.53		1.33	
ANNUAL RUNOFF (INCHES)	14.87		20.76		18.01	
10 PERCENT EXCEEDS	2480		4110		3440	
50 PERCENT EXCEEDS	683		1220		655	
90 PERCENT EXCEEDS	120		120		110	

[#] See Period of Record
a From Mar. 29 to Apr. 24
b From Mar. 11 to Apr. 16
c From Mar. 21 to Apr. 10
d From rating curve extended above 8800 ft³/s
e Estimated
f Backwater from ice

#### 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1982-83, 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1998 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for one-hour recording interval.

REMARKS.-- Records represent water temperature at the sensor within 0.5°C. No record October 11-13 and August 28 due to recorder probems. Temperature was compared with the stream average by cross section on July 17. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum, 14.5°C, July 11-12 2000 and July 19, August 2-3, 2002; minimum, 0.0°C, many days during winter and spring breakup periods.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 13.0°C, July 13, 20; minimum, 0.0°C, many days during fall, winter and spring breakup periods.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

			SAMPLE		DIS-		
			LOC-		CHARGE,		
			ATION,		INST.		
			CROSS		CUBIC	TEMPER-	TEMPER-
		STREAM	SECTION	GAGE	FEET	ATURE	ATURE
Date	Time	WIDTH	(FT FM	HEIGHT	PER	WATER	AIR
		(FT)	R BK)	(FEET)	SECOND	(DEG C)	(DEG C)
		(00004)	(72103)	(00065)	(00061)	(00010)	(00020)
JUL							
17	1151	247	15.0	88.06	1630	8.0	27.0
17	1153	247	55.0	88.06	1630	8.0	27.0
17	1155	247	95.0	88.06	1630	8.0	27.0
17	1157	247	135.0	88.06	1630	8.0	27.0
17	1159	247	185.0	88.06	1630	8.0	27.0

TEMPERATURE, WATER, (DEGREES CELSIUS) WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	4.5 3.5 3.5 2.5 2.0	0.5 3.0 2.5 2.0 1.5	4.0 3.5 3.0 2.5 2.0	1.5 1.5 1.0 1.0	1.5 0.5 0.5 0.5	1.5 1.0 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	1.5 2.0 2.0 2.0 2.0	1.5 1.5 2.0 1.5	1.5 2.0 2.0 2.0 2.0	1.0 1.0 0.5 0.0	0.5 0.5 0.0 0.0	0.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	2.5 2.5	  2.0 2.0	2.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	2.0 1.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0	2.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	0.0 0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	1.5 1.5 1.0 1.0 2.5 2.5	1.0 1.0 0.5 0.5 1.0	1.0 1.5 0.5 1.0 1.5 2.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH				1.5	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0

## NORTHWEST ALASKA

## 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

TEMPERATURE, WATER, (DEGREES CELSIUS) WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.0 3.5 3.0 2.5 2.0	2.0 2.0 2.0 1.5	2.5 2.5 2.5 2.0 2.0
6 7 8 9 10	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.0 2.0 2.0	1.5 1.5 2.0 1.0 0.5	1.5 1.5 2.0 1.0
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.0 2.5 2.5 2.0 1.5	1.0 2.0 2.0 1.5	1.5 2.5 2.5 2.0 1.5
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 3.5 5.0 5.5	1.5 2.0 2.5 4.5 4.0	2.0 2.5 3.5 5.0 4.5
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.0 3.5 4.5 5.0	2.5 2.5 3.5 4.0 4.5	3.5 3.0 4.0 4.0 4.5
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5 2.5	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0 1.5	4.5 3.5 4.5 4.5 5.5	3.5 3.0 3.0 3.5 4.5 5.5	4.0 3.0 3.5 4.0 5.0 5.5
MONTH	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.1	5.5	0.5	2.9
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN CR
1 2 3 4 5	6.0 5.5 5.0 5.5 6.5	5.0 4.5 4.5 5.0 5.5	5.5 5.0 4.5 5.5 6.0	9.5 9.0 8.0 8.0 9.0	9.0 8.0 7.0 7.5 7.5	9.0 8.0 7.5 8.0 8.0	9.0 8.5 8.5 9.0 9.5	8.0 7.5 7.0 8.5 8.5	8.5 8.0 7.5 9.0 9.0	8.5 8.0 8.0 7.0 6.5	8.0 8.0 7.0 6.5 6.0	8.5 8.0 7.0 6.5 6.5
6 7 8 9 10	6.5 7.0 7.0	6.5 6.0	6.5					0.5	٥.٥	0.5	0.0	
	7.5	6.0 7.0 6.5	6.5 6.5 7.5 6.5	9.5 10.0 11.5 11.5 11.0	8.5 9.0 9.5 10.5	9.0 9.5 10.5 11.0 10.5	10.5 10.5 11.5 12.5 12.0	8.5 10.0 9.5 10.5	9.5 10.0 10.0 11.5 11.5	7.0 6.5 6.5 6.5	6.0 6.5 6.0 6.0 5.5	6.5 6.5 6.0 6.0
11 12 13 14 15	7.5	6.0 7.0	6.5 7.5	10.0 11.5 11.5 11.0	9.0 9.5 10.5	9.5 10.5 11.0 10.5	10.5 11.5 12.5 12.0	8.5 10.0 9.5 10.5	9.5 10.0 10.0 11.5 11.5	7.0 6.5 6.5 6.5 6.0	6.0 6.5 6.0	6.5 6.0 6.0
12 13 14	7.5 7.0 7.5 8.5 9.0 10.0	6.0 7.0 6.5 6.5 7.5 8.5 9.0	6.5 7.5 6.5 7.0 8.0 8.5 9.5	10.0 11.5 11.5 11.0 10.5 11.5 13.0 12.5	9.0 9.5 10.5 10.0 10.0 9.0 10.5 10.5	9.5 10.5 11.0 10.5 10.0 10.0 11.5 11.5	10.5 11.5 12.5 12.0 11.5 10.5 10.0 9.5	8.5 10.0 9.5 10.5 11.0 10.5 10.0 9.5 9.0	9.5 10.0 10.0 11.5 11.5 11.0 10.0 9.5 9.0	7.0 6.5 6.5 6.0 6.0 6.5 6.0	6.0 6.5 6.0 6.0 5.5 5.5 6.0 5.0 4.0	6.5 6.0 6.0 5.5 5.5 6.0 5.5 4.5
12 13 14 15 16 17 18 19	7.5 7.0 7.5 8.5 9.0 10.0 10.0 9.5 9.5 10.5	6.0 7.0 6.5 6.5 7.5 8.5 9.0 9.0 9.0 9.0	6.5 7.5 6.5 7.0 8.0 8.5 9.5 9.5 9.0 9.5 10.0	10.0 11.5 11.5 11.0 10.5 11.5 13.0 12.5 10.5	9.0 9.5 10.5 10.0 10.0 9.0 10.5 10.5 9.0 8.5 7.5 8.5	9.5 10.5 11.0 10.5 10.0 11.5 11.5 9.5 9.0 8.5 9.5 11.5	10.5 11.5 12.5 12.0 11.5 10.5 10.0 9.5 9.5 8.5 8.0 7.0	8.5 10.0 9.5 10.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.5	9.5 10.0 10.0 11.5 11.5 11.0 9.5 9.0 9.0 8.0 7.5 6.5	7.0 6.5 6.5 6.0 6.0 6.0 5.0 4.5 4.5 4.5 4.0	6.0 6.5 6.0 6.0 5.5 5.5 6.0 4.0 3.5 3.0 3.5	6.5 6.0 6.0 5.5 5.5 6.0 5.5 4.0 4.0 4.0 3.5
12 13 14 15 16 17 18 19 20 21 22 23 24	7.5 7.0 7.5 8.5 9.0 10.0 10.0 9.5 9.5 10.0 9.5 11.0 11.0	6.0 7.0 6.5 6.5 7.5 8.5 9.0 9.0 9.0 8.0 9.0 9.0 8.5 9.0	6.5 7.5 6.5 7.0 8.0 8.5 9.5 9.5 9.0 9.0 9.0 9.0 9.5 10.0	10.0 11.5 11.5 11.0 10.5 11.5 13.0 12.5 10.5 9.5 9.5 11.0 12.5 13.0	9.0 9.5 10.5 10.0 10.0 9.0 10.5 10.5 9.0 8.5 7.5 8.5 11.0 11.0 9.5 9.5	9.5 10.5 11.0 10.5 10.0 11.5 11.5 9.5 9.0 8.5 9.5 11.5 12.0 11.5	10.5 11.5 12.5 12.0 11.5 10.5 10.0 9.5 9.5 8.5 8.0 7.0 7.0 8.0	8.5 10.0 9.5 10.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.5 6.5	9.5 10.0 11.5 11.5 11.0 10.0 9.5 9.0 9.0 8.0 7.5 6.5 7.5 8.5 8.0 7.0	7.0 6.5 6.5 6.0 6.0 6.0 5.0 4.5 4.5 4.0 3.5 2.5 2.5	6.0 6.5 6.0 6.0 5.5 5.5 6.0 4.0 3.5 3.0 3.5 3.0 2.5 1.5 1.5	6.5 6.0 6.0 5.5 5.5 4.5 4.0 4.0 4.0 3.5 3.5 3.0 2.5 2.0 2.0

## 15743850 DAHL CREEK NEAR KOBUK

LOCATION.--Lat  $66^{\circ}56'46''$ , long  $156^{\circ}54'32''$ , in  $NW^{1}/_{4}$   $SE^{1}/_{4}$  sec. 21, T. 18 N., R.9 E. (Shungnak D-2 quad), Hydrologic Unit 19050302, on right bank 25 ft downstream from culvert on road to Bornite at west end of Dahl Creek landing strip, 3.5 mi upstream from mouth and 3 mi north of Kobuk.

DRAINAGE AREA.--11.0 mi².

PERIOD OF RECORD.--Annual maximum, water years 1986-87, April 1988 to current year. (No winter record in water years 1989, 1991-92, 1994, and 1996.)

REVISED RECORDS. -- WDR AK-88-1: 1986(M).

GAGE.--Water-stage recorder. Elevation of gage is 225 ft above sea level, from topographic map. July 16, 1986, to April 28, 1988, the water-stage recorder was operated to obtain annual maximums. Prior to August 17, 1994 at site 50 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCH	ARGE, CUI	BIC FEET PE			YEAR OCTO	BER 2001 T	O SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26 26 25 27 26	e16 e16 e15 e15 e15	e11 e11 e11 e10 e10	e6.2 e6.0 e6.0 e6.0 e5.8	e4.6 e4.6 e4.6 e4.5 e4.5	e4.0 e4.0 e4.0 e4.0	e3.7 e3.7 e3.7 e3.7 e3.7	e3.7 e3.7 e3.8 e3.9 e4.1	37 41 47 44 43	19 23 22 21 20	21 20 20 19 19	18 17 18 19 24
6 7 8 9 10	28 28 26 26 26	e15 e14 e14 e14	e9.8 e9.6 e9.4 e9.2 e9.0	e5.8 e5.8 e5.6 e5.6	e4.5 e4.5 e4.4 e4.4	e3.9 e3.9 e3.9 e3.9	e3.7 e3.7 e3.7	e4.5 e5.0 e5.4	41 38 41 37 34	26 47 35 34 31	18 18 18 18	26 26 28 29 31
11 12 13 14 15	25 25 25 24 24	e14 e14 e13 e13	e8.8 e8.6 e8.4 e8.2 e8.0	e5.6 e5.4 e5.4 e5.4	e4.4 e4.3 e4.3 e4.3 e4.3	e3.9 e3.8 e3.8 e3.8	e3.6 e3.6	e5.8 e7.0 e10 13 14 15	32 30 36 40 30	30 29 29 29 28	17 17 17 16 21	37 40 56 54 53
16 17 18 19 20	e23 e23 e22 e22 e21	e13 e13 e13 e13	e8.0 e7.8 e7.6 e7.6	e5.2 e5.2 e5.2 e5.2 e5.0	e4.3 e4.2 e4.2 e4.2 e4.2	e3.8 e3.8 e3.8 e3.8	e3.6 e3.6 e3.6 e3.6	18 25 34 60 105	28 26 25 24 23	27 25 25 24 34	26 21 20 20 19	51 50 49 46 43
21 22 23 24 25	e21 e20 e20 e19 e19	e12 e12 e12 e12 e12	e7.2 e7.2 e7.0 e7.0 e6.8	e5.0 e5.0 e4.9 e4.9 e4.9	e4.2 e4.1 e4.1 e4.1	e3.7 e3.7 e3.7 e3.7	e3.6 e3.6 e3.6 e3.7	159 231 254 212 188	22 23 32 25 22	31 26 26 25 24	19 19 19 19	41 39 37 35 34
26 27 28 29 30 31	e18 e18 e17 e17 e17 e16	e12 e11 e11 e11 e11	e6.8 e6.6 e6.4 e6.4 e6.2 e6.2	e4.8 e4.8 e4.8 e4.7 e4.7	e4.1 e4.1 e4.0	e3.7 e3.7 e3.7 e3.7 e3.7	e3.7 e3.7 e3.7 e3.7	173 134 90 63 52 43	22 21 21 20 20	24 24 23 22 22 21	18 18 19 19 18	33 32 32 58 67
TOTAL MEAN MAX MIN AC-FT CFSM IN.	700 22.6 28 16 1390 2.05 2.37	396 13.2 16 11 785 1.20 1.34					109.6 3.65 3.7 3.6 217 0.33 0.37	1944.2 62.7 254 3.7 3860 5.70 6.57	925 30.8 47 20 1830 2.80 3.13	826 26.6 47 19	587 18.9 26 16 1160 1.72 1.99	1123 37.4 67 17 2230 3.40 3.80
STATIS	TICS OF M	ONTHLY ME	EAN DATA	FOR WATER Y	EARS 198	6 - 200	2, BY WATE	R YEAR (WY	) #			
MEAN MAX (WY) MIN (WY)	28.2 67.2 1994 9.65 1993	9.57 16.0 1999 3.70 1993	5.88 8.20 2002 2.55 1993	4.62 6.88 1998 2.00 1993	4.10 6.15 1998 2.00 1993	3.76 5.63 1998 1.63 1993	4.16 7.39 1997 1.50 1993	53.4 93.1 1996 6.21 2001	62.3 116 1992 13.1 1997	35.7 73.2 1989 10.6 1997	67.3 223 1994 17.3 1990	49.6 104 1993 19.8 1991
	Y STATIST	ICS	FOR		NDAR YEAR			WATER YEAR		WATER YEA	RS 1986 -	2002#
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL ANNUAL ANNUAL 10 PER( 50 PER(	MEAN T ANNUAL ANNUAL M T DAILY M DAILY ME SEVEN-DA M PEAK FL M PEAK ST M PEAK ST RUNOFF (	EAN EAN EAN EAN EAN EAN OW AGE AGE AC-FT) CFSM) INCHES) EEDS	ſ	10290.1 28.2 449 a2.9 2.9 20410 2.56 34.80 68 12 3.0	5		7268. 19.  254 b3. 3. 393 5. f7. 14420 1. 24. 37 14	9 May 23 6 Apr 11 6 Apr 11 May 22 77 May 22 03 May 10 81 58		24.8 36.7 18.8 1400 c1.5 1.5 d1840 6.7 f7.0 17940 2.2 30.5 61 9.6 3.0	Aug 17 Mar 9 Mar 9 Aug 17 3 Aug 17 3 May 10	9 1993 9 1993 7 1994 7 1994

See Period of Record; partial years used in monthly statistics From Apr. 19 to May 13 From Apr. 11 to Apr. 24 From Mar. 9 to Apr. 30, 1993

b

From rating curve extended above 170 ft³/s on basis of slope-area measurement of peak flow

Estimated

Backwater from ice

## 15743850 DAHL CREEK NEAR KOBUK—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

	DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	65 61 60 57 54	e20 e20 e19 e19 e18	e11 e11 e11 e11	e7.6 e7.4 e7.4 e7.2 e7.2	e5.8 e5.8 e5.8 e5.8	e5.0 e5.0 e4.8 e4.8	e4.2 e4.2 e4.2 e4.2 e4.2	e6.0 e6.2 e6.4 e6.6 e6.8	93 102 107 119 140	92 98 89 82 79	91 85 93 85 86	78 74 72 74 69	
6 7 8 9 10	51 49 47 43 41	e18 e17 e17 e16 e16	e11 e11 e11 e10 e10	e7.0 e7.0 e7.0 e6.8 e6.8	e5.6 e5.6 e5.6 e5.6	e4.8 e4.8 e4.8 e4.8	e4.2 e4.2 e4.2 e4.2 e4.2	e7.0 e7.4 e8.0 e9.0 e10	160 157 149 143 143	76 72 68 65 64	80 76 71 69 67	65 63 79 76 73	
11 12 13 14 15	39 37 35 33 32	e15 e15 e14 e14 e13	e10 e10 e9.8 e9.8 e9.6	e6.8 e6.6 e6.6 e6.6 e6.6	e5.4 e5.4 e5.4 e5.2 e5.2	e4.8 e4.6 e4.6 e4.6	e4.2 e4.2 e4.2 e4.2 e4.2	e11 e12 e12 e13 e13	143 136 126 114 102	60 57 56 56 51	112 128 110 158 176	72 68 65 62 60	
16 17 18 19 20	31 e29 e28 e27 e26	e13 e13 e13 e13 e13	e9.6 e9.4 e9.2 e9.0 e8.8	e6.4 e6.4 e6.4 e6.2	e5.2 e5.2 e5.0 e5.0	e4.4 e4.4 e4.4 e4.4	e4.2 e4.2 e4.2 e4.2 e4.4	e13 e13 e14 e14 e15	92 86 81 75 70	50 47 45 44 43	186 167 151 136 122	58 55 53 51 49	
21 22 23 24 25	e25 e25 e24 e24 e23	e12 e12 e12 e12 e12	e8.8 e8.6 e8.6 e8.4 e8.4	e6.2 e6.2 e6.2 e6.2 e6.0	e5.0 e5.0 e5.0 e5.0	e4.4 e4.4 e4.4 e4.2	e4.4 e4.4 e4.6 e4.8 e5.2	e17 e20 e23 32 38	66 62 60 57 54	42 41 44 59 83	110 99 115 111 106	47 45 44 43 41	
26 27 28 29 30 31	e23 e22 e22 e21 e21 e21	e12 e12 e12 e11 e11	e8.2 e8.0 e8.0 e7.8 e7.8	e6.0 e6.0 e6.0 e6.0 e6.0	e5.0 e5.0 e5.0	e4.2 e4.2 e4.2 e4.2 e4.2 e4.2	e5.6 e5.8 e5.8 e5.8 e	55 84 70 64 63 74	51 49 47 45 47	111 84 78 76 75 80	109 102 97 92 88 83	40 38 37 39 37	
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1096 35.4 65 21 2170 3.21 3.71	434 14.5 20 11 861 1.32 1.47	293.4 9.46 11 7.6 582 0.86 0.99	203.2 6.55 7.6 6.0 403 0.60 0.69	149.0 5.32 5.8 5.0 296 0.48 0.50	140.6 4.54 5.0 4.2 279 0.41 0.48	136.4 4.55 5.8 4.2 271 0.41 0.46	743.4 24.0 84 6.0 1470 2.18 2.51	2876 95.9 160 45 5700 8.72 9.73	2067 66.7 111 41 4100 6.06 6.99	3361 108 186 67 6670 9.86 11.37	1727 57.6 79 37 3430 5.23 5.84	
STATIST	TICS OF M	MONTHLY M	EAN DATA	FOR WATER	YEARS 198	36 - 2003	3, BY WATE	R YEAR (WY)	#				
MEAN MAX (WY) MIN (WY)	28.8 67.2 1994 9.65 1993	10.1 16.0 1999 3.70 1993	6.24 9.46 2003 2.55 1993	4.81 6.88 1998 2.00 1993	4.22 6.15 1998 2.00 1993	3.84 5.63 1998 1.63 1993	4.20 7.39 1997 1.50 1993	51.0 93.1 1996 6.21 2001	64.5 116 1992 13.1 1997	37.7 73.2 1989 10.6 1997	69.6 223 1994 17.3 1990	50.1 104 1993 19.8 1991	
SUMMARY	Y STATIST	CICS	FOF	2002 CAL	ENDAR YEAI	3	FOR 2003	WATER YEAR		WATER YE	ARS 1986	- 2003#	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUI MAXIMUI MAXIMUI ANNUAL ANNUAL ANNUAL	MEAN F ANNUAL ANNUAL F DAILY ME SEVEN-DA M PEAK FI M PEAK ST M PEAK ST	MEAN MEAN MEAN MY MINIMU MOW MAGE MAGE MAC-FT) MCFSM MINIMU MINIM		7741 21 254 a3 3 15360 1 26	May 2: 6 Apr 1: 6 Apr 1:	3 1 1	13227. 36. 186 b4. 4. 224 5. 26240 3. 44. 92	Aug 16 2 Mar 25 2 Mar 25 Aug 15 36 Aug 15		25. 366. 18. 1400 c1. d1840 6. f7. 18770 2. 32. 67	78 Aug 1'55 Mar 95 Aug 1'73 Aug 1'03 May 10	9 1993	
50 PERG	CENT EXCE	EEDS	15360 1.93 26.18 42 14 3.7				13 4.			67 10 3.0			

See Period of Record; partial years used in monthly statistics From Apr.11 to May 13 From Mar. 25 to Apr. 15 From Mar. 9 to Apr. 30, 1993

d  $\,$  From rating curve extended above 170  $\,\mathrm{ft}^3/\mathrm{s}$  on basis of slope-area measurement of peak flow

e Estimated f Backwater from ice

#### 15744500 KOBUK RIVER NEAR KIANA

LOCATION.--Lat  $66^{\circ}58'25''$ , long  $160^{\circ}07'51''$ , in  $NW^{1}/_{4}SE^{1}/_{4}$  sec. 11, T. 18 N., R. 7 W.(Selawik D-3 quad), Northwest Arctic Borough, Hydrologic Unit 19050304, on left bank, 5.8 mi upstream from Portage Creek, 9.7 mi upstream from Squirrel River, and  $7.8~\mathrm{mi}$  east of Kiana.

DRAINAGE AREA. -- 9,520 mi², approximately.

PERIOD OF RECORD. -- September 1976 to current year (discontinued).

REVISED RECORDS.--WDR AK-81-1: 1977 (M), 1978, 1979-80 (M), WDR AK-93-1: 1992.

GAGE.--Water-stage recorder. Elevation of gage is 35 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES Satellite telemetry at station.

		DIS	CHARGE,	CUBIC FEET		OND, WATER		FOBER 2002	TO SEPT	EMBER 2003		
DAY	OCT	NOV	DE	C JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	31200 36900 38000 37000 34600	e14000 e13500 e13000 e12500 e12000	e5900 e5800 e5700 e5600 e5500	e4000 e3900 e3800	e2600 e2600 e2600 e2600 e2600	e2300 e2200 e2200 e2200 e2200	e2100 e2100 e2100 e2100 e2100	e3000 e3200 e3600 e4200 e5000	44000 48100 51500 53900 63000	35400 55900 63700 57000 60100	27000 25600 25700 26100 26800	35400 32500 30300 29000 28400
6 7 8 9 10	31400 28600 26800 24800 22500	e11500 e11000 e10500 e10000 e9400	e5400 e5400 e5300 e5300 e5200	e3600 e3500 e3400	e2600 e2500 e2500 e2500 e2500	e2200 e2200 e2200 e2200 e2200	e2100 e2100 e2100 e2100 e2100	e6000 e7500 e10000 e14000 e19000	70300 78600 80700 83700 82900	63700 60500 51900 43900 38100	26900 26800 25100 23100 21300	28700 28800 28500 28300 29500
11 12 13 14 15	20300 19500 17900 16500 e15000	e8800 e8300 e8000 e7700 e7400	e5100 e5100 e5000 e5000 e4900	e3300 e3200 e3200	e2500 e2400 e2400 e2400 e2400	e2200 e2200 e2200 e2200 e2200	e2100 e2100 e2100 e2100 e2100	e28000 e40000 e60000 e68000 e67000	84400 85500 84200 78300 74600	34400 31500 29300 27400 25800	20300 22200 30500 38400 47100	30900 30700 29700 28100 26600
16 17 18 19 20	e14000 e13000 e12500 e12000 e11500	e7200 e7000 e6900 e6800 e6700	e490 e485 e480 e480 e470	e3000 e3000 e3000	e2400 e2400 e2400 e2400 e2300	e2200 e2200 e2200 e2100 e2100	e2100 e2100 e2100 e2100 e2100	e63000 e58000 e53000 e50000 47600	69600 63000 58600 55800 51300	24600 23200 22100 21000 19900	60500 65500 65700 64400 59900	25000 23200 22100 21100 20100
21 22 23 24 25	e11000 e10500 e11000 e11500 e12000	e6700 e6600 e6600 e6500 e6500	e470 e460 e460 e450 e450	e2900 e2800 e2800	e2300 e2300 e2300 e2300 e2300	e2100 e2100 e2100 e2100 e2100	e2100 e2100 e2100 e2100 e2100	49500 40700 31400 29200 27900	47900 45000 42400 39800 37600	18700 17800 17200 17700 20700	52800 46000 41800 42600 44400	19100 18200 17400 16800 16000
26 27 28 29 30 31	e12500 e13000 e13500 e14000 e14000	e6400 e6300 e6200 e6100 e6000	e4400 e4400 e4300 e4100 e4100	0 e2700 e2700 e2700 e2700 e2700	e2300 e2300 e2300	e2100 e2100 e2100 e2100 e2100 e2100	e2200 e2200 e2200 e2300 e2500	27300 29900 35800 38900 40100 41300	36200 35000 34100 33100 32600	23500 27700 31700 34000 32800 29800	44800 45900 45100 43200 41300 38700	15200 14800 14100 14000 14300
MEAN MAX MIN	601000 19390 38000 10500 1192000 2.04 2.35	256100 8537 14000 6000 508000 0.90 1.00	15265 4924 5904 4104 302804 0.52 0.66	4 3177 0 4000 0 2700 0 195400 2 0.33	68000 2429 2600 2300 134900 0.26 0.27	67000 2161 2300 2100 132900 0.23 0.26	63900 2130 2500 2100 126700 0.22 0.25	1002100 32330 68000 3000 1988000 3.40 3.92	1745700 58190 85500 32600 3463000 6.11 6.82	1061000 34230 63700 17200 2104000 3.60 4.15	1215500 39210 65700 20300 2411000 4.12 4.75	716800 23890 35400 14000 1422000 2.51 2.80
STATI	STICS OF	MONTHLY	MEAN DA	TA FOR WATE	R YEARS 1	L976 - 2003	B, BY WAT	ER YEAR (	WY)			
MEAN MAX (WY) MIN (WY)	14070 29870 1994 5003 1997	5555 11050 1994 2750 1981	348: 609' 1994 1920 198:	7 3965 4 1994 6 1606	2159 2868 1994 1331 1984	1908 2600 1980 1116 1984	1863 3703 1980 1000 1984	25400 52250 2002 1635 1992	46450 87010 1989 19690 1997	21640 40130 1980 9032 1997	30610 78210 1994 7809 2002	28060 78190 1986 9542 1996
SUMMA	RY STATI	STICS	1	FOR 2002 CA	LENDAR YE	EAR		WATER YE	AR	WATER Y	EARS 1976	- 2003
ANNUA HIGHE LOWES HIGHE LOWES ANNUA MAXIM MAXIM	UM PEAK	MEAN MEAN MEAN DAY MININ FLOW STAGE	IUM	5055060 13850 137000 a1700 1700	Apr		b2100 2100 86700 53	Jun: ) Jun: ) Mar: ) Jun: 3.75 Jun:	19 19 12 12	15410 24960 10020 155000 c1000 1000 161000 d62 f64	Jun Apr Apr Jun .94 Jun .26 Jun	1994 1977 5 1992 1 1984 1 1984 4 1992 4 1992 1 1989
ANNUA 10 PE 50 PE	L KOMOLL	CEEDS		10030000 1 19 31300 6850 1800	.45 .75			2.03 7.54 )		11160000 1. 22. 41500 5400 1700		

See Period of Record; partial years used in monthly statistics From Apr. 15 to Apr. 25 From Mar. 19 to Apr. 25 From Apr. 1 to May 14, 1984 From floodmarks

Estimated Backwater from ice

#### 15746900 WULIK RIVER ABOVE FERRIC CREEK NEAR KIVALINA

LOCATION.--Lat  $68^{\circ}04'42''$ , long  $163^{\circ}11'15''$ , in  $NW^{1}/_{4}$  sec. 23, T. 31 N., R. 20 W. (DeLong Mts A-2 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.7 mi upstream from Ferric Creek, 9 miles west of Red Dog Mine site, and 43 miles northeast of Kivalina.

DRAINAGE AREA.--191 mi².

PERIOD OF RECORD. -- July 2000 to September 2003 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 500 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

REMARKS.	Record	ds fair exc						are poor. OBER 2002			lemetry a	t statio
			,			ILY MEAN						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	366 355 318 290 e265	e53 e49 e44 e43 e43	e25 e24 e24 e24 e24	e17 e16 e16 e16 e15	e4.8 e4.6 e4.4 e4.0 e3.8	e0.20 e0.20 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.05 e0.15 e0.35 e0.90	e1300 e2100 e2000 2470 3590	1810 1800 863 589 538	505 554 638 528 575	322 299 295 352 351
6 7 8 9 10	e255 e260 e250 229 194	e42 e40 e38 e37 e36	e24 e23 e23 e23 e23	e15 e14 e14 e13 e13	e3.6 e3.2 e3.0 e2.8 e2.6	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e2.8 e7.5 e17 e38 e54	4920 4550 4040 3580 3700	463 381 323 269 249	496 405 344 377 355	536 568 771 778 856
11 12 13 14 15	e195 e195 e175 e155 e140	e34 e33 e31 e30 e29	e22 e22 e22 e22 e22	e13 e12 e12 e11 e11	e2.4 e2.2 e2.0 e1.8 e1.6	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e54 e50 e43 e37 e32	3700 4130 2920 2320 1860	254 246 223 195 175	332 295 261 261 289	733 567 468 378 375
16 17 18 19 20	129 e125 e105 e91 e80	e28 e28 e28 e27 e27	e21 e21 e21 e21 e21	e10 e10 e9.5 e9.0 e9.0	e1.4 e1.4 e1.2 e1.2	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e29 e26 e24 e23 e25	1430 1630 1670 1140 903	158 134 119 110 102	352 353 326 321 305	336 311 321 279 239
21 22 23 24 25	e75 e75 e78 e82 e83	e27 e27 e26 e26 e26	e21 e21 e20 e20 e19	e8.5 e8.0 e7.5 e7.5 e7.0	e1.0 e0.80 e0.80 e0.60 e0.60	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e27 e31 e39 e59 e115	902 987 784 651 639	97 114 1130 1410 1000	276 289 747 836 642	e210 e185 e170 e155 e155
26 27 28 29 30 31	e83 e82 e77 e71 e65 e59	e26 e25 e25 e25 e25	e19 e19 e18 e18 e17 e17	e6.5 e6.0 e6.0 e5.5 e5.5	e0.40 e0.40 e0.20	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e350 e690 e390 e295 e300 e735	700 515 464 653 1340	960 661 486 453 444 453	556 481 417 414 389 357	e125 e125 122 116 123
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	5002 161 366 59 129 9920 0.84 0.97	978 32.6 53 25 28 1940 0.17 0.19	661 21.3 25 17 21 1310 0.11 0.13	328.5 10.6 17 5.0 10 652 0.06 0.06	57.80 2.06 4.8 0.20 1.7 115 0.01 0.01	0.40 0.013 0.20 0.00 0.00 0.8 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00 0.00	3494.75 113 735 0.00 32 6930 0.59 0.68	61588 2053 4920 464 1650 122200 10.7 12.00	16209 523 1810 97 381 32150 2.74 3.16	13276 428 836 261 377 26330 2.24 2.59	10621 354 856 116 316 21070 1.85 2.07
STATIST	FICS OF M	MONTHLY MEA	N DATA	FOR WATER	YEARS 20	00 - 200	3, BY WAT	ER YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	88.8 161 2003 49.7 2001	21.8 32.6 2003 3.29 2002	11.2 21.3 2003 0.40 2002	5.38 10.6 2003 0.087 2002	1.93 3.74 2001 0.000 2002	0.99 2.96 2001 0.000 2002	0.85 2.52 2001 0.000 2003	277 690 2002 28.1 2001	1528 2053 2003 955 2002	418 567 2001 269 2002	746 1147 2000 428 2003	664 947 2002 354 2003
SUMMARY	Y STATIST	TICS	FOR	2002 CAL	ENDAR YEA	R	FOR 2003	WATER YE	AR	WATER YE	ARS 2000	- 2003#
50 PERC	MEAN F ANNUAL ANNUAL F DAILY ME DAILY ME SEVEN-DA F DEAK FI			107015. 293 4800 a0. 0. 212300 1. 20. 799 27 0.	May 2 00 Jan 2 00 Jan 2 54	6 5 5	31	Jun .00 Mar .00 Mar Jun .67 Jun .61	6 3 3 6 6	298 307 280 4920 0. 6520 c53. 215800 1. 21. 805 24	Jun 00 Jan 2 00 Jan 2 May 2 68 May 2	2003 2002 6 2003 15 2002 15 2002 15 2002 15 2002

See period of record, partial years used in monthly statistics From Jan. 25 to Apr. 22 From Mar. 3 to May 1 From floodmarks  $$\tt Estimated$ 

## 15746991 IKALUKROK CREEK BELOW RED DOG CREEK NEAR KIVALINA

LOCATION.--Lat  $68^{\circ}02'51''$ , long  $163^{\circ}01'34''$ , in  $NE^{1}_{/4}$   $NW^{1}_{/4}$  sec.33, T.31 N., R.19 W.(Delong Mountains A-2 quad) Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank about 3.5 mi downstream from the mouth of Red Dog Creek, 2.5 mi upstream from the mouth of Dudd Creek, and 45 mi northeast of Kivalina.

DRAINAGE AREA. -- 98.6 mi².

PERIOD OF RECORD. -- June 1995 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 650 ft above sea level, from topographic map. Prior to June 1, 1998 at site 1 mi upstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Runoff from  $3.6 \text{ mi}^2$  is impounded in tailings ponds and released intermittently at a maximum rate of  $25 \text{ ft}^3/\text{s}$ . Meteor-burst telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, undetermined, July 25, 1996; gage height, 12.22 ft, at site and datum then in use.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, undetermined, June 6, gage height, undetermined, occurred during backwater conditions; minimum not determined, occurs during the winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 216 e595 907 305 203 2 ---2.01 ------___ --e935 859 308 194 190 e915 e560 318 189 4 179 ___ ___ ___ e975 e480 286 212 5 2.77 204 162 ---___ ___ --e1600 e3806 119 e2200 293 252 225 --e140 ___ ___ ___ --e2100 245 230 2.41 e1900 ___ 9 114 ___ ___ ___ ___ e1700 209 257 333 10 261 e120 e1600 186 404 11 119 e1700 220 231 359 e1900 306 103 216 221 12 13 e1400 ___ 14 e79 e875 186 205 251 e600 e78 205 238 15 167 16 e73 473 152 241 223 e64 512 132 240 211 18 e53 489 116 222 208 19 e46 414 104 213 187 20 362 200 e40 96 166 21 e37 327 90 191 144 2.2 e38 316 118 140 23 e39 ___ ___ ___ ___ ___ 294 675 388 138 263 24 661 e41 361 124 25 e42 255 571 304 121 26 e42 223 533 290 120 e41 207 378 270 e150 2.8 e38 ___ ___ 240 299 251 104 29 326 308 244 e36 94 e33 479 107 31 e30 ___ ___ ___ ___ 296 216 TOTAL 2727 26175 10174 7838 6245 MEAN 88.0 ___ 872 328 253 208 216 ___ ___ 2200 388 MAX 907 404 MIN 30 207 90 191 5410 51920 20180 12390 AC-FT ___ ___ ___ ___ ___ 15550 CFSM 0.92 9.15 3.44 2.65 2.18 1.06 10.21 3.97 3.06 2.44 IN. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 2003, BY WATER YEAR (WY) MEAN 59.9 88.0 112 463 212 398 268 12.5 872 328 687 MAX (WY) 2003 1999 1999 2003 2003 1998 2002 MIN 39.8 2.56 23.7 259 91.6 125 84.7 (WY) 2001 1999 1995

e Estimated

#### 15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA

 $\texttt{LOCATION.--Lat~67°52'34'',~long~163°40'28'',~in~NW}^{1}/_{4} \quad \texttt{sec.~34,~T.~29~N.,~R.~22~W.~(Noatak~D-4~quad),~Northwest~Arctic}$ Borough, Hydrologic Unit 19050404, on left bank 0.1 mi downstream from Tutak Creek and 25 mi northeast of Kivalina.

DRAINAGE AREA. -- 705 mi².

PERIOD OF RECORD. -- September 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 175 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY													
2 e1200 e185 e115 e78 e48 e28 e26 e29 5250 5210 1690 1010 3 e1100 e170 e110 e78 e47 e28 e26 e25 5020 2700 2020 948 4 e1010 e165 e110 e76 e46 e28 e26 e34 5570 1880 1760 1020 5 e1000 e170 e110 e76 e45 e28 e26 e34 5570 1880 1760 1020 6 e950 e165 e110 e74 e44 e27 e25 e44 12600 1460 1520 1330 7 906 e155 e105 e74 e43 e27 e25 e51 11800 1220 1290 1590 8 896 e145 e105 e72 e42 e27 e25 e51 11800 1220 1290 1590 10 659 e130 e105 e70 e40 e26 e25 e98 8040 888 1190 2180 11 654 e130 e100 e68 e38 e26 e25 e140 8180 8797 1210 2540 11 654 e130 e100 e68 e38 e26 e25 e110 7050 846 908 1800 15 533 e120 e96 e66 e35 e26 e25 e110 7050 846 908 1800 15 533 e120 e96 e66 e35 e26 e25 e83 4260 674 942 1380 16 e500 e120 e94 e64 e34 e26 e25 e83 4260 674 942 1380 16 e500 e120 e94 e64 e34 e26 e25 e83 4260 674 942 1380 16 e500 e120 e94 e66 e36 e26 e25 e83 4260 674 942 1380 16 e500 e120 e94 e66 e36 e26 e25 e83 4260 674 942 1380 17 e460 e120 e94 e66 e36 e26 e25 e83 4260 674 942 1380 18 e400 e120 e94 e66 e36 e26 e25 e83 4260 674 942 1380 19 e345 e120 e92 e62 e33 e26 e24 e60 3410 488 1110 1090 20 e300 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e66 e36 e37 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e66 e36 e37 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e66 e36 e37 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e66 e38 e33 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e66 e36 e32 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e24 e60 3210 544 1200 1150 18 e400 e120 e94 e64 e34 e26 e26 e25 e30	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 e1100 e170 e170 e110 e78 e47 e28 e26 e32 5020 2700 2020 948 4 e1010 e165 e110 e76 e46 e28 e26 e38 9290 1670 1760 1030													
\$\frac{\text{\$4\$}}{5} \frac{\text{\$e100}}{100} \frac{\text{\$e165}}{\text{\$e100}} \frac{\text{\$e170}}{\text{\$e170}} \frac{\text{\$e165}}{\text{\$e16}} \frac{\text{\$e170}}{\text{\$e170}} \frac{\text{\$e170}}{\text{\$e170}} \frac{\text{\$1700}}{\text{\$1700}} \frac{\text{\$1300}}{\text{\$1700}} \frac{\text{\$e170}}{\text{\$e170}} \frac{\text{\$e170}}{\$e													
5 e1000 e170 e110 e76 e45 e28 e26 e38 9290 1670 1700 1030 6 e950 e165 e110 e74 e44 e27 e25 e44 12600 1460 1520 1330 7 906 e155 e105 e74 e43 e27 e25 e51 11800 1220 1290 1590 8 896 e145 e105 e72 e41 e26 e27 e25 e64 10300 1020 1110 1870 9 801 e135 e105 e72 e41 e26 e25 e98 8040 888 1990 2180 10 659 e130 e105 e70 e40 e26 e25 e140 8880 797 1210 2540  11 654 e130 e100 e68 e38 e26 e25 e140 8880 797 1210 2540  11 655 e15 e15 e100 e68 e37 e26 e25 e140 8880 797 1210 2230 13 588 e125 e100 e68 e37 e26 e25 e140 7050 846 908 1800 14 515 e125 e88 e66 e36 e26 e25 e100 7050 846 908 1800 15 533 e120 e96 e66 e35 e26 e25 e83 4260 674 942 1380  16 e500 e120 e96 e64 e34 e26 e25 e83 4260 674 942 1380 17 e460 e120 e94 e62 e33 e26 e25 e83 4260 674 942 1380 18 e400 e120 e94 e62 e33 e26 e24 e60 3210 544 1200 1150 19 e345 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 19 e345 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1150 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 544 1200 1200 20 e300 e120 e92 e60 e32 e26 e24 e60 3210 384 940 788 22 e285 e115 e90 e58 e31 e26 e24 e60 3210 380 916 696 23 e300 e115 e88 e58 e31 e26 e24 e79 1980 390 916 696 23 e300 e115 e88 e58 e31 e26 e24 e79 1980 390 916 696 23 e300 e115 e84 e54 e29 e25 e24 e79 1980 390 916 696 23 e300 e115 e86 e56 e30 e26 e24 e60 525 e30 1440 3290 1890 e435 24 e315 e115 e90 e58 e31 e26 e24 e69 525 e34 930 916 696 33 e300 e115 e86 e56 e30 e26 e24 e69 525 e34 930 1360 2710 2330 e510 26 e330 e115 e86 e56 e54 e29 e25 e24 e900 1370 3160 2700 2330 e510 26 e330 e115 e86 e56 e30 e26 e24 e69 24 e79 1980 390 916 696 23 e300 e115 e86 e56 e30 e36 e30 e36													
6 e950 e165 e110 e74 e44 e27 e25 e44 12600 1460 1520 1330													
7       906       e155       e105       e72       e42       e27       e25       e64       11800       1220       1290       1590         8       896       e145       e105       e72       e42       e27       e25       e64       10300       1020       1110       1870         9       801       e135       e105       e72       e41       e26       e25       e98       8040       888       1190       2180         10       659       e130       e105       e70       e40       e26       e25       e140       8880       797       1210       2540         11       654       e130       e100       e70       e39       e26       e25       e140       8880       797       1210       2230         13       588       e125       e100       e68       e37       e26       e25       e130       9290       923       1010       2230         14       515       e125       e98       e66       e35       e26       e25       e130       9290       923       1010       2230         15       533       e125       e98       e66       e35       e26 <td>5</td> <td>e1000</td> <td>e170</td> <td>e110</td> <td>e76</td> <td>e45</td> <td>e28</td> <td>e26</td> <td>e38</td> <td>9290</td> <td>1670</td> <td>1700</td> <td>1030</td>	5	e1000	e170	e110	e76	e45	e28	e26	e38	9290	1670	1700	1030
8         896         e145         e105         e72         e42         e27         e25         e64         10300         1020         1110         1870           9         801         e135         e105         e72         e41         e26         e25         e98         8040         888         1190         2540           11         659         e130         e100         e70         e39         e26         e25         e140         8880         797         1210         2540           11         654         e130         e100         e68         e38         e26         e25         e130         929         923         1010         2230           13         588         e125         e100         e68         e37         e26         e25         e110         7050         846         908         1800           14         515         e125         e98         e66         e36         e26         e25         e94         5170         756         885         1480           15         e125         e98         e66         e35         e26         e25         e83         4260         674         942         1380 </td <td></td> <td>1520</td> <td>1330</td>												1520	1330
9 801 e135 e105 e72 e41 e26 e25 e98 8040 888 1190 2180  11 659 e130 e105 e70 e40 e26 e25 e140 8880 797 1210 2540  11 654 e130 e100 e60 e39 e26 e25 e140 8180 828 1130 2840  12 699 e130 e100 e68 e38 e26 e25 e130 9290 923 1010 2230  13 588 e125 e100 e68 e37 e26 e25 e10 7050 846 908 1800  14 515 e125 e98 e66 e36 e26 e25 e94 5170 755 885 1480  15 533 e120 e96 e66 e36 e26 e25 e83 4260 674 942 1380  16 e500 e120 e96 e66 e36 e26 e25 e83 4260 674 942 1380  17 e460 e120 e94 e64 e34 e26 e25 e83 4260 674 942 1380  18 e400 e120 e94 e62 e33 e26 e24 e66 3210 544 1200 1150  18 e400 e120 e94 e62 e33 e26 e24 e66 3210 544 1200 1150  18 e400 e120 e92 e62 e33 e26 e24 e63 3210 544 1200 1150  20 e300 e120 e92 e60 e32 e26 e24 e63 3210 488 1110 1090  21 e275 e115 e90 e58 e31 e26 e24 e63 2120 409 1030 879  21 e275 e115 e90 e58 e31 e26 e24 e70 1990 384 940 788  22 e285 e115 e90 e58 e31 e26 e24 e150 1450 3580 916 696  23 e300 e115 e88 e56 e30 e26 e24 e150 1450 3580 2970 e583  25 e330 e115 e86 e56 e30 e26 e24 e150 1760 1800 2080 637  27 e320 e115 e86 e56 e30 e26 e24 e900 1370 3160 2050 658  28 e305 e115 e86 e56 e30 e26 e24 e900 1370 3160 2050 658  29 e285 e115 e86 e56 e30 e26 e24 e70 1990 384 940 788  29 e285 e115 e86 e56 e30 e26 e24 e70 1990 384 940 658  20 e330 e115 e86 e56 e30 e26 e24 e70 1990 384 940 658  21 e275 s15 e88 e56 e30 e26 e24 e70 1990 384 940 658  23 e300 e115 e86 e56 e50 e26 e24 e70 1990 384 940 658  24 e315 e115 e88 e56 e30 e26 e24 e70 1990 384 940 658  25 e330 e115 e86 e56 e56 e30 e26 e24 e70 1990 384 940 658  26 e330 e115 e86 e56 e56 e30 e26 e24 e70 1990 384 940 658  27 e320 e115 e88 e56 e30 e26 e24 e70 1990 384 940 658  28 e305 e115 e86 e56 e30 e26 e24 e70 1990 384 940 658  29 e285 e115 e82 e50 e25 e24 e906 953 1740 1580 502  20 e300 e115 e80 e50 e26 e25 e26 e24 e70 1990 144073 47483 44411 35513  MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184  MEX 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184  MEX 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184  MEX 575 134 96.5 64.6 37.0 24.9										11800			1590
10													
11													
12	10	659	e130	6102	e/U	e40	e26	e25	e140	8880	797	1210	2540
13         588         e125         e100         e68         e37         e26         e25         e110         7050         846         908         1800           14         515         e125         e98         e66         e36         e26         e25         e94         5170         756         885         1480           15         533         e120         e96         e66         e35         e26         e25         e83         4260         674         942         1380           16         e500         e120         e94         e64         e34         e26         e24         e66         3210         544         1200         1150           18         e400         e120         e94         e62         e33         e26         e24         e60         3410         488         1110         1090           19         e345         e120         e92         e60         e32         e26         e24         e60         2630         442         1040         1010           20         e300         e120         e92         e60         e32         e26         e24         e70         1990         384         940         <													
14 515 6125 e98 e66 e36 e26 e25 e94 5170 756 885 1480  15 533 e120 e96 e66 e35 e26 e25 e83 4260 674 942 1380  16 e500 e120 e96 e64 e34 e26 e25 e74 3010 614 1160 1290  17 e460 e120 e94 e64 e34 e26 e24 e66 3210 544 1200 1150  18 e400 e120 e94 e62 e33 e26 e24 e60 3410 488 1110 1090  19 e345 e120 e92 e60 e32 e26 e24 e60 2630 442 1040 1010  20 e300 e120 e92 e60 e32 e26 e24 e63 2120 409 1030 879  21 e275 e115 e90 e60 e32 e26 e24 e63 2120 409 1030 879  21 e275 e115 e90 e58 e31 e26 e24 e70 1990 384 940 788  22 e285 e115 e90 e58 e31 e26 e24 e100 1760 1800 2080 637  24 e315 e115 e88 e56 e30 e26 e24 e100 1760 1800 2080 637  24 e315 e115 e86 e56 e30 e26 e24 e150 1450 3580 2970 e583  25 e330 e115 e86 e56 e30 e26 e24 e100 1760 1800 2080 637  26 e330 e115 e86 e56 e30 e26 e24 e100 1760 1800 2080 637  27 e320 e115 e86 e56 e30 e26 e24 e100 1760 1800 2080 637  28 e305 e115 e86 e56 e30 e26 e24 e100 1760 1800 2080 637  29 e285 e115 e86 e56 e30 e26 e24 e100 1760 1800 2080 e470  27 e320 e115 e86 e56 e30 e26 e24 e100 1760 1800 2080 e435  28 e305 e115 e86 e56 e30 e26 e24 e79 e25 e24 e100 1760 1800 2080 e435  28 e305 e115 e86 e56 e30 e26 e24 e100 1760 1800 2080 e435  30 e265 e115 e82 e50 e25 e24 996 953 1740 1580 502  29 e285 e115 e82 e50 e25 e24 996 953 1740 1580 502  29 e285 e115 e82 e50 e25 e24 996 953 1740 1580 502  30 e265 e115 e82 e50 e25 e24 753 1100 1540 1440 525  30 e265 e115 e82 e50 e25 e24 753 1100 1540 1440 525  31 e240 e80 e50 e25 e25 765 2630 1690 1360 610  31 e240 e80 e50 e25 e25 765 2630 1690 1360 610  31 e240 e80 e50 e25 e24 950 1407 4802 1532 1433 1184  MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 50 29 25 24 26 6 953 384 885 435  AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440  EXTATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
15 533 e120 e96 e66 e35 e26 e25 e83 4260 674 942 1380  16 e500 e120 e96 e64 e34 e26 e25 e74 3010 614 1160 1290  17 e460 e120 e94 e64 e34 e26 e24 e66 3210 544 1200 1150  18 e400 e120 e94 e62 e33 e26 e24 e60 3410 488 1110 1090  19 e345 e120 e92 e62 e33 e26 e24 e60 3410 488 1110 1090  19 e345 e120 e92 e60 e32 e26 e24 e60 3210 409 1030 879  21 e275 e115 e90 e60 e32 e26 e24 e60 3210 409 1030 879  21 e275 e115 e90 e58 e31 e26 e24 e70 1990 384 940 788  22 e285 e115 e90 e58 e31 e26 e24 e79 1980 390 916 696  23 e300 e115 e88 e58 e31 e26 e24 e100 1760 1800 2080 637  24 e315 e115 e88 e56 e30 e26 e24 e150 1450 3580 2970 e583  25 e330 e115 e86 e56 e30 e26 e24 e150 1450 3580 2970 e583  25 e330 e115 e86 e56 e30 e26 e24 e170 1140 2390 1890 e435  28 e305 e115 e84 e52 e29 e25 e24 1770 1140 2390 1890 e435  28 e305 e115 e84 e52 e29 e25 e24 1770 1140 2390 1890 e435  29 e285 e115 e84 e52 e29 e25 e24 1770 1140 2390 1890 e435  29 e285 e115 e82 e50 e25 e24 773 1100 1540 1560 502  30 e265 e115 e82 e50 e25 e24 773 1100 1540 1580 502  31 e240 e80 e50 e25 e24 775 1100 1540 1400 525  30 e265 e115 e82 e50 e25 e24 775 1100 1540 1360 2050 e470  MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184  MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 40 0.04 0.04 0.04 0.04 0.04 0.04 0.0													
16 e500 e120 e96 e64 e34 e26 e25 e74 3010 614 1160 1290 17 e460 e120 e94 e64 e34 e26 e24 e66 3210 544 1200 1150 18 e400 e120 e94 e62 e33 e26 e24 e60 3410 488 1110 1090 20 e345 e120 e92 e62 e33 e26 e24 e60 3410 488 1110 1090 20 e300 e120 e92 e60 e32 e26 e24 e60 24 e60 2630 442 1040 1010 20 e300 e120 e92 e60 e32 e26 e24 e60 24 e60 232 220 409 1030 879 21 e275 e115 e90 e58 e31 e26 e24 e70 1990 384 940 788 22 e285 e115 e90 e58 e31 e26 e24 e79 1980 390 916 696 23 e300 e115 e88 e58 e31 e26 e24 e100 1760 1800 2080 637 24 e315 e115 e88 e56 e30 e26 e24 e100 1760 1800 2080 637 24 e315 e115 e88 e56 e30 e26 e24 e150 1450 3580 2970 e583 25 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510 26 e330 e115 e84 e54 e29 e25 e24 e300 1360 2710 2330 e510 26 e300 e115 e84 e52 e29 e25 e24 1770 1140 2390 1890 e435 28 e305 e115 e82 e55 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e50 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e50 e25 e25 765 2630 1690 1360 270 230 e131 e240 e80 e50 e25 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 e 1890 1570 1230 TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 8890 70440 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 8890 70440 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87													
17       e460       e120       e94       e64       e34       e26       e24       e66       3210       544       1200       1150         18       e400       e120       e94       e62       e33       e26       e24       e60       3410       488       1110       1090         19       e345       e120       e92       e60       e32       e26       e24       e63       2120       409       1030       879         21       e275       e115       e90       e60       e32       e26       e24       e70       1990       384       940       788         22       e285       e115       e90       e68       e31       e26       e24       e70       1990       384       940       788         22       e285       e115       e88       e58       e31       e26       e24       e70       1990       384       940       788         22       e285       e115       e88       e58       e31       e26       e24       e70       1990       384       940       788         22       e285       e15       e88       e56       e30       e26       e	15	533	e120	696	евь	e35	e26	e25	e83	4260	6/4	942	1380
18       e400       e120       e94       e62       e33       e26       e24       e60       3410       488       1110       1090         19       e345       e120       e92       e60       e32       e26       e24       e60       2630       442       1040       1010         20       e300       e120       e92       e60       e32       e26       e24       e60       2630       442       1040       1010         21       e275       e115       e90       e60       e32       e26       e24       e70       1990       384       940       788         22       e285       e115       e90       e58       e31       e26       e24       e79       1980       390       916       696         23       e300       e115       e88       e58       e31       e26       e24       e100       1760       1800       2080       637         24       e315       e115       e86       e56       e30       e26       e24       e100       1360       2970       e583         25       e330       e115       e86       e54       e29       e25       e24	16	e500		e96	e64	e34	e26	e25	e74	3010	614		
19 e345 e120 e92 e60 e33 e26 e24 e60 2630 442 1040 1010 20 e300 e120 e92 e60 e32 e26 e24 e63 2120 409 1030 879   21 e275 e115 e90 e60 e32 e26 e24 e70 1990 384 940 788 22 e285 e115 e90 e58 e31 e26 e24 e70 1980 390 916 696 23 e300 e115 e88 e58 e31 e26 e24 e100 1760 1800 2080 637 24 e315 e115 e88 e56 e30 e26 e24 e150 1450 3580 2970 e583 25 e330 e115 e86 e56 e30 e26 e24 e150 1450 3580 2970 e583 25 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510   26 e330 e115 e86 e54 e29 e25 e24 e900 1370 3160 2050 e470 27 e320 e115 e84 e54 e29 e25 e24 e900 1370 3160 2050 e435 28 e305 e115 e84 e54 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e50 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e50 e25 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 1890 1570 1230   TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEAN 575 134 96.5 64.5 37.0 29 25 24 26 953 384 885 435 MEAN 5340 7950 5930 3970 2060 1600 1470 18270 285800 94180 88090 70440 MIN 240 115 80 50 29 25 24 26 953 384 885 435 MEAN 535 40 7950 5930 3970 2060 1600 1470 18270 285800 94180 88090 70440 MIN 240 115 80 50 29 25 24 26 953 384 885 435 MEAN 535 40 7950 5930 3970 2060 1600 1400 040 049 7.60 2.51 2.34 1.87		e460	e120	e94	e64	e34	e26	e24	e66	3210	544	1200	1150
20 e300 e120 e92 e60 e32 e26 e24 e63 2120 409 1030 879  21 e275 e115 e90 e60 e32 e26 e24 e70 1990 384 940 788 22 e285 e115 e90 e58 e31 e26 e24 e79 1980 390 916 696 23 e300 e115 e88 e58 e31 e26 e24 e100 1760 1800 2080 637 24 e315 e115 e88 e56 e30 e26 e24 e150 1450 3580 2970 e583 25 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510  26 e330 e115 e86 e54 e29 e25 e24 e70 1140 2390 1890 e470 27 e320 e115 e84 e54 e29 e25 e24 1770 1140 2390 1890 e435 28 e305 e115 e84 e52 e29 e25 e24 1770 1140 2390 1890 e435 29 e285 e115 e84 e52 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e52 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 1890 1570 1230  TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MEXAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87  STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY) #	18	e400	e120	e94	e62	e33	e26	e24	e60	3410	488	1110	1090
21 e275 e115 e90 e60 e32 e26 e24 e70 1990 384 940 788 22 e285 e115 e90 e58 e31 e26 e24 e79 1980 390 916 696 23 e300 e115 e88 e58 e31 e26 e24 e100 1760 1800 2080 637 24 e315 e115 e86 e56 e30 e26 e24 e150 1450 3580 2970 e583 25 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510  26 e330 e115 e84 e54 e29 e25 e24 e900 1370 3160 2050 e470 27 e320 e115 e84 e54 e29 e25 e24 1770 1140 2390 1890 e435 28 e305 e115 e84 e52 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e52 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e24 753 1100 1540 1440 525 31 e240 e80 e50 e26 1890 1570 1230  TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 TN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87  STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
22 e285 e115 e90 e58 e31 e26 e24 e79 1980 390 916 696 23 e300 e115 e88 e58 e31 e26 e24 e100 1760 1800 2080 637 24 e315 e115 e88 e56 e30 e26 e24 e300 1360 2710 2330 e583 25 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510 26 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510 2710 2710 2710 2710 2710 2710 2710 27	20	e300	e120	e92	e60	e32	e26	e24	e63	2120	409	1030	879
23 e300 e115 e88 e58 e31 e26 e24 e100 1760 1800 2080 637 24 e315 e115 e88 e56 e30 e26 e24 e150 1450 3580 2970 e583 25 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510 26 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510 26 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510 27 e320 e115 e84 e54 e29 e25 e24 e900 1370 3160 2050 e470 27 e320 e115 e84 e54 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e52 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e52 e29 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e24 753 1100 1540 1440 525 31 e240 e80 e50 e26 e25 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 e26 1890 1570 1230 TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
24 e315 e115 e88 e56 e30 e26 e24 e150 1450 3580 2970 e583 e510 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510 e510 e510 e510 e510 e510 e510 e51													
25 e330 e115 e86 e56 e30 e26 e24 e300 1360 2710 2330 e510  26 e330 e115 e86 e54 e29 e25 e24 e900 1370 3160 2050 e470  27 e320 e115 e84 e54 e29 e25 e24 1770 1140 2390 1890 e435  28 e305 e115 e84 e52 e29 e25 e24 996 953 1740 1580 502  29 e285 e115 e82 e52 e25 e24 753 1100 1540 1440 525  30 e265 e115 e82 e50 e25 e25 765 2630 1690 1360 610  31 e240 e80 e50 e26 1890 1570 1230  TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513  MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184  MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 50 29 25 24 26 953 384 885  AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440  CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68  STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699													
26 e330 e115 e86 e54 e29 e25 e24 e900 1370 3160 2050 e470 27 e320 e115 e84 e54 e29 e25 e24 1770 1140 2390 1890 e435 28 e305 e115 e84 e52 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e52 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 1890 1570 1230 TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 A2-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
27 e320 e115 e84 e54 e29 e25 e24 1770 1140 2390 1890 e435 28 e305 e115 e84 e52 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e52 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 1890 1570 1230   TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#	25	e330	e115	e86	e56	e30	e26	e24	e300	1360	2710	2330	e510
28 e305 e115 e84 e52 e29 e25 e24 996 953 1740 1580 502 29 e285 e115 e82 e52 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e24 753 1100 1540 1440 525 31 e240 e80 e50 e26 1890 1570 1230 TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
29 e285 e115 e82 e52 e25 e24 753 1100 1540 1440 525 30 e265 e115 e82 e50 e25 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 1890 1570 1230   TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
30 e265 e115 e82 e50 e26 e25 765 2630 1690 1360 610 31 e240 e80 e50 e26 1890 1570 1230   TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
31 e240 e80 e50 e26 1890 1570 1230  TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513  MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184  MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840  MIN 240 115 80 50 29 25 24 26 953 384 885 435  AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440  CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68  IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87  STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699	29												
TOTAL 17816 4010 2992 2000 1037 815 742 9209 144073 47483 44411 35513 MEAN 575 134 96.5 64.5 37.0 26.3 24.7 297 4802 1532 1433 1184 MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#													
MEAN         575         134         96.5         64.5         37.0         26.3         24.7         297         4802         1532         1433         1184           MAX         1200         210         115         80         49         29         26         1890         12600         5210         2970         2840           MIN         240         115         80         50         29         25         24         26         953         384         885         435           AC-FT         35340         7950         5930         3970         2060         1620         1470         18270         285800         94180         88090         70440           CFSM         0.82         0.19         0.14         0.09         0.05         0.04         0.04         0.42         6.81         2.17         2.03         1.68           IN.         0.94         0.21         0.16         0.11         0.05         0.04         0.04         0.49         7.60         2.51         2.34         1.87    STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN	31	e240		e80	e50		e26		1890		1570	1230	
MAX 1200 210 115 80 49 29 26 1890 12600 5210 2970 2840 MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699													
MIN 240 115 80 50 29 25 24 26 953 384 885 435 AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699													
AC-FT 35340 7950 5930 3970 2060 1620 1470 18270 285800 94180 88090 70440 CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699													2840
CFSM 0.82 0.19 0.14 0.09 0.05 0.04 0.04 0.42 6.81 2.17 2.03 1.68 IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.04 0.49 7.60 2.51 2.34 1.87   STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699													
IN. 0.94 0.21 0.16 0.11 0.05 0.04 0.04 0.49 7.60 2.51 2.34 1.87  STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699													
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2003, BY WATER YEAR (WY)#  MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699													
MEAN 535 136 64.6 37.0 24.9 19.2 16.7 1783 3253 1688 2783 1699	TIN.	0.94	0.21	0.16	0.11	0.05	0.04	0.04	0.49	7.60	2.51	2.34	1.87
	STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 198	35 - 2003	, BY WATE	R YEAR (V	VY)#			
	MEAN	535	136	64.6	37.0	24.9	19.2	16.7	1783	3253	1688	2783	1699
MAX 1542 290 111 70.0 49.3 39.5 38.8 4856 6669 6144 8458 3076			290									8458	3076
(WY) 1994 1994 1986 1986 1986 1991 1991 1993 1989 1989 1994 2002												1994	
MIN 207 63.1 34.2 21.5 12.0 9.10 9.00 20.6 1372 424 496 386													
(WY) 1997 2002 1988 1992 1992 1992 1999 1988 1999 1991 1991	(WY)	1997	2002	1988	1992	1992	1992	1992	1989	1988	1999	1991	1991

See Period of Record Estimated

## 15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1985 - 2003#
ANNUAL TOTAL	309817	310101	
ANNUAL MEAN	849	850	1008
HIGHEST ANNUAL MEAN			1843 1994
LOWEST ANNUAL MEAN			530 1987
HIGHEST DAILY MEAN	16800 May 26	12600 Jun 6	29400 Aug 17 1994
LOWEST DAILY MEAN	a20 Apr 6	b24 Apr 17	c9.0 Apr 30 1985
ANNUAL SEVEN-DAY MINIMUM	20 Apr 6	24 Apr 17	9.0 Apr 30 1985
MAXIMUM PEAK FLOW		15900 Jun 6	38500 Aug 17 1994
MAXIMUM PEAK STAGE		9.45 Jun 6	12.21 Aug 17 1994
ANNUAL PEAK STAGE			d13.5 May 16 1999
ANNUAL RUNOFF (AC-FT)	614500	615100	730000
ANNUAL RUNOFF (CFSM)	1.20	1.21	1.43
ANNUAL RUNOFF (INCHES)	16.35	16.36	19.42
10 PERCENT EXCEEDS	2100	2030	2820
50 PERCENT EXCEEDS	120	120	120
90 PERCENT EXCEEDS	21	26	15

See Period of Record From Apr. 6-25 From Apr. 17-29 From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992 From floodmarks, backwater from snow and ice Estimated

#### 15798700 NUNAVAK CREEK NEAR BARROW

 $\texttt{LOCATION.--Lat 71°15'35''}, \ \texttt{long 156°46'57''}, \ \texttt{in SE}^{1}_{/4} \ \texttt{sec. 18, T. 22 N., R. 18 W.} \ \texttt{(Barrow B-4 quad)}, \ \texttt{North Slope Borough},$ Hydrologic Unit 19060202, 0.7 mi downstream from Emaiksoun Lake, 1.2 mi upstream from Nunavak Bay, and 2.3 mi south of Barrow Post Office.

DRAINAGE AREA.--2.79  $\min^2$ , approximately.

PERIOD OF RECORD.--October 1971 to current year.

REVISED RECORDS. -- WDR AK-76-1: 1972.

GAGE.--Water-stage recorder. Elevation of gage is 19 ft above sea level, from topographic map. Prior to May 29, 1982, at site 10 ft downstream at datum about 29.6 ft higher.

REMARKS. -- Records poor.

KEMAKKS	kecora	s poor.										
		DISCHA	RGE, CUBI		ER SECOND, DAIL		YEAR OCTOBE VALUES	ER 2002	ro septei	MBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e3.1	2.5 2.4 2.1 2.4	0.20 0.18 0.17 0.19	0.11 0.12 0.12 0.14 0.15
8	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e6.0 e10 e14 e25 e17	3.2 3.1 3.2 3.0 2.8	0.17 0.16 0.13 0.13 0.17	0.14 0.17 0.64 0.67
11 12 13 14 15	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	11 7.7 6.2 4.6 3.2	2.8 4.2 3.5 3.5 2.2	0.16 0.14 0.12 0.11 0.19	12 7.5 3.5 4.5 7.5
17 18 19 20	e0.00	e0.00	e0.00	e0.00	e0.00	e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00	1.0	0.98	0.18 0.20 0.19 0.18 0.16	5.5 e1.7 e1.1 e0.75 e0.55
25	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	1.5 1.3 1.2 1.1	0.44 0.31 0.33 0.37 0.28	0.17 0.18 0.17 0.16	e0.42 e0.34 e0.28 e0.24 e0.20
							e0.00 e0.00 e0.00 e0.00 e0.00					
TOTAL MEAN MAX MIN AC-FT CFSM IN.	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	129.20 4.31 25 0.00 256 1.54 1.72	53.11 1.71 4.2 0.16 105 0.61 0.71	4.88 0.16 0.24 0.10 9.7 0.06 0.07	66.17 2.21 17 0.11 131 0.79 0.88						
STATIST							, BY WATER					
MEAN MAX (WY) MIN (WY)	0.029 0.22 1980 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.000 0.000 1972 0.000 1972	0.27 3.55 1990 0.000 1972	8.27 17.3 1999 2.73 1992	1.99 9.93 1981 0.091 1983	0.86 6.79 1994 0.001 1983	1.05 8.34 1986 0.000 1975
SUMMAR	Y STATISTI	cs	FOR 2	2002 CALE	NDAR YEAR		FOR 2003 WA	TER YEAR		WATER Y	EARS 197	2 - 2003
ANNUAL ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL MAXIMUI ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC	MEAN	MEAN AN AN MINIMUM MGE AC-FT) FISCHES)		278.1 0.7 18 a0.0 0.0	May 26 0 Jan 1 0 Jan 1		253.36 0.69 25 b0.00 0.00 d g 503 0.25 3.38	Jun 9 0 Oct 1 0 Oct 1 Jun 9		0 5 2	.26 .26 Jun .00 Oct .00 Oct Jun .36 Jun .37	1989 1992 14 1994 1 1971 1 1971 10 1980 11 1994
50 PERG	CENT EXCER	EDS EDS		0.0			0.00			0	.00	

From Jan. 1 to May 22 and Oct. 1 to Dec. 31
From Oct. 1 to Jun. 4
No flow during winter months and at times during summer months
Undetermined see highest daily mean
Estimated

Estimated
At site and datum then in use, flow over snow
Undetermined
Backwater from snow and ice

#### 15875000 COLVILLE RIVER AT UMIAT

LOCATION.--Lat  $69^{\circ}21'38''$ , long  $152^{\circ}07'18''$ , in NW $^{1}/_{4}$ , sec. 15, T. 1 S., R. 1 W. (Umiat B-4 quad), Hydrologic Unit 19060303, on left bank, 1 mile upstream from Seabee Creek, and 1.0 mile east of Umiat.

DRAINAGE AREA. -- 13,830 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 2002 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 275 ft above sea level, from topographic map.

EXTREMES FOR WATER YEAR 2002.-- Maximum discharge for period, August 20 to September 30, 37,300  ${\rm ft}^3/{\rm s}$ , August 20, gage-height, 50.53 ft. Minimum not determined, occurs during the winter.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

					DAI	LY MEAN V	ALUES				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	
1											

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												22300
2												19600
3												17200
4												15300
5												14000
5												14000
6												13200
7												14700
8												22700
9												25100
10												26300
11												26100
12												24400
13												24700
14												23600
15									<b>‡19800</b>			22800
16												29800
17												29600
18												29000
19												30400
20											<b>‡</b> 37300	28900
21											e31000	24000
22											28000	20000
23											25600	17000
24											24000	15000
25											21500	14000
26											18900	13200
27											16700	13600
28											15000	17200
29											13900	17900
30											15500	19300
31											21600	
moma.												620000
TOTAL												630900
MEAN												21030
MAX												30400
MIN												13200
AC-FT												1251000
CFSM												1.52
IN.												1.70

Result of discharge measurement Estimated

## 15875000 COLVILLE RIVER AT UMIAT—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					D11	TLI MEAN	VILLOUD					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20100 20900 20300 18200 15900	e1800 e1700 e1600 e1500 e1400	e270 e250 e230 e210 e200	e14 e12 e11 e10 e9.0	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e10000 e15000 e25000 e40000 63100	22500 18400 27500 101000 80100	13700 14400 15300 15200 20100	19300 17600 17800 19400 20200
6 7 8 9 10	13700 11500 9830 8480 7350	e1300 e1300 e1200 e1100 e1000	e180 e170 e160 e140 e130	e8.0 e7.0 e6.5 e5.5 e5.0	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e1.0 e1.5	102000 173000 207000 217000 225000	53600 43300 33400 23700 17900	21700 25000 20300 15900 13100	23100 26200 24000 21800 22900
11 12 13 14 15	e6700 e6200 e5700 e5100 e4800	e1000 e900 e850 e800 e750	e120 e110 e100 e95 e85	e4.5 e4.0 e3.5 e3.0 e2.5	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e2.0 e3.0 e5.0 e8.0 e15	206000 160000 106000 69300 49700	14500 12500 11300 10600 10000	11400 12000 29700 45800 43400	23400 19500 15800 13000 11000
16 17 18 19 20	e4500 e4200 e4000 e3800 e3600	e700 e680 e620 e600 e550	e80 e75 e65 e60 e52	e2.0 e1.5 e1.0 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e25 e50 e80 e150 e250	43100 39700 32700 28000 26600	10400 11800 13800 14900 13700	40300 39700 62200 77700 61600	9700 9220 8850 8320 7700
21 22 23 24 25	e3500 e3200 e3000 e2900 e2800	e520 e500 e470 e430 e400	e48 e42 e38 e34 e31	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e400 e600 e800 e900 e850	19800 16900 16100 16200 15300	12100 11000 9960 9150 8860	44100 33700 28200 32200 43200	6990 5990 5150 4700 4230
26 27 28 29 30 31	e2600 e2500 e2300 e2200 e2100 e1900	e380 e350 e330 e310 e290	e28 e25 e22 e20 e18 e16	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00		15100 16200 20800 29000 29200	13700 38200 37800 25900 18700 14600	47600 39500 36400 32600 27300 22600	3840 3540 3250 3130 3200
MEAN MAX MIN	223860 7221 20900 1900 444000 0.52 0.60	25330 844 1800 290 50240 0.06 0.07	3104 100 270 16 6160 0.01 0.01	110.00 3.55 14 0.00 218 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	21390.50 690 7000 0.00 42430 0.05 0.06	2032800 67760 225000 10000 4032000 4.90 5.47	744870 24030 101000 8860 1477000 1.74 2.00	985900 31800 77700 11400 1956000 2.30 2.65	382810 12760 26200 3130 759300 0.92 1.03
STATIS	STICS OF	MONTHLY M	EAN DATA	FOR WATER	R YEARS 20	02 - 200	3, BY WAT	ER YEAR (	WY)#			
MEAN MAX (WY) MIN (WY)	7221 7221 2003 7221 2003	844 844 2003 844 2003	100 100 2003 100 2003	3.55 3.55 2003 3.55 2003	0.000 0.000 2003 0.000 2003	0.000 0.000 2003 0.000 2003	0.000 0.000 2003 0.000 2003	690 690 2003 690 2003	67760 67760 2003 67760 2003	24030 24030 2003 24030 2003	31800 31800 2003 31800 2003	16900 21030 2002 12760 2003
SUMMAF	RY STATIS	TICS			FOR	2003 WAT	ER YEAR			WATER Y	EARS 2002	- 2003#
ANNUAI HIGHES LOWEST ANNUAI MAXIMU MAXIMU MAXIMU ANNUAI ANNUAI ANNUAI 10 PEF 50 PEF	ST ANNUAL C ANNUAL ST DAILY C DAILY M	MEAN MEAN MEAN MEAN MAY MINIMU TOW TAGE (AC-FT) (CFSM) (INCHES) MEEDS	М		225 c234 8767	000 c58.62 c58.68	Jun 10 Jan 19 Jan 19 Jun 10 Jun 10 Jun 9			0 c234000 c58 c58 8773000 0 11 32400 550	Jun .00 Jan .00 Jan Jun .62 Jun .62 Jun .88 .90	19 2003 10 2003 10 2003

See Period of Record, partial years used in monthly statistics Jan. 19 to May 8 No flow during winter months Peak discharge adjusted to exclude surge; peak stage not adjusted to exclude surge Estimated

#### 15875000 COLVILLE RIVER AT UMIAT—Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1953, 1969, 1975, 1978, 2002 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: August 2002 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Record lost from September 13, 2002, to October 21, 2002, due to equipment problems. No record from January 19 to May 8,2003, due to no flow conditions or probe out of water. Records represent water-temperature at the sensor within  $0.5^{\circ}C$ .

EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum, 16.0°C, June 29-30, 2003; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR PERIOD.-WATER TEMPERATURE: Maximum, 16.0°C, June 29-30, 2003; minimum 0.0°C on many days during winter.

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		A	UGUST		\$	SEPTEMBE	R
1										8.0	7.0	7.5
2										7.5	6.5	7.0
3										8.5	7.5	8.0
4										9.5	8.0	8.5
5										9.5	8.5	9.0
6										10.0	8.5	9.5
7										10.5	9.0	9.5
8										10.0	8.0	8.5
9										8.0	6.5	7.0
10										6.5	5.5	6.0
11										6.0	5.5	5.5
12										5.5	5.0	5.0
13												
14												
15												
16												
17												
18												
19												
20												
21							6.0	5.0	5.5			
22							7.0	5.5	6.0			
23							7.5	6.0	6.5			
24							8.0	7.0	7.5			
25							9.0	7.0	8.0			
26							9.0	8.0	8.5			
27							9.5	8.5	9.0			
28							9.0	8.0	8.5			
29							9.0	8.0	8.5			
30							9.0	7.5	8.5			
31							8.5	7.5	8.0			
MONTH												

## ARCTIC SLOPE ALASKA

## 15875000 COLVILLE RIVER AT UMIAT—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		DE	ECEMBER			JANUARY	
1 2				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4 5				0.0 0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6				0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7 8				0.5 0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9 10				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12 13				0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14 15				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17 18				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19				0.0	0.0	0.0	0.0	0.0	0.0			
20				0.0	0.0	0.0	0.0	0.0	0.0			
21 22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
23 24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
26 27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
28 29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
30 31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	===		
				0.5	0.0	0.0	0.0	0.0	0.0			
MONTH				0.5	0.0	0.0	0.0	0.0	0.0			
DAY	MAX	MTN	MEAN	MAX	MTN	MEAN	MAX	MTN	MEAN	MAX	MTN	MEAN
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
DAY 1		MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN		MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2	: 	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4	:  	FEBRUARY   	  	  	MARCH	  	  	APRIL	  		MAY	  
1 2 3 4 5		FEBRUARY	  		MARCH	  	  	APRIL	  	  	MAY	  
1 2 3 4 5	:	FEBRUARY		=== === === ===	MARCH	  	  	APRIL	  	  	MAY	
1 2 3 4 5 6 7 8	:	FEBRUARY			MARCH	   	   	APRIL		   	MAY	
1 2 3 4 5 6 7 8 9	:	FEBRUARY		 	MARCH		  	APRIL		   	MAY	
1 2 3 4 5 6 7 8	:	FEBRUARY			MARCH	   	   	APRIL		   	MAY	
1 2 3 4 5 6 7 8 9 10		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5 6 7 8 9 10		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		FEBRUARY			MARCH			APRIL		      0.5 1.0	MAY	
1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20		FEBRUARY			MARCH			APRIL		      0.5	MAY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		FEBRUARY			MARCH			APRIL		      0.5 1.0 0.5 0.0 0.0	MAY	       0.0 0.0 0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		FEBRUARY			MARCH			APRIL		      0.5 1.0 0.5 0.0 0.0	MAY 0.0 0.0 0.0 0.0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27		FEBRUARY			MARCH			APRIL		       0.5 1.0 0.5 0.0 0.0 0.0	MAY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		FEBRUARY			MARCH			APRIL		      0.5 1.0 0.5 0.0 0.0 0.0 0.0	MAY	
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28		FEBRUARY			MARCH			APRIL		      0.5 1.0 0.5 0.0 0.0 0.0	MAY 0.0 0.0 0.0 0.0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30		FEBRUARY			MARCH			APRIL			MAY	

## ARCTIC SLOPE ALASKA

## 15875000 COLVILLE RIVER AT UMIAT—Continued

WATER TEMPERATURE, (DEGREES CELSIUS), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAI	MAA		MEAN	MAA		MEAN			MEAN	MAA		
		JUNE			JULY		•	AUGUST			SEPTEMBE	R
1 2 3 4 5	1.0 2.0 3.0 2.5 3.5	0.0 0.5 1.0 1.5 0.5	0.0 1.0 2.0 2.0 2.0	15.5 14.0 13.0 10.0 9.5	14.0 13.0 10.0 8.5 9.0	14.5 13.5 11.5 9.5 9.5	9.5 9.5 9.0 10.0 9.5	8.0 8.5 8.0 8.0	9.0 9.0 8.5 9.0 9.0	8.0 7.0 7.0 7.0 6.5	7.0 6.5 6.5 6.5	7.5 6.5 6.5 6.0
6 7 8 9 10	4.0 4.0 5.0 6.0	2.0 3.0 3.5 4.5 5.0	3.0 3.5 4.0 5.5 5.5	11.5 11.5 13.0 15.0 14.5	9.5 10.5 11.5 12.5 13.5	10.5 11.0 12.0 13.5 14.0	9.5 9.5 10.5 11.5 12.0	8.0 8.5 8.0 10.0 11.5	8.5 9.0 9.0 11.0 11.5	6.0 6.0 6.0 5.5	5.5 5.5 5.5 4.5 4.0	5.5 6.0 6.0 5.0 4.0
11 12 13 14 15	6.5 6.5 7.0 7.5 9.0	5.5 5.5 5.5 6.0 7.0	6.0 5.5 6.0 7.0 8.0	14.5 14.5 15.0 13.5 11.5	13.0 12.5 12.5 11.5 10.0	13.5 13.5 13.5 12.0 10.5	11.5 9.5 8.5 7.0 8.5	9.5 8.5 7.0 6.0 7.0	10.5 8.5 7.5 6.5 7.5	4.0 3.0 2.5 3.0	3.0 2.0 2.5 2.5 3.0	3.5 2.5 2.5 2.5 3.0
16 17 18 19 20	10.5 11.0 10.5 9.5 10.0	8.5 9.5 9.0 8.5 8.0	9.5 10.0 9.5 9.0 9.0	10.5 10.0 12.0 13.5 15.0	9.0 9.0 9.0 11.0 12.5	10.0 9.5 10.0 12.0 13.5	9.5 9.5 9.0 8.5 9.0	8.0 9.0 8.5 8.0	8.5 9.0 8.5 8.5	3.0 3.0 2.5 2.5 2.5	3.0 2.5 2.0 2.0	3.0 2.5 2.0 2.0 2.0
21 22 23 24 25	11.0 12.5 13.5 13.5	8.0 9.5 11.5 11.5	9.5 11.0 12.5 12.5 13.5	15.5 15.0 14.0 13.5 13.0	13.5 14.0 13.5 13.0 11.0	14.5 14.5 13.5 13.5	9.0 9.0 8.5 8.5 7.5	8.0 8.0 8.0 7.5 6.5	8.5 8.5 8.5 8.0 7.0	2.5 2.5 2.5 2.0 2.0	2.0 2.0 2.0 1.5	2.0 2.0 2.0 2.0 2.0
26 27 28 29 30 31	14.5 15.5 15.5 16.0 16.0	13.5 14.0 14.0 14.5 14.5	14.5 14.5 14.5 15.5 15.0	11.0 11.0 9.0 9.0 8.5 9.0	10.5 8.5 7.5 8.0 8.0	11.0 9.5 8.0 8.5 8.0	7.0 6.5 7.5 8.5 8.5	6.0 6.0 6.0 7.0 8.0	6.5 6.0 6.5 7.5 8.0	2.0 2.0 1.5 2.5 1.0	1.5 1.5 0.5 0.5	1.5 1.5 1.0 1.0 0.5
MONTH	16.0	0.0	8.0	15.5	7.5	11.6	12.0	6.0	8.4	8.0	0.5	3.4

#### 15896000 KUPARUK RIVER NEAR DEADHORSE

 $\texttt{LOCATION.--Lat 70°16'54'', long 148°57'35'', in NE}^{1}/_{4} \; \texttt{sec. 25, T. 11 N., R. 12 E. (Beechey Point B-4 quad), North Slope}$ Borough, Hydrologic Unit 19060401, on right bank, 1.8 mi northeast of SE Eileen State No. 1, 2.1 mi south of Frontier Service City Camp, 10 mi upstream from mouth on Gwyder Bay, 3 miles upstream of the Spine Road, and 13 mi northwest of Deadhorse.

DRAINAGE AREA. -- 3,130 mi².

PERIOD OF RECORD. -- June 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by private engineering firm).

REMARKS.--Records fair except for estimated daily discharges, which are poor. Winter low flow may be discontinuous as the flow probably varies significantly along the main stem of the river due to the formation of aufeis in the vicinity of springs. Flow may cease at other points. GOES satellite telemetry at station.

		DIS	CHARGE, C	UBIC FEET		ND, WATER Y		OBER 2002	TO SEPTE	EMBER 2003		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5680 4940 4340 3890 3500	e200 e180 e160 e150 e140	e9.0 e8.0 e8.0 e7.0 e6.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e500 e2000 e4000 e9000 e20000	1180 1060 1020 1020 3830	3480 3170 2970 2960 2920	3090 2870 2750 2700 2680
6 7 8 9 10	e3100 e2800 e2600 e2300 e2100	e120 e110 e100 e90 e80	e6.0 e5.0 e5.0 e4.0 e4.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e38000 e43000 31400 21400 16500	7050 5380 4590 4050 4390	2660 2620 2410 2300 2190	2780 2880 3200 3390 3500
11 12 13 14 15	e1900 e1700 e1500 e1400 e1200	e70 e65 e60 e55 e48		e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	12100 9150 7090 5780 4900	3690 3010 2490 2160 2170	2180 2380 2800 4500 6370	3490 3480 3360 3180 2940
16 17 18 19 20	e1100 e1000 e890 e800 e750	e44 e39 e35 e31 e29	e2.0 e2.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	4330 3950 3630 3320 3000	2250 3110 3670 3200 3140	5960 4710 3780 3670 4530	2670 2460 e2200 e2000 e1900
21 22 23 24 25	e650 e580 e520 e470 e420	e26 e23 e21 e19 e17	e1.0 e1.0 e1.0 e1.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0	2760 2490 2190 1930 1780	3280 2720 2320 1970 1780	4310 3780 3310 2970 2780	e1750 e1600 e1500 e1400 e1300
26 27 28 29 30 31	e380 e340 e310 e280 e250 e230	e15 e14 e13 e11 e10	e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e0.0	e0.0 e0.0 e0.0 e0.0 e10	1650 1550 1490 1440 1350	1790 2810 7440 6680 5090 4230	2920 3540 3610 3510 3540 3410	e1250 e1200 e1150 e1100 e1050
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	51920 1675 5680 230 1100 103000 0.54 0.62	1975 65.8 200 10 46 3920 0.02 0.02	0.0	0.0 0.000 0.0 0.0 0.0 0.00 0.00	0.0 0.000 0.0 0.0 0.0 0.0 0.00	0.0 0.000 0.0 0.0 0.0 0.00 0.00	0.0 0.000 0.0 0.0 0.0 0.00 0.00	110.0 3.55 100 0.0 0.0 218 0.00 0.00	261680 8723 43000 500 3790 519000 2.79 3.11	102570 3309 7440 1020 3110 203400 1.06 1.22	106240 3427 6370 2180 3310 210700 1.09 1.26	70820 2361 3500 1050 2680 140500 0.75 0.84
STATIS	STICS OF	MONTHLY	MEAN DATA	FOR WATE	R YEARS 1	971 - 2003,	BY WAT	ER YEAR (W	TY)#			
MEAN MAX (WY) MIN (WY)	280 1675 2003 10.0 1975	22.2 174 1973 0.000 1977	2.68 24.3 1973 0.000 1977	0.96 10.0 1972 0.000 1976	0.94 10.0 1972 0.000 1976	0.94 10.0 1972 0.000 1975	0.94 10.0 1972 0.000 1975	1640 8877 1996 0.000 1975	10420 26360 1982 726 1990	1183 3309 2003 300 1971	1797 5229 2002 127 1990	1591 4863 1997 192 1974

See Period of Record, partial years used in monthly statistics  $\ensuremath{\mathsf{Estimated}}$ 

## 5896000 KUPARUK RIVER NEAR DEADHORSE—Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1971 - 2003#
ANNUAL TOTAL	651133.0	595407.0	1205
ANNUAL MEAN HIGHEST ANNUAL MEAN	1784	1631	1395 2304 1982
LOWEST ANNUAL MEAN			658 1974
HIGHEST DAILY MEAN	50000 May 24	43000 Jun 7	100000 Jun 7 1978
LOWEST DAILY MEAN	a0.0 Jan 1	b0.0 Dec 28	c0.0 Mar 1 1975
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 1	0.00 Dec 28	0.00 Mar 1 1975
MAXIMUM PEAK FLOW		đ	118000 Jun 7 1978
MAXIMUM PEAK STAGE		f36.0 Jun 7	37.60 Jun 7 1978
ANNUAL RUNOFF (AC-FT)	1292000	1181000	1011000
ANNUAL RUNOFF (CFSM)	0.57	0.52	0.45
ANNUAL RUNOFF (INCHES)	7.74	7.08	6.06
10 PERCENT EXCEEDS	3940	3780	2870
50 PERCENT EXCEEDS	31	11	10
90 PERCENT EXCEEDS	0.00	0.00	0.00

See Period of Record, partial years used in monthly statistics
From Jan. 1 to May 20
From Dec. 28 to May 29
No flow during winter months
Not determined, occurred during period of backwater from ice and snow, see highest daily mean
From floodmarks, backwater from snow and ice

#### 15906000 SAGAVANIRKTOK RIVER TRIBUTARY NEAR PUMP STATION 3

LOCATION.--Lat  $68^{\circ}41'13''$ , long  $149^{\circ}05'42''$ , in  $SW^{1}_{/4}$  sec. 4, T. 9 S., R. 13 E. (Phillip Smith Mountains C-4 quad), Hydrologic Unit 19060402, on right bank 30 ft downstream from culvert, at mi 297.9 Dalton Highway, 14 mi south of Pump Station 3, and 16.5 mi upstream from mouth.

DRAINAGE AREA. -- 28.4 mi².

PERIOD OF RECORD.--Annual maximums, water years 1979-87. October 1987 to current year. (No winter record in water year 1989.)

REVISED RECORDS.--WDR AK-96-1:1992(M), 1994(M), 1995(M).

GAGE.--Water stage recorder. Elevation of gage is 2,475 ft above sea level, from topographic map. Crest-stage gage only, August 15, 1979 to September 12, 1987, 30 ft upstream of culvert at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

		DISCH	ARGE, CU	BIC FEET		O, WATER		OBER 2001 T	O SEPTE	MBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e4.0 e3.8 e3.4 e3.0 e2.8	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	21 18 16 16	53 44 54 51 65	9.2 8.4 7.6 6.5 6.3	46 39 34 30 28
6 7 8 9 10	e2.5 e2.2 e2.0 e1.8 e1.6	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.20 e1.0 e1.8	16 16 14 13 16	74 108 94 68 55	7.2 7.1 7.1 9.6 12	28 113 122 84 60
11 12 13 14 15	e1.5 e1.3 e1.2 e1.0 e0.90	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e1.4 e1.3 e1.3 e1.3 e1.2	15 12 11 37 54	46 37 36 39 33	16 34 60 48 489	44 34 30 26 23
16 17 18 19 20	e0.80 e0.70 e0.60 e0.50 e0.50	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e1.2 e1.4 e2.0 e3.0 e7.0	42 31 24 18	28 24 18 16 16	871 467 241 165 116	22 20 20 19 18
21 22 23 24 25	e0.40 e0.30 e0.20 e0.20 e0.10	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e20 e50 e140 e280 249	17 45 71 78 54	40 39 39 33 26	88 80 75 81 91	17 18 17 16 14
26 27 28 29 30 31	e0.10 e0.0 e0.0 e0.0 e0.0 e0.0	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	142 76 51 40 24 26	33 25 52 78 64	23 19 16 14 12	93 84 69 74 71 56	14 22 27 23 20
TOTAL MEAN MAX MIN AC-FT CFSM IN.	37.40 1.21 4.0 0.00 74 0.04 0.05	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	1122.10 36.2 280 0.00 2230 1.27 1.47	940 31.3 78 11 1860 1.10 1.23	1230 39.7 108 10 2440 1.40 1.61	3450.0 111 871 6.3 6840 3.92 4.52	1028 34.3 122 14 2040 1.21 1.35
STATIS	TICS OF 1	MONTHLY MI	EAN DATA	FOR WATER	YEARS 198	38 - 2002	2, BY WAT	ER YEAR (WY)	#			
MEAN MAX (WY) MIN (WY)	2.62 6.84 1999 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	36.0 95.6 1995 0.032 2001	53.7 150 1992 10.4 1988	34.7 81.6 1999 8.19 1990	49.6 111 2002 3.17 1990	28.3 77.4 1997 9.56 2000
ANNUAL ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL 10 PER 50 PER	TOTAL MEAN TANNUAL ANNUAL TANNUAL TOAILY TOAILY MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN	MEAN MEAN MEAN EAN AY MINIMUN LOW (AC-FT) (CFSM) (INCHES) EEDS	1	5314. 14.	Jun 8 00 Jan 1 00 Jan 1 51 96	3	7807 21 871 b0 0 de1810 21 15490 0 10 55	.4 Aug 16 .00 Oct 27 .00 Oct 27 Aug 15 .90 Aug 15		871 c0. 0. de1810 21. 12590 0. 8. 49	4 9 49 Aug 1 00 Oct 00 Oct Aug 1 90 Aug 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1997 1988 6 2002

See Period of Record, partial years used in monthly statistics From Jan. 1 to Jun. 5 From Oct. 27 to May 12 No flow during winter months

Estimated, from rating extended above  $450~{\rm ft}^3/{\rm s}$  on basis of slope-area measurement of peak discharge. Estimated

## 15906000 SAGAVANIRKTOK RIVER TRIBUTARY NEAR PUMP STATION 3—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					DAI	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 16 e13 e11 e9.0	e0.20 e0.20 e0.10 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e70 e150 266 322 440	12 11 49 84 62	92 85 76 72 72	e60 e70 e60 e45 e38
6 7 8 9 10	e8.0 e7.0 e6.0 e5.2 e4.6	e0.00	e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	526 494 415 312 200	43 111 130 77 51	70 67 74 63 62	e34 e30 e26 e24 e22
11 12 13 14 15	e4.0 e3.5 e3.0 e2.6 e2.3	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00	e0.00	e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	129 86 59 43 35	42 38 48 70 94	194 452 433 e250 e150	e20 e19 e18 e17 e16
16 17 18 19 20	e2.0 e1.7 e1.5 e1.3 e1.1	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	38 37 34 30 24	89 75 73 76 56	e100 e150 e140 e110 e80	e15 e14 e13 e13 e12
21 22 23 24 25	e1.0 e0.90 e0.80 e0.70 e0.60	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.10	e0.00 e0.00 e0.00 e0.00 e0.00	21 19 16 15 14	41 33 31 33 103	e60 e55 e60 e60 e60	e12 e11 e11 e10 e9.5
26 27 28 29 30 31	e0.50 e0.50 e0.40 e0.40 e0.30 e0.30	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.10 e0.00 e0.00 e0.00 e0.00	e0.20 e0.50 e1.2 e3.0 e8.0	15 16 16 14 13	332 244 183 124 103 95	e65 e70 e60 e50 e45 e40	e9.0 e9.0 e8.5 e12 e10
TOTAL MEAN MAX MIN AC-FT CFSM IN.	126.20 4.07 17 0.30 250 0.14 0.17	0.50 0.017 0.20 0.00 1.0 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00 0.00	0.20 0.007 0.10 0.00 0.4 0.00 0.00	32.90 1.06 20 0.00 65 0.04 0.04	3869 129 526 13 7670 4.54 5.07	2613 84.3 332 11 5180 2.97 3.42	3417 110 452 40 6780 3.88 4.48	668.0 22.3 70 8.5 1320 0.78 0.87
STATI	STICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 198	88 - 2003	, BY WATE	R YEAR (WY	) #			
MEAN MAX (WY) MIN (WY)	2.71 6.84 1999 0.000 1988	0.001 0.017 2003 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.000 1988 0.000 1988	0.000 0.007 2003 0.000 1988	33.7 95.6 1995 0.032 2001	58.7 150 1992 10.4 1988	37.8 84.3 2003 8.19 1990	53.4 111 2002 3.17 1990	28.0 77.4 1997 9.56 2000
SUMMA	RY STATIS	TICS	FOR	2002 CAL	ENDAR YEAR	R	FOR 2003	WATER YEAR		WATER YEA	RS 1988	- 2003#
ANNUA HIGHE LOWES HIGHE LOWES ANNUA MAXIM MAXIM ANNUA ANNUA ANNUA 10 PE 50 PE	UM PEAK F UM PEAK S L RUNOFF L RUNOFF L RUNOFF RCENT EXC RCENT EXC	MEAN MEAN EAN AY MINIMUN LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS	1	15660 0.1 10.1 55	Aug 16 00 Jan 1 00 Jan 1 76 34	1	10726. 29. 526 b0. 0. 664 20. 21280 1. 14. 76	Jun 6 00 Nov 4 00 Nov 4 Jun 6 92 Jun 6 03 05			Aug 1: 0 Oct : 0 Oct : 0 Aug 1: 0 Aug 1: 0 Aug 1:	2003 1988 6 2002 1 1987 1 1987 5 2002 5 2002
	RCENT EXC			0.0			0.			0.00		

See Period of Record, partial years used in monthly statistics From Jan. 1 to May 7 From Nov. 4 to Apr. 24 and from Apr. 27 to May 25 No flow during winter months

From Jan. 1 to May 7

b From Nov. 4 to Apr. 24 and from Apr. 27 to May 25

No flow during winter months

d Estimated, from rating extended above 450 ft³/s on basis of slope-area measurement of peak discharge Estimated

#### ARCTIC SLOPE ALASKA

#### 15908000 SAGAVANIRKTOK RIVER NEAR PUMP STATION 3

LOCATION.--Lat  $69^{\circ}00'54''$ , long  $148^{\circ}49'02''$ , in  $NW^{1}/_{4}$  sec. 16, T. 5 S., R. 14 E. (Sagavanirktok River A-4 quad), North Slope Borough, Hydrologic Unit 19060402, on left bank 600 ft east of Dalton Highway at mi 324.7, 6.0 mi upstream from Lupine River, and 15 mi north of Pump Station 3.

DRAINAGE AREA. -- 1,860 mi², approximately.

PERIOD OF RECORD. -- September 1982 to current year.

GAGE.--Water-stage recorder. Elevation is 1,150 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station, daily values of precipitation and air temperature are available from the computer files of the Alaska Science Center, Water Resources Office. GOES satellite telemetry at station.

REVISIONS.—The maximum discharges for some water years have been revised, as shown in the following table. The daily discharge for July 18, 1999 has been revised to  $32,000~{\rm ft}^3/{\rm s}$ . These figures supersede those published in the reports for 1991, 1992 and 1999.

Date	Discharge (ft ³ /s)	Gage Height (ft)	Date	Discharge (ft ³ /s)	Gage Height (ft)
Jun 24, 1991	18,000	18.28	Jul 18, 1999	34,500	20.43
Aug 27, 1992	36,600	20.67			

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e850	e310	e220	e180	e160	e150	e140	e130	e1900	4150	1830	2590
2	e810	e310	e220	e180	e160	e150	e140	e130	e1800	3730	1860	2430
3	e770	e300	e220	e180	e160	e150	e140	e130	e1700	3520	2130	2260
4 5	e730 e700	e300 e300	e210 e210	e180	e160	e150	e140	e130	e2000 e2600	3230 2860	2300 2500	2200 2350
5	e/00	e300	eziu	e180	e160	e150	e140	e130	e2600	2800	2500	2350
6	e670	e290	e210	e180	e160	e150	e140	e130	2930	2930	2750	3980
7	e640	e290	e210	e180	e160	e150	e140	e130	3040	3930	2370	10400
8	e620	e280	e210	e180	e160	e150	e140	e130	3430	5250	2090	9450
9	e590	e280	e210	e170	e160	e150	e140	e130	3700	5410	2030	6190
10	e570	e270	e200	e170	e160	e150	e140	e130	3910	5050	2180	4810
11	e560	e270	e200	e170	e150	e140	e140	e130	3290	4450	2360	3860
12	e530	e270	e200	e170	e150	e140	e140	e130	2590	3900	2720	3320
13	e520	e260	e200	e170	e150	e140	e140	e130	2250	4410	3250	3040
14	e500	e260	e200	e170	e150	e140	e140	e130	3330	5020	3270	2750
15	e480	e260	e200	e170	e150	e140	e140	e130	4480	4670	8530	2610
16	e470	e260	e200	e170	e150	e140	e140	e130	3790	4270	33000	2460
17	e460	e250	e200	e170	e150	e140	e140	e130	3870	4010	13800	2320
18	e440	e250	e190	e170	e150	e140	e140	e130	3440	4220	8680	2200
19	e430	e250	e190	e170	e150	e140	e130	e140	2740	4060	6530	2120
20	e420	e240	e190	e170	e150	e140	e130	e170	2890	4390	5180	2020
21	e410	e240	e190	e170	e150	e140	e130	e230	2600	4540	4240	1870
22	e400	e240	e190	e170	e150	e140	e130	e460	2320	4820	3640	1760
23	e390	e230	e190	e160	e150	e140	e130	e1000	2890	4690	3170	1710
24	e380	e230	e190	e160	e150	e140	e130	e2500	3860	4410	2890	1640
25	e370	e230	e190	e160	e150	e140	e130	e8000	3650	4070	2750	1610
26	e360	e230	e190	e160	e150	e140	e130	e7000	4260	3690	2780	1570
27	e350	e230	e190	e160	e150	e140	e130	e6000	4690	3040	2920	1770
28	e340	e220	e180	e160	e150	e140	e130	e4700	5450	2620	2970	2100
29	e330	e220	e180	e160		e140	e130	e3400	5320	2330	3040	1850
30	e330	e220	e180	e160		e140	e130	e2600	4400	2100	3100	1710
31	e320		e180	e160		e140		e2000		1940	2810	
TOTAL	15740	7790	6140	5260	4300	4440	4080	40540	99120	121710	143670	90950
MEAN	508	260	198	170	154	143	136	1308	3304	3926	4635	3032
MAX	850	310	220	180	160	150	140	8000	5450	5410	33000	10400
MIN	320	220	180	160	150	140	130	130	1700	1940	1830	1570
AC-FT	31220	15450	12180	10430	8530	8810	8090	80410	196600	241400	285000	180400
CFSM	0.27	0.14	0.11	0.09	0.08	0.08	0.07	0.70	1.78	2.11	2.49	1.63
IN.	0.31	0.16	0.12	0.11	0.09	0.09	0.08	0.81	1.98	2.43	2.87	1.82

e Estimated

## 15908000 SAGAVANIRKTOK RIVER NEAR PUMP STATION 3—Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1982 - 2002, BY WATER YEAR (WY)#

MEAN MAX (WY) MIN (WY)	570 1172 1996 279 1983	211 358 1996 76.0 1984	82.0 233 1998 4.03 1991	42.7 180 1998 0.000 1983	28.9 154 2002 0.000 1983	24.5 143 2002 0.000 1983	25.5 136 2002 0.000 1984	1264 3588 1993 4.77 1986	5791 9737 1992 3304 2002	4756 7370 1995 2839 1991	3934 6252 1987 1897 1990	1927 3984 1997 883 1983
SUMMARY	Y STATIST	rics	FOR	2001 CAL	ENDAR YEAR	{	FOR 2002	WATER YEAR		WATER YEAR	5 1982	- 2002#
ANNUAL	TOTAL			537696			543740					
ANNUAL	MEAN			1473			1490			1563		
HIGHEST	r annual	MEAN								2071		1995
LOWEST	ANNUAL M	IEAN								993		1983
HIGHEST	r daily M	IEAN		10900	Jun 11	_	33000			33000	Aug 1	6 2002
LOWEST	DAILY ME	EAN		a74	May 20	)	b130			c0.00		5 1982
		MUMINIM YA		74	May 20	)	130			0.00		5 1982
	M PEAK FI						d48300			d48300		6 2002
MAXIMUN	M PEAK ST	AGE					21	.94 Aug 16		21.94	Aug 1	6 2002
	M PEAK ST									f25.68	Jun	8 2000
	RUNOFF (			1067000			1079000			1133000		
ANNUAL	RUNOFF (	(CFSM)		0.				.80		0.84		
	RUNOFF (			10.	75		10			11.42		
	CENT EXCE			5190			4100			4930		
50 PERC	CENT EXCE	EEDS		220			240			200		
90 PERC	CENT EXCE	EEDS		82			140			0.00		

See Period of Record, partial years used in monthly statistics From May 20 to 30 From Apr. 19 to May 18 No flow during winter months water years 1983 to 1995

d From rating curve extended above 10,000  ${\rm ft}^3/{\rm s}$  on basis of slope-area measurement of peak flow at 21.94  ${\rm ft}$ 

e Estimated
f From floodmarks, backwater from ice and snow

## ARCTIC SLOPE ALASKA

## 15908000 SAGAVANIRKTOK RIVER NEAR PUMP STATION 3—Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

D.111	0.07	24044	200	7777		W. D.	3.00				3,110	GED.
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1590 1540	e570 e550	e280 e270	e180 e180	e130 e130	e96 e94	e72 e72	e62 e62	e700 e1500	6240 6860	5080 4850	3490 3520
3 4	1540 1500	e540 e520	e260 e260	e180 e170	e130 e120	e94 e92	e72 e72	e62 e60	e3500 e8000	11800 11400	4570 4310	3860 3740
5	e1400	e510	e250	e170	e120	e92	e72	e60	e10000	7160	4130	3330
6	e1300	e500	e250	e170	e120	e92	e70	e60	e12000	6140	4470	3020
7 8	e1180 e1050	e490 e470	e250 e240	e170 e170	e120 e120	e90 e90	e70 e70	e60 e60	e13000 e14000	12800 14900	3950 4410	2750 2540
9 10	e980 e920	e460 e450	e240 e230	e160 e160	e120 e120	e90 e88	e70 e68	e60 e60	14000 13700	8840 6630	3980 4210	2380 2200
11	e880	e440	e230	e160	e110	e88	e68	e58	12800	6810	7350	2100
12	e860	e420	e230	e160	e110	e86	e68	e58	11600	6360	14100	1950
13 14	e840 e820	e410 e400	e220 e220	e160 e160	e110 e110	e86 e84	e68 e68	e58 e58	8630 6920	7450 7660	16100 12800	1810 1800
15	e800	e390	e220	e150	e110	e84	e66	e58	6540	8270	9470	1750
16 17	e780 e770	e380 e370	e220 e210	e150 e150	e110 e110	e84 e82	e66 e66	e58 e58	8420 8770	6780 5750	7610 11200	1820 1650
18	e760	e370	e210	e150	e110	e82	e66	e58	7740	4950	12700	e1500
19 20	e740 e730	e360 e350	e210 e210	e150 e150	e100 e100	e82 e80	e66 e66	e58 e58	6660 6240	4810 5090	9540 7380	e1440 e1380
21	e720	e340	e200	e140	e100	e80	e64	e58	5660	4910	5750	e1340
22	e700	e330	e200	e140	e100	e80	e64	e58	5630	4740	4900	e1300
23 24	e690 e680	e330 e320	e200 e200	e140 e140	e100 e100	e78 e78	e64 e64	e58 e58	5240 5510	4760 4430	4490 4120	e1240 e1200
25	e670	e310	e190	e140	e100	e76	e64	e60	6250	4990	3880	e1180
26	e660	e310	e190	e140	e98	e76 e76	e64	e66	6590	9990	3520	e1160
27 28	e650 e640	e300 e290	e190 e190	e140 e130	e98 e96	e76	e64 e62	e74 e82	6710 7100	10600 8640	3430 3730	e1140 e1120
29 30	e620 e620	e290 e280	e190 e180	e130 e130		e74 e74	e62 e62	e94 e120	6830 7100	6720 5930	3810 3680	e1120 e1160
31	e590		e180	e130		e74		e300		5370	3490	
TOTAL	28220	12050	6820	4750	3102	2598	2010	2214	237340	227780	197010	59990
MEAN MAX	910 1590	402 570	220 280	153 180	111 130	83.8 96	67.0 72	71.4 300	7911 14000	7348 14900	6355 16100	2000 3860
MIN	590 55970	280 23900	180 13530	130 9420	96 6150	74 5150	62 3990	58 4390	700 470800	4430 451800	3430 390800	1120 119000
AC-FT CFSM	0.49	0.22	0.12	0.08	0.06	0.05	0.04	0.04	4.25	3.95	3.42	1.08
IN.	0.56	0.24	0.14	0.10	0.06	0.05	0.04	0.04	4.75	4.56	3.94	1.20
STATIS	TICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 19	82 - 2003	B, BY WATER	R YEAR (W	IY)#			
MEAN MAX	587 1172	220 402	88.6 233	48.0 180	32.8 154	27.3 143	27.5 136	1207 3588	5892 9737	4879 7370	4049 6355	1931 3984
(WY)	1996	2003	1998	1998	2002	2002	2002	1993	1992	1995	2003	1997
MIN (WY)	279 1983	76.0 1984	4.03 1991	0.000 1983	0.000 1983	0.000 1983	0.000 1984	4.77 1986	3304 2002	2839 1991	1897 1990	883 1983
SUMMA	RY STATI	STICS	FC	R 2002 CAI	LENDAR YE	AR	FOR 2003	WATER YE	AR	WATER Y	YEARS 1982	2 - 2003#
ANNUAL				561160 1537			783884 2148			1591		
	T ANNUAL			1337			2140			2148		2003
	ANNUAL T DAILY			33000	Aug 1	6	16100	Aug 1	3	993 33000	Aug 1	1983 L6 2002
LOWEST	DAILY M	IEAN	_	a130	Apr 1	9	b58	May 1	.1	c0.	.00 Dec 2	25 1982
	SEVEN-I M PEAK F	DAY MINIMUN FLOW	1	130	Apr 1	9	58 23800	May 1 Jul		d48300	.00 Dec 2 Aug 1	25 1982 L6 2002
MAXIMU	M PEAK S	STAGE						0 Jul		21	.94 Aug 1	L6 2002
ANNUAL		(AC-FT)		1113000			1555000			1153000		0 2000
	RUNOFF	(CFSM) (INCHES)		0.8 11.2			1.1 15.6			0 11	. 86 . 63	
10 PER	CENT EXC	CEEDS		4100			7100	-		5020		
	CENT EXC			350 140			290 66			200	.00	

[#] See Period of Record, partial years used in monthly statistics
a From Apr. 19 to May 18
b From May 11 to May 24
c No flow during winter months water years 1983 to 1995

From rating curve extended above 10,000  $\rm ft^3/s$  on basis of slope-area measurement of peak flow at 21.94  $\rm ft$  Estimated  $\rm f$  From floodmarks, backwater from ice and snow

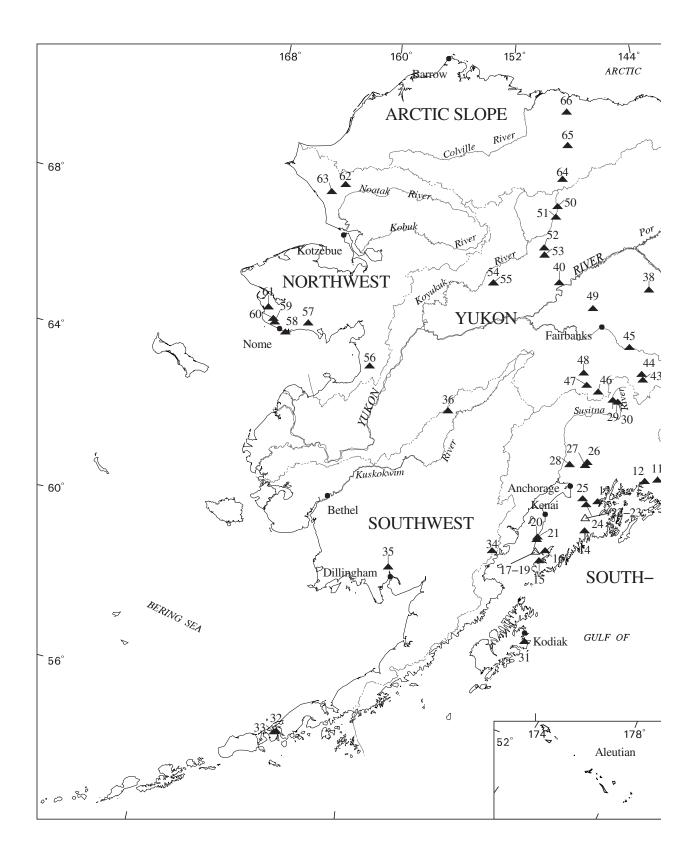
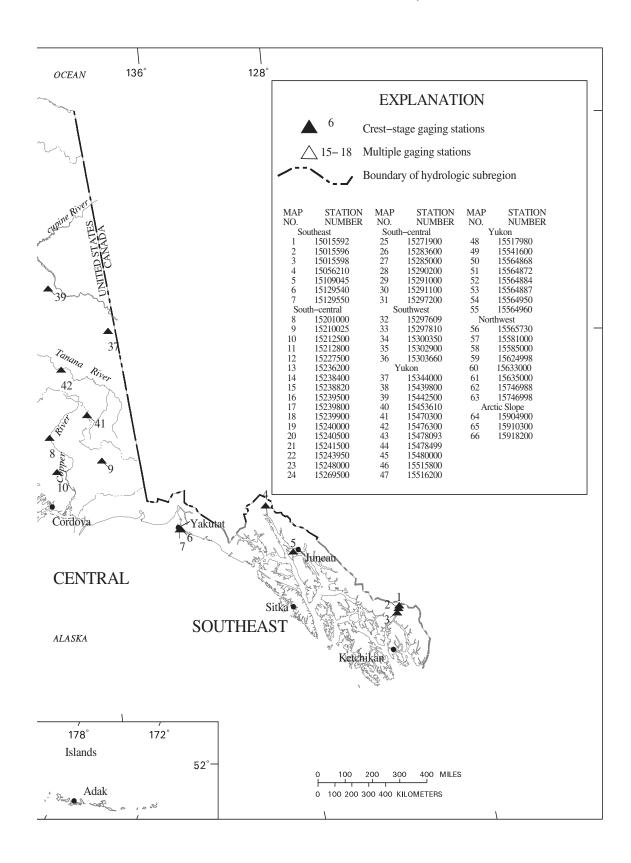




Figure 2. Locations of crest-stage partial-record stations



#### DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records of partial-record stations are presented in the table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a second table.

#### CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain, but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. The maximum discharge for each water year is given. The maximum discharge for the current water year and the maximum for the period of record are presented in the table below. However, at some stations the maximum discharge from spring runoff and from rainfall are shown by the symbols S/ and R/, respectively. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

## Maximum discharge at crest-stage partial-record stations [Footnotes at end of table on p. 338]

Station name and number	Location and drainage area	Period of record	Water year 2003 maximum			Period of record maximum		
			Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		SOUT	ΓHEAST A	LASKA				
Cripple Creek near Mouth near Wrangell (15015592)	Lat $56^{\circ}15'55''$ , long $130^{\circ}47'14''$ , in NE $^{1}/_{4}$ SW1/4 NW $^{1}/_{4}$ sec. 6, T. 65 S., R. 95 E. (Bradfield Canal B-3 quad), Misty Fiords National Monument, on right bank 0.5 mi upstream from confluence with Unuk River, 19 mi upstream of Burroughs Bay, and 62 mi southeast of Wrangell. Drainage area is $11.3 \text{ mi}^{2}$ .	2003	09-02-03	64.24	n			
Gene Creek above Gene Lake near Wrangell (15015596)	Lat 56°12′44″, long 130°05′27″, in NE¹/4 NE¹/4 NW¹/4 sec. 27, T. 65 S., R. 94 E. (Bradfield Canal A-3 quad), Misty Fiords National Monument, on right bank 0.2 mi upstream from Gene Lake, 0.9 mi upstream of confluence with Unuk River, 8.8 mi upstream of Burroughs Bay, and 63 mi southeast of Wrangell. Drainage area is 9.55 mi².	2003	09-02-03	u	u			

# Maximum discharge at crest-stage partial-record stations--Continued [Footnotes at end of table on p. 338]

Station name and number	Location and drainage area	Period of record	Water year 2003 maximum			Period of record maximum		
			Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		SOUTHEAS	ST ALASK	A—Continued	i			
Clear Creek at Mouth near Wrangell (15015598)	Lat $56^{\circ}07'33''$ , long $130^{\circ}58'03''$ , in $SE^{1}_{/4}$ $SW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 24, T. 66 S., R. 93 E. (Bradfield Canal A-3 quad), Misty Fiords National Monument, on left bank 0.5 mi upstream from confluence with Lake Creek, 0.3 mi upstream of confluence of Lake Creek and Unuk River, 5.5 mi upstream of Burroughs Bay, and 58 mi southeast of Wrangell. Drainage area $14.6 \text{ mi}^2$ .	2003	09-02-03	24.13	1,200	09-02-03	24.13	1,200
Taiya River near Skag- way (15056210)	Lat $59^{\circ}30'43''$ , long $135^{\circ}20'40''$ , in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec. 22, T. 27 S., R. $59$ E. (Skagway B-1 quad), on the downstream side of highway bridge, 1.0 mi downstream from West Creek, 2.2 mi upstream from mouth, and 4 mi north of Skagway. Drainage area is 179 mi ² .	1970-78, 2002-03	08-15-03	18.91	13,900	7-23-02	19.86	b18,600
North Fork Peterson Creek near Auke Bay (15109045)	Lat 58°17′02″, long 134°39′49″, in SE¹/₄ NW¹/₄ SW¹/₄, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, on left bank, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas. Drainage area is 1.59 mi²., revised.	1997-2003	10-21-02	23.08	R/135	11-01-99 and 12-28-99	23.38	160
Drain at Airport Approach 29 near Yakutat (15129540)	Lat $59^{\circ}29'42''$ , long $139^{\circ}37'56''$ , in $S/E^{1}/_{4}$ NW $^{1}/_{4}$ NE $^{1}/_{4}$ sec. 15, T. 28 S., R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, in Tongass National Forest, on right bank, 1.5 mi upstream from Lost River, 5.5 mi southeast of Yakutat.Drainage area not determined.	2002-03	11-27-02	z >19.13	u	11-27-02	z>19.13	u
Drain at Airport Approach 2 near Yakutat (15129550)	Lat 59°29′35″, 139°41′17″,in SW¹/4 NW¹/4 NE¹/4, sec. 17, T. 28 S., R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, in Tongass National Forest, on right bank, 0.4 mi upstream from Tawah Creek, 5.3 mi southeast of Yakutat. (Drainage area not determined.)	2002-03	11-27-02	z 10.70	u	11-27-02	x10.70	u

# Maximum discharge at crest-stage partial-record stations--Continued [Footnotes at end of table on p. 338]

Station name and number	Location and drainage area	Period of record	Water year 2003 maximum			Period of record maximum				
			Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)		
SOUTH-CENTRAL ALASKA										
Dry Creek near Glen- nallen (15201000)	Lat $62^{\circ}08'49''$ , long $145^{\circ}28'31''$ , in $NE^{1}/_{4}$ sec. 7, T. 4 N., R.1 W. (Gulkana A-3 quad), on left bank 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen. Drainage area is $11.4 \text{ mi}^{2}$ .	1963-2003	4-27-03 8-30-03	f15.69 <14.80	u R/<45	572	d25.88	546		
McCarthy Creek at McCarthy (15210025)	Lat 61°25′54″, long 142°55′02″, in NW¹/4 NW¹/4 NE¹/4 sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), on right bank 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth. Drainage area is 79.0 mi².	1994-2003	1002 6-26-03 8-04-03	f70.59 70.39 70.22	u S/953 R/776	9-27-00	dj80.27	e4,000		
Boulder Creek near Tiekel (15212500)	Lat 61°20′08″, long 145°18′26″, in SE¹/4 SW¹/4 NW¹/4 sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), on left downstream wingwall of bridge at mi 51.4 of old Richardson Highway, 0.2 mi downstream from culvert on present Richardson Highway, and 0.7 mi north of Tiekel. Drainage area is 9.80 mi².	1964-2003	403 6-14-03 6-20-03	10.89 10.47 10.36	u S/324 R/244	8-07-81	11.72	1,330		
Ptarmigan Creek Trib- utary near Valdez (15212800)	Lat $61^{\circ}08'12''$ , long $145^{\circ}44'32''$ , $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec 34, T. 8 S., R. 3 W. (Valdez A-5 quad), on left bank 275 ft upstream from Richardson Highway, 21 mi east of Valdez. Drainage area is 0.72 mi ² .	1965-70 1996-2003	6-14-03 7-03-03	77.57 77.38	S/44 R/23	965	d10.82	85		
Mineral Creek near Valdez (15227500)	Lat $61^{\circ}08'30''$ , long $146^{\circ}21'42''$ , in $SW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), on right bank 120 ft upstream from bridge, 1.8 mi upstream from mouth, and 0.5 mi northwest of Valdez. Drainage area is 44.0 mi ² .	i1976-81, 1990-2003	6-06-03 8-17-03	11.11 12.42	S/1,340 R/2,630	676	di 90.81	5,570		
Shakespeare Creek at Whittier (15236200)	Lat 60°46′35″, long 148°43′35″, in NE¹/4 sec. 22, T. 8 N., R. 4 E. (Seward D-5 quad), on upstream right wingwall of concrete bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska Railroad terminal building at Whittier. Drainage area is 1.61 mi².	1970-80, 1984-2003	10-24-02 6-05-03	11.41 10.25	R/434 S/272	9-20-95	14.90	690		

			Water	r year 2003 n	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	S	OUTH-CENT	RAL ALA	SKA—Contii	nued			
Rudolph Creek at Seward (15238400)	Lat $60^{\circ}07'24''$ , long $149^{\circ}26'43''$ , in $SE^1/_4NE^1/_4NE^1/_4$ sec. 4, T. 1 S., R. 1 W. (Seward A-7 quad), on right bank, 10 ft. upstream from Chiswell St. culvert at intersection with Barwell St, 0.3 mi upstream from mouth, and in Seward. Drainage area 1.00 mi ² .	1987, 1990-95, 2003	10-24-02	12.83	R/49	10-11-86	u	1,020
Barabara Creek near Seldovia (15238820)	Lat $59^{\circ}28'50''$ , long $151^{\circ}38'42''$ , in $SW^{1}_{/4}$ sec. 15, T. 8 S., R. 14 W. (Seldovia B-5 quad), Kenai Peninsula Borough, on left bank 0.5 mi upstream from mouth and 3.7 mi northeast of Seldovia Drainage area is $20.7 \text{ mi}^2$ .	‡1972-92 1993 2003	10-23-02	4.0	R/1,450	11-29-83	6.08	2,050
Fritz Creek near Homer (15239500)	Lat 59°42′30″, long 151°20′35″, in SW¹/ ₄ SW¹/ ₄ sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), Kenai Peninsula Borough, on right bank 25 ft downstream from culvert under East End Road, 8 mi northeast of Homer. Drainage area is 10.4 mi².	1963-85, ‡1986-92, 1993-2003	10-24-02 4-24-03	j12.1 6.42	R/700e S/16	10-22-80	d 18.53	852
Diamond Creek near Homer (15239800)	Lat 59°40′10″, long 151°40′00″, in SE¹/₄ sec. 9, T. 6 S., R. 14 W. (Seldovia C-5 quad), Kenai Peninsula Borough, on right bank upstream wingwall of culvert on Sterling Highway (milepost 167.5), 1.3 mi upstream from mouth and 4.6 mi northwest of Homer. Drainage area is 5.35 mi².	1963-81 2003	10-24-02	j15.50	R/357	10-24-02	j15.50	357
	Lat 59°44′50″, long 151°45′11″, in NE ¹ / ₄ sec. 13, T. 5 S., R. 15 W., (Seldovia C-5 quad), Kenai Peninsula Borough, on right bank at downstream side of bridge on Sterling Highway, 4.3 mi southeast of Anchor Point. Mile post 161. Drainage area is 137 mi ² .	‡1965-73 1974 ‡1978-86 1987 ‡1991-92 2000-03	11-23-02 4-27-03	vj9.10 2.64	R/9,000 S/ 846	11-23-02	j9.10	9,000

G: ··			Water	r year 2003 n	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	S	OUTH-CENT	RAL ALAS	SKA—Contir	nued			
Anchor River at Anchor Point (15240000)	Lat $59^{\circ}46'21''$ , long $151^{\circ}50'05''$ , in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 5 S., R. 15 W., (Seldovia D-5 quad), Kenai Peninsula Borough, at Old Sterling Highway Bridge at Anchor Point, 0.1 mi downstream from North Fork, and 1.0 mi upstream from mouth. Drainage area is 226 mi ² .	‡1953-66 1984-92 2003	11-23-02	9.60	R/14,500	11-23-02	9.60	14,500
Cook Inlet Tributary near Ninilchik (15240500)	Lat $59^{\circ}58'45''$ , long $151^{\circ}43'20''$ , in $NE^{1}/_{4}$ sec. 29, T. 2 S., R. 14 W., (Kenai A-5 quad), Kenai Peninsula Borough, on upstream culvert wingwall on Sterling Highway, 0.2 mi upstream from mouth and 5.4 mi southwest of Ninilchik. Drainage area is 5.19 mi ² .	1966-81 2003	10-24-02	j17.16	R/359	10-24-02	j17.16	359
Deep Creek near Ninilchik (15241500)	Lat 60°01′50″, long 151°40′50″, on line between sec. 3 and 4, T. 2 S., R. 14 W., Kenai Peninsula Borough, at bridge on Sterling Highway, 1 mi upstream from mouth and 1.5 mi southwest of Ninilchik. Drainage area is 220 mi².	2003	10-24-02	j23.30	R/22,000	10-24-02	j23.30	22,000
Porcupine Creek near Primrose (15243950)	Lat $60^{\circ}20'30''$ , long $149^{\circ}22'15''$ , in NW 1 / $_{4}$ SE 1 / $_{4}$ NW 1 / $_{4}$ sec. 24, T. 3 N., R. 1 W. (Seward B-7 quad), Kenai Peninsula Borough, on right bank 300 ft upstream from 18 mi campground, 0.4 mi upstream from mouth, and 0.8 mi west of Primrose. Drainage area is $16.8 \text{ mi}^{2}$ .	1963-89, 2003	10-24-02	j20.64	R/1,540	10-11-86	jd13.03	4,000
Trail River near Lawing (15248000)	Lat $60^{\circ}26'01''$ , long $149^{\circ}22'19''$ , in SW $^{1}/_{4}$ sec. 13, T. 4 N., R. 1 W. (Seward B-7 quad), Kenai Peninsula Borough, at bridge site on old Seward-Anchorage Highway, 0.2 mi upstream from Falls Creek, 0.2 mi downstream from lower Trail Lake, 1.9 mi upstream from mouth, and 2.1 mi north of Lawing. Drainage area is $181 \text{ mi}^{2}$ .	‡1947-74 1975-77 1987 2003	10-24-02	j11.09	R/8,200	10-24-02	j11.09	8,200
Granite Creek near Portage (15269500)	Lat $60^{\circ}43'40''$ , long $149^{\circ}17'00''$ , in SW $^{1}/_{4}$ NE $^{1}/_{4}$ sec. 4, T. 7 N., R. 1 E. (Seward C-7 quad), Kenai Peninsula Borough, at bridge on Seward Highway, 0.7 mi upstream from Sixmile Creek and 12 mi southwest of Portage. Drainage area is $28.2 \text{ mi}^{2}$ .	1967-1980 1995 2003	10-24-02	10.85	R/1,800	10-06-69	12.46	2,040

g			Wate	r year 2003 n	maximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Se	OUTH-CENT	RAL ALA	SKA—Contii	nued			
Cub Creek near Hope (15271900)	Lat 60°52′12″, long 149°26′02″, in NW ¹/₄ sec. 15, T. 9 N., R. 1 W. (Seward D-7 quad), Kenai Peninsula Borough, on right wingwall of culvert on Hope Highway crossing, 0.1 mi upstream from mouth at Sixmile Creek and 7.7 mi southeast of Hope. Drainage area is 1.8 mi².	1965-79, 1980-83, 1995, 2003	10-24-02	12.54	R/36	967	12.09	54
Premier Creek near Sutton (15283600)	Lat $61^{\circ}42'40''$ , long $149^{\circ}05'12''$ , in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 10 ft downstream from culvert on Buffalo Mine Road (called Moose Creek Road on Anchorage C-6 quad), 4 mi north from the Glenn Highway, 6 mi west of Sutton, and 7 mi northeast of Palmer. Drainage area is 3.38 mi ² .	1997-2003	5-02-03 08-13-03	6.61 7.20	S/9.8 R/55	08-13-03	7.20	55
Wasilla Creek near Palmer (15285000)	Lat $61^{\circ}38'37''$ , long $149^{\circ}11'46''$ , in $SE^{1}_{/4}$ $SW^{1}_{/4}$ sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, on right bank 20 ft downstream from culverts on Palmer-Fishhook Road, and 4.1 mi northeast of Palmer. Drainage area is 16.8 mi ² .	1971, 1976-2003	10-02-02 11-30-02 02-05-03	7.31 f7.29 7.21	R/83 u S/71	8-10-71	d17.74	700
Nancy Lake Tributary near Willow (15290200)	Lat $61^{\circ}41'17''$ , long $149^{\circ}57'58''$ , in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 34, T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, on left bank 150 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth and 4.5 mi southeast of Willow. Drainage area is 8.00 mi ² .	1980, 1983-87, 1989-2003	5-22-02 8-13-02 10-02-02 403 4-26-03	10.81 10.72 10.52 f11.51 <10.02	gS/88 gR/80 R/64 u S/<33	10-11-86	13.21	465
Susitna River near Denali (15291000)	Lat $63^{\circ}06'14''$ , long $147^{\circ}30'57''$ , in NE 1 / ₄ sec. 10, T. 21 S., R. 1 E.(Healy A-2 quad), Matanuska-Susitna Borough, on right pier of bridge on Denali Highway, 0.2 mi downstream from Windy Creek, 3.3 mi upstream from Butte Creek, and 5.3 mi southwest of Denali. Drainage area is 950 mi 2 , approximately.	1957-66, 1968-86, 2003	7-28-03	j12.7	R/27,800	8-10-71	13.32	38,200

			Water	year 2003 n	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	S	OUTH-CENT	RAL ALA	SKA—Contin	nued			
Raft Creek near Denali (15291100)	Lat $63^{\circ}03'04''$ , long $147^{\circ}16'22''$ , in SE $^{1}/_{4}$ sec. 36, T. 21 S., R. 2 E.(Healy A-1 quad), Matanuska-Susitna Borough, on right bank 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali. Drainage area is 4.33 mi 2 .	1963-2003	4-26-03 5-25-03 7-17-03	f14.41 <10.68 10.50	u S/<76 R/59	664	11.72	133
Myrtle Creek near Kodiak (15297200)	Lat $57^{\circ}36'12''$ , long $152^{\circ}24'12''$ , in $NW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, on left bank 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak. Drainage area is 4.74 mi ² .	‡1963-86, 1987-2003	11-26-02 5-03-03	5.72 3.42	R/823 S/118	1-03-77	6.93	1,350
		SOUT	THWEST A	LASKA				
Stapp Creek near Cold Bay (15297609)	Lat 55°11′17″, long 162°42′47″, in $SE^1_{/4} SE^1_{/4} NW^1_{/4}$ sec. 1, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 0.9 mi upstream from mouth, and 1 mi. south of Cold Bay. Drainage area is 1.68 mi ² .	2001-2003	10-13-02 1-21-03 3-15-03	15.07 <14.96 f16.04	R/5.5 S/<4.0 u	5-24-02	15.85	34
Frosty Creek near Cold Bay (15297810)	Lat $55^{\circ}09'59''$ , long $162^{\circ}48'22''$ , in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 8, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay. Drainage area is $5.92 \text{ mi}^{2}$ .	2001-2003	10-13-02 1-08-03 1-21-03	10.98 f11.51 11.39	R/218 u S/325	10-24-00	11.92	497
Chinkelyes Creek Trib- utary near Pedro Bay (15300350)	Lat $59^{\circ}44'02''$ , long $153^{\circ}48'40''$ , in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), on left bank 60 ft upstream from culvert, 8 mi east of Pile Bay, and 11 mi east of Pedro Bay. Drainage area is $0.40 \text{ mi}^{2}$ .	1997-2003	5-02-03 11-23-02	<10.94 13.90	S/<11.0 R/e217	11-23-02	13.90	e217
	Lat $59^{\circ}16'34''$ , $\log 158^{\circ}35'42''$ , in $SE^{1}/_{4}$ sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), on left bank 10 ft upstream from culvert entrance, and 500 ft upstream from mouth at Wood River at the Aleknagik Mission. Drainage area is $1.28 \text{ mi}^{2}$ .	1969-73, 1975-85, 1988-2003	10-22-02 5-03-03	17.82 17.33	R/16 S/ 4.7	6-07-71	19.60	55

			Water	r year 2003 n	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		SOUTHWE	ST ALASK	A—Continue	d			
Gold Creek at Takotna (15303660)	Lat $62^{\circ}59'20''$ , long $156^{\circ}04'08''$ , in $SE^1/_4$ $SE^1/_4$ sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, on right bank, 350 ft upstream from bridge, and 400 ft upstream from mouth. Drainage area is $6.31 \text{ mi}^2$ .	1987-2003	10-22-02 5-28-03	7.66 7.63	R/82 S/80	5-16-99	8.30	131
		YU	JKON ALA	SKA				
King Creek near Dome Creek (15344000)	Lat $64^{\circ}23'38''$ , long $141^{\circ}24'43''$ , in NE $^{1}/_{4}$ SW $^{1}/_{4}$ sec. 16, T. 6 S., R. 32 E. (Eagle B-1 quad), on left bank 1,100 ft upstream from culvert at mi 119.8 Taylor Highway, 0.4 mi upstream from mouth, 4.9 mi east of Dome Creek, and 28 mi south of Eagle. Drainage area is 5.87 mi 2 .	1975-82, ‡1983-90, 1991-2003	4/29/03 9/01/03	fj16.52 15.41	S/u R/50.2	6-13-97	j17.65	n
Boulder Creek near Central (15439800)	Lat $65^{\circ}34'05''$ , long $144^{\circ}53'13''$ , in NW ¹ / ₄ sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), on right bank 2,000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central. Drainage area is $31.3 \text{ mi}^2$ .	1964-65, ‡1966-82, 1983, ‡1984-86, 1987-2003	5-13-03 5-13-03 9-02-03	f 7.16 d 38.69 6.54	u S/285 R/358	6-25-89	10.01	1,460
Quartz Creek near Central (15442500)	Lat 65°37′09″, long 144°28′55″, in $SW^1/_4$ sec. 7, T. 9 N., R. 16 E. (Circle C-1 quad), on left bank 10 ft upstream from culvert at mi 138.1 on Steese Highway, 1 mi upstream from mouth, 19 mi southwest of Circle, and 10 mi east of Central. Drainage area is 17.2 mi ² .	1967, 1969-79, 1989-2003	5-13-03 9-2-03	f19.06 17.96	S/u R/292	7-15-95	dj23.08	700
Ray River Tributary near Stevens Village (15453610)	Lat $65^{\circ}56'57''$ , long $149^{\circ}54'55''$ , in $SE^{1}/_{4}$ sec. 17, T. 13 N., R. 11 W. (Livengood D-6 quad), on right bank 10 ft upstream from culvert at mi 63.6 on the Dalton Highway, and 22 mi west of Stevens Village. Drainage area is 8.00 mi ² .	1977-2003	5-26-03 5-31-03 6-06-03	f18.50 17.48 18.16	u S/73 R/114	579	d 21.10	860

			Wate	r year 2003 n	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		YUKON .	ALASKA-	-Continued				
Little Jack Creek near Nabesna (15470300)	Lat $62^{\circ}32'39''$ , long $143^{\circ}19'22''$ , in $SW^1_{/4} NW^1_{/4} SE^1_{/4}$ sec. 22, T. 9 N., R. 11 E. (Nabesna C-5 quad), on left bank 8 ft upstream from the culvert at mi 25.8 Nabesna Road, and 15.6 mi northeast of Nabesna (previously 0.2 mi upstream on left bank). Drainage area is $6.73 \text{ mi}^2$ .	1975-2003	4-28-03 9-21-03	f20.67 <17.58	u R/<65	c7-25-01	c21.42	c254
Berry Creek near Dot Lake (15476300)	Lat 63°41′23″, long 144°21′47″, in NW¹/₄ sec. 13, T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), on left bank 100 ft upstream from former bridge site, at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake. Drainage area is 65.1 mi².	1964-71, ‡1972-81, 1982-2003	u 5-18-02 6-11-02 5-07-03 7-16-03	f12.36 12.12 12.22 11.82 d11.14	u S/560 R/608 S/424 R/174	7-19-64	15.49	2,800
Suzy Q Creek near Pump- Station 10 (15478093)	Lat $63^{\circ}29'43''$ , long $145^{\circ}51'27''$ , in SW $^{1}/_{4}$ sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), on right bank 30 ft upstream from bridge at mi 224.8 on Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10. Drainage area is 1.29 mi 2 .	1987, 1989-2003	n	n	n	7-14-87	33.83	1,070
Ruby Creek above Richardson Highway near Don- nelly (15478499)	Lat 63°37′54″, long 145°52′14″, in NE¹/ ₄ sec. 7, T. 15 S., R. 10 E. (Mt. Hayes C-4 quad), on right bank 0.2 mi upstream from Trans-Alaska Pipeline, 0.5 mi upstream from bridge at mi 234.8 on Richardson Highway, 2.2 mi upstream from mouth, and 2.3 mi south of Donnelly. Drainage area is 4.89 mi².	1987-2003	n	n	n	7-14-87	16.95	1,660
Banner Creek at Richard- son (15480000)	Lat 64°17'24", long 146°20'56", in SW¹/ ₄ sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), on left bank 400 ft upstream from bridge at mi 295.4 Richardson Highway, 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson. Drainage area is 20.2 mi².	1964-2003	4-29-03 9-01-03	f,j19.10 14.04	S/u R/92	6-26-89	16.38	950

			Wate	r year 2003 n	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		YUKON .	ALASKA-	-Continued				
Seattle Creek near Cantwell (15515800)	Lat 63°19′32″, long 148°14′49″, on line between sec 25 and 26, T. 18 S., R. 4 W. (Healy B-3 quad), Matanuska-Susitna Borough, at bridge at mi 110.9 Denali Highway, and 22.4 mi southeast of Cantwell. Drainage area 36.2 mi².	‡1964-75, 1977-89, 2003	7-17-03	5.66	875	664	13.43	3,100
Slime Creek near Cantwell (15516200)	Lat $63^{\circ}30'34''$ , long $148^{\circ}48'39''$ , in $SE^{1}/_{4}$ sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), on right bank 25 ft downstream from culverts at mi 219.9 George Parks Highway, and 9.1 mi northeast of Cantwell. Drainage area is 6.90 mi ² .	1966-2003	4-26-03 5-31-03 7-28-03	f18.81 16.93 17.54	u S/68 R/174	767	d14.52	685
Dragonfly Creek near Healy (15517980)	Lat $63^{\circ}47'45''$ , long $148^{\circ}55'19''$ , in $SW^{1}/_{4}SE^{1}/_{4}SW^{1}/_{4}$ sec. 9, T. 13 S., R. 7 W., (Healy D-4 quad), on left bank at mi 242,6 George Parks Highway 100 ft upstream from highway bridge, and 6 mi southeast of Healy. Drainage area is 0.71 mi ² .	1990-2003	4-26-03 6-07-03 7-28-03	f39.05 36.22 36.50	u S/3.8 R/22	7-12-90	d7.59	535
Globe Creek near Liven- good (15541600)	Lat $65^{\circ}17'08''$ , long $148^{\circ}07'56''$ , in $SE^1/_4$ sec. 3, T. 5 N., R 3 W. (Livengood B-3 Quad), 0.1 mi upstream from culvert at mi 37.6 Elliot Highway, 9 mi upstream from mouth, and 19 mi southeast of Livengood. Drainage area is 23.0 mi ² .	1964-2003	7-27-03	17.75	R/1850	7-27-03	17.75	1,850
Snowden Creek near Wiseman (15564868)	Lat $67^{\circ}44'20''$ , long $149^{\circ}44'24''$ , in SW 1 / $_{4}$ sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), on right bank 0.25 mi upstream from culvert at mi 213.5 of the Dalton Highway,and 24.5 mi northeast of Wiseman. Drainage area is 16.7 mi 2 .	1968, d1977-79, 1992-2003	n	n	n	1968	u	1,200
NuggetCreek near Wise- man (15564872)	Lat $67^{\circ}29'25''$ , long $149^{\circ}52'20''$ , in NW 1 / $_{4}$ sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), on left bank 1,000 ft upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman. Drainage area is 9.47 mi 2 .	d1975-88, d1990-92, 1993-2003	6-1-03 9-2-03	38.54 39.15	S/71 R/186	5-26-98	40.17	540

			Water	r year 2003 n	naximum	Period	l of record m	of record maximum			
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)			
		YUKON	ALASKA-	-Continued							
Prospect Creek near Prospect Camp (15564884)	Lat 66°46′56″, long 150°41′06″, in NW¹/₄ sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), on left bank 200 ft upstream from bridge at mi 135.2 on the Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth, 2.1 mi south of Pump Station 5, and 1.5 mi southeast of Prospect Camp. Drainage area is 110 mi².	1968, 1975-2003	5-31-03 9-2-03	7.33 8.72	S/1090 R/2320	1968	d10.22	6,800			
Bonanza Creek Trib- utary near Prospect Camp (15564887)	Lat 66°36′52″, long 150°41′24″, in SE¹/₄ sec. 25, T. 21 N., R. 15 W. (Bettles C-2 quad), on right bank 0.3 mi downstream from culverts at mi 121 on the Dalton Highway, 3.4 mi upstream from mouth, 13.5 mi south of Pump Station 5, and 12.6 mi south of Prospect Camp. Drainage area is 11.7 mi².	1975-2003	n	n	n	5-15-93	19.89	290			
Indian River at Utopia (15564950)	Lat $65^{\circ}59'49''$ , long $153^{\circ}41'31''$ , in $NW^{1}_{/4}$ sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 200 ft downstream of bridge at mi 0.2 on road to Indian Mountain. Drainage area is 38.8 mi ² .	1998-2003	6-3-03 8-16-03	17.88 18.91	S/515 R/906	8-16-03	18.91	906			
Utopia Creek at Utopia (15564960)	Lat.65°59′26″, long 153°41′ 44″, in $SW^1/_4$ sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 460 ft downstream of 4 wheeler crossing west of airstrip, 1.2 mi above mouth, .3 mi south-southeast of Utopia, 5.4 mi south of Indian Mt, and 16 mi east-southeast of Hughes. Drainage area is 5.18 mi ² .	1999-2003	6-3-03 7-26-03	7.28 7.09	S/152 R/119	6-3-03	7.28	152			
		NORT	HWEST A	LASKA							
Chiroskey River near Unalakleet (15565730)	Lat 63°55′06″, long 160°18′58″, in NW¹/ ₄ sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), on left bank 1 mile upstream from mouth, 14 miles northeast of Unalakleet. Drainage area is 296 mi².	1998-2003	403 6-02-03 8-27-03	f48.25 46.25 46.07	u S/1130 R/1040	9-07-00	47.03	1,520			

			Water	year 2003 m	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		NORTHWE	ST ALASK	A—Continue	d			
Hugh Rowe Creek near Council (15581000)	Lat 64°44′35″, long 163°53′44″, in NW¹/ ₄ NW¹/ ₄ sec. 4, T. 09 S, R. 26 W. (Solomon C-4 quad), on left bank 150 ft upstream from culvert on Nome-Council Road, 0.1 miles upstream from mouth and 60 mi East of Nome. Drainage area is 2.34 mi².	2001-2003	6-05-03 6-13-03 8-26-03	f73.04 72.58 71.67	u S/n R/n	5-26-02	73.07	n
Goldengate Creek near Nome (15585000)	Lat $64^{\circ}26'51''$ , long $165^{\circ}03'14''$ , in SW 1 _{/4} sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), on right bank 80 ft upstream from culvert on Nome-Council Road, and 11 mi southeast of Nome. Drainage area is 1.55 mi 2 .	1965, 1977-84, 1986-2003	5-31-03 8-26-03	11.44 10.94	S/30 R/12	9-08-65	d11.70	63
Arctic Creek above Trib- utary near Nome (15624998)	Lat $64^{\circ}38'16''$ , long $165^{\circ}42'42''$ , in NE 1 / ₄ sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), on right bank 300 ft upstream from culvert on Nome-Teller Road, 2 mi upstream from mouth, and 13 mi northwest of Nome. Drainage area is 1.13 mi ² .	1975, 1979-2003	5-31-03 6-05-03 8-12-03	f18.62 18.10 18.12	u S/35 R/37	8-20-98	19.06	182
Washington Creek near Nome (15633000)	Lat $64^{\circ}42'52''$ , long $165^{\circ}49'13''$ , in NW 1 / $_{4}$ sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), on left bank, 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome. Drainage area is $6.34 \text{ mi}^{2}$ .	1964-2003	5-31-03 8-26-03	19.93 19.81	S/34 R/28	7-10-75	d19.35	620
Eldorado Creek near Teller (15635000)	Lat $64^{\circ}57'38''$ , long $166^{\circ}11'59''$ , in NE 1 / ₄ NE 1 / ₄ sec. 20, T. 6 S., R. 37 W. (Nome D-3 quad), on right bank 30 ft downstream from bridge at mi 46.3 on Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River, and 21 mi south of Teller. Drainage area is 5.83 mi ² .	1986-87, \$1988-90, 1991, \$1992-98, 1999-2003	5-31-03 6-05-03 8-26-03	f9.97 8.63 8.81	u S/136 R/200	9-04-86	9.42	600
North Fork Red Dog Creek near Kivalina (15746988)	Lat 68°05′03″, long 162°52′52″, in NW¹/4 SW¹/4 sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), on left bank 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 12. Drainage area is 15.9 mi².	‡1991-94, 1995-2003	05-25-03 06-05-03 07-01-03	f,j 6.4 f 5.86 4.88	u S/u R/274	8-17-94	6.03	900

			Wate	r year 2003 1	naximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		NOR	ΓHWEST A	LASKA				
Tutak Creek near Kivalina (15746998)	Lat $67^{\circ}52'28''$ , long $163^{\circ}40'14''$ , in $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), on left bank, 1,000 ft upstream from mouth, 25 mi northeast of Kivalina, and 28 mi northwest of Noatak. Drainage area is 119 mi ² .	1992-2003	06-01-03 07-01-03	12.14 13.46	S/835 R/1670	6-15-92	15.00	3,100
		ARCT	IC SLOPE	ALASKA				
Atigun River Tributary near Pump Station 4 (15904900)	Lat $68^{\circ}22'25''$ , long $149^{\circ}18'48''$ , in NE 1 / ₄ SE 1 / ₄ sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mt. B-4 quad), on right bank 0.2 mi upstream from bridge at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4. Drainage area is 32.6 mi 2 .	1976, ‡1977-86, 1987-2003	6-28-02 8-16-02 6-17-03 7-03-03	g12.41 g13.94 13.43 j14.52	g S/270 g R/746 S/554 R/1010	7-17-99	15.51	1,650
Sagavanirk- tok River Tributary near Happy Valley Camp (15910300)	Lat $69^{\circ}09'38''$ , long $148^{\circ}49'40''$ , in NE 1 / $_{4}$ sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), North Slope Borough, on right bank 500 ft upstream from culvert at mi 335.2 on the Dalton Highway, 0.8 mi upstream from mouth, 0.8 mi north of Happy Valley Camp, and 16 mi south of Sagwon. Drainage area is 12.7 mi 2 .	1997-2003	n	n	n	6-8-01	24.21	860
Sagavanirk- tok River Tributary near Dead- horse (15918200)	Lat $69^{\circ}57'14''$ , long $148^{\circ}43'48''$ , in $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 19, T. 1 N., R. 14 E. (Sagavanirktok D-3 quad), on right bank 6 ft upstream from culvert at mi 386.2 on the Dalton Highway, 0.4 mi upstream from mouth, and 23 mi south of Deadhorse. Drainage area is 12 mi ² , approximately.	1986, 1988-2003	5-29-03 7-03-03	9.36 <6.65	S/66 R/<7.6	5-24-96	j11.8	142
+ Operated	as a continuous record station		FOOTNOTI		stad			
< Less than > Greater the R/ Rainfall S/ Spring ru a Approxin c Corrected	noff nately			i Data c j From t n To be r Revise u Unkno v Peak s	ected eviously publishe ollected by Dept. floodmarks determined	of Transporta		

-			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA				
15015592 Cripple Creek near Mouth near Wrangell	Unuk River	Lat 56°15′55″, long 130°47′14″, in $NE^1_{/4}$ $SW^1_{/4}$ $NW^1_{/4}$ sec. 6, T. 65 S., R. 95 E. (Bradfield Canal B-3 quad), in Misty Fiords National Monument, on right bank 0.5 mi upstream from confluence with Unuk River, 19 mi upstream of Burroughs Bay, and 62 mi southeast of Wrangell.	11.3		6-04-03 8-26-03	111 66
15015595 Unuk River below Blue River near Wrangell	Burroughs Bay	Lat $56^{\circ}14'26''$ , long $130^{\circ}52'49''$ , in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 16, T. 65 S., R. 94 E. (Bradfield Canal A-3 Quad), in Misty Fiords National Monument, on right bank 17 miles upstream from the Post (Bishop Ranch), near the mouth of Burroughs Bay and approximately 60 miles SE of Wrangell.	745		4-30-03 6-05-03 6-07-03 8-26-03	5,250 7,350 11,400 5,320
15015596 Gene Creek above Gene Lake near Wrangell	Unuk River	Lat $56^{\circ}12'44''$ , long $130^{\circ}51'27''$ , in $NE^{1}_{/4}$ $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec. 27, T. 65 S., R. 94 E. (Bradfield Canal A-3 quad), in Misty Fiords National Monument, on right bank 0.2 mi upstream from Gene Lake, 0.9 mi upstream of confluence with Unuk River, 8.8 mi upstream of Burroughs Bay, and 63 mi southeast of Wrangell.	9.55		6-03-03 8-27-03	56 26
15015597 Lake Creek above Clear Creek near Wrangell	Unuk River	Lat $56^{\circ}09'44''$ , long $130^{\circ}54'23''$ , in $SW^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 8, T. $66$ S., R. $94$ E. (Bradfield Canal A-3 quad), in Misty Fiords National Monument, on right bank 3.2 mi upstream from Clear Creek, 0.3 mi upstream from confluence with Unuk River, 5.5 mi upstream from Burroughs Bay, and 58 mi southeast of Wrangell.	81.6		6-05-03 6-07-03 8-25-03	1,060 1,270 405
15015598 Clear Creek at Mouth near Wrangell	Lake Creek	Lat $56^{\circ}07'33''$ , long $130^{\circ}58'03''$ , in $SE^{1}_{/4}$ $SW^{1}_{/4}$ sec. 24, T. 66 S., R. 93 E. (Bradfield Canal A-3 quad), in Misty Fiords National Monument, on left bank 0.5 mi upstream from confluence with Lake Creek, 0.3 mi upstream of confluence of Lake Creek and Unuk River, 5.5 mi upstream of Burroughs Bay, and 58 mi southeast of Wrangell.	14.6	-	6-05-03 8-25-03	353 44
15015599 Eulachon River near Wrangell	Unuk River	Lat $56^{\circ}07'13''$ , long $131^{\circ}07'26''$ , in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 25, T. 66 S., R. 92 E. (Bradfield Canal A-4 quad), in Misty Fiords National Monument, on left bank 2.7 mi upstream of confluence with Unuk River, 1.0 mi upstream of Burroughs Bay, and 55 mi southeast of Wrangell.	23.5		6-06-03 8-25-03	477 93

			Drainage	Measured	Measu	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	d			
15049900 Gold Creek near Juneau	Gastineau Channel	Lat 58°18′26″, long 134°23′12″, in NW ¹ / ₄ NE ¹ / ₄ , sec. 24, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, at Old Ebner Dam site, at head of Last Chance Basin, 0.6 mi upstream from Basin Road bridge, and 1.1 mi east of Juneau.	8.41	(‡)1984-97, 1998-2002	10-31-02 12-17-02 01-15-03 02-26-03 03-31-03 04-23-03 05-23-03 07-09-03 08-29-03	65 64 30 13 21 24 154 89 49
15052020 Lemon Creek at bridge near Juneau	Gastineau Channel	Lat $58^{\circ}21'27''$ , long $134^{\circ}29'56''$ , in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 34, T. 40 S., R. 66 E. (Juneau B-2 SE quad), City and Borough of Juneau, 4.6 mi northwest of Juneau, 5.7 mi southeast of Auke Bay and 0.4 mi upstream from mouth.	24.3	1951-52, 1954, 1956- 64, 1966-68, 1970, 2002	11-27-02 3-25-03 6-03-03 9-11-03 9-27-03	874 27 291 853 1820
15052475 Jordan Creek below Egan Drive near Auke Bay	Gastineau Channel	Lat $58^{\circ}21'59''$ , long $134^{\circ}34'34''$ , in $SW^{1}/_{4} SW^{1}/_{4} SE^{1}/_{4}$ , sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3.0 mi east of Auke Bay Post Office. Currently operated as a continuous-record station.	2.60	h1984,88, h1989, h1995-96, (‡)1997-2002	10-02-02 12-04-02 2-21-03 3-13-03 4-28-03 6-05-03 7-19-03 9-19-03	9.9 10 1.3 0.91 2.5 0.86 0.60 8.4
15052900 + Mendenhall River at Brotherhood Bridge near Auke Bay	Fritz Cove	Lat 58°22′15″, long 134°36′00″, in NW¹/4 SE¹/4, sec. 25, T. 40 S., R. 65 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Egan Expressway bridge, 1.0 mi upstream from mouth, and 2.3 mi southeast of Auke Bay.	104	1950, 1961- 66, 1968, 1984, 1989, 1997, 1999- 2002	3-05-03 6-04-03 8-06-03 9-03-03	212 1500 2320 6450
15053200 Duck Creek below Nancy Street near Auke Bay	Mendenhall River	Lat 58°22′31″, long 134°34′38″, in SW¹/4 NE¹/4, sec. 30, T.40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, 1.4 mi upstream from mouth, 2.7 mi southeast of Auke Bay, and 8 mi northwest of Juneau. Currently operated as a continuous-record station.	1.30	(‡)1994-2002	10-04-02 10-16-02 11-27-02 2-21-03 4-19-03 5-06-03 6-02-03 7-09-03 8-07-03	3.7 17 14 1.4 0.75 0.49 1.3 1.3
15053210 Duck Creek at Mendenhall Mall Road near Auke Bay	Mendenhall River	Lat $58^{\circ}22'21''$ , long $134^{\circ}35'02''$ in $NW^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ , sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 1.1 mi upstream from mouth, 2.6 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.40	1993, 1995, 1997-98, 2002	4-26-03 5-03-03 5-08-03 5-17-03 5-25-03 6-02-03 8-10-03 8-20-03	no flow no flow no flow no flow no flow no flow 2.6
15053215 Duck Creek at Egan Drive near Auke Bay	Mendenhall River	Lat 58°22′13″, long 134°35′06″, in SE NW¹/ ₄ SW¹/ ₄ , sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Egan Drive, 1.0 mi upstream from mouth, 2.6 mi southeast of Auke Bay and 8 mi northwest of Juneau.	1.44	1997-98, 2000, 2002	5-25-03 8-20-03	no flow 1.2

			Drainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ² )	(water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	d			
15053220 Duck Creek at Delrae Road near Auke Bay	Mendenhall River	Lat $58^{\circ}22'04''$ , long $134^{\circ}35'16''$ , in $SW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 0.8 mi upstream from mouth, 2.6 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.49	1988-89, 1993-02	4-19-03 4-26-03 5-03-03 5-14-03 5-17-03 5-25-03 6-02-03 7-06-03 8-10-03 8-20-03	no flow no flow no flow no flow no flow no flow no flow no flow no flow
15053230 Duck Creek at Berners Avenue near Auke Bay	Mendenhall River	Lat $58^{\circ}21'50''$ , long $134^{\circ}35'08''$ , in $NW^{1}/_{4}$ $NW^{1}/_{4}$ , sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 0.5 mi upstream from mouth, 2.8 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.52	1994-00, 2002	10-16-02 11-27-02 4-19-03 4-26-03 5-03-03 5-14-03 5-17-03 5-25-03 6-02-03 6-21-03 7-06-03 8-10-03 8-20-03 9-02-03	9.5 14 no flow 4.6
15053235 Duck Creek below Cessna Drive near Auke Bay	Mendenhall River	Lat $58^{\circ}21'43''$ , long $134^{\circ}35'12''$ , in $NW^{1}/_{4}$ NW $^{1}/_{4}$ , sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at the corner of Alex Holden Way and Cessna Drive, 0.4 mi upstream from mouth, 2.9 mi southeast of Auke Bay, and 8 mi northwest of Juneau.	1.66	1997-00, 2002	c4-19-03 c4-26-03 c5-03-03 c5-08-03 c5-14-03 c5-21-03 c5-21-03 c6-02-03 c6-11-03 c6-21-03 c8-10-03 8-20-03	b no flow d no flow d no flow d no flow b no flow b no flow no flow d no flow d no flow d no flow ho flow no flow no flow no flow d no flow d no flow O.01
15055700 Antler River at Mouth near Auke Bay	Berner's Bay	Lat $58^{\circ}49'15''$ , long $134^{\circ}56'14''$ , in $NE^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 20, T. 35 S., R. 63 E. (Juneau D-3 quad), in Tongass National Forest, on right bank, 1.2 mi above mouth, 3.5 mi downstream from mouth of Gilkey River, and 31.7 mi northwest of Auke Bay.			4-14-03 5-07-03 5-27-03 7-15-03	333 1060 3540 8800
15055850 Lace River at Mouth near Auke Bay	Berner's Bay	Lat $58^{\circ}50'42''$ , long $134^{\circ}55'55''$ , in $NW^{1}_{/4}$ $SE^{1}_{/4}$ $SE^{1}_{/4}$ sec. 08, T. 35 S., R. 63 E. (Juneau D-3 quad), in Tongass National Forest, on left bank, about 4.0 mi upstream from mouth at Berner's Bay, and 34.3 mi northwest of Auke Bay.			4-16-03 5-15-03 5-27-03 7-15-03	622 2170 3720 8230

		Location	Drainage	Measured previously	Measurements	
Stream	Tributary to		area (mi ² )	(water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	d			
15055900 Berners River at Mouth near Auke Bay	Lace River	Lat $58^{\circ}51'11''$ , long $134^{\circ}59'05''$ , in $SW^{1}_{/4}NW^{1}_{/4}NW^{1}_{/4}$ sec. 07, T. 35 S., R. 63 E. (Juneau D-3 quad) at Berners Bay, in Tongass National Forest, 200 ft upstream from mouth, and 34.5 mi northwest of Auke Bay.			4-15-03 5-15-03 5-27-03 7-15-03	168 192 439 622
15081607 Threemile Creek Tributary below canyon near Klawock	Threemile Creek	Lat $55^{\circ}32'26''$ , long $132^{\circ}57'08''$ , in $SE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$ , sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at mouth of canyon, 0.37 mi upstream from mouth, and 5.2 mi east of Klawock.	1.41	2000-2002	4-01-03	6.7
15081611 Threemile Creek below Highway near Klawock	Klawock Lake	Lat $55^{\circ}31'54''$ , long $132^{\circ}59'05''$ , in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NW^{1}/_{4}$ , sec. 20, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at Hollis Highway crossing, 3,000 ft upstream from mouth, and 4.0 mi east of Klawock.	8.05	2000-2002	4-01-03	44
15081616 Halfmile Creek below Highway near Klawock	Klawock Lake	Lat $55^{\circ}32'59''$ , long $133^{\circ}01'44''$ , in $SW^1/_4SW^1/_4SE^1/_4$ , sec. 12, T. 73 S., R 81 E.(Craig C-4 quad) On Prince of Whales Island, in Tongass National Forest, at Hollis Highway crossing, about 800 ft upstream from mouth, and 2.7 mi east of Klawock.	5.26	2000-2002	4-01-03	18
15087638 Granite Creek at Sitka	Western Channel	Lat $57^{\circ}06'05''$ , long $135^{\circ}23'52''$ , in $SE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$ , sec. 16, T. 55 S., R. 63 E. (Sitka A-5 quad), on Baranof Island, in the Tongass National Forest, 200 ft downstream from Granite Creek Road Bridge, 400 ft upstream from mouth, and about 3.9 mi northwest of Sitka.	2.42	2002	11-08-02 12-11-02 1-10-03 3-01-03 4-16-03 6-19-03	3.4 12 6.4 30 4.9 28
15088400 Cupola Peak Creek at Bear Cove near Sitka	Bear Cove	Lat 57°00′39″, long 135°09′11″, in $NE^1/_4$ $SE^1/_4$ $SE^1/_4$ , sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), on Baranof Island, in the Tongass National Forest, 200 ft downstream from Green Lake Road crossing, 400 ft upstream from mouth at south shore of Bear Cove in Silver Bay, and about 7.1 mi southeast of Sitka.	0.43	†2000-2003	11-08-02 3-01-03 4-17-03 8-25-03	d no flow d no flow d no flow d no flow
15109045 North Fork Peterson Creek near Auke Bay		Lat $58^{\circ}17'02''$ , long $134^{\circ}39'49''$ , in $SE^{1}_{/4}NW^{1}_{/4}$ , $SW^{1}_{/4}$ , sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas.	r1.59	(†)1985-87, (†)1997-2002	10-16-02 1-06-03 4-28-03 6-16-03 7-25-03 9-05-03	20. 17 2.6 .75 .35 1.5
15129300 Dangerous River at Harlequin Lake Outlet near Yakutat	Gulf of Alaska	Lat $59^{\circ}25'03''$ , long $139^{\circ}01'03''$ , in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ , sec. 10, T. 29S. R. 38E. (Yakutat B-3 NW quad), @ the end of Forest Hwy. 10 @ 29 mile.			6-26-03	9640
15129400 Ahrnklin River at Forest Hwy. 10 near Yakutat	Gulf of Alaska	Lat $59^{\circ}27'34''$ , long $139^{\circ}06'04''$ , in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 26, T.28 S., R. 37E. (Yakutat, B-3 NW quad), in Tongass National Forest, at the intersection of Ahrnklin R. and Forest Hwy. 10 @ 25 mile.			6-26-03	536

	Tributary to		Drainage	Measured previously (water years)	Measurements	
Stream		Location	area (mi ² )		Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continue	d			
15129540 Drain at Airport Approach 29 near Yakutat	Lost River	Lat $59^{\circ}29'42''$ , long $139^{\circ}37'56''$ , in $SE^{1}_{/4}$ $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 15, T. 28 S. R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, in Tongass National Forest, 1.5 mi upstream from mouth, and 5.5 mi southeast of Yakutat.		-2002	10-17-02 12-12-02 3-12-03 5-30-03 6-27-03 8-14-03	2.5 2.3 no flow 1.6 3.9 2.8
15129550 Drain at Airport Approach 2 near Yakutat	Tawah Creek	Lat $59^{\circ}29'35''$ , long $139^{\circ}41'17''$ , in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 17, T. 28 S., R. 34 E. (Yakutat B-5 quad), at Yakutat Airport, in Tongass National Forest, 0.4 mi upstream from mouth, and 5.3 mi southeast of Yakutat.		-2002	10-09-02 12-13-02 3-11-03 4-30-03 5-30-03 6-25-03 8-14-03	26 29 10 7.3 14 9.3 8.2
15129585 Ophir Creek at gravel pit road near Yakutat	Tawah Creek	Lat $59^{\circ}32'26''$ , long $139^{\circ}42'06''$ , in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.29, T.27 S., R.34 E. (Yakutat C-5 SW quad), in Tongass National Forest, at gravel road crossing, 3.5 mi upstream from Summit Lake, and 1.4 mi southeast of Yakutat.		1992-2000, 2002	3-12-03 4-30-03	1.8 no flow
15129590 Ophir Creek at Airport Road at Yakutat	Tawah Creek	Lat $59^{\circ}32'28''$ , long $139^{\circ}43'18''$ , in $SE^1/_4$ $SE^1/_4$ $SW^1/_4$ sec. 30, T. 27 S., R. 34 E. (Yakutat C-5 SW quad), in Tongass National Forest, at airport road crossing 2.5 mi upstream from Summit Lake, and 0.9 mi south of Yakutat.		1989, 1992- 2001	3-12-03 4-30-03	1.8 no flow
15129592 Ophir Creek above new excavation site near Yakutat	Tawah Creek	Lat $59^{\circ}32'17''$ , long $139^{\circ}43'48''$ , in $NW^{1}_{/4}$ $NW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 31, T. 27 S., R. 34 E. (Yakutat C-5 SW quad), in Tongass National Forest, about 200 ft upstream from tributary entering left bank, 2.1 mi upstream from Summit Lake, and 1.0 mi south of Yakutat.		1998,1999, 2002	3-12-03 4-30-03	1.48 no flow
15129593 Ophir Creek Tributary at new excavation near Yakutat	Ophir Creek	Lat $59^{\circ}32'14''$ , long $139^{\circ}43'45''$ , in $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T. 27 S., R. 34 E. (Yakutat C-5 SW quad), in Tongass National Forest, 50 ft upstream from Summit Lake road, 100 ft upstream from mouth, and 1.1 mi south of Yakutat.		1998-2000, 2002	3-12-03 4-30-03	no flow no flow
15129595 Ophir Creek at Mile 1.0 near Yakutat	Tawah Creek	Lat $59^{\circ}31'48''$ , long $139^{\circ}43'56''$ , in $SE^{1}/_{4} NE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 36, T. 27 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, at crossing at mi 1.0 of Summit Lake road, 1.5 mi upstream from Summit Lake, and 1.5 mi south of Yakutat.	<del></del>	1989, 1992-97, 1999	3-12-03 4-30-03	3.8 1.4
15129600 Ophir Creek near Yakutat	Tawah Creek	Lat $59^{\circ}31'26''$ , long $139^{\circ}44'37''$ , in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, 0.8 mi upstream from Summit Lake, and 2 mi south of Yakutat. Currently operated as a continuous-record station.	a2.5	(‡)1992-2002	10-08-02 12-12-02 3-12-03 4-20-03 5-29-03 6-25-03 8-14-03	26 29 6.8 2.9 6.5 3.4 2.4

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA—Continued	d			
15129615 Ophir Creek tributary at confluence near Yakutat	Ophir Creek	Lat 59°31′04″, long 139°44′43″, in $NW^1/_4$ $NW^1/_4$ $NE^1/_4$ sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, at confluence with Ophir Creek, and 2.3 mi south of Yakutat.		1992-2001, 2002	3-12-03 4-30-03	0.85 0.11
		SOUTH-CENTRAL ALASKA				
15201000 Dry Creek near Glennallen	Copper River	Lat 62°08′49″, long 145°28′31″, in NE¹/4, sec. 7, T. 4 N., R. 1 W. (Gulkana A-3 quad), 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen.	11.4	†1963-2002	5-14-03	25
15210025 McCarthy Creek at McCarthy	Kennicott River	Lat $61^{\circ}25'54''$ , long $142^{\circ}55'02''$ , in $NW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth.	79.0	†1993-2002	5-23-03 6-27-03 7-20-03 8-12-03	141 314 500 420
15212500 Boulder Creek near Tiekel	Tiekel River	Lat $61^{\circ}20'08''$ , long $145^{\circ}18'26''$ , in $SE^{1}/_{4}$ $SW^{1}/_{4}$ NW $^{1}/_{4}$ , sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), at mi 51.4 on the former Richardson Highway.	9.80	†1964-2002	5-22-03 6-11-03 6-25-03 7-17-03 8-12-03	11 180 95 60 35
15212800 Ptarmigan Creek Tributary near Valdez	Ptarmigan Creek	Lat $61^{\circ}08'12''$ , long $145^{\circ}44'32''$ , $NW^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 34, T. 8 S., R. 3 W. (Valdez A-5 quad), 275 ft upstream from Richardson Highway, 21 mi east of Valdez.	0.72	†1965-70 †1995-2002	6-25-03 7-17-03 8-14-03	9.5 4.2 2.6
15227500 Mineral Creek near Valdez	Port Valdez	Lat 61°08′30″, long 146°21′42″, in $SW^1/_4$ $NE^1/_4$ $SE^1/_4$ , sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), 120 ft upstream from bridge, 1.8 mi above mouth, and 0.5 mi northwest of Valdez.	44.0	1913, 1948-50, 1972-73, †1990-2002	5-21-03 6-25-03 7-18-03 8-13-03 8-13-03	288 782 1,210 1,970 2,000
15236200 Shakespeare Creek at Whittier	Passage Channel	Lat 60°46′35″, long 148°43′35″, in $NE^1/_4$ , sec.22, T. 8 N., R. 4 E. (Seward D-5 quad), at bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska Railroad terminal building at Whittier.	1.61	1969, †1970-80, †1985-2002	10-17-02 11-06-02 02-06-03 04-24-03 07-10-03	33 154 13 7.2 61
15237550 Mount Alice Creek near Seward	Resurrection Bay	Lat $60^{\circ}07'19''$ , long $149^{\circ}21'33''$ , in $NE^{1}/_{4}$ $SE^{1}/_{4}$ , sec. 1, T. 1 S., R. 1 W. (Seward A-7 quad), 700 ft. upstream from Nash Road, 2.8 mi northeast of Seward.	2.12	†1987 †1990-94	10-31-02	42
15237700 Resurrection River near Seward	Resurrection Bay	Lat $60^{\circ}08'30''$ , long $149^{\circ}25'00''$ , in $NE^{1}/_{4}$ sec. 24, T. 1 N., R. 1 W. (Seward A-7 quad), Kenai Peninsula Borough, at Seward Highway, 1.5 mi upstream from mouth, and 2.7 mi north of Seward	169	‡1965-67 1987 1995	10-24-02	12,400
15238400 Rudolph Creek at Seward	Resurrection Bay	Lat $60^{\circ}07'24''$ , long $149^{\circ}26'43''$ , in $SE^{1}/_{4}NE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 4, T. 1 S., R. 1 W. (Seward A-7 quad), 10 ft. upstream from Chiswell St. culvert at intersection with Barwell St., 0.3 mi from mouth, and in Seward.	1.00	†1987, †1990-95	10-31-02	18

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKA—Contin	nued			
15238820 Barabara Creek near Seldovia	Kachemak Bay	Lat 59°28′50″, long 151°38′42″, in SW ¹ / ₄ , sec. 15, T.8 S., R. 14 W. (Seldovia B-5 quad), Kenai Peninsula Borough, 0.5 mi upstream from mouth and 3.7 mi northeast of Seldovia.	20.7	‡1972-91 1992	11-02-02	257
15239500 Fritz Creek near Homer	Kachemak Bay	Lat 59°42′30″, long 151°20′35″, in $SW^1/_4 SW^1/_4$ sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), 25 ft downstream from culvert under East Road, and 8 mi northeast of Homer.	10.4	†1963-66, †f 1967-70, †1971-77, †f 1978-80 †+1981-85, ‡1986-92 †1993-2002	10-07-02 10-24-02 10-24-02 10-30-02 11-08-02 11-23-02 11-27-02 12-05-02 4-21-03 4-24-03	31 ep700 284 88 37 p530 59 49 11
15239800 Diamond Creek near Homer	Cook Inlet	Lat $59^{\circ}40'10''$ , long $151^{\circ}40'00''$ , in $SE^{1}/_{4}$ sec. 9, T. 6 S., R. 14 W. (Seldovia C-5 quad), Kenai Peninsula Borough, at culvert on Sterling Highway (mile post 167.5), 1.3 mi upstream from mouth at Cook Inlet and 4.6 mi northwest of Homer.	5.35	1962 †1963-77 †f+1978-80 †1981 1990	10-24-02	88
15239900 Anchor River near Anchor Point	Cook Inlet	Lat 59°44′50″, long 151°45′11″, in NE¹/4 sec. 13, T. 5 S., R. 15 W. (Seldovia C-5 quad), Kenai Peninsula Borough, at bridge on Sterling Highway (mile post 161), 4.3 mi southeast of Anchor Point.	137	‡1965-73 †1974 ‡1978-86 †1987 ‡1991-92 1996, 1999, 2002	10-09-02 10-24-02 10-25-02 11-21-02 11-23-02 11-25-02 4-10-03 4-21-03 6-03-03 7-09-03 9-15-03	223 p8,000 1,540 315 p9,000 1,360 125 238 165 83 63
15240000 Anchor River at Anchor Point	Cook Inlet	Lat 59°46′21″, long 151°50′05″, in NW¹/ ₄ SE¹/ ₄ sec. 4, T. 5 S., R. 15 W. (Seldovia D-5 quad), Kenai Peninsula Borough, at Old Sterling Highway Bridge at Anchor Point, 0.1 mi downstream from North Fork, and 1.0 mi upstream from mouth.	226	‡1953-66 f 1978-80 †1985-91 2001	10-24-02 10-29-02	p13,400 1,360
15240500 Cook Inlet Tributary near Ninilchik	Cook Inlet	Lat 59°58′45″, long 151°43′20″, in NE¹/4 sec. 29, T. 2 S., R. 14 W. (Kenai A-5 quad), Kenai Peninsula Borough, Sterling Highway, 0.2 mi upstream from mouth at Cook Inlet and 5.4 mi southwest of Ninilchik.	5.19	†1967-77 †f 1980 f 1981	10-29-02	38
15241500 Deep Creek near Ninilchik	Cook Inlet	Lat 60°01′50″, long 151°40′50″, on line between sec. 3 and 4, T. 2 S., R. 14 W., Kenai Peninsula Borough, at bridge on Sterling Highway, 1 mi upstream from mouth, and 1.5 mi southwest of Ninilchik.	220	1951-52 1954 1960 1965-68 1978-80	10-24-02	p22,000
15242000 Kasilof River near Kasilof	Cook Inlet	Lat $60^{\circ}19'05''$ , long $151^{\circ}15'35''$ , in $SW^{1}/_{4}$ sec. 30, T. 3 N., R. 11 W. (Kenai B-4 quad), Kenai Peninsula Borough, at bridge, mi 67.1 Sterling Highway, 5 mi south of Kasilof.	738	‡1949 - 70 2002	10-26-02 9-5-03	7,510 8,830

			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKA—Contin	nued			
15243950 Porcupine Creek near Primrose	Kenai Lake	Lat 60°20′30″, long 149°22′30″, in NW¹/ ₄ SE¹/ ₄ NW¹/ ₄ sec. 24, T. 3 N., R. 1 W. (Seward B-7 quad), Kenai Peninsula Borough, 300 ft upstream from 18 mi campground, 0.4 mi upstream from mouth, and 0.8 mi west of Primrose.	16.8	†1963-89	10-30-02	269
15244000 Ptarmigan Creek near Lawing	Kenai Lake	Lat $60^{\circ}24'20''$ , long $149^{\circ}21'45''$ in $SE^{1}/_{4}$ sec. 25, T. 4 N., R. 1 W. (Seward B-7 quad), 200 ft upstream from Seward Highway, 0.2 mi north of Lawing, 0.3 mi upstream from mouth, and 3 mi downstream from Ptarmigan Lake.	32.6	±1947-58	11-01-02	448
15248000 Trail River near Lawing	Kenai Lake	Lat $60^{\circ}26'01''$ , long $149^{\circ}22'19''$ in $SW^1/_4$ sec. 13, T. 4 N., R. 1 W. (Seward B-7 quad), at bridge site on old Seward-Anchorage Highway, 0.2 mi upstream from Falls Creek, 0.2 mi downstream from lower Trail lake, 1.9 mi upstream from mouth, and 2.1 mi north of Lawing.		‡1947-74 *1977	10-26-02	4,640
15250000 Falls Creek near Lawing	Trail River	Lat 60°25′50″, long 149°22′10″ in $SW^1/_4$ SE $^1/_4$ sec. 13, T. 4 N., R. 1 W. (Seward B-7 quad), Kenai Peninsula Borough, at Seward Highway bridge, 0.1 mi upstream from mouth and 2 mi north of Lawing.	11.8	†1963-70	11-01-02	74
15269500 Granite Creek near Portage	Sixmile Creek	Lat $60^{\circ}43'40''$ , long $149^{\circ}17'00''$ in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 4, T. 7 N., R. 1 E. (Seward C-7 quad), Kenai Peninsula Borough, at Seward Highway, 0.7 mi upstream from mouth at Sixmile Creek and 12 mi southwest of Portage.	28.2	†1967-80 1999 2003	10-24-02 10-29-02	1,600 310
15271900 Cub Creek near Hope		Lat $60^{\circ}52'12''$ , long $149^{\circ}26'02''$ in $NW^1/_4$ sec. 15, T. 9 N., R. 1 W. (Seward D-7 quad), Kenai Peninsula Borough, at Hope Highway, 0.1 mi upstream from mouth at Sixmile Creek and 7.7 mi southeast of Hope.	1.80	†1965-79, c†1980-83, 1995	10-29-02	10
15274796 +South Branch of South Fork Chester Creek at tank trail near Anchorage	South Fork Chester Creek	Lat $61^{\circ}11'25''$ , long $149^{\circ}42'13''$ in SE $^{1}/_{4}$ NW $^{1}/_{4}$ , sec. 30, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, 100 ft upstream from bridge on tank trail (Bulldog Trail), and 6.5 mi east of Anchorage.	4.30	1968, 72 1980 1998-2002	10-12-02 06-12-03 07-22-03 08-28-03 09-04-03	12 4.6 3.1 1.8 2.4
15275100 Chester Creek at Arctic Boulevard at Anchorage	Knik Arm	Lat 61°12′19″, long 149°53′43″, on line between sec. 19, R. 3 W., and sec. 24, R. 4 W., T. 13 N. (Anchorage A-8 quad), Municipality of Anchorage, 50 ft downstream from bridge on Arctic Boulevard in Anchorage and 0.8 mi upstream from mouth.	27.4	1966-2002	10-01-02 10-01-02	288 298
15276360 Ship Creek at Elemendorf - Ft. Richardson Border near Anchorage	Knik Arm	Lat 61°14′37″, long 149°44′48″, in SW¹/ ₄ NW¹/ ₄ , sec. 1, T. 13 N., R. 3 W. (Anchorage A-8 quad), Municipality of Anchorage, 2.2 mi downstream from Glenn Highway bridge, and 7.6 mi east of Anchorage.	pending	2002	12-14-02 01-17-03 02-21-03 03-17-03 04-18-03	105 61 47 47 33

			Drainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ² )	(water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKA—Contin	nued			
15280100 Eklutna River above Thunderbird Creek near Eklutna	Knik Arm	Lat $61^{\circ}26'44''$ , long $149^{\circ}21'16''$ , in $NW^{1}/_{4}$ SW $^{1}/_{4}$ , sec. 30, T. 16 N., R. 1 E. (Anchorage B-7 quad), Municipality of Anchorage, 800 ft upstream from Thunder Bird Creek, 3.3 mi upstream from mouth, and 1.6 mi southeast of Eklutna.		1954-56 2002	1-17-03 4-07-03 5-13-03 6-18-03 9-12-03	7.5 6.5 7.5 6.1 4.6
15283600 Premier Creek near Sutton	Moose Creek	Lat $61^{\circ}42'40''$ long $149^{\circ}05'12''$ , in $SE^{1}/_{4}$ NE $^{1}/_{4}$ , sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 10 ft downstream from culvert on Buffalo Mine Road (called Moose Creek Road on Anchorage C-6 quad), 4 mi north from Glenn Highway, 6 mi west of Sutton, and 7 mi northeast of Palmer.	3.38	†1996-2002	5-14-03 8-25-03	2.2 2.0
15285000 Wasilla Creek near Palmer	Knik Arm	Lat $61^{\circ}38'37''$ , long $149^{\circ}11'46''$ , in $SE^{1}/_{4}$ $SW^{1}/_{4}$ , sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 20 ft downstream from culverts on Palmer-Fishhook Road, and 4.1 mi northeast of Palmer.	16.8	†1971, f†1976-83, †1984-2002	10-02-02 04-30-03 05-22-03	74 13 16
15290200 Nancy Lake Tributary near Willow	Nancy Lake	Lat 61°41′17″, long 149°57′58″, in SE¹/ ₄ SE¹/ ₄ , sec. 34, T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, 150 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth, and 4.5 mi southeast of Willow.	8.00	f1978-79, †1980, f1981, †1983-86, †1990-2002	10-02-02 4-29-03 5-22-03 7-01-03 9-30-03	64 6.2 6.3 0.9 34
15291000 Susitna River near Denali	Cook Inlet	Lat $63^{\circ}06'14''$ , long $147^{\circ}30'57''$ , in $NE^{1}/_{4}$ sec 10, T. 21 S., R. 1 E. (Healy A-2 quad), Matanuska-Susitna Borough, at bridge on Denali Highway, 0.2 mi downstream from Windy Creek, 3.3 mi upstream from Butte Creek, and 5.3 mi southwest of Denali.	a950	1956 \$1957-66 1967 \$1968-86	8-26-03	7,200
15291100 Raft Creek near Denali	Susitna River	Lat 63°03′04″, long 147°16′22″, in SE¹/4, sec. 36, T. 21 S., R. 2 E., (Healy A-1 quad), Matanuska-Susitna Borough, 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali.	4.33	†1963-67, †1971-75, †1977-82, †1984-90, †1993-2002	5-16-03 6-26-03 8-26-03	3.6 17 8.8
15292400 Chulitna River near Talkeetna	Susitna River	Lat 62°33′31″, long 150°14′02″, in SE¹/4, sec. 32, T. 29 N., R. 5 W., (Talkeetna C-1 quad), Matanuska-Susitna Borough, 0.5 mi downstream from Parks Highway Bridge, 4.5 mi downstream from Troublesome Creek, 18 mi upstream from mouth, and 16 mi northwest of Talkeetna.	a2,570	‡1958-72 ‡1980-85 1998 2002	7-21-03	41,400
15294350 + Susitna River at Susitna Station	Susitna River	Lat 61°32′41″, long 150°30′45″, in SE¹/4, sec. 22, T. 17 N., R. 7 W., Matanuska-Susitna Borough, on left bank at Susitna Station, approximately 1.5 mi down-stream from Yentna River, 12.5 mi above Alexander Creek.	19,400	1974-93	6-17-03 7-10-03 7-18-03 8-15-03 9-22-03	131,000 159,000 234,000 215,000 33,200

			Drainage	Measured previously	Measu	rements
Stream	Tributary to	Location	area (mi ² )	(water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKA—Contin	nued			
15294630 North Fork Crescent River near Tuxedni Bay	Cook Inlet	Lat 60°26′06″, long 152°53′52″, in SE¹/4, sec. 15, T. 4 N., R. 21 W., (Kenai B-8 quad), 500 ft upstream from unnamed tributary on left bank, 8.5 mi upstream of Lake Fork and North fork confluence, 6 mi southwest of Mt. Redoubt, and 50 mi northwest of Ninilchik.	34.2		5-16-03 8-01-03 10-23-03	90 537 145
15294640 Lake Fork Crescent River near Tuxedni Bay	Cook Inlet	Lat $60^{\circ}21'31''$ , long $152^{\circ}48'59''$ , in $SW^{1}/_{4}$ , sec. 7, T. 3 N., R. 20 W., (Kenai B-8 quad), 1.0 mi downstream from lake outlet, 3.2 mi upstream of Lake Fork and North fork confluence, 9 mi south of Mt. Redoubt, and 46 mi northwest of Ninilchik.	125		5-16-03 7-19-03 10-23-03	462 2730 741
15294650 Crescent River near mouth near Tuxedni Bay	Cook Inlet	Lat 60°14′38″, long 152°34′41″, in SE¹/4, sec. 21, T. 2 N., R. 19 W., (Kenai A-7 quad), 1.7 mi upstream from mouth at ADF&G fish camp, 18 mi south of Mt. Redoubt, 4.5 mi north of Chisik Is., and 34 mi northwest of Ninilchik.	249		5-16-03 8-01-03	737 3350
15297200 Myrtle Creek near Kodiak	Kalsin Bay	Lat $57^{\circ}36'12''$ , long $152^{\circ}24'12''$ in $NW^{1}/_{4}SW^{1}/_{4}$ , sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak.	4.74	‡1963-86, †1987-89, †1991-2002	12-10-02 2-07-03	88 152
		SOUTHWEST ALASKA				
15297609 Stapp Creek near Cold Bay	Cold Bay	Lat 55°11′17″, long 162°42′47″, in $SE^1/_4$ $SE^1/_4$ $NW^1/_4$ , sec. 1, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 0.9 mi upstream from mouth, and 1 mi south of Cold Bay.	1.68	†2001-2002	11-25-02 2-26-03 5-08-03 5-08-03 6-26-03 8-25-03	1.8 3.2 0.92 0.93 1.0 0.63
15297810 Frosty Creek near Cold Bay	Izembek Lagoon	Lat 55°09′59″, long 162°48′22″, in $SE^1_{/4}$ $SW^1_{/4}$ $SE^1_{/4}$ , sec. 8, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay.	5.92	†2002	11-25-02 2-26-03 5-08-03 6-26-03 8-25-03	47 48 34 69 39
15300350 Chinkelyes Creek tributary near Pedro Bay	Chinkelyes Creek	Lat $59^{\circ}44'02''$ , long $153^{\circ}48'40''$ , in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), Lake and Peninsula Borough, 60 ft upstream from culvert, 8 mi east of Pile Bay and 11 mi east of Pedro Bay.	0.40	†1998-2002	11-07-02 4-22-03 8-28-03	9.3 0.81 2.5
15302900 Moody Creek at Aleknagik	Wood River	Lat $59^{\circ}16'34''$ , long $158^{\circ}35'42''$ , in $SE^{1}/_{4}$ , sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), 500 ft upstream from mouth at Wood River at the Aleknagik Mission.	1.28	1968 †1969-73, †1975-83, †1988-89 †1993-2002	4-14-03 9-10-03	1.6 3.3
15303660 Gold Creek at Takotna	Takotna River	Lat $62^{\circ}59'20''$ , long $156^{\circ}04'08''$ , in $SE^1/_4$ $SE^1/_4$ , sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, 350 ft upstream from bridge, and 400 ft upstream from mouth.	6.31	†1987-2002	7-10-03	10

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA				
15388030 Nation River near Nation	Yukon River	Lat 65°14′23″, long 141°39′10″ in NW ¹ / ₄ sec. 30, T. 5N.,R. 30E., (Charley River A-2 quad), in Yukon-Charley Preserve, 3.75 mi upstream from mouth, 4.25 mi downstream from mouth of Hard Luck Creek, 5 mi northeast of Nation townsite, and 33 mi northwest of Eagle.	931	‡1991-2000, ‡2002	6-20-03 9-17-03	845 1420
651237141410700 Nation River near mouth near Eagle	Yukon River	Lat 65°12′37″, long 141°41′07″, in SW¹/4, sec. 36, T. 5 N., R. 29 E., (Charley River A-2 quad), 1.3 mi upstream from mouth, 3.7 mi northeast of Nation, and 35 mi northwest of Eagle.			6-13-02 8-23-02	2670 4220
652223142294100 Kandik River near mouth near Eagle	Yukon River	Lat $65^{\circ}22'23''$ , long $142^{\circ}29'41''$ , in $SE^{1}/_{4}$ , sec. 1, T. 6 N., R. 26 E., (Charley River B-3 quad), 1.0 mi upstream from mouth, 12 mi southeast of Snowy Peak, 23 mi northwest of Nation, and 60 mi northwest of Eagle.		-	6-15-02 8-24-02	2330 3220
651705142440400 Charley River near mouth near Circle	Yukon River	Lat $65^{\circ}17'05''$ , long $142^{\circ}44'04''$ , in $SE^{1}_{/4}$ , sec. 2, T. 5 N., R. 24 E., (Charley River B-4 quad), 5.8 mi upstream from mouth, 14 mi southwest of Kathul Mountain, 12.2 mi east of Slaven's Roadhouse, and 55 mi southeast of Circle.	1,720		6-16-02 8-24-02	2020 4960
652113143071500 Coal Creek near mouth near Circle	Yukon River	Lat $65^{\circ}21'13''$ , long $143^{\circ}07'15''$ , in $NE^{1}_{/4}$ , sec. 13, T. 6 N., R. 22 E., (Charley River B-5 quad), at mouth near Slaven's Roadhouse, 21 mi northeast of Twin Mountain, 18 mi southwest of Snowy Peak, and 45 mi southeast of Circle.	73.5		6-15-02 8-25-02	44 169
652108143193800 Woodchopper Creek near mouth near Circle	Yukon River	Lat $65^{\circ}21'08''$ , long $143^{\circ}19'38''$ , in $NE^{1}_{/4}$ , sec. 13, T. 6 N., R. 21 E., (Charley River B-5 quad), 0.6 mi upstream from mouth, 18 mi north of Twin Mountain, 21 mi southwest of Snowy Peak, and 40 mi southeast of Circle.	83.4		6-16-02 8-24-02	19 145
654335144032800 Yukon River near Circle	Norton Sound	Lat $65^{\circ}43'35''$ , long $144^{\circ}03'28''$ , in $NE^{1}/_{4}$ , sec. 6, T. 10 N., R. 18 E., (Circle C-1 quad), 8.1 mi upstream from Circle, 24 mi northeast of Central, and 34 mi west of Snowy Peak.			6-17-02 8-26-02	191000 223000
15389000 Porcupine River near Fort Yukon	Yukon River	Lat $66^{\circ}59'26''$ , long $143^{\circ}08'16''$ in $SW^{1}/_{4}$ , sec. 16, T. 25N., R. 21E., (Black River D-5 quad), 1,000 ft upstream from John Herberts Village, and 65 mi northeast of Fort Yukon.	a29,500	‡1964-79, 2001-2002	4-4-03 6-9-03 6-19-03 7-23-03 8-19-03	1190 48400 18700 27000 35900
664424144321200 Sheenjek River near mouth near Fort Yukon	Porcupine River	Lat 66°44′24″, long 144°32′12″, in NE¹/4, sec. 17, T. 22 N., R. 15 E., (Fort Yukon C-2 quad), 1.0 mi upstream from mouth, 23.5 mi northeast of Fort Yukon, 55 mi southeast of Venetie, and 67 mi north of Circle.	4,750		6-20-02 8-28-02	9030 1440
15389980 Ptarmigan Creek near mouth near Central	Birch Creek	Lat $65^{\circ}26'24''$ , long $145^{\circ}31'34''$ , in $NE^{1}/_{4}$ , sec. 17, T. 7 N., R. 10 E. (Circle B-4 quad), at mi 101.5 Steese Highway, 0.2 mi upstream from mouth, 10.5 mi southeast of Miller House site, 11.7 mi west of Mastodon Dome, and 22.6 mi southwest of Central.	19.2	2001	7-22-03 9-2-03 9-4-03	16 236 89

		Location	Drainage	Measured	Measurements	
Stream	Tributary to		area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
664036144352800 Black River near mouth near Fort Yukon	Porcupine River	Lat 66°40′36″, long 144°35′28″, in NW ¹ / ₄ , sec. 6, T. 21 N., R. 15 E., (Fort Yukon C-2 quad), 3.8 mi upstream from mouth, 20.5 mi northeast of Fort Yukon, 50 mi southeast of Venetie, and 60 mi north of Circle.	6,290		6-20-02 8-28-02	6180 7390
663821145060500 Porcupine River 9.5 miles upstream from mouth near Fort Yukon	Yukon River	Lat $66^{\circ}38'21''$ , long $145^{\circ}06'05''$ , in $NW^{1}/_{4}$ , sec. 23, T. 21 N., R. 12 E., (Fort Yukon C-3 quad), 9.5 mi upstream from mouth, 6.9 mi northeast of Fort Yukon, 65 mi northwest of Circle, and 45 mi southeast of Venetie.			8-29-02	38200
663941145521600 Christian River near mouth near Fort Yukon	Yukon River	Lat 66°39'41", long 145°52'16", in NE¹/4, sec. 7, T. 21 N., R. 9 E., (Fort Yukon C-2 quad), 6.5 mi upstream from mouth, 18 mi northwest of Fort Yukon, 32 mi south of Venetie, and 76 mi northwest of Circle.	2,470		6-22-02 8-30-02	580 353
664151146003000 Chandalar River near mouth near Fort Yukon	Yukon River	Lat 66°41′51″, long 146°00′30″, in SW¹/4, sec. 27, T. 22 N., R. 8 E., (Fort Yukon C-2 quad), 12.5 mi upstream from mouth, 22 mi northwest of Fort Yukon, 30 mi south of Venetie, and 78 mi northwest of Circle.	10,100		6-22-02 8-30-02	10700 4010
15393900 North Fork 12 Mile Creek near Miller House	Birch Creek	Lat 65°24′03″, long 145°44′18″, in SW¹/4, sec. 29, T. 7 N., R. 10 E. (Circle B-4 quad), at mi 93.4 Steese Highway, 0.5 mi upstream from confluence with Twelvemile Creek, 1.3 mi upstream from mouth of Twelvemile Creek, 17.2 mi southwest of Miller House site, 11.7 mi west of Mastodon Dome, and 29.4 mi southwest of Central.	23.2	1963-67 2001	7-22-03 9-2-03 9-4-03	6.5 247 70
15396100 Frying Pan Creek at mouth near Central	Birch Creek	Lat $65^{\circ}16'58''$ , long $145^{\circ}33'33''$ , in $SE^{1}/_{4}$ , sec. 6, T. 5 N., R. 10 E. (Circle B-4 quad), 0.2 mi upstream from mouth, 19.4 mi southwest of Miller House site, 12.0 mi southwest of Mastodon Dome, and 29.6 mi southwest of Central.	12.5	2002	8-7-03 9-18-03	24 8.3
15397500 Great Unknown Creek near Central	Birch Creek	Lat 65°17'38", long 145°24'00", in NW¹/4, sec. 1, T. 5 N., R. 11 E. (Circle B-3 quad), 0.7 mi upstream from mouth of E. Fork Great Unkown Creek, 2.6 mi upstream from mouth of Great Unkown Creek, 16.8 mi south of Miller House site, 9.6 mi south of Mastodon Dome, and 25.9 mi southwest of Central.	18.6	2001-2002	8-7-03 9-17-03	28 20
15397700 East Fork Great Unknown Creek near Central	Birch Creek	Lat 65°17′36″, long 145°23′20″, in NW¹/4, sec. 1, T. 5 N., R. 11 E. (Circle B-3 quad), 0.8 mi upstream from mouth. 2.8 mi upstream from mouth of of Great Unkown Creek, 16.7 mi south of Miller House site, 9.6 mi south of Mastodon Dome, and 25.7 mi southwest of Central.	20.4	2001-2002	8-7-03 9-17-03	31 34

			Drainage	Measured		
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15407200 South Fork Harrison Creek near Central	Birch Creek	Lat 65°21′52″, long 145°15′25″, in NW¹/₄, sec. 10, T. 6 N., R. 12 E. (Circle B-3 quad), 4.0 mi upstream from confluence with North Fork Harrison Creek, 20.0 mi upstream from mouth of Harrison Creek, 11.1 mi south of Miller House site, 5.1 mi southeast of Mastodon Dome, and 19.5 mi southwest of Central.	9.11	2001-2002	8-6-03 9-5-03	36 41
15407500 Harrison Creek near Central	Birch Creek	Lat 65°22'45", long $144^\circ49'58$ ", in $NE^1/_4$ , sec. 3, T. 8 N., R. 14 E. (Circle B-2 quad), 0.4 mi upstream of mouth of Bottom Dollar Creek, 5.3 mi upstream from mouth of Harrison Creek, 15.0 mi southeast of Miller House site, 15.0 mi east of Mastodon Dome, and 13.5 mi south of Central.	71.6	2001-2002	9-3-03	411
15439800 Boulder Creek near Central	Crooked Creek	Lat 65°34′05″, long 144°53′13″, in $NW^1$ /4, sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), 2000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central.	31.3	†1964-65, ‡1966-82, †1983, ‡1984-86, †1988-2002	6-25-03 7-10-03 9-4-03	2.9 4.7 64
15442500 Quartz Creek near Central	Crooked Creek	Lat $65^{\circ}37'09''$ , long $144^{\circ}28'55''$ , in SW $^{1}/_{4}$ , sec. 7, T. 9 N., R. 16 E. (Circle C-2 quad), at mi 138.1 Steese Highway, 1 mi upstream from mouth, and 10 mi east of Central.	17.2	†1990, †1992-2002	7-9-03 7-16-03 8-26-03 9-5-03	0.39 16 0.64 22
663050146065600 Upper Mouth Birch Creek near Fort Yukon	Yukon River	Lat 66°30′50″, long $146°06′56″$ , in $SE^1_{/4}$ , sec. 31, T. 20 N., R. 8 E., (Fort Yukon C-2 quad), 0.6 mi upstream from mouth, 24 mi west of Fort Yukon, 35 mi south of Venetie, and 77 mi northwest of Circle.	4,200		6-21-02 8-31-02	883 1980
662642146375200 Lower Mouth Birch Creek near Beaver	Yukon River	Lat $66^{\circ}26'42''$ , long $146^{\circ}37'52''$ , in $SW^1/_4$ , sec. 26, T. 19 N., R. 5 E., (Fort Yukon A-2 quad), 0.4 mi upstream from mouth at Lower Birch Creek Slough, 38.5 mi west of Fort Yukon, 40 mi southwest of Venetie, and 70 mi northeast of Stevens Village.	844		6-23-02 8-31-02	1670 3690
663032146500000 Hadweenzic River near mouth near Beaver	Yukon River	Lat 66°30′32″, long 146°50′00″, in $NW^1$ / ₄ , sec. 2, T. 19 N., R. 4 E., (Fort Yukon C-6 quad), 5.3 mi upstream from Purgatory, 5.1 mi upstream from mouth at White Eye, 18.7 mi northeast of Beaver, and 44 mi west of Fort Yukon.	946		9-02-02	57
662437147060400 Yukon River at Devlin Island near Beaver	Norton Sound	Lat $66^{\circ}24'37''$ , long $147^{\circ}06'04''$ , in $SW^{1}/_{4}$ , sec. 3, T. 18 N., R. 3 E., (Beaver B-1 quad), 12 mi upstream from Beaver, 52 mi west of Fort Yukon, 55 mi southwest of Venetie, and 62 mi northwest of Stevens Village.			9-02-02	245000
661236147322200 Beaver Creek near mouth near Beaver	Yukon River	Lat $66^{\circ}12'36''$ , long $147^{\circ}32'22''$ , in $SE^{1}/_{4}$ , sec. 16, T. 16 N., R. 1 E., (Beaver A-2 quad), 6.2 mi upstream from mouth at Beaver Slough, 11.1 mi southwest of Beaver, 46 mi northeast of Stevens Village, and 68 mi southwest of Fort Yukon.	2,870		9-03-02	2537

			Drainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ² )	(water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
661744147464000 Hodzana River near mouth near Beaver	Yukon River	Lat 66°17'44", long 147°46'40", in SW¹/₄, sec. 16, T. 17 N., R. 1 W., (Beaver B-2 quad), 5.3 mi upstream from Purgatory, 0.2 mi upstream from mouth at Hodzana Slough, 16 mi upstream from Purgatory, 11.5 mi southwest of Beaver, and 42 mi northeast of Stevens Village.	1,650	-	6-24-02 9-03-02	918 365
661340147541000 Yukon River at Timber Point near Beaver	Norton Sound	Lat $66^{\circ}13'40''$ , long $147^{\circ}54'10''$ , in $SE^{1}/_{4}$ , sec. 11, T. 16 N., R. 2 W., (Beaver C-2 quad), 5.3 mi upstream from Purgatory, 16.8 mi southwest of Beaver, 37 mi northeast of Stevens Village, and 80 mi southwest of Fort Yukon.			6-25-02 9-04-02	226000 243000
660051149153200 Dall River near mouth near Stevens Village	Yukon River	Lat $66^{\circ}00'51''$ , long $149^{\circ}15'32''$ , in $NW^{1}/_{4}$ , sec. 28, T. 14 N., R. 8 W., (Beaver A-5 quad), 0.5 mi upstream from mouth, 4.8 mi west of Stevens Village, and 37 mi northwest of Livengood.	1,170		9-04-02	206
655252149480800 Ray River near mouth near Stevens Village	Yukon River	Lat $65^{\circ}52'52''$ , long $149^{\circ}48'08''$ , in $SE^{1}/_{4}$ , sec. 10, T. 12 N., R. 11 W., (Livengood D-6 quad), 0.2 mi above mouth, 2.3 mi downstream from Yukon River highway crossing, and 22 mi southwest of Stevens Village.	676		6-04-03 8-25-03	1340 184
653954149473500 Hess Creek 1.2 mi above mouth near Stevens Village	Yukon River	Lat 65°39'54", long 149°47'35", in $SW^1/_4$ , sec. 26, T. 10 N., R. 11 W., (Livengood C-6 quad), 6 mi downstream from Crescent Island, 15 miles south of Yukon River highway crossing, and 31 mi southwest of Stevens Village.	1,190		6-04-03 8-25-03	989 1370
15453610 Ray River Tributary near Stevens Village	Ray River	Lat $65^{\circ}56'57''$ , long $149^{\circ}54'50''$ in $SE^{1}/_{4}$ , sec.17, T.13 N., R. 11 W. (Livengood D-6 quad), at mi 63.8 Dalton Highway and 22 mi west of Stevens Village.	8.00	†1977, †1979-80 †1982 †1987-88 †1990-2002	5-14-03 6-3-03 7-28-03	39 14 2.6
15470300 Little Jack Creek near Nabesna	Jack Lake	Lat $62^{\circ}32'39''$ , long $143^{\circ}19'22''$ , in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $SE^{1}_{/4}$ , sec. 22 T. 9 N., R. 11 E. (Nabesna C-5 quad), mi 25.8 Nabesna Road, and 15.6 mi northwest of Nabesna.	6.73	†1975-77, †1980, †1982-83, †1985-88, †1990-95, †1997-2002	5-15-03 8-25-03	4.0 4.1
15472000 Tanana River near Tok Junction	Yukon River	Lat 63°19′00″, long 142°38′30″, in NW¹/₄, sec. 25, T. 18 N., R. 14 E. (Tanacross B-4 quad) 1.4 mi west of junction of Alaska and Taylor Highways, at bridge crossing.	6,800	‡1950-1953 2001	8-08-02 8-13-03	23,500 18,600
15476300 Berry Creek near Dot Lake	Tanana River	Lat $63^{\circ}41'23''$ , long $144^{\circ}21'47''$ , in NW ¹ / ₄ , sec. 13 T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), 100 ft upstream from former bridge site at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake.	65.1	†1963-71, †1972-81, †1982,1984, †1988 †1990-94 †1997-2002	8-4-03	47

			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15478093 Suzy Q Creek near Pump Station 10	Delta River	Lat 63°29'43", long 145°51'27", in SW ¹ / ₄ , sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), at mi 224.8 Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10.	1.29	†1987, †1991-94, †1997-2002	7-9-03 7-17-03	5.5 26
15478499 Ruby Creek above Richardson Highway near Donnelly	Delta River	Lat $63^{\circ}37^{\circ}54^{\circ}$ , long $145^{\circ}52^{\circ}14^{\circ}$ , in $NE^{1}/_{4}$ , sec. 7, T. 15 S., R. 10 E. (Mt. Hayes C-4 quad), 0.2mi upstream from trans-Alaska Pipeline, 0.5 mi upstream from bridge at mi 234.8 Richardson Highway, 2.2 mi upstream from mouth, and 2.3 mi south of Donnelly.	4.89	†1987-88, †1991-97, †1999-2000 2002	6-19-03 7-9-03 7-17-03 9-11-03	2.3 2.2 32 2.3
15480000 Banner Creek at Richardson	Tanana River	Lat $64^{\circ}17'24''$ long $146^{\circ}20'56''$ , in $SW^{1}_{/4}$ , sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), 400 ft upstream from bridge at mi 295.4 Richardson Highway 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson.	20.2	†1964-67, †1969-70, †1972, †1974-75, †1977, †1982-84, †1989-93, †1995-96	6-16-03 7-9-03 7-17-03 9-4-03	3.0 2.6 47 26
1551400435 Noyes Slough at Illinois Street Bridge at Fairbanks	Chena River	Lat $64^{\circ}51'16''$ , long $147^{\circ}42'50''$ , in $SE^{1}/_{4}$ , sec. 3, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Illinois Street Bridge at Fairbanks.		1993,1994, 2000, 2002	9-15-03	182
1551400550 Noyes Slough at Danby Street Bridge at Fairbanks	Chena River	Lat 64°51′41″, long 147°44′30″, in NW¹/4, sec. 3, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Danby Street Bridge at Fairbanks.		1993,1994 2000, 2002	8-5-02	332
1551401580 Noyes Slough at Goldizen Avenue Bridge at Fairbanks	Chena River	Lat 64°50′38″, long 147°48′24″, in NW¹/4, sec. 8, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), at Goldizen Avenue Bridge at Fairbanks.		2000	8-5-03	321
15515800 Seattle Creek near Cantwell	Nenana River	Lat 63°19'32", long 148°14'49", on line between sec. 25 and 26, T. 18 S., R.4 W. (Healy B-3 quad), Matanuska-Susitna Borough, at bridge at mi 110.9 Denali Highway, and 22.4 mi southeast of Cantwell.	36.2	c†1963-65, ‡1966-75, c†1977 c†1979-85 c†1988-89	8-26-03	58
15516000 Nenana River near Windy	Tanana River	Lat $63^{\circ}27'28''$ , long $148^{\circ}48'11''$ , in $NE^{1}/_{4}$ sec. 12, T. 17 S. R. 7 W. (Healy B-4 quad), Matanuska-Susitna Borough, near left bank under bridge on Denali Highway, 0.8 mi upstream from Jack River, 1 mi southeast of Windy railroad station, and 2 mi downstream from Schist Creek.	710	‡1950-56 1957 ‡1958-73	7-21-03	4,160

Discharge measurements made at partial-record stations and miscellaneous sites during water year 2003 [Footnotes at end on table on page 359]

			Drainage	Measured	Measu	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15516200 Slime Creek near Cantwell	Nenana River	Lat 63°30′34″, long 148°48′39″, in SE¹/4, sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), 25 ft. down stream of culverts at mi 219.9 George Parks Highway, 9.1 mi northeast of Cantwell.	6.90	†1990-2002	6-26-03 7-19-03 8-27-03	24 78 43
15517980 Dragonfly Creek near Healy	Nenana River	Lat $63^{\circ}47'45''$ , long $148^{\circ}55'19''$ , in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ , sec. 9, T. 13 S., R. 7 W., (Healy D-4 quad), at mi 242.6 George Parks Highway, 6 mi southeast of Healy	0.71	†1990-95, †1997-2002	7-17-03 8-05-03	1.4 1.0
15541600 Globe Creek near Livengood	Tatilina River	Lat $65^{\circ}17'08''$ , long $148^{\circ}07'56''$ , in $SE^{1}/_{4}$ , sec. 3, T. 5 N., R. 3 W. (Livengood B-3 quad), 0.2 mi upstream from culvert at mi 36.7 Elliott Highway.	23.0	†1964-70, †1972-74, †1976, †1982-83, †1985-86, †1989-91, †1993,	5-14-03 6-3-03 7-15-03 8-7-03	42 16 58 28
650813152250200 Tozitna River at mouth near Tanana	Yukon River	Lat $65^{\circ}08'13''$ , long $152^{\circ}25'02''$ , in $NE^{1}/_{4}$ , sec. 34, T. 4 N., R. 24 W., (Tanana A-5 quad), 0.2 mi upstream from Tanana Slough, 10 miles downstream from Tanana, and 30 mi north of Nulato.	1,630		6-05-03 8-26-03	6940 7780
645408154143400 Nowitna River 2.3 mi above mouth near Ruby	Yukon River	Lat $64^{\circ}54'08''$ , long $154^{\circ}14'34''$ , in $NE^{1}/_{4}$ , sec. 8, T. 7 S., R. 23 E., (Ruby D-3 quad), 38 mi northeast of Ruby, and 67 mi southwest of Tanana.	7,180		6-06-03 8-27-03	17600 8670
15564600 Melozitna River near Ruby	Yukon River	Lat $64^{\circ}45'58''$ , long $155^{\circ}27'31''$ , in $SE^{1}/_{4}$ , sec. 29, T. 8 S., R. 17 E., (Ruby D-5 quad), 1500 ft upstream from mouth, 1 mile upstream from Ruby, and 44 miles east of Galena.	2,690	1962-73	6-06-03 8-27-03	10700 4350
15564800 Yukon River at Ruby	Norton Sound	Lat $64^{\circ}44'52''$ , long $155^{\circ}29'41''$ , in $SE^{1}/_{4}$ , sec. 31, T. 8 S., R. 17 E., (Ruby C-5 quad), near old gaging station.	259,000	1957-78	6-08-03 8-28-03	414000 283000
643816156030100 Yuki River 12 mi above mouth near Ruby	Yukon River	Lat $64^{\circ}38'16''$ , long $156^{\circ}03'01''$ , in $NW^{1}/_{4}$ , sec. 10, T. 10 S., R. 14 E., (Nulato C-1 quad), 17mi southwest of Ruby, and 30 mi southeast of Galena.	1,070		6-08-03 8-28-03	1410 3680
680856151443500 Little Contact Creek at mouth at Anaktuvuk Pass	Contact Creek	Lat $68^{\circ}08'59''$ , long $151^{\circ}44'25''$ , in $NE^{1}/_{4}$ , sec. 18, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), 30 ft upstream from mouth, 0.4 mi upstream of Contact Creek bridge at Main St, and 0.7 mi west of Eleanor Lake.	13.0		6-17-03 6-19-03 7-15-03 8-14-03	24 7.5 39 35
15564868 Snowden Creek near Wiseman	Dietrich River	Lat $67^{\circ}44'20''$ , long $149^{\circ}44'24''$ , in SW $^{1}/_{4}$ , sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), upstream from culvert at mi 213.5 Dalton Highway and 24.5 mi northeast of Wiseman.	16.7	†1977-80, †1982, †1984-85, †1987-94, †1996-2002	6-11-03 7-29-03 9-8-03	82 30 40

			Drainage	Measured	Measu	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
15564872 Nugget Creek near Wiseman	Middle Fork Koyukuk River	Lat $67^{\circ}29'25''$ , long $149^{\circ}52'20''$ , in $NW^{1}_{/4}$ , sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman.	9.47	†1975-79, †1982, †1985, †1987, †1989-2002	6-11-03 7-29-03	20 12
1556488224 Contact Creek below Little Contact Creek at Anaktuvuk Pass	John River	Lat $68^{\circ}08'57''$ , long $151^{\circ}44'23''$ , in $NE^{1}/_{4}$ , sec. 18, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), 400 ft downstream from confluence of Little Contact Creek, 0.3 mi upstream of Contact Creek bridge at Main St, and 0.7 mi west of Eleanor Lake.	90.3		6-18-02 7-17-02 9-10-02 6-17-03 6-19-03 7-15-03 8-14-03 9-09-03	60 107 62 106 85 172 287 38
680837151435000 Contact Creek at Main St. at Anaktuvuk Pass	John River	$Lat~68^{\circ}08'38'',~long~151^{\circ}43'51'',~in~NW^{1}_{/4},~sec.~17,~T.~15~S.,~R.~2~E.,~(Chandler~Lake~A-3~quad),~40~ft~upstream~of~Contact~Creek~bridge~at~Main~St.$	91.0		6-18-02 7-17-02 9-10-02 6-17-03 6-19-03 7-15-03 9-09-03	49 93 23 213 75 131 31
680827151434300 Contact Creek 0.2 mi below Main St. at Anaktuvuk Pass	John River	Lat $68^{\circ}08'57''$ , long $151^{\circ}44'23''$ , in SW $^{1}/_{4}$ , sec. 17, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), 0.2 mi downstream of Contact Creek bridge at Main St.			6-19-03 7-15-03 9-09-03	50 131 28
680820151433600 Contact Creek 0.4 mi below Main St. at Anaktuvuk Pass	John River	Lat $68^{\circ}08'23''$ , long $151^{\circ}43'26''$ , in $SW^{1}/_{4}$ , sec. 17, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), 0.4 mi downstream of Contact Creek bridge at Main St.			6-19-03 7-15-03 8-14-03 9-09-03	98 150 289 27
680754151442100 Contact Creek above Inukpasugruk Creek at Anaktuvuk Pass	John River	Lat $68^{\circ}07'54''$ , long $151^{\circ}44'23''$ , in $NE^{1}/_{4}$ , sec. 19, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), 0.6 mi above confluence with Inukpasugruk Creek, 1.3 mi southwest of Eleanor Lake, and 100 ft southeast of access road to south of runway.			6-19-02 7-16-02 9-11-02 7-16-03 8-14-03 9-09-03	35 107 42 130 277 33
680811151443200 John River tributary above lagoons at Anaktuvuk Pass	John River	Lat $68^{\circ}08'09''$ , long $151^{\circ}44'33''$ , in $NE^{1}/_{4}$ , sec. 19, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), outlet of pool 0.6 mi upstream of mouth, and 100 feet northwest from northwest corner of sewage lagoon.	1.9		6-17-03 7-17-03 8-13-03 9-11-03	1.2 2.7 8.9 1.8
680752151450200 John River tributary at Anaktuvuk Pass	John River	Lat $68^{\circ}07'53''$ , long $151^{\circ}45'01''$ , in $NE^{1}/_{4}$ , sec. 19, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), 0.25 mi above mouth, 40 ft below instream island, and 400 ft upstream of first culvert crossing of access road to northwest of runway.	2.0		9-11-02 6-17-03 7-17-03 8-13-03 9-11-03	0.73 1.3 3.2 7.4 1.2

Discharge measurements made at partial-record stations and miscellaneous sites during water year 2003 [Footnotes at end on table on page 359]

			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
680735151444400 Inukpasugruk Creek at Anaktuvuk Pass	John River	Lat $68^{\circ}07'35''$ , long $151^{\circ}44'44''$ , in $SE^{1}/_{4}$ , sec. 19, T. 15 S., R. 2 E., (Chandler Lake A-3 quad), 0.5 mi above confluence with Contact Creek at ATV trail crossing, and 1.7 mi southwest of Eleanor Lake.	119		6-19-02 7-16-02 9-11-02 5-14-03 7-16-03 9-09-03	93 81 137 3.9 102 102
680715151463000 John River below Inukpasugruk Creek at Anaktuvuk Pass	Koyukuk River	Lat $68^{\circ}07'13''$ , long $151^{\circ}46'30''$ , in $NE^{1}/_{4}$ , sec. 25, T. 15 S., R. 1 E., (Chandler Lake A-3 quad), 0.6 mi below confluence of Contact Creek and Inukpasugruk Creek on most northwestern channel, 0.4 mi upstream from start of single main channel, and 2.4 mi southwest of Eleanor Lake.			6-19-02 7-16-02 9-11-02 7-16-03 9-09-03	e127 e268 e179 e232 e135
680656151470600 John River 1 mi below Inukpasugruk Creek at Anaktuvuk Pass	Koyukuk River	Lat $68^{\circ}06'59''$ , long $151^{\circ}46'57''$ , in $NE^{1}/_{4}$ , sec. 25, T. 15 S., R. 1 E., (Chandler Lake A-3 quad), 1 mi below confluence of Contact Creek and Inukpasugruk Creek, 50 ft downstream from start of single main channel, and 2.7 mi southwest of Eleanor Lake.			7-16-03	272
15564884 Prospect Creek near Prospect Camp	Jim River	Lat $66^{\circ}46'56''$ , long $150^{\circ}41'06''$ , in $NW^{1}_{/4}$ , sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), at mi 135.2 Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth .	110	†1975-78, †1980 †1982 †1989 †1992-2002	6-11-03 7-28-03 9-11-03	225 261 273
15564887 Bonanza Creek Tributary near Prospect Camp	Bonanza Creek	Lat $66^{\circ}36'52''$ , long $150^{\circ}41'24''$ , in $SE^{1}/_{4}$ , sec. 25, T. 21 N., R. 15 W., 0.3 mi downstream from culverts at mi 121.2 Dalton Highway, 3.4 mi upstream from mouth, and 13.5 mi south of pump station 5.	11.7	†1975-76, †1982, †1985-86, †1989-95, †1997-2002	5-14-03 7-28-03 9-11-03	58 8.5 37
15564950 Indian River at Utopia	Koyukuk River	Lat $65^{\circ}59'49''$ , long $153^{\circ}41'31''$ , in $NW^{1}/_{4}$ , sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), at mi 0.2 on road to Indian Mountain, and 1.8 mi upstream from mouth of Flat Creek.	38.8	†1998-2002	6-10-03 8-6-03 9-17-03	210 77 29
15564960 Utopia Creek at Utopia	Indian River	Lat $65^{\circ}59'26''$ , long $153^{\circ}41'44''$ , in SW $^{1}/_{4}$ , sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), 0.3 mi south of landing strip at Utopia, and 1.2 mi upstream from mouth.	5.18	†1998-2002	6-10-03 8-6-03 9-17-03	45 10 13
645725157334800 Koyukuk River 9.4 mi above mouth near Koyukuk	Yukon River	Lat $64^{\circ}57'25''$ , long $157^{\circ}33'48''$ , in $NW^1/_4$ , sec. 24, T. 6 S., R. 6 E., (Nulato D-4 quad), 7 mi northeast of Koyukuk, and 28 mi northwest of Galena.	31,400		6-09-03 8-29-03	101000 70100
644226158080900 Nulato River at mouth near Nulato	Yukon River	Lat $64^{\circ}42'26''$ , long $158^{\circ}08'09''$ , in $SE^{1}/_{4}$ , sec. 18, T. 9 S., R. 4 E., (Nulato C-5 quad), 1.3 mi downstream of Nulato.	883		6-09-03 8-30-03	6870 1990
15565200 Yukon River near Kaltag	Norton Sound	Lat $64^{\circ}15'54''$ , long $158^{\circ}40'21''$ , in $NE^{1}/_{4}$ , sec. 21, T. 14 S., R. 1 E., (Nulato B-6 quad), 4.7 mi downstream of Kaltag.	296,000	1957-66	6-10-03 8-30-03	545000 358000

			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKA—Continued				
623945160182800 Anvik River 4.7 mi above mouth near Anvik	Yukon River	Lat 62°39'45", long 160°18'28", in NW ¹ / ₄ , sec. 27, T. 30 N., R. 59 W., (Holy Cross C-3 quad), 3 mi west of Anvik, and 19 mi north of Paradise.	1,780		6-11-03 9-01-03	6490 3870
623125160135800 Bonasila River 1.8 mi above mouth near Elkhorn Island near Anvik	Yukon River	Lat 62°31′25″, long 160°13′58″, in NW¹/₄, sec. 16, T. 28 N., R. 59 W., (Holy Cross C-3 quad), 1 mi above confluence with Bonasila Slough, 9.3 mi south of Anvik, and 9 mi northwest of Paradise.	1,160		6-11-03 9-01-03	2900 1870
621418159341000 Innoko River 15 mi above mouth near Holy Cross	Yukon River	Lat 62°14′18″, long 159°34′10″, in SE¹/₄, sec. 24, T. 25N., R. 56 W., (Holy Cross A-2 quad), 1.5 mi above confluence with Paimut Slough near winter trail crossing, 7 mi northwest of Holy Cross, and 32 mi southeast of Anvik.	14,100		6-12-03 9-02-03	17100 20500
620239162343500 Atchuelinguk River 16 mi above mouth near Pilot Station	Yukon River	Lat $62^{\circ}02'39''$ , long $162^{\circ}34'35''$ , in $NE^{1}/_{4}$ , sec. 36, T. 23N., R. 73 W., (Kwiguk A-2 quad), 12 mi northeast of Pilot Station, and 19 mi east of St Marys.	2,100		9-03-03	5930
15565450 Andreafsky River at St Marys	Yukon River	Lat $62^{\circ}03'13''$ , long $163^{\circ}09'11''$ , in $SE^{1}/_{4}$ , sec. 26, T. 23N., R. 76 W., (Kwiguk A-3 quad), 1000 ft upstream from upstream confluence of Steamboat Slough at St Marys, and 1.2 mi downstream of confluence with East Fork Andreafsky River.	2,100	-	9-03-03	5670
		NORTHWEST ALASKA				
15565730 Chiroskey River near Unalakleet	Unalakleet River	Lat 63°55′06″, long 160°18′58″, in NW¹/₄, sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), on left bank, 1 mi upstream from mouth, 14 mi northeast of Unalakleet.	296	†1998, †2001-2002	8-27-03	1,100
15581000 Hugh Rowe Creek near Council	Fox River	Lat 64°44′35″, long 163°53′44″, in NW¹/ ₄ NW¹/ ₄ NW¹/ ₄ , sec. 4, T. 9 S., R 26 W. (Solomon C-4 quad), 150 ft upstream from Nome-Council Road, 0.1 mi upstream from mouth, and 60 mi East of Nome.	2.34	2002	6-23-03 8-19-03	3.9 3.7
15583500 Etta Creek near Council	East Fork Solomon River	Lat $64^{\circ}41'56''$ , long $164^{\circ}09'57''$ , in $NE^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 24, T. 9 S., R 28 W. (Solomon C-5 quad), 100 ft upstream from Nome-Council Road, 0.2 mi upstream from mouth, and 25 mi southwest of Council.	1.33	2002	10-16-02 6-23-03 8-19-03	3.3 2.1 2.3
15585000 Goldengate Creek near Nome	Norton Sound	Lat $64^{\circ}26'51''$ , long $165^{\circ}03'14''$ , in $SW^{1}/_{4}$ , sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), 80 ft upstream from culvert on Nome-Council Road and 11 mi southeast of Nome.	1.55	†1965 1966 †1986-88 †1990-2002	5-23-03	11.6

			Drainage	Measured	Measu	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		NORTHWEST ALASKA—Continue	ed			
15624998 Arctic Creek above tributary near Nome	Cripple River	Lat $64^{\circ}38'16''$ , long $165^{\circ}42'42''$ , in $NE^{1}/_{4}$ , sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), 300 ft upstream from culvert on Nome-Teller Road, 2 mi upstream from mouth, and 13 mi northwest of Nome.	1.13	† 1975, †1979-84, †1986-2002	6-24-03 8-20-03	.81 1.7
15633000 Washington Creek near Nome	Sinuk River	Lat $64^{\circ}42'52''$ , long $165^{\circ}49'13''$ , in $NW^{1}/_{4}$ , sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome.	6.34	†1964-66, †1968-78, †1980-2002	8-20-03	.05
15635000 Eldorado Creek near Teller	Tisuk River	Lat $64^{\circ}57'38''$ , long $166^{\circ}11'59''$ , in $NE^{1}/_{4}$ $NE^{1}/_{4}$ , sec. 20, T.6 S., R.37 W. (Nome D-3 quad), 30 ft downstream from bridge at mi 46.3 of Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River and 21 mi south of Teller.	5.83	1986-87 ‡1988-90 1991 ‡1992-1998 †1999-2002	05-21-03 06-24-03 08-20-03	8.9 18 14
15746890 Competition Creek near Kivalina	Wulik River	Lat 68°08′05″, long 163°03′37″, in NW¹/₄, sec. 32, T. 32 N., R. 19 W. (DeLong Mts A-2 quad), 600 ft upstream from mouth, 7 mi northwest of Red Dog Mine, 39 mi north of Noatak, and 48 mi northeast of Kivalina. TeckCominco station 202.	6.85	2000-02	7-2-03	34
15746980 Ikalukrok Creek above Red Dog Creek near Kivalina	Wulik River	Lat $68^{\circ}05'38''$ , long $162^{\circ}56'47''$ , in $SE^{1}/_{4}$ , sec. 11, T. 31 N., R. 19 W. (DeLong Mts A-2 quad), 300 ft upstream from Red Dog Creek, 3 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Teck-Cominco Station 9.	59.2	‡1991-92, 1993-2002	6-1-03 6-29-03 9-7-03	436 212 171
15746983 Red Dog Mine Clean Water Ditch near Kivalina	Ikalukrok Creek	Lat 68°04′28″, long 162°51′35″, in NE¹/4, sec. 19, T. 31 N., R. 18 W. (DeLong Mts A-2 quad), 500 ft downstream from outfall of clean water ditch, 300 ft northwest of Red Dog Mine mill site, 0.4 mi upstream from South Fork Red Dog Creek, 36 mi north of Noatak, and 50 mi northeast of Kivalina. TeckCominco station 140.		‡1991-92, 1993-2002	6-3-03 6-28-03 9-6-03	21 8 5.3
15746988 North Fork Red Dog Creek near Kivalina	Ikalukrok Creek	Lat 68°05′03″, long 162°52′52″, in SW¹/4, sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Teck-Cominco station 12.	15.9	‡1991-94, †1995-2002	6-2-03 6-29-03 7-2-03 9-6-03	131 20 63 26
15746990 Red Dog Creek above Mouth near Kivalina	Ikalukrok Creek	Lat 68°05′20″, long 162°55′30″, in NW¹/₄, sec. 13, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), 1000 ft upstream from mouth, 2.3 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Teck-Cominco Station 10.	24.6 (total) 21.4 (contributing)	‡1991-92, 1993-2002	6-3-03 6-29-03 9-7-03	134 56 36

			Drainage	Measured	Measur	rements
Stream	Tributary to	Location	area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		NORTHWEST ALASKA—Continue	ed			
1574699020 Ikalukrok Creek 0.6 mi below Red Dog Creek near Kivalina	Wulik River	Lat 68°05′09″, long 162°58′07″, in NE¹/4, sec. 15, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), 0.6 mi downstream from Red Dog Creek, 3 mi northwest of Red Dog Mine, 36 mi north of Noatak, and 48 mi northeast of Kivalina. TeckCominco Station 150.	n	2001-2002	6-30-03 9-8-03	489 391
15746995 Ikalukrok Creek 4.3 mi below Dudd Creek near Kivalina	Wulik River	Lat 67°58′06″, long 163°09′44″, in SE¹/4, sec. 26, T. 30 N., R. 20 W. (Noatak. D-3 quad), 4.3 mi blw Dudd Creek, 11 mi southwest of Red Dog Mine, 28 mi north of Noatak and 39 mi northeast of Kivalina. TeckCominco Station 160.	147 (total) 140 (contribut- ing)	2002	6-30-03 9-7-03	516 290
15746998 Tutak Creek near Kivalina	Wulik River	Lat $67^{\circ}52'28''$ , long $163^{\circ}40'14''$ , in NE $^{1}/_{4}$ , sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), 1,000 ft upstream from mouth, 28 mi northwest of Noatak, and 25 mi northeast of Kivalina.	119	1991, †1992-2002	6-2-03 9-8-03	539 150
		ARCTIC SLOPE ALASKA				
15904900 Atigun River Tributary near Pump Station 4	Atigun River	Lat 68°22′25″, long 149°18′48″, in SE¹/4, sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mts. B-4 quad), 0.2 mi upstream from bridge at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4.	32.6	\$1977-86, \$1987-91, \$1994, \$1996-99, \$2001-02	6-4-03 7-29-03	68 115
15910300 Sagavanirktok River Tributary near Happy Valley Camp	Sagavanirktok River	Lat 69°09'38", long 148°49'40", in NE¹/4, sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), 500 ft upstream from culvert at mi 335.2 on Dalton Highway, 0.8 mi upstream from mouth, and 16 mi south of Sagwon.		†1997-2002	6-10-03 9-8-03	35 14
15918200 Sagavanirktok River Tributary near Deadhorse	Sagavanirktok River	Lat $69^{\circ}57'14''$ , long $148^{\circ}43'48''$ , in $NE^{1}/_{4}$ , sec. 19, T. 1 N., R. 14 E. (Sagavanirktok D-3 quad), at mi 386.2 on Dalton Highway, 0.4 mi upstream from mouth, and 23 mi south of Deadhorse.	a 12	†1988-91, †1995-97 †1999-2001	6-4-03	25

### FOOTNOTES

- † Operated as a crest-stage partial-record station
- ‡ Operated as a continuous-record station
- + See analysis of samples collected at miscellaneous water-quality sites
- * Operated as a stage-only partial-record station
- a Approximately
- b Ponded water but no flow
- c Observations reported by Mendenhall Watershed Personnel.
- d Channel dry
- e Estimated

- f Low-flow partial-record station
- g Not previously published
- h Previously published as 15052482 Jordan Creek at Trout Street Bridge near Auke Bay
- j Ice effect
- m Discharge measurement provided by the Bureau of Land Management
- To be determined
- o Discharge measurement provided by U.S. Fish and Wildlife Service
- Peak flow
- r Revised

#### SOUTHEAST ALASKA

#### 15049900 GOLD CREEK NEAR JUNEAU

Date	Time	Medium code	Sample type	Stream	Instan- taneous dis- charge, cfs 00061) (	code		Specif. conduc- tance, wat unf uS/cm 25 degC (00095)		Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Color, water, fltrd, Pt-Co units (00080)	Turbid- ity, wat unf lab, Hach 2100AN NTU (99872)
OCT 31	1355	9	9	37.5	65	10	3044	141	7.9	1.0	3.5	8	<1
DEC 17	1150	9	9	38.0	64	10	3044	141	8.0	3.0	3.5	2	<1
JAN 15	1145	9	9	36.0	30	10	3044	147	8.0	2.5	3.0	2	1
FEB 26	1225	9	9	18.5	13	10	3044	169	7.4	3.5	3.0	5	<1
MAR 31	1215	9	9	33.5	21	10	3044	134	8.0	5	2.0	2	<1
APR 23	1200	9	9	19.5	24	10	3044	115	7.9	7.0	4.5	2	<1
MAY 23	1400	9	9	47.0	154	10	3044	72	7.6		4.5	2	2
JUL 09	1245	9	9	42.5	89	10	3044	94	7.7	14.5	10.5	2	<1
AUG 29	1300	9	9	20.0	49	10	3044	119	7.9	11.0	9.0	<1	<1
SEP 29	1015	9	7	48.0	136	10	3044	120	7.8	6.0	7.5	5	<1
Date	Baro- metric pres- sure, mm Hg (00025)	oxygen, mg/L	Dis- solved oxygen, percent of sat- uration (00301)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	fltrd, mg/L	Magnes- ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	incrm. titr., field, mg/L	linity, wat flt inc tit field, mg/L as CaCO3		Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Bromide water, fltrd, mg/L (71870)
OCT 31	757	13.7	104	65	18	4.8	.8	38	26	30.9	.47	<.17	<.016
DEC 17	743	12.4	96	63	17	4.8	1.0	39	32	29.2	.44	<.17	<.016
JAN 15	752	13.2	99	69	19	5.2	1.2	40	33	33.0	.32	<.17	<.016
FEB 26	751	11.5	87	84	22	7.0	1.5	40	33	45.2	.32	<.17	<.016
MAR 31	723	13.6	104	64	18	4.7	1.1	40	32	31.5	.40	.027	<.016
APR 23	742	12.7	101	56	16	3.8	1.1	28	23	24.0	.30	<.17	<.016
MAY 23	758	12.2	95	32	9.7	1.8	.5	21	17	14	.48	.06	<.01
JUL 09	755	10.4	94	42	12.2	2.81	.76	26	21	18.9	.31	.08	<.01
AUG 29	759	11.2	97	52	14.9	3.44	.79	33	27	25.4	.67	<.17	<.016
SEP 29	761	11.6	97	56	15.8	3.84	.81	37	30	24.5	.35	<.17	<.016
		Residue on evap.		Nitrite + nitrate		Ortho-			Beryll-	_	Chrom-		
Date		at 180degC wat flt mg/L	water, fltrd,	water fltrd, mg/L as N	water, fltrd, mg/L as N	water, fltrd, mg/L as P	Arsenic water, fltrd, ug/L	Barium, water, fltrd, ug/L (01005)	ium, water, fltrd, ug/L (01010)	Cadmium water, fltrd, ug/L	ium, water, fltrd, ug/L (01030)		Copper, water, fltrd, ug/L (01040)
OCT 31	2.6	80	<.008	.293	<.04	<.02	E1.1	33	<.5	<8	<.8	<8	<6
DEC 17	2.8	81	<.008	.393	< .04	<.02	<1.9	36	<.5	<8	<.8	<8	<6
JAN 15	2.7	90	<.008	.467	< .04	<.02	E1.0	36	<.5	<8	<.8	<8	<6
FEB 26	2.9	108	<.008	.439	<.04	<.02	<1.9	39	<.5	<8	<.8	<8	<6
MAR 31	2.6	76	<.008	.497	<.04	<.02	<1.9	36	<.5	<8	<.8	<8	<6
APR 23	2.7	68	<.008	.542	<.04	<.02	<1.9	34	<.5	<8	<.8	<8	<6
MAY 23	1.7	35	<.008	.152	<.04	<.02	<1.9	27	<.5	<8	<.8	<8	<6
JUL 09	1.95	51	<.008	.154	<.04	<.02	E.9	28.5	< . 4	<2	<.8	<3	<7
AUG 29	2.36	70	<.008	.211	< .04	<.02	<2	35.1	<.4	<2	<.8	<3	<7
SEP 29	2.36	67	<.008	.299	<.04	<.02	<2	33.4	<.4	<2	<.8	<3	<7

#### SOUTHEAST ALASKA—Continued

#### 15049900 GOLD CREEK NEAR JUNEAU—Continued

Date	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Mercury water, fltrd, ug/L (71890)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)
OCT				_								
31 DEC	<10	<.08	<4	<2	<.018	<30	<30	<2.6	<9	94	<8	<24
17	<10	.16	<4	<2	<.018	<30	<30	<2.6	<9	98	<8	<24
JAN	-10	0.0	<4	-0	. 010	-20	<b>-20</b>	٠٥ . د	٠.0	110	٠.0	-0.4
15 FEB	<10	.09	<4	<2	<.018	<30	<30	<2.6	<9	110	<8	<24
26	<10	<.08	<4	<2	<.018	<30	<30	<2.6	<9	130	<8	<24
MAR 31	<10	<.08	<4	<2	<.018	<30	<30	<2.6	<9	97	<8	<24
APR	<10	<.00	<b>~</b> 4	<b>~</b> <u>Z</u>	<.010	<30	<30	<2.0	<9	97	<0	<24
23	<10	E.04	<4	<2	<.018	<30	<30	<2.6	<9	77	<8	<24
MAY 23	<10	<.08	<4	<2	<.018	<30	<30	<2.6	<9	47	<8	<24
JUL	VI0	1.00	/·4	12	1.010	130	<b>130</b>	12.0	~5	47	~0	\Z4
09	<8	<.08	<3	.5	<.018	<4	<7	<3	<5	62.1	<6	5.6
AUG 29	<8	<.08	<3	< . 4	<.018	<4	<7	E1.5	<5	86.6	<6	5.3
SEP												
29	<8	<.08	<3	. 4	<.018	E2	<7	<3	<5	86.3	<6	5.6

#### 15052900 MENDENHALL RIVER AT BROTHERHOOD BROOK AT AUKE BAY

Date	Time	Medium code	type	Stream width, feet 00004)	feet	Instan- taneous dis- charge, cfs (00061)	code	Sampler , type, code	wat unf uS/cm 25 degC	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Turbid- ity, wat unf lab, Hach 2100AN NTU (99872)
DEC 03	0930	9	9	192	9.84	2120	10	3044	51	7.5	. 5	1.5	124
MAR 05	0940	9	9	102		112	10	3044	652	7.0		.5	29
JUN 04	1115	9	9	198	7.25	1500	10	3054	55	7.5	5.0	5.0	65
AUG 06	1420	9	9	205	10.09	2320	10	3054	21	6.9	17.5	4.0	E43
SEP 03	1330	9	9	219	12.80	6450	10	3054	20	7.8	11.5	3.0	157
Date	Baro- metric pres- sure, mm Hg (00025)	solved oxygen, mg/L	percent of sat- uration	recover -able, mg/L	water, unfltrd	incrm. titr., field, mg/L	linity, wat flt inc tit	org-N, water, unfltrd mg/L as N	Cadmium	recover -able, ug/L	Iron, water, unfltrd recover -able, ug/L (01045)		Mangan- ese, water, unfltrd recover -able, ug/L (01055)
DEC 03	763	14.0	100	6.8	3.2	15	12	<.1	<.22	5	6940	1	104
MAR 05	734	11.3	82	<.03	<.01	34	28	.2	<.22	2	<16	E.7	62.5
JUN 04	762	12.2	95	6.5	2.2	14	11	<.1	<.22	4	3900	1	63.0
AUG 06 SEP	762	12.4	95	2.81	1.43	4	3	<.1	<.22	8	2750	E.9	46.1
03	756	13.2	99	4.87	3.65	10	8	E.06	<.22	6	8220	1	133
Date	Seler ium, water unfltr ug/I (0114	unfli r, record rd -abi	er, wate trd unflt ver recov le, -abl /L ug/	er, erd ver e,									

DEC
03... <2.6
MAR
05... <2.6
JUN
04... <2.6
AUG
06... <3
SEP
03... <3

<2.6 <.26

<2.6 <.26 34.3 <2.6 <.26 <25

34.1

28.8

<.26 15.8 <.26 14.0

<.26

#### SOUTHEAST ALASKA—Continued

#### 15053230 DUCK CREEK AT BERNERS AVENUE NEAR AUKE BAY

Date	Time	Medium code	Sample type	Stream width, feet (00004)	Gage height, feet (00065)	Instan- taneous dis- charge, cfs (00061)	pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
NOV 27	1305	9	9	9.30	14.49	14	11	.42

### SOUTH-CENTRAL ALASKA

### 15274796 SB OF SF CHESTER CREEK AT TANK TRAIL NEAR ANCHORAGE

		13	274796 S	2 01 01		· CILLELII .			D. 11 . 11 . 0	IIOIti IOL			
Date	Time	Medium code	Sample type	Stream width, feet 00004)	cfs	Sam- pling method, code		Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	water, unfltrd field, std units	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)
OCT 11	1410	9	9	9.00	12	10	8010	99	7.4	4.0	3.5	746	13.8
JUN 12	1000	0	9	10.4	4.6			128	7.4		8.5	746	
JUL 22	1310	9	7	7.50	3.1	10	3045	136	7.7	15.5	8.5	757	11.1
SEP 04 04	1200 1350	O 9	9 9	 6.50	2.4	10	3045	136	 7.7	12.0	 8.0	 754	 11.3
Date	Dis- solved oxygen, percent of sat- uration (00301)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL	E coli, m-TEC MF, water, col/ 100 mL	Entero- cocci, m-E MF, water, col/ 100 mL	Hard- ness, water, unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L	Magnes- ium, water, fltrd, mg/L	Sodium, water, fltrd, mg/L	ANC, wat unf fixed end pt,	Potas- sium, water, fltrd, mg/L	Bicar- bonate,	Carbon- ate, wat flt incrm. titr.,	Alka- linity,
OCT 11	106	E17	E14	E6	46	14.2	2.62	1.55	17	.44	20	.0	17
JUN 12													
JUL 22	95	36		32	66	20.5	3.65	1.81	49	.37	59	.0	48
SEP 04													
											C 0		
04	96	30	21	A17	63	19.5	3.57	1.76	51	.46	60	.0	49
Date	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L	Fluor- ide, water,	Silica, water, fltrd, mg/L	Residue on evap. at 180degC wat flt mg/L	Residue water, fltrd,	Nitrite water, fltrd, mg/L as N	Nitrite + nitrate	Ammonia water,	Ammonia +	Ammonia + org-N, water,		Phos-
Date OCT 11	Sulfate water, fltrd, mg/L	Chlor- ide, water, fltrd, mg/L	Fluor- ide, water, fltrd, mg/L	Silica, water, fltrd, mg/L	Residue on evap. at 180degC wat flt mg/L	Residue water, fltrd, sum of consti- tuents mg/L	Nitrite water, fltrd, mg/L as N	Nitrite + nitrate water fltrd, mg/L as N	Ammonia water, fltrd, mg/L as N	Ammonia  + org-N, water, unfltrd mg/L as N	Ammonia  + org-N, water, fltrd, mg/L as N	Phos- phorus, water, unfltrd mg/L	Phos- phorus, water, fltrd, mg/L
Date  OCT     11  JUN     12	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Nitrite water, fltrd, s mg/L as N (00613)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)
OCT 11 JUN 12 JUL 22	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue water, fltrd, sum of consti- t tuents mg/L (70301)	Nitrite water, fltrd, s mg/L as N (00613)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia  forg-N, water, unfltrd mg/L as N (00625)	Ammonia  org-N, water, fltrd, mg/L as N (00623)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)
Date  OCT 11 JUN 12 JUL	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950) <.17	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Nitrite water, fltrd, s mg/L as N (00613) E.002	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608) <.015	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Ammonia  + org-N, water, fltrd, mg/L as N (00623) .11	Phos-phorus, water, unfiltrd mg/L (00665)	Phos- phorus, water, filtrd, mg/L (00666)
OCT 11 JUN 12 JUL 22 SEP 04	Sulfate water, filrd, mg/L (00945)  12.8  13.3	Chloride, water, fltrd, mg/L (00940)  .893847  ., Iron wate fltr ug/L (0104  13	Fluor- ide, water, fltrd, mg/L (00950)  <.17 <.2 <.2  Manga, esc r, wated, fltr	Silica, water, fltrd, mg/L (00955)  10.3  11.4  11.0  an- Orgaee, cark er, water, water, fltrd, mg/66) (006	Residue on evap. at 180degC wat filt mg/L (70300)  76 92 94  mic con, eer, erd, f/L (81)	Residue water, fltrd, sum of consti- tuents mg/L (70301)  55	Nitrite water, fltrd, s mg/L as N (00613)  E.002	Nitrite + nitrate water fltrd, mg/L as N (00631) .503380	Ammonia water, fltrd, mg/L as N (00608) <.015 <.015	Ammonia  + org-N, water, unfltrd mg/L as N (00625)  .2118	Ammonia + org-N, water, fltrd, mg/L as N (00623) .11 E.06	Phos-phorus, water, unfiltrd mg/L (00665) .014019	Phos-phorus, water, fltrd, mg/L (00666) E.003
Date  OCT	Sulfate water, fltrd, mg/L (00945)  12.8  13.3  14.3  Orthor phosphate water fltrd mg/L as F (00671)  <.007	Chloride, water, fltrd, mg/L (00940)  .893847  ., Iron wate fltr ug/L (0104  13	Fluor- ide, water, fltrd, mg/L (00950)  <.17 <.2 <.2  Manga , esc r, wated, fltr L ug 6) (0109	Silica, water, fltrd, mg/L (00955)  10.3	Residue on evap. at 180degC wat filt mg/L (70300)  76 92 94  mic con, eer, erd, f/L (81)	Residue water, fltrd, sum of consti- tuents mg/L (70301)  55	Nitrite water, fltrd, s mg/L as N (00613)  E.002	Nitrite + nitrate water fltrd, mg/L as N (00631) .503380	Ammonia water, fltrd, mg/L as N (00608) <.015 <.015	Ammonia  + org-N, water, unfltrd mg/L as N (00625)  .2118	Ammonia  + org-N, water, fltrd, mg/L as N (00623)  .11 E.06	Phos-phorus, water, unfiltrd mg/L (00665) .014019	Phos-phorus, water, filtrd, mg/L (00666) E.003

### SOUTH-CENTRAL ALASKA—Continued

#### 15294350 SUSITNA RIVER AT SUSITNA STATION

Date	Time (	Stream of width, feet	ft from he	Gage 2 eight, feet	time, 24 hour clock, hr:min	hr:min	taneous dis- charge, cfs	Sam- pling method, code	type, code	Temper- ature, water, deg C (00010)	ature,	Sus- pended sedi- ment concen- tration mg/L (80154)	sedi- ment
JUN 17 17	1625 1722	1590 1590				1655.00 1902.00		20 1000	3055 1110	11.0 11.0	21.0 21.0	891	315000
10 10 18	1528 1615 1609	1560 1560 1600	40.0	17.39	1615.00	1600.00 1748.00 1631.00	159000	20 1000 20	3055 1110 3055	12.0 12.0 9.0	14.5 14.5 16.0	1250  2100	535000  1330000
AUG 15 15 SEP	1510 1532	1570 1570				1527.00 1611.00		20 1000	3055 1110	8.5 8.5		2060	1200000
22 22	1521 1602	1420 1420	66.0			1538.00 1723.00	33200 33200	20 1000	3055 1110	4.0 4.0	10.0 10.0	219	19600
Date	ment, sieve diametr percent <.063mm	Bedload sedi- ment dis- charge, tons/d	Bedload Co sedimnt s dschrge average : unit becomposit me t/d/ft r 04122) (04	amples in x-sec dload easmnt number	Number of sam- pling points, count	in com- posite sample, number	zontal width of verti- cal, feet	on bed for bed load sample, seconds	Bag mesh size, bedload sampler mm	Bedload sedi- ment, sieve diametr percent <.063mm (80226)	sedi- ment, sieve diametr percent <.125mm	sedi- ment, sieve diametr percent <.25mm	sedi- ment, sieve diametr percent <.5 mm
JUN 17	71												
17 JUL		14900	9.37	2	1	19	80.0	10	.025	.0	1	16	78
10 10 18 AUG	80  72	13100 	8.40 	2 	1 	19 	80.0	10	.025	.0	1	8	73 
15 15 SEP	69 	15000	9.55	1	1	19	80.0	15	.025	.0	1	4	 51
22 22	36 	1880	1.32	2	1	20	44.0	40	.025	.0	1	11	96
Date	sedi- ment, sieve	sedi- ment, sieve r diametr t percent <2 mm	ment, sieve r diametr t percent <4 mm	sedi ment sieve diame percer <8 m	- sed , men e sie tr diam nt perc	i- sector, mer ve sie etr diam ent percomm <32	di- sent, me eve si metr dia cent per 2 mm <6	edi- ent, .eve					
JUN 17	 91	 94	 95	 97	- 9								
17 JUL 10					_								
10 18 AUG	84	88	91 	94	9		00						
15 15	 70	 77	 50	 84	- 9		 98 1	 .00					
SEP 22 22	99	100			-			 					

#### YUKON ALASKA

#### 15389000 PORCUPINE NEAR FORT YUKON

Date	Tim	e ft f l b	in loct. at	ion, cor oss ta tion wa from us bank 25	nduc- vance, ur t unf f S/cm degC v	pH, vater, ifltrd : Eield, std units 00400)	ature, water, deg C	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)			
APR 04 04 04 04	143 145 151 153 155	0 235 0 130 2 370		 	385 385 385 380 386	7.4 7.4 7.4 7.4 7.4	.0.0.0.0.0	758 758 758 758 757	5.2 5.2 4.9  5.0	36 36 34  34			
JUL 01 01 01 01 01 01 23 23 23 23 23 23 AUG	135 141 143 145 151 150 152 154 160	2 - 2 - 2 - 2 - 2 1150 2 1000 2 800 2 650	- 89 - 78 - 63 - 42	0.0 0.0 0.0 0.0 0.0	217 217 215 218 219 188 189 184 184	8.2 8.2 8.2 8.2 7.8 7.8 7.8 7.8	19.5 19.7 19.7 19.5 19.5 16.3 16.3 16.1 16.2	740 740 740 740 740 756 756 756 756 756	7.9 7.9 7.9 7.8 7.8 9.5 9.6 9.6	89 89 88 88 98 98 98 98			
19 19 19 19 19	144 150 153 155	5 – 0 – 5 –	- 54 - 68 - 83	5.0 5.0 5.0	183 183 183 181 180	8.0 8.0 8.0 8.0 7.8	11.7 11.6 11.6 11.6 11.7	743 743 743 743 743	10.0 9.8 9.8 9.8 9.7	95 92 92 92 92			
22 22 22 22 22	135 135 135 140 140	6 – 8 – 0 –	- 83 - 59 - 35	3.0 3.0 3.0	230 230 230 230 230 230	8.3 8.3 8.3 8.3 8.3	1.4 1.4 1.4 1.4	764 764 764 764 764	12.9 12.8 12.8 12.7 12.7	92 91 91 90 90			
Date	Time	Medium code	Sample type	feet	charge cfs	Sam- pling , method code	d, type, code	related r QA data, code	wat unf uS/cm 25 deg(	water, unfltrd field, std units		ature, water, deg C	Turbid- ity, wat unf lab, Hach 2100AN NTU (99872)
APR 04	1530	9	9	590	1190	20	3044	100	385	7.4	-20.0	.0	1.1
JUN 09 19	1510 1420	9	9 7	1230	48500 17400		3055 3055	1 30	120 187	7.8 8.0		12.2	40 9.6
JUL 01 23	1430 1540	9	9		16200 27000	20	3055 3055	1 30	217 184	8.2 7.8		19.6 16.1	3.0 34
AUG 19	1310	9	9	1260	35900		3055	1	182	8.0		11.6	40
SEP 22	1300	9	9	1170	13400	20	3044	1	230	8.3		1.4	6.7
Date	UV absorb- ance, 254 nm, wat flt units /cm (50624)	wat flt units /cm	Baro- metric pres- sure, mm Hg (00025)	solved	percent of sat- uration	ness, water unfltr mg/L a CaCO3	, Calciu d water s fltrd	, water , fltrd mg/L	Sodium, , water, , fltrd, mg/L	, mg/L as CaCO3	Potas- sium, water, fltrd, mg/L (00935)	bonate, wat flt incrm.	Carbon- ate, wat flt incrm. titr., field, mg/L (00452)
APR 04	.042	.030	758	5.0	34	200	60.5	12.7	5.07	174	.53	213	.0
JUN 09 19	.357 .268	.268 .196	761 753	9.8	91 	60 93	18.2 28.2	3.52 5.37			.58 .57	56 88	.0
JUL 01 23	 .403	 .298	740 756	7.9 9.6	89 98	110 88	31.8 25.2	6.35 6.03			.63	98 71	.0
AUG 19	.305	.226	743	9.8	92	94	26.6	6.62			.39	65	.0
SEP 22	.278	.201	764	12.8	91	110	34.5	6.92	2.35		.36	105	.0

### YUKON ALASKA—Continued

### 15389000 PORCUPINE NEAR FORT YUKON—Continued

Date	wat flt inc tit field,	field, mg/L as CaCO3	Sulfate water,	water,	mg/L	fltrd, mg/L	180degC wat flt	water, fltrd, sum of consti- tuents mg/L	Nitrite water, fltrd,	water fltrd,	Ammonia water, fltrd, mg/L as N (00608)	water,	Ammonia + org-N, water, fltrd, mg/L as N (00623)
APR 04 JUN	175	170	31.9	4.03	.08	4.46	233	225	<.002	.208	<.015	E.08	E.07
09 19 JUL	46 72	47 72	13.2 20.0	.66 1.13	<.2 <.2	2.41 3.05	96 115	68 104	E.002 E.002	.028 <.022	<.015 <.015	.61 .33	.29
01 23	81 59	82 59	27.4 29.1	1.86 1.16	<.2 <.2	2.70 3.45	151 128	122 103	<.002 E.002	<.022 .029	<.015 <.015	.30	.28
AUG 19	53	53	32.2	.71	<.2	3.77	124	105	<.002	.035	<.015	.37	.23
SEP 22	86	87	32.3	1.34	<.2	3.81	157	134	<.002	.026	<.015	.29	.28
Date	Phos- phorus, water, unfltrd mg/L (00665)	water, fltrd, mg/L	water, fltrd, mg/L as P	Phos- phorus, suspnd sedimnt total, percent	suspnd	fltrd, ug/L	Anti- mony, suspnd sedimnt total, ug/g (29816)	fltrd, ug/L	Arsenic suspnd sedimnt total, ug/g (29818)	Arsenic	Barium, suspnd sedimnt total, ug/g (29820)	Barium,	Beryll- ium, suspnd sedimnt total, ug/g (29822)
APR 04	.004	<.004	<.007			2		<.30		E.2		86	
JUN 09 19	.109	.011 E.004	<.007 <.007	.100	7.3 3.1	27 22	1.3 1.8	<.30 <.30	16 17	.3	840 85	37 46	2 2
JUL 01 23	.013 .052	E.003	<.007 <.007	.110	5.5 7.5	20 36	1.6 1.3	<.30 <.30	16 18	.4	800 1300	56 45	2 2
AUG 19	.074	.005	<.007	.100	7.9	30	1.1	<.30	16	E.2	1000	40	2
SEP 22	.015	.005	<.007	.069	4.1	28	1.0	<.30	13	.3	240	47	1
Date	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L	sedimnt total, ug/g	Cadmium	sedimnt total, ug/g	Chrom- ium,	Cobalt, suspnd sedimnt total, ug/g (35031)	Cobalt	Copper, suspnd sedimnt total, ug/g (29832)	Copper,	Iron, suspnd sedimnt total, percent (30269)	Iron, water, fltrd, ug/L (01046)	Lead, suspnd sedimnt total, ug/g (29836)
APR 04	<.06	9		<.04		<.8		.196		.6		11	
JUN 09	<.06	E5	.8	< .04	120	<.8	15	.114	28	2.0	3.9	172	21
19 JUL	<.06	E5	1.4	<.04	110	<.8	9	.098	24	1.8	2.0	115	35
01	<.06 <.06	8 8	2.2	<.04 E.02	170 130	<.8 <.8	14 18	.095 .121	40 34	1.7 2.3	3.5 4.2	59 137	38 24
AUG 19	<.06	E6	1.0	< .04	130	<.8	17	.149	31	2.3	4.2	116	24
SEP 22	<.06	E6	.9	<.04	99	<.8	15	.184	25	1.4	3.0	121	12

### YUKON ALASKA—Continued

#### 15389000 PORCUPINE NEAR FORT YUKON—Continued

Date		sedimnt total, ug/g	Lithium water, fltrd, ug/L	suspnd sedimnt total, ug/g	Mangan- ese,	sedimnt total, ug/g	suspnd sedimnt	Molyb- denum,	sedimnt	Nickel, water,	Selen- ium, suspnd sedimnt total, ug/g (29847)	Selen- ium, water, fltrd, ug/L (01145)	Silver, suspnd sedimnt total, ug/g (29850)
APR 04	<.08		7.2		13.7			.7		1.22		E.5	
JUN 09 19	.12 E.08	58 19	2.2	670 610	2.5 2.0	.07	3 6	E.3	60 58	2.33 2.55	1 1	<.5 E.4	<.5 <.5
JUL 01 23 AUG	<.08 E.08	41 74	4.6 4.1	1300 660	1.5 2.6	.08	10 4	.5 .4	90 85	2.64 3.20	1 1	<.5 <.5	<.5 <.5
19 SEP	E.06	67	3.9	710	3.4	.03	3	E.3	70	3.81	1	<.5	<.5
22	<.08	44	4.5	710	6.0	<.01	5	E.3	67	3.19	1	<.5	<.5
Date	water,	Stront- ium, suspnd sedimnt total, ug/g (35040)	Stront- ium, water, fltrd, ug/L (01080)		suspnd sedimnt total, percent	total,	Vanad- ium, water, fltrd, ug/L	suspnd sedimn	Zinc, t water, fltrd, ug/L	suspnd	ug/L		suspnd
APR 04 JUN	<.2		154				. 4		2		.88	1.7	<.1
09 19	<.2 <.2	130 85	54.1 79.5	<50 <50	.430	190 85	.8 1.0	200 150	2 M	<50 <50	.23	9.4 7.8	<.1 <.1
JUL 01 23	<.2 <.2	170 140	104 81.3	<50 <50	 .470	150 230	.6	190 260	4 1	<50 <50	.39	8.6 12.0	<.1 <.1
AUG 19 SEP	<.2	130	98.9	<50	.440	210	.2	220	2	<50	.24	8.7	<.1
22	<.2	310	109	<50	.230	110	.3	170	2	<50	.42	9.1	<.1
Date	Organi carbor suspr sedimr total mg/I (00689	n, carbo nd susp nt sedim l, tota L mg/	n, carbo nd susp nt sedir l, tota L perce	on, Organond carb ant suspal, sedi- ent perc	ulanic nicon, go pnd sumnt wa ent me	ate sed tro- co en, f sp, thr ter, cnt g/L m	imnt p nc, s low ough co rfug tr	edi- pment s ncen- ation I mg/L t	Sus- bended sedi- ment d load, p tons/d <	uspnd. sedi- ment, sieve iametr ercent .063mm 70331)			
APR 04	<.1	<.	1		- <.	0.2		1	3.2				
JUN 09 19	2.4	2.	4 3.4	1 3.	2 .:	20	91 10	98 128		95 90			
JUL 01 23	.6 1.4		6 5 3.3			06 14	7 41		262 500	92 98			
AUG 19	2.0	2.	0 3.7	7 3.	6 .	18	53	61 59	910	94			
SEP 22	.5	•	5 7.4	1 5.	4 .	03	11	10 3	362	93			

### YUKON ALASKA—Continued

### 15512000 CHENA SL NEAR FAIRBANKS

Date	Time	Medium code	Sample type	Sam- pling method, code 82398)	wat unf	water, unfltrd field, std units	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	pres-	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)
AUG 13 16 29	1920  1300	9 9 9	9 9 9	10 10	  341	  8.0	14.0 18.0	  8.9	  748	  11.7	  103	93 2	 М3 М2
SEP 10	1200	9	9										
Date	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L	water, fltrd, mg/L	Sodium, water, fltrd, mg/L	water, , fltrd mg/L	Sulfate water, , fltrd,	water, fltrd mg/L	, fltrd, mg/L	water, fltrd, mg/L	on evap.	sum of consti-	mg/L as N	Nitrite + nitrate water fltrd, mg/L as N (00631)
AUG 13 16 29	  					 	 	 	 		 	 	  
SEP 10	160	45.8	11.0	6.05	3.42	17.0	7.09	<.2	19.4	224	204	<.002	<.022
Date	Ammonia water, fltrd, mg/L as N (00608)	Ammonia  + org-N, water, unfltrd mg/L as N (00625)	+ org-N,	Phos- phorus, water, unfltrd mg/L (00665)	water, fltrd, mg/L	fltrd,	Iron,	water, fltrd, ug/L	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Chlor- pyrifos water, fltrd, ug/L (38933)	Diazi- non, water, fltrd, ug/L (39572)	Metola- chlor, water, fltrd, ug/L (39415)	Prome- ton, water, fltrd, ug/L (04037)
AUG 13 16 29	  	  	 	  	  	  	  	 	<1  	<.5  	<.5  	<.5  	<.5  
SEP 10	<.015	.11	E.05	.011	.008	E.004	21	87.7	<1	<.5	<.5	<.5	<.5
				1551	400415 No	OYES SL 1	NI FT AT	FAIRRAN	NKS				
				1331-	+00+13 TV	JI LS SL I	INEET AT	TAIKBAI	VKS				
Date	Time	Medium code	type	mg/L as CaCO3	water, fltrd, mg/L	water,	Sodium, water, fltrd, mg/L	Potas- sium, water, fltrd, mg/L (00935)	Sulfate water, fltrd, mg/L	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)
SEP 09	1515	9	9	70	20.9	4.31	1.46	.87	14.6	.56	<.2	8.17	94
Date	sum of consti- tuents mg/L	Nitrite water, fltrd, mg/L as N	Nitrite  + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N	+ a org-N water, unfltro mg/L as N	water, l fltrd,	, Phos- phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L		Iron, water, fltrd, ug/L	water,	water, fltrd 0.7u GF ug/L	Chlor- pyrifos water, fltrd, ug/L (38933)
SEP 09	84	<.002	.216	<.015	.21	.23	.016	.008	E.004	283	25.8	<1	<.5
Date SEP 09	Diazi non, water fltrd ug/I (39572	t, wate d, fltr ug/	er, ton er, wate ed, flt: L ug. 5) (040)	n, er, rd, /L 37)									
09	۷.5	٧.٥	· .:	_									

### YUKON ALASKA—Continued

### 644331147135900 CHENA SL 0.8 MI ABOVE FLOOD LEVEE NEAR NORTH POLE

													Residue
Date	Time	Medium code		unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L (00915)		Sodium, water, fltrd, mg/L	Potas- sium, water, fltrd, mg/L (00935)	Sulfate water, fltrd, mg/L	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	on evap. at 180degC wat flt mg/L (70300)
AUG 13	1810	9	9										
SEP 09	1145	9	9	190	56.4	12.6	5.01	3.86	8.9	2.53	.2	22.7	247
Date	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Nitrite water, fltrd, mg/L as N	Nitrite + nitrate water fltrd, mg/L as N (00631)		+ a org-N water,	water, fltrd, mg/L as N	Phos-	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Iron,		Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Chlor- pyrifos water, fltrd, ug/L (38933)
AUG 13 SEP												<1	<.5
09	241	<.002	<.022	.040	.21	.20	.014	E.003	<.007	29	4060	<1	<.5
Date	Diazi non, water fltrd ug/L (39572	chlor , water , fltro ug/l	r, ton r, wate d, fltr L ug/	ı, er, ed, L									
AUG 13 SEP	<.5	<.5	<.5	;									
09	<.5	<.5	<.5	i									

## 644435147203100 BEAVER SPRINGS 850 FT BELOW REFINERY NEAR NORTH POLE

Date	Time	Medium code	type	Hard- ness, water, unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L (00915)	water, fltrd, mg/L	Sodium, water, fltrd, mg/L (00930)	Potas- sium, water, fltrd, mg/L (00935)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)
SEP 09	1245	9	9	160	47.6	11.1	5.70	3.80	21.3	5.69	<.2	18.6	213
Date	sum of consti- tuents mg/L	Nitrite water, fltrd,	Nitrite + nitrate water fltrd, mg/L as N (00631)	e Ammonia water, fltrd, mg/L as N (00608)	+	org-N water,	, Phos- phorus,	Phos- phorus, water, fltrd, mg/L (00666)	Orthophos-phate, water, fltrd, mg/L as P (00671)		Mangan- ese, water, fltrd, ug/L (01056)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Chlor- pyrifos water, fltrd, ug/L (38933)
SEP 09	207	<.002	<.022	<.015	.12	.13	.007	E.004	<.007	19	54.2	<1	<.5
Date	Diazi non, water fltrd ug/I (39572	chlo c, wate l, fltr ug/	er, to: er, wated, flt: L ug	n, er, rd, /L									
SEP 09	<.5	<.5	· <.	5									

### YUKON ALASKA—Continued

### 644539147204600 BEAVER SPRINGS AT DOUGHCHEE AVENUE NEAR NORTH POLE

Date	Time	Medium code	type	unfltrd mg/L as CaCO3	fltrd, mg/L	water,	Sodium, water, fltrd, mg/L	water, fltrd, mg/L	Sulfate water, fltrd, mg/L	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)
AUG 13 SEP	1720	9	9										
09	1330	9	9	160	46.1	11.4	6.22	3.78	27.6	5.40	<.2	19.8	219
Date	sum of	Nitrite water, fltrd, mg/L as N	water fltrd, mg/L as N	Ammonia water,	+ a org-N	org-N, water, fltrd, mg/L as N	Phos- phorus,	water,		Iron,	Mangan- ese, water, fltrd, ug/L (01056)	0.7u GF ug/L	Chlor- pyrifos water, fltrd, ug/L (38933)
AUG 13												<1	<.5
SEP 09	208	<.002	<.022	<.015	E.09	.11	.014	.006	<.007	48	509	<1	<.5
Date	Diazi non, water fltrd ug/L (39572	, wate , fltr ug/	r, tor r, wate d, flt: L ug	n, er, rd, /L									
AUG 13 SEP	<.5	<.5	<.!	5									
09	<.5	<.5	<.	5									

## $644547147193100\,$ CHENA SL 0.1 MI BELOW OUT HURST BLVD NEAR NORTH POLE

Date	Time	Medium code	Sample type (	Sam- pling method, code 82398)	type, code	wat unf uS/cm 25 degC	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)
JUN													
11 AUG	1340	9	9	70	8010	342	8.0	21.0	13.3	760	9.5	91	86
13	1340	9	9										
15	1410	9	9	70	8010								25
29	1350	9	9	70	8010	357	7.7	18.0	9.5	748	9.4	82	32
30	1440	9	9	70	8010	362	7.7	17.0	10.0	743	9.3	83	11
SEP													
09	1400	9	9										
11	1030	9	9	70	8010								14
Date	E coli, m-TEC MF, water, col/ 100 mL (31633)	ness, water, unfltrd mg/L as	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	Potas- sium, water, fltrd, mg/L (00935)	Sulfate water, fltrd, mg/L (00945)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Nitrite water, fltrd, mg/L as N (00613)
JUN	m-TEC MF, water, col/ 100 mL (31633)	ness, water, unfltrd mg/L as CaCO3	water, fltrd, mg/L	ium, water, fltrd, mg/L	Sodium, water, fltrd, mg/L	sium, water, fltrd, mg/L	water, fltrd, mg/L	ide, water, fltrd, mg/L	ide, water, fltrd, mg/L	water, fltrd, mg/L	on evap. at 180degC wat flt mg/L	water, fltrd, sum of consti- tuents mg/L	water, fltrd, mg/L as N (00613)
JUN 11	m-TEC MF, water, col/ 100 mL	ness, water, unfltrd mg/L as CaCO3	water, fltrd, mg/L	ium, water, fltrd, mg/L	Sodium, water, fltrd, mg/L	sium, water, fltrd, mg/L	water, fltrd, mg/L	ide, water, fltrd, mg/L	ide, water, fltrd, mg/L	water, fltrd, mg/L	on evap. at 180degC wat flt mg/L	water, fltrd, sum of consti- tuents mg/L	water, fltrd, mg/L as N
JUN 11 AUG	m-TEC MF, water, col/ 100 mL (31633)	ness, water, unfltrd mg/L as CaCO3	water, fltrd, mg/L	ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	sium, water, fltrd, mg/L (00935)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L	ide, water, fltrd, mg/L	water, fltrd, mg/L	on evap. at 180degC wat flt mg/L (70300)	water, fltrd, sum of consti- tuents mg/L (70301)	water, fltrd, mg/L as N (00613)
JUN 11 AUG 13	m-TEC MF, water, col/ 100 mL (31633)	ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L (00915)	ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L	sium, water, fltrd, mg/L (00935)	water, fltrd, mg/L	ide, water, fltrd, mg/L	ide, water, fltrd, mg/L (00950)	water, fltrd, mg/L	on evap. at 180degC wat flt mg/L (70300)	water, fltrd, sum of consti- tuents mg/L (70301)	water, fltrd, mg/L as N (00613)
JUN 11 AUG 13 15	m-TEC MF, water, col/ 100 mL (31633)	ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L (00915)	ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	sium, water, fltrd, mg/L (00935)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	ide, water, fltrd, mg/L (00950)	water, fltrd, mg/L (00955)	on evap. at 180degC wat flt mg/L (70300)	water, fltrd, sum of consti- tuents mg/L (70301)	water, fltrd, mg/L as N (00613)
JUN 11 AUG 13 15 29	m-TEC MF, water, col/ 100 mL (31633) 51  <1 20	ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L (00915)	ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	sium, water, fltrd, mg/L (00935)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L	ide, water, fltrd, mg/L (00950)	water, fltrd, mg/L	on evap. at 180degC wat flt mg/L (70300)	water, fltrd, sum of consti- tuents mg/L (70301)	water, fltrd, mg/L as N (00613)
JUN 11 AUG 13 15 29 30 SEP	m-TEC MF, water, col/ 100 mL (31633)	ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L (00915)	ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	sium, water, fltrd, mg/L (00935)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	ide, water, fltrd, mg/L (00950)	water, fltrd, mg/L (00955)	on evap. at 180degC wat flt mg/L (70300)	water, fltrd, sum of consti- tuents mg/L (70301)	water, fltrd, mg/L as N (00613)
JUN 11 AUG 13 15 29	m-TEC MF, water, col/ 100 mL (31633) 51  <1 20	ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L (00915)	ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	sium, water, fltrd, mg/L (00935)	water, fltrd, mg/L (00945)	ide, water, fltrd, mg/L (00940)	ide, water, fltrd, mg/L (00950)	water, fltrd, mg/L (00955)	on evap. at 180degC wat flt mg/L (70300)	water, fltrd, sum of consti- tuents mg/L (70301)	water, fltrd, mg/L as N (00613)

### YUKON ALASKA—Continued

### 644547147193100 CHENA SL 0.1 MI BELOW OUT HURST BLVD NEAR NORTH POLE—Continued

Date	Nitrite  + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	a Ammoni + org-N, water, fltrd, mg/L as N (00623)	Phos-	Phos- phorus, water, fltrd, mg/L (00666)	Orthophos- phate, water, fltrd, mg/L as P (00671)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Chlor- pyrifos water, fltrd, ug/L (38933)	Diazi- non, water, fltrd, ug/L (39572)	Metola- chlor, water, fltrd, ug/L (39415)
JUN 11													
AUG													
13										<1	<.5	<.5	<.5
15													
29 30													
SEP													
09	<.022	<.015	E.07	E.10	.004	< .004	<.007	14	163	<1	<.5	<.5	<.5
11													
Date	Prome ton, water fltro ug/I (04037	c, l,											
JUN 11													
AUG 13	<.5												
15													
29 30													
SEP													
09	<.5												
11													
			64481	141472242	200 CHEN	NA SL AT	WILIS CT	NEAR N	NORTH PO	LE			
						Specif.	pН,					Dis-	Fecal coli-

Date	Time	Medium code	Sample type	Sam- pling method, code 82398)	type,	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	water, unfltrd field, std units	Temper- ature, air, deg C (00020)		Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)
AUG		_	_										
13 16	1620 0840	9 9	9 9	70	8010								72
29	1330	9	9	70	8010	357	7.9	18.0	8.1	748	11.2	95	45
SEP	1330	_		, 0	0010	33.		10.0	0.1	, 10		,,,	13
10	1255	9	9										
11	1020	9	9										
Date	E coli, m-TEC MF, water, col/ 100 mL (31633)	ness, water, unfltrd mg/L as	Calcium water, fltrd, mg/L (00915)	Magnes ium, water, fltrd, mg/L (00925)	Sodium, water,	Potas- sium, water, fltrd, mg/L (00935)	Sulfate water,	Chlor- e ide, water, fltrd, mg/L (00940)	ide, water,	Silica,	180degC	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Iron, water, fltrd, ug/L (01046)
AUG													
13													
16	2												
29 SEP	33												
10		170	48.7	11.7	6.59	3.59	19.4	8.08	<.2	19.7	226	213	51
11		160	47.0	11.3	6.48	3.60	21.4	7.25	<.2	19.1	220	208	27
Date	Mangar ese, water fltrd ug/I (01056	wate , fltr d, 0.7u ug/	l, Chlor, pyrifd wate GF fltr	os no er, war ed, fli 'L u	on, ch ter, wa trd, fl g/L u	lor, t ter, wa trd, fl g/L u	rome- ton, ater, ltrd, ag/L 1037)						
AUG													
13		<1	<.5				<.5						
16													
29 SEP													
10	169	<1	<.5	· <	.5 <	.5 <	<.5						
11	118												

### YUKON ALASKA—Continued

### 645006147290600 CHENA SL AT PERSINGER DRIVE NEAR NORTH POLE

Date JUN	Time	Medium code	Sample type (	method, code	type, code		water, unfltrd field, std units	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	solved oxygen, mg/L	Dis- solved oxygen, percent of sat- uration (00301)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)
11 AUG	1550	9	9	70	8010	330	8.7	23.0	17.3	760	11.3	118	6
13	2000	9	9										
19 30 SEP	0850 1500	9 9	9 9	70 70	8010 8010	339	8.2	18.0	10.7	743	12.3	114	28 12
10	1345	9	9										
Date		ness, water, unfltrd mg/L as CaCO3	Calcium		Sodium, water, fltrd, mg/L	water,	Sulfate water,		Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)	water, fltrd, sum of consti-	Nitrite water, fltrd, mg/L as N (00613)
JUN 11	5												
AUG 13													
19	5												
30 SEP	8												
10		170	47.5	11.5	6.59	3.63	15.9	7.65	.2	20.0	221	208	<.002
	Nitrite	e		a Ammoni	a		Ortho	_		0			
Date	nitrate water fltrd, mg/L as N		org-N, water, unfltrd mg/L as N (00625)	org-N,	phorus,	Phos- phorus, water, fltrd, mg/L (00666)		Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Chlor- pyrifos water, fltrd, ug/L (38933)	Diazi- non, water, fltrd, ug/L (39572)	Metola- chlor, water, fltrd, ug/L (39415)
JUN													
11 AUG													
13 19										<1	<.5	<.5	<.5
30													
SEP 10	<.022	<.015	.12	E.07	.015	.010	E.005	64	43.6	<1	<.5	<.5	<.5
Date	Prome ton, water fltro ug/I (04037	; d,											
JUN 11 AUG 13 19 30 SEP 10	 <.5   <.5												

### YUKON ALASKA—Continued

#### 680837151435000 CONTACT CREEK AT MAIN STREET AT ANAKTUVUK PASS

Date	Time	Medium code		Instan- taneous dis- charge, cfs 00061) (	code	Sampler type, code (84164)	wat u	c- wat , unflt nf fie cm st gC uni	er, and Te ld, a d v	emper- ature, water, deg C 0010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)		Hard- ness, water, unfltrd mg/L as CaCO3 (00900)
JUN 17	1515	9	9	213	10	3045	10	n 0	.1	4.9	706	11.5	97	54
JUL 15	1810	9	9	131	10	3045	13		.9	4.7	699	12.0	102	67
AUG														
14 SEP	1510	9	9	289	10	3045	12		.9	4.9		11.5		64
09	1130	9	9	31	10	3045	15	0 8	.3	.3	695	9.0	68	74
Date	Calcium water, fltrd, mg/L (00915)	water, fltrd, mg/L	Sodium, water, fltrd, mg/L (00930)	field, mg/L as CaCO3	Potas- sium, water,	wat fl incrm titr.,	t wat inc fiel mg/L CaC	ty, flt tit Sul d, wat as flt 03 m	fate er, v erd, g/L	Chlor- ide, water, fltrd, mg/L 00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water,	on evap. at 180degC	Residue water, fltrd, sum of consti- tuents mg/L (70301)
JUN 17 JUL	18.1	2.20	.19	48	E.12	60	4	6				.84		
15	21.7	3.14	.41	62	.27	78	6	0	5.6	.40	<.2	1.29	75	71
14 SEP	20.5	3.12	.27	57	<.16	76	5	7	5.3	E.15	<.2	1.26	75	
09	23.2	3.94	.31	71	E.16	92	7	1	8.7	.24	<.2	1.48	86	
		Nitri	te		nia Amm				Ort	ho-				
Date	Nitrit water fltrd mg/I as N (00613	r, wate l, fltr mg/ l as	r wate d, flti L mg, N as	er, wat cd, unfl /L mg N as	er, wa trd fl /L m	iter, ph trd, w mg/L un	Phos- lorus, vater, lfltrd mg/L 10665)	Phos- phorus, water, fltrd, mg/L (00666)	phosphase phase flts mg as (006)	te, er, I rd, v /L i	Iron, water, fltrd, ug/L	ese, water, fltrd, ug/L	Organic carbon, water, fltrd, mg/L (00681)	
JUN 17 JUL	<.002	.04	2 <.01	15 E.0	5 <.	10	.028	E.003	<.0	07	9	. 9	.8	
15 AUG	<.002	E.01	4 <.01	L5 E.0	6 <.	10 E	.003	E.002	<.0	07	E6	E.4	1.1	
14 SEP	<.002	.03	5 <.01	15 <.1	0 <.	10	.009	<.004	<.0	07	<8	. 4	1.1	
09	<.002	<.02	2 <.01	15 <.1	0 <.	10 E	.003	<.004	<.0	07	E5	.6	1.2	

# 680811151443200 JOHN RIVER TRIBUTARY ABOVE LAGOONS AT ANAKTUVUK PASS

							Specif.	pН,					Dis-
				Instan-			conduc-	water,			Baro-		solved
				taneous	Sam-		tance,	unfltrd	Temper-	Temper-	metric	Dis-	oxygen,
		Medium	Sample	dis-	pling	Sampler	wat unf	field,	ature,	ature,	pres-	solved	percent
Date	Time	code	type	charge,	method,	type,	uS/cm	std	air,	water,	sure,	oxygen,	of sat-
				cfs	code	code	25 degC		deg C	deg C	mm Hg	mg/L	uration
				(00061)	(82398)	(84164)	(00095)	(00400)	(00020)	(00010)	(00025)	(00300)	(00301)
JUN													
17	1955	9	9	1.2	50	3070	19	7.3		9.0		10.4	
JUL													
17	1240	9	9	2.7	70		25	7.0	3.5	7.0	703	11.3	101
AUG													
13	1952	9	9	8.9	70		45	7.3	4.5	6.3	698	11.4	101
SEP													
11	1000	9	9	1.8	70		38	7.0		.8	691		

### YUKON ALASKA—Continued

#### 680811151443200 JOHN RIVER TRIBUTARY ABOVE LAGOONS AT ANAKTUVUK PASS—Continued

Date	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, field, mg/L as CaCO3 (00410)	Potas-	inc: titr	te, ling lt wat m. inc ., fie d, mg/L CaO	ity, flt tit S ld, v as	Sulfate water, fltrd, mg/L 00945)	Chlor- ide, water, fltrd, mg/L (00940)	ide, water,	Silica, water,	Residue on evap. at 180degC wat flt mg/L (70300)
JUN 17	9	2.20	.834	.14	9	.22	10	1	8	1.0	<.20	<.2	1.04	11
JUL	9	2.20	.034	.14	9	. 22	1,	,	0	1.0	<.20	<.2	1.04	11
17 AUG	15	3.84	1.30	.30	13	.20	1	5 1	L2	1.3	E.12	<.2	1.28	29
13	25	6.87	1.81	.14	20	E.08	2	1 1	L9	1.6	<.20	<.2	1.94	40
SEP 11	20	5.01	1.79	.14	16	E.10	2	) 1	L5	2.3	<.20	<.2	2.16	37
Date	Nitrit water fltro mg/I as N (00613	r, wate d, fltr mg/ N as	te Ammor r wate d, flt: L mg, N as	er, wat cd, unfl /L mg N as	er, wat trd flt	orn, Property of the property	nos- prus, ater, Eltrd ng/L 0665)	Phos- phorus, water, fltrd, mg/L (00666)	Orti pho pha wat flt: mg as (006	s- te, er, I rd, w /L f	ron, ater, ltrd, ug/L		Organic carbon, water, fltrd, mg/L (00681)	
JUN 17 JUL	<.002	2 <.02	2 <.01	15 .1	6 .1	15 .	.006	E.003	<.0	07	222	2.1	4.1	
17	<.002	<.02	2 <.01	15 .2	3 .1	16 .	.004	E.004	<.0	07	206	3.8	5.5	
AUG 13 SEP	<.002	<.02	2 <.01	15 .2	2 .2	20 .	.004	E.004	<.0	07	128	1.8	6.9	
11	<.002	<.02	2 <.01	15 .1	.9	14 .	.004	E.002	<.0	07	113	10.4	5.5	

## 680752151450200 JOHN RIVER TRIBUTARY AT ANAKTUVUK PASS

Date	Time	Medium code	Sample type	Instan- taneous dis- charge, cfs 00061) (	Sam- pling method, code 82398)	Sampler type, code (84164)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
JUN 17 JUL	2115	9	9	1.3	20	3045	106	8.1		4.7		10.2	
17	1600	9	9	3.2	70		87	7.6	9.5	7.1	704	10.6	95
AUG 13	2125	9	9	7.4	10	3045	80	7.3	5.8	6.2	697	11.1	98
SEP 11	1115	9	9	1.2	70		84	7.9		2.0	691		
Date	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, field, mg/L as CaCO3 (00410)	Potas- sium, water,	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)			Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Residue on evap. at 180degC wat flt mg/L (70300)
JUN 17	55	17.6	2.72	.43	54	<.16	69	53	2.2	.39	<.2	1.17	67
JUL 17 AUG	46	14.5	2.43	.62	44	.34	55	42	2.6	.47	<.2	1.42	65
13 SEP	43	12.8	2.63	.33	39	.18	49	38	2.4	.20	<.2	2.15	65
11	42	12.4	2.59	.30	40	.16	51	39	2.9	.24	<.2	1.95	59

#### YUKON ALASKA—Continued

#### 680752151450200 JOHN RIVER TRIBUTARY AT ANAKTUVUK PASS—Continued

	Residue		Nitrite		Ammonia	Ammonia			Ortho-			
	water,		+		+	+			phos-			
	fltrd,	Nitrite	nitrate	Ammonia	org-N,	org-N,	Phos-	Phos-	phate,		Mangan-	Organic
	sum of	water,	water	water,	water,	water,	phorus,	phorus,	water,	Iron,	ese,	carbon,
	consti-	fltrd,	fltrd,	fltrd,	unfltrd	fltrd,	water,	water,	fltrd,	water,	water,	water,
Date	tuents	mg/L	mg/L	mg/L	mg/L	mg/L	unfltrd	fltrd,	mg/L	fltrd,	fltrd,	fltrd,
	mg/L	as N	mg/L	mg/L	as P	ug/L	ug/L	mg/L				
	(70301)	(00613)	(00631)	(00608)	(00625)	(00623)	(00665)	(00666)	(00671)	(01046)	(01056)	(00681)
JUN												
17		< .002	.270	<.015	.12	.10	.005	< .004	<.007	57	E.3	3.0
JUL												
17	51	< .002	.255	<.015	.18	.13	E.003	< .004	< .007	100	.7	4.4
AUG												
13	45	< .002	.109	<.015	.20	.17	.004	.005	<.007	83	.7	6.3
SEP												
11	46	< .002	.094	<.015	.21	.16	.009	< .004	< .007	31	1.2	4.9

#### 680735151444400 INUKPASUGRUK CREEK AT ANAKTUVUK PASS

Date	Time	Medium code	Sample type	Instan- taneous dis- charge, cfs 00061) (8	Sam- pling method, code 32398)	Sampler type, code (84164)		- wate unfltro field std	r, d Temper- , ature, air, deg C		pres-	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
MAY 14	1030	9	9	3.9	30		371	8.0	-2.5	.0	696	10.2	77
JUL 16 SEP	1225	9	9	102	10	3045	165	7.8	5.5	5.0	699	13.0	111
09	1630	9	9	102	10	3045	199	8.1		3.0		7.9	
Date	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	water, fltrd, mg/L	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, field, mg/L as CaCO3 (00410)	Potas- sium, water,	incrm titr.	e, linit t wat f n. inc t , field , mg/L a CaCO	Ey, lt it Sulfat l, water, as fltrd, mg/L	water, fltrd mg/L	ide, water, , fltrd, mg/L	Silica, water,	Residue on evap. at 180degC wat flt mg/L (70300)
MAY 14 JUL 16	200 79	43.5	22.6	4.16	111 55	1.89	143 72	110 55		.39	<.17 <.2	5.43	27 <b>4</b> 99
SEP 09	89	23.3	7.60	.95	60	.29	78	60		E.16		2.06	114
Date	Residu water fltrd sum o consti tuent mg/L (70301	e , Nitri f wate - fltr s mg/: as 1	Nitri + te nitra r, wate d, fltr L mg/ N as	te  te Ammor r wate d, fltr L mg/ N as	Amm nia or er, wa rd, unf 'L m N a	onia Amr + g-N, on ter, wa ltrd fi g/L r s N	monia + rg-N, ater, p ltrd, ng/L u as N	Phos-	Phos- phorus, water, fltrd, mg/L	Ortho- phos- phate, water, fltrd, mg/L as P (00671)		Mangan- ese, water, fltrd, ug/L (01056)	Organic carbon, water, fltrd, mg/L (00681)
MAY 14 JUL	248	.00	3 E.01	.3 <.01	.5 .	21	.19	.014	.006	<.007	E8	15.1	4.8
16 SEP		<.00						E.002	<.004	<.007	E5	1.3	.8
09		< .00	2 .02	4 < .01	.5 <.	10 <	.10	.004	< .004	<.007	<8	1.2	1.0

# 680715151463000 JOHN RIVER BELOW INUKPASUGRUK CREEK AT ANAKTUVUK PASS

Date	Time	Medium code	Sample type	Instantaneous dis- charge, cfs (00061)	Sam- pling	Sampler , type, code (84164)	Specif. conductance, wat unf uS/cm 25 degC (00095)	water,	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
JUL 16	1513	9	9	232	10	3045	158	8.1	8.3	6.6		12.2	
AUG 14 SEP	1145	9	9	600	10	3045	148	7.8	11.5	5.5	698	9.9	86
09	1415	9	9	135	10	3045	195	8.2		3.3		8.2	

### YUKON ALASKA—Continued

#### 680715151463000 JOHN RIVER BELOW INUKPASUGRUK CREEK AT ANAKTUVUK PASS—Continued

Date	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, field, mg/L as CaCO3 (00410)	Potas- sium, water, fltrd, mg/L (00935)	Bican bonat wat fi incr titr. field mg/1 (00453	e, lini lt wat m. inc , fiel d, mg/L L CaC	ity, flt tit Sul ld, wat as fl 03 m	fate er, trd, g/L 945)	Chloride, water, fltrd, mg/L (00940)	ide, water,	Silica water, fltrd, mg/L	180degC wat flt mg/L
JUL 16 AUG	81	25.7	4.19	.69	72	.29	92	7	1	9.3	E.19	<.2	1.62	89
14 SEP	73	22.3	4.33	.53	59	.22	74	5	7 1	3.4	E.13	<.2	1.84	91
09	95	28.0	6.07	.79	76	.20	99	7	6 1	9.4	.26	<.2	1.82	115
Date	Residu water fltrd sum o consti tuent mg/L (70301	f water fltre s mg/s	r, wate d, fltr L mg/ N as	te Ammor r wate d, fltr L mg, N as	er, wat cd, unfl /L mg N as	J-N, or der, wa trd fl J/L m	trd, g/L u s N	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus water fltrd mg/L (00666	p p , w , f	ortho- hos- hate, ater, ltrd, mg/L as P 0671)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)	Organic carbon, water, fltrd, mg/L (00681)
JUL 16 AUG 14		<.00					10 10	.004	.009 E.003		.007	E6 E5	.6 1.4	1.1
SEP 09	105	<.00	2 .06	6 <.01	15 <.1	.0 <.	10	E.003	<.004	<	.007	<8	.6	1.2

# NORTHWEST ALASKA

# 673610163540400 NEW HEART CREEK .8 MI ABOVE PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code (00027)	Agency ana- lyzing sample, code (00028)	feet	age area, mi2	wet svd field,	ium, bed sed <62.5um wet svd fld,tot percent	<62.5um wet svd fld,tot percent	<62.5um wet svd field, total,	wet svd field, total, percent	Phos- phorus, bed sed <62.5um wet svd fld,tot percent (34935)
JUN 26	1030	Н	9	1028	80020	325	1.8	.670	.700	1.7	.430	.08	.094
	Total	Inora.	Organic	Alum-	Ant.i –	Arsenic	Barium.	Beryll-	Bismuth	Cadmium	Cerium.	Chrom-	Cobalt,
	carbon,	carbon,	carbon,	inum,	mony,	bed sed	bed sec	d ium,	bed sed	bed sed	bed sed	ium,	bed sed
								bed sed l <62.5um					<62.5um wet svd
	wsv nat	wsv nat	wsv nat	wet svd	wet svd	field,	field,	wet svd	field,	field,	field,	wet svd	field,
Date	field	field	field	fld,tot t percen	fld, tot		total, ug/g	fld,tot	total, ug/g	total, ug/g	total, ug/g	fld,tot	total, ug/g
						(34800)				(34825)	(34835)		(34845)
JUN	2.4	0.0	2.2	6.3	0	0.0	01.0	1 0		2	4.1	140	15
26	3.4	.08	3.3	6.3	.8	9.8	810	1.9	1	.3	41	140	15
	Copper,	Furon	Callium	Gold,	Holmium	Iron,	Lantha	Load	Tithium	Mangan	Mercury	Molub	Noodim
	bed sed					bed sed			bed sed		bed sed		ium,
						<62.5um					<62.5um		
		wet svd	field,				wet svd	wet svd field,		wet svd		wet svd	
Date		fld, tot	total,	total,	total,	total,	fld, tot	total,	total,	fld,tot	total,	fld,tot	fld,tot
	ug/g (34850)	ug/g (34855)	ug/g (34860)	ug/g (34870)	ug/g (34875)	percent (34880)			ug/g (34895)	ug/g (34905)	ug/g (34910)	ug/g (34915)	ug/g (34920)
JUN													
26	27	1	14	1	1	3.5	23	19	54	1200	.13	.8	23

#### NORTHWEST ALASKA—Continued

#### 673610163540400 NEW HEART CREEK .8 MI ABOVE PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	bed sed	<62.5um	bed sed <62.5um wet svd fld,tot ug/g	wet svd	bed sed <62.5um wet svd field,	bed sed <62.5um wet svd	alum, bed sed <62.5um wet svd fld,tot ug/g	<62.5um dry svd		Tin, bed sed <62.5um wet svd field, total, ug/g (34985)	bed sed	Vanad- ium, bed sed <62.5um wet svd fld,tot ug/g (35005)	Ytterb- ium, bed sed <62.5um wet svd fld,tot ug/g (35015)
JUN													
26	55	8	14	1.8	.3	120	1	1	10	2	.330	120	2
Date	Yttriu bed se <62.5u wet sw field total ug/g (35010	ed bed s im <62.5 rd wet s d, fiel l, tota g ug/	ed bed sum <62.5 vd wet s d, fiel 1, tota g ug,	sed 5um svd Ld, al,									
JUN 26	21	140	2.8	2									
~~	21	140	2.0	-									

#### 673635164004600 NEW HEART CREEK 2 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code 00027) (	sample, code	feet	Drain- age area, mi2	wet svd field, total, percent		sium, bed sed <62.5um wet svd fld,tot percent	<62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot percent
JUN 26	1105	Н	7	1028	80020	75	9.7	1.4	.600	1.7	.300	.07	.094
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total,	bed sec <62.5um wet svd field, total, ug/g	l ium, bed sed <62.5um wet svd fld,tot ug/g	<177um wet svd field,	bed sed <62.5um	bed sed <62.5um wet svd field,	ium, bed sed <62.5um	
JUN 26	3.0	.35	2.6	6.4	.6	10	860	1.8	1	.9	45	110	17
Date	bed sed <62.5um wet svd field, total, ug/g	bed sed	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	wet svd field,	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	total, ug/g	ese, bed sed	bed sed <62.5um wet svd field, total, ug/g	denum, bed sed	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	21	1	14	1	1	3.7	24	32	58	900	.08	.9	25
Date	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field,	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wsv nat rec, percent	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd fld,tot ug/g
JUN 26	67	9	13	1.3	.2	140	1	1	9	2	.350	120	2

#### NORTHWEST ALASKA—Continued

#### 673635164004600 NEW HEART CREEK 2 MI BELOW PORT ACCESS ROAD NEAR KIVALINA—Continued

	Yttrium	Zinc,	Uranıur
	bed sed	bed sed	bed sed
	<62.5um	<62.5um	<62.5ur
	wet svd	wet svd	wet svo
	field,	field,	field,
Date	total,	total,	total
	ug/g	ug/g	ug/g
	(35010)	(35020)	(35000)
JUN			
26	23	320	2.3

# 673919163395300 STRAIGHT CREEK 1 MI ABOVE PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	col- lecting sample, code	sample, code	Alti- tude of land surface feet (72000)	Drain- age area, mi2	bed sed <62.5um wet svd field, total, percent	Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900)	sium, bed sed <62.5um wet svd fld,tot percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot
JUN 26	1435	Н	9	1028	80020	525	8.4	.550	.790	1.4	.830	.05	.072
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percen	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svd field, total, ug/g	d ium, bed sed <62.5um wet svd fld,tot ug/g		bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	
JUN 26	2.0	.04	2.0	5.9	.7	8.4	730	1.9	1	. 4	52	87	15
Date	bed sed <62.5um wet svd field,	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	wet svd field,	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g		ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field,	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd
JUN 26	20	1	13	1	1	3.4	27	21	40	560	.05	.5	26
Date	bed sed <62.5um	wet svd field, total, ug/g	ium, bed sed <62.5um wet svd	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	<62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field,	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wsv nat rec, percent	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um
JUN 26	48	8	14	. 4	.1	74	1	1	9	2	.370	100	2
Date	<62.51	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	ed bed sum <62.5 vd wet s d, fiel 1, tota g ugs	sed 5um svd ld, al,									
JUN 26	16	120	2.	4									

### NORTHWEST ALASKA—Continued

#### 674054163465200 STRAIGHT CREEK 4 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	col- lecting sample, code	sample, code	of land surface feet	Drain- age area, mi2	bed sed <62.5um wet svd field, total, percent	Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900)	sium, bed sed <62.5um wet svd fld,tot percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot percent
JUN 26	1350	Н	9	1028	80020	375	15.2	.480	.710	1.2	.860	.05	.057
Date	<62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svd field, total, ug/g	l ium, bed sed <62.5um wet svd fld,tot ug/g		bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd
JUN 26	1.5	.03	1.5	5.6	.6	6.3	710	1.7	1	. 4	54	82	14
Date	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	Lithium bed sed <62.5um wet svd field, total, ug/g (34895)	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd
JUN 26	18	1	12	1	1	3.1	28	20	39	630	.04	.5	28
Date	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	<62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	Thorium bed sed <62.5um wet svd field, total, ug/g (34980)	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wsv nat rec, percent	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd fld,tot ug/g
JUN 26	42	9	12	.3	.1	73	1	1	8	2	.400	97	2
Date	<62.50 wet sv field total ug/g	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	ed bed sum <62.1 vd wet s d, fie 1, tota	sed 5um svd ld, al,									
JUN 26	15	120	2.3	3									

### 674220163572800 STRAIGHT CREEK 7.7 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	Sample type	Agency col- lecting sample, code (00027)	Agency ana- lyzing sample, code (00028)	Alti- tude of land surface feet (72000)	Drain- age area, mi2 (81024)	total,	bed sed <62.5um wet svd fld,tot	<62.5um wet svd fld,tot	<62.5um wet svd field, total,	wet svd field, total,	Phos- phorus, bed sed <62.5um wet svd fld,tot percent (34935)
JUN 26	1245	Н	9	1028	80020	175	23.6	.620	.800	1.4	.710	.05	.072

#### NORTHWEST ALASKA—Continued

#### 674220163572800 STRAIGHT CREEK 7.7 MI BELOW PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat	carbon, bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	<177um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um
JUN 26	2.5	.05	2.5	6.3	.7	9.0	950	1.8	1	.7	55	95	19
	bed sed <62.5um wet svd	Europ- ium, bed sed <62.5um wet svd	bed sed <62.5um wet svd	bed sed <62.5um wet svd	bed sed <62.5um wet svd	bed sed <62.5um	num, bed sed <62.5um	bed sed <62.5um wet svd	bed sed <62.5um	ese, bed sed <62.5um	bed sed <62.5um wet svd	denum, bed sed <62.5um	ium, bed sed <62.5um
Date	ug/g	fld, tot ug/g (34855)	ug/g	ug/g	ug/g	total, percent (34880)	ug/g	ug/g		ug/g	ug/g	ug/g	ug/g
JUN 26	23	1	14	1	1	4.1	27	26	48	1100	.06	.6	28
Date	bed sed <62.5um wet svd field, total, ug/g	Niobium bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	<pre>ium, bed sed &lt;62.5um wsv nat   rec, percent</pre>	bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	(34925)	(34930)		.6			(34975)	(04064)	(34980)		.390		(35015)
	Yttring bed so <62.50 wet so field	ed bed s um <62.5 vd wet s d, fiel	ed bed s um <62.5 vd wet s d, fiel	sed oum svd									
Date	tota ug/9 (3501)		g ug/	g g									
JUN 26	18	180	2.4	1									

### 674133163341500 SF OMIKVIOROK RIVER 2.5 MI ABOVE ACCESS ROAD NEAR KIVALINA

				3	3	Alti-		bed sed	ium,	sium,	bed sed	bed sed	phorus,
				Agency col-	Agency ana-	tude of	Drain-	<62.5um wet svd	bed sed <62.5um	bed sed <62.5um	<62.5um wet svd	<62.5um wet svd	bed sed <62.5um
- ·		Medium	Sample	lecting		land	age	field,	wet svd		field,	field,	wet svd
Date	Time	code	type	sample, code	sample, code	surface feet	area, mi2	total,		percent	total, percent	total,	fld,tot percent
			(			(72000)	(81024)	(34830)		(34940)	(34960)	(34970)	(34935)
JUN													
26	1455	H	9	1028	80020	450	13.9	.510	.760	1.2	.840	.05	.070
	m . 1	-		- 1			<b>.</b> .	D 11	D	a 1 '	a .	G1	a 1 1.
	Total carbon,		Organic carbon,		mony,		bed sec		Bismuth bed sed	bed sed		Chrom- ium,	Cobalt, bed sed
	sedimnt	bed sed	bed sed	bed sed	bed sed	<62.5um	<62.5um	bed sed		<62.5um		bed sed	<62.5um
	<62.5um wsv nat	<62.5um wsv nat	<62.5um wsv nat			wet svd field,	wet svd field,			wet svd field,	wet svd field,	<62.5um wet svd	wet svd field,
Date	field	field	field		fld, tot		total,			total,	total,	fld, tot	total,
	percent	T	T	percen						ug/g	ug/g	ug/g	ug/g
	(49267)	(49269)	(49266)	(34790)	(34795)	(34800)	(34805)	(34810)	(34816)	(34825)	(34835)	(34840)	(34845)
JUN					_					_			
26	1.6	.03	1.6	5.8	.8	8.7	790	1.6	1	.3	51	87	16

#### NORTHWEST ALASKA—Continued

#### 674133163341500 SF OMIKVIOROK RIVER 2.5 MI ABOVE ACCESS ROAD NEAR KIVALINA—Continued

Date	wet svd field, total, ug/g	ium,	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um	bed sed <62.5um	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um	total, ug/g	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field,	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	21	1	13	1	1	3.6	27	16	41	710	.05	.6	26
Date	bed sed <62.5um wet svd field, total, ug/g	wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field,	bed sed <62.5um wet svd field, total, ug/g	<pre>ium, bed sed &lt;62.5um wsv nat rec, percent</pre>	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd fld,tot ug/g
JUN 26	47	9	13	. 4	.1	70	1	1	9	2	.390	110	2
Date	Yttrii bed se <62.5i wet si field tota ug/g (35010	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	sed Sum svd Ld, al,									
JUN 26	17	100	2.4	1									

# 674157164024300~ OMIKVIOROK RIVER 5.5 MI ABOVE MOUTH NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code 00027) (	Agency ana- lyzing sample, code 00028)	feet	Drain- age area, mi2 (81024)	wet svd field, total, percent	ium, bed sed <62.5um wet svd fld,tot	sium, bed sed <62.5um wet svd fld,tot percent	wet svd field, total,	bed sed <62.5um wet svd field, total,	Phos- phorus, bed sed <62.5um wet svd fld,tot percent (34935)
JUN 26	1215	Н	7	1028	80020	75	146	.680	.780	1.2	.730	.05	.076
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total,	bed sec <62.5um wet svo field, total, ug/g	fld,tot ug/g	bed sed <177um wet svd field,	bed sed <62.5um wet svd	bed sed <62.5um wet svd field,	ium, bed sed <62.5um wet svd fld,tot ug/g	Cobalt, bed sed <62.5um wet svd field, total, ug/g (34845)
JUN 26	2.3	.05	2.3	5.6	.7	10	900	1.7	1	. 4	48	94	17
Date	wet svd field, total, ug/g	ium, bed sed	wet svd field, total, ug/g	bed sed <62.5um	<62.5um	bed sed <62.5um wet svd field,	bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	wet svd	ese, bed sed	bed sed <62.5um wet svd	denum, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd
JUN 26	22	1	13	1	1	3.7	25	20	44	960	.05	.6	25

#### NORTHWEST ALASKA—Continued

#### 674157164024300 OMIKVIOROK RIVER 5.5 MI ABOVE MOUTH NEAR KIVALINA—Continued

	Nickel,	Niobium	Scand-	Selen-	Silver,	Stront-	Tant-	Thall-	Thorium	Tin,	Titan-	Vanad-	Ytterb-
	bed sed	bed sed	ium,	ium,	bed sed		alum,	ium,	bed sed	bed sed	ium,	ium,	ium,
	<62.5um	<62.5um	bed sed	bed sed			bed sed		<62.5um	<62.5um	bed sed	bed sed	bed sed
		wet svd					<62.5um		wet svd	wet svd		<62.5um	<62.5um
	field,	field,					wet svd		field,	field,	wsv nat	wet svd	wet svd
Date	total,	total,	fld, tot			fld, tot			total,	total,	rec,	fld, tot	fld, tot
	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	percent	ug/g	ug/g
	(34925)	(34930)	(34945)	(34950)	(34955)	(34965)	(34975)	(04064)	(34980)	(34985)	(49274)	(35005)	(35015)
JUN													
26	57	8	14	.6	.1	74	1	1	8	2	.360	110	2
20	57	0	14	.0	• ±	74	1	1	0	2	.300	110	2
	374.4	74											
	Yttriı bed se												
	<62.5t												
Date													
Date													
	,		., (000)										
JUN													
26	18	140	2.2	2									
	wet sy field total ug/g (35010	d, fiel l, tota g ug/ )) (3502	d, field, totag ug/0) (3500	ld, al, /g )0)									

#### 674244163441100 OMIKVIOROK RIVER TRAIL 2.3 MI BELOW ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code 00027) (	sample, code	feet	Drain- age area, mi2	wet svd field, total, percent		sium, bed sed <62.5um wet svd fld,tot percent	wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot percent
JUN 26	1330	Н	9	1028	80020	275	5.1	.610	.800	1.1	.900	.05	.069
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total,	bed sec <62.5um wet svd field, total, ug/g	l ium, bed sed <62.5um wet svd fld,tot ug/g	<177um wet svd field,	bed sed <62.5um wet svd field,	bed sed <62.5um wet svd field,	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um
JUN 26	2.1	.02	2.0	5.7	.7	9.6	990	1.6	1	.3	55	89	20
Date	wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g		ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	denum, bed sed	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	21	1	13	1	1	4.2	28	18	37	740	.04	.8	28
Date	bed sed <62.5um	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	Titan- ium, bed sed <62.5um wsv nat rec,	Vanad- ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd fld,tot ug/g
JUN 26	46	9	14	. 4	.2	73	1	1	8	2	.420	110	2

### NORTHWEST ALASKA—Continued

### 674244163441100 OMIKVIOROK RIVER TRAIL 2.3 MI BELOW ACCESS ROAD NEAR KIVALINA—Continued

	Yttrium	Zinc,	Uranıu
	bed sed	bed sed	bed se
	<62.5um	<62.5um	<62.5u
	wet svd	wet svd	wet sv
	field,	field,	field
Date	total,	total,	total
	ug/g	ug/g	ug/g
	(35010)	(35020)	(35000
JUN			
26	1.8	110	2.2

# $674324163243500~{\rm SB}$ NF OMIKVIOROK RIVER $6.5~{\rm MI}$ ABOVE ACCESS NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code 00027)	sample, code	surface feet	Drain- age area, mi2	wet svd field, total, percent		sium, bed sed <62.5um wet svd fld,tot percent	wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot
JUN 26	1550	Н	9	1028	80020	535	11.5	.670	.690	1.1	.860	.05	.073
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percen	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svd field, total, ug/g	d ium, bed sed <62.5um wet svd fld,tot ug/g	total,	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um
JUN 26	1.8	.04	1.7	5.3	.6	7.2	790	1.6	1	.3	46	84	14
Date	wet svd field,	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	Lithium bed sed <62.5um wet svd field, total, ug/g (34895)	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field,	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd
JUN 26	17	1	11	1	1	3.0	24	19	38	780	.04	.5	25
Date	bed sed <62.5um wet svd field, total, ug/g	wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	<62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field, total,	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wsv nat rec, percent	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um
JUN 26	46	8	12	.5	.1	69	1	1	8	2	.370	86	2
Date JUN	<62.51	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	ed bed um <62. vd wet d, field, totag ug	sed 5um svd ld, al,									
26	17	110	2.	1									

#### NORTHWEST ALASKA—Continued

#### 674338163320500 NF OMIKVIOROK RIVER 2.6 MI ABOVE ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	code	ana- lyzing sample, code	feet	Drain- age area, mi2	bed sed <62.5um wet svd field, total, percent	Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900)	sium, bed sed <62.5um wet svd fld,tot percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot percent
JUN 26	1515	Н	9	1028	80020	425	44.5	.600	.720	1.2	.790	.05	.075
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svd field, total, ug/g	d ium, bed sed <62.5um wet svd fld,tot ug/g	<177um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um
JUN 26	2.3	.03	2.2	5.7	.8	9.0	920	1.5	1	.5	45	89	17
Date	<62.5um wet svd field, total, ug/g	Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855)	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	<62.5um wet svd field, total, ug/g	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd
JUN 26	21	1	13	1	1	3.5	24	21	43	1100	.05	.5	25
Date	bed sed <62.5um wet svd field, total, ug/g	Niobium bed sed <62.5um wet svd field, total, ug/g (34930)	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wsv nat rec, percent	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd fld,tot ug/g
JUN 26	51	8	13	.5	.1	70	1	1	8	2	.360	100	2
Date	Yttring bed so <62.51 wet so field total ug/9 (35016	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	ed bed sum <62.5 vd wet sid, field, totag	sed 5um svd Ld, al,									
JUN 26	16	140	2.2	2									

### 674341163531500 OMIKVIOROK RIVER 7 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	Sample type	Agency col- lecting sample, code (00027)	Agency ana- lyzing sample, code (00028)	Alti- tude of land surface feet (72000)	Drain- age area, mi2 (81024)	bed sed <62.5um wet svd field, total,	ium, bed sed <62.5um wet svd fld,tot	<62.5um wet svd fld,tot	<62.5um wet svd field, total,	<62.5um wet svd field,	<62.5um wet svd fld,tot
JUN 26	1305	Н	9	1028	80020	175	82.4	.660	.780	1.4	.610	.05	.083

#### NORTHWEST ALASKA—Continued

#### 674341163531500 OMIKVIOROK RIVER 7 MI BELOW PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat	carbon, bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	<177um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um
JUN 26	2.8	.06	2.7	6.4	.8	11	1100	1.8	1	.6	51	100	21
		Europ-		Gold, bed sed					Lithium bed sed			Molyb- denum,	
		bed sed <62.5um											
Date	field,	wet svd fld,tot	field,	field,	field,		wet svd	field,		wet svd	field,	wet svd fld,tot	wet svd
Date	ug/g	ug/g (34855)	ug/g	ug/g	ug/g	percent	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g
JUN 26	34	1		1					53		.10		
Date	bed sed <62.5um wet svd field, total, ug/g	Niobium bed sed <62.5um wet svd field, total, ug/g (34930)	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	<pre>ium, bed sed &lt;62.5um wsv nat   rec, percent</pre>	<62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN	6.1	0	1.6	0	2	76	1	1	0	2	360	120	2
26 Date	<62.51	zim Zinc ed bed s um <62.5 vd wet s d, fiel l, tota	, Urani ed bed s um <62.5 vd wet s d, fiel l, tota g ug,	ium sed Sum svd Ld, al,	. 2	/6	1	1	9	3	.360	120	2
JUN 26	18	170	2.2	2									

### 674406163235900 NF OMIKVIOROK RIVER 6.5 MI ABOVE ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	Sample type	Agency col- lecting sample, code (00027)	Agency ana- lyzing sample, code (00028)	Alti- tude of land surface feet (72000)	Drain- age area,	bed sed <62.5um wet svd field, total,	wet svd fld,tot percent	wet svd fld,tot	bed sed <62.5um wet svd field, total, percent (34960)	bed sed <62.5um wet svd field, total, percent (34970)	phorus, bed sed <62.5um wet svd fld,tot percent (34935)
JUN 26	1605	Н	9	1028	80020	535	17.2	.950	.840	1.8	.550	.06	.110
Date	Total carbon, sedimnt <62.5um wsv nat field percent (49267)		wsv nat field	inum, bed sed <62.5um wet svd fld,tot t percen	mony, bed sed <62.5um wet svd fld,tot	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svd field, total,	l ium, bed sed <62.5um wet svd fld,tot	<177um wet svd field, total,	bed sed <62.5um	bed sed <62.5um	Chrom- ium, bed sed <62.5um wet svd fld,tot ug/g (34840)	Cobalt, bed sed <62.5um wet svd field, total, ug/g (34845)
JUN 26	3.5	.13	3.3	7.4	.8	16	1400	2.4	1	.9	57	120	29

#### NORTHWEST ALASKA—Continued

## 674406163235900 NF OMIKVIOROK RIVER 6.5 MI ABOVE ACCESS ROAD NEAR KIVALINA—Continued

Date	wet svd field, total, ug/g	ium, bed sed	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um	total, ug/g	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field,	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	32	2	18	1	1	5.3	31	26	61	2800	.08	. 9	31
Date	bed sed <62.5um wet svd field, total, ug/g		ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	wet svd field,	ium, bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field,	bed sed <62.5um wsv nat rec, percent	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd fld,tot ug/g
JUN 26	85	9	18	1.0	.2	85	1	1	11	3	.390	140	2
Date	Yttring bed set <62.51 wet so field total ug/g (35010	ed bed s im <62.5 rd wet s d, fiel tota g ug/	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	sed Sum Svd Ld, al,									
JUN 26	23	200	2.8	3									

### 674641163171800 NB NF OMIKVIOROK RIVER 9 MI ABOVE ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code (00027)	Agency ana- lyzing sample, code (00028)	feet	Drain- age area, mi2 (81024)	wet svd field,	ium, bed sed <62.5um wet svd fld,tot percent	<62.5um wet svd fld,tot	Sodium, bed sed <62.5um wet svd field, total, percent (34960)	bed sed <62.5um wet svd field, total,	bed sed <62.5um wet svd fld,tot
JUN 26	1625	Н	9	1028	80020	775	5.4	.490	.620	1.6	.570	.05	.079
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot t percen	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svo field, total, ug/g	fld, tot	bed sed <177um wet svd field, total, ug/g	bed sed <62.5um wet svd	bed sed <62.5um	ium, bed sed <62.5um wet svd fld,tot ug/g	Cobalt, bed sed <62.5um wet svd field, total, ug/g (34845)
JUN 26	3.1	.05	3.1	6.4	.7	12	770	1.6	1	. 4	53	100	17
Date	wet svd field,	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um		<62.5um	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svo fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ese, bed sed	wet svd field, total, ug/g	denum, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd
JUN 26	54	1	14	1	1	4.2	28	23	48	1100	.08	.8	27

#### NORTHWEST ALASKA—Continued

#### 674641163171800 NB NF OMIKVIOROK RIVER 9 MI ABOVE ACCESS ROAD NEAR KIVALINA—Continued

	Nickel,	Niobium	Scand-	Selen-	Silver,	Stront-	Tant-	Thall-	Thorium	Tin,	Titan-	Vanad-	Ytterb-
	bed sed			ium,	bed sed		alum,	ium,	bed sed	bed sed		ium,	ium,
		<62.5um		bed sed			bed sed				bed sed		bed sed
		wet svd					<62.5um			wet svd		<62.5um	<62.5um
	field,	field,		wet svd	field,		wet svd		field,	field,	wsv nat		wet svd
Date	total,	total,	fld, tot			fld, tot			total,	total,	rec,	fld, tot	fld, tot
	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	percent		ug/g
	(34925)	(34930)	(34945)	(34950)	(34955)	(34965)	(34975)	(04064)	(34980)	(34985)	(49274)	(35005)	(35015)
JUN													
26	120	8	14	.8	.2	72	1	1	10	3	.370	120	2
20	120	0	14	. 0	• 2	12	1	Τ.	10	3	.370	120	2
	Yttriı	ım Zinc	, Urani	Lum									
	bed se	ed bed s	ed bed s	sed									
	<62.5ı	um <62.5	um <62.5	oum									
	wet s												
	field												
Date	total												
	ug/g												
	(35010	0) (3502	0) (3500	)())									
JUN													
26	26	5 12	0 -	2.9									
20	20	J 12	0 2										

#### 674437163312500 MUD LAKE C 3.4 MI ABOVE PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code 00027) (	sample,	feet	Drain- age area, mi2	wet svd field, total, percent	Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900)	sium, bed sed <62.5um wet svd fld,tot percent	<62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot percent
JUN 26	1530	Н	9	1028	80020	500	2.8	.620	.920	1.5	.770	.05	.068
		carbon,	Organic carbon, bed sed	inum,	mony,	bed sed	bed sed	l īum,	Bismuth bed sed <177um	bed sed	bed sed	ium,	Cobalt, bed sed <62.5um
Date	<62.5um wsv nat field percent	<62.5um wsv nat field percent	<62.5um wsv nat field percent	<62.5um wet svd fld,tot percent	<62.5um wet svd fld,tot t ug/g	wet svd field, total,	wet svd field, total, ug/g	<62.5um wet svd fld,tot ug/g	wet svd field, total, ug/g	wet svd		<62.5um wet svd	wet svd field, total, ug/g (34845)
JUN 26	3.5	.07	3.5	7.6	.9	11	1200	2.1	1	.3	57	110	17
Date	wet svd field,	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	total, ug/g	ese, bed sed	bed sed <62.5um wet svd field, total, ug/g	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	31	1	18	1	1	4.7	30	20	49	470		.8	29
Date	bed sed <62.5um wet svd field, total,	wet svd field, total,	ium, bed sed <62.5um wet svd fld,tot	ium, bed sed <62.5um wet svd fld,tot	bed sed <62.5um wet svd field, total,	bed sed <62.5um wet svd fld,tot	alum, bed sed <62.5um wet svd fld,tot	ium, bed sed <62.5um dry svd total,	<62.5um wet svd field, total,	bed sed <62.5um wet svd field, total,	bed sed <62.5um wsv nat rec,	ium, bed sed <62.5um wet svd fld,tot	<62.5um wet svd fld,tot
	ug/g (34925)	ug/g (34930)	ug/g (34945)	ug/g (34950)	ug/g (34955)	ug/g (34965)	ug/g (34975)	ug/g (04064)	ug/g (34980)	ug/g (34985)	percent (49274)	ug/g (35005)	ug/g (35015)
JUN 26	57	11	18	.6	.2	82	1	1	10	3	.480	150	2

#### NORTHWEST ALASKA—Continued

#### 674437163312500 MUD LAKE C 3.4 MI ABOVE PORT ACCESS ROAD NEAR KIVALINA—Continued

	Yttrium	Zinc,	Uranıun
	bed sed	bed sed	bed sec
	<62.5um	<62.5um	<62.5um
	wet svd		wet svo
	field,	field,	field,
Date	total,		total,
	ug/g	ug/g	ug/g
	(35010)	(35020)	(35000)
JUN			
26	19	120	2.9

# $673956163490000\,$ DEADMAN CREEK 2.5 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	col- lecting sample, code	sample, code	surface	Drain- age area, mi2	bed sed <62.5um wet svd field, total, percent	Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900)	sium, bed sed <62.5um wet svd fld,tot percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd fld,tot
JUN 26	1415	Н	9	1028	80020	350	5.2	2.0	.560	1.4	.240	.14	.090
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svd field, total, ug/g	l ium, bed sed <62.5um wet svd fld,tot ug/g	total,	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd	ium, bed sed <62.5um wet svd fld,tot ug/g	
JUN 26	3.4	.53	2.9	5.2	.6	8.5	580	1.7	1	1.4	38	81	17
Date	bed sed <62.5um wet svd field, total, ug/g	bed sed	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	total, ug/g	ese, bed sed	bed sed <62.5um wet svd field,	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd
JUN 26	17	1	12	1	1	3.4	21	47	45	950	.09	. 9	21
Date	bed sed <62.5um	wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field, total,	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wsv nat rec,	ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um
JUN 26	53	7	11	1.0	.1	130	1	1	8	2	.280	88	2
Date	<62.5u	ed bed s um <62.5 vd wet s d, fiel tota g ug/	ed bed sum <62.5 vd wet sum field, totag ug,	sed Sum svd ld, al,									
JUN 26	22	390	2.2	2									

#### NORTHWEST ALASKA—Continued

#### 673705163491800 AUFEIS CREEK 0.8 MI ABOVE PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	code	ana- lyzing sample, code	surface feet	Drain- age area, mi2	Calcium bed sed <62.5um wet svd field, total, percent (34830)	ium, bed sed <62.5um wet svd fld,tot percent	sium, bed sed <62.5um wet svd fld,tot percent	bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	<pre>bed sed &lt;62.5um wet svd fld,tot percent</pre>
JUN 26	1000	Н	9	1028	80020	375	4.4	.390	.640	2.2	.400	.17	.100
Date	sedimnt <62.5um wsv nat field percent	carbon, bed sed <62.5um wsv nat	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percen	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sec <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd fld,tot ug/g	bed sed <177um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um
JUN 26	4.0	.04	3.9	7.4	1.0	13	1000	2.3	1	.3	57	140	12
Date	<62.5um wet svd field, total, ug/g	Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855)	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um
JUN 26	54	1	17	1	1	3.6	31	20	59	370	.17	1.2	32
Date	bed sed <62.5um wet svd field, total, ug/g	Niobium bed sed <62.5um wet svd field, total, ug/g (34930)	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	<62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wsv nat rec, percent	bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd
JUN 26	51	10	16	4.3	. 4	180	1	1	12	3	.380	140	3
Date	Yttri	um Zinc ed bed s um <62.5 vd wet s d, fiel 1, tota g ug/	, Uran: ed bed: um <62.! vd wet: d, fie; l, tota g ug.	ium sed 5um svd ld, al,									
JUN 26	23	140	3.	7									

# $673911163552300\,$ AUFEIS CREEK 2.7 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	Sample type	Agency col- lecting sample, code (00027)	Agency ana- lyzing sample, code (00028)	Alti- tude of land surface feet (72000)	Drain- age area, mi2 (81024)	total,	bed sed <62.5um wet svd fld,tot	<62.5um wet svd fld,tot	<62.5um wet svd field, total,	wet svd field, total,	Phos- phorus, bed sed <62.5um wet svd fld,tot percent (34935)
JUN 26	1125	Н	9	1028	80020	200	15.5	.750	.610	2.1	.280	.14	.120

#### NORTHWEST ALASKA—Continued

#### 673911163552300 AUFEIS CREEK 2.7 MI BELOW PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	sedimnt <62.5um wsv nat field percent	Inorg. carbon, bed sed <62.5um wsv nat field percent (49269)	carbon, bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percent	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	<177um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um
JUN 26	2.9	.14	2.7	7.2	.7	13	860	2.0	1	.5	49	140	15
Date	bed sed <62.5um wet svd field, total, ug/g	Europ- ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26		(34855)				(34880)					.08	1.0	(34920) 25
Date	bed sed <62.5um wet svd field, total, ug/g	Niobium bed sed <62.5um wet svd field, total, ug/g (34930)	ium, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g	alum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um dry svd total, ug/g	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um wet svd field, total, ug/g	<pre>ium, bed sed &lt;62.5um wsv nat   rec, percent</pre>	bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	61	10	15	1.5	.2	120	1	1	10	3	.390	140	3
Date	<62.50 wet so field total ug/g	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	ed bed s um <62.5 vd wet s d, fiel l, tota g ug/	sed Sum svd Ld, al,									
JUN 26	(3501)												

### 674021163580300 DEADMAN CREEK 6.5 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	Sample type	Agency col- lecting sample, code	Agency ana- lyzing sample, code	Alti- tude of land surface feet	Drain- age area,	bed sed <62.5um wet svd field, total, percent			bed sed <62.5um wet svd field, total, percent	bed sed <62.5um wet svd field, total, percent	phorus, bed sed <62.5um wet svd fld,tot percent
				(00027)	(00028)	(72000)	(81024)	(34830)	(34900)	(34940)	(34960)	(34970)	(34935)
JUN 26	1200	Н	9	1028	80020	125	12.8	2.8	.530	1.6	.240	.07	.086
Date	Total carbon, sedimnt <62.5um wsv nat field percent (49267)	carbon, bed sed <62.5um wsv nat field	wsv nat field	inum, bed sed <62.5um wet svd	mony, bed sed <62.5um wet svd fld,tot	bed sed <62.5um wet svd field, total,	bed sec	d ium, bed sed <62.5um wet svd fld,tot	<177um wet svd field, total,	bed sed <62.5um	bed sed <62.5um	Chrom- ium, bed sed <62.5um wet svd fld,tot ug/g (34840)	Cobalt, bed sed <62.5um wet svd field, total, ug/g (34845)
JUN 26	3.2	.76	2.4	5.9	.6	11	750	1.7	1	.6	49	98	17

#### NORTHWEST ALASKA—Continued

#### 674021163580300 DEADMAN CREEK 6.5 MI BELOW PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	bed sed <62.5um wet svd field, total, ug/g	Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855)	bed sed <62.5um wet svd field, total, ug/g	bed sed <62.5um	bed sed <62.5um	bed sed <62.5um wet svd field, total, percent	num, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um	bed sed <62.5um wet svd field, total, ug/g	ese, bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field,	denum, bed sed <62.5um wet svd fld,tot ug/g	ium, bed sed <62.5um wet svd fld,tot ug/g
JUN 26	20	1	13	1	1	3.6	26	23	56	890	.06	1.0	27
20	20	_	13	<u> </u>	-	3.0	20	23	30	030	.00	1.0	2,
Date	bed sed <62.5um wet svd field,	Niobium bed sed <62.5um wet svd field, total, ug/g	ium, bed sed <62.5um wet svd	ium, bed sed <62.5um wet svd	wet svd field,	ium, bed sed <62.5um wet svd	alum, bed sed <62.5um wet svd	ium, bed sed <62.5um dry svd	<62.5um wet svd field,	bed sed <62.5um wet svd field,	bed sed <62.5um	ium, bed sed <62.5um wet svd fld,tot	bed sed <62.5um wet svd
		(34930)											
JUN 26	60	8	13	1.2	.2	210	1	1	9	2	.310	110	2
Date	Yttrinbed so <62.50 wet so field total	ed bed s um <62.5 vd wet s d, fiel	ed bed sum <62.5 vd wet s d, fiel	sed Sum svd Ld,									
	ug/9	g ug/	g ug,	g g									
JUN 26	24	220	2.3	L									

## 674001164012100 AUFEIS CREEK 5.5 MI BELOW PORT ACCESS ROAD NEAR KIVALINA

Date	Time	Medium code	type	Agency col- lecting sample, code 00027)	Agency ana- lyzing sample, code (00028)	Alti- tude of land surface feet (72000)	Drain- age area, mi2 (81024)	wet svd field,	ium, bed sed <62.5um wet svd fld,tot percent	sium, bed sed <62.5um wet svd fld,tot	<62.5um wet svd field, total,	bed sed <62.5um wet svd field, total,	Phos- phorus, bed sed <62.5um wet svd fld,tot percent (34935)
JUN 26	1140	Н	9	1028	80020	125	24.4	.540	.550	1.8	.340	.05	.110
Date	sedimnt <62.5um wsv nat field	carbon, bed sed <62.5um wsv nat field percent	bed sed <62.5um wsv nat field percent	inum, bed sed <62.5um wet svd fld,tot percen	mony, bed sed <62.5um wet svd fld,tot t ug/g	bed sed <62.5um wet svd field, total,	bed sec <62.5um wet svo field, total, ug/g	ug/g	bed sed <177um wet svd field,	bed sed <62.5um wet svd	bed sed <62.5um	ium, bed sed <62.5um wet svd	Cobalt, bed sed <62.5um wet svd field, total, ug/g (34845)
JUN 26	2.6	.03	2.6	6.3	.7	12	800	2.1	1	. 4	51	110	16
Date	wet svd field, total, ug/g	ium, bed sed		bed sed <62.5um	<62.5um	bed sed <62.5um wet svd field,	bed sed <62.5um wet svd fld,tot ug/g	bed sed <62.5um wet svd field, total, ug/g	field,	ese, bed sed	bed sed <62.5um wet svd field,	denum, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd
JUN 26	26	1	15	1	1	3.8	28	20	58	880	.08	. 9	28

### NORTHWEST ALASKA—Continued

#### 674001164012100 AUFEIS CREEK 5.5 MI BELOW PORT ACCESS ROAD NEAR KIVALINA—Continued

Date	Nickel, bed sed <62.5um wet svd field, total, ug/g	<62.5um	ium, bed sed	wet svd	bed sed <62.5um wet svd field,	bed sed <62.5um wet svd	alum, bed sed <62.5um wet svd	<62.5um dry svd			bed sed	Vanad- ium, bed sed <62.5um wet svd fld,tot ug/g	<62.5um wet svd
	(34925)	(34930)	(34945)	(34950)	(34955)	(34965)	(34975)	(04064)	(34980)	(34985)	(49274)	(35005)	(35015)
JUN													
26	52	8	15	1.5	.2	100	1	1	10	2	.330	120	3
Date	Yttriubed se <62.50 wet sv field total ug/g (35010	ed bed s um <62.5 vd wet s d, fiel tota ug/	ed bed sum <62.5 vd wet sid, field, totag ug,	sed 5um svd ld, al,									
JUN 26	23	160	3.0	0									

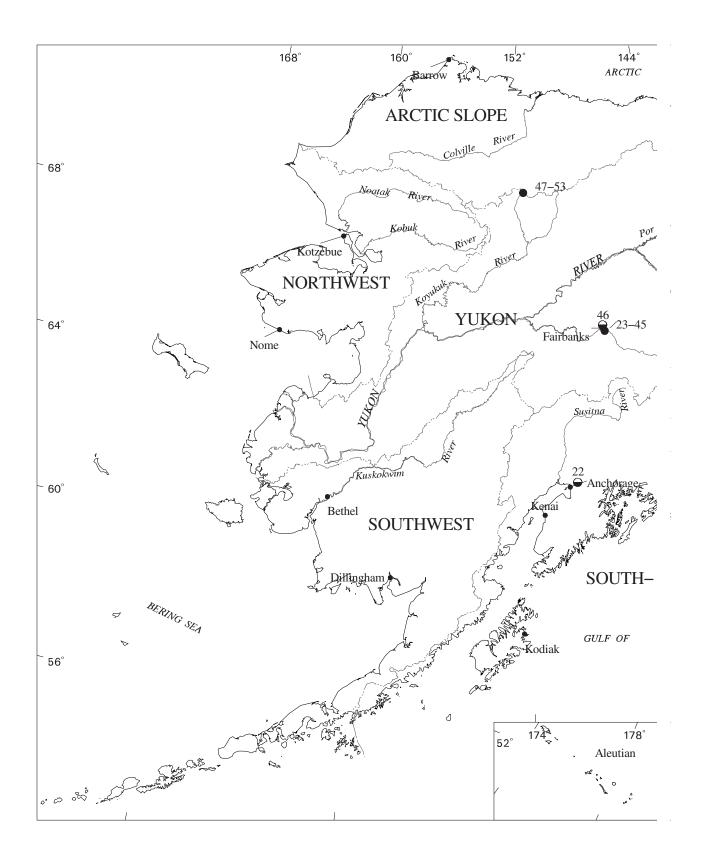
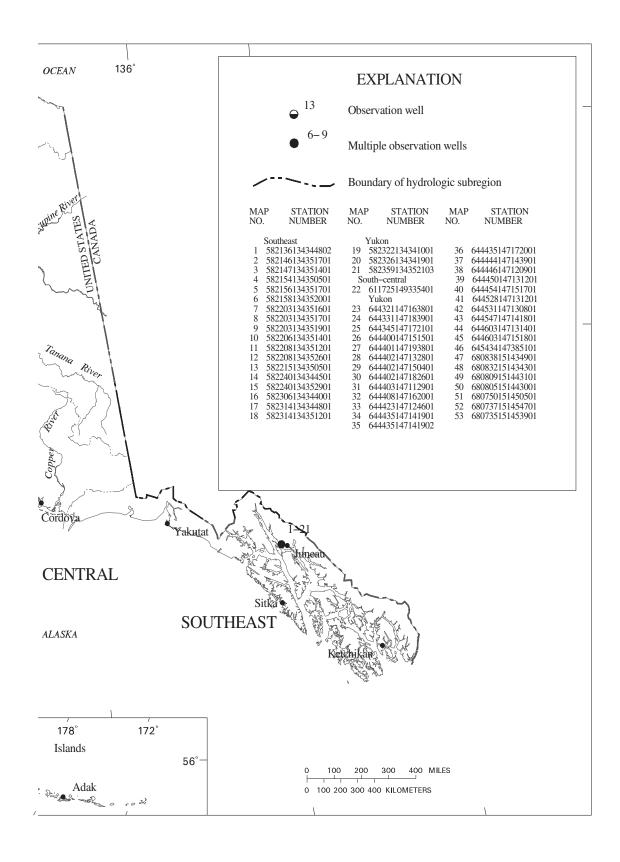
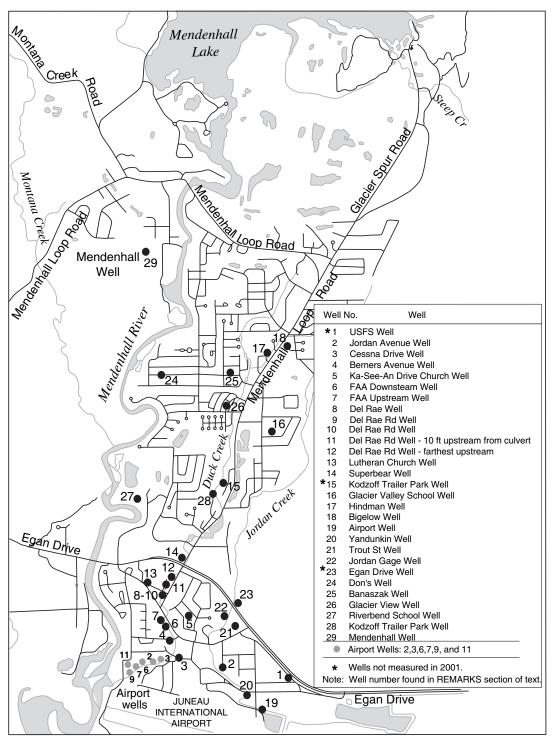





Figure 3. Locations of ground-water wells.





Location of Mendenhall Valley wells.

#### **JUNEAU**

#### 582136134344802. Local number, CD04006631ACBC1015.

LOCATION.--Lat  $58^{\circ}21'36''$ , long  $134^{\circ}34'48''$ , in  $NW^{1}/_{4}$   $SW^{1}/_{4}$   $NE^{1}/_{4}$  sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located about 20 ft southeast of a trail running between the intersection of Jordan Avenue and Teal Street, about 50 ft south of Teal Street, and about 20 ft northeast of a footbridge over Jordan Creek, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 8 ft, screen opening from 6 to 8 ft using a sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 19.84 ft above sea level (determined by levels survey). Measuring point: Top of casing, 0.6 ft above land-surface datum.

REMARKS.--Well drilled May 1997 by USGS, designated as Duck Creek #2 (Jordan Avenue Well). Area near well is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.1 ft above land-surface datum, July 13, 1997; lowest, 3.96 ft below land-surface datum, June 11, 2003.

### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER
DATE	LEVEl	DATE	LEVEL
Apr 26	3.32	May 25	3.48
May 03	3.53	June 02	3.60
May 08	3.70	Jun 11	3.96
May 14	3.54	Aug 20	2.77
May 17	3.41	Sep 27	0.52

#### 582146134351701. Local number, CD04006631BBDD1016.

LOCATION.--Lat 58°21′46″, long 134°35′17″, in SE¹/4 NW¹/4 Sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located near the left bank of Duck Creek, about 10 ft northwest of the intersection of Cessna Drive and Alex Holden Way, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 12 ft, screen opening from 10 to 12 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 25.35 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.88 ft above land-surface datum.

REMARKS.--Well drilled May 1997 by USGS, designated as Duck Creek #3 (Cessna Drive Well).

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.9 ft below land-surface datum, July 13, 1997; lowest, 10.54 ft below land-surface datum, May 08, 2003.

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Apr 19	9.78	Jun 02	10.35
Apr 26	10.19	June 21	9.94
May 03	10.42	July 06	9.80
May 08	10.54	Aug 10	9.38
May 14	10.32	Aug 20	8.92
May 17	10.04	Sep 27	7.50
May 25	10.32	•	

#### JUNEAU—Continued

#### 582147134351401. Local number, CD04006631BBDB1017.

LOCATION.--Lat 58°21'47", long 134°35'14", in SE¹/4 NW¹/4 NW¹/4 sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located near the right bank of Duck Creek, about 70 ft downstream of the Berners Avenue crossing, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS .-- Diameter 2-in. PVC casing, depth 8.8 ft, screen opening 6.8 to 8.8 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 19.52 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.9 ft above land-surface datum.

REMARKS.--Well drilled 1997 by USGS, designated as Duck Creek #4 (Berners Avenue Well). Water from well was sampled for water quality on September 5, 1997, January 29, 1998, and September 3, 1998.

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.20 ft below land-surface datum, September 3, 1998, and September 28, 2003; lowest, 4.58 ft below land-surface datum, May 08, 2003

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Apr 19	3.87	Jun 11	4.55
Apr 26	4.24	Jun 21	3.90
May 03	4.44	Jul 06	3.70
May 08	4.58	Aug 10	3.22
May 14	4.36	Aug 20	2.65
May 17	4.18	Sep 27	0.77
May 25	4.34	Sep 28	0.20
Jun 02	4.34		

# 582154134350501. Local number, CD04006630CDCB1027.

LOCATION.--Lat 58°21′54″, long 134°35′05″, in SW¹/4 SE¹/4 SW¹/4 sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located 15 ft east of a tributary to Duck Creek and about 1,200 ft northwest of Jordan Creek, 90 ft southwest of the First Church of God on Ka-See-An Drive, Juneau. Owner: First Church of God.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in steel casing., depth 17.5 ft, screen opening from 15.5 to 17.5 ft using a sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, or U.S. Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 26.30 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.05 ft above land-surface datum.

REMARKS.--Well drilled June 1997 by USGS, designated as Duck Creek #5 (Ka-See-An Drive Church Well).

PERIOD OF RECORD .-- June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.41 ft below land-surface datum, October 23, 1999; lowest, 10.43 ft below land-surface datum, May 08, 2003.

WATER		WATER
LEVEL	DATE	LEVEL
10.00	Jun 02	10.25
10.14	Jun 11	10.33
10.29	Jun 21	9.80
10.43	Jul 06	9.28
10.38	Aug 10	8.66
10.19	Aug 20	7.95
10.22	Sep 27	5.53
	10.00 10.14 10.29 10.43 10.38 10.19	LEVEL     DATE       10.00     Jun 02       10.14     Jun 11       10.29     Jun 21       10.43     Jul 06       10.38     Aug 10       10.19     Aug 20

#### JUNEAU—Continued

#### 582156134351701. Local number, CD04006631BBBA1018.

LOCATION.--Lat 58°21′56″, long 134°35′17″, in NW¹/4 NW¹/4 NW¹/4 sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located in Duck Creek channel about 90 ft downstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 11 ft, screen opening from 9 to 11 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 18.48 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.86 ft above land-surface datum.

REMARKS.--Well drilled May 1997 by USGS, designated as Duck Creek #6 (FAA Downstream Well). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.7 ft above land surface datum, July 13 and August 14, 1997; lowest, 3.90 ft below land-surface datum, May 25, 2003.

### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Apr 19	3.75	Jun 02	3.78
Apr 26	3.82	Jun 11	3.88
May 03	3.75	Jun 21	3.22
May 08	3.72	July 06	2.72
May 14	3.75	Aug 10	1.78
May 17	3.83	Aug 20	0.94
May 25	3.90		

### 582158134352001. Local number, CD04006630CCCD2017.

LOCATION.--Lat 58°21′58″, long 134°35′20″, in SW¹/4 SW¹/4 sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek channel, 20 ft upstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 12 ft, screen opening from 10 to 12 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 19.62 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.2 ft above land-surface datum.

REMARKS.--Well drilled May 8, 1997 by USGS, designated as Duck Creek #7 (FAA Upstream Well). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.7 ft above land surface datum, July 13 and August 14, 1997; lowest, 4.89 ft below land-surface datum, June 11, 2003.

DATE	WATER LEVEL	DATE	WATER LEVEL
Apr 19	3.42	Jun 02	4.84
Apr 26	3.89	Jun 11	4.89
May 03	4.30	Jun 21	4.74
May 08	4.53	Jul 06	4.36
May 14	4.75	Aug 10	4.06
May 17	4. 78	Aug 20	3.10
May 25	4.88	-	

#### JUNEAU—Continued

#### 582203134351601. Local number, CD04006630CCDB1028.

LOCATION.--Lat  $58^{\circ}22'03''$ , long  $134^{\circ}35'16''$ , in  $SE^{1}/_{4}$   $SW^{1}/_{4}$  sec. 30, T. 40 S., R. 66 E. (Juneau B-2 quad), Hydrologic Unit 19010301. Well located on left bank of Duck Creek about 55 ft downstream from Del Rae Road crossing, 25 ft from Mendenhall Loop Road, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in. steel casing, depth 14 ft, screen opening from 12 to 14 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 23.10 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.56 ft above land-surface datum.

REMARKS.--Well drilled May 6, 1997 by USGS, designated as Duck Creek #10 (Del Rae Road Well). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.22 ft below land surface datum, December 30, 1999; lowest, 8.04 ft below land-surface datum, May 08, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER		WATER
LEVEL	DATE	LEVEL
1.20	17	7.74
1.30	May 17	7.74
7.57	May 25	7.81
7.88	Jun 21	6.84
7.88	Jul 06	6.83
8.04	Aug 10	5.54
7.87	Aug 20	3.04
	1.30 7.57 7.88 7.88 8.04	LEVEL     DATE       1.30     May 17       7.57     May 25       7.88     Jun 21       7.88     Jul 06       8.04     Aug 10

### 582203134351701. Local number, CD04006630CCBD3015.

LOCATION.--Lat 58°22′03″, long 134°35′17″, in NW¹/4 SW¹/4 sw²/4 sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located on left bank of Duck Creek, 30 ft downstream from Del Rae Road crossing, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in. PVC casing, depth 11 ft, perforated from 9 to 11 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 22.14 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.30ft above land-surface datum.

REMARKS.--Well drilled May 6, 1997 by USGS, designated as Duck Creek #9 (Del Rae Road Well). Well is near stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.50 ft above land surface datum, August 14, 1997; lowest, 8.39 ft below land-surface datum, May 6, 1997.

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 10	0.20	May 25	7.06
Apr 19	6.90	Jun 02	6.90
Apr 26	7.08	Jun 11	6.94
May 03	7.16	Jun 21	6.06
May 08	7.30	Jul 06	5.15
May 14	7.14	Aug 10	4.82
May 17	7.00	Aug 20	1.98

#### JUNEAU—Continued

#### 582203134351901. Local number, CD04006630CCBD2015.

LOCATION.—Lat 58°22′03″, long 134°35′19″, in NW¹/4 SW¹/4 SW¹/4 scc. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located on right bank of Duck Creek, 75 ft downstream from Del Rae Road crossing and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2 in. steel casing, depth 15 ft, screen opening from 12 to 15 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 33 ft above sea level (determined from topographic map). Measuring point: Top of casing 1.66 ft above land-surface datum.

REMARKS.--Well drilled May 6, 1997 by USGS, designated as Duck Creek #8 (Del Rae Well). Well is near stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.15 ft above land surface datum, October 11, 2001, lowest, 9.40 ft below land-surface datum, May 08, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER		WATER
LEVEL	DATE	LEVEL
9.02	May 25	9.20
9.18	Jun 02	9.06
9.32	Jun 11	9.08
9.40	Jun 21	8.24
9.32	Jul 06	7.24
9.15	Aug 20	4.20
	9.02 9.18 9.32 9.40 9.32	LEVEL     DATE       9.02     May 25       9.18     Jun 02       9.32     Jun 11       9.40     Jun 21       9.32     Jul 06

### 582206134351401. Local number, CD04006630CCAC1029.

LOCATION.--Lat 58°22′06″, long 134°35′14″, in NE¹/4 SW¹/4 sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located in Duck Creek stream channel, 12 ft upstream from Del Rae Road crossing, 900 ft southwest of intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in PVC casing., depth 12 ft, slotted from 10 to 12 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 21.25 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.8 ft above land-surface datum.

REMARKS.--Well drilled May 7, 1997 by USGS, designated as Duck Creek #11 (Del Rae Road Well, 10 ft upstream from culvert). Well is in stream channel and is intermittently flooded. Water level often above top of casing. Unknown debris placed inside well casing at about 3.6 ft below land surface sometime prior to March 12, 1998. Water levels cannot be determined below the obstruction, but water levels above the obstruction appear to representative of aquifer conditions.

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.4 ft above land-surface datum, July 13, 1997; lowest, 5.35 ft below land-surface datum, May 15, 2000.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL
Apr 19	О	May 25	O
Apr 26	O	Jun 02	O
May 03	O	Jun 21	O
May 08	O	Jul 06	O
May 14	O	Aug 10	O
May 17	0	Aug 20	0.00

O -- Obstruction at about 2.4 ft below land surface datum.

#### JUNEAU—Continued

#### 582208134351201. Local number, CD04006630CCAB1030.

LOCATION.--Lat 58°22′08″, long 134°35′12″, in NE¹/4 SW¹/4 SW¹/4 sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located mid-channel of Duck Creek, about 130 ft upstream from Del Rae Road crossing, and 700 ft southwest of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in. PVC casing, depth 11 ft, slotted from 7 to 10 ft.

INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 21.22 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.14 ft above land-surface datum.

REMARKS.--Well drilled May 7, 1997 by USGS, designated as Duck Creek #12 (Del Rae Road Well, farthest upstream). Well is in stream channel and is intermittently flooded. Water level often above top of casing.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.79 ft above land-surface datum, October 11, 2001; lowest, 5.96 ft below land-surface datum, May 08, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER		WATER
LEVEL	DATE	LEVEL
5.48	Jun 02	5.51
5.75	Jun 11	5.49
5.80	Jun 21	4.42
5.96	Jul 06	3.24
5.65	Aug 10	3.24
5.58	Aug 20	-0.20
5.66		
	5.48 5.75 5.80 5.96 5.65 5.58	LEVEL       DATE         5.48       Jun 02         5.75       Jun 11         5.80       Jun 21         5.96       Jul 06         5.65       Aug 10         5.58       Aug 20

Minus sign indicates water level above land-surface datum.

#### 582208134352601. Local number, CD04006630CCBB1031.

 $LOCATION.--Lat~58^{\circ}22'08'', long~134^{\circ}35'26'', in~NW^{1}/_{4}~SW^{1}/_{4}~SW^{1}/_{4}~sec.~30,~T.~40~S.,~R.~66~E.~(Juneau~B-2~SW~quad),~Hydrologic~Unit~19010301.~Well~located~near~a~church~parking~lot,~55~ft~northeast~of~Del~Rae~Road,~and~105~ft~southeast~of~the~Lutheran~Church,~Juneau.~Owner:~Lutheran~Church.$ 

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 15 ft, screen opening from 13 to 15 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 26.74 ft above sea level (determined by levels survey). Measuring point: Top of steel coupling at top of casing 2.8 ft above land-surface datum.

REMARKS.--Well drilled June 1997 by USGS, designated as Duck Creek #13 (Lutheran Church Well). Well casing filled with sediment to about 12.2 ft

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.06 ft below land-surface datum, September 28, 2003; lowest, dry, March 21 and April 8, 2000.

# ${\tt DEPTH\ BELOW\ LAND\ SURFACE\ (WATER\ LEVEL)\ (FEET),\ WATER\ YEAR\ OCTOBER\ 2002\ TO\ SEPTEMBER\ 2003}$

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 10	7.18	Jun 02	12.14
Apr 19	12.19	Jun 11	12.09
Apr 26	12.56	Jun 21	11.16
May 03	12.47	Jul 06	10.37
May 08	12.66	Aug 10	10.10
May 14	12.58	Aug 20	8.60
May 17	12.32	Sep 28	6.06
May 25	12.40	•	

#### JUNEAU—Continued

#### 582215134350501. Local number, CD04006630CBAD1032.

LOCATION.--Lat 58°22′15″, long 134°35′05″, in NE¹/4 NW¹/4 SW¹/4 sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well located near right bank of Duck Creek, 20 ft upstream from a footbridge and 225 ft upstream from the intersection of Egan Drive and Mendenhall Loop Road, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. steel casing, depth 12 ft, screen opening from 10 to 12 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel May 1997 to current year.

DATUM.--Elevation of land-surface datum is 25.04 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.70 ft above land-surface datum.

REMARKS.--Well drilled May 21, 1997 by USGS, designated as Duck Creek #14 (Superbear Well).

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 1.16 ft below land-surface datum, September 28, 2003; lowest, 6.77 ft below land-surface datum, May 08, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Apr 19	6.07	Jun 02	5.81
Apr 26	6.38	Jun 11	5.78
May 03	6.60	Jun 21	4.58
May 08	6.77	Jul 06	2.90
May 14	6.35	Aug 10	2.83
May 17	6.13	Aug 20	2.74
May 25	5.91	Sep 28	1.16

#### 582240134344501, Local number, CD04006630BADA2033.

LOCATION.--Lat 58°22′40″, long 134°34′45″, in SE¹/4 NE¹/4 Sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad) Hydrologic Unit 19010301. Well located about 270 ft up a trail from the northern end of the road through Kodzoff #1 trailer Park, Juneau. Owner: Goldbelt Corporation AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2.0-in. steel casing, depth 18.5 ft. Two pipe wrenches are needed to open well.

INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by USGS personnel February 2001 to September 2003; submersible pressure transducer/electric data logger from February 2001 to September 2002.

DATUM.--Elevation of land-surface datum is 40.57 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.70 ft above land-surface datum.

REMARKS.--Well drilled October 27, 2000, designated as Kodzoff Trailer Park Well.

PERIOD OF RECORD.--February 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 7.91 ft below land-surface datum, August 29-30, 2002; lowest, 12.05 ft below land-surface datum, May 8-10, 2002.

EXTREMES FOR CURRENT YEAR.-- Highest water level measured, 8.15ft below land-surface-datum, September 29, 2003; lowest, 11.32 ft below land-surface-datum, May 02, 2003.

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 02	8.97	Jun 06	10.75
Dec 06	8.70	Jul 11	10.08
Mar 18	10.56	Aug 19	9.25
Apr 04	10.70	Sep 29	8.15
May 02	11.32	1	

#### JUNEAU—Continued

#### 582240134352901. Local number, CD04006630BBCB1036.

LOCATION.--Lat 58°22′40", long 134°35′29", in SW¹/4 NW¹/4 NW¹/4 sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well located at northeast edge of baseball field at Riverbend School on Riverside Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFRER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.-- Diameter 2.0-in. PVC casing, depth 15.9 ft, slotted from 5 to 15 ft.

INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by USGS personnel April 2001 to October 2003; submersible pressure transducer/electric data logger May 2001 to March 22, 2002 and August 22, 2002 to September 30, 2002.

DATUM.-- Elevation of land-surface datum is 31.95 ft above sea level (determined by survey grade GPS). Measuring point: Top of casing 0.20 ft below land-surface datum April 2001 to July 24, 2002; then 0.73 ft. above land-surface datum to current year.

REMARKS.-- Well drilled December 15, 1998 by Hart Crowser, Inc., designated as Riverbend School well.

PERIOD OF DAILY RECORD.-- April 2001 to March 22, 2002; August 22, 2002 to September 30, 2002.

EXTREMES FOR PERIOD OF RECORD.-- Highest water level recorded, 3.58 ft below land-surface datum, August 31, 2002; lowest, 11.49 ft. below land-surface datum, March 22-23, 2002, but may have been lower during period of missing record, March 23-28, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 5.12 ft below land-surface datum, September 30, 2003; lowest, 9.28ft. below land-surface datum, April 01, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 02	5.13	Jun 06	8.70
Dec 06	6.95	Jul 10	7.15
Mar 18	9.13	Aug 19	6.43
Apr 01	9.28	Sep 30	5.12
May 02	8.95		

#### 582306134344001. Local number, CD04006619DBCB1056.

LOCATION.--Lat 58°23′06″, long 134°34′40″, in SW1/4 NW1/4 SE1/4 sec. 19, T.40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, Well is the northernmost of two wells (southernmost has casing welded shut), located about 300 ft west of Duck Creek, about 300 ft north of Stephen Richards Drive, Juneau. Owner: Glacier View Trailer Park.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS .-- Diameter 2.0 in., depth 52.7 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey April 2000 to April 2001. Electronic data logger and submersible pressure transducer April 2001 to September 2001.

DATUM.--Elevation of land-surface datum is 45.4 ft above sea level (determined by survey-grade GPS). Measuring point: Top of casing 1.4 ft above land-surface datum.

REMARKS.--Record good. Well also known as Glacier View Well.

PERIOD OF RECORD.--April 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 5.78 ft below land-surface datum, July 22, 2001; lowest water level measured, 9.24 ft below land-surface datum, March 18, 2003.

DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 02	7.42	Jun 06	8.75
Oct 04	7.53	Jul 11	8.18
Dec 06	7.38	Aug 19	7.68
Mar 18	9.24	Sep 29	6.02
May 02	9.19	1	

#### JUNEAU—Continued

## 582314134344801. Local number, CD04006619BDDD1055.

LOCATION.--Lat  $58^{\circ}23'14''$ , long  $134^{\circ}34'48''$ , in  $SW^{1}/_{4}$   $SW^{1}/_{4}$  NW $^{1}/_{4}$  sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well located near the northwest corner of garage at 9002 Gee Street, Juneau. Owner: Tim and Debbie Banaszak.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS .-- Diameter 2.0 in., depth 44.2 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS personnel February 2001 to current year; submersible pressure transducer/electic data logger October 1, 2001 to current year.

DATUM.--Elevation of land-surface datum is 46.4 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.80 ft above land-surface datum.

REMARKS.--Well designated as Banaszak well.

PERIOD OF RECORD .-- February 2001 to April 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 4.19 ft below land-surface datum, October 22, 2002; lowest, 9.54 ft below land-surface datum, April 18, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 4.19 ft below land-surface datum, October 22; lowest, 9.23 ft below land-surface datum, April 11 and 12.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.18 7.15 7.18 7.21 7.33	7.23 7.36 7.49 7.57 7.65	5.98 6.18 6.43 6.64 6.93	8.13 8.01 8.03 7.83 7.33	8.16 8.16 8.06 7.97 7.97	8.74 8.63 8.50 8.25 8.24	8.90 8.90 8.92 9.00 9.02	  	  	  	  	  
6 7 8 9 10	7.09 6.63 6.14 6.09 6.23	7.67 7.73 7.75 7.83 7.94	7.16 7.31 7.28 6.95 6.90	7.12 7.10 7.25 7.31 7.42	8.03 8.12 8.21 8.28 8.37	8.31 8.39 8.51 8.54 8.64	9.04 9.05 9.12 9.15 9.15	  	  	  	  	  
11 12 13 14 15	6.46 6.62 6.62 6.80 6.99	8.02 8.02 8.07 8.12 8.05	6.85 6.60 6.57 6.64 6.90	7.58 7.68 7.87 7.93 8.08	8.40 8.40 8.43 8.45 8.49	8.73 8.73 8.73 8.83 8.93	9.15 9.22 9.18 9.18 9.15	  	  	  	  	  
16 17 18 19 20	6.09 5.29 5.29 5.49 5.38	8.01 8.10 7.91 7.60 7.43	7.11 7.28 7.42 7.57 7.63	8.16 7.87 7.69 7.53 7.34	8.55 8.60 8.65 8.67 8.74	9.03 9.06 9.06 8.94 8.93	9.11   		  		  	  
21 22 23 24 25	4.46 4.19 4.44 5.10 5.68	7.43 7.49 7.53 7.63 7.60	7.76 7.89 7.68 7.57 7.56	7.35 7.40 7.50 7.71 7.83	8.80 8.89 8.91 8.94	8.87 8.83 8.88 8.91 8.91	  	  	  	  	  	  
26 27 28 29 30 31	6.08 6.21 6.35 6.55 6.81 7.04	6.57 6.29 6.27 6.29 5.98	7.65 7.85 7.95 8.00 8.05 8.15	7.81 8.01 8.16 8.21 8.12 8.09	9.00 8.95 8.95 	8.97 9.04 9.04 8.97 8.91 8.89	   		  	  	  	   

#### JUNEAU—Continued

#### 582314134351201. Local number, CD04006619BCDD2020.

LOCATION.--Lat  $58^{\circ}23'14''$ , long  $134^{\circ}35'12''$ , in  $SE^{1}/_{4}$   $SW^{1}/_{4}$   $NW^{1}/_{4}$  sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well located near the northwest corner of garage at 9220 Gee Street, Juneau. Owner: Don Thomas

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5-in. steel casing, depth 49.1 ft, screen opening from 46.1 to 49.1 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS personnel April 2000 to January 2001; submersible pressure transducer/electric data logger January 2001 to current year.

DATUM.--Elevation of land-surface datum is 43.09 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.92 ft above land-surface datum.

REMARKS.--Well drilled 1974, designated as Don's well. Missing record October 1, 2002 to March 18, 2003, due to equipment malfunction. Tranducer range was exceeded during periods of high water in July, August, and September 2003.

PERIOD OF RECORD.--April 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 5.40 ft below land-surface datum, August 13, 2002; lowest, 10.61 ft below land-surface datum, April 18, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, not determined, range of transducer exceeded during periods of highest water levels; lowest during period March to September, 10.55 ft below land-surface datum, April 12.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							10.25	9.70	9.02	7.58	7.28	
2							10.23	9.65	8.93	7.55	7.37	
3							10.26	9.66	8.93	7.36	7.37	
4							10.31	9.69	8.98		7.58	
5							10.32	9.65	8.94		7.68	
6							10.30	9.65	8.65	7.51	7.81	
7			#8.84				10.33	9.79	8.62	7.67	7.63	
8							10.41	9.98	8.68	7.71	7.56	
9							10.47	10.01	8.73	7.63	7.47	
10							10.44	10.00	8.56	7.57	7.47	
11							10.44	9.94	8.44	7.44	7.80	
12		#9.25					10.48	9.82	8.41	7.42	7.86	
13							10.42	9.70	8.45	7.42	7.81	
14							10.41	9.61	8.43	7.54	7.32	
15							10.38	9.57	8.58	7.70		
16							10.32	9.62	8.71	7.80		
17							10.28	9.71	8.49	7.87		7.50
18							10.25	9.75	8.18	7.69		7.72
19						10.25	10.29	9.73	7.79	7.62	#7.26	8.00
20						10.23	10.35	9.68	7.64	7.57		7.90
21						10.21	10.33	9.61	7.71	7.44		7.54
22						10.16	10.27	9.61	7.99	7.41	7.23	7.50
23						10.30	10.30	9.45	8.15	7.49	7.61	7.63
24						10.31	10.33	9.30	8.26	7.85	7.96	7.50
25						10.31	10.12	9.26	8.23	7.89	7.94	
26						10.37	9.89	9.13	7.92	8.08	7.93	
27		#7.55				10.46	9.83	9.06	7.76	7.86	8.14	
28						10.36	9.75	8.99	7.76	7.69	8.12	
29						10.30	9.74	8.99	7.88		8.06	
30						10.26	9.73	8.98	7.90		7.63	
31						10.22		9.01				

^{# --} Result of tape down.

#### JUNEAU—Continued

#### 582322134341001. Local number, CD04006619ACAB1050.

LOCATION.--Lat  $58^{\circ}23'20''$ , long  $134^{\circ}34'17''$ , in  $NE^{1}_{/4}$   $SW^{1}_{/4}$   $NE^{1}_{/4}$  sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well located at 3737 North El Camino Street, 30 ft west of the southwest corner of the house and 70 ft from North El Camino Street, Juneau. Owner: Nicholas Hindman.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 15 ft, screen opening from 2.5 to 4.7 ft, open hole.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, University of Alaska-Southeast, and US Forest Service personnel July 1997 to current year.

DATUM.--Elevation of land-surface datum is 43.87 ft above sea level (determined from levels survey). Measuring point: Top of casing 1.2 ft above land-surface datum.

REMARKS.--Well drilled July 7, 1997 by USGS, designated as Duck Creek #17 (Hindman Well). Well sampled for water quality, September 3, 1997, January 26, 1998, and September 3, 1998.

PERIOD OF RECORD.--July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.40 ft below land-surface datum, October 23, 1999; lowest, 3.10 ft below land-surface datum, May 08, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 10	1.20	May 25	2.25
Apr 19	2.35	Jun 21	1.88
Apr 26	2.68	Jul 06	1.97
May 03	2.93	Aug 10	2.16
May 08	3.10	Aug 20	1.58
May 14	O	Sep 28	1.00
May 17	2.08		

O -- Obstruction at about 4.25 bl. LSD.

# 582326134341901. Local number, CD04006619ADBA1011.

 $LOCATION.--Lat \, 58^{\circ}23'36'', long \, 134^{\circ}34'19'', in \, NW^{1}/_{4} \, SE^{1}/_{4} \, NE^{1}/_{4} \, sec. \, 19, \, T. \, 40 \, S., \, R. \, 66 \, E. \, (Juneau \, B-2 \, NW \, quad), \, Hydrologic \, Unit \, 19010301. \\ Well \, located \, 6 \, ft \, southeast \, of \, a \, bike \, path, \, 25 \, ft \, southeast \, of \, Mendenhall \, Loop \, Road, \, and \, about \, 450 \, ft \, southwest \, of \, intersection \, of \, Mendenhall \, Loop \, Road \, and \, Valley \, Boulevard, \, Juneau. \, Owner: \, Bruce \, B. \, Bigelow.$ 

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25-in. galvanized iron casing, depth 15 ft, screen opening from 11 to 15 ft using sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS and University of Alaska-Southeast personnel June 1997 to current year.

DATUM.--Elevation of land-surface datum is 45.76 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.3 ft above land-surface datum.

REMARKS.--Well drilled June 23, 1997 by USGS, designated as Duck Creek #18 (Bigelow Well).

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.01 ft above land-surface datum, July 25 and August 12, 1997; lowest, 2.55 ft below land-surface datum, April 23, 1999.

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
Oct 10	2.28	Jun 02	1.72
Apr 19	1.61	Jun 11	1.91
Apr 26	2.03	Jun 21	1.82
May 08	2.05	Jul 06	1.59
May 14	1.85	Aug 10	1.74
May 17	1.70	Aug 20	1.66
May 25	1.81	Sep 28	0.45

#### JUNEAU—Continued

## 582359134352103. Local number, CD04006618CBCA3019.

LOCATION.--Lat 58°23′59″, long 134°35′21″, SW¹/4 NW¹/4 SW¹/4 sec.18, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, Well is located in steel gage house by sewage treatment plant on Riverbend Road, 1/4 mile off of the Mendenhall Loop Road, Juneau. Owner: Harlan Olsen.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 6-in. PVC casing, depth 40 ft, screen opening from 30 to 40 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by USGS, November 1983 to current year; continuous strip-chart recorder, November 1983 to August 1984; Digital recorder, August 1984 to April 1997; submersible pressure transducer/electric data logger, August 1997 to September 1998; electronic data logger and encoder, September 1998 to current year.

DATUM.--Elevation of land-surface datum is 50.53 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.77 ft above land-surface datum.

REMARKS.--Well drilled November 3, 1983 by USGS, designated as Mendenhall well. Well sampled for water quality, May 17, 1984. PERIOD OF RECORD.--November 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level recorded, 4.89 ft below land-surface datum, September 25, 1990; lowest measured, 13.54 ft below land-surface datum, February 2, 1997.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 5.24 ft below land-surface datum, October 22; lowest, 11.61 ft below land-surface datum, May 10, 11, 12, and 13.

# DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY HIGHEST WATER LEVEL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.81 7.81 7.87 7.99 8.17	7.61 7.81 8.03 8.26 8.48	6.51 6.68 6.89 7.16 7.47	9.65 9.55 9.55 9.25 8.23	9.76 9.85 9.75 9.57 9.56	11.31 11.17 10.90 10.31 10.19	11.10 11.10 11.10 11.17 11.22	11.28 11.28 11.28 11.30 11.33	11.24 11.24 11.21 11.21 11.18	#10.36  	  	8.87 8.45 8.26 8.25 8.33
6 7 8 9 10	7.56 6.93 6.57 6.54 6.69	8.57 8.78 8.83 9.01 9.20	7.71 7.95 7.83 7.50 7.50	7.81 7.81 7.92 7.99 8.17	9.57 9.72 9.84 9.96 10.10	10.19 10.22 10.37 10.44 10.59	11.28 11.29 11.43 11.47 11.52	11.34 11.40 11.52 11.57 11.60	#11.13   	  #10.34 #10.30	  	8.60 8.70 7.06 6.95 7.02
11 12 13 14 15	6.90 6.97 6.97 7.15 7.39	9.34 9.32 9.44 9.59 9.58	7.55 7.32 7.29 7.32 7.55	8.43 8.64 8.96 9.08 9.32	10.16 10.19 10.25 10.28 10.39	10.73 10.77 10.78 11.02 11.18	11.52 11.55 11.52 11.52 11.52	11.61 11.61 11.55 11.39 11.31			  	7.07 6.95 6.48 6.48 6.59
16 17 18 19 20	6.31 5.87 5.87 6.02 5.96	9.53 9.68 9.35 8.66 8.43	7.77 8.04 8.25 8.48 8.57	9.48 8.94 8.60 8.26 7.93	10.45 10.55 10.68 10.69 10.81	11.33 11.39 11.48 11.54 11.52	11.47 11.47 11.40 11.40 11.45	11.31 11.31 11.31 11.31	   #10.59	  	  #9.68	6.91 7.21 7.38 7.70 7.57
21 22 23 24 25	5.39 5.24 5.39 5.78 6.19	8.43 8.45 8.49 8.70 8.60	8.81 9.01 8.72 8.42 8.41	7.93 8.06 8.30 8.60 8.86	10.92 11.04 11.07 11.12 11.14	11.41 11.38 11.38 11.38	11.45 11.40 11.40 11.49 11.45	11.27 11.27 11.27 11.27 11.27	#10.58 #10.63	  	#9.33 #9.45  #9.88	7.35 7.35 7.52 7.05 7.02
26 27 28 29 30 31	6.49 6.56 6.71 6.88 7.16 7.40	7.08 6.87 6.81 6.83 6.51	8.59 8.87 9.04 9.14 9.25 9.46	8.89 9.27 9.46 9.52 9.67 9.66	11.24 11.28 11.34	11.38 11.45 11.46 11.36 11.20 11.11	11.34 11.33 11.28 11.28	11.27 11.26 11.18 11.21 11.21 11.21	  #10.41	  	#9.89 #10.13 10.13 10.13 9.86 9.47	6.97 6.14 6.10 6.11 6.25

# -- Result of tapedown

#### SOUTH-CENTRAL ALASKA

#### MUNICIPALITY OF ANCHORAGE.

#### 611725149335401. Local number, SB01400223BCCD1003.

 $LOCATION.--Lat \ 61^{\circ}17'26'', long \ 149^{\circ}35'39'', in \ SE^{1}/_{4} \ SW^{1}/_{4} \ SW^{1}/_{4} \ NW^{1}/_{4} \ sec. 23, T.14 \ N., R.2 \ W. (Anchorage B-7SW quad), Hydrologic Unit 19020401, at Anchorage Regional Landfill, Glenn Highway and Hiland Road interchange, Anchorage. Owner: Municipality of Anchorage. AQUIFER.--Sand and gravel of the Quaternary System.$ 

WELL CHARACTERISTICS.--Diameter 6 in., depth 132 ft, cased to 118 ft, open hole. Casing perforated from 111 to 117 ft. Bedrock from 117 ft. Driller's log notes casing break at 80 ft.

INSTRUMENTATION.--Monthly measurement with chalked steel tape by U.S. Geological Survey personnel July 1997 to September 1999. electronic data logger from September 3, 1999 to current year.

DATUM.—Elevation of land surface datum is 542.56 ft above sea level (determined by level survey). Measuring point: Top of casing 3.4 ft above land-surface datum.

REMARKS.--Observation well drilled by Municipality of Anchorage, designated as KB-6.

PERIOD OF RECORD .-- August 1986, July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 107.88 ft below land-surface datum, June 7, 2000; lowest, 114.25 ft below land-surface datum, Aug. 21, 1986.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 108.87 ft. below land-surface datum, November 26 and 29; lowest, 110.68 ft. below land-surface datum, September 25 and 30.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	110.27	109.50	108.97	109.24	109.78	110.29	110.37	110.48	110.54	110.47	110.52	110.58
2	110.32	109.47	108.95	109.24	109.80	110.28	110.37	110.47	110.55	110.47	110.52	110.60
3	110.30	109.42	108.93	109.21	109.81	110.29	110.39	110.47	110.53	110.49	110.52	110.60
4	110.30	109.40	108.95	109.26	109.85	110.29	110.38	110.49	110.53	110.48	110.53	110.60
5	110.29	109.35	108.95	109.26	109.86	110.31	110.38	110.49	110.50	110.49	110.53	110.60
6 7 8 9 10	110.31 110.28 110.33 110.28 110.25	109.35 109.31 109.30 109.28 109.26	108.93 108.93 108.92 108.92 108.94	109.29 109.34 109.34 109.36 109.37	109.92 109.92 109.93 109.96 109.99	110.29 110.31 110.31 110.28 110.32	110.38 110.40 110.40 110.41 110.41	110.50 110.50 110.49 110.47 110.50	110.52 110.52 110.52 110.51 110.51	110.48 110.48 110.49 110.49	110.54 110.54 110.54 110.54 110.54	110.60 110.60 110.61 110.61 110.61
11	110.23	109.22	108.91	109.38	110.01	110.30	110.42	110.49	110.50	110.48	110.51	110.62
12	110.23	109.18	108.90	109.39	110.03	110.27	110.40	110.50	110.50	110.48	110.52	110.61
13	110.18	109.18	108.98	109.43	110.06	110.27	110.40	110.51	110.50	110.49	110.53	110.61
14	110.15	109.16	108.96	109.43	110.07	110.31	110.41	110.52	110.52	110.49	110.52	110.62
15	110.04	109.12	108.97	109.45	110.09	110.30	110.39	110.52	110.52	110.48	110.54	110.61
16 17 18 19 20	110.09 110.04 110.00 109.95 109.95	109.06 109.06 109.02 109.06 109.04	108.98 109.00 109.05 109.05	109.47 109.46 109.49 109.50 109.57	110.10 110.13 110.14 110.16 110.18	110.33 110.33 110.33 110.33	110.43 110.43 110.43 110.44 110.44	110.52 110.52 110.52 110.52 110.52	110.50 110.50 110.50 110.51 110.49	110.48 110.51 110.49 110.49 110.50	110.55 110.56 110.56 110.54 110.56	110.61 110.60 110.61 110.62 110.62
21	109.90	109.03	109.04	109.56	110.20	110.33	110.43	110.51	110.50	110.51	110.56	110.64
22	109.86	108.99	109.01	109.57	110.21	110.34	110.44	110.52	110.48	110.51	110.56	110.63
23	109.82	108.97	109.07	109.59	110.19	110.35	110.47	110.51	110.49	110.50	110.57	110.58
24	109.78	108.99	109.10	109.61	110.22	110.34	110.46	110.52	110.48	110.50	110.57	110.59
25	109.72	108.91	109.12	109.63	110.25	110.36	110.46	110.54	110.48	110.51	110.56	110.65
26 27 28 29 30 31	109.72 109.69 109.62 109.59 109.57 109.55	108.87 108.93 108.91 108.87 108.95	109.14 109.17 109.16 109.17 109.18 109.20	109.62 109.69 109.69 109.70 109.75	110.24 110.27 110.27 	110.37 110.38 110.35 110.35 110.37 110.38	110.46 110.47 110.47 110.46 110.48	110.54 110.53 110.52 110.53 110.53	110.49 110.49 110.48 110.48	110.51 110.51 110.51 110.52 110.51 110.52	110.57 110.59 110.58 110.57 110.58 110.59	110.64 110.63 110.62 110.62 110.63
MEAN	110.02	109.14	109.02	109.47	110.06	110.32	110.42	110.51	110.50	110.49	110.55	110.61
MAX	110.33	109.50	109.20	109.77	110.27	110.38	110.48	110.54	110.55	110.52	110.59	110.65
MIN	109.55	108.87	108.90	109.21	109.78	110.27	110.37	110.47	110.48	110.47	110.51	110.58

#### FAIRBANKS NORTH STAR BOROUGH

#### 644321147163801. Local number, FD00200223DDBA1003.

LOCATION.--Lat 64°43′21″, long 147°16′38″, in NW¹/₄ SE¹/₄, Sec. 23, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 0.3 mi east of the Dyke Road, Old Richardson Highway and Levee Road intersection in city of North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 20.4 ft, screen opening from 15.4 to 19.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 510.14 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.57 ft above land surface datum.

REMARKS.--Observation well drilled April 10, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-14. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.29 ft below land-surface datum, July 28, 2003; lowest, 12.14 ft below land-surface datum. December 9-11, 2001.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 9.29 ft below land-surface datum, July 28, 2003; lowest, 11.99 ft below land-surface datum, November 12, 2002.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11.05 11.08 11.11 11.16 11.19	11.54 11.55 11.58 11.72 11.80	11.03 11.01 11.01 11.03 11.08	11.54 11.52 11.50 11.49 11.49	11.07 11.06 11.03 11.02 11.01	10.94 10.94 10.94 10.94 10.94	11.13 11.12 11.12 11.12 11.12	10.57 10.55 10.56 10.59 10.70	11.83 11.81 11.79 11.78 11.78	11.48 11.44 11.38 11.33 11.29	9.42 9.54 9.34 9.42 9.61	10.08 9.89 9.81 9.73 9.71
6 7 8 9 10	11.20 11.24 11.23 11.26 11.30	11.85 11.89 11.92 11.94 11.96	11.10 11.11 11.15 11.19 11.24	11.47 11.40 11.33 11.27	11.00 10.99 10.98 10.97	10.93 10.93 10.94 10.94 10.94	11.12 11.12 11.13 11.14 11.13	10.87 11.01 11.11 11.20 11.27	11.71 11.70 11.68 11.66 11.66	11.22 11.15 11.11 11.07 10.91	9.66 9.79 9.93 10.03 10.13	9.75 9.83 9.91 10.02 10.12
11 12 13 14 15	11.31 11.33 11.36 11.36 11.41	11.98 11.98 11.96 11.86 11.76	11.29 11.33 11.36 11.40 11.41	11.20 11.16 11.12 11.09 11.06	10.95 10.95 10.95 10.94 10.94	10.94 10.95 10.95 10.96 11.00	11.11 11.07 11.03 10.96 10.91	11.34 11.39 11.44 11.48 11.52	11.67 11.67 11.65 11.64 11.63	10.82 10.77 10.67 10.57 10.31	10.22 10.27 10.26 10.19 10.13	9.91 9.95 10.08 10.19 10.27
16 17 18 19 20	11.41 11.45 11.47 11.50 11.51	11.65 11.56 11.48 11.42 11.38	11.41 11.40 11.41 11.43 11.43	11.03 11.01 11.01 11.00 11.00	10.94 10.94 10.94 10.94 10.94	11.02 11.04 11.05 11.06 11.06	10.89 10.85 10.81 10.77 10.73	11.56 11.60 11.62 11.66 11.69	11.63 11.62 11.62 11.62 11.61	10.12 10.01 9.93 9.88 9.88	10.09 10.06 10.06 10.12 10.20	10.33 10.39 10.47 10.53 10.60
21 22 23 24 25	11.55 11.57 11.48 11.46 11.45	11.35 11.32 11.29 11.27 11.24	11.44 11.44 11.45 11.49 11.52	10.98 10.96 10.96 10.95 10.97	10.95 10.96 10.95 10.95	11.08 11.09 11.11 11.11 11.11	10.71 10.69 10.68 10.67	11.72 11.74 11.77 11.78 11.81	11.61 11.59 11.57 11.54 11.53	9.94 9.98 9.99 10.01 10.02	10.31 10.38 10.17 10.01 10.07	10.65 10.71 10.76 10.79 10.84
26 27 28 29 30 31	11.45 11.46 11.48 11.49 11.50 11.51	11.21 11.18 11.14 11.09 11.07	11.53 11.53 11.50 11.49 11.50 11.52	11.00 11.06 11.12 11.13 11.12 11.11	10.94 10.94 10.94	11.13 11.14 11.11 11.10 11.11 11.12	10.60 10.57 10.57 10.56 10.57	11.83 11.86 11.86 11.86 11.86	11.51 11.50 11.50 11.49 11.49	9.82 9.31 9.29 9.35 9.31 9.32	10.21 10.32 10.44 10.50 10.52 10.35	10.90 10.93 10.97 10.99 11.02

# FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644331147183901. Local number, FD00200222DABD1006.

LOCATION.--Lat 64°43′31″, long 147°18′39″, in NW¹/₄ NE¹/₄ SE¹/₄, sec. 22, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located on north side of Old Richardson Highway and VFW Road intersection in city of North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.1 ft, screen opening from 12.1 to 16.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 499.94 ft NGVD of 1929 (revised; levels by U.S. Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.66 ft above land surface datum.

REMARKS.--Observation well drilled April 9, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-16. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.73 ft below land-surface datum, July 30, 2003; lowest, 7.10 ft below land-surface datum, April 15-16, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 3.73 ft below land-surface datum, July 30; lowest, 6.84 ft below land-surface datum, November 13.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.96 5.99 6.01 6.02 6.04	6.71 6.74 6.72 6.71 6.71	5.24 5.21 5.23 5.29 5.38	6.10 6.08 6.05 6.04 6.03	5.84 5.83 5.80 5.79 5.74	5.68 5.71 5.72 5.72 5.73	5.92 5.91 5.91 5.92 5.91	5.28 5.35 5.41 5.50 5.66	6.65 6.60 6.58 6.57	5.85 5.81 5.75 5.65 5.58	3.89 4.04 4.01 4.05 4.23	4.82 4.66 4.48 4.36 4.33
6	6.06	6.71	5.41	5.99	5.68	5.73	5.91	5.81	6.53	5.51	4.32	4.35
7	6.10	6.72	5.43	5.93	5.60	5.74	5.92	5.94	6.48	5.43	4.43	4.44
8	6.13	6.73	5.49	5.87	5.59	5.75	5.96	6.05	6.39	5.36	4.55	4.55
9	6.17	6.75	5.55	5.80	5.58	5.75	5.95	6.14	6.35	5.30	4.65	4.67
10	6.19	6.75	5.62	5.77	5.57	5.75	5.91	6.22	6.34	5.20	4.72	4.78
11	6.21	6.77	5.69	5.73	5.56	5.76	5.89	6.30	6.33	5.11	4.78	4.77
12	6.24	6.79	5.74	5.71	5.56	5.77	5.84	6.34	6.30	5.05	4.82	4.78
13	6.28	6.74	5.81	5.68	5.56	5.78	5.79	6.38	6.24	4.95	4.74	4.87
14	6.31	6.51	5.85	5.66	5.59	5.81	5.72	6.41	6.20	4.86	4.59	4.93
15	6.34	6.33	5.84	5.64	5.58	5.84	5.67	6.44	6.18	4.69	4.50	4.99
16	6.37	6.15	5.81	5.63	5.58	5.84	5.65	6.48	6.17	4.53	4.47	5.05
17	6.41	6.02	5.81	5.63	5.62	5.83	5.60	6.52	6.16	4.35	4.45	5.12
18	6.43	5.91	5.83	5.64	5.66	5.83	5.56	6.57	6.14	4.18	4.45	5.18
19	6.45	5.84	5.87	5.66	5.67	5.85	5.51	6.62	6.12	4.13	4.50	5.25
20	6.47	5.78	5.89	5.65	5.69	5.86	5.49	6.67	6.09	4.13	4.59	5.32
21	6.50	5.72	5.91	5.63	5.74	5.89	5.43	6.69	6.08	4.19	4.73	5.39
22	6.51	5.68	5.95	5.61	5.77	5.90	5.40	6.72	6.06	4.26	4.83	5.46
23	6.52	5.63	5.99	5.62	5.74	5.92	5.37	6.75	6.05	4.27	4.85	5.52
24	6.53	5.59	6.05	5.64	5.74	5.93	5.32	6.76	6.01	4.31	4.74	5.56
25	6.55	5.55	6.10	5.68	5.74	5.94	5.28	6.79	5.96	4.33	4.78	5.62
26 27 28 29 30 31	6.57 6.59 6.63 6.65 6.67 6.69	5.50 5.45 5.38 5.31 5.28	6.12 6.09 6.06 6.06 6.07 6.10	5.75 5.87 5.93 5.94 5.91 5.88	5.70 5.70 5.68 	5.95 5.94 5.90 5.89 5.89	5.26 5.27 5.27 5.29 5.28	6.81 6.82 6.81 6.80 6.76 6.71	5.94 5.93 5.92 5.90 5.88	4.21 3.79 3.76 3.74 3.73 3.75	4.88 4.94 5.00 5.04 5.07	5.70 5.75 5.80 5.83 5.88

## FAIRBANKS NORTH STAR BOROUGH—Continued

# 644345147172101. Local number, FD00200223BDAD1002.

LOCATION.--Lat  $64^{\circ}43'45''$ , long  $147^{\circ}17'21''$ , in  $NE^{1}/_{4}$   $NE^{1}/_{4}$ , sec. 23, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 0.2 mi south on Dyke Road from intersection with Laurance Road in city of North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 13.0 ft, screen opening from 7.8 to 12.8 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 499.84 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.04 ft above land surface datum.

REMARKS.--Observation well drilled June 7, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-13. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.59 ft below land-surface datum, July 31, 2003; lowest, 8.00 ft below land-surface datum, April 16, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 5.59 ft below land-surface datum, July 31; lowest, 7.47 ft below land-surface datum, May 30 through June 1.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.81 6.83 6.85 6.86 6.87	7.33 7.35 7.23 7.13 7.10	6.29 6.26 6.24 6.25 6.26	6.78 6.79 6.78 6.78 6.79	6.72 6.71 6.70 6.69 6.69	6.64 6.66 6.67 6.66 6.69	6.89 6.88 6.88 6.89	6.43 6.44 6.45 6.47 6.53	7.46 7.45 7.44 7.43 7.43	7.09 7.07 7.05 7.02 6.98	5.60 5.65 5.60 5.59 5.63	6.06 5.88 5.80 5.74 5.73
6 7 8 9 10	6.88 6.91 6.93 6.96 6.98	7.09 7.09 7.08 7.09 7.10	6.27 6.27 6.30 6.32 6.34	6.78 6.77 6.73 6.69 6.67	6.67 6.62 6.60 6.58 6.57	6.68 6.69 6.69 6.70	6.89 6.89 6.90 6.91	6.61 6.68 6.75 6.81 6.86	7.40 7.39 7.36 7.33 7.30	6.94 6.90 6.86 6.82 6.76	5.67 5.73 5.79 5.85 5.89	5.73 5.75 5.79 5.85 5.91
11 12 13 14 15	6.99 7.01 7.04 7.06 7.09	7.10 7.11 7.12 7.07 7.00	6.39 6.42 6.45 6.50 6.51	6.65 6.63 6.61 6.59 6.57	6.56 6.55 6.55 6.56 6.54	6.70 6.70 6.70 6.72 6.75	6.90 6.86 6.82 6.76 6.72	6.92 6.96 7.00 7.04 7.08	7.30 7.29 7.28 7.26 7.26	6.69 6.64 6.58 6.52 6.43	5.93 5.96 5.98 5.94 5.91	5.91 5.90 5.92 5.97 6.01
16 17 18 19 20	7.10 7.13 7.15 7.17 7.19	6.91 6.84 6.78 6.72 6.67	6.54 6.54 6.56 6.58 6.59	6.56 6.54 6.54 6.55 6.55	6.54 6.55 6.57 6.59 6.59	6.75 6.77 6.78 6.80 6.80	6.69 6.64 6.60 6.57 6.54	7.12 7.15 7.18 7.21 7.24	7.25 7.24 7.23 7.22 7.22	6.32 6.21 6.12 6.05 6.02	5.92 5.90 5.90 5.91 5.94	6.03 6.07 6.11 6.14 6.19
21 22 23 24 25	7.21 7.24 7.21 7.20 7.21	6.63 6.58 6.54 6.51 6.47	6.60 6.62 6.62 6.66 6.70	6.55 6.52 6.52 6.53 6.54	6.62 6.65 6.65 6.64 6.66	6.81 6.82 6.83 6.85 6.86	6.51 6.49 6.47 6.45 6.44	7.27 7.30 7.33 7.35 7.37	7.21 7.20 7.18 7.17 7.15	6.01 6.02 6.01 6.01 6.01	6.00 6.04 6.05 5.96 5.95	6.23 6.27 6.30 6.32 6.36
26 27 28 29 30 31	7.22 7.24 7.27 7.27 7.29 7.31	6.43 6.41 6.39 6.34 6.32	6.72 6.75 6.75 6.74 6.75 6.76	6.56 6.61 6.67 6.70 6.72 6.73	6.65 6.65 6.64 	6.87 6.88 6.88 6.87 6.87	6.43 6.43 6.43 6.43	7.39 7.42 7.44 7.45 7.46 7.47	7.14 7.13 7.12 7.11 7.10	5.97 5.79 5.66 5.62 5.60 5.59	5.99 6.03 6.09 6.11 6.13 6.13	6.42 6.45 6.48 6.50 6.54

# FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644401147193801. Local number, FD00200222BABA1005.

LOCATION.--Lat 64°44′01″, long 147°19′38″, in NW¹/₄ NE¹/₄ NW¹/₄ sec. 22, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located at southeast corner of Laurance Road and Old Richardson Highway intersection in city of North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 14.1 ft, screen opening from 9.1 to 13.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 496.04 ft above sea level, NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 3.44 ft above land surface datum.

REMARKS.--Observation well drilled April 9, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-15. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.35 ft below land-surface datum, July 30, 2003; lowest, 6.43 ft below land-surface datum, November 13, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 3.35 ft below land-surface datum, July 30, 2003; lowest, 6.43 ft below land-surface datum, November 13, 2002.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.19	6.12	4.85	5.80	5.61	5.47	5.55	4.93	6.18	5.29	3.43	4.31
2	5.22	6.14	4.81	5.79	5.59	5.49	5.54	4.95	6.12	5.25	3.55	4.18
3	5.24	6.17	4.80	5.76	5.57	5.50	5.54	5.01	6.09	5.21	3.44	4.05
4	5.25	6.20	4.83	5.75	5.56	5.49	5.55	5.08	6.08	5.16	3.44	3.97
5	5.28	6.23	4.89	5.73	5.53	5.51	5.55	5.17	6.08	5.10	3.58	3.93
6	5.29	6.27	4.93	5.71	5.49	5.51	5.55	5.28	6.04	5.05	3.69	3.94
7	5.33	6.29	4.95	5.68	5.43	5.51	5.55	5.40	6.00	4.99	3.79	3.97
8	5.36	6.31	5.00	5.65	5.41	5.52	5.57	5.50	5.92	4.94	3.92	4.04
9	5.40	6.33	5.06	5.60	5.39	5.51	5.59	5.59	5.86	4.90	4.00	4.14
10	5.43	6.34	5.13	5.58	5.38	5.51	5.56	5.66	5.84	4.81	4.07	4.24
11	5.45	6.36	5.19	5.55	5.36	5.51	5.54	5.74	5.82	4.74	4.14	4.23
12	5.48	6.38	5.25	5.53	5.35	5.52	5.50	5.78	5.78	4.68	4.18	4.23
13	5.52	6.39	5.31	5.51	5.35	5.52	5.46	5.81	5.73	4.59	4.19	4.29
14	5.55	6.20	5.38	5.49	5.36	5.54	5.40	5.85	5.69	4.51	4.11	4.35
15	5.59	6.03	5.40	5.47	5.36	5.57	5.35	5.89	5.67	4.37	4.08	4.40
16	5.60	5.86	5.41	5.46	5.36	5.56	5.33	5.92	5.64	4.24	4.07	4.45
17	5.64	5.74	5.41	5.45	5.39	5.51	5.30	5.96	5.62	4.09	4.07	4.51
18	5.67	5.63	5.43	5.45	5.42	5.51	5.26	6.00	5.60	3.94	4.06	4.56
19	5.69	5.54	5.46	5.45	5.44	5.51	5.23	6.04	5.58	3.84	4.09	4.62
20	5.71	5.46	5.48	5.45	5.45	5.51	5.19	6.09	5.56	3.82	4.15	4.68
21	5.74	5.39	5.51	5.43	5.47	5.52	5.16	6.13	5.54	3.82	4.23	4.75
22	5.76	5.34	5.54	5.41	5.53	5.54	5.14	6.16	5.52	3.85	4.29	4.81
23	5.78	5.28	5.58	5.41	5.50	5.55	5.11	6.18	5.49	3.87	4.30	4.87
24	5.82	5.23	5.65	5.41	5.49	5.57	5.08	6.20	5.46	3.90	4.21	4.91
25	5.87	5.19	5.70	5.44	5.51	5.57	5.05	6.23	5.43	3.92	4.22	4.96
26	5.90	5.14	5.75	5.49	5.48	5.58	5.00	6.26	5.40	3.81	4.30	5.03
27	5.95	5.09	5.77	5.59	5.48	5.58	4.97	6.28	5.38	3.46	4.37	5.09
28	6.00	5.02	5.75	5.66	5.47	5.54	4.96	6.30	5.36	3.39	4.42	5.13
29	6.03	4.94	5.75	5.69		5.53	4.94	6.29	5.35	3.36	4.46	5.17
30	6.06	4.90	5.76	5.68		5.53	4.93	6.26	5.32	3.35	4.49	5.21
31	6.09		5.78	5.64		5.54		6.22		3.36	4.49	

# FAIRBANKS NORTH STAR BOROUGH—Continued

## 644400147151501. Local number, FD00200224ABBB1001 51659.

LOCATION.--Lat  $64^{\circ}44'00''$ , long  $147^{\circ}15'15''$ , in  $NW^{1}_{/4}NW^{1}_{/4}$ , sec. 24, T.2 S., R.2 E., (Fairbanks C-1) Fairbanks Meridian, Hydrologic Unit 19040506, in road right-of-way at intersection of Nelson and Laurence Roads near North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 4-in., depth 30 ft, screened from 27.5 to 30 ft using a 2-in. diameter well point.

INSTRUMENTATION.--Strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from November 1983 to June 1995. Electronic data logger from June 1995 to present.

DATUM.--Elevation of land-surface datum is 503.5 ft above sea level (determined by levels survey). Measuring point: top of casing 2.97 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers designated as P-251. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; this may have affected ground water levels.

PERIOD OF RECORD.--June 1976 to May 1980 and November 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.84 ft below land-surface datum, June 7, 1992; lowest, 13.70 ft below land-surface datum, February 18-20, 1988.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.14 ft below land-surface datum, September 15-18; lowest, 12.92 ft below land-surface datum, June 27-28 and 30.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11.77	12.32	12.01	12.30	12.38	12.39	12.57	12.26	12.78	12.90	11.85	11.38
2	11.82	12.34	11.99	12.31	12.38	12.39	12.56	12.25	12.80	12.90	11.80	11.36
3	11.83	12.29	11.98	12.32	12.38	12.40	12.57	12.24	12.81	12.90	11.75	11.33
4	11.83	12.24	11.98	12.32	12.39	12.40	12.58	12.23	12.82	12.89	11.69	11.30
5	11.83	12.20	11.97	12.35	12.40	12.42	12.58	12.24	12.83	12.88	11.65	11.27
6	11.84	12.19	11.96	12.35	12.41	12.41	12.59	12.25	12.84	12.87	11.60	11.24
7	11.86	12.19	11.96	12.37	12.40	12.41	12.59	12.27	12.85	12.85	11.57	11.21
8	11.88	12.19	11.96	12.38	12.39	12.42	12.59	12.30	12.85	12.83	11.54	11.19
9	11.90	12.20	11.96	12.37	12.38	12.42	12.60	12.32	12.85	12.82	11.51	11.18
10	11.92	12.20	11.97	12.37	12.38	12.42	12.61	12.34	12.85	12.80	11.49	11.17
11	11.93	12.20	11.98	12.36	12.38	12.42	12.62	12.38	12.85	12.77	11.48	11.17
12	11.94	12.21	11.98	12.36	12.38	12.42	12.61	12.39	12.86	12.74	11.47	11.16
13	11.96	12.21	12.01	12.36	12.38	12.41	12.61	12.42	12.86	12.71	11.46	11.15
14	11.98	12.23	12.05	12.35	12.37	12.41	12.58	12.44	12.87	12.68	11.45	11.15
15	11.99	12.22	12.06	12.35	12.36	12.43	12.55	12.47	12.87	12.63	11.44	11.14
16	12.00	12.19	12.08	12.34	12.35	12.43	12.54	12.50	12.88	12.59	11.45	11.14
17	12.03	12.18	12.10	12.31	12.36	12.45	12.50	12.52	12.87	12.54	11.44	11.14
18	12.04	12.17	12.13	12.31	12.36	12.46	12.47	12.54	12.88	12.49	11.44	11.14
19	12.05	12.16	12.15	12.31	12.35	12.47	12.44	12.56	12.88	12.44	11.43	11.15
20	12.07	12.15	12.15	12.32	12.35	12.47	12.40	12.57	12.89	12.40	11.43	11.18
21	12.09	12.14	12.16	12.32	12.35	12.47	12.38	12.59	12.89	12.36	11.43	11.20
22	12.12	12.12	12.16	12.30	12.37	12.48	12.36	12.60	12.90	12.33	11.44	11.23
23	12.13	12.10	12.17	12.30	12.36	12.49	12.35	12.62	12.89	12.30	11.44	11.23
24	12.15	12.09	12.20	12.30	12.36	12.50	12.33	12.63	12.89	12.27	11.42	11.22
25	12.18	12.07	12.21	12.30	12.38	12.51	12.32	12.65	12.89	12.24	11.40	11.25
26 27 28 29 30 31	12.19 12.23 12.25 12.26 12.28 12.31	12.04 12.04 12.04 12.01 12.01	12.23 12.26 12.26 12.27 12.28 12.29	12.30 12.31 12.34 12.35 12.36 12.37	12.37 12.38 12.38 	12.52 12.53 12.54 12.54 12.55 12.56	12.30 12.29 12.29 12.27 12.27	12.67 12.69 12.71 12.72 12.74 12.76	12.89 12.89 12.91 12.91 12.91	12.21 12.16 12.09 12.02 11.96 11.90	11.39 11.39 11.40 11.39 11.40	11.32 11.35 11.36 11.36 11.39

# FAIRBANKS NORTH STAR BOROUGH—Continued

# 644402147132801. Local number, FD00200319BAAB1001.

LOCATION.--Lat  $64^{\circ}44'02''$ , long  $147^{\circ}13'28''$ , in  $NE^{1}_{/4}$   $NE^{1}_{/4}$   $NW^{1}_{/4}$ , sec. 19, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 1.2 mi east of gate at gravel road from U.S. Army Corps of Engineers office, then north of gravel road beneath power lines, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 24.3 ft, screen opening from 19.2 to 24.2 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 505.44 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 5.91 ft above land surface datum.

REMARKS.--Observation well drilled September 7, 1994 by the U.S. Army Corps of Engineers and designated as USAP-1. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.64 ft. below land-surface datum, September 24, 2003; lowest, 14.62 ft below land-surface datum, April 24-26, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.64 ft below land-surface datum, September 24; lowest, 13.84 ft. below land-surface datum, July 6 and July 9-10.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12.25 12.28 12.31 12.31 12.29	12.68 12.69 12.65 12.60 12.56	12.66 12.65 12.64 12.65 12.65	12.92 12.93 12.93 12.94 12.97	13.16 13.17 13.17 13.19 13.20	13.26 13.27 13.28 13.29 13.30	13.48 13.49 13.49 13.50	13.30 13.29 13.27 13.27 13.27	13.60 13.61 13.63 13.64 13.64	13.80 13.80 13.81 13.82 13.82	13.20 13.13 13.07 13.01 12.94	12.13 12.12 12.11 12.09 12.06
6 7 8 9 10	12.29 12.30 12.32 12.35 12.36	12.56 12.57 12.58 12.59 12.60	12.63 12.63 12.63 12.63 12.63	12.99 13.01 13.03 13.03	13.21 13.22 13.21 13.21 13.22	13.30 13.30 13.32 13.32 13.33	13.52 13.52 13.53 13.54 13.54	13.27 13.27 13.28 13.27 13.28	13.65 13.66 13.68 13.69 13.69	13.83 13.83 13.83 13.82 13.82	12.86 12.80 12.73 12.67 12.60	12.02 11.98 11.96 11.93 11.90
11 12 13 14 15	12.36 12.36 12.39 12.40 12.40	12.59 12.59 12.60 12.61 12.63	12.64 12.64 12.66 12.69 12.70	13.04 13.05 13.06 13.07 13.08	13.22 13.23 13.23 13.23 13.23	13.33 13.32 13.32 13.32 13.33	13.56 13.57 13.57 13.57 13.56	13.30 13.31 13.32 13.34 13.36	13.70 13.70 13.70 13.71 13.72	13.81 13.80 13.79 13.77 13.75	12.54 12.50 12.45 12.40 12.37	11.88 11.85 11.83 11.81 11.77
16 17 18 19 20	12.40 12.45 12.46 12.46 12.47	12.60 12.60 12.62 12.62 12.65	12.72 12.73 12.75 12.78 12.78	13.08 13.07 13.08 13.09 13.10	13.23 13.24 13.24 13.24 13.24	13.34 13.35 13.36 13.37	13.56 13.55 13.52 13.49 13.45	13.39 13.42 13.42 13.44 13.45	13.73 13.73 13.73 13.73 13.75	13.73 13.71 13.67 13.64 13.60	12.35 12.33 12.30 12.28 12.26	11.75 11.72 11.69 11.68 11.68
21 22 23 24 25	12.49 12.52 12.53 12.53 12.54	12.65 12.64 12.63 12.64 12.64	12.79 12.78 12.79 12.82 12.83	13.11 13.10 13.10 13.11 13.11	13.25 13.25 13.23 13.23 13.25	13.38 13.39 13.40 13.41 13.42	13.40 13.38 13.37 13.36 13.35	13.47 13.47 13.48 13.48 13.50	13.75 13.76 13.77 13.77 13.78	13.58 13.54 13.52 13.49 13.46	12.25 12.23 12.22 12.22 12.21	11.68 11.68 11.65 11.64 11.65
26 27 28 29 30 31	12.55 12.58 12.61 12.61 12.63 12.65	12.61 12.62 12.65 12.62 12.63	12.85 12.87 12.88 12.88 12.90	13.11 13.12 13.13 13.13 13.14 13.15	13.25 13.25 13.26	13.43 13.45 13.45 13.45 13.46 13.48	13.33 13.32 13.32 13.31 13.30	13.52 13.54 13.56 13.56 13.57 13.58	13.78 13.79 13.79 13.80 13.80	13.44 13.41 13.38 13.34 13.30 13.25	12.19 12.19 12.18 12.16 12.15 12.14	11.71 11.74 11.73 11.73

## FAIRBANKS NORTH STAR BOROUGH—Continued

## 644402147150401. Local number, FD00200224ABBA1002.

LOCATION.--Lat 64°44′02″, long 147°15′04″, in NW¹/4 NW¹/4 NE¹/4, sec. 24, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 0.1 mi east of Laurance Road and Nelson Road intersection, then 50 ft east of road behind grove of trees towards levy, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 19.4 ft, screen openings from 9.4 to 13.9 ft and 14.4 to 18.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 504.74 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.57 ft above land surface datum.

REMARKS.--Observation well drilled March 12, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-11. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.74 ft below land-surface datum, September 17-18, 2003; lowest, 13.31 ft below land-surface datum, April 19 and 21-25, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 10.74 ft below land-surface datum, September 17-18; lowest, 12.57 ft below land-surface datum, June 22-July 4.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11.34 11.38 11.40 11.40	11.88 11.90 11.88 11.83 11.80	11.66 11.65 11.63 11.63	11.95 11.96 11.96 11.97 11.99	12.06 12.06 12.07 12.07	12.06 12.07 12.08 12.08 12.09	12.26 12.27 12.28 12.28 12.28	12.00 11.99 11.98 11.97 11.97	12.44 12.46 12.47 12.48 12.49	12.55 12.56 12.56 12.56 12.55	11.59 11.54 11.49 11.44 11.38	11.01 11.00 10.98 10.95 10.91
6 7 8 9 10	11.40 11.42 11.44 11.46	11.79 11.79 11.79 11.80 11.80	11.62 11.61 11.61 11.61 11.62	12.00 12.02 12.03 12.02 12.02	12.09 12.09 12.08 12.06 12.06	12.09 12.09 12.10 12.09 12.09	12.29 12.29 12.30 12.32 12.32	11.99 12.00 12.02 12.04 12.05	12.50 12.51 12.52 12.52 12.52	12.55 12.53 12.52 12.51 12.49	11.33 11.30 11.26 11.22 11.19	10.88 10.85 10.83 10.81 10.80
11 12 13 14 15	11.49 11.49 11.52 11.54 11.55	11.80 11.81 11.82 11.83 11.83	11.63 11.64 11.66 11.70 11.71	12.02 12.02 12.02 12.02 12.01	12.06 12.06 12.06 12.06 12.04	12.09 12.08 12.08 12.08 12.10	12.34 12.33 12.33 12.30 12.28	12.09 12.11 12.13 12.15 12.17	12.53 12.52 12.52 12.53 12.53	12.46 12.43 12.41 12.38 12.34	11.17 11.16 11.14 11.12 11.12	10.80 10.78 10.78 10.77 10.75
16 17 18 19 20	11.55 11.58 11.60 11.61 11.62	11.80 11.80 11.79 11.78 11.77	11.73 11.75 11.78 11.80 11.80	12.01 11.99 11.99 11.99 12.00	12.04 12.04 12.04 12.03 12.04	12.11 12.12 12.13 12.15 12.15	12.27 12.24 12.21 12.17 12.14	12.20 12.22 12.23 12.25 12.27	12.54 12.54 12.55 12.55 12.56	12.29 12.25 12.21 12.16 12.12	11.12 11.11 11.10 11.09 11.09	10.75 10.74 10.74 10.75 10.77
21 22 23 24 25	11.64 11.67 11.69 11.71 11.74	11.77 11.74 11.73 11.73 11.71	11.81 11.79 11.81 11.84 11.86	12.01 11.99 11.99 11.98 11.98	12.04 12.05 12.04 12.04 12.05	12.16 12.17 12.18 12.20 12.20	12.12 12.10 12.09 12.07 12.06	12.28 12.29 12.31 12.32 12.34	12.56 12.56 12.56 12.56 12.57	12.08 12.05 12.02 11.99 11.96	11.09 11.09 11.09 11.08 11.04	10.78 10.81 10.81 10.80 10.84
26 27 28 29 30 31	11.75 11.78 11.81 11.82 11.84 11.87	11.68 11.68 11.65 11.65	11.88 11.90 11.91 11.91 11.92 11.93	11.98 12.00 12.02 12.03 12.04 12.05	12.05 12.05 12.06 	12.22 12.23 12.23 12.24 12.25 12.26	12.04 12.03 12.03 12.02 12.01	12.36 12.38 12.39 12.40 12.41 12.42	12.56 12.56 12.56 12.56 12.56	11.93 11.90 11.83 11.77 11.71 11.65	11.03 11.04 11.04 11.03 11.03	10.91 10.94 10.94 10.95 10.97

## FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644402147182601. Local number, FD00200222AAAA1004.

LOCATION.--Lat 64°44′02″, long 147°18′26″, in NE¹/4 NE¹/4, NE¹/4, sec. 22, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 25 ft southeast of southeast corner of Laurance Road and Treaty Street intersection, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 15.0 ft, screen opening from 10.1 to 14.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 498.14 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point was changed from top of outer casing to top of inner casing (2.28 ft above land surface datum) in the 2002 Water Year.

REMARKS.--Observation well drilled April 10, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-12. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.51 ft below land-surface datum, August 3, 2003; lowest, lowest, 8.00 ft below land-surface datum, April 15-19, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 5.51 ft below land-surface datum, August 3, 2003; lowest, 7.81 ft below land-surface datum, November 13, 2002.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.80	7.64	6.66	7.22	7.10	7.06	7.24	6.69	7.76	7.14	5.59	6.05
2	6.83	7.66	6.63	7.23	7.09	7.08	7.23	6.70	7.73	7.12	5.66	5.95
3	6.85	7.70	6.62	7.21	7.07	7.09	7.24	6.73	7.71	7.09	5.51	5.89
4	6.87	7.69	6.62	7.21	7.06	7.09	7.24	6.76	7.70	7.06	5.52	5.85
5	6.89	7.68	6.65	7.20	7.05	7.11	7.24	6.82	7.70	7.02	5.61	5.82
6 7 8 9 10	6.91 6.95 6.97 7.00 7.02	7.68 7.69 7.69 7.70 7.72	6.66 6.67 6.70 6.73	7.20 7.17 7.13 7.09 7.06	7.03 6.98 6.96 6.94 6.93	7.10 7.11 7.12 7.11 7.13	7.22 7.22 7.24 7.24 7.24	6.90 6.98 7.05 7.11 7.16	7.66 7.63 7.59 7.55 7.52	6.97 6.93 6.89 6.84 6.76	5.68 5.75 5.84 5.91 5.95	5.83 5.85 5.89 5.96 6.02
11	7.04	7.73	6.79	7.03	6.92	7.13	7.22	7.23	7.50	6.68	6.00	5.98
12	7.07	7.75	6.81	7.02	6.91	7.12	7.17	7.28	7.47	6.64	6.03	5.98
13	7.10	7.79	6.85	6.99	6.91	7.11	7.14	7.31	7.45	6.57	6.05	6.03
14	7.13	7.71	6.90	6.97	6.91	7.12	7.07	7.35	7.42	6.51	6.02	6.09
15	7.17	7.59	6.91	6.96	6.90	7.15	7.02	7.38	7.40	6.37	5.99	6.14
16	7.18	7.47	6.93	6.94	6.90	7.15	7.00	7.41	7.38	6.28	5.99	6.17
17	7.21	7.37	6.93	6.93	6.92	7.16	6.96	7.43	7.36	6.19	5.98	6.21
18	7.24	7.27	6.94	6.93	6.95	7.16	6.92	7.46	7.35	6.11	5.97	6.25
19	7.26	7.19	6.97	6.93	6.96	7.20	6.89	7.49	7.34	6.05	5.99	6.29
20	7.28	7.12	6.98	6.94	6.97	7.20	6.86	7.53	7.31	6.03	6.01	6.34
21	7.30	7.05	6.99	6.92	6.99	7.20	6.82	7.56	7.30	6.03	6.07	6.38
22	7.33	6.98	7.01	6.90	7.04	7.21	6.79	7.58	7.29	6.03	6.11	6.43
23	7.35	6.92	7.04	6.90	7.03	7.23	6.77	7.61	7.27	6.03	6.08	6.47
24	7.40	6.88	7.09	6.90	7.03	7.25	6.74	7.64	7.25	6.03	5.97	6.49
25	7.43	6.83	7.12	6.92	7.05	7.25	6.71	7.67	7.23	6.04	5.98	6.53
26 27 28 29 30 31	7.46 7.49 7.54 7.56 7.59 7.61	6.79 6.78 6.75 6.71 6.69	7.15 7.17 7.16 7.16 7.17 7.20	6.95 7.02 7.08 7.11 7.12 7.11	7.05 7.06 7.06 	7.26 7.27 7.25 7.22 7.22 7.24	6.71 6.71 6.70 6.70 6.69	7.71 7.74 7.77 7.79 7.79 7.78	7.21 7.20 7.18 7.17 7.15	5.95 5.60 5.56 5.58 5.56 5.56	6.05 6.11 6.17 6.20 6.22 6.21	6.59 6.63 6.67 6.69 6.73

#### FAIRBANKS NORTH STAR BOROUGH—Continued

## 644403147112901. Local number, FD00200317CDDD1005.

LOCATION.—Lat  $64^{\circ}44'03''$ , long  $147^{\circ}11'29''$ , in  $SE^{1}/_{4}$   $SE^{1}/_{4}$   $SW^{1}/_{4}$ , sec. 17, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 2.2 mi east of gate at gravel road from U.S. Army Corps of Engineers office, then just beyond powerlines north of gravel road, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 20.0 ft, screen opening from 14.9 to 19.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 503.44 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.52 ft above land surface datum.

REMARKS.--Observation well drilled September 7, 1994 by the U.S. Army Corps of Engineers and designated as USAP-2. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.80 ft below land-surface datum, September 13, 2003; lowest, 11.08 ft below land-surface datum, May 1, 2 and 17, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 1.80 ft below land-surface datum, September 13; lowest, 9.56 ft below land-surface datum, May 16.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.95 4.95 4.73 4.70 4.48	5.08 4.97 4.84 4.75 4.85	6.34 6.18 6.04 6.13 6.22	7.32 7.23 7.12 7.12 7.42	8.07 8.12 8.08 8.13 8.22	8.55 8.53 8.60 8.59 8.71	8.99 8.90 9.03 8.97	9.30 9.26 9.14 9.10 9.22	9.14 9.43 9.38 9.18 9.05	9.06 9.05 9.24 9.25 9.19	5.45 5.16 4.35 4.02 3.84	2.14 2.05 1.95 1.90 1.86
6	4.50	4.82	6.15	7.43	8.32	8.62	9.00	9.29	9.16	9.20	3.72	1.88
7	4.55	5.14	6.06	7.73	8.21	8.63	9.05	9.35	9.31	9.19	3.74	1.86
8	4.65	5.19	6.07	7.64	8.14	8.69	8.99	9.20	9.26	9.19	3.84	1.91
9	4.70	5.31	6.07	7.52	8.15	8.66	9.06	9.03	9.11	9.18	3.79	2.00
10	4.52	5.41	6.11	7.55	8.17	8.63	9.15	9.06	9.03	9.17	3.83	2.06
11	4.41	5.34	6.25	7.58	8.21	8.66	9.19	9.04	9.09	9.08	3.88	1.87
12	4.39	5.35	6.07	7.62	8.25	8.55	9.07	9.08	9.14	9.12	3.79	1.81
13	4.59	5.47	6.33	7.75	8.35	8.51	9.08	9.19	9.13	9.03	3.90	1.80
14	4.63	5.67	6.54	7.73	8.33	8.52	9.10	9.25	9.16	8.98	3.89	1.92
15	4.32	5.77	6.54	7.76	8.24	8.62	8.97	9.37	9.23	8.93	3.90	1.86
16	4.32	5.40	6.68	7.83	8.24	8.62	9.05	9.47	9.34	8.74	4.14	1.87
17	4.59	5.40	6.75	7.64	8.32	8.76	9.16	9.31	9.10	8.72	4.41	1.93
18	4.47	5.73	6.93	7.65	8.37	8.80	9.21	9.27	9.12	8.50	4.36	1.93
19	4.46	5.78	6.88	7.76	8.30	8.77	9.25	9.25	9.16	8.33	4.34	2.04
20	4.42	6.05	6.82	7.88	8.36	8.78	9.16	9.15	9.24	8.27	4.35	2.17
21	4.59	6.12	6.79	7.90	8.42	8.84	9.11	9.03	9.22	8.31	4.50	2.24
22	4.78	6.09	6.53	7.73	8.42	8.87	9.16	9.03	9.26	8.39	4.57	2.30
23	4.75	5.93	6.60	7.78	8.26	8.91	9.34	9.05	9.14	8.32	3.93	2.08
24	4.72	6.00	6.99	7.82	8.28	8.91	9.29	9.03	9.19	8.33	2.84	1.99
25	4.68	6.06	7.03	7.83	8.47	8.92	9.33	9.10	9.20	8.33	2.65	2.22
26 27 28 29 30 31	4.70 4.91 4.85 4.82 4.91 5.10	5.69 5.83 6.19 5.79 5.85	7.08 7.20 7.06 7.03 7.10 7.16	7.81 7.90 8.00 8.00 8.01 8.08	8.39 8.44 8.48 	9.01 9.06 8.87 8.84 8.92 9.07	9.23 9.23 9.30 9.28 9.34	9.22 9.35 9.17 9.20 9.09 9.07	9.24 9.25 9.19 9.14 9.12	8.30 7.80 6.55 6.33 6.17 5.74	2.70 2.82 3.08 3.10 3.14 2.80	2.48 2.38 2.14 2.09 2.05

## FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644408147162001. Local number, FD00200214DDDA1003.

LOCATION.--Lat 64°44′08″, long 147°16′20″, in SE¹/₄ SE¹/₄ SE¹/₄, sec. 14, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located 10 ft off shoulder of northeast corner of Anton Road and Seavy Road intersection, North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 15.2 ft, screen opening from 10.2 to 15.2 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 501.44 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 1.76 ft above land surface datum.

REMARKS.--Observation well drilled June 7, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-10. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.69 ft below land-surface datum, September 8, 2003; lowest, 10.95 ft below land-surface datum, March 31, April 1-4, 6-7, 16, 18 and 22-23, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 8.69 ft below land-surface datum, September 8; lowest, 10.33 ft below land-surface datum, June 4-9.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.37	9.94	9.54	9.86	9.92	9.84	10.02	9.67	10.29	10.23	9.03	8.88
2	9.39	9.95	9.52	9.87	9.93	9.85	10.01	9.66	10.30	10.22	9.00	8.85
3	9.41	9.93	9.49	9.87	9.92	9.86	10.02	9.65	10.31	10.22	8.96	8.80
4	9.41	9.89	9.48	9.88	9.93	9.85	10.02	9.65	10.32	10.20	8.91	8.77
5	9.43	9.86	9.48	9.90	9.93	9.86	10.02	9.66	10.33	10.19	8.88	8.74
6	9.43	9.85	9.47	9.90	9.93	9.86	10.03	9.68	10.33	10.17	8.85	8.72
7	9.45	9.85	9.47	9.92	9.91	9.86	10.03	9.71	10.33	10.15	8.84	8.70
8	9.46	9.85	9.46	9.91	9.89	9.86	10.03	9.75	10.32	10.13	8.84	8.69
9	9.49	9.86	9.47	9.89	9.88	9.85	10.03	9.78	10.31	10.12	8.84	8.71
10	9.51	9.86	9.49	9.89	9.87	9.86	10.04	9.80	10.31	10.09	8.85	8.73
11	9.52	9.86	9.51	9.89	9.85	9.88	10.05	9.84	10.30	10.04	8.86	8.75
12	9.53	9.87	9.52	9.88	9.85	9.88	10.03	9.86	10.29	10.01	8.86	8.74
13	9.55	9.88	9.54	9.88	9.84	9.87	10.01	9.89	10.30	9.97	8.88	8.73
14	9.57	9.89	9.58	9.87	9.84	9.88	9.96	9.92	10.30	9.93	8.88	8.75
15	9.60	9.87	9.60	9.86	9.82	9.89	9.93	9.95	10.30	9.88	8.87	8.76
16	9.60	9.83	9.62	9.85	9.82	9.89	9.89	9.98	10.30	9.82	8.88	8.76
17	9.62	9.81	9.64	9.83	9.82	9.91	9.85	10.01	10.29	9.76	8.90	8.78
18	9.64	9.79	9.66	9.83	9.82	9.92	9.83	10.03	10.28	9.70	8.89	8.79
19	9.65	9.77	9.69	9.82	9.81	9.93	9.80	10.05	10.29	9.65	8.88	8.81
20	9.67	9.74	9.69	9.83	9.82	9.94	9.78	10.07	10.29	9.61	8.89	8.85
21	9.69	9.72	9.70	9.83	9.83	9.95	9.76	10.10	10.29	9.56	8.90	8.87
22	9.71	9.69	9.69	9.81	9.84	9.95	9.74	10.11	10.28	9.54	8.93	8.91
23	9.73	9.67	9.71	9.81	9.83	9.96	9.73	10.13	10.27	9.51	8.93	8.92
24	9.75	9.65	9.74	9.81	9.83	9.97	9.71	10.15	10.27	9.49	8.89	8.92
25	9.77	9.63	9.76	9.81	9.85	9.98	9.71	10.16	10.26	9.46	8.86	8.95
26	9.79	9.61	9.79	9.82	9.84	9.99	9.70	10.19	10.26	9.44	8.85	9.01
27	9.82	9.60	9.82	9.84	9.84	10.00	9.69	10.21	10.25	9.39	8.86	9.04
28	9.86	9.59	9.83	9.87	9.85	10.00	9.69	10.23	10.25	9.26	8.88	9.06
29	9.87	9.56	9.83	9.89		10.00	9.68	10.25	10.24	9.19	8.89	9.06
30	9.89	9.55	9.84	9.90		10.01	9.67	10.26	10.24	9.13	8.90	9.09
31	9.92		9.85	9.91		10.01		10.27		9.07	8.91	

# FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644423147124601. Local number, FD00200318DABC1006.

LOCATION.--Lat 64°44′23″, long 147°12′46″, in NW¹/₄ NE¹/₄ SE¹/₄, sec. 18, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located in Chena River Recreation Area, North Pole. From recreation area entrance station well is approximately 0.8 mi. southeast on dirt road from levee followed by 0.4 mi northeast on intersecting dirt road.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 20.0 ft, screen opening from 14.9 ft to 19.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 501.54 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 6.40 ft above land surface datum.

REMARKS.--Observation well drilled September 9, 1994 by the U.S. Army Corps of Engineers and designated as USAP-3. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.72 ft below land-surface datum, September 24, 2003; lowest, 11.37 ft below land-surface datum, April 22-28, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 7.72 ft below land-surface datum, September 24; lowest, 10.47 ft below land-surface datum, July 8.

DAY 1 2 3 4 5	OCT 8.35 8.38 8.37 8.37	NOV 8.74 8.74 8.74 8.74 8.77	DEC 9.09 9.10 9.10 9.11 9.13	JAN 9.38 9.40 9.40 9.41 9.44	FEB 9.77 9.78 9.78 9.80 9.81	MAR 10.00 10.02 10.03 10.03	APR 10.21 10.21 10.22 10.23 10.23	MAY 10.03 10.03 10.02 10.02	JUN 10.24 10.27 10.28 10.30	JUL 10.42 10.42 10.43 10.44	AUG 9.84 9.73 9.62 9.52 9.43	SEP 8.45 8.42 8.39 8.34 8.29
6 7 8 9 10	8.34 8.33 8.35 8.38 8.38	8.77 8.80 8.81 8.83 8.84	9.13 9.13 9.13 9.13 9.13	9.45 9.47 9.50 9.51 9.52	9.82 9.83 9.84 9.85 9.85	10.05 10.05 10.06 10.06 10.07	10.24 10.24 10.25 10.26 10.27	10.03 10.03 10.03 10.02 10.02	10.31 10.31 10.32 10.33 10.33	10.45 10.45 10.45 10.46	9.34 9.27 9.19 9.13 9.06	8.24 8.19 8.15 8.11 8.08
11 12 13 14 15	8.37 8.37 8.40 8.41 8.40	8.85 8.86 8.86 8.89	9.15 9.13 9.16 9.18 9.18	9.53 9.54 9.56 9.57 9.59	9.86 9.87 9.89 9.90 9.90	10.07 10.07 10.07 10.07 10.08	10.28 10.30 10.30 10.31 10.31	10.03 10.02 10.02 10.04 10.06	10.34 10.34 10.34 10.34 10.35	10.45 10.45 10.44 10.44	9.00 8.96 8.91 8.86 8.83	8.06 8.02 7.98 7.96 7.91
16 17 18 19 20	8.40 8.45 8.45 8.46 8.46	8.89 8.89 8.92 8.93 8.96	9.19 9.20 9.22 9.24 9.25	9.60 9.61 9.62 9.63 9.65	9.90 9.91 9.93 9.94 9.94	10.08 10.09 10.10 10.11 10.11	10.31 10.32 10.32 10.28 10.24	10.08 10.09 10.11 10.11 10.12	10.36 10.37 10.37 10.37	10.41 10.41 10.38 10.35 10.32	8.81 8.78 8.75 8.72 8.70	7.88 7.84 7.81 7.80 7.78
21 22 23 24 25	8.48 8.53 8.54 8.56 8.57	8.97 8.99 8.99 9.00 9.02	9.25 9.24 9.26 9.28 9.30	9.67 9.68 9.68 9.69 9.70	9.95 9.96 9.96 9.96 9.98	10.12 10.13 10.14 10.14 10.15	10.20 10.18 10.15 10.12 10.10	10.11 10.11 10.12 10.13 10.15	10.39 10.40 10.40 10.40 10.40	10.30 10.28 10.25 10.22 10.19	8.68 8.66 8.64 8.62 8.59	7.78 7.77 7.73 7.72 7.73
26 27 28 29 30 31	8.59 8.62 8.65 8.66 8.68 8.71	9.00 9.02 9.06 9.04 9.05	9.31 9.33 9.34 9.34 9.36 9.37	9.70 9.72 9.73 9.74 9.75 9.76	9.98 9.98 9.99 	10.16 10.17 10.18 10.18 10.18 10.19	10.08 10.06 10.06 10.04	10.17 10.18 10.20 10.21 10.22 10.23	10.41 10.42 10.42 10.43 10.42	10.16 10.15 10.09 10.05 10.01 9.93	8.57 8.55 8.54 8.51 8.49 8.47	7.77 7.78 7.75 7.75 7.75

# FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644435147141901. Local number, FD00200213ADAD1007.

LOCATION.--Lat  $64^{\circ}44'35''$ , long  $147^{\circ}14'19''$ , in  $NE^{1}_{/4}$   $NE^{1}_{/4}$ , sec. 13, T.2 S., R.2 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located south on Gordon Road from the intersection with Lyle Road, south of shoulder where road veers west, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 19.15 ft, screen opening from 14.2 to 18.7 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 502.24 ft above NGVD of 1929 (revised; levels by U.S. Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.37 ft above land surface datum.

REMARKS.--Observation well drilled April 6, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-8S. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.20 ft below land-surface datum, September 24, 2003; lowest, 13.05 ft below land-surface datum, April 24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 10.20 ft below land-surface datum, September 24; lowest, 12.43 ft below land-surface datum, July 4 and July 6-8.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10.76	11.26	11.46	11.73	11.98	12.09	12.26	12.01	12.27	12.41	11.69	10.61
2	10.79	11.27	11.45	11.74	11.98	12.10	12.26	12.00	12.29	12.40	11.61	10.60
3	10.81	11.27	11.44	11.74	11.98	12.11	12.27	11.98	12.31	12.41	11.53	10.58
4	10.82	11.28	11.45	11.75	12.00	12.11	12.27	11.97	12.31	12.42	11.44	10.55
5	10.79	11.29	11.45	11.78	12.01	12.12	12.27	11.97	12.32	12.42	11.36	10.52
6 7 8 9 10	10.80 10.81 10.83 10.86 10.88	11.29 11.31 11.32 11.33 11.35	11.45 11.44 11.44 11.44	11.79 11.82 11.83 11.83 11.84	12.03 12.03 12.03 12.03 12.04	12.12 12.13 12.14 12.13 12.14	12.28 12.28 12.29 12.30 12.30	11.97 11.97 11.97 11.97 11.97	12.33 12.33 12.34 12.33 12.33	12.42 12.42 12.42 12.41 12.41	11.28 11.21 11.14 11.07 11.01	10.49 10.44 10.42 10.39 10.37
11	10.88	11.36	11.45	11.85	12.04	12.14	12.31	11.98	12.34	12.39	10.96	10.36
12	10.88	11.36	11.45	11.86	12.04	12.13	12.31	11.99	12.34	12.38	10.92	10.34
13	10.91	11.37	11.47	11.87	12.05	12.13	12.32	12.01	12.34	12.36	10.88	10.32
14	10.93	11.39	11.49	11.88	12.05	12.13	12.31	12.03	12.34	12.35	10.84	10.31
15	10.92	11.40	11.50	11.89	12.04	12.14	12.30	12.05	12.35	12.33	10.82	10.28
16	10.92	11.39	11.52	11.90	12.04	12.15	12.30	12.07	12.36	12.31	10.80	10.26
17	10.97	11.39	11.53	11.89	12.05	12.15	12.28	12.08	12.35	12.28	10.79	10.24
18	10.98	11.41	11.55	11.89	12.06	12.16	12.27	12.09	12.36	12.25	10.76	10.23
19	10.98	11.42	11.58	11.90	12.05	12.16	12.23	12.11	12.37	12.21	10.74	10.22
20	10.98	11.43	11.58	11.92	12.06	12.17	12.19	12.12	12.38	12.17	10.73	10.22
21	11.01	11.44	11.59	11.93	12.07	12.18	12.16	12.13	12.38	12.14	10.73	10.22
22	11.04	11.43	11.58	11.92	12.07	12.18	12.15	12.13	12.38	12.12	10.72	10.24
23	11.06	11.42	11.59	11.92	12.06	12.19	12.13	12.15	12.38	12.09	10.71	10.21
24	11.07	11.43	11.62	11.93	12.06	12.20	12.10	12.15	12.39	12.06	10.70	10.20
25	11.09	11.44	11.63	11.93	12.08	12.20	12.09	12.17	12.39	12.04	10.68	10.22
26 27 28 29 30 31	11.11 11.14 11.18 11.18 11.21 11.24	11.40 11.42 11.45 11.42 11.42	11.65 11.67 11.68 11.68 11.70	11.93 11.94 11.95 11.95 11.96 11.97	12.07 12.08 12.09	12.21 12.23 12.23 12.23 12.24 12.25	12.07 12.06 12.05 12.03 12.02	12.20 12.22 12.23 12.24 12.25 12.26	12.40 12.40 12.41 12.41 12.41	12.01 11.99 11.92 11.88 11.82 11.76	10.67 10.67 10.66 10.64 10.63	10.28 10.31 10.30 10.31 10.32

## FAIRBANKS NORTH STAR BOROUGH—Continued

# 644435147141902. Local number, FD00200213ADAD2007.

LOCATION.--Lat 64°44′35″, long 147°14′19″, in NE¹/₄ SE¹/₄ NE¹/₄, sec. 13, T.2 S., R.2 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located 0.3 miles south on Gordon Road from the intersection with Lyle Road, south of shoulder where road veers west, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 64.39 ft, screen opening from 59.5 to 64.0 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 502.54 ft above NGVD of 1929 (revised; levels by U.S. Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.16 ft above land surface datum.

REMARKS.--Observation well drilled April 6, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-8D. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.52 ft below land-surface datum, September 24, 2003; lowest, 13.36 ft below land-surface datum, April 22-24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 10.52 ft below land-surface datum, September 24; lowest, 12.74 ft below land-surface datum, July 5 and July 7-10.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11.00 11.06 11.08 11.08 11.06	11.52 11.54 11.53 11.54 11.55	11.72 11.71 11.70 11.71	11.99 12.00 12.01 12.01 12.04	12.24 12.25 12.25 12.26 12.27	12.39 12.39 12.41 12.41 12.42	12.58 12.58 12.59 12.59 12.59	12.34 12.32 12.31 12.30 12.30	12.58 12.60 12.61 12.62 12.62	12.72 12.71 12.72 12.73 12.73	12.00 11.92 11.84 11.75 11.67	10.93 10.92 10.90 10.87 10.84
6 7 8 9 10	11.07 11.08 11.09 11.13 11.15	11.55 11.57 11.58 11.60 11.61	11.71 11.70 11.70 11.70	12.05 12.08 12.09 12.10 12.11	12.29 12.29 12.29 12.30 12.31	12.42 12.44 12.44 12.44 12.45	12.61 12.61 12.62 12.62 12.64	12.29 12.30 12.30 12.29 12.30	12.63 12.64 12.65 12.65 12.65	12.73 12.73 12.74 12.73 12.72	11.59 11.52 11.45 11.38 11.32	10.80 10.76 10.74 10.71 10.69
11 12 13 14 15	11.14 11.15 11.18 11.19 11.19	11.62 11.62 11.63 11.65 11.66	11.72 11.71 11.73 11.75 11.76	12.12 12.12 12.14 12.14 12.15	12.31 12.32 12.33 12.33 12.32	12.46 12.45 12.45 12.45 12.46	12.64 12.64 12.65 12.64 12.63	12.31 12.31 12.33 12.35 12.37	12.66 12.66 12.66 12.66 12.67	12.71 12.70 12.68 12.67 12.64	11.27 11.23 11.19 11.15 11.13	10.68 10.66 10.64 10.63 10.60
16 17 18 19 20	11.19 11.24 11.25 11.25 11.26	11.65 11.65 11.67 11.68 11.69	11.78 11.79 11.81 11.83 11.84	12.16 12.15 12.15 12.17 12.18	12.32 12.33 12.35 12.34 12.35	12.46 12.47 12.48 12.48 12.49	12.64 12.62 12.60 12.56 12.53	12.39 12.40 12.41 12.43 12.43	12.68 12.67 12.67 12.68 12.68	12.61 12.59 12.55 12.51 12.48	11.12 11.11 11.09 11.07 11.06	10.58 10.56 10.54 10.54 10.54
21 22 23 24 25	11.28 11.31 11.32 11.34 11.36	11.70 11.70 11.69 11.69 11.70	11.85 11.84 11.85 11.88 11.89	12.19 12.18 12.18 12.19 12.19	12.35 12.36 12.35 12.35 12.37	12.50 12.50 12.51 12.52 12.52	12.50 12.48 12.46 12.44 12.42	12.44 12.45 12.47 12.47 12.49	12.69 12.69 12.69 12.68 12.70	12.45 12.42 12.39 12.37 12.34	11.05 11.05 11.04 11.03 11.01	10.54 10.56 10.53 10.52 10.54
26 27 28 29 30 31	11.37 11.41 11.44 11.45 11.47	11.67 11.68 11.71 11.68 11.69	11.90 11.93 11.94 11.95 11.96 11.97	12.19 12.20 12.21 12.22 12.22 12.23	12.36 12.38 12.38 	12.54 12.55 12.55 12.55 12.56 12.57	12.40 12.38 12.38 12.36 12.35	12.51 12.54 12.55 12.56 12.56 12.57	12.71 12.71 12.72 12.72 12.72	12.33 12.30 12.25 12.19 12.13 12.07	10.99 10.98 10.97 10.96 10.95	10.60 10.63 10.62 10.63 10.64

#### FAIRBANKS NORTH STAR BOROUGH—Continued

# 644435147172001. Local number, FD00200214ACBC1002.

LOCATION.--Lat 64°44′35″, long 147°17′20″, in NW¹/₄ SW¹/₄ NE¹/₄, sec. 14, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located 25 ft off shoulder of southeast corner of Newby Road and Newby Park intersection, North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 16.9 ft, screen opening from 11.9 to 16.4 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 497.04 ft above NGVD of 1929 (revised; levels by U.S. Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey.). Measuring point: top of inner casing 2.56 ft above land surface datum.

REMARKS.--Observation well drilled April 8, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-9. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; this may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.96 ft below land-surface datum, August 26, 2002; lowest, 8.72 ft below land-surface datum, April 15-19, 22, 23, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 7.00 ft below land-surface datum, August 5-7; lowest, 8.52 ft below land-surface datum, June 3-6.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.64	8.25	8.06	8.29	8.24	8.17	8.25	8.05	8.49	8.31	7.13	7.24
2	7.65	8.27	8.04	8.29	8.25	8.18	8.25	8.03	8.50	8.29	7.11	7.21
3	7.67	8.28	8.02	8.28	8.25	8.19	8.25	8.02	8.51	8.29	7.04	7.18
4	7.68	8.30	8.01	8.28	8.24	8.18	8.25	8.02	8.51	8.28	7.01	7.16
5	7.70	8.32	8.00	8.30	8.25	8.18	8.25	8.03	8.52	8.27	7.00	7.13
6	7.70	8.32	7.99	8.31	8.25	8.18	8.26	8.05	8.50	8.24	7.00	7.12
7	7.73	8.34	7.99	8.32	8.22	8.18	8.26	8.07	8.49	8.22	7.00	7.11
8	7.73	8.34	7.99	8.31	8.21	8.19	8.26	8.09	8.48	8.21	7.03	7.17
9	7.76	8.35	7.99	8.29	8.19	8.19	8.27	8.11	8.47	8.20	7.05	7.31
10	7.77	8.36	8.00	8.28	8.18	8.19	8.28	8.13	8.46	8.15	7.07	7.36
11	7.78	8.37	8.02	8.28	8.17	8.19	8.27	8.16	8.46	8.11	7.09	7.39
12	7.79	8.38	8.04	8.27	8.16	8.18	8.26	8.17	8.46	8.07	7.11	7.39
13	7.81	8.39	8.05	8.26	8.15	8.18	8.24	8.19	8.46	8.03	7.12	7.39
14	7.83	8.40	8.08	8.25	8.15	8.18	8.19	8.22	8.45	7.99	7.11	7.41
15	7.85	8.39	8.10	8.23	8.14	8.19	8.15	8.24	8.45	7.92	7.11	7.41
13	1.03	0.33	0.10	0.23	0.14	0.13	0.13	0.24	0.43	1.92	/ • ± ±	7.43
16	7.86	8.35	8.11	8.21	8.14	8.19	8.11	8.26	8.44	7.87	7.12	7.43
17	7.87	8.33	8.13	8.19	8.14	8.20	8.07	8.28	8.42	7.82	7.15	7.45
18	7.89	8.31	8.15	8.19	8.15	8.20	8.06	8.30	8.41	7.78	7.15	7.46
19	7.90	8.29	8.17	8.18	8.14	8.20	8.07	8.32	8.41	7.73	7.15	7.48
20	7.91	8.27	8.18	8.18	8.14	8.20	8.06	8.33	8.41	7.70	7.15	7.51
21	7.93	8.25	8.18	8.18	8.14	8.20	8.06	8.34	8.40	7.67	7.16	7.53
22	7.95	8.22	8.18	8.16	8.16	8.21	8.06	8.35	8.39	7.65	7.17	7.56
23	7.97	8.20	8.19	8.16	8.16	8.23	8.06	8.37	8.38	7.63	7.15	7.58
24	8.03	8.19	8.21	8.15	8.16	8.24	8.08	8.37	8.37	7.62	7.10	7.58
25	8.08	8.16	8.23	8.16	8.17	8.24	8.08	8.39	8.37	7.59	7.10	7.60
26	8.11	8.14	8.25	8.16	8.16	8.24	8.08	8.41	8.36	7.55	7.10	7.63
		8.13			8.16				8.36		7.10	
27	8.14		8.27	8.17		8.25	8.07	8.43		7.41		7.66
28	8.17	8.11	8.28	8.20	8.17	8.25	8.07	8.44	8.34	7.31	7.12	7.68
29	8.19	8.08	8.28	8.21		8.24	8.06	8.46	8.33	7.26	7.12	7.69
30	8.21	8.07	8.29	8.23		8.24	8.05	8.47	8.32	7.21	7.15	7.70
31	8.23		8.29	8.24		8.25		8.48		7.16	7.26	

## FAIRBANKS NORTH STAR BOROUGH—Continued

#### 64444147143901. Local number, FD00200213AACD1005.

LOCATION.--Lat  $64^{\circ}44'44''$ , long  $147^{\circ}14'39''$ , in  $SW^{1}/_{4}$   $NE^{1}/_{4}$ , sec. 13, T.2 S., R.2 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 0.2 mi south on Silver Street from the intersection with Lyle Road, then 15 ft south of road, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.15 ft, screen opening from 12.4 to 16.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 500.34 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.33 ft above land surface datum.

REMARKS.--Observation well drilled April 8, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-7. Missing daily values March 25 to April 5 due to equipment malfunction. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.74 ft below land-surface datum, September 24, 2003; lowest, 11.48 ft below land-surface datum, April 22-25, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 8.74 ft below land-surface datum, September 24; lowest, 10.88 ft below land-surface datum, June 28 to July 10.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.17 9.20 9.22 9.23 9.21	9.69 9.71 9.72 9.72 9.74	9.94 9.93 9.92 9.92 9.93	10.20 10.21 10.22 10.22 10.24	10.44 10.45 10.45 10.46 10.47	10.57 10.58 10.58 10.59 10.60	  	10.48 10.47 10.45 10.44 10.44	10.75 10.77 10.78 10.78 10.79	10.87 10.87 10.88 10.88	10.11 10.04 9.97 9.89 9.80	9.11 9.10 9.07 9.04 9.01
6 7 8 9 10	9.21 9.22 9.24 9.27 9.30	9.75 9.77 9.79 9.80 9.82	9.92 9.92 9.92 9.92 9.92	10.25 10.28 10.29 10.30 10.30	10.48 10.49 10.49 10.49 10.50	10.60 10.61 10.61 10.61 10.62	10.76 10.77 10.76 10.77 10.78	10.44 10.44 10.44 10.44	10.80 10.80 10.81 10.81	10.88 10.88 10.88 10.87	9.73 9.66 9.60 9.54 9.48	8.97 8.94 8.92 8.89 8.88
11 12 13 14 15	9.29 9.29 9.33 9.34 9.35	9.83 9.84 9.85 9.86 9.88	9.93 9.92 9.94 9.96 9.97	10.31 10.32 10.33 10.34 10.35	10.50 10.50 10.50 10.51 10.51	10.62 10.61 10.61 10.61 10.62	10.79 10.79 10.79 10.79 10.77	10.46 10.47 10.48 10.50 10.52	10.81 10.82 10.82 10.82 10.83	10.85 10.83 10.82 10.80 10.77	9.44 9.40 9.37 9.33 9.31	8.87 8.85 8.84 8.82 8.80
16 17 18 19 20	9.35 9.40 9.41 9.41 9.42	9.87 9.88 9.89 9.90 9.91	9.98 10.00 10.03 10.05 10.06	10.35 10.35 10.35 10.36 10.37	10.51 10.52 10.53 10.53 10.53	10.63 10.63 10.64 10.65	10.77 10.75 10.73 10.70 10.66	10.54 10.56 10.57 10.58 10.59	10.83 10.83 10.84 10.84 10.85	10.74 10.71 10.68 10.64 10.61	9.30 9.29 9.28 9.26 9.25	8.78 8.76 8.75 8.75 8.75
21 22 23 24 25	9.44 9.47 9.49 9.50 9.52	9.92 9.92 9.91 9.92 9.92	10.07 10.06 10.07 10.09 10.11	10.38 10.37 10.38 10.38 10.40	10.53 10.54 10.53 10.53 10.55	10.66 10.66 10.67 10.67	10.63 10.61 10.59 10.57 10.56	10.60 10.61 10.62 10.63 10.64	10.85 10.85 10.85 10.86 10.86	10.58 10.56 10.53 10.51 10.48	9.24 9.24 9.23 9.22 9.20	8.76 8.78 8.75 8.74 8.76
26 27 28 29 30 31	9.54 9.57 9.61 9.62 9.64 9.67	9.89 9.90 9.93 9.90 9.90	10.12 10.14 10.15 10.16 10.17	10.39 10.40 10.41 10.42 10.42 10.43	10.55 10.55 10.56 	  	10.54 10.53 10.52 10.50 10.49	10.67 10.69 10.70 10.72 10.73 10.74	10.87 10.87 10.87 10.87	10.46 10.43 10.36 10.30 10.24 10.17	9.17 9.17 9.16 9.14 9.13 9.13	8.82 8.85 8.85 8.85 8.86

#### FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644446147120901. Local number, FD00200317BBCA1001.

LOCATION.--Lat 64°44′46″, long 147°12′09″, in SW¹/4 NW¹/4 NW¹/4, sec. 17, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located in Chena River Recreation Area, North Pole. From recreation area entrance station well is approximately 0.8 mi southeast on dirt road from levee followed by 0.8 mi northeast on intersecting dirt road.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 15.2 ft, screen opening from 10.1 ft. to 15.1 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 05, 2001 to current year.

DATUM.---Elevation of land-surface datum is 497.64 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 6.11 ft above land surface datum.

REMARKS.--Observation well drilled September 9, 1994 by the U.S. Army Corps of Engineers and designated as USAP-4. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.52 ft below land-surface datum, August 1, 2003; lowest, 11.81 ft below land-surface datum, April 27-28, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 0.52 ft below land-surface datum, August 1; lowest, 10.61 ft below land-surface datum, April 16-19.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.18 4.27 4.30 4.31 4.34	5.52 5.57 5.61 5.64 5.68	7.07 7.11 7.14 7.18 7.23	8.28 8.30 8.32 8.35 8.41	9.17 9.19 9.23 9.25 9.28	9.77 9.80 9.82 9.84 9.86	10.36 10.37 10.39 10.41 10.42	10.41 10.39 10.37 10.36	10.44 10.47 10.49 10.48	10.33 10.32 10.34 10.36 10.35	0.52 0.61 0.56 0.64 0.85	2.86 2.62 2.60 2.67 2.84
6 7 8 9 10	4.35 4.43 4.50 4.55 4.59	5.72 5.79 5.83 5.89 5.95	7.26 7.29 7.33 7.37 7.40	8.43 8.49 8.53 8.56 8.59	9.29 9.32 9.34 9.37 9.38	9.89 9.90 9.93 9.93	10.43 10.45 10.47 10.48 10.50	10.37 10.37 10.36 10.34	10.47 10.48 10.46 10.42	10.35 10.35 10.34 10.32 10.31	1.01 1.32 1.68 1.98 2.20	2.97 3.08 3.14 3.26 3.35
11 12 13 14 15	4.59 4.61 4.68 4.72 4.73	6.00 6.04 6.09 6.16 6.22	7.44 7.48 7.53 7.58 7.62	8.62 8.65 8.69 8.71 8.74	9.41 9.43 9.46 9.49 9.51	9.96 9.98 9.98 10.00 10.01	10.52 10.54 10.55 10.57 10.58	10.33 10.33 10.34 10.35 10.36	10.40 10.38 10.36 10.36	10.30 10.29 10.26 10.25 10.22	2.40 2.51 2.71 2.81 2.91	2.90 2.91 3.06 3.24 3.39
16 17 18 19 20	4.74 4.85 4.87 4.89 4.93	6.26 6.29 6.37 6.42 6.50	7.66 7.71 7.77 7.83 7.86	8.77 8.80 8.81 8.85 8.88	9.51 9.54 9.56 9.58 9.60	10.03 10.05 10.07 10.10 10.11	10.59 10.60 10.60 10.58 10.54	10.39 10.39 10.39 10.39 10.38	10.36 10.34 10.33 10.33	10.18 10.14 10.07 10.00 9.93	3.11 3.27 3.34 3.42 3.47	3.40 3.44 3.46 3.52 3.61
21 22 23 24 25	4.98 5.05 5.09 5.13 5.17	6.56 6.62 6.67 6.72 6.78	7.87 7.90 7.93 7.99 8.02	8.92 8.94 8.95 8.98 8.99	9.61 9.64 9.65 9.66 9.69	10.13 10.15 10.18 10.20 10.21	10.50 10.50 10.49 10.47 10.47	10.36 10.36 10.37 10.36 10.38	10.34 10.34 10.33 10.33	9.88 9.84 9.79 9.76 9.72	3.57 3.66 3.33 2.79 2.80	3.66 3.74 3.67 3.63 3.75
26 27 28 29 30 31	5.21 5.27 5.34 5.37 5.41 5.48	6.80 6.85 6.93 6.94 6.99	8.07 8.12 8.15 8.17 8.21 8.24	9.01 9.03 9.07 9.09 9.11 9.14	9.70 9.72 9.75 	10.24 10.27 10.29 10.30 10.31 10.33	10.44 10.43 10.43 10.42 10.41	10.39 10.42 10.43 10.43 10.43	10.35 10.36 10.35 10.35	9.69 9.66 9.54 9.36 4.25 0.70	2.95 3.15 3.39 3.53 3.57 3.53	3.90 3.94 3.88 3.88 3.90

## FAIRBANKS NORTH STAR BOROUGH—Continued

## 644450147131201. Local number, FD00200318ABBD1005.

LOCATION.--Lat 64°44′50″, long 147°13′12″, in NW¹/4 NW¹/4 NE¹/4, sec. 18, T.2 S., R.3 E., (Fairbanks C-1 NE quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located in Chena River Recreation Area, North Pole. From recreation area entrance station well is approximately 0.3 mi southeast on dirt road from levee.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 24.8 ft, screen opening from 19.7 to 24.7 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; Submersible pressure transducer/electronic data logger from October 13, 2001 to current year.

DATUM.--Elevation of land-surface datum is 502.44 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 5.38 ft above land surface datum.

REMARKS.--Observation well drilled September 9, 1994 by the U.S. Army Corps of Engineers and designated as USAP-5. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5 which may have affected ground water levels.

PERIOD OF RECORD.--July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.13 ft below land-surface datum, September 24, 2003; lowest, 14.81 ft below land-surface datum, April 15-19 and 21-28, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.13 ft below land-surface datum, September 24; lowest, 13.99 ft below land-surface datum, July 10.

DAY 1 2 3 4 5	OCT 11.73 11.77 11.80 11.83 11.80	NOV 12.27 12.29 12.28 12.30 12.33	DEC 12.76 12.76 12.77 12.77	JAN 13.13 13.14 13.14 13.15 13.18	FEB 13.51 13.53 13.53 13.55 13.56	MAR 13.68 13.67 13.69 13.70	APR 13.85 13.85 13.87 13.87	MAY 13.66 13.64 13.62 13.61	JUN 13.79 13.81 13.83 13.83	JUL 13.94 13.94 13.95 13.97	AUG 12.74 12.46 12.25 12.11 12.01	SEP 11.59 11.58 11.55 11.52 11.48
6	11.80	12.35	12.80	13.19	13.58	13.70	13.89	13.60	13.85	13.97	11.92	11.44
7	11.81	12.38	12.80	13.23	13.57	13.71	13.90	13.60	13.85	13.97	11.84	11.40
8	11.83	12.39	12.80	13.24	13.57	13.72	13.90	13.59	13.86	13.98	11.79	11.37
9	11.86	12.41	12.81	13.24	13.58	13.72	13.92	13.58	13.86	13.98	11.75	11.34
10	11.88	12.43	12.83	13.26	13.59	13.72	13.93	13.59	13.86	13.98	11.71	11.32
11	11.87	12.45	12.84	13.28	13.60	13.73	13.93	13.58	13.86	13.97	11.68	11.31
12	11.87	12.46	12.83	13.29	13.60	13.72	13.94	13.59	13.86	13.97	11.67	11.29
13	11.92	12.47	12.85	13.31	13.62	13.72	13.94	13.60	13.86	13.95	11.66	11.28
14	11.93	12.50	12.87	13.32	13.62	13.73	13.94	13.61	13.87	13.94	11.64	11.26
15	11.91	12.53	12.88	13.34	13.62	13.73	13.93	13.63	13.88	13.93	11.63	11.23
16 17 18 19 20	11.91 11.97 11.97 11.97	12.52 12.53 12.56 12.57 12.59	12.90 12.91 12.94 12.96 12.97	13.35 13.36 13.37 13.39 13.41	13.62 13.63 13.63 13.64 13.65	13.74 13.75 13.76 13.76 13.76	13.96 13.95 13.95 13.92 13.89	13.65 13.65 13.66 13.66	13.89 13.88 13.88 13.89 13.90	13.91 13.90 13.87 13.83 13.79	11.64 11.66 11.66 11.65 11.65	11.21 11.19 11.17 11.17 11.16
21	12.01	12.61	12.97	13.43	13.65	13.77	13.85	13.66	13.90	13.76	11.66	11.17
22	12.05	12.64	12.96	13.42	13.66	13.78	13.82	13.67	13.91	13.74	11.66	11.18
23	12.06	12.65	12.98	13.43	13.65	13.79	13.80	13.68	13.92	13.71	11.66	11.14
24	12.09	12.65	13.01	13.44	13.66	13.80	13.76	13.68	13.92	13.69	11.64	11.13
25	12.11	12.68	13.02	13.45	13.67	13.80	13.76	13.70	13.93	13.66	11.61	11.15
26 27 28 29 30 31	12.12 12.16 12.19 12.20 12.22 12.25	12.66 12.68 12.72 12.70 12.72	13.04 13.07 13.08 13.08 13.09 13.10	13.45 13.46 13.48 13.49 13.50 13.51	13.65 13.67 13.68	13.82 13.82 13.82 13.82 13.84 13.85	13.72 13.72 13.72 13.69 13.69	13.72 13.73 13.74 13.76 13.76	13.93 13.94 13.94 13.94	13.64 13.60 13.55 13.50 13.44 13.13	11.61 11.63 11.62 11.61 11.61	11.22 11.25 11.22 11.22 11.23

## FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644454147151701. Local number, FD00200213ABBB1006.

LOCATION.--Lat 64°44′54″, long 147°15′17″, in NW¹/4 NW¹/4 NE¹/4, sec. 13, T.2 S., R.2 E., (Fairbanks C-1 NW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 30 ft southeast of intersection of Nelson Rd and Lyle Rd, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.9 ft, screen openings from 12.6 to 17.6 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic datalogger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 497.94 ft above NGVD of 1929 (revised; levels by U.S. Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.61 ft above land surface datum.

REMARKS.--Observation well drilled April 8, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-6. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.53 ft below land-surface datum, September 18-19, 2003; lowest, 10.13 ft below land-surface datum, April 22-24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 7.53 ft below land-surface datum, September 18-19; lowest, 9.60 ft below land-surface datum, April 10-14.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.96	8.54	8.84	9.11	9.34	9.44	9.56	9.23	9.49	9.55	8.67	7.88
2	7.99	8.56	8.83	9.12	9.35	9.45	9.56	9.22	9.51	9.55	8.62	7.85
3	8.01	8.57	8.82	9.13	9.37	9.45	9.56	9.20	9.52	9.55	8.55	7.82
4	8.01	8.59	8.82	9.13	9.37	9.46	9.57	9.20	9.52	9.56	8.47	7.78
5	8.00	8.61	8.83	9.15	9.38	9.47	9.57	9.19	9.52	9.56	8.40	7.73
6	8.00	8.63	8.82	9.17	9.39	9.47	9.57	9.19	9.53	9.56	8.34	7.70
7	8.02	8.65	8.81	9.19	9.40	9.47	9.58	9.20	9.54	9.55	8.29	7.67
8	8.03	8.67	8.81	9.20	9.40	9.48	9.58	9.21	9.54	9.55	8.24	7.65
9	8.07	8.68	8.81	9.21	9.40	9.48	9.59	9.21	9.53	9.55	8.21	7.63
10	8.09	8.70	8.81	9.22	9.40	9.48	9.59	9.21	9.53	9.53	8.17	7.62
11	8.09	8.72	8.83	9.22	9.40	9.48	9.59	9.22	9.53	9.51	8.14	7.62
12	8.09	8.73	8.83	9.23	9.40	9.46	9.59	9.22	9.53	9.49	8.12	7.60
13	8.12	8.74	8.84	9.25	9.41	9.46	9.59	9.24	9.53	9.47	8.09	7.59
14	8.14	8.76	8.87	9.26	9.41	9.46	9.58	9.25	9.53	9.45	8.07	7.58
15	8.15	8.78	8.88	9.26	9.40	9.47	9.55	9.27	9.54	9.41	8.05	7.56
16	8.14	8.77	8.89	9.27	9.40	9.47	9.55	9.29	9.54	9.37	8.04	7.54
17	8.18	8.78	8.91	9.27	9.41	9.48	9.52	9.31	9.54	9.33	8.04	7.54
18	8.20	8.79	8.92	9.27	9.41	9.49	9.49	9.32	9.54	9.29	8.02	7.53
19	8.20	8.80	8.95	9.28	9.41	9.50	9.45	9.34	9.54	9.26	8.01	7.53
20	8.21	8.81	8.95	9.29	9.41	9.50	9.42	9.35	9.55	9.22	8.01	7.54
21	8.23	8.82	8.97	9.30	9.41	9.50	9.39	9.36	9.55	9.20	8.01	7.55
22	8.27	8.82	8.97	9.29	9.41	9.51	9.37	9.36	9.56	9.17	8.00	7.58
23	8.28	8.82	8.98	9.29	9.41	9.51	9.36	9.38	9.56	9.15	7.99	7.56
24	8.31	8.82	9.00	9.30	9.41	9.52	9.34	9.39	9.55	9.13	7.98	7.54
25	8.34	8.83	9.01	9.30	9.42	9.53	9.31	9.40	9.55	9.11	7.95	7.57
26 27 28 29 30 31	8.36 8.41 8.45 8.46 8.49 8.52	8.80 8.81 8.83 8.80 8.81	9.03 9.05 9.06 9.07 9.08 9.09	9.30 9.31 9.32 9.33 9.34 9.34	9.42 9.43 9.44 	9.54 9.54 9.54 9.54 9.55	9.30 9.28 9.27 9.26 9.24	9.41 9.43 9.45 9.46 9.47 9.48	9.55 9.56 9.56 9.56 9.56	9.08 9.02 8.93 8.86 8.79 8.73	7.93 7.93 7.92 7.91 7.90 7.90	7.63 7.66 7.66 7.66 7.68

#### FAIRBANKS NORTH STAR BOROUGH—Continued

## 644528147131201. Local number, FD00200307ACBD1001 51660.

LOCATION.--Lat 64°45′28″, long 147°13′12″, NW¹/₄ SW¹/₄ NE¹/₄, sec. 7, T.2 S., R.3 E., (Fairbanks D-1) Fairbanks Meridian, Hydrologic Unit 19040506, inside Corps of Engineers Chena Lakes Project fenced compound, 120 ft west of headquarters building and 2 mi northeast of the intersection of Laurence and Nelson Roads.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS .-- Diameter 4-in., depth 31 ft, screened from 28.5 to 31 ft.

INSTRUMENTATION.--Continuous strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from October 1985 to April 1995. Electronic data logger from April 1995 to present.

DATUM.--Elevation of land-surface datum is 494.7 ft above sea level (determined by levels survey). Measuring point: top of casing 2.91 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers, designated as P-252. Water levels from water years 1986 through 1990 were not previously published and are available from NWIS. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; this may have affected ground water levels. PERIOD OF RECORD.--June 1976 to May 1980 and October 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.85 ft below land-surface datum, June 8-9, 1992; lowest, 13.20 ft below land-surface datum September 15, 1976.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 7.09 ft below land-surface datum, September 17-19; lowest, 10.63 ft below land-surface datum, April 14-17.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.88 7.88 7.89 7.91 7.91	8.44 8.47 8.49 8.51 8.53	9.13 9.16 9.17 9.19 9.21	9.65 9.67 9.68 9.70 9.72	10.09 10.10 10.11 10.13 10.14	10.33 10.34 10.35 10.36 10.37	10.54 10.54 10.55 10.56	10.33 10.30 10.28 10.25 10.23	10.26 10.27 10.29 10.31 10.31	10.44 10.44 10.45 10.46 10.47	8.83 8.46 8.11 7.82 7.59	7.51 7.43 7.38 7.29 7.23
6 7 8 9 10	7.91 7.91 7.92 7.95 7.99	8.55 8.58 8.61 8.63 8.66	9.22 9.24 9.25 9.26 9.27	9.73 9.75 9.77 9.80 9.81	10.15 10.17 10.18 10.19 10.20	10.37 10.38 10.39 10.40 10.41	10.57 10.57 10.58 10.59	10.22 10.21 10.20 10.19 10.18	10.32 10.33 10.34 10.34	10.47 10.48 10.49 10.49	7.42 7.31 7.25 7.21 7.19	7.19 7.16 7.14 7.13 7.13
11 12 13 14 15	8.01 8.01 8.03 8.05 8.08	8.69 8.72 8.74 8.77 8.80	9.27 9.29 9.30 9.32 9.34	9.83 9.84 9.86 9.87 9.89	10.21 10.22 10.22 10.23 10.24	10.41 10.41 10.42 10.42 10.42	10.60 10.61 10.61 10.62 10.62	10.17 10.17 10.17 10.16 10.16	10.32 10.32 10.31 10.31 10.31	10.50 10.50 10.49 10.49 10.48	7.18 7.18 7.19 7.20 7.22	7.13 7.12 7.11 7.11 7.10
16 17 18 19 20	8.08 8.10 8.12 8.13 8.15	8.84 8.85 8.87 8.90 8.92	9.36 9.38 9.40 9.43 9.45	9.90 9.92 9.92 9.94 9.95	10.25 10.26 10.26 10.27 10.27	10.43 10.43 10.44 10.45 10.44	10.62 10.61 10.61 10.60 10.58	10.17 10.17 10.17 10.17 10.17	10.32 10.33 10.33 10.34 10.34	10.45 10.42 10.39 10.33 10.28	7.24 7.29 7.33 7.37 7.40	7.10 7.09 7.09 7.09 7.10
21 22 23 24 25	8.16 8.20 8.22 8.24 8.26	8.95 8.97 9.00 9.01 9.04	9.47 9.48 9.50 9.52 9.53	9.97 9.98 9.99 10.00 10.01	10.27 10.28 10.29 10.30 10.30	10.45 10.46 10.47 10.47	10.56 10.54 10.52 10.50 10.48	10.17 10.16 10.17 10.17 10.17	10.35 10.37 10.37 10.38 10.39	10.23 10.20 10.17 10.15 10.12	7.43 7.46 7.49 7.51 7.48	7.12 7.14 7.17 7.18 7.18
26 27 28 29 30 31	8.28 8.30 8.34 8.36 8.39 8.41	9.05 9.06 9.08 9.10 9.11	9.55 9.57 9.59 9.61 9.62 9.64	10.02 10.02 10.04 10.05 10.06 10.08	10.31 10.31 10.32	10.49 10.50 10.51 10.52 10.52 10.53	10.45 10.42 10.40 10.38 10.36	10.17 10.18 10.20 10.22 10.23 10.25	10.40 10.41 10.42 10.42	10.10 10.05 9.94 9.82 9.59 9.22	7.47 7.47 7.48 7.50 7.50 7.51	7.21 7.26 7.30 7.32 7.34

## FAIRBANKS NORTH STAR BOROUGH—Continued

# 644531147130801. Local number, FD00200307ACBA1007.

LOCATION.--Lat 64°45′31″, long 147°13′08″, NW¹/4 SW¹/4 NE¹/4, sec. 7, T.2 S., R.3 E., (Fairbanks D-1 SE) Fairbanks Meridian, Hydrologic Unit 19040506. Well located approximately 60 feet from bunker door off gravel road near U.S. Army Corps of Engineers' facility south of Chena Lake Recreation Area entrance.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 17.6 ft, screen opening from 7.6 ft to 12.1 ft and 12.6 to 17.1 ft

INSTRUMENTATION.--Intermittent measurements by USGS personnel February 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 495.84 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.47 feet above land surface datum.

REMARKS.--Observation well drilled March 12, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-4. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; which may have affected ground water levels.

PERIOD OF RECORD.--February 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.46 ft below land-surface datum, August 9, 2003; lowest, 10.75 ft below land-surface datum, April 23-24, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 6.46 ft below land-surface datum, August 9; lowest, 10.12 ft below land-surface datum, April 13-14.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.27 7.33 7.35 7.35 7.35	7.97 7.98 7.99 8.01 8.04	8.70 8.71 8.72 8.73 8.76	9.21 9.22 9.23 9.24 9.27	9.64 9.65 9.66 9.68 9.69	9.83 9.84 9.85 9.86 9.87	10.03 10.03 10.04 10.04	9.76 9.73 9.70 9.68 9.67	9.73 9.76 9.79 9.78 9.78	9.90 9.90 9.91 9.93 9.94	7.96 7.58 7.22 6.94 6.73	6.84 6.78 6.70 6.60 6.54
6	7.33	8.06	8.77	9.29	9.71	9.87	10.06	9.67	9.79	9.95	6.59	6.52
7	7.36	8.10	8.78	9.32	9.72	9.88	10.07	9.67	9.80	9.95	6.52	6.49
8	7.39	8.14	8.79	9.34	9.71	9.89	10.07	9.65	9.79	9.96	6.48	6.49
9	7.43	8.17	8.80	9.35	9.72	9.89	10.08	9.64	9.78	9.96	6.46	6.51
10	7.46	8.21	8.81	9.36	9.73	9.89	10.09	9.64	9.76	9.95	6.47	6.52
11	7.46	8.24	8.83	9.37	9.74	9.90	10.10	9.63	9.76	9.94	6.49	6.51
12	7.46	8.26	8.83	9.39	9.74	9.90	10.10	9.63	9.76	9.95	6.51	6.50
13	7.51	8.29	8.86	9.41	9.75	9.89	10.10	9.64	9.75	9.93	6.57	6.49
14	7.52	8.32	8.89	9.43	9.76	9.90	10.10	9.64	9.75	9.92	6.59	6.50
15	7.52	8.36	8.90	9.44	9.76	9.91	10.09	9.64	9.75	9.88	6.60	6.49
16	7.52	8.37	8.93	9.45	9.76	9.91	10.10	9.65	9.78	9.84	6.66	6.49
17	7.59	8.38	8.95	9.46	9.77	9.92	10.10	9.64	9.78	9.81	6.75	6.49
18	7.60	8.42	8.98	9.47	9.78	9.92	10.08	9.63	9.78	9.76	6.79	6.49
19	7.61	8.44	9.01	9.49	9.78	9.93	10.06	9.63	9.79	9.70	6.82	6.51
20	7.61	8.48	9.02	9.50	9.78	9.93	10.03	9.63	9.81	9.65	6.84	6.55
21	7.64	8.51	9.04	9.53	9.79	9.94	10.01	9.62	9.82	9.62	6.88	6.58
22	7.68	8.54	9.03	9.53	9.80	9.94	9.99	9.62	9.83	9.60	6.93	6.64
23	7.71	8.54	9.05	9.54	9.79	9.95	9.98	9.63	9.84	9.57	6.93	6.61
24	7.73	8.55	9.08	9.55	9.79	9.97	9.94	9.63	9.84	9.55	6.86	6.59
25	7.76	8.59	9.10	9.56	9.81	9.97	9.92	9.64	9.85	9.53	6.83	6.64
26 27 28 29 30 31	7.78 7.81 7.85 7.87 7.89 7.94	8.57 8.60 8.64 8.62 8.65	9.12 9.15 9.16 9.16 9.17 9.19	9.56 9.58 9.60 9.61 9.61 9.63	9.81 9.82 9.83 	9.98 10.00 10.00 10.00 10.01 10.02	9.88 9.86 9.85 9.81 9.79	9.66 9.69 9.70 9.71 9.72 9.73	9.87 9.88 9.89 9.90 9.90	9.50 9.40 9.27 9.13 8.84 8.39	6.83 6.86 6.91 6.92 6.92 6.94	6.75 6.81 6.78 6.79 6.82

# FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644547147141801. Local number, FD00200306CCCC1002.

LOCATION.--Lat  $64^{\circ}45'47''$ , long  $147^{\circ}14'18''$ , in  $SW^{1}_{/4}$   $SW^{1}_{/4}$ , sec. 6, T.2 S., R.3 E., (Fairbanks D-1 SE quad), Fairbanks Meridian, Hydrologic Unit 19040506, Well located 0.5 mi on Hurst Road from the intersection with Nelson Road, then 30 ft east of road, North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in.PVC inner casing, depth 17.4 ft, screen opening from 12.4 ft to 16.9 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel August 2001 to current year; submersible pressure transducer/electronic data logger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 493.64 ft above NGVD of 1929 (revised; levels by US Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey). Measuring point: top of inner casing 2.57 feet above land surface datum.

REMARKS.--Observation well drilled April 11, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-3. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; this may have affected ground water levels.

PERIOD OF RECORD .-- August 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.82 ft below land-surface datum, September 18-19, 2003; lowest, 10.07 ft below land-surface datum, April 22-23, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 5.82 ft below land-surface datum, September 18-19; lowest, 9.74 ft below land-surface datum, April 12-14, 16-17.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.62 6.66 6.66 6.62	7.31 7.34 7.36 7.37 7.40	8.21 8.23 8.24 8.25 8.28	8.81 8.82 8.83 8.84 8.87	9.27 9.28 9.29 9.30 9.32	9.47 9.48 9.48 9.48 9.50	9.67 9.67 9.68 9.68 9.69	9.33 9.30 9.26 9.24 9.23	9.30 9.34 9.36 9.36 9.35	9.48 9.49 9.51 9.53 9.54	8.23 8.12 7.96 7.82 7.69	6.54 6.50 6.43 6.35 6.28
6	6.62	7.43	8.30	8.88	9.34	9.50	9.69	9.22	9.36	9.55	7.57	6.20
7	6.64	7.47	8.31	8.92	9.35	9.51	9.69	9.23	9.38	9.55	7.48	6.14
8	6.67	7.51	8.33	8.94	9.34	9.52	9.69	9.21	9.38	9.56	7.37	6.10
9	6.72	7.55	8.34	8.95	9.36	9.52	9.70	9.20	9.36	9.56	7.28	6.06
10	6.75	7.59	8.36	8.97	9.36	9.52	9.71	9.20	9.34	9.56	7.20	6.03
11	6.74	7.62	8.38	8.98	9.37	9.52	9.72	9.20	9.34	9.54	7.13	6.00
12	6.75	7.65	8.39	9.00	9.38	9.52	9.73	9.20	9.34	9.55	7.08	5.96
13	6.80	7.68	8.40	9.02	9.39	9.51	9.73	9.20	9.34	9.53	7.02	5.93
14	6.82	7.72	8.44	9.04	9.39	9.51	9.73	9.20	9.34	9.52	6.97	5.91
15	6.82	7.76	8.45	9.05	9.39	9.53	9.71	9.21	9.35	9.51	6.93	5.87
16	6.81	7.79	8.47	9.07	9.40	9.53	9.72	9.22	9.38	9.47	6.92	5.84
17	6.89	7.80	8.50	9.08	9.41	9.54	9.72	9.21	9.37	9.44	6.90	5.83
18	6.90	7.84	8.53	9.09	9.42	9.56	9.72	9.21	9.37	9.38	6.87	5.82
19	6.91	7.87	8.56	9.11	9.42	9.58	9.70	9.20	9.39	9.31	6.85	5.82
20	6.92	7.91	8.58	9.12	9.42	9.58	9.67	9.20	9.41	9.25	6.84	5.83
21	6.95	7.94	8.59	9.15	9.43	9.59	9.63	9.19	9.42	9.22	6.83	5.85
22	7.00	7.98	8.59	9.15	9.44	9.60	9.61	9.19	9.43	9.19	6.82	5.89
23	7.01	8.00	8.61	9.16	9.43	9.60	9.59	9.19	9.44	9.16	6.80	5.86
24	7.04	8.02	8.65	9.17	9.43	9.61	9.55	9.19	9.44	9.13	6.76	5.84
25	7.07	8.06	8.67	9.18	9.45	9.62	9.54	9.21	9.45	9.11	6.72	5.88
26 27 28 29 30 31	7.09 7.14 7.20 7.21 7.24 7.28	8.06 8.09 8.13 8.13 8.16	8.69 8.72 8.74 8.75 8.77 8.78	9.19 9.20 9.22 9.23 9.24 9.25	9.44 9.45 9.46 	9.63 9.64 9.65 9.65 9.65	9.49 9.46 9.44 9.39 9.36	9.23 9.26 9.27 9.28 9.29 9.29	9.46 9.48 9.49 9.49 9.49	9.08 9.03 8.82 8.64 8.49 8.34	6.69 6.68 6.66 6.63 6.62 6.61	5.98 6.03 6.03 6.03

## FAIRBANKS NORTH STAR BOROUGH—Continued

#### 644603147131401. Local number, FD00200306DBCA1001.

LOCATION.--Lat 64°46′03″, long 147°13′14″, in SW¹/4 NW¹/4 SE¹/4, sec. 06, T.2 S., R.3 E., (Fairbanks D-1 SE quad), Fairbanks Meridian, Hydrologic Unit 19040506, Well located 0.6 mi west on turn off to Lake Park in Chena Lakes Recreation Area, North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. pvc casing, depth 19.3 ft., screen open from 14.3 to 18.8 ft.

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 5, 2001 to current year.

DATUM.--Elevation of land-surface datum is 490.44 ft above NGVD of 1929 (revised; levels by U.S. Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey.). Measuring point: top of inner casing 2.52 ft above land surface datum.

REMARKS.--Observation well drilled April 6, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-1. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 4.81 ft below land-surface datum, September 16-17, 2003; lowest 8.49 ft below land-surface datum, March 18-21, 2002.

EXTREMES FOR CURRENT YEAR.—Highest water level measured 4.81 ft below land-surface datum, September 16-17; lowest 8.38 ft below land-surface datum, April 11-12.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.71	6.63	7.23	7.70	8.02	8.15	8.31	7.96	7.86	8.20	6.78	5.48
2	5.87	6.64	7.24	7.71	8.03	8.16	8.31	7.91	7.89	8.21	6.58	5.45
3	5.90	6.67	7.25	7.72	8.04	8.17	8.32	7.87	7.90	8.23	6.36	5.38
4	5.91	6.68	7.26	7.73	8.05	8.17	8.32	7.85	7.91	8.26	6.16	5.29
5	5.93	6.71	7.27	7.76	8.07	8.19	8.32	7.84	7.91	8.27	5.99	5.20
6	5.94	6.73	7.28	7.76	8.08	8.18	8.33	7.83	7.92	8.29	5.84	5.12
7	5.97	6.77	7.29	7.79	8.08	8.19	8.33	7.82	7.93	8.30	5.72	5.05
8	6.00	6.80	7.30	7.80	8.08	8.20	8.33	7.81	7.93	8.31	5.61	5.01
9	6.04	6.83	7.31	7.81	8.08	8.19	8.34	7.79	7.91	8.32	5.53	4.98
10	6.06	6.86	7.32	7.82	8.09	8.20	8.35	7.80	7.89	8.31	5.47	4.96
11	6.07	6.89	7.34	7.83	8.09	8.21	8.36	7.78	7.90	8.30	5.43	4.91
12	6.09	6.90	7.34	7.84	8.09	8.20	8.36	7.77	7.91	8.31	5.41	4.89
13	6.13	6.93	7.37	7.86	8.09	8.19	8.36	7.76	7.92	8.30	5.40	4.87
14	6.15	6.96	7.39	7.87	8.09	8.19	8.33	7.75	7.93	8.29	5.39	4.85
15	6.17	6.99	7.41	7.89	8.09	8.21	8.32	7.75	7.94	8.24	5.39	4.82
16	6.17	7.00	7.43	7.90	8.09	8.21	8.32	7.75	7.97	8.21	5.42	4.81
17	6.22	7.01	7.45	7.90	8.10	8.22	8.31	7.73	7.98	8.18	5.46	4.81
18	6.23	7.04	7.48	7.90	8.11	8.23	8.30	7.73	7.98	8.12	5.47	4.82
19	6.25	7.05	7.51	7.92	8.11	8.24	8.27	7.72	8.00	8.05	5.50	4.83
20	6.26	7.08	7.52	7.92	8.12	8.24	8.25	7.72	8.04	7.99	5.52	4.87
21	6.29	7.10	7.53	7.95	8.12	8.25	8.23	7.72	8.06	7.95	5.56	4.90
22	6.33	7.12	7.53	7.94	8.13	8.25	8.22	7.72	8.08	7.92	5.60	4.94
23	6.35	7.13	7.55	7.95	8.12	8.26	8.21	7.74	8.08	7.89	5.62	4.96
24	6.37	7.14	7.58	7.96	8.12	8.27	8.19	7.74	8.09	7.87	5.58	4.96
25	6.40	7.16	7.60	7.97	8.14	8.27	8.18	7.76	8.11	7.85	5.55	5.01
26 27 28 29 30 31	6.44 6.47 6.51 6.53 6.56 6.60	7.14 7.17 7.19 7.17 7.20	7.62 7.64 7.65 7.65 7.67	7.97 7.98 7.99 8.00 8.01 8.02	8.14 8.14 8.14 	8.28 8.29 8.29 8.28 8.29 8.31	8.14 8.12 8.09 8.05 8.00	7.78 7.81 7.81 7.83 7.84 7.85	8.13 8.15 8.17 8.18 8.19	7.80 7.66 7.54 7.42 7.20 6.98	5.55 5.55 5.56 5.55 5.55	5.10 5.14 5.16 5.18 5.22

#### FAIRBANKS NORTH STAR BOROUGH—Continued

## 644603147151801. Local number, FD00200201DBCB1002.

LOCATION.--Lat 64°46′03″, long 147°15′18″, in SW¹/4 NW¹/4 SE¹/4, sec. 1, T.2 S., R.2 E., (Fairbanks D-1 SW quad), Fairbanks Meridian, Hydrologic Unit 19040506. Well located east side of Nelson Road approximately 2.3 mi from Laurance Road. West of Chena Lakes Flood Control Project and Recreational Area, North Pole.

Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 2-in. PVC casing, depth 19.8 ft, screen openings from 14.8 ft to 19.3 ft

INSTRUMENTATION.--Intermittent measurements by USGS personnel July 2001 to current year; submersible pressure transducer/electronic data logger from October 12, 2001 to current year.

DATUM.--Elevation of land-surface datum is 493.04 ft above NGVD of 1929 (revised; levels by U.S. Army Corps of Engineers, adjusted to 1992 survey of benchmarks by U.S. Coast and Geodetic Survey.). Measuring point: top of inner casing 2.51 ft above land surface datum.

REMARKS.--Observation well drilled April 11, 1995 by the U.S. Army Corps of Engineers and designated as DSAP-2. Flows on the Chena River were regulated by the U.S. Army Corps of Engineers at Moose Creek Dam from July 29 to August 2 and September 4-5; which may have affected ground water levels.

PERIOD OF RECORD .-- July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.49 ft below land-surface datum, September 24, 2003; 10west, 11.83 ft below land-surface datum, March 31, 2002

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 8.49 ft below land-surface datum, September 24; lowest, 11.63 ft below land-surface datum, April 10, and April 13-14.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.03 9.06 9.08 9.08 9.05	9.64 9.66 9.68 9.69 9.71	10.42 10.43 10.45 10.46 10.49	10.96 10.98 10.99 11.00	11.36 11.36 11.37 11.38 11.40	11.48 11.49 11.49 11.49	11.59 11.59 11.60 11.60	11.22 11.19 11.16 11.13 11.11	11.18 11.21 11.23 11.24 11.24	11.40 11.40 11.41 11.43 11.44	10.66 10.57 10.47 10.39 10.28	9.16 9.14 9.12 9.08 9.03
6 7 8 9 10	9.05 9.07 9.09 9.13 9.16	9.74 9.77 9.82 9.85 9.88	10.50 10.52 10.53 10.54 10.55	11.04 11.07 11.09 11.09	11.41 11.41 11.41 11.42 11.43	11.50 11.51 11.51 11.52 11.51	11.60 11.61 11.61 11.61 11.62	11.10 11.08 11.07 11.06 11.05	11.25 11.26 11.27 11.25 11.23	11.45 11.46 11.47 11.48 11.48	10.19 10.10 10.00 9.91 9.82	8.98 8.92 8.87 8.83 8.80
11 12 13 14 15	9.15 9.16 9.19 9.21 9.22	9.91 9.94 9.97 10.00 10.04	10.57 10.58 10.61 10.63 10.65	11.12 11.13 11.15 11.17 11.18	11.43 11.43 11.44 11.45 11.45	11.51 11.51 11.50 11.50 11.51	11.62 11.62 11.62 11.61 11.60	11.05 11.05 11.05 11.05 11.06	11.23 11.22 11.22 11.22 11.24	11.48 11.46 11.45 11.45 11.43	9.75 9.68 9.62 9.56 9.51	8.78 8.74 8.71 8.68 8.64
16 17 18 19 20	9.22 9.28 9.29 9.30 9.30	10.06 10.07 10.10 10.13 10.17	10.67 10.69 10.71 10.74 10.76	11.19 11.20 11.21 11.23 11.24	11.45 11.46 11.45 11.46 11.46	11.51 11.52 11.52 11.53 11.53	11.59 11.54 11.49 11.44 11.41	11.07 11.06 11.06 11.06 11.05	11.26 11.26 11.26 11.27 11.30	11.40 11.37 11.33 11.28 11.23	9.48 9.45 9.43 9.40 9.38	8.60 8.57 8.54 8.52 8.51
21 22 23 24 25	9.33 9.37 9.39 9.41 9.43	10.20 10.23 10.25 10.27 10.30	10.77 10.77 10.79 10.82 10.84	11.26 11.27 11.27 11.28 11.29	11.47 11.47 11.46 11.46	11.54 11.54 11.55 11.56 11.56	11.38 11.37 11.36 11.35 11.35	11.05 11.05 11.06 11.07 11.08	11.31 11.32 11.34 11.34 11.35	11.19 11.16 11.13 11.10	9.37 9.36 9.35 9.34 9.31	8.51 8.52 8.50 8.49 8.50
26 27 28 29 30 31	9.45 9.48 9.52 9.54 9.57 9.61	10.31 10.33 10.36 10.37 10.38	10.86 10.88 10.90 10.91 10.92 10.94	11.30 11.31 11.32 11.33 11.34 11.35	11.47 11.47 11.48	11.56 11.57 11.57 11.57 11.58 11.58	11.33 11.32 11.31 11.28 11.25	11.10 11.13 11.15 11.16 11.17	11.36 11.38 11.39 11.39 11.39	11.05 11.03 10.98 10.91 10.83 10.74	9.28 9.26 9.25 9.22 9.20 9.19	8.57 8.61 8.59 8.60 8.61

# FAIRBANKS NORTH STAR BOROUGH—Continued

# 645434147385101. Local number, FB00100113DDBC2001 50673.

LOCATION.--Lat 64°54′34″, long 147°38′51″, in NW¹/₄ SE¹/₄ SE¹/₄, sec. 13, T.1 S., R.1 W., (Fairbanks D-2 NE quad), Fairbanks Meridian, Hydrologic Unit, 19040506, in road right-of-way at 2.3 mi McGrath Road, off Farmers' Loop Road near Fairbanks. Owner: U.S. Geological Survey.

AQUIFER .-- Quartz-mica schist of pre-Jurassic age.

WELL CHARACTERISTICS.--Diameter 6-in., depth 100 ft, metal casing to 98.5 ft, perforated openings from 88.5 ft to 98.5 ft, and open hole to

INSTRUMENTATION.--Digital recorder, from October 1983 to June 1995. Electronic data logger from June 1995 to May 1996. Digital recorder, from May 1996 to September 1997. Electronic data logger from October 1997 to present.

DATUM.--Elevation of land-surface datum is 740 ft above sea level (determined from topographic map). Measuring point: top of casing 1.00 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Geological Survey, designated as McGrath Well, replaces old McGrath Estates well, 645429147383801.

PERIOD OF RECORD .-- June 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.13 ft below land-surface datum, October 28, 1983; lowest, 44.85 ft below land-surface datum, July 3, 1990.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 40.08 ft below land-surface datum, September 24; lowest, 42.58 ft below land-surface datum, October 03.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42.41	42.23	41.65	41.15	41.12	41.01	41.07	40.95	41.28	41.13	40.87	40.53
2	42.42	42.12	41.62	41.15	41.15	41.10	40.97	40.94	41.25	41.11	40.84	40.48
3	42.52	41.96	41.56	41.06	41.17	41.08	40.97	40.87	41.18	41.10	40.79	40.49
4	42.47	41.87	41.56	41.03	41.15	41.04	40.95	40.82	41.12	41.14	40.80	40.55
5	42.37	41.85	41.53	41.04	41.16	41.08	40.95	40.83	41.05	41.19	40.74	40.52
6	42.35	41.82	41.48	41.16	41.21	41.08	40.94	40.86	41.05	41.18	40.72	40.52
7	42.42	41.94	41.39	41.26	41.22	41.05	41.01	40.92	41.03	41.13	40.72	40.42
8	42.43	41.88	41.37	41.35	41.12	41.06	40.96	40.91	41.06	41.13	40.73	40.38
9	42.49	41.91	41.38	41.16	41.11	41.03	40.94	40.78	40.99	41.18	40.74	40.39
10	42.47	41.96	41.37	41.14	41.10	41.04	40.98	40.75	40.95	41.21	40.67	40.41
11	42.34	41.81	41.36	41.14	41.05	40.99	41.05	40.83	40.96	41.12	40.63	40.41
12	42.31	41.76	41.24	41.26	41.04	40.91	41.08	40.79	40.98	41.09	40.53	40.44
13	42.36	41.78	41.25	41.31	41.06	40.83	41.03	40.79	40.97	41.13	40.57	40.49
14	42.44	41.80	41.44	41.26	41.13	40.80	41.05	40.80	41.02	41.10	40.62	40.50
15	42.30	41.79	41.40	41.23	41.09	40.87	40.88	40.84	41.04	41.05	40.57	40.47
16	42.25	41.63	41.48	41.23	41.06	40.92	40.88	40.92	41.17	40.99	40.58	40.33
17	42.30	41.57	41.46	41.14	41.11	40.99	40.96	41.00	41.23	40.98	40.71	40.32
18	42.26	41.67	41.49	41.10	41.08	40.97	40.98	40.97	41.16	41.05	40.79	40.27
19	42.20	41.69	41.52	41.15	40.99	40.96	41.00	40.96	41.13	41.10	40.73	40.27
20	42.17	41.72	41.39	41.18	40.98	40.91	41.03	40.91	41.19	41.05	40.70	40.33
21	42.19	41.73	41.33	41.28	41.01	40.91	40.88	40.84	41.20	41.07	40.69	40.38
22	42.33	41.74	41.15	41.11	41.04	40.94	40.86	40.81	41.24	41.14	40.72	40.43
23	42.25	41.61	41.13	41.11	40.92	41.01	40.88	40.82	41.20	41.05	40.68	40.23
24	42.19	41.61	41.20	41.09	40.88	41.07	40.99	40.83	41.19	41.05	40.72	40.08
25	42.18	41.63	41.24	41.09	40.96	41.02	40.97	40.85	41.15	40.99	40.71	40.09
26 27 28 29 30 31	42.18 42.22 42.28 42.17 42.17	41.45 41.48 41.64 41.49 41.49	41.23 41.29 41.19 41.13 41.14 41.13	41.09 41.15 41.15 41.17 41.15 41.15	40.98 40.97 41.01 	41.04 41.09 41.07 40.98 41.00	41.01 40.96 41.02 41.00 40.99	41.10 41.19 41.09 41.08 41.15 41.29	41.19 41.22 41.30 41.20 	40.92 40.87 40.91 40.93 40.90 40.89	40.61 40.65 40.65 40.56 40.59	40.21 40.40 40.33 40.24 40.22

#### ANAKTUVUK PASS

## 680838151434901. Local number, UB01500218CCDC1001.

LOCATION.--Lat 68°8'36" N, long 151°43'59" W; in SW¹/4 SW¹/4 NW¹/4 sec. 17, T.15 S., R. 2 E., (Chandler Lake A-3) Umiat Meridian, Hydrologic Unit 19040601. Well located 180 feet on right side of gravel road verring north off Main Steet just northeast of Contact Creek bridge in Anaktuvuk Pass, AK.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS .-- Diameter 6 in steel casing, depth 138.7 ft., screened 130.7 to 138.7 ft.

INSTRUMENTATION.--Intermittent measurements made by U.S. Geological Survey using an electric tape.

DATUM.--Elevation of land-surface is 2122.08 ft. above mean sea level (NAVD88). Horizontal coordinates are NAD83. (Elevation and horizontal coordinates determined using Survey-Grade Global Positioning System Static and Real-Time-Kinematic surveys). Measuring point: mark on north-side top of 2-in threaded-plug collar on top of steel casing, 2.81 ft. above land-surface datum.

REMARKS.--Observation well drilled June 23, 1994 by Tester Drilling. U.S.Geological Survey designated well as Observation Well 1 near Anaktuvuk Pass, Alaska. Well is 620 ft. from City Supply Well. One water-quality sample collected on September 10,2003.

PERIOD OF RECORD.--June to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.88 ft. below land-surface datum, July 14, 2003; lowest measured, 26.37 ft. below land-surface datum, June 18, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	TIME	WATER LEVEL	DATE	TIME	WATER LEVEL
JUN 18		26.37	JUL 14		16.90
JUN 19	26.12		JUL 17	12:21	17.08
JUN 20		25.83	JUL 17	12:44	17.06
			AUG 13		17.14

#### 680832151434301. Local number, UC01500217BBDA1001.

LOCATION.--Lat 68°8'31" N, long 151°43'53" W; in NW¼ NW¼ SW¼ sec. 17, T.15 S., R. 2 E., (Chandler Lake A-3) Umiat Meridian, Hydrologic Unit 19040601. Well located 56 feet northeast of Mekiana Road and Summer Street intersection in Anaktuvuk Pass, AK.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in. PVC casing, depth 43 ft., perforated from 0 to 43 ft.

INSTRUMENTATION.--Intermittent measurements made by U.S. Geological Survey using an electric tape.

DATUM.--Elevation of land-surface is 2114.43 ft. above mean sea level (NAVD88). Horizontal coordinates are NAD83. (Elevation and horizontal coordinates determined using Survey-Grade Global Positioning System Static and Real-Time-Kinematic surveys). Measuring point: mark on north-side top of PVC casing, 2.15 ft. above land-surface datum.

REMARKS.--Observation well drilled June 5, 1994 by Tester Drilling. U.S.Geological Survey designated well as Observation Well 2 near Anaktuvuk Pass, Alaska. Well-water levels influenced by surface water. Well is 60 south of Contact Creek. One water-quality sample collected on September 10,2003.

PERIOD OF RECORD.--June to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.39 ft. below land-surface datum, July 15, 2003; lowest measured, 18.56 ft. below land-surface datum, June 18, 2003.

DATE	TIME	WATER LEVEL	DATE TIME	WATER LEVEL
JUN 18		18.56	JUL 18	12.76
JUL 15	5:25	12.64	AUG 13	12.52
JUL 15	15:34	12.39	AUG 15	12.56

#### ANAKTUVUK PASS—Continued

#### 680809151443101. Local number, UA01500219ABAB1001.

LOCATION.--Lat 68°8′9″ N, long 151°44′31″ W; in NW¹/4 NE¹/4 NE¹/4 sec. 19, T.15 S., R. 2 E., (Chandler Lake A-3) Umiat Meridian, Hydrologic Unit 19040601. Well located 160 ft. east-southeast of fueling station and 260 ft. east-northeast of treatment lagoon on Access Road in Anaktuvuk Pass. AK.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in. PVC casing, depth 40 ft., perforated from 0 to 40 ft.

INSTRUMENTATION.--Intermittent measurements made by U.S. Geological Survey using an electric tape.

DATUM.--Elevation of land-surface is 2079.61 ft. above mean sea level (NAVD88). Horizontal coordinates are NAD83. (Elevation and horizontal coordinates determined using Survey-Grade Global Positioning System Static and Real-Time-Kinematic surveys). Measuring point: mark on northeast-side top of PVC casing, 3.95 ft. above land-surface datum.

REMARKS.--Observation well drilled June 3, 1994 by Tester Drilling. U.S.Geological Survey designated well as Observation Well 3 near Anaktuvuk Pass, Alaska.

PERIOD OF RECORD.--June to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.78 ft. below land-surface datum, June 19 and July 15, 2003; lowest measured, 17.71 ft. below land-surface datum, July 18, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL
JUN 19	10.78	AUG 13	16.12
JUL 15	10.78	AUG 15	15.52
JUL 18	17.71		

Note: Ice at depth of 15.50 ft. on June 19 and July 15. Well thawed on July 17.

## 680805151443001. Local number, UA01500219ABCC1001.

LOCATION.--Lat 68°8'4" N, long 151°44'40" W; in NW¼ NE¼ NE½ sec. 19, T.15 S., R. 2 E., (Chandler Lake A-3) Umiat Meridian, Hydrologic Unit 19040601. Well located 240 ft. south-southwest of treatment lagoon on Access Road in Anaktuvuk Pass, AK.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS .-- Diameter 1.5 in. PVC casing, depth 24 ft., perforated from 0 to 24 ft.

INSTRUMENTATION.--Intermittent measurements made by U.S. Geological Survey using an electric tape.

DATUM.--Elevation of land-surface is 2072.89 ft. above mean sea level (NAVD88). Horizontal coordinates are NAD83. (Elevation and horizontal coordinates determined using Survey-Grade Global Positioning System Static and Real-Time-Kinematic surveys). Measuring point: mark on north-northeast-side top of PVC casing, 1.73 ft. above land-surface datum.

REMARKS.--Observation well drilled June 3, 1994 by Tester Drilling. U.S.Geological Survey designated well as Observation Well 4 near Anaktuvuk Pass, Alaska.One water-quality sample collected on September 10,2003.

PERIOD OF RECORD.--June to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.30 ft. below land-surface datum, June 19, 2003; lowest measured, 14.12 ft. below land-surface datum, July 18, 2003.

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
JUN 19	7.30	AUG 13	12.77
JUL 15	No Water	AUG 15	12.32
JUL 18	14.12		

^{*} Note: Ice at depth of 9.30 ft. on June 19 and 9.44 ft. on July 15. Well thawed on July 17.

#### ANAKTUVUK PASS—Continued

#### 680750151450501. Local number, UA01500219CBDC1001.

LOCATION.--Lat 68°7′50″ N, long 151°45′5″ W; in NW¹/4 SW¹/4 NE¹/4 sec. 19, T.15 S., R. 2 E., (Chandler Lake A-3) Umiat Meridian, Hydrologic Unit 19040601. Well located 1050 ft. south-southwest on old-access road parallel to runway off of Access Road in Anaktuvuk Pass, AK. AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in. PVC casing, depth 24 ft., perforated from 0 to 24 ft.

INSTRUMENTATION.--Intermittent measurements made by U.S. Geological Survey using an electric tape.

DATUM.--Elevation of land-surface is 2053.80 ft. above mean sea level (NAVD88). Horizontal coordinates are NAD83. (Elevation and horizontal coordinates determined using Survey-Grade Global Positioning System Static and Real-Time-Kinematic surveys). Measuring point: mark on north-northeast-side top of PVC casing, 0.18 ft. above land-surface datum.

REMARKS.--Observation well drilled June 3, 1994 by Tester Drilling. U.S.Geological Survey designated well as Observation Well 5 near Anaktuvuk Pass, Alaska.

PERIOD OF RECORD.--June to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.97 ft. below land-surface datum, August 13, 2003; lowest measured, 4.46 ft. below land-surface datum, June 19, 2003.

#### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
JUN 19	4.46	AUG 13	3.97

#### 680737151454701. Local number, UC01500219ABCC1001.

LOCATION.--Lat 68°7'38" N, long 151°45'47" W; in NW¼ NE¼ SW¼ sec. 19, T.15 S., R. 2 E., (Chandler Lake A-3) Umiat Meridian, Hydrologic Unit 19040601. Well located 260 ft. north-northeast off Access Road 3910 ft. south-southwest of treatment lagoon in Anaktuvuk Pass, AK. AOUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS .-- Diameter 1.5 in. PVC casing, depth 15 ft., perforated from 0 to 15 ft.

INSTRUMENTATION.--Intermittent measurements made by U.S. Geological Survey using an electric tape.

DATUM.--Elevation of land-surface is 2031.35 ft. above mean sea level (NAVD88). Horizontal coordinates are NAD83. (Elevation and horizontal coordinates determined using Survey-Grade Global Positioning System Static and Real-Time-Kinematic surveys). Measuring point: mark on southwest-side top of PVC casing, 3.55 ft. above land-surface datum.

REMARKS.--Observation well drilled June 4, 1994 by Tester Drilling. U.S.Geological Survey designated well as Observation Well 6 near Anaktuvuk Pass, Alaska.

PERIOD OF RECORD.--June to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.69 ft. below land-surface datum, August 15, 2003; lowest measured, 1.78 ft. below land-surface datum, July 18, 2003.

DATE	WATER LEVEL	DATE	WATER LEVEL
JUN 19	No Water		
JUL 18	1.78	AUG 15	1.69

# ANAKTUVUK PASS—Continued

#### 680735151453901. Local number, UC01500219ACAB1001.

LOCATION.--Lat 68°7′36″ N, long 151°45′39″ W; in SW¹/4 NE¹/4 SW¹/4 sec. 19, T.15 S., R. 2 E., (Chandler Lake A-3) Umiat Meridian, Hydrologic Unit 19040601. Well located 120 ft. east-southeast off Access Road 3910 ft. south-southwest of treatment lagoon in Anaktuvuk Pass, AK.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in. PVC casing, depth 20 ft., perforated from 0 to 20 ft.

INSTRUMENTATION.--Intermittent measurements made by U.S. Geological Survey using an electric tape.

DATUM.--Elevation of land-surface is 2031.51 ft. above mean sea level (NAVD88). Horizontal coordinates are NAD83. (Elevation and horizontal coordinates determined using Survey-Grade Global Positioning System Static and Real-Time-Kinematic surveys). Measuring point: mark on southwest-side top of PVC casing, 5.92 ft. above land-surface datum.

REMARKS.--Observation well drilled June 5, 1994 by Tester Drilling. U.S.Geological Survey designated well as Observation Well 7 near Anaktuvuk Pass, Alaska.

PERIOD OF RECORD.--June to September 2003.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 1.01 ft. below land-surface datum, June 19, 2003; lowest measured, 1.21 ft. below land-surface datum, July 18, 2003.

DATE	WATER LEVEL	DATE	WATER LEVEL	
JUN 19	1.01	JUL 18	1.21	
JUL 17	1.10	AUG 15	1.13	

# WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

### FAIRBANKS NORTH STAR BOROUGH

Station number	Date	Time	Medium code	Sample type	Depth of well, feet below LSD (72008)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)
644321147163801	09-01-03	1345	6	9	20.4							
644345147172101	09-01-03	1510	6	9	13.00							
644402147182601 644402147182601		1535 1610	6 6	9 9	15.00 15.00	460	7.3	11.0	3.0	743	4.9	37 
644822147243001	09-01-03	1710	6	9	12.9							
Station number	0 Date	Fecal coli- form, M-FC .7u MF col/ 100 mL 31625)	MF, water, col/ 100 mL	water, fltrd, mg/L as N	Nitrite + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N (00608)	+ org-N, water,	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Phos-	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)
644321147163801	09-01-03			<.002	<.022	.145	.21	.20	.009	.007	<.007	<1
644345147172101	09-01-03			<.002	.119	<.015	E.05	E.07	E.003	E.003	<.007	<1
644402147182601 644402147182601		<1 	<1	<.002	<.022	.073	.12	.12	.013	.005	<.007	<1
644822147243001	09-01-03			E.002	.495	.700	.82	.83	.024	.007	<.007	<1
Station number	Date	Chlor pyrifo water fltrd ug/L (38933	s non, , water , fltro ug/I	r, wate d, fltr L ug/	er, ton er, wate d, fltr L ug/	i, er, d, 'L						
644321147163801	09-01-03	<.5	<.5	<.5	<.5	5						
644345147172101	09-01-03	<.5	<.5	<.5	<.5	;						
644402147182601 644402147182601	08-31-03 09-01-03	 <.5	 <.5	 <.5								

<.5

<.5

644822147243001 09-01-03 <.5 <.5

# WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 NORTH SLOPE BOROUGH

	Station number	Date	Time	Medium code	Sample type	Depth of well, feet below LSD (72008)	Specif. conductance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)		Dis- solved oxygen, percent of sat- uration (00301)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)
	680805151443001	09-10-03	1330	6	9	24.	252	7.8	1.7	686	12.0	96	130
	680832151434301	09-10-03	1215	6	9	43	160	8.1	2.8	686	14.3	117	81
	680837151435301	09-10-03	1500	6	9	100.	278	7.6	2.6	686	13.6	111	150
1	680838151434901	09-10-03	0945	6	9	138.7	90	7.0	3.5	686	7.0	59	36
	MULTIPLE STATION ANALYSES												
	Station number	Date	Calcium water, fltrd, mg/L 00915)	mg/L	water,	mg/L as CaCO3	sium, water,	bonate, wat flt incrm. titr.,	linity, wat flt inc tit field, mg/L as CaCO3 (39086)		Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
	680805151443001	09-10-03	42.7	6.21	.61	128	.21	164	126	8.6	.44	<.2	1.88
	680832151434301	09-10-03	25.2	4.35	.35	76	.19	99	76	7.5	.25	<.2	1.45
	680837151435301	09-10-03	40.5	12.5	.56	132	.24	172	132	19.6	.40	<.2	4.22
1	680838151434901	09-10-03	7.63	4.01	1.01	28	.79	36	28	9.1	1.35	.2	.06
					MULTIPL	E STATION	ANALYSES	5					
	Station number	Date	on evap. at 180degC wat flt mg/L	sum of consti- tuents mg/L	water, fltrd, mg/L as N	Nitrite  + nitrate water fltrd, mg/L as N (00631)	Ammonia water, fltrd, mg/L as N	+	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)		Iron, water, fltrd, ug/L (01046)
	680805151443001	09-10-03	151	143	<.002	.399	<.015	.26	E.05	.27	.007	E.005	<8
	680832151434301	09-10-03	94	89	<.002	.131	<.015	.22	<.10	.155	E.004	<.007	<8
	680837151435301	09-10-03	172	163	<.002	.056	<.015	<.10	<.10	E.002	<.004	<.007	<8
	680838151434901	09-10-03	40	42	<.002	<.022	.128	.44	.37	.013	E.002	<.007	25
	Station number	Date	Mangan ese, water fltrd ug/L (01056	carbon , water , fltro	1, 2, 1,								
	680805151443001	09-10-03	<.4	1.0									
	680832151434301	09-10-03	.7	.6									
	680837151435301	09-10-03	<.4	E.3									

680838151434901 09-10-03 22.5 1.0

Page	Page
Ahrnklin River at Forest Hwy 10 near Yakutat342	2.7 mi below Port Access Rd near Kivalina 388
Aleknagik, Moody Creek at	5.5 mi below Port Access Rd near Kivalina 390
Alsek River near Yakutat	Auke Bay, Antler River at Mouth near
Anaktuvuk Pass, Contact Creek 0.2 mi below	Antler River below Antler Lake near 86
Main St at	Berners River at Mouth near
Contact Creek 0.4 mi below Main St at 355	Duck Creek at Berners Ave near 341, 362
Contact Creek above Inukpasugruk	Duck Creek at Delrae Rd near
Creek at	Duck Creek at Egan Dr near
Contact Creek at Main St at	Duck Creek at Mendenhall Mall Rd near 340
Contact Creek below Little Contact	Duck Creek below Cessna Dr near341
Creek at	Duck Creek below Nancy St near 85, 340
Inukpasugruk Creek at	Jordan Creek below Egan Dr near 76, 340
Little Contact Creek at Mouth at	Lace River at Mouth near341
John River 1 mi below Inukpasugruk	Mendenhall River at Brotherhood
Creek at	Bridge near
John River below Inukpasugruk Creek	Mendenhall River at Brotherhood
at356, 374	Brook at
John River Tributary above Lagoons at . 355, 372	Mendenhall River near
John River Tributary at355, 373	Montana Creek near
Analyses of samples collected at miscellaneous	North Fork Peterson Creek near327, 342
sites	Nugget Creek above diversion near 80
Anchorage, Municipality of, ground water levels 407	Peterson Creek below North Fork near 132
Anchorage, Chester Creek at Arctic Blvd at346	
Ship Creek at Elmendorf-Ft Richardson	Banner Creek at Richardson
Border near	Barabara Creek near Seldovia
Ship Creek at Glenn Hwy near199	Barrow, Nunavak Creek near
Ship Creek below Fish Hatchery near 200	Battle Creek diversion above Bradley Lake
Ship Creek near	near Homer
South Bend of South Fork Chester Creek	Beaver, Beaver Creek near Mouth near 351
at Tank Trail near	Hadweenzic River near Mouth near351
South Branch of South Fork Chester	Hodzana River near Mouth near352
Creek at tank trail near	Lower Mouth Birch Creek near
Anchor River at Anchor Point	Yukon River at Devlin Island near
near Anchor Point329, 345	Yukon River at Timber Point near 352
Andreafsky River at St Marys357	Beaver Springs 850 ft below Refinery near
Angoon, Favorite Creek near	North Pole
Aniak, Kuskokwim River at	at Doughchee Ave near North Pole369
Antler River at Mouth near Auke Bay341	Berners River at Mouth near Auke Bay
below Antler Lake near Auke Bay 86	Berry Creek near Dot Lake
Anvik, Anvik River 4.7 mi above Mouth near 357	Big Delta, Central Creek near
Anvik River near292	Goodpaster River near
Bonasila River 1.8 mi above Mouth near	Liese Creek near
Elkhorn Island near	Sonora Creek near
Arctic Creek above Tributary near Nome337, 358	Sonora Creek above Tributary near 266
Arctic Slope Alaska, discharge measurement at	Black River near Mouth near Fort Yukon350
miscellaneous sites in	Bonanza Creek Tributary near Prospect
gaging-station records for311	Camp
Atchuelinguk River 16 mi above Mouth near	Bonasila River 1.8 mi above Mouth near Elkhorn
Pilot Station	Island near Anvik
Atigun River Tributary near Pump Station 4 . 338, 359	Boulder Creek (Copper River basin) near
Aufeis Creek 0.8 mi above Port Access Rd	Tiekel
near Kivalina388	

Page	Page
Boulder Creek (Yukon River basin) near	at Main St at Anaktuvuk Pass
Central333, 351	below Little Contact Creek at
Bradley River below dam near Homer	Anaktuvuk Pass
near Homer	Cook Inlet Tributary near Ninilchik 330, 345
near Tidewater near Homer	Cooper Creek at Mouth near Cooper Landing 182
	Cooper Landing, Cooper Creek at Mouth near 182
Camp Creek near Sheep Mountain Lodge 207	Kenai River at
Cantwell, Seattle Creek near	Cordova, Nicolet Creek near
Slime Creek near	Council, Etta Creek near
Central, Boulder Creek near	Hugh Rowe Creek near
East Fork Great Unknown Creek near	Crest-stage partial-record stations
Frying Pan Creek at Mouth near	Crescent River near mouth near Tuxedni Bay 348
Great Unknown Creek near	Cripple Creek near Mouth near Wrangell 326, 339
Harrison Creek near	Crooked Creek, Kuskokwim River at
Ptarmigan Creek near Mouth near	Cub Creek near Hope
Quartz Creek near	Cupola Peak Creek at Bear Cove
South Fork Harrison Creek near	near Sitka
Central Creek near Big Delta	near ottka
Chandalar River near Mouth near Fort Yukon 350	Dahl Creek near Kobuk
Charley River near Mouth near Circle349	Dall River near Mouth near Stevens Village 352
Chena River at Fairbanks	Dangerous River at Harlequin Lake Outlet
near Two Rivers	near Yakutat
Chena Slough 0.1 mi below Out Hurst Blvd	Deadhorse, Kuparuk River near
near North Pole	Deadman Creek 2.5 mi below Port Access
0.8 mi above Flood Levee near North Pole 368	Rd near Kivalina
at Persinger Dr near North Polse	3.5 mi below Port Access Rd near Kivalina. 389
at Vilis Ct near North Pole	Deep Creek near Ninilchik
near Fairbanks	Definition of terms
Chester Creek at Arctic Blvd at Anchorage 346	Denali, Raft Creek near
Chicken, Wade Creek Tributary near246	Susitna River near
Chinkelyes Creek Tributary near	Diamond Creek near Homer
Pedro Bay	Dillingham, Nuyakuk River near
Chiroskey River near Unalakleet	Discontinued surface-water discharge or
Chistochina, Sinona Creek near	stage-only stations xiv
Christian River near Mouth near Fort Yukon	Discontinued surface-water-quality stations xxvi
Chulitna River near Talkeetna	Dome Creek, King Creek near
Circle, Charley River near Mouth near	Donnelly, Ruby Creek above Richardson
Coal Creek near Mouth near	Hwy near
Woodchopper Creek near Mouth near 349	Dorothy Creek Juneau
Yukon River near	Dorothy Lake outlet near Juneau
Clear Creek at Mouth near Wrangell 327, 339	Dot Lake, Berry Creek near
Coal Creek near Mouth near Circle349	Dragonfly Creek near Healy
Cold Bay, Frosty Creek near	Drain at Airport Approach 2 near Yakutat 327, 343
Russell Creek near	Drain at Airport Approach 2 hear Takutat 327, 343 Drain at Airport Approach 29 near Yakutat 327, 343
Stapp Creek near	Dry Creek (Copper River basin) near
Coldfoot, Slate Creek at	Glennallen
Colville River at Umiat	Duck Creek at Berners Ave near Auke Bay 341, 362
Competition Creek near Kivalina	at Delrae Rd near Auke Bay
Anaktuvuk Pass	at Egan Dr near Auke Bay
0.4 mi below Main St at Anaktuvuk Pass 355	at Mendenhall Mall Rd near Auke Bay 340
	below Cessna Dr near Auke Bay
above Inukpasugruk Creek at Anaktuvuk Pass	below Nancy St near Auke Bay 85, 340
1 400	

Page	Page
Eagle, Kandik River near Mouth near	Ground-water level data, selected wells 395
Nation River near Mouth near	Juneau
Yukon River at	Fairbanks-North Star Borough
East Fork Great Unknown Creek near Central 350	Municipality of Anchorage
Eklutna Lake near Palmer	Grouse Creek at Grouse Lake outlet near
Eklutna River above Thunderbird Creek near	Seward
Eklutna	Gulkana River at Sourdough144
at Old Glenn Hwy at Eklutna202	Gustavus, Kahtaheena River above upper
Eldorado Creek near Teller	falls near
Etta Creek near Council	Turis nour
Eulachon River near Wrangell	Hadweenzic River near Mouth near Beaver 351
Explanation of the records	Haines, Kakuhan Creek near
Explanation of the records	Halfmile Creek above diversion near Klawock 104
Falls Creek near Lawing 346	Halfmile Creek below Hwy near Klawock
Falls Creek near Lawing	· · · · · · · · · · · · · · · · · · ·
Fairbanks, Chena River at	Happy Valley Camp, Sagavanirktok River
Chena Slough near	Tributary near
ground-water levels	Harding River near Wrangell
Little Chena River near	Harrison Creek near Central
Noyes Slough at Danby St Bridge at	Healy, Dragonfly Creek near
Noyes Slough at Goldizen Ave Bridge at 353	Lignite Creek above Mouth near
Noyes Slough at Illinois St Bridge at 353	Nenana River at
Noyes Slough Inlet at	Hess Creek 1.2 mi above Mouth near Stevens
Tanana River at273	Village
Favorite Creek near Angoon	Hodzana River near Mouth near Beaver352
Fish Creek (on Revillagigedo Island) near	Homer, Battle Creek diversion above Bradley
Ketchikan	Lake near
Fort Yukon, Black River near Mouth near 350	Bradley River below dam near
Chandalar River near Mouth near350	Bradley River near
Christian River near mouth near350	Bradley River near Tidewater near 172
Porcupine River 9.5 mi from Mouth near 350	Diamond Creek near
Porcupine River near	Fritz Creek near
Sheenjek River near Mouth near349	Middle Fork Bradley River below North
Upper Mouth Birch Creek near	Fork Bradley River near
Fritz Creek near Homer	Middle Fork Bradley River near169
Frosty Creek near Cold Bay	Upper Bradley River near Nuka Glacier near 165
Frying Pan Creek at Mouth near Central350	Upper Nuka River near park boundary near . 161
	Hope, Cub Creek near
Gene Creek above Gene Lake near	Sixmile Creek near189
Wrangell326, 339	Holy Cross, Innoko River 15 mi above
Glennallen, Dry Creek near	Mouth near
Globe Creek near Livengood	Hugh Rowe Creek near Council
Gold Creek (Southeast) at Juneau71, 360	Hydaburg, Reynolds Creek below Lake
near Juneau340	Mellen near
Gold Creek (South-central), Susitna River at 220	
Gold Creek (Southwest) at Takotna 333, 348	Ikalukrok Creek 0.6 mi below Red Dog Creek
Goldengate Creek near Nome	near Kivalina359
Goodpaster River near Big Delta	4.3 mi below Dudd Creek near Kivalina 359
Granite Creek at Sitka	above Red Dog Creek near Kivalina
near Portage	below Red Dog Creek near Kivalina 308
Great Unknown Creek near Central	Iliamna River near Pedro Bay234
Green Lake (on Baranof Island) near Sitka 118	Indian River at Sitka
Greens Creek (on Admiralty Island) at Greens	near Sitka
Creek Mine near Juneau	Indian River (Yukon) at Utopia

Page		Page
Innoko River 15 mi above Mouth near Holy	Rd near	. 390
Cross	Competition Creek near	. 358
International Boundary, Yukon Territory,	Deadman Creek 2.5 mi below Port Access	
Porcupine River near	Rd near	. 387
International Gaging Station Network,	Deadman Dreek 6.5 mi below Port Access	
records 60, 64, 134, 248, 257	Rd near	. 389
Inukpasugruk Creek at Anaktuvuk Pass 356, 374	Ikalukrok Creek 0.6 mi below Red Dog Creek near	359
John River 1 mi below Inukpasugruk Creek at	Ikalukrok Creek 4.3 mi below Dudd Creek	. 557
Anaktuvuk Pass356	near	. 359
below Inukpasugruk Creek at	Ikalukrok Creek above Red Dog Creek near	. 358
Anaktuvuk Pass	Ikalukrok Creek below Red Dog Creek near	. 308
John River Tributary, above Lagoons at Anaktuvuk	New Heart Creek .8 mi above Port Access	
Pass355	Rd near	. 375
at Anaktuvuk Pass355	New Heart Creek 2 mi below Port Access	
Johnson River above Lateral Glacier near	Rd near	. 376
Tuxedni Bay	North Bank North Fork Omikviorok River	
Jordan Creek below Egan Dr near Auke Bay 76, 340	9 mi above Access Rd near	. 385
Juneau, Dorothy Creek near	North Fork Omikviorok River 2.6 mi	
Dorothy Lake outlet near 61	above Access Rd near	. 383
Gold Creek at	North Fork Omikviorok River 6.5 mi	
Gold Creek near	above Access Rd near	2, 384
Greens Creek at Greens Creek Mine near 119	North Fork Red Dog Creek near 337	, 358
Lemon Creek at bridge near	Omikviorok River 5.5 mi above mouth	
Lemon Creek near74	near	. 380
Salmon Creek near	Omikviorok River 7 mi below Port	
Taku River near64	Access Rd near	. 383
ground-water levels	Omikviorok River Trail 2.3 mi below Access Rd near	381
Kadashan River (on Chichagof Island) above	Red Dog Mine Clean Water Ditch near	
Hook Creek near Tenakee	Red Dog Creek above Mouth near	
Kahtaheena River above upper falls	South Branch North Fork Omikviorok	. 550
near Gustavus	River 6.5 mi above Access Rd near	. 382
Kakuhan Creek near Haines	South Fork Omikviorok River 2.5 mi	
Kaltag, Yukon River near	above Access Rd near	. 379
Kandik River, below Threemile Creek near	Straight Creek 1 mi above Port Access	
Nation	Rd near	. 377
near Mouth near Eagle	Straight Creek 4 mi below Port Access	
Kasaan, Old Tom Creek near	Rd near	. 378
Kasilof River near Kasilof	Straight Creek 7.7 mi below Port Access	
Kenai River at Cooper Landing	Rd near Kivalina	. 378
at Soldotna	Tutak Creek near	3, 359
below Mouth of Killey River near Sterling 187	Wulik River above Ferric Creek near	
below Skilak Lake Outlet near Sterling 186	Wulik River below Tutak Creek near	
Ketchikan, Fish Creek near93	Klawock, Halfmile Creek above Diversion near .	
Swan Lake near92	Halfmile Creek below Hwy near	
Kiana, Kobuk River near	North Fork Staney Creek near	
King Creek near Dome Creek	Staney Creek near	
Kivalina, Aufeis Creek 0.8 mi above Port Access	Threemile Creek below Hwy near	
Rd near	Threemile Creek near	
Aufeis Creek 2.7 mi below Port Access	Threemile Creek Tributary below canyon	
Rd near	near	. 342
Aufeis Creek 5.5 mi below Port Access	Knik River near Palmer	

Page	Page
Kobuk, Dahl Creek near	Nation River near
Kobuk River near Kiana	Nation River near Mouth near Eagle 349
Kodiak, Myrtle Creek near	Nenana, Tanana River at
Terror River at Mouth near	Nenana River at Healy
Koyukuk River 9.4 mi above Mouth near	near Windy
Koyukuk356	New Heart Creek .8 mo above Port Access
Kuparuk River near Deadhorse	Rd near Kivalina375
Kuskokwim River at Aniak242	2 mi below Port Access Rd near Kivalina 376
at Crooked Creek	Nicolet Creek near Cordova
at Liskys Crossing near Stony River 239	Ninilchik, Cook Inlet Tributary near 330, 345
	Deep Creek near
Lace River at Mouth near Auke Bay341	Ninilchik River at
Lake Creek above Clear Creek near Wrangell 339	Nome, Arctic Creek above Tributary near 337, 358
Lake Fork Crescent River near Tuxedni Bay 348	Goldengate Creek near
Lawing, Falls Creek near	Washington Creek near
Ptarmigan Creek near	North Bank North Fork Omikviorok River
Trail River near	9 mi above Access Rd near Kivalina 385
Wolverine Creek near	North Fork 12 Mile Creek near Miller House 350
Lemon Creek at bridge near Juneau	North Fork Crescent River near Tuxedni Bay 348
near Juneau74	North Fork Omikviorok River 2.6 mi above
Liese Creek near Big Delta264	Access Rd near Kivalina
Lignite Creek above Mouth near Healy 284	6.5 mi above Access Rd near Kivalina 382, 384
Little Chena River near Fairbanks	North Fork Peterson Creek near Auke Bay 327, 342
Little Contact Creek at Mouth at Anaktuvuk Pass . 354	North Fork Red Dog Creek near Kivalina 337, 358
Little Jack Creek near Nabesna	North Fork Staney Creek near Klawock
Little Susitna River near Palmer	(on Prince of Wales Island) 95
Livengood, Globe Creek near	North Pole, Beaver Springs 850 ft below
Lower Mouth Birch Creek near Beaver	Refinery near
	Beaver Springs at Doughchee Ave near 369
Matanuska River at Palmer	Chena Slough 0.1 mo below Out Hurst
McCarthy Creek at McCarthy328, 344	Blvd near
Melozitna River near Ruby	Chena Slough 0.8 mi above Flood
Mendenhall River at Brotherhood Bridge	Levee near
near Auke Bay340	Chena Slough at Persinger Dr near 371
at Brotherhood Brook at Auke Bay 361	Chena Slough at Wilis Ct near 370
near Auke Bay	Northwest Alaska, crest-stage partial-record
Middle Basin Creek near Tenakee	stations in
Middle Fork Bradley River below North	discharge measurements at miscellaneous
Fork Bradley River near Homer171	sites in
near Homer	gaging-station records for300
Miller House, North Fork 12 Mile Creek near 350	Nowitna River 2.3 mi above Mouth near Ruby 354
Mineral Creek near Valdez	Noyes Slough at Danby St Bridge at Fairbanks 353
Miscellaneous sites, discharge at	at Goldizen Ave Bridge at Fairbanks 353
Montana Creek near Auke Bay83	at Illinois St Bridge at Fairbanks
Moody Creek at Aleknagik	Noyes Slough Inlet at Fairbanks
Mount Alice Creek near Seward	Nugget Creek (Southeast) above diversion
Myrtle Creek near Kodiak332, 348	near Auke Bay 80
• · · · · · · · · · · · · · · · · · · ·	Nugget Creek (Yukon) near Wiseman 335, 355
Nabesna, Little Jack Creek near	Nulato River at Mouth near Nulato
Nancy Lake Tributary near Willow331, 347	Nunavak Creek near Barrow
Nation, Kandik River below Threemile	Nuyakuk River near Dillingham235
Creek near	

Page	Page
Old Situk River near Yakutat	Pump Station 10, Suzy Q Creek near 334, 353
Old Tom Creek (on Prince of Wales Island) near	
Kasaan	Quartz Creek near Central
Omikviorok River 5.5 mi above mouth near	
Kivalina	Raft Creek near Denali
7 mi below Port Access Rd near Kivalina 383	Ray River near Mouth near Stevens Village352
Trail 2.3 mi below Access Rd near Kivalina . 381	Ray River Tributary near Stevens Village 333, 352
Ophir Creek above new excavation site	Red Dog Creek above Mouth near Kivalina358
near Yakutat	Red Dog Mine clean water ditch near Kivalina 358
at Airport Road at Yakutat	Resurrection River near Seward
at gravel pit road near Yakutat	Reynolds Creek below Lake Mellen near
at Mile 1.0 near Yakutat	Hydaburg
near Yakutat	Richardson, Banner Creek at
Tributary at confluence near Yakutat 344	Ruby, Melozitna River near
Tributary at new excavation near Yakutat 343	Nowitha River 2.3 mo above Mouth near 354
Palmer, Eklutna Lake near	Yuki River 12 mi above Mouth near
Knik River near	Yukon River at
Little Susitna River near	Ruby Creek above Richardson Hwy near
Matanuska River at	
	Donnelly
Wasilla Creek near	Rudolph Creek at Seward
	Russell Creek near Cold Bay
Paxson, Phelan Creek near	C
Pedro Bay, Chinkelyes Creek Tributary near . 332, 348	Sagavanirktok River near Pump Station 3 321
Iliamna River near	Sagavanirktok River Tributary near Deadhorse 359
Peterson Creek below North Fork near	near Happy Valley Camp
Auke Bay	near Pump Station 3
Phelan Creek near Paxson	Salcha River near Salchaket
Pilot Station, Atchuelinguk River 16 mi	Salchaket, Salcha River near271
above Mouth near	Salmon Creek (Southeast) near Juneau
Yukon River at	Sawmill Creek near Sitka
Porcupine Creek near Primrose	Seattle Creek near Cantwell
Porcupine River, 9.5 mi upstream from	Seldovia, Barabara Creek near 329, 345
Mouth near Fort Yukon	Seward, Grouse Creek at Grouse Lake outlet near. 156
near Fort Yukon	Mount Alice Creek near344
near International Boundary, Yukon	Resurrection River near
Territory	Rudolph Creek at
Portage, Granite Creek near	Snow River near
Twentymile River below Glacier River near . 193	Spruce Creek near
Portage Creek at Portage Lake outlet near	Shakespeare Creek at Whittier
Whittier191	Sheenjek River near Mouth near Fort Yukon 349
Premier Creek near Sutton	Sheep Mountain Lodge, Camp Creek near207
Primrose, Porcupine Creek near	Ship Creek at Elmendorf-Ft Richardson Border
Prospect Camp, Bonanza Creek Tributary	near Anchorage
near336, 356	at Glenn Hwy near Anchorage199
Prospect Creek near	below Fish Hatchery near Anchorage 200
Prospect Creek near Prospect Camp336, 356	near Anchorage197
Ptarmigan Creek near Lawing	Silver Bay Tributary at Bear Cove near Sitka 117
Mouth near Central349	Sinona Creek near Chistochina
Tributary near Valdez 328, 344	Sitka, Cupola Peak Creek at Bear Cove near 342
Pump Station 3, Sagavanirktok River near 321	Granite Creek at
Sagavanirktok Tributary near	Green Lake near
Pump Station 4, Atigun River Tributary near . 338, 359	Indian River at

Page	Page
Sitka, (continued)	Ray River Tributary near
Indian River near112	Yukon River near
Sawmill Creek near	Stikine River near Wrangell 60
Silver Bay Tributary at Bear Cover near 117	Stony River, Kuskokwim River at Liskys
Situk River near Yakutat	Crossing near
Sixmile Creek near Hope	St Marys, Andreafsky River at
Skagway, Taiya River near	Straight Creek 1 mi above Port Access Rd
Slate Creek at Coldfoot288	near Kivalina
Slime Creek near Cantwell	4 mi below Port Access Rd near Kivalina 378
Snow River near Seward	7.7 mi below Port Access Rd near Kivalina 378
Snowden Creek near Wiseman	Summary of hydrologic conditions 4
Soldotna, Kenai River at	Susitna River at Gold Creek
Solomon Gulch at top of falls near Valdez 151	at Susitna Station
near Valdez	near Denali
tailrace near Valdez	Sutton, Premier Creek near
Solomon Lake near Valdez	Suzy Q Creek near Pump Station 10 334, 353
Sonora Creek near Big Delta	Swan Lake (on Revillagigedo Island)
above Tributary near Big Delta266	near Ketchikan
Sourdough, Gulkana River at144	
South Branch North Fork Omikviorok River	Takotna, Gold Creek at
6.5 mi above Access Rd near Kivalina382	Tatalina River near
South Branch of South Fork Chester Creek	Taku River near Juneau64
at tank trail near Anchorage 346, 362	Taiya River near Skagway
South-central Alaska, crest-stage partial-record	Talkeetna, Chulitna River near
stations in	Talkeetna River near222
discharge measurements at miscellaneous	Tanana River, at Fairbanks
sites in	at Nenana
gaging-station records for142	near Tok Junction
Southeast Alaska, crest-stage partial-record	Tozitna River at Mouth near354
stations in	Tatalina River near Takotna
discharge measurements at miscellaneous	Teller, Eldorado Creek near
sites in	Tenakee, Kadashan River above Hook
gaging-station records for52	Creek near124
South Fork Harrison Creek near Central	Middle Creek Basin Creek near
South Fork Omikviorok River 2.5 mi above	Terror River at Mouth near Kodiak
Access Rd near Kivalina	Threemile Creek below Hwy near Klawock342
Southwest Alaska, crest-stage partial-record	near Klawock
stations in	Tributary below canyon near Klawock 342
discharge measurements at miscellaneous	Tiekel, Boulder Creek near
sites in	Tok Junction, Tanana River near352
gaging-station records for	Tozitna River at Mouth near Tanana354
Special networks and programs	Trail River near Lawing
Spruce Creek near Seward	Tutak Creek near Kivalina
Staney Creek (on Prince of Wales Island) near	Tuxedni Bay, Crescent River near mouth near 348
Klawock	Johnson River above Lateral Glacier near 225
Stapp Creek near Cold Bay332, 348	Lake Fork Crescent River near348
Sterling, Kenai River below Mouth of Killey	North Fork Crescent River near
River near	Twentymile River below Glacier River near
Kenai River below Skilak Lake outlet near 186	Portage
Stevens Village, Dall River near Mouth near 352	Two Rivers, Chena River near
Hess Creek 1.2 mi above Mouth near352	Tyee Lake Outlet near Wrangell55
Ray River near Mouth near 352	

Page

Page	Page
Umiat, Colville River at	Ophir Creek at Airport Road at343
Unalakleet, Chirosky River near336, 357	Ophir Creek at gravel pit road near 343
Unalakleet River above Chirosky	Ophir Creek at Mile 1.0 near
River near	Ophir Creek near
Unuk River below Blue River near Wrangell 52, 339	Ophir Creek Tributary at confluence near 344
Upper Bradley River near Nuka Glacier near	Ophir Creek Tributary at new excavation
Homer	site near
Upper Mouth Birch Creek near Fort Yukon 351	Situk River near
Upper Nuka River near park boundary near	Yuki River 12 mi above Mouth near Ruby 354
Homer161	Yukon Alaska, crest-stage partial-record
Utopia, Indian River at	stations in
Utopia Creek at	discharge measurements at miscellaneous sites in
Valdez, Mineral Creek near328, 344	gaging-station records for
Ptarmigan Creek Tributary near 328, 344	Yukon River at Devlin Island near Beaver
Solomon Gulch at top of falls near	at Eagle
Solomon Gulch near	at Pilot Station
Solomon Gulch tailrace near	at Timber Point near Beaver
Solomon Lake near	at Ruby
Wade Creek Tributary near Chicken246	near Circle
Washington Creek near Nome	near Kaltag
Wasilla Creek near Palmer	near Stevens Village
Whittier, Portage Creek at Portage Lake	nour stevens image200
outlet near	
Shakespeare Creek at	
Willow, Nancy Lake Tributary near	
Willow Creek near	
Windy, Nenana River near	
Wiseman, Nugget Creek near	
Snowden Creek near	
Wolverine Creek near Lawing	
Woodchopper Creek near Mouth near Circle 349	
Wrangell, Clear Creek at Mouth near 327, 339	
Cripple Creek near Mouth near 326, 339	
Eulachon River near	
Gene Creek above Gene Lake near 326, 339	
Harding River near	
Lake Creek above Clear Creek near339	
Stikine River near 60	
Tyee Lake outlet near	
Unuk River below Blue River near 52, 339	
Wulik River above Ferric Creek near Kivalina 307	
below Tutak Creek near Kivalina309	
Yakutat, Ahrnklin River at Forest Hwy 10 near 342	
Alsek River near	
Dangerous River at Harlequin Lake Outlet near	
Drain at Airport Approach 2 near 327, 342	
Drain at Airport Approach 29 near 327, 343	
Old Situk River near	
Ophir Creek above new excavation site near . 343	