Water Quality of the Lake Siskiyou Area and a Reach of Upper Sacramento River below Box Canyon Dam, California

May 1970 through September 1971 STEP BACKWATER ... HYDRAULIC GRAD GEOLOGICAL SURVEY INDIRECT EAK DISCHARGE - HYDR Water-Resources Investigations 15-73 CHARGE SAMPLE . . . BEDLOAD . . . SILTING . . . LI ANALYSIS ... FREQUENCY TING CURVE ... HIGH WATERMARK ... CROSS FLOOD ... ARFA OF the Siskiyou County Flood Control and Water Conservation District

|                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 Pariniagu's Account                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIBLIOGRAPHIC DATA<br>SHEET                                                                                                                         | 1. Report No.                                                                                                                                                                                                                                                                       | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3. Recipient's Accession No.                                                                                                                                              |
| . Title and Subtitle                                                                                                                                |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. Report Date                                                                                                                                                            |
| UPPER SACRAMENTO                                                                                                                                    | THE LAKE SISKIYOU AREA AND A RIVER BELOW BOX CANYON DAM, C                                                                                                                                                                                                                          | REACH OF CALIFORNIA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.                                                                                                                                                                        |
| MAY 1970 THROUGH Author(s)                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8. Performing Organization R No. WRI 15-73                                                                                                                                |
| Alex E. D                                                                                                                                           | ong and Robert L. Tobin                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
| Performing Organization                                                                                                                             | Name and Address                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. Project/Task/Work Unit 1                                                                                                                                              |
| U.S. Geological                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. Contract/Grant No.                                                                                                                                                    |
| 345 Middlefield<br>Menlo Park, Cal                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
| 12. Sponsoring Organization                                                                                                                         |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13. Type of Report & Period                                                                                                                                               |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Covered Progress re                                                                                                                                                       |
| Same as 9 above                                                                                                                                     | •                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.                                                                                                                                                                       |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                                                                                         |
| 15. Supplementary Notes P                                                                                                                           | Prepared in cooperation with t                                                                                                                                                                                                                                                      | he Siskiyou Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nty Flood Control and                                                                                                                                                     |
|                                                                                                                                                     | Vater Conservation District                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
| nitrogen and phose concentrations of coliform bacterial Analyses of sample (tributary to Collisomewhat higher in nitrogen and phose concentrations) | tream reach of the Sacramento sphorus. Water samples from W f nitrogen and phosphorus, and a than the water in samples fr les from above and below the f ld Creek) indicate that the wain coliform bacteria counts, I sphorus concentrations. Water ermal and dissolved oxygen str. | agon Creek and have higher co om the other trish hatchery on ter downstream ower in dissolves amples from the control of the c | Cold Creek contain high<br>funts of total and fecal<br>fibutary streams.<br>Big Spring Creek<br>from the hatchery is<br>red oxygen, and higher to<br>one site in the lake |
| 17. Key Words and Docume                                                                                                                            | ent Analysis. 17a. Descriptors                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
|                                                                                                                                                     | *Wildlife, Flood control, Wate                                                                                                                                                                                                                                                      | er-quality stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lards, Data collection                                                                                                                                                    |
| California                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
| 17b. Identifiers/Open-End                                                                                                                           | ded Terms                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |
| Lake Siskiyo                                                                                                                                        | ou area, Upper Sacramento Rive                                                                                                                                                                                                                                                      | r, Box Canyon D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | am                                                                                                                                                                        |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |

17c. COSATI Field/Group Ø5C

18. Availability Statement No restriction to distribution.

19. Security Class (This Report)
UNCLASSIFIED

20. Security Class (This Page UNCLASSIFIED

WRi 1.15-73

NITED STATES DEPARTMENT OF THE INTERIOR

WATER QUALITY OF THE LAKE SISKIYOU AREA AND A REACH OF
UPPER SACRAMENTO RIVER BELOW BOX CANYON DAM, CALIFORNIA

MAY 1970 THROUGH SEPTEMBER 1971

By Alex E. Dong and Robert L. Tobin

U.S. GEOLOGICAL SURVEY, Water Resources Division

Water-Resources Investigations 15-73

Prepared in cooperation with
the Siskiyou County Flood Control
and Water Conservation District



6220-02

## UNITED STATES DEPARTMENT OF THE INTERIOR

Rogers C. B. Morton, Secretary

GEOLOGICAL SURVEY

Vincent E. McKelvey, Director

For additional information write to:

District Chief Water Resources Division U.S. Geological Survey 345 Middlefield Rd. Menlo Park, Calif. 94025

# -villala CONTENTS Well and solls gallons?

| Abstrac               | t    |                                                                                                                                                                      | 1    |
|-----------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Introdu               | cti  | on                                                                                                                                                                   | OM 2 |
| Pu                    | rpo  | se and scope                                                                                                                                                         | 2    |
| Lo                    | cat  | ion and general description                                                                                                                                          | 4    |
| Methods               |      |                                                                                                                                                                      | 4    |
| Results               | an   | d discussion                                                                                                                                                         | 6    |
| Ну                    | dro  | logy                                                                                                                                                                 | (    |
| Wa                    | ter  | quality                                                                                                                                                              | oh g |
| Summary               |      | cited                                                                                                                                                                | 20   |
| Referen               | ices | timates of daily total nitrogen load entering Lake                                                                                                                   | 21   |
|                       |      | Siskiyou for selected 24-hour intervals during low-flow                                                                                                              |      |
| 25                    |      | Deriods                                                                                                                                                              |      |
|                       |      | timates of daily total nitrogen load entering Lake                                                                                                                   |      |
|                       |      | woll-dgld gnirub ILLUSTRATIONS -45 betseles tol boythala                                                                                                             |      |
|                       |      |                                                                                                                                                                      |      |
|                       |      | to Lendstingal rates beat an resignate later which locates in                                                                                                        | Page |
| Figure                | 1.   | Map showing study area and sampling sites                                                                                                                            |      |
| Igure                 | 2.   | Graph showing the range of specific conductance values; the mean, and the 95-percent probability confidence interval of the mean                                     | 10   |
| SL<br>and<br>ST<br>ST | 3.   | Graph showing the range of dissolved oxygen and percent saturation of dissolved oxygen, the mean, and the 95-percent probability confidence interval of the mean     | L Mi |
|                       | 4.   | Graph showing the range of nitrate nitrogen, total Kjeldahl nitrogen, and total phosphorus; the mean, and the 95-percent probability confidence interval of the mean | Res  |
|                       | 5.   | Graphical summary of survey data at Lake Siskiyou,                                                                                                                   | 1    |

# TABLES

| Table | 1. Sampling sites for Lake Siskiyou and vicinity                                                                                               |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 2. Maximum, minimum, and mean discharge and runoff for each                                                                                    |
|       | water year for period of record for the Sacramento River                                                                                       |
|       | at Delta (site 22)                                                                                                                             |
|       | <ol> <li>Monthly and annual mean discharge, in cubic feet per second,<br/>during period of record for the Sacramento River at Delta</li> </ol> |
|       | (site 22)                                                                                                                                      |
|       | 4. Maximum, minimum, and mean discharge and runoff for each water year for period of record for the Sacramento River                           |
|       | near Mount Shasta (site 19)                                                                                                                    |
|       | <ol> <li>Monthly and annual mean discharge, in cubic feet per second,<br/>during period of record for the Sacramento River near</li> </ol>     |
|       | Mount Shasta (site 19)                                                                                                                         |
|       | 6. Estimates of daily total nitrogen load entering Lake Siskiyou for selected 24-hour intervals during low-flow periods                        |
|       | 7. Estimates of daily total nitrogen load entering Lake Siskiyou for selected 24-hour intervals during high-flow periods                       |
|       | 8. Estimates of daily total phosphorus load entering Lake                                                                                      |
|       | Siskiyou for selected 24-hour intervals during low-flow periods                                                                                |
|       | 9. Estimates of daily total phosphorus load entering Lake                                                                                      |
|       | Siskiyou for selected 24-hour intervals during high-flow periods                                                                               |
|       | 10. Summary of total and fecal coliform bacteria counts, May 1970 through September 1971                                                       |
|       | 11. Miscellaneous water-quality measurements for discontinued sites                                                                            |
|       | 12. Results of water-quality analyses                                                                                                          |

INTRODUCTION

WATER QUALITY OF THE LAKE SISKIYOU AREA AND A REACH OF

UPPER SACRAMENTO RIVER BELOW BOX CANYON DAM, CALIFORNIA

MAY 1970 THROUGH SEPTEMBER 1971

Box Canyon Dam. The

Eucht of the sewage-disposal ponds.

By Alex E. Dong and Robert L. Tobin

#### ABSTRACT

Periodic field and laboratory measurements of water quality in samples from streams tributary to Lake Siskiyou, from the lake itself, and from selected downstream sites near three sewage-disposal ponds indicate that water in most of the inflows, in the lake, and in the downstream reach of the Sacramento River contain low concentrations of nitrogen and phosphorus.

Water samples from Wagon Creek and Cold Creek contain higher concentrations of nitrogen and phosphorus and have higher counts of total and fecal coliform bacteria than the water in samples from the other tributary streams. Analyses of samples from above and below the fish hatchery on Big Spring Creek (tributary to Cold Creek) indicate that the water downstream from the hatchery is higher in coliform bacteria counts, lower in dissolved oxygen, and higher in nitrogen and phosphorus concentrations.

Periodic water samples from one site in the lake indicate that thermal and dissolvedoxygen stratification occur in Lake Siskiyou during the summer.

In the Sacramento River below Lake Siskiyou, samples collected at sites downstream from the sewage effluent exhibit higher average concentrations of total phosphorus than samples from the upstream site. Concentrations of other constituents and coliform bacteria counts are similar in samples from sites upstream and downstream from the sewage effluent.

llected ar 22 sites (table 1). Exceptions were residual chlorine which a measured only at sites 15, 16, 17, 18, and 19, which are in the vicinity the sewage disposal ponds near the city of Mount Shasta. Samples for BOD re collected only at sites 16 and 17, and the birthy was measured regularly

cramento Hiver in the erea below

#### INTRODUCTION

Lake Siskiyou was formed in 1969 after completion of Box Canyon Dam on the Sacramento River near the town of Mount Shasta, Calif. The dam was constructed to provide a reservoir for recreation, fish and wildlife enhancement, and incidental flood control. The Siskiyou County Flood Control and Water Conservation District was formed to construct and operate the dam and reservoir, and is also responsible for the operation of three sewage-disposal ponds adjacent to the Sacramento River below Box Canyon Dam. The California Regional Water Quality Control Board--Central Valley Region, established water-quality standards and waste-discharge requirements for the Sacramento River in the area below the effluent of the sewage-disposal ponds. Subsequently, the Siskiyou County Flood Control and Water Conservation District requested that the U.S. Geological Survey prepare and execute a water-quality data-collection program.

# Purpose and Scope

This report presents the data obtained by the U.S. Geological Survey, in cooperation with the Siskiyou County Flood Control and Water Conservation District. The purpose of the study was to obtain water-quality information in Lake Siskiyou, its tributaries, and the reach of the Sacramento River below the lake at sites upstream and downstream from the effluent of the three sewage-disposal ponds near the city of Mount Shasta. The scope of the work included periodic field and laboratory water-quality determinations at selected sites (table 1 and fig. 1). Field determinations included discharge, air and water temperatures, DO (dissolved oxygen), residual chlorine, specific conductance, pH, and total and fecal coliform bacteria counts. Laboratory chemical analyses included total Kjeldahl nitrogen (organic nitrogen plus ammonia), nitrate nitrogen, total phosphorus and BOD (biochemical oxygen demand). The same parameters were measured 36 miles downstream from Lake Siskiyou at a site on the Sacramento River at Delta, which is outside Siskiyou County. Data collection at this site was done under a cooperative agreement with the California Regional Water Quality Control Board--Central Valley Region.

Generally, samples for the analysis of all selected constituents were collected at 22 sites (table 1). Exceptions were residual chlorine which was measured only at sites 15, 16, 17, 18, and 19, which are in the vicinity of the sewage-disposal ponds near the city of Mount Shasta. Samples for BOD were collected only at sites 16 and 17, and turbidity was measured regularly only at site 19. Sites 5, 7, 8, 9, and 13 were sampled only during the initial phase of the study; the results of sample analyses for these five stations are in table 9.

Table 1.--Sampling sites for Lake Siskiyou and vicinity

| Station<br>number<br>on map <u>1</u> / | USGS<br>downstream<br>number | Location 2/ | Altitude<br>(feet above<br>mean sea level) | Drainage<br>area<br>(sq. mi.)         | Station name                                                   |
|----------------------------------------|------------------------------|-------------|--------------------------------------------|---------------------------------------|----------------------------------------------------------------|
| -1                                     | 11-3413.00                   | 40N/5W-25E  | 3360                                       | 47.8                                  | Sacramento River above Lake Siskiyou, near Mt Shasta           |
| 2                                      | 3413.05                      | 40 N/5W-24M | 3400                                       | 5.00                                  | Deer Creek near Mt Shasta                                      |
| 3                                      | 3413.10                      | 40N/4W-31H  | 3250                                       | 4.62                                  | Scott Camp Creek at diversion dam, near Mt Shasta              |
| 4                                      | 3413.15                      | 40N/4W-32L  | 3220                                       | 2.90                                  | Castle Lake Creek at road crossing, near Mt Shasta             |
| a5                                     | 3413.20                      | 40N/4W-32L  | 3220                                       | 1 1 1 1 1 1                           | Spring near Castle Lake Creek Site, near Mt Shasta             |
| 6                                      | 3413.25                      | 40N/4W-20R  | 3240                                       | 19.1                                  | Wagon Creek near Mt Shasta                                     |
| a7                                     | 3413.30                      | 40N/4W-20R  | 3240                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Spring near Wagon Creek site, near Mt Shasta                   |
| a8                                     | 3413.35                      | 40N/4W-16K  | 3520                                       | .57                                   | Cold Creek at Mt Shasta                                        |
| a9                                     | 3413.40                      | 40N/4W-8H   | 3590                                       | (440 lb)                              | Big Springs Creek at Southern Pacific railroad, near Mt Shasta |
| 10                                     | 3413.41                      | 40N/4W-17J  | 3500                                       | 1 1 1                                 | Big Springs Creek above fish hatchery, near Mt Shasta          |
| 11                                     | 3413.42                      | 40N/4W-17R  | 3420                                       | .67                                   | Big Springs Creek below fish hatchery, near Mt Shasta          |
| 12                                     | 3413.44                      | 40N/4W-28C  | 3220                                       | (c)                                   | Cold Creek above Lake Siskiyou, near Mt Shasta                 |
| a13                                    | 3413.45                      | 40N/4W-29M  | 3180                                       | 1.00                                  | Lake Siskiyou at boat ramp, near Mt Shasta                     |
| 14                                     | 3413.60                      | 40N/4W-29R  | 3180                                       | 127                                   | Lake Siskiyou near Mt Shasta                                   |
| 15                                     | 3413.65                      | 40N/4W-33C  | 2880                                       | 134                                   | Sacramento River above sewage effluent, near Mt Shasta         |
| 16                                     | 3413.70                      | 40N/4W-28Q  | 3270                                       |                                       | Mt Shasta sewage pond effluent at weir, near Mt Shasta         |
| 17                                     | 3413.75                      | 40N/4W-33C  | 2880                                       | 5 2 3                                 | Mt Shasta sewage pond effluent at river, near Mt Shasta        |
| 18                                     | 3413.80                      | 40N/4W-33G  | 2870                                       | 134                                   | Sacramento River below sewage effluent, near Mt Shasta         |
| 19                                     | 3414.00                      | 40N/4W-33R  | 2800                                       | 135                                   | Sacramento River near Mt Shasta                                |
| 20                                     | 3414.40                      | 39N/4W-13L  | 2420                                       | 160                                   | Sacramento River at Shasta Retreat, near Dunsmuir              |
| 21                                     | 3414.60                      | 38N/4W-11Q  | 2060                                       | 185                                   | Sacramento River at Soda Creek Road, near Dunsmuir             |
| b 22                                   | 3420.00                      | 36N/5W-35E  | 1075                                       | 425                                   | Sacramento River at Delta                                      |

Figure 1.
Mount Diablo Base and Meridian.

Reconnaissance site -- sampled only during initial phase of study (see table 10).

The station on Sacramento River at Delta is 36 miles downstream from Box Canyon Dam and is not shown on figure 1.

Surface drainage area is difficult to define because of lack of relief.

# Location and General Description

Lake Siskiyou is in northern California in Siskiyou County (fig. 1). The lake was formed by the construction of Box Canyon Dam, an earthfill dam on the Sacramento River near the city of Mount Shasta. The capacity of the lake is 26,000 acre-feet and the normal pool-surface area is 430 acres. Tributaries to the lake include Deer Creek, Scott Camp Creek, Castle Lake Creek, the Sacramento River, Cold Creek, and Wagon Creek. The Sacramento River, Deer, Scott Camp, and Castle Lake Creeks drain large areas of forested land, whereas Cold Creek drains mainly rural and agricultural areas. Wagon Creek drains both agricultural and forested lands.

The Sacramento River below Lake Siskiyou receives effluent from three sewage-oxidation ponds (fig. 1). Domestic sewage is held in these ponds before being chlorinated and discharged into the river. Southward, the river drains a combination of forest, rural, and agricultural lands.

#### METHODS

Field processing of samples immediately after collection included filter incubation for coliform bacteria. Turbidity and specific conductance were determined within 96 hours after collection, from water samples packed in ice at the time of collection. Five-day BOD analyses were also begun within 96 hours from water samples packed in ice since collection. Lake-water samples were collected using a Van Dorn PVC (polyvinyl chloride) sampler.

Prior to April 1971, samples for laboratory chemical analysis were collected in polyethylene bottles, immediately packed in ice, and delivered to the Geological Survey chemical laboratory in Sacramento. Samples collected after April 1, 1971 were shipped to the Geological Survey laboratory in Salt Lake City, Utah, for chemical analysis. Nitrogen and phosphorus samples (250 ml) shipped to the Salt Lake laboratory were chilled and preserved by adding 1 milliliter of mercuric chloride solution (concentration 40 milligrams of mercury per liter). The addition of mercuric chloride as well as chilling help reduce biological activity in the samples. All samples for dissolved constituents were filtered through a 0.45-micrometer membrane filter immediately after collection.

<sup>&</sup>lt;sup>1</sup> The use of named products in this report is for identification only and does not imply endorsement by the U.S. Geological Survey.

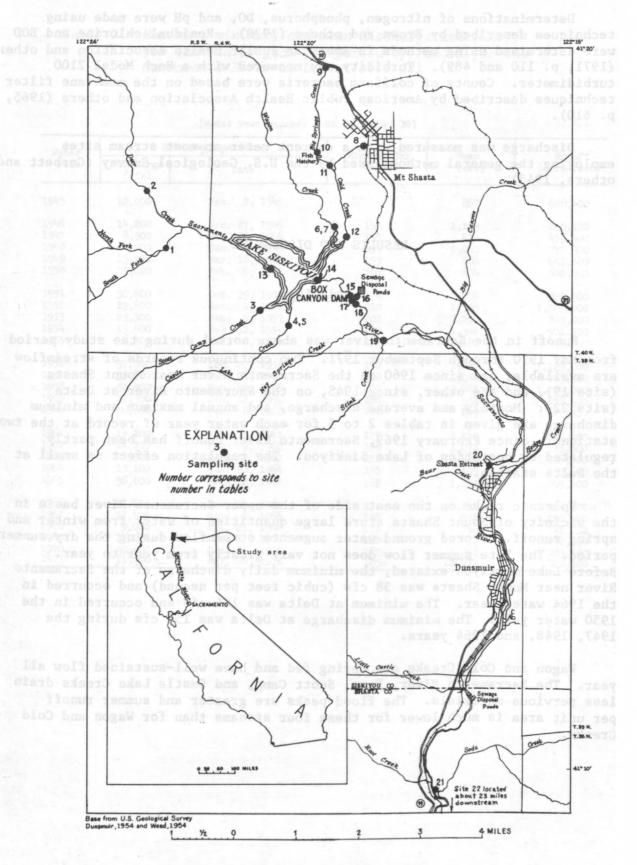



FIGURE 1.--Study area and sampling sites.

Determinations of nitrogen, phosphorus, DO, and pH were made using techniques described by Brown and others (1970). Residual chlorine and BOD were determined using methods in American Public Health Association and others (1971, p. 110 and 489). Turbidity was measured with a Hach Model 2100 turbidimeter. Counts of coliform bacteria were based on the membrane filter techniques described by American Public Health Association and others (1965, p. 610).

Discharge was measured with a current meter at most stream sites employing the general methods used by the U.S. Geological Survey (Corbett and others, 1943).

## RESULTS AND DISCUSSION

# Hydrology

Runoff in the Sacramento River was above normal during the study period from May 1970 through September 1971. Two continuous records of streamflow are available, one since 1960 on the Sacramento River near Mount Shasta (site 19), and the other, since 1945, on the Sacramento River at Delta (site 22). Monthly and average discharge, and annual maximum and minimum discharge are given in tables 2 to 5 for each water year of record at the two stations. Since February 1969, Sacramento River runoff has been partly regulated by operation of Lake Siskiyou. The regulation effect is small at the Delta station.

Volcanic rocks on the east side of the upper Sacramento River basin in the vicinity of Mount Shasta store large quantities of water from winter and spring runoff. Stored ground water augments streamflow during the dry summer period. The late summer flow does not vary greatly from year to year. Before Lake Siskiyou existed, the minimum daily discharge of the Sacramento River near Mount Shasta was 38 cfs (cubic feet per second) and occurred in the 1964 water year. The minimum at Delta was 146 cfs and occurred in the 1950 water year. The minimum discharge at Delta was 155 cfs during the 1947, 1948, and 1964 years.

Wagon and Cold Creeks are spring fed and have well-sustained flow all year. The Sacramento River, Deer, Scott Camp, and Castle Lake Creeks drain less pervious materials. The flood peaks are greater and summer runoff per unit area is much lower for these four streams than for Wagon and Cold Creeks.

Table 2.--Maximum, minimum, and mean discharge and runoff for each water year for period of record for the Sacramento River at Delta (site 22)

[Water year October 1 to September 30] Momentary maximum Water Minimum day Mean Runoff Discharge year (cfs) (cfs) (acre-feet) (cfs) 1945 Feb. 2, 1945 628,400 12,000 839,100 1946 14,200 Dec. 27, 1945 159 1,159 459,300 1947 8,300 Nov. 22, 1946 155 634 Jan. 7, 1948 Mar. 18, 1949 Feb. 6, 1950 1948 1,061 24,200 155 770,300 886 1949 13,300 159 641,600 1950 5,620 146 694 502,800 30,600 Oct. 29, 1950 174 1,284 929,500 Dec. 1, 1951 Jan. 9, 1953 Feb. 12, 1954 Dec. 6, 1954 1,500 19,600 210 1,089,000 1952 1,290 1953 23,300 202 933,900 13,900 11,400 1954 210 1,342 971,200 687 158 1955 497,600 1,685 1956 37,000 Dec. 22, 1955 176 1,223,000 Feb. 24, 1957 Feb. 24, 1958 Jan. 12, 1959 Feb. 8, 1960 1,040 753,300 1,767,000 1957 188 25,700 32,200 2,441 1958 279 678,900 1959 180 938 849 167 1960 16,300 616,300 Feb. 11, 1961 Feb. 9, 1962 1961 14,100 175 1,143 827,600 1962 178 1,071 775,300 14,200 1,418 1963 26,300 Oct. 12, 1962 218 603 1964 13,100 Jan. 20, 1964 155 437,600 1965 38,800 Dec. 22, 1964 162 1,243 899,600 1966 11,600 Nov. 18, 1965 864,900 172 1,195 1967 17,400 1,558 Dec. 5, 1966 188 1,128,000 9,080 1968 Feb. 21, 1968 178 541,700 1,453 1,358 1,271 1969 1,052,000 14,200 Feb. 11, 1969 182 1970 30,000 182 983,100 Dec. 21, 1969 Mar. 26, 920,100

les collected May 19, 1970, while doll with the callections shows a because of excessively high values within the collection of the collection was led any officerity to be a fabrically like a straight values shown and lede on y officerity to have been present in the water.

of the specific conductance values (115.62) shows the higher the sacraments River above the sacraments River above the sacrament River above

loomar 2 may be deriveneed by mineralized by the state upstrain; Berkstrain poof 2013 44, and 95).

How. 17, 1959 49 235 159,50 How. 20, 1966 48 300 217,00

Table 3.--Monthly and annual mean discharge, in cubic feet per second, during period of record for the Sacramento River at Delta (site 22)

| Water<br>year                        | Oct.                                   | Nov.                                         | Dec.                                           | Jan.                                             | Feb.                                               | Mar.                                               | Apr.                                             | May                                            | June                                       | July                                   | Aug.                                   | Sept.                                  | Annua                                            |
|--------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------|
| 1945                                 | a150                                   | a600                                         | al,200                                         | 813                                              | 2,646                                              | 1,023                                              | 1,497                                            | 1,424                                          | 598                                        | 265                                    | 182                                    | 163                                    | a 867                                            |
| 1946<br>1947<br>1948<br>1949         | 504<br>204<br>537<br>257<br>186        | 1,235<br>529<br>394<br>325<br>234            | 3,356<br>521<br>334<br>341<br>226              | 1,814<br>295<br>2,537<br>279<br>801              | 928<br>1,080<br>525<br>960<br>1,369                | 1,329<br>1,636<br>886<br>3,390<br>1,416            | 1,992<br>1,173<br>2,955<br>2,526<br>1,980        | 1,514<br>558<br>2,252<br>1,477<br>1,181        | 543<br>1,038<br>1,382<br>499<br>464        | 273<br>279<br>423<br>237<br>211        | 194<br>190<br>260<br>184<br>162        | 181<br>165<br>237<br>168<br>170        | 1,159<br>634<br>1,061<br>886<br>694              |
| 1951<br>1952<br>1953<br>1954<br>1955 | 1,837<br>260<br>220<br>268<br>256      | 1,584<br>949<br>271<br>1,163<br>824          | 2,580<br>2,553<br>1,093<br>752<br>1,332        | 1,423<br>1,250<br>4,261<br>2,046<br>554          | 2,730<br>2,828<br>1,332<br>3,468<br>677            | 1,319<br>2,200<br>1,806<br>2,331<br>709            | 1,447<br>3,351<br>2,152<br>3,314<br>1,271        | 1,476<br>2,690<br>1,931<br>1,567<br>1,556      | 459<br>1,035<br>1,348<br>557<br>472        | 260<br>457<br>503<br>306<br>247        | 201<br>268<br>289<br>284<br>173        | 185<br>232<br>241<br>248<br>177        | 1,284<br>1,500<br>1,290<br>1,342<br>687          |
| 1956<br>1957<br>1958<br>1959         | 186<br>282<br>1,371<br>271<br>218      | 432<br>288<br>894<br>283<br>215              | 4,310<br>261<br>1,637<br>297<br>242            | 4,234<br>430<br>2,296<br>2,897<br>652            | 2,743<br>2,979<br>9,557<br>2,166<br>2,274          | 1,907<br>2,247<br>3,623<br>1,632<br>2,308          | 2,222<br>1,664<br>4,117<br>1,693<br>1,454        | 2,285<br>2,741<br>3,442<br>1,003<br>1,453      | 1,004<br>704<br>1,701<br>431<br>777        | 383<br>313<br>592<br>236<br>287        | 260<br>219<br>354<br>196<br>197        | 233<br>514<br>302<br>231<br>176        | 1,685<br>1,040<br>2,441<br>938<br>849            |
| 1961<br>1962<br>1963<br>1964<br>1965 | 233<br>222<br>1,335<br>342<br>195      | 622<br>598<br>706<br>1,357<br>585            | 1,989<br>1,086<br>1,704<br>558<br>4,265        | 885<br>528<br>765<br>1,181<br>2,545              | 3,103<br>3,818<br>3,198<br>777<br>1,032            | 1,969<br>1,600<br>1,380<br>646<br>744              | 1,700<br>2,389<br>4,269<br>814<br>2,990          | 1,760<br>1,457<br>2,280<br>586<br>1,257        | 879<br>711<br>680<br>433<br>532            | 293<br>269<br>374<br>223<br>278        | 226<br>232<br>265<br>169<br>243        | 211<br>194<br>242<br>172<br>204        | 1,143<br>1,071<br>1,418<br>603<br>1,243          |
| 1966<br>1967<br>1968<br>1969<br>1970 | 200<br>196<br>262<br>252<br>246<br>280 | 1,920<br>1,767<br>270<br>355<br>273<br>1,487 | 790<br>2,548<br>442<br>1,042<br>2,490<br>2,138 | 1,779<br>1,636<br>803<br>2,533<br>6,310<br>2,458 | 1,665<br>1,955<br>2,678<br>2,742<br>2,073<br>1,525 | 2,911<br>2,518<br>1,554<br>2,076<br>1,828<br>2,056 | 2,650<br>2,433<br>1,132<br>3,434<br>948<br>1,819 | 1,389<br>3,202<br>858<br>2,962<br>967<br>1,913 | 460<br>1,477<br>426<br>1,071<br>481<br>789 | 258<br>461<br>223<br>341<br>247<br>343 | 188<br>290<br>212<br>229<br>188<br>229 | 189<br>240<br>188<br>506<br>200<br>215 | 1,195<br>1,558<br>746<br>1,453<br>1,358<br>1,271 |

a. Not previously published; estimated on basis of records for Trinity River at Lewiston and Antelope Creek near Red Bluff.

Table 4.--Maximum, minimum, and mean discharge and runoff for each water year for period of record for the Sacramento River near Mount Shasta (site 19)

| Water | Mome            | ntary maximum     | Minimum day | Mean  | Runoff      |
|-------|-----------------|-------------------|-------------|-------|-------------|
| year  | Discharge (cfs) | Date              | (cfs)       | (cfs) | (acre-feet) |
| 1960  | 2,680           | Feb. 8, 1960      | 43          | 176   | 127,700     |
| 1961  |                 |                   | 42          | 257   | 185,800     |
| 1962  | 1,200           | Apr. 14, 15, 1962 | 40          | 222   | 160,900     |
| 1963  | 9,490           | Oct. 12, 1962     | 47          | 307   | 222,300     |
| 1964  | 2,220           | Nov. 14, 1964     | 38<br>46    | 154   | 112,100     |
| 1965  | 12,200          | Dec. 22, 1964     | 46          | 291   | 210,400     |
| 1966  | 2,480           | Nov. 17, 1965     | 45          | 235   | 169,900     |
| 1967  | 2,720           | Nov. 20, 1966     | 48          | 300   | 217,000     |
| 1968  | 1,140           | Feb. 23, 1968     | 46          | 173   | 125,700     |
| 1969  | 1,490           | June 3, 1969      | 26          | 293   | 211,800     |
| 1970  | 4,070           | Jan. 23, 1970     | 34          | 247   | 178,900     |
| 1971  | 1,330           | Mar. 26, 1971     | 37          | 278   | 201,200     |

Table 5.--Monthly and annual mean discharge, in cubic feet per second, during period of record for the Sacramento River near Mount Shasta (site 19)

| Water | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Annua |
|-------|------|------|------|------|------|------|------|-----|------|------|------|-------|-------|
| 1960  | 63.4 | 65.3 | 74.5 | 109  | 282  | 409  | 352  | 402 | 208  | 55.3 | 46.8 | 49.1  | 176   |
| 1900  | 03.4 | 0).5 | (4.) | 109  | 202  | 409  | 372  | 402 | 200  | 22.5 | 40.0 | 49.1  | 110   |
| 1961  | 62.7 | 111  | 267  | 178  | 539  | 273  | 475  | 666 | 364  | 70.9 | 49.7 | 50.8  | 257   |
| 1962  | 63.0 | 99.6 | 145  | 119  | 331  | 199  | 793  | 529 | 241  | 64.8 | 52.3 | 49.4  | 222   |
| 1963  | 321  | 224  | 425  | 168  | 752  | 229  | 619  | 643 | 167  | 75.2 | 50.7 | 48.8  | 307   |
| 1964  | 96.0 | 264  | 156  | 179  | 167  | 182  | 294  | 231 | 146  | 57.4 | 40.2 | 46.8  | 154   |
| 1965  | 55.4 | 120  | 938  | 399  | 244  | 210  | 684  | 450 | 181  | 85.9 | 60.4 | 51.5  | 291   |
| 1966  | 54.4 | 336  | 156  | 192  | 174  | 418  | 725  | 480 | 132  | 58.7 | 46.9 | 48.3  | 235   |
| 1967  | 50.8 | 283  | 382  | 236  | 291  | 367  | 316  | 913 | 532  | 115  | 59.1 | 50.6  | 300   |
| 1968  | 70.4 | 76.2 | 95.5 | 167  | 394  | 303  | 319  | 346 | 152  | 62.7 | 54.4 | 48.8  | 173   |
| 1969  | 63.1 | 88.7 | 128  | 240  | 298  | 313  | 707  | 832 | 399  | 74.4 | 42.4 | 338   | 293   |
| 1970  | 77.1 | 44.1 | 262  | 891  | 428  | 298  | 223  | 398 | 188  | 67.3 | 41.0 | 51.0  | 247   |
| 1971  | 91.4 | 231  | 299  | 359  | 334  | 336  | 445  | 733 | 308  | 98.5 | 50.9 | 52.1  | 278   |

# Water Quality

Results of physical, chemical, and microbiological analyses for the dates and time of the study are tabulated in table 12. The mean, 95-percent probability confidence interval of the mean, and range for specific conductance values, dissolved oxygen, nitrate nitrogen, total Kjeldahl nitrogen and total phosphorus are shown in figures 2, 3, and 4. A vertical profile of temperature, dissolved oxygen, and oxygen concentration at saturation in Lake Siskiyou is shown in figure 5. The results given in the figures are valid only for the times and dates (table 12) when the samples Were collected. All the samples were collected during daylight hours and many of them during periods of low flow. Because of these limitations, the results cannot be extrapolated to describe diurnal conditions nor conditions that might occur during other flows. Concentrations of total phosphorus in samples collected May 19, 1970, were not used in the calculations shown in figure 4 because of excessively high values which were believed to be a result of sampling or analytical error. Nitrite concentrations were assumed to be insignificant and the nitrate values shown include any nitrite that might have been present in the water.

Comparison of specific conductance values (fig. 2) shows the highest values and fluctuations in samples from the Sacramento River above Lake Siskiyou and Deer Creek (sites 1 and 2). The specific conductance at sites 1 and 2 may be influenced by mineralized springs upstream (Berkstresser, 1968, p. 28, 44, and 45).

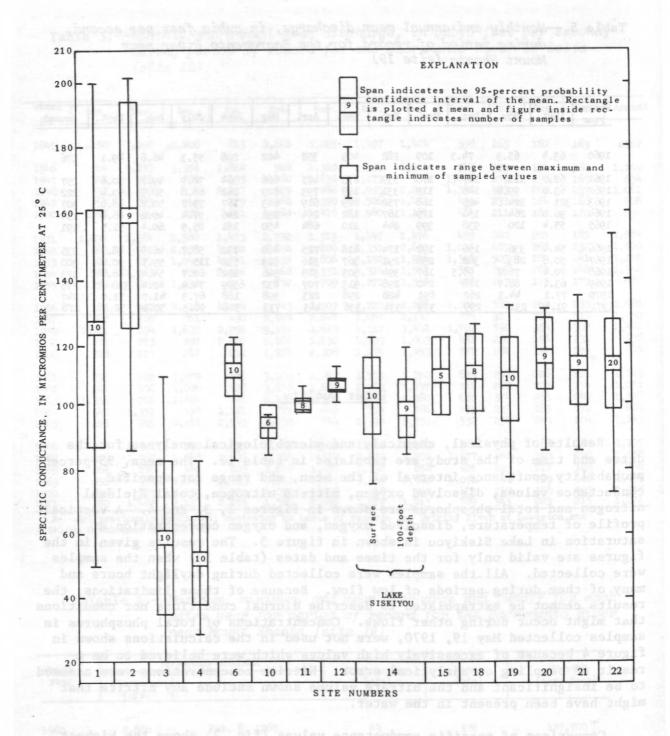



FIGURE 2.--The range of specific conductance values; the mean, and the 95-percent probability confidence interval of the mean.

The periodic determinations of DO were near 100-percent saturation at most sites (fig. 3). The DO concentrations and percentage saturation were different between sites 10 and 11 on Big Springs Creek above and below the fish hatchery, suggesting waste matter from the fish hatchery slightly reduces the oxygen resources of the stream. The oxygen concentration in the Sacramento River immediately downstream from the sewage-disposal pond effluent (site 18) was near saturation when sampled.

Average nitrate nitrogen and total phosphorus concentrations were similar at sampling sites 1 to 4 in the lake tributaries (fig. 4). Concentrations at these sites were much lower than at sites 6, 10, 11, and 12. The highest average nitrate nitrogen concentration was recorded at Wagon Creek (site 6), whereas Big Spring Creek below the fish hatchery (site 11) had the highest total phosphorus concentration. The higher nitrogen and phosphorus concentrations in Wagon, Big Springs, and Cold Creeks (site 12) probably reflect agricultural use in their drainage basins. Again it should be emphasized that many of the samples were collected during periods of low flow.

Average total phosphorus concentrations in Wagon, Big Springs, and Cold Creeks were above the recommended level of 0.05 mg/l (milligram per liter) ([U.S.] Federal Water Pollution Control Adm., 1968, p. 53) for streams entering lakes. The recommentation is based on the role of phosphorus as a stimulating and a limiting nutrient for algal growth.

All sampling sites on streams tributary to Lake Siskiyou except Big Springs Creek below the fish hatchery (site 11) exhibited an overlap of the 95-percent probability confidence intervals for the mean TKN (total Kjeldahl nitrogen) concentrations (fig. 4). The overlapping suggests that the mean TKN concentrations in tributary streams are similar. Big Springs Creek below the fish hatchery and Cold Creek (sites 11 and 12) had relatively high TKN values, possibly a result of organic loading at the fish hatchery.

In the Sacramento River below Lake Siskiyou (sites 15 and 18-22), the average nitrate and total phosphorus concentrations in samples were generally lower than the concentrations in samples from the lake tributaries (sites 6 and 10-12, fig. 4). The average total phosphorus concentration of nine samples at the river-sampling site immediately downstream from the sewage-pond effluent (site 18, fig. 4) was noticeably higher that the average of six samples immediately upstream from the sewage-pond effluent (site 15, fig. 4). Water at site 15 is representative of the direct outflow from Lake Siskiyou through Box Canyon Dam and has a total phosphorus concentration comparable to the lake water at sampling site 14 (fig. 4). The increased concentration of total phosphorus at site 18 (below the sewage-pond effluent) may indicate the effect on the river water of treated sewage discharged from the ponds. Analyses of sewage effluent at the outflow from the ponds and at the river (sites 16 and 17) include total phosphorus concentrations near 4 mg/1 (table 12).

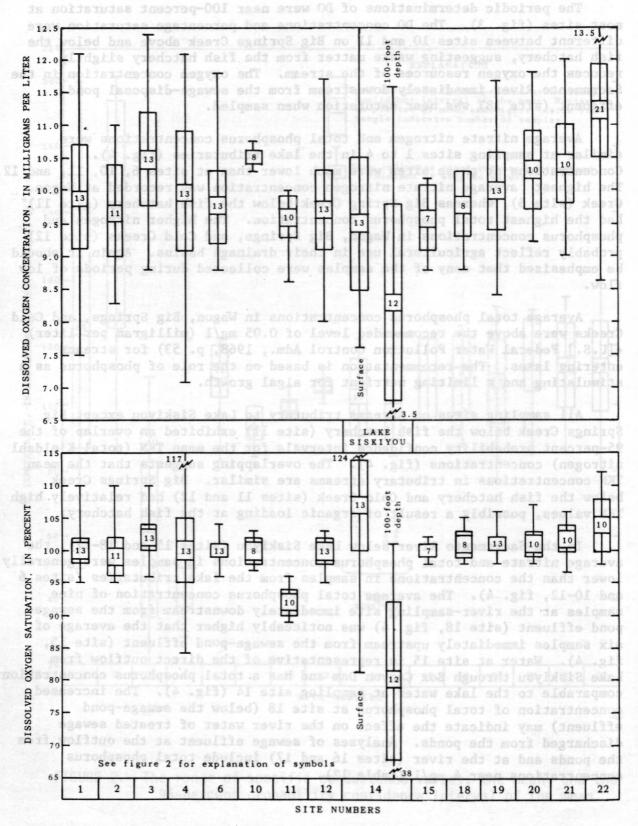



FIGURE 3.--The range of dissolved oxygen and percent saturation of dissolved oxygen, the mean, and the 95-percent probability confidence interval of the mean.

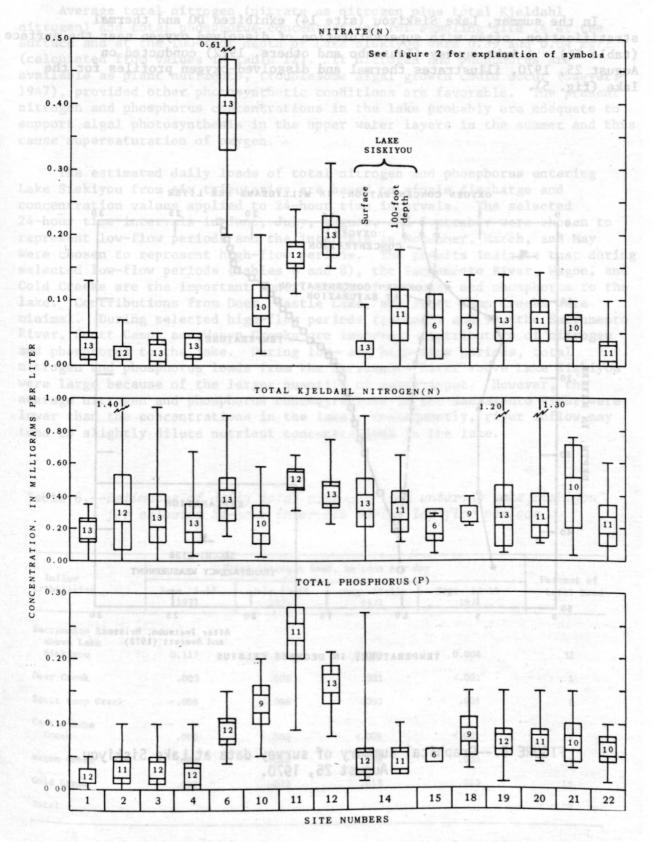



FIGURE 4.--The range of nitrate nitrogen, total Kjeldahl nitrogen, and total phosphorus; the mean and the 95-percent probability confidence interval of the mean.

In the summer, Lake Siskiyou (site 14) exhibited DO and thermal stratification, often with supersaturation of dissolved oxygen near the surface (table 12). A lake survey (Iwatsubo and others, 1972) conducted on August 25, 1970, illustrates thermal and dissolved-oxygen profiles for the lake (fig. 5).

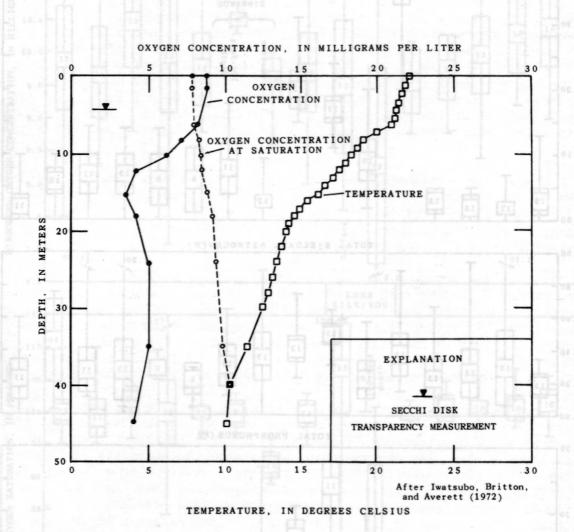



FIGURE 5.--Graphical summary of survey data at Lake Siskiyou, August 25, 1970.

Average total nitrogen (nitrate as nitrogen plus total Kjeldahl nitrogen) and total phosphorus concentrations for sampling site 14 at the surface and at the 100-foot depth of Lake Siskiyou were 0.39 and 0.04 mg/l (calculated from values in table 12). If nitrogen and phosphorus are available as plant nutrients, troublesome algal growth could occur (Sawyer, 1947), provided other photosynthetic conditions are favorable. The present nitrogen and phosphorus concentrations in the lake probably are adequate to support algal photosynthesis in the upper water layers in the summer and thus cause supersaturation of oxygen.

The estimated daily loads of total nitrogen and phosphorus entering Lake Siskiyou from six tributaries are based on single discharge and concentration values applied to 24-hour time intervals. The selected 24-hour time intervals in June, July, August, and September were chosen to represent low-flow periods and the intervals in November, March, and May were chosen to represent high-flow periods. The results indicate that during selected low-flow periods (tables 6 and 8), the Sacramento River, Wagon, and Cold Creeks are the important contributors of nitrogen and phosphorus to the lake. Contributions from Deer, Castle Lake, and Scott Camp Creeks were During selected high-flow periods (tables 7 and 9), the Sacramento River, Scott Camp, and Wagon Creeks are important contributors of nitrogen and phosphorus to the lake. During low- and high-flow periods, total nitrogen and phosphorus loads from the Sacramento River above Lake Siskiyou were large because of the larger quantity of water input. However, the average nitrogen and phosphorus concentrations in the Sacramento River were lower than the concentrations in the lake. Consequently, river inflow may tend to slightly dilute nutrient concentrations in the lake.

Table 6.--Estimates of daily total nitrogen load entering Lake Siskiyou for selected 24-hour intervals during low-flow periods

| Inflow                         | To                 | lay                         | Percent of         |                                      |            |
|--------------------------------|--------------------|-----------------------------|--------------------|--------------------------------------|------------|
| tributaries                    | June 16-17<br>1971 | July 13-15<br>1971          | Aug. 10-11<br>1971 | Sept. 13-15<br>1971                  | total load |
| Sacramento River<br>above Lake | Wilderstelly, B.   | 100 07 100 0<br>04-01 000 0 |                    | alli forsk bricte<br>stork spisi bel | ris county |
| Siskiyou                       | 0.117              | .0.026                      | 0.021              | 0.004                                | 32         |
| Deer Creek                     | .003               | .002                        | .001               | <.001                                | 1          |
| Scott Camp Creek               | .009               | .006                        | .002               | .001                                 | 4          |
| Castle Lake                    |                    |                             |                    | er too stort an                      |            |
| Creek                          | .005               | .002                        | <.001              | <.001                                | varial los |
| Wagon Creek                    | .093               | .058                        | .056               | .035                                 | 47         |
| Cold Creek                     | .025               | .023                        | .018               | .013                                 | 15         |
| Total                          | Sulfied on with    |                             |                    | unwilled Torrie                      | 100        |

Table 7.--Estimates of daily total nitrogen load entering Lake Siskiyou for selected 24-hour intervals during high-flow periods

| Inflow                   | Total nitrog           | gen load, in to     | ns per day        | Percent of total load |  |
|--------------------------|------------------------|---------------------|-------------------|-----------------------|--|
| tributaries              | November 10-12<br>1970 | March 24-25<br>1971 | May 11-12<br>1971 |                       |  |
| acramento<br>River above |                        |                     |                   |                       |  |
| Lake Siskiy              | ou 0.091               | 0.233               | 0.498             | 38                    |  |
| eer Creek                | .002                   | .132                | .040              | risv na h             |  |
| cott Camp<br>Creek       | .010                   | .312                |                   | 18                    |  |
| astle Lake<br>Creek      | .003                   | .144                | .052              | 9                     |  |
| agon Creek               | .093                   | .258                | .102              | 21                    |  |
| old Creek                | .039                   | .061                | .032              | 6                     |  |
| Total                    | f-dg.td bas y          | Daring low          | the lake.         | 100                   |  |

The loading results are only useful in estimating nitrogen and phosphorus loads carried by Lake Siskiyou tributaries during the selected flow conditions. Nitrogen and phosphorus loads during other flow conditions may vary greatly from loads given in tables 6, 7, 8, and 9. To determine the overall nutrient load flowing into Lake Siskiyou, nitrogen and phosphorus samples in all tributaries should be collected more frequently, in a schedule that includes all flow conditions.

Table 8.--Estimates of daily total phosphorus load entering Lake Siskiyou for selected 24-hour intervals during low-flow periods

| Inflow                      | T                  | Percent of         |                    |                     |             |
|-----------------------------|--------------------|--------------------|--------------------|---------------------|-------------|
| tributaries                 | June 16-17<br>1971 | July 13-15<br>1971 | Aug. 10-11<br>1971 | Sept. 13-15<br>1971 | total load  |
| Sacramento River above Lake | 100%               | - 100              | 500.               | 200.                | Deer Greak  |
| Siskiyou                    | 0.009              | 0.002              | 0.001              | 0.001               | 19          |
| Deer Creek                  | <.001              | <.001              | <.001              | <.001               | Castle Lake |
| Scott Camp Creek            | .001               | <.001              | <.001              | <.001               | SKI YOM 2   |
| Castle Lake<br>Creek        | .001               | <.001              | <.001              | <.001               | des 17 bico |
| Wagon Creek                 | .009               | .008               | .004               | .006                | 40 10       |
| Cold Creek                  | .009               | .008               | .004               | .005                | 38          |
| Total                       |                    |                    |                    |                     | 100         |

Table 9.--Estimates of daily total phosphorus load entering Lake Siskiyou for selected 24-hour intervals during high-flow periods

|     | Inflow                   | Total phosph           | Total phosphorus load, in tons per day |                   |                            |  |  |
|-----|--------------------------|------------------------|----------------------------------------|-------------------|----------------------------|--|--|
|     | tributaries              | November 10-12<br>1970 | March 24-25<br>1971                    | May 11-12<br>1971 | Percent of<br>total load   |  |  |
|     | Sacramento<br>River abov | 15 mg                  | 8 6 4                                  | est Mr. Shara S   | 3.00 Sacras<br>Sightyon, a |  |  |
|     | Lake Siski               |                        | 0.026                                  | 0.089             | 39                         |  |  |
|     | Deer Creek               | <.001                  | .009                                   | .005              | 5                          |  |  |
|     | Scott Camp<br>Creek      | <.001                  | .030                                   | .010              |                            |  |  |
|     | Castle Lake<br>Creek     | <.001                  | 13 12                                  |                   | 1.15 Castle                |  |  |
|     | Wagon Creek              | .009                   | .026                                   | .006              | 21                         |  |  |
| 7-1 | Cold Creek               | .008                   | .013                                   | .010              |                            |  |  |
|     | OOA, E-CO Total          | 1001.1                 | 11 - 31 -                              | (ings Creek below |                            |  |  |

Average fecal coliform bacteria counts at all but one sampling site (sewage-disposal-pond effluent at site 17) were below the recommended limit of 200 colonies per 100 ml (milliliters) of water for primary contact recreational use ([U.S.] Federal Water Pollution Control Adm., 1968, p. 12). The results are shown in table 8. Single samples taken in August and September 1970 from the effluent of the sewage pond just before it flowed into the river (site 17) revealed counts in excess of the recommended limit1.

Average total and fecal coliform bacteria counts at sites 6, 11, and 12 (table 10) were higher than those at other sites tributary to Lake Siskiyou. The differences probably are a result of cultural variations in the drainage basins of the tributaries. The total and fecal coliform bacteria counts are similar and were usually low at sites 15 and 18 (above and below the sewage effluent), indicating that the effluent has no immediate significant influence on the coliform bacteria population of the reach of Sacramento River near Mount Shasta.

Coliform bacteria counts generally were higher at most sampling sites during the summer months than in the winter and spring. These variations might have been related to changes of flow patterns, faunal activities, and seasonal water temperatures.

<sup>1</sup> Values based on plate counts outside recommended range of 20 to 80 colonies per 100 ml for total coliform and 20 to 60 colonies per 100 ml for fecal coliform.

Table 10.--Summary of total and fecal coliform bacteria counts,

May 1970 through September 1971

| Site  |                                                                            |          | er of |            |           | acteria count<br>s per 100 ml | ts         |
|-------|----------------------------------------------------------------------------|----------|-------|------------|-----------|-------------------------------|------------|
| umber | Site identification and name                                               | samples  |       | Average    |           | Ran                           | nge        |
|       | tal imperiment to the load                                                 | Total    | Fecal | Total      | Fecal     | Total                         | Fecal      |
| 1     | 11-3413.00 Sacramento River above<br>Lake Siskiyou, near Mt. Shasta        | 13       | 8     | 170        | 5 0 1 300 | 4-800                         | 0-32       |
| 2     | 11-3413.05 Deer Creek near<br>Mt. Shasta                                   | 12       | 6     | 820        | 3         | 5-4,600                       | 0-12       |
| 3     | 11-3413.10 Scott Camp Creek at diversion dam near Mt. Shasta               | 13       | 9     | 270        | 8         | 2-2,300                       | 0-49       |
| 4     | 11-3413.15 Castle Lake Creek at road crossing near Mt. Shasta              | 13       | 12    | 340        | 6         | 0-3,000                       | 0-21       |
| 6     | 11-3413.25 Wagon Creek near<br>Mt. Shasta                                  | 13       | 11    | 1,600      | 49        | 54-4,900                      | 4-120      |
| 10    | 11-3413.41 Big Springs Creek above fish hatchery near Mt. Shasta           | 9        | 10    | 280        | 28        | 20-1,000                      | 1-79       |
| 11    | 11-3413.42 Big Springs Creek below<br>fish hatchery near Mt. Shasta        | 12       | 11    | 1,100      | 42        | 90-3,400                      | 1-140      |
| 12    | 11-3413.44 Cold Creek above Lake<br>Siskiyou near Mt. Shasta               | 14       | 13    | 2,100      | 100       | 80-8,900                      | 25-200     |
| 14    | 11-3413.60 Lake Siskiyou at Box<br>Canyon Dam, near Mt. Shasta             |          |       |            | u les     | ed flo                        | enditi     |
|       | at surface<br>at 100-ft depth                                              | 12<br>12 | 8     | 230<br>270 | 0         | 1-1,000<br>0-1,100            | 0-2<br>0-8 |
| 15    | 11-3413.65 Sacramento River above sewage effluent near Mt. Shasta          | 8        | 8     | 900        | 3         | 15-2,800                      | 0-7        |
| 16    | 11-3413.70 Mt. Shasta sewage pond effluent at weir, near Mt. Shasta        | 6        | 6     | 530        | 0         | 0-2,500                       | 0-0        |
| 17    | 11-3413.75 Mt. Shasta sewage pond<br>effluent at river, near<br>Mt. Shasta | 8        | 8     | 4,300      | 420       | 0-26,000                      | 0-2,000    |
| 18    | 11-3413.80 Sacramento River below<br>sewage effluent near Mt. Shasta       | 9        | 10    | 850        | 6         | 0-2,800                       | 0-35       |
| 19    | 11-3414.00 Sacramento River near<br>Mt. Shasta                             | 14       | 10    | 640        | 14        | 1-4,800                       | 1-50       |
| 20    | 11-3414.40 Sacramento River at<br>Shasta Retreat near Dunsmuir             | 13       | 10    | 650        | 6         | 1-3,600                       | 0-18       |
| 21    | 11-3414.60 Sacramento River at<br>Soda Creek Road near Dunsmuir            | 12       | 10    | 670        | 18        | 7-2,000                       | 0-81       |
| 22    | 11-3420.00 Sacramento River at Delta                                       | 12       | 10    | 1,000      | 1 bo 7    | 7-6,200                       | 0-31       |

In the initial reconnaissance of the Lake Siskiyou area, samples for nitrogen, phosphorus, and total coliform bacteria were collected at five additional sites, numbers 5, 7, 8, 9, and 13. Data collected at these sites during this first sampling period are shown in table 9. Because only a few samples were collected, no discussion of the data will be made.

Table 11. -- Miscellaneous water-quality measurements for discontinued sites

| Site<br>number | Site identification and name                                           | Date<br>sampled | Nitrate (N) (mg/l) | Total nitrogen (N) (mg/l) | Total phosphorus (P) (mg/l) | Total coliform bacteria counts, in colonies/100 ml | Temperature (°C)                                    |
|----------------|------------------------------------------------------------------------|-----------------|--------------------|---------------------------|-----------------------------|----------------------------------------------------|-----------------------------------------------------|
| 5              | 11-3413.20 Spring near Castle<br>Lake Creek site, near<br>Mount Shasta | 6-11-70         | 0.02               | 0.17                      | 0.01                        |                                                    | 1 3-10<br>COR 13<br>1001 -<br>1 51 - 0<br>1 100 - 1 |
| 7              | 11-3413.30 Spring near Wagon<br>Creek site, near<br>Mount Shasta       | 6-11-70         | .05                | .28                       | :11                         | 300                                                | 18.0                                                |
| 8              | 11-3413.35 Cold Creek at                                               | 5-20-70         | .09                | .27                       | .93                         |                                                    | 7. HR - 8                                           |
|                | Mount Shasta                                                           | 6-12-70         | .16                | .28                       | .11                         | 200                                                | 11.4                                                |
| 9              | 11-3413.40 Big Springs Cr at<br>So. Pac. RR nr Mount Shasta            | 6-11-70         | .07                | .05                       | .15                         | # 100 H 100 H 100 H                                |                                                     |
| 13             | 11-3413.45 Lake Siskiyou at<br>boat ramp, near Mount Shasta            | 5-19-70         | .00                | .20                       | 1.1                         |                                                    | 19 -<br>19 -<br>19 -                                |

#### SUMMARY

The physical, chemical, and microbiological measurements indicate water in the tributaries to Lake Siskiyou is of good quality except in Wagon and Cold Creeks. Inflows from Wagon and Cold Creeks contain relatively higher nitrogen and phosphorus concentrations and during low-flow conditions are probably important contributors to the enrichment of the lake. Total and fecal coliform bacteria counts also were relatively greater in Wagon and Cold Creeks. The quality of the water in Wagon Creek and Cold Creek probably reflects the influence of urban and agricultural activities in their drainage basins.

A noticeable difference in water quality was recorded between the sampling sites (10 and 11) above and below the fish hatchery on Big Spring Creek. Water downstream from the fish hatchery generally was higher in coliform bacteria counts, lower in DO, and higher in nitrogen and phosphorus concentrations than that from the site upstream from the fish hatchery.

Thermal and DO stratification occurred in Lake Siskiyou during the summer. High pH values and supersaturation of oxygen in the surface layer of Lake Siskiyou suggest active photosynthesis taking place near the water surface. Nitrogen and phosphorus concentrations must be adequate to support plant growth. Data on the lake from this study were limited to only one sampling site and variables measured were not sufficient to define adequately the water-quality conditions in the lake. Future monitoring programs should consider more intensive sampling in the lake, including algal cell counts and algal productivity measurements, frequent temperature and dissolved-oxygen profiles, and frequent nitrogen, phosphorus, and phytoplankton determination at several depths including, at a minimum, the euphotic zone and the bottom water.

The water in the Sacramento River downstream from the effluent of the sewage-oxidation ponds had a higher average total phosphorus concentration than that upstream. This probably reflects the influence of the discharged sewage effluent on the river water. Total and fecal coliform bacteria counts, DO, nitrate, and TKN concentrations were not noticeably different in samples collected upstream and downstream from the sewage effluent.

# REFERENCES CITED SHOW AND REFERENCES CITED S

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1965, Standard methods for the examination of water and wastewater [12th ed.]: New York, 769 p.

  1971, Standard methods for the examination of water and wastewater [13th ed.]: New York, 874 p.
- Berkstresser, C. F., Jr., 1968, Data for springs in the northern Coast Ranges and Klamath Mountains of California: U.S. Geol. Survey open-file rept., 49 p.
- Brown, Eugene, Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geol. Survey Techniques Water-Resources Inv., book 5, chap. A., 160 p.
- Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geol. Survey Water-Supply Paper 888, 245 p.
- Iwatsubo, R. T., Britton, L. J., and Averett, R. C., 1972, Selected
   physical and chemical characteristics of 20 California lakes: U.S.
   Geol. Survey open-file rept., 59 p.
- Sawyer, C. N., 1947, Fertilization of lakes by agricultural and urban drainage: New England Water Works Assoc. Jour., 61 (2), p. 109-127.
- [U.S.] Federal Water Pollution Control Administration, 1968, Water quality criteria: Rept. Natl. Tech. Advisory Comm. to Secretary of Interior, Washington, 234 p.

110.

Table 12.--Results of water-quality analyses
[Type 2, laboratory analysis; type 3, field analysis]

11-3413.00 SACRAMENTO RIVER ABOVE LAKE SISKIYOU (SITE 1)

WATER QUALITY DATA

|              |                |            |                | INSTAN-        |               |                                         |         | PER-            | TOTAL                |         |
|--------------|----------------|------------|----------------|----------------|---------------|-----------------------------------------|---------|-----------------|----------------------|---------|
|              |                |            |                | TANEOUS        | Tevinen       | AIR                                     | DIS-    | CENT            | NITRO-               |         |
|              |                | TIME       | TYPE           | DIS-<br>CHARGE | TEMPER-       | TEMP-<br>ERATURE                        | SOLVED  | SATUR-<br>ATION | GEN<br>(N)           |         |
|              | DATE           | nas in     | 5 prhe         | (CFS)          | (DEG C)       | (DEG C)                                 | (MG/L)  | 395             | (MG/L)               |         |
|              | MAY , 19       | 70         |                |                |               |                                         |         |                 |                      |         |
|              | 19             | 0730       | 81.62          | 342            | 8.0           | 13.5                                    | 10.8    | 103             | holifon              |         |
|              | JULY           | 0900       | 2              | 90             | 8.5           | DET TO                                  | 11.4    | 110             | S.U. Tas             |         |
|              | 30<br>AUG.     | 0900       | 2              | 11             | 16.5          | 19.0                                    | 8.8     | 101             | -                    |         |
|              | 28<br>SEP.     | 0855       | 2              | 6.5            | 15.0          |                                         | 8.8     | 99              | Hard To              |         |
|              | 29<br>NOV.     | 1040       | 2              | 6.5            | 12.0          | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9.6     | 101             | STEE CLASS           |         |
|              | 11<br>JAN., 19 | 1515       | 5              | 177            | 7.0           | 8.0                                     | 10.3    | 97              | SISW VSS<br>Vaccifer |         |
|              | 26<br>MAR.     | 0940       | 2              | 133            | 2.5           | .5                                      | 12.1    | 101             |                      |         |
|              | 25             | 1000       | 2              | 192            | 3.0           | 5.0                                     | 11.5    | 98              | .45                  |         |
|              | MAY<br>12      | 1200       | 2              | E660           | 6.0           | 14.0                                    | 10.9    | 100             | .28                  |         |
|              | JUNE<br>16     | 1420       | 2              | 167            | 14.0          | 24.0                                    | 9.1     | 100             | .26                  |         |
|              | JULY<br>14     | 0815       | 2              | 37             | 13.0          | 19.0                                    | 9.2     | 100             | .26                  |         |
|              | AUG.<br>10     | 1315       | 2              | 17             | 21.0          | 35.0                                    | 7.5     | 95              | •45                  | one     |
|              | SEP.<br>15     | 1540       | 2              | 8.8            | 17.0          | 30.0                                    | 8.6     | 101             | .15                  |         |
|              |                | TOTAL      | DIS-           |                |               | SPE-                                    |         |                 | IMME-                |         |
|              |                | KJEL-      | SOLVED         |                |               | CIFIC                                   |         | FECAL           | DIATE                |         |
|              |                | DAHL       | NITRITE        | DIS-           | TOTAL         | CON-                                    |         | COLI-           | COLI-                |         |
|              |                | NITRO-     | PLUS           | SOLVED         | PHOS-         | DUCT-                                   | РН      | FORM<br>(COL.   | FORM                 |         |
|              |                | GEN<br>(N) | NITRATE<br>(N) | NITRATE<br>(N) | PHORUS<br>(P) | (MICRO-                                 | PH      | PER             | (COL.<br>PER         |         |
|              | DATE           | (MG/L)     | (MG/L)         | (MG/L)         | (MG/L)        | MHOS)                                   | (UNITS) | 100 ML)         | 100 ML)              |         |
|              | MAY , 19       | 7.0        |                |                |               |                                         |         |                 |                      |         |
|              | 19             | .00        |                | .02            | .13           | 50                                      |         |                 | 4                    |         |
|              | JUNE           |            |                |                |               |                                         |         |                 | Thistory of          | F the ' |
|              | JULY           | .05        | d a M          | .02            | .000          | total                                   | phospi  | 0.000           | 7                    |         |
|              | 30<br>AUG.     | .23        | proba          | • 05           | .000          | the is                                  | flunce  |                 | 54                   |         |
|              | 28<br>SEP.     | .15        | yer ve         | .02            | .000          | 200                                     | 8.1     | Morri.          | 6                    |         |
|              | 29<br>NOV.     | .29        | T.             | .00            | .040          | nofit                                   | esbly   | 3               | 5                    |         |
| cellected my | 11<br>JAN., 19 | .14        | -              | .05            | .000          | 100                                     | 8.0     | me              | 20                   |         |
|              | 26<br>MAR.     | .10        |                | .00            | .000          | 116                                     | 7.8     | 32              | 428                  | ***     |
|              | 25<br>MAY      | .35        | .10            |                | .050          | 116                                     | 7.6     | 1               | 27                   |         |
|              | 12<br>JUNE     | .28        | .00            |                | .050          | 70                                      | 7.9     | 0               | 35                   |         |
|              | 16             | .24        | .02            |                | .020          | 85                                      | 7.9     | . 0             | 26                   |         |
|              | 14             | •25        | .01            | .01            | .020          | 136                                     | 8.0     | 2               | 800                  |         |
|              | 10             | .32        | .13            | .13            | .020          | 174                                     | 8.2     | . 1             | 550                  |         |
|              | SEP.           |            |                |                |               |                                         |         |                 |                      |         |

.12 .03

.03

.040

8.3 1

Table 12.--Continued

11-3413.05 DEER CREEK NEAR MT SHASTA (SITE 2)

# WATER QUALITY DATA

|           |         |         | INSTAN- |             |           |            | PER-    | TOTAL    |
|-----------|---------|---------|---------|-------------|-----------|------------|---------|----------|
|           |         |         | TANEOUS |             | AIR       | DIS-       | CENT    | NITRO-   |
|           |         |         | DIS-    | TEMPER-     | TEMP-     | SOLVED     | SATUR-  | GEN      |
|           | TIME    | TYPE    | CHARGE  | ATURE       | ERATURE   | OXYGEN     | ATION   | (N)      |
| DATE      | ITHE    | 100     |         |             |           |            | ATTON   | (MG/L)   |
| DATE      |         |         | (CFS)   | (DEG C)     | (DEG C)   | (MG/L)     |         | (MG/L)   |
| NOV 19    | 70      |         |         |             |           |            |         |          |
| 10        | 1345    | 2       | 3.7     | 7.0         |           | 10.1       | 95      | 101      |
| MAR., 19  | 71      |         |         |             |           |            |         |          |
| 24        | 1320    | 2       | E35     | 5.0         | 11.0      | 11.0       | 99      | 1.4      |
| MAY       |         |         |         |             |           |            |         |          |
| 11        | 0810    | 2       | 39      | 6.0         | 10.0      | 10.9       | 100     | .38      |
| JUNE      |         |         | 0.01    | 212         | 2.5       |            |         |          |
| 16        | 0945    | 2       | 5.0     | 10.5        | 19.0      | 9.8        | 100     | .24      |
| JULY      |         | 3.00    | 0.25    | 8.11        | 8.7       |            |         |          |
| 13        | 1045    | 2       | 2.5     | 12.0        | 23.0      | 9.3        | 99      | .32      |
| AUG.      | 100     | Y 0.97  | 2445    | 0.11        | 0.0       |            | 0.780   | 13.00    |
| 10        | 0720    | 2       | 1.2     | 15.5        | 18.5      | 8.4        | 95      | .29      |
| SEP.      | Tlop    | 0.0     | JACO    | 15.0        |           |            | 1518    | 50.01    |
| 15        | 0740    | 2       | .95     | 10.0        | 5.5       | 9.7        | 99      | .15      |
| 200       | 181     | 0.0     | 0.05    | 0.11        | Aut       |            |         | ******** |
|           | TOTAL   | DIS-    |         |             | SPE-      |            |         | IMME-    |
|           | KJEL-   | SOLVED  |         |             | CIFIC     |            | FECAL   | DIATE    |
|           | DAHL    | NITRITE | DIS-    | TOTAL       | CON-      |            | COLI-   | COLI-    |
|           | NITRO-  | PLUS    | SOLVED  | PHOS-       | DUCT-     |            | FORM    | FORM     |
|           | GEN     | NITRATE | NITRATE | PHOKUS      | ANCE      | PH         | (COL.   | (COL.    |
|           | (N)     | (N)     | (N)     | (P)         | (MICRO-   |            | PER     | PER      |
| DATE      | (MG/L)  | (MG/L)  | (MG/L)  | (MG/L)      | MHOS)     | (UNITS)    | 100 ML) | 100 ML)  |
|           | 0 100.1 |         |         | 1 1 2 2 2 3 | 1 (3) 000 | CINER      | 6.0000  | - STAU   |
| NOV., 19  | 70      |         |         |             |           |            |         |          |
| 10        | .14     |         | .02     | .000        | 197       | 8.1        |         | 48       |
| MAR. , 19 | 71      |         |         |             |           |            |         |          |
| 24        | 1.4     | .00     |         | .10         | 111       | 7.4        | 0       | 52       |
| MAY       |         |         |         |             |           |            |         |          |
| 11        | .38     | .00     |         | .050        | 108       | 7.9        | U       | 96       |
| JUNE      |         |         |         |             |           |            |         |          |
| 16        | .23     | .01     |         | .030        | 157       | 8.0        | 2       | 240      |
| JULY      | 0.00    | 434.5   |         | 0.000       |           | 1000       | 4275    | 11000    |
| 13        | .25     | .07     | .07     | .020        | 180       | 8.1        | 1       | 1200     |
| AUG.      | 1000    | 6 10 7  |         |             | -30       | 1000 7 7 1 | 109.85  | 100.00   |
| 10        | .25     | .04     | .04     | .040        | 192       | 8.1        | 12      | 4600     |
| SEP.      | 1.6.10  | 100     |         | 080         |           |            | 18.     |          |
| 15        | .13     | .02     | .02     | .040        | 194       | 8.2        | 4       | 3500     |
|           |         |         |         |             | .,,       |            | 180     | 0.1      |

Table 12.--Continued beautiful of unter-quality analysis of universal transfer of univer

11-3413.10 SCOTT CAMP CREEK AT DIVERSION DAM, NEAR MT SHASTA (SITE 3)
WATER QUALITY DATA

| DATE       |        |            | INSTAN-<br>TANEOUS<br>DIS-<br>CHARGE<br>(CFS) | TEMPER-<br>ATURE<br>(DEG C) | AIR<br>TEMP-<br>ERATURE<br>(DEG C) | DIS-<br>SOLVED<br>OXYGEN<br>(MG/L) | PER-<br>CENT<br>SATUR-<br>ATION | TOTAL<br>NITRO-<br>GEN<br>(N)<br>(MG/L) |
|------------|--------|------------|-----------------------------------------------|-----------------------------|------------------------------------|------------------------------------|---------------------------------|-----------------------------------------|
| NOV. 1     | 970    |            |                                               |                             |                                    |                                    |                                 |                                         |
| 12         | 0830   | 2          | 11                                            | 4.5                         | 3.0                                | 11.0                               | 96                              | 11 61 1 7 7 Th                          |
| JAN. 1     |        |            |                                               |                             |                                    |                                    | 5951                            |                                         |
| 27         | 1545   | 2          | 8.5                                           | 2.0                         | 13,5 20                            | 12.4                               | 102                             |                                         |
| MAR.<br>26 | 0945   | 2          | 110                                           | 3.0                         | 7.0                                | 12.0                               | 101                             | 1.0                                     |
| MAY        | 0743   | E 0.05     | 110                                           | 3.0                         | 7.0                                | 12.0                               | 0180                            | 1.00                                    |
| 12<br>JUNE | 1615   | 2          | 77.                                           | 6.5                         | 18.0                               | 10.9                               | 101                             | •31                                     |
| 16<br>JULY | 1530   | 2          | 14                                            | 11.5                        | 25.0                               | 9.5                                | 100                             | .22                                     |
| 15         | 0750   | 2          | 4.0                                           | 11.0                        | 14.5                               | 9.7                                | 100                             | .55                                     |
| AUG.       |        |            |                                               |                             | 2 - 1                              |                                    | 0.88.0                          | 9 4                                     |
| 10         | 1515   | 2          | 2.1                                           | 15.0                        | 34.0                               | 8.8                                | 99                              | .36                                     |
| SEP.       | 1500   | 2          | 1.6                                           | 11.0                        | 28.0                               | 9.8                                | 101                             | .17                                     |
| 15         | 1500   | 2          | 1.0                                           | 11.0                        | 20.0                               | 7.0                                | 101                             | .11                                     |
|            | TOTAL  | DIS-       |                                               |                             | SPE-                               |                                    |                                 | TITLE                                   |
|            | KJEL-  | SOLVED     |                                               |                             | CIFIC                              |                                    | FECAL                           | DIATE                                   |
|            | DAHL   | NITRITE    | DIS-                                          | TOTAL                       | CON-                               |                                    | COLI-                           | COLI-                                   |
|            | NITRO- | PLUS       | SOLVED                                        | PHOS-                       | DUCT-                              |                                    | FORM                            | FORM                                    |
|            | GEN    | NITRATE    | NITRATE                                       |                             | ANCE                               | РН                                 | (COL.                           | (COL.                                   |
|            | (N)    |            |                                               |                             |                                    |                                    | PER                             | PER                                     |
| DATE       | (MG/L) | (MG/L)     | (MG/L)                                        | (MG/L)                      | (MHOS)                             | (UNITS)                            | 100 ML)                         | 100 ML)                                 |
| NOV 1      | 970    |            |                                               |                             |                                    |                                    |                                 |                                         |
| 12         | .35    |            | .02                                           | .000                        | 44                                 | 8.0                                | 13                              |                                         |
| JAN. 1     |        |            |                                               |                             |                                    |                                    |                                 |                                         |
| 27         | .08    |            | .00                                           | .000                        | 48                                 | 7.7                                | 1                               | 7                                       |
| MAR.       |        |            |                                               |                             |                                    |                                    |                                 |                                         |
| 26         | .95    | .10        |                                               | .10                         | 33                                 | 6.9                                | 3                               | 39                                      |
| MAY        |        | D1, 12.0-8 |                                               | 960 17                      |                                    | 10.                                | OLIV O                          | 26                                      |
| 12         | .30    | .01        | O. William I. Do                              | .050                        | 25                                 | 7.4                                | BERN 25.                        | 20                                      |
| JUNE       | .20    | .02        | 78278                                         | .030                        | 39                                 | 7.3                                | 1                               | 150                                     |
| JULY       | .20    | .02        | 192 185                                       | .030                        | TOWORD .                           | .00                                | DER 85.                         | PER 1 7 6 6 1                           |
| 15         | .51    | .04        | .04                                           | .020                        | 76                                 | 7.7                                | 0                               | 500                                     |
| AUG.       |        |            |                                               |                             |                                    |                                    |                                 |                                         |
| 10         | .31    | .05        | .05                                           | .030                        | 94                                 | 7.9                                | 7                               | 2300                                    |
| SEP.       | 199    |            |                                               | 0.10                        | 101                                | 0.0                                | 2                               | 220                                     |
| 15         | .14    | .03        | .03                                           | .060                        | 104                                | 8.0                                | 2                               | 330                                     |
|            |        |            |                                               |                             |                                    |                                    |                                 |                                         |

Table 12.--Continued

11-3413.15 CASTLE LAKE CREEK AT ROAD CROSSING, NEAR MT SHASTA (SITE 4)
WATER QUALITY DATA

| -ONTIN        | TIME   | TYPE    | INSTAN-<br>TANEOUS<br>DIS-<br>CHARGE<br>(CFS) | TEMPER-<br>ATURE<br>(DEG C) | AIR<br>TEMP-<br>ERATURE<br>(DEG C) | DIS-<br>SOLVED<br>OXYGEN<br>(MG/L) | PER-<br>CENT<br>SATUR-<br>ATION | TOTAL NITRO- GEN (N) (MG/L) |
|---------------|--------|---------|-----------------------------------------------|-----------------------------|------------------------------------|------------------------------------|---------------------------------|-----------------------------|
|               |        |         |                                               |                             | District Co.                       | BUFFE                              |                                 |                             |
| MAY + 197     |        | 9.01    |                                               | 0.0                         |                                    | 10.0                               | 108                             | 1911                        |
| JUNE          | 1410   | 2       | 11                                            | 13.0                        |                                    | 10.0                               | 108                             |                             |
| 11            | 1130   | 2       |                                               | 10.0                        |                                    | 11.6                               | 117                             | Y 200                       |
| JULY          | 1901   | 8.6     |                                               | 0.40                        | 15                                 | 3.                                 | 5061                            |                             |
| 29<br>AUG.    | 1410   | 2       |                                               | 15.5                        | 25.0                               | 8.9                                | 100                             | - 55 N                      |
| 28            | 1315   | 2       | .17                                           | 11.5                        | 14-4                               | 9.7                                | 101                             |                             |
| SEP.          | 1.00   |         |                                               |                             |                                    |                                    | 10,0,0,1                        |                             |
| 29            | 1445   | 2       | .13                                           | 9.0                         |                                    | 10.0                               | 98                              | +754                        |
| 12            | 0945   | 2       | 12                                            | 5.5                         | 5.5                                | 10.9                               | 97                              | 01                          |
| JAN. , 197    |        |         |                                               |                             |                                    | 5                                  | 1135                            |                             |
| 27<br>MAR.    | 1455   | 2       | 8.4                                           | 2.5                         |                                    | 12.1                               | 101                             |                             |
| 26<br>MAY     | 0815   | 2       | 97                                            | 3.0                         | 5.5                                | 12.0                               | 101                             | .55                         |
| 12            | 1430   | 2       | 60                                            | 6.5                         | 18.0                               | 10.9                               | 101                             | .32                         |
| JUNE          |        |         |                                               | 0.50                        |                                    | 3                                  | Seri                            | 10,000                      |
| JULY          | 0800   | S       | 6.5                                           | 11.0                        | 12.5                               | 9.6                                | 99                              | .27                         |
| 15            | 0830   | 2       | 1.5                                           | 12.5                        | 14.5                               | 9.4                                | 100                             | .42                         |
| 11            | 1500   | 2       | .34                                           | 17.0                        | 33.0                               | 7.1                                | 84                              | .42                         |
| SEP.          | WO-1   |         |                                               | 8.81                        |                                    |                                    |                                 |                             |
| 15            | 1320   | 5       | •55                                           | 13.0                        | 25.0                               | 8.2                                | 88                              | •25                         |
|               | TOTAL  | DIS-    |                                               |                             | SPE-                               |                                    | 5504                            | IMME-                       |
|               | DAHL   | SOLVED  | DIS-                                          | TOTAL                       | CIFIC<br>CON-                      |                                    | FECAL<br>COLI-                  | DIAJE                       |
|               | NITRO- | PLUS    | SOLVED                                        | PHOS-                       | DUCT-                              |                                    | FORM                            | FORM                        |
|               | GEN    | NITRATE | NITRATE                                       | PHORUS                      | ANCE                               | PH                                 | (COL.                           | (COL.                       |
| 1700 001      | (N)    | (N)     | (N)                                           | (P)                         | (MICRO-                            | 134011                             | PER                             | PER<br>100 ML)              |
| DATE          | (MG/L) | (MG/L)  | (MG/L)                                        | (MG/L)                      | MHOS)                              | (UNITS)                            | 100.ML)                         | 100 ML)                     |
| MAY , 1       | 970    |         |                                               |                             |                                    |                                    |                                 |                             |
| 19            | .08    |         | .02                                           | .030                        | 32                                 |                                    |                                 | 6                           |
| JUNE          | 0.4    |         | .00                                           | .000                        | 1940                               |                                    | ee                              | 0                           |
| JULY          | .06    |         | .00                                           | .000                        | 26.                                |                                    |                                 |                             |
| 29            | .68    |         | .02                                           | .000                        |                                    |                                    |                                 | 18                          |
| AUG.          | 934    | 0.10    | .02                                           | .010                        | 83                                 | 7.5                                | 05.                             | 4                           |
| 28<br>SEP.    | .14    |         | .02                                           | .010                        | De.                                |                                    |                                 |                             |
| 29            | .04    |         | .00                                           | .020                        |                                    |                                    |                                 | 21                          |
| NOV.          | 355    | 110     | .02                                           | .000                        | 46                                 | 7.7                                | ****                            | 17                          |
| 12<br>JAN., 1 | .08    | I+b     | .02                                           | .000                        | 32                                 | -                                  |                                 |                             |
| 27            | .03    |         | .00                                           | .000                        | 46                                 | 7.8                                | 11                              | 192                         |
| MAR.          | 335    | 10      | - 593                                         | .10                         | 39                                 | 7.0                                | 4                               | 82                          |
| 26            | .45    | .10     | 116                                           | .10                         | 37                                 | 0.5                                |                                 |                             |
| 12            | .32    | .00     |                                               | .040                        | 28                                 | 6.9                                | 0                               | 27                          |
| JUNE          | 0 30   | 100     | 041                                           | 040                         | 41                                 | 7.2                                | 1                               | 84                          |
| JULY          | .25    | .02     | 155                                           | 040                         | 281                                |                                    |                                 |                             |
| 15            | .36    | .06     | .06                                           | .020                        | 56                                 | 7.5                                | 0                               | 240                         |
| AUG.          | 99     | 9.1     | 051                                           | .030                        | 70                                 | 10.                                | 7                               | 3000                        |
| SEP.          | .36    | .06     | .06                                           | .030                        |                                    | 12.                                |                                 | 13                          |
| 15            | .19    | .06     | .06                                           | .040                        | 82                                 | 7.0                                | 0                               | 670                         |

Table 12.--Continued

11-3413.25 WAGON CREEK NEAR MT SHASTA (SITE 6)
WATER QUALITY DATA

| DATE                                                                                                                   | TIME                                                                                             |                | INSTAN-<br>TANEOUS<br>DIS-<br>CHARGE<br>(CFS) | TEMPER-<br>ATURE<br>(DEG C)                              | (DEG C)                                              |                                                   | PER-<br>CENT<br>SATUR-<br>ATION                  | TOTAL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                      |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|
| MAY , 1                                                                                                                | 970                                                                                              |                |                                               |                                                          |                                                      |                                                   |                                                  |                                                                              |
| 19                                                                                                                     | 0840                                                                                             | 2              | 44                                            | 9.0                                                      |                                                      | 10.6                                              | 104                                              | 101                                                                          |
| JUNE                                                                                                                   | 71 001                                                                                           | 0.01           |                                               | 0.01                                                     |                                                      |                                                   | 0141                                             |                                                                              |
| 10                                                                                                                     | 1645                                                                                             | 2              | 43                                            | 13.0                                                     |                                                      | 9.4                                               | 101                                              |                                                                              |
| JULY                                                                                                                   | 431                                                                                              | 11.6           |                                               |                                                          |                                                      |                                                   | 1130                                             |                                                                              |
| 28<br>AUG.                                                                                                             | 1545                                                                                             | 2              | 21                                            | 16.0                                                     | 29.5                                                 | 8.8                                               | 100                                              | 300                                                                          |
| 27<br>SEP.                                                                                                             | 1430                                                                                             | 2              | 16                                            | 14.5                                                     | 111.00                                               | 9.2                                               | 102                                              | 44.85                                                                        |
| 30<br>NOV.                                                                                                             | 1000                                                                                             | 2              | 16                                            | 9.0                                                      | 31                                                   | 10.2                                              | 100                                              |                                                                              |
| 10                                                                                                                     | 1225                                                                                             | 2              | 43                                            | 8.0                                                      | 10.00                                                | 10.1                                              | 96                                               |                                                                              |
| JAN., 1                                                                                                                | 1145                                                                                             | 2              | 72                                            | 4.0                                                      | -                                                    | 11.8                                              | 103                                              |                                                                              |
| MAR.                                                                                                                   | 1145                                                                                             | 1.31           | 12                                            | 4.0                                                      |                                                      | 11.0                                              | 105                                              |                                                                              |
| 24<br>MAY                                                                                                              | 1415                                                                                             | 2              | 87                                            | 8.0                                                      | 10.0                                                 | 10.6                                              | 102                                              | 1.1                                                                          |
| 11                                                                                                                     | 1015                                                                                             | 2              | 73                                            | 11.0                                                     | 18.0                                                 | 9.6                                               | 99                                               | .52                                                                          |
| 16<br>JULY                                                                                                             | 1045                                                                                             | 2              | 49                                            | 12.0                                                     | 18.0                                                 | 9.5                                               | 100                                              | .70                                                                          |
| 13<br>AUG.                                                                                                             | 1355                                                                                             | 2              | 25                                            | 14.5                                                     | 25.5                                                 | 9.0                                               | 100                                              | .86                                                                          |
| 10                                                                                                                     | 0930                                                                                             | 2              | 20                                            | 12.5                                                     | 25.5                                                 | 9.4                                               | 100                                              | 1.0                                                                          |
| SEP.<br>13                                                                                                             | 1630                                                                                             | 2              | 19                                            | 15.5                                                     | 29.5                                                 | 8.8                                               | 100                                              | .69                                                                          |
|                                                                                                                        | 7074                                                                                             | 0.10           |                                               |                                                          | SPF-                                                 |                                                   |                                                  | 7.445                                                                        |
|                                                                                                                        | TOTAL<br>KJEL-                                                                                   | DIS-<br>SOLVED |                                               |                                                          | CIFIC                                                |                                                   | FECAL                                            | IMME-<br>DIATE                                                               |
|                                                                                                                        | DAHL                                                                                             | NITRITE        | DIS-                                          | TOTAL                                                    | CON-                                                 |                                                   | COLI-                                            | COLI-                                                                        |
|                                                                                                                        | NITRO-                                                                                           | PLUS           | SOLVED                                        | PHOS-                                                    | DUCT-                                                |                                                   | FORM                                             | FORM                                                                         |
|                                                                                                                        | GEN                                                                                              | NITRATE        | NITRATE                                       | PHORUS                                                   | ANCE                                                 | PH                                                | (COL.                                            | (COL.                                                                        |
|                                                                                                                        | (N)                                                                                              | (N)            | (N)                                           | (P)                                                      | (MICRO-                                              |                                                   | PER                                              | PER                                                                          |
|                                                                                                                        |                                                                                                  | (14)           |                                               |                                                          |                                                      |                                                   |                                                  |                                                                              |
| DATE                                                                                                                   | (MG/L)                                                                                           | (MG/L)         | (MG/L)                                        | (MG/L)                                                   | MHOS)                                                | (UNITS)                                           | 100 ML)                                          | 100 ML)                                                                      |
| 0.84 460 1                                                                                                             | (MG/L)                                                                                           |                | (MG/L)                                        | (MG/L)                                                   |                                                      | (UNITS)                                           | 100 ML)                                          | 100 ML)                                                                      |
| MAY , 19                                                                                                               | (MG/L)                                                                                           |                |                                               | ( JAPEN)                                                 |                                                      | (UNITS)                                           |                                                  |                                                                              |
| 0.84 460 1                                                                                                             | (MG/L)                                                                                           |                | (MG/L)                                        | (MG/L)                                                   | MHOS)                                                | 2.4-                                              |                                                  | 100 ML)                                                                      |
| MAY , 19<br>19<br>JUNE<br>10                                                                                           | (MG/L)                                                                                           |                |                                               | .59                                                      | MHOS)                                                | 1,77(98)                                          |                                                  |                                                                              |
| MAY , 19<br>19                                                                                                         | (MG/L)<br>970<br>•15                                                                             |                | .36                                           | •59                                                      | MHOS)                                                | 2.4-                                              | CA 390                                           | 100                                                                          |
| MAY , 19<br>19<br>JUNE<br>10<br>JULY<br>28<br>ÁUG.                                                                     | (MG/L)<br>970<br>•15<br>•36<br>•29                                                               | (MG/L)         | •36<br>•41<br>•45                             | •59<br>•040<br>•12                                       | 83                                                   | 1,000                                             | 45<br>86                                         | 100<br>120<br>164                                                            |
| MAY , 19<br>19<br>JUNE<br>10<br>JULY<br>28<br>AUG.<br>27                                                               | (MG/L)<br>970<br>.15                                                                             | (MG/L)         | .36                                           | •59<br>•040                                              | MHOS)                                                | 1,000                                             | 45                                               | 100                                                                          |
| MAY , 19<br>19<br>JUNE<br>10<br>JULY<br>28<br>AUG.<br>27<br>SEP.                                                       | (MG/L)<br>970<br>•15<br>•36<br>•29<br>•20                                                        | (MG/L)         | •36<br>•41<br>•45<br>•52                      | .59<br>.040<br>.12                                       | 83<br><br>113                                        | 8.0                                               | 45<br>86<br>120                                  | 100<br>120<br>164<br>450                                                     |
| MAY , 19<br>19<br>JUNE<br>10<br>JULY<br>28<br>AUG.<br>27<br>SEP.<br>30                                                 | (MG/L)<br>970<br>•15<br>•36<br>•29                                                               | (MG/L)         | •36<br>•41<br>•45                             | •59<br>•040<br>•12                                       | 83                                                   | 1,000                                             | 45<br>86                                         | 100<br>120<br>164                                                            |
| MAY , 19<br>19<br>JUNE<br>10<br>JULY<br>28<br>AUG.<br>27<br>SEP.                                                       | (MG/L)<br>970<br>•15<br>•36<br>•29<br>•20                                                        | (MG/L)         | •36<br>•41<br>•45<br>•52                      | .59<br>.040<br>.12                                       | 83<br><br>113                                        | 8.0                                               | 45<br>86<br>120                                  | 100<br>120<br>164<br>450                                                     |
| MAY , 19<br>19<br>JUNE<br>10<br>JULY<br>28<br>AUG.<br>27<br>SEP.<br>30<br>NOV.<br>10<br>JAN. 19                        | (MG/L) 970 .15 .36 .29 .20 .70 .48                                                               | (MG/L)         | .36<br>.41<br>.45<br>.52<br>.43               | .59<br>.040<br>.12<br>.10<br>.070                        | 83<br><br>113<br><br>120                             | 8.0                                               | 45<br>86<br>120                                  | 100<br>120<br>164<br>450<br>180<br>400                                       |
| MAY , 19 19 JUNE 10 JULY 28 AUG. 27 SEP. 30 NOV. 10 JAN. 19 26 MAR.                                                    | (MG/L) 970 .15 .36 .29 .20 .70 .48 971 .34                                                       | (MG/L)         | .36<br>.41<br>.45<br>.52<br>.43<br>.32        | .59<br>.040<br>.12<br>.10<br>.070<br>.080                | 83<br><br>113<br><br>120<br>104                      | 8.0                                               | 45<br>86<br>120<br><br>32                        | 100<br>120<br>164<br>450<br>180                                              |
| MAY , 19<br>19<br>JUNE<br>10<br>JULY<br>28<br>AUG.<br>27<br>SEP.<br>30<br>NOV.<br>10<br>JAN. 19<br>26                  | (MG/L) 970 .15 .36 .29 .20 .70 .48                                                               | (MG/L)         | .36<br>.41<br>.45<br>.52<br>.43               | .59<br>.040<br>.12<br>.10<br>.070                        | 83<br><br>113<br><br>120                             | 8.0                                               | 45<br>86<br>120<br><br>32                        | 100<br>120<br>164<br>450<br>180<br>400                                       |
| MAY , 19 JUNE 10 JUNE 10 AUG. 27 SEP. 30 NOV. 10 JAN 19 26 MAR. 24                                                     | (MG/L) 970 .15 .36 .29 .20 .70 .48 971 .34                                                       | (MG/L)         | .36<br>.41<br>.45<br>.52<br>.43<br>.32        | .59<br>.040<br>.12<br>.10<br>.070<br>.080                | 83<br><br>113<br><br>120<br>104                      | 8.0                                               | 45<br>86<br>120<br><br>32<br>4                   | 100<br>120<br>164<br>450<br>180<br>400<br>54                                 |
| MAY , 19 JUNE 10 JULY 28 AUG. 27 SEP. 30 NOV. 10 JAN 19 26 MAR 24 MAY 11 JUNE 16 JUNE 16                               | (MG/L) 970 .15 .36 .29 .20 .70 .48 971 .34                                                       | (MG/L)         | .36<br>.41<br>.45<br>.52<br>.43<br>.32        | .59<br>.040<br>.12<br>.10<br>.070<br>.080<br>.060        | 83<br><br>113<br><br>120<br>104                      | 8.0<br><br>8.0<br>8.1<br>7.6                      | 45<br>86<br>120<br><br>32<br>4                   | 100<br>120<br>164<br>450<br>180<br>400<br>54                                 |
| MAY , 19 19 JUNE 10 JULY 28 AUG. 27 SEP. 30 NOV. 10 JAN. 19 26 MAR. 24 MAY 11 JUNE 16 JULY 13                          | (MG/L) 970 .15 .36 .29 .20 .70 .48 .971 .34 .90 .22                                              | (MG/L) 30      | .36<br>.41<br>.45<br>.52<br>.43<br>.32        | .59<br>.040<br>.12<br>.10<br>.070<br>.080<br>.060<br>.15 | 83<br><br>113<br><br>120<br>104<br>102<br>116        | 8.0<br>8.0<br>8.1<br>7.6                          | 45<br>86<br>120<br><br>32<br>4<br>10             | 100<br>120<br>164<br>450<br>180<br>400<br>54<br>1360<br>2800                 |
| MAY , 19 19 JUNE 10 JULY 28 AUG. 27 SEP. 30 NOV. 10 JAN., 19 26 MAR. 24 MAY 11 JUNE 16 JULY 13 AUG. 10                 | (MG/L)  970     .15     .36     .29     .20     .70     .48  971     .34     .90     .22     .43 | (MG/L)         | .36<br>.41<br>.45<br>.52<br>.43<br>.32        | .59<br>.040<br>.12<br>.10<br>.070<br>.080<br>.060<br>.15 | 83<br><br>113<br><br>120<br>104<br>102<br>116        | 8.0<br>8.0<br>8.1<br>7.6<br>8.0                   | 45<br>86<br>120<br><br>32<br>4<br>10<br>12       | 100<br>120<br>164<br>450<br>180<br>400<br>54<br>1360<br>2800                 |
| MAY , 19 JUNE 10 JULY 28 AUG. 27 SEP. 30 NOV. 10 JAN . 19 26 MAY 11 JULY 13 JULY 13 AUG. AUG. AUG. AUG. AUG. AUG. AUG. | (MG/L) 970 .15 .36 .29 .20 .70 .48 .90 .22 .43 .31                                               | (MG/L)         | .36<br>.41<br>.45<br>.52<br>.43<br>.32<br>.32 | .59 .040 .12 .10 .070 .080 .060 .15 .090 .070            | 83<br><br>113<br><br>120<br>104<br>102<br>116<br>116 | 8.0<br><br>8.0<br>8.1<br>7.6<br>8.0<br>8.1<br>7.9 | 45<br>86<br>120<br><br>32<br>4<br>10<br>12<br>30 | 100<br>120<br>164<br>450<br>180<br>400<br>54<br>1360<br>2800<br>2600<br>3000 |

Table 12.--Continued

11-3413.41 BIG SPRINGS CREEK ABOVE HATCHERY, NEAR MT SHASTA (SITE 10) WATER QUALITY DATA

|                                                                                       |                                                                                                                             |                                                               | INSTAN-                                                                   |                                                                                   |                                                    |                            | PER-                                              |                                                                                                  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   | AIR                                                |                            | CENT                                              |                                                                                                  |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   | TEMP-                                              |                            |                                                   |                                                                                                  |
|                                                                                       | TIME                                                                                                                        | TYPE                                                          |                                                                           | ATURE                                                                             |                                                    | OXYGEN                     |                                                   | (N)                                                                                              |
| DATE                                                                                  |                                                                                                                             |                                                               | (CFS)                                                                     | (DEG C)                                                                           | (DEG C)                                            | (MG/L)                     |                                                   | (MG/L)                                                                                           |
| MAY , 19                                                                              | 970                                                                                                                         |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
| 19                                                                                    |                                                                                                                             | 2                                                             |                                                                           | 9.5                                                                               |                                                    |                            |                                                   |                                                                                                  |
| JUNE                                                                                  |                                                                                                                             |                                                               |                                                                           | 2.0                                                                               |                                                    |                            |                                                   |                                                                                                  |
| 12                                                                                    | 0850                                                                                                                        | 2                                                             |                                                                           | 8.0                                                                               |                                                    |                            | 44.0                                              | 4                                                                                                |
| 18                                                                                    | 0850                                                                                                                        | 2                                                             |                                                                           | 8.0                                                                               |                                                    |                            |                                                   |                                                                                                  |
| JULY                                                                                  |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
| 28                                                                                    | 0800                                                                                                                        | . 2                                                           |                                                                           | 8.0                                                                               | 14.0                                               | 10.7                       | 103                                               |                                                                                                  |
| AUG.                                                                                  | 94                                                                                                                          |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
| 27                                                                                    | 0915                                                                                                                        | 2                                                             |                                                                           | 7.0                                                                               |                                                    | 10.7                       | 101                                               | 1                                                                                                |
| OCT.                                                                                  | 0.6                                                                                                                         | 6.4                                                           |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
| 01                                                                                    | 0915                                                                                                                        | 2                                                             |                                                                           | 7.0                                                                               |                                                    | 10.4                       | 98                                                |                                                                                                  |
| NOV.<br>10                                                                            | 0800                                                                                                                        | 2                                                             |                                                                           | 7.0                                                                               |                                                    | 10 7                       | 0.7                                               |                                                                                                  |
| MAR 19                                                                                |                                                                                                                             | 2                                                             | 7.5                                                                       | 7.0                                                                               | -                                                  | 10.3                       | 97                                                |                                                                                                  |
| 24                                                                                    | 0840                                                                                                                        | 2                                                             | 16                                                                        | 7.0                                                                               | 5.0                                                | 10.7                       | 101.                                              | .55                                                                                              |
| MAY                                                                                   | 0040                                                                                                                        | 6.0                                                           | 10,01                                                                     | 7.0                                                                               | 3.0                                                | 10.1                       | 101                                               |                                                                                                  |
| 12                                                                                    | 0840                                                                                                                        | 2                                                             | 16                                                                        | 8.5                                                                               | 11.5                                               | 10.3                       | 100                                               | .25                                                                                              |
| JUNE                                                                                  |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
| 15                                                                                    | 0800                                                                                                                        | 2                                                             | 15                                                                        | 8.0                                                                               | 13.0                                               | 10.4                       | 100                                               | .28                                                                                              |
| JULY .                                                                                |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
| 13                                                                                    | 0730                                                                                                                        | 2                                                             | 16                                                                        | 7.5                                                                               | 15.0                                               | 10.5                       | 100                                               | .37                                                                                              |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   |                                                    |                            |                                                   |                                                                                                  |
|                                                                                       |                                                                                                                             |                                                               |                                                                           |                                                                                   | CDF -                                              |                            |                                                   | THE                                                                                              |
|                                                                                       | TOTAL                                                                                                                       | DIS-                                                          |                                                                           |                                                                                   | SPE-                                               |                            |                                                   | IMME-                                                                                            |
|                                                                                       | TOTAL<br>KJEL-                                                                                                              | DIS-<br>SOLVED                                                | 015-                                                                      |                                                                                   | CIFIC                                              |                            | FECAL                                             | DIATE                                                                                            |
|                                                                                       | TOTAL<br>KJEL-<br>DAHL                                                                                                      | DIS-<br>SOLVED<br>NITRITE                                     |                                                                           | TOTAL                                                                             | CIFIC<br>CON-                                      |                            | FECAL<br>COLI-                                    | DIATE<br>COLI-                                                                                   |
|                                                                                       | TOTAL<br>KJEL-<br>DAHL<br>NITRO-                                                                                            | DIS-<br>SOLVED<br>NITRITE<br>PLUS                             | SOLVED                                                                    | TOTAL<br>PHOS-                                                                    | CIFIC<br>CON-<br>DUCT-                             |                            | FECAL<br>COLI-<br>FORM                            | DIATE<br>COLI-<br>FORM                                                                           |
|                                                                                       | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN                                                                                     | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE                  | SOLVED                                                                    | TOTAL<br>PHOS-<br>PHORUS                                                          | CIFIC<br>CON-<br>DUCT-<br>ANCE                     |                            | FECAL<br>COLI-<br>FORM<br>(COL.                   | DIATE<br>COLI-<br>FORM<br>(COL.                                                                  |
|                                                                                       | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)                                                                              | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | SOLVED<br>NITRATE<br>(N)                                                  | TOTAL<br>PHOS-<br>PHORUS<br>(P)                                                   | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-          | PH                         | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER            | COLI-<br>FORM<br>(COL.<br>PER                                                                    |
|                                                                                       | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN                                                                                     | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE                  | SOLVED                                                                    | TOTAL<br>PHOS-<br>PHORUS                                                          | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-          |                            | FECAL<br>COLI-<br>FORM<br>(COL.                   | COLI-<br>FORM<br>(COL.<br>PER                                                                    |
|                                                                                       | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                    | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | SOLVED<br>NITRATE<br>(N)                                                  | TOTAL<br>PHOS-<br>PHORUS<br>(P)                                                   | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-          | PH                         | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER            | COLI-<br>FORM<br>(COL.<br>PER                                                                    |
| DATE                                                                                  | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                    | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | SOLVED<br>NITRATE<br>(N)                                                  | TOTAL<br>PHOS-<br>PHORUS<br>(P)                                                   | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-          | PH                         | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER            | COLI-<br>FORM<br>(COL.<br>PER                                                                    |
| DATE                                                                                  | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                    | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                        | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                         | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-          | PH                         | FECAL<br>COLI-<br>FORM<br>(COL-<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE MAY , 19                                                                         | TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L)                                                                                      | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                        | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                         | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-          | PH                         | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE MAY , 19 19 JUNE 12 18                                                           | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                    | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                        | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                         | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH                         | FECAL<br>COLI-<br>FORM<br>(COL-<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE MAY , 19 JUNE 12 18 JULY                                                         | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970                                                             | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                        | TOTAL PHOS- PHORUS (P) (MG/L)  -82 -050                                           | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH                         | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE  MAY , 19  JUNE 12 18 JULY 28                                                    | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                    | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                        | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                         | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH                         | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE MAY , 19 JUNE 12 18 JULY 28 AUG.                                                 | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br>                                           | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>-07                                 | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-82<br>-050<br>                      | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS)                 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE COLI- FORM (COL. PER 100 ML) 90 108                                                        |
| DATE MAY , 11 19 JUNE 12 18 JULY 28 AUG. 27                                           | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970                                                             | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                        | TOTAL PHOS- PHORUS (P) (MG/L)  -82 -050                                           | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH                         | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE MAY , 19 19 JUNE 12 18 JULY 20 AUG. 27 OCT.                                      | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br>                                           | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>-07<br>-02<br>                      | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-62<br>-050<br>                      | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS)                 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE  MAY , 19 19 JUNE 12 18 JULY 28 AUG. 27 OCT. 01                                  | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br><br>.04<br>.09                             | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>-07                                 | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-82<br>-050<br>                      | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS)                 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE COLI- FORM (COL. PER 100 ML) 90 108                                                        |
| DATE MAY , 11 19 JUNE 12 18 JULY 28 AUG. 27 OCT. 01 NOV.                              | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br>.04<br>.09                                 | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.07<br>.02<br><br>.09<br>.09        | TOTAL PHOS-PHORUS (P) (MG/L)  -82 -05012 -13 -12                                  | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS)                 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE MAY , 19 19 JUNE 12 18 JULY 20 AUG. 27 OCT. 01 NOV.                              | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br><br>.04<br>.09<br>.35                      | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>-07<br>-02<br>                      | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-62<br>-050<br>                      | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS)                 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE COLI- FORM (COL. PER 100 ML) 90 108 104 75                                                 |
| DATE  MAY , 19 19 JUNE 12 18 JULY 20 AUG. 27 OCT. 01 NOV. 10 MAR., 19                 | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .02<br>.17<br><br>.04<br>.09<br>.35                         | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.07<br>.02<br><br>.09<br>.09        | TOTAL PHOS-PHORUS (P) (MG/L)  -82 -05012 -13 -12                                  | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS)                 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE COLI- FORM (COL. PER 100 ML) 90 108 104 75                                                 |
| DATE MAY , 19 19 JUNE 12 18 JULY 20 AUG. 27 OCT. 01 NOV.                              | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br><br>.04<br>.09<br>.35                      | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.07<br>.02<br><br>.09<br>.09        | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-62<br>-050<br><br>-12<br>-13<br>-12 | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS) 7.5 7.5 7.2     | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br><br>90<br>108<br>104<br>75<br><br>20<br>260 |
| DATE  MAY , 1' 19  JUNE 12 18  JULY 28  AUG. 27  OCT.  NOV. 10  MAR., 1' 24           | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br><br>.04<br>.09<br>.35                      | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.07<br>.02<br><br>.09<br>.09        | TOTAL<br>PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-62<br>-050<br><br>-12<br>-13<br>-12 | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS) 7.5             | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE  MAY , 1' 19  JUNE 12  18  JULY 28  AUG.  01  NOV. 10  MAR., 1' 24  MAY 12  JUNE | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br><br>.04<br>.09<br>.35<br>.58               | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.07<br>.02<br><br>.09<br>.09        | TOTAL PHOS-PHORUS (P) (MG/L)  -82 -05012 -13 -12 -12 -20                          | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS) 7.5 7.5 7.5 7.7 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |
| DATE  MAY , 19 19 JUNE 12 18 JULY 28 AUG. 27 OCT. 01 NOV. 10 MAY 12 JUNE 15           | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br><br>.04<br>.09<br>.35<br>.58<br>971<br>.35 | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.07<br>.02<br><br>.09<br>.09        | TOTAL PHOS-PHORUS (P) (MG/L)  -82 -05012 -13 -12 -12 -20                          | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS) 7.5 7.5 7.2     | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br><br>90<br>108<br>104<br>75<br><br>20<br>260 |
| DATE  MAY , 1' 19  JUNE 12  18  JULY 28  AUG.  01  NOV. 10  MAR., 1' 24  MAY 12  JUNE | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.02<br>.17<br><br>.04<br>.09<br>.35<br>.58<br>971<br>.35 | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.07<br>.02<br><br>.09<br>.09<br>.07 | TOTAL PHOS-PHORUS (P) (MG/L)  -82 -05012 -13 -12 -12 -17                          | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH (UNITS) 7.5 7.5 7.5 7.7 | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                |

Table 12. -- Continued

11-3413.42 BIG SPRINGS CREEK BELOW HATCHERY, NEAR MT SHASTA (SITE 11) WATER QUALITY DATA

|                                                                                                                       |                                                                               |               | INSTAN-<br>TANEOUS                         | TEMPER-                                                                           | AIR<br>TEMP-                          | DIS-                                | PER-<br>CENT<br>SATUR-                  | TOTAL<br>NITRO-<br>GEN                                       |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------|--------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------------------------------------|
|                                                                                                                       |                                                                               | TYPE          |                                            |                                                                                   |                                       |                                     | ATION                                   | (N)                                                          |
| DATE                                                                                                                  |                                                                               |               |                                            | (DEG C)                                                                           | (DEG C)                               |                                     |                                         | (MG/L)                                                       |
| Lavel and                                                                                                             | MAG                                                                           |               |                                            |                                                                                   |                                       |                                     |                                         |                                                              |
| MAY , 19                                                                                                              |                                                                               | -             |                                            |                                                                                   |                                       |                                     |                                         |                                                              |
| 19                                                                                                                    | 1630                                                                          | 2             |                                            | 14.5                                                                              |                                       |                                     |                                         |                                                              |
| JUNE<br>12                                                                                                            | 1015                                                                          | 2             | 44                                         | 9.5                                                                               |                                       |                                     | - 31                                    |                                                              |
| 19                                                                                                                    | 1015                                                                          | 2             |                                            | 12.0                                                                              |                                       |                                     |                                         |                                                              |
| JULY                                                                                                                  | 1030                                                                          | -             |                                            | 12.0                                                                              |                                       |                                     |                                         |                                                              |
| 28                                                                                                                    | 0920                                                                          | 2             |                                            | 9.0                                                                               | 21.0                                  | 9.7                                 | 96                                      |                                                              |
| AUG.                                                                                                                  |                                                                               |               |                                            |                                                                                   |                                       |                                     |                                         |                                                              |
| 27                                                                                                                    | 1015                                                                          | 2             |                                            | 8.0                                                                               |                                       | 10.0                                | 96                                      |                                                              |
| OCT.                                                                                                                  | 300                                                                           | 7+01          |                                            | 0.5                                                                               |                                       | 9.5                                 | 90                                      | 20 2341                                                      |
| 01<br>NOV.                                                                                                            | 0945                                                                          | 2             | 0.5                                        | 7.0                                                                               |                                       | 9.5                                 | 90                                      |                                                              |
| 10                                                                                                                    | 0900                                                                          | 2             |                                            | 6.5                                                                               |                                       | 9.7                                 | 90                                      |                                                              |
| MAR 19                                                                                                                |                                                                               | 6.07          |                                            | 0.5                                                                               |                                       | 1100                                | 100                                     |                                                              |
| 24                                                                                                                    | 1020                                                                          | 2             | 9.3                                        | 7.5                                                                               | 7.5                                   | 10.0                                | 95                                      | .80                                                          |
| MAY                                                                                                                   |                                                                               |               |                                            |                                                                                   | 3219                                  |                                     |                                         |                                                              |
| 12                                                                                                                    | 1015                                                                          | 2             | 9.3                                        | 9.0                                                                               | 15.0                                  | 9.3                                 | 92                                      | .65                                                          |
| JUNE                                                                                                                  | 0015                                                                          | E             |                                            |                                                                                   | 15.5                                  | 9.6                                 | 93                                      | .82                                                          |
| JULY                                                                                                                  | 0845                                                                          | 2             | 7.1                                        | 8.5                                                                               | 15.5                                  | 7.0                                 | 73                                      | -02                                                          |
| 13                                                                                                                    | 0800                                                                          | 2             | 5.8                                        | 8.0                                                                               | 15.0                                  | 9.8                                 | 94                                      | .64                                                          |
| AUG.                                                                                                                  |                                                                               |               |                                            |                                                                                   |                                       |                                     |                                         |                                                              |
| 10                                                                                                                    | 1115                                                                          | 2             | 4.4                                        | 11.0                                                                              | 31.5                                  | 8.6                                 | 89                                      | .75                                                          |
| SEP.                                                                                                                  |                                                                               | -             | 2.4                                        |                                                                                   | 19.0                                  | 9.4                                 | 90                                      | •55                                                          |
| 15                                                                                                                    | 0930                                                                          | 2             | 2.6                                        | 8.0                                                                               | 19.0                                  | 7.4                                 | 90                                      | • 55                                                         |
|                                                                                                                       | TOTAL                                                                         | DIS-          |                                            |                                                                                   | SPE-                                  |                                     |                                         | IMME-                                                        |
|                                                                                                                       | KJEL-                                                                         | SOLVED        |                                            |                                                                                   | CIFIC                                 |                                     | FECAL                                   | DIATE                                                        |
|                                                                                                                       | DAHL                                                                          | NITRITE       | DIS-                                       | TOTAL                                                                             | CON-                                  |                                     | COLI-                                   |                                                              |
|                                                                                                                       | NITRO-                                                                        | PLUS          | SOLVED                                     |                                                                                   | DUCT-                                 |                                     | FORM                                    | FORM                                                         |
|                                                                                                                       | GEN                                                                           | NITRATE       | NITRATE                                    | PHORUS                                                                            | ANCE                                  | PH                                  | (COL.                                   | 1001                                                         |
|                                                                                                                       |                                                                               |               |                                            |                                                                                   |                                       |                                     |                                         | (COL.                                                        |
|                                                                                                                       | (N)                                                                           | (N)           |                                            | (P)                                                                               | (MICRO-                               | 105 50                              | PER                                     | PER                                                          |
|                                                                                                                       |                                                                               |               | (MG/L)                                     | (P)<br>(MG/L)                                                                     | (MICRO-<br>MHOS)                      | (UNITS)                             | PER<br>100 ML)                          | PER                                                          |
| DATE                                                                                                                  | (N)<br>(MG/L)                                                                 | (N)           | (MG/L)                                     | (P)<br>(MG/L)                                                                     | (MICRO-<br>MHOS)                      | (UNITS)                             | PER<br>100 ML)                          | PER                                                          |
| DATE<br>MAY , 19                                                                                                      | (N)<br>(MG/L)                                                                 | (N)<br>(MG/L) | (MG/L)                                     | (P)<br>(MG/L)                                                                     | (MICRO-<br>MHOS)                      | (UNITS)                             | PER<br>100 ML)                          | PER                                                          |
| DATE                                                                                                                  | (N)<br>(MG/L)                                                                 | (N)<br>(MG/L) | (MG/L)                                     | (P)<br>(MG/L)                                                                     | (MICRO-<br>MHOS)                      | (UNITS)                             | PER<br>100 ML)                          | PER                                                          |
| DATE MAY , 19 19 JUNE 12                                                                                              | (N)<br>(MG/L)<br>70<br>.53                                                    | (N)<br>(MG/L) | .16                                        | (P)<br>(MG/L)<br>•50                                                              | (MICRO-<br>MHOS)                      | (UNITS)                             | PER<br>100 ML)                          | PER                                                          |
| MAY , 19<br>19<br>JUNE<br>12                                                                                          | (N)<br>(MG/L)<br>70<br>.53                                                    | (N)<br>(MG/L) | (MG/L)                                     | (P)<br>(MG/L)<br>•50                                                              | (MICRO-<br>MHOS)                      | (UNITS)                             | PER<br>100 ML)                          | PER<br>100 ML)                                               |
| MAY , 19<br>19<br>JUNE<br>12<br>19                                                                                    | (N)<br>(MG/L)<br>70<br>.53                                                    | (N)<br>(MG/L) | .16                                        | (P)<br>(MG/L)<br>•50                                                              | (MICRO-MHOS)                          | (UNITS)                             | PER<br>100 ML)                          | PER<br>100 ML)<br><br>450<br>410                             |
| DATE MAY , 19 19 JUNE 12 19 JULY 28                                                                                   | (N)<br>(MG/L)<br>70<br>.53                                                    | (N)<br>(MG/L) | .16                                        | (P)<br>(MG/L)<br>•50                                                              | (MICRO-<br>MHOS)                      | (UNITS)                             | PER<br>100 ML)                          | PER<br>100 ML)                                               |
| MAY , 19<br>19<br>JUNE<br>12<br>19                                                                                    | (N)<br>(MG/L)<br>70<br>.53                                                    | (N)<br>(MG/L) | .16                                        | (P)<br>(MG/L)<br>•50                                                              | (MICRO-MHOS)                          | (UNITS)                             | PER<br>100 ML)                          | PER<br>100 ML)<br><br>450<br>410<br>680                      |
| DATE MAY , 19 19 JUNE 12 19 JULY 28 AUG. 27 OCT.                                                                      | (N)<br>(MG/L)<br>170<br>.53<br>.57<br><br>.41                                 | (N)<br>(MG/L) | .16<br>.14<br><br>.14                      | (P)<br>(MG/L)<br>•50<br>•090<br><br>•19<br>•26                                    | (MICRO-MHOS)                          | (UNITS)                             | PER 100 ML) 140 88 77                   | PER<br>100 ML)<br><br>450<br>410                             |
| DATE  MAY , 19 19 JUNE 12 19 JULY 28 AUG. 27 OCT. 01                                                                  | (N)<br>(MG/L)<br>70<br>.53<br>.57<br>                                         | (N)<br>(MG/L) | .16<br>.14<br>                             | (P)<br>(MG/L)<br>•50<br>•090                                                      | (MICRO-MHOS)                          | (UNITS)                             | PER<br>100 ML)<br><br>140<br>88         | PER<br>100 ML)<br><br>450<br>410<br>680                      |
| DATE  MAY , 19 19 JUNE 12 19 JULY 28 AUG. 27 OCT. 01 NOV.                                                             | (N)<br>(MG/L)<br>70 .53<br>.57<br><br>.41<br>.50                              | (N)<br>(MG/L) | .16<br>.14<br><br>.14<br>.18               | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26                                    | (MICRO-MHOS)                          | (UNITS)                             | PER 100 ML) 140 88 77 8                 | PER 100 ML) 450 410 680 300 120                              |
| DATE  MAY , 19 19  JUNE 12 19  JULY 28  AUG. 27  OCT. 01  NOV. 10                                                     | (N)<br>(MG/L)<br>70 .53<br>.57<br><br>.41<br>.50<br>.47                       | (N)<br>(MG/L) | .16<br>.14<br><br>.14                      | (P)<br>(MG/L)<br>•50<br>•090<br><br>•19<br>•26                                    | (MICRO-MHOS)                          | (UNITS)                             | PER 100 ML) 140 88 77                   | PER<br>100 ML)<br><br>450<br>410<br>680<br>300               |
| DATE MAY , 19 19 JUNE 12 19 JULY 28 AUG. 27 OCT. 01 NOV. 10 MAR., 19                                                  | (N)<br>(MG/L)<br>170 .53<br>.57<br><br>.41<br>.50<br>.47                      | (N)<br>(MG/L) | .16<br>.14<br><br>.14<br>.18               | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26                                    | (MICRO-MHOS)                          | (UNITS) 7.3 7.4                     | PER 100 ML) 140 88 77 8                 | PER 100 ML)   450 410  680 300 120 90                        |
| DATE  MAY , 19 19 JUNE 12 19 28 AUG. 27 OCT. 01 NOV. 10 MAR, 19 24 MAY                                                | (N)<br>(MG/L)<br>70 .53<br>.57<br><br>.41<br>.50<br>.47                       | (N)<br>(MG/L) | .16<br>.14<br>.14<br>.18<br>.11            | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29                             | (MICRO-MHOS)                          | (UNITS)                             | PER 100 ML) 140 88 77 8                 | PER 100 ML) 450 410 680 300 120                              |
| DATE  MAY , 19 19  JUNE 12 19 JULY 28  OCT OI NOV. 10 MAR, 19 24 MAY 12                                               | (N)<br>(MG/L)<br>170 .53<br>.57<br><br>.41<br>.50<br>.47                      | (N)<br>(MG/L) | .16<br>.14<br>.14<br>.18<br>.11            | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29                             | (MICRO-MHOS)                          | (UNITS) 7.3 7.4                     | PER 100 ML) 140 88 77 8                 | PER 100 ML)   450 410  680 300 120 90                        |
| DATE  MAY , 19 19  JUNE 12 19  JULY 28  AUG. 27  OCT. 01  NOV. 10  MAR., 19 24  MAY 12  JUNE                          | (N)<br>(MG/L)<br>70 .53<br>.57<br><br>.41<br>.50<br>.47<br>.45                | (N)<br>(MG/L) | .16<br>.14<br><br>.14<br>.18<br>.11        | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29<br>.22<br>.30               | (MICRO-MHOS)                          | (UNITS) 7.3 7.4 7.0 7.3             | PER 100 ML) 140 88 77 8 4               | PER 100 ML) 450 410 680 300 120 90 1200 2800                 |
| DATE  MAY , 19 19  JUNE 12 19  JULY 28  AUG. 27  OCT. 01  NOV. 10  MAR, 19 24  JUNE 12  JUNE 15                       | (N)<br>(MG/L)<br>170 .53<br>.57<br><br>.41<br>.50<br>.47<br>.45               | (N)<br>(MG/L) | .16<br>.14<br>.14<br>.18<br>.11            | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29<br>.22                      | (MICRO-MHOS)                          | (UNITS) 7.3 7.4 7.0                 | PER 100 ML)                             | PER 100 ML) 450 410 680 300 120 90 1200                      |
| DATE  MAY , 19 19  JUNE 12 19  JULY 28  AUG. 27  OCT. 01  NOV. 10  MAR., 19 24  MAY 12  JUNE                          | (N)<br>(MG/L)<br>70 .53<br>.57<br><br>.41<br>.50<br>.47<br>.45                | (N)<br>(MG/L) | .16<br>.14<br><br>.14<br>.18<br>.11        | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29<br>.22<br>.30<br>.30        | (MICRO-MHOS)                          | (UNITS) 7.3 7.4 7.0 7.3 7.8         | PER 100 ML) 140 88 77 8 4 1 46 14       | PER 100 ML)  450 410  680 300 120 90 1200 2800 620           |
| DATE  MAY , 19 19  JUNE 12 19  JULY 28  OCT  OCT  NOV. 10  MAY, 19 24  MAY 12  JUNE 15  JULY                          | (N)<br>(MG/L)<br>170 .53<br>.57<br><br>.41<br>.50<br>.47<br>.45               | (N)<br>(MG/L) | (MG/L)  .16  .14  .18  .11  .11   .16      | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29<br>.22<br>.30               | (MICRO-MHOS)                          | (UNITS) 7.3 7.4 7.0 7.3             | PER 100 ML) 140 88 77 8 4               | PER 100 ML) 450 410 680 300 120 90 1200 2800                 |
| DATE  MAY , 19 19  JUNE 12 19  JULY 28  OCT  OI  NOV. 10  MAY, 19 24  MAY 12  JUNE 15  JUNE 13  AUG. 10               | (N)<br>(MG/L)<br>170 .53<br>.57<br><br>.41<br>.50<br>.47<br>.45               | (N)<br>(MG/L) | .16<br>.14<br>.14<br>.18<br>.11            | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29<br>.22<br>.30<br>.30        | (MICRO-MHOS)                          | (UNITS) 7.3 7.4 7.0 7.3 7.8         | PER 100 ML) 140 88 77 8 4 1 46 14       | PER 100 ML)  450 410  680 300 120 90 1200 2800 620           |
| DATE  MAY , 19 19 JUNE 12 19 JULY 28 AUG. 27 OCT. 01 NOV. 10 MAR., 19 24 JUNE 15 JUNE 15 JUNE 15 JUNE 15 AUG. 10 SEP. | (N)<br>(MG/L)<br>170 .53<br>.57<br><br>.41<br>.50<br>.47<br>.45<br>.60<br>.45 | (N)<br>(MG/L) | (MG/L)  .16  .14  .18  .11  .11   .16  .19 | (P)<br>(MG/L)<br>.50<br>.090<br><br>.19<br>.26<br>.29<br>.22<br>.30<br>.30<br>.30 | (MICRO-MHOS)  99 99 100 106 99 98 100 | (UNITS) 7.3 7.4 7.0 7.3 7.8 7.3 7.6 | PER 100 ML) 140 88 77 8 4 1 46 14 16 48 | PER 100 ML)  450 410 680 300 120 90 1200 2800 620 1100 3400  |
| DATE  MAY . 19 19 JUNE 12 19 28 AUG. 27 OCT. 01 NOV. 10 MAY . 19 24 MAY . 19 24 JUNE 15 JULY 13 AUG. 10               | (N)<br>(MG/L)<br>170 .53<br>.57<br><br>.41<br>.50<br>.47<br>.45<br>.60<br>.45 | (N)<br>(MG/L) | (MG/L)  .16  .14  .18  .11  .11   .16      | (P)<br>(MG/L)<br>.50<br>.090<br>-19<br>.26<br>.29<br>.22<br>.30<br>.30            | (MICRO-MHOS) 99 99 100 106 99 98      | (UNITS) 7.3 7.4 7.0 7.3 7.8 7.8     | PER 100 ML)                             | PER 100 ML)   450 410  680 300  120 90  1200  2800  620 1100 |

Table 12.--Continued

11-3413.44 COLD CREEK ABOVE LAKE SISKIYOU, NEAR MT SHASTA (SITE 12)
WATER QUALITY DATA

| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIME                                                                                                                              | TYPE                                                  | INSTAN-<br>TANEOUS<br>DIS-<br>CHARGE<br>(CFS)                                              | TEMPER-<br>ATURE<br>(DEG C)                                                     | AIR<br>TEMP-<br>ERATURE<br>(DEG C)                                | DIS-<br>SOLVED<br>OXYGEN<br>(MG/L)  | PER-<br>CENT<br>SATUR-<br>ATION                                                                          | TOTAL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| MAY , 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                |                                                       |                                                                                            |                                                                                 |                                                                   |                                     |                                                                                                          |                                                                                                          |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | 2                                                     | 19                                                                                         | 15.0                                                                            |                                                                   | 9.1                                 | 101                                                                                                      | 0251                                                                                                     |
| JUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                                       | .00                                                                                        | - A                                                                             |                                                                   |                                     |                                                                                                          |                                                                                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1445                                                                                                                              | 2                                                     | 16                                                                                         | 13.5                                                                            |                                                                   | 9.4                                 | 102                                                                                                      |                                                                                                          |
| JULY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1215                                                                                                                              | 5                                                     |                                                                                            | 14.0                                                                            | 88                                                                | 0                                   |                                                                                                          | erri                                                                                                     |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1400                                                                                                                              | 2                                                     | 9.2                                                                                        | 16.5                                                                            | 28.0                                                              | 8.7                                 | 100                                                                                                      |                                                                                                          |
| AUG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                               | 11 8.                                                 |                                                                                            | 80 8                                                                            | 7.0                                                               | 0 -05                               |                                                                                                          |                                                                                                          |
| 27<br>OCT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1120                                                                                                                              | 5                                                     | 12                                                                                         | 10.5                                                                            | 21                                                                | 10.0                                | 103                                                                                                      | 0001                                                                                                     |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1030                                                                                                                              | 2                                                     | 20                                                                                         | 8.5                                                                             | 36                                                                | 10.6                                | 102                                                                                                      | 1200                                                                                                     |
| NOV.<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1025                                                                                                                              | 2                                                     | 26                                                                                         | 7.0                                                                             | E1                                                                | 10.2                                | 95                                                                                                       | 1730                                                                                                     |
| JAN., 19<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1016                                                                                                                              |                                                       | 29                                                                                         | 4.5                                                                             | 5.5                                                               | 11.7                                | 103                                                                                                      | 0091                                                                                                     |
| MAR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1015                                                                                                                              |                                                       | -/-                                                                                        |                                                                                 |                                                                   |                                     |                                                                                                          | GACI -                                                                                                   |
| 24<br>MAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1600                                                                                                                              | 2                                                     | 24                                                                                         | 10.0                                                                            | 11.5                                                              | 10.2                                | 102                                                                                                      | .95                                                                                                      |
| 11<br>JUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1210                                                                                                                              | 2                                                     | 19                                                                                         | 13.0                                                                            | 25.5                                                              | 9.4                                 | 101                                                                                                      | .62                                                                                                      |
| 16<br>JULY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   | 2                                                     | 16                                                                                         | 12.5                                                                            | 21.0                                                              | 9.4                                 | 100                                                                                                      | .58                                                                                                      |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1610                                                                                                                              | 2                                                     | 14                                                                                         | 16.5                                                                            | 30.0                                                              | 8.6                                 | 100                                                                                                      | .61                                                                                                      |
| AUG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                                       |                                                                                            |                                                                                 | h in                                                              | onl                                 | 95                                                                                                       | 001033                                                                                                   |
| SEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1630                                                                                                                              | . 5                                                   | 10                                                                                         | 17.5                                                                            | 27.5                                                              | 8.1                                 | 95                                                                                                       | .66                                                                                                      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1015                                                                                                                              | 2                                                     | 13                                                                                         | 9.5                                                                             | 12.0                                                              | 10.2                                | 101                                                                                                      | .38                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL                                                                                                                             | DIS-                                                  |                                                                                            |                                                                                 |                                                                   |                                     |                                                                                                          | THUE                                                                                                     |
| - 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 | TOTAL<br>KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)                                                                                    | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | DIS-<br>SOLVED<br>NITRATE<br>(N)                                                           | TOTAL<br>PHOS-<br>PHORUS<br>(P)                                                 | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-                 | PH                                  | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER                                                                   | IMME-<br>DIATE<br>COLI-<br>FORM<br>(COL.<br>PER                                                          |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KJEL-<br>DAHL<br>NITRO-<br>GEN                                                                                                    | SOLVED<br>NITRITE<br>PLUS<br>NITRATE                  | SOL VED<br>NITRATE                                                                         | PHOS-<br>PHORUS                                                                 | CIFIC<br>CON-<br>DUCT-<br>ANCE                                    | PH<br>(UNITS)                       | FORM<br>(COL.                                                                                            | DIATE<br>COLI-<br>FORM<br>(COL.                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                                   | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | SOLVED<br>NITRATE<br>(N)                                                                   | PHOS-<br>PHORUS<br>(P)                                                          | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-                         |                                     | COLI-<br>FORM<br>(COL.<br>PER                                                                            | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                        |
| MAY , 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                                   | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | SOLVED<br>NITRATE<br>(N)                                                                   | PHOS-<br>PHORUS<br>(P)                                                          | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-                         |                                     | COLI-<br>FORM<br>(COL.<br>PER                                                                            | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER                                                                   |
| MAY , 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                                   | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                                | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                |                                     | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                                 | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                        |
| MAY , 19<br>19<br>JUNE<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                                   | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)           | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                                | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-                         |                                     | COLI-<br>FORM<br>(COL.<br>PER                                                                            | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                        |
| MAY , 19 19 JUNE 10 19 JULY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.27                                                                     | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                                | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                                 | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                        |
| MAY , 19<br>19<br>JUNE<br>10<br>19<br>JULY<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)                                                                                   | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                                | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                                 | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                        |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.27                                                                     | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)                                                | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                                 | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                        |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27 OCT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.27<br>.56                                                              | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)                                                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-68<br>-080                                 | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                                 | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                        |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27 OCT. 01 NOV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970<br>.27<br>.56<br><br>.43<br>.52                                            | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.16<br>.18<br><br>.20<br>.18                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>.68<br>.080<br><br>.16<br>.21               | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br><br>122<br>65<br>140<br>144                                  | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>600<br>440<br>260<br>460<br>450<br>510              |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27 OCT. Ol NOV. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34                                        | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>-16<br>-18<br>                                       | PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>-68<br>-080<br>-16<br>-21                   | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)                                                                 | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>600<br>440<br>260<br>460                            |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27 OCT. 01 NOV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34                                        | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.16<br>.18<br><br>.20<br>.18                         | PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>.68<br>.080<br><br>.16<br>.21               | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS)                | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br><br>122<br>65<br>140<br>144                                  | DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>600<br>440<br>260<br>460<br>450<br>510              |
| MAY , 19 19 JUNE 10 19 JULY 28 AUG. 27 OCT. 01 NOV. 10 JAN. 19 27 MAR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34<br>.37                                 | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>-16<br>-18<br>-20<br>-18<br>-16<br>-18               | PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>.68<br>.080<br><br>.16<br>.21<br>.19<br>.12 | CIFIC CON- DUCT- ANCE (MICRO- MHOS)                               | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>122<br>65<br>140<br>144<br>150<br>89                         | DIATE<br>COLI-<br>FORM<br>(COL-<br>PER<br>100 ML)<br>600<br>440<br>260<br>460<br>450<br>510<br>400<br>80 |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27 OCT. Ol NOV. 10 JAN , 19 JAN , 19 JAN , 19 Z7 MAR. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34                                        | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED NITRATE (N) (MG/L) .16 .1820 .18 .16 .18                                            | PHOS-PHORUS (P) (MG/L)  .68  .080  .16  .21  .19                                | CIFIC CON- DUCT- ANCE (MICRO- MHOS)                               | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>122<br>65<br>140<br>144<br>150<br>89<br>30<br>25             | DIATE COLI- COLI- FORM (COL. PER 100 ML)  600  440 260 450 450 510 400 80 620                            |
| MAY , 19 19 JUNE 10 19 JULY 28 AUG. 27 OCT. 01 NOV. 10 JAN 24 MAY 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34<br>.37                                 | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>-16<br>-18<br>-20<br>-18<br>-16<br>-18               | PHOS-<br>PHORUS<br>(P)<br>(MG/L)<br>.68<br>.080<br><br>.16<br>.21<br>.19<br>.12 | CIFIC CON- DUCT- ANCE (MICRO- MHOS)                               | (UNITS)                             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br><br>122<br>65<br>140<br>144<br>150<br>89<br>30<br>25<br>64   | DIATE COLI- FORM (COL PER 100 ML)  600 440 260 460 450 510 400 80 620 3900                               |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27 OCT OI NOV. 10 JAN 19 27 MAR. 24 MAY 11 JUNE 16 JUNE 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34<br>.37<br>971 .32                      | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED NITRATE (N) (MG/L) .16 .18 .20 .18 .19                                              | PHOS-PHORUS (P) (P) (MG/L)  .68  .080  .16  .21  .19  .12  .090 .20             | CIFIC CONDUCT- ANCE (MICRO-MHOS)                                  | (UNITS) 7.6 7.7 8.1 7.3             | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>122<br>65<br>140<br>144<br>150<br>89<br>30<br>25<br>64       | DIATE COLI- COLI- FORM (COL. PER 100 ML)  600  440 260 450 450 510 400 80 620                            |
| MAY , 19 19 JUNE 10 19 20LY 28 OCT. 01 NOV. 10 JAN 24 MAR. 24 MAY 11 JUNE 16 JULY 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34<br>.37<br>.32<br>.75                   | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.16<br>.18<br>.20<br>.18<br>.16<br>.18               | PHOS-PHORUS (P) (MG/L)  .68  .080  .16  .21  .19  .12  .090  .20                | CIFIC CONDUCT- ANCE (MICRO-MHOS)                                  | (UNITS)  7.6 7.7 8.1 7.3 7.9        | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>122<br>65<br>140<br>144<br>150<br>89<br>30<br>25<br>64<br>46 | DIATE COLI- COLI- FORM (COL. PER 100 ML)  600  440 260 450 450 510 400 80 620 3900 800 4600              |
| MAY , 19 JUNE 10 19 JULY 28 AUG. 27 OCT NOV 10 JAN 19 JAN 19 JUNE 16 JUNE 16 JULY 13 AUG. 11 JULY 13 AUG. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34<br>.37<br>.37<br>.32<br>.75<br>.42     | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | **SOLVED NITRATE (N) (MG/L) ***16 ***18 ***16 ***18 ***29 ******************************** | PHOS-PHORUS (P) (MG/L)  -68 -080 -16 -21 -19 -12 -090 -20 -20                   | CIFIC CON- CON- DUCT- ANCE (MICRO- MHOS)  106 107 101 103 105     | (UNITS)  7.6 7.7 8.1 7.3 7.9 8.1    | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>122<br>65<br>140<br>144<br>150<br>89<br>30<br>25<br>64       | DIATE COLI- COLI- FORM (COL. PER 100 ML)  600  440 260 460 450 510 400 80 620 3900 800                   |
| MAY , 19 19 JUNE 10 19 20LY 28 OCT. 01 NOV. 10 JAN 24 MAR. 24 MAY 11 JUNE 16 JULY 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KJEL-<br>DAHL<br>NITRO-<br>GEN<br>(N)<br>(MG/L)<br>970 .27<br>.56<br><br>.43<br>.52<br>.34<br>.37<br>971 .32<br>.75<br>.42<br>.42 | SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE<br>(N)<br>(MG/L)<br>.16<br>.18<br>.20<br>.18<br>.16<br>.18<br>.29        | PHOS-PHORUS (P) (MG/L)  .68 .080 .16 .21 .19 .12 .090 .20 .20                   | CIFIC CON- CON- DUCT- ANCE (MICRO- MHOS)  106 107 101 103 105 105 | (UNITS) 7.6 7.7 8.1 7.3 7.9 8.1 7.8 | COLI-<br>FORM<br>(COL.<br>PER<br>100 ML)<br>122<br>65<br>140<br>144<br>150<br>89<br>30<br>25<br>64<br>46 | DIATE COLI- COLI- FORM (COL. PER 100 ML)  600  440 260 450 450 510 400 80 620 3900 800 4600              |

Table 12.--Continued

11-3413.60 LAKE SISKIYOU NEAR MT SHASTA (SITE 14)
WATER QUALITY DATA

|               |         |                |       | Also-            | AIR              | DIS-      | PER<br>CENT     | BICAR-        | CAR-         |
|---------------|---------|----------------|-------|------------------|------------------|-----------|-----------------|---------------|--------------|
|               | TIME    | TYPE           | DEPTH | TEMP-<br>ERATURE | TEMP-<br>ERATURE | SOLVED    | SATUR-<br>ATION | BONATE (HCO3) | BONATE (CO3) |
| DATE          | 0.30    | 00174 T        | (FT)  | (DEG C)          | (DEG C)          | (MG/L)    | MIION           | (MG/L)        | (MG/L)       |
| MAY, 19       | 970     |                |       |                  |                  |           |                 |               |              |
| 19            | 1105    | 2              | 0     | 13.5             |                  | 11.4      | 124             |               |              |
| 19            | 1335    | 2              | 100   | 9.5              |                  | 9.8       | 97              |               |              |
| JUNE          |         |                |       |                  |                  |           |                 |               |              |
| 10            |         | 2              | 0     | 17.0             | 31.36            | 9.6       | 112             | - 687         | . 172        |
| JULY 29       | 1115    | 2              |       | 00 5             |                  | 8.8       | 114             | 181           | .01          |
| 29            | 1115    | 2              | 100   | 22.5<br>14.0     | 4. P. T.         | 6.6       | 72              | 50            | YJUU         |
| AUG.          | 1140    | WI T           | 100   | 14.0             | 05 5             | 0.0       |                 | 1044          | y 8 S        |
| 25            | 1755    | 2              | 0     | 21.5             | 28.5             | 8.8       | 113             |               | -BUS-        |
| 25            | 1800    | 2              | 100   | 13.0             | 28.5             | 5.2       | 56              | 1511          |              |
| SEP.          |         |                |       |                  |                  |           |                 |               |              |
| 29            | 1700    | 2              | 0     | 16.0             |                  | 7.6       | 86              |               | 1700         |
| 29            | 1730    | 2              | 100   | 13.5             |                  | 3.5       | 38              | 10.44         |              |
| NOV.          |         | 3.25           |       | 04               |                  |           |                 | 40 1XE1       |              |
| 10            | 1600    | 2              | 0     | 11.0             |                  | 7.9       | 81              | 101           | 75           |
| 10<br>JAN., 1 | 1545    | 2              | 100   | 10.5             | 920              | 7.9       | 81              | 196           | 57920        |
| 27            | 1215    | 2              | 0     | 2.0              | 10               | 12.5      | 102             | 1001          | +48          |
| 27            | 1130    | 2              | 100   | 3.0              | 8.5              | 11.4      | 96              |               | - 750        |
| MAR.          | 2100    | 01 - 0         | 100   |                  |                  |           | 5               |               |              |
| 25            | 1505    | 2              | 0     | 5.0              | 5.0              | 11.8      | 105             |               | 3800         |
| 25            | 1415    | 2              | 100   | 4.0              | 5.0              | 11.6      | 101             |               |              |
| MAY           |         |                |       |                  | 41               | 45        | 5 0             |               |              |
| 11            | 1430    | 2              | 0     | 11.0             | 23.0             | 10.7      | 110             |               | 1864         |
| 11            | 1400    | 2              | 100   | 6.5              | 23.0             | 10.0      | 93              | 201           | .17          |
| 11            | 1430    | 3              | S     |                  | 77               |           |                 | 7.000         | 9833         |
| JUNE<br>14    | 1620    | 2              | 0     | 16.5             | 21.5             | 9.9       | 114             | 40435         | A84          |
| 14            | 1545    | 2              | 100   | 7.5              | 21.5             | 9.7       | 92              | 3             | .1-          |
| 14            | 1620    | 3              |       |                  | 21.0             |           |                 | ATOT          |              |
| JULY          | I A I G | Section of the |       |                  |                  |           |                 |               |              |
| 14            | 1530    | 2              | 0     | 21.5             | 32.0             | 8.6       | 110             | Store         |              |
| 14            | 1500    | 2              | 100   | 8.0              | 32.0             | 8.5       | 82              |               |              |
| 14            | 1530    | 3              |       | mother           |                  |           |                 |               |              |
| AUG.          | P 201.  | DELEGIE 12     | TIME! | 20101            | SONO an GA       | GN: - E'I | 10 M            |               |              |
| 09            | 1640    | 2              | 0     | 25.5             | 33.0             | 7.9       | 108             | 7-            |              |
| 09            | 1500    | 2 3            | 100   | 8.0              | 34.0             | 8.2       | 79              | 1970-         | 45.50        |
| 09<br>SEP.    | 1640    | 3              |       |                  | 04- 01           |           | - TS            | 240           | 485          |
| 14            | 1415    | 2              | 0     | 20.0             | 25.5             | 8.6       | 106             |               | Bistut       |
| TATOR         | LAID    | 4              | U     | 20.0             | 20.0             | 0.0       | 100             |               |              |

Table 12.--Continued

11-3413.60 LAKE SISKIYOU NEAR MT SHASTA (SITE 14).--Continued
WATER QUALITY DATA

|            |         |        | TOTAL  | DIS-    | DIS-    |         |        | DIS-   |        |
|------------|---------|--------|--------|---------|---------|---------|--------|--------|--------|
|            |         |        | KJEL-  | SOLVED  | SOLVED  |         |        | SOLVED |        |
|            | ORGANIC | TOTAL  | DAHL   | NITRITE | AMMONIA | DIS-    | TOTAL  | ORTHO. | ALKA-  |
|            | NITRO-  | NITRO- | NITRO- | PLUS    | NITRO-  | SOLVED  | PHOS-  | PHOS-  | LINITY |
|            | GEN     | GEN    | GEN    | NITRATE | GEN     | NITRATE | PHORUS | PHORUS | AS     |
|            | (N)     | (N)    | (N)    | (N)     | (N)     | (N)     | (P)    | (P)    | CACO3  |
| DATE       | (MG/L)  | (MG/L) | (MG/L) | (MG/L)  | (MG/L)  | (MG/L)  | (MG/L) | (MG/L) | (MG/L) |
| MAY , 1    | 970     |        |        |         |         |         |        |        |        |
| 19         |         |        | .00    |         |         | .00     | .27    |        |        |
| 19         | 1105    |        | 11.0   |         |         |         |        |        |        |
| JUNE       |         |        |        |         |         |         |        |        |        |
| 10         | 1995    |        | .56    | 21.0    |         | .02     | .010   |        |        |
| JULY       |         |        |        |         |         |         |        |        |        |
| 29         |         |        | .29    |         |         | .05     | .010   |        |        |
| 29         |         |        | .39    |         |         | .11     | .020   |        |        |
| AUG.       |         |        |        |         |         |         |        |        |        |
| 25         |         |        | .35    |         |         | .00     | .030   |        |        |
| 25         | 1040    |        | .12    |         |         | .11     | .020   |        |        |
| SEP.       |         |        |        |         |         |         |        |        |        |
| 29         |         |        | .78    |         |         | .07     | .030   |        |        |
| 29         |         |        | .12    |         |         | .11     | .040   |        |        |
| NOV.       |         |        |        | 77.00   |         |         |        |        |        |
| 10         |         |        | .22    |         |         | .09     | .030   |        |        |
| 10         |         |        | .14    |         |         | .09     | .030   |        |        |
| JAN. 1     | 971     |        |        |         |         |         |        |        |        |
| 27         | ,       |        | .23    |         |         | .18     | .030   |        |        |
| 27         |         |        | .27    |         |         | .05     | .040   |        |        |
| MAR.       |         |        |        |         |         |         |        |        |        |
| 25         |         |        | .55    | .00     |         |         | .10    | .030   |        |
| 25         |         |        | .90    | .00     |         |         | .10    | .030   |        |
| MAY        |         |        |        |         |         |         |        |        |        |
| 11         | 1970    |        | .28    | .00     |         |         | .060   | .030   |        |
| 11         |         |        | .18    | .03     |         |         | .060   | .030   |        |
| 11         |         |        |        |         |         |         |        |        |        |
| JUNE       |         |        |        |         |         |         |        |        |        |
| 14         |         |        | .24    | .03     |         | E       | .050   |        |        |
| 14         |         |        | .26    | .00     |         |         | .040   |        |        |
| 14         |         |        |        |         |         |         |        |        |        |
| JULY       |         |        |        |         |         |         |        |        |        |
| 14         | 1991    |        | .66    | .05     |         | .05     | .040   |        |        |
| 14         |         |        | .45    | .03     |         | .03     | .020   |        |        |
| 14         |         |        | .45    | .03     |         | .03     | .020   | . 20.  |        |
|            | 0 .02   | 64 .02 |        | 0 00    |         | 2.5     | 0.0    | A 8900 | 1200   |
| AUG.       | 0       |        | .40    | .08     |         | .08     | .030   |        |        |
| 09         | - 10    |        | .33    |         |         | .04     | .030   | 3200   |        |
| 09         |         |        | .33    | .04     |         | .04     | .030   | 420    |        |
| 09<br>SEP. | . 0 .09 | 01     | 36     | 11      |         | 4 del   | 121    |        |        |
| 14         |         | .22    | .19    | .03     |         | .03     | .040   |        |        |

Table 12. -- Continued

11-3413.60 LAKE SISKIYOU NEAR MT SHASTA (SITE 14).--Continued

|            | SPECI-<br>FIC<br>COND- |         | COLOR<br>(PLAT- | TUR-      | TRANS-<br>PAR-<br>ENCY | CARBON        | FECAL<br>COLI-<br>FORM | IMME-<br>DIATE<br>COLI-<br>FORM |
|------------|------------------------|---------|-----------------|-----------|------------------------|---------------|------------------------|---------------------------------|
|            | UCTANCE<br>(MICRO-     | РН      | INUM-<br>COBALT | BID-      | SECCHI                 | DIOXIDE (CO2) | (COL.                  | (COL.                           |
| DATE       | MHOS)                  | (UNITS) | UNITS)          | (JTU)     | (IN)                   | (MG/L)        | 100 ML)                | 100 ML)                         |
| MAY . 1    | 970                    |         |                 |           |                        |               |                        |                                 |
| 19         | 76                     |         |                 |           |                        |               |                        | 3                               |
| 19<br>JUNE | 125                    | 00.75   | - 77            |           | 08.77                  |               |                        | 4                               |
| 10         |                        |         | 44              | 1000      | 46.00                  | 200           | 0.00                   | 19.00                           |
| JULY       |                        |         | A 372           | 3         | -                      |               |                        | 3906                            |
| 29         | 0.110                  | 200     |                 |           | 000                    |               |                        | 5                               |
| 29         | 0.70                   | 50      |                 |           |                        |               |                        | 30                              |
| AUG.       |                        |         |                 |           |                        |               |                        |                                 |
| 25         | 118                    | 8.6     | 2               | 0         |                        |               | 0                      | 1                               |
| 25         | 100                    | 6.9     | 4               | 0         | 85, 77                 |               | 0                      | 0                               |
| SEP.       |                        |         |                 |           |                        |               |                        |                                 |
| 29         |                        |         |                 |           |                        |               |                        | 27                              |
| 29<br>NOV. | 0000                   | 10.70   | - TO            |           | SI. 7                  | 8 8           |                        | 37                              |
| 10         | 118                    | 7.6     |                 |           |                        |               |                        | 16                              |
| 10         | 118                    | 7.7     |                 |           | 55.70                  |               |                        | 18                              |
| JAN., 1    | 971                    |         |                 |           |                        |               |                        |                                 |
| 27         | 104                    | 7.7     |                 |           |                        |               | 8                      | 860                             |
| 27.000     | 100                    | 7.8     |                 |           | 0 65.75                | 77            | 0                      | 420                             |
| MAR.       |                        |         |                 |           |                        |               |                        |                                 |
| 25         | 113                    | 7.5     |                 |           |                        |               | 1                      | 35                              |
| 25         | 112                    | 7.6     |                 | 00.77     | 0 65 10                |               |                        | 60                              |
| MAY        | 91.0                   |         |                 |           |                        | U 30          |                        | 78                              |
| 11         | 98                     | 7.6     |                 |           |                        |               | 0 2                    |                                 |
| 11         | 85                     | 7.9     |                 | 00.       | 66                     |               |                        | 290                             |
| JUNE       | 240 27                 | -       | 36.             | S Edv. 12 | 00                     | 0 11-         |                        |                                 |
| 14         | 89                     | 7.4     |                 |           |                        | 7             | 0                      | 190                             |
| 14         | 85                     | 8.3     |                 |           |                        |               | U                      | 12                              |
| 14         |                        |         |                 |           | 120                    |               |                        |                                 |
| JULY       |                        |         |                 |           | 0.000.0                |               |                        |                                 |
| 14         | 89                     | 7.4     |                 |           |                        |               | 0                      | 450                             |
| 14         | 98                     | 8.4     |                 |           |                        |               | 0                      | 110                             |
| 14         | 000-                   | 60      |                 |           | 120                    |               |                        |                                 |
| AUG.       |                        |         |                 |           |                        |               |                        |                                 |
| 09         | 88                     | 7.5     |                 |           |                        |               | 0                      | 1100                            |
| 09         | 116                    | 8.4     |                 | 80. **    | 00,77                  |               | 0                      | 790                             |
| 09         | 950.77                 | 40. 77  |                 | 491.75    | 180                    |               |                        |                                 |
| SEP.       | 10-40                  | -       |                 |           |                        |               |                        |                                 |
| 14         | 121                    | 8.5     |                 |           |                        |               | 0                      | 1100                            |

Table 12.--Continued

11-3413.65 SACRAMENTO RIVER ABOVE SEWAGE EFFLUENT, NEAR MT SHASTA (SITE 15)
WATER QUALITY DATA

| DATE       | TIME     |                                                         | TEM                                        | P- TE                  | IR<br>MP-<br>TURE<br>G C) | DIS<br>SOLV<br>OXYG<br>(MG/ | ED  | PER<br>CEN<br>SATU<br>ATIO | T DI   | TAL<br>SI-<br>UAL<br>LO-<br>INE<br>G/L) | TOTA            | RO-<br>N      | TOTA<br>KJEI<br>DAHI<br>NITE<br>GEI<br>(NI | L-<br>L<br>RO-<br>N |
|------------|----------|---------------------------------------------------------|--------------------------------------------|------------------------|---------------------------|-----------------------------|-----|----------------------------|--------|-----------------------------------------|-----------------|---------------|--------------------------------------------|---------------------|
| AUG. , 1   |          | 10                                                      | 37                                         |                        |                           |                             |     |                            | 0.11   | -80                                     |                 |               |                                            |                     |
| 26<br>SEP. | 1020     | 2                                                       | -1                                         | 0.5                    |                           | 10                          | . 1 | 1                          | 02     |                                         |                 | 77            |                                            | -                   |
| 09         | 1105     | 2                                                       | 1                                          | 1.0                    |                           |                             |     |                            |        |                                         |                 |               |                                            |                     |
| 14         | 1245     | 2                                                       |                                            | 0.8                    |                           |                             |     |                            |        | .00                                     |                 |               |                                            |                     |
| 30         | 1645     | 2                                                       |                                            | 1.2                    | 21.5                      | 9                           | .6  |                            | 98     | .00                                     |                 |               |                                            | .05                 |
| NOV.       |          |                                                         |                                            |                        |                           |                             |     |                            |        |                                         |                 |               |                                            |                     |
| 11         | 1000     | 2                                                       | 1                                          | 0.5                    | 10.5                      | 9                           | . 8 |                            | 99     | .00                                     |                 |               |                                            | .29                 |
| JUNE, 1    | 971      |                                                         |                                            |                        |                           |                             |     |                            |        | 45.                                     |                 |               |                                            | -01                 |
| 15         | 1410     | 2                                                       | 1                                          | 6.0                    | 24.0                      |                             | .0  | 1                          |        | .00                                     |                 |               |                                            | .26                 |
| JULY       |          |                                                         |                                            |                        |                           | 0.8                         |     | 98                         | .00    | 00                                      |                 | (2.1.         |                                            | 24                  |
| 14         | 1040     | 2                                                       | 1                                          | 6.5                    | 25.0                      | 8                           | . 8 | 1                          | .00    | .00                                     |                 |               |                                            | .26                 |
| AUG.       | 0815     | 2                                                       |                                            | 8.5                    | 14.5                      |                             | .2  |                            | 98     | .00                                     |                 |               |                                            | .29                 |
| SEP.       | 0015     |                                                         |                                            | 0.7                    | 14.7                      | 6.5                         |     |                            | ,,     |                                         |                 |               |                                            | -                   |
| 14         | 0915     | 2                                                       | 1                                          | 1.5                    | 17.5                      |                             | 0.0 | 1                          | 01     | .00                                     |                 | .29           |                                            | .20                 |
| D          | NI<br>NI | DIS-<br>ULVED<br>TRITE<br>PLUS<br>TRATE<br>(N)<br>MG/L) | DIS-<br>SOLVED<br>NITRATE<br>(N)<br>(MG/L) | PHOS-<br>PHORUS<br>(P) | UCTA                      | IC<br>ND-<br>ANCE<br>CRO-   | P   | H<br>TS)                   | CHEM-  | FOR                                     | RM<br>DL.<br>ER | CO<br>F<br>(C | ATE<br>LI-<br>ORM<br>OL.                   |                     |
| A116       | G., 1970 |                                                         |                                            |                        |                           |                             |     |                            |        |                                         |                 |               |                                            |                     |
| 2          | 6<br>P.  | - 77                                                    | 10                                         | 11                     | 120<br>2005               |                             |     |                            |        |                                         |                 |               | 18                                         |                     |
|            | 9        |                                                         | 3H3                                        |                        | 218                       | "                           |     |                            |        |                                         | 6               |               |                                            |                     |
|            | 4        |                                                         |                                            |                        | -OPPOID                   |                             |     |                            | NT2    |                                         | 2               |               | 178                                        |                     |
|            | 0        | 830                                                     | .11                                        | .040                   | BCTARG                    |                             |     |                            | 1730 - |                                         | 4               |               | 15                                         |                     |
|            | V.       | 1 118                                                   | .11                                        | .040                   |                           | 121                         |     | 8.0                        |        |                                         | 7               |               | 60                                         |                     |
|            | NE, 1971 |                                                         |                                            |                        |                           |                             |     |                            |        |                                         | . 1 4 4         |               |                                            |                     |
|            | 5        | .01                                                     |                                            | .050                   | )                         | 97                          |     | 8.2                        |        |                                         | 0               |               | 330                                        |                     |
|            | 4        | .02                                                     | .02                                        | .050                   | )                         | 110                         |     | 8.0                        |        |                                         | 5               | 1             | 700                                        |                     |
| AU         | G.       | Ten sul                                                 |                                            |                        |                           |                             |     |                            |        |                                         |                 |               | 100                                        |                     |
| SE         | 1        | .02                                                     | .02                                        | .040                   | )                         | 103                         |     | 7.9                        |        |                                         | 1               | 2             | 100                                        |                     |
|            | 4        | .09                                                     | .09                                        | .060                   | )                         | 116                         |     | 7.9                        |        |                                         | 0               | 2             | 008                                        |                     |
|            |          |                                                         |                                            |                        |                           |                             |     |                            |        |                                         |                 |               |                                            |                     |
|            |          |                                                         |                                            |                        |                           |                             |     |                            |        |                                         |                 |               |                                            |                     |

Table 12.--Continued

11-3413.70 MT SHASTA SEWAGE EFFLUENT AT WEIR, NEAR MT SHASTA (SITE 16)
WATER QUALITY DATA

|            |                |            |          |        |         |          |        | TOTAL   |         |
|------------|----------------|------------|----------|--------|---------|----------|--------|---------|---------|
|            |                |            |          |        |         |          |        | RESI-   |         |
|            |                |            |          |        | ATR     | DIS-     |        |         |         |
|            |                |            | DIS-     | TEMP-  | TEMP-   | SOLVED   | SATUR- | CHLO-   | GEN     |
|            | TIME           | TYPE       |          |        |         | OXYGEN   |        |         |         |
| DATE       | CACT TYSIN     | Pality/any |          |        |         | (MG/L)   |        |         |         |
| JULY. 1    | 970            |            |          |        |         |          |        |         |         |
| 28<br>AUG. | 1115           | 2          | .72      | 23.5   |         | 6.5      | 87     | 1.6     | 177     |
| 25         | 1700           | -2         |          | 21.0   |         | 5.7      | 72     | 3.2     | .53     |
| 26         | 0845           |            | .67      | 18.0   |         | 4.8      | 58     | 1.8     | ****    |
| 26         | 1800           | 2          |          |        |         | 0.0.0    |        | 3.2     |         |
| SEP.       | 1003           |            |          |        |         |          |        | 5001    |         |
| 09         | 1710           | 2          | .71      | 19.7   |         |          |        | 2.3     | No - VO |
| 14         | 1000           | 2          | .62      | 12.0   |         |          |        | 4.6     |         |
| 14         | 1600           | 2          | 8-101    | 2.0    | 0       |          |        | 10      | 1       |
| 30         | 1510           | 2          | .80      | 15.0   |         |          |        | 3.6     | 100     |
| .VOV       |                |            |          |        |         |          |        |         |         |
| 11         | 1445           | 2          |          | 9.0    |         |          |        | 1.8     | 27 A    |
| JUNE, 1    | 971            |            |          |        |         |          |        |         |         |
| 15         |                | 2          | .76      | 22.0   | 25.5    |          |        | 4.8     |         |
| JULY       |                |            |          |        |         |          |        | 4783790 |         |
| 14         | 1010           | 2          | .49      | 21.0   | 26.0    |          |        | 2.3     |         |
|            | MR 1 T 2 L F - |            |          |        |         |          |        | 210     |         |
| 14         | 0815           | 2          | .55      | 18.0   | 15.5    |          | 779    | 3.1     | 0.60    |
| 16         |                | 2          | 131      |        | 0000    | ATOT THE | ner st | 3.2     | 450     |
|            |                |            |          |        |         |          |        |         |         |
|            | TOTAL          | DIS-       |          |        |         |          |        |         | IMME-   |
|            |                | SOLVED     |          |        | SPECI-  |          | B10-   | FECAL   | DIATE   |
|            | DAHL           |            |          |        | FIC     |          | CHEM-  | COLI-   | COLI-   |
|            |                | PLUS       |          |        |         |          | ICAL   | FORM    | FORM    |
|            | GEN            |            |          |        | UCTANCE |          | OXYGEN | (COL.   | (COL.   |
|            | (N)            |            | (N)      |        | (MICRU- |          | DEMAND | PER     | PER     |
| DATE       | (MG/L)         | (MG/L)     | (MG/L)   | (MG/L) | MHOS)   | (UNITS)  | (MG/L) | 100 ML) | 100 ML) |
| JULY, 1    |                |            | 5.4      | 1.7    |         |          |        | 2000    | 51.4    |
| 28         | 5.9            | 55         | .11      | 2.3    |         |          |        | 0       | 600     |
| AUG.       |                |            |          |        | 0.00    |          | 50.    | 0       | Mag.    |
| 25         | -              |            |          | -      |         |          |        | 0       | 0       |
| 26         |                |            |          |        | 11      | 134      | 20.    | 0       | 7.0     |
| 26         |                | 100        | A-S P. 1 | - 11   | - 0.00  |          |        | 0       | 60      |
| SEP.<br>09 | 4.4            |            | .23      | 4.6    | 198     | E0.      | 8.0    | 4       | 784E-0  |
| 14         | 4.4            |            | •23      | 4.0    |         |          | 0.0    | 0       | 0       |
| 14         |                |            |          |        |         |          |        |         |         |
| 30         |                |            | .11      | 4.9    |         |          |        | 0       | 0       |
| NOV.       |                |            |          |        |         |          |        |         |         |
| 11         |                |            |          |        |         |          |        |         |         |
| JUNE , 1   | 971            |            |          |        |         |          |        |         |         |
| 15         |                |            |          |        |         |          |        |         |         |
| JULY       |                |            |          |        |         |          |        |         | 414     |
| 14         |                |            |          |        |         |          |        |         |         |
| SEP.       |                |            |          |        |         |          |        |         |         |
| 14         |                |            |          |        |         |          |        |         |         |

Table 12. -- Continued

11-3413.75 MT SHASTA SEWAGE EFFLUENT AT RIVER, NEAR MT SHASTA (SITE 17)

## WATER QUALITY DATA

|            |               |          |           |                           |          |              |               |                 | TOTAL                   |
|------------|---------------|----------|-----------|---------------------------|----------|--------------|---------------|-----------------|-------------------------|
|            |               |          |           | AIR                       | DIS-     | PER-<br>CENT |               | TOTAL<br>NITRO- | KJEL-<br>DAHL<br>NITRO- |
|            |               |          | TEMP-     | TEMP-                     | SOLVED   | SATUR-       | CHLO-         | GEN             | GEN                     |
|            | TIME          | TYPE     | ERATURE   | ERATURE                   | OXYGEN   | ATION        | RINE          | (N)             | (N)                     |
| DATE       | T. Dr. Story  | TANCALON | (DEG C)   | (DEG C)                   | (MG/L)   | 147/19/19/19 | (MG/L)        | (MG/L)          | (MG/L)                  |
| AUG.,      | 970           |          |           |                           |          |              |               |                 |                         |
| 26         | 1100          | 2        | 17.0      | 1.01                      |          | 0-5          | .80           | ( ) L           | 6.2                     |
| SEP.       | 1.340         |          | 973       |                           |          |              |               |                 |                         |
| 09         | 1120          | 2        | 16.0      |                           |          | 0.5          | 2.0           | 177             | 4.1                     |
| 14         | 1240          | 2        | 13.0      |                           |          | 2000         | 6.3           | 211             | 4. 1. 1.                |
| 30         | 1655          | 2        | 15.0      | 21.5                      | 9.5      | 104          | 2.8           | 300-            | 7.6                     |
| NOV.       |               |          |           |                           |          |              |               |                 |                         |
| 11         | 1020          | 2        | 0 % 4     | 19.0                      | 10000-   |              | 1.1           | CANAL           | 8.3                     |
| JUNE,      |               | -        | Letter.   | 0.00                      |          | 80 B         | 3.9           | 0000-           |                         |
| 15         | 1530          | 2        | 21.0      | 24.0                      |          |              | 3.9           | 200-            |                         |
| JULY       | 1577          | 2        | 20.0      | 25.0                      | 0.45     | 0.00         | .70           | 3594-           |                         |
| 14         | 1130          |          | 20.0      | 25.0                      |          |              | .10           | 27.77           |                         |
| SEP.<br>14 | 0930          | 2        | 15.5      | 17.5                      | 0-35     | 9259         | 1.9           | C.L             | 11.0                    |
|            |               |          |           | 5,01 .                    |          |              |               |                 |                         |
|            |               |          |           |                           |          |              |               |                 |                         |
|            |               |          |           |                           |          |              |               |                 |                         |
|            |               |          |           |                           |          |              |               |                 |                         |
|            | DIS-          |          |           |                           |          |              |               |                 | IMME-                   |
|            | SOLVED        |          |           | SPECI-                    |          |              | 810-          | FECAL           | DIATE                   |
|            | NITRITE       | DIS-     | TOTAL     | FIC                       |          |              | CHEM-         | COLI-           | COLI-                   |
|            | PLUS          | SOLVED   | PHOS-     | COND-                     |          | TUR-         | ICAL          | FORM            | FORM                    |
|            | NITRATE       | NITRATE  | PHORUS    | UCTANCE                   | PH       | BID-         | OXYGEN        | (COL.           | (COL.                   |
|            | (N)           | (N)      | (P)       | (MICRO-                   |          | ITY          | DEMAND        | PER             |                         |
| DATE       | (MG/L)        | (MG/L)   | (MG/L)    | MHOS)                     | (UNITS)  | (UTU)        | (MG/L)        | 100 ML)         | 100 ML)                 |
| AUG.,      | 1970          |          |           |                           |          |              |               |                 |                         |
| 26         | 1 (34 55)     | .09      | 4.6       | 187                       | 6.8      | 10           | 0.050=+       | 2000            | 6200                    |
| SEP.       |               |          |           |                           |          |              |               |                 | 1000                    |
| 09         |               | .25      | 4.2       | 202                       |          |              | 10            | 1360            |                         |
| 14         | 37155         | 15       |           | 1-1                       |          | 94,          |               | 0               | 0                       |
| 30         | 1000          | .14      | 4.6       |                           | 70 10 77 |              |               | 0               | 41                      |
| NOV.       |               |          |           | 107                       |          | 24.4         | - C           | 0               | 0                       |
| 11         |               | 105      | OF ALL LA | 187                       |          | 2.0          | 1000          | 0               |                         |
| JUNE,      |               | RATE ME  | PRATE P   | AND STATE OF THE PARTY OF |          | -            | Habitan Total | 0               | 0                       |
| 15         | (14)          |          |           | (C)                       | 75.1     | dro.         |               | MANUEL SE       |                         |
| JULY       | MAX BOX 1 1 M | WALE O   | CAST II   | 10121                     |          |              |               | 0               | 0                       |
| SEP.       | 11.           | -        |           |                           |          |              |               |                 |                         |
| 14         | -05           |          |           |                           |          |              |               | 0               | 26000                   |
|            |               |          |           |                           |          |              |               |                 |                         |

Table 12. -- Continued

11-3413.80 SACRAMENTO RIVER BELOW SEWAGE EFFLUENT, NEAR MT SHASTA (SITE 18)
WATER QUALITY DATA

| TOTAL<br>RIEL-<br>DARE<br>WITRO- |         | TOTAL<br>REST-<br>COAL | -#54<br>T093 | AIR     | 015-    | PER-<br>CENT | TOTAL<br>RESI-<br>DUAL | TOTAL<br>NITRO- | TOTAL<br>KJEL-<br>DAHL<br>NITRO- |
|----------------------------------|---------|------------------------|--------------|---------|---------|--------------|------------------------|-----------------|----------------------------------|
|                                  |         |                        | TEMP-        | TEMP-   | SOLVED  | SATUR-       | CHLO-                  | GEN             | GEN                              |
| 161                              | TIME    | TYPE                   | ERATURE      | ERATURE | OXYGEN  | ATION        | RINE                   | (N)             | (N)                              |
| DATE                             |         | 127583                 | (DEG C)      | (DEG C) | (MG/L)  |              | (MG/L)                 | (MG/L)          | (MG/L)                           |
| AUG., 1                          | 970     |                        |              |         |         |              |                        |                 |                                  |
| 26                               | 1145    | 2                      | 12.0         |         | 10.1    | 105          | .00                    | 100.77          | .32                              |
| SFP.                             |         |                        |              |         |         |              |                        |                 | 027                              |
| 09                               | 1430    | 2                      | 12.0         |         |         | 0581         | .00                    | 3 no 77         | .32                              |
| 14                               | 1215    | 2                      | 10.5         |         |         |              | .00                    | 1000            | 4.4.5                            |
| 30                               | 1630    | 2                      | 11.0         | 21.5    | 9.8     | 101          | .00                    | PERAL           | .23                              |
| NOV.                             |         |                        |              |         |         |              |                        |                 | 10/24                            |
| 11                               | 1045    | 2                      | 10.5         | 9.0     | 9.8     | 99           | .00                    | 7-0-So /        | .28                              |
| MAY , 1                          |         |                        |              |         |         |              |                        |                 |                                  |
| JUNE                             | 0930    | 2                      | 9.5          | 14.5    | 10.3    | 101          |                        | 15300           | •22                              |
| 15                               | 1435    | 2                      | 16.0         | 24.0    | 9.0     | 101          | .00                    | 00.07           | .40                              |
| JULY                             |         |                        |              | 6.40    |         |              | -                      |                 | 100                              |
| 14                               | 1115    | 2                      | 17.0         | 25.0    | 8.8     | 101          | .00                    | 00.00           | .35                              |
| AUG.                             | 730     |                        |              | 72.0.   | 15.5    | -            |                        |                 |                                  |
| 11                               | 0845    | 2                      | 8.5          | 14.5    | 10.2    | 98           | .00                    |                 | .25                              |
| SEP.                             |         |                        |              |         | 10.0    | 101          | 00                     | 24              | 20                               |
| 14                               | 1000    | 2                      | 11.5         | 18.0    | 10.0    | 101          | .00                    | .34             | .28                              |
|                                  |         |                        |              |         |         |              |                        |                 |                                  |
|                                  |         |                        |              |         |         |              |                        |                 |                                  |
|                                  |         |                        |              |         |         |              |                        |                 |                                  |
| DIATE                            |         |                        |              |         |         |              |                        | SOLVED          |                                  |
|                                  |         |                        |              |         | 919     |              |                        | 211011          |                                  |
|                                  | DIS-    |                        |              |         |         |              | COLVER                 | 20.19           | IMME-                            |
| +3051                            | SOLVED  | SPEANO                 | -018         | SPECI-  |         |              | 810-                   | FECAL           |                                  |
|                                  | NITRITE | DIS-                   | TOTAL        | FIC     |         | 199          | CHEM-                  | COLI-           | COLI-                            |
|                                  |         |                        | PHOS-        | COND-   |         | TUR-         | ICAL                   | FORM            | FORM                             |
|                                  | NITRATE | NITRATE                | PHORUS       | UCTANCE | РН      | BID-         | OXYGEN                 | (COL.           | (COL.                            |
| DATE                             | (N)     | (N)                    | (P)          | (MICRU- |         | ITY          | DEMAND                 | PER             | PER                              |
| DATE                             | (MG/L)  | (MG/L)                 | (MG/L)       | MHOS)   | (UNITS) | (JTU)        | (MG/L)                 | 100 ML)         | 100 ML)                          |
| AUG., 1                          | 970     |                        |              |         |         |              |                        |                 |                                  |
| 26                               | 16000   | .09                    | .10          | 125     | 7.7     | 1            | Children Tr            | 35              | 233                              |
| SEP.                             |         |                        |              |         | 44      | 0.4          |                        |                 |                                  |
| 09                               | 1907    | .09                    | .12          | 124     |         |              |                        | 2               |                                  |
| 14                               | 0       |                        | -            | 443     | 181     |              |                        | 0               | 0                                |
| 30                               |         | .11                    | .15          |         |         |              |                        | 1               | 25                               |
| NOV.                             |         |                        |              | 100 m   |         |              |                        |                 |                                  |
| 11                               |         | .14                    | .070         | 121     | 8.0     |              |                        | 3               | 420                              |
| MAY , 1                          |         |                        | 010          | 00      |         |              |                        |                 |                                  |
| 13                               | .00     |                        | .060         | 88      | 8.1     |              | 8-0                    | 17              | 400                              |
| JUNE                             | 0.1     |                        | 040          | 90      | 0.0     |              |                        |                 | - x = 0.25                       |
| JULY                             | .01     |                        | .060         | 89      | 8.0     |              |                        | 0               | 210                              |
| 14                               | .03     | .03                    | .050         | 109     | 8.0     |              |                        | 12              |                                  |
| AUG.                             | .03     | .03                    | .000         | 109     | 0.0     |              |                        | 2               | 2800                             |
| 11                               | .01     | .01                    | .030         | 105     | 7.8     |              |                        | 2               | 1100                             |
| SEP.                             |         |                        |              |         |         |              |                        |                 |                                  |
|                                  |         |                        |              |         |         |              |                        |                 | 1100                             |

Table 12.--Continued

11-3414.00 SACRAMENTO RIVER NEAR MT SHASTA (SITE 19)

## WATER QUALITY DATA

| DATE       | TIME  | TYPE | DIS-<br>CHARGE<br>(CFS) | TEMP-<br>ERATURE<br>(DEG C) | AIR<br>TEMP-<br>ERATURE<br>(DEG C) | DIS-<br>SOLVED<br>OXYGEN<br>(MG/L) | PER-<br>CENT<br>SATUR-<br>ATION | TOTAL RESI- DUAL CHLO- RINE (MG/L) | TOTAL<br>NITRO-<br>GEN<br>(N)<br>(MG/L) |
|------------|-------|------|-------------------------|-----------------------------|------------------------------------|------------------------------------|---------------------------------|------------------------------------|-----------------------------------------|
| MAY , 19   | 70    |      |                         |                             |                                    |                                    |                                 |                                    |                                         |
| 20         | 1340  | 2    | 478                     | 13.5                        |                                    | 9.7                                | 102                             | .00                                |                                         |
| JUNE       |       |      |                         |                             |                                    |                                    |                                 | 1735                               |                                         |
| 10         | 1255  | 2    | 267                     | 9.0                         |                                    | 11.0                               | 106                             | .00                                | 177                                     |
| 19         | 1650  | 2    | 129                     | 12.0                        | 0.64-                              | 356                                | 170                             | .00                                |                                         |
| JULY       | 1135  | 2    | 63                      | 12.5                        | 27.0                               | 10.0                               | 104                             | 0.77                               |                                         |
| AUG.       | 10930 |      |                         |                             |                                    |                                    |                                 |                                    |                                         |
| 26         | 1430  | 2    | 40                      | 15.0                        | 0.44-                              | 9.5                                | 103                             | .00                                |                                         |
| OCT.       |       |      |                         |                             |                                    |                                    |                                 | 00                                 |                                         |
| 01         | 1455  | 2    | 41                      | 13.0                        |                                    | 9.3                                | 98                              | .00                                |                                         |
| NOV.<br>12 | 1345  | 2    | 213                     | 10.0                        | 7.5                                | 9.9                                | 98                              | niee                               |                                         |
| JAN., 19   |       | -    | 200                     |                             |                                    |                                    |                                 |                                    |                                         |
| 26         | 1635  | 2    | 119                     | 4.5                         | 3.0                                | 11.7                               | 101                             | 2000                               |                                         |
| MAR.       |       |      |                         |                             |                                    |                                    |                                 |                                    |                                         |
| 23         | 1445  | 2    | 241                     | 6.0                         | 10.0                               | 11.4                               | 102                             | 0077                               |                                         |
| MAY        |       |      |                         |                             |                                    |                                    |                                 |                                    |                                         |
| 13         | 1030  | 2    | 967                     | 9.5                         | 13.0                               | 10.4                               | 101                             |                                    |                                         |
| JUNE<br>17 | 1030  | 2    | 296                     | 15.0                        | 12.5                               | 9.1                                | 100                             | 07                                 |                                         |
| JULY       | 1030  | 2    | 290                     | 13.0                        | 12.5                               | /                                  |                                 |                                    |                                         |
| 15         | 1200  | 2    | 88                      | 18.5                        | 32.0                               | 8.4                                | 101                             | 12 170                             |                                         |
| AUG.       |       |      |                         |                             |                                    |                                    |                                 |                                    |                                         |
| 11         | 1315  | 2    | 60                      | 14.0                        | 38.0                               | 9.3                                | 100                             | 0000                               | 107                                     |
| SEP.       |       |      |                         |                             |                                    | 0.0                                | 100                             | 1                                  | .20                                     |
| 16         | 1030  | 2    | 48                      | 11.5                        | 18.0                               | 9.8                                | 100                             |                                    | •20                                     |
|            |       |      |                         |                             |                                    |                                    |                                 |                                    |                                         |

| DATE           | TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L) | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | DIS-<br>SOLVED<br>NITRATE<br>(N)<br>(MG/L) |      | SPECI-<br>FIC<br>COND-<br>UCTANCE<br>(MICRO-<br>MHOS) | PH (UNITS) | TUR-<br>BID-<br>ITY<br>(JTU) | BIO-<br>CHEM-<br>ICAL<br>DXYGEN<br>DEMAND<br>(MG/L) | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | IMME-<br>DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) |
|----------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------|------|-------------------------------------------------------|------------|------------------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|
| MAY , 19       | 70                                     |                                                               |                                            |      |                                                       |            |                              |                                                     |                                                   |                                                            |
| JUNE           | .05                                    |                                                               | .00                                        | .23  | 78                                                    |            |                              |                                                     | 3NUL                                              | 1                                                          |
| 10             | .22                                    |                                                               | .00                                        | .010 |                                                       |            |                              |                                                     | Value                                             | 4                                                          |
| 19             |                                        |                                                               |                                            |      | :                                                     | 0          |                              |                                                     | 1                                                 | 17                                                         |
| JULY           |                                        |                                                               |                                            |      |                                                       |            |                              |                                                     | - AUa                                             | 31                                                         |
| 30             | .28                                    |                                                               | .05                                        | .050 |                                                       | 34         | -                            |                                                     | 2202                                              | 31                                                         |
| AUG.<br>26     | .17                                    |                                                               | .07                                        | .10  | 131                                                   | 8.3        | 1                            |                                                     | 13                                                | 96                                                         |
| OCT.           |                                        |                                                               | 0.0                                        |      |                                                       |            |                              |                                                     | EVDN .                                            | ma di salah                                                |
| 01             | .16                                    |                                                               | .14                                        | .11  |                                                       | 0          |                              |                                                     | 1                                                 | 14                                                         |
| NOV.           |                                        |                                                               |                                            | 050  | 121                                                   | 8.0        | 1                            | 1461                                                | 1-645                                             | 480                                                        |
| 12<br>JAN., 19 | .23                                    | 10                                                            | .09                                        | .050 | 121                                                   | 0.0        |                              |                                                     |                                                   | 100                                                        |
| 26             | .24                                    |                                                               | .14                                        | .050 | 110                                                   | 7.9        | 1                            |                                                     | 50                                                | 104                                                        |
| MAR.           |                                        |                                                               |                                            |      |                                                       |            |                              |                                                     | YAR                                               | 24.0                                                       |
| 23             | 1.2                                    | .10                                                           |                                            | .15  | 109                                                   | 7.6        | 10                           | . 5                                                 | 31                                                | 260                                                        |
| MAY<br>13      | .18                                    | .03                                                           |                                            | .070 | 83                                                    | 7.9        |                              |                                                     | 26                                                | 330                                                        |
| JUNE           | .18                                    | .03                                                           | 34                                         | .010 |                                                       |            |                              |                                                     |                                                   |                                                            |
| 17             | .25                                    | .02                                                           |                                            | .050 | 91                                                    | 7.8        | 100                          |                                                     | 8                                                 | 220                                                        |
| JULY           |                                        |                                                               |                                            |      |                                                       | 8.0        | 2                            |                                                     |                                                   | 2000                                                       |
| 15<br>AUG.     | .34                                    | .04                                                           | .04                                        | .090 | 116                                                   | 8.0        | -                            |                                                     | 4.363                                             | 2000                                                       |
| 11             | .24                                    | .11                                                           | .11                                        | .030 | 110                                                   | 8.1        | 1                            |                                                     | 1                                                 | 650                                                        |
| SEP.           |                                        |                                                               |                                            |      |                                                       |            |                              |                                                     |                                                   | 4000                                                       |
| 16             | .14                                    | .06                                                           | .06                                        | .090 | 128                                                   | 8.2        | 1                            |                                                     | 2                                                 | 4800                                                       |
|                |                                        |                                                               |                                            |      |                                                       |            |                              |                                                     |                                                   |                                                            |

Table 12.--Continued

11-3414.40 SACRAMENTO RIVER AT SHASTA RETREAT, NEAR DUNSMUIR (SITE 20)
WATER QUALITY DATA

| DATE       | TIME | TYPE | DIS-<br>CHARGE<br>(CFS) | TEMP-<br>ERATURE<br>(DEG C) | AIR<br>TEMP-<br>ERATURE<br>(DEG C) | DIS-<br>SOLVED<br>DXYGEN<br>(MG/L) | PER-<br>CENT<br>SATUR-<br>ATION | TOTAL<br>NITRO-<br>GEN<br>(N)<br>(MG/L) | TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L) |
|------------|------|------|-------------------------|-----------------------------|------------------------------------|------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|
| MAY , 19   |      |      |                         |                             |                                    |                                    |                                 |                                         |                                        |
| 22         | 0800 | 2    | 1100-                   | 13.0                        | 10-1-                              | 3.05                               |                                 |                                         | T01 . 1344H                            |
| JUNE       |      |      |                         |                             |                                    |                                    |                                 |                                         |                                        |
| 19         | 1735 | 2    |                         | 14.0                        |                                    |                                    |                                 |                                         | 23 HeL                                 |
| JULY       |      |      |                         |                             |                                    |                                    |                                 |                                         |                                        |
| 30         | 1400 | 2    | 152                     | 13.0                        | 0 y S <del>4 -</del>               | 10.3                               | 107                             |                                         | .12                                    |
| AUG.       |      |      |                         |                             |                                    |                                    | 101                             |                                         | 7 JUL                                  |
| 26<br>UCT. | 1550 | 2    | 10104-                  | 13.0                        | 2134-                              | 10.0                               | 104                             | 700                                     | .76                                    |
| 02         | 0745 | 2    | 2.0                     | 13.0                        | 9.6                                | 101                                |                                 |                                         | .05                                    |
| NOV.       | 0.45 |      |                         | 13.0                        | 7.0                                |                                    |                                 |                                         | .03                                    |
| 12         | 1450 | 2    | 332                     | 9.5                         | 8.0                                | 10.2                               | 98                              | 2244                                    | .18                                    |
| JAN., 19   | 71   |      |                         |                             |                                    |                                    |                                 |                                         |                                        |
| 28         | 0810 | 2    | 10:0-                   | 4.5                         | 0104-                              | 11.8                               | 101                             | 0.000                                   | .18                                    |
| MAR.       | 0.00 |      |                         | 144                         |                                    |                                    |                                 |                                         | TPI L. HAL                             |
| 23         | 1345 | 2    | 9:34-                   | 6.0                         | 10,2                               | 11.3                               | 100                             | 0007                                    | . 55                                   |
| MAY<br>13  | 1400 | 2    | 13 / 14-                | 10.5                        | 20.0                               | 10.3                               | 101                             |                                         | .22                                    |
| JUNE       | 1400 |      |                         | 10.5                        | 20.0                               | 10.5                               | 101                             | 40000                                   |                                        |
| 17         | 1245 | 2    | 0.04-                   | 15.0                        | 24.5                               | 9.3                                | 101                             | 07.44                                   | .29                                    |
| JULY       |      |      |                         |                             |                                    |                                    |                                 |                                         | 2000                                   |
| 15         | 1410 | 2    | 171                     | 16.0                        | 31.0                               | 9.2                                | 101                             | 00.00                                   | . 35                                   |
| AUG.       |      |      |                         |                             |                                    |                                    |                                 |                                         |                                        |
| 12         | 0715 | 2    | 151                     | 9.5                         | 17.0                               | 10.3                               | 99                              | 00.44                                   | .27                                    |
| SEP.       | 0000 |      | 124                     | 0.5                         | 10.5                               | 10.7                               | 101                             | 20                                      | PLATERUA                               |
| 16         | 0900 | 2    | 136                     | 8.5                         | 10.5                               | 10.7                               | 101                             | .20                                     | .12                                    |
|            |      |      |                         |                             |                                    |                                    |                                 |                                         |                                        |

| DATE       | DIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | SOLVED<br>NITRATE | TOTAL PHOS- PHORUS (P) (MG/L) |      | PH (UNITS) |   | FECAL<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) | IMME-<br>DIATE<br>COLI-<br>FORM<br>(COL.<br>PER<br>100 ML) |  |
|------------|---------------------------------------------------------------|-------------------|-------------------------------|------|------------|---|---------------------------------------------------|------------------------------------------------------------|--|
| MAY . 1    | 970                                                           |                   |                               |      |            |   |                                                   |                                                            |  |
| 22         |                                                               |                   |                               |      |            |   | -17                                               | ove 1                                                      |  |
| JUNE       |                                                               |                   |                               |      |            |   |                                                   |                                                            |  |
| 19         |                                                               |                   |                               |      |            |   | 2                                                 | 4                                                          |  |
| JULY       |                                                               | - 0.25            | 1.59                          |      |            |   |                                                   |                                                            |  |
| 30         |                                                               | .05               | .050                          |      |            |   |                                                   | 13                                                         |  |
| AUG.       |                                                               | .05               | .070                          | 130  | 7.8        |   |                                                   | 1100                                                       |  |
| 26<br>OCT. |                                                               | .05               | .070                          | 130  | 7.8        | 1 | 3                                                 | 8                                                          |  |
| 02         |                                                               | .11               | .10                           | 1 11 | N20        |   | 6                                                 | 12                                                         |  |
| NOV.       |                                                               |                   |                               |      |            |   |                                                   |                                                            |  |
| 12         |                                                               | .09               | .050                          | 126  | 7.8        |   |                                                   | 220                                                        |  |
| JAN., 1    | 971                                                           |                   |                               |      |            |   |                                                   |                                                            |  |
| 28         |                                                               | .14               | .050                          | 118  | 7.6        |   | 18                                                | 120                                                        |  |
| MAR.       |                                                               | -4.5              | .15                           |      |            |   |                                                   | 1281                                                       |  |
| 23<br>MAY  | .10                                                           |                   | .15                           | 111  | 7.3        |   | 6                                                 | 243                                                        |  |
| 13         | .00                                                           |                   | .070                          | 86   | 7.6        |   | 10                                                | 650                                                        |  |
| JUNE       |                                                               |                   | -                             |      |            |   | 10                                                | 0,0                                                        |  |
| 17         | .04                                                           |                   | .050                          | 99   | 7.5        |   | - 0                                               | 940                                                        |  |
| JULY       |                                                               |                   |                               |      |            |   |                                                   |                                                            |  |
| 15         | .08                                                           | .08               | .080                          | 122  | 7.6        |   | 2                                                 | 1200                                                       |  |
| AUG.       |                                                               |                   |                               |      |            |   |                                                   |                                                            |  |
| 12         | .06                                                           | .06               | .040                          | 123  | 7.6        |   | 4                                                 | 1400                                                       |  |
| SEP.<br>16 | .08                                                           | .08               | .090                          | 127  | 7.0        |   |                                                   |                                                            |  |
| 10         | .00                                                           | •00               | .090                          | 121  | 7.8        |   | 6                                                 | 3600                                                       |  |
|            |                                                               |                   |                               |      |            |   |                                                   |                                                            |  |

Table 12.--Continued

11-3414.60 SACRAMENTO RIVER AT SODA CREEK ROAD, NEAR DUNSMUIR (SITE 21)

## WATER QUALITY DATA

|               |                           |        | W                       | ATER QUAL        | ITY DATA                           |                                    |                                 |                |                                        |
|---------------|---------------------------|--------|-------------------------|------------------|------------------------------------|------------------------------------|---------------------------------|----------------|----------------------------------------|
| DATE          | TIME                      | TYPE   | DIS-<br>CHARGE<br>(CFS) |                  | AIR<br>TEMP-<br>ERATURE<br>(DEG C) | DIS-<br>SOLVED<br>DXYGEN<br>(MG/L) | PER-<br>CENT<br>SATUR-<br>ATION |                | TOTAL KJEL- DAHL NITRO- GEN (N) (MG/L) |
| MAY , 19      | 970                       |        |                         |                  |                                    |                                    |                                 |                |                                        |
| JUNE          |                           | 2      | 555                     |                  |                                    |                                    |                                 | -              |                                        |
| 19            | 1830                      | 2      | 228                     | 17.0             |                                    |                                    |                                 |                |                                        |
| AUG.<br>28    | 1440                      | 2      | 129                     | 15.0             |                                    | 10.0                               | 106                             |                | .39                                    |
| 02            | 0930                      | 2      | 126                     | 8.0              |                                    | 11.1                               | 101                             |                | .16                                    |
| NOV.<br>13    | 0825                      | 2      | 329                     | 7.5              | 3.5                                | 10.8                               | 97                              | 200            | .17                                    |
| JAN., 19      | 0900                      | 2      | 362                     | 4.0              |                                    | 12.0                               | 99                              | -              | .79                                    |
| MAR.<br>23    | 1015                      | 2      | 566                     | 6.0              | 9.0                                | 11.4                               | 99                              | 2802           | .65                                    |
| MAY           |                           |        |                         |                  |                                    |                                    |                                 | 100            |                                        |
| JUNE          | 1500                      | 2      | 1280                    | 11.5             | 20.5                               | 10.1                               | 100                             |                | • 20                                   |
| 17<br>JULY    | 1315                      | 2      | 410                     | 16.0             | 23.5                               | 9.6                                | 104                             | -              | .40                                    |
| 15<br>AUG.    | 1545                      | 2      | 184                     | 19.0             | 33.0                               | 9.0                                | 105                             |                | .44                                    |
| 12            | 0945                      | 2      | 161                     | 12.5             | 27.0                               | 10.2                               | 103                             |                | 1.3                                    |
| SEP.<br>16    | 1415                      | 2      | 147                     | 14.0             | 28.0                               | 10.2                               | 106                             | .18            | .12                                    |
|               | DIS-<br>SOLVED<br>NITRITE | DIS-   |                         | SPECI-<br>FIC    |                                    |                                    | BIO-<br>CHEM-                   | FECAL<br>COLI- | IMME-<br>DIATE<br>COLI-                |
|               | PLUS                      | SOLVED | PHOS-<br>PHORUS         | COND-<br>UCTANCE | РН                                 | TUR-<br>BID-                       | OXYGEN                          | FORM (COL.     | FORM<br>(COL.                          |
| 0475          | (N)                       | (N)    | (P)                     | (MICRO-          |                                    | ITY                                | DEMAND                          | PER<br>100 ML) | PER                                    |
| DATE          |                           | (MG/L) | (MG/L)                  | MHOS)            | (UNITS)                            | (JTU)                              | THOTE                           | 100 ML)        | 100 ML)                                |
| MAY , 1       | .970                      |        |                         |                  |                                    |                                    |                                 |                | 7                                      |
| JUNE<br>19    |                           |        | 100                     | 191              |                                    | -                                  |                                 | 20             | 78                                     |
| AUG.          |                           |        |                         |                  |                                    |                                    |                                 | 2              | 12                                     |
| 28<br>UCT.    |                           | .07    | .080                    | 134              | 8.2                                | 0                                  |                                 |                | 1901                                   |
| 02<br>NOV.    |                           | .09    | .10                     | 08.              | 216                                | 107                                |                                 | 2              | 52                                     |
| 13<br>JAN., 1 | 971                       | .09    | .040                    | 121              | 7.7                                |                                    |                                 |                | 220                                    |
| 28<br>MAR.    |                           | .09    | .030                    | 99               | 7.8                                |                                    |                                 | 24             | 200                                    |
| 23            | .10                       |        | .15                     | 100              | 7.4                                |                                    |                                 | 81             | 1500                                   |
| MAY<br>13     | .00                       |        | .070                    | 86               | 8.0                                |                                    |                                 | 13             | 850                                    |
| 17            | .03                       |        | .050                    | 99               | 8.1                                |                                    |                                 | 8              | 1100                                   |
| JULY<br>15    | .04                       | .04    | .080                    | 123              | 8.3                                |                                    |                                 | 2              | 1400                                   |
| AUG.<br>12    | .04                       | .04    | .040                    | 125              | 8.1                                |                                    |                                 | 28             | 2000                                   |
| SEP.          | 0.4                       |        | 10                      | 122              | 0 2                                |                                    |                                 | 0              | 640                                    |

Table 12.--Continued

11-3420.00 SACRAMENTO RIVER AT DELTA (SITE 22)
WATER QUALITY DATA

| DATE       | G JAT  | TYPE      | DIS-<br>CHARGE |         |         | OXYGEN  | PER-<br>CENT<br>SATUR-<br>ATION | TOTAL<br>NITRO-<br>GEN<br>(N)<br>(MG/L) |                |
|------------|--------|-----------|----------------|---------|---------|---------|---------------------------------|-----------------------------------------|----------------|
| 137,034    |        |           | 10.37          | 1000 01 | 1020 07 | (5,12)  |                                 | (1107)                                  | STAD           |
| MAY ,      |        |           |                |         |         |         |                                 |                                         |                |
| 22         | 1030   | 2         | 984            | 177     | 0       | 281     | 5                               |                                         |                |
| JUNE       | 1000   |           | 396            | 20.0    |         |         |                                 |                                         |                |
| 19<br>AUG. | 1920   | 2         | 396            | 20.0    | 17.0    | 825     | -                               | 1830                                    |                |
| 28         | 1625   | 2         | 182            | 19.0    |         | 9.7     | 108                             |                                         |                |
| UCT.       | 10, 2  | 100       | 0.01           | 17.00   |         | 129     | 100                             |                                         |                |
| 02         | 1215   | 2         | 188            | 13.5    | 31.2    | 10.9    | 108                             |                                         |                |
| NOV.       |        |           |                |         |         |         |                                 |                                         | 02             |
| 13         | 1015   | 2         | 977            | 7.5     | 2.5     | 11.4    | 98                              |                                         |                |
| JAN.,      | 1971   |           | 10,01          |         |         |         |                                 |                                         |                |
| 28<br>MAR. | 1045   | 2         | 1620           | 5.5     | 0.4     | 12.3    | 102                             | 0000                                    | Treat told     |
| 23         | 0830   | 2         | 2270           | 6.5     | 7.5     | 11.7    | 99                              |                                         |                |
| MAY        | 0030   | 66.       | 2011           | 0+9     | 0.0     | 999     | 3.                              |                                         | 23             |
| 14         | 0900   | 2         | 2280           | 9.0     | 18.0    | 10.9    | 99                              |                                         |                |
| JUNE       |        |           | . 1-01         |         |         |         | 1 8                             |                                         |                |
| 17         | 1500   | 2         | 722            | 17.0    | 30.0    | 9.6     | 102                             | 5151                                    |                |
| JULY       | 1845   | 2         | 320            | 21.0    | 28.0    | 8.6     | 100                             |                                         |                |
| 15<br>AUG. | 1045   | -         | 320            | 21.0    | 20.0    | 0.0     | 100                             | 1549                                    |                |
| 12         | 1215   | 2         | 236            | 22.5    | 34.5    | 9.4     | 112                             |                                         | -34            |
| SEP.       |        | 601       |                |         |         |         |                                 | . 2490                                  |                |
| 16         | 1625   | 2         | 204            | 18.5    | 33.5    | 9.8     | 108                             | .20                                     |                |
|            |        |           |                | 0.05    |         |         |                                 |                                         | ******         |
|            |        |           |                |         |         |         |                                 |                                         |                |
|            | TOTAL  | D15-      |                |         |         |         |                                 |                                         | IMME-          |
|            | KJEL-  | SOLVED    |                |         | SPECI-  |         | B10-                            | FECAL                                   | DIATE          |
|            | DAHL   | NITRITE   | DIS-           | TOTAL   | FIC     |         | CHEM-                           | COLI-                                   | COL I-         |
|            | NITRO- | PLUS      | SOLVED         | PHOS-   | COND-   |         | ICAL                            | FORM                                    | FORM           |
|            | GEN    | NITRATE   |                | PHORUS  | UCTANCE |         | OXYGEN                          | (COL.                                   | (COL.          |
|            | (N)    | (N)       | (N)            | (P)     | (MICRO- |         | (MG/L)                          | PER<br>100 ML)                          | PER<br>100 ML) |
| DATE       | (MG/L) | (MG/L)    | (MG/L)         | (MG/L)  | WHOSI   | (UNITS) | (MG/L)                          | 100 ML                                  | 100 ML)        |
| MAY , 19   |        |           |                |         |         |         |                                 | FURS (M)                                |                |
| 22         |        | ODI NEW H | .00            | .31     | Heli    | H HART  | Add to                          | (NOT 1)                                 | 3070           |
| JUNE       |        |           |                |         |         |         |                                 | 100 -11                                 | 00.00          |
| 19         |        |           |                |         |         |         |                                 | 2                                       | 10             |
| AUG.<br>28 | .18    | 770       | .02            | .060    | 147     | 8.8     |                                 | 2                                       | 8              |
| OCT.       | •10    |           |                |         | -       | -       |                                 |                                         | 1,101          |
| 02         | .22    |           | .00            | .060    |         |         |                                 | 1                                       | 31             |
| NOV.       |        |           | 0              | 2.78    | 134     |         |                                 |                                         | 785            |
| 13         | .08    |           | .05            | .020    | 106     | 8.0     |                                 |                                         | 80             |
| JAN., 19   |        |           | .02            | .010    | 80      | 7.8     | PO.                             | 11                                      | 56             |
| 28<br>MAR. | .10    | -         | .02            | .010    | . 60    | 1.0     | mo i                            |                                         | 20             |
| 23         | .60    | .10       |                | .10     | 82      | 7.3     |                                 | 31                                      | 1020           |
| MAY        |        |           |                |         |         |         | .09.                            |                                         |                |
| 14         | .25    | .03       | 429            | .070    | 73      | 7.9     |                                 | 2                                       | 1200           |
| JUNE       | 3.8    |           |                | 24.0    | 001     | 111     |                                 | 011                                     | 2371           |
| 17         | .25    | .00       | 414            | .040    | 96      | 8.1     |                                 | 002                                     | 220            |
| JULY 15    | .44    | .02       | .02            | .070    | 124     | 8.3     |                                 | 8                                       | 2100           |
| AUG.       | 23 g   | 427       |                |         | 200     | 076     |                                 |                                         |                |
| 12         | .31    | .00       | .00            | .050    | 133     | 8.4     |                                 | 9                                       | 6200           |
| SEP.       | 1995   |           |                | 000     | 173     | 985     |                                 | 204                                     | 1400           |
| 16         | .19    | .01       | .01            | .080    | 143     | 8.7     |                                 | 0                                       | 1600           |
|            |        |           |                |         |         |         |                                 |                                         |                |



RINGS ... FLOOD FREQUENCY ... DIGITAL MONITOR ... RAIN GAGE THE OF SATURATION ... BASE OF FRESH WATER ... DEPOSITION "HYDROLOGIC BUDGET " LIMNOLOGY . . . AQUICLUDE . . . WATER VE SIZE ... STREAMS ... TOTAL NITROGEN ... GRAIN SIZE ... ANIC POLLUTION ... SPECIFIC CONDUCTANCE ... TOTAL ORGANIL TER TABLE ... HYDROLOGY ... SUBSURFACE GEOLOGY ... DIVERS