
FOR SELECTED THERMAL WELLS AND SPRINGS IN

SOUTHEASTERN CALIFORNIA

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 33-73

BIBLIOGRAPHIC DATA SHEET	1. Report No.	2.	3. Recipient's Accession No.
. Title and Subtitle			5. Report Date
TEMPERATURE ANI	CHEMICAL DATA FOR SE	LECTED THERMAL WELLS	June 1974
AND SPRINGS IN	SOUTHEASTERN CALIFORN	IA	6.
. Author(s) W. R. Moyle, J	r.	美国基本人员	8. Performing Organization Rept. No. WRI 33-73
· Performing Organization N	lame and Address		10. Project/Task/Work Unit No.
U.S. Geologica	l Survey, WRD		
California Dis	trict		11. Contract/Grant No.
345 Middlefield	d Road		
Menlo Park, Cal	lifornia 94025		
2. Sponsoring Organization	Name and Address		13. Type of Report & Period Covered
Same as 9 above			Final
Jame as y above			14.
5. Supplementary Notes			

16. Abstracts

This report provides government agencies, private industry, and the general public with: (1) the general location of areas of thermal ground water; (2) the range of temperature; (3) data on the chemical quality, pointing out some of the constituents that may be detrimental to its use; and (4) a map showing the locations of selected thermal wells and springs with relation to the public land net and cultural features.

17. Key Words and Document Analysis. 17a. Descriptors

*Thermal wells, *Thermal springs, Faults, California

17b. Identifiers Open-Ended Terms

Chemical data, Southeastern California

17c. COSATI Field/Group

18. Availability Statement No restriction on distribution	19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 16
NO lestification on distribution		22. Price

(200) WRi MO.33-23

TEMPERATURE AND CHEMICAL DATA FOR
SELECTED THERMAL WELLS AND SPRINGS
IN SOUTHEASTERN CALIFORNIA
By W. R. Moyle, Jr.

U.S. GEOLOGICAL SURVEY water Resources Division

Water-Resources Investigations 33-73

two and

UNITED STATES DEPARTMENT OF THE INTERIOR

Rogers C. B. Morton, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

For additional information write to:

District Chief
Water Resources Division
U.S. Geological Survey
345 Middlefield Road
Menlo Park, Calif. 94025

	CONTENTS	
		Page
Abstrac		1
	ction	1
Pu	rpose and scope of the report	2
	11- and spring-numbering system	2
	ture and chemical quality of water	3
Selecte	d references	12
	ILLUSTRATIONS	
		D
Figure		Page
	TABLES	
		Page
Table 1		Tage
2	에 있는 사용하게 보고 있다면 바로 사용하게 되었다. 나는 사용에 가장 없는 사용에 되었다면 보고 있는 것이다면 보고 있는 것이다면 보고 있는데 보고 있는데 사용하게 되었다면 보고 있다면 보고 있다.	5
3		
Maria Sa	southeastern California	6

TEMPERATURE AND CHEMICAL DATA FOR SELECTED THERMAL WELLS AND

SPRINGS IN SOUTHEASTERN CALIFORNIA

By W. R. Moyle, Jr.

ABSTRACT

This report lists data on temperature and chemical quality for 95 wells or springs in southeastern California that contain water in excess of 38°C (Celsius) or 100°F (Fahrenheit). The highest temperature listed is 280°C (536°F).

INTRODUCTION

The interest in thermal ground water in areas in southern California by government, private industry, and the general public prompted the preparation of this brief report. Federal and State agencies have under their jurisdiction large areas of public land that is sometimes leased or sold to the general public, and it is in the public interest to know all aspects of the potential resources of these lands. Private industry is interested in the possibility of producing electrical power from geothermal steam or in extracting the chemicals from the hot fluids that constitute the local water. The general public is interested in thermal areas for recreation and therapy, such as swimming and steam baths. The water of some of the thermal areas has been bottled and marketed, and claims have been made as to therapeutic or medicinal effects of some water.

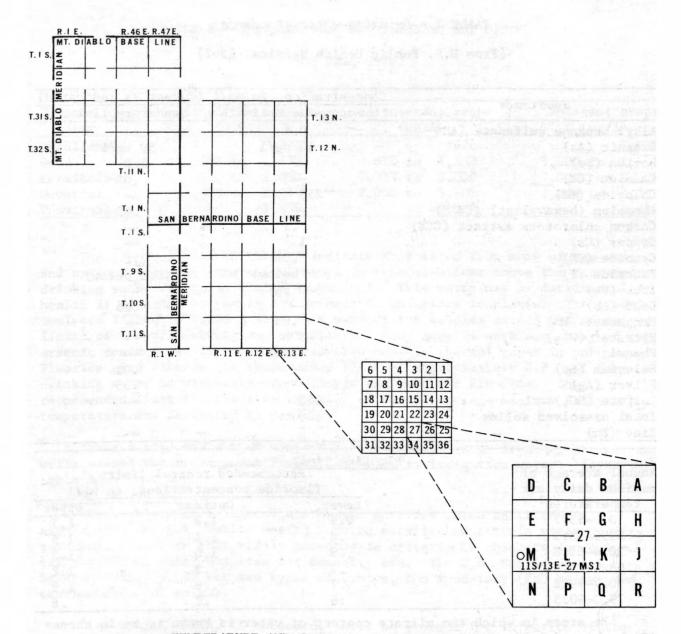
All values in table 3 have been rounded to conform to U.S. Geological Survey reporting practices. Analyses from non-Survey sources do not necessarily conform with analytical techniques and standards of accuracy adopted by the Geological Survey. As various laboratories use different analytical procedures, the reported analyses may not be strictly comparable one with another.

¹Thermal water as used herein has a temperature of about 38°C (Celsius) (100°F (Fahrenheit)), or greater.

Purpose and Scope of the Report

The purpose of this report is to provide government agencies, private industry, and the general public with: (1) the general location of areas of thermal ground water; (2) the range of temperature; (3) data on the chemical quality, pointing out some of the constituents that may be detrimental to its use; and (4) a map showing the locations of selected thermal wells and springs with relation to the public land net and cultural features. Many of these wells and springs are alined along and associated with fault zones, as shown in figure 1, or are located in the Imperial Valley where high temperature ground water is found (Dutcher and others, 1972).

The scope of this report includes compilation of selected data in the files of the Geological Survey, some of it collected from other agencies and individuals, and which may be unpublished or available only in isolated publications not related to geothermal data. No attempt was made to republish data from comprehensive geothermal reports. The data presented here are adequate for general information on water quality and for determination of possible uses, such as human consumption, industrial use, or irrigation. The data should not be utilized for projecting geothermal gradients based on constituents such as silica. The silica (SiO2) listed in this report may not include all colloidal silica present in the water.


Well- and Spring-Numbering System

The well-numbering system in this report has been used by the Geological Survey since 1940. Wells and springs are assigned numbers according to their location in the rectangular system for the subdivision of public land. For example, in the number 11S/13E-27M1 S, the part of the number preceding the slash indicates the township (T. 11 S.) and the number between the slash and hyphen indicates the range (R. 13 E.); the digits following the hyphen indicate the section (sec. 27); the letter following the section number indicates the 40-acre subdivision of the section, as shown by the accompanying diagram.

Within each 40-acre tract, the wells are numbered serially, as indicated by the final digit. The final letter, separated from the rest of the number by a space, indicates the base line and meridian. Base-line and meridian designations are as follows: M, Mount Diablo; S, San Bernardino.

The system for numbering springs is identical to that for wells except that the letter "S" is added immediately after the letter which indicates the 40-acre subdivision. Thus, if the number described above were for a spring, it would be written 11S/13E-27MS1 S.

Well and spring numbers that contain an X or have a partial number only are approximately located.

TEMPERATURE AND CHEMICAL QUALITY OF WATER

The U.S. Public Health Service (1962) standards for drinking water are listed in table 1. The standards shown in table 2 for boron in irrigation water are from Hem (1970, p. 329).

The temperature and chemical data listed in table 3 are from the California Department of Water Resources, the U.S. Navy, private laboratories, and the Geological Survey. Published sources are listed in the references. Only the constituents listed in table 3 were analyzed in each sample. In many instances geothermal water contains uncommonly high quantities of dissolved salts and metals and consequently may contain additional constituents for which analysis was not made, but for which the standards are presented in table 1. Future analyses may reveal the presence of these additional constituents in some water.

TABLE 1.--Drinking-water standards

[From U.S. Public Health Service, 1962]

Cubatanas	Concentration, in mg/l	(except as indicated)
Substance	Recommended limits	Mandatory limits
Alkyl benzene sulfonate (ABS)	0.5	
Arsenic (As)	10 μg/1	50 μg/1
Barium (Ba)	· -	1.0
Cadmium (Cd)		.01
Chloride (C1)	250	
Chromium (hexavalent) (Cr+6)		.05
Carbon chloroform extract (CCE)	.2	
Copper (Cu)	1	
Cyanide (CN)	.01	.2
Fluoride (F)	(See below)	(See below)
Iron (Fe)	300 μg/1	
Lead (Pb)		.05
Manganese (Mn)	.05	<u></u>
Nitrate ¹ (NO ₃)	45	The state of the s
Phenols	.001	
Selenium (Se)		.01
Silver (Ag)	ris de la companya de	. 05
Sulfate (SO ₄)	250	<u></u>
Total dissolved solids	500	
Zinc (Zn)	5	

Annual average of maximum daily air	Fluoride limit Rec fluor	ommended control li ide concentrations,	mits, in mg/l
temperatures ²	Lower	Optimum	Upper ³
50.0-53.7	0.9	1.2	1.7
53.8-58.3	.8	1.1	1.5
58.4-63.8	.8	1.0	1.3
63.9-70.6	.7	.9	1.2
70.7-79.2	.7	.8	1.0
79.3-90.5	.6	.7	.8

¹In areas in which the nitrate content of water is known to be in excess of the listed concentration, the public should be warned of the potential dangers of using the water for infant feeding.

The time variations in temperature and constituents at the same well or spring (table 3) are probably due to the fact that different observers collected samples from different locations in large spring areas, or from different depths in wells. In many instances the location within the spring area or the sample depth in a well was not described. The temperature of thermal water listed in table 3 ranges between 38° and 280°C, or 100° and 536°F. Even though their water temperatures are high, many of the wells and springs are used for domestic purposes.

²Based on temperature data obtained for a minimum of 5 years.

³Upper limit (grounds for rejection) is twice the optimum.

TABLE 2.--Irrigation-water standards for boron

[From Hem, 1970]

Classes of water	Sensitive crops $(\mu g/1)$	Semitolerant crops (µg/1)	Tolerant crops (µg/1)
Excellent	<330	<670	<1,000
Good	330 to 670	670 to 1,330	1,000 to 2,000
Permissible	670 to 1,000	1,330 to 2,000	2,000 to 3,000
Doubtful	1,000 to 1,250	2,000 to 2,500	3,000 to 3,750
Unsuitable	>1,250	>2,500	>3,750

The chemical data in table 3 indicate that water from many of the wells and springs contains some constituents in concentrations above the recommended drinking water standards listed in table 1. This water may be detrimental to health if consumed by people and animals or injurious to plants. The arsenic analyses listed in table 3 show that many of the samples exceed the mandatory limit of 50 μ g/l (micrograms per liter). Many samples were not analyzed for arsenic content, so its true distribution in this thermal water is unknown. Fluoride also exceeds the recommended limit of approximately 0.9 mg/l for drinking water in virtually every sample analyzed for fluoride. The recommended limit for fluoride is based on annual average maximum daily air temperature and is listed in table 1.

Table 3 also shows that many of the samples of water from hot springs and wells exceed the recommended limits for boron in irrigation water, listed in table 2.

¹With reference to interstate public carriers (such as trains and airplanes), the U.S. Public Health Service established certain water-quality standards that have been widely accepted as criteria by which to judge the suitability of water supplies for domestic use. The U.S. Public Health Service (1962, p. V) set two types of limits, the mandatory ("a" below) and recommended ("b" below).

[&]quot;(a) Limits which, if exceeded, shall be grounds for rejection of the supply. Substances in this category may have adverse effects on health when present in concentrations above the limit.

[&]quot;(b) Limits which should not be exceeded whenever more suitable supplies are, or can be made, available at reasonable cost. Substances in this category, when present in concentrations above the limit, are either objectionable to an appreciable number of people or exceed the levels required by good water-quality-control practices."

TABLE 3. -- Temperature and chemical data in thermal

[All values have been rounded to conform to Geological Survey reporting practices. Analyses from non-Survey sources do not necessarily conform with analytical techniques strictly comparable

Units of expression: The concentrations of chemical constituents are expressed in milligrams per liter (mg/1) for dissolved-solids content of concentrations less than 7,000. For concentrations greater than 7,000, the constituents are reported in parts per million (ppm). Iron, boron, and arsenic are in micrograms per liter (μ g/1).

The U.S. Public Health Service drinking water standards shown in the table between the heading and the data are the recommended limits, except for arsenic which lists the recommended limit (lower figure) and the mandstory limit (upper figure). The mandstory limit is the limit set by the Public Health Service and is grounds for rejection for use for public supply.

77.76		Living St.	The state of	- until	Water	Water	1	Resul	ts in mil	ligrams p	er liter	(mg/1) excep	t as note	d
Map number	Well or spring number	Name	Date of collection	Depth of well (feet)	temper- ature (°C)	temper- ature (°F)	Silica (SiO ₂)	Iron (Fe) (µg/1)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potassium (K)	Bicar- bonate (HCO ₃)	Carbonate (CO3)
Service	elic Health drinking-water ds (1962)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ne lana-	4	7-1	-30		300		1				
1	38/28E-31A1 M		6-20-66	tadi"	53.3	128			51	0	360	38	549	0
2	3S/28E-13ES1 M	Hot Spring	6-16-66 5-14-67	a ligate l'illi	82.2 82.2	180 180			25	0	400	30	727	0
3	3S/28E-25AS1 M	Hot Spring	5-17-57 5-12-66 5-14-67		93.3 87.8 84.4	200 190 184	131		1 ₄ 3	0	350 325	20 22	497 481	8
14	3S/28E-35ES1 M	Hot Bubbling Pool	12-29-60 6-14-66 5-14-67	erasit.	73.9 72.8	165 163	170	read.	7 7	1 2	361 372	22 23	409 451	0
5	3S/29E-21LS1 M	Dehy Hot Spring	6-11-66 5-14-67		53.3 56.7	128 134		21 d	28	0	380	37	791	0
6	3S/29E-21NS1 M	Dehy Hot Spring	6-22-66		55.6	132		wik	26	0	380	35	781	0
7	3S/29E-31AS1 M	Marias 5	6-25-60 5-13-66 5-14-67		61.1	142 141	110	trock 1 b	15 16	1	306 315	20 21	482 498	0
8	2N/27E-31 M				80.0	176		1 1						
9	8s/32E-17FS1 M	CAPACTE OF	2-16-56		58.9	138			8.6	0:	161	.5		
10	2S/31E-2X1 M		1875 3-15 - 62		58.9 57.8	138 136	52		2	0	78	.8	18	42
11	8s/33E-17G1 M		1-26-55		54.4	130			9	1	160	2.5	22	10
12	22S/39E-4P1 M	Coso Hot Springs	5- 7-62	106.1	97.2	207	195		3	1	19	9.4	49	0
13	22S/39E-4H8 M	Coso Hot Springs	7-12-67 4-16-68	375	115.6	240	50 154	150	73 74	.5 1.0	1,760 1,630	154 244	134	84 77
14	22S/39E-7J1 M	Devil's Kitchen	12-14-60		96.7	206	326	28,000	-18	81	14	28	0	0
15	228/41E-25F1 M		12-12-60	415.6	97.8	208								
16	24S/43E-9P1 M		7-26-63	600	58.3	137			3.6	.7	20,300			1,080
17	1N/8E-2N1 S		12-13-62		53.3	128	54		14	.6	215	3.0	37	7.2
18	1N/9E-14C1 S		11-19-60		63.3	146	43		24	18	347	11	1414	0
19	1N/9E-29F1 S	e la terre au	441		47.8	118	43.39		10	.6	145	The Atlan	57	13
20	2S/5E-30L1 S	in no soletin	2-24-54 2-23-55	315	44.4	112			34 45	0	275 314	4.0 7.7	51 40	0
21	3S/5E-10H1 S		2-23-55	331	93.3	200			52	6	340	12	32	.5
22	5S/6E-24N2 S		6-29-60	356	83.3	182	12		37	5.1	57	4.8	82	0
23	8s/9E-19Q1 s		4-19-55	387	42.8	109			14	3	139	1.0	58	0
24	8s/9E-29R1 s		4-30-58 5- 6-59	DW:SG	38.9	102	14		8	0	162	1.5	73 53	0
See	footnote at end o	f table.												

See footnote at end of table.

wells and springs in southeastern California

and standards of accuracy adopted by the U.S. Geological Survey. As various laboratories use different analytical procedures, the reported analyses may not be one with another]

Source of data and sample number: DWR, California Department of Water Resources; G, G. K. Gilbert (1875); GS, U.S. Geological Survey; H, Hornkohl Laboratories Inc., Bakerafield, Calif.; D. W. Lombardi, Naval Weapons Center, China Lake, Calif.; NAR, North American Rockwell, Downey, Calif.; USN, U.S. Navy, Southwest Division, San Diego, Calif.; PS, Pacific Spectrochemical Laboratory, Los Angeles, Calif.; Ro. Richfield Oil Co.; SE, San Bernardino County Flood Control District; T, Trona Control Laboratories, Kerr-McGee, Trona, Calif.; USDA, U.S. Department of Agriculture.

		Res	SULUS III I	III TTTRI COMID	per river	1116/11/01/0	ope do not	edContinued Dissolved		Noncar-		Specific		Source data and
Sulfate (SO ₄)	Chloride (Cl)	Fluoride (F)	Nitrate (NO ₃)	Boron (B) (µg/1)	Arsenic (As) (µg/l)	Bromine (Br)	Lithium (Li)	solids (residue on evaporation at 180°C)	Hardness as CaCO3	bonate hardness as CaCO3	Percent	conductance (micromhos at 25°C)	pН	data and sample number
250	250	0.9	45		50 10	707		500		Territor.	114			Market with
120	258	11	0.8	11,000	1,850			1,380	127			1,890	6.8	DWR
90	204	8.6	.8	9,400	1,100 560	1.5	3.0	1,240	63			1,910	7.1 7.1	DWR-20900
90 84	200 190 190	10 8.6	0	10,000 9,200	1,000 1,100 680	1.8	2.2	1,110	10 12	0	95	1,620 1,540 1,570	8.3 8.2 7.5	DWR-19665 DWR-20899
134 107	245 264 249	10	1.9	10,000	2,000	1.7		1,220 1,220	22 26			1,710 1,740 1,730	7.4 8.2 8.0	DWR DWR DWR-20903
60	160 152	4.9	-3	31,000	520 320	2.8	1.6	1,270	70	0	88	1,780 1,560	7.3 7.1	DWR-1981
60	158	4.8	0	31,000				1,240	65	0	88	1,750	7.0	DWR-1981
77 78	181 180 179	7.0 6.0	4.3	8,000 8,000	1,180	1.7		964 960	42 44	0	91	1,440 1,490 1,490	7.3 8.2 8.0	DWR DWR-1966 DWR-2090
72	182	7.8	0	600		.2		474	21		93	878	8.7	DWR-R217
52	21	3.2	2.5	140				259	5	0	97	370	9.3	G DWR-R431
69	178	8.0	0	460				470						DWR-5307
13	1.0	.5	4.3	10				293	13	0	68	168	7.4	DWR-R448
38 53	2,790 3,040	3.7 2.2	7.1	48,000 72,000	7,500	2.6		5,740 5,230	184			910	8.9	USN H-165232
1,450	0	.9	3.0	600				2,260	380		3	6,440	2.2	GS-35690
														GS
8,520	23,500			571,000				a53,900	11		100			T
341	60	17	.5	500				700	38	0	92	1,130	8.4	DWR-1488
596	178	4.2	0	1,300				1,000	137	101	83	1,850	7.7	DWR-L65
176	60	18						a451	27		92		9.2	SB
462 552	115 142	6.0 5.0	0 2.8	800				914			85	1,490 1,480	8.0	DWR-4036 DWR-R54
583	1.84	8.3	.3	2,700				1,290			81	1,700	8.8	DWR-R55
71	66	.04	15	200				289	114	47	51	509	7.8	DWR-L43
99	145	4.8	.9	230				421			86	747	8.3	DWR-R60
111	133 118	3.5	0	500				448	20 23		94	766 734	8.4	DWR-T181

TABLE 3.--Temperature and chemical data in thermal

					Water	Water		Resul	ts in mil	ligrams p	er liter	(mg/1) excep	t as note	d
Map number	Well or spring number	Name	Date of collection	Depth of well (feet)	temper- ature (°C)	temper- ature (°F)	Silica (SiO ₂)	Iron (Fe) (µg/1)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potassium (K)	Bicar- bonate (HCO ₃)	Carbonate (CO3)
25	8s/12E-36 s	Pilger Estates	4- 8-65		82.2	180	79		107	16	888	33	268	0
26	9S/9E-4K1 S		5-19-67	- 2.	46.1	115			607	48	3,320	21	29	0
27	9S/12E-2X1 S		4-22-52	325	78.9	174 170	25		170	26	1,120		451	0
28	10S/3E-25DS1 S	Warner Hot Springs	6- 3-5'i	32)	76.7 64.4	148	د)		138	33	978	53	397	0
20	100/36-2/001 0	warner not springs	9- 2-54 8-16-60		57.2 54.4	135 130			2	.6	93 95	1.3	60	2 45
			9-22-64		59.4	139	107		4	.2	97	2.7	52 55	49
29	10S/10G-18N1 S		5-19-67		40.0	104			9	6	1,480	12	1,210	0
30	10N/20E-13R1 S	Flamingo Well	5-14-61 5-24-62		40.0	104	35 27		3.4	.9	118	1.3	65 50	12 10
			5-13-64		39.4	103	27		2.6	.5	115	3.2	73	12
31	11S/9E-2B1 S		5-19-67		57.8	136			0	0	860	6	459	0
32	18S/8E-7 s	Jacumba Hot Spring	9- 8-64		37.8	100	53		1	1	101	1	17	36
33	18s/8E-7J3 s		5- 2-61 1-30-64	1	38.3 36.7	101	37		2 2.1	0.7	101 99	.5	31 48	27 20
34	7S/3W-14 S	Murietta Hot Springs	9-22-64		55.6	132	64		7	5	237	14		16
35	3s/2W-23 s	Eden Hot Springs	9-21-64		42.8	109	56		0	.1	106	0	61	18
36	78/3W-14N S	Temecula Hot Springs	11-22-64		46.7	116	71		7	0	244	1	6	23
37	7S/6E-6 S	San Juan Hot Springs	1875		50.6 50.6	123 123	83		1	1	89	1	13	30
38	2S/5E-33M S		1965	215	44.4	112	38		38		303	6.5	31	3
39	3S/5E-10H1 S		3- 9-55		93.3	200			52	6	340	12	32	1
40	3S/5E-10H2 \$		10-30-63		80.0	176			52	0	365	10	22	3.
41	38/5E-10H3 s		5-27-63		95.6	204								
42	3S/5E-10H4 s		7- 3-63	500	97.8	208								
43	3S/5E-11N S		5-16-61		87.8	190	terio -							
44	3S/5E-11M3 S		10-30-63		81.1	178			48	0	365	10	19	4.:
45	3S/6E-17J S		1-13-53		48.9	120								
46	2S/5E-32H2 S		8-28-64		76.7	170								
47	3S/6E-21F S		1-15-65	430	1414.14	112	18		42	3	223	4	69	
48	2S/5E-30H S		2-19-68		46.7	116	1		35	4	285	10	40	
49	1N/4W-11 S		914		94.4	202								
50	12S/13E-10D S	97.0	2- 6-59	4,720	167.8	334	156	13,000	1,660	76	12,000	1,160		
51	11S/13E-10 S			737	117.2	243								
52	13S/14E-15F S			8,350	138.9	282								
53	11S/13E-13E S			500	88.9	192								
54	11S/13E-23 S		5-18-64	4,859	232.2	450								
55	11S/13E-27M1 S			7,117	280.0	536								
56	158/15E-36 S		3- 2-14	14	42.8	109								
57	158/15E-18 S		3- 7-14		37.8	100								
8	14N/16E-22 S rootnote at end of		3- 3-14		47.2	117								

wells and springs in southeastern California--Continued

CCCAL.		Re	sults in m	illigrams	per liter	(mg/1) exc	ept as not	edContinued Dissolved				Specific		Source
Sulfate (SO ₄)	Chloride (C1)	Fluoride (F)	Nitrate (NO ₃)	Boron (B) (µg/1)	Arsenic (As) (µg/l)	Bromine (Br)	Lithium (Li)	solids (residue on evaporation at 180°C)	Hardness as CaCO3	Noncar- bonate hardness as CaCO3	Percent sodium	conductance (micromhos at 25°C)	pН	of data and sample number
225	1,360	5.0		4,400	60			2,990	332			5,890	7.7	RO-B8125
463	5,950	2.6	4.6	10,000		0.8	1.4	11,100	1,710	1,690	81	17,000	7.1	DWR-20994
195	1,680 1,530	2.7	4.9	3,600				3,550 3,540				5,780 4,900	6.7 7.7	DWR-N326 DWR-T493
139 58 40	4 25 19	2.4	.7	700 200 900	20			351 341 372	7 8 2	0	96 95	453 468 442	8.8 9.4 9.8	DWR DWR RO-B7329
0	1,600	1.6	.8	5,900		.16	.64	3,750	47	0	98	6,490	8.2	DWR-20991
72 78 80	50 66 65	17 15 3.4	1.0	230 210 420				369 322 336	13 18 8	0 0	95 93 95	608 582 510	8.7 9.0 8.8	DWR-12644 DWR-2724 DWR-16786
119	960	3.4	1.1	6,600				2,260	0	0	100	3,930	8.1	DWR-2099
	91	18		600	2			322	5			463	9.8	RO-B7271
32 31	80 81	3.0	0.5	700 500				284 316	9 5	0	96 97	500 1499	9.1 9.5	DWR-L1118 DWR-R187
18	350			4,500	20			712	20			1,160	9.5	RO-B7237
32	15			1,400	20			322	3			411	9.6	RO-B7236
14	347			4,400	20			718	18			1,230	9.2	RO-B7240
33	73			1,000	20			325	4			435	9.7	G RO-B7238
	123	9	5.5		80			1,060	65				8.5	RO
583	184	8.3		2,700									8.8	RO
6.1	178	7.0			110				106				8.4	DWR
														DWR
														DWR & RO
											our l			RO
627	176	8.0		2,000	.86				97				8.5	DWR RO
														DWR
250	136	.6		2 1000				1,120	110				7.8	RO
350 498	133	5.8	4	1,400		-3		985	105		84	1,580	7.9	DWR-R217
490	133	,		000					20)		100	-,,,,,		GS
				260,000			8.6	38,500						PS
				200,000										GS
														GS
														GS
														GS
														GS
														USDA
													2	USDA
														USDA

TEMPERATURE AND CHEMICAL QUALITY OF WATER

TABLE 3. -- Temperature and chemical data in thermal

-17-38								Resul	ts in mil	ligrams p	er liter	(mg/l) excep	t as noted	W. J.
Map	Well or spring number	Name	Date of collection	Depth of well (feet)	Water temper- ature (°C)	Water temper- ature (°F)	Silica (SiO ₂)	Iron (Fe) (µg/1)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potassium (K)	Bicar- bonate (HCO ₃)	Carbonate (CO ₃)
59	15N/15E-12 S		1-28-14		41.1	106	AL THE		100	- I				
io	4S/4E-14ES1 S	Agua Caliente Spring	1875 10-28-53 6-15-58		38.0 42.2 40.6	100.4 108 105	41 20	1,500	4.2	2.5	68 70	1.3	51 46	21 24
1	21N/7E-33PS1 S		2-15-68		42.2	108		-	5	1	816	29	700	
2	21N/7E-28P1 S		1967	400	47.8	118								
3	12N/1E-7MS1 S	Paradise Spring	2-12-08 3- 9-54		38.9 37.8	102	36 20	220 10	8	3.1 3.4	151 163		26 67	58 12
4	14s/7E-18P5S	Agua Caliente Spring	9- 5-65		38.3	101								
5	1N/4W-5 S	Arrowhead Hot Spring	1875		67.8	154								
5	1N/4W-5 S		1875		98.9	210								
7	ln/3W-32N3 S		3- 7-51	194	54.4	130								
8 *	ln/3W-33Ml s		3-15-51	500	51.1	124								
9	1s/3w-6c3 s		3-13-51	138	43.3	110								
)	1s/4w-16J2 s			175	41.1	106								
Ĺ	1S/4W-16L3 S		4-13-51	600	41.7	107								
2	1S/4W-22A1 S			642	44.4	112								
3	18/4W-22H3 S		3- 1-51	852	51.1	124								
	1S/4W-22H4 S		3- 1-51	975	43.3	110								
5	1S/13W-19E S	Bimini Hot Spring	1915		40.0	104								
5	6s/4W-5 s	Elsinore Hot Spring	1915		51.7	125								
7	58/5W-8 S	Glen Ivy Hot Spring	1915		38.9	102								
3	1N/4W-11H2 S		8- 9-60		75.0	167	90		27	0	255	12	73	12
9	ln/4w-11J1 S		6-30-60		87.8	190	98		27	0	300	14	81	0
0	5S/1W-2 S	Soboba Hot Springs		-	43.9	111								
1	4s/3W-12Kl s		4- 6-30		42.2	108			14	1	100		82	
2,,	58/1W-16C1 S		5-25-33		38.9	102			246	2	381	10	88	
3	4S/1E-30D1 S		12-20-55		38.9	102	59		2	0	72	1	7	54
4	38/2W-7P1 S		8-10-53		40.0	104			7	5	202		326	27
5	4s/1W-9K1 s		5-25-33		47.2	117			53		199	16	73	
6	4N/26W-7 S	Montecito Santa Barbara Hot Spring	1915		47.8	118								
7	6N/20W-17 S	Sespe Hot Spring	1915		88.3	191								
8	5N/32W-22 S	San Marcos Hot Spring	1915		42.2	108								
9	38/7W-11F1 S		1925	917	48.3	119								
0	13S/39E-18QS1 M	Lower Warm Spring or Burro Warm Spring	1963		43.3	110	54		51	22	231	22	368	9
1	13S/39E-18HS1 M	Hot Pool at Palm Springs	1963		48.9	120	53		86	5	190	24	370	19
2	5S/14W-21 S	White Point Hot Spring			45.6	114								
3	11S/42E-3RS1 M	Grapevine Spring	4-30-71		37.9	100								
4	9S/1W-30H1 S		9-29-71	702	38.0	100								
95	1N/5E-12D1 S		9-29-69 9-16-56	477 300	42.0	107.6			2.0	0	74	. 8	134	

a. Calculated (sum of determined constituents)

wells and springs in southeastern California--Continued

Mark I		Results in milligrams per liter (mg/l) except as notedContinued									75.5	Specific		Source
Sulfate (SO ₄)	Chloride (C1)	Fluoride (F)	Nitrate (NO3)	Boron (B) (µg/1)	Arsenic (As) (µg/1)	Bromine (Br)	Lithium (Li)	Dissolved solids (residue on evaporation at 180°C)	Hardness as CaCO3	Noncar- bonate hardness as CaCO3	Percent	conductance (micromhos at 25°C)	pН	of data and sample number
	1			(46/1)	(16/1)			at 100 c)			1			USDA
36 37	20 24	2.4	2.5	110				a225 235	21		98 99	323 332	9.5	G GS-9419 DWR-933
37		2.5	0	8,800	300	1.8		2,250	17		97	3,560	8.2	DWR-R21
	454	4.0		0,000	300									GS
169 153	48	00	1 500				0.3	623 495	33					GS DWR
153	52	20												GS
														G
														G
														GS
							6							GS
														GS
														GS GS
										300				GS
											1.77			GS
														GS
														GS-LA
														GS-R5
											10			GS-R3
428	65	8.8	.5	2,600	0			900	66	0.	87	1,270	8.3	DWR-1
522	81	9.6	.5	3,200	0			1,060	68	2	88	1,490	7.8	DWR-1
								200						
21	103			1,41	0				1	4		525		DWR
133	507		7.0	7,10	0			1,210	621	2		2,030		DWR
41	19	2.0	0				1 660	- 264		5		358	9.2	DWR
25	96	3.0	7.0	30	0				3			946	8.1	DWR
256	221			2,84	10			878	13	2		1,360		DWR
									-1					GS-SI
														GS-V
														DWR
						10.5	.21	1,050					7.9	L
	-	61				10	.10						8.0	L
210	67	6.4	.02											
210	67 65	6.4 5.4	.04	200										NAR
												1,180		NAR GS
												1,180 470		

SELECTED REFERENCES

- Bradshaw, G. B., and Donnan, W. W., 1952, Ground-water investigation of Imperial County, California: U.S. Dept. Agriculture, 61 p.
- California Department of Water Resources, 1966, Hydrologic data: 1965: Calif. Dept. Water Resources Bull. 130-65, v. 5, app. E, 561 p. 1967, Investigation of geothermal waters in the Long Valley area, Mono

County: Calif. Dept. Water Resources, 141 p.

____1969, Progress report, San Jacinto Valley cooperative study: Calif.

Dept. Water Resources, 172 p.

Dutcher, L. C., and Bader, J. S., 1963, Geology and hydrology of the Agua Caliente Spring, Palm Springs, California: U.S. Geol. Survey Water-Supply Paper 1605, 43 p.

Dutcher, L. C., Hardt, W. F., and Moyle, W. R., Jr., 1972, Preliminary appraisal of ground water in storage with reference to geothermal resources in the Imperial Valley area, California: U.S. Geol. Survey Circ. 649, 57 p.

Gilbert, G. K., 1876, Report on the geology of portions of Nevada, California, Utah, and Arizona: Annual report upon the geographical surveys west of the one-hundredth meridian.

Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water [2d. ed.]: U.S. Geol. Survey Water-Supply Paper 1473, 363 p.

Lombardi, O. W., 1963, Observations on the distribution of chemical elements in the terrestrial saline deposits of Salina Valley, California: U.S. Naval Ordnance Test Sta., China Lake, Calif., NOTS TP-2916, 42 p.

Mendenhall, W. C., 1909, Ground waters of the Indio region, California, with a sketch of the Colorado desert: U.S. Geol. Survey Water-Supply Paper 225, 56 p.

Moyle, W. R., Jr., 1960, Data on water wells and springs in the Yucca Valley-Twentynine Palms area, San Bernardino and Riverside Counties, California: Calif. Dept. Water Resources Bull. 91-2, 164 p.

_____1969, Water wells and springs in Panamint, Searles, and Knob Valleys, San Bernardino and Inyo Counties, California: Calif. Dept. Water Resources Bull. 91-17, 110 p.

Smith, M. B., 1964, Map showing distribution and configuration of basement rocks in California: U.S. Geol. Survey Oil and Gas Inv. Map OM-215, Sheet 1, north half, lat about 37° to 42°, long about 118° to 124°. Sheet 2, south half, lat about 33° to 37°, long about 114° to 122°. Scale 1:500,000.

U.S. Public Health Service, 1962, Drinking water standards, 1962: Pub. 956, 61 p.

Waring, G. A., 1915, Springs of California: U.S. Geol. Survey Water-Supply Paper 338, 410 p.

Wilcox, L. V., 1948, The quality of water for irrigation use: U.S. Dept. Agriculture Tech. Bull. 962.

Moyle--TEMPERATURE AND CHEMICAL DATA FOR SELECTED THERMAL WELLS AND SPRINGS, SOUTHEASTERN CALIFORNIA