
Sladek

THE QUALITY OF SURFACE WATERS IN TEXAS

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations 7-74

Prepared in cooperation with the Texas Water Development Board

•	•		
BIBLIOGRAPHIC DATA 1. Report No. 2. SHEET	3. Recipient's Accession No.		
4. Title and Subtitle	5. Report Date July 1974		
THE QUALITY OF SURFACE WATERS IN TEXAS	6.		
7. Author(s) Jack Rawson	8. Performing Organization Rept. No. WRI 7-74		
9. Performing Organization Name and Address U.S. Geological Survey	10. Project/Task/Work Unit No.		
Federal Building, 300 E. Eighth Street Austin, TX 78701	11. Contract/Grant No.		
12. Sponsoring Organization Name and Address	Final		
U.S. Geological Survey	13. Type of Report & Period Covered		
Federal Building, 300 E. Eighth Street Austin, TX 78701	14.		
15. Supplementary Notes			
16. Abstracts The discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for many of the principal streams in Texas are less than 500 mg/l (milligrams per liter), 250 mg/l, and 250 mg/l, respectively. At 65 of 131 sites on streams that were sampled at least 10 times, the biochemical oxygen demand of at least half the samples exceeded 3.0 mg/l. At 20 of the sites, the dissolved-oxygen content of at least half the samples was less than 5.0 mg/l. The higher concentrations of minor elements usually were detected in waters from urban areas, indicating a relation to man's activities. Small amounts of some pesticides are widely distributed in low concentrations. The higher concentrations usually were detected in waters from urban areas. Small amounts of some of the pesticides studied are widely distributed in surface waters in Texas. Some of the more widely distributed pesticides were 2,4,5-T at 96 sites, diazinon at 80 sites, 2,4-D at 78 sites, dieldrin at 77 sites, Silvex at 47 sites, DDT at 67 sites, lindane at 59 sites, DDD at 51 sites, DDE at 50 sites, and chlordane at 38 sites. 17. Key Words and Document Analysis. 17a Descriptors *Water quality, dissolved oxygen, biochemical oxygen demand, minor elements, pesticides.			
17h Identifiers (Once Ended Torms			
17b. Identifiers/Open-Ended Terms Chemical quality, inorganic quality, organic qu	uality.		
- '	uality.		
- '	uality.		
Chemical quality, inorganic quality, organic qu	19. Security Class (This 21. No. of Pages		
Chemical quality, inorganic quality, organic quality, org			

CONTENTS .

	Page
Abstract	: 1
Introduction	3
Purpose of this report	- 3
International System of Units and conversion factors	4
Water-quality standards and criteria	4
Dissolved-solids, chloride, and sulfate concentrations	
in principal streams	8
The biochemical-oxygen-demand and dissolved-oxygen	
concentrations in waters of nontidal reaches of streams	11
Selected minor elements in waters of nontidal reaches of	
streams	16
Pesticides in waters of nontidal reaches of streams	22
Chlorinated-hydrocarbon insecticides	28
Phosphorothioate insecticides	29
Chlorinated-hydrocarbon herbicides	30
Summary of conclusions	31
Selected references	33

ILLUSTRATIONS

		Page
Figure	1. Map showing concentrations of chloride, sulfate, and dissolved solids in the principal streams	. 9
	2. Map showing locations of dissolved-oxygen and	
	biochemical-oxygen-demand data-collection sites	12
	2a. Map showing locations of dissolved-oxygen and biochemical-oxygen-demand data-collection sites in the Houston area	13
	2b. Map showing locations of dissolved-oxygen and	. 13
	biochemical-oxygen-demand data-collection sites in the San Antonio area	14
	3. Graphs showing summary of dissolved-oxygen and	- '
	biochemical-oxygen-demand analyses of samples from nontidal reaches of streams, water years	
	1968-72	15
	4. Map showing locations of minor-elements data-collection sites	17
	4a. Map showing locations of minor-elements data- collection sites in the Houston area	18
	5. Graphs showing summary of the occurrence of minor elements at sites on nontidal reaches of streams, water years 1970-72	19
	6. Graphs showing summary of analyses for minor elements in water from nontidal reaches of streams, water years 1970-72	20
	7. Map showing locations of pesticides data-	20
	collection sites	23
	7a. Map showing locations of pesticides data- collection sites in the Houston area	24
	7b. Map showing locations of pesticides data- collection sites in the San Antonio area	25
	8. Graphs showing summary of the occurrence of pesticides in nontidal reaches of streams, water years 1968-72	26
	9. Graphs showing summary of analyses for pesticides in nontidal reaches of streams, water years 1968-72	27

TABLES

			Page
Table	1.	Summary of dissolved-oxygen and biochemical-oxygen-demand records for selected streams	
		in Texas, water years 1968-72	36
	2.	Summary of minor-element records for selected	
		streams in Texas, water years 1970-72	39
	3.	Summary of pesticides records for selected	
		streams in Texas, water years 1968-72	52

THE QUALITY OF SURFACE WATERS IN TEXAS

By

Jack Rawson

ABSTRACT

This report summarizes the records of dissolved solids, chloride, and sulfate for the principal streams in Texas and the records of dissolved oxygen, biochemical oxygen demand, minor elements, and pesticides for sites on nontidal reaches of streams.

The discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for many of the principal streams are less than 500 mg/l (milligrams per liter), 250 mg/l, and 250 mg/l, respectively. Exceptions to this generalization are reaches of the Canadian and Red Rivers in north Texas, reaches of the Brazos and Colorado Rivers in north-central Texas, and the Pecos River and Rio Grande in west Texas, where the inflow of brine or saline water has degraded the quality of the water.

The biochemical oxygen demand (BOD) of 3,524 samples collected from 143 sites on nontidal reaches of streams during the 1968-72 water years ranged from 0.0 mg/l to 102 mg/l. At 65 of 131 sites that were sampled at least 10 times, the BOD of at least half the samples exceeded 3.0 mg/l. Many of these sites are on streams in the urban areas of Houston and San Antonio and on the Trinity River and tributaries.

The dissolved-oxygen concentration in 3,465 samples collected from 141 sites on nontidal reaches of streams during the 1968-72 water years ranged from 0.1 mg/1 to 20.0 mg/1. At 20 of the 123 sites that were sampled at least 10 times, the dissolved-oxygen content of at least half the samples was less than 5.0 mg/1. Most of these 20 sites are on streams in the urban area of Houston and on the Trinity River and tributaries.

Minor elements considered in this report are aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, and zinc. Analyses of samples collected periodically from 77 sites on nontidal reaches of streams during the 1970-72 water years show that many of the minor elements studied are widely distributed in low concentrations in surface waters in Texas. With the exception of iron and manganese, the higher concentrations of these elements were detected in waters from urban areas, indicating that the concentration levels in many instances are related to man's activities.

Pesticides considered in this report include the chlorinatedhydrocarbon insecticides (aldrin, chlordane, DDD, DDE, DDT, dieldrin, endrin, heptachlor, heptachlor epoxide, lindane, toxaphene), the phosphorothioate insecticides (diazinon, malathion, methyl parathion, parathion), and the chlorinated-hydrocarbon herbicides (2,4-D, 2,4,5-T, and Silvex). Analysis of water samples collected periodically from 108 sites on nontidal reaches of streams during the 1968-72 water years show that small amounts of some of the pesticides studied are widely distributed in surface waters in Texas. Some of the more widely distributed pesticides were 2,4,5-T at 96 sites, diazinon at 80 sites, 2,4-D at 78 sites, dieldrin at 77 sites, Silvex at 47 sites, DDT at 67 sites, lindane at 59 sites, DDD at 51 sites, DDE at 50 sites, and chlordane at 38 sites. Although the occurrence of these pesticides are widespread, only chlordane in two samples from one site exceeded the permissible criteria for water to be used as a public supply, as recommended by the National Technical Advisory Committee.

INTRODUCTION

Purpose of This Report

A network of daily chemical-quality stations on principal streams in Texas has been operated for many years by the U.S. Geological Survey in cooperation with the Texas Water Development Board and other State, Federal, and local agencies. To supplement the information being obtained by the network, a cooperative Statewide reconnaissance by the Geological Survey and Texas Water Development Board was begun in September 1961. During this study, samples for chemical analyses were collected periodically at numerous sites on streams throughout Texas so that some waterquality information would be available where water-development projects are likely to be built. Each major river basin in the State was studied, and reports presenting the results of the study for each basin have been prepared. (See list of references.)

Before 1968, analyses of water samples from the network of daily and periodic stations usually included only the principal inorganic constituents and related properties. To supplement this information, the cooperative water-quality program of the Geological Survey and Texas Water Development Board was expanded in January 1968 to include the periodic determination of biochemical oxygen demand, dissolved oxygen, nutrients, and pesticides at selected sites on streams throughout Texas. These and other parameters or constituents may profoundly influence the quality of the water resources and the ecological balance in streams and reservoirs.

Most of the sites originally included in the special periodic network were on principal streams. However, because of an increase in interest in the quality of water in smaller streams and streams draining urban areas, many sites on some of these streams, especially in the urban areas of Houston and San Antonio, have been included in the special periodic network. Many of the sites in the daily, periodic, and special periodic networks are at stream-gaging stations. At other sites, the water discharge was usually measured when samples were collected so that the water quality could be considered in relation to discharge. Water-quality and discharge records for sites in the special periodic network are published annually by the Texas Water Development Board and the U.S. Geological Survey. (See list of references.)

The purpose of this report is to summarize the records of dissolved solids, chloride, and sulfate for the principal streams in the State and the records of dissolved oxygen, biochemical oxygen demand, minor elements, and pesticides for sites on nontidal reaches of streams in the special periodic network.

International System of Units and Conversion Factors

Most units of measurements in publications of the Geological Survey formerly were those of the English system. A dual system of metric, "the International System of Units (SI)," and English units will be used in reports of the Geological Survey published after July 1, 1973. English units of measurement used in the text of this report are followed by the SI equivalents. Conversion factors are listed below.

To convert		
from English unit	To SI unit	Multiply by
mile (mi)	kilometer (km)	1.609

Water-Quality Standards and Criteria

Water-quality standards for streams and coastal waters in Texas have been published by the Texas Water Quality Board (1973a). These standards consist of three parts:

- 1. General criteria applicable to all surface waters of the State at all times to the maximum extent feasible.
- 2. Numerical criteria applicable to specific surface waters designated in the standards.
 - 3. Water uses.

The water-use classifications for which standards have been established include contact recreation waters, noncontact recreation waters, domestic raw water supplies, irrigation waters, and shellfish waters.

According to the Texas Water Quality Board (1973a, p. 4), "It is the goal that the chemical quality of all surface waters used for domestic raw water supply conform to the U.S. Public Health Service Drinking Water Standards, revised 1962, or latest revision. However, it must be realized that some surface waters are being used that cannot meet these standards. Since in these cases it is the only source available, these surface waters may be deemed suitable for use as a domestic raw water supply, where the chemical constituents do not pose a potential health hazard."

The Texas Water Quality Board (1973a, p. 7) states, "With specific reference to public water supplies, toxic materials not removable by ordinary water treatment techniques shall not exceed those enumerated in U.S. Public Health Service Drinking Water Standards, 1962 edition, or later revision."

The latest revision of drinking water standards published by the U.S. Public Health Service (1962) as Public Health Regulations in the Federal Register became effective April 5, 1962. These standards, which are used for regulating public water supplies and water-supply systems used by public carriers and by other systems subject to Federal regulations, have been widely used to evaluate potential supplies in terms of acceptability for drinking water. These standards are not applicable to water from many of the small streams in the State because the water is not being used for domestic purposes. However, the standards for some of the properties or constituents are quoted here and in other sections of this report as a basis of comparison.

According to the U.S. Public Health Service (1962, p. 7-8), "The following chemical substances should not be present in a water supply system in excess of the listed concentration where, in the judgment of the reporting agency and the certifying authority, other more suitable supplies are or can be made available":

Substance		Concentration		
Arsenic (As)		10	micrograms	per liter
Chloride (C1)			milligrams	
Copper (Cu)	•		micrograms	
Iron (Fe)		300	micrograms	per liter
Manganese (Mn)		50	micrograms	per liter
Sulfate (SO ₄)		250	milligrams	per liter
Dissolved solids		500	milligrams	per liter
Zinc (Zn)		5,000	micrograms	per liter
				- · · · · · · · · · · · · · · · · · · ·

"The presence of the following substances in excess of the concentrations listed shall constitute grounds for the rejection of the supply":

Substance	Concentration
Arsenic (As) Cadmium (Cd)	50 micrograms per liter 10 micrograms per liter
Chromium (Hexavalent) (Cr+6)	50 micrograms per liter
Lead (Pb)	50 micrograms per liter

Substances in the first list are often referred to as the "recommended limits" and are either objectional to an appreciable number of people or exceed the levels required by good water-quality control practices. Substances in the second list are often referred to as "mandatory limits" and may have adverse effects on health when present in concentrations greater than those shown (U.S. Public Health Service, 1962, p. V).

Limits for dissolved solids, chloride, and sulfate have been included in the U.S. Public Health Service (1962) standards because excessive concentrations may have a laxative effect and produce an undesirable taste.

Minor elements, as used in this report, include those constituents whose concentrations usually do not exceed 1 mg/l (milligram per liter), although in exceptional waters one or more of them may be present in comparatively large amounts. Minor elements considered in this report are aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), and zinc (Zn).

The toxicity to man of aluminum, cobalt, and nickel is believed to be very low; consequently, limits for these substances in drinking water have not been established by the U.S. Public Health Service (1962).

In concentrations not causing unpleasant tastes, manganese and iron are regarded to be of little toxicological significance in drinking water. Iron and manganese are undesirable in domestic water supplies because they cause unpleasant tastes, stain and discolor laundry and plumbing fixtures, and foster the growth of some microorganisms. Copper and zinc in drinking water are not known to have serious effects on health, but do produce undesirable esthetic effects.

Although no limit for mercury was published in the 1962 edition of the U.S. Public Health Service drinking water standards, the Technical Review Committee on revision of the U.S. Public Health Service drinking water standards, U.S. Environmental Protection Agency (1971, p. 7) has recommended a maximum allowable limit of 5 ug/l (micrograms per liter).

Other properties or constituents considered in this report are dissolved oxygen, biochemical oxygen demand, and pesticides. Each of these affect the ecological balance of the streams.

Dissolved oxygen (DO) in surface waters is necessary for the support of aquatic life and the aerobic decomposition of organic matter. According to the National Technical Advisory Committee to the Secretary of the Interior (Federal Water Pollution Control Administration, 1968, p. 33): "For a diversified warm-water biota, including game fish, DO concentration should be above 5 mg/l, assuming normal seasonal and daily variations are above this consideration."

The Texas Water Quality Board (1973a) has established minimum values of dissolved oxygen for Texas streams. The minimum value for most non-tidal reaches of streams is not less than 5.0 mg/l and "shall apply at all times that the daily flow exceeds the 7-day minimum average flow for the existing hydrologic condition with a recurrence interval of 2 years, except where this flow is zero. When the flow is zero, the dissolved oxygen standards shall not apply."

The biochemical oxygen demand (BOD) is the amount of oxygen required by bacteria while stabilizing decomposable organic matter under aerobic conditions. The BOD data presented in this report are based on the standard 5-day, 20°C test. The BOD test does not reveal the concentration of a specific substance, but provides an indication of the quantity of organic matter in the water and the amount of oxygen required for its stabilization. BOD standards have not been established for streams in Texas, but criteria for effluents for domestic wastewater treatment plants are set by the Texas Water Quality Board (1973b) to protect the quality of water in the streams. The BOD criteria established depends on the stream's assimilative capacity and the treatment process.

Pesticides are broad classes of toxicants used to control animal or plant pests. Pesticides used to control insects are insecticides; those used to control plants are herbicides. Analysis of water for pesticides by the Geological Survey in Texas usually includes the following:

Chlorinated-Hydrocarbon Insecticides

Aldrin.--Not less than 95 percent of 1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endo-exo-5,8-dimethanonaphthalene.

Chlordane.--1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindane.

DDD.--1,1-dichloro-2,2-bis(p-chloropheny1) ethane.

DDE.--1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene.

DDT.--1,1,1-trichloro-2,2-bis(p-chloropheny1) ethane.

Dieldrin.--Not less than 85 percent of 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-exo-5,8-dimethanonaphthalene.

Endrin.--1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8-dimethanonaphthalene.

Heptachlor.--1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-

methanoindene.

Heptachlor epoxide.--1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methanoindan.

Lindane.--1,2,3,4,5,6-hexachlorocyclohexane, 99 percent or more of gamma isomer.

Toxaphene. -- Chlorinated camphene containing 67 to 69 percent chlorine.

Phosphorothioate Insecticides

Diazinon.--0,0-diethyl 0-(2-isopropyl-6-methyl-4-pyramidyl) phosphorothioate.

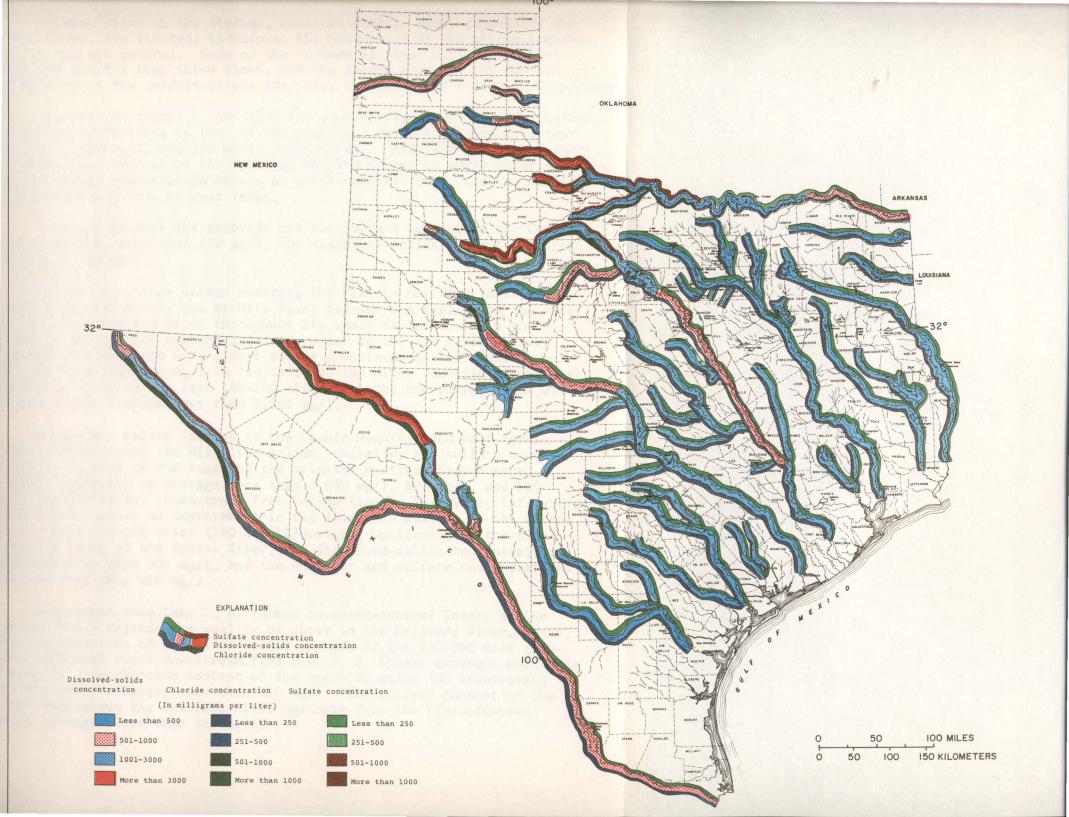
Malathion.--S-[1,2-bis (ethoxycarbony1) ethyl] 0,0-dimethyl

phosphorodithioate.

Methyl parathion.--0,0-dimethyl 0-p-nitrophenyl phosphorothioate. Parathion.--0,0-diethyl 0-p-nitrophenyl phosphorothioate.

Chlorinated-Hydrocarbon Herbicides

2,4-D.--2,4-dichlorophenoxyacetic acid. 2,4,5-T.--2,4,5-trichlorophenoxyacetic acid. Silvex.--2-(2,4,5-trichlorophenoxy) propionic acid.


According to the National Technical Advisory Committee to the Secretary of the Interior (Federal Water Pollution Control Administration, 1968, p. 63), the use of any persistent chlorinated-hydrocarbon pesticide around fresh water should be avoided. The use of other kinds of chemical pesticides in or around fresh water may produce a variety of acute and chronic effects on aquatic life. The safe limits for these pesticides in fresh water depend upon the types of organism present and thus may vary from stream to stream.

The National Technical Advisory Committee (1968, p. 37) has recommended a maximum environmental level of 0.05 μ g/l each for aldrin, chlordane, DDD, DDT, dieldrin, endrin, heptachlor, lindane, parathion, and toxaphene in marine waters and a maximum environmental level of 10 μ g/l each for 2,4-D and 2,4,5-T. Although these limits are not directly applicable to fresh water, they are quoted here and in some of the sections that follow as a basis for comparison.

According to the National Technical Advisory Committee (1968, p. 20), permissible criteria for water to be used for public supply are 17 $\mu g/1$ aldrin, 3 $\mu g/1$ chlordane, 42 $\mu g/1$ DDT, 17 $\mu g/1$ dieldrin, 1 $\mu g/1$ endrin, 18 $\mu g/1$ heptachlor, 18 $\mu g/1$ heptachlor epoxide, 56 $\mu g/1$ lindane, 100 $\mu g/1$ organic-phosphate plus carbamate insecticides, and 100 $\mu g/1$ 2,4-D plus 2,4,5-T plus Silvex.

DISSOLVED-SOLIDS, CHLORIDE, AND SULFATE CONCENTRATIONS IN PRINCIPAL STREAMS

The dissolved-solids, chloride, and sulfate ranges shown on figure 1 are indicative of the long-term discharge-weighted average concentrations in the principal streams in Texas. The discharge-weighted average represents approximately the concentration of a constituent in the water if all the water passing a point in the stream during a period were impounded in a reservoir and mixed, with no adjustment for evaporation, rainfall, or chemical changes that might occur during storage or mixing.

At many sites on the streams, chemical-quality data, especially for flood flows, are limited; therefore, the boundaries of the stream segments on the map are general. Some of the streams at times will have concentrations greater than those shown, but the ranges shown on the map are indicative of the concentrations for water that would be stored in reservoirs.

The data on figure 1 show that the concentrations of dissolved solids, chloride, and sulfate in many of the principal streams average less than 500 mg/1, 250 mg/1, and 250 mg/1, respectively. Exceptions to this generalization are reaches of the Canadian and Red Rivers in north Texas, reaches of the Brazos and Colorado Rivers in north-central Texas, and the Pecos River and Rio Grande in west Texas.

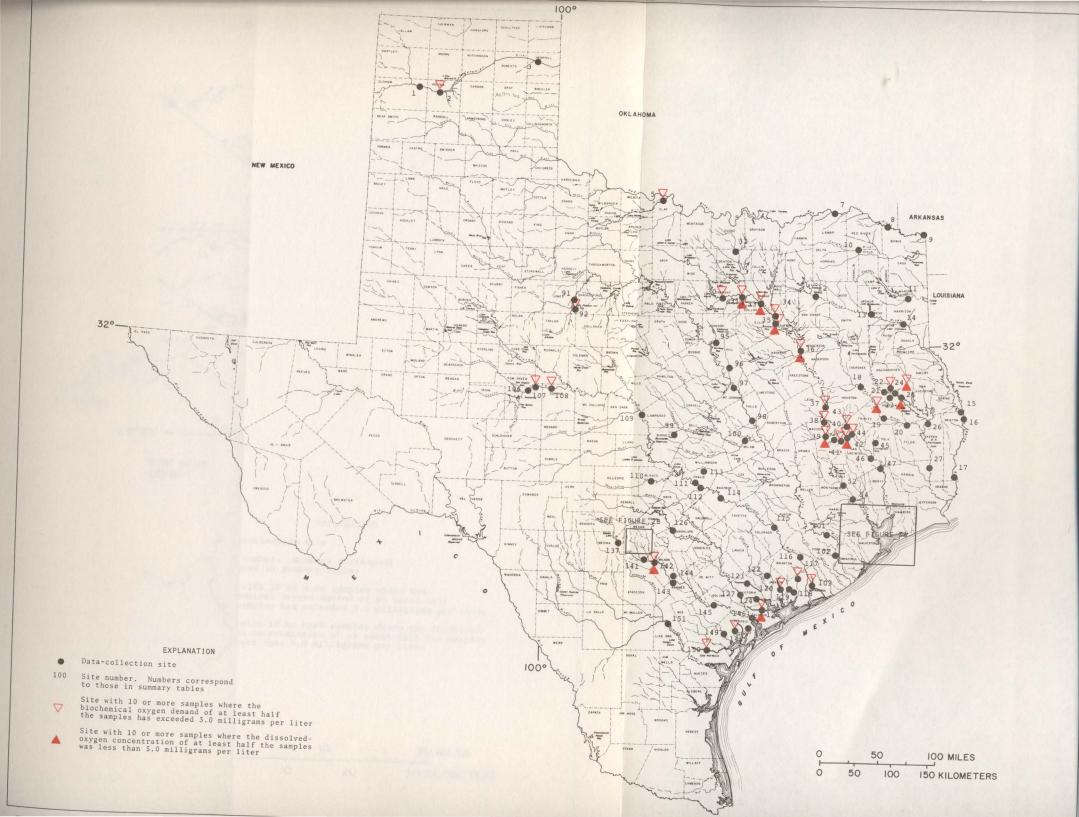
Although neither the chloride nor the sulfate content of the Canadian River averages more than 250 mg/l, the dissolved-solids content averages more than 500 mg/l.

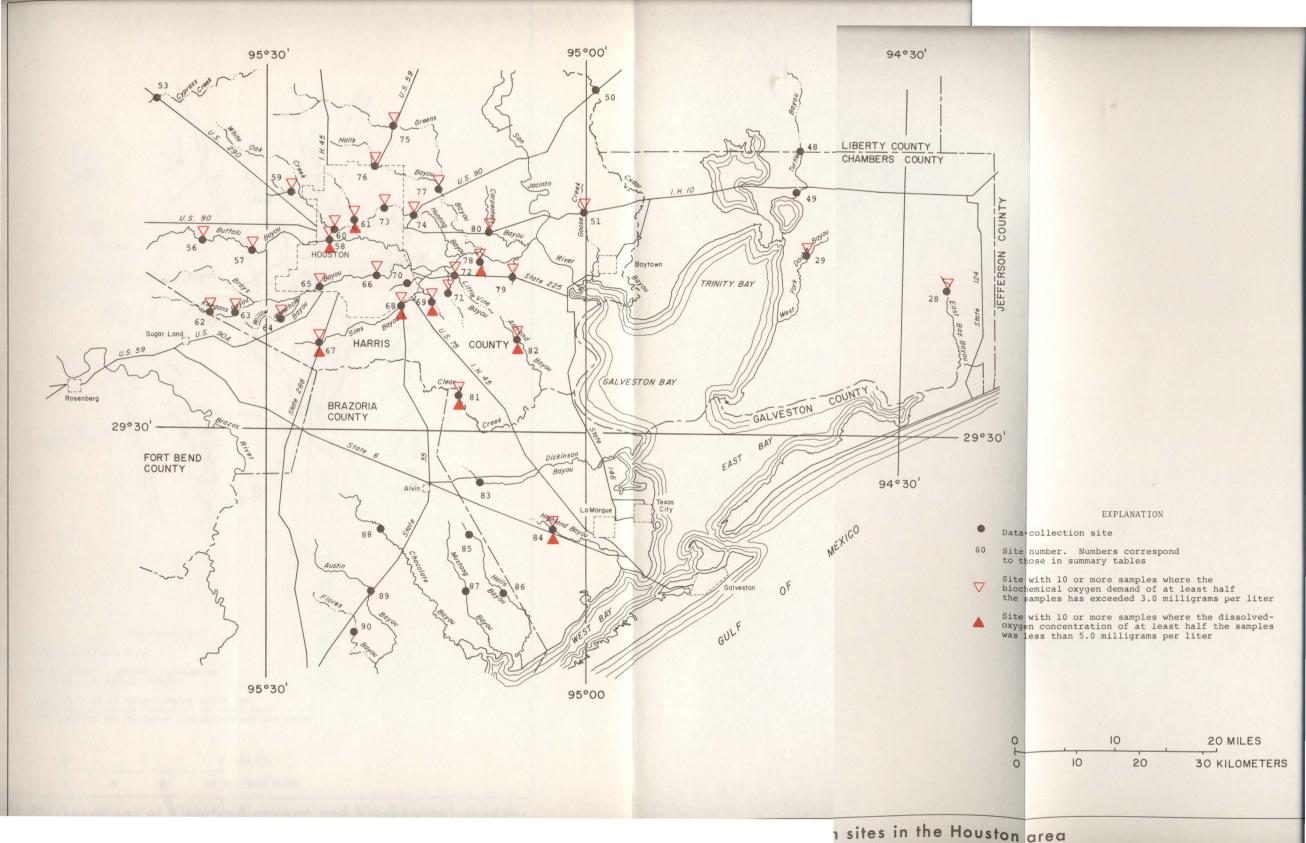
Brines and saline waters entering the Prairie Dog Town, Salt, and North Forks Red Rivers and Wichita River degrade the quality of the water in the main-stem Red River throughout its reach in Texas. Both the chloride and sulfate concentrations in water of the Red River usually average more than 500 mg/l almost as far downstream as Lake Texoma, but average less than 250 mg/l in the last 100-150 miles (160-240 kilometers) in Texas. Only in the last 100-150 miles does the concentration of dissolved solids average less than 1,000 mg/l.

Brines and saline inflows to the Double Mountain and Salt Forks Brazos Rivers cause the dissolved-solids, chloride, and sulfate concentrations in most of the reach of the mainstem upstream from Possum Kingdom Reservoir to average more than 1,000 mg/l, 500 mg/l, and 500 mg/l, respectively. Downstream from Possum Kingdom Reservoir, inflow from tributaries causes an improvement in the inorganic quality of the water. In the last 100-150 miles (160-240 kilometers) upstream from the tideaffected reach of the Brazos River, the dissolved-solids concentration averages less than 500 mg/l, and the chloride and sulfate concentrations average less than 250 mg/l.

Downstream from Lake J. B. Thomas in north-central Texas, saline inflows badly degrade the quality of water in the Colorado River. Thus, the concentration of dissolved solids in most of the 150-200 mile (240-320 kilometer) reach downstream from Lake J. B. Thomas averages more than 500 mg/l. The chloride content of the upper 50 miles (80 kilometers) of this reach averages more than 250 mg/l. The sulfate content of the water throughout the Colorado River upstream from the tide-affected reach averages less than 250 mg/l.

Although the concentration of chloride in water of the Rio Grande as it enters Texas averages less than 250 mg/l, the concentrations of dissolved solids and sulfate average more than 500 mg/l and 250 mg/l, respectively. Evaporation and return flows of water diverted for irrigation degrade the quality of water downstream from El Paso. Water in the 150-mile (240-kilometer) reach of the river downstream from El Paso usually contains more than 1,000 mg/l dissolved solids, 500 mg/l chloride, and 500 mg/l sulfate. Farther downstream, inflow of good-quality water from many of the tributaries causes an improvement in the quality of water in the Rio Grande. Thus, the chloride and sulfate concentrations in the lower reach of the river average less than 250 mg/l; and the dissolved-solids concentrations average less than 1,000 mg/l but more than 500 mg/l.


Water in the Pecos River is much more saline than water in the Rio Grande. The water is very saline as it enters Texas, and the inflow of brine and saline water causes a progressive increase in the concentrations of dissolved solids, chloride, and sulfate in the upper reach in Texas. Downstream from Girvin, better-quality inflow reduces the salinity of the Pecos River. Nevertheless, water contributed to the Rio Grande by the Pecos River usually contains more than 1,000 mg/l dissolved solids, 500 mg/l chloride, and 250 mg/l sulfate.


THE BIOCHEMICAL-OXYGEN-DEMAND AND DISSOLVED-OXYGEN CONCENTRATIONS IN WATERS OF NONTIDAL REACHES OF STREAMS

The dissolved-oxygen data included in this report are for depth-integrated samples collected with a BOD sampler. Such a sampler provides for a threefold displacement of water in a BOD bottle without aeration. All measurements of dissolved oxygen in these samples were made at stream-side with a portable temperature-compensated instrument.

The locations of sites on nontidal reaches of streams in Texas where samples for the determination of BOD and dissolved oxygen were collected at about 1- to 2-month intervals for 1 or more years during the 1968-72 water years are shown on figure 2. The BOD and dissolved-oxygen data for these sites on most of the principal streams and on many small streams are summarized in table 1 and on figures 2 and 3.

The BOD of 3,524 samples from 143 sites ranged from 0.0 mg/l in 1 or more samples from several sites to 102 mg/l in a sample from Hunting Bayou at U.S. Highway 90-A in Houston (site 74). The BOD of 1,795 samples from 139 sites exceeded 3.0 mg/l. At 65 of the 131 sites, which were sampled at least 10 times, the BOD of at least half the samples exceeded 3.0 mg/l. Many of these 65 sites are on streams in the urban areas of Houston and San Antonio and on the Trinity River and tributaries.

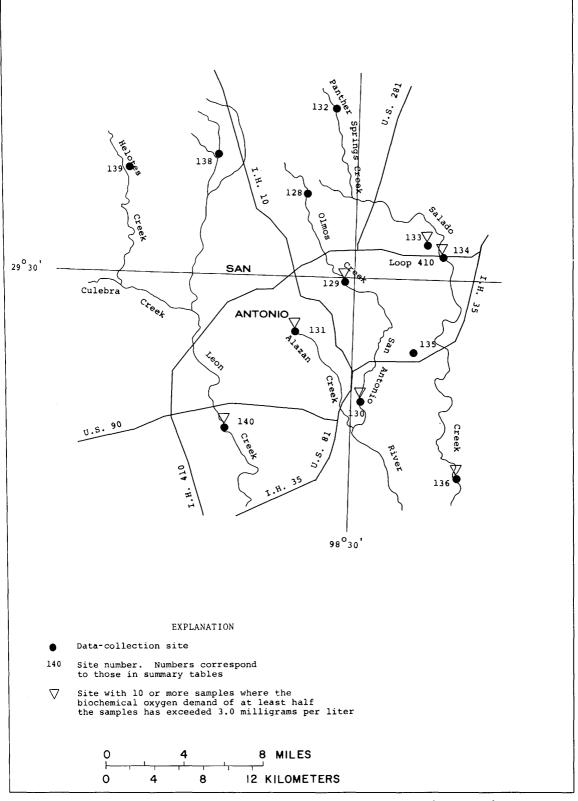


FIGURE 2b.-Locations of dissolved-oxygen and biochemical-oxygendemand data-collection sites in the San Antonio area

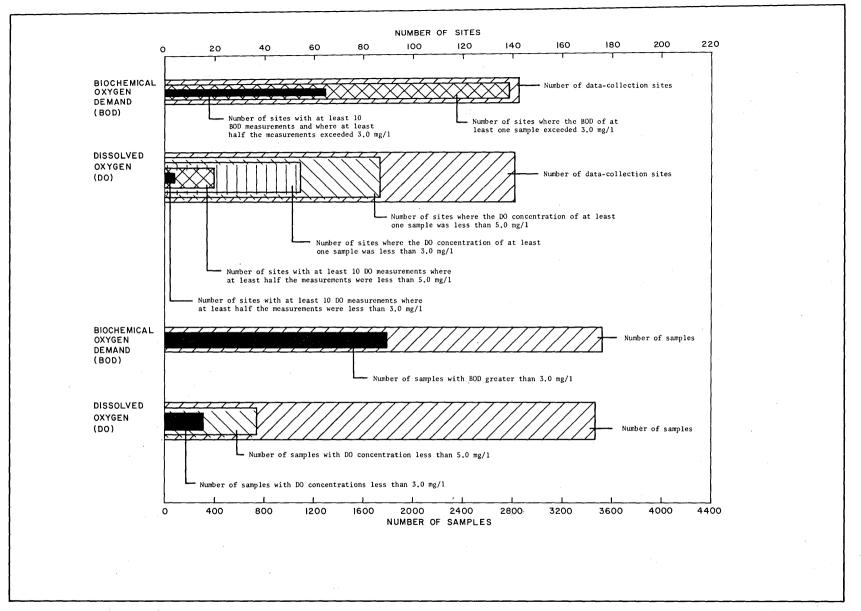
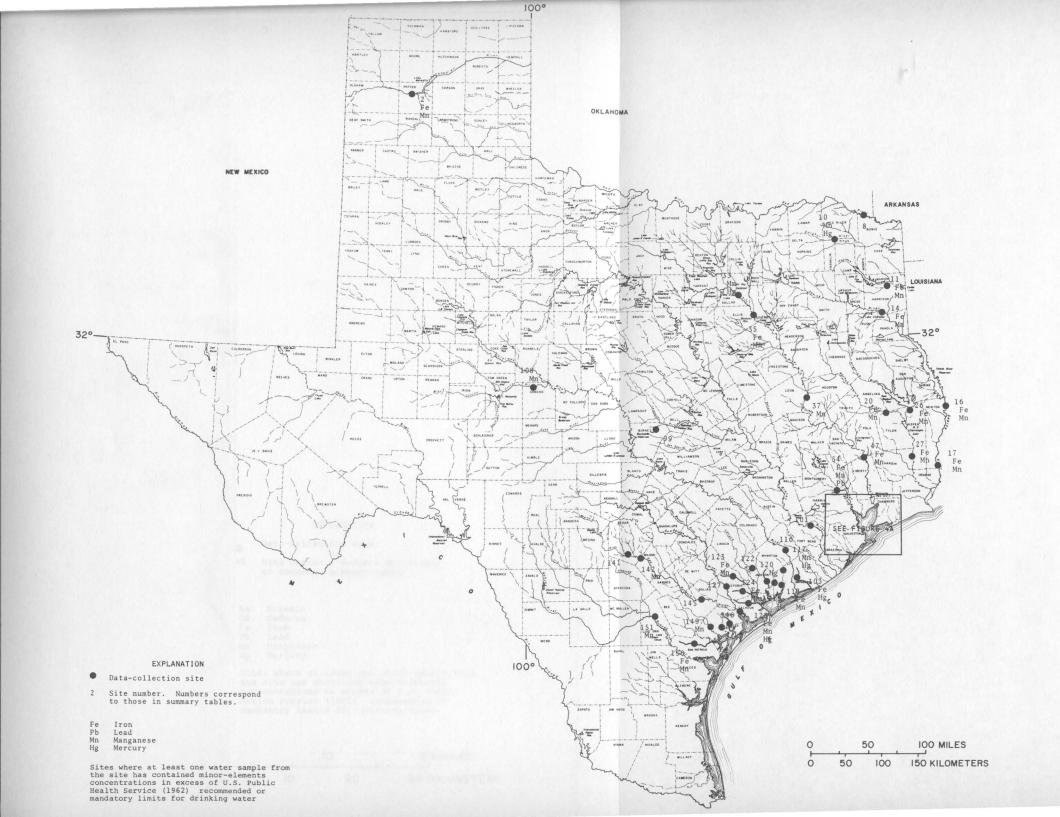
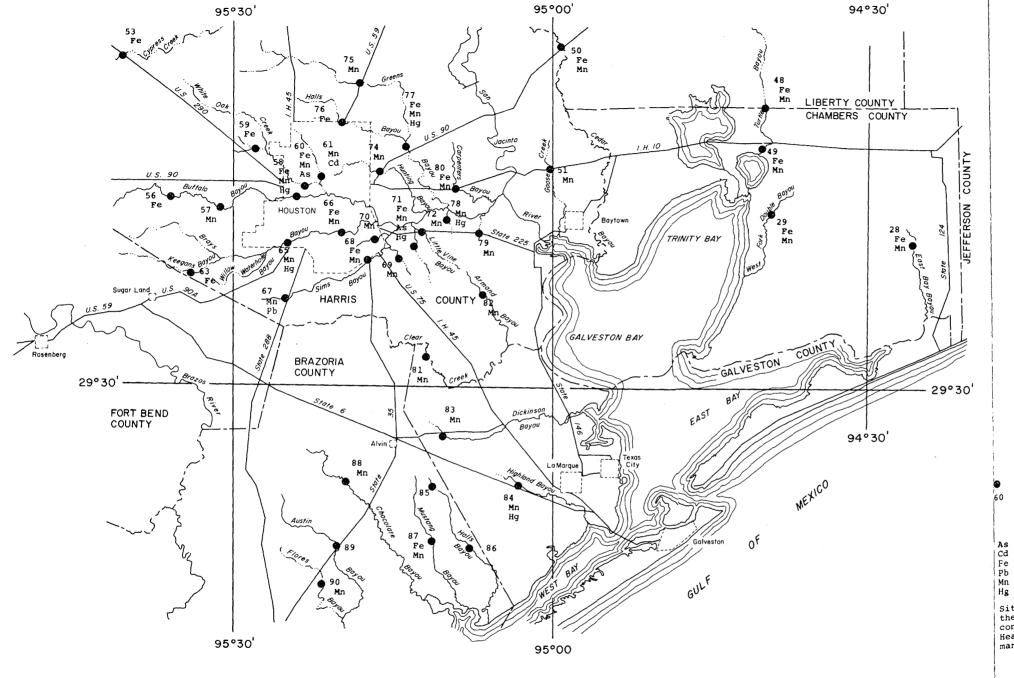


FIGURE 3.-Summary of dissolved-oxygen and biochemical-demand analyses of samples from nontidal reaches of streams, water years 1968-72

The dissolved-oxygen concentration in 3,465 samples from 141 of the sites where samples for BOD were collected ranged from 0.1 mg/l in 1 or more samples from several sites to 20.0 mg/l in 1 or more samples from several sites. The dissolved-oxygen content of 740 samples (1 or more samples from 87 sites) was less than 5.0 mg/l. At 20 of the 123 sites which were sampled at least 10 times, the dissolved-oxygen content of at least half the samples was less than 5.0 mg/l. Most of these 20 sites are on streams in the urban area of Houston and on the Trinity River and tributaries. The dissolved-oxygen content of 308 samples (1 or more samples from 55 sites) was less than 3.0 mg/l. The dissolved-oxygen content of at least half the samples from 4 of 123 sites, which were sampled at least 10 times, was less than 3.0 mg/l. These sites include the Trinity River below Dallas (site 33), Sims Bayou at Hiram Clarke Street in Houston (site 67), Sims Bayou at Houston (site 68), and Highland Bayou near Alta Loma (site 84).


SELECTED MINOR ELEMENTS IN WATERS OF NONTIDAL REACHES OF STREAMS


Samples for the determination of minor elements were collected seasonally from 77 sites on nontidal reaches of most of the principal streams and many small streams during the 1970-72 water years. Each of these samples were filtered (0.45-micrometer openings) and were acidified (1.5 milliliters double distilled nitric acid per 1-liter sample) when collected to prevent separation of minor elements before analysis. Although the concentrations of all 12 of the minor elements mentioned below were determined in some analyses, selected determinations were omitted in many.

Locations of data-collection sites for minor elements are shown on figure 4. The analytical results are summarized in table 2 and on figures 5 and 6. A brief summary for each element follows:

Aluminum.--The concentration of aluminum ranged from 0 $\mu g/l$ in at least 1 sample from 30 sites to 830 $\mu g/l$ in a sample from Chocolate Bayou at Port Lavaca (site 125). Aluminum was detected in 243 of 303 samples. At least 1 sample from each of the 39 sites sampled contained aluminum.

Arsenic.--The arsenic concentration in 607 samples from 77 sites ranged from 0 $\mu g/1$ in samples from many sites to 280 $\mu g/1$ in a sample from Vince Bayou at Pasadena (site 71). Arsenic was detected in 124 samples (in at least 1 sample from 40 sites). About half the sites where arsenic was detected are in the urban area of Houston and vicinity; most other sites are on the Trinity River or small coastal streams. Two samples from streams in the urban area of Houston and vicinity, Whiteoak Bayou at Houston (site 60) and Vince Bayou at Pasadena (site 71), contained arsenic greater than 50 $\mu g/1$.

EXPLANATION

Data-collection site

60 Site number. Numbers correspond to those in summary tables

As Arsenic
Cd Cadmium
Fe Iron
Pb Lead
Mn Manganese
Hg Mercury

Sites where at least one water sample from the site has contained minor-elements concentrations in excess of U.S. Public Health Service (1962) recommended or mandatory limits for drinking water

O IO 20 30 KILOMETERS

FIGURE 4a - Locations of minor al

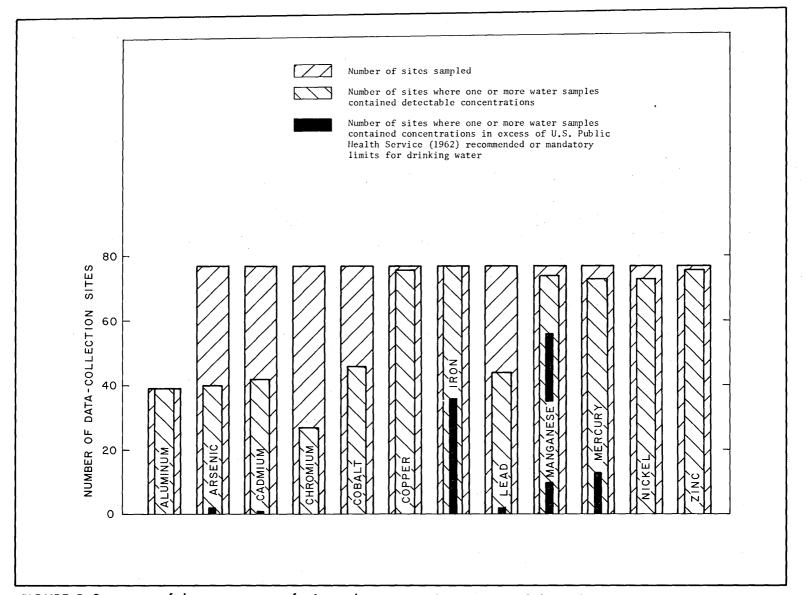


FIGURE 5.-Summary of the occurrence of minor elements at sites on nontidal reaches of streams, water years 1970-72

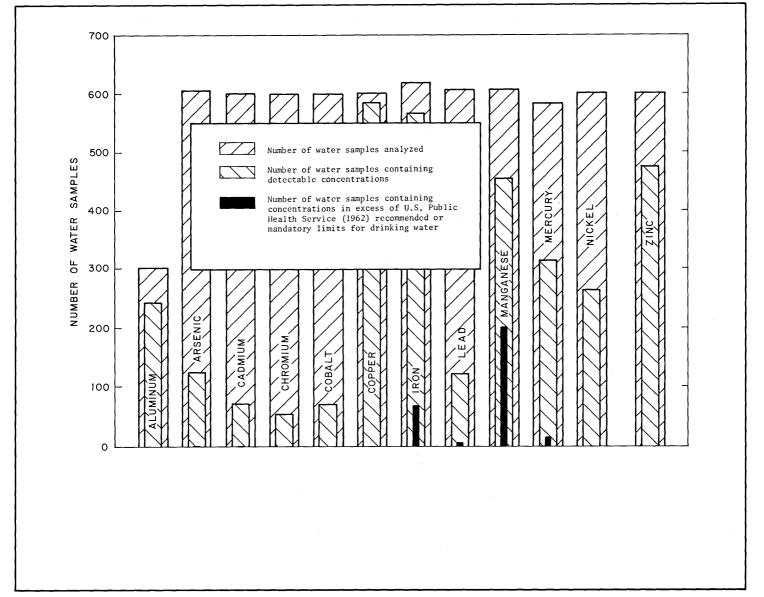


FIGURE 6.-Summary of analyses for minor elements in water from nontidal reaches of streams, water years 1970-72

Cadmium. -- The cadmium content of 601 samples from 77 sites ranged from $0~\mu g/1$ in many samples to 30 $\mu g/1$ in a sample from Little Whiteoak Bayou at Houston (site 61). Although no sample other than the 1 from Little Whiteoak Bayou contained cadmium in excess of 10 $\mu g/1$, 71 samples (at least 1 sample from 42 sites) contained detectable concentrations.

Chromium. --The chromium (tervalent plus hexavalent) concentration was measured in 600 samples from 77 sites, and ranged from 0 $\mu g/1$ in many samples to 230 $\mu g/1$ in a sample from Little Whiteoak Bayou near Houston (site 61). Chromium was detected in 53 samples from 27 sites, most of which are in the urban area of Houston and vicinity. In addition to the sample from Little Whiteoak Bayou, a sample from Chocolate Bayou near Alvin (site 88) contained more than 50 $\mu g/1$ tervalent plus hexavalent chromium; but none of the samples contained more than 50 $\mu g/1$ hexavalent chromium.

Cobalt.--The cobalt concentration in 600 samples from 77 sites ranged from $\overline{0}~\mu g/\overline{1}$ in many samples to 18 $\mu g/\overline{1}$ in a sample from Hunting Bayou at U.S. Highway 90-A in Houston (site 74). One or more samples from 45 sites, most of which are on streams in the Houston urban area or on small coastal streams, contained from 1 to 3 $\mu g/\overline{1}$ cobalt.

Copper.--The concentration of copper in 602 samples from 77 sites ranged from 0 μ g/l in many samples to 230 μ g/l in a sample from Cypress Creek near Humble (site 54). Copper was detected in 586 samples from 76 sites.

Iron.--The iron content of 619 samples from 77 sites ranged from 0 $\mu g/1$ in many samples to 3,800 $\mu g/1$ in a sample from the Angelina River below Sam Rayburn Reservoir (site 26) in east Texas. Iron was detected in 567 samples (at least 1 sample from each of the 77 sites). The iron in 67 samples from 36 sites exceeded 300 $\mu g/1$; most of these sites are located on streams in east or southeast Texas, including many streams in the urban areas of Houston and vicinity.

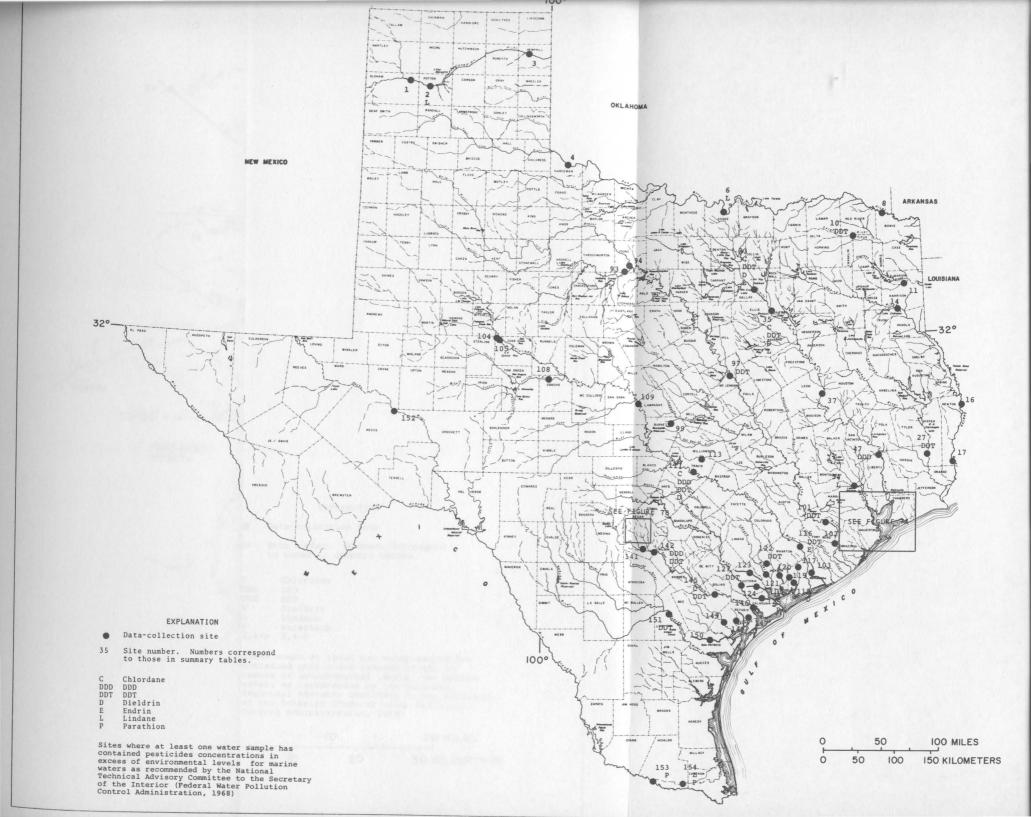
Lead.--The concentration of lead in 607 samples from 77 sites ranged from $0~\mu g/1$ in many samples to 90 $\mu g/1$ in a sample from Cypress Creek near Humble (site 54). Only one other sample, from Sims Bayou at Hiram Clarke Street in Houston (site 67), contained more than 50 $\mu g/1$. However, 122 samples from 44 sites, most of which are in the Houston urban area, contained detectable concentrations of lead.

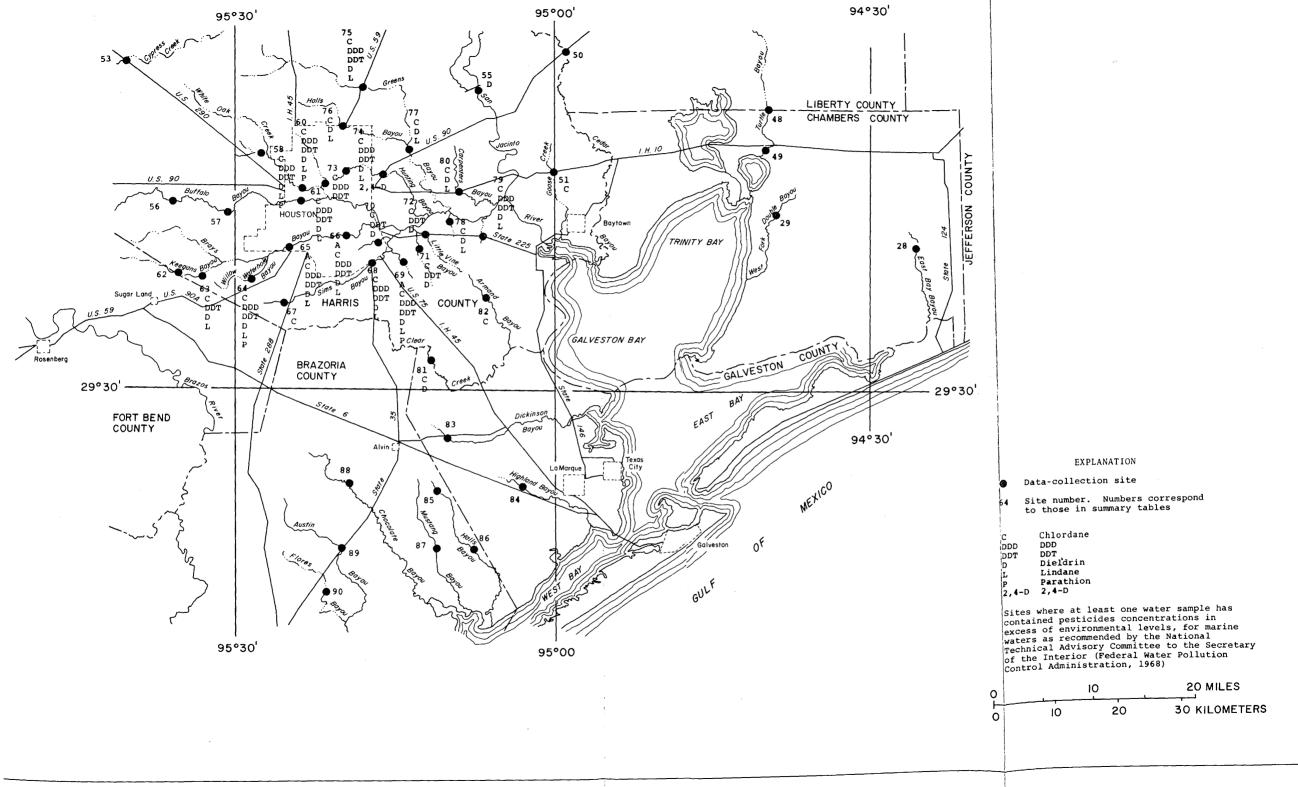
Manganese.--The concentration of manganese in 608 samples from 77 sites ranged from 0 μ g/l in many samples to 3,600 μ g/l in a sample from the Angelina River below Sam Rayburn Reservoir (site 26). Manganese was found in 456 samples from 74 sites. At least 1 sample from 56 sites contained more than 50 μ g/l.

Mercury.--The mercury concentration of 583 samples from 77 sites ranged from less than 0.2 μ g/l (the lower limit of detection) in many samples to 160 μ g/l in a sample from Greens Bayou at Ley Road at Houston (site 77). Mercury was detected in 315 samples from 73 sites; but the concentration in only 13 samples (1 from each of 13 sites) exceeded 5 μ g/l. Most of these samples were from sites on streams in the urban area of Houston or on small coastal streams.

Nickel.--The concentration of nickel in 601 samples from 77 sites ranged from 0 μ g/l in many samples to 130 μ g/l in a sample from Little Whiteoak at Houston (site 61). Nickel was detected in 265 samples from 73 sites. One or more samples from nine of these sites, most of which are on the Trinity River or on streams in the Houston urban area, contained more than 10 μ g/l nickel.

Zinc.--The concentration of zinc in 601 samples from 77 sites ranged from $0~\mu g/1$ in many samples to 2,800 $\mu g/1$ in a sample from Chiltipin Creek at Sinton (site 150). At least 1 sample from 20 sites, many of which are on streams in the Houston urban area and vicinity, contained more than 100 $\mu g/1$.


These data show that many of the minor elements studied are widely distributed in low concentrations in surface waters in Texas. With the exceptions of iron and manganese, most of the higher concentrations of these elements were found in waters from urban areas, indicating that the concentrations in many instances are related to man's activities.


PESTICIDES IN WATERS OF NONTIDAL REACHES OF STREAMS

Water samples for the determination of selected pesticides were collected seasonally from 108 sites on nontidal reaches of most of the principal streams and on many small streams during the 1968-72 water years.

Upon receipt in the laboratory, the samples for herbicides analysis were acidified to a pH of 2 or less with high-purity sulfuric acid and were refrigerated at about 5°C to inhibit biological degradation. The samples for insecticides analysis were stored in the laboratory at room temperature until analyzed (usually within 4 to 7 days). The samples were not filtered; thus, the concentrations reported include insecticides and herbicides in both the water and suspended-sediment fractions. Although the concentrations of all 18 of the pesticides discussed below were determined in some analyses, selected determinations were omitted in many.

Locations of data-collection sites for pesticides are shown on figure 7. The analytical results are summarized in table 3 and on figures 7, 8, and 9. A brief summary for each pesticide follows.

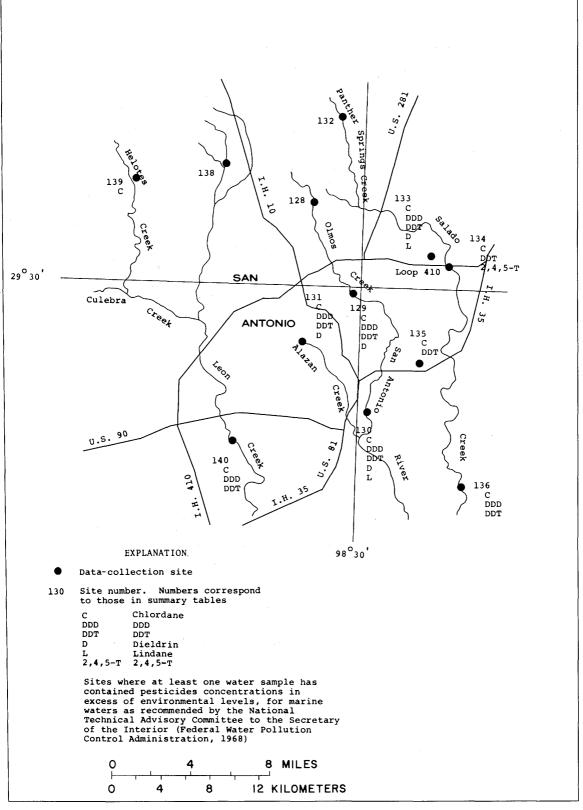
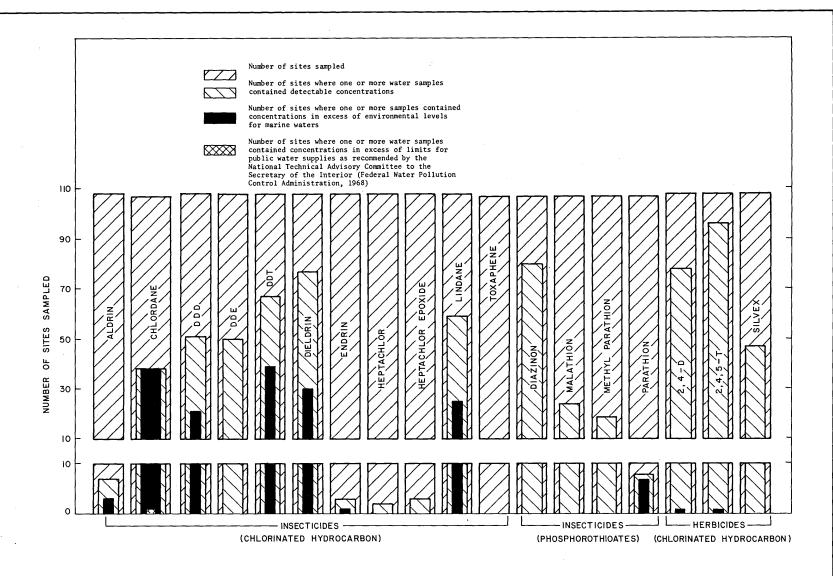



FIGURE 7b.-Locations of pesticides data-collection sites in the San Antonio area

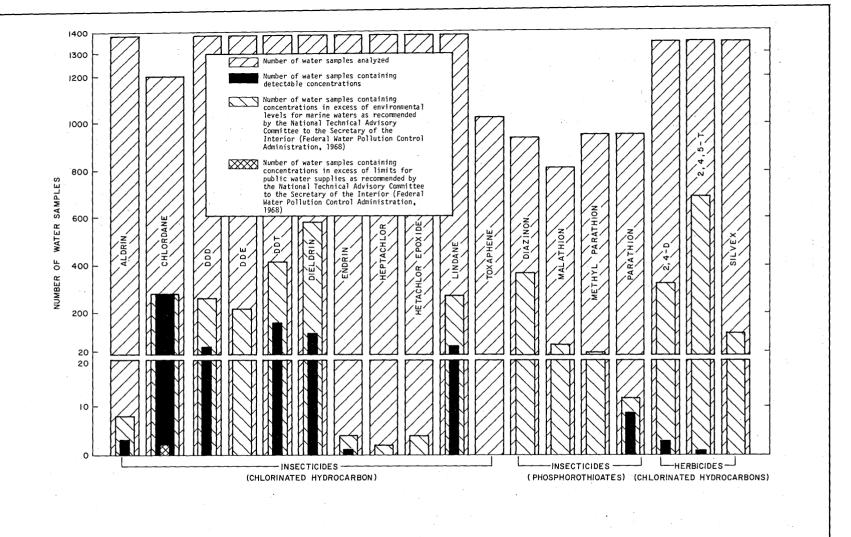


FIGURE 9.-Summary of analyses for pesticides in nontidal reaches of streams, water years 1968-72

Chlorinated-Hydrocarbon Insecticides

Aldrin.--The concentration of aldrin in 1,385 samples from 108 sites ranged from 0.00 μ g/l in most samples to 0.57 μ g/l in a sample from Brays Bayou at Houston (site 65). Aldrin was detected in only eight samples from seven sites. Only three samples (one each from three sites on streams in the urban area of Houston) contained more than 0.05 μ g/l, the maximum environmental level for marine waters, as recommended by the National Technical Advisory Committee (1968). No samples contained more than the recommended 17 μ g/l limit for water to be used as a public supply.

Chlordane.--The concentration of chlordane in 1,205 samples from 107 sites ranged from 0.0 $\mu g/l$ in many samples to 15 $\mu g/l$ in a sample from Brays Bayou at Houston (site 65). Chlordane was detected in 280 samples from 38 sites, most of which are on streams in the urban areas of Houston and San Antonio. The chlordane content of each of these 280 samples exceeded 0.05 $\mu g/l$, the maximum recommended environmental level for marine waters. Two samples from Brays Bayou at Houston (site 65) contained more than the 3 $\mu g/l$ limit recommended for water to be used as a public supply.

 $\frac{DDD.\text{--The}}{\mu g/l}$ in many samples to 1.0 $\mu g/l$ in a sample from Alazan Creek at St. Cloud Street in San Antonio (site 131). DDD was found in 263 samples from 51 sites. The 0.05 $\mu g/l$ limit recommended for marine waters was exceeded in 57 samples from 21 sites. Most of these sites are on streams in the urban areas of Houston and San Antonio.

DDE.--The concentration of DDE in 1,383 samples from 108 sites ranged from 0.00 μ g/l in many samples to 1.1 μ g/l in a sample from Alazan Creek at St. Cloud Street in San Antonio (site 131). At least 1 sample from 17 sites, most of which are in the urban areas of Houston and San Antonio, contained more than 0.05 μ g/l DDE.

DDT.--The DDT concentration in 1,385 samples from 108 sites ranged from $\overline{0.00}~\mu g/l$ in many samples to 6.6 $\mu g/l$ in a sample from Alazan Creek at St. Cloud Street in San Antonio (site 131). Although no samples contained concentrations in excess of the 42 $\mu g/l$ limit recommended for public water supplies, 159 samples from 39 sites contained more than the recommended 0.05 $\mu g/l$ environmental limit for marine waters. Many of these sites are on streams in the urban areas of Houston and San Antonio, but several sites are on major streams.

Dieldrin.--The dieldrin content of 1,385 samples from 108 sites ranged from 0.00 $\mu g/l$ in many samples to 0.60 $\mu g/l$ in a sample from Greens Bayou near Houston (site 75). No samples contained more than the recommended 17 $\mu g/l$ limit for public water supplies, but 111 samples from 30 sites contained more than 0.05 $\mu g/l$, the maximum recommended environmental level for marine waters. Most of these sites are in the urban areas of Houston and San Antonio.

Endrin.--The concentration of endrin in 1,385 samples from 108 sites ranged from 0.00 $\mu g/l$ in most samples to 0.07 $\mu g/l$ in a sample from the Colorado River at Wharton (site 116). Endrin was detected in only four samples (in at least one sample from three sites). The endrin content of none of the samples exceeded the recommended 1 $\mu g/l$ limit for water to be used for public supply; one sample from the Colorado River at Wharton (site 116) contained more than the recommended 0.05 $\mu g/l$ environmental limit for marine waters.

Heptachlor.--The heptachlor content of 1,384 samples from 108 sites ranged from 0.00 μ g/l in 1,382 samples to 0.03 μ g/l in a sample from the San Antonio River at San Antonio (site 130). One other sample, from Alazan Creek at St. Cloud Street in San Antonio (site 131), contained 0.01 μ g/l. The concentration of heptachlor in neither of these samples exceeded the recommended limit for public-water supply (18 μ g/l) or the recommended environmental level for marine waters (0.05 μ g/l).

Heptachlor epoxide.--The concentration of heptachlor epoxide ranged from $0.00~\mu g/1$ in 1,382 samples from 105 sites to $0.04~\mu g/1$ in a sample from Salado Creek tributary at Bitters Road in San Antonio (site 133). Three other samples (one from Salado Creek tributary at Bitters Road and one each from two other sites in the urban area of San Antonio) contained heptachlor epoxide. The concentration in none of these samples exceeded the 18 $\mu g/1$ limit recommended for water to be used for public supply.

Lindane.--Lindane was detected in 274 of 1,385 samples. At least 1 sample from 59 of 108 sites contained detectable concentrations. The maximum concentration was 0.72 $\mu g/1$ in a sample from Buffalo Bayou at Houston (site 58). Although no sample contained more than the 56 $\mu g/1$ limit recommended for water to be used for public supply, 59 samples from 25 sites contained more than 0.05 $\mu g/1$, the environmental limit recommended for marine waters

Toxaphene.--None of the 1,029 samples from 107 sites contained detectable concentrations of toxaphene (more than 0.5 μ g/1).

Phosphorothioate Insecticides

Diazinon.--The concentration of diazinon in 943 samples from 107 sites ranged from 0.00 μ g/l in many samples to 2.2 μ g/l in a sample from Brays Bayou at Houston (site 65). At least 1 sample from 80 sites contained detectable concentrations; and at least 1 sample from 43 sites, most of which are in urban areas, contained more than 0.05 μ g/l.

Malathion.--Malathion was detected in 67 of 815 samples. At least 1 sample from 24 of 107 sites contained detectable concentrations. The maximum concentration was 3.8 $\mu g/1$ in a sample from Little Whiteoak Bayou at Houston (site 61). At least 1 sample from 23 sites contained more than 0.05 $\mu g/1$. Most of these sites are on streams in urban areas.

Methyl Parathion.--The concentration of methyl parathion in 956 samples from 107 sites ranged from 0.00 μ g/l in many samples to 1.5 μ g/l in a sample from Chocolate Bayou at Port Lavaca (site 125). Methyl parathion was detected in at least l sample from 19 sites. At least l sample from 16 sites, most of which are on streams in urban areas, contained more than 0.05 μ g/l.

Parathion.--Parathion was detected in 12 of 955 samples. At least 1 sample from 8 of 107 sites contained detectable concentrations. The maximum concentration was 1.0 μ g/l in a sample from the Rio Grande at Anzalduas Dam (site 153); eight other samples from seven sites contained more than 0.05 μ g/l, the maximum environmental level recommended for marine waters.

The sum of the concentrations of diazinon, malathion, methyl parathion, and parathion in none of the samples exceeded 100 $\mu g/l$, which is the recommended limit of organic-phosphate plus carbamate insecticides in water to be used for public supply.

Chlorinated-Hydrocarbon Herbicides

- 2,4-D.--The concentration of 2,4-D in 1,352 samples from 108 sites ranged from 0.00 $\mu g/1$ in many samples to 26 $\mu g/1$ in a sample from Hunting Bayou at U.S. 90-A in Houston (site 74). At least 1 sample from 78 sites contained detectable concentrations. The concentration in three samples, all from Hunting Bayou at U.S. 90-A in Houston (site 74), exceeded 10 $\mu g/1$, the maximum recommended environmental level for marine waters.
- 2.4,5--T.--The 2,4,5-T content of 1,352 samples from 108 sites ranged from $\overline{0.00~\mu\text{g}}/1$ in many samples to 13 $\mu\text{g}/1$ in a sample from Salado Creek (upper station) at San Antonio (site 134). At least 1 sample from 96 sites contained detectable concentrations, but only the 1 sample from Salado Creek contained more than 10 $\mu\text{g}/1$, the maximum recommended level for marine waters.

Silvex.--The concentration of Silvex in 1,352 samples from 108 sites ranged from 0.00 $\mu g/l$ in many samples to 0.60 $\mu g/l$ in a sample from Sims Bayou at Houston (site 68). At least 1 sample from 11 sites contained more than 0.10 $\mu g/l$ Silvex. Most of these sites are on streams in urban areas.

The sum of the concentrations of 2,4-D, 2,4,5-T, and Silvex in none of the samples exceeded 100 $\mu g/1$, the maximum limit recommended for water to be used as a public supply.

Data for the 108 sites show that small amounts of some of the pesticides studied are widely distributed in surface waters in Texas. The most widely distributed chlorinated-hydrocarbon insecticides at the sites studied were dieldrin at 77 sites, DDT at 67 sites, lindane at 59 sites, DDD at 51 sites, DDE at 50 sites, and chlordane at 38 sites. No other chlorinated-hydrocarbon insecticide was detected at more than seven sites. The most widely distributed phosphorothioate insecticide was diazinon, which was detected at 80 sites. No other phosphorothioate insecticide was detected at more than 24 sites. Small amounts of each of the chlorinated-hydrocarbon herbicides were widely distributed (2,4,5-T at 96 sites. 2.4-D at 78 sites. and Silvex at 47 sites).

Although the occurrence of these pesticides are widespread, only chlordane in two samples from one site exceeded the maximum limit recommended for water to be used for public supply. However, the concentration of 1 or more pesticides in at least 1 sample from 57 sites exceeded the maximum environmental level for marine waters recommended by the National Technical Advisory Committee. Although many of these sites are on streams in urban areas, some of the sites are on principal streams.

SUMMARY OF CONCLUSIONS

The concentrations of dissolved solids, chloride, and sulfate in many of the principal streams in Texas average less than 500 mg/1, 250 mg/1, and 250 mg/1, respectively. Exceptions to this generalization are reaches of the Canadian, Red, Brazos, Colorado, and Pecos Rivers and the Rio Grande, where brine or saline inflows have degraded the inorganic quality of the water.

Samples for the determination of BOD and dissolved oxygen were collected periodically at sites on nontidal reaches of most of the principal streams and on many small streams during the 1968-72 water years. The BOD of 1,795 samples from 139 sites exceeded 3.0 mg/l. The BOD of at least half the samples from 65 of 131 sites, which were sampled at least 10 times, exceeded 3.0 mg/l. Many of these 65 sites are on streams in the urban areas of Houston and San Antonio and on the Trinity River and tributaries.

The dissolved-oxygen concentration, which was determined in 3,465 samples from 141 sites, was less than 5.0 mg/l in 740 samples (1 or more samples from 87 sites) and less than 3.0 mg/l in 308 samples (1 or more samples from 55 sites). The dissolved-oxygen content of at least half the samples from 20 of 123 sites that were sampled at least 10 times was less than 5.0 mg/l. Most of these 20 sites are on streams in the urban area of Houston and on the Trinity River and tributaries.

Analyses of samples collected periodically from 77 sites on nontidal reaches of most of the principal streams and on many small streams during the 1970-72 water years show that many of the minor elements are widely distributed in low concentrations in surface waters in Texas. However, with the exceptions of iron and manganese, most of the higher concentrations of the minor elements were found in waters from urban areas, indicating that the concentration levels in many instances are related to man's activities.

Analyses of water samples collected periodically from 108 sites on nontidal reaches of most of the principal streams and many small streams show that small amounts of some of the pesticides studied are widely distributed in surface waters in Texas. The most widely distributed chlorinated-hydrocarbon insecticides at the sites studied were dieldrin at 77 sites, DDT at 67 sites, lindane at 59 sites, and chlordane at 38 sites. The most widely distributed phosphorothicate insecticide was diazinon, which was detected at 80 sites. Small amounts of each of the chlorinated-hydrocarbon herbicides were widely distributed (2.4.5-T at 96 sites, 2,4-D at 78 sites, and Silvex at 47 sites). Although only chlordane, in 2 samples from 1 site exceeded the maximum limit recommended for water to be used for public supply, 1 or more pesticides in at least 1 sample from 57 sites exceeded the maximum environmental level for marine waters recommended by the National Technical Advisory Committee.

SELECTED REFERENCES

- Dupuy, A. J., Manigold, D. B., and Schulze, J. A., 1970, Biochemical-oxygen-demand, dissolved oxygen, selected nutrients, and pesticide records of Texas surface waters, 1968: Texas Water Devel. Board Rept. 108, 37 p.
- Dupuy, A. J., and Schulze, J. A., 1972, Selected water-quality records for Texas surface waters, 1970 water year: Texas Water Devel. Board Rept. 149, 211 p.
- Federal Water Pollution Control Administration, 1968, Report of the National Technical Advisory Committee to the Secretary of the Interior: Washington, U.S. Govt. Printing Office, 234 p.
- Hughes, L. S., and Leifeste, D. K., 1964, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: Texas Water Comm. Bull. 6405, 64 p.
 - 1965, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: Texas Water Devel. Board Rept. 5, 63 p.
- Hughes, L. S., and Rawson, Jack, 1966, Reconnaissance of the chemical quality of surface waters of the San Jacinto River basin, Texas: Texas Water Devel. Board Rept. 13, 45 p.
- Kunze, H. L., 1969, Reconnaissance of the chemical quality of surface waters of the Lavaca River basin, Texas: Texas Water Devel. Board Rept. 92, 23 p.
 - 1971, Reconnaissance of the chemical quality of surface waters of the Nueces River basin, Texas: Texas Water Devel. Board Rept. 134, 34 p.
- Kunze, H. L., and Lee, J. N., 1968, Reconnaissance of the chemical quality of surface waters of the Canadian River basin, Texas: Texas Water Devel. Board Rept. 86, 27 p.
- Leifeste, D. K., 1968, Reconnaissance of the chemical quality of surface waters of the Sulphur River and Cypress Creek basins, Texas: Texas Water Devel. Board Rept. 87, 28 p.
- Leifeste, D. K., Blakey, J. F., and Hughes, L. S., 1971, Reconnaissance of the chemical quality of surface waters of the Red River basin, Texas: Texas Water Devel. Board Rept. 129, 68 p.
- Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 65 p.

SELECTED REFERENCES--Continued

- Leifeste, D. K., and Lansford, M. W., 1968, Reconnaissance of the chemical quality of surface waters of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 71, 78 p.
- Mendieta, H. B., 1972, Chemical quality of surface waters of the Rio Grande basin, Texas: U.S. Geol. Survey open-file rept., 160 p.
- Rawson, Jack, 1967, Study and interpretation of chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p.
- 1968, Reconnaissance of the chemical quality of surface waters of the Guadalupe River basin, Texas: Texas Water Devel. Board Rept. 88, 36 p.
- 1969, Reconnaissance of the chemical quality of surface waters of the San Antonio River basin, Texas: Texas Water Devel. Board Rept. 93, 24 p.
- Schulze, J. A., Dupuy, A. J., and Manigold, D. B., 1970, Biochemical-oxygen-demand, dissolved-oxygen, selected-nutrients, and pesticide records of Texas surface waters, 1969 water year: Texas Water Devel. Board Rept. 120, 22 p.
- Schulze, J. A., Dupuy, A. J., and McPherson, E. M., 1973, Selected water-quality records for Texas surface waters, 1971 water year: Texas Water Devel. Board Rept. 176, 268 p.
- Texas Water Quality Board, 1973a, Texas water quality standards: Texas Water Quality Board pub., 78 p.
- 1973b, A policy for effluent standards for domestic wastewater treatment plants: Texas Water Quality Board pub., 6 p.
- U.S. Environmental Protection Agency, 1971, Manual for evaluating public drinking water supplies: U.S. Environmental Protection Agency pub., 62 p.
- U.S. Geological Survey, 1968, Water resources data for Texas, Part 2, Water-quality records: Austin, Tex., U.S. Geol. Survey rept., 746 p.
- 1969, Water resources data for Texas, Part 2, Water-quality records:
 Austin, Tex., U.S. Geol. Survey rept., 642 p.
- 1970, Water resources data for Texas, Part 2, Water-quality records:
 Austin, Tex., U.S. Geol. Survey rept., 613 p.

SELECTED REFERENCES--Continued

- U.S. Geological Survey, 1971, Water resources data for Texas, Part 2, Water-quality records: Austin, Tex., U.S. Geol. Survey rept., 779 p.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: U.S. Public Health Service Pub. 956, 61 p.

Refer-				Bioc	hemical ox		nd			Dis	ssolved o	xygen	
ence number	Station number	Stream and location	Water years	No. of analyses	Range (mg/1)	Mean (mg/1)	No. of samples with BOD greater than 3.0 mg/1	Water years	No. of analyses	Range (mg/1)	Mean (mg/1)	No. of samples with DO concentrations less than 3.0 mg/1	No. of samples with DO concentrations less than 5.0 mg/l
1 2 3 5 7	07227470 07227500 07228000 07312700 07335500	Canadian River at Tascosa, Tex. Canadian River near Amarillo, Tex. Canadian River near Canadian, Tex. Wichita River near Charlie, Tex. Red River at Arthur City, Tex.	1969-72 1968-72 1968-72 1968-72 1968-70	36 26 23 24 21	0.2-16 1.4-46 0.5-15 1.4-18 0.7- 4.3	2.5 10 3.6 5.2 1.8	9 24 8 19	1969-72 1968-72 1968-72 1968-72 1968-70	31 21 18 24 21	6.6-12.2 6.2-13.2 6.5-12.8 4.6-15.0 5.8-13.0	8.7 9.3 9.3 9.3 9.1	0 0 0 0	0 0 0 1 0
8 9 10 11 12	07336820 07337000 07343200 07346070 08017500	Red River near DeKalb, Tex. Red River at Index, Ark. Sulphur River near Talco, Tex. Little Cypress Creek near Jefferson, Tex. Sabine River near Emory, Tex.	1968-72 1968-70 1968-72 1968-72 1968-72	33 21 33 32 31	0.8- 4.1 0.9- 4.1 0.9- 5.4 0.3- 7.7 0.8- 7.7	2.0 2.1 2.2 1.7 2.3	4 3 4 5 5	1968-70 1968-70 1968-72 1968-72 1968-72	33 21 33 32 31	6.1-13.0 6.3-12.1 3.4-12.0 2.9-11.1 3.8-12.0	9.1 8.9 7.8 7.3 8.3	0 0 0 1 0	0 0 3 5 2
13 14 15 16 17	08020000 08022000 08025360 08026000 08030500	Sabine River near Gladewater, Tex. Sabine River near Tatum, Tex. Sabine River at Toledo Bend Dam, Tex. Sabine River near Burkeville, Tex. Sabine River near Ruliff, Tex.	1968-72 1968-72 1968-72 1968-72 1968-72	33 31 27 27 27 31	0.9- 5.8 1.5-18 0.6- 4.2 0.7- 4.4 0.0- 3.9	1.7 4.3 1.5 1.6 1.6	1 14 1 3 1	1968-72 1968-72 1968-72 1968-72 1968-72	33 31 27 27 27 30	2.4-11.2 0.9-12.9 2.0-10.5 3.8-11.0 5.8-10.2	7.3 7.0 5.9 8.2 7.7	1 1 6 0	4 8 12 2 0
18 19 20 21 22	08032500 08033000 08033500 08037000 08037080	Neches River near Alto, Tex. Neches River near Diboll, Tex. Neches River near Rockland, Tex. Angelina River near Lufkin, Tex. Bayou LaNana near Nacogdoches, Tex.	1968-72 1970-72 1968-72 1968-72 1968-72	30 17 30 33 33	0.4- 6.2 0.4-22 0.5- 5.4 0.7- 6.5 1.3-36	1.5 5.5 2.0 1.5 9.7	1 7 6 1 30	1968-72 1970-72 1968-72 1968-72 1968-72	31 18 30 45 45	5.0-10.0 4.2-10.6 4.7-11.4 5.2-12.6 0.2-10.4	7.8 7.1 7.4 7.9 5.2	0 0 0 0 9	0 3 1 0 20
23 24 25 26 27	08037200 08037250 08037330 08039400 08041000	Paper Mill Creek near Herty, Tex. Angelina River below Paper Mill Creek nr Herty, Tex. Angelina River near Etoile, Tex. Angelina River blw Sam Rayburn Res. nr Jasper, Tex. Neches River at Evadale, Tex.	1968-72 1968-72 1968-72 1968-72 1968-72	33 10 33 32 30	7.2-34 1.6- 5.6 0.7- 8.3 0.3- 6.1 0.0- 4.1	19 4.4 2.0 1.2 1.7	33 8 2 1	1968-72 1968-72 1968-72 1968-72 1968-72	45 14 44 43 29	1.0- 7.0 1.4- 8.5 1.0-10.1 1.4-11.6 5.9-10.5	4.2 5.1 4.6 7.3 8.0	5 4 12 5 0	31 7 22 12 0
28 29 30 31 32	08042540 08042550 08048000 08049500 08050500	East Bay Bayou near Stowell, Tex. West Fork Double Bayou near Anahuac, Tex. West Fork Trinity River at Fort Worth, Tex. West Fork Trinity River at Grand Prairie, Tex. Elm Fork Trinity River near Sanger, Tex.	1971-72 1971-72 1968-72 1968-72 1970-72	18 18 58 58 17	1.2-14 1.2-56 1.2-11 4.2-73 0.7- 8.3	4.0 6.4 4.4 15 3.1	9 9 46 58 5	1971-72 1971-72 1971-72 1971-72 1970-72	18 18 58 58 17	4.8-13.9 4.0-10.4 0.3-14.2 0.3- 9.4 4.5-12.9	8.2 7.6 6.8 3.7 8.8	0 0 4 21 0	1 1 14 45 1
33 34 35 36 37	08057410 08062000 08062500 08062700 08065350	Trinity River below Dallas, Tex. East Fork Trinity River near Crandall, Tex. Trinity River near Rosser, Tex. Trinity River at Trinidad, Tex. Trinity River near Crockett, Tex.	1968-72 1968-72 1968-72 1968-72 1968-72	58 58 58 58 31	2.8-53 1.8-43 2.8-37 2.0-42 1.3-33	15 13 11 15 8.3	57 50 57 49 18	1968-72 1968-72 1968-72 1968-72 1968-72	58 58 58 58 58 32	0.1- 9.5 0.1-12.4 0.2- 9.1 0.9- 9.7 1.1- 9.1	3.4 5.2 3.7 4.8 6.2	30 19 26 16 3	42 26 37 30 5
38 39 40 41 42	08065500 08065800 08065950 08065980 08066000	Trinity River near Midway, Tex. Bedias Creek near Madisonville, Tex. Nelson Creek near Riverside, Tex. Harmon Creek near Riverside, Tex. Trinity River at Riverside, Tex.	1971-72 1971-72 1971-72 1971-72 1971-72	16 14 15 16 16	0.1-18 0.1-12 0.7- 3.9 3.4-13 2.0- 9.0	6.6 4.3 2.2 6.8 5.0	8 8 5 16 13	1971-72 1971-72 1971-72 1971-72 1971-72	17 14 16 17 17	1.0- 9.5 1.6- 8.2 6.5- 9.8 1.5-10.0 1.4-13.0	6.0 4.7 8.4 6.0 5.9	2 5 0 2 5	5 10 0 7 9
43 44 45 46 47	08066130 08066147 08066170 08066191 08066500	White Rock Creek near Trinity, Tex. White Rock Creek at Farm Road 356, nr Trinity, Tex. Kickapoo Creek near Onalaska, Tex. Livingston Reservoir Outflow, nr Goodrich, Tex. Trinity River at Romayor, Tex.	1971-72 1971-72 1971-72 1970-72 1968-72	13 16 15 17 31	1.6- 9.0 1.2- 8.8 1.0- 5.0 0.6- 9.0 0.0-20	3.8 4.4 2.6 2.8 3.0	7 10 4 4 8	1971-72 1971-72 1971-72 1970-72 1968-72	14 17 16 18 31	4.8-10.2 2.2-14.4 6.0-12.6 6.0-11.2 5.6-15.0	8.6 6.7 9.5 9.2 8.8	0 2 0 0	1 6 0 0
48 49 50 51 52	08067120 08067250 08067500 08067520 08068000	Turtle Bayou near Hankamer, Tex. Turtle Bayou near Anahuac, Tex. Cedar Bayou near Crosby, Tex. Goose Creek near McNair, Tex. West Fork San Jacinto near Conroe, Tex.	1971-72 1972 1971-72 1971-72 1968-72	13 4 21 19 31	0.3- 6.0 2.4- 4.4 0.6- 5.9 0.4- 7.5 0.4- 3.7	2.3 3.4 3.0 3.3 1.9	3 3 8 13 2	1971-72 1971-72 1971-72 1971-72 1968-72	13 4 21 19 29	4.7-11.0 5.3-10.4 4.9-12.1 3.8-11.2 4.2-12.4	7.1 7.0 7.5 6.9 8.3	0 0 0 0 0	1 0 1 4 1

·				Bio	chemical ox		nd			Di	ssolved o	xygen	
Refer- ence number	Station number	Stream and location	Water years	No. of analyses	Range (mg/1)	Mean (mg/1)	No. of samples with BOD greater than 3.0 mg/1	Water years	No. of analyses	Range (mg/1)	Mean (mg/l)	No. of samples with DO concen- trations less than 3.0 mg/1	No. of samples with DO concen- trations less than 5.0 mg/l
			1971-72	8	0.8- 8.1	3.7	5	1971-72	7	4.4- 9.8	7.0		2
53	08068750	Cypress Creek near Cypress, Tex.	1971-72	7	1.8- 8.3	4.4	6	1971-72	6	3.6-11.0	6.9	1 0	2
54 56	08069200	Cypress Creek near Humble, Tex. Buffalo Bayou near Addicks, Tex.	1970-72	11	2.1- 6.9	3.8	و	1970-72	11	5.5-12.0	8.2	l ŏ	ō
57	08073700	Buffalo Bayou at Piney Point, Tex.	1970-72	11	2.6-16	7.6	9	1970-72	11	1.7-10.6	5.8	2	5
58	08074000	Buffalo Bayou at Houston, Tex.	1968-72	37	1.2-13	5.8	31	1968-72	37	2.2- 9.4	5.6	3	20
59	08074250	Brickhouse Gulley at Costa Rica St., Houston, Tex.	1970-72	12	2.0-23	6.8	10	1970-72	12	7.1-20.0	11.1	0	0
60	08074500	Whiteoak Bayou at Houston, Tex.	1969-72	43	0.3-60	11	39	1969-72	43	3.7-18.8	9.0	0	3
61	08074550	Little Whiteoak Bayou at Houston, Tex.	1971-72	23	2.4-53	14	21	1971-72	23	0.1-11.5	4.5	9	14
62	08074780	Keegans Bayou at Keegan Road, Houston, Tex.	1970-72	10	0.7- 7.2	3.8	7	1970-72	10	1.9- 8.0	5.4	1	4
63	08074800	Keegans Bayou at Roark Road, near Houston, Tex.	1969-72	30	0.6-12	4.4	20	1969-72	30	1.9-12.8	7.4	2	5
64	08074900	Willow Waterhole Bayou at Landsdowne St., Houston	1969-72 1969-72	12 54	1.6-19	9.8	11 49	1969-72 1969-72	12 54	2.8-20.0 2.5-13.0	6.4	2	5 1
65 66	08075000 08075100	Brays Bayou at Houston, Tex. Brays Bayou at Scott St., Houston, Tex.	1969-72	24	2.0-31 1.4-20	12	22	1971-72	24	4.2-14.6	8.0 7.8	1 0	1 2
67	08075400	Sims Bayou at Hiram Clark St., Houston, Tex.	1970-72	11	2.3-19	8.1	10	1970-72	11	1.4-10.6	4.3	6	7
68	08075500	Sims Bayou at Houston, Tex.	1969-72	40	4.1-23	9.8	40	1969-72	40	0.1-10.6	3.6	20	29
69	08075650	Berry Bayou at Forest Oaks St., Houston, Tex.	1969-72	27	0.7-41	17	26	1969-72	28	0.8-11.5	5.2	5	14
70	08075720	Plum Creek at Houston, Tex.	1971-72	22	0.8-29	5.3	10	1971-72	21	2.8-11.3	6.6	li	5
71	08075730	Vince Bayou at Pasadena, Tex.	1971-72	22	2.1-22	7.3	18	1971-72	21	3.7-20.0	10.3	0	2
72	08075740	Little Vince Bayou at Pasadena, Tex.	1971-72	21	2.0-13	6.4	18	1971-72	21	1.3-10.0	5.1	4	9
73	08075760	Hunting Bayou at Falls St., Houston, Tex.	1970-72	11	2.7-54	18	10	1971-72	11	1.1- 8.0	4.9	4	5
74	08075770	Hunting Bayou at U.S. Highway 90-A, Houston, Tex.	1969-72	43	1.0-102	11	39	1969-72	43	0.4-20.0	5.8	10	20
75	08076000	Greens Bayou near Houston, Tex.	1969-72	23	1.2-22	6.6	21	1969-72	23	2.8-14.8	6.7	4	9
76	08076500	Halls Bayou at Houston, Tex.	1969-72	. 23	2.2-38	18	21	1969-72	23	0.4-20.0	6.3	5	10
77 78	08076700 08076800	Greens Bayou at Ley Road, at Houston, Tex. Buffalo Bayou Tributary at Pasadena, Tex.	1971-72 1971-72	25 20	0.6-20 4.5-30	8.3 13	22 20	1971-72 1971-72	25 20	1.1-10.2	5.4	3 5	10 12
	Į.				1	j	}	l]	ł		·	1
79 80	08076850 08076900	Patrick Bayou at Deer Park, Tcx. Carpenters Bayou at Cloverleaf, Tex.	1971-72 1971-72	21 21	0.3-29	12 6.1	18 18	1971-72 1971-72	21 21	2.2- 9.7 3.2-11.0	6.3	1 0	4 5
81	08077540	Clear Creek at Farm Road 2351, at Friendswood, Tex.	1971-72	19	1.6- 9.3	4.8	15	1971-72	19	3.0- 9.0	4.5	0	12
82	08077620	Armand Bayou near Genoa, Tex.	1971-72	20	1.9-11	6.7	17	1971-72	20	1.6- 9.8	3.9	8	15
83	08077640	Dickinson Bayou near Alvin, Tex.	1971-72	18	0.6- 7.5	2.6	6	1971-72	18	1.8- 9.6	6.3	i	2
84	08077680	Highland Bayou near Alta Loma, Tex.	1971-72	18	1.5-17	6.5	16	1971-72	18	2.0-13.2	4.4	9	12
85	08077800	Halls Bayou near Algoa, Tex.	1971-72	11	0.6- 3.1	1.5] 1	1971-72	11	6.4-12.7	8.5	0	0
86	08077850	Halls Bayou near Alta Loma, Tex.	1972	3	3.3-10	5.6	3	1972	3	5.2- 9.6	6.9	0	0
87	08077900	Mustang Bayou near Liverpool, Tex.	1971-72	17	0.1-6.9	2.8	5	1971-72	17	3.8- 9.0	6.1	0	4
88	08078000	Chocolate Bayou near Alvin, Tex.	1971-72	19	0.3- 9.3	3.1	8	1971-72	19	4.5-10.0	7.4	0	1
89	08078400	Austin Bayou near Liverpool, Tex.	1971-72	17	0.1- 5.1	1.9	4	1971-72	17	2.0- 7.8	6.0	1	3
90	08078700	Flores Bayou near Danbury, Tex.	1971-72	15	1.2- 7.8	3.5	6	1971-72	15	1.7-15.2	6.5	1	4
91 92	08084000	Clear Fork Brazos River at Nugent, Tex. Deadman Creek near Nugent, Tex.	1968-72 1968-72	24 24	0.7-11	2.8	6 24	1968-72 1968-72	23 23	0.6-17.8	9.5 8.0	1	6
92 95	08092000	Noland River at Blum, Tex.	1968-72	34	0.5- 8.4	3.6	16	1968-72	34	6.1-16.6	11.3	0	8 8
96	08093500	Aquilla Creek near Aquilla, Tex.	1968-72	33	0.6-21	3.7	14	1968-72	33	5.1-12.5	9.0		
97	08096500	Brazos River at Waco, Tex.	1968-72	32	0.4- 3.4	1.5	ì	1968-72	32	5.0-13.5	8.5	l ŏ	0
98	08098290	Brazos River near Highbank, Tex.	1968-72	31	0.9-18	3.1	10	1968-72	32	6.0-12.2	9.4	ŏ	ő
99	08103900	South Fork Rocky Creek near Briggs, Tex.	1968-72	23	0.0- 35.	.7	1	1968-72	23	5.4-10.2	8.7	0	0
100	08106500	Little River at Cameron, Tex.	1968-72	31	0.0- 5.8	2.1	9	1968-72	32	5.7-11.8	8.4	0	0
101	08114000	Brazos River at Richmond, Tex.	1968-72	32	0.1- 7.2	2.7	10	1968-72	32	5.2-14.8	8.4	0	0
102	08116650	Brazos River near Rosharon, Tex.	1968-72	35	0.9- 5.5	2.6	9	1968-72	35	5.7-12.4	8.9	0	0
103	08117900	Big Boggy Creek near Wadsworth, Tex.	1970-72 1968	22	1.2-14	4.5	14	1970-72	22	2.5-18.6	8.6	1	2 0
106 107	08136100 08136150	Concho River at Sixmile Crossing, nr San Angelo Concho River near Veribest, Tex.	1968	21	2.1-47	8.6	18	1968 1969-72	20	3.1-16.4	10.5	0	1 1
107	1 00130130	Contain Aiver Hear veribeat, 164.	1703-12	1	1 2.1.4/	1	1. 10	1,703-72	1 20	1 3.1310.4	1	1	, ,

Refer-				Bio	chemical oxy		nd			Dis	solved on	xygen	
ence	Station number	Stream and location	Water years	No. of analyses	Range (mg/l)	Mean (mg/1)	No. of samples with BOD greater than 3.0 mg/1	Water years	No. of analyses	Range (mg/1)	Mean (mg/1)	No. of samples with DO concen- trations less than 3.0 mg/1	No. of samples with DO concen- trations less than 5.0 mg/1
108 109 110 111 112	08136500 08147000 08153500 08157500 08158650	Concho River near Paint Rock, Tex. Colorado River near San Saba, Tex. Pedernales River near Johnson City, Tex. Waller Creek at 23rd St., Austin, Tex. Colorado River at Farm Road 973, below Austin, Tex.	1968-72 1968-72 1969 1971 1968-72	22 31 3 6 30	1.0- 5.9 0.7- 4.7 0.8- 1.1 0.9-23 0.5- 9.0	3.3 2.0 .9 9.4 2.5	12 3 0 4 6	1968-72 1968-72 1969 1971 1968-72	20 31 3 6 30	4.0-14.6 5.7-11.0 8.5-10.9 6.7- 8.0 4.8-12.0	9.5 8.2 9.4 7.6 8.2	0 0 0 0 0	1 0 0 0
113 114 115 116 117	08159150 08159200 08161000 08162000 08162600	Wilbarger Creek near Pflugerville, Tex. Colorado River at Bastrop, Tex. Colorado River at Columbus, Tex. Colorado River at Wharton, Tex. Tres Palacios Creek near Midfield, Tex.	1970 1968-72 1968-72 1968-72 1970-72	1 30 31 32 27	4.6- 0.4- 7.7 0.1- 8.2 0.6- 6.4 0.8-11	1.7 2.7 2.6 3.5	1 4 9 12 14	1970 1968-72 1968-72 1968-72 1970-72	1 30 29 31 25	7.5- 6.3-16.2 7.3-12.8 6.0-12.8 3.2-14.0	8.8 9.0 8.9 7.9	0 0 0 0	0 0 0 0 2
118 119 120 122 123	08162650 08162700 08162800 08164500 08164600	Cashs Creek near Blessing, Tex. East Carancahua Creek near Blessing, Tex. West Carancahua Creek near LaWard, Tex. Navidad River near Ganado, Tex. Garcitas Creek near Inez, Tex.	1970-72 1970-72 1970-72 1968-72 1970-72	24 26 21 32 24	1.0-17 1.0- 7.5 1.1- 9.6 0.2- 4.3 0.3- 3.4	4.1 2.9 3.6 2.2 2.0	11 11 21 4 3	1970-72 1970-72 1970-72 1968-72 1970-72	24 24 21 30 23	2.0-11.3 4.3-14.0 4.2-14.4 5.2-10.6 4.5-11.8	6.3 8.1 8.2 8.2 7.8	1 0 0 0 0	6 2 2 0 1
124 125 126 127 128	08164800 08164850 08169580 08176520 08177600	Placedo Creek near Placedo, Tex. Chocolate Bayou at Port Lavaca, Tex. Guadalupe River below New Braunfels, Tex. Guadalupe River below Victoria, Tex. Olmos Creek Trib. at Farm Road 1535, at	1970-72 1970-72 1968-72 1968-72 1970,	26 25 31 31	0.4- 6.0 1.4- 9.0 0.4- 7.5 0.5- 2.7	2.7 4.8 1.6 1.4	8 15 2 0	1970-72 1970-72 1968-72 1968-72	24 23 31 31	1.8-10.2 1.2-11.6 6.1-18.8 5.7-10.4	5.7 4.3 9.0 8.1	1 8 0 0	9 14 0 0
129 130 131 132 133	08177700 08178000 08178300 08178600 08178690	Shavano Park, Tex. Olmos Creek at Dresden Drive, San Antonio, Tex. San Antonio River at San Antonio, Tex. Alazan Creek at St. Cloud St., San Antonio, Tex. Panther Springs Creek at Farm Road 2696, San Antonio Salado Creek Trib. at Bitters Rd., San Antonio, Tex.	1972 1969-72 1969-72 1969-72 1969-72 1969-72	30 15 15 6	2.5-22 2.2-13 3.1-19 2.6-4.6 1.9-76	8.1 7.5 6.8 3.4	29 13 15 3	1969-72 1969-72 1969,1972 1969,1972 1969-71	12 8 4 3 5	6.8-10.2 5.8-10.0 8.3-10.0 8.0- 9.1 7.4-10.2	8.0 8.0 9.1 8.7 8.9	0 0 0	0 0 0
134 135 136 137 138	08178700 08178736 08178800 08180500 08181000	Salado Creek (upper station) at San Antonio, Tex. Salado Creek Trib. at Bee St., San Antonio, Tex. Salado Creek (lower station) at San Antonio, Tex. Medina River near Riomedina, Tex. Leon Creek Trib. at Farm Road 1604, San Antonio	1969-72 1970,1972 1969-72 1968-72 1970,1972	14 3 15 52 4	2.4- 7.6 5.2-19 1.7-14 0.0- 1.8 0.4- 3.3	4.4 9.9 5.2 .6 2.0	11 3 11 0	1969,1972 1969-72 1968-72 1972	7 9 52 1	7.0-11.8 5.4- 8.8 5.7-11.1 7.9-	8.5 7.2 7.7	0 0 0	0 0 0 0
139 140 141 142 143	08181400 08181450 08181500 08181800 08183500	Helotes Crock at Helotes, Tex. Leon Creek Trib at Kelly AFB, Tex. Medina River at San Antonio, Tex. San Antonio River near Elmendorf, Tex. San Antonio River near Falls City, Tex.	1969-72 1970-72 1971-72 1968-72 1968-72	13 10 21 58 58	0.5-13 2.1- 9.6 0.6-14 1.0-31 1.0-14	2.7 4.9 3.2 9.5 3.2	8 4 53 19	1969-70 1972 1971-72 1968-72 1968-72	4 20 57 57	7.9- 9.3 4.4- 8.8 2.8- 9.0 2.2- 9.4	8.4 7.1 5.1 5.5	0 0 1 5	0 1 29 16
144 145 146 147 148	08186000 08188500 08188800 08189100 08189200	Cibolo Creek near Falls City, Tex. San Antonio River at Goliad, Tex. Guadalupe River near Tivoli, Tex. Salt Creek near Refugio, Tex. Copano Creek near Refugio, Tex.	1970-72 1968-72 1968-72 1970-72 1970-72	34 59 31 10 14	0.2- 5.6 0.6- 8.7 0.8- 3.5 1.7- 5.2 1.4- 4.9	1.8 2.6 1.8 2.8 3.2	6 16 1 3 7	1970-72 1968-72 1968-72 1970-72 1970-72	34 57 31 9	5.0-14.4 5.0-11.0 4.3- 9.7 5.0-10.1 2.6-10.5	8.3 7.5 6.9 6.6 6.2	0 0 0 0 1	0 0 2 0 4
149 150 151	08189500 08189800 08210000	Mission River at Refugio, Tex. Chiltipin Creek at Sinton, Tex. Nueces River near Three Rivers, Tex.	1968-72 1970-72 1968-72	30 23 31	0.8- 8.0 2.1- 7.9 0.8- 7.8	2.5 4.4 2.8	6 16 10	1968-72 1970-72 1968-72	30 21 31	4.5-11.7 1.1-16.9 5.1-11.8	7.5 10.4 7.9	0 1 0	1 3 0

	· · · · ·			DISSO	LVED	CONST	ITUENT	S				
	Aluminum (A1)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	2. 0722		DIAN RIVER er years 1	NEAR AMARTI 971-72)	LO, TEX.							
Number of analyses	8 8 10-460 	8 3 0-10 0	8 0 0-0	8 1 0-2 0	8 1 0-1	8 8 4-25 0	8 8 10-720	8 3 0-11 0	8 7 0-210 4	7 5 <0.2-0.9 0	8 3 0-7	8 8 20-100 0
	8. 0		ED RIVER N er years 1	EAR DeKALB, 971-72)	TEX.		· .					
Number of analyses	8 7 0-200	8 0 0-0	8 0 0-0	8 0 0-0	8 0 0-0	8 7 0-4 0	8 7 0-140 0	8 0 0-0	8 5 2-11 0	8 5 <0.2-1.3	8 1 0-9	8 7 0-90
	10. 07:		LPHUR RIVE er years 1	R NEAR TALCO), TEX.		,				·	
Number of analyses	8 6 0-100	8 2 0-10 0	8 1 0-3	8 1 0-28	8 0 0-0	8 7 0-7	8 6 0-48 0	8 2 0-6 0	8 7 0-190 5	8 5 <0.2-7.7 1	8 4 0-9	8 7 0-120 0
1	1. 0734607		CYPRESS CRI er years 1	EEK NEAR JEI 971-72)	TERSON, TE	х.						
Number of analyses	8 8 70-420 	8 0 0-0	8 1 0-1	8 0 0-0	8 0 0-0	8 7 0-14	8 8 910-2000 8	8 2 0-9 0	8 8 24-1500 7	8 5 <0.2-2.5	8 3 0-8	8 8 14-70 0
	14. 0		ABINE RIVE	R NEAR TATUR 971-72)	t, TEX.							
Number of analyses . Number of occurrences	8 7 0-200	8 0 0-0	8 1 0-1	8 0 0-0	8 0 0-0	8 7 0-5	8 8 110-540 5	8 0 0-0	8 8 15-680 7	8 6 <0.2-2.1 0	8 5 0-8	8 7 0-80
	16. 080		INE RIVER I	NEAR BURKEV: 971-72)	ILLE, TEX.							
Number of analyses	8 6 0-30 	8 0 0-0	8 0 0-0	8 0 0-0	8 0 0-0	8 8 1-9	8 8 10-650	8 0 0-0	8 7 0-1300 4	7 2 <0.2-0.2 0	8 1 0-5	8 4 0-40

	1			DISSU	LVED	CONST	ITUENT	S				
	Aluminum (Al)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	17. 0		ABINE RIVE er years 1	R NEAR RULI 971-72)	FF, TEX.							
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	10-100	8 0 0-0	8 1 0-1	8 0 0-0	8 0 0-0	8 8 2-10	8 8 15-440 1	8 0 0-0	8 5 0-70	8 6 <0.2-2.7 0	8 3 0-4	8 7 0-60 0
	20. 08		CHES RIVER er years 1	NEAR ROCKL 971-72)	AND, TEX.							
Number of analyses Number of occurrences Range (μg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	0-90	8 0 0-0	8 0 0-0	8 1 0-2 0	8 0 0-0	8 7 0-7 0	8 8 35-730 2	8 0 0-0	8 7 0-160 4	7 1 <0.2-0.2	8 5 0-4	8 5 0-40 0
26. 0803	400 ANGELI		ELOW SAM R er years 1		RVOIR, NEAR	JASPER, TE	x.					
Number of analyses	0-30	8 0 0-0	8 1 0-1	8 0 0-0	8 0 0-0	8 7 0-4 0	22 18 0-3800 5	8 0 0-0	11 9 0-3600 6	7 3 <0.2-0.8	8 3 0-3	8 5 0-30
	27. 0		ECHES RIVE er years 1	R AT EVADALI 971-72)	E, TEX.							
Number of analyses Number of occurrences Range (ug/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	7 0-160	8 0 0-0	8 0 0-0	8 0 0-0	8 0 0-0	8 8 1-14 0	8 8 80-490 2	8 1 0-4 0	8 6 0-890	8 5 <0.2-2.8 0	8 3 0-5	8 5 0-240
	28. 080		T BAY BAYO er years 1	U NEAR STOWN 971-72)	ELL, TEX.		.					
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits		9 0 0-0	9 0 0-0	9 0 0-0	9 1 0-1	9 9 4-28 0	9 9 23-920 3	9 0 0-0	9 7 0-100	8 6 <0.2-1.4	9 4 0-6	9 9 10-100
	9. 0804255		RK DOUBLE er years 1		MAHUAC, TE	x.	L	<u> </u>		<u> </u>	L	
Number of analyses	Į	10 0 0-0	10 1 0-1	10 0 0-0	10 2 0-3	10 10 1-19 0	10 10 25-590 2	10 0 0-0	10 10 20-140 4	9 6 <0.2-2.2 0	10 6 0-8	10 10 10-100

			·	DISSO	LVED	CONST	ITUENT	S				
	Aluminum (Al)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	33. 080		INITY RIVE er years 1	R BELOW DALI 971-72)	LAS, TEX.							-
Number of analyses	8 8 10-100	8 2 0-10	8 6 0-2 0	8 4 0-10 0	8 2 0-1	8 8 9-18	8 8 40-150 0	8 4 0-9 0	8 8 12-140 6	8 7 <0.2-22 1	8 8 10-37	8 8 60-130 0
	35. 08		RINITY RIVI er years 1	ER NEAR ROSS 971-70)	SER, TEX.						-	
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	0-100	8 3 0-20	8 3 0-1	8 1 0-6 0	8 2 0-3	8 8 5-13	8 8 30-340 1	8 5 0-7 0	8 8 26-170 7	8 6 <0.2-1.9 0	8 8 9-33	8 8 30-90
	37. 0806		NITY RIVER er years 1	NEAR CROCKI	ETT, TEX.			,	· · · · · · · · · · · · · · · · · · ·			
Number of analyses Number of occurrences Range (ug/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	7 0-110	8 5 0-11	8 0 0-0	8 1 0-10	8 2 0-2	8 8 3-15	8 7 0-90	8 0 0-0	8 5 0-350 2	7 4 <0.2-0.8	8 7 0-25	8 5 0-50
	47. 080		INITY RIVE er years l	R AT ROMAYOR 971-72)	R, TEX.	·	:	<u> </u>			L i	L
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 3 0-300	8 0 0-0	8 1 0-1 0	8 0 0-0	8 1 0-1	8 7 0-100	8 6 0-490	8 0 0-0	8 5 0-120	8 3 <0.2-2.3	8 2 0-8	8 2 0-40 0
	48. 0806		TLE BAYOU I	NEAR HANKAMI 1971)	ER, TEX.							<u> </u>
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	5 0 0-0	5 0 0-0	5 0 0-0	5 1 0-1	5 5 3-9 0	5 5 33-790 1	5 0 0-0	5 4 0-80 1	5 1 <0.2-0.6	5 3 0-10	5 5 10-120 0
	49. 0806		TLE BAYOU I	NEAR ANAHUA(1972)	C, TEX.							
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	3 0 0-0	3 0 0-0	3 0 0-0	3 0 0-0	3 3 6-20	3 3 150-320 2	3 0 0-0	3 1 0-120	3 3 <0.2-0.5	3 0 0-0	3 3 20-50

	[DISSO	VED	CONST	ITUENT	S				
	Aluminum (Al)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	50. 0		EDAR BAYOU er years 1	NEAR CROSBY 971-72)	, TEX.							
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	11 0 0-0	11 0 0-0	11 0 0-0	11 0 0-0	11 11 3-13 0	11 11 14-660 2	11 0 0-0	11 6 0-60	11 4 <0.2-2.2 0	11 4 0-8	11 11 10-150 0
	51. 0		OOSE CREEK er years 1	NEAR McNAIR 971-72)	, TEX.							
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits		8 1 0-10	8 1 0-1 0	8 0 0-0	8 0 0-0	8 8 5-19 0	8 7 0-150	8 1 0-9 0	8 6 0-90 1	8 4 <0.2-1.0 0	8 2 0-4	8 8 10-90
	53. 08		PRESS CREE er years 1	K NEAR CYPRE 971-72)	SS, TEX.							
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	7 7 10-390	7 0 0-0	7 2 0-1	7 1 0-1	7 0 0-0	7 7 4-21 0	7 7 47-1300 2	7 2 0-5	7 4 0-20	7 4 <0.2-2.2 0	7 2 0-4	7 7 10-80 0
	54. 08		PRESS CREE	K NEAR HUMBL 971-72)	E, TEX.							L
Number of analyses Number of occurrences Range (ug/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 7 0-340	8 0 0-0	8 1 0-2 0	8 0 0-0	8 2 0-2	8 8 4-230	8 8 8-490 3	8 1 0-90	8 6 0-60	8 5 <0.2-4.5	8 2 0-13	8 7 0-730
	56. 080		FFALO BAYO	J NEAR ADDIC 1972)	KS, TEX.			<u> </u>	<u> </u>			
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	2 0 0-0	2 0 0-0	2 0 0-0	2 1 0-3	2 2 5-7 0	2 2 80-330 1	2 1 0-3	2 0 0-0	2 1 <0.2-0.2	2 1 0-10	2 2 20-40 0
	57. 080		FALO BAYOU	AT PINEY PO 1972)	INT, TEX.							
Number of analyses Number of occurrences Range (19/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	2 1 0-10	2 0 0-0	2 0 0-0	2 1 0-1	. 2 2 5-11 0	2 2 80-190 0	2 1 0-2 0	2 1 0-90	2 1 <0.2-0.2	2 1 0-8	2 2 30-30

				DISSO		CONST	ITUENT	С .				
	Aluminum (A1)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	58. 0		UFFALO BAY	OU AT HOUSTO 971-72)	ON, TEX.							
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits		14 2 0-10 0	14 2 0-2 0	14 3 0-20	14 1 0-2	14 14 3-20 0	14 14 20-410 2	14 7 0-13	14 9 0-150 4	14 10 <0.2-7.2	14 6 0-10	14 13 0-80
59. 08	3074250 BR		JLLEY AT Cater year	OSTA RICA ST 1972)	REET, HOUS	TON, TEX.						
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	1 0 0-	1 0 0-	1 0 0- 0	1 0 0- 	1 0 0-	1 1 840- 1	0 0-	1 1 40- 0	1 0 <0.2- 0	1 0 0-	1 1 60-
	60. 0		HITEOAK BA er years 1	YOU AT HOUS? 971-72)	ON, TEX.			•				
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits		14 11 0-70	14 1 0-1	14 1 0-9	14 1 0-1	14 14 3-17 0	14 13 0-380 2	14 3 0-18	14 12 0-170	14 7 <0.2-3.2 0	14 9 0-30	14 12 0-430
	61. 0807		LE WHITEOA er years 1	K BAYOU AT 1 971-72)	HOUSTON, TE	х.						
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	=== ==================================	11 8 0-10	11 5 0-30	11 4 0-230 0	11 1 0-3	11 11 5-20	11 11 20-240 0	11 5 0-15	11 10 0-490 7	11 5 <0.2-2.2 0	11 8 0-130	11 10 0-160
63.	08074800		BAYOU AT R	OARK ROAD, N 1972)	EAR HOUSTO	N, TEX.			-			
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits		1 0 0- 0	1 0 0-	1 0 0- 0	1 0 0- 	1 1 5- 0	1 1 350-	1 0 0- 0-	1 0 0-	1 0 <0.2-	1 0 0-	0 0- 0
	65.		BRAYS BAY	OU AT HOUSTO 972-73)	ON, TEX.							
Number of analyses Number of occurrences Range (yg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	5 2 0-10	5 2 0-1	5 1 0-10	5 0 0-0	5 5 7-25	5 5 20-240 0	5 2 0-8	5 4 0-60	5 4 <0.2-7.6 1	5 2 0-5	5 5 46-70 0

									1			
				DISSO	LVED	CONST	ITUENT	S				
	Aluminum (A1)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
66	0807510		AYOU AT SCO er years 1	OTT STREET, 971-72)	HOUSTON, T	EX.						
Number of analyses	 	13 7 0-30	13 2 0-1	13 9 0-50	13 2 0-1	13 13 7-16	13 12 0-370	13 9 0-20	13 10 0-80	13 7 <0.2-2.4	13 6 0-8	13 13 20-110
	08075400	SIMS BAYOU	AT HIRAM (LARKE STREE	ET, HOUSTON	L		L		l		L
		(W.	ater year 1	1972)		r						
Number of analyses	 	2 0 0-0	2 0 0-0	2 0 0-0	2 0 0-0	2 2 3-34 0	2 2 80-190 0	2 1 0-60	2 1 0-170	2 0 <0.2-<0.2	2 0 0-0	2 2 80-940 0
	68.		SIMS BAYOU er years 19	J AT HOUSTON	, TEX.	L	ſ	L	L	<u> </u>		
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	10 3 0-10	10 0 0-0	10 0 0-0	10 2 0-1	10 10 2-19	10 10 40-450 2	10 3 0-15	10 9 0-260	10 6 <0.2-2.8	10 7 0-10	10 10 30-230
69.	08075650		OU AT FORE er years 19	ST OAKS STE 971-72)	REET, HOUST	ON, TEX.	L		l	L		
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	10 4 0-20	10 1 0-1 0	10 1 0-4	10 0 0-0	10 10 5-26	10 10 50-100	10 5 0-6	10 8 0-170	10 8 <0.2-3.9	10 8 0-10	10 10 20-160
	70.		PLUM CREEN	AT HOUSTON	, TEX.		<u> </u>	·	!			
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	9 3 0-10	9 0 0-0	9 7 0-23	9 0 0-0	9 9 3-14 0	9 8 0-73	9 6 0-33	9 8 0-150	9 5 <0.2-1.3	9 3 0-10	9 7 0-60
	71. (VINCE BAYOU	J AT PASADEN 971-72)	NA, TEX.	·	<u> </u>					
Number of analyses	 	11 4 0-280	11 2 0-1	11 1 0-10	11 1 0-1	11 11 2-22	11 11 10-320	11 6 0-24	11 4 0-60	11 9 <0.2-5.8	11 4 0-7	11 8 0-80

				DISSO	LVED	CONST	ITUENT	s				
	Aluminum (A1)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	72. 08075		E VINCE BA	YOU AT PASA 971-72)	DENA, TEX.							
Number of analyses	 	10 5 0-10	10 1 0-1 0	10 2 0-30	10 3 0-2	10 10 4-21 0	10 10 24-200 0	10 7 0-13	10 7 0-150 2	10 5 <0.2-4.7 0	10 6 0-7	10 8 0-70
74. (08075770 н		OU AT U.S.		A, HOUSTON,	TEX.						
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	12 6 0-30	12 3 0-1	12 0 0-0	12 3 0-18	12 12 4-24	12 11 0-270	12 3 0-5	12 12 16-800	12 5 <0.2-3.0	12 9 0-80	12 12 20-1200
	75. 080		ENS BAYOU ter year l	NEAR HOUSTO	N, TEX.			,		·	,	:
Number of analyses . Number of occurrences . Range (ug/l) . Number of samples with concentrations in excess of U.S. Public Health Service limits .	== . == .	2 1 0-10	2 0 0-0	2 0 0-0	2 1 0-2	2 2 7-26	2 2 230-300 0	2 0 0-0	2 1 0-190	2 2 <0.2-0.4 0	2 1 0-6	2 1 0-110
	76. 0		ALLS BAYOU r years 19	AT HOUSTON	, TEX.			.		-		
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	3 1 0-10 0	3 0 0-0	3 0 0-0	3 0 0-0	3 3 5-16 0	3 3 30-400	3 1 0-6	3 2 0-30	3 2 <0.2-1.2 0	3 1 0-7	3 3 40-60 0
77.	. 08076700		AYOU AT LE	Y ROAD, AT 71-72)	HOUSTON, TH	EX.			•			
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits		11 6 0-10	11 2 0-2	11 2 0-30	11 1 0-2	11 11 4-28	11 10 0-310	11 2 0-2 0	11 11 3-380 9	11 8 <0.2-160 1	11 5 0-7	11 9 0-160 0
78.	08076800		BAYOU TRIE r years 19	UTARY AT PA	SADENA, TEX	ι,					i.	,
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	 	11 0 0-0	11 2 0-1	11 0 0-0	11 2 0-3	11 11 4-17	11 10 0-140 0	11 5 0-7 0	11 5 0-90 1	10 7 <0.2-5.2	11 5 0-20	11 11 10-80

				DISSO	LVED	CONST	ITUENT	s				
	Aluminum (A1)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	79. 08		TRICK BAYO	U AT DEER P. 971-72)	ARK, TEX.							
Number of analyses		11	11	11	11	11	11	11	11	11	11	11
Number of occurrences		3	1	0	2	11	10	6	7	8	6	11
Range (µg/1)	·	0-40	0-1	0-0	0-2	6-22	0-160	0-10	0-110	<0.2-4.4	0-8.	20-100
of U.S. Public Health Service limits		0	0	0	 	0	0	0	4	0		0
	80. 08076		ENTERS BAYO	OU AT CLOVEF 971-72)	RLEAF, TEX.	•						
Number of analyses		11	11	11	11	11	11	11	11	10	11	11
Number of occurrences		1 70	i	i	i	l ii	ii	2	8	7	4	9
Range (µg/1)		0-0	0-1	0-2	0-2	5-18	16-1100	0-6	0-200	<0.2-1.7	0-8	0-80
Number of samples with concentrations in excess	[0							1 .	1	1	
of U.S. Public Health Service limits		0	0	.0		0	3	0	4	0		0
81.	08077540 CI		AT FARM RO	OAD 2351, AT 971-72)	FRIENDSWO	OD, TEX.						
Number of analyses		9	9	9	9	10	9	9	9	9	9	9
Number of occurrences		0	1	0	0	9	9	. 2	6	3	2	7
Range (µg/1)		0-0	0-1	0-0	0-0	0-26	20-180	0-3	0-130	<0.2-1.0	0-2	0-90
of U.S. Public Health Service limits		0	0	0		0	0	0	4	0		0
	82. (ARMAND BAYO	OU NEAR GENC 971-72)	A, TEX.	.L	l	 	,			L ,,,
Number of analyses		9	9	9	9	9	9	9	9	9	9	
Number of occurrences		3	1	0	2	9	9	4	7	2	3	9
Range (µg/1)	'	0-10	0-1	0-0	0-2	5-22	70-200	0-4	0-300	<0.2-0.8	0-6	0-70
Number of samples with concentrations in excess of U.S. Public Health Service limits		0	o	o		0	0	0	6	0		0
·	83. 08		ICKINSON BA	YOU NEAR AL 971-72)	VIN, TEX.	L	<u> </u>		<u> </u>	L	<u> </u>	
Number of analysis		8	8	8	8	8						
Number of analyses		0	ő	ů	î	8	8	8 1	8 5	8 2	8	8 5
Range (µg/l)		0-0	0-0	0-0	0-1	3-24	10-200	0-2	0-80	<0.2-0.6	0-1	0-90
of U.S. Public Health Service limits		0	0	0		0	0	0	2	0		0
	84. 0807		TLAND BAYOU er years 19	J NEAR ALTA 971-72)	LOMA, TEX.			<u> </u>		·		<u> </u>
Number of analyses		8	8	8	8	8	8	8	8	8	8	8
Number of occurrences		1	ŏ	ŏ	1	8	7	ĭ	7	4	2	6
Range (µg/1)		0-10	0-0	0-0	0-1	3-13	0-190	0-2	0-330	<0.2-6.4	0-3	0-60
of U.S. Public Health Service limits		0	loi	0		1 0	0	0	6	1		0

				DISSO	LVED	CONST	ITUENT	S				
	Aluminum (A1)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	9. 0810390		ORK ROCKY	CREEK NEAR 971-72)	BRIGGS, TE	х.						
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	3 3 10-40	3 1 0-10	3 0 0-0	3 0 0-0	3 0 0-0	3 3 3-8 0	1 1 40- 0	3 0 0-0	1 1 2- 0	3 2 <0.2-0.6 0	3 1 0-4	3 2 0-90
	101. (BRAZOS RIVI er years l	R AT RICHMO 971-72)	OND, TEX.							
Number of analyses Number of occurrences Range (ug/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 7 0-200 	8 0 0-0	8 1 0-1 0	8 0 0-0	8 1 0-2	8 7 0-10	8 6 0-100	8 1 0-9	8 4 0-11 0	8 4 <0.2-3.0 0	8 4 0-6	8 7 0-70 0
	103. 08117		r years 1	NEAR WADSW 970-72)	OKIH, IEX.							
Number of analyses Number of occurrences Range (19/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	9 8 0-110	9 1 0-10	9 0 0-0	9 0 0-0	9 2 0-1	9 9 2-25 0	9 8 0-760 2	9 2 0-2 0	9 7 0-50	9 7 <0.2-5.1	9 3 0-5	9 5 0-70 0
	108. 0813		HO RIVER 1	EAR PAINT F	OCK, TEX.	L			<u>. </u>	l —	l,, -	
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	6 4 0-210	6 1 0-10	6 2 . 0-1	6 0 0-0	6 1 0-1	6 6 2-4	6 5 0-120	6 1 0-22	6 5 0-90	6 3 <0.2-0.2	6 2 0-5	6 4 0-140
	116. 081		ORADO RIVE	CR AT WHARTO	N, TEX.	.					J	
Number of analyses Number of occurrences Range (ug/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 8 10-150	8 0 0-0	8 2 0-2	8 0 0-0	8 1 0-2	8 7 0-8	8 3 0-100	8 2 0-12	8 4 0-20 0	8 3 <0.2-2.7 0	8 3 0-7	8 8 0-80 0
11	7. 0816260		LACIOS CRE	EK NEAR MID 70-72)	FIELD, TEX							
Number of analyses	9 7 0-60	10 2 0-10	9 1 0-1 0	9 1 0-1	9 1 0-1	9 9 1-7 0	10 9 0-190	10 0 0-0	10 8 0-150	9 6 <0.2-8.7	9 3 0-6	9 5 0-80

				DISSO	LVED	CONST	ITUENT	S				
	Aluminum (Al)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	118. 0		ASHS CREEK er years 1	NEAR BLESS: 970-72)	ING, TEX.						,	
Number of analyses	10 8	10	10	10	10 1	10 10	10	10 0	10 10	9 5	10	10 6
Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	0-100	0-10 0	0-0	0-0	0-2	2-8	0-570 1	0-0	11-2700	<0.2-1.7	0-4	0-80
1:	19. 081627			CREEK NEAR I	BLESSING, T	EX.	L	<u> </u>	.L	1	L	L
		(Wat	er years 1	970-72)			· · · · · · · · · · · · · · · · · · ·	·			<u> </u>	
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	9 8 0-100	10 2 0-10	9 0 0-0	9 0 0-0	9 0 0-0	9 9 2-8 0	10 9 0-130	10 0 0-0	10 6 0-40	9 6 <0.2-9.0	9 3 0-4	9 5 0-80
	120. 08162			CREEK NEAR	LaWARD, TE	x.	Ĺ		<u> </u>	<u> </u>	<u> </u>	
		(Wat	er years 1	1			· 			1		Ι
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	9 7 0-100	9 3 0-10 0	9 0 0-0	9 0 0-0	9 1 0-1	9 9 2-7 0	9 8 0-150 0	9 1 0-1 0	9 6 5-10	8 6 <0.2-12 1	9 3 0-6	9 5 0-60
	122. 0		AVIDAD RIV er years 1	ER NEAR GAN 971-72)	ADO, TEX.							
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 4 0-30	9 2 0-10	8 4 0-2 0	8 0 0-0	8 0 0-0	8 7 0-5	9 8 0-190	9 1 0-1 0	9 7 0-30	9 3 <0.2-0.7	8 3 0-5	8 6 0-80
	123.		GARCITAS C er years 1	REEK NEAR II 970-73)	EZ, TEX.	<u> </u>			<u> </u>	J	1	<u> </u>
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 6 0-120	9 0 0-0	8 0 0-0	8 1 0-1	8 1 0-2	8 7 0-10	9 8 0-310	9 0 0-0	9 7 0-480	8 6 6 0 0	8 5 0-6	8 5 0-70
	124. 0		LACEDO CRE er years 1	EK NEAR PLAC 970-72)	EDO, TEX.	<u></u>			<u> </u>	L	ات ـــــــــــا	
Number of analyses	9 8 0-190	10 4 0-10	9 0 0-0	9 1 0-7	9 3 0-3	9 8 0-6	10 9 0-310	10 0 0-0	10 7 0-500	9 8 < 0.2-2.4	9 5 0-4	9 6 0-170

				DISSO	LVED	C O N S.T	ITUENT	S				
	Aluminum (A1)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	125. 08164		LATE BAYOU r years 19	J AT PORT LA 970-72)	VACA, TEX.							
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 7 0-830	9 6 0-10 0	8 1 0-1	8 1 0-2	8 1 0-1	8 7 0-5	9 9 50-310	9 0 0-0	9 8 0-1200 5	8 7 <0.2-7.3	8 4 0-4	8 4 0-100
	127. 08176		LUPE RIVER	BELOW VICT	ORIA, TEX.						.	
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 4 0-100	8 0 0-0	8 0 0-0	8 0 0-0	8 0 0-0	8 8 2-4 0	8 6 0-140 0	8 0 0-0	8 6 0-20 0	8 1 <0.2-0.2 0	8 2 0-4	8 4 0-60
	141. 0818		NA RIVER A	T SAN ANTON 71-72)	IO, TEX.							
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	6 3 0-20	6 0 0-0	6 1 0-2 0	6 0 0-0	6 0 0-0	6 6 1-31	6 4 0-50	6 1 0-34	6 3 0-9	6 1 <0.2-0.6	6 3 0-2	6 4 0-130 0
143	2. 0818180		ONIO RIVER	NEAR ELMEN	DORF, TEX.	•	·	<u> </u>	<u> </u>			
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 4 0-200	8 0 0-0	8 2 0-1 0	8 0 0-0	8 2 0-1	8 8 2-8	8 7 0-100	8 1 0-2 0	8 7 0-60	7 2 <0.2-0.3	8 3 0-7	8 6 0-70 0
	145. 0818		ANTONIO RI	VER AT GOLI 71-72)	AD, TEX.	<u></u>		L	1	L	L	·
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 6 0-100	8 1 0-6	8 0 0-0	8 0 0-0	8 0 0-0	8 8 2-5 0	8 7 0-60	8 0 0-0	8 5 0-4 0	7 2 <0.2-0.5	8 3 0-6	8 4 0-60 0
	146. 0818		ALUPE RIVE r years 19	R NEAR TIVO 71-72)	LI, TEX.							
Number of analyses	8 6 0-200	8 0 0-0	8 0 0-0	8 0 0-0	8 0 0-0	8 8 2-4 0	8 7 0-130	8 0 0-0	8 4 0-19 0	7 1 <0.2-0.2	8 2 0-4	8 4 0-60

	1			DISSO	LVED	CONST	ITUENT	s				
	Aluminum (Al)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Manganese (Mn)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
	147.		SALT CREEK er years 1	NEAR REFUGI 971-72)	O, TEX.							
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits		3 1 0-10	3 0 0-0	3 0 0-0	3 0 0-0	3 3 3-4	3. 3 60-100 0	3 0 0-0	3 1 0-3	3 2 <0.2-1.4 0	3 2 0-12	3 3 20-60
	148. 0		OPANO CREEK er years 19	NEAR REFUG 970-72)	IO, TEX.				:			
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	6 6 50-200	6 2 0-10	6 1 0-1	6 1 0-1	6 1 0-1	6 6 2-11 0	6 6 29-340 1	6 0 0-0	6 6 1-80	5 2 <0.2-1.4 0	6 4 0-3	6 4 0-100
	149. 0		ISSION RIVE	ER AT REFUGI 071-72)	O, TEX.		<u> </u>			.:		
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 6 0-30	8 5 0-10	8 0 0-0	8 0 0-0	8 1 0-1	8 8 1-4 0	8 6 0-100	8 0 0-0	8 8 100-650	7 1 <0.2-0.3	8 2 0-5	8 6 0-70 0
	150. 08		LTIPIN CRE er years 19	EK AT SINTO	N, TEX.							
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of U.S. Public Health Service limits	9 7 0-240	9 4 0-12 0	9 2 0-2 0	9 1 0-2 0	9 1 0-3	9 8 0-4 0	9 8 0-330	9 0 0-0	9 9 4-1700 7	8 1 <0.2-1.4 0	9 3 0-9	9 6 0-2800
1	151. 08210		RIVER NEA	R THREE RIV	ERS, TEX.		-					
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of U.S. Public Health Service limits	8 5 0-150	8 0 0-0	8 2 0-1	8 0 0-0	8 0 0-0	8 8 2-5	8 7 0-260 0	8 0 0-0	8 8 1-220 3	7 2 <0.2-0,3	8 2 0-7	8 5 0-80

Table 3.--Summary of pesticides records for selected streams in Texas, water years 1968-72

[Recommended environmental levels of pesticides for marine waters and limits for public water supplies are those proposed by the National Technical Advisory Committee to the Secretary of the Interior (Federal Water Pollution Control Administration, 1968).

Results are for whole water samples.]

							INS	ECTIC	IDES							ł	BICII	
					Chlor	inated hyd	rocarbons						Phosphore	thioates		(Chlorina	ted hydro	carbon
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silv
				1. 072		NADIAN RIV er years 1		COSA, TEX										
Number of analyses Number of occurrences Range (ug/1)	15 0 .0000	15 0 .00	15 0 .0000	15 0 .0000	15 0 .0000	15 0 .0000	15 0 .0000	15 0 .0000	15 0 .0000	15 1 .0001	15 0 0-0	13 1 .0001	10 0 .0000	13 0 .0000	13 0 .0000	15 2 .0007	15 3 .0005	15 1 .000
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess	0	0	0		0	0	0	0		0				,	0	0	0	
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				2. 072		NADIAN RIV		MARILLO,	TEX.				1	T				1
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess	21 0 .0000	16 0 .00	21 2 .0001	21 0 .0000	21 5 .0002	21 8 .0002	21 0 .0000	21 0 .0000	21 0 .0000	21 14 .0008	13 0 0-0	12 7 .0025	9 0 .0000	12 0 .0000	12 0 .0000	21 14 .0066	21 12 .0008	21 8 .001
of recommended environmental levels	0	0	0		0	0	0	0	0	4 . 0	0	 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
ge (µg/1)																		
Number of analyses	6 0 .0000 0	6 0 .00 0	6 0 .0000 0	6 0 .0000	6 1 .0001 0	6 0 .0000 0	6 0 .0000 0	6 0 .0000 0	6 0 .0000	6 1 .0001 0	6 0 0-0 	6 1 .0001 <u>a</u> /	6 0 .0000 <u>a</u> /	6 0 .0000	6 0 .0000 0 <u>a</u> /	6 0 .0000 0	6 0 .0000 0 <u>b</u> /	6 0 000
				4.		RED RIVE		ANAH, TEX	•									
Number of analyses	15 0 .0000	10 0 .00	15 2 .0001	15 2 .0001	15 3 .0005	15 0 .0000	15 0 .0000	15 0 .0000	15 0 .0000	15 1 .0001	8 0 0-0	7 0 .0000	6 0 .0000	7 0 .0000	7 0 .0000	15 1 .0011	15 6 .0004	15 2 .000
of recommended environmental levels	0	0	0 		0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
				6. 0		RED RIVER ater years		ESVILLE,	TEX.							I		1
Number of analyses	22 0 .0000	17 0 .00	22 1 .0001	22 3 .0002	22 5 .0003	22 2 .0001	22 0 .0000	22 0 .0000	22 0 .0000	22 3 .0021	13 0 0-0	12 4 .0003	9 0 .0000	12 0 .0000	12 0 .0000	22 5 .0018	22 15 .0023	22 3
of recommended environmental levelsNumber of samples with concentrations in excess of recommended limits for public water supplies	o 0	0			0	0	0	0	0	1 0	0	<u>a</u> /	<u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>ъ</u> /	<u>ь</u> /

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

					_			•										
								ECTIC	IDES							1	BICIE	
				-	Chlor	inated hyd	rocarbons		Tea .		,	<u> </u>	Phosphor	othioates	,	(Chlorina	ted hydro	carbon
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silv
	•			8. 0		RED RIVER I		LB, TEX.										
	<u> </u>	Γ		T	T		1	1	Γ		1	<u> </u>	T	T	Ι	Γ	1	1
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess	.0000	.00	8 0 .0000	8 1 .0001	8 1 .0002	8 0 .0000	.0000	.0000	.0000	.0000	8 0 0-0	8 1 .0001	8 0 .0000	8 0 .0000	.0000	8 1 .0006	.0001	0 .00
of recommended environmental levels	0	0	0		0	0	0	0	0	0	0	 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>ь</u> /
	<u> </u>	I .	J	10. 07		ULPHUR RIVI er years 19		ALCO, TEX	•	L,,	I	I	1	I,	<u>. </u>	I	L	1
	I		T	Τ	(wat	er years I	1	r		r	Γ	 -		r	Γ		T	ı
Number of analyses	23 0 .0000	17 0 .00	23 4 .0002	23 9 .0006	23 10 .0007	23 0 .0000	23 0 .0000	23 0 .0000	23 0 .0000	23 1 .0001	13 0 0-0	12 2 .0001	8 0 .0000	12 0 .0000	12 0 .0000	22 7 .0030	22 8 .0020	22 3 .000
Number of samples with concentrations in excess of recommended environmental levels	0	١ ,	. 0		2	0	0	0							١ ,			
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			11.	0734607		CYPRESS CI er years 19		JEFFERSO	N, TEX.			-						
Number of analyses Number of occurrences	23 0	17 0	23 0	23	23	23	23 0	23 0	23 0	23 0	13 0	12 1	8 0	12 0	12 0	23	23	23 1
Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels	.0000	.00	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	0-0	.0001	.0000	.0000	.0000	.0002	.0004	:000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			•	14. 0		SABINE RIVI er years 19		ATUM, TEX					•					
Number of analyses Number of occurrences Range (1g/L)	22 0 .0000	16 0 .00	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	12 0 0-0	11 3 .0003	7 0 .0000	11 0 .0000	11 0 .0000	22 6 .0007	22 15 .0015	22
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess	0	0	0		0	0	, 0	0		0					0.	0 ,	o	,
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				16. 0802		INE RIVER 1 er years 1		EVILLE, T	EX.									
Number of analyses	8 0 .0000	8 0 .00	8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	.0000	8 0 .0000	8 0 .0000	8 0 0-0	8 3 .0001	8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	.0000	8 0
of recommended environmental levels	0	0	0		0	0	0	0	0	0	0	 <u>a</u> /	<u>a</u> /	<u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>ь</u> /
a/ The sum of these phosphorothicates in none of the samples	from this	site exc	eeded the	recommen	ded limit	for public	water s	l	l	L			l	L	L	L	L	L

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supply. The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INSI	CTIC	IDES)	BICID	
					Chlor:	Inated hydr	ocarbons						Phosphore			(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	מממ	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
			·	17. 08		ABINE RIVE er years 1		LIFF, TEX										
Number of analyses	22 0 .0000	16 0 .00	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	22 0 .0000	12 0 0-0	10 0 .0000	9 0 .0000	10 0 .0000	10 0 .0000	20 1 .0007	20 5 .0003	20 0 .00
umber of samples with concentrations in excess of recommended environmental levels umber of samples with concentrations in excess of recommended limits for public water supplies	0	0	o 		0	0 0	0	0	°	0	 0	 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	<u>b</u> /	 <u>b</u> /
			· , -, -, -, -,	27. 0		NECHES RIV		DALE, TEX								<u> </u>	·	•
Number of analyses Number of occurrences Range (µg/l)	24 0 .0000	18 0 .00	24 0 .0000	24 0 .0000	24 3 .0006	24 0 .0000	24 0 .0000	24 0 .0000	24 0 .0000	24 0 .0000	14 0 0-0	10 2 .0001	10 0 .0000	12 0 .0000	12 0 .0000	23 1 .0010	23 6 .0004	23 4 .000
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0	0		0	0	0	0	0	0	0	 <u>a</u> /	<u></u> <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	о <u>ь</u> /	0 <u>b</u> /	 <u>ь</u> /
				28. 0804		T BAY BAYO er years 1		OWELL, TE	х.									
Number of analyses Number of occurrences Nange (µg/l) Number of samples with concentrations in excess of recommended environmental levels	8 1 .0001	8 0 .00	8 0 .0000	8 0 .0000	8 0 .0000	8 8 .0105	8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	8 0 0-0	8 1 .0001	8 0 .0000	. 8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	.000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			o	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			29.	08042550		RK DOUBLE 1		R ANAHUAC	, TEX.									
Number of analyses	9 1 .0001	9 0 .00	9 0 .0000	9 0 .0000	9 0 .0000	9 9 .0105	9 0 .0000	9 0 .0000	9 0 .0000	9 0 .0000	9 0 0-0	9 0 .0000	9 0 .0000	9 0 .0000	9 0 .0000	8 1 .0021	8 2 .0002	8 2 .000
of recommended limits for public water supplies	0	0		33 090	0	0 INITY RIVE	0	0	, 0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b/</u>	<u>b</u> /
				33. 080		er years 1		LLAS, TE	· · · · · · · · · · · · · · · · · · ·	·		,		,		,	,	
dumber of analyses	8 0 .0000	8 8 .29	8 2 .0005	8 1 .0001	8 4 .0020	8 8 .0209	8 0 .0000	8 0 .0000	8 0 .0000	8 2 .0006	8 0 0-0	7 7 .1786	8 4 .00-1.1	8 0 .0000	8 0 .0000	7 7 .1786	8 7 .0012	8 0 .000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothioates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

Aldrin chlor dane DDD DDE DDT Dieldrin Endrin Hepta-chlor chlor endrin Hepta-chlor chlor chlor chlor chlor chlor chlor chlor para ch														E S				
				:	Chlor	inated hydi							Phosphore	othioates		(Chlorina	ted hydro	carbons
	Aldrin		DDD	DDE	DDT	Dieldrin	Endrin		chlor	Lindane				para-		2,4-D	2,4,5-T	Silve
Chlorinated hydrocarbons Chlorinated hydrocarbons Chlorinated hydrocarbons Chlorinated hydrocarbon Chlorinated h														•				
Number of analyses Number of occurrences Range (µg/l)	0	15	9	4	11	20	0	0	0	12	0	7	3	1	0	20	20	23 1 .000
umber of samples with concentrations in excess of recommended environmental levels umber of samples with concentrations in excess of recommended limits for public water supplies				I									l .				1	<u>b</u> /
37. 08065350 TRINITY RIVER NEAR CROCKETT, TEX. (Water year 1972) er of analyses														•				
number of analyses number of occurrences tange (µg/l)	0	ō	0	Ō	0	2	0	ō	Ö	Ö	0	2	0	0	0	3	3	3 0 .000
ummer or samples with concentrations in excess of recommended environmental levels umber of samples with concentrations in excess of recommended limits for public water supplies		İ	1	1	•											-		 <u>b</u> /
ge (µg/1)																		
Number of analyses	23 0 .0000 0	17 0 .00 0	23 2 .0012 1	23 4 .0005	23 4 .0002 0	23 5 .0001 0	23 0 .0000 0	23 0 .0000 0	23 0 .0000 0	23 2 .0001 0	13 0 0-0 	12 4 .0002 <u>a</u> /	9 0 .0000 <u>a</u> /	12 0 .0000	12 0 .0000 0 <u>a</u> /	22 11 .0020 0 <u>b</u> /	22 18 .0003 0 <u>b</u> /	22 0 .000
		l	· · · · · ·	48. 08		JRTLE BAYOU er years 19		KAMER, TI	x.					L	L			1
Number of analyses	6 0 .0000 0	6 0 .00 0	6 0 .0000 0	6 0 .0000	6 0 .0000 0	6 6 .0103 0	6 0 .0000 0	6 0 .0000 0	6 0 .0000	6 0 .0000 0	6 0 0-0 	6 0 .0000 <u>a</u> /	6 0 .0000 <u>a</u> /	6 0 .0000 <u>a</u> /	6 0 .0000 0 <u>a</u> /	5 0 .0000 0 <u>b</u> /	5 3 .0013 0	5 0 .000
				49. 0		TURTLE BAY(AHUAC, TI	Ex.		···						•	•
Number of analyses	3 0 .0000	3 0 .00	3 0 .0000	3 0 .0000	3 0 .0000	3 3 .0102	3 0 .0000	3 0 .0000	3 0 .0000	3 0 .0000	3 0 0-0	3 0 .0000	3 0 .0000	3 0 .0000	3 0 .0000	3 1 .0010	3 2 .0012	3 0 .000

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

 $[\]underline{b}/$ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							TNCI	CTIC	TDFC						·	7.5.5	BICID	
					Chlor	inated hydi			IDES			1	Phosphor	othioates		(Chlorina		
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin		Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silver
				50. 0		CEDAR BAYO ter years		OSBY, TEX				<u> </u>						L
Number of analyses	11 0 .0000	11 0 .00	11 0 .0000	11 0 .0000	11 0 .0000	11 11 .0105	11 0 .0000	11 0 .0000	11 0 .0000	11 0 .0000	11 0 0-0	11 2 .0003	11 0 .0000	11 0 .0000	11 0 .0000	11 1 .00-1.1	11 6 .0006	11 0 0000
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0	0		0	0	0	0	 0	0	 0	 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	 <u>b</u> /
		1	1	51. C		GOOSE CREE ter years		NAIR, TEX	•				L	I				
Number of analyses	7 0 .0000	7 1 .01	7 0 .0000	7 0 .0000	7 1 .0001	7 6 .0005	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 0-0	7 2 .0004	7 1 .0003	7 0 .0000	7 0 .0000	7 0 .0000	7 4 .0050	7 0 0000
of recommended environmental levels	0	1 0	0		0	0	0	0	0	0	0	 <u>a</u> /	<u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
				53. 08		YPRESS CREI		PRESS, T	EX.	_								
Number of analyses	7 0 .0000 0	7 0 .00	7 0 .0000 0	7 0 .0000	7 1 .0001 0	7 5 .0001 0	7 0 .0000 0	7 0 .0000 0	7 0 .0000	7 0 .0000 0	7 0 0-0 	7 0 .0000 <u>a</u> /	7 0 .0000 <u>a</u> /	7 0 .0000	. 7 0 .0000 0	6 1 .0011 0	6 1 .0002 0	6 1 0001 b/
				54. 0	8069200	CYPRESS CRI	EK NEAR I	UMBLE, T		, and the second		Ξ,	<u> </u>	<u>e</u> /	<u>u</u> ,	<u>u</u> ,	<u> </u>	<u> </u>
		· · · · · ·		<u></u>	(Wa	ter years	.971-72)											
Number of analyses Number of occurrences Ranges (µg/1) Number of samples with concentrations in excess of recommended environmental levels	7 0 .0000	7 0 .00	7 0 .0000	7 0 .0000	7 0 .0000	7 6 .0002	7 0 .0000	7 0 .0000	7 0 .0000	7 4 .0043	7 0 0-0	6 3 .0016	7 0 .0000	7 0 .0000	7 0 .0000	7 2 .0017	7 5 .0005	7 0 0000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	o	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				55. 0		AKE HOUSTO		ELDON, T	EX.									•
Number of analyses	25 0 .0000	19 0 .00	25 1 .0001	25 0 .0000	25 2 .0003	25 3 .0006	25 0 .0000	25 0 .0000	25 0 .0000	25 2 .0005	13 0 0-0	12 0 .0000	8 0 .0000	12 0 .0000	12 0 .0000	25 9 .0012	25 11 .0009	25 3 .0008
Number of samples with concentrations in excess of recommended limits for public water supplies	. 0	. 0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

g/ The sum of these phosphorothioatesin none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

									t .									
				-		2	INS	ECTIC	IDES							HER	вісіі	DES
					Chlor	inated hyd	rocarbons						Phosphore	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
	<u> </u>	L	J	<u> </u>			L	L	epoxide	<u> </u>		L	1	Linion	<u> </u>		<u> </u>	
				56. 08		UFFALO BAY		DDICKS, T	EX.									
	r	i	T	T	1	I TOTAL	1	T		·		ı			Τ			Τ
Number of analyses	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of occurrences	.0000	.00	.0000	.0000	.0000	.0101	.0000	.0000	.0000	.0000	0 0-0	.0004	.0000	.0000	.0000	.0000	.0005	.000
Number of samples with concentrations in excess					0	٠,		0									0	1
of recommended environmental levels Number of samples with concentrations in excess	٧	,	"		"	"	- °			"					"	Ü	"	
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
	1	1	1	57. 080	73700 BU	FFALO BAYO	I AT PINE	POINT.	TEX.				1	· · · · · · · · · · · · · · · · · · ·	1			
	1					ter years			г			1						
Number of analyses	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of occurrences		.00	.0000	.0000	.0000	.0202	.0000	0	.0000	.0000	0 0-0	.0212	0	.0000	0	.0000	.0007	.0001
Number of samples with concentrations in excess	1	1			1													1
of recommended environmental levels	0	0	0		0	0	0	0		0					0	. 0	0	
of recommended limits for public water supplies	0	0			0	0	0	0	- 0	- 0	0	<u>a</u> /	<u>a</u> / .	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
	L				1			<u> </u>	L			1		L			·	٠
and the second of the second o				58. 0		BUFFALO BA		JSTON, TE	х.		<u>.</u>							
Number of analyses	19	19	19	19	19	19	19	19	19	19	17	17	15	17	17	17	17	17
Number of occurrences	0	16	12	5	15	17	0	0	0	11	0	14	- 3	. 3	1	8	16	16
Range (µg/1)	.0000	.0-2.4	.0033	.0033	.00-2.1	.0054	.0000	.0000	.0000	.0072	0-0	.00-1.7	.00-2.9	.0017	.0017	.0037	.0063	:0019
of recommended environmental levels	0	16	5		11	8	0	0		7					1	0	0	
Number of samples with concentrations in excess of recommended limits for public water supplies	. 0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>i</u> /
	L	l				l			İ	l <u></u>	-				7		l	
			59. 080	74250 BR		CULLEY AT (ter years		A STREET,	HOUSTON,	TEX.								
Number of analyses	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1
Number of occurrences	0	2	1	0	2	2	0	0	0	1	0	1	0	. 0	0	ō	1	ō
Range (µg/1)	.0000	.12	.0002	.0000	.0913	.0406	.0000	.0000	.0000	.0004	0-0	.0012	.0000	.0000	.0000	.00-	.50-	:00-
of recommended environmental levels	0	2	0		2	1	0	0		0					0	. 0	0	
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			Ö	0	0	0	0		0	<u>a</u> /	<u>a</u> /	<u>a</u> /	a/	<u>b</u> /	<u>b</u> /	b/
	<u> </u>	<u> </u>	L	<u></u>						·								ــــــــــــــــــــــــــــــــــــــ
e en en en en en en en en en en en en en						HITEOAK BA		OUSTON, T	EX.									
Number of analyses	21	21	21	21	21	21	21	21	21	21	18	18	16	18	18	19	19	19
Number of occurrences	0	11	10	4	15	19	. 0	0	0	13	0	13	- 3	. 3	1	. 8	15	4
Range (µg/1)	.0000	.0-1.8	.0051	.0006	.0036	.0057	.0000	.0000	.0000	.0033	0-0	.00-1.7	.00-1.8	.0017	.0017	.0075	.0065	0005
of recommended environmental levels	0	- 11	6		-7	7	0	0	. 	8					1	0 '	0	
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	a/	a/	a/	a/	ъ/	ъ/	<u>b</u> /
																		1 =

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	ECTIC	IDES							1	BICID	
		* .		•	Chlor	inated hyd	rocarbons						Phosphor	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
				61.	08074550	LITTLE WH (Water y	ITEOAK BA ears 1971		USTON, TE	κ.								-
Number of analyses	13 0 .0000 0	13 9 .06 9	13 4 .0007 1	13 0 .0000	13 8 .0012 3	13 13 .0123 2	13 0 .0000 0	13 0 .0000 0	13 0 .0000	13 2 .0014 1	13 0 0-0	11 11 .0146	12 3 .00-3.8 	12 0 .0000	12 0 .0000 0	12 6 .0067 0	11 9 .0027 0 b/	11 0 .000
		l		62. 08		EEGANS BAY			HOUSTON,	TEX.		L	l	L	L	<u></u> _	<u> </u>	
					(**	ler years	1909, 197	1 1972)					·		, 	·		T
Number of analyses Number of occurrences Anage (µg/l) Number of samples with concentrations in excess	3 0 .0000	3 0 .00	3 0 .0000	3 0 .0000	3 1 .0001	3 0 .0000	3 0 .0000	3 0 .0000	3 0 .0000	3 0 .0000	3 0 0-0	3 1 .0013	2 0 .0000	3 0 .0000	3 0 .0000	3 0 .0000	3 1 .0006	3 0 .000
of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	.0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	<u>b</u> /	<u>b</u> /
				63. 0807	4800 KEE	GANS BAYOU (Water ye	AT ROARK		AR HOUSTON	, TEX.							1	
Number of analyses	13 0 .0000 0	12 9 .05 9	13 2 .0004 0	13 3 .0002	13 8 .0036 3	13 10 .0012 3	13 0 .0000 0	13 0 .0000 0	13 0 .0000	13 6 .0006 2 0	10 0 0-0 0	11 7 .0032 <u>a</u> /	7 1 .0010 <u>a</u> /	11 0 .0000 <u>a</u> /	12 0 .0000 0 <u>a</u> /	13 6 .0029 0 <u>b</u> /	13 9 .0035 0 <u>b</u> /	13 4 .0001
			64.	08074900	WILLOW W.	ATERHOLE BA			STREET, H	IOUSTON, 7	EX.						<u> </u>	1
				,		(Water ye	ears 1969	-72)										,
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels	7 0 .0000	7 7 .13 7	7 4 .0009 2	7 3 .0012	7 6 .0037 5	7 7 .0412 5	7 0 .0000 0	7 0 .0000 0	7 0 .0000	7 6 .0020 2 0	6 0 0-0 0	6 6 .04-1.7 <u>a</u> /	4 1 .0007 <u>a</u> /	6 0 .0000 <u>a</u> /	6 1 .0006 1 <u>a</u> /	7 7 .0738 0 <u>b</u> /	7 7 .08-2.1 0 <u>b</u> /	7 5 .0015 <u>b</u> /
		L 	l		65. 0807	5000 BRAYS (Water ye	BAYOU AT		, TEX.					·			L	L
Number of analyses	23 2 .0057 1	22 18 .0-15	23 14 .0032	22 8 .0010	23 21 .00-1.0	23 21 .0043	23 0 .0000	23 0 .0000	23 0 .0000	23 16 .0021	16 0 0-0	17 11 .00-2.2	12 5 .00-1.3	17 1 .0019	17 0 .0000	22 15 .00-1.1	22 21 .0053	22 9 .0020
of recommended environmental levels	0	18	3		15 0	14 0	0	0	0	11 0	0	<u></u>	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	ECTIC	IDES							HER	BICID	E S
					Chlor	inated hydi	ocarbons						Phosphor	thioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
			66.	0807510		BAYOU AT So		ET, HOUST	ON, TEX.									•
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess	14 1 .0020	14 13 .0-1.1	14 1 .0011	14 1 .0001	14 9 .0033	14 13 .0020	14 0 .0000	14 0 .0000	14 0 .0000	14 2 .0012	14 0 0-0	14 13 .0083	14 4 .00-2.9	14 0 .0000	14 0 .0000	13 2 .0086	13 9 .0034	13 2 .000
of recommended environmental levels	0	13			0	8	0	0	0	0	0	<u>a</u> /	<u>a</u> /	 <u>a</u> /	0 <u>a</u> /	<u>ь</u> /	0 <u>b</u> /	<u>b</u> /
			67. 0	8075400		U AT HIRAM ter years !		TREET, HO	USTON, TE	κ.								
Number of analyses Number of occurrences Range (µg/1)	2 0 .0000	2 2 .11	2 0 .0000	2 0 .0000	2 1 .0003	2 2 .0204	2 0 .0000	2 0 .0000	2 0 .0000	2 1 .0002	2 0 0-0	3 3 .2338	3 0 .0000	3 0 .0000	3 0 .0000	3 1 .0009	3 2 .0030	3 2 0013
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	. 2	o 		0	0	0	0	 0	0	 0	 <u>a</u> /	 <u>a</u> /	:, <u>a</u> /	.0 <u>a</u> /	0 <u>b</u> /	- 0 <u>b</u> /	<u>b</u> /
				68.		SIMS BAYOU ter years l		TON, TEX.										
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	15 0 .0000	15 12 .09	15 4 .0014 1	15 1 .0003	15 7 .0007 1	15 14 .0017 5	15 0 .0000 0	15 0 .0000 0	15 0 .0000	15 4 .0008 1	14 0 0-0 	13 11 .0048	11 1.0008	13 0 .0000	13 0 .0000	15 6 .0026 0	15 12 .0078 0	15 4 .0060
		L	69. 0	8075650		OU AT FORES			USTON, TEX	ζ,	-		L	L			L	
					(Water y	ears 1969,	1971, 19	72) T	T								r	
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess	13 1 .0007	13 10 .0-1.8	13 13 .0006	13 0 .0000	13 3 .0006	13 12 .0033	13 0 .0000	13 0 .0000	13 0 .0000	13 8 .0021 2	12 0 0-0	10 10 .0674	10 3 .0040	10 1 .0009	10 1 .0055	13 4 .0076	13 8 .0024	13 0 0000
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				70. (PLUM CREEK er years 1		TON, TEX.		,								
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess	10 0 .0000	10 4 .06	10 0 .0000	10 1 .0001	10 5 .0009	10 10 .0107	10 0 .0000	10 0 .0000	10 0 .0000	10 4 .0005	10 0 0-0	10 10 .0135	10 2 .0013	10 0 .0000	10 0 .0000	10 6 .0040	10 7 .0019	10 0 .0000
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>ь</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

								ECTIC	IDES							1	BICID	
					Chlor	inated hydi	ocarbons		To	,		ļ	Phosphor	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	ַ ססס	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
				71. 0		VINCE BAYO		DENA, TEX										
Number of analyses	12 0 .0000	12 7 .08	12 1 .0001	12 1 .0002	12 7 .0019	12 11 .0010	12 0 .0000	12 0 .0000	12 0 .0000	12 3 .0002	12 0 0-0	12 11 .0017	12 0 .0000	12 0 .0000	12 0 .0000	12 12 .0062	12 8 .0072	12 1 .000
of recommended environmental levels	0	7	o 		0	0	0	0 0	0	0	0	 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
			7	2. 08075		LE VINCE B		ASADENA,	TEX.									
Number of analyses	11 0 .0000	11 6 .05	11 2 .0004	11 1 .0002	11 5 .0068	11 11 .0107	11 0 .0000	11 0 .0000	11 0 .0000	11 5 .0005	11 0 0-0	11 10 .0053	11 0 .0000	11 0 .0000	11 0 .0000	11 2 .0066	11 9 .0083	11 0 .000
Number of samples with concentrations in excess of recommended environmental levels	0 0	6	0		2 0	0	0 .	0	0	0	0	<u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
			73.	08075760		BAYOU AT FA Water year		ET, HOUST	ON, TEX.									
Number of analyses	.00-	1 1 .5-	1 1 .15-	1 1 .04-	.19-	1 0 .00-	.00-	1 0 .00-	1 0 .00-	1 0 .00-	1 0 0-	1 1 1.4-	1 1 .30-	1 0 .00-	1 0 .00-	1 1 1.0-	1 1 .17-	1 0
Our recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
			74. 08	075770 н		OU AT U.S.		90-A, HO	JSTON, TEX	ζ.			·	L	·			L
Number of analyses	17 0 .0000 0	17 8 .02 8	17 10 .0010	17 2 .0002	17 9 .0009 6	17 14 .0006	17 0 .0000 0	17 0 .0000	17 0 .0000	17 5 .0008 1	14 0 0-0 	13 12 .0018	12 4 .00-1.4	14 1 .0004	14 0 .0000	18 15 .00-26	18 15 .00-2.5	18 1 .0000
of feconimenced familes for poorte water suppries				l	L	REENS BAYOU						<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
						er years									 1			,
Number of analyses	9 0 .0000	9 2 .05	9 2 .0040	9 0 .0000	9 2 .0030	9 5 .0060	9 0 .0000	9 0 .0000	9 0 .0000	9 6 .0020	6 0 0-0	6 4 .0031	6 2 .0027	6 2 .0024	6 0 .0000	9 1 .0020	9 5 .0026	9 1 .000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothioates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

· · · · · · · · · · · · · · · · · · ·						 	* N C :	ECTIC	T D F C								BICID	
					Chlor	inated hyd			1023			1	Phosphor	othioates		1	ted hydro	
	Aldrin	Chlor-	DDD	DDE	DDT	Dieldrin		Hepta-	Hepta- chlor	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para-	Para- thion	2,4-D	2,4,5-T	Silv
		dane	L	<u></u>		<u> </u>		chlor	epoxide		phene	non		thion	Litton	_		
				76.		HALLS BAY years 1969			•									
umber of analyses	6	6	6	6	6	6	6	6	6	6	3	3	- 3	3	3	7	7	7
mber of occurrences	0	3	3	0,0000	2	5	0.0000	0	0	2	0	2	0	ō	0	1	6	
ange (ug/l) umber of samples with concentrations in excess	.0000	.03	1		1					.0010	0-0			.0000	.0000	.0013	.0054	.00-
of recommended environmental levels	0	3	0		0	2	0	0		2					0	0	0	
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			77.	0807670		BAYOU AT 1		AT HOUST	ON, TEX.									•
		Γ.,	1,0	T ,,	T	T			10	,,,	10		٠,,	·	T	· ,,	1.0	Τ.,
umber of analyses	12 0	12 7	12	12	12	12 12	12 0	12	12 0	12 5	12 0	12 12	12 12	12	12 0	12 2	12 10	12
ange (µg/1)	.0000	.04	.0001	.0000	.0002	.0207	.0000	.0000	.0000	.0009	0-0	.0239	.00-1.4	.00-1.4	.0000	.0050	.00-1.5	.00-
of recommended environmental levels	0	7	0		0	2	0	0		1					0	0	0	-
of recommended limits for public water supplies	0	0			0	0	0	0	. 0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
		l	78	. 080768		LO BAYOU TI		AT PASADE	NA, TEX.					L	I .		1	I
			T	T	(wa	T years	19/1-/2)	· · · · · ·				Γ	r		r			т
umber of analyses	11 0	11 10	11 2	11	11 3	11 11	11 0	11 0	11 0	11 2	11 0	10 8	10 0	10	10	11	11	11
inge (μg/1)	.0000	.0-2.4	.0003	.0003	.0005	.0317	.0000	.0000	.0000	.0010	0-0	.0035	.0000	.0000	.0000	.0064	.0033	.00-
omber of samples with concentrations in excess of recommended environmental levels	0	10	. 0		0	6	0	0		1					0	- 0	. 0	
mber of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			l	79. 0	8076850	PATRICK BAY	OU AT DE	ER PARK,	rex.								L	J
		·				ter years 1		,										,
number of analyses	12	12	12	12	12	12	12	12	12	12	12	11	10	10	10	12	12	12
umber of occurrences	.0000	10 .0-2.5	5	.0001	5	.0217	0.0000	0	.0000	.0007	0 0-0	.0171	.0053	0	.0000	.0009	9 .0058	.00-
umber of samples with concentrations in excess of recommended environmental levels	o	10	2	l <u></u>	1	6	0	0		2					0	0	0	
umber of samples with concentrations in excess		i -	1					_						Ī .				
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>ь</u> /	<u>b</u> /	<u>b</u> /
				80. 080		RPENTERS BA		LOVERLEAF	, TEX.									
umber of analyses	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	11	11
mber of occurrences	0 .0000	7 .04	2	0.0000	6	12 .0109	.0000	0 .0000	0.0000	6 .0013	0 0-0	10 .0029	.0000	0.0000	0.0000	3 .0015	8	.00-
mber of samples with concentrations in excess			\	1	ļ.									l			.0040	
of recommended environmental levels	. 0	7	0		0	3	. 0	. 0		2					0	0	. •	-
of recommended limits for public water supplies	0	. 0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

						INS	ЕСТІС	IDES							1		
				Chlor	inated hydi	ocarbons						Phosphor			(Chlorina	ted hydro	carbon
Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
		81. 080	77540 CL				AT FRIEN	DSWOOD, TI	EX.								
8 0 .0000	8 3 .03 3	8 0 .0000	8 0 .0000	8 0 .0000	8 8 .0111	8 0 .0000	8 0 .0000 0	8 0 .0000	8 5 .0002	8 0 0-0			8 0 .0000	8 0 .0000	8 3 .0007	8 8 .0137 0	8 1 .000
		L. <u></u>	L	L	<u> </u>		<u> </u>				<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u> </u>	<u>"</u>	<u>b</u> /
	,	,	1				I I	·	,		r	 -					
7 0 .0000	7 3 .01	7 0 .0000	7 0 .0000	7 1 .0001	7 7 .0103	7 0 .0000	7 0 .0000	7 0 .0000	7 4 .0002	7 0 0-0	8 8 .0124	8 0 .0000	8 1 .0024	7 0 .0000	7 1 .0003	7 6 .0023	7 0 .000
0	0			0	0	0	0	0	0	0	<u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	<u>Þ</u> /	0 <u>ь</u> /	<u>b</u> /
			83. 08				ALVIN, T	EX.									
10 0 .0000 0	10 0 .00 0	10 0 .0000 0	10 0 .0000	10 2 .0002 0	10 9 .0002 0	10 0 .0000 0	10 0 .0000 0	10 0 .0000	10 0 .0000 0	10 0 0-0 	10 1 .0001 <u>a</u> /	10 0 .0000 <u>a</u> /	10 0 .0000	10 0 .0000 0	10 0 .0000 0	10 5 .0029 0	10 0 .000
	l .	L	84. 080				LTA LOMA,	TEX.				L				L	I
6 0 .0000 0	6 0 .00 0	6 0 .0000 0	6 0 .0000	6 0 .0000 0	6 4 .0001 0	6 0 .0000 0	6 0 .0000 0	6 0 .0000	6 0 .0000 0	6 0 0-0	6 3 .0005 <u>a</u> /	6 0 .0000 <u>a</u> /	6 0 .0000 <u>a</u> /	6 0 .0000 0 <u>a</u> /	6 1 .0009 0 <u>b</u> /	6 2 .0018 0 <u>b</u> /	6 1 .000
			85.				ALGOA, TE	х.									
4 0 .0000	4 0 .00	4 0 .0000	4 0 .0000	4 0 .0000	4 2 .0001	4 0 .0000	4 0 .0000	4 0 .0000	4 0 .0000	4 0 0-0	4 0 .0000	4 0 .0000	4 0 .0000	4 0 .0000	.0000 0	4 1 .0004	4 0 .000
	8 0 0000 0 0 .0000 0 0 .0000 0	8 8 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Section Sect	81. 08077540 CL 81. 08077540 CL 8 8 8 8 8 8 8 8 0 00-00 00	Aldrin Chlor-dane DDD DDE DDT 81. 08077540 CLEAR CREEK (Na 8	Aldrin Chlor-dane DDD DDE DDT Dieldrin 81. 08077540 CLEAR CREEK AT FARM R (Water years) 8	Chlorinated hydrocarbons Aldrin Chlor- dane DDD DDE DDT Dieldrin Endrin 81. 08077540 CLEAR CREEK AT FARM ROAD 2351, (Nater years 1971-72) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9	Chlorinated hydrocarbons Aldrin Chlor DDD DDE DDT Dieldrin Endrin Heptachlor	Aldrin Chlor-dane DDD DDE DDT Dieldrin Endrin Hepta-chlor epoxide 81. 08077540 CLEAR CREEK AT FARM ROAD 2351, AT FRIENDSWOOD, TI (Water years 1971-72) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0	Chlorinated hydrocarbons	Chlorinated hydrocarbons	Chlorinated hydrocarbons	Chlorinated hydrocarbons	Chlorinated hydrocarbons	Chlorinated hydrocarbons	Chlorinated hydrocathons	Chlorinated hydrocarbons

a/ The sum of these phosphorothioates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

																		_
							INS	ECTIC	IDES							1	BICID	
			•		Chlor	inated hydi	rocarbons					<u> </u>	Phosphor	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-т	Silve
		•	•	86. 08		ALLS BAYOU Water year		A LOMA, T	EX.	• • • • • • • • • • • • • • • • • • • •				,		-	•	<u> </u>
Number of analyses Number of occurrences Range (µg/1)	2 0 .0000	2 0 .00	2 0 .0000	2 0 .0000	2 0 .0000	2 2 .0101	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	2 0 0-0	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	20.000
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0 0	0		0	0	0	0	0	0	 0	 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	 <u>b</u> /
				87. 080		STANG BAYOU		VERPOOL,	rex.	 							•	·
Number of analyses Number of occurrences Range (µg/1)	10 0 .0000	10 0 .00	10 0 .0000	10 0 .0000	10 0 .0000	10 9 .0002	10 0 .0000	10 0 .0000	10 0 .0000	10 2 .0001	10 0 0-0	10 6 .0008	10 0 .0000	10 0 .0000	10 0 .0000	10 1 .0011	10 9 .0007	10 0 .000
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0	0		0	0	0	0	0	0	0	<u>a</u> /	 <u>a</u> /	 <u>a</u> /		<u>ь</u> /	0 <u>b</u> /	<u>ь</u> /
				88. 08		HOCOLATE BA		ALVIN, T	EX.									
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	l	9 0 .00 0	9 0 .0000 0	9 0 .0000	9 0 .0000 0	9 9 .0103 0	9 0 .0000 0	9 0 .0000 0	9 0 .0000	9 0 .0000 0	9 0 0-0 	9 0 .0000	9 0 .0000 <u>a</u> /	9 0 .0000	9 0 .0000 0	9 0 .0000 0	9 2 .0003 0	9 1 .000
		<u> </u>		89. 08		USTIN BAYOU ter years :		VERPOOL,	rex.			l						<u> </u>
			1	1	(wa	cer years .	19/1-/2)		·	-		1					·	
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels	8 0 .0000	8 0 .00	8 0 .0000	8 0 .0000	8 0 .0000	8 7 .0002	.0000 0	8 0 .0000	8 0 .0000	8 0 .0000	8 0 0-0	8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	.0000 0	8 6 .0006	8 0 .0000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				90. 0		FLORES BAYO		ANBURY, T	ex.									
Number of analyses	6 0 .0000	6 0 .00	6 0 .0000	6 0 .0000	6 0 .0000	6 6 .0102	6 0 .0000	6 0 .0000	6 0 .0000	.0000 0	6 0 0-0	7 1 .0011	7 0 .0000	7 0 .0000	7 0 .0000	7 1 .0003	7 4 .0025	7 0 .0000
of recommended limits for public water supplies	٥	n	F	1	ا ا	ا ا	0	٥ ا	a	0	0	a/	a/	<u>a</u> /	a/	ъ/	<u>b</u> /	ь/

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	ECTIC	IDES								BICID	
					Ch1or	inated hyd	rocarbons						Phosphor	othioates		(Chlorina	ted hydro	carbon
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silv
			93.	08087300		ORK BRAZOS ter years		ELIASVIL	LE, TEX.									
Number of analyses	19 0 .0000	15 0 .00	19 0 .0000	19 0 .0000	19 0 .0000	19 0 .0000	19 0 .0000	19 0 .0000	19 0 .0000	19 1 .0001	11 0 0-0	10 2 .0002	7 0 .0000	10 0 .0000	10 0 .0000	19 4 .0044	19 16 .0019	19 0 .00
of recommended environmental levels	0	0	0		0	0	0	0	0	0	 0	<u>a</u> /	<u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	 <u>b</u> /
		l	<u></u>	94. 080		AZOS RIVER ter years		TH BEND,	rex.	L	L		L	L	L	L	L	L
Number of analyses	21 0 .0000	17 0 .00	21 1 .0001	21 3 .0001	21 6 .0004	21 0 .0000	21 0 .0000	21 0 .0000	21 0 .0000	21 1 .0001	21 0 0-0	11 1 .0003	8 0 .0000	11 0 .0000	11 0 .0000	21 2 .0004	21 12 .0015	21 1 .000
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0	0		0	0	0	0 0	0	0	0	 <u>a</u> /	 <u>a</u> /	<u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	 <u>ь</u> /
				97.		BRAZOS RI		ACO, TEX.									<i>y</i> •• • •	
Number of analyses	25 0 .0000 0	19 0 .00 0	25 3 .0001 0	25 5 .0003	25 5 .0009 1	25 1 .0002 0	25 0 .0000 0	25 0 .0000 0	25 0 .0000	25 2 .0001 0	13 0 0-0	12 2 .0001	8 0 .0000 <u>a</u> /	12 0 .0000	12 0 .0000 0 <u>a</u> /	24 5 .0022 0 <u>b</u> /	24 12 .0005 0	24 0 .000
		<u> </u>	99	. 081039		FORK ROCKY		EAR BRIGGS	, TEX.			L	L	L	Ll		L	
Number of analyses	3 0 .0000 0	3 0 .00 0	3 0 .0000 0	3 0 .0000	3 0 .0000 0	3 0 .0000	3 0 .0000 0	3 0 .0000 0	3 0 .0000	3 0 .0000 0	3 0 0-0 	3 0 .0000	3 0 .0000	3 0 .0000	3 0 .0000 0	3 0 .0000 0	3 0 .0000 0	3 0 .000
		<u> </u>	1	101.		RAZOS RIVE		MOND, TEX						L <u>-</u> -				
Number of analyses	37 0 .0000	26 0 .00	37 10 .0003	36 17 .0005	37 15 .0008	37 2 .0001	37 1 .0002	37 0 .0000	37 0 .0000	37 2 .0001	17 0 0-0	10 0 .0000	5 0 .0000	10 0 .0000	10 0 .0000	33 9 .0018	33 14 .0004	33 0 .000
of recommended limits for public water supplies	0	0			0	0	0	0	0	. 0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	CTIC	IDES							HER	BICID	ES
					Chlor:	inated hyd	rocarbons						Phosphor	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
				102. 08		RAZOS RIVE		HARON, T	EX.			•						
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels	23 0 .0000	17 0 .00	23 3 .0001	23 10 .0003	23 13 .0004	23 2 .0001	23 0 .0000	23 0 .0000	23 0 .0000	23 1 .0001	13 0 0-0	10 1 .0001	10 0 .0000	11 0 .0000	11 0 .0000	23 5 .0020	23 11 .0010	23 0 .000
Number of samples with concentrations in excess of recommended limits for public water supplies	. 0	0			0	o o	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			1	03. 0811		BOGGY CRE		ADSWORTH,	TEX.	•			•		•			•
Number of analyses	10 0 .0000	10 0 .00	10 0 .0000	10 0 .0000	10 0 .0000	10 7 .0002	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000	10 0 0-0	10 1 .0001	8 0 .0000	10 0 .0000	10 0 .0000	10 2 .0026	10 0 .0000	10 0 .000
of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	 0	0	0	<u>a</u> /	 <u>a</u> /	<u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>ъ</u> /
				104. 081		LORADO RIV ter years		SILVER, T	EX.									
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess	10 0 .0000	10 0 .00	10 1 .0001	10 3 .0009	10 2 .0001	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000		9 2 .0003	8 0 .0000	9 0 .0000	9 0 .0000	8 0 .0000	8 5 .0029	8 2 .000
of recommended limits for public water supplies	0	0		<u> </u>	0	0	0	. 0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			,	105. 081		LORADO RIV		LVER, TE	κ. 	· · · · · ·								,
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels	2 0 .0000	0 	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	2 0 .0000	0 	0 	0 	0 	0 	2 2 .1224	.0226	2 0 .0000
Number of samples with concentrations in excess of recommended limits for public water supplies	0				0	0	0	0	0	0						<u>b</u> /	<u>b</u> /	<u>b</u> /
			1	08. 0813		CHO RIVER :		r rock, T	EX.	L			-					
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels	19 0 .0000	12 0 .00	19 0 .0000	19 1 .0001	19 0 .0000	19 0 .0000	19 0 .0000	19 0 .0000	19 0 .0000	19 0 .0000	11 0 0-0	10 1 .0002	9 0 .0000	10 0 .0000	10 0 .0000	18 2 .0007	18 5 .0023	18 0 .0000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	o			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

	1						INS	ECTIC	IDES							HER	BICID	E S
					Chlor	inated hydr	rocarbons					·	Phosphore	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
	l		L	109. 081		LORADO RIV		AN SABA,	TEX.		L		J	<u> </u>	<u>.</u>	l	L	
Number of analyses	27	18	27	27	27	27	27	27	27	27	15	13	8	13	13	26	26	26
Number of occurrences Range (uq/1)	0	0 .00	0	2	3	0 .0000	0	0.0000	0.0000	0	0-0	1.0001	0.0000	0	0.0000	3	10	0,000
Number of samples with concentrations in excess of recommended environmental levels	0	0	0		0	0	0	0		0					0	0	0	
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
	·		111	. 081575		R CREEK AT ater year		EET, AUST	IN, TEX.		<u> </u>							<u> </u>
Number of analyses	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Number of occurrences	.0000	.18	.0496	.0530	.30 - 1.7	.0024	.0000	.0000	.0000	.0003	0 0-0	.0028	.0059	.0000	.0000	.0000	.0214	.000
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess	0	5	3		5	2	0	0		. 0					0	0	0 .	
of recommended limits for public water supplies	0	- 0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			11	3. 08159		ARGER CREEN		LUGERVILL	E, TEX.									
Number of analyses		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number of occurrences Range (µg/1) Number of samples with concentrations in excess	.00-	.0-	.00-	.07-	.05-	.00-	.00-	.00-	.00-	.00-	0-	.00-	.00-	.00-	.00-	.00-	.00-	.00-0
of recommended environmental levels	0	0	0		0.	0	0	0	0	0		<u>a</u> /	<u>a</u> /	<u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
	1	ł	L	116. 0		COLORADO RI		HARTON, T	EX.	1		l	1	l		L	1	<u> </u>
	,				(Wa	ter years 1	1968-72)	Γ					r					
Number of analyses	41 1	30	41	41	41 16	41 2	41 1	41 0	41	41 1	22 0	15 2	10 0	15 0	15 0	39 3	39 8	39 1
Range (µg/1)	.0001	.00	.0004	.0002	.0009	.0001	.0007	.0000	.0000	.0001	0-0	.0002	.0000	.0000	.0000	.0040	.0006	0001
of recommended environmental levels	0	0	0		3	0	1	0		0					0	0	0	
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
	r	,	11	7. 08162		PALACIOS (ter years)		R MIDFIEL	D, TEX.	, ·· · · · · · · · · · · · · · · · ·			,			·		·
Number of analyses	11 0	11 0	11	11	11	11 .	11 0	11 0	11 0	11 0	11 0	11 3	11	11 0	11 0	11 2	11 4	11
Number of samples with concentrations in excess		.00	.0000	.0000	.0000	.0002	.0000	.0000	.0000	.0000	0-0	.0004	.0000	.0000	.0000	.0012	.0095	0011
of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0	0		o o	0	0	0		0					0		0	
or recommended limits for public water supplies	L	L	L	L	L					, ,		<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	ECTIC	IDES							HER	BICID	ES
					Chlor	rinated hydr	rocarbons						Phosphor	rothioates		(Chlorina	ated hydroc	carbons)
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silvex
				118. 0		CASHS CREEN		ESSING, T	.EX.									
Number of analyses	0 .0000	10 0 .00 0	10 0 .0000 0	10 1 .0002	10 0 .0000 0	10 8 .0011 1	10 0 .0000 0	10 0 .0000	10 0 .0000	10 0 .0000 0	10 0 0-0	10 1 .0001 	10 0 .0000 	10 0 .0000	10 0 .0000 0	10 1 .0020 0	10 3 .0022 0 b/	10 0 .0000
	<u> </u>				700 EAST (CARANCAHUA	A CREEK NEA		ــــــــــــــــــــــــــــــــــــــ	لنط	<u> </u>	<u> </u>	<u> </u>	<u> </u>		L -		
	Т		т	T	T	T years	19/0-/2,	т	т					т		r	-	T '
Number of analyses Number of occurrences Range (µg/l) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	.0000	10 0 .00	10 0 .0000	10 0 .0000	10 0 .0000	10 3 .0002 0	10 0 .0000 0	10 0 .0000 0	10 0 .0000	10 0 .0000 0	10 0 0-0	9 0 .0000 <u>a</u> /	9 0 .0000	10 0 .0000	10 0 .0000 0	10 2 .0009 0	10 0 .0000 0 <u>b</u> /	10 0 .0000
	<u> </u>	<u></u> '	1	20. 081628	COOR LIBER	CARANCAHUA	CDEEN)	I T T ALIA							لــــــــا		لـــَـــا	
			140	20. 081628		t CARANCAHUA		AR Lawari	D, TLX.									
Number of analyses Number of occurrences Range (\(\psi g / 1 \) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0.0000	8 0 .00 0	8 0 .0000 0	8 0 .0000	8 0 .0000 0	8 2 .0001 0	8 0 .0000 0	8 0 .0000 0	8 0 .0000	8 0 .0000 0	8 0 0-0 	9 1 .0001 <u>a</u> /	8 0 .0000 	9 2 .0022 <u>a</u> /	8 2 .0005 0 <u>a</u> /	10 2 .00-2.3 0 <u>b</u> /	10 1 .0006 0 <u>b</u> /	10 0 .0000 <u>b</u> /
		·		121.		LAVACA RIV		EDNA, TEY	K.	L		<u> </u>		<u></u>	<u> </u>			
<u>.</u>	· ·	T			(War	ater years 1	1968-/2)	т		· ·				1	· · · · ·	-		т——
Number of analyses Number of occurrences Range (ug/1) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0 .0000	20 0 .00 0	26 0 .0000 0	26 1 .0001	26 3 .00-1.6 1	26 0 .0000 0	26 0 .0000 0	26 0 .0000 0	26 0 .0000	26 1 .0001	16 0 0-0 	13 3 .0001 <u>a</u> /	12 0 .0000 <u>a</u> /	14 0 .0000 <u>a</u> /	14 0 .0000 0 <u>a</u> /	25 8 .00-1.7 0 <u>b</u> /	25 7 .0006 0 <u>b</u> /	25 0 .0000 <u>b</u> /
				122. 0		NAVIDAD RIV		JANADO, T	.EX.									
Number of analyses Number of occurrences Range (mg/l) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended imits for public water supplies	0.0000	19 0 .00 0	25 0 .0000 0	25 1 .0002	25 4 .00-2.3 1	25 3 .0001 0	25 0 .0000 0	25 0 .0000 0	25 0 .0000	25 0 .0000 0	19 0 0-0	14 0 .0000	11 0 .0000	14 0 .0000 <u>a</u> /	14 0 .0000 0	25 3 .00-1.4 0	25 1 .0001 0	25 1 .0003 <u>b</u> /
a/ The sum of these phosphorothicates in none of the samples b/ The sum of these herbicides in none of the samples from t						-						<u> </u>		L			1	

	-				-	INS	стіс	IDES							HER	BICID	E S
				Chlor	inated hydi	ocarbons						Phosphor	thioates		(Chlorina	ted hydro	carbons)
Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
	•		123.				R INEZ, T	EX.								-	
11 0 .0000 0	11 0 .00 0	11 0 .0000 0	11 0 .0000	11 0 .0000 0	11 0 .0000 0	11 0 .0000 0	11 0 .0000 0	11 0 .0000 0	11 0 .0000 0	11 0 0-0	10 0 .0000	10 0 .0000	11 0 .0000	11 0 .0000 0 <u>a</u> /	11 0 .0000 0 <u>b</u> /	11 0 .0000 0 <u>b</u> /	11 0 .0000
			124. 0				PLACEDO,	rex.									
11 0 .0000	11 0 .00	11 0 .0000	11 0 .0000	11 0 .0000	11 0 .0000	11 0 .0000	11 0 .0000	11 0 .0000	11 0 .0000	11 0 0-0	11 1 .0001	10 0 .0000	11 0 .0000	11 0 .0000	11 1 .0004	11 5 .0042	11 0 .0000
0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	0 <u>b</u> /	<u>b</u> /	<u>b</u> /
			125. 081				RT LAVACA	, TEX.				H		I			L
9 0 .0000 0	9 0 .00 0	9 1 .0001 0	9 0 .0000	9 0 .0000 0	9 2 .0001 0	9 0 .0000 0	9 0 .0000	9 0 .0000 	9 2 .0001 0	9 0 0-0 	8 3 .0010	8 0 .0000	9 1 .00-1.5 <u>a</u> /	9 1 .0036 1 <u>a</u> /	9 0 .0000 0	9 2 .0002 0 <u>b</u> /	9 0 .0000
· · · · · ·	<u>i </u>		127. 081				VICTORIA	, TEX.		,	J	i	L		<u> </u>	I	L
23 0 .0000 0	17 0 .00 0	23 1 .0001 0	23 1 .0002	23 5 .00-2.7 1	23 2 .0001 0	23 0 .0000 0	23 0 .0000 0	23 0 .0000	23 1 .0001 0	13 0 0-0 	11 0 .0000 <u>a</u> /	9 0 .0000 <u>a</u> /	11 0 .0000 <u>a</u> /	11 0 .0000 0 <u>a</u> /	23 5 .0009 0 <u>b</u> /	23 5 .0002 0 <u>b</u> /	23 2 .0001
	128.	0817760	O OLMOS				1535, AT	SHAVANO I	PARK, TEX.			•					•
2 0 .0000	2 0 .00	2 0 .0000	2 0 .0000	2 0 .0000	2 2 .0202	.0000 0	2 0 .0000	2 0 .0000	2 1 .0002	2 0 0-0	2 1 .0001	.00-	2 0 .0000	2 0 .0000	2 0 .0000	2 1 .0026	2 0 .0000
	11 0 .0000 0 0 .0000 0 0 .0000 0	11	11	11	Aldrin Chlor-dane DDD DDE DDT 123. 08164600 (Wat 11	Aldrin Chlor DDD DDE DDT Dieldrin	Chlorinated hydrocarbons Aldrin Chlor-dane DDD DDE DDT Dieldrin Endrin	Chlorinated hydrocarbons	Aldrin	Chlorinated hydrocarbons	Chlorinated hydrocarbons	Aldrin Chlor- Aldrin Chlor- Chlor- Chlor DDD DDE DDT Dieldrin Endrin Endrin Chlor Chlor- Aldrin Chlor- Aldrin Chlor- Chlor Chlorinated hydrocarbons	Chlorinated hydrocarbons	Chlorinated hydrocarbons	Aldrin Chlor- Aldrin Chlor- Aldrin Chlor- Aldrin Chlor- Aldrin Chlor- Aldrin Chlor- Aldrin Chlor- Aldrin Chlor- 123. 08164600 Edectria Endrin Endrin Chlor- 124. 08164600 Edectria Endrin Chlor- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	СТІС	IDES							HER	BICID	ES
					Chlor	inated hyd	rocarbons						Phosphor	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-т	Silve
			129.	08177700		EEK AT DRE ter years		E, SAN AN	TONIO, TE	х.		•			•			•
	20	1 20	20	20	20	20	20	20	20	30	2/	24	20	24	24	29	29	29
Number of analyses	30 0	30 24	30 10	30 9	30 26	30 26	30 0	30 0	30 1	30 14	24 0	17	20 3	3	0	4	28	4
Range (µg/1)	.0000	.0-1.9	.0013	.0008	.0086	.0010	.0000	.0000	.0001	.0005	0-0	.00-1.2	.0014	.0014	.0000	.0029	.00-1.4	.000
of recommended environmental levels	0	24	2		11	3	0	0		0					0	0	0	
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			13	0. 08178		ANTONIO RI ter years		N ANTONIO	, TEX.									
Number of analyses	14	14	14	14	14	14	14	14.	14	14	9 .	10	6	10	10	14	14	14
Number of occurrences	.0000	14	13	12 .0013	14 .0649	.0114	0.0000	1.0003	0	10 .0012	0-0	5.0022	3	1.0008	0000	.0050	13	.004
Number of samples with concentrations in excess						l .											1	
of recommended environmental levels Number of samples with concentrations in excess	0	14	6		14	5	0	0		2					0	0	0	
of recommended limits for public water supplies	0	0	<u></u>		. 0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
			131. 08	178300 A		EK AT ST. (EET, SAN	ANTONIO,	rex.								
Number of analyses	15	15	15	15	15	15	15	15	15	15	9	9 .	9	9	9	15	15	15
Number of occurrences	.0000	.0-1.1	.00-1.0	.00-1.1	.00-6.6	.0014	0	.0001	1 .0001	.0004	0 0-0	6	2	2	0	.0034	.0090	.000
Number of samples with concentrations in excess of recommended environmental levels	0	11	6		13	3	0	0.		0					0	. 0	0	
Number of samples with concentrations in excess	-		-			_									_	_	`	
of recommended limits for public water supplies	0	0			0	0	0	0	. 0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
		13	2. 08178	600 PANT		GS CREEK A		AD 2696,	SAN ANTON	IO, TEX.								
Number of analyses	6	6	6	6	6	6	6	6	6	6	3	3	2	3	3	3	3	3
Number of occurrences	0 .0000	.00	.0000	0.0000	.0004	.0000	0.0000	.0000	0.0000	0 .0000	0 0 - 0	0	0.0000	0	0000	0.0000	0	.000
Number of samples with concentrations in excess	. 0	0	0.		0	ŀ	0	0		0								
of recommended environmental levels Number of samples with concentrations in excess			"		"	0	Ť	•		_					0	0	,0	
of recommended limits for public water supplies	0 -	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
		13	3. 08178	690 SALA		TRIBUTARY . ter years		S ROAD, S	AN ANTONI	O, TEX.								
Number of analyses	10	10	10	10	10	10	10	10	10	10	5	4	4	4	4	10	10	10
Number of occurrences Range (uq/l)	0 .0000	.07	7	.0011	10	10 .0213	.0000	.0000	.0004	9 .0014	0 0 - 0	.0306	2.0011	1	0000	.00-,27	9	3
Number of samples with concentrations in excess						ļ											1	
of recommended environmental levels Number of samples with concentrations in excess	0	. 9	1		8	2	0	0		2					0	0	0	
of recommended limits for public water supplies	0 .	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

 $[\]underline{\underline{a}}/$ The sum of these phosphorothioates in none of the samples from this site exceeded the recommended limit for public water supplies.

 $[\]underline{b}$ / The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	сстіс	IDES							HER	BICID	ES
					Chlor	inated hydi	ocarbons						Phosphor	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
			134. 0	8178700		EEK (UPPER ter years l		AT SAN A	NTONIO, TI	EX.								
Number of analyses	14 0 .0000 0	14 1 .01 1	14 1 .0001 0	14 3 .0001 	14 4 .0008 1 0	14 5 .0001 0	14 0 .0000 0	14 0 .0000 0	14 0 .0000 0	14 4 .0001 0	5 0 0-0 0	5 0 .0000 <u>a</u> /	2 0 .0000 <u>a</u> /	5 0 .0000	5 0 .0000 0 <u>a</u> /	14 11 .00-8.1 0 <u>b</u> /	14 13 .00-13 1 <u>b</u> /	14 6 .002 <u>b</u> /
		1	35. 0817	8736 SAL		TRIBUTARY r years 197		TREET, SA	N ANTONIO,	TEX.								
Number of analyses	3 0 .0000 0	3 1 .02 1	3 3 .0102 0	3 3 .0103	3 3 .0821 3	3 2 .0002 0	0 .0000 0	3 0 .0000 0	3 0 .0000	3 0 .0000 0	3 0 0-0 	3 2 .0000	3 1 .0012 <u>a</u> /	3 0 .0000 <u>a</u> /	3 0 .0000 0	3 0 .0000 0	3 3 .0165 0 <u>b</u> /	3 0 .0000
			136. 0	8178800		EEK (LOWER ter years 1		AT SAN A	TONIO, TI	x.			L				!	
Number of analyses	15 0 .0000 0	15 4 .02 4	15 10 .0007 2	15 11 .0007	15 14 .0009 4	15 11 .0004 0	15 0 .0000 0	15 0 .0000 0	15 0 .0000	15 7 .0003 0	9 0 0-0	9 4 .0013 <u>a</u> /	6 0 .0000	9 0 .0000 <u>a</u> /	9 0 .0000 0	13 5 .00-1.4 0 <u>b</u> /	13 10 .0063 0	13 6 .0008
		13	8. 08181	000 LEON		IBUTARY AT r years 197		1604, S	AN ANTONIC	, TEX.		<u></u>	<u> </u>	l		<u> </u>	l ,	L
Number of analyses Number of occurrences Range (ug/1) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	4 0 .0000 0	.00 0	4 0 .0000 0	4 1 .0001	4 1 .0001 0	4 0 .0000 0	4 0 .0000 0	4 0 .0000 0	4 0 .0000	4 0 .0000 0	4 0 0-0 	4 0 .0000 <u>a</u> /	2 0 .0000 <u>a</u> /	4 0 .0000	4 0 .0000 0 <u>a</u> /	.0000 0 <u>b</u> /	4 0 .0000 0 <u>b</u> /	4 0 .0000
				139.		HELOTES CR		ELOTES, T	EX.									
Number of analyses Number of occurrences Range (µg/1) Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess	10 0 .0000	10 1 .02	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000	10 0 .0000	7 0 0-0	7 0 .0000	.0000	7 0 .0000	7 0 .0000	10 2 .0032	10 4 .0011	10 0 .0000

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	ECTIC	IDES			,					BICIE	
					Chlor	inated hydi	ocarbons						Phosphor	thioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
			140. 08	181450 L		TRIBUTARY ter years		AIR FORC	E BASE, T	EX.								
Number of analyses	11 0 .0000	11 4 .05	11 11 .0329	11 11 .0115	11 11 .04-1.4	11 3 .0001	11 0 .0000	11 0 .0000	11 0 .0000	11 4 .0002	11 0 0-0	11 6 .0009	7 0 .0000	11 0 .0000	11 0 .0000	10 2 .0004	10 9 .0007	10 1 .000
of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	o o	0	6		10 0	0	0 0	0	0	0	0	<u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
			14	1. 0818		INA RIVER I		ANTONIO,	TEX.									
Number of analyses	6 0 .0000	6 0 .00	6 1 .0001	6 0 .0000	6 2 .0001	6 1 .0001	6 0 .0000	6 0 .0000	6 0 .0000	6 0 .0000	6 0 0-0	6 2 .0002	6 0 .0000	6 0 .0000	6 0 .0000	6 0 .0000	6 1 .0005	6 0
Number of samples with concentrations in excess of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0	o 		0	0	0	0	 0	0	0	<u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	 <u>ь</u> /
			142	. 081818		NTONIO RIVI ter years 1		LMENDORF,	TEX.									
Number of analyses	23 0 .0000	17 0 .00	23 16 .0009	23 1 .0006	23 9 .0018 1	23 18 .0004 0	23 0 .0000 0	23 0 .0000 0	23 0 .0000	23 8 .0010 1	18 0 0-0	11 6 .0020 	8 0 .0000	11 1 .0002	11 0 .0000 0	23 3 .0025 0	23 15 .0030 0	23 3 .000
		L	1	145. 081		N ANTONIO I		GOLIAD, T	EX,				L	L_='	='		L	
			· · · · · ·		(Wa	ter years	.968-72)											
Number of analyses	24 1 .0001	18 2 .01 2	24 11 .0002	24 2 .0010	24 13 .0006	24 15 .0003	24 0 .0000	24 0 .0000	24 0 .0000	24 12 .0003	14 0 0-0	12 6 .0014	12 0 .0000	12 1 .0013	12 0 .0000	22 5 .0009	22 13 .0008	22 1 .000
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				146. 081		ADALUPE RIV ter years l		rivoli, T	EX.									
Number of analyses	.0000 0	8 0 .00	8 0 .0000	8 0 .0000	8 0 .0000	8 1 .0001	8 0 .0000	8 0 .0000	8 0 .0000	8 1 .0001	8 0 0-0	8 3 .0003	.0000	8 0 .0000	8 0 .0000	7 1 .0009	7 5 .0002	7 0 .0000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

							INS	CTIC	IDES		<u>.</u>					HER	BICID	ES
					Chlor:	inated hyd	cocarbons				:		Phosphor	othioates		(Chlorina	ted hydro	carbons
	Aldrin	Chlor- dane	DDD	DDE	DDT	Dieldrin	Endrin	Hepta- chlor	Hepta- chlor epoxide	Lindane	Toxa- phene	Diazi- non	Mala- thion	Methyl para- thion	Para- thion	2,4-D	2,4,5-T	Silve
				147.		SALT CREE		FUGIO, TE	х.		<u>-</u> · . <u>-</u> ·							
Number of analyses	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 1	3 0
<pre>lange (ug/1) tumber of samples with concentrations in excess of recommended environmental levels</pre>	.0000	00.	0000	.0000	0000	.0000	.0000	.0000	.0000	0000	0-0 			.0000	.0000	.0000	0 .0003	.000
Number of samples with concentrations in excess of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> / .	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				148. 0		COPANO CRE		EFUGIO, T	EX.									
number of analyses	7 0 .0000	7 0 .00	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 0-0	7 0 .0000	6 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .0000	7 0 .000
Number of samples with concentrations in excess of recommended environmental levels	0	0	0		0	0	0	0	 0	0		 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 <u>a</u> /	0 <u>b</u> /	о <u>ь</u> /	<u></u> <u>b</u> /
	L	L	L	149. 0		MISSION RIV ter years		FUGIO, TE	L х.	لـــــــــــــــــــــــــــــــــــــ	L	L	L	l	L		1	!
		1	Τ	T	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- years	1371-727										γ	,
Number of analyses	8 0 .0000	8 0 .00	8 0 .0000	8 0 .0000	8 0 .0000	.0000	8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	8 0 0-0	.0000	8 0 .0000	8 0 .0000	8 0 .0000	8 0 .0000	8 4 .0002	8 0 .000
of recommended environmental levels Number of samples with concentrations in excess of recommended limits for public water supplies	0	0	0		0	0	0	0	 0	0	 0	 <u>a</u> /	 <u>a</u> /	 <u>a</u> /	0 - <u>a</u> /	0 <u>b</u> /	0 <u>b</u> /	<u>b</u> /
	L	L	l	150. 0		CHILTIPIN (SINTON, T	EX.			L		<u> </u>				L <u>-</u>
		1	,	T		er years	1970-72)											1
Number of analyses Number of occurrences Nange (µg/1)	10 0 .0000	10 0 .00	10 0 .0000	10 1 .0001	10 1 .0001	10 1 .0001	10 0 .0000	9 0 .0000	10 0 .0000	10 0 .0000	10 0 0-0	10 0 .0000	9 0 .0000	10 0 .0000	10 0 .0000	10 1 .0010	10 1 .0003	10 0 .000
Number of samples with concentrations in excess of recommended environmental levels	0	0	0		0	0	0	0		0					0	0	0	
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /
				151. 082		CES RIVER		EE RIVERS	, TEX.									
Number of analyses Number of occurrences Aange (ug/l)	23 0 .0000	17 0 .00	23 1 .0003	23 3	23 4 .00-3.3	23 0 .0000	23 0 .0000	23 0 .0000	23 0 .0000	23 2 .0001	13 0 0-0	10 1 .0001	8 0 .0000	11 0 .0000	11 0 .0000	23 4 .0064	23 9 .0038	23
umber of samples with concentrations in excess of recommended environmental levels	0	0	0		1	0	0	0		0					0	0	0	
of recommended limits for public water supplies	0	0			0	0	0	0	0	0	0	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>a</u> /	<u>b</u> /	<u>b</u> /	<u>b</u> /

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.

a/ The sum of these phosphorothicates in none of the samples from this site exceeded the recommended limit for public water supplies.

b/ The sum of these herbicides in none of the samples from this site exceeded the recommended limit for public water supplies.