SANTA ANA RIVER AT SANTA ANA
AND
SANTA MARIA RIVER AT GUADALUPE
CALIFORNIA

# U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 40-74

QE 75 .U58w no.74-40 1975

cooperation with the epartment of Navigation Development



| BIBLIOGRAPHIC DATA                                                                                               | 1. Report No.                                        | 2.                                                           |                                           | 3. Recipient's | Accession No.               |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|----------------|-----------------------------|
| 4. Title and Subtitle                                                                                            |                                                      |                                                              | 5-10-10-10-10-10-10-10-10-10-10-10-10-10- | 5. Report Date |                             |
| 3 pomenum on one                                                                                                 | TIME DIGGLADORG CANTA                                | NIA DITTED AT                                                | CANERA                                    | 4 February     | 7 1975 <sub>4</sub>         |
|                                                                                                                  | MENT DISCHARGES, SANTA A<br>RIVER AT GUADALUPE, CALI |                                                              |                                           | 6.             |                             |
| 7. Author(s) Carl G. Kroll5                                                                                      |                                                      | LIBI                                                         | RARY                                      | NI.            | Organization Rept.<br>40-74 |
| 9. Performing Organization N                                                                                     | Name and Address                                     |                                                              |                                           | 10. Project/Ta | ask/Work Unit No.           |
| U.S. Geological S                                                                                                | Survey, WRD                                          | ENNS                                                         | Magn                                      |                |                             |
| 345 Middlefield H                                                                                                |                                                      | SUPPONL                                                      | 76                                        | 11. Contract/C | Grant No.                   |
| Menlo Park, CA 94                                                                                                | 4025                                                 | RECIBURGAN BE                                                | Reclamation                               |                |                             |
| 12. Sponsoring Organization                                                                                      | Name and Address                                     | Denver,                                                      |                                           | 13. Type of Re | eport & Period              |
| 12. Sponsoring Organization                                                                                      | ivalle and Address                                   | -511761, 1                                                   | colorado                                  | Covered        | port & Terror               |
| C 0 -1                                                                                                           |                                                      |                                                              |                                           | Final :        | report                      |
| Same as 9 above                                                                                                  |                                                      |                                                              |                                           | 14.            |                             |
| 15 C 1 2                                                                                                         |                                                      |                                                              |                                           |                |                             |
| 15. Supplementary Notes                                                                                          | Prepared in cooperation                              | with the Ca                                                  | lifornia De                               | partment o     | f Navigation                |
| and Ocean Develop                                                                                                |                                                      |                                                              |                                           |                | HERE THE R                  |
| 16. Abstracts                                                                                                    |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  | the water years 1968-71                              |                                                              |                                           |                |                             |
|                                                                                                                  | r at Santa Ana, Calif.,                              |                                                              |                                           |                |                             |
|                                                                                                                  | was 3,400 tons. Extrap                               |                                                              |                                           |                |                             |
|                                                                                                                  | the mean daily values a                              |                                                              |                                           |                |                             |
|                                                                                                                  | , Calif., during the wat was 8,700 tons and the      |                                                              |                                           |                |                             |
|                                                                                                                  | polated over the 31 water                            |                                                              |                                           |                |                             |
|                                                                                                                  | ies are 1,400 and 830 to                             |                                                              |                                           |                |                             |
|                                                                                                                  | anta Ana River is 620 to                             |                                                              |                                           |                |                             |
|                                                                                                                  | nta Maria River is 830 t                             |                                                              |                                           |                |                             |
|                                                                                                                  | low is any significant of                            |                                                              |                                           |                |                             |
|                                                                                                                  | imated 99 percent of all                             |                                                              |                                           |                |                             |
| (113 days) of the 3                                                                                              |                                                      |                                                              |                                           |                |                             |
| 17. Key Words and Document                                                                                       | t Analysis. 17a. Descriptors                         |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  | Sediment transport, *Sedi                            |                                                              | Suspended 1                               | oad, Bedlo     | ad,                         |
| Particle size, En                                                                                                | rosion, Beaches, Califor                             | rnia                                                         |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
| 17b. Identifiers Open-Ended                                                                                      | Terms                                                |                                                              |                                           |                |                             |
| 0 A D:                                                                                                           |                                                      |                                                              |                                           |                |                             |
| Santa Ana River,                                                                                                 | Santa Maria River                                    |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
|                                                                                                                  |                                                      |                                                              |                                           |                |                             |
| 17c. COSATI Field/Group                                                                                          |                                                      |                                                              |                                           |                |                             |
| 18. Availability Statement                                                                                       |                                                      |                                                              | 19. Security Cl                           | ass (This      | 21. No. of Pages            |
| Statement                                                                                                        |                                                      |                                                              | Report)                                   |                | 23                          |
| No restriction or                                                                                                | n distribution                                       |                                                              | 20. Security Cl                           | ass (This      | 22. Price                   |
|                                                                                                                  |                                                      |                                                              | Page<br>UNCLAS                            | SSIFIED        |                             |
| THE RESIDENCE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, AND PASSED IN COLUMN TWO IS NOT THE OWNER, AND |                                                      | THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. |                                           |                |                             |

4030 74 ab



ESTIMATE OF SEDIMENT DISCHARGES

SANTA ANA RIVER AT SANTA ANA AND

SANTA MARIA RIVER AT GUADALUPE

CALIFORNIA

By Carl G. Kroll

U.S. GEOLOGICAL SURVEY

DATE DUE

Water-Resources Investigations 40-74

Prepared in cooperation with the
California Department of Navigation and
Ocean Development



#### UNITED STATES DEPARTMENT OF THE INTERIOR

Rogers C. B. Morton, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

For additional information write to:

District Chief Water Resources Division U.S. Geological Survey 345 Middlefield Road Menlo Park, Calif. 94025

# CONTENTS

| bstract- |                                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------------------|
|          | ion                                                                                                                     |
| ata coll | ection and analysis                                                                                                     |
| omputati | on of total-sediment discharge                                                                                          |
| omputati | on of sediment discharge, 1968-71                                                                                       |
| stimate  | of long-term sediment discharge                                                                                         |
| eference | s cited                                                                                                                 |
|          |                                                                                                                         |
|          |                                                                                                                         |
|          | ILLUSTRATIONS                                                                                                           |
|          |                                                                                                                         |
|          |                                                                                                                         |
|          |                                                                                                                         |
|          |                                                                                                                         |
| igure 1. | Map showing U.S. Geological Survey stream-gaging stations and                                                           |
| 2.5      | dams discussed in this report                                                                                           |
| 2-5.     | Graphs showing relation between water discharge and: 2. Suspended, unsampled, and total sediment discharges,            |
|          | <ol> <li>Suspended, unsampled, and total sediment discharges,</li> <li>Santa Ana River at Santa Ana, 1968-71</li> </ol> |
|          | 3. Suspended, unsampled, and total sediment discharges,                                                                 |
|          | Santa Maria River at Guadalupe, 1969-71                                                                                 |
|          | 4. Coarse-sediment discharge, Santa Ana River at Santa                                                                  |
|          | Ana, 1968-71                                                                                                            |
|          | 5. Coarse-sediment discharge, Santa Maria River at                                                                      |
|          |                                                                                                                         |
|          | Guadalupe, 1969-71                                                                                                      |
|          |                                                                                                                         |
|          |                                                                                                                         |
|          | TABLES                                                                                                                  |
|          |                                                                                                                         |
|          |                                                                                                                         |
|          |                                                                                                                         |
| able 1.  |                                                                                                                         |
| 2.       | Particle-size distribution of suspended sediment, Santa Ana                                                             |
| 0        | and Santa Maria Rivers, water years 1968-69                                                                             |
| 3.       | Coarse-sediment discharge, Santa Ana and Santa Maria Rivers,                                                            |
|          | water years 1968-69                                                                                                     |
| 4.       | Annual suspended-sediment discharges, Santa Ana and Santa                                                               |
| 5-7      | Maria Rivers                                                                                                            |
| 5-7.     | Duration-table summary of daily water and sediment discharges:                                                          |
|          | 5. Santa Ana River at Santa Ana, 1968-71                                                                                |
|          | 6. Santa Maria River at Guadalupe, 1969-71                                                                              |
| 0        | 7. Santa Ana River at Santa Ana, 1941-71                                                                                |
| 8.       | Duration-table summary of adjusted daily water and sediment                                                             |
| 0        | discharges, Santa Maria River at Guadalupe, 1941-71                                                                     |
| 9.       | Estimated long-term coarse-sediment discharge of the Santa Ana                                                          |
|          | and Santa Maria drainage basins, 1941-71                                                                                |

IV CONTENTS

### CONVERSION FACTORS

Factors for converting English units to metric units are shown to four significant figures. However, in the text the metric equivalents are shown only to the number of significant figures consistent with the values for the English units.

| English                                                  | Multiply by | Metric                                           |
|----------------------------------------------------------|-------------|--------------------------------------------------|
| ft (feet)                                                | 0.3048      | m (metres)                                       |
| ft/s (feet per second)                                   | .3048       | m/s (metres per second)                          |
| ft <sup>3</sup> /s (cubic feet per second)               | .02832      | m <sup>3</sup> /s (cubic metres per second)      |
| <pre>lb/ft<sup>3</sup> (pounds per<br/>cubic foot)</pre> | 16.02       | kg/m <sup>3</sup> (kilograms per<br>cubic metre) |
| mi (miles)                                               | 1.609       | km (kilometres)                                  |
| tons (short)                                             | .9072       | t (tonnes)                                       |
| yd <sup>3</sup> (cubic yards)                            | .7646       | m <sup>3</sup> (cubic metres)                    |
|                                                          |             | 그 경기 선생님이 하나 하는 것이 없는 것이 없는 것이 없다.               |

# ESTIMATE OF SEDIMENT DISCHARGES, SANTA ANA RIVER AT SANTA ANA AND SANTA MARIA RIVER AT GUADALUPE, CALIFORNIA

By Carl G. Kroll

#### ABSTRACT

The computed sediment discharge of Santa Ana River at Santa Ana for the water years 1968-71 was 11,700,000 tons (10,600,000 tonnes) of suspended sediment and 5,000,000 tons (4,500,000 tonnes) of coarse sediment. The computed discharge of Santa Maria River at Guadalupe for the water years 1969-71 was 9,500,000 tons (8,600,000 tonnes) of suspended sediment and 6,000,000 tons (5,400,000 tonnes) of coarse sediment. Estimated mean annual coarse-sediment discharge for the 31 water years, 1941-71, is 230,000 tons (209,000 tonnes) in the Santa Ana River and 300,000 tons (272,000 tonnes) in the Santa Maria River. Streamflow in the Santa Maria River was adjusted to represent 1971 conditions. The 31-year mean annual volumes of coarse-sediment discharges are 190,000 cubic yards (140,000 cubic metres) in the Santa Ana River and 250,000 cubic yards (190,000 cubic metres) in the Santa Maria River.

Only during floodflow is any significant quantity of sediment transported. In the Santa Maria River an estimated 99 percent of all coarse sediment was transported in 1 percent (113 days) of the 31-year period.

#### INTRODUCTION

Historically, the principal contributors of sand that maintains the southern California beaches have been the coastal streams. These streams transport sediment from coastal watersheds and form deltas of coarse sediment. The coarse sediment from the deltas is transported along the coast by wave action (littoral drift) providing sand for the beaches.

A long dry period and the extensive urban development of inland areas have affected erosion of the watershed, which has reduced the supply of sediment available for transport. In addition, the construction of dams and the consequent reduction of streamflow have decreased the quantity of sediment carried to the coastal zone for deposition on the beaches.

Although the supply of sand has been reduced, the transportation of sand along the shore by littoral drift has not diminished but has created a loss of sand from the beaches. To mitigate beach erosion, it is essential to know (1) the sediment contribution from each coastal stream in a particular reach of shoreline, (2) the littoral transport within the reach, (3) the loss of sediment to submarine canyons, and (4) how the net littoral transport compares with sediment yields from streams so that long-term critical erosion areas can be predicted.

This report defines the sediment yield from two coastal streams that historically have supplied major quantities of sediment to the littoral regime. Sediment-discharge measurements were made at Santa Ana River at Santa Ana, Orange County, during the water years 1968-71 and at Santa Maria River at Guadalupe, Santa Barbara County, during the water years 1969-71 (fig. 1). The study was made by the U.S. Geological Survey in cooperation with the California Department of Navigation and Ocean Development.

<sup>&</sup>lt;sup>1</sup>A water year is the 12-month period ending September 30 and is designated by the year in which it ends.

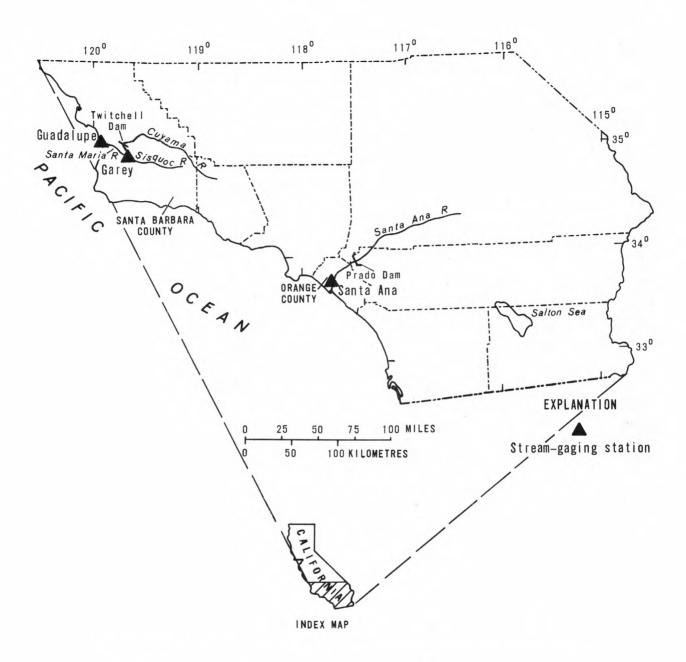



FIGURE 1.--U.S. Geological Survey stream-gaging stations and dams discussed in this report.

#### DATA COLLECTION AND ANALYSIS

Data were collected at the Geological Survey stream-gaging stations: Santa Ana River at Santa Ana and Santa Maria River at Guadalupe (fig. 1). The program consisted of (1) collecting one or more suspended-sediment samples daily during periods of medium and high flow and less frequently during low flow, and (2) obtaining data needed to compute total-sediment discharge.

Total-sediment discharges were computed by the modified Einstein procedure (Colby and Hembree, 1955). Data required for these computations are:

- 1. Stream width, average depth, and mean velocity from a streamflow measurement or other suitable source.
- 2. Average depth at the verticals where the suspended-sediment samples were collected.
  - 3. Average concentration of suspended sediment.
  - 4. Particle-size analysis of the suspended sediment.
  - 5. Particle-size analysis of the bed material.
  - 6. Water temperature.

Particle-size analyses of bed material were made on seven samples from the Santa Ana River and on four samples from the Santa Maria River. The analyses show that both streambeds are sand channels and that most of the material is finer than 4 mm (millimetres). Because the size distributions of the bed-material samples collected after various storms did not vary significantly, the average of all samples from each stream was used to compute total-sediment discharge. The average particle-size distribution of bed material for each stream is shown in table 1.

TABLE 1.—Average particle-size distribution of surface bed material

[Method of analysis: sieve]

| Stream                      | Number  |        |         |       |         | ticle |        |       |       |      |       |
|-----------------------------|---------|--------|---------|-------|---------|-------|--------|-------|-------|------|-------|
|                             | of      | Percer | ntage : | finer | than th | ne si | ze (mi | 11ime | tres) | indi | cated |
|                             | samples | 0.062  | 0.125   | 0.250 | than th | 1.00  | 2.00   | 4.00  | 8.00  | 16.0 | 32.0  |
|                             | samples |        |         | San   |         |       |        |       | Gra   |      |       |
| Santa Ana River             | 1       |        | Angel   |       |         |       |        |       |       |      |       |
| at Santa Ana<br>Santa Maria | 7       | -      | 3       | 21    | 60      | 88    | 95     | 97    | 99    | 99   | 100   |
| River at<br>Guadalupe       | 4       | 4      | 16      | 52    | 83      | 93    | 96     | 98    | 99    | 100  |       |

Particle-size analyses were made on selected suspended-sediment samples. These analyses are listed in table 2.

Daily values of suspended-sediment discharge, as well as particle-size analyses of suspended sediment and bed material, are published annually by the Geological Survey in "Water Resources Data for California, Part 2, Water Quality Records."

#### COMPUTATION OF TOTAL-SEDIMENT DISCHARGE

The total-sediment discharge of a stream can be divided into two parts on the basis of flow (Colby, 1963, p. Al2, A22): (1) the fine-sediment discharge, which usually comes from land-surface erosion and consists of particles so fine that they are not found in appreciable quantity in the streambed; and (2) the coarse-sediment discharge, which consists of particle sizes found in appreciable quantity at the surface of the streambed. The dividing size between fine and coarse sediment is considered herein to be 0.062 mm, which is also the dividing size between sand and silt.

All the fine sediment and generally the major part of the coarse sediment are transported in suspension and are easily sampled through the depth of flow to within 0.3 ft (0.09 m) of the bed. This sampled part of the total-sediment discharge is referred to as the suspended-sediment discharge and is published in the annual data reports for California.

The remaining coarse sediment is transported as bedload (sliding, skipping, and rolling along or very close to the bed) or in suspension within 0.3 ft (0.09 m) of the bed. This part of the total-sediment discharge is referred to as the unsampled-sediment discharge. Hence, the total-sediment discharge is the sum of the suspended-sediment discharge plus the unsampled discharge.

Sediment-transport curves that define the relations between water discharge and suspended, unsampled, and total-sediment discharges for the Santa Ana River are illustrated in figure 2; those for the Santa Maria River are illustrated in figure 3.

The coarse-sediment discharges for each stream were computed by the modified Einstein procedure (Colby and Hembree, 1955) and are listed in table 3. The relation between coarse-sediment discharge and water discharge is shown in figures 4 and 5.

TABLE 2.--Particle-size distribution of suspended sediment, [Method of analysis: C, chemically dispersed; P, pipet; S, sieve;

| 1    | Date  |      | Time | Water<br>temper-<br>ature | Discharge<br>(ft <sup>3</sup> /s) | Sediment concentration | Sediment<br>discharge<br>(tons per | 0.002 | centage<br>0.004 |
|------|-------|------|------|---------------------------|-----------------------------------|------------------------|------------------------------------|-------|------------------|
|      |       |      |      | (°C)                      |                                   | (mg/1)                 | day)                               | C.    | Lay              |
|      |       |      |      | Santa                     | Ana River a                       | t Santa An             | a                                  |       |                  |
| Nov. | 19, 1 | 967  | 1050 | 18                        | 478                               | 4,130                  | 5,330                              | 21    | 24               |
| Nov. | 19, 1 | .967 | 1610 | 18                        | 50                                | 2,030                  | 274                                | 35    | 42               |
| Dec. | 18, 1 | 1967 | 1330 | 12                        | 576                               | 13,800                 | 21,500                             | 9     | 11               |
| Dec. | 18, 1 | 1967 | 1530 | 12                        | 225                               | 4,610                  | 2,800                              | 34    | 34               |
| Dec. | 21, 1 | 1967 | 0800 |                           | 165                               | 2,340                  | 1,040                              | 35    | 42               |
| Mar. | 8, 1  | 1968 | 0145 | 13                        | 1,000                             | 9,780                  | 26,400                             | 15    | 17               |
| Mar. | 8, 1  | 1968 | 1915 |                           | 306                               | 20,900                 | 17,300                             | 32    | 47               |
| Mar. | 10, 1 | 1968 | 1550 | 18                        | 457                               | 4,370                  | 5,390                              | 30    | 35               |
| Mar. | 12, 1 | 1968 | 1555 | 14                        | 195                               | 2,190                  | 1,150                              | 18    | 24               |
| Jan. | 14, 1 | 1969 | 0850 | 13                        | 140                               | 9,980                  | 3,770                              | 33    | 44               |
| Jan. | 19, 1 | 1969 | 1000 | 13                        | 37                                | 748                    | 75                                 | 50    | 56               |
| Jan. | 20, 1 | 1969 | 1605 | 13                        | 372                               | 6,120                  | 6,150                              | 35    | 38               |
| Jan. | 23, 1 | 1969 | 1320 | 13                        | 931                               | 5,830                  | 14,700                             | 23    | 25               |
| Jan. | 27, 1 | 1969 | 1415 | 13                        | 5,700                             | 23,100                 | 356,000                            | 14    | 19               |
| Jan. | 31, 1 | 1969 | 1500 | 13                        | 2,470                             | 11,300                 | 75,400                             | 19    | 21               |
| Feb. | 11, 1 | L969 | 1130 | 15                        | 2,710                             | 6,690                  | 49,000                             | 11    | 12               |
| Feb. | 24, 1 | L969 | 0600 | 12                        | 5,420                             | 31,400                 | 460,000                            | 33    | 37               |
| Feb. | 25, 1 | 1969 | 1240 | 13                        | 17,000                            | 28,700                 | 1,320,000                          | 26    | 31               |
| Feb. | 27, 1 | L969 | 1215 | 14                        | 6,720                             | 28,100                 | 510,000                            | 29    | 32               |
| May  | 6, 1  | 1969 | 1545 | 18                        | 494                               | 24,400                 | 32,500                             | 20    | 22               |
|      |       |      |      | Santa N                   | Maria River                       | at Guadalu             | pe                                 |       |                  |
| Jan. | 20, 1 | L969 | 0910 | 11                        | 1,750                             | 24,200                 | 114,000                            | 38    | 44               |
|      | 21, 1 |      | 1600 | 11                        | 4,140                             | 43,900                 | 491,000                            | 26    | 29               |
|      | 22, 1 |      | 1700 | 12                        | 716                               | 19,100                 | 36,900                             | 30    | 38               |
|      | 29, 1 |      | 1300 | 11                        | 284                               | 13,900                 | 10,700                             | 30    | 35               |
| Feb. | 7, 1  |      | 1500 | 13                        | 1,270                             | 19,000                 | 65,200                             | 21    | 26               |
|      | 13, 1 |      | 0930 | 6                         | 30                                | 7,400                  | 599                                | 43    | 56               |
|      | 25, 1 |      | 1715 | 11                        | 7,920                             | 63,100                 | 1,350,000                          | 14    | 15               |
|      | 27, 1 |      | 1745 | 12                        | 2,400                             | 29,800                 | 193,000                            | 17    | 21               |
| Mar. | 4, 1  |      | 0845 | 12                        | 4,330                             | 16,700                 | 195,000                            | 11    | 13               |

Santa Ana and Santa Maria Rivers, water years 1968-69

V, visual accumulation tube; W, in distilled water]

| of nor | +10100 | finer th |          | rticle si |           | \ d=4d==          | - d   |       | Method   |
|--------|--------|----------|----------|-----------|-----------|-------------------|-------|-------|----------|
| 0.008  | 0.016  | 0.031    | 0.062    | 0.125     | 0.250     | ) indica<br>0.500 | 1.000 | 2.000 | of       |
| 0.000  | Silt   | 0.031    | 0.002    | 0.123     | Sa:       |                   | 1.000 | 2.000 | analysis |
|        |        |          | Sant     | a Ana Riv |           |                   |       |       |          |
| 30     | 37     | 42       | 52       | 69        | 93        | 100               |       |       | VPWC     |
| 46     | 55     | 59       | 65       | 73        | 85        | 93                | 100   |       | VPWC     |
| 13     | 17     | 22       | 28       | 37        | 49        | 67                | 94    | 99    | SPWC     |
| 43     | 52     | 61       | 71       | 83        | 97        | 100               |       |       | VPWC     |
| 48     | 53     | 60       | 70       | 83        | 97        | 100               |       |       | VPWC     |
| 22     | 28     | 33       | 38       | 46        | 74        | 91                | 100   |       | VPWC     |
| 60     | 71     | 76       | 79       | 84        | 94        | 99                | 100   |       | VPWC     |
| 43     | 49     | 55       | 60       | 76        | 96        | 100               |       |       | VPWC     |
| 27     | 30     | 33       | 36       | 41        | 54        | 72                | 99    | 100   | VPWC     |
| 57     | 71     | 79       | 86       | 90        | 96        | 99                | 100   |       | SPWC     |
| 66     | 80     | 84       | 90       | 96        | 100       |                   |       |       | VPWC     |
| 50     | 60     | 72       | 81       | 91        | 100       |                   |       |       | VPWC     |
| 30     | 35     | 39       | 44       | 53        | 68        | 86                | 96    | 97    | SPWC     |
| 25     | 34     | 44       | 54       | 70        | 86        | 98                | 100   |       | VPWC     |
| 27     | 39     | 51       | 63       | 80        | 94        | 100               |       |       | VPWC     |
| 16     | 22     | 28       | 37       | 46        | 71        | 93                | 100   |       | VPWC     |
| 44     | 59     | 74       | 82       | 89        | 96        | 100               | 100   |       | VPWC     |
| 39     | 52     | 65       | 74       | 86        | 96        | 100               |       |       | VPWC     |
| 47     | 64     | 74       | 80       | 86        | 93        | 99                | 100   |       | VPWC     |
| 26     | 45     | 74       | 89       | 94        | 99        | 100               |       |       | VPWC     |
|        |        |          | Santa    | Maria Ri  | ver at    | Guadalup          | e     |       |          |
| 55     | 71     | 78       | 82       | 90        | 98        | 100               |       |       | VDUC     |
| 35     | 47     | 57       | 64       | 75        |           |                   | 100   |       | VPWC     |
| 57     | 73     | 87       | 95       | 99        | 91<br>100 | 97                | TOO   |       | SPWC     |
| 45     | 58     | 70       | 82       | 95        | 99        | 100               |       |       | VPWC     |
| 32     | 44     | 59       |          |           |           |                   |       |       | VPWC     |
| 73     | 85     | 90       | 75<br>96 | 91        | 98        | 100               |       |       | VPWC     |
| 19     | 26     |          |          | 100       | 0.4       |                   | 100   |       | VPWC     |
| 27     | 37     | 38<br>51 | 50       | 75        | 94        | 99                | 100   |       | SPWC     |
| 17     | 22     | 32       | 66       | 88        | 97        | 100               |       |       | SPWC     |
| 1/     | 22     | 34       | 44       | 68        | 93        | 100               |       |       | SPWC     |

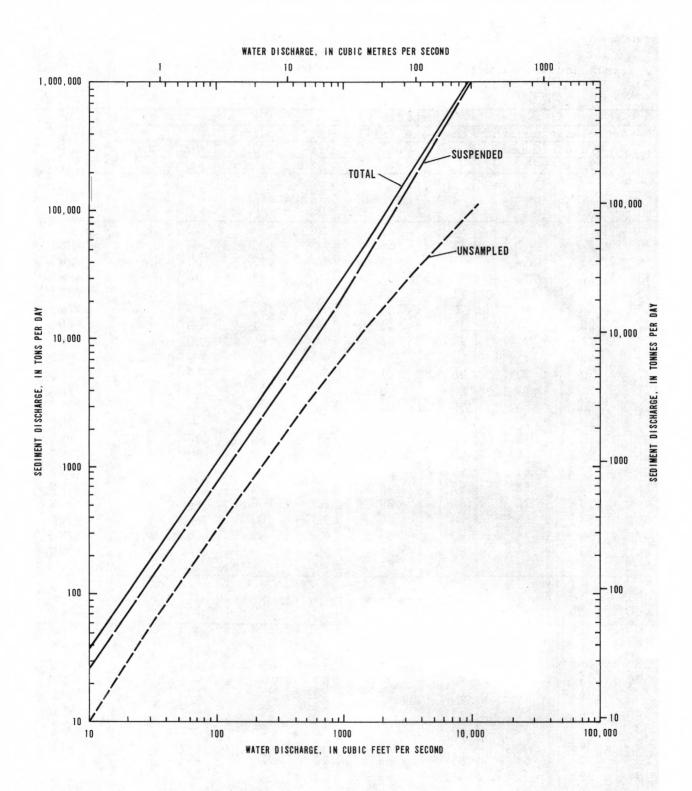



FIGURE 2.—Relation between water discharge and suspended, unsampled, and total sediment discharges, Santa Ana River at Santa Ana, 1968-71.

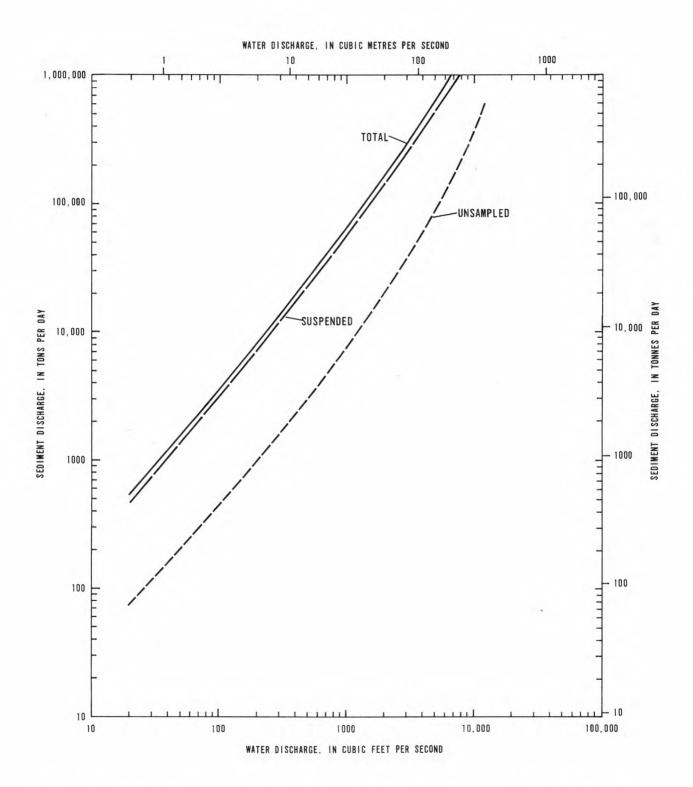



FIGURE 3.—Relation between water discharge and suspended, unsampled, and total sediment discharges, Santa Maria River at Guadalupe, 1969-71.

TABLE 3.--Coarse-sediment discharge, Santa Ana and Santa Maria Rivers, water years 1968-69

|      | D-+-     | Water                          | Water           | Stream          |           | sediment dis | charge  |
|------|----------|--------------------------------|-----------------|-----------------|-----------|--------------|---------|
|      | Date     | discharge (ft <sup>3</sup> /s) | velocity (ft/s) | width<br>(feet) | Suspended | Unsampled    | Total   |
|      |          |                                | anta Ana R      | iver at S       | anta Ana  |              |         |
|      |          |                                |                 |                 |           |              |         |
|      | 19, 1967 |                                | 1.6             | 69              | 96        | 114          | 210     |
|      | 14, 1969 |                                | 2.2             | 80              | 528       | 280          | 808     |
|      | 12, 1968 |                                | 2.4             | 100             | 736       | 952          | 1,690   |
|      | 18, 1967 |                                | 3.1             | 81              | 812       | 978          | 1,790   |
| Jan. | 20, 1969 | 372                            | 4.0             | 89              | 1,170     | 1,750        | 2,920   |
| Mar. | 10, 1968 | 3 457                          | 3.0             | 193             | 2,160     | 2,400        | 4,560   |
| May  | 6, 1969  | 494                            | 3.9             | 162             | 3,520     | 4,380        | 7,900   |
| Jan. | 23, 1969 | 931                            | 4.4             | 140             | 8,230     | 8,270        | 16,500  |
| Mar. | 8, 1968  | 1,210                          | 5.1             | 178             | 8,960     | 8,440        | 17,400  |
| Jan. | 31, 1969 |                                | 6.1             | 236             | 27,900    | 18,700       | 46,600  |
| Feb. | 11, 1969 | 2,710                          | 6.2             | 248             | 30,900    | 33,000       | 63,900  |
|      | 27, 1969 |                                | 7.7             | 251             | 160,000   | 36,000       | 196,000 |
|      | 27, 1969 |                                | 7.9             | 250             | 99,800    | 41,200       | 141,000 |
|      | 25, 1969 |                                | 11.5            | 268             | 335,000   | 361,000      | 696,000 |
|      |          | Sa                             | anta Maria      | River at        | Guadalupe |              |         |
| Feb. | 13, 1969 | 30                             | 1.9             | 43              | 30        | 177          | 207     |
|      | 29, 1969 |                                | 3.2             | 198             | 1,880     | 4,920        | 6,800   |
|      | 22, 1969 |                                | 4.2             | 139             | 1,810     | 3,510        | 5,320   |
|      | 7, 1969  |                                | 4.9             | 297             | 15,900    | 22,100       | 38,000  |
|      | 20, 1969 |                                | 5.6             | 85              | 19,000    | 9,000        | 28,000  |
| Feb. | 27, 1969 | 2,400                          | 5.5             | 244             | 64,300    | 27,500       | 91,800  |
| Jan. | 21, 1969 |                                | 2.5             | 871             | 173,000   | 27,000       | 200,000 |
| Mar. | 1000000  | •                              | 4.4             | 688             | 108,000   | 60,000       | 168,000 |
| Feb. | 25, 1969 |                                | 5.2             | 847             | 650,000   | 139,000      | 789,000 |

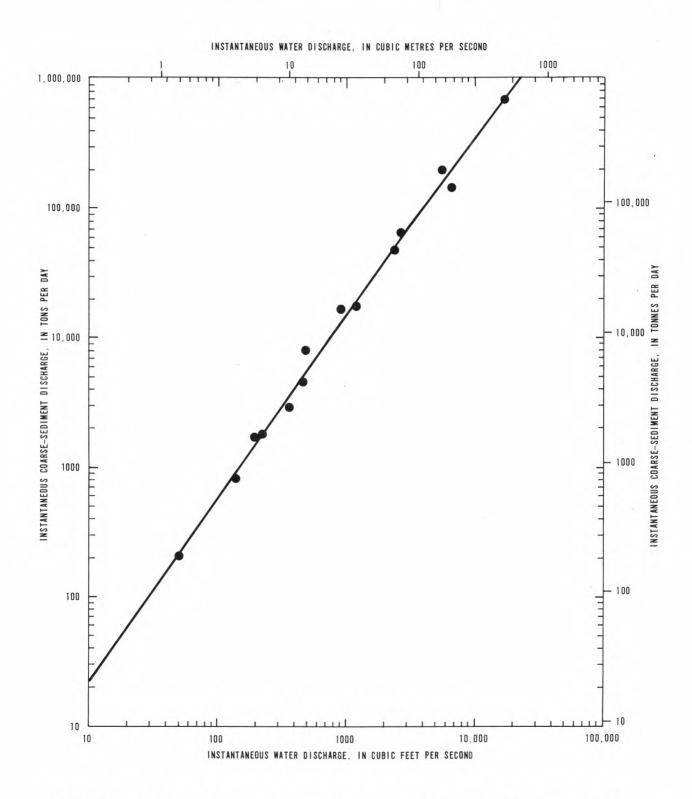



FIGURE 4.--Relation between water discharge and coarse-sediment discharge, Santa Ana River at Santa Ana, 1968-71.

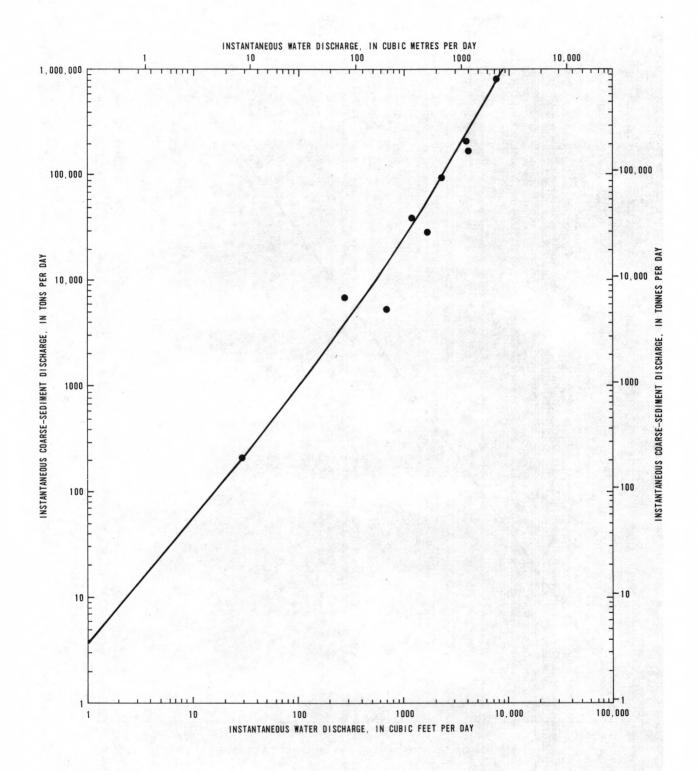



FIGURE 5.--Relation between water discharge and coarse-sediment discharge, Santa Maria River at Guadalupe, 1969-71.

## COMPUTATION OF SEDIMENT DISCHARGE, 1968-71

Intense tropical-type storms in January and February 1969 caused runoffs from 3 to 10 times the 1930-60 median in the central and southern coastal areas. Sediment discharge during these storms accounted for almost the entire discharge during the study periods; therefore, the mean discharge is not representative of a long-term period.

During the study periods—1968-71 for the Santa Ana River and 1969-71 for the Santa Maria River—daily values of suspended—sediment discharge were computed using the daily water—discharge record and the concentration of suspended sediment. Table 4 shows the annual suspended—sediment discharges from each stream during the respective study periods. The suspended—sediment discharge during the water years 1968-71 in the Santa Ana River was 11,700,000 tons (10,600,000 t); that during the water years 1969-71 in the Santa Maria River was 9,500,000 tons (8,600,000 t).

TABLE 4.--Annual suspended-sediment discharges, Santa Ana and Santa Maria Rivers

| Listor was | Suspended-s     | ediment discharge, in tons |
|------------|-----------------|----------------------------|
| Water year | Santa Ana River | Santa Maria River          |
| 1968       | 53,200          | _                          |
| 1969       | 11,600,000      | 9,540,000                  |
| 1970       | 22,500          | 1,430                      |
| 1971       | 17,100          | 0                          |
| Total      |                 |                            |
| (rounded)  | 11,700,000      | 9,500,000                  |

The coarse-sediment and total-sediment discharges were computed by the flow-duration-curve technique, shown in tables 5 and 6. Using table 5 as an example, the coarse-sediment discharge is read from figure 4 for each water discharge in column 3, entered in column 5, and then multiplied by the corresponding time interval of each discharge in column 2. The products (not shown) are added and the sum divided by 100 to obtain the mean daily discharge of coarse sediment. Corresponding transport curves were used to obtain the values in columns 4 and 6 (from fig. 2). The difference between the mean daily suspended-sediment discharge in column 4 and the total suspended-sediment discharge in table 4 divided by 1,461 (number of days measured), reflects errors in fitting the curve to the data and in rounding. The difference is 7.5 percent for the Santa Ana River and zero for the Santa Maria River.

The coarse-sediment discharge during each study period was 5,000,000 tons (4,500,000 t) in the Santa Ana River and 6,000,000 tons (5,400,000 t) in the Santa Maria River.

TABLE 5.--Duration-table summary of daily water and sediment discharges, Santa Ana River at Santa Ana, 1968-71

| Time       | Time               |                            |                                         | ed or exceeded of ime indicated (    |                                     |
|------------|--------------------|----------------------------|-----------------------------------------|--------------------------------------|-------------------------------------|
| (percent)  | interval (percent) | Water (ft <sup>3</sup> /s) | Suspended<br>sediment<br>(tons per day) | Coarse<br>sediment<br>(tons per day) | Total<br>sediment<br>(tons per day) |
| (1)        | (2)                | (3)                        | (4)                                     | (5)                                  | (6)                                 |
| 100.0      | 87.0               |                            |                                         |                                      |                                     |
| 13.0       | 3.0                | 40                         | 200                                     | 150                                  | 280                                 |
| 10.0       | 2.0                | 100                        | 740                                     | 560                                  | 1,050                               |
| 8.0        | 2.0                | 280                        | 3,300                                   | 2,500                                | 4,700                               |
| 6.0        | 2.0                | 640                        | 11,000                                  | 7,600                                | 15,000                              |
| 4.0        | 1.0                | 920                        | 19,000                                  | 13,000                               | 26,000                              |
| 3.0        | 1.0                | 1,300                      | 33,000                                  | 22,000                               | 43,000                              |
| 2.0        | . 50               | 2,200                      | 78,000                                  | 46,000                               | 98,000                              |
| 1.5        | .50                | 3,400                      | 160,000                                 | 84,000                               | 190,000                             |
| 1.0        | .40                | 5,200                      | 330,000                                 | 140,000                              | 370,000                             |
| .60        | .40                | 7,400                      | 580,000                                 | 230,000                              | 650,000                             |
| .20        | .13                | 8,400                      | 720,000                                 | 280,000                              | 800,000                             |
| .07        | .07                | 11,400                     | 1,200,000                               | 420,000                              | 1,300,000                           |
| Mean daily | discharges:        | 140                        | 7,400                                   | 3,400                                | 8,600                               |

TABLE 6.--Duration-table summary of daily water and sediment discharges, Santa Maria River at Guadalupe, 1969-71

| Time       | Time                  |                            |                                         | ed or exceeded dime indicated (C     |                                    |  |
|------------|-----------------------|----------------------------|-----------------------------------------|--------------------------------------|------------------------------------|--|
| (percent)  | interval<br>(percent) | Water (ft <sup>3</sup> /s) | Suspended<br>sediment<br>(tons per day) | Coarse<br>sediment<br>(tons per day) | Total<br>sediment<br>(tons per day |  |
| (1)        | (2)                   | (3)                        | (4)                                     | (5)                                  | (6)                                |  |
| 100.0      | 95.0                  |                            |                                         |                                      |                                    |  |
| 5.0        | 1.0                   | 64                         | 1,800                                   | 530                                  | 2,100                              |  |
| 4.0        | 1.0                   | 180                        | 6,300                                   | 2,000                                | 7,200                              |  |
| 3.0        | .50                   | 340                        | 14,000                                  | 5,000                                | 15,000                             |  |
| 2.5        | .50                   | 620                        | 30,000                                  | 11,000                               | 34,000                             |  |
| 2.0        | .50                   | 1,200                      | 70,000                                  | 30,000                               | 81,000                             |  |
| 1.5        | .50                   | 2,400                      | 180,000                                 | 98,000                               | 210,000                            |  |
| 1.0        | .50                   | 4,000                      | 380,000                                 | 230,000                              | 450,000                            |  |
| .50        | .23                   | 5,400                      | 600,000                                 | 370,000                              | 700,000                            |  |
| .27        | .09                   | 7,900                      | 1,050,000                               | 750,000                              | 1,300,000                          |  |
| .18        | .09                   | 8,500                      | 1,200,000                               | 850,000                              | 1,500,000                          |  |
| .09        | .09                   | 11,700                     | 2,000,000                               | 1,500,000                            | 2,500,000                          |  |
| Mean daily | discharges            | : 83                       | 8,700                                   | 5,500                                | 10,000                             |  |

#### ESTIMATE OF LONG-TERM SEDIMENT DISCHARGE

Long-term mean daily sediment discharges at both stream-gaging sites were estimated by applying the short-term relation between water and sediment discharges to flow-duration data for long-term streamflow at each site. The long-term frequencies and the corresponding sediment-discharge values from the sediment-transport curves used to obtain the mean daily sediment discharges are listed in tables 7 and 8. The estimated values assume that long-term relations between streamflow and sediment discharge were similar to those existing during the sampled period. Therefore, the estimate of historic sediment discharge should provide a reasonable estimate of future discharge under 1971 conditions.

TABLE 7.--Duration-table summary of daily water and sediment discharges, Santa Ana River at Santa Ana, 1941-71

|                   | Time                  |                            |                                   | ed or exceeded dime indicated (      |                               |
|-------------------|-----------------------|----------------------------|-----------------------------------|--------------------------------------|-------------------------------|
| Time<br>(percent) | interval<br>(percent) | Water (ft <sup>3</sup> /s) | Suspended sediment (tons per day) | Coarse<br>sediment<br>(tons per day) | Total sediment (tons per day) |
| (1)               | (2)                   | (3)                        | (4)                               | (5)                                  | (6)                           |
| 100.0             | 95.0                  |                            |                                   |                                      |                               |
| 5.0               | 2.0                   | 77                         | 500                               | 400                                  | 750                           |
| 3.0               | 1.0                   | 220                        | 2,300                             | 1,700                                | 3,300                         |
| 2.0               | .50                   | 430                        | 6,200                             | 4,400                                | 8,800                         |
| 1.5               | .50                   | 670                        | 12,000                            | 8,500                                | 16,000                        |
| 1.0               | .30                   | 900                        | 18,000                            | 13,000                               | 25,000                        |
| . 70              | .20                   | 1,100                      | 25,000                            | 17,000                               | 33,000                        |
| .50               | . 20                  | 1,600                      | 44,000                            | 29,000                               | 58,000                        |
| .30               | .10                   | 2,200                      | 78,000                            | 46,000                               | 98,000                        |
| .20               | .050                  | 3,000                      | 130,000                           | 70,000                               | 160,000                       |
| .15               | .050                  | 4,800                      | 270,000                           | 135,000                              | 340,000                       |
| .10               | .040                  | 6,700                      | 480,000                           | 200,000                              | 570,000                       |
| .060              | .034                  | 7,800                      | 600,000                           | 250,000                              | 720,000                       |
| .026              | .017                  | 8,400                      | 720,000                           | 280,000                              | 800,000                       |
| .009              | .009                  | 11,400                     | 1,200,000                         | 420,000                              | 1,300,000                     |
| Mean daily        | discharges:           | 31                         | 1,200                             | 620                                  | 1,500                         |

TABLE 8.--Duration-table summary of adjusted daily water and sediment discharges, Santa Maria River at Guadalupe, 1941-71

|                   | L. Y                          | - 1141 10                                |                                                     | equaled or execute of time ind             |                                         |                               |
|-------------------|-------------------------------|------------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------|
| Time<br>(percent) | Time<br>interval<br>(percent) | Water<br>Sisquoc<br>(ft <sup>3</sup> /s) | Water <sup>1</sup> Santa Maria (ft <sup>3</sup> /s) | Suspended<br>sediment<br>(tons per<br>day) | Coarse<br>sediment<br>(tons per<br>day) | Total sediment (tons per day) |
| (1)               | (2)                           | (3a)                                     | (3b)                                                | (4)                                        | (5)                                     | (6)                           |
| 100.0             | 92.0                          |                                          |                                                     |                                            |                                         |                               |
| 8.0               | 4.0                           | 140                                      |                                                     | 1000                                       |                                         |                               |
| 4.0               | 2.0                           | 340                                      | 43                                                  |                                            |                                         |                               |
| 2.0               | .60                           | 510                                      | 40                                                  | 1,050                                      | 290                                     | 1,200                         |
| 1.4               | .50                           | 800                                      | 180                                                 | 6,300                                      | 2,000                                   | 7,200                         |
| .90               | .30                           | 1,100                                    | 480                                                 | 22,000                                     | 8,000                                   | 24,000                        |
| .60               | .20                           | 1,500                                    | 900                                                 | 48,000                                     | 20,000                                  | 56,000                        |
| .40               | .15                           | 2,000                                    | 1,400                                               | 88,000                                     | 38,000                                  | 100,000                       |
| .25               | .090                          | 2,800                                    | 2,200                                               | 170,000                                    | 80,000                                  | 190,000                       |
| .16               | .060                          | 4,000                                    | 3,200                                               | 280,000                                    | 150,000                                 | 320,000                       |
| .10               | .040                          | 5,600                                    | 4,600                                               | 470,000                                    | 300,000                                 | 550,000                       |
| .060              | .025                          | 7,800                                    | 6,200                                               | 750,000                                    | 480,000                                 | 880,000                       |
| .035              | .018                          | 9,800                                    | 7,500                                               | 950,000                                    | 680,000                                 | 1,200,000                     |
| .017              | .017                          | 13,000                                   | 9,500                                               | 1,400,000                                  | 1,000,000                               | 1,800,000                     |
| Mean daily        | discharges:                   | 42                                       | 17                                                  | 1,400                                      | 830                                     | 1,700                         |

<sup>&</sup>lt;sup>1</sup>Based on flow frequencies of the Sisquoc River near Garey and relation of flow of the Sisquoc River to flow of the Santa Maria River.

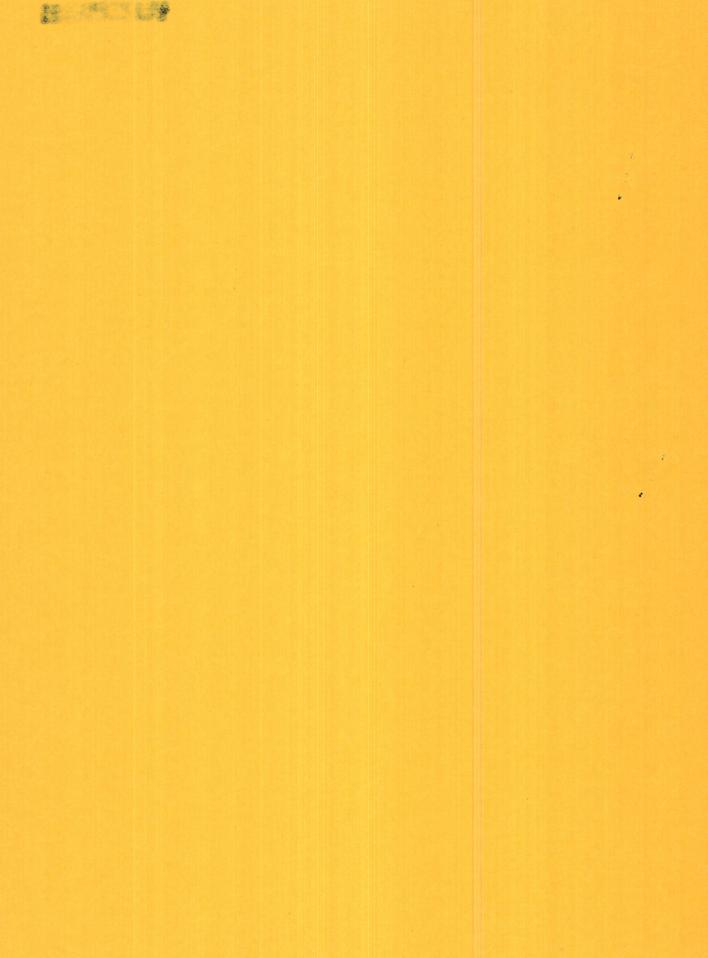
For both streams the long-term period used was 1941-71, which represents the entire period of record since construction of Prado Dam on the Santa Ana River. Construction of Twitchell Dam in 1958 prevents the use of streamflow data during the same period at the Santa Maria River gage site. The 1941-71 streamflow that would have occurred at Santa Maria River at Guadalupe, assuming 1971 conditions, was estimated by extending the 1959-71 record using a procedure discussed by Searcy (1959, p. 12). The streamflow record used as a base was the 1941-71 record at Sisquoc River near Garey. Daily discharges of Sisquoc River near Garey from October 1940 to January 1941 and from October 1970 to September 1971 were estimated.

The estimated mean daily total-sediment discharge during the period 1941-71 at Santa Ana River at Santa Ana is 1,500 tons (1,400 t); the coarse-sediment discharge is 620 tons (560 t). The estimated mean daily total-sediment and coarse-sediment discharges, 1941-71, at Santa Maria River at Guadalupe under adjusted streamflow conditions are 1,700 and 830 tons (1,500 and 750 t).

The estimated mean annual volume of coarse sediment discharged and available to the beaches under 1971 conditions is  $190,000 \text{ yd}^3$  (140,000 m³) from the Santa Ana River basin and  $250,000 \text{ yd}^3$  (190,000 m³) from the Santa Maria River basin (table 9). Volumes are based on an assumed unit weight of  $90 \text{ lb/ft}^3$  (1,400 kg/m³) for bed material (Gottschalk, 1964, p. 17-18).

The sediment discharges listed in table 9 are averages for a 31-year period. It is emphasized that during many years there was very little or no water and sediment discharge, and only during major floodflow is any significant quantity of sediment transported. For example, in the Santa Maria River an estimated 99 percent of all coarse sediment was transported in 1 percent (113 days) of the 31-year period.

TABLE 9.--Estimated long-term coarse-sediment discharge of the Santa Ana and Santa Maria drainage basins, 1941-71


| Stream                         | Estimated coarse-sediment discharge <sup>1</sup> under present conditions |               |                      |
|--------------------------------|---------------------------------------------------------------------------|---------------|----------------------|
|                                | Tons per day                                                              | Tons per year | Cubic yards per year |
| Santa Ana River                | 620                                                                       | 230,000       | 190,000              |
| Santa Maria River <sup>2</sup> | 830                                                                       | 300,000       | 250,000              |

<sup>&</sup>lt;sup>1</sup>Estimates are based on suspended-sediment concentrations, bed-material size distributions, and water-discharge measurements obtained at the gaging stations during water years 1968-71.

<sup>&</sup>lt;sup>2</sup>Figures are adjusted to include the storage effects of Twitchell Dam.

#### REFERENCES CITED

- Colby, B. R., 1963, Fluvial sediments--A summary of source, transportation, deposition, and measurement of sediment discharge: U.S. Geol. Survey Bull. 1181-A, 47 p.
- Colby, B. R., and Hembree, C. H., 1955, Computation of total sediment discharge, Niobrara River near Cody, Nebraska: U.S. Geol. Survey Water-Supply Paper 1357, 187 p.
- Gottschalk, L. C., 1964, Reservoir sedimentation in Handbook of applied hydrology, edited by Ven Te Chow: New York, McGraw-Hill Book Co., pt. 17, p. 1-67.
- Searcy, J. K., 1959, Flow-duration curves in Low-flow techniques, part 2 of Manual of hydrology: U.S. Geol. Survey Water-Supply Paper 1542-A, p. 1-33.

