INDEX TO MAPS OF FLOOD-PRONE AREAS IN INIIIANA
PREPARED BY THE U.S. GEOLOGICAL SURVEY

By William G. Weist, Jr.
U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 48-74

UNITED STATES DEPARTMENT OF THE INTERIOR
Rogers C. B. Morton, Secretary
GEOLOGICAL SURVEY
V. E. McKelvey, Director

```
For additional information write to:
District Chief
U.S. Geological Survey, WRD
1819 N. Meridian Street
Indianapolis, Indiana 46202
```


Index to Maps of Flood-Prone Areas in Indiana
 Prepared by the Geological Survey

by William G. Weist, Jr.

ABSTRACT

A listing of flood maps for Indiana prepared by the U.S. Geological Survey through 1974 is presented by county. The list provides information on the type of flooding depicted and the reliability of the delineation.

The list was prepared from a computer file, and an available program allows retrieval of data by land-line location, State and county, and Standard Metropolitan Statistical Area (SMSA). The file will be continuously updated.

The U.S. Geological Survey has been preparing maps of flood-prone areas in Indiana since 1968. As of July 1974, 487 maps had been prepared. This report provides an index to these maps and a description of how maps may be obtained.

The computer file from which the map index was prepared contains three types of data for each map: location, type of information shown on the map, and the reliability of this information.

Map location is given by: county, name of standard mapping quadrangle in which flood area lies, and latitude-longitude of the southeast corner of the quadrangle. If the map covers part of several counties, the map information is listed for each county. The index does not identify Standard Metropolitan Statistical Areas, which also may be retrieved from the computer file. Names of flooded streams are not included in the file.

Flood maps present information on the areal extent of inundation by one or more selected floods. The index shows whether the inundated area of the map represents an experienced event of special significance or a theoretical flood having some design importance, such as the 100-year flood.

Reliability of flood boundary delineation varies between maps, depending on availability of data and on the analytical effort in map preparation. Some maps are prepared from data obtained within the flood area, from detailed field surveys, and from complex hydrologic and hydraulic analyses; these maps have the highest degree of reliability. Other maps are prepared quickly from readily available data but without detailed field information; only a reconnaissance level of reliability is provided in these maps. The degree of reliability for each map is indicated in the index.

The Indiana district office has also prepared descriptive pamphlets showing flood-prone areas in the following cities:

Alexandria	Greenwood Attica Auburn Aurora Cambridge City
Clinton	Hammond and Munster
Connersville	Highland, Hammond, and Griffith Corydon
Decatur	Madison
Franklin	Nashville
Fredericksburg	Noblesville
Gary	North Manchester
Gary and Gary East	Plymouth
Gary and Griffith	Portland
Greenfield	Salem
Greenwood	Spencer

Inquiries about most of the flood maps and the pamphlets may be made to:

District Chief
U.S. Geological Survey

1819 N. Meridian Street
Indianapolis, Indiana 46202

Some of the maps along the State boundaries were prepared by adjacent districts. Inquiries about maps covering these quadrangles:

```
Beecher East Dyer
Bismark Humrick
Calumet City Illiana Heights
Carmi Lake Calumet
Danville NE Mount Carmel
Danville SE
```

should be addressed to:
District Chief
U.S. Geological Survey
P. O. Box 1026

Champaign, Illinois 61820
For maps covering:

Butler East	Fort Recovery
College Corner	Reily
Fairhaven	Whitewater

write to:

```
District Chief
U.S. Geological Survey
9 7 5 \text { West Third Avenue}
Columbus, Ohio 43212
```

And for maps covering:

Bethlehem	Owensboro East
Carrollton	Owensboro West
Cloverport	Reed
Henderson	Rock Haven
Hooven	Uniontown
Fort Knox	Vevay South
LaGrange	Wabash Island
Mattingly	Wilson
Owen	

write to:

```
District Chief
U.S. Geological Survey
Room 572, Federal Building
6 0 0 ~ F e d e r a 1 ~ P l a c e ~
Louisville, Kentucky 40202
```

The land-line location of a mapped flood area is referred to the standard Geological Survey quadrangle (nominally $7-1 / 2$ or $15-m i n u t e ~ q u a d) ~ i n ~$ which this area lies. The land-line identification includes the mapping scale and latitude and longitude of the southeast corner of the quadrangle, as well as the quadrangle name. If the flood area lies in part of several quadrangles, the name, latitude-longitude, and scale of each quadrangle is listed in the computer file and in the index.

The type of flood information available within the quadrangle area is described either by: the year in which the mapped area was flooded, 1937, for instance, or the frequency at which the delineated area is expected to be flooded, expressed as a recurrence interval in years (100-year, for example).

The reliability of each flood map is given as (1) RECON (reconnaissance), meaning area of inundation was approximately delineated without field surveys and (or) detailed hydraulic and hydrologic analyses; (2) STANDARD, meaning delineation of flood area was based on field surveys and detailed hydraulic and hydrologic analyses; or (3) HIGH, meaning flood area defined by detailed surveys and analyses supported by observed flood information within or immediately adjacent to reach.

If more than one flood map is available for a quadrangle, then the type of information and reliability of each map is shown in the index. If more than one flood area was shown in a map sheet (two historic floods, for instance) the type of information and reliability for each area may or may not be listed in the index: if the areas were non-contiguous and for different events all type and reliability information are listed; if the areas superpose over virtually the same reach then only type and reliability for the maximum event are listed.

A computer program, developed by T. A. Wilson, U.S. Geological Survey, provides options for printing indices listing all flood maps available for a State, county, or SMSA; the list may be optionally limited to information pertaining to $7-1 / 2$ or 15 -minute quadrangles, as well. Another option will list the flood-map information available for a particular quadrangle.

Inquiries about use of the retrieval system should be directed to Chief Hydrologist, U.S. Geological Survey, National Center, Reston, Va. 22092.

Computer programs have been provided to enter information into the file as new maps beccme available.

zzzzz zzzzzzzzzzzzzzzzzzzzzzzェzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz z．
$100-Y R$
 α
\vdots
\vdots
\vdots
\vdots
0
0 x x
1
1
1
0
0
-1

-1 $\stackrel{\alpha}{1}$ \xrightarrow{x} \begin{tabular}{c}
x

1

\vdots

\vdots

\vdots

0

0

0

\hline 1

 $\stackrel{\alpha}{\alpha}$

α

1

1

1

0

-1

-1

\hline 10
\end{tabular} x

1
1

1 2 | α |
| :---: |
| \vdots |
| \vdots |
| 1 |
| 1 | $\stackrel{\alpha}{\alpha}$ x x

\vdots
1
\vdots
\vdots
0
0足 ∞

1
\vdots
0
0
0
 α

\vdots
\vdots
\vdots
0
0
0 $x \times x$
1
1
1
1
0
0
-10
-1 x
1
1
1
\vdots
0
0

0 $\stackrel{\alpha}{\infty}$足 | α |
| :--- |
| α |
| |
| 1 |
| 1 |
| 0 |
| 0 |
| 0 | － x 人 00

[^0]

zzzzzzz

COLFAX, IN

(COMPILED 01/16/75)

[^1]

$y \lambda-00 I$
$\angle E 6 I$
$\angle E 6 I$
$y \lambda-00 I$

\circ
2
20
0_{0}^{α}
α

FLOOD－MAP INFORMATION
 AVAILABLE FROM U S GEOLOGICAL SURVEY FOR THESE COUNTIES OR EQUIVALENTS OF

INDIANA
（COMPILED $01 / 16 / 75$ ）
 GARRETT，IN
BUTLER EAST，IN－OH
BUTLER WEST，IN
WATERLOO，IN
HAMILTON，IN
ASHLEY，IN
STROH，IN NI • J000w MOUNT PLEASANT，IN MIDDLETOWN，IN
FARMLAND，IN
MUNCIE EAST，IN
 GILMAN，IN
REDKEY，IN REDKEY，IN WHEELING，IN NI－3ר7 I InNN3d PENNVILLE
HARTFORD CI HARTFORD CITY EAST，IN HARTFORD CITY WEST，IN
GAS CITY，IN BRISTOW，IN

hOLLAND． HUNTINGBURG，IN
 z
\vdots
n
0
0
0
0
0

z
n
\vdots
\vdots
\sim
\vdots

ALFORDSV
GLENDALE，IN AKE WAWASEE，
MILFORD，IN
$\begin{array}{ll}0 & w \\ 0 & 1 \\ 0 & 2 \\ 4 & 4 \\ 4 & a \\ i & a \\ i & 4\end{array}$ NAPPANEE
GOSHEN，

GOSHEN，IN
WRARUSUS，IN
BRISTOL，IN
$\infty \propto \infty$

$\stackrel{\alpha}{\lambda} \stackrel{\alpha}{\lambda} \stackrel{\alpha}{\lambda}$
 1
0
0
0
9 $\underset{\sim}{\alpha} \underset{\sim}{x} \underset{\sim}{\alpha}$

INDIANA
（COMPILED 01／16／75）
3WฤN 3า9NロบロロกO

COUNTIES OR EQUIVALENTS \wedge
∞
∞
∞
$\infty$$\underset{\infty}{\infty}$

1964
$100-Y R$
$100-Y R$
$100-Y R$
$100-Y R$
$100-Y R$
x
λ
1
00
0
1913.6 $y \lambda-00 I$
$\rightarrow 9^{6} \varepsilon I 6 I$ α
λ
\vdots
\vdots
\vdots
0
0

x
$\frac{1}{2}$
\vdots
0

GWVN 37פNロタOロกO

EAST MOUNT CARMEL，IN－IL
 MOUNT CARMEL，IL－IN
IONA，IN
 HARTFORD CITY WEST，IN
GAS CITY，IN
FIIRMOUNT，IN HARTFORD CITY WEST，IN
GAS CITY，IN
AIRMOUNT，IN
 NI＊H3S133MS
 NI • פY I BSN3MO
 YONS，IN，
SANDBORN，
 WHITEHALL．IN
 INGALLS，IN
MCCORDSVILLE，IN MCCORDSVILLE，
 LAPEL，IN
RIVERWOOD，IN NOBLESVILLE，IN FRANKTON，IN

OMEGA，IN
NI • \forall IO \because Jor MORRISTOWN，IN KNIGHTSTOWN，IN

GIRSON
GIRSON
GIRSON
GIRSON
GIRSON
GIRSON
GIRSON

GIRSON
GIRSON
GIRSON
GIRSON
GIRSON
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT

 zz
 zる

 HAHILTUNT
HANCOCK HANCOCK
H $\triangle H C O C K$

$\underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \alpha$
$\underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{n} \underset{\sim}{\alpha} \frac{\alpha}{x} \frac{\alpha}{2}$ $\underset{\sim}{\alpha}$

[^2]
 HARRISON
HARRISON

资
 に

 HENDRICKS
HENRY

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzz

HOWARD
HOWARD
HOWARD
HUNTINGTON HUNTINGTON
HUNTINGTON
 HUNTINGTON
HUNTINGTON HUNTINGTON HUNTINGTON
HUNTINGTON HUNT INGTON
HUNTINGTON HUNTINGTON
HUNTINGTON HUNTINGTON JACKSON
JACKSON JACKSON JACKSON

JACKSON JACKSON | z |
| :--- |
| U |
| 工 | $z z$

0
y
y
a
1 z
0
4
4
4 JACKSON JACKSON JASPER JASPER
 JASPER JASPER
JASPER x
0
0
0
4
4
4
 JASPERR
JASPEER JASPER
 JASPER
JASPER

 zzzzo

$$
\begin{aligned}
& \underset{\sim}{\alpha} \\
& \underset{a}{1} \\
& \vdots \\
& \underset{\sim}{\sim}
\end{aligned}
$$

nosyaisar JEFFERSON

JEFFERSON
JEFFERSON

NinNo
$\operatorname{Nin}_{0} N$
 $\begin{array}{lll}\wedge & \wedge & N\end{array}$ $\stackrel{\sim}{\infty} \underset{\infty}{\infty}$

$\sim \sim \sim N$
Mo m

$100-Y R$
$100-Y R$
$100-Y R$
$100-Y R$ $100-Y R$
$100-Y R$

1943 が | \propto |
| :---: |
| |
| 1 |
| \vdots |
| 0 |
| 0 | $\begin{array}{ll}x \\ 2 \\ 1 \\ 1 \\ 0 & \\ 0\end{array}$ α

$\frac{2}{2}$
\vdots
0
0
-1 $\begin{array}{ccc}x & \alpha & \alpha \\ \lambda & x \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 & 0\end{array}$ $\begin{array}{ll}x & \alpha \\ \vdots & \frac{\alpha}{\lambda} \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}$ $\begin{array}{cc}\alpha & \alpha \\ \lambda & \alpha \\ 1 & 1 \\ -0 \\ 0 & 0\end{array}$ $\begin{array}{ccc}\alpha & \alpha & \alpha \\ \vdots & \alpha \\ 1 & \alpha \\ 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ x
x
1
\vdots
\vdots
-1 α
$\frac{\alpha}{\lambda}$
1
\vdots
0
0
0 $\frac{\alpha}{\lambda} \underset{\lambda}{\alpha}$
1
1
0
0
0
\cdots α
$\underset{\lambda}{\alpha}$
1
\vdots
0
0
\vdots
\cdots α
$\frac{\alpha}{2}$
\vdots
0

 $\begin{array}{ll}x & \alpha \\ \vdots \\ 1 & 1 \\ \vdots & 0 \\ 0 & 0 \\ 0\end{array}$ へ | α |
| :---: |
| $\underset{\sim}{\alpha}$ |
| \vdots |
| \vdots |
| 0 | $\begin{array}{ll}\alpha & \alpha \\ 2 & 2 \\ 1 & 1 \\ 0 & 0\end{array}$

 $\begin{array}{ccc}\substack{\alpha \\ x} & \alpha \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ $\begin{array}{ll}x & x \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1\end{array}$ IONA，IN
DECKER，IN－IL
ST，FRANCESVILLE，IL－IN
WASHINGTON，IN
WHEATLAND，IN
FRITCHTON，IN－IL
VINCENNES，IL－IN
EPSOM，IN
PLAINVILLE，IN
BICKNELL，IN
OAKTOWN，IN－IL
RUSSELLVILLE，IL－IN
LYONS，IN
SANDBORN，IN
CARLISLE，IN
HEATHSVILLE，IL－IN
SOUTH WHITLEY WEST，IN
NORTH MANCHESTER NO，IN
SILVER LAKE，IN
WARSAW，IN
LAKE WAWASEE，IN
MILFORO，IN
NAPPANEE EAST，IN
NAPPANEE WEST，IN
STROH，IN
ORLAND，IN
DEMOTTE，IN
SHELBY，IN
SCHNEIDER，IN
ILLIANA HEIGHTS，IL－IN
HERRON，IN
LEROY，IN
LOWELL，IN
BEECHER EAST，IL－IN
PALMER，IN
CROWN POINT IN
ST，JOHN，IN
DYER，IL
PORTAGE，IN
GARY，IN
HIGHLAND，IN
IN

人

 w
α
0
0
α
a \ldots
α
α
α
α
α ω
$\stackrel{\omega}{\alpha}$
0
0
0
4
4

 $\frac{1}{3}$
 u
u_{2}
u_{2}
$\frac{\alpha}{3}$
3
4山以 u
2
2
4
3
3
4

 z
0
0
\vdots
而
 z
0
0
0
0
\vdots
5
5 z
0
\vdots
0
c
\vdots
Σ z
0
0
\vdots
\vdots
ふ $2 z$
00
~ 0
C
4
4
4 $2 z$
0
0
0
0
\vdots
 z
0
ω
0
$\frac{c}{2}$ $z 2$
0
O
α
4
4
4 $\begin{array}{ll}z 2 \\ 0 & 0 \\ 0 & 1 \\ a & 1\end{array}$ $z z$
0
0
α
α
α
a NOIGVW
NOI －17－

[^3]人

INDIANA
 （COMPILED 01／16／75）

 \&

zzzzzzzzzzzるz

$\begin{array}{r}x \\ 1 \\ 1 \\ \hline 1\end{array}$
 $\stackrel{\alpha}{\alpha}$
 x
x_{1}
1
1
1
1 $\frac{x}{1}$
 NI＊ 1 SGM 人1IO NヲOIHJI～ $\lambda \lambda-\mathrm{ONI}-7 \times$ ONI＊NMOLNOINO
 CAHORN，IN－KY IN－KY MOUNT VERNON
EMMA，IL－IN KASSON，IN
SOLITUE，IN－IL
CARMI，IL－IN
POSE YVILE，IN
NEW HARMONY，IN－IL
BUFFALO．IN，IN
FRANISILLE，IN
KEWANNA，IN
WINEMAC，IN
CULVER，IN
HASS LAKE，IN
SAN PIERRE，IN SAN PAND，IN COLAND，POINT，IN
CLOVERDALE，IN CLOVERDALE， GREENCASTLE，IN CLINTON FALLS，IN
NORTH SALEM，IN 1
0
1
0
4
0
0
0

$$
\begin{aligned}
& \text { MODOC. IN } \\
& \text { UNION CITY. IN-OH }
\end{aligned}
$$

$$
\begin{aligned}
& \text { UNION CITY. IN- } \\
& \text { WINCHESTER, IN }
\end{aligned}
$$

 OEEPFIELD，IN

PORTER
POSEY
POSEY
POSEY
POCEY
POSEY
POSEY
POCEY
POCEY
POCEY
POCEY
POSFY
PULASKI
PULASKI $\begin{array}{lll}x & x & x \\ u & w & u \\ u & 1 \\ j & 1 \\ a & = \\ 0 & 0\end{array}$ $\begin{array}{ll}x & x \\ w & 4 \\ 1 \\ 3 & 2 \\ 0 & 1\end{array}$

 PUTNAM PUTNAM PUTNAM PUTNAM PUTNAM
PUTNAM PUTNAM UUNAM RANDOLPH RANDOLPH RANDOLPH
RANDOLPH RANDOLPH
RANDOLPH RANDOLPH RANDOLPH

zzzzzz zizzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Ninnooninnoinno

α
$\underset{\sim}{2}$
1
0
0
-1
\qquad $\begin{array}{cc}x & \alpha \\ 1 & 1 \\ 0 & 0 \\ 0 & 0\end{array}$ α
λ
\vdots
\vdots
0
0 α
2
1
0
0 $\underset{\sim}{\alpha} \underset{\sim}{\alpha}$ $\stackrel{\alpha}{2}$

 $\stackrel{\alpha}{\lambda}$ $\begin{array}{ll}\alpha \\ \lambda \\ 1 \\ \vdots \\ 0 \\ 0 & \alpha \\ 0\end{array}$ | α |
| :---: |
| |
| |
| \vdots |
| 0 | α

$\frac{\alpha}{1}$
1
0
0 $100-Y R$
1913 $\stackrel{\alpha}{\substack{2 \\ \vdots \\ 0 \\ \hline \\ \hline}}$

INDIANA

RISING SUN，KY
ABERDEEN．IN－KY
BEAR BRANCH，IN

$$
\begin{aligned}
& \text { NEWBURGH, IN-KY }
\end{aligned}
$$

 N

I

VANDERBURGH VANDERBURGH
VANDERBURGH VANDERBURGH VANDERBURGH VERMILLION

 NOI 77IWと3
NOI 77 IWy3 NOI ר7 IWe3^ ouIA
 ヘ̂人

 mm

 $\stackrel{x}{x} \stackrel{\alpha}{\lambda}$
 2
1
1
0
0
0

0 $\underset{\sim}{x}$ | α |
| :---: |
| $八$ |
| 1 |
| |
| |
| 0 | x

1
1
0
0 $8 \alpha-00$
$4 h-00$ $\frac{\alpha}{2}$
$\frac{\alpha}{1}$
0
0.0
0 RICHLAND CITY，IN
YANKEETOWN，IN－KY
NEWRURGH，IN－KY
CHRISNEY，IN
DE GONIA SPRINGS，IN
HOONVILLE，IN
OAYLIGHT，IN
HOLLAND，IN
BORDEN，IN
FREDERICKSBURG，IN
SALEM，IN
LITTLE YORK，IN
CAMPBELLSBURG，IN
TAMPICO，IN
VALLONIA，IN
MEDORA，IN
TUNNELTON，IN
LIBERTY，IN
BROWNSVILLE，IN
CONNERSVILLE，IN
NEW PARIS，OH－IN
RICHMOND，IN
CAMBRIDGE CITY，IN
FOUNTAIN CITY，IN
HAGERSTOWN，IN
MODOC，IN，
PETROLEUM，IN
MONTPELIER，IN
LINN GROVE，IN
BLUFFTON，IN
LIBERTY CENTER，IN
WARREN，IN
UNIONDALE，IN
POE，IN
OSSIAN，IN
ZANESVILLE，IN
BROOKSTON，IN
BROOKSTON SW，IN
ROUND GROVE，IN
BURROWS，IN
YEOMEN，IN
MONTICELLO SOUTH，IN
MONTICELLO NORTH，IN
MONON，IN

COUNTIES OR EQUIVALENTS
 WASHINGTON WASHINGTON

 WAYNE WAYNE WAYNE
WAYNE $\stackrel{\omega}{\lambda}$ WAYNE WAYNE WELLS WELLS准に
 WELLS WELLS
WHITE
WHITE
WHITE
WHITE
WHITE
WHITE
WHITE
WHITE

○ヘNルNON～NON

3 3 3 3 3 3 3 3

NNNOOOONNNIn

$\begin{array}{ll}\text { OLCOTT，} & \text { IN } \\ \text { OUFFALO，} & \text { IN }\end{array}$

[^0]: BORNE
 BOONE
 ROONE
 BONE
 RONE
 BONE
 BOONE
 RRWN
 BROWN
 RRWN
 GROWN
 CRROLL
 CARROLL
 CRROLL
 CARROLL
 CRROLL
 CAROLL
 CARROLL
 CAROLL
 CARROLL
 CAROLL
 CARROLL
 CARROLL
 CASS
 CASS
 CASS
 CASS
 CASS
 CASS
 CASS
 CLARK
 CARK
 CLARK
 CARK
 CLARK
 CARK
 CLARK
 CCARK
 CLAY
 CLAYY
 CLAY
 CLAYY
 CLAYY
 CLINTON
 CLINTON

[^1]:

[^2]: HANCOCK
 HANCOCK
 HANCOCK HANCOCK HANCOCK

[^3]: MAPION 2
 0
 α_{1}^{α}
 $\frac{\alpha}{2}$
 2
 2 2

 号

 」
 $\frac{1}{a}$
 $\frac{1}{4}$
 $\frac{\alpha}{2}$
 $\frac{a}{4}$

 | 3 |
 | :--- | :--- |

 z z z zz 2
 \vdots
 $\frac{\alpha}{4}$
 2

 完

 I $\triangle M I$
 ONROF $\begin{array}{ll}1 & w \\ 0 & 0 \\ \alpha & \alpha \\ 2 & 2 \\ 0 & 0 \\ \Sigma & \Sigma\end{array}$ 1
 2
 2
 2
 2
 2 MONROE
 MONTGOMERY MONTGOMERY
 MONTGOMERY
 MONTGOMERY MONTGOMERY

