

UNION ARKANSAS 500 HOMA QUITMAN YALOBUSHA OKTIBBEHA WINSTON

90°TENNESSEE

BENTON

ALCORN

Hosman and others, 1968.

NESHOBA KEMPER ALABAMA LOUISIANA JEFFERSON FRANKLIN ADAMS PERRY GREENE MARION LAMAR AMITE WILKINSON EXPLANATION GEORGE STONE Less than 0.1 Mgal/d (4.381/s) 0 10 20 MILES U.1-0.5 Mgal/d (4.38-21.9 l/s) JACKSON U.6-1.0 Mgal/d (26.3-43.81/s) 1.1 - 5.0 Mgai/d (48.2 - 219 l/s) 5.1-10 Mgal/d (223-438 l/s)

FIGURE 1. -- CONFIGURATION OF THE BASE OF THE SPARTA AQUIFER SYSTEM

AND LOCATIONS OF GEOHYDROLOGIC SECTIONS.

			Т	ABLE 2.	WATE	R SUPP	LIES	FROM THE	SPARTA AQUIFER SYST	EM					
COUNTY	WATER USER W A - WATER ASSOCIATION	DEPTH OF WELLS (FT)	PUMPING RATES OF WELLS (GAL/MIN)	DAILY WITHDRAWAL (THOUS. GAL)		L DATA AVAI		COUNTY	WATER USER W A - WATER ASSOCIATION	DEPTH OF WELLS (FT)	PUMPING RATES OF WELLS (GAL/MIN)	DAILY WITHDRAHAL (THOUS. GAL)	CHEMICAL	DATA AVA	
BOLIVAR	BENOIT CLEVELAND DELTA STATE UNIVERSITY	650 785-845 815	500 700-1900 450	31 2,168 1,000	X	Х		LEFLORE	GREENWOOD SELF-SUPPLIED INDUSTRY	220-250 325	600-1900 70	^a 2g0	X		
	MERIGOLD PACE W A RENOVA W A SHELBY BEULAH SELF-SUPPLIED INDUSTRY	720-790 880 780 800 750 280-800	160-250 220 1000 50 250 150-750	60 42 15 a ₁₅₀ 97 a _{5,627}	X X X	X X X		MADISON	BIG BLACK W A CAMDEN W A CANTON EAST MADISON W A FLORA KEARNEY PARK W A	920 475 935-980 595-635 1240-1365 1315-1400	100 100 450-1000 225-300 510-550 430-750	74 21 2,000 113 59 440	X X X	X X X X	
CLARKE	BARNETT W A EAST QUITMAN W A HARMONY W A PACHUTA QUITMAN	330 170-320 230-300 370-460 205-290	40 105-230 110-220 150-200 300-600	2 a ₇₅ 48 a ₁ 40 a ₂₀	X X X	X X X	X X X		LAKE CAVALIER W A PEARL RIVER WATER DISTRICT RIDGELAND TOUGALOO COLLEGE	1215 300-500 1100 835	30 25 520 300	^a 1 a100 78	. X	X X X	
СОАНОМА	SELF-SUPPLIED INDUSTRY CLARKSDALE	600 280-760	180 900-3300	^a 20	X	X	X	NEWTON	CONEHATTA INDIAN SCHOOL NEWTON SOUTH NEWTON W A	350 310 400-500	60 510 170-200	^a 5 410 63	X	X	X
	FARRELL W A FRIARS POINT SELF-SUPPLIED INDUSTRY	380 815 625-800	100 400 400-800	9 95 ^a 1,200	X	X		PANOLA	INDEPENDENCE W A SELF-SUPPLIED INDUSTRY	240 150-240	155 80-530	a ₈₀₀	X	X	
DE SOTO	BELMONT ROAD W A BRIGHTS W A CASTLE CREEK DAYS W A DELTA VILLAGE DE SOTO UTILITIES EUDORA W A	270 270 250 425 370-400 85-400	175 250 350 250 500 60-220	80 54 25 49 265 99	X			RANKIN	ACL W A BRANDON FANNIH W A FLOWOOD LEESBURG W A METROPOLITAN WATER CO.	1200-1270 1280 1200 715-915 800-840 870-1140	125-250 550-600 125 100-500 210-275 630-670	48 384 32 358 50 1,069	x x	X X X X X	X
	FAIRHAVEN W A GOODMAN W A HERNANDO HORN LAKE W A LEWISBURG W A MAYWOOD SUBDIVISION MINERAL WELLS W A NESBIT OLIVE BRANCH PLEASANT HILL W A	375 280 390 320-355 470 250-300 220-290 255 330 265-410 275-300	150 150 150 250-750 200-500 150-200 200-300 150 150 270-1250 150	28 29 14 500 41 76 31 33 46 210 53	X X X	X X			PEARL RIVER WATER DISTRICT PELAHATCHIE PUCKETT RAN-CO W A RICHLAND W A SOUTHEAST RANKIN W A UNION W A WASHINGTON W A SELF-SUPPLIED INDUSTRY	630 1000 1170 1065 765-965 1215 1240 1300 670-860	265 400-500 100 250 100-350 200 135 90 30-540	a30 192 19 a15 203 45 20 a500	X X X X	X X X X X X	X
	PLUM POINT W A SOUTHAVEN TRINITY WATER CO. SELF-SUPPLIED INDUSTRY	350-360 370-400 335-450 250-390	250-280 680-1300 200-1000 275-1700	27 920 75 1,300	X X	X X X		SCOTT	HOMESTEAD W A MORTON SELF-SUPPLIED INDUSTRY	1320 830-950 600-950	435 600-700 130-400	54 513 a650	X	X X X	X
HINDS	CLINTON GRANT ROAD W A HOMEWOOD MANOR JACKSON ST. THOMAS W A	900-1170 800 750 700-1125 990	500-540 150 40 610-740 110	^a 500 21 31 ^a 1,400 16	X	X X X X	Х	SHARKEY	ANGUILLA CARY ROLLING FORK SELF-SUPPLIED INDUSTRY	1160-1200 1100 1100 1060-1235	100-300 100 500 100-170	31 212 144	X X X X	х	
	TRIANGLE W A UNIVERSITY HOSPITAL WILLOWOOD UTIL. CO. SELF-SUPPLIED INDUSTRY	990 760-780 1410 665-1275	600 300 500 80-900	108 660 27 a _{7,000}	X	X X X	Х	SMITH	CENTER RIDGE W A LEMON-LORENA-BURNS W A MORRIS W A PINEVILLE W A RALEIGH SYLVARENA W A	1400 - 1080 1520 - 945 1200 1085	200 250 220 200 80-200 220	50 30 34 18 121 32	X X X	X X X	X X
HUMPHREYS	BELZONI C&M W A COBB W A ISOLA LOUISE SELF-SUPPLIED INDUSTRY	780-860 975 810 830 905 955	800-1100 110 42 250 250 300	1,080 2 1 94 45 a20	X X X	X X	X	SUNFLOWER	TRI COUNTY W A INVERNESS PARCHMAN SUNFLOWER	735 555-685 675	300 150-200 175	a30 a240 a40	X X X	X	Х
ISSAQUENA	MAYERSVILLE	825	100	-11	х	X		TATE	ARKABUTLA W A	315	150	30	x	X	
JASPER	BAY SPRINGS BEAVER DAM W A LOUIN MONTROSE W A	1010-1035 875 840 600	750-1000 165 350 80	^a 550 a20 24 24	X	X X X	X		COLDHATER SAVAGE-COTTONVILLE W A SENATOBIA SELF-SUPPLIED INDUSTRY	160 1695 135 160-300	250 120 550 30-635	1,450 17 a60 20	X X X	X	
	PAULDING W A STRINGER W A TALLAHALA W A	810 1090 435-1010	300 200 200-490	32 a ₅₅ 294		X	X	WASHINGTON	GLEN-ALLAN W A RIVERSIDE W A TRALAKE W A	1005 1165 990	215 185 130	34 11 2	X	Х	X
JONES	SELF-SUPPLIED INDUSTRY	640	175-275	172	x			YAZ00	HILTON HEIGHTS W A HOLLY BLUFF W A	1330 1100	225 200	31 10	X	X	
LEAKE	FREENY W A LENA THOMASTOWN W A	255 390 245	310 100 150	42 16 28	X X X	X	X X		SATARTIA YAZOO CITY SELF-SUPPLIED INDUSTRY	1060 900-1025 570-1065	120 625-1500 200-1800	10 1,455 a7,638	X X X	X	

FIGURE 2.--PUBLIC AND INDUSTRIAL WATER USE FROM THE SPARTA, 1975.

THE SPARTA AQUIFER SYSTEM IN MISSISSIPPI

aWithdrawal from the Sparta Sand only; part of supply is obtained from other aguifers

Roy Newcome, Jr. 1975

Multiply

feet(ft)

miles(mi)

(Mgal/d)

square miles (mi2)

million gallons per day

cubic feet per day per foot
 [(ft³/d)/ft]

feet per mile(ft/mi)

M(236)49

INTRODUCTION

A large amount of information is available on the aquifers of Mississippi. Reports resulting from various areal studies have described the ground-water resources of the areas concerned, but no reports dealing specifically with the entire Mississippi occurrence of individual aquifer systems have previously been prepared. A series of "aquifer atlases" was deemed the most effective way to describe the character, the potential, and the extent of development of the aquifers and thereby provide water managers with data needed for efficient utilization of available resources. This report on the Sparta aquifer system is the third in the series. Information on the aquifers was obtained in the cooperative programs of the U.S. Geological Survey with the Mississippi Board of Water Commissioners and other State and Federal agencies.

The Sparta Sand, a formation of the Claiborne Group of Eocene age (table 1), is a principal source of water supplies in Mississippi. This formation, which usually consists of two or more sand beds separated by clay, is available for water-supply development in more than 40 percent of Mississippi, a larger area than any other aquifer system (fig. 1). The term 'aquifer system' is applied to the Sparta when discussing the hydrology because its upper and lower sand beds constitute separate aquifers in many places.

WATER-SUPPLY DEVELOPMENT

In 1975, about 50 Mgal/d (2.2 m³/s) were pumped from wells in the Sparta, divided about equally between public supply and self-supplied industry. Some of the public-supply pumpage was used by industries located on those systems. The public supplies and other major groundwater uses are described or summarized in table 2, and the distribution of withdrawals, by county, is shown in figure 2.

STRATIGRAPHIC RELATIONS The Sparta Sand, named for an exposure at Sparta in Bienville Parish, La., is not composed only of sand as the name implies; however, it does contain more sand than any other formation of comparable thickness in Mississippi. Its position in the middle part of the Claiborne Group (table 1) where it is overlain and underlain by almost exclusively clayey formations (Cook Mountain Formation and Zilpha Clay) make it

easily identifiable in drill cuttings and on electric logs.

The Sparta Sand is composed principally of rounded quartz grains ranging in size distribution from very fine to coarse, but it is generally well sorted and thus has fairly high permeability. The formation was deposited under continental and marginal deltaic conditions and possesses the irregular bedding common to such depositional environments.

Contours on figure 1 indicate the present-day configuration of the Sparta. Uplifting, alternating with downwarping of the coastal plain as the weight of sediments accumulated, has resulted in a westward to southward dip of the Sparta and other formations in Mississippi. The westward component of dip is toward the trough of the Mississippi embayment whose axis parallels the Mississippi River valley; the southward component is toward the Gulf of Mexico. Several structures having more than local effect are superimposed on the regional structure. In the fresh-water-bearing area of the Sparta in Mississippi, the Jackson and Tinsley domes have a considerable influence on the depth and configuration of the formations. This is apparent on the contour map (fig. 1), and the Jackson dome is shown on geohydrologic section D-D' (fig. 6).

The Sparta thickens westwardly. The thinnest uneroded section, 100 ft (30 m), has been measured in Clarke County and the thickest, 1,000 ft (300 m), is in Warren County. An average thickness for the entire area in which the unit is fresh-water bearing is 600 ft (180 m). There is a great range in thickness among the sand beds of the Sparta, as well as substantial variation in the thickness of individual beds in different places. This is illustrated by the electric-log traces of the geohydrologic sections.

WATER LEVELS AND RECHARGE

The Sparta is recharged by rainfall on the outcrop or where it is covered by other permeable deposits. Downdip from the outcrop the water is under confined conditions and rises in wells. The drawdown that is available in the deep wells is an important aspect of the aquifer system's value as a source.

Water levels are highest in the outcrop area of the Sparta, and they decline with distance down the dip. The highest water levels are about 450 ft (137 m) above sea level; the lowest are about 100 ft (30 m) and are in the Mississippi River valley, which serves as a drain for the Sparta. Although the latter area, commonly called "The Delta," is not as far down the dip as some of the counties to the south, drainage of the Sparta into the overlying alluvium has dissipated some of the hydrostatic head and caused a more pronounced decline in the potentiometric surface of the aquifer system than has occurred in the highland areas.

Long-term water-level records show the greatest decline at Jackson. Since 1900, water levels in Sparta wells have dropped as much as 210 ft (64 m), or about 3 ft (0.9 m) per year. In other areas of concentrated withdrawal from the Sparta, such as Yazoo and Bolivar Counties, waterlevel declines have averaged 1 to 2 ft (0.3-0.6 m) per year since 1900. Locations of observation wells are shown on the maps (figs. 8 and 9), and hydrographs (fig. 10) illustrate water-level trends.

WELL AND AQUIFER CHARACTERISTICS

Major wells in the Sparta aquifer system range in depth from 135 to 1,435 ft (41-437 m), the shallower ones being in the eastern part of the area where the Sparta is nearer the surface.

The greatest production from a Sparta well is 3,300 gal/min (208 1/s). This is at Clarksdale, where several high-capacity wells have been developed in the Sparta. About half the wells producing from the Sparta in Mississippi are pumped at rates between 100 and 300 gal/min (6.3-19 1/s). This is not a true indicator, however, of the production the aquifer will support, as wells are designed for a specified rate of discharge that often is far below what could be obtained. Specific capacities (gallons per minute per foot of drawdown) of Sparta wells, measured in pumping tests, range from 1 to 46 (gal/min)/ft, or 0.2 to 9.7 (1/s)/m; about half of those measured are in the 10-20 (gal/min)/ft, or 2.1-4.2 (1/s)/m, range.

The results of 40 pumping tests of Sparta wells are summarized below. These tests are concentrated in the southern half of the Sparta occurrence area, but a few are in the northern half. Sand beds are so thick in the counties near the Tennessee border that no wells approach a full screening of the aquifer; therefore, effective aquifer thickness is unknown and evaluation of hydraulic characteristics is inconclusive.

	Transmi	ssivity	Hydraulic con	ductivity	Storage coefficient		
	(ft ³ /d)/ft	$(m^3/d)/m$	$(ft^3/d)/ft^2$	$(m^3/d)/m^2$	dimensionless		
Maximum	13,000	1,200	130	40	0.0006		
Median	6,000	560	60	18	.0003		
Minimum	330	31	6	2	.0001		

Note: To convert transmissivity and hydraulic conductivity, in cubic feet per day, to the older terms of transmissibility and permeability, in gallons per day,

The values obtained from pumping tests are useful in predicting the capacity of wells and the interference between pumped wells in the same aquifer. The graph of figure 11 shows the specific capacity that could be expected from wells in the Sparta aquifer system. Specific capacity commonly is expressed for a 1-day period of pumping. The graph shows that the specific capacity declines only 11 percent from 1 to 10 days of pumping and another 10 percent in the next 90 days of continuous pumping.

Achieving the specific capacity that is indicated for the various values of transmissivity depends upon construction of efficient wells. In the most efficient wells there is little head loss in moving water from the aquifer into the well and through the pump. The design and development of a well determine its efficiency, and the specific capacity is directly proportionate to the well efficiency.

Another useful application of aquifer hydraulic characteristics is in predicting interference effects between two or more wells pumping from the same aquifer. Well production and spacing that will provide the required quantity at the least cost and with the fewest undesirable effects can thus be included in the design of water systems. The graph of figure 12 can be used in making the drawdown predictions for various times, distances, and pumping rates.

WATER QUALITY

Chemical analyses of water from Sparta wells indicate a good general quality but frequent high concentrations of iron in the eastern half of the area and high fluoride on the southwest margin (table 3). The water is a sodium bicarbonate type and generally has hardness less than 50 mg/1--less than 10 mg/1 in the southwestern half of the area.

Figure 13 shows where fresh water (less than 1,000 mg/1 of dissolved solids) does not occur below the Sparta Sand. Dissolved-solids concentrations increase with distance from the outcrop area (fig. 14), and consequently with depth.

Color is a common problem in the Sparta water in downdip areas (fig. 15) and is sufficiently high along the southern margin to make the water unusable for most purposes, even where the quality is good otherwise.

Most water from the Sparta is alkaline (pH greater than 7.0), but in the northern quarter of the area, and to some extent in the outcrop

area, the water is acidic. The temperature of water from Sparta wells ranges widely and is a function of aquifer depth. It is about 18°C (65°F) at a depth of 100 ft

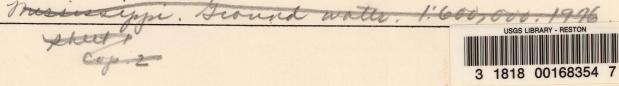
(30 m) and 38°C (100°F) at 2,000 ft (610 m). WATER-SUPPLY POTENTIAL

The Sparta aquifer system will continue to be a major source of water supplies in Mississippi. Development can be expected to increase greatly in the northwestern counties where the spillover of industry from Memphis, Tenn., is multiplying the water needs. Elsewhere, industrial public-supply uses are expanding also, but at a slower rate. In places where Sparta water quality is inferior to other aquifers, some increase in Sparta use will occur as the supplies from the other aquifers become strained because of heavy withdrawals. Mixtures of water to get the needed quantities having acceptable chemical quality are feasible in many places.

There are numerous areas where supplies of 2 to 5 Mgal/d $(0.1-0.2 \, \text{m}^3/\text{s})$ can be developed from Sparta wells, and where 200 ft $(61 \, \text{m})$ or more of sand occurs in the formation it should be possible to construct well fields capable of withdrawing 5 to 10 Mgal/day (0.2-0.4 m³/s), or even more. In planning water-supply development, care should always be exercised to manage withdrawals in such a way as to minimize pumping interference consistent with the economies of production and distribution of the water.

To convert English units to International System units

0.3048 1.609 2.590 gallons per minute(gal/min) .06309 .189 gallons per minute per foot
 of drawdown[(gal/min)/ft] cubic feet per day per square
foot[(ft³/d)/ft²]


To obtain metres(m) kilometres(km) square kilometres (km2) litres per second(1/s) cubic metres per second(m³/s)

 $[(m^3/d)/m]$

metres per kilometre(m/km) litres per second per metre [(1/s)/m]cubic metres per day per square metre[(m³/d)/m²] cubic metres per day per metre

Jackson, Mississippi

APR 28 1976

