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DERIVATION OF EQUATIONS DESCRIBING SOLUTE TRANSPORT IN GROUND WATER

By Leonard F. Konikow and David B. Grove

ABSTRACT

A general equation describing the three-dimensional transport and 
dispersion of a reacting solute in flowing ground water is derived from 
the principle of conservation of mass. The derivation presented in this 
report is more detailed but less rigorous than derivations published 
previously. The general solute-transport equation relates concentration 
changes to hydrodyriamic dispersion, convective transport, fluid sources 
and sinks, and chemical reactions. Because both dispersion and convective 
transport depend on the velocity of ground-water flow, the solute-transport 
equation must be solved in conjunction with the ground-water flow equation.



INTRODUCTION

In recent years there has been an increased awareness of problems of 
ground-water contamination. Reliable predictions of contaminant movement 
can only be made if we understand and can quantitatively describe the 
physical and chemical processes that control solute transport in flowing 
ground water. Several reports have been published recently that develop 
and present solute-transport equations to compute the concentration of a 
dissolved chemical species in ground water as a function of space and 
time. Examples of these, reports include Reddell and Sunada (1970), Bear
(1972), and Bredehoeft and Finder (1973) . The three main processes 
affecting solute transport, and consequently chemical concentrations, are 
convective transport, hydrodynamic dispersion (including diffusion and 
mechanical dispersion), and chemical reactions. Because convective trans­ 
port and hydrodynamic dispersion depend on the velocity of ground-water 
flow, the solute-transport equation must be considered in conjunction with 
the ground-water flow equation.

Aquifers generally have heterogeneous properties and complex boundary 
conditions. Therefore, the solution of the partial differential equations 
that describe the solute-transport processes generally require the use of 
a deterministic, distributed parameter, digital simulation model. Among 
the reports that describe or present numerical models to solve the solute- 
transport equations are Reddell and Sunada (1970), Bredehoeft and Finder
(1973), Finder (1973), Ahlstrom and Baca (1974), Gupta and others (1975), 
Grove (1976), and Lantz and others (1976). Furthermore, several documented 
case histories show that where adequate hydrogeologic data are available, 
solute-transport models can be used to compute the rates and directions of 
spreading of contaminants from known or projected sources. Examples of 
model applications to field problems include Konikow and Bredehoeft (1974), 
Robertson (1974), Robson (1974), Konikow (1976), and Segol and Finder 
(1976).

These models use either finite-difference methods, finite-element 
methods, or the method of characteristics. The selection of the "best" 
numerical method depends largely on the nature of the specific field 
problem, but also depends to some extent on the mathematical background 
of the analyst. Although solute-transport models are best utilized when 
the analyst is thoroughly familiar both with the equations and with the 
numerical algorithm, the increasing availability of documented and published 
programs affords the opportunity for the use of a model by persons with 
only minimal familiarity with both.

The basic purpose of this report is to derive a general form of the 
solute-transport equation from general principles in a more detailed, 
step-by-step, but less rigorous manner than has been done in previously 
published literature. The report is intended to serve as an introduction 
to quantitative modeling of solute-transport processes in ground water. 
It will also show how the general solute-transport equation can be modified 
or simplified for application to a variety of different types of field 
problems. Because of the interrelation between the flow equation and the 
solute-transport equation, the former will also be presented in some



detail although not specifically derived. It is assumed that the mathemat­ 
ical background of the reader includes at least a familiarity with partial 
differential equations.

GROUND-WATER FLOW 

General flow equation

A quantitative description of ground-water flow is a prerequisite to 
accurately representing solute transport in aquifers. A general form of 
the equation describing the transient flow of a compressible fluid in a 
nonhomogeneous anisotropic aquifer may be derived by combining Darcy f s Law 
with the continuity equation. By following the developments of Cooper 
(1966) and of Bredehoeft and Finder (1973), the general flow equation may 
be written in cartesian tensor notation as:

3x.

pki* 
y

3P

J'-

8P 8P

8m.
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at (1)

where k.. is the intrinsic permeability (a second-order tensor), L'

_3 
is the fluid density, ML ;

is the dynamic viscosity, ML T ;
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is the fluid pressure, ML T

-2
is the gravitational acceleration constant, LT ,
is the elevation of the reference point above a standard

datum, L; 
= W*(x,y,z,t) is the volume flux per unit volume (positive

sign for outflow and negative for inflow), T ;
_3 

is the density of the source/sink fluid, ML ;
is the vertical compressibility coefficient of the medium,

LM'V; 
is the fluid density at a reference pressure, temperature, and

-3 
and concentration, ML ;

is the effective porosity (dimensionless);
-1 2 

is the compressibility coefficient of the fluid, LM T ;



3 v is the reference volume of the fluid, L ;

m. is the mass of species i, in the reference volume v , M;

s is the number of species, (dimensionless); 
x. are the cartesian coordinates, L; and

t is time, T.

The summation convention of Cartesian tensor analysis is implied in 
equation 1. That is, each term is summed over the range of its subscripts, 
Bredehoeft and Finder (1973) note that the derivation of equation 1 is 
based on the following assumptions:

1. The porous medium may only deform vertically.
2. Isothermal conditions prevail.
3. The volume of individual grains remains constant during deforma­ 

tion of the medium.
4. Fluid density is a linear function of pressure and concentration, 

as indicated by the following relationship:

p = p Q + p o g (P_PO) + i_ £ fr^j (2)

-1 -2 
where P is the reference fluid pressure, ML T ; and

m. is the mass of species i in the reference volume v at the^o r o
reference pressure, M.

5. The permeability is independent of pressure, temperature, and 
concentration.

6. There is no change in volume caused by mixing fluids of different 
ionic concentrations.

7. The proportionality constants a and $ are independent of pressure 
and concentration.

8. Hydraulic head gradients are the only significant driving 
mechanism.

9. The vertical velocity of grains is negligible.

Equations of state

The density and viscosity of ground water are both related to its 
temperature, pressure, and chemical content. Because isothermal condi­ 
tions have been assumed, temperature changes need not be considered.

Equation 2 expresses the dependence of density on both the pressure 
and the mass concentrations of all species. Equation 2 may be rewritten



in terms of the concentration of a single chemical species of interest 
as:

p = p o + p o S(P-Po ) + y(C-Co ) (3)

where C is the mass concentration per unit volume of solution for the
-3 

solute species of interest, ML ;
C is the concentration of the solute at the reference pressure° -3

and temperature, ML ; and
y is the constant of proportionality between concentration and 

fluid density (dimensionless).

If the relationship indicated by equation 3 is substituted for 
equation 2, then equation 1 may be rewritten as:

3x.^

' pk^' '3P

y (3P 
3*.

, +P8 = pa 

Viscosity may be similarly expressed as a linear function of con­ 
centration by the following:

V = y Q + X(C - CQ ) (5)

where y is the dynamic viscosity of the fluid at the reference pressure,

temperature, and concentration, ML T ; and 
A is the constant of proportionality between concentration and

2 -1 
viscosity, L T

Flow velocity

The seepage velocity, or average interstitial velocity, of ground- 
water flow may be computed as:

qi 
V. =   (6)
^ e

where V. is the seepage velocity in the direction of x., LT ; and
"Z- Is

q. is the specific discharge, or specific flux, in the direction 

of x^, LT'1 .

The specific discharge may be computed directly from Darcy's Law, 
which is written as:



Simplifying assumptions

The general flow equation written as equation 4 can be simplified 
considerably if certain conditions can be satisfied. Several of these are 
described next.

Homogeneous fluid properties

When changes in concentrations of dissolved chemical species are 
relatively small, the fluid density and viscosity remain essentially 
constant. This assumption of homogeneous fluid properties both simplifies 
the flow equation and allows it to be solved independently from the solute 
transport equation. If density is independent of concentration, then 
the third term on the right side of equation 4 can be eliminated from the 
flow equation.

We may aim next to express equation 4 in terms of hydraulic head 
rather than pressure. Following the development of Rubber t (1940), we may 
define the hydraulic head as:

g
a

where h is the hydraulic head, L; and
-1 -2 

P is atmospheric pressure, ML T

If we differentiate equation 8 with respect to x . , for constant 
density we obtain:

3h 3z* 1 3P
3x. 3x. pg 3x. 

^ ^ 6 ^

9P 
Solving equation 9 for    yields:

i.

/3h _ 3z*\
I 3x. 3x. I
\ ^ ^ /

3P _ __ __~ pg (10)



We may similarly differentiate equation 8 with respect to time to 
obtain:

at at pg at

Because . = 0, we can express equation 11 aso t

If we next substitute the relations indicated by equations 10 and 12 
into equation 4, and then divide both sides of the equation by the constant 
density, we obtain:

k,%- -5T I = §(Pa + P 0 £ 3) -§£ + w * < 13 )

Equation 13 may be further reduced if we consider that

K..=-^k.. (14)1-3 y 1*3

where K. . is the hydraulic conductivity tensor, LT , and that"^J

S = g(pa + p eS) (15)
o O

where S is the specific storage, L
o

By substituting equations 14 and 15 into equation 13, we obtain:

TT J. / ir\ = S -r- + W* (16)8 /   9h \  [ K. . -   ] =
8x. V ^J 9x   / s 3t

^ \ ^ J /

Two-dimensional areal flow

In many ground-water studies it can be reasonably assumed that ground- 
water flow is areally two-dimensional. This allows the three-dimensional 
flow equation to be reduced to the case of two-dimensional areal flow, for 
which several additional simplifications are possible. The advantages of 
reducing the dimensionality of the equations include less stringent data 
requirements, smaller computer storage requirements, and shorter computer 
execution times to achieve a numerical solution.



An expression similar to equation 16 may be derived for the two- 
dimensional areal flow of a homogeneous fluid and written as:

S b -ir1 + W*b (17)
S o t

where b is the saturated thickness of the aquifer, L, and it is assumed 
that the hydraulic conductivity, specific storage, and hydraulic head 
represent vertically integrated mean values (Cooley, 1974).

The transmissivity of the aquifer may be defined as:

T. . = K. . b (18)

2 -1 where T. . is the transmissivity, L T

Similarly, the storage coefficient of the aquifer may be defined as:

S = S b (19) 
s

where S is the storage coefficient (dimensionless).

After substituting the relationships indicated by equations 18 and 19 
into equation 17, we obtain:

' = sf+ W (20)

where W = W(x,y,t) = W*b is the volume flux per unit area, LT

Although fluid sources and sinks may vary in space and time, they have 
been lumped into one term (W) in the previous development. There are 
several possible ways to compute W. If we consider only sources and sinks 
such as (1) direct withdrawal or recharge, such as pumpage from a well, 
well injection, or evapotranspiration, and (2) steady-state leakage into or 
out of the aquifer through a confining layer, streambed, or lake bed, then 
for the case of two-dimensional horizontal flow, the source/sink terms may 
be specifically expressed as:

K 
W(x,y,t) = Q(x,y,t) - ^ (Hg - h) (21)

where Q is the rate of withdrawal (positive sign) or recharge (negative

sign), LT""1 ;

K is the vertical hydraulic conductivity of the confining layer, 
z _i 

streambed, or lake bed, LT ;



m is the thickness of the confining layer, streambed, or lake 
bed, L; and

H is the hydraulic head in the source bed, stream, or lake, L. s

Alignment of coordinate axes

The cross-product terms of the permeability tensor drop out when 
the coordinate axes are aligned with the principal axes of the tensor 
(Bredehoeft, 1969); that is, k. . = 0 when i ± j. Therefore, the only

I'd

permeability terms with possible nonzero values are k , k , and kJ r xx yy zz
This assumption simplifies the general flow equation, which can now be 
rewritten to include all permeability terms as:

9x

pk pg

9z y 9z
9P , 0 9P , 9C , TT ^ pa   + p o e:3 ^ + ^ ̂  + W*P (22)

as:
Darcy's Law may be written similarly for the three flow directions

XX / _9P

x y ^" (23a)

qy =
(23b)

ZZ 9P
pg (23c)

For the case of two-dimensional areal flow, if the coordinate axes 
are aligned with the principal directions of the transmissivity tensor, 
equation 20 may be written as:

J3_

9x 9y
(24)



SOLUTE-TRANSPORT EQUATION 

Derivation of general transport equation

An equation describing the three-dimensional transport and dispersion 
of a reacting dissolved chemical in flowing ground water will be derived 
from the principle of conservation of mass (continuity condition). The 
derivation presented here is based on the developments of Reddell and 
Sunada (1970), Bear (1972), and Bredehoeft and Finder (1973).

The principle of conservation of mass requires that the net mass of 
solute entering or leaving a specified volume of aquifer during a given 
time interval must equal the accumulation or loss of mass stored in that 
volume during the interval. This may be expressed in a verbal equation as:

(Rate of Solute Accumulation)

= (Rate of Solute Inflow) - (Rate of Solute Outflow)

+ (Rate of Chemical Production by Reactions) (25)

This relationship may then be expressed mathematically by considering 
all fluxes into and out of a representative elementary volume (REV), as 
described by Bear (1972, p. 19). The REV shown in figure 1 is centered 
at coordinates (x, y, z) and has dimensions (Ax, Ay, Az).

First we will determine fluxes in the x-direction. We know that at 
the center of the REV the mass flux of solute in the x-direction across the 
y-z plane (face IJKL) is equal to (CV * eAyAz ), where C is the concentration

  3 x 
of the solute (ML ), V * is the instantaneous mass velocity of the solute

-1 X 
(LT ), and Ay and Az are the dimensions (L) of face IJKL. Note that the
term (eAyAz) simply represents the total effective cross-sectional area 
through which flow is occurring.

We need expressions for the fluxes across the outer faces ABCD and 
EFGH. The difference between the mass flux of solute across face ABCD and 
face IJKL equals the rate of change of mass flux in the x-direction times
the distance between these two faces. The rate of change of the mass flux

g
of solute in the x-direction equals -r  (CV * eAyAz), and the distance from

n !3x x
the center to face ABCD is (-Ax/2). Thus, the mass flux through face ABCD 
equals

CV * eAyAz - |- (CV * eAyAz )-^f
X uX X ^

Similarly, the distance from the center to face EFGH is (+Ax/2) and the 
mass flux through face EFGH is given by

10



Figure 1. Representative elementary volume (REV) of aquifer,

11



v 
CV * eAyAz + -f- (CV * eAyAz >=f

X oX X ^

The net mass flux of the solute entering or leaving the REV in the 
x-direction equals the difference (input-output) between the two previous 
terms:

(Net Mass Flux) = |CV * eAyAz - |- (CV * eAyAz >~ 
x |_ x dx x 2

- Fcv * eAyAz + |- (CV * eAyAz)-^
I X oX X

= - - (CV * eAyAz)Ax (26)

This equation can also be derived by writing a Taylor series for the mass 
flux term about the point (x, y, z) (Reddell and Sunada, 1970, p. 39). 
Note that if the value of the derivative in the x-direction (equation 26) 
is negative, then the mass flux of solute entering through face ABCD is 
greater than the mass leaving through face EFGH. If all other fluxes 
balance, there will then be a positive accumulation of solute mass in the 
REV. Conversely, if the derivative is positive, there will be a decrease 
over time of solute mass stored in the REV.

It can similarly be shown that for the y-direction:

(Net Mass Flux) = - y- (CV * eAxAz)Ay (27a) 

and for the z-direction:

(Net Mass Flux) = - |- (CV * eAxAy)Az (27b)
Z dZ Z

Solute may also enter or leave the REV as a flux through a source or 
sink (W). This may be expressed mathematically as:

(Source/Sink Mass Flux)^. = C'W*AxAyAz (28)KEV

where C 1 is the concentration of the solute in the source or sink 

fluid, ML~ 3 .

12



If a sink (withdrawal) is considered positive in sign and a source 
(recharge or injection) is considered negative in sign, then when all other 
fluxes balance, a positive W must be balanced by a decrease over time of

8C 
solute mass stored in the REV (negative -r  ) , and vice versa. Note that

dt

for a sink C' is equivalent to the concentration in the aquifer at the 
location of the sink.

A particular solute may also be added to or removed from solution 
within the REV by the effects of chemical reactions. Examples of such 
reactions include radioactive decay, ion exchange, and adsorption. The 
amount of solute that is produced (that is, added to or removed from 
solution) within the REV is equal to the rate of production of the solute 
times the volume of solution and may be expressed as :

s
(Solute Mass Produced)- , = eAxAyAz 5^ R7 (29)REV k=I k

where R, is the rate of production of the solute in reaction k of s 
different reactions (positive for addition of solute and

-3 -1 
negative for removal), ML T

The conservation of mass for a given solute may be expressed in a 
continuity equation by combining the terms in equations 26, 27a, 27b, 28, 
and 29, resulting in:

|r (CeAxAyAz) = - |- (CV * eAyAz)Ax
dc dX X

- y- (CV * eAxAz)Ay - |~ (CVz * eAxAy)Az

S

- C'W*AxAyAz + eAxAyAz £ R- (30)

If we assume that changes over time in porosity of the aquifer are 
not significant and Ax, Ay, and Az are constants, then their derivatives 
equal zero. Using an indicial notation to represent directions in 
which x- , x2 , and x~ correspond to the x-, y-, and z-directions respec­

tively, equation 30 can be rewritten as:

-

s
+ eAx-Ax0 Ax, J" R, (31) 

1 2 J fc-1 *

13



Dividing both sides of equation 31 by (Ax_ Ax^Ax,.) to remove the common 

factors results in:

e f ' - a3T (CV £> - c ' w* + e £ R* (32)
^ /c=l

j.
The instantaneous mass flux of the solute is given as CV* . As shown

Is

by Bear (1972, p. 101), this flux can be separated into two parts:

. + CV- (33)

where V. is the deviation of the mass average velocity of the solute from
X-

the average insterstitial velocity of the fluid
0 -1 

(V. .=. V.* - V.), LT .

The term CV. represents the convective flux of solute carried by the 

average fluid motion through the REV. Neglecting diffusion, the term
o

CV. represents the-dispersive flux resulting from velocity fluctuations.
ts '- ~

Bear (1972, p. 101) also shows that the dispersive flux can be 
approximated by:

CV,. = - Dj .  - (34) 

where D. . is the coefficient of mechanical dispersion (a second-order
U O 1

tensor), L T~ .

Equation 34 indicates that the dispersive flux is directly proportional 
to the concentration gradient and occurs in a direction from higher 
concentrations towards lower concentrations. The form of equation 34 is 
analogous to Pick's Law describing diffusive flux, as described by Bear 
(1972, p. 78). In considering flowing ground water, diffusive fluxes are 
assumed to be negligible in comparison to dispersive fluxes. If diffusion 
is negligible, the coefficient of mechanical dispersion is equivalent to 
the coefficient of hydrodynamic dispersion described by Bear (1972, 
p. 606).

Coupling between forces of one type and fluxes of another type are 
discussed by Bear (1972, p. 85-90). By following the development of 
Bredehoeft and Finder (1973), and by assuming that the only significant 
driving mechanism is the gradient of hydraulic head and that Darcy's Law 
is fully valid, we eliminate the necessity of considering coupled 
processes.

14



As a result of substituting equation 34 into equation 33, the instan­ 
taneous mass flux may be expressed in terms of the dispersion coefficient 
as:

CV   cvi - %  f: (35 >
3 

Equation 35 can next be substituted into equation 32 to yield:

8C 
e 8t 8x  

which is equivalent to:

8C

- C'W* + e R (36)

s 
- C'W* + e E R, (37)

If spatial changes in porosity are negligible, both sides of 
equation 37 can be divided by e to produce:

t\ f^ \ t\ f^ f T J jff *j^

o*-. \ o /.. , ^ \j w x ' T^ f^R^
8f 8x*-J U- *-/A     *""£/ ^ ̂^ * / V ̂^ * *x *" 7 1

t- \ J / 1- K=±

which is a general equation for computing the concentration of a single 
dissolved chemical species in flowing ground water.

For the general case of three-dimensional transport of a single 
dissolved chemical species in flowing ground water, equations 4 and 38 
must be solved simultaneously. This requires the use of the auxiliary 
equations 3, 5, 6, and 7.

At this point it is of value to consider in more detail the second 
term on the right side of equation 38, which describes convective trans­ 
port. This term may be expanded as follows:

- ir (CV = - c ^r - vi IT (39)
OX   Is OX « t- OX  

It is often assumed in cases of steady-state flow that the divergence 
of velocity (oV./8x«) equals zero aVid the first term on the right side of

"Z- Is

equation 39 can be eliminated. However, as shown by the following

15



development, this would be an erroneous assumption if any fluid sources 
are present or if fluid density varies in space.

By using the definition of V. indicated by equation 6, we may rewrite
Is

the first term on the right side of equation 39 as:

8V. 9q.

Next, substitution of the definition of q. from equation 7 into equation
Is

40 gives:

I C 9-C
9x. (41)

If we multiply the expression within the brackets by p/p and substitute 
the relationships shown in equations 4 and 7, we obtain:

Ca 9P Cp o B 9P Cy 3C , CW*p* f/ 9 , + ~~~ ~ + ~ ~ + ~~~ + pq ~- (42)
9 p 9 9 p i 9 t' t

9P 
If steady-state flow existed, -r  = 0 and the first two terms on the

at

right side are eliminated. Although the third term may be insignificant, 
the fourth term, which describes sources and sinks, would have to be 
included in the analysis, as would the fifth term, which is related to 
the spatial variability of fluid density.

Two-dimensional areal solute transport

A solute-transport equation for problems involving two-dimensional 
areal flow may be derived in a manner analogous to the previous derivation 
of a general three-dimensional equation by assuming that vertical varia­ 
tions in head and concentration are negligible. Consider the total volume 
of aquifer under a representative square area, as shown in figure 2. 
Note that the vertical dimension is represented by the saturated thick­ 
ness, b, and that b may vary within the representative area. In this 
case the mass flux through face ABCD is approximately equal to

CV * eAyb - |- [cv * eAybJ 
x J 9x t x I

Ax 
2

16



Figure 2. Representative volume of aquifer having variable saturated
thickness.
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Similarly, the mass flux through face EFGH may be given by

CV * eAyb + |~ [ CV * eAyb\ ~ 
x J 8x I x / 2

The net mass flux of the solute entering or leaving the representative
volume thus equals the difference between the two previous terms:

a /_, * , A(Net Mass Flux) = - -£- I CV * eAyblAx (43) 
x 3x \ x /

It can also be shown in the same manner that for the y-direction:

(Net Mass Flux) = - |~ (CV * eAxbJAy (44)

In the case of two-dimensional areal flow, it <ds assumed that any 
flux across the upper or lower faces of the representative volume is 
included in the source/sink term. Solute entering or leaving the represen­ 
tative volume through a source or sink may be expressed mathematically 
as:

(Source/Sink Mass Flux) = C'WAxAy (45)

Solute added to or removed from solution within the representative 
volume by the effects of chemical reactions may be expressed as:

(Solute Mass Produced) = eAxAyb £ R, (46)
fe-1 *

The conservation of mass for a given solute may be expressed in a 
continuity equation by combining the terms in equations 43, 44, 45, and 
46, resulting in:

JL 
at (CeAxAyb) = - |^ ( CV^* eAybJ Ax

- I- | CV *
9y y

s
C'WAxAy + eAxAyb T) R, (47) 

fe-1 *

18



If e, Ax, and Ay are constants, equation 47 may be rewritten as:

A A 9(Cb) A A 9 EAxAy -^  = - BAxAy  ( CV * b )
\ X /

[ CV * b 1
V y /

- C'WAxAy + eAxAyb £ R, (48)

Dividing both sides of equation 48 by (eAxAy) results in:

3t
= - f- (cv * b] - |- (cv * b] 8x ^ x J 9y y y j

By expressing equation 49 in tensor notation and substituting equation 
35, written for two dimensions, into equation 49, we obtain:

3(Cb)
3t

C'W , , Y* - 
" E £i (50)

which is equivalent to:
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The left side of equation 49 may be expanded as:

3(Cb) _ _9b _8C f , 
9t " C 9t + b at ( }

Substituting equation 52 into equation 51 and solving for 9c/9t 
results in:

_9C_ 
9t

C 3b C'W v. , ,.b aF * ~ib + A Rfe (53)
AC 1

If the saturated thickness is constant in space, the spatial deriv 
atives of b are equal to zero. Under these conditions, equation 53 can 
be further simplified to:

9t ^7 (CTi)

The two-dimensional solute-transport equation can be reduced further 
if changes in saturated thickness over time are negligible and if the 
solute is not affected by chemical reactions. Under these conditions 
equation 54 may be simplified to:

sb
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The difference between equation 53 and equation 54 can be presented 
more explicitly by expanding the first two terms on the right side of 
equation 53. After combining terms, equation 53 may then be rewritten 
as:

IG
9t b I ^,7 9x. ^ 9x.i

9(CV.)
^ C W C 9b 6)

9x. eb b 9t fa k"2- /C 1

Thus, the difference between equations 53 and 54 is equal to:

9b

In other words, the error in computed concentrations caused by assuming 
that the saturated thickness is uniform, when it actually varies in space, 
is inversely proportional to the saturated thickness and directly propor­ 
tional to the divergence of the saturated thickness. If the rate of 
change in saturated thickness is small compared to the total saturated 
thickness, the simpler equation 54 can be used as a reasonable approxi­ 
mation to equation 53.

We may also rewrite equation 53 by expanding the convective transport 
term, as was done by equation 39 to obtain:

9C 1 9 /_ 9C \   9C C 9(Vib)
9t b 9x. I t 9x. 1, 9x. b 9x.

The third, fourth, and fifth terms on the right side of equation 57 may 
be combined into one term as follows:
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_
b 9x. b 9t eb

_L   !l       J     (58) 
eb

It can be shown from equations 6, 7, 9, 14, and 18 that

eV.b = - T.. - - (59)
1* t 9x .

Thus, from equation 20 we can state that:

-r^- (eV.b) = 
9x. \ ^ i 

^ \ /
= S -£ + W (60)

By substituting equation 60 into equation 58 we can rewrite equation 57 
as:

9t b 8x_.

For the case of a water-table aquifer we may assume

S = S (62)y
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where S is the specific yield of the aquifer (dimensionless). We may

also assume that in the case of a water-table aquifer, the Dupuit- 
Forchheimer assumptions hold (Bear, 1972, p. 361-366), so that:

at at (63)

For the case of an artesian aquifer we can normally assume that:

-P- = 0 (64)

If changes in saturated thickness over time and space are both 
negligible, equation 49 may be simplified to:

( ac \ D. .    I - 
^J ax . I 

J/
at ~ ' "'' ~ ' v *

c(s|£ +w)- c'w
+ v 9t . ^    +______ (65)            '       -t- r K ,

eb

In the case of steady-state flow, the third term on the right side 
of equation 65 may be simplified to:

- c'w wrc_GM
     - W(C L ; (66)

eb eb

It is interesting to note that when W represents withdrawal only, then 
C 1 = C and the right side of equation 66 becomes equal to zero. Therefore, 
withdrawals from the aquifer produce concentration changes only indirectly 
through the effects of the withdrawals on the velocity field, rather than 
by any direct effect on the mass or concentration of solutes.

If vertical variations of head or concentration are significant, 
then the two-dimensional equations previously derived would not precisely 
describe areal solute transport. Cooley (written commun., 1976) shows 
that when a two-dimensional solute-transport equation is derived with a 
more rigorous vertical integration of the three-dimensional equation, 
the third dimension is not actually eliminated in converting to areal 
coordinates but instead is transformed to boundary conditions.
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Dispersion coefficient

The solution of the solute-transport equation requires consideration 
of the dispersion coefficient. Because of its tensorial properties, its 
consideration may not appear to be straightforward. Hence, we will next 
consider this coefficient in more detail.

Bear (1972, p. 580-581) states that hydrodynamic dispersion is the 
macroscopic outcome of the actual movements of individual tracer particles 
through the pores and that it includes two processes. One process is 
mechanical dispersion, which depends upon both the flow of the fluid and 
the nature of the pore system through which the flow takes place. The 
second process is molecular and ionic diffusion, which because it depends 
on time, is more significant at low flow velocities. Bear (1972) further 
states that the separation between the two processes is artificial. In 
developing our model we assume for flowing ground-water systems that the 
definable contribution of molecular and ionic diffusion to hydrodynamic 
dispersion is negligible.

The relationship between the dispersion coefficient, the fluid flow, 
and the nature of the pore system is given in tensor notation by Scheidegger 
(1961, p. 3275) as:

V V
D ..-a.. -!-». (67) 
^J ijmn . v '

where a . . is the dispersivity of the porous medium (a fourth-order
iSfjtiiYl

tensor), L; 
V and V are the components of the flow velocity of the fluid in

the m and n directions, respectively, LT ; and 

|V is the magnitude of the velocity vector, LT

Scheidegger (1961, p. 3275) states that the dispersivity tensor 
possesses 81 components, but that even in the case of an anisotropic medium, 
symmetry properties reduce the number of components to 36. Both Scheidegger 
(1961) and Bear (1972) show that the dispersivity of an isotropic porous 
medium can be defined by two constants. These are the longitudinal dis­ 
persivity of the medium, OL , and the transverse dispersivity of the medium

a-. For an isotropic porous medium the components of the dispersivity 

tensor in three dimensions (-£,j = 1,2,3) are:

aUU = aL (68a)

(68b >



a.... = a .. .. = a.... = a.... = 0 (68c)

a.... = a a,) (68d)

The components of the dispersion coefficient for three-dimensional 
flow may be stated explicitly by expanding equation 67 for a range of 
three on i- and J. After eliminating terms with coefficients that equal 
zero (shown by equation 68c), we obtain:

_ = a
11 1111

V V

1122

V V 
22

V
+ a

1133

V V 
33

Ivl
(69a)

D22 = a2211 Vi
V

V V V V
2 2 +a 3 3

2222 i,,i 2233V V
(69b)

33

V V 
11

V

V V V VV 2 V 2 33

a3322   a3333
V V

(69c)

n n 
12 21 a!212

a
V

!221

V2V1

V
(69d)

D13 = D31 = a!313 Y3

vl 11331
Y!
vl

(69e)

D23 ~ 32 a2323
V3

V
a2332

V2

V
(69f)

If we substitute the identities presented in equations 68a and b 
into equations 69a, b, and c, we obtain directly:

Vl

V

V V 
22

Ivl

V3v3
(70a)
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D
V V 
11

22
V

V V 
22

V

Vs
Ivl

(70b)

V V V V V V
11 22 33D = a -Z-± + a -=-=- + a -2-2.

33 T i,,i T !  L
(70c)

V V

Next, by substituting the identities given by equation 68d into equations 
69d, e, and f, we see that:

D12 " D21 - V
V V 
12

V
(71a)

13
- V V3

Ivl
(71b)

D23 = °32 - V
V V 2 V 3

Ivl
(71c)

Scheidegger (1961) and Bachmat and Bear (1964) also show that for a 
Cartesian coordinate system x- in which one of the axes, say XT, coincides

is -L

with the direction of the average velocity, then V = v| and V2 = 0. 

Substituting these relations into equations 70 and 71 we obtain:

(72a) 

(72b)

D12 - D21 - D13 = D31 = D23 = D32 (72c)

where D-. and D are respectively the longitudinal and transverse
2 -1 

dispersion coefficients, L T
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Solving equations 72a and b for a and a results in:
Li J.

D.
a, = (73a)

D,
(73b)

Introducing equations 73a and b into equations 70 and 71 produces:

L Iv 2
(v2 )TH" (v3 )~kP (74a)

CM2 (V ) 2 (V ) 2
T\ _ T\ _i_ n -U n
D22 ~ DT .,,9 + DL ,..,-> + DT

V V
(74b)

D33 * DT
(V1 )

D
(v2 ) 2

T ~7F2
(V)

(74c)

D - D - (D -
V V 1 V 2

12 "21 -L "T' , | 2
(74d)

D13 - °31 = (DL - (74e)

D23 - °32 - D
T)

v
(74f)

Equation 74 defines the local transformation of D. . from orthogonalI'd
axes, in which x.. is parallel to V-, to global cartesian axes. Note that 

while D , D 2 , and D must have positive values, it is possible for the 

cross-product terms (equations 74d, e, and f) to have negative values.
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For the case of two-dimensional flow, all components and terms in equa­ 
tion 74 that have a subscript 3 are eliminated.

The magnitude of the velocity, Ivl, is defined as:

V = (75)

In summary, the components of the dispersion tensor that must be 
evaluated for three-dimensional flow in an isotropic porous medium are:

D31

D 

D

12 

32

D13 

D 33

D
XX

D

D zx

D 

D 

D

xy

yy 

zy

D 

D 

D

xz

yz

zz

(76)

SUMMARY

A general equation describing the three-dimensional transport and 
dispersion of a reacting dissolved chemical in flowing ground water was 
derived nonrigorously from the principle of conservation of mass. The 
general equation relates concentration changes to hydrodynamic dispersion, 
convective transport, fluid sources and sinks, and chemical reactions.

Concentration changes caused by dispersion are assumed to be a 
function of both the dispersion coefficient and the concentration gradient. 
The dispersion coefficient is a second-order tensor and is related to 
the dispersivity of the porous medium and to the flow velocity of the 
ground water. If solute concentrations are affected by chemical reactions, 
specific mathematical expressions describing the rates of reactions must 
be incorporated into the general solute-transport equation.

Because both the dispersion coefficient and convective transport 
depend on the flow velocity, the solution of the solute-transport equation 
requires the definition of the velocity field, which in the general case 
requires that the flow and solute-transport equations be solved simul­ 
taneously. However, the solution of these equations can be considerably 
simplified if conditions of homogeneous fluid properties and (or) two- 
dimensional flow can be validly assumed.
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