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THE USE OF GALERKIN FINITE-ELEMENT METHODS TO SOLVE 

MASS-TRANSPORT EQUATIONS

By David B. Grove

;. ,; ABSTRACT

The partial differential equation that describes the transport and reaction 
of chemical solutes in porous media was solved using the Galerkin finite-element 
technique. These finite elements were superimposed over finite-difference cells 
used to solve the flow equation. Both convection and flow due to hydraulic 
dispersion were considered. Linear and Hermite cubic approximations (basis 
functions) provided satisfactory results; however, the linear functions were 
found to be computationally more efficient for two-dimensional problems. 
Successive over relaxation (SOR) and iteration techniques using Tchebyschef 
polynomials were used to solve the sparce matrices generated using the linear 
and Hermite cubic functions, respectively. Comparisons of the finite-element 
methods to the finite-difference methods, and to analytical results, indicated 
that a high degree of accuracy may be obtained using the method outlined. The 
technique was applied to a field problem involving an aquifer contaminated 
with chloride, tritium, and strontium-90.



INTRODUCTION

It has become evident that our social and economic well-being is 
jeopardized by the ever-increasing pollution of our water resources. The 
hydrologic systems that control these resources do not act as separate entities, 
but as vast, complicated, interdependent systems. Due to the increasing 
stresses placed on surface-water resources, the public has become more aware 
of the vast amounts of high-quality water available underground in aquifers. 
As more is learned about these sources of water, both use and dependence upon 
them has increased. This use has both beneficial and detrimental aspects as 
it includes using the ground-water system for both sources of high-quality 
water and as reservoirs to dispose of unwanted aqueous wastes. This disposal 
practice coupled with the increasing withdrawal of water and the occasional 
influx of natural low-quality water, has in some instances rendered unfit 
previously usable ground-water supplies.

With recognition of these problems, Federal, State, and local agencies 
have enacted laws pertaining to the subsurface disposal of wastes and to the 
use of ground water. Enforcement of such laws and proper planning of ground- 
water use and subsurface waste-disposal practices necessitates a complete 
understanding of the ground-water systems and the effects of the chemical and 
physical stresses placed on them. In recent years considerable effort has been 
devoted towards developing techniques to compute the effects of various chemical 
and physical stresses on the ground-water system and the resultant change in 
water quality and quantity. The solution procedures for pollution simulation 
studies are termed "water-quality models." These techniques include simulation 
models, usually of a deterministic type, that may take the form of analytical 
expressions for simplified cases, or may involve the use of elaborate computer- 
oriented numerical techniques for the more complicated cases. The complicated 
nature of the mathematics defining the flow of pollutants through aquifer 
systems generally requires sophisticated numerical techniques to solve the 
equations. Some of the numerical techniques currently available have limited 
application because of their coarseness of approximation to the actual processes 
or are of such detail and complexity that their application to real problems 
is too difficult or impractical.

This report describes a numerical model that is rigorous in its solution 
to the equations yet simple enough that it may be used and understood by a 
knowledgeable ground-water hydrologist or engineer. The accuracy of the model 
is verified by various checks with known analytical solutions to simplified 
problems. The technique is also compared with results from a previously 
developed numerical technique for more involved systems. The value of this 
generalized numerical scheme is demonstrated by solving a ground-water contami­ 
nation problem. The contamination problem includes the effects of transverse 
and longitudinal dispersion, and sink and source terms with rate and equilibrium- 
controlled chemical reactions for multidimensional mass-transport systems.

I would like to acknowledge John Robertson, Research Hydrologist, who 
furnished the results of his field study at the Idaho National Engineering 
Laboratory, that were used to provide the field test of the model, and 
Dr. Thomas Manteuffel, Professor of Mathematics, Emory University, who provided 
the results of his then unpublished Ph. D. thesis to solve a difficult problem 
involving large, sparce, unsymmetric matrix systems.



REVIEW OF THE LITERATURE

This section consists of three separate parts that are as follows: The 
development of equations pertaining to the transport of solute, the analytical 
solutions of some of these equations, and the numerical solutions of these 
equations encompassing both finite-difference and finite-element methods. 
Experimental studies and case histories are included within each respective 
solution technique. The literature in the field of mass transport is great and 
this review includes only those that are specific to this study. The references 
are limited to the past 4 or 5 years as the majority of the work previous to 
this time is well documented in these references.

Prior to the past several years the prediction of the quality of water 
during its movement through porous media was limited to laboratory studies, 
controlled industrial processes, or pure theory. This was due to a lack of 
ability to define accurately multidimensional flow fields, an incomplete mathe­ 
matical model of solute transport, inadequate numerical schemes to solve the 
equations, incomplete descriptions of the relevent chemical reactions taking 
place, and a much lower interest in solving such problems for actual field 
situations.

During the last 4 to 5 years, however, models and modeling techniques have 
developed at an accelerated rate. The usual water-quality model development 
procedure has been to simplify the general multidimensional transient equations 
describing mass transport and reactions to one-dimensional situations that can 
be simulated by controlled laboratory experiments or can be solved in a closed 
analytical form. The simplifying assumptions are then relaxed and the general 
model applied to more complex situations. Two-dimensional models for solute 
transport without chemical reactions but including terms to describe nonideal 
(plug) flow, which we term "dispersion," and the existence of sources and sinks 
within the system were then developed. Investigators refined these models to 
include the capability to predict and verify chemical reactions for selective 
field situations. Solution techniques for the equations of solute transport 
include finite-difference methods, method of characteristics, and finite-element 
methods that encompass variational and weighted residual techniques. These 
methods will be reviewed in more detail to provide a proper framework for the 
development of the Galerkin, finite-element techniques.

Development of the equations

The equations of mass transport with chemical reactions have been well 
documented by physicists, chemists, and chemical engineers, as is evidenced by 
the text of Bird, Stewart, and Lightfoot (1966) and Aris (1969). Bredehoeft and 
Finder (1973), also Rendell and Sanada (1970), expanded on these basic equations 
and coupled them with the hydraulic flow equations to present a unified picture 
of mass transport with or without chemical reactions during flow through 
saturated porous media.



The flow equation

The equation of motion for the flow of ground water has been derived in 
considefable detail by a variety of workers. Longwell (1966) and Bredehoeft 
and Finder (1973) present rather complete derivations of the equation. 
Bredehoeft and Finder (1973) described ground-water flow by the following 
equation:

p *   (Ap - pi) + £ W. =

n 9m

0 j-i

where

V = vector operator
_o

p = fluid density, ML
= +2 k = intrinsic permeability, L

\i = dynamic viscosity, ML T
  -2 
g = gravitational acceleration, LT

3 -1 
Qi = source (+) or sink (-) L T

Wi (x,y,z) = Qi (x ,y ,z ) 6 (x-x ) 6 (y-Yj) 6 ^ z~zj)

r = number of sources and sinks
-1 +2 

a. = compressibility of the medium, M LT

E = effective porosity of the medium, L

6 = Dirac delta function
-1 2 

3 = compressibility coefficient of the fluid, LM T
P 3

V = reference volume of the fluid, L o
m. = mass of the i-th species in the reference volume VQ , M 

n = total number of species in the system



Implicit in the derivation of the flow equation is Darcy's Law, which 
relates specific discharge to hydraulic gradient.

=
q - -   (VP - Pg) (2)

_ _
where q is the specific discharge of the fluid, LT . The hydraulic flow equation 
is a mathematical description of the hydraulic potential of the aquifer system. 
Equation 1 can be simplified by assuming constant fluid density (Bredehoeft and 
Finder, 1973), and written in two dimensions (areal) as

8t 8x y xx 8x I 9y V yy 8y 

- W(x,y,t) (3)

where

S = aquifer storage coefficient, L

h = hydraulic head, L
2 -1 

T = transmissivity of the aquifer in the x direction, L T
XX fj  +

T = transmissivity of the aquifer in the y direction, L T

Equation 2 is a general form of Darcy's Law for an anisotropic porous 
media. The permeability axis can be orientated in such a direction so only the 
main components of the permeability tensor appear. When this is possible and all 
of the pressure terms appear in the hydraulic gradient, specific discharge for 
flow in the x direction is

i / / \ q = -k -r- (4) 
x x 8x

A similar equation may be written for the y-direction. The average interstitial 
fluid velocity, as will be used in the mass-transport equation, is defined as 
the specific discharge divided by porosity and is given by

x 8h /t-\

where

v = average interstitial velocity in the x direction, LT
X

e = porosity, L .



The mass-transport equation

The mass-transport equation for solute species i as given by Bredehoeft 
and Finder (1973) is

F (£p i) = Vep i 7 < ->
s

- V p.q + Rik

where

-3 
p. * density of species i, ML

= 2  1 
D. = hydrodynamic dispersion coefficient of species i, L T

-3 -1 
R., = rate of production of species i in reaction k, ML T

s = number of reactions taking place in system

-3
p.* = density of sink or source solution, ML

The mass-transport equation as given by equation 6 can be simplified and written 
in two dimensions (Bredehoeft and Finder, 1973; Reddell and Sunada, 1970) as 
equation 7.

3c. i ,- V -   - V -   4-  
3t x 8x y 9y 9x \ xx 8x / 3y \ yy 3y

3C 1\ I \ "i

k=l



where

-3
c. * mass concentration of species i, ML
1 -3 

c . * mass concentration of species in the well, ML

and the subscripts-x and y define the direction of interest for the 
respective variables.

This equation is simplified from that given by Bredehoeft and Finder (1973), as 
it assumes that the time derivative of pressure in the transport equation is 
small compared to the other terms and may be neglected. This is actually a good 
assumption as steady state flow does exist for many problems, and for transient 
conditions this assumption introduces little error. Constant fluid density, as 
assumed for equation 3, is also implicit in equation 7, as the density is 
assumed to be unaffected by changes in concentration.

Equations 3, 5, and 7 represent, for isothermal systems, all that is 
necessary to adequately approximate conditions in most systems. Equation 3 is 
the flow equation with hydraulic head calculated as the dependent variable for 
the space and time fields of interest. Equation 7, the "transport equation," 
is coupled to equation 3 by Darcy's Law (equation 5), which relates ground-water 
velocity to hydraulic head gradient.

The mass transport equation consists of four terms; the mass accumulation 
term on the left-hand side of the equation, the convective fluxes, the dis­ 
persion flux terms, the sink/source term, and the chemical reaction term on the 
right-hand side of the equation. These terms and the parameters that comprise 
them will be discussed in more detail in the section on the mass-transport 
equation.

Analytical solutions

In many cases equation (7) can be simplified to the point where analytical 
solutions are available. Solutions for some of these simpler differential 
equations representing mass transport are important for several reasons. 
Several of the contamination" problems are well represented by one-dimensional 
equations, and in this case simple analytical solutions can be used to predict 
the extent and concentration of contaminations. A second reason is that many 
complicated multidimensional models can be simplified and their accuracy or 
precision checked with the aid of these simple one-dimensional equations.

Perhaps the equation most widely used to analyze the effects of convection 
and dispersion in a porous media is the one-dimensional equation with uni­ 
directional flow. This equation results through simplification of equation 7 
and is presented with boundary conditions as given by Ogata and Banks (1961)

3t 8x 3 (8)



c = c for x = 0, t > 0 o  

c = 0 x -* °°, t >_ 0 

c = 0 x > 0, t = 0

These boundary conditions describe the physical situation as illustrated in 
figure 1. A slug of fluid with concentration CQ is injected into a column at 
x = 0 and at time = 0. This slug of fluid is then convected and dispersed in 
the longitudinal direction. The column is assumed of infinite extent and the 
solution is for the relative concentration of the injected fluid at any time t 
at location x. Ogata and Banks solution to this equation is given as follows:

C 1 1 r / X-Vt \ ̂  / VX \ -. / X+Vt  = y erfc (: -izzl + exp f   \ erfc
o 1

Equation 9 describes the process of dispersion in a porous media when the 
dispersion coefficient is relatively small and when one is interested in concen­ 
tration profiles in the porous media and not at the exit of the column.

Brenner (1962) analyzed the same physical situation; however, he defined 
the boundary conditions at the inlet and outlet of the column in a more rigorous 
and specific manner. Brenner assumed the following boundary conditions:

= - v (c - c ) for x = D, t > 0o  

for x = L, t >_ 0

which define flux conditions at the inlet and outlet of the column. Brenner f s 
solution is more complicated and is given for the relative concentration at the 
exit of a column of length L:

cc A sin (2A ) / \
c, = avr\ rp^?-T^i v^     f»vn i-i^T/pi nrnc - exp L^U-i;J y ^ /-A 2 j.P 2j.T>\ exP I A i, i/r I ^*- u ' 

° k=l

where

T = vt/L 

P = vL/4D

A = the positive roots (k = 1, 2, . . . , n) taken in order of increasing 
magnitude of the equation, and where,

(11)
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Figure 1. Longitudinal dispersion in a column.



Brenner (1962) included a tabulation of concentrations at the column exit for 
various values of P.

Numerical solutions 

Finite-difference methods

Perhaps the commonly used numerical technique used to solve both linear and 
nonlinear differential equations describing mass transport is, the finite- 
difference method. Finite-difference techniques, (if not careful) display 
numerical difficulties when applied to these particular types of equations. 
These problems can perhaps best be explained in the context of the following 
one-dimensional differential equation as illustrated by Keller (1967):

,t) - c(x,t)u + d(x,t) (12)

A typical finite-difference form to this equation, when variables are centered 
in space, can be written as follows:

n+1 n _ n+0 / n+1 n+0 u. u. - Aa |u. +1 - 2u.

.. n+0 - , . ,- _ 0 . 
- Ate. u + Atd. (13)

where

n+0 _ n+1 , ,.-.*& u =* 0 u. + (l-Q)u.

0 = time approximation 

A m At/(Ax) 2 

n, = time superscript 

j » distance subscript

Values of 0 may be 0, 1/2, or 1. The 0 denotes an explicit in time 
approximation; the 1./2, a centered in time or Crank Nicolson time approximation; 
and 0 equals 1, a fully implicit or backwards in time approximation.

These typical finite-difference forms result in the following system of 
linear equations

10



As with most finite-difference equations, stable solutions occur only with 
the proper choice of time and space-increment sizes. The following conditions 
are given by Keller (1967) as sufficient to provide stable nonoscillatory 
solutions to equation 13:

1 -I- 0Atc(x,t) > 0 (a)

a(x,t)Ax|b(x,t)| ^0 (b) (15)

1 - (1-0) [2Xa(x,t) -I- Atc(x,t)] >_ 0 (c)

Condition 15a is usually not a problem as values of concentration are normally 
positive. Condition 15b results in numerical oscillation if not met, and 
although damped, it may be so large in magnitude to preclude adequate numerical 
values. For fixed values of a and b, condition 15b requires a small value of 
the space increment. Condition 15c is met for all fully implicit methods. One 
must also note that these are "sufficient" and not necessary conditions for 
stability, and in many cases when 9 is equal to 1/2, stable solutions result 
even if condition 15c is not satisfied.

The conditions where finite-difference solutions can be used to solve the 
differential equations defining mass transport through porous media have been 
identified. However, the technique that gives stable solutions may result in 
an additional error caused by the manner in differencing the time and space 
derivatives. This error is called numerical diffusion as its form is identical 
to the second-order diffusion term in the equation. For equation 8, the one- 
dimensional equation describing convection-dispersion, Lantz (1970a; 1970b) 
calculated the magnitude of this numerical diffusion term for various types of 
spatial and time increments. Table 1 summarizes the results of Lantz f s study. 
Some authors (for example, Harlow and Amsden, 1970) reasoned that the total 
diffusion term in the equation, both real and numerical, must be positive. 
Table 1 then indicates that when spatial properties are differenced centrally 
and time is differenced explicitly, the dispersion coefficient in the equation 
must be larger than the numerical diffusion term or a negative result appears 
and unstable solutions result. Table 1 also shows that a spatial central 
difference and a time Crank-Nicolson difference gives no numerical diffusion 
error. However, this does not rectify the stability condition given in 15b 
where the choice of a large spacial increment may cause oscillation in the 
computed concentration profile. It appears that for all cases small space 
increments are necessary for adequate solutions of equations with small dis­ 
persion coefficients. This does not normally present a problem for one- 
dimensional equations; however, multidimensional equations result in large 
numbers of nodes that produce matrices too large to be solved efficiently with 
present-day computers.

Peaceman and Rachford (1962) presented a finite-difference scheme to solve 
the two-dimensional transport equation. They illustrated the oscillation 
problem, caused by small dispersion coefficients, for the one-dimensional case 
and presented a "transfer of overshoot or undershoot" correction technique. 
Shamir and Harleman (1967) studied a steady-state flow situation and solved the 
mass-transport equation in terms of streamlines and velocity potentials. Since 
the velocity is parallel to the streamline, one-dimensional flow could be 
assumed and the dispersion tensor cross-product terms omitted. Unfortunately 
both of these approaches have restrictions. The "transfer of overshoot" method 
of Peaceman and Rachford is not rigorous and the use of streamlines assumes 
steady-state flow conditions and unrealistic one-dimensional flow.

11



Table 1 Numerical diffusion errors caused by various space and time 

differencing of the aonvective term in the 1-D 

mass-transport equation

[BD, backward difference; CD, central difference, C-N, Crank-Nicolson]

Difference form
3 2c 

_____________________ Error (second order) x -r 7

Spacial Time

BD

CD

BD

CD

BD

CD

Explicit, 0=0

Explicit

Implicit, 0=1

Implicit

C-N, 0=1/2

C-N

(vAx - v2At)/2

-v2At/2

(vAx + v2At)/2

v2At/2

vAx/2

0

Method of characteristics

Gardner and others (1964) used a method of characteristics (HOC) to solve 
the mass-transport equation. They essentially modified the HOC method to 
include a point-tracking technique by which particles were given various 
concentrations and allowed to move with the velocity of water .to new points for 
various time increments. Concentrations were averaged over the various grid 
domains and the dispersion process calculated by an explicit finite-difference 
method. Reddell and Sunada (1970) and Bredehoeft and Finder (1973) expanded 
the one-dimensional case of Garner's to two dimensions. Finder and Cooper 
(1970), as well as Reddell and Sunada (1970), utilized the characteristics 
method to include density dependence and solved a salt-water encroachment 
problem.

The method and the computer program as developed by Bredehoeft and Finder 
(1973) have been extensively used within the U.S. Geological Survey to solve 
field problems involving contamination. Several such studies are as follows: 
In Georgia, Bredehoeft and Finder (1973) investigated a contamination problem 
where saline water upwelled into a fresh-water aquifer and computed the effects 
of discharge or barrier wells to limit this concentration spread. Hughes and 
Robson (1973) investigated contamination from sewage lagoons and industrial 
cleaning areas and predicted the results of various ground-water quality con­ 
tainment practices. Konikow and Bredehoeft (1974) investigated rthe effects of

12



irrigation and return flow on water quality in the ground-water system and in 
the adjacent river. Perhaps the best documented use of the method of charac­ 
teristics to solve the mass-transport equation has been the application of 
Robertson and Barraclough (1973) at the National Reactor Testing Station in 
Idaho Falls, Idaho. They modeled the movement of injected pollutants into a 
basaltic aquifer and determined the concentration profile for a period of 20 
years. Robertson (1974) modified the mass-transport equations to include the 
chemical reaction terms that accounted for ion exchange and radioactive decay.

These studies demonstrated the worth of the method of characteristics for 
modeling two-dimensional mass transport but they also showed it to be cumber­ 
some, expensive, and lacking in mathematical rigor. This latter point is 
demonstrated by the use of experience in the placement and number of particles 
used in MOC. The method of characteristics is perhaps the best technique for 
hyperbolic equations. The ability to set the dispersion coefficient equal to 
zero and to model pure convective flow is a distinct advantage for this method. 
Most processes, however, do involve nonideal flow, which is characterized by 
the hydrodynamic dispersion. Simpler numerical techniques that will apply under 
these cases should be considered.

Finite-element methods

Finite-element methods involve integration of some function pertaining to 
the differential equation over some prescribed element or area. Integration 
methods, relationship between function and differential equation, and definition 
of the element over which integration proceeds, all serve to characterize 
different methods. Most textbooks separate the finite-element technique into 
variational techniques and weighted-residual techniques. The variational 
technique will be discussed first.

Variational techniques

The use of variational calculus to solve partial differential equations 
that describe transport processes has recently received widespread attention 
(Forray, 1968; Schechter, 1967). The coupling of finite elements and variational 
calculus has led to a numerical technique that has great promise when the 
variational principles apply. The flow equation (3) has been programmed and 
solved for some time using this method. Remson, Hornberger, and Molz's text 
(1971) on numerical procedures for these types of aquifer equations discusses 
at some length the techniques and previous work done in this field. Guymon 
and others (1970) perhaps first solved the multidimensional convection-diffusion 
equations using finite-element variational methods. Guyman's work was expanded 
by Nalluswami (1971), who improved the numerical techniques and took into 
account the tensoral properties of the dispersion coefficient. A recent paper 
by Smith, Farroday, and O'Conner (1973) compares the variational finite-element 
technique with the soon-to-be-discussed Galerkin finite-element technique. The 
overall concensus of this paper was, unless a definite-variational principal 
exists so that the solution procedures would be identical, the Galerkin finite- 
element technique was superior in its efficiency and accuracy in solving the 
mass-transport equation. All the aforementioned studies of the mass-transport 
equation were compared with analytical cases with no application made to a 
field problem.
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Weighted-residual techniques

Weighted-residual techniques are defined by the method used to weight the 
residual formed by an approximaition to the partial -4^f||l££ntial equation and 
the method used to calculate the approximate solution's^-'"Although there are 
several weighted-residual methods, Finlayson and Scriven (1965) found the 
Galerkin method best for mass-transport equations. The mathematics associated 
with the finite-element use of the Galerkin weighted-residual method will be 
developed in the following section. Price, Cavendish, and Varga (1968) first 
showed the superiority of the Galerkin finite-element method pver the standard 
finite-difference method to solve the one-dimensional mass-transport equation. 
Cavendish, Price, and Varga (1969) utilized this.technique to solve nonlinear 
and multidimensional flow equations. They concluded that for linear equations 
this method was superior to standard finite-difference methods.

Pinder (1973) used a Galerkin finite-element technique with the use of 
isoparametric quadralateral elements to solve a ground-water contamination 
problem on Long Island, N.Y. In this case, elements could take on a variety of 
configurations and by a mapping procedure be reduced to rectangles. The 
resulting set of linear equations were solved by a direct matrix technique. 
This application did not include the introduction of point sources or sinks (as 
wells), and the contaminant was conservative in that chemical reactions involving 
the solute were absent. This technique requires the choice of specific approxi­ 
mating functions somewhat limiting its applicability.

THE MASS-TRANSPORT EQUATION

The equations that will be used to define the concentrations of induced 
chemical species are the flow equation (3), Parcy's Law (5), and the transport 
equation (7), respectively. As mentioned previously, the transport equation 
consists of four main terms on the right-hand side that account for changes of 
concentration. These are the convective flux, the dispersive flux, physical 
sink/source terms, and chemical reaction terms. These terms and the parameters 
that make them up will now be discussed in more detail.

Convective and dispersive fluxes

The convective flux is defined as that mass transport caused by the bulk 
movement of the fluid. The velocities are derived from the potential (flow) 
equation using Darcy's Law. The dispersive flux term is a vector quantity and, 
as such, deserves more explanation. Scheidegger (1961) and Bear (1972) point 
out tihat the dispersion coefficient is then a tensor and should have 81 com­ 
ponents for a three-dimensional case, but they are able through the.use of 
symmetry to reduce this number to 32 individual components. They are able, for 
an isotropic media, to reduce the number of components of the tensor to nine for 
a three-dimensional case and four for the two-dimensional case.

The general form of the dispersion tensor is given by Scheidegger (1961) as

\i = "> > a.. 11 v.v./|v' for k - 1,2 (16)kl ' -' 2~i ^-k! 1 J
i-1 7=1
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where

1 = x
2 = y

and « * + (V"T)
a, ., , = a, o , . 6,   Ti-ikl L -H kl 2-LJ IV X J-j -LJ IV X fc.

where

6.. = dirac delta function = 1, i=j

= 0, ill

04 = longitudinal dispersivity, L 

a = transverse dispersivity, L

The longitudinal and transverse dispersivities are sometimes referred to as 
characteristic lengths with their magnitude a measure of the total dispersion.

The four dispersion coefficients of two-dimensional flow can now be 
written as

ry r\

D = otT v /Ivl + ot^v /|v| xx L x ' ' T y ' '

D = aT v 2 /|v| -I- a_v 2/|v| 
yy L y ' ' T x ' '

D = D (a-a_)v v /|v| (18) xy yx L T x y ' '

where

Sinks and sources

In the mass-transport equation, there are a variety of sink and source 
terms that must be considered. The most obvious ones are inputs or outputs in 
the system caused by wells or leakage through the aquifer. Chemical reactions 
are another means to increase or decrease the concentrations of solute species. 
After discussing point sources, two of the most frequently occurring reactions 
will be discussed in detail.
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Point and distributed terms

Concentration changes caused by the convective flow of solutes in or out 
of an aquifer can occur through wells or areas normal to the flow field. The 
term representing such effects in equation 7 is

where c. is the concentration of the fluid recharging or discharging from the

system through the well. The term c. -c is equal to zero for a pumping well as
iw

c equals c . . The dirac delta function assures values for the term only at iw i
nodal points where wells are present.

Chemical reactions

Two principal chemical reactions that often occur in contamination 
problems are equilibrium-controlled ion exchange reactions with a linear 
adsorption isotherm and irreversible first-order rate reactions. The mathe­ 
matics that describe these reactions are linear and thus allow the use of 
simpler numerical solution techniques. The addition of linear terms to a 
differential equation, in most cases, requires no additional mathematical 
analysis. The use, for example, of a zero-order reaction would cause no problem 
in analytical or numerical analysis.

Ion exchange

A typical such exchange reaction might be as follows (Bolt, 1967; 
Helfferich, 1962)

(20)

where 1 and 2 are chemical exchanging species with a and b valences, respectively,

The adsorbed species is given as c and the dissolved species as e. A 
selectivity coefficient may be used to relate the concentration of products and 
reactants at equilibrium:

/   \ a / \ b (cj (c )
K =   * (21)
s ~ ° a

where K is the ion exchange selectivity coefficient
S
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Equation 21, when incorporated into the mass-transport equation, results in 
nonlinear terms. One particular situation that often occurs results in a simpli­ 
fied equation, and is described as follows: When the exchanging ion is very low 
in concentration relative to the other ions, then exchange process will not 
materially effect the concentration of this ion, either in solution or adsorbed 
on the matrix. The adsorbed phase of the major ion is then nearly equal to the 
cation exchange capacity (CEC), and the solution phase of the major ion equals 
the total concentration (C ). Equation 21 can then be rewritten as,

or

K =

(CEC)(c2 )

K (CEC)

(22)

I/a

(23)

where K, = ion exchange distribution coefficient.

Equation 23 postulates a linear relationship between the adsorbed species 
and the solute species where the slope of the equilibrium ion-exchange isotherm 
is the distribution coefficient. Equation 23 thus provides the relationship 
between the adsorbed species and dissolved species necessary to solve the mass- 
transport equation.

Rate reactions

The subsurface disposal of radioactive products is an example where a 
first-order irreversible rate reaction occurs. This reaction is the radio­ 
active decay of the species, adsorbed or in solution. The rate constant can be 
derived in the following manner. The disappearance of a species by a first- 
order irreversible reaction is given by the equation

dc , = * kc (24)

where k is the rate constant, T . This equation can be integrated with the 
limits chosen as the time necessary for the initial concentration to decrease 
by one-half

dt (25)
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-3
where c = initial concentration, ML 

o
t, = half life of species, T
%

The equation is integrated and solved for k to obtain

K - S&l (26)

The rate constant can now be calculated as half-lifes of most radioactive species 
are known.

The chemical reactions terms can now be incorporated into the mass-transport 
equation in the following manner: Assume the transport of a chemical species 
is disappearing by a first-order irreversible rate reaction and is being ex­ 
changed reversibly by an equilibrium-controlled process in which the exchange 
isotherm is linear. The equation describing this reaction in one dimension is

pb 9c" 3r ,,  -r- = - v   + D
e 9t 3x

. / . Cp b \- k I c +    I
V e f

where p, = bulk density of the solid matrix, ML , 

c » dissolved species concentration, 

c * adsorbed species concentration.

Equation 23 gives the relationship between c and c and upon differentiation and 
substitution into equation 27, gives

|£ fi + VtV _ v |£ + D £% - ke 1 i^^^J (28)
3t \ e / 3x 3x^ * 

The retardation factor Rf is defined as

R, » 1 + K.p,/e (29) t a b

Equation 28 is divided by this retardation factor and the dispersion coefficient 
written proportional to a dispersivity term a to obtain

Li

3t Rf 8x Rf

The retardation factor thus describes the average amount of retardation in the 
flow of the solute species relative to the average interstitial velocity of 
water. This reduced velocity caused by adsorption is an important safety 
feature that prevents excessive movement of possibly harmful pollutants.

18



DEVELOPMENT OF THE GALERKIN FINITE-ELEMENT TECHNIQUE

The Galerkin technique is one of the weighted-residual methods discussed 
in its classical form by numerous authors (Crandall, 1956; Snyder and others, 
1964; Finalyson, 1969 and 1972). It is shown to be the most efficient of these 
methods by Finalyson and Scriven (1965) for the solution of mass-transport 
equations. The Galerkin method is an old numerical technique, classically used 
to solve differential equations not ameanable to analytical techniques. Recent 
advance in computing techniques popularize this particular weighted-residual 
method by coupling it with the finite-element technique (see literature review 
section). The theoretical development of the technique by Douglas and Dupont 
(1970) lends strong basis for the use of this particular technique for the 
solution of mass-transport equations.

Theory

The principle of the Galerkin finite-element method is to first choose a 
set of functions discretized in space but continuous in time to approximate the 
solution of the differential equation. This set of approximating functions 
contains time-dependent coefficients and basis functions that are real valued 
and piecewise continuously differentiable over the interval of interest. If 
L[c(t,x,y,z) ] is the differential operator this series approximation is written 
as

(t,x,y,z) = 'V' Ci (t) Vi (x,y,z) (31)

where c^ = approximate solution to the differential equation L[c]=0, 

c. = coefficient in the approximating function, 

v. = basis functions.

Since a finite number of coefficients must be evaluated, an nth order approxi­ 
mation to the solution results. This approximation is writter

-n (t,x,y,z) = \ " c i (t)vi (x,y,z) (32)

where c = approximation to the solution for n terms. The closeness of this 
approximation, c , to the real solution, c, depends upon three criteria; 
(1) care in chosing proper basis functions; (2) the number of terms n in the 
series, and (3) the method used to evaluate the coefficients c.. It is this 
third criteria, that of choosing the best method to evaluate these unknown 
coefficients, that separates the Galerkin method from the other weighted- 
residual methods. Weighted-residual methods use the concept of a residual, R, 
in their development. This residual is formed by substituting into the 
differential equation the previously mentioned series approximation for the 
dependent variable thus

19



L j c^Ct.x.y.zMS L I cn (t,x,y,z)J

= L c i (t)vi (x,y,z) (33)

where L = the differential operator, 
R = the residual.

The residual vanis'ies in the entire domain of interest or is identically equal 
to zero for a true solution to the equation. In general, a true solution will 
not result, artd the residual will not be equal to zero. Galerkin's contribution 
to the weighted-residual methods is how to weight the residual in an optimum 
manner allowing the approximation to be accurate. Galerkin chose this weighting 
function identical to the approximating fuctions (basis functions) used in the 
original approximation and set this weighted average equal to zero. The weighted 
average of the residual can be defined and set equal to zero as follows:

lRvk (x,y,z)dV 

dV

[Vk (x,y,z)dV

= 0 for k = 1, 2, . . ., n (34)

where v, = weighting function, 

R = residual.

Equations 33 and 34 can be combined to give

J-
dV

c.(t)v.(x,y,z) vk (x,y,z)dV = 0 for k = 1, 2, n (35)

When the series approximation, equation 32, is substituted into the differential 
equation L[c]=0, the approximation may have to be differentiated several times 
as the equation warrants. The differential equation may contain second-order 
derivatives and unless the basis functions can be differentiated twice, a trivial 
solution occurs. This problem can be rectified by integrating all second 
derivatives by parts. Simple integration by parts is defined for the variables 
u and v as

b b b 

\ udv = uv -\ vdu (36)

This technique can be applied to multiple xntegr^ls as
20



After integration of equation 35, a set of n linear differential equations 
with the following form results:

[a] ^i+ [B] c± + [X] = 0 W: (37)

where [a], [8], and [X] are coefficient matrices resulting from the Galerkin

dT 
integration, -:  and c. are column vectors representing the unknown coefficients.

This set of differential equations is then finite differenced with respect to 
time and the resulting set of linear algebraic equations solved by appropriate 
techniques, some of which will be discussed later.

Basis functions

Basis functions are usually chosen so that they have analytical properties 
that conform to the equation, boundary conditions, or result in simplified 
equations for ease of computation during the analysis process. The basis 
functions are usually defined over a limited number of finite elements. That 
is, they have values at element edges or intersections (nodes) of 0 or 1, 
respectively. Also they are usually easily integrated by some numerical or 
analytical technique. Simple polynomials are often used. Two common sets of 
basis functions are linear and cubic polynomials.

A linear set of basis functions w. for one dimension is described over the 
preselected intervals as follows (Price and others, 1968; Doherty, written 
comm., 1972).

(x-(i-l)h)/h; (i-l)h <_ x < ih

((i+l)h-x)/h; for ih <_ x <_ (i+l)h (38)

,0 otherwise

These particular basis functions form roof or shingle-type straight-line seg­ 
ments over the interval of interest. Hence, they are given the name linear or 
chapeau basis functions. Figure 2 shows these basis functions over one- 
dimensional elements of length h. At the node points, each basis function has 
a value of one and all other basis functions have a value of zero. Each basis 
function is overlain by the two adjacent basis functions. Integration for a 
basis function w, is thus required only over the area of three basis functions, 
thus, eliminating integration over the entire interval. This can be represented 
mathematically as

wt (x.) = 6 (38a)

f f f\Rwkdx = V Rw dx + I Rw.dx =0 (38b)

Vl Xk
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Figure 2. Plot of Chapeau basis functions with grid spacing h.



The use of linear basis functions in linear one-dimensional problems 
results in a set of linear equations with three unknowns in each equation. 
The matrix associated with these equations is tridiagonal and therefore simple 
computional methods can be used for solution. The method is second-order 
accurate with respect to space, as are space-centered finite-difference 
equations, but has been shown (Price and others, 1968) to offer advantages in 
the prevention of solution oscillations not afforded by finite-difference 
techniques. Oscillations do occur, however, as element intervals become 
larger. The use of linear functions does not allow the user to obtain deriva­ 
tives of the final solution at the node points, since derivatives of the basis 
functions are discontinuous at the nodes.

Another basis function commonly used is the Hermite cubic function. 
Figure 3 shows these basis functions over elements of length h. It is composed 
of two cubic polynomials that offer several advantages not available with the 
linear function. This particular set of functions is also defined over two 
elements (for one-dimensional problems), or three nodes. One polynomial has a 
value of zero at each end point and a value of one at the center. Slopes are 
zero at each node point. The second polynomial has values of zero at each 
node, slopes of zero at each end point, and a slope of unity at the center 
node point. These sets of functions are described over the preselected inter­ 
vals as follows (Price and others, 1968; Doherty, written comm., 1972).

(-2x4- (l+2i)h)(x-(i-l)h) 2 /h 3 ; (i-l)h <_ x £ ih

(2x 4- (l-2i)h)(x-(i4-l)h) 2 /h 3 ; ih <_ x £ (i+l)h

0 otherwise

(39)

w2i+1 (x)

(x-ih)(x-(i-l)h) 2 /h2 

(x-ih)(x-(i+l)h) 2 /h 2 

0

; (i-l)h <_ x <_ ih 

; ih <_ x <_ (i+l)h 

otherwise

For a one-dimensional problem each basis function is overlain with.five 
adjacent basis functions plus itself. After finite differencing with respect 
to time there develops sets of linear equations with six unknowns in each 
equation. For one- and multi-dimensional problems a price is paid in com­ 
putational efficiency for the advantage of differentiability at node points and 
fourth-order accuracy.

Inspection of figures 2 and 3 and of equation 32 shows that the solution 
at a particular node involves the sum of basis functions times the time- 
dependent coefficient c at that node. This means that the solution at that 
particular point is equal to the value of the time-dependent coefficient. The 
Galerkin finite-element method does provide, through equation 32, solutions at 
any point. Finite-difference methods, however, provide solutions only at nodes, 
and solutions elsewhere must be obtained by interpolations.
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Figure 3. Plot of cubic basis functions with grid spacing h.



Figures 2 and 3 present basis functions for the one-dimensional case. 
When more than one dimension is required a product of basis functions results. 
The basis function v.(x,y) for a rectangular domain in two dimensions can be
written as a product of the functions w (x) and w,(y). The function v, (x,y)

i J K
can likewise be written w (x) w (y). The Galerkin formulation for the solution 
of an equation in two dimensions would then be written

II'tt fa fa
i (t)wi (x)w (y) w.(x)w (y) dxdy = 0 for k = 1, 2,

I = 1, 2,
n
m (40)

This produces n x m equations with n x m unknowns; however no new mathe­ 
matical procedures are required for solution. For linear basis functions, 
nine unknowns are in each equation or row of the matrix, and for the cubic 
functions, 36 unknowns appear.

Integral evaluation

The solution of equation 35 requires that numerous integrals be evaluated. 
These integrals may be composed of simple polynomials and in many cases can be 
evaluated analytically. However, the method is not limited to the use of 
simple polynomials, such as the linear functions, but can use more complicated 
functions comprised of cubic and quantic polynomials. Multidimensional 
equations that result in products of several basis functions should also be 
considered. Such integrations are certainly more tedious and some cases, more 
difficult. In this case, it is necessary to resort to numerical integration 
of the resulting integrals. When chapeau basis functions were used for the 
one-dimensional problems, integration was done explicitly. Gaussian quadrature 
was used for one-dimensional problems with cubic basis functions and for all 
two-dimensional problems. Gaussian quadrature gives exact integrations for 
polynomials of degree 2n-l when at least n Gauss points are used; however, 
satisfactory results can be obtained using less Gauss points.

Gaussian quadrature formulas can be used to integrate functions in the 
following manner: To integrate

D

Y = \ f(x ) dx 

a

let

where

2x-(a+b) 
b-a (41)
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then after suitable algebraic manipulation

Yn = (b-a) (42)

where coefficents A^ and nodes t£ are given in detail by Krylov (1962). For n 
equals 3 a polynomial of degree 5 can be integrated exactly. For an integration 
interval of 0 to 1, the Gauss points are located at 0.113, 0.500, and 0.887.

For two-dimensional problems, integration is performed over an area. 
Procedures for integrating multiple integrals are discussed by Zienkiewiez 
(1971, p. 14&). Integral products of polynomials of degree (2n-l) and (2m-l) 
require n x ra, Gauss points for exact integration over the required region. 
Gauss point locations for n = 3 and ra = 3 over a (0,1) X (0,1) grid would have 
nine locations with respective x and y coordinates of 0.113, 0.5, and 0.887. 
Eosition-dependient variables within the differential equation may be evaluated 
at these Gauss points during the integration procedure. In most cases these 
variables are assumed constant within the element and evaluated at its center.

Two-dimensional problems with cubic functions result in a sixth-degree 
polynomial when no space derivatives appear. A three-point quadrature formula 
is usually accurate enough for this term and all other terms within the equation 
with space derivatives are integrated exactly. This formula also results in 
nine points for a two-dimensional element, which is convenient when position 
dependent variables are evaluated at the Gauss points.

Equation solution methods

It is, necessary to select a method to solve the set of linear differential 
equations illustrated by equation 37. This involves two distinct steps. The 
first is to approximate the time derivative. This is usually done using 
finite-difference techniques. The second is to solve the set of algebraic 
equations resulting from the particular type of differencing selected. These 
two steps will be discussed separately.

Time derivative approximations 

Rewrite the, matrix equation as

dc
[a] [6] = [X] (43)

and, as illustrated by equation (13), finite-difference the time derivative in 
the following manner:

_n+l n n+0 
[a](c. -c.) + [6]Atc. = [A]At
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where

n+G n+1
c = 0 c. + (l-0)c. (44) 
n i i

The value given to 0 depends upon the technique used to increment the time 
value in the equation. When 0 is equal to zero and explicit equation results, 
and when 0 is equal to one-half an equation centered in time results (known as 
the Crank-Nicholson method). Finally when 0 is equal to one, a fully implicit 
(backwards in time) solution results. The most accurate method of time 
differencing is the Crank-Nicholson approach when theta is equal to one-half. 
The more stable method of finite differencing is when theta is equal to one 
and the method is fully implicit. In this analysis theta was chosen equal to 
one-half.

An alternative way to write the set of algebraic equations resulting 
from finite differencing with respect to time would be the use of the 
"residual" in time method (not to be confused with the use of the residual for 
the weighted-residual methods). Here the difference (residual) in coefficients 
between time levels at the new and old time level is calculated. This residual 
in time is defined as

n+1 n 
6c± = c\ - c± (45)

_n+l
By use of this equation c is removed from the set of equations and 6c. 
is solved for. This technique allows the user more accuracy if the difference 
between the coefficient values at the initial and later time values are small. 
This technique was not necessary for the problems examined and therefore was 
not used.

A set of algebraic linear equations has now been generated that must be 
solved for the time dependent coefficients.

Matrix solution techniques

Large systems of linear algebraic equations are normally produced when 
finite-difference and finite-element methods are used to approximate linear 
differential equations. Two general methods are normally used to solve these 
large systems of equation: (1) direct methods that use a specific number of 
computational steps and (2) iterative methods that converge to the answer as 
the number of computational steps increases. Efficiencies and accuracies of 
both direct and iterative-solution techniques are usually improved through 
scaling. The system of linear equations resulting from the two-dimensional 
finite-element method using cubic basis functions produced a system of 
equations that required scaling. The associated matrix that described this 
system was scaled by first dividing each row element by the square root of the 
diagonal element in its row. Then each column element was divided by the 
square root of the diagonal element whose row number corresponded to the
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column number. This resulted in a matrix diagonal of all ones. The right- 
hand target vector was divided by the square root of the corresponding diagonal 
element. After computation the computed value was then rescaled in the same 
manner as the right-hand target vector yielding the answer. For steady-state 
conditions, scaling of the associated matrix must only be done once, but the 
right-hand side vector changed with each time increment and was rescaled each 
time.

Iteration techniques store only those entries of the matrix with values. 
Remson and others, 1971, Smith, 1965, and Carnahan, 1969, give in detail 
iteration methods that solve solutions of systems of linear equations. A 
study of iteration methods brings out some interesting facets. One is that 
the conditions sufficient and sometimes necessary for convergence of iteration 
techniques are not always present for matrices developed through Galerkin 
finite-element methods. This is not necessarily the case for the simpler one- 
dimensional equation, but for the more complicated two-dimensional situation 
the matrix may be quite ill-conditioned.

The one-dimensional problems using cubic basis functions could be solved 
using successive over relaxation (SOR) as was the two-dimensional equations 
using linear basis functions. However the matrix generated by the use of 
cubic basis functions for two dimensions was so poorly conditioned that the 
traditional iterative methods did not suffice. The author was fortunate to 
obtain the results of a then unpublished Ph. D. thesis in numerical analysis 
from the University of Illinois Mathematics Department (T. A. Manteuffel, 
written commun., 1975) that was able to efficiently solve these sets of 
equations* The report has since been published (Manteuffel, 1975) and the 
interested reader is referred to the original reference for a complete 
discussion.

Direct methods, in general, are less susceptible to convergence problems 
caused by ill-defined matrices than are iteration methods. The problems with 
direct methods are that they may be long and tedious and sometimes require 
great storage arrays to produce adequate solutions. Typical examples of these 
methods would be matrix inversion and Gaussian elimination.

There are instances, however, when sparse matrices lend themselves to 
certain techniques of solving equations. For example, when the matrix is 
composed of bands of elements leading down and adjacent to the diagonal it is 
sometimes possible to use specific linear-equation solution techniques that 
only use storage of, and computation on, these bands of equations. Gaussian 
elimination is then performed on a reconstructed matrix describing these 
equations. The Thomas algorithm for a tridiagonal matrix as obtained for a 
one-dimensional problem is an example of this solution technique.

The two-dimensional system produced by the cubic basis functions was 
solved for small sets of equations using an IBM band solve routine DGELB. 
Manipulation of the associated matrix to conform to the banded structure while 
preserving low storage was somewhat difficult. The associated matrix and 
right-hand side vector were scaled by dividing each row by its largest absolute 
value. Columnwise scaling was unnecessary due to pivoting during the Gaussian 
elimination solution procedure. Large systems of equations produced wide 
band-widths and excessive storage requirements. Therefore this technique was 
used for small or moderate-sized programs.
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APPLICATION OF THE GALERKIN FINITE-ELEMENT METHOD TO THE SOLUTION

OF MASS-TRANSPORT EQUATIONS

In this section, solution procedures for the mass-transport equation will 
be constructed. Analytical solutions for one of the simpler cases will be 
compared with the solutions obtained from the Galerkin finite-element technique. 
For more complex multidimensional problems the finite-element method will be 
compared with finite-difference solutions.

Solution of the mass-transport equation involving both hyperbolic and 
parabolic problems will now be discussed in detail. Included will be solution 
techniques for both one- and two-dimensional mass-transport equations with and 
without chemical reactions.

One-dimensional solutions

An example of a finite-element solution to a one-dimensional mass- 
transport equation is given by solving the one-dimensional diffusion convection 
equation without chemical reactions.

r\

T r i ^C , 3c _ 3 C ft /1f\L[cl = + V - D= ° (46)

The x dimension is first divided into n-1 finite elements and n nodes. The 
basis functions are defined over the domain of interest. The residual is 
formed by substituting this approximation into the differential equation for 
the dependent variable c. Galerkin's technique is applied to the residual by 
multiplying it by the weighting functions and integrating it over the interval 
of interest. The following sets of n integral equations with unknowns c(t) and 
c'(t) results.

L n L n

\ / ̂c|(t)wi (x)wk (x)dx + Iv jy Ci (t)w^(x)wk

o i=l o i=l

ci (t)w^(x)wk(x)dx = 0 for k = 1,2, . . ., n (47)

where superscript prime (') indicates differentiation and w. and w, denote the 
approximating and weighting functions, respectively.

For every weighting function or value of k there exists a linear- 
differential equation. Equation 47 thus represents a set of n linear- 
differential equations.
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The equations that best define the conditions at the boundaries are the 
flux conditions given by Brenner (1962) as

D 9x
= -v(c - co>> for x = 0, t >_ 0,

 - 0 3x U ' for L, t > 0. (48)

When it is important to specify exact boundary conditions, basis functions 
and their respective time-dependent coefficients are chosen to take on the 
required characteristics at the boundaries. For equation 48, boundary conditions 
are those given by Brenner (1962), and basis functions that provide proper 
solutions at the boundaries must be adaptable to these boundary equations. 
Substitution of the approximation for the dependent variable into these boundary 
equations results in the following:

c ± (t)wj(o) = v ci (t)wi (o) - c for x = 0 (48a)

for x (48b)

Equation 48b requires that the basis functions at x = L have a slope equal 
to zero. Cubic functions automatically have this property; however, linear 
functions, do not. The n-1 and n linear basis functions are therefore modified 
to give them this property. They are redefined in the following manner:

(x) = w
/<*-(n-2)h)/h
|(nh-x)2/h2

= ((x-nh) 2-h 2)/h 2

; (n-2)h <^x <_ (n-l)h
; (n-l)h < x <~ nh = 1

; (n-l)h < x < mh = 1 (49)

The defining equation 46 contains second-order derivatives. Unless the 
basis functions can be differentiated twice, a trivial solution results. This 
problem is rectified by integrating all second derivatives by parts.
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Such integration performed on the last term in equation 47 results in the 
following

L n

"° \ S C1 (t)wJ

o =

L n

for k = 1, 2, . . ., n

o =

(50)

Combining 47, 48, and 50 the following equation is obtained.

L n L n

c!(t)w.(x)wk (x)dx Ci (t)w!(x)wk (x)dx

o i=l o i=l

L n

>w!(x)w'(x)dx = 0 for k = 1, 2, . . ., n (51)
X K

o i=l

The next step is to substitute the basis functions into equation 51 and 
integrate. This results in a set of linear differential equations in time*
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The coefficient matrix that results from the analytical integration 
of the simple one-dimensional example using linear basis functions is 
given below.

1/3 1/6 

1/6 1/3 1/6 

1/6 1/3 1/6

  *  

1/6 8/15 2/15 

2/15 8/15

dc^dt 

dc2/dt 

dc 3/dt

dc n /dt n-1

dc /dt n

Al -A2

Al 2 -A2

-Al 2 -A2

-Al 7/3 -A4 

-A3 A3

*

cl
C 2

C 3

*

 

*

Cn-l

cn

s

Vc o

o

0

o

o

o

o

0

W   !

(52)

where Al = 1+a 

A2 = 1-a 

A3-= 4/3+a 

A4 = 4/3-a

and a . vh
2D
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This set of equations is solved by finite-differencing the time derivative 
using the Crank-Nicholson method. The differential equation describing one- 
dimensional flow through porous medium is difficult to solve accurately 
numerically for low values of the dispersion coefficient because of oscillation 
or numerical dispersion. Figures 4 and 5 present numerical and analytical 
solutions, respectively, of equation 46 for dispersion coefficients of 0.001 
and 0.0001. This equation was solved using the Galerkin finite-element 
method with both linear and cubic basis functions for time steps of 0.002 and 
a space increment of 0.1. The column length and fluid velocity were both 
1.0. A space and time-centered finite-difference technique was used to solve 
this equation. Severe oscillations of the finite-difference solution results 
for both values of dispersion coefficients. These results demonstrate that 
sharp fronts, that is, those with low dispersion coefficients, are difficult 
to model with standard, finite-difference methods. Note, however, that for 
figure 4, Galerkin finite-element techniques using linear and cubic functions 
closely match the analytical solution. For very low values of the dispersion 
coefficient (fig. 5) the chapeau functions produce oscillation.

Two-dimensional solutions

The advantage of finite-element techniques becomes apparent with the 
solution of the two-dimensional, diffusion-convection equation where small 
dispersion coefficients predominate. There is basically no difference in the 
formation of the residual that must be minimized under the integral than was 
done with the one-dimensional transport equation. The general transport 
equation to be solved is equation 7.

As with the one-dimensional equation, second-order differentials appear 
and must be reduced to first order. As shown previously, these terms appear 
in the description of the dispersion process and are

3 , 3Cv 3 , 3c x ,3 ,_ 3cx .3 fr. 3cN 
^ (\x to? + ly- (Dyy ^ + toi (Dxy 9^ + 3? (Dyx to?

These terms are differentiated and the residual is formed to obtain

+ 3c
xx 3x 3x 3x yy 3y 3y 3y xy 3x3y

3D
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A FINITE DIFFERENCE 

O CHAPEAU BASIS FUNCTIONS 

D CUBJC BASIS FUNCTIONS 

ANALYTICAL SOLUTION

0.1 0.2 0.3 0.4 0-5 0.6 0.7 0.8

FRACTIONAL DISTANCE x/L

Figure 4. Comparison cf finite-difference and finite-element solutions to 
the connective-diffusion equation for a dispersion coefficient of 
0.001 and a displaced pore volume of 0.5.
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A FINITE DIFFERENCE

O CHAPEAU BASIS FUNCTIONS 

D CUBIC BASIS FUNCTIONS 

ANALYTICAL SOLUTION

-0.1
0 0.1 0.2 0.3 0.4' 0.5 '0.6 0.7 0.8 0.9

FRACTIONAL DISTANCE x/L

Figure 5. Comparison of finite-difference and finite-element solutions to 
the connective-diffusion equation for a dispersion coefficient of 
0.0001 and a displaced pore volume of 0.5.
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Reduction to firsC order is accomplished by integration by parts. Integration 
of this equation can be done in an elegant manner using vector calculus as 
illustrated generally (Wylie, 1966, p. 572) and specifically (Finder and others, 
1973) for the flow equation.

Since this integration may produce terms for inclusion into the boundary 
equations, a detailed integration by parts will be performed for the first of 
the integral terifts:

u = Dxxwk (x »y) where wfc (x,y) = wk (x)w £ (y)

p

dv = -r T

therefore

3w (x,y) 3Ddu   Dxx  ax  + wia <«.y> if

, _
UX   ~   r,3x 3x

then the first term of equation 53 becomes

f [ D   IsfdyJ1" f [  
JL X x -l JJL

x y xo J o o

Performing this integration on all of the second-ordered derivatives results in 
the following equation:

yL * * Y

dy + + D " dx
y xx yJ o oo

yL XL-nt-
y xo o

3c k£ 3c kg, 9c kg, . _ 3c 
xx 3^-3x~ + Dyy ^y" IT + V ̂ "ly" + °yx ^
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The series approximation for the dependent variable (concentration) for the 
two-dimensional, mass-tranport equation is given as

Cn.m (t ' X' y) =

m

/£*^
ci .(t)wi (x)w (y) (55)

As mentioned previously, integration of two-dimensional problems is carried 
out over the element area by mathematical operations at positions located at 
Gauss points within the element. When parameters were known to change rapidly 
with position, selected finite elements (in the area of rapid change) were 
subdivided into nine subelements, the centers of each closely corresponding to 
the Gauss points. Position-dependent variables were evaluated at each of these 
points. This procedure was used only for elements using cubic basis function 
and only for elements surrounding nodes that described wells. A complete 
subdivision of all finite elements in this manner was successfully accomplished 
but deemed impractical for large-scale problems.

The two-dimensional form of the mass-transport equation, where the chemical 
reaction term is assumed to be equilibrium-controlled ion exchange with a 
first-order irreversible chemical reaction, is now written as

n m

(t) [' (y)wk(x)w£ (y)

D w± (x)w'(y)wk (x)wjl (y) - w± (x)w (y)w

i (x)w (y)wk (x)w^(y)

i=l j=l

CL [
V (DyyWi (x)w^ (y)

fL
(y)

Jo

dx

f f c Q
\ \ -r-w (x)w (y) dxdy = 0 £ for k = 1, 2, . . . , n 

£-1, 2, . . .,m (56)
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Integration of equation 56 produces a set of n x m linear differential 
equations. The integrals are evaluated using Gaussian numerical-quadrature 
methods as previously discussed. Each algebraic equation will have as many as 
9 unknowns for chapeau basis functions and 36 unknowns for cubic basis functions 
depending on its type and closeness to the boundary. As was the case with the 
one-dimensional problems, the basis functions require that the coefficient 
value e^Ct) is also the value of the variable cn m(x,y,t) for linear basis 
functions and where the product of the basis functions equal one for the cubic 
functions.

The matrix differential equation that expresses equation 56 after inte­ 
gration can be written

This equation is then finite differenced with respect to time in the 
Crank-Nicholson manner and the previously mentioned techniques used to solve 
the resulting matrix.

The two-dimensional, finite-element solution was compared to an analytical 
solution as was the one-dimensional case. Unidirectional flow in the x or y 
direction was imposed on the two-dimensional equation without sinks, sources, 
or chemical reactions. The breakthrough curves, for a problem with boundary 
conditions similar to those used for the one-dimensional equation, were identical. 
to those obtained for the one-dimensional analytical and numerical solution.

The finite-element programs were also compared with a previously developed 
finite-difference model. The finite-difference program has been used previously 
within the U.S. Geological Survey and checked extensively with analytical 
solutions to known problems, with satisfactory results. A hypothetical waste- 
contamination problem was used to demonstrate the compatibility of all three 
models. Two finite-element models, using chapeau and cubic basis functions, 
respectively, were used in the simulation study.

The physical system is schematically represented as figure 6. An injection 
well introduced a conservative solute into an areal-flow field directed southward 
and a pumping well intercepting a portion of the injected fluid during its 
travel. Figures 7 and 8 give solute concentrations at areal nodal points 

\directly beneath the injection well and at the intercepting well as a function 
6  .time. The notation (refined) for one of the simulations using hermite 
cubic basis indicates more detailed definition of solution parameters at nine 
gauss, points within the finite element. Exact comparisons should not be 
expected; however, the closeness of values for these widely different types of 
numerical analysis is apparent.

APPLICATION OF THE GALERKIN FINITE- ELEMENT TECHNIQUE 

TO A FIELD PROBLEM

The Galerkin finite-element method has been shown in the previous chapters 
to adequately simulate known analytical solutions to mass-transport equations.
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Figure 6. A schematic representation of a two-dimensional solute
transport problem
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In this section the method will be applied to a known ground-water contamina­ 
tion problem. The area is the Snake River plain aquifer at the Idaho National 
Engineering Laboratory (INEL), which was formally called the National Reactor 
Testing Station in Idaho. Robertson (1974) modeled the movement of waste 
through this aquifer using finite-difference techniques for the flow model and 
the method of characteristics for the solute-transport model.

The reason that this particular area was chosen is that excellent field 
data are available and the waste reacts chemically during its movement through 
the aquifer.

Problem description

Robertson, Schoen, and Barraclough (1974) gave a detailed geographic, 
geologic, and hydrologic description of the Snake River aquifer underlying the 
INEL (Idaho National Engineering Laboratory). The reader interested in such 
details is referred to reports by these authors. This manuscript deals with 
one small part of their work; therefore, only an abbreviated description of 
the area and the waste-disposal problem will be given here.

The INEL is located on the Snake River Plain in southeastern Idaho. This 
plain is underlain by the Snake River plain aquifer that is made up of numerous 
basaltic flows and contains a vast amount of ground water. Ground water is 
recharged in the higher mountains and flows to the southwest through very 
hetrogeneous basalt discharging through springs into the Snake River. A 
pictorial map depicting the generalized ground-water flow pattern and salient 
surface features is shown in figure 9.

Since 1952 chemical and low-level radioactive wastes are disposed of into 
the ground-water system. These wastes migrate down the hydraulic gradient 
and, unless removed from the aquifer by physical or chemical means, will 
eventually discharge into the Snake River. The majority of the wastes were 
injected into the aquifer at two sites; the TRA (Test Reactor Area) and the 
ICPP (Idaho Chemical Processing Plant). Robertson (1974) gave the input rate 
for waste-water recharge for these two sites and these are shown in table 2. 
Figure 10 illustrates the regional ground-water table, May through June 1965, 
the location of the waste-water recharge sites, and the area chosen to be 
modeled for solute transport.

Sampling of the waste products was accomplished through monitor wells 
drilled down gradient from the injection points. The background level for 
chloride was 10-20 mg/L. The monitoring of tritium and strontium was limited 
by the detection level of the analysis procedure which was 2 pCi/mL for tritium 
and 0.005 pCi/mL for strontium.
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Figure 9. Map of Idaho showing the location of the IXEL, the Snake River 
Plain, and inferred ground-water flow lines (fron Robertsont 1974).
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Figure 10. The regional ground-water table, May through June 196.6, the location 
of the waste-water recharge sites, and the modeled area at INEL, Idaho* 
(Robert son, 1974).

44



Table 2. Input rates and concentrations for waste-water recharge

at INEL, Idaho

[rag/L is milligrams per liter; pCi/mL is pico curies per 
milliliter; ft 3/s is cubic feet per second; cm3/s is cubic 
centimeters per second.]

TRA ICPP

Chloride (Cl ) 
Tritium (H 3 ) 
Strontium-90 (Sr 90 ) 
Injection rate

35 mg/L 
300 pCi/mL 

0.0 
1.9 ft 3 /s (0.054 cm 3/s)

245 mg/L 
800 pCi/mL 

1.0 pCi/mL 
1.7 ft 3 /s (0.048 cm3 /s)

Movement of these three products through the ground-water system depends 
on chemical as well as physical factors. The physical factors are the previously 
discussed effects of convective transport and dispersive transport, the latter 
being used to approximate nonideal flow conditions. The chemical factors may 
include rate reactions and ion exchange. The former is characterized in this 
instance by radioactive decay of the tritium and the strontium. The latter is 
characterized solely by the strontium where the small chemical concentrations 
allow the assumption of linear-adsorption isotherms. Since surface-controlled 
ion exchange (as we would expect here) is usually very fast, equilibrium 
conditions are assumed and the previously developed equations covering this 
case apply.

Chloride is a nonreactive waste species that is used to characterize the 
system in terms of the dispersion coefficient. Matching observed with 
numerically-derived data allows determination of dispersivity constants and 
gives some check on the accuracy of the determined velocities that control the 
convective transport portion of the transport equation. Using this technique 
a longitudinal characteristic length of 300 feet and a ratio of CL /a = 1 
was chosen for this test problem.

The chemical parameters necessary to the solution of the transport equation 
are now discussed. Equation 26 illustrates the first-order rate constant for 
radioactive decay to be 0.693/half life. The half life of tritium is 12.26 
years and for strontium-90 is 28.9 years. The respective rate constants for 
tritium and strontium are then 0.0565 yr and 0.0240 yr"1 .

Since a linear adsorption isotherm can be used to characterize the exchange 
process a distribution coefficient is required. The determination of a dis- 
distribution coefficient that will apply to field situations is difficult. 
Robertson (1974) reported that of the strontium injected into the system only 
3 percent is present in the aqueous phase. The rest is assumed to be adsorbed 
on the surface of the aquifer matrix. This information allows calculation of a 
term related to the distribution coefficient that can be used to calculate the 
effect of ion exchange. The term K^p^/e in equation 28 can be shown for these 
conditions to be equal to 0.97/0.03 or 32.33. The retardation factor defined 
by equation 29 is then 33.33. This information can be translated to mean that 
the average velocity of the strontium ion is traveling 0.03 times the velocity 
of the ground water.
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Initial conditions for contaminants in the ground-water system assumed 
that neither tritium nor strontium were present. As mentioned previously, the 
background level of chloride was assumed to be 10 mg/L.

Simulation of contamination conditions

As illustrated by figure 10, an area of INEL approximately 8 x 8 mi was 
chosen to be JBodeled for the transport of waste solutes. This area was then 
divided into 20 x 20 finite-difference cells. These finite-difference cells 
were used to calculate the detailed head distribution using the finite-difference 
approximation to the flow .equation. The finite-element net was then overlain 
on top of the finite-difference cells with the finite-element node failing on 
the center of t<he finite-difference cell. The finite-element area then com­ 
prised quarter portions of four finite-difference cells. This program allows 
ttje use of existing finite-difference solutions to the simpler equations that 
define the hy4raulic head in the aquifer. The length of the sides of the 
elements and cells was 2,100 ft (640 m). Figure 11 illustrates the finite- 
difference and finite-element nodes as used for the INEL contamination problem. 
The boundaries are approximated by a zero concentration gradient. This is 
accomplished by setting the concentration of the boundary node equal to the 
adjacent node or a fixed initial concentration, depending on the direction of 
the velocity.

In detail, the modeled area contained four wells, two discharging (pumping) 
and two recharging waste water.

All finite-element simulation studies were done using linear basis 
functions. Computer runs for identical problems using the cubic basis functions 
topjc an order of magnitude longer for CPU time. When larger size elements were 
used to decrease the size of the matrices, the necessary detail for problem 
solution was lost. The use of cubic basis functions is recommended for situations 
Where uniform conditions exist throughout the medium, thus allowing fewer 
elements to be used. Further research on means to generate more detail within 
the larger finite elements which must be used with the cubic basis functions, or 
more rapid solution techniques for sparce, poorly conditioned matrices, might 
allpw expanded use of this method. Using the input data from table 1, concen- 
fration maps were generated for chlorj.de, tritium, and strontium. These 
generated profiles were compared with field data contoured by Robertspn (1974).

Chloride contamination simulation

Figure \.1 compares the waste-chloride plumes for 1968-69 based on well- 
s,ample data and the finite-element mo4el using the linear basis functions. Com­ 
parisons between field and computer simulations are considered good for this 
type of study. Field generated contours, such as the 15-mg/L isochlor, were £n 
some cases estimates based on one or two sample points. The material balance of 
the simulation study indicated an 8-percent error for this run of 17,1 years.



FINITE DIFFERENCE CELLS

Figure 11. Location of finite-difference cells and finiie-element nodes
for the NRTS contamination problem
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EXPLANATION

EQUAL CHLORIDE CONCENTRATION IN mg/L FOR 1968-69 

-50 WELL SAMPLES     _ 50 FINITE ELEMENT MODtL

Figure 12. Comparison of waste chloride plumes for 1968-69 
based on well sample data and computer model.
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Tritium contamination simulation

Figure 13 compares the waste-tritium plumes for 1968-69 based on well- 
sample data and the finite-element model using the linear basis functions. 
The introduction of an irreversible chemical-reaction term to account for 
radioactive decay distinguishes this simulation from the chloride. Except 
for the introduction of this term and the different initial and boundary 
conditions, the mass-transport parameters were the same. Excellent correlation 
between the field data contours and finite-element contours again resulted.

Strontium contamination simulation

Strontium-90 was injected only into the ICPP disposal well at relatively 
low concentrations. The high degree of ion exchange retards the movement of 
this radioactive species through the ground-water system. This chemical 
reaction adds a term to the equation to simulate a retarded movement of the ion, 
Figure 14 compares numerical-calculated versus field-observed data for the 
strontium contamination problem. Although it is difficult to make accurate 
comparisons for this small movement, adequate comparisons of the field and 
computed data exist.

SUMMARY AND CONCLUSIONS

The use of Galerkin finite-elements to solve the partial-differential 
equation that describes mass transport was shown to be a feasible approach. 
The use of linear and cubic basis functions generated solutions to the 
convective-diffusion equation that were more accurate and less susceptible to 
oscillation than finite-difference methods. Large-scale two-dimensional 
problems can be solved with these methods; however, excessive computer time 
results with the use of cubic basis functions. This is due to the structure of 
the coefficient matrix that represents the system of differential equations 
that must be solved. Linear basis functions form strongly diagonal matrices 
with no more than nine entries per row. Cubic basis functions form matrices 
with weak diagonals and as many as 36 elements per row. The use of SOR to 
solve the matrix formed with linear functions was very efficient. A more 
involved iterative technique was necessary to solve the matrix generated by 
the cubic functions. A sample problem required a factor of 10 times longer 
CPU time to solve the problem using cubic functions rather than the linear 
functions. This time difference can perhaps be lessened by using fewer but 
larger sized elements for the cubic equations. The decrease in program sensi­ 
tivity to parameter values such as areal changes in transmissivity and well 
locations makes this adjustment presently unattractive.

The model's practical use was demonstrated by solving field-contamination 
problems. The concentration profiles of chloride, tritium, and strontium-90 
were simulated and compared to field data. The model successfully simulated 
solute transport for an unreactive conservative solute chloride, a solute with 
a first-order irreversible rate reaction, radioactive decay, and a solute with 
equilibrium-controlled ion exchange.

The program incorporated generalized expressions to treat dispersion as a 
tensor with both longitudinal and transverse components.
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BURIAL GROUND

EXPLANATION

EQUAL TRITIUM CONCENTRATION IN pCi/mL FOR 1968

     -50 WELL SAMPLES

        50 DIGITAL MODEL (FINITE ELEMENT)

Figure 13. Comparison of waste tritium plumes for 1968-69 based on well sample
data and computer model.
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'BURIAL GROUND

EXPLANATION

EQUAL STRONTIUM 90 CONCENTRATION IN pCi/mL FOR 1964 

_______ 0.01 WELL SAMPLES

____ 0.01 DIGITAL MODEL (FINITE ELEMENT)

Figure 14. Comparison of waste strontiwn-90 plumes for 1964 
based on well sample data and computer model.
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Previous studies using finite-difference methods to solve these same sets 
of transport equations showed the finite-element methods to be superior for 
large grid spacings. For the models presented here, the linear functions are 
superior to cubic functions for large two-dimensional problems.

As with any numerical technique, further study may reveal shortcuts or 
improvements to enhance the technique's features. The most productive research 
in this area would perhaps be a search for more efficient matrix-solution 
techniques for such sparce unsymroetric systems.
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