
(200) WRI Mo.77-53

PUBLIC WATER SUPPLIES OF SELECTED MUNICIPALITIES IN FLORIDA, 1975

C. I sent on

Prepared in cooperation with
FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION
SOUTH FLORIDA WATER MANAGEMENT DISTRICT
SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT
ST. JOHNS RIVER WATER MANAGEMENT DISTRICT
SUWANNEE RIVER WATER MANAGEMENT DISTRICT
NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT
AND OTHER STATE, LOCAL, AND FEDERAL AGENCIES

BIBLIOGRAPHIC DATA	1. Report No.	2.	3. Recipient's Accession No.
4. Title and Subtitle			5. Report Date
PUBLIC WATER SUPPL FLORIDA, 1975	IES OF SELECTED MUNICIPALITIES	3 IN	6. July 1977
7. Author(s) Henry G. Healy			8. Performing Organization Rept. No. USGS/WRI 77-53
	rvey, Water Resources Division	1	10. Project/Task/Work Unit No.
Suite F-240, 325 John Knox Road Tallahassee, Florida 32303			11. Contract/Grant No.
12. Sponsoring Organization Name and Address U.S.Geological Survey, Water Resources Division Suite F-240, 325 John Knox Road			13. Type of Report & Period Covered
Tallahassee, Florid	la 32303		14.

15. Supplementary Notes

Prepared in cooperation with the Florida Department of Environmental Regulation, Water Management Districts, and other state, local, and federal agencies

16. Abstracts The demand for freshwater for municipal use in Florida, which increased sharply during 1970-75, is summarized in a report on water use by 169 municipalities and 5 county water systems in Florida as of December 1975. Included in the report by city or system, are water use data, sewage data, and chemical analyses of raw and treated water. In addition, miscellaneous public supply data for 111 small communities and municipalities and historical public supply pumpage for selected municipalities for 1945, 1947, 1956, 1965 and 1970-74 are tabulated.

17. Key Words and Document Analysis. 17a. Descriptors

Florida, groundwater, surface water, water and supply, water utilization.

17b. Identifiers/Open-Ended Terms

Florida, Floridan aquifer, Biscayne aquifer, sand-and-gravel aquifer, shallow sand aquifer.

17c. COSATI Field/Group

18. Availability Statement	19. Security Class (This	21. No. of Pages
	Report) UNCLASSIFIED	/315
No restriction on distribution	20. Security Class (This	22. Price
	Page	
	UNCLASSIFIED	

PUBLIC WATER SUPPLIES OF SELECTED MUNICIPALITIES IN FLORIDA, 1975

By Henry G. Healy

U.S. GEOLOGICAL SURVEY

WATER-RESOURCES INVESTIGATIONS 77-53

Prepared in cooperation with

FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION SOUTH FLORIDA WATER MANAGEMENT DISTRICT SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT ST JOHNS RIVER WATER MANAGEMENT DISTRICT SUWANNEE RIVER WATER MANAGEMENT DISTRICT NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT AND OTHER STATE, LOCAL, AND FEDERAL AGENCIES

FO

UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY

V. E. McKelvey, Director

For additional information write to:

U.S. Geological Survey Suite F-240 325 John Knox Road Tallahassee, Florida 32303

CONTENTS

Page
Summary of water use
Purpose and scope
Acknowledgments 6
Difference between quantities of water supplied, per
capita use, and sewage effluent 6
Definition of terms
Sources of water
Chemical analyses
Northwestern Florida
Northern, northeastern, and north-central Florida 60
Central Florida
Southern and southeastern coastal Florida
References
Alphabetical index of cities and water systems 302
ILLUSTRATIONS
Figure
1Population of Florida, 1900-85, total quantity of
public-supply water delivered by selected muni-
cipalities in 1947, 1956, 1965, 1970, and 1975,
and total quantity of public-supply water de-
livered by all municipalities in Florida, 1965,
1970, and 1975
2Map showing sources of water supply for munici-
pal use
Pag 444
3Map showing municipalities in northwestern Flori-
da for which water-use data are given 25
4Map showing distribution systems of Bay County
Water System, Panama City area
5Graph showing total yearly pumpage, Panama City 48
6Map showing areas supplied water by the city of
Pensacola and the Peoples Water Co., Warrington 51
rensacota and the reoptes water co., waitington Of
7Graph showing total yearly pumpage, city of
Pensacola
2010000200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8Map showing distribution system of St Joe Paper
Co., Port St Joe
9 Map showing municipalities in northern, north-
eastern, and north-central Florida for which
water-use data are given 61

ILLUSTRATIONS (Continued)

Figure	Э
10Map showing areas supplied water by the city of Jacksonville	3
11Graph showing total yearly pumpage, city of Jacksonville	ļ
12Map showing areas supplied water by the city of St Augustine	
13Graph showing total yearly pumpage, city of Tallahassee	,
14Map showing municipalities in central Florida for which water-use data are given 98	
15Graph showing total yearly pumpage, city of Cocoa	
16Graph showing total yearly pumpage, Dade City 112	
17Graph showing total yearly pumpage, city of Lakeland	
18Map showing areas supplied water by the city of Melbourne	
19Graph showing total yearly pumpage, city of Orlando	
20Graph showing total yearly pumpage, city of Tampa	
21Map showing areas supplied water by the city of Vero Beach	
22Graph showing total yearly pumpage, city of Winter Park	
23Map showing municipalities in southern and southeastern coastal Florida for which wateruse data are given	
24Map showing areas supplied water by individual and composite water systems, Broward County 188	
25Map showing well fields, treatment plants, and service areas of public and private water-supply systems in the Ft Myers area 191	

ILLUSTRATIONS (Continued)

Figure	Page
26Map showing municipalities served by the Miami-Dade Water and Sewer Authority	. 219
27Graph showing total yearly pumpage, Miami-Dade Water and Sewer Authority	.220
28Graph showing total yearly pumpage, city of Stuart	.255
TABLES	
Table 1Quantities of public-supply water delivered to users by 169 municipalities and 5 county water systems, by source, 1975	. 3
2Quantity of water supplied by 22 municipalities by source, 1975	s, 14 ·
3Quantity of public-supply water delivered to users by 20 municipalities, 1975	. 16
4Major chemical constituents in watertheir sources, concentrations, and effects upon useability of water for public supply in Florida, 1975	. 18
5Public water supplies of 111 communities and minicipalities of generally less than 5,000 population, 1975	u- . 261
6Water use by selected municipalities, 1945, 1947, 1956, 1965, and 1970-74	.267

PUBLIC WATER SUPPLIED OF SELECTED MUNICIPALITIES IN FLORIDA, 1975

by Henry G. Healy

SUMMARY OF WATER USE

In 1975, the 169 municipalities and 5 county water systems listed in this report supplied 1.037 million gallons of water each day, on the average to 77 percent of the population of the State of Florida. The quantity of water supplied represented 90 percent of the State's public water supply demand. Of the 169 municipalities and 5 county systems, 150 supplied 887 million gallons of ground water and 24 supplied 150 million gallons of surface water each day, on the average, representing 85 percent and 15 percent, respectively, of the total demand of the 174 water systems. Three of the 150 municipal ground-water suppliers are reported to have processed, that year, about 3.2 million gallons of water each day by desalination.

The 20 largest cities in the State, with an aggregate population of 3.72 million--44 percent of the State's population--used, on the average, 638 million gallons per day, 72 percent of the total municipal water supply of the 169 municipalities.

The demand for freshwater for municipal use in Florida increased sharply during 1970-75. Statewide ground-water use for municipal supply increased from 759 million gallons per day in 1970 (Pride, 1973) to 983 million gallons per day in 1975 and surface-water use has increased from 125 million gallons per day in 1970 (Pride, 1973) to 163 Mgal/d in 1975. The 29 percent increase in ground-water use and the 30 percent increase in surface-water use reflect the continuing rapid population growth and the accompanying expanding economic activity in the State. The increase in population and the total yearly water use for selected municipalities are shown on figure 1.

The population of Florida as of July 1, 1975 was estimated to be 8,485,230. The population served by the 169 municipalities and 5 county systems listed in this report is 6,537,913 or 77 percent of the total. Average daily per capita use of public water supplied ranged from 35 gal at Crawfordville in Wakulla County to 530 gal at Palm Beach in Palm Beach County. The average daily per capita use of the water supplied by the 174 systems was 158 gal, compared to an average per capita use of 168 gal based on total statewide daily municipal water use of 1,146 Mgal/d (table 1).

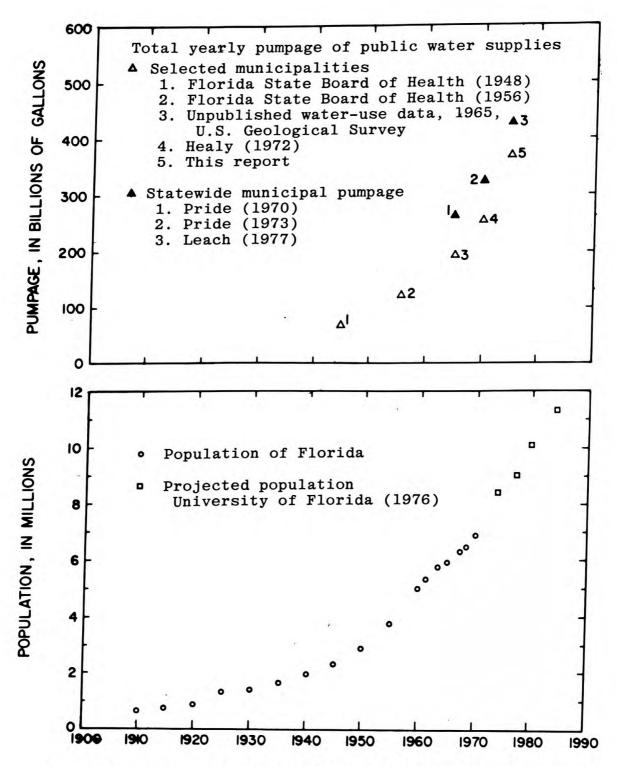


Figure 1.—Population of Florida, 1900-85, total quantity of public-supply water delivered by selected municipalities in Florida, 1947, 1956, 1965, 1970, and 1975, and total quantity of public-supply water delivered by all municipalities in Florida, 1965, 1970, and 1975.

Table 1.--Quantities of public-supply water delivered to users by 169 municipalities and 5 county water systems, by source, 1975

	Water supplie d		Percentage	Percentage ground and	
	For the year (Mgal)	Average daily (Mgal)	of ground water supplied (by source)	surface water supplied (Total use, all sources)	
Ground water (aquifers)					
Biscayne	147,254	403	45.6	38.8	
Floridan	133,864	367	41.4	35.3	
Sand-and-gravel	9,733	27	3.0	2.6	
Shallow sand	26,659	73	8.2	7.0	
Hawthorn and Tampa	2,872	8	.8	.8	
Hawthorn	2,598	7	.8	.7	
Key Largo Limestone	624	2	.2	.2	
Total, ground water	322,604	887	100	85.4	
Surface water					
Rivers	29,210	80	53.0	7.8	
Lakes	13,620	37	24.7	3.6	
Reservoir	11,806	32	21.4	3.1	
Infiltration gallery	466	1	.9	.1	
Total, surface water	55,103	150	100.1	14.6	
Total, ground and surface water $\frac{1}{2}$	378,707	1,037	population ser	rved: 6,537,913	

Onstitutes 90.7 percent of the 418,290 Mgal supplied to a statewide user population of 6,820,600.

The principal aquifers being developed by the 169 municipalities and 5 county systems in 1975 are:

Aquifer	Average daily withdrawal
	(in million gallons)
Biscayne	403
Floridan	367
Sand-and-gravel	27
Shallow sand	73
Undifferentiateda/	17

More than half the surface-water supply, 80 million gallons per day was diverted from rivers, 37 millions gallons per day from lakes, and 32 million gallons per day from a reservoir. An infiltration gallery supplied 1 million gallons per day.

a/ Includes 2 Mgal/d supplied by Key Largo Limestone to Stock Island desalination plant at Key West.

Of the rivers, the Hillsborough supplied the most, 53 million gallons per day, to Tampa; and the Manatee, the least, 0.5 million gallons per day, to the city of Palmetto.

The areas where rapid growth of population and economic activity will have the greatest impact on water resources are: (1) the lower Gulf coastal area, from Sarasota to Naples; a rapidly developing vast retirement complex; (2) the Tampa-St. Petersburg area which includes Pinellas County, northern Hillsborough County and southern coastal Pasco County; (3) the southeastern coastal area in Martin, Palm Beach, Broward and Dade Counties, extending south from Stuart to well beyond Miami: an area whose population increased from 1,514, 031 in 1960 (Florida State Department of Commerce, 1971) to 2,389,766 in 1975 (University of Florida, 1975); (4) the Orlando area where the impact of Disney World is continuing to be felt; (5) the industrialized Jacksonville-Fernandina Beach area; (6) the Tallahassee area; and (7) the Pensacola area.

In most of these areas, water for municipal supplies currently is adequate although shortages of fresh ground water and surface water will inevitably occur and may become critical in some areas with possible attendant deterioration in quality.

Average daily use of public supply water in 1975 exceeded the daily sewage discharge for 72 percent of the 169 municipalities reported. The daily use exceeded daily sewage discharge by less than 50 percent in 39 municipalities, between 50 to 100 percent in 27 municipalities, and between 100 to 200 percent in 31 municipalities. Of the remaining 25 municipalities, daily use exceeded daily sewage discharge between 200 to 350 percent in 12, and was greater than 350 percent in 13 municipalities.

PURPOSE AND SCOPE

In 1975, information on water use in Florida was collected as part of the periodic 5-year national and statewide survey of water resources by the U.S. Geological Survey. This report summarizes the water-use information obtained from 169 municipalities and five county water systems in Floridan and the data presented are current to December 1975.

In Florida, water-use information is collected by the Geological Survey as part of the statewide cooperative program with the State Department of Environmental Regulation, and as part of the programs for evaluating water resources in cooperation with many other governmental agencies. Among them are the Central and Southern Florida Flood Control District, the Northwest Florida Water Management District, the St. Johns River Water Management District, and the Suwannee River Water Management District.

The information was collected by personnel of the U.S. Geological Survey and the five Water Management Districts as part of an inventory extending from May 1975 through June 1976. The inventory was implemented by personal contact with water-plant superintendents, water managers, and city officials. Listed in the report are data for (1) all cities whose population in 1972 was 5,000 or more, (2) 111 municipalities and communities whose populations in 1975 were generally less than 5,000 (See table 5 at end of report) and (3) all county seats. Also included is information for three large unincorporated communities having an aggregate population served of 16,300 and three municipalities that use water for public supply derived partly or wholly from some type of desalination process. Historical public supply records are included in this report for selected municipalities for 1945, 1947, 1956, 1965, and 1970-74 (see table 6 at end of report).

This report is the second in a series of reports listing water-use characteristics for most of the public water suppliers in the State. In the report for 1970 (Healy, 1972) information was supplied for 138 suppliers, 36 less than those for which data are furnished in the present, report for 1975.

This report is divided into four sections, each representing a segment of the State, a division comparable to that used to systematically present ground-water data for 1971-72 (Healy, 1974), and for 1973-74 (Healy, 1976). The four segments of the State are (1) northwestern Florida, (2) northern, northeastern, and north-central Florida, (3) central Florida, and (4) southern and southeastern coastal Florida. Data for individual municipalities and selected communities are presented alphabetically in each of the four sections, and for the State as a whole in the index.

Of the cities listed in this report 20 are in the 14 SMSA's (Standard Metropolitan Statistical Area). An SMSA is defined by the Bureau of the Budget as a county or group of counties that contain at least one city of 50,000 inhabitants or twin cities whose combined populations is at least 50,000 (Schneider, 1968, p. 3). Included by area are: Daytona Beach, Fort Lauderdale-Hollywood, Fort Myers, Gainesville, Jaskconville, Lakeland-Winter Haven, Melbourne-Titusville-Cocoa, Miami, Orlando, Pensacola, Sarasota, Tallahassee, Tampa-St. Petersburg, and West Palm Beach-Boca Raton.

Included in the listing for the 169 municipalities and 5 county water suppliers are water-use data, sewage data, and chemical analyses of raw and treated water. Sewage data--for all municipalities having teratment plants if sewage records are available--include the types of sewage treatment, average daily sewage discharge, and the name of the water body receiving the waste water.

All the chemical analyses listed in this report except one were made by the U.S. Geological Survey. In 1975, 160 samples were analyzed and, early in 1976, 8 were analyzed. All except three of the 168 samples analyzed were of raw (untreated) water; 147 from wells and 18 from surfacewater sources. The other three were of water processed by desalination, reverse osmosis, and electrodialysis.

Also included in this report is a list of reports published in 1970-75 relating to hydrology, geology, and water resources of the areas where cities are located. Reports published prior to 1970 are cited in Healy (1972). All the water use for Florida, only a small part of which is included in this report, will be available through the following publications: Leach (1977); Phelps (1977).

ACKNOWLEDGMENTS

Grateful acknowledgments is made to municipal waterworks officials for supplying and verifying records of water use and other information on their water- and sewage-treatment plants.

DIFFERENCES BETWEEN QUANTITIES OF WATER SUPPLIED, PER CAPITA USE,
AND SEWAGE EFFLUENT

In general, for most of the water supplies tabulated, the per capita use correlated closely with the total amount of water being supplied to users, as does the quantity of water supplied and the quantity being discharged from the sewage treatment plants. For some water-supply systems, however, there is an apparent imbalance between input and output to the system. These apparent imbalances are discussed below.

<u>Difference between water supplied and per capita use</u>.--On the basis of the information obtained from the 169 municipalities and 5 county water suppliers, 1.037 million gallons of water was distributed each day to a

population of 6,537,913 (table 1). This represents a per capita use of 158 gallons per day, a rate not very different from the statewide per capita use of 168 gallons per day (Leach, 1977). Within the data presented for the 174 systems, however, is a range in per capita use that cannot be explained on the basis of difference in use characteristics from place to place within Florida. The range is considerable, from 35 gallons per day at Crawfordville in Wakulla County, to 530 gallons per day at Palm Beach in Palm Beach County. In general, when per capita use is obviously low, such as at Crawfordville, or at Gulfport, with a per capita use of 68 gallons per day, the discrepancy can be charged to incomplete records of water supplied. When the per capita use obviously is high, a significant part of the water supplied for public supply use is diverted for other purposes. For example, in some of the larger cities, major industries may be supplied with water for processing, and in rural or suburban communities, a considerable part of the publicsupply water is used for watering lawns or for the irrigation of crops, for which the return or benefit is great enough to warrant the use of public-supply water. For these reasons, the per capita values listed in this report for individual systems should be accepted with caution. The scope of this report did not allow opportunity for a careful analysis of the precise per capita use in all instances.

Difference between amounts of water supplied and sewage effluent.—As discussed earlier, the daily sewage discharge was less than the input to the daily public-water supply for 72 percent of the municipalities and county systems reported. For some, nearly twice as much public-supply water supplied as was reported as effluent from the sewage treatment plant, as the following table shows:

Percentage of municipalities reported	Percentage of exceedance	
39	less than 50	
27	50-100	
16	100-150	
15	150-200	
7	200-250	
4	250-300	
1	300-350	
13	greater than 350	

Less commonly, water supplied by the public-supply system in 1975 was less than the sewage effluent, by as much as 4,350 percent for 14 systems. The reasons for the anomaly and some examples of each are listed in the following table.

- 1. Water supplied greater than sewage effluent.
 - Large percentages of septic tanks in operation;
 examples, Cross City, Hallandale, Jupiter and Melbourne.
 - b. Municipal pumpage supplied to industry and industrial effluent not connected to municipal sewage system; example, Jacksonville.
 - c. Municipal pumpage supplied to other municipalities, subdivisions and areas not connected to the sewage system of the municipality supplying the water; example, Boca Raton, Cocoa, and Miami.
 - d. Consumptive use in appreciable.
- 2. Water supplied less than sewage effluent.
 - a. Sewage effluent includes that of other municipalities; example, Hollywood, North Miami, or effluent includes that of industry; example, Port St. Joe.
 - b. Ground-water seepage enters sewer lines. Possible examples are Azalea Park, Bonifay, Daytona Beach, Fort Myers, Plant City, and Starke.

DEFINITION OF TERMS

Most of the major headings that appear in the tabulation of individual municipalities are in common use; they need no definition. Some. however, require description and background information to make the data listed under those headings meaningful. These are listed and described below.

Type/Frequency of Analysis

This refers to the frequency at which the samples of untreated or treated water were collected in 1975, and the nature of the chemical analysis performed either by the water-supply agency or a private laboratory for the agency, or by the Florida State Board of Health. It does not refer to samples collected and analyzed by the U.S. Geological Survey.

River Basin

The State has been divided into 53 major and minor river basins (Conover and Leach, 1975). The river basins are designated by a hydrological unit code consisting of three pairs of digits after the name of the river basin. The first pair represents the Subregion as currently used by the U.S. Water Resources Council (1970) and the second and third pairs represent, respectively, the Accounting and Cataloging units in use by the U.S. Geological Survey for managing the National Water Data Network. The hydrologic unit code numbers provide a basic system of cataloging and processing the accumulating large volume of hydrologic information for electronic data storage and retrieval. The coding name designation, and areas in square miles are described and discussed by Conover and Leach (1975).

Water Treatment

Water-treatment and sewage-treatment processes are standard, differing little in principle. The only significant difference lies in the extent to which the standard processes must be modified to cope with differing degrees of contamination or to produce a finished water with the required chemical quality. Generally, in this report, the type of treatment given a public-supply water is described by listing the unit processes employed in producing a plant effluent capable of meeting specific water-quality standards. The definitions listed are taken from or modified after Fair and Geyer (1954, p. 527).

Gas exchange.--Gases escape from solution in water or go into solution by exposing the water to the air or to specific gases under various pressures. Treatment: Aeration, chlorination, and carbonation.

<u>Screening</u>.--Floating and suspended matter are removed from the water by straining the water through screens or racks. Treatment: Cutting screen (comminutor), screens, and trash racks.

<u>Sedimentation</u>.—Material in suspension in water is removed from water by reducing the flow of the water or by allowing the water to remain in settling tanks or ponds for specified lengths of time. Deposition of the material in suspension takes place by gravity only. Treatment: Grit chambers, settling and sedimentation.

<u>Flotation</u>.—Substances in solution are brought to the surface of the water by the use of flotation agents such as very small air bubbles or by chemicals. Treatment: Diffused air and skimming.

<u>Chemical coagulation</u>.—Settleable, or more particularly, nonsettleable material in suspension is removed from water by means of chemicals that form flocs heavy enough that they can settle by gravity. Treatment: Coagulation, flocculation, and softening.

Chemical precipitation. -- Dissolved substances are removed from solution by combining them with chemicals in such a way that the substance formed is insoluble. Treatment: Flocculation, softening, precipitation, and mixing.

<u>Ion exchange</u>.—Certain ions in water are exchanged for complementary ions that are part of the complex of a solid exchange medium, such as zeolites or synthetic resins. Treatment: softening, deionization.

Physical adsorption and contact. -- Substances are removed from solution by concentrating them on the surface of solid materials, making use of physical forces acting along the solid-liquid interface. Treatment: Filtration, and taste and odor control.

Biological flocculation and precipitation. -- Putrescible substances are partly stabilized (converted to unobjectionable form -- see "Stabilization") by transferring the substances to the interface between water and the slime of living organisms. Treatment: Filtration, activated sludge, contact stabilization, aeration, biofiltration, digestion, oxidation, polishing ponds, and septic tanks.

<u>Filtration</u>.—Suspended matter is removed from a liquid by forcing the liquid through beds of coke, sand, coal, either under gravity or under pressure greater than the gravitational force. Treatment: Filtration slow (gravity) rapid (vacuum), clarification, and septic tanks.

<u>Disinfection</u>.--Living microorganisms are killed by means of chemicals, heat, ultraviolet radiation, or other means. Treatment: Chlorination, algae control, incineration, and drying of sludge by air or heat for disposal.

Chemical Stabilization. --Objectionable substances are converted into unobjectionable substances by means of chemicals added to the water or effluent. The unobjectionable substances are not necessarily removed from solution or suspension by this unit process alone. Treatment: Chlorination, pH control, recarbonation, antiprecipitation and corrosion control, softening, and stabilization.

Sewage Treatment

Generally, in this report, type of sewage treatment is described by listing the overall type of treatment, such as primary, secondary, and tertiary—terms that refer to specific groups of unit processes in operation in the sewage treatment plant. These three overall types are described briefly below.

Primary Treatment. -- Includes plain sedimentation, which is the removal by gravitational settling of suspended particles heavier than water. Settling occurs in basins or tanks. Chemical coagulation and digestion are also part of the primary treatment process. Primary treatment removes 40 to 50 percent of organic material.

<u>Secondary Treatment.</u>—Includes filtration either by high- or low-rate tricking filter, sedimentation or settling, activated sludge, and digestion. Secondary treatment removes 80 to 90 percent of the organic material from the raw sewage.

Tertiary Treatment. -- Includes the use of oxidation ponds for purification of settled sludge by storage under climatic conditions that favor growth of algae. Chemical coagulation and ion exchange are a part of tertiary treatment.

SOURCES OF WATER

Ground water supplies 85 percent and surface water 15 percent of the total quantity of water used by the 169 municipalities and 5 county systems for which data are included in this report.

Ground water for municipal use is derived mainly from five principal aquifers: the Floridan aquifer, the Biscayne aquifer, the sand-and-gravel aquifer of northwest Florida, aquifers in the Hawthorn and Tampa Formations, and the "shallow sand aquifer" (fig. 2).

In many parts of the State, small to large quantities of water are pumped for public supply from near-surface aquifers consisting of clastic materials including sand, shell beds, and sandstone, in addition to limestone. These aquifers, not everywhere continuous, have various names, depending on the location. For convenience, all are grouped together on figure 2 under the name "shallow sand aquifer." The following table lists the county, the names of the near-surface aquifers of sufficient thickness and areal extent to supply quantities of water suitable for public supply, the range in depth from which water is obtained, and the number of municipalities supplied.

. . . .

County	Aquifer name	Depth range (feet)	Number of municipalities supplied
Lee	Water-table aquifer in		
777	Pleistocene sand	16 - 44	1
	Sandstone aquifer in		
	the Tamiami Formation	57 - 86	2
	Water-table aquifer	20 - 49	1
Flagler	Nonartesian aquifer	100 - 115	1
Palm Beach	Shallow aquifer	60 - 250	8
Collier	do.	60 - 100	1
Indian River	do.	90 - 100	1
Glades	Shallow aquifer in the	85 - 110	1
	Tamiami Formation	65 - 110	•
St. Johns	Shallow sand aquifer	45 - 96	1

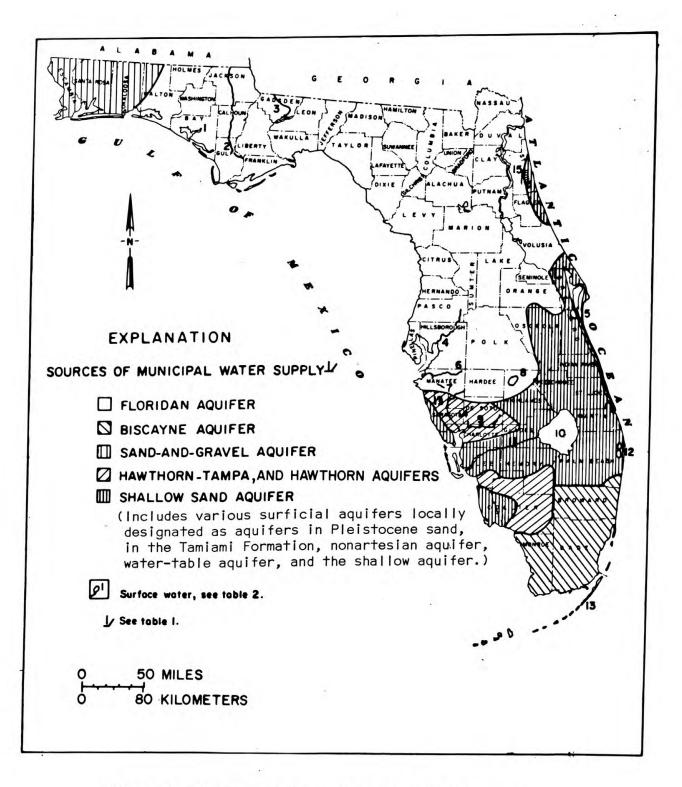


Figure 2. -- Sources of water supply for municipal use.

County	Aquifer name	Depth range (feet)	Number of municipalities supplied
Brevard	Shallow sand aquifer		1
Sarasota	Nonartesian aquifer	<u> </u>	1
54145014	Nonartesian sand aquifer	40 - 90	1
St. Lucie	Shallow sand-and-gravel aquifer	80 - 120	1
Hendry	Shallow aquifer in the Tamiami Formation	16 - 40	1
Martin	Shallow sand aquifer	60 - 140	1

The Floridan aquifer is the principal source of water in north-central north, south-central, and most of northwest Florida (Klein, 1971). Total pumpage from the Floridan aquifer in 1975 by the 169 municipalities listed in this report averaged 367 Mgal/d, 41 percent of the total ground water pumped for public supply (table 1).

The Biscayne aquifer is the chief source of water for most of the cities in Broward and Dade Counties along the populous southeastern coast. The Biscayne, one of the most highly productive aquifers in the world, underlies about 3,300 mi² of Broward, Dade and southeast Palm Beach Counties. Pumpage from the Biscayne aquifer averaged 403 Mgal/d or 45 percent of the total ground water pumped for municipal supply.

The sand-and-gravel aquifer is the principal source of water for public supply in the extreme northwest part of Florida. Although this aquifer underlies about 3,500 mi² in Escambia, Okaloosa, Santa Rosa, and Walton Counties in Florida, it is the source of water supply only in Escambia and Santa Rosa Counties (fig. 2). Pumpage in 1975 averaged 27 Mgal/d (table 1).

The shallow sand aquifer supplied 73 Mgal/d for municipal use, and the Hawthorn-Tampa and Hawthorn aquifers supplied, on the average 15 Mgal/d for public supply in 1975.

In 1975, 2 Mgal/d of salty water was pumped each day, on the average, from wells that tap the Key Largo Limestone. The salty water, after treatment at the Stock Island desalination plant was used for public supply to the city of Key West.

Surface-water supplies for municipal use are diverted from rivers, lakes, and reservoirs (table 2). An infiltration gallery supplied the city of St. Augustine. The average pumpage of water from all sources, in 1975, was about 150 Mgal/d. Rivers contributed 80 Mgal/d of the water used; lakes, 37 Mgal/d. The remaining sources, a reservoir and infiltration gallery, supplied a total of 33 Mgal/d (table 1).

Table 2.--Quantity of water supplied by 22 municipalities, by source, 1975.

	Source 1	Municipality	Percentage supplied from source cited	Water supplied (Mgal)	
1.	. Deer Point Reservoir	Colleyer	100	105	
1.	. Deer Point Reservoir	Callaway Panama City	100	1,737	
		Panama City Beach	16	87	
	14	Springfield	100	188	
2.	Chipola River	Port St. Joe	100	235	
3.	Quincy Creek	Quincy	100	432	
4.	Hillsborough River	Tampa	100	19,238	
5.	Lake Washington	Melbourne 2	100	3,249	
6.	Manatee River	Palmetto	100	197	
7.	Braden River	Bradenton	100	1,397	
8.	Lake Sirena	Lake Placid	50	36	
9.	Shell Creek	Punta Gorda	100	666	
10.	Lake Okeechobee	Belle Glade	100	1,467	
		Clewiston	100	424	
		Okeechobee	100	380	
	4	Pahokee	100	304	
11.	Caloosahatchee River	Ft. Myers	50	1,044	
		Ft. Myers (suburban)		1,463	
12.	Lake Mangonia and Clear Lake	West Palm Beach 2	100	7,760	
13.	Myakka-Hatchee River	N. Port Charlotte	100	359	
14.	Fordham Waterway	Port Charlotte	92	761	
15.	Infiltration gallery	St. Augustine	50 _	466	
			4	1,995	

¹Numeral refers to figure 2.

²Includes other municipalities.

In 1975, five county water systems provided, on the average, 96 Mgal/d of public-supply water to a population of 595,980. Three of the five systems provided, in the aggregate, 54 Mgal/d of ground water, and two supplied 42 Mgal/d of surface water. The following table lists quantities of water supplied by all five.

		Water Su	pplied	
County water System	Population served	For the year (Mgal)	Average daily (Mgal)	Source
Bay County	65,000	11,806.21	32.35 <u>a</u> /	Deer Point Reservoir.
Broward County Utilities Dept.	136,000	7,081.0	19.40	Biscayne aquifer.
Manatee County	55,000	3,613.5	9.90	Manatee River
Okaloosa County	20,870	716.64	1.96	Floridan and sand- and-gravel aquifers
Pinellas County	319.110	12,055.91	33.05	Floridan aquifer.
TOTAL	595,980	35,273.26	96.60	

a/ Includes 25.39 Mgal/d for industrial use.

Eighteen municipalities are supplied entirely from surface-water sources and four are supplied from both surface and ground-water sources. Of the four supplied by both, the surface-water supply ranged from 16 percent of total supply (Panama City Beach) to 92 percent of total supply (Port Charlotte) (table 2).

Table 3 lists the 20 largest municipal public supplies in the State for 1975. On the average, the municipalities listed pumped 638 Mgal/d or 72 percent of the total quantity of public-supply water reported and 56 percent of the entire public supply in the State. The aggregate population of the 20 cities listed is 57 percent of the population of the 169 municipalities listed in this report and 44 percent of the total population of Florida.

Table 3.--Quantity of public-supply water delivered to users by 20 municipalities, 1975.

		Water	Supplied		
Municipality	Source	For the year (Mgal)	Average daily (Mgal)	Population served	Average daily per capita use (gal)
Miami	GW	68,876	188	1,210,000	156
Jacksonville	GW	21,333	58	250,000	152
Tampa	SW	19,238	53	350,000	150
Ft. Lauderdale	GW	16,798	46	226,430	203
Orlando	GW	14,881	41	196,000	208
St. Petersburg	GW	12,796	35	253,000	209
North Miami Beach	n GW	9,176	25	165,000	152
Pensacola	GW	8,318	23	144,435	102
West Palm Beach	SW	7,760	21	79,950	266
Boca Raton	GW	6,254	17	46,200	371
Lakeland	GW	6,224	17	82,000	208
Pompano Beach	GW	5,475	15	63,000	238
Hollywood	GW	5,293	15	100,000	145
Cocoa	GW	5,263	. 14	100,000	144
Tallahassee	GW	5,229	14	92,789	124
Gainesville	GW	5,048	14	80,000	173
Winter Park	GW	4,133	11	60,000	189
North Miami	GW	4,131	11	65,000	174
Daytona Beach	GW	4,062	11	62,300	179
Melbourne	SW	_3,249	_ 9	90,000	99
Total		233,537	638	3,716,104	

CHEMICAL ANALYSES

Chemical analyses of 168 water samples, collected from wells, lakes, streams, and a reservoir, all used as sources of public supply, are included in this report. The samples were collected in 1975 or early in 1976. Of the analyses listed, 165 are of raw water and 3 are of treated water.

Each analyses is identified by a site identification number which represents an individual station under which chemical analyses of water sampled at the station are stored in the Water Quality Data File of the U.S. Geological Survey. This site number is used to retrieve those chemical analyses from the file. The sampling point is identified either by a 15-digit number which represents wither a ground-water or a surface-water site or by an 8-digit number which signifies a surface-water site. If known the local well number also is included.

The analyses are of water samples collected from wells, lakes, streams and a reservoir used as sources of public supply. Chemical constituents are given in either milligrams or micrograms per liter. Physical constituents are given in the units shown. The major chemical and physical constituents, their safe standards, sources and significance with respect to public water supply are summarized in table 4. Complete treatment of the occurrence, interpretation, and distribution of chemical constituents in water is given in Water-Supply Paper 1473 (Hem, 1970).

In this report, analyses of raw water rather than of treated water used for public supply are listed, principally to provide a continuing series of analyses that can be utilized to evaluate any changes in the quality of source water with time. The periodic evaluation would indicate water quality trends in the source waters from which public supply is obtained. The quality of raw water, of course, reflects conditions in the hydrologic environment. The Department of Environmental Regulation, concerned with the quality of raw water (for epidemiology) and treated water (for effectiveness of treatment processes), analyzes both raw and treated water.

This report lists analyses of 168 samples of raw water, made by the U.S. Geological Survey. Of the total, 160 analyses represent water quality during 1975 and 8 analyses represent quality of water sampled in early 1976. Analyses of raw and treated waters for Pine Island, Sanibel and Key West are included.

For municipalities that have either more than one source of water (that is, both ground and surface water) or more than one well field, generally at least two water analyses are listed. For example, two or more water analyses are listed for raw water supplying Jacksonville, Lakeland, Lehigh Acres, Miami, North Miami Beach, Plant City, Pine Island, Quincy, and Sanibel.

TABLE 4.--Major chemical constituents in water--their sources concentrations, and effects upon useability of water for public supply in Florida, 1975 (Footnotes are at end of table)

Chemical constituent or physical property	Recommended Standards ¹ / (milligrams per liter)	Range in chemical ² / physical properties (milligrams per liter)	Source	Effect upon useability of water
Silica (SiO ₂)	-	0.5-50	Present in almost all rocks and soil. Generally dissolves in concentrations of 1 to 50 mg/L. In alkaline waters concentration may be as high as 100 mg/L.	Scale formed in pipes and boilers. Effective-ness of water softeners reduced.
Calcium (Ca) and Magnesium (Mg)	-	Ca 0.6-180 Mg 0.5-46	Present in almost all rocks. Particularly abundant in limestone, dolomite, and gypsum. Readily dissolves from these rocks, usually in high concentrations. High in river water that drains humid areas.	Hardness and scale-form- ing properties are char- acteristic. Soap lather- ing difficult. Magne- sium is an indicator of contamination of fresh- water by seawater.
Sodium (Na) and Potassium (K)		Na 1.7-410 K 0.2-54	Present in almost all rocks. Particularly abundant in sedimentary rocks, from which Na readily dissolves, but K more slowly. Concentration of Na much higher than K in natural waters.	High concentrations give salty taste to water. Low to medium concentrations do not adversely affect usefulness of water for purposes other than stream generation and irrigation.

TABLE 4.--Major chemical constituents in water--their sources, concentrations, and effects upon useability of water for public supply in Florida, 1975 (Continued) (Footnotes are at end of table)

Chemical constituent or physical property	Recommended Standards 1/ (milligrams per liter)	Range in chemical or 2 physical properties (milligrams per liter)	/ Source	Effect upon useability of water
Bicarbonate (HCO ₃)	-	1-438	Action of carbon dioxide in water on carbonate rocks such as limestone and dolomite.	Decomposes under heat and pressure to form scale and carbon dioxide (corrosive). Causes carbonate water hardness in combination with calcium and magnesium.
6 Chloride (C1) ³ /	0-250	2.4-360	Dissolved from rocks and soil. Important sources include evaporites, oceans, and brines.	Imparts salty taste to water. If present in large amounts, increases corrosive- ness of water.
Fluoride (F)	<u>4</u> /	0.1-5.0	Present in most igneous and sedimentary rocks.	Reduces tooth decay. Excessive fluoride causes mottling or permanent discoloration of teeth. Effect of fluoride depends on concentration, age of individual, susceptibil- ity of individual and quantity of water con- sumed.

TABLE 4.--Major chemical constituents in water--their sources, concentrations, and effects upon useability of water for public supply in Florida, 1975 (Continued) (Footnotes are at end of table)

Chemical constituent or physical property	Recommended Standards <u>l</u> / (milligrams per liter)	Range in chemical or $\frac{2}{}$ physical properties (milligrams per liter)	Source	Effect upon useability of water
Nitrate (NO ₃)	0-10	0.00-3.4	Leaching of irrigated soil. Decaying vegetable matter, animal wastes.	Indicates localized contamination if concentrations in water are higher than average. Concentrations of 45 mg/L can cause methemoglobinemia.
Iron (Fe) Manganese (Mn)	Fe 0-0.3 Mn 0-0.05	0.00-7.5 0.00-0.14	Dissolved from all rocks and soils. Iron may go into solution from iron pipes, pumps, and other iron implements.	Oxidizes and precipitates as a reddishbrown sediment in water exposed to air. High concentrations in water stain enameled and porcelain fixtures and restrict water's use.
Hardness as CaCO ₃	-	3-710	Present in almost all rocks. Particularly abundant in limestone, dolomite, and gypsum. Readily dissolves from these rocks usually in high concentrations. Also may result from high concentrations of metallic ions such as Cu, K, Na.	Forms scale in boilers, pipes, heating coils. Prevents or retards soap from lathering. Hardness scale; soft, 60 mg/L; moderately hard, 61-120 mg/L; hard, 121-180 mg/L; very hard, more than 180 mg/L.

TABLE 4.--Major chemical constituents in water--their sources, concentrations, and effects upon useability of water for public supply in Florida, 1975 (Continued) (Footnotes are at end of table)

Chemical constituent or physical property	Recommended Standards ¹ / (milligrams per liter)	Range in chemical or 2/physical properties (milligrams per liter)	Source	Effect upon useability of water
Total dissolved solids (residue at 180°C)	0-500	12-3,510	Mineral content and organic content of water. Dissolved from rocks and soil.	Water with concentrations higher than 500 mg/L is unsuitable for many purposes.
Specific conductivity (micromhos/cm at 25° at 25° C)	-	17-4,460	Depends upon the concentrations and kind of minerals dissolved from rocks and soils.	Varies with temperature, concentration, and degree of ionization of constituents. May be used to determine the extent to which ground and surface water are contaminated by seawater.
Hydrogen ion pH (units)	5.0-9.0	4.7-8.5	Carbonate, bicarbonate, hydroxide, phosphate, silicate and borate raise the pH. Acids, acid-generating salts and free carbon dioxide lower the pH.	Water with low pH generally more corrosive than water with high pH. Strongly alkaline water may be corrosive. Neutral water has a pH of 7; acid water has a pH greater than 7 and alkaline water less than 7.

TABLE 4.--Major chemical constituents in water--their sources, concentrations, and effects upon useability of water for public supply in Florida, 1975 (Continued) (Footnotes are at end of table)

Chemical constituents or physical property	Recommended Standards <u>1</u> / (milligrams per liter)	Range in chemical2/ physical properties (milligrams per liter)	Source	Effect upon useability of water
Sulfate (SO ₄)	0-250	0.1-350	Metallic sulfides in igneous and sedimentary rocks. Often concentrated in areas of economic importance. Extensive in evaporite sediments.	Imparts bad taste and has a laxative effect. Generally associated with the occurrence of hydrogen sulfide formed by the reduction of sulfate in water.
N Temperature (°C)	-		Temperature of water reflects air temperature and temperature of soils and rock formations through which it moves. Generally, temperature of surface water more closely correlates to air temperature than to temperature of ground water.	To a large degree, temperature determines the purposes for which water might be used. Temperatures fluctuate seasonally—are greatest in shallow aquifers and streams. In water at moderate depths, temperature fluctuates through narrower ranges than in water at shallow depth.

TABLE 4.--Major chemical constituents in water--their sources, concentrations, and effects upon useability of water for public supply in Florida, 1975 (Continued) (Footnotes are at end of table)

- 1/ National Academy of Sciences and National Academy of Engineering (1973).
- 2/ Ranges based on analyses listed in this report.
- 3/ Does not include waters with high chlorides used by desalination plants.
- 4/ Depends on annual averages of maximum daily air temperature.

Typically, the ground water in Florida is hard to very hard except in the extreme northwest part of the State, where water from the sand-and-gravel aquifer is very soft, low in bicarbonate and dissolved solids but is corrosive because of a high concentration of dissolved carbon dioxide. The use of lime, however, to stabilize the water, permits it to be used for public supply.

Of the samples of raw water collected in 1975-76 from wells tapping the Florida aquifer and used for public supply 72 percent were in the hard to very hard range, 24 percent were moderately hard, and about 4 percent soft. Water used for public supply from the Biscayne aquifer is a very hard high bicarbonate water, as in the water from the Hawthorn, Hawthorn-Tampa, and shallow sand aquifers. Water for public supply from Deer Point Lake Reservoir, the source of supply for the Panama City area, is soft. Waters from rivers and lakes generally range from soft to very hard.

NORTHWESTERN FLORIDA

The northwestern Florida section includes water-use data for municipalities in the Florida panhandle, an area of about 1,550 mi² extending from the Apalachicola River westward to the Florida-Alabama boundary (fig. 3).

The principal source of ground water for municipal supplies in Escambia and Santa Rosa Counties is the sand-and-gravel aquifer. The aquifer extends through Okaloosa and northern Walton Counties. In the rest of the northwestern Florida section, in Calhoun, Gulf, Holmes, Jackson, and Washington Counties, the Floridan aquifer is the chief source of water for public supply. In Bay County the chief source of supply is surface water. During 1975, 9,733 Mgal were withdrawn for municipal water supply from the sand-and-gravel aquifer and 4,810 Mgal were withdrawn from the Floridan aquifer. Surface-water supplies for municipal use totaled 2,489 Mgal. The three most populous areas, Fort Walton Beach, Panama City, and Pensacola, used 11,119 Mgal or 65 percent of the aggregate quantity of water supplied by the public water supply systems listed in this section.

Hardness range (mg/L of CaCO₃)

Description

0-60 61-120 121-180 More than 180 Soft Moderately hard Hard Very hard

 $[\]underline{a}$ / Durfor and Becker (1964, p. 27) use the following classification hardness range:

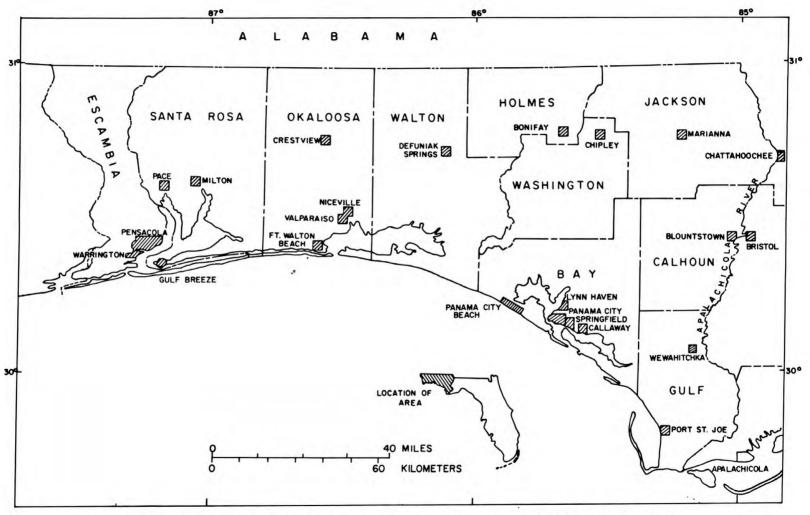


Figure 3.--Municipalities in northwestern Florida for which water-use data are given.

APALACHICOLA

Population served: 3,200 County: Franklin

River basin: Apalachicola River (13 00 11)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 2 wells 275 to 350 feet deep; yield 200 to 700 gal/min

Rated plant capacity: 0.936 Mga1/d

Average daily— 0.46a/ Mgal Pumpage: Year-167.89 Mgal

Lowest month: February, 9.36 Mgal Highest month: July, 16.47 Mgal

Per capita use: 144 gal/d

Finished-water storage: 0.3 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.50 Mga1/d Sewage treatment: Secondary

Waste discharged to: Cool Springs, Scipio Creek, Apalachicola River

Remarks: City also supplies water to areas adjacent to city. Average daily pumpage increase from 0.20 Mgal/d in 1956 to 0.46 Mgal/d in 1975. a/ Includes 0.138 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: 294339084591901

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	74	(residue at 180°C)	760
Magnesium (Mg)	60	Total hardness	
Sodium (Na)	65	(as CaCO ₃)	440
Potassium (K)	8	Noncarbonate hardness	
Strontium (Sr)	9.5	(as CaCO ₃)	170
Bicarbonate (HCO3)	337	Alkalinity (as CaCO3)	280
Sulfate (SO4)	170	pH (units)	7.6
Chloride (C1)	120	Specific conductance	
Fluoride (F)	1.2	(umhos/cm at 25°C)	1190
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.01	Temperature (°C)	24
Nitrogen, organic (N	.06	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (N	7	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.02
Phosphorus, total (P	.2		2.00

^{1/} Analysis of raw water unless otherwise noted.

BAY COUNTY WATER SYSTEM

County: Bay Population served: 65,000

River basin: St. Andrew Bay, inflow and coastal area (14 01 01)

Ownership of supply or system: Bay County

Source of water: Surface water. Deer Point Lake Reservoir

Rated plant capacity: 58.5 Mga1/d

Pumpage: Year— 11,806.21 Mga1 Average daily—32.35a/ Mga1

Highest month: October, 1,248.84 Mgal Lowest month: May, 865.47 Mgal

Per capita use: 96 ga1/d

Finished-water storage: 3.0 Mgal

Treatment: Flocculation, filtration, pH control, chlorination

Type/Frequency of analysis: Bacteriological, chemical, color, and turbidity/daily

Sewage discharge: 21.33c/ Mgal/d

Sewage treatment: Aeration, primary, secondary, settling

Waste discharged to: St. Andrews Bay; d/ Mill Bayou e/

Remarks: System supplies water to Callaway, Cedar Grove, Panama City, Panama

City Beach, Parker, and Springfield (fig. 4) Foster (1972). a/Includes 25.39 Mgal/d industrial use, 0.731 Mgal/d commercial use.

b/Based on pumpage for domestic use only.

c/Includes 21.26 Mgal/d industrial sewage, 0.075 Mgal/d waste water from

water plant. d/Industrial sewage. e/Waste water from water plant.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-15-75
SAMPLING POINT: 301532085352400, Deer Point Lake at Williams Pumping Station

Silica (SiO ₂)	1.5	Dissolved solids	
Calcium (Ca)	7.9	(residue at 180°C)	46
Magnesium (Mg)	1.5	Total hardness	
Sodium (Na)	4.6	(as CaCO ₃)	26
Potassium (K)	.3	Noncarbonate hardness	
Strontium (Sr)	.1	(as CaCO ₃)	4
Bicarbonate (HCO ₃)	27	Alkalinity (as CaCO3)	22
Sulfate (SO4)	2.4	pH (units)	7
Chloride (C1)	7.8	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	93
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	75
Nitrite (NO ₂ -N)	.01	Temperature (°C)	26
Nitrogen, organic (N)	.43	Turbidity (JTU)	3
Nitrogen		Carbon, organic, total (C)	6
(ammonia, total (NH4-N))	.00	Orthophosphate	
Iron (Fe)	.14	total (PO4-P)	.01
Phosphorus, total (P)	.01	SAR	. 4
Carbon Dioxide (CO ₂)	4.3		

BAY COUNTY WATER SYSTEM

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-15-75 SAMPLING POINT: Deer Point Lake at Williams Bayou Pumping Station

		Trace Elements	
Arsenic (As)	0	Manganese (Mn)	10
Barium (Ba)	30	Mercury (Hg)	.1
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr)	10	Zinc (Zn)	10
Copper (Cu)	2		
Iron (Fe)	920	pH(units)	
Lead (Pb)	16	Temperature (°C)	26
		Pesticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.00	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	
Endrin	.00	Silvex	.01
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.00
Heptachlor epoxide	.00	2,4-DP	.00
Ethion	.00	2,4,5-T	.00

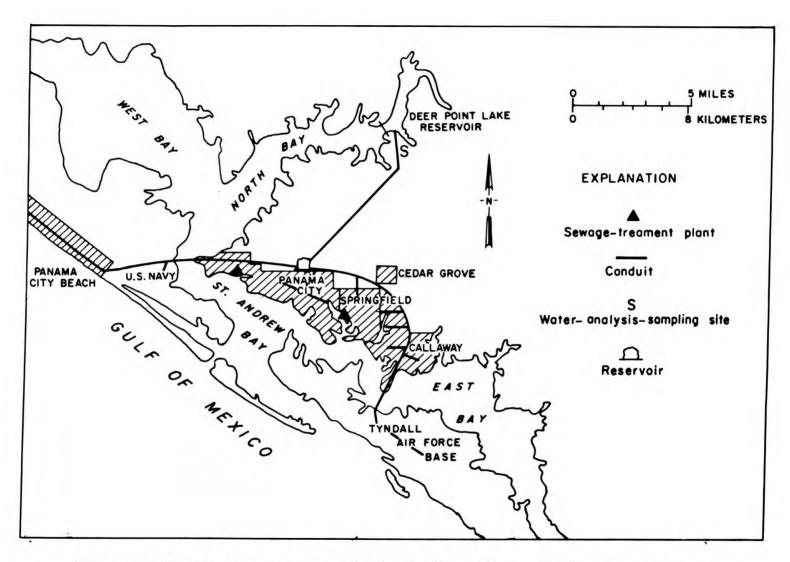


Figure 4.--Distribution systems of Bay County Water System, Panama City area.

BLOUNTSTOWN

County: Calhoun Population served: 2,400

River basin: Apalachicola River (13 00 11)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 2 wells, 450 feet deep;

yield 500 gal/min each well

Rated plant capacity: 1.44 Mga1/d
Pumpage: Year— 78.93 Mga1

Average daily— 0.22

Mga1

Pumpage: Year— 78.93 Mgal

Highest month: June, 8.1 Mgal

Average daily— 0.22— Mgal

Lowest month: November, 5.8 Mgal

Per capita use: 90 gal/d

Finished-water storage: 0.18 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/weekly

Sewage discharge: 0.40 Mgal/d Sewage treatment: Aeration

Waste discharged to: Sutton Creek, Old River, Apalachicola River

Remarks: Pumpage 0.20 Mgal/d in 1956, 0.16 Mgal/d in 1970.

a/ Includes 0.06 Mgal/d commercial use, 0.002 Mgal/d industrial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75 SAMPLING POINT: 302640085031101, Blountstown Well 2

Silica (SiO ₂)	17	Dissolved solids	
Calcium (Ca)	30	(residue at 180°C)	268
Magnesium (Mg)	16	Total hardness	
Sodium (Na)	40	(as CaCO ₃)	140
Potassium (K)	5.9	Noncarbonate hardness	4.75
Strontium (Sr)	1.9	(as CaCO ₃)	3
Bicarbonate (HCO ₃)	166	Alkalinity (as CaCO ₃)	136
Sulfate (SO4)	32	pH (units)	7.7
Chloride (C1)	44	Specific conductance	
Fluoride (F)	.9	(umhos/cm at 25°C)	465
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	23
Nitrogen, organic (N)	.07	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.09	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.01
Phosphorus, total (P)	.01		

BONIFAY

County: Holmes Population served: 3,179

River basin: Choctawhatchee River below Pea River (14 02 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 2 wells, 197 to 250 feet

deep; yield 500 gal/min each well

Rated plant capacity: 1.4 Mga1/d Pumpage: Year— 54.75 Mga1

Average daily $-0.15^{a/}$ Mgal

Highest month: July, 4.6 Mgal Lowest month: January, 3.8 Mgal

Per capita use: 47 gal/d

Finished-water storage: 0.15 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/bimonthly; chemical, color, turbidity,

and odor/annually

Sewage discharge: 0.20b/ Mgal Sewage treatment: Secondary

Waste discharged to: Camp Branch Creek, Holmes Creek

Remarks: Water supplied to fringe areas outside city. Per capita use estimated from average daily use of $0.15 \, \text{Mgal/d}$.

a/ Includes 0.031 Mgal/d industrial use, 0.025 Mgal/d commercial use, and 0.002 Mgal/d air conditioning. Estimated pumpage.

b/ Estimated discharge.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 304709085471001, Bonifay well 3

Silica (SiO ₂)	9	Dissolved solids	
Calcium (Ca)	43	(residue at 180°C)	132
Magnesium (Mg)	2	Total hardness	132
Sodium (Na)	1.9	(as CaCO ₃)	120
Potassium (K)	.3	Noncarbonate hardness	120
Strontium (Sr)	.03	(as CaCO ₃)	10
Bicarbonate (HCO ₃)	134	Alkalinity (as CaCO3)	110
Sulfate (SO4)	.3	pH (units)	7.7
Chloride (C1)	2	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	228
Nitrate (NO ₃ -N)	.38	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	21
Nitrogen, organic (N)	:00	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.04
Phosphorus, total (P)	.04		

BRISTOL

Population served: 1,530 County: Liberty

River basin: Apalachicola River (13 00 11)

Ownership of supply or system: Municipal

Ground water, Floridan aquifer; 4 wells, 320 to 955 feet deep; Source of water: yield 45 to 220 gal/min

Rated plant capacity: 0.6 Mga1/d

Average daily— 0.094^a/ Mgal Pumpage: Year- 34.31 Mgal

Lowest month: February, 2.0 Mgal Highest month: June, 4.2b/ Mgal

Per capita use: 60 gal/d

Finished-water storage: 0.075 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Total service connections, 450. Average daily pumpage increased from 0.02 Mgal in 1956 to 0.16 Mgal in 1970 then decreased to 0.09 Mgal in

a/ Includes 0.011 Mgal/d agricultural use, 0.007 Mgal/d commercial use.

b/ Estimated.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6- 9-75 **SAMPLING POINT:** 302602084585701

Silica (SiO ₂)	16	Dissolved solids	
Calcium (Ca)	25	(residue at 180°C)	146
Magnesium (Mg)	10	Total hardness	140
Sodium (Na)	4.4	(as CaCO ₃)	100
Potassium (K)	1.7	Noncarbonate hardness	100
Strontium (Sr)	.19	(as CaCO ₃)	0
Bicarbonate (HCO ₃)	137	Alkalinity (as CaCO ₃)	112
Sulfate (SO4)	6.4	pH (units)	7.9
Chloride (C1)	.0	Specific conductance	,.,
Fluoride (F)	. 2	(umhos/cm at 25°C)	250
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	250
Nitrite (NO ₂ -N)	.00	Temperature (°C)	23
Nitrogen, organic (N)	.02	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	2
(ammonia, total (NH4-N))	.03	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	.01
Phosphorus, total (P)	.01	SAR	.2

CALLAWAY

Population served: $6,000^{a}$ County: Bay St. Andrew Bay, inflow and coastal area (14 01 01) River basin:

Ownership of supply or system: Bay County Water System Source of water: Surface water, Deer Point Lake Reservoir

Rated plant capacity: b/ Pumpage: Year— 104.94 Mgal

Average daily 0.29^C/ Mgal Lowest month: January, 6.0 Mgal Highest month: August, 12.3 Mgal

Per capita use: 48ª/ gal/d Finished-water storage:

Treatment: a/

Type/Frequency of analysis: b/

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

For chemical analysis see Bay county Water System.

a/ Number of residents on Callaway water system not known.

b/ See Bay County Water System (p. 27).

c/ Includes 0.014 Mgal/d industrial use, 0.058 Mgal/d commercial use.

CHATTAHOOCHEE

County: Gadsden Population served: 3,000

River basin: Apalachicola River (13 00 11)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, 200 to 239 feet

deep; yield 510 gal/min each well

Rated plant capacity: 1.4 Mgal/d
Pumpage: Year— 122.7 Mgal
Highest month: October, 12.4 Mgal

Average daily— 0.34 a/ Mga1
Lowest month: March, 7.7 Mgal

Per capita use: 113 gal/d

Finished-water storage: 0.15 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly '; chemical/irregularly '; chemical/daily '; chemical/daily ';

Sewage discharge: 0.275 Mga1/d

Sewage treatment: Primary, secondary, contact stabilization, chlorination

Waste discharged to: Mosquito Creek

Remarks: Average daily pumpage increased from 0.18 Mgal/d in 1956 to 0.33 Mgal/d in 1975.

a/ Includes 0.012 Mgal/d supplied to Rosedale Water Association and 0.07 Mgal/d commercial use.

b/ Raw water.

c/ Treated water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 3-19-75 SAMPLING POINT: 304139084502101, Well 2.

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	35	(residue at 180°C)	140
Magnesium (Mg)	8	Total hardness	
Sodium (Na)	2	(as CaCO ₃)	120
Potassium (K)	.5.	Noncarbonate hardness	
Strontium (Sr)	0	(as CaCO ₃)	0
Bicarbonate (HCO ₃)	156	Alkalinity (as CaCO ₃)	128
Sulfate (SO4)	.6	pH (units)	7.9
Chloride (C1)	.6	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	265
Nitrate (NO ₃ -N)	. 2	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	21
Nitrogen, organic (N)	.00	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	2.0
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.02
Phosphorus, total (P)	.02	SAR	.1
Carbon Dioxide (CO ₂)	3.1		1.5

CHIPLEY

County: Washington Population served: 4,000

River basin: Choctawhatchee River below Pea River (14 02 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, 160 to 200 feet

deep; yield 320 to 515 gal/min

Rated plant capacity: 1.20 Mga1/d

Pumpage: Year— 133.8 Mgal Highest month: July, 15.0 Mgal Average daily-0.37 Mgal

Lowest month: February, 9.4 Mgal

Per capita use: 93 gal/d

Finished-water storage: 0.09 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological and chemical/annually_a/

Sewage discharge: 0.3 Mga1/d

Sewage treatment: Aeration, secondary

Waste discharged to: Alligator Creek

Remarks: Average daily pumpage increased from 0.32 Mgal/d in 1956 to 0.75 Mgal/d in 1970.

a/ Treated water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 304652085321401, City well 2

Silica (SiO ₂)	8	Dissolved solids	
Calcium (Ca)	36	(residue at 180°C)	104
Magnesium (Mg)	1.7	Total hardness	
Sodium (Na)	1.7	(as CaCO ₃)	97
Potassium (K)	. 2	Noncarbonate hardness	
Strontium (Sr)	.01	(as CaCO ₃)	.00
Bicarbonate (HCO ₃)	120	Alkalinity (as CaCO3)	98
Sulfate (SO4)	. 4	pH (units)	7.7
Chloride (C1)	2	Specific conductance	- 1.7
Fluoride (F)	.1	(umhos/cm at 25°C)	203
Nitrate (NO ₃ -N)	.31	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	20.5
Nitrogen, organic (N)	.00	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.03
Phosphorus, total (P)	.03		

CRESTVIEW

Population served: 9,142 County: Okaloosa

River basin: Yellow River (14 01 03)

Ownership of supply or system: Municipal Source of water: Ground water, Floridan aquifer; three wells, 604 to 920

feet deep; yield 432 to 650 gal/min

Rated plant capacity: 2.0 Mga1/d Average daily-1.40a/ Mgal

Pumpage: Year- 513.27 Mgal Lowest month: July, 39.69 Mgal Highest month: March, 51.03 Mgal

Per capita use: 153 gal/d

Finished-water storage: 0.8 Mga1

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.45 Mga1/d

Sewage treatment: Primary, secondary, trickling filter, chlorination

Waste discharged to: Trammel Creek to Yellow River

Service connections: domestic 2,689. City also supplies water to Remarks: areas outside city limits. Average daily pumpage increased from 0.57 Mgal/d in 1956 to 1.40 Mgal/d in 1975. a/ Includes 0.02 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-20-75 **SAMPLING POINT:** 104537086340601, Well 1

Silica (SiO ₂)	14	Dissolved solids	
Calcium (Ca)	27	(residue at 180°C)	130
Magnesium (Mg)	11	Total hardness	130
Sodium (Na)	4.3	(as CaCO ₃)	110
Potassium (K)	1.7	Noncarbonate hardness	110
Strontium (Sr)	.08	(as CaCO ₃)	.00
Bicarbonate (HCO ₃)	134	Alkalinity (as CaCO3)	110
Sulfate (SO4)	9.4	pH (units)	7.9
Chloride (C1)	2.8	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	240
Nitrate (NO ₃ -N)	.08	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.01	Temperature (°C)	24.5
Nitrogen, organic (N)	.04	Turbidity (JTU)	1'
Nitrogen		Carbon, organic, total	(C)
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)		total (PO4-P)	.00
Phosphorus, total (P)	.01		

DE FUNIAK SPRINGS

County: Walton Population served: 6,460

River basin: Choctawhatchee River below Pea River (14 02 03)

Ownership of supply or system:

Source of water: Ground water, Floridan aquifer; 4 wells, 605 to 650 feet

deep; yield 250 to 650 gal/min

Rated plant capacity: 2.88 Mgal

Pumpage: Year— 292 Mga1 Average daily— 0.8 a/ Mga1

Highest month: June, 25 Mgal Lowest month: February, 19 Mgal

Per capita use: 124 gal/d

Finished-water storage: 0.38 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/intermittently

Sewage discharge: 0.35 Mga1/d

Sewage treatment: Secondary, grit chamber, settling, filtration, chlorination

Waste discharged to: Sandy Creek

Remarks: Water also supplied to Bingham subdivision and areas adjacent to city. Total service connections 2,250.

<u>a</u>/ Includes 0.024 Mgal/d industrial use, 0.16 Mgal/d commercial use, 0.016 Mgal/d air conditioning. All use figures are estimated.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 304310086070601, well 3

Silica (SiO ₂)	9.6	Dissolved solids	
Calcium (Ca)	20	(residue at 180°C)	86
Magnesium (Mg)	5.9	Total hardness	
Sodium (Na)	2.1	(as CaCO ₃)	74
Potassium (K)	.6	Noncarbonate hardness	
Strontium (Sr)	.07	(as CaCO ₃)	8
Bicarbonate (HCO ₃)	81	Alkalinity (as CaCO3)	66
Sulfate (SO4)	5.9	pH (units)	7.9
Chloride (C1)	2.7	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	156
Nitrate (NO ₃ -N)	. 36	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	21.5
Nitrogen, organic (N)	.00	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.03
Phosphorus, total (P)	.03		

FT WALTON BEACH

County: Okaloosa Population served: 24,242 River basin: Choctawhatchee Bay, inflow and coastal area (14 01 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer, 9 wells; sand-and-gravel aquifer, 1 well; 120 to 938 feet deep; yield 250 to 900 gal/min

Rated plant capacity: 9.0 Mga1/d Pumpage: Year— 1,063.95 Mga1 Average daily— 2.91^{a/} Mga1

Highest month: May, 109.26 Mgal Lowest month: February, 67.18 Mgal

Per capita use: 120 ga1/d

Finished-water storage: 1.21 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthlyb/; chemical/annuallyc/

Sewage discharge: 2.90 Mgal/d

Sewage treatment: Secondary, trickling filter

Waste discharged to: Santa Rosa Sound

Remarks: Average daily pumpage increased from 0.55 Mgal/d in 1956 to 2.91 Mgal/d in 1975. Water also supplied to areas adjacent to city. Foster (1972,1971), Pascale (1974).

a/ Includes 0.16 Mgal/d agricultural use, 0.175 Mgal/d commercial use.

b/ Treated water.

c/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-14-75 SAMPLING POINT: 302419086363901, Ft. Walton Beach-1

Silica (SiO ₂)	12	Dissolved solids	
Calcium (Ca)	6.4	(residue at 180°C)	398
Magnesium (Mg)	5.2	Total hardness	330
Sodium (Na)	138	(as CaCO ₃)	4.0
Potassium (K)	7.6	Noncarbonate hardness	40
Strontium (Sr)	2	(as CaCO ₃)	0
Bicarbonate (HCO ₃)	239	Alkalinity (as CaCO ₃)	196
Sulfate (SO4)	9.8	pH (units)	8.2
Chloride (C1)	95	Specific conductance	0.2
Fluoride (F)	1.2	(umhos/cm at 25°C)	723
Nitrate (NO ₃ -N)	.07	Color (Pt-Co units)	0
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.05	Turbidity (JTU)	26
Nitrogen	.03	Carbon, organic, total (C)	2
(ammonia, total (NH4-N))	.48	Orthophosphate	2
Iron (Fe)		total (PO4-P)	
Phosphorus, total (P)	.01	SAR	.01
	.01	SAK	9.8

FT WALTON BEACH

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geol		COLLECTION DATE	5-14-75
SAMPLING POINT: Ft.	Walton Beach-1		
Aluminum (Al)	2	Lead (Pb)	0
Arsenic (As)	300	Lithium (Li)	42
Barium (Ba)	460	Manganese (Mn)	10
Boron (B)	0	Mercury (Hg)	.1
Cadmium (Cd)	20	Molybdenum (Mo)	
Chromium (Cr)		Nickel (Ni)	
Chromium (Cr+6)		pH(units)	
Cobalt (Co)	 -	Selenium (Se)	0
Specific conductance		Vanadium (V)	
(umhos/cm at 25°C)		Temperature (°C)	
Copper (Cu)	4	Zinc (Zn)	7
Iron (Fe)	20	Uranium (U)	<.01

GULF BREEZE

Population served: 4.981 County: Santa Rosa

Escambia Bay, inflow and coastal area (14 01 05) River basin:

Ownership of supply or system: Municipal and Midway Water Systems Inc.

Ground water, sand-and-gravel aquifer, 7 wells, depth to 28 feet; Source of water: yield to 100 gal/min. 94 percent of supply purchased from Midway Water Systems; source Floridan aquifer, one well, 1,152 ft deep; yield, 1,000 gal/min

Rated plant capacity: 0.7 Mga1/d

Average daily— $\frac{a}{}$ 0.62 Mga1 Pumpage: Year- 227.27 Mgal Lowest month: January, 15.42 Mgal Highest month: July, 22.31 Mgal

Per capita use: 125 gal/d

Finished-water storage: 0.1 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.25 Mga1/d Sewage treatment: Aeration

Waste discharged to: Santa Rosa Sound

Remarks: Service connections: domestic 1,465; commercial 71. a/ Includes 0.125 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-11-75 SAMPLING POINT: 302417086521501, Midway Public Supply Well

Silica (SiO ₂)	12	Dissolved solids	
Calcium (Ca)	2.8	(residue at 180°C)	344
Magnesium (Mg)	1.6	Total hardness	
Sodium (Na)	130	(as CaCO ₃)	14
Potassium (K)	5.3	Noncarbonate hardness	
Strontium (Sr)	.44	(as CaCO ₃)	0
Bicarbonate (HCO ₃)	239	Alkalinity (as CaCO ₃)	198
Sulfate (SO ₄)	6.1	pH (units)	8.5
Chloride (C1)	66	Specific conductance	3.3
Fluoride (F)	1	(umhos/cm at 25°C)	613
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	30
Nitrogen, organic (N)	. 2	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	0
(ammonia, total (NH4-N))	.54	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.01
Phosphorus, total (P)	.02	SAR	15

LYNN HAVEN

County: Bay Population served: 6,000 River basin: St. Andrew Bay, inflow and coastal area (14 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, 500 to 600

feet deep; yield 600 to 1,000 gal/min

Rated plant capacity: 2.3 Mga1/d Pumpage: Year— 183.59 Mga1 Highest month: July, 17.97 Mga1

Average daily—0.50^a/Mga1
Lowest month: February, 10.03 Mga1

Per capita use: 84 gal/d

Finished-water storage: 0.45 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical, spectrographic,

color, turbidity/annually
Sewage discharge: 0.70 Mgal/d
Sewage treatment: Trickling filter

Waste discharged to: North Bay

Remarks: Average daily pumpage increased from 0.23 Mgal/d in 1956 to 0.50 Mgal/d in 1975. City also supplies water to fringe areas adjacent to city limits. The treatment, capacity, and site of discharge of the present sewage treatment plant will be improved by new plant currently being built. No chemical analysis available.

a/ Includes 0.025 Mgal/d commercial use.

MARIANNA

Population served: 8,160 County: Jackson

River basin: Chipola River (13 00 12)

Ownership of supply or system: Municipala/

Source of water: Ground water, Floridan aquifer; 5 wells, 240 to 577 feet deep; yield 250 to 1,400 gal/min.

Rated plant capacity: 3.82 Mga1/d

Average daily— 0.86b/Mgal Pumpage: Year- 315.2 Mgal

Lowest month: February, 22.53 Mgal Highest month: May, 28.84 Mgal

Per capita use: 106 gal/d

Finished-water storage: 0.18 Mga1

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly, chemical, color,

turbidity/annually

Sewage discharge: 0.53 Mga1/d

Sewage treatment: Primary, secondary, trickling filter

Waste discharged to: Chipola River

Remarks: Average daily pumpage increased from 0.70 Mgal/d in 1956 to 1.0 Mgal/d in 1970 then decreased to 0.86 Mgal/d in 1975. Service connections: domestic,

2,202; commercial, 518. Water supplied to areas adjacent to city limits.

a/ System purchased from North Florida Water Company in 1975.

b/ Includes 0.12 Mgal/d industrial use, 0.285 Mgal/d commercial use, 0.008 Mgal/d air conditioning.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75 SAMPLING POINT: 304633085131601, North Florida Water Company Well 5

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	48	(residue at 180°C)	214
Magnesium (Mg)	9.7	Total hardness	
Sodium (Na)	15	(as CaCO ₃)	160
Potassium (K)	.9	Noncarbonate hardness	
Strontium (Sr)	.14	(as CaCO ₂)	.00
Bicarbonate (HCO ₃)	108	Alkalinity (as CaCO ₃)	170
Sulfate (SO4)	4.8	pH (units)	7.3
Chloride (C1)	10	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	376
Nitrate (NO ₃ -N)	.73	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	21
Nitrogen, organic (N)	.01	Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.06	total (PO4-P)	.02
Phosphorus, total (P)	.02	104-1	.02

MILTON

County: Santa Rosa Population served: 9,880

River basin: Blackwater River (14 01 04)

Ownership of supply or system: Municipal

Source of water: Ground water, sand-and-gravel aquifer, 5 wells, 90 to

250 feet deep; yield 300 to 700 gal/min.

Rated plant capacity: 3.5 Mga1/d

Pumpage: Year-348.7 Mgal

Highest month: August, 33.6 Mgal

Average daily _ 0.95a/ Mgal

Lowest month: January, 26.9 Mgal

Per capita use: 97 gal/d

Finished-water storage: 0.55 Mgal

Treatment: Chlorination, stabilization

Type/Frequency of analysis: Bacteriological/monthly; chemical, spectrographic, color, turbidity/annually

Sewage discharge: 1.25b/ Mga1/d

Sewage treatment: Primary, secondary, trickling filter, digestion, settling,

chlorination

Waste discharged to: Blackwater Bay

Remarks: Average daily pumpage increased from 0.25 Mgal/d in 1956 to 0.95 Mgal/d in 1975. Service connections: domestic 2,906; commercial 220

Includes 0.048 Mgal/d commercial use, 0.019 Mgal/d agricultural use, and 0.11 Mgal/d to Capehart Naval Housing.

b/ Plant capacity 2.2 Mgal/d.

CHEMICAL ANALYSIS (milligrams per liter, except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-15-75 SAMPLING POINT: 303834087024801, Byron Street well

Silica (SiO ₂)	6.7	Dissolved solids	
Calcium (Ca)	.6	(residue at 180°C)	12
Magnesium (Mg)	.4	Total hardness	
Sodium (Na)	1	(as CaCO ₃)	3
Potassium (K)	. 2	Noncarbonate hardness	
Strontium (Sr)	.02	(as CaCO ₃)	2
Bicarbonate (HCO3)	1	Alkalinity (as CaCO3)	1
Sulfate (SO4)	. 2	pH (units)	5.6
Chloride (C1)	2.4	Specific conductance	
Fluoride (F)	.0	(umhos/cm at 25°C)	17
Nitrate (NO ₃ -N)	.25	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.00	Temperature (°C)	21.5
Nitrogen, organic (N)	.02	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.00	Orthophosphate	
Iron (Fe)	.00	total (PO4-P)	.00
Phosphorus, total (P)	.01		4.44

NICEVILLE

Population served: 6,290 County: Okaloosa River basin: Choctawhatchee Bay, inflow and coastal area (14 01 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; three wells, 576 to 590

feet deep; yield 450 to 700 gal/min

Rated plant capacity: 1.9 Mga1/d Pumpage: Year— 302.7 Mgal Highest month: May, 32.8 Mgal Average daily—0.83^a/ Mga1 Lowest month: February, 17.9 Mgal

Per capita use: 131 ga1/d

Finished-water storage: 0.36 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.54 Mga1/d

Sewage treatment: Primary, secondary, trickling filter, settling,

chlorination

Waste discharged to: Boggy Bayou to Choctawhatchee Bay

Remarks: Average daily pumpage increased from 0.25 Mgal/d in 1956 to 0.83 Mgal/d in 1975. City supplies water to areas outside city limits. Service connections: domestic, 1,850; commercial, 150.

a/ Includes 0.001 Mgal/d industrial use, 0.219 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75 **SAMPLING POINT:** 303113086291501, 1

Silica (SiO ₂)	14	Dissolved solids	
Calcium (Ca)	25	(residue at 180°C)	160
Magnesium (Mg)	15	Total hardness	
Sodium (Na)	7.9	(as CaCO ₃)	125
Potassium (K)	2.7	Noncarbonate hardness	
Strontium (Sr)	.22	(as CaCO ₃)	.00
Bicarbonate (HCO ₃)	163	Alkalinity (as CaCO3)	133
Sulfate (SO ₄)	7.3	pH (units)	7.8
Chloride (C1)	3	Specific conductance	,
Fluoride (F)	. 2	(umhos/cm at 25°C)	271
Nitrate (NO ₃ -N)	.00	그 그 그 이 사람들이 하면 이 맛이 되면 하면 하는데 그리고 있다면 그렇게 되었다.	
Nitrite (NO2-N)	.01	Color (Pt-Co units) Temperature (°C)	.00
Nitrogen, organic (N)	.09	Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24
Nitrogen	.05	Turbidity (JTU)	1
(ammonia, total (NH4-N))	.03	Carbon, organic, total (C)	
Iron (Fe)	.02	Orthophosphate	
Phosphorus, total (P)		total (PO4-P)	.00
rnosphorus, total (P)	.01		

OKALOOSA COUNTY WATER SYSTEM

County: Okaloosa Population served: 20,872 River basin: Choctawhatchee Bay, inflow and coastal area (14 01 02)

Ownership of supply or system: Okaloosa County

Source of water: Ground water, Floridan aquifer, 12 wells 4, 605 to 734

feet deep; yield 400 to 1,000 gal/min

Rated plant capacity: 4.8 Mga1/d Pumpage: Year—716.64 Mga1 Highest month: May, 74.03 Mga1

Average daily—1.96 Mgal

Lowest month: February, 43.59 Mgal

Per capita use: 94 gal/d

Finished-water storage: Not Reported

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually_/

Sewage discharge: 2.07^d/Mgal/d

Sewage treatment: Contact stabilization

Waste discharged to: Irrigation field and Santa Rosa Sound

Remarks: Supplies water to Longwood, Ocean City and Shalimar

a/ Includes 6 wells from Okaloosa Island Authority.

 \overline{b} / Includes 0.157 Mgal/d commercial use.

c/ Treated water.

d/ Includes 0.7 Mgal/d discharge from Okaloosa Island Plant to Santa Rosa Sound.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 302631086364402, New Castle well

Silica (SiO ₂)	16	Dissolved solids	
Calcium (Ca)	1	(residue at 180°C)	304
Magnesium (Mg)	.6	Total hardness	
Sodium (Na)	110	(as CaCO ₃)	197
Potassium (K)	5.6	Noncarbonate hardness	
Strontium (Sr)	.37	(as CaCO ₃)	0
Bicarbonate (HCO3)	240	Alkalinity (as CaCO3)	197
Sulfate (SO ₄)	4.6	pH (units)	8.3
Chloride (C1)	45	Specific conductance	
Fluoride (F)	1.1	(umhos/cm at 25°C)	534
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	26
Nitrogen, organic (N)	.07	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	0.0
(ammonia, total (NH4-N))	. 4	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.02
Phosphorus, total (P)	.02	SAR	21

PACE

County: Santa Rosa Population served: 5,185

River basin: Escambia Bay, inflow and coastal area (14 01 05)

Ownership of supply or system: City of Pace

Source of water: Ground water, sand-and-gravel aquifer; two wells, 300

feet deep; yield 700 gal/min each well

Rated plant capacity: 2.0 Mga1/d

Pumpage: Year— 182.5 Mga1 Average daily— 0.5 Mga1

Highest month: May, 15.23 Mgal Lowest month: February, 11.54 Mgal

Per capita use: 96 gal/d

Finished-water storage: 0.1 Mgal .

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: One additional well is currently being drilled, estimated yield 700 gal/min. Storage tank with a 0.3 Mgal capacity is under construction. No chemical analysis available.

PANAMA CITY

County: Bay

River basin: St. Andrew Bay, inflow and coastal areas (14 01 01)

Ownership of supply or system: Bay County Water System
Source of water: Surface water, Deer Point Lake Reservoir. All water supplied by Bay County Water System.

Rated plant capacity: -Pumpage: Year-1,737 Mga1
Highest month: June, 198.55 Mga1

Lowest month: March, 113.43 Mga1

Per capita use: $102^{\frac{1}{2}}$ ga1/d Finished-water storage: 1.0 (?) Mga1 Treatment: $\frac{C}{2}$

Type/Frequency of analysis: $\frac{c}{}$

Sewage discharge: 3.5 Mgal/d (two plants)
Sewage treatment: Primary, secondary, trickling filter

Waste discharged to: St. Andrews Bay; Watson Bayou to St. Andrews Bay

Remarks: Average daily use increased from 2.68 Mgal/d in 1956 to 4.76 Mgal/d in 1975. Total yearly pumpage, 1944-75, is shown on figure 5. For chemical analysis of water see Bay County Water System.

a/ Estimated population and per capita figures not reported.

b/ Includes 0.05 Mgal/d industrial use, 0.7 Mgal/d commercial use.

c/ See Bay County Water System (p. 27).

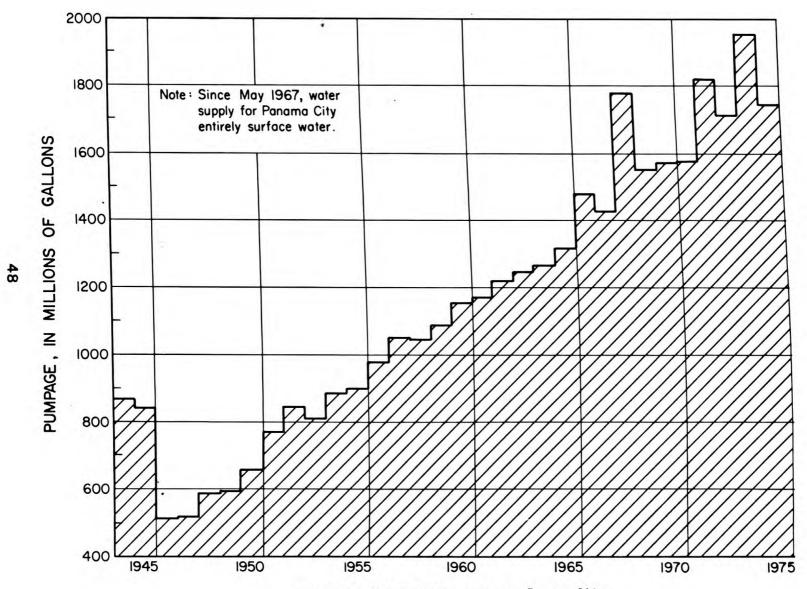


Figure 5. -- Total yearly pumpage, Panama City.

PANAMA CITY BEACH

Population served: 10,700 County: Bay

River basin: St. Andrew Bay, inflow and coastal area (14 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water (GW), Floridan aquifer; 84 percent of supply, 8 wells, 450 to 850 feet deep; yield 300 to 500 gal/min. Surface water

(SW), Deer Point Lake Reservoir (Bay County Water System); 16 percent of supply.

Rated plant capacity: 5.2 Mga1/d

Pumpage: Year— 543.48 Mgal

Average daily 1.49a/ Mgal

Highest month: July, 73.4 (GW) Mgal Lowest month: January, 1.6 (GW) Mgal

17.3 (SW) Mgal 0.05 (SW) Mgal

Per capita use: 139 gal/d

Finished-water storage: 0.6 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological, chemical, spectrographic, color.

turbidity/monthly

Sewage discharge: 0.68 Mga1/d

Sewage treatment: Secondary, contact stabilization

Waste discharged to: West Bay

See Bay County Water System for chemical analysis of surface water component of supply (p. 27).

a/ Includes 0.238 Mgal/d surface water.

PENSACOLA

Population served: 144,435 County: Escambia

River basin: Escambia Bay, inflow and coastal area (14 01 05)

Ownership of supply or system: Municipal

Source of water: Ground water, sand-and-gravel aquifer; 22 wells, 230 to 265 feet deep; yield 500 to 2,000 gal/min

Rated plant capacity: 50.4 Mga1/d Pumpage: Year-8,318.36 Mgal Highest month: May, 818.6 Mgal

Average daily-22.79a/Mga1

Lowest month: February, 505.4 Mgal

Per capita use: 157 ga1/d

Finished-water storage: 4.6 Mgal

Treatment: Chlorination and pH control

Type/Frequency of analysis: Bacteriological/daily; chemical/weekly

Sewage discharge: 11.9 Mgal/d (Five sewage treatment plants)

Sewage treatment: Aeration, primary, secondary (trickling filter, activated

sludge)

Waste discharged to: Escambia and Pensacola Bays (Fig. 6)

Remarks: Pumpage increased from 8.79 Mgal/d in 1956 to 22.79 Mgal/d in 1975 (for annual pumpage, see fig. 7). Service connections: Domestic, 41,561; commercial, 5,667. City supplies water to Santa Rosa Island Authority and Perdido Keys Utilities. Trapp (1971).

Includes 8.0 Mgal/d commercial use, 0.836 Mgal/d supplied to Santa Rosa Island Authority and Perdido Keys Utilities.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-11-75 SAMPLING POINT: 302514087140301, West Plant

Silica (SiO ₂)	8.3	Dissolved solids	
Calcium (Ca)	1.3	(residue at 180°C)	44
Magnesium (Mg)	1.6	Total hardness	
Sodium (Na)	7.3	(as CaCO ₃)	10
Potassium (K)	.3	Noncarbonate hardness	
Strontium (Sr)	.05	(as CaCO ₃)	9
Bicarbonate (HCO ₃)	1	Alkalinity (as CaCO ₃)	1
Sulfate (SO4)	.3	pH (units)	4.7
Chloride (C1)	7.1	Specific conductance	2.5
Fluoride (F)	.1	(umhos/cm at 25°C)	70
Nitrate (NO ₃ -N)	3.4	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	22
Nitrogen, organic (N)	.00	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.00
Phosphorus, total (P)	.00		

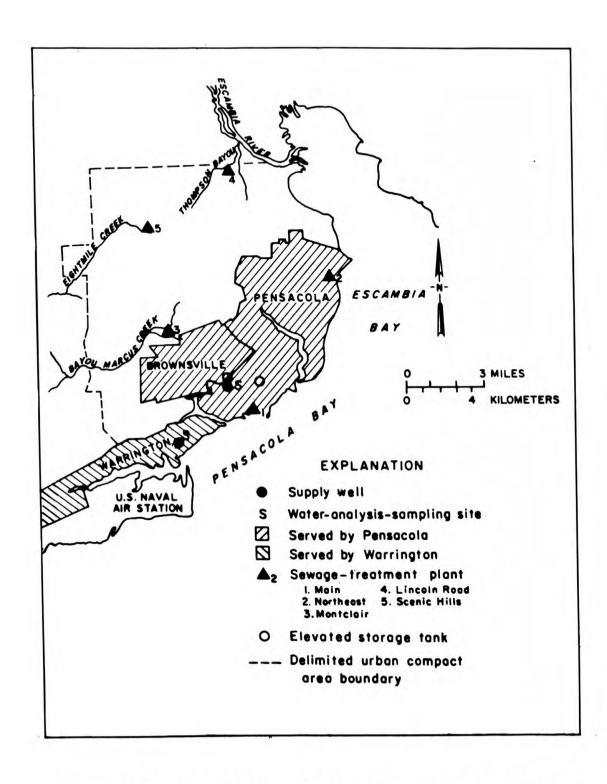


Figure 6.--Areas supplied by the city of Pensacola and the Peoples Water Company, Warrington.

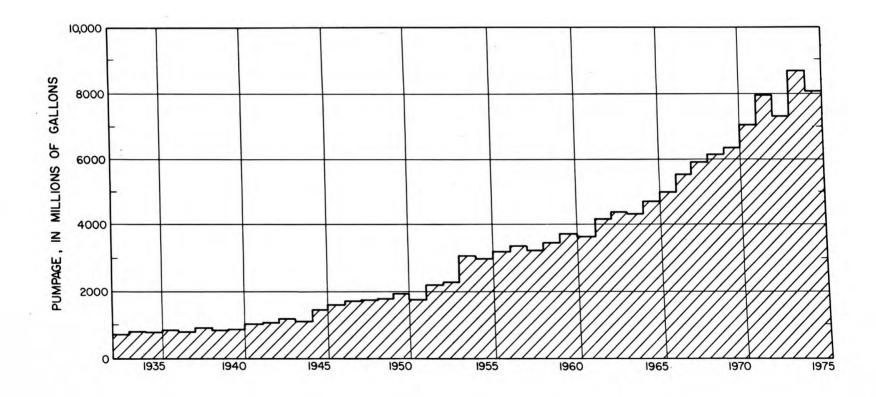


Figure 7.--Total yearly pumpage, city of Pensacola.

PORT ST. JOE

County: Gulf Population served: 4,720 River basin: St. Andrew Bay, inflow and coastal area (14 01 01)

Ownership of supply or system: City of Port St. Joe Source of water: Surface water, Chipola River (fig. 8)

Rated plant capacity: 1.2 Mgal/d Pumpage: Year— 234.71 Mgal Highest month: May, 21.49 Mgal

Average daily 0.64a/ Mga1 Lowest month: April, 18.09 Mgal

Per capita use: $77\frac{b}{}$ gal/d Finished-water storage: 0.6 Mgal

Treatment: Flocculation, softening, stabilization, filtration, chlorination. taste and odor control

Type/Frequency of analysis: Bacteriological, chemical/daily

28.5c/ Mga1/d Sewage discharge:

Sewage treatment: Primary, secondary, aeration, tertiary

Waste discharged to: Gulf County Canal, St. Joseph Bay

Average daily pumpage increased from 0.36 Mgal/d in 1956 to 0.64 Mga1/d in 1975.

a/ Includes 0.266 Mgal/d industrial use, 0.013 Mgal/d commercial use. b/ Based on pumpage for domestic use only.

c/ Includes industrial waste.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: 295102085152400, tributary canal for water supply to City of Port St. Joe and St. Joe Paper Company

Silica (SiO ₂)	5	Dissolved solids	
Calcium (Ca)	13	(residue at 180°C)	66
Magnesium (Mg)	1.5	Total hardness	
Sodium (Na)	3	(as CaCO ₃)	39
Potassium (K)	.7	Noncarbonate hardness	
Strontium (Sr)	.02	(as CaCO ₃)	2.5
Bicarbonate (HCO3)	44	Alkalinity (as CaCO3)	36
Sulfate (SO ₄)	3.8	pH (units)	7.2
Chloride (C1)	3.2	Specific conductance	
Fluoride (F)	.2	(umhos/ca at 25°C)	97
Nitrate (NO ₃ -N)	:11	Color (Pt-Co units)	5
Nitrite (NO2-N)		Temperature (°C)	31
Nitrogen, organic (N)	2.3	Turbidity(JTU)	170
Nitrogen		Carbon, organic, total (C)	3
(ammonia, total (NH	(4-N)) .04	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	.03
Phosphorus, total (P)	.04	SAR	. 2

PORT ST. JOE

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75
SAMPLING POINT: Tributary canal to Chipola River Canal used for water supply to Port St. Joe and St. Joe Paper Company

	Trac	e Elements	
Arsenic (As)	0	Manganese (Mn)	140
Barium (Ba)	0	Mercury (Hg)	.0
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr)	<10	Zinc (Zn)	350
Copper (Cu)	19	nemont to the	
Iron (Fe)	2,300	pH(units)	
Lead (Pb)	3	Temperature (°C)	
	Pes	sticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin		PCN	
Endrin	.00	Silvex	.00
Ethyl parathion		Toxaphene	0
Ethyl trithion		2,4-D	.01
Heptachlor epoxide	.00	2,4-DP	
Parathion	.00	2,4,5-T	.00
Trithion	.00	235-67-24	

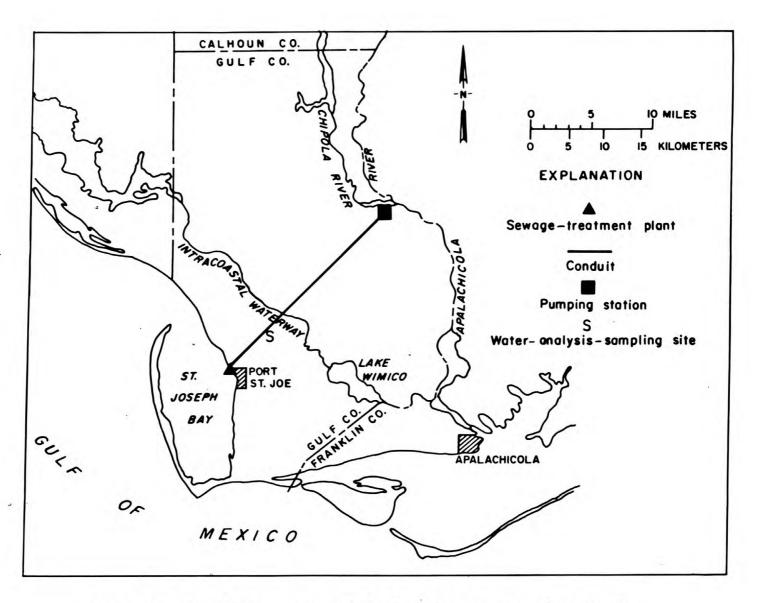


Figure 8.--Distribution system of St. Joe Paper Company, Port St. Joe.

SPRINGFIELD

County: Bay Population served: 7,100

River basin: St. Andrew Bay, inflow and coastal area (14 01 01)

Ownership of supply or system: Bay County Water System Source of water: Surface water, Deer Point Lake Reservoir

Rated plant capacity: a/

Pumpage: Year— 187.82 Mgal

Highest month: June, 20.05 Mgal

Average daily— $0.51\frac{b}{}$ Mga1

Lowest month: September, 11.09 Mgal

Per capita use: 72 ga1/d Finished-water storage: a/

Treatment: a/

Type/Frequency of analysis: $\frac{a}{}$

Sewage discharge: Not Reported Sewage treatment: Not Reported

Waste discharged to: Not Reported

Remarks: Service connections: domestic, 2,050; commercial, 102. For analysis of water see Bay County Water system.

a/ See Bay County Water System (p. 27).

b/ Includes 0.007 Mgal/d industrial use, 0.052 Mgal/d commercial use.

VALPARAISO

County: Okaloosa Population served: 3,808 River basin: Choctawhatchee Bay, inflow and coastal area (14 01 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; three wells, 425 to 600 feet deep; yield 400 to 800 gal/min.

Rated plant capacity: 2.6 Mga1/d Pumpage: Year— 142.44 Mga1

npage: Year— 142.44 Mgal

Highest month: June, 17.82 Mgal

Lowest month: January, 8.96 Mgal

Per capita use: 102 gal/d Finished-water storage: 0.1 Mgal Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.28 Mga1/d

Sewage treatment: Primary, secondary, trickling filter, secondary settling, chlorination

Waste discharged to: Tom's Bayou

Remarks: Average daily pumpage increased from 0.08 Mgal/d in 1956 to 0.7 Mgal/d in 1970 then decreased to 0.39 Mgal/d in 1975. Service connections, domestic, 1,120.

<u>a</u>/ Includes 0.039 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 303055086295501, City Well 3

Silica (SiO ₂)	14	Dissolved solids	
Calcium (Ca)	27	(residue at 180°C)	160
Magnesium (Mg)	17	Total hardness	
Sodium (Na)	6.7	(as CaCO ₃)	140
Potassium (K)	2.5	Noncarbonate hardness	
Strontium (Sr)	.16	(as CaCO ₃)	.00
Bicarbonate (HCO ₃)	173	Alkalinity (as CaCO ₃)	142
Sulfate (SO ₄)	8.4	pH (units)	7.7
Chloride (C1)	2.2	Specific conductance	3.3
Fluoride (F)	.2	(umhos/cm at 25°C)	287
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	10
Nitrite (NO2-N)	.00	Temperature (°C)	24
Nitrogen, organic (N)	.05	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.02	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.01
Phosphorus, total (P)	.01		

WARRINGTON

Population served: 25,194 County: Escambia

River basin: Escambia Bay, inflow and coastal area (14 01 04), Perdido Bay,

inflow and coastal area (14 01 07)

Ownership of supply or system: Peoples Water Services Co., Inc.

Source of water: Ground water, sand-and-gravel aquifer; 7 wells, 250 to 300

feet deep; yield 110 to 1,000 gal/min

Rated plant capacity: 4.0 Mga1/d

Pumpage: Year— 868.7 Mgal

Highest month: July, 90.5 Mgal

Average daily-2.38ª/ Mgal

Lowest month: February, 56.6 Mgal

Per capita use: 94 gal/d

Finished-water storage: 1.0 Mgal

Treatment: Chlorination, stabilization

Type/Frequency of analysis: Bacteriological/monthlyb/; chemical/annually

Septic tanksc/ Sewage discharge:

None Sewage treatment:

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 2.13 Mgal/d in 1956 to 2.38 Mgal/d in 1975.

a/ Includes 0.238 Mgal/d commercial use.

 $\frac{\overline{b}}{c}$ / Treated water. $\frac{\overline{b}}{c}$ / About 90 percent sewage to septic tanks, 10 percent sewage to West Florida Utilities Sewage System.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

• ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-11-75 SAMPLING POINT: 302332087154101, Well 4, Fleet Road well

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	1	(residue at 180°C)	22
Magnesium (Mg)	.5	Total hardness	
Sodium (Na)	5.4	(as CaCO ₃)	5
Potassium (K)	.4	Noncarbonate hardness	
Strontium (Sr)	.17	(as CaCO ₃)	3
Bicarbonate (HCO ₃)	3	Alkalinity (as CaCO3)	2
Sulfate (SO4)	1.3	pH (units)	5.4
Chloride (C1)	6.1	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	41
Nitrate (NO ₃ -N)	.83	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.00	Temperature (°C)	23
Nitrogen, organic (N)	.00	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.07	total (PO4-P)	.00
Phosphorus, total (P)	.00	10.44	3.00

WEWAHITCHKA

County: Gulf

Population served: 1,292

River basin: Chipola River (13-00-12)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, 200 to 578 feet

deep: vield 200 to 565 gal/min

Rated plant capacity: 1.1 Mga1/d

Pumpage: Year-17.52 Mgal Average daily __ 0.048a/Mgal

Highest month: August, 1.75 Mgal Lowest month: March, 1.20 Mgal

Per capita use: 37 gal/d

Finished-water storage: 0.20 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/annually; chemical, spectrographic, color and turbidity/annually

Sewage discharge: Not reported

Sewage treatment: Aeration, chlorination, tertiary

Waste discharged to: Chipola River

Remarks: No chemical analysis available.

a/ Includes 0.001 Mgal, commercial use.

NORTHERN, NORTHEASTERN, AND NORTH-CENTRAL FLORIDA

The northern, northeastern, and north-central Florida section extends from the Apalachicola River eastward to the Atlantic Ocean and from the Georgia-Florida line southward to the latitude of Gainesville (Fig. 9).

The principal source of ground-water supply for municipal use in this section is the Floridan aquifer, except in coastal St. Johns and Flagler Counties where the shallow-sand aquifer supply water to St. Augustine, Bunnell, and beach communities. During 1975, a total of 38,000 Mgal was withdrawn for municipal supplies from the Floridan aquifer, and 546 Mgal was withdrawn from the nonartesian and shallow-sand aquifers and 466 Mgal from an infiltration gallery at St. Augustine. The three most populous areas: the Jacksonville-Fernandina Beach area, and the Gainesville and the Tallahassee areas pumped 32,323 Mgal or 85 percent of the total amount of water supplied by municipal systems in the section. Surface water supplied 899 Mgal or about one percent of the total amount of water supplied for municipal use.

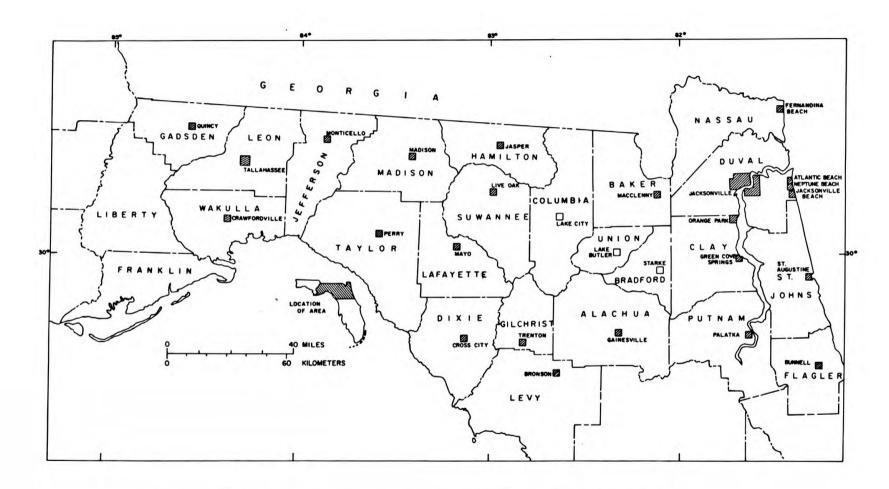


Figure 9.--Municipalities in northern, northeastern, and north-central Florida for which water-use data are given.

ATLANTIC BEACH

County: Duval Population served: 8,200

River basin: Coastal area between St. Johns River and Ponce de Leon Inlet (08 02 01

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 2 wells, 1,000 to 1,300 feet deep; yield 1,480 to 1,973 gal/min

Rated plant capacity: 2.6 Mgal/d Pumpage: Year— 445.59 Mgal

mpage: Year— 445.59 Mgal

Highest month: May, 46.87 Mgal

Average daily—1.22 Mgal

Lowest month: February, 27.27 Mgal

Per capita use: 149 gal/d

Finished-water storage: 0.5 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; odor and turbidity/biannually

Sewage discharge: 0.92 Mgal/d

Sewage treatment: Contact stabilization

Waste discharged to: Intracoastal Waterway

Remarks: Average daily pumpage increased from 0.15 Mgal/d in 1956 to 1.22 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-13-75
SAMPLING POINT: 302008081242101, D-307

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	61	(residue at 180°C)	444
Magnesium (Mg)	36	Total hardness	444
Sodium (Na)	12	(as CaCO ₃)	300
Potassium (K)	2.4	Noncarbonate hardness	300
Strontium (Sr)	2	(as CaCO ₃)	180
Bicarbonate (HCO3)	153	Alkalinity (as CaCO3)	125
Sulfate (SO4)	170	pH (units)	8.3
Chloride (C1)	17	Specific conductance	
Fluoride (F)	.8	(umhos/cm at 25°C)	627
Nitrate (NO ₃ -N)		Color (Pt-Co units)	5
Nitrite (NO2-N)		Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen (ammonia, total (NH4-N))		Carbon, organic, total (C) Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	200
Phosphorus, total (P)			177

BRONSON

County: Levy Population served:

River basin: Waccasassa River and coastal area between the Withlacoochee

and Suwannee Rivers (11 01 01) Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; one well 267 feet deep;

yield 485 gal/min (estimated from rated plant capacity).

Rated plant capacity: 0.7 Mga1/d Pumpage: Year— 20.06 Mgal

Average daily = 0.05 Mga1 Lowest month: December, 1.3b/ Mgal Highest month: June, 2.5 Mgal

Per capita use: 100 gal/d

Finished-water storage: 0.10 Mgal Treatment: Aeration, chlorination

Bacteriological/monthly; chemical semiannually Type/Frequency of analysis:

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks:

a/ Includes 0.01 Mgal/d commercial use.

b/ Also January and February .

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 2-19-75 **SAMPLING POINT:** 292109082422901, Town well

Silica (SiO ₂)	4	Dissolved solids	
Calcium (Ca)	23	(residue at 180°C)	78
Magnesium (Mg)	2.2	Total hardness	70
Sodium (Na)	3.5	(as CaCO ₃)	67
Potassium (K)	. 2	Noncarbonate hardness	07
Strontium (Sr)	.07	(as CaCO ₃)	9
Bicarbonate (HCO ₃)	70	Alkalinity (as CaCO3)	57
Sulfate (SO4)	.3	pH (units)	7.7
Chloride (C1)	4.9	Specific conductance	0.34
Fluoride (F)	.1	(umhos/cm at 25°C)	140
Nitrate (NO ₃ -N)	.75	Color (Pt-Co units)	0
Nitrite (NO ₂ -N)	.00	Temperature (°C)	22.5
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	
Phosphorus, total (P)		SAR	.2

BUNNELL

County: Flagler Population served: 2,000 River basin: St. Johns River below the Oklawaha River (08 01 03)

Ownership of supply or system: Municipal

Source of water: Ground water, nonartesian aquifer; 2 wells, 100 to 115 feet deep; yield 375 gal/min

Rated plant capacity: 0.65 Mga1/d

Pumpage: Year-80.30 Mgal Average daily- 0.22 Mgal

Highest month: May, 7.5 Mgal Lowest month: February, 5.8 Mgal

Per capita use: 110 gal/d

Finished-water storage: 0.26 Mgal

Treatment: Chlorination, filtration, softening, pH control

Type/Frequency of analysis: Bacteriological/annually; chemical/daily; chloride

occasionally during dry season.

Sewage discharge: 0.018 Mgal/d Sewage treatment: Filtration

Waste discharged to: Pond and ground

Remarks: Average daily pumpage increased from 0.18 Mgal/d in 1956 to 0.22 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-11-75 SAMPLING POINT: 292826081145801, F-122

Silica (SiO ₂)	22	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	516
Magnesium (Mg)	8.5	Total hardness	
Sodium (Na)	49	(as CaCO ₃)	310
Potassium (K)	1.5	Noncarbonate hardness	
Strontium (Sr)	.64	(as CaCO ₃)	23
Bicarbonate (HCO3)	350	Alkalinity (as CaCO3)	288
Sulfate (SO4)	6.9	pH (units)	7.4
Chloride (C1)	95	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	850
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	10
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.03	Turbidity (JTU)	8
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.33	Orthophosphate	
Iron (Fe)	.81	total (PO4-P)	.36
Phosphorus, total (P)	. 39	300 300 T	

CRAWFORDVILLE

County: Wakulla Population served: 459

River basin: St. Marks and Wakulla Rivers and coastal area between the Aucilla

and Ochlockonee Rivers (12 00 01)

Ownership of supply or system: Crawfordville Water System Inc.

Source of water: Ground water, Floridan aquifer; one well, 170 feet deep;

maximum yield 200 gal/min

Rated plant capacity: 0.288 Mga1/d

Pumpage: Year— 5.86 Mgal Average daily— 0.016 Mgal

Highest month: August, 0.501 Mgal Lowest month: January & April,

0.480 Mgal

Per capita use: 35 gal/d

Finished-water storage: 0.01 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Chemical/annually

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Pumpage and per capita use low because of large number of private wells being used for lawn sprinkling, gardens, etc.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 3-15-76 SAMPLING POINT: 301028084223802, Crawfordville 6-inch well

Silica (SiO ₂) Calcium (Ca)	8.5 46	Dissolved solids (residue at 180°C)	155
Magnesium (Mg) Sodium (Na)	3.2 3.6	Total hardness (as CaCO ₃)	1/0
Potassium (K)	5.1	Noncarbonate hardness	140
Strontium (Sr)	. 2	(as CaCO ₃)	18
Bicarbonate (HCO ₃)	149	Alkalinity (as CaCO ₃)	122
Sulfate (SO4)	10	pH (units)	7.6
Chloride (C1)	6	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	300
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.01	Temperature (°C)	21
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total	(C) 31
(ammonia, total (NH4-N))	.02	Orthophosphate	37
Iron (Fe)	.00	total (PO4-P)	
Phosphorus, total (P)			

CROSS CITY

Population served: 3,060 County: Dixie

Coastal area between Suwannee and Aucilla Rivers (11 01 02) River basin:

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, 105 and 144 feet

deep; yield 400 to 500 gal/min

Rated plant capacity: 1.296 Mgal/d

Average daily 0.37ª/ Mgal Pumpage: Year- 134.4 Mgal

Lowest month: September, 9.2 Mgal Highest month: May, 13.3 Mgal

Per capita use: 120 gal/d

Finished-water storage: 0.15 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological and chemical/monthly

 $0.08^{b/}$ Mgal Sewage discharge: Sewage treatment: Secondary

Waste discharged to: Drainage ditch tributary to unnamed creek

Remarks: City supplies water to fringe areas outside city limits. Average daily pumpage increased from 0.21 Mgal/d in 1956 to 0.42 Mgal/d in 1970 then decreased to 0.37 Mgal/d in 1975.

a/ Includes 0.018 Mgal/d commercial use.

 \overline{b} / 50 service connections on sewerage, 850 connections on septic tanks.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-25-75 SAMPLING POINT: 293815083073301

Silica (SiO ₂)	4.2	Dissolved solids	
Calcium (Ca)	97	(residue at 180°C)	308
Magnesium (Mg)	10	Total hardness	000
Sodium (Na)	8.2	(as CaCO ₃)	280
Potassium (K)	.9	Noncarbonate hardness	
Strontium (Sr)	.13	(as CaCO ₃)	11
Bicarbonate (HCO ₃)	328	Alkalinity (as CaCO ₃)	269
Sulfate (SO ₄)	4.5	pH (units)	7.0
Chloride (C1)	12	Specific conductance	
Fluoride (F)	.0	(umhos/cm at 25°C)	555
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.01	Temperature (°C)	23.5
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total	(C)
(ammonia, total (NH4-N))	.11	Orthophosphate	(0)
Iron (Fe)	2.4	total (PO4-P)	
Phosphorus, total (P)		(154-1)	

FERNANDINA BEACH

County: Nassau Population served: 3,000

River basin: St. Marys River (07 02 04)

Ownership of supply or system: Florida Public Utilities Co.

Source of water: Ground water, Floridan aquifer; 7 well, 750 to 1,215 feet

deep; yield 265 to 1,680 gal/min

Rated plant capacity: 5.04 M gal/d

Pumpage: Year— 711.75 Mgal Average daily— 1.95a/ Mgal

Highest month: June, 81.2 Mgal Lowest month: November, 43.8 Mgal

Per capita use: 330 gal/d

Finished-water storage: 0.075 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/trimonthlyb/; Bacteriological/monthlyc/

Sewage discharge: Not reported

Sewage treatment: Primary

Waste discharged to: Amelia River

Remarks: Average daily pumpage increased from 0.71 Mgal/d in 1956 to 1.95 Mgal/d in 1975.

a/ Includes 0.70 Mgal/d industrial use, 0.25 Mgal/d commercial use.

b/ Treated water.

c/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75 SAMPLING POINT: 304020081272005, well N-7

Silica (SiO ₂)	33	Dissolved solids	
Calcium (Ca)	76	(residue at 180°C)	578
Magnesium (Mg)	39	Total hardness	370
Sodium (Na)	26	(as CaCO ₃)	350
Potassium (K)	2.3	Noncarbonate hardness	330
Strontium (Sr)	.93	(as CaCO ₃)	200
Bicarbonate (HCO ₃)	184	Alkalinity (as CaCO3)	151
Sulfate (SO4)	170	pH (units)	7.9
Chloride (C1)	56	Specific conductance	
Fluoride (F)	.7	(umhos/cm at 25°C)	760
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.23	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	
Phosphorus, total (P)			

GAINESVILLE

80.000 Population served: County: Alachua

River basin: Oklawaha River (08 01 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 8 wells 673 to 735 feet

deep: vield 2,400 to 27,800 gal/min

Rated plant capacity: 30 Mga1/d Pumpage: Year- 5.048.31 Mgal

Average daily-13.83 Mgal

Lowest month: September, 213.29 Mgal Highest month: April, 485.93

Per capita use: 173 gal/d

Finished-water storage: 11.5 Mgal

Treatment: Chlorination, filtration, fluoridation, recarbonation, softening

Type/Frequency of analysis: Bacteriological/hourlya/, and 10 times monthlyb/;

chemical/monthly; color, turbidity/daily

Sewage discharge: 8.01 Mgal/d (2 plants)
Sewage treatment: Biofiltration, chlorination, digestion, comminution, grit

chambers-Plant 1. Activated sludge, chlorination, digestion, comminution-Plant 2.

Waste discharged to: Paynes Praire

Remarks: Average daily pumpage increased from 3.57 Mgal/d in 1956 to 13.83 Mgal/d

in 1975. Total service connections 22,596.

a/Treated water.

b/Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-6-75 SAMPLING POINT: 294209082173101, Gainesville Water Plant 7

16 Silica (SiO₂) Dissolved solids 330 Calcium (Ca) 81 (residue at 180°C) Magnesium (Mg) 17 Total hardness 270 Sodium (Na) 8.9 (as CaCO₃) Potassium (K) 1 Noncarbonate hardness 76 Strontium (Sr) .36 (as CaCO₃) Bicarbonate (HCO₂) 236 Alkalinity (as CaCO3) 194 Sulfate (SO₄) 70 PH (units) 8.1 Chloride (C1) 12 Specific conductance Fluoride (F) . 2 (umhos/cm at 25°C) 555 Nitrate (NO₃-N) .00 Color (Pt-Co units) 5 .02 Nitrite (NO2-N) Temperature (°C) .04 Nitrogen, organic (N) Turbidity (JTU) 1 Nitrogen Carbon, organic, total (C) 2 (ammonia, total (NH4-N)) .37 Orthophosphate Iron (Fe) total (PO4-P) .04 Phosphorus, total (P) .05

GREEN COVE SPRINGS

County: Clay Population served: 3,400 River basin: St. Johns River below the Oklawaha River (08 01 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 4 wells, 765 to 1,140 feet

deep; yield 300 to 1,750 gal/min

Rated plant capacity: 4.5 Mga1/d Pumpage: Year— 136.91 Mga1 Highest month: May, 15.7 Mga1

Average daily— 0.394 Mgal
Lowest month: April, 9.4 Mgal

Per capita use: 114 gal/d

Finished-water storage: 0.53 Mgal/d Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/4 times monthlyb/; chemical, color,

turbindity/annually

Sewage discharge: 0.31c/ Mga1/d

Sewage treatment: Contact stabilization

Waste discharged to: St. Johns River

Remarks: Average daily pumpage decreased from 0.42 Mgal/d in 1956 to 0.38 Mgal/d in 1975.

a/ Includes 0.039 Mgal/d commercial use and 0.02 Mgal/d air conditioning.

b/ Treated water only.

c/ New plant. Discharge for September only.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 11- 3-75 SAMPLING POINT: 300022081415002, Well C-103

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	21	(residue at 180°C)	112
Magnesium (Mg)	11	Total hardness	777
Sodium (Na)	3.6	(as CaCO ₃)	98
Potassium (K)	1.3	Noncarbonate hardness	, ,
Strontium (Sr)	.53	(as CaCO ₃)	18
Bicarbonate (HCO ₃)	98	Alkalinity (as CaCO3)	80
Sulfate (SO4)	15	pH (units)	7.9
Chloride (C1)	5	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	205
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.00	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.06	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.02
Phosphorus, total (P)	.02		

JACKSONVILLE

County: Duval Population served: 250,000 River basin: St. Johns River Basin below the Oklawaha River (08 01 03)

Ownership of supply or system: Municipal
Source of water: Ground water, Floridan aquifer; 90 wells, 600 to 1,400 feet
deep; yield 1,500 to 3,500 gal/min

Rated plant capacity: 118 Mga1/d

Pumpage: Year— 21,333.15 Mga1

Highest month: November, 1,956.0 Mga1

Lowest month: February, 1392.0Mga1

Per capita use: 152 gal/d Finished-water storage: 28 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly '; chemical, color, and turbidity/semiannually. Bacteriological/triannually; chemical/once every 3 yr. \(\)/
Sewage discharge: 30 Mgal/d
Sewage treatment: Aeration, chlorination, clarification, grit chambers, diffused air, oxidation, polishing ponds, activated sludge, contact stabilization*

Waste discharged to: St. Johns River

Remarks: Average daily pumpage increased from 34.33 Mgal/d in 1956 to 58.45 Mgal/d in 1975. City supplies water to subdivisions (fig. 10). Total yearly pumpage is shown of Figure 11. Anderson (1973), Fairchild (1972).

a/ Includes estimated 20 Mgal/d air conditioning and Industrial use.

b/ Treated water. c/ Raw water.

* Settling, primary, secondary, tertiary.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-6-75 SAMPLING POINT: 301842081422002, Well D-50A

Silica (SiO ₂) Calcium (Ca) Magnesium (Mg)	41 65 25	Dissolved solids (residue at 180°C) Total hardness	392
Sodium (Na) Potassium (K)	10 2.4	(as CaCO ₃) Noncarbonate hardness	270
Strontium (Sr) Bicarbonate (HCO ₃)	3.7	(as CaCO ₃)	140
Sulfate (SO ₄)	152	Alkalinity (as CaCO3)	125
Chloride (C1)	150	pH (units)	8.3
Fluoride (F) Nitrate (NO ₃ -N) Nitrite (NO ₂ -N)	.7 .01 .00	Specific conductance (umhos/cm at 25°C) Color (Pt-Co units)	573 .00
Nitrogen, organic (N)		Temperature (°C)	- 324
Nitrogen (ammonia, total (NH4-N)) Iron (Fe) Phosphorus, total (P)	.15 .01	Turbidity (JTU) Carbon, organic, total (C) Orthophosphate total (PO4-P)	=

JACKSONVILLE

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY:	U.S.	Geological Survey	COLLECTION DATE:	5- 6-75
SAMPLING POIL	NT:	301839081392101, I) - 198	

Silica (SiO ₂)		21	Dissolved solids	
Calcium (Ca)		66	(residue at 180°C)	526
Magnesium (Mg)		28	Total hardness	320
Sodium (Na)		11	(as CaCO ₃)	280
Potassium (K)		2.5	Noncarbonate hardness	200
Strontium (Sr)		3.8	(as CaCO ₃)	150
Bicarbonate (HCO3)		159	Alkalinity (as CaCO3)	130
Sulfate (SO4)		160	pH (units)	8.3
Chloride (C1)		14	Specific conductance	0.5
Fluoride (F)		. 7	(umhos/cm at 25°C)	593
Nitrate (NO ₃ -N)		.00	Color (Pt-Co units)	.00
Nitrite (NO2-N)		.00	Temperature (°C)	
Nitrogen, organic (N)			Turbidity (JTU)	
Nitrogen		200	Carbon, organic, total (C)	
(ammonia, total (NH	I4-N))	.16	Orthophosphate	
Iron (Fe)		.01	total (PO4-P)	
Phosphorus, total (P)			Notice Parket Strategies	

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-13-75 SAMPLING POINT: 302130081411802, D-46A, C-33

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	67	(residue at 180°C)	400
Magnesium (Mg)	23	Total hardness	
Sodium (Na)	12	(as CaCO ₃)	260
Potassium (K)	2	Noncarbonate hardness	
Strontium (Sr)	2.7	(as CaCO ₃)	120
Bicarbonate (HCO3)	163	Alkalinity (as CaCO3)	138
Sulfate (SO4)	130	pH (units)	8.4
Chloride (C1)	14	Specific conductance	
Fluoride (F)	.7	(umhos/cm at 25°C)	563
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.17	Orthophosphate	
Iron (Fe)	.20	total (PO4-P)	
Phosphorus, total (P)			
Carbonate (CO ₃)	2.0		

JACKSONVILLE

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY:	U.S.	Geological Sur	vey	COLLECTION DATE:	5- 6-75
SAMPLING POL	NT:	302015081384501	1 D-	335	

Silica (SiO ₂)	25	Dissolved solids	
Calcium (Ca)	63	(residue at 180°C)	384
Magnesium (Mg)	24	Total hardness	7.7
Sodium (Na)	13	(as CaCO ₃)	260
Potassium (K)	2	Noncarbonate hardness	
Strontium (Sr)	3.2	(as CaCO ₃)	110
Bicarbonate (HCO3)	180	Alkalinity (as CaCO3)	147
Sulfate (SO4)	110	pH (units)	8.3
Chloride (C1)	17	Specific conductance	0.0
Fluoride (F)	. 7	(umhos/cm at 25°C)	544
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.19	Orthophosphate	
Iron (Fe)		total (PO4-P)	
Phosphorus, total (P)		The state of the s	

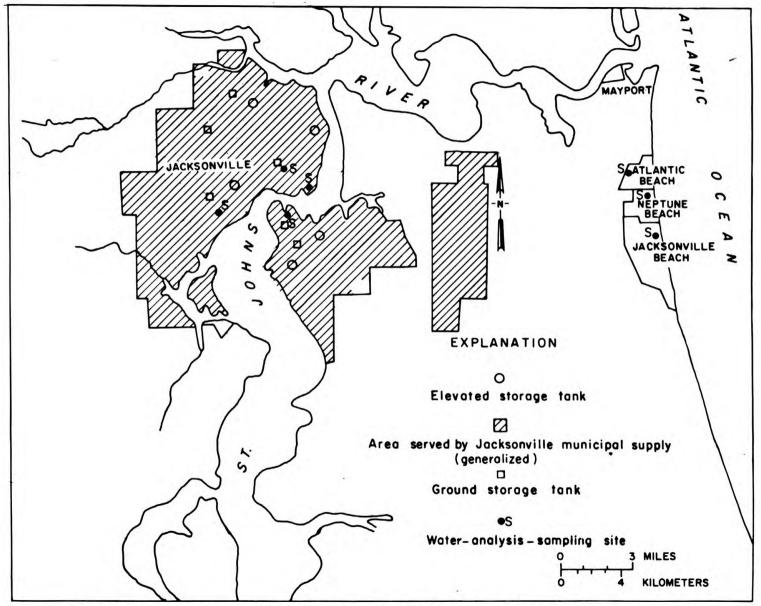


Figure 10.--Areas supplied water by the city of Jacksonville.

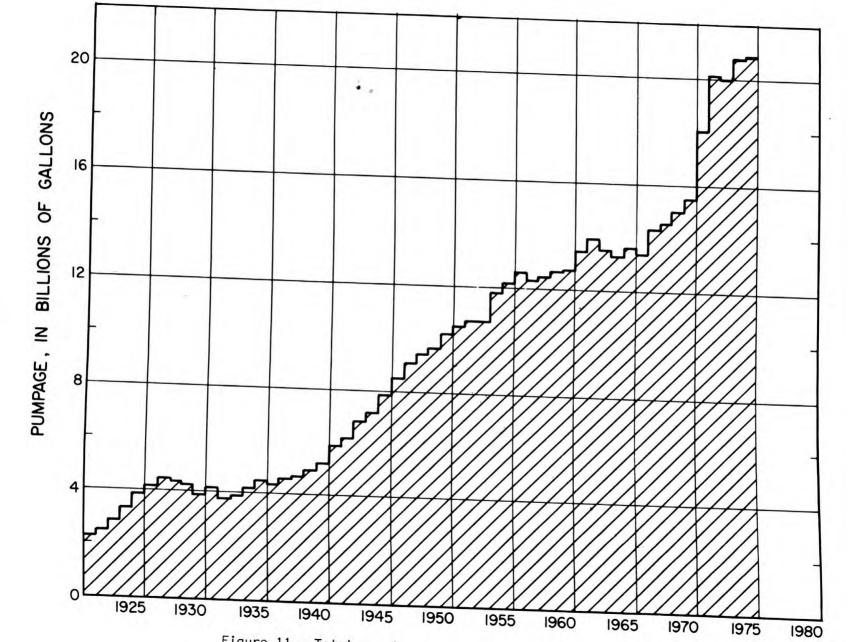


Figure 11.--Total yearly pumpage, city of Jacksonville

JACKSONVILLE BEACH

County: Duval Population served: 15,800

River basin: Coastal area between St. Johns River and Ponce de Leon Inlet

(08 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, 800 to 1,200 feet

deep; yield 800 to 2,600 gal/min

Rated plant capacity: 5.0 Mga1/d

Pumpage: Year— 642.40 Mgal Average daily—1.76a/ Mgal

Highest month: August, 63.5 Mgal Lowest month: March, 39.5 Mgal

Per capita use: 111 gal/d

Finished-water storage: 1.3 Mgal

Treatment: Aeration, chlorination, detention

Type/Frequency of analysis: Bacteriological/monthly; chemical, spectrographic,

color, turbidity/annually

Sewage discharge: 1.72 Mga1/d

Sewage treatment: Aeration, activated sludge, diffused air

Waste discharged to: Pablo Creek Canal, Intracoastal Waterway

Remarks: Average daily pumpage increased from 1.30 Mgal/d in 1956 to 1.76

Mgal/d in 1975.

a/ Includes 0.5 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-13-75 SAMPLING POINT: 301714081233301, D-72

Silica (SiO ₂)	21	Dissolved solids	
Calcium (Ca)	64	(residue at 180°C)	460
Magnesium (Mg)	38	Total hardness	400
Sodium (Na)	14	(as CaCO ₃)	320
Potassium (K)	2.9	Noncarbonate hardness	320
Strontium (Sr)	2.1	(as CaCO ₃)	190
Bicarbonate (HCO3)	152	Alkalinity (as CaCO3)	128
Sulfate (SO ₄)	180	pH (units)	8.4
Chloride (C1)	14	Specific conductance	
Fluoride (F)	.8	(umhos/cm at 25°C)	637
Nitrate (NO ₃ -N)		Color (Pt-Co units)	5
Nitrite (NO ₂ -N)		Temperature (°C)	22
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))		Orthophosphate	
Iron (Fe)		total (PO4-P)	
Phosphorus, total (P)	30		
Carbonate	2.0		

JACKSONVILLE BEACH

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 9-9-75 SAMPLING POINT: 301704081233401, D-484

Silica (SiO ₂)	29	Dissolved solids	
Calcium (Ca)	74	(residue at 180°C)	544
Magnesium (Mg)	32	Total hardness	
Sodium (Na)	40	(as CaCO ₃)	320
Potassium (K)	2.4	Noncarbonate hardness	
Strontium (Sr)	1.6	(as CaCO ₃)	170
Bicarbonate (HCO ₃)	184	Alkalinity (as CaCO ₃)	151
Sulfate (SO ₄)	130	pH (units)	7.8
Chloride (C1)	92	Specific conductance	
Fluoride (F)	. 7	(umhos/cm at 25°C)	830
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.04	Turbidity (JTU)	5
Nitrogen	, ,	Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.27	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.00
Phosphorus, total (P)	.00		

JASPER

County: Hamilton Population served: 4,063

River basin: Suwannee River above the Withlacoochee River excluding the

Alapaha River (11 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 3 wells, 345 to 740 feet deep; yield 200 to 600 gal/min

Rated plant capacity: 1.0 Mga1/d

Pumpage: Year— 184.80 Mgal Average daily— 0.51a/ Mgal

Highest month: May, 18.5 Mgal Lowest month: February, 12.6 Mgal

Per capita use: 126 gal/d

Finished-water storage: 0.40 Mgal

Treatment: Chlorination, softening, coagulation, filtration

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.42 Mga1/d

Sewage treatment: Primary, secondary, activated sludge, settling, chlorination

Waste discharged to: Aeration ponds to Sugar Creek during high water

Remarks: Average daily pumpage increased from 0.20 Mgal/d in 1956 to 0.51 Mgal/d in 1975

a/ Includes 0.018 Mgal/d industrial use, 0.025 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 2-18-75 SAMPLING POINT: 303123082564201, Well 3

Silica (SiO ₂)	16	Dissolved solids	
Calcium (Ca)	92	(residue at 180°C)	541
Magnesium (Mg)	45	Total hardness	341
Sodium (Na)	5.7	(as CaCO ₃)	420
Potassium (K)	1.2	Noncarbonate hardness	420
Strontium (Sr)	.52	(as CaCO ₃)	220
Bicarbonate (HCO3)	240	Alkalinity (as CaCO3)	197
Sulfate (SO ₄)	210	pH (units)	7.3
Chloride (C1)	8.4	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	755
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	
Nitrite (NO2-N)	.00	Temperature (°C)	22
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.08	Orthophosphate	
Iron (Fe)	.14	total (PO4-P)	
Phosphorus, total (P)		SERVICE SERVICES	

LAKE BUTLER

County: Union Population served: 5,560a/

River basin: Santa Fe River (11 02 06)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 2 wells, 357 to 402 feet deep;

yield, maximum, 416 gal/min

Rated plant capacity: 0.6 Mgal

Pumpage: Year— 201.84 Mgal Average daily— 0.553b/ Mgal

Highest month: August, 18.5 Mgal Lowest month: February, 10.7 Mgal

Per capita use: 100 gal/d

Finished-water storage: 0.40 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Chemical/irregularly

Sewage discharge: 0.27 Mgal/d Sewage treatment: Digestion

Waste discharged to: Silver Run Creek

Remarks: Average daily pumpage increased from 0.10 Mgal/d in 1956 to 0.55 Mgal/d in 1975.

a/ Includes Prisoners.

 $\frac{a}{b}$ / Includes 0.055 Mgal/d commercial use and 0.299 Mgal/d industrial use (Prison Hospital).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 2-19-76 SAMPLING POINT: 300108082204301, City Well

Silica (SiO ₂) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Strontium (Sr) Bicarbonate (HCO ₃) Sulfate (SO ₄) Chloride (C1) Fluoride (F) Nitrate (NO ₃ -N) Nitrite (NO ₂ -N) Nitrogen, organic (N)	13 40 15 7 1.1 1.3 183 16 8 .01 .00	Dissolved solids (residue at 180°C) Total hardness (as CaCO ₃) Noncarbonate hardness (as CaCO ₃) Alkalinity (as CaCO ₃) PH (units) Specific conductance (umhos/cm at 25°C) Color (Pt-Co units) Temperature (°C) Turbidity (JTU)	204 160 10 150 7.8 355 .00 24
Nitrite (NUZ-N) Nitrogen, organic (N)			24
Nitrogen (ammonia, total (NH4-N)) Iron (Fe)	.07	Carbon, organic, total (C) Orthophosphate total (PO4-P)	
Phosphorus, total (P)			

LAKE CITY

County: Columbia Population served: 15,500

River basin: Suwannee River above Withlacoochee River excluding Alapaha River

(11 02 06)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, 250 to 300 feet deep;

yields, 400 to 900 gal/min

Rated plant capacity: 4.9 Mga1/d

Pumpage: Year— 605.62 Mga1 Average daily— 1.66a/ Mga1

Highest month: June, 58.43 Mgal Lowest month: January, 41.55 Mgal

Per capita use: 107 gal/d

Finished-water storage: 1.25 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 2.0 Mga1/d

Sewage treatment: Primary, secondary, trickling filter, settling, chlorination

Waste discharged to: Big Lake

Remarks: Average daily pumpage increased from 1.00 Mgal/d in 1956 to 1.66

Mgal/d in 1975.

 \underline{a} / Includes 0.166 Mgal/d industrial use, 0.498 Mgal/d commercial and air conditioning use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 2-18-76 SAMPLING POINT: 301108082372401, City Well 2

13 Dissolved solids Silica (SiO2) Calcium (Ca) 40 (residue at 180°C) 187 Magnesium (Mg) Total hardness 13 Sodium (Na) 8 (as CaCO₃) 150 Potassium (K) 1 Noncarbonate hardness Strontium (Sr) (as CaCO₃) .1 3 180 Bicarbonate (HCO3) Alkalinity (as CaCO₃) 147 Sulfate (SO4) 3.1 7.7 pH (units) Chloride (C1) 11 Specific conductance Fluoride (F) .4 325 (umhos/cm at 25°C) .00 Nitrate (NO₃-N) Color (Pt-Co units) 10 Nitrite (NO2-N) .00 Temperature (°C) 21.5 Nitrogen, organic (N) Turbidity(JTU) Nitrogen Carbon, organic, total (C) (ammonia, total (NH4-N)) .49 Orthophosphate Iron (Fe) .00 total (PO4-P) Phosphorus, total (P)

LIVE OAK

County: Suwannee Population served: 7,500

River basin: Suwannee River above Withlacoochee River excluding

Alapaha River (11 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 6 wells, 290 to 1,145

feet deep

Rated plant capacity: 2.02 Mga1/d

Pumpage: Year— 342.95 Mga1/d

Highest month: July, 35.02 Mgal

Average daily—0.94a/ Mga1

Lowest month: February, 24.41 Mga1

Per capita use: 125 ga1/d

Finished-water storage: 1.52 Mgal

Treatment: Aeration, filtration, chlorination

Type/Frequency of analysis: Bacteriological and chemical/monthly

Sewage discharge: 0.32^b/ Mga1/d

Sewage treatment: Primary, filtration, tertiary

Waste discharged to: Suwannee River

Remarks: Average daily pumpage increased from 0.50 Mgal/d in 1956 to 0.94 Mgal/d in 1975.

a/ Includes 0.032 Mgal/d industrial use, 0.170 Mgal/d commercial use.

b/ New sewage treatment plant completed, May 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 2-18-75 SAMPLING POINT: 301742082382901

6.8	Dissolved solids	
56	(residue at 180°C)	179
3.9	Total hardness	
3.4	(as CaCO ₂)	160
.2		
.8		10
182		150
5	그렇게 가격하다 되었다면 하다 하다 가게 하는 그 바다.	7.7
4.6		
.1	그 아이들이 그렇게 하는데 얼마나 아이들이 아이들이 아이들이 나를 보고 있다면 얼마나 되었다.	320
.39		20
.00		20.5
.01		
.00		
	(104 1)	
	56 3.9 3.4 .2 .8 182 5 4.6 .1 .39 .00	7 (residue at 180°C) 3.9 Total hardness 3.4 (as CaCO ₃) .2 Noncarbonate hardness .8 (as CaCO ₃) 182 Alkalinity (as CaCO ₃) 5 pH (units) 4.6 Specific conductance .1 (umhos/cm at 25°C) .39 Color (Pt-Co units) .00 Temperature (°C) Turbidity (JTU) Carbon, organic, total (C) .01 Orthophosphate

MACCLENNY

County: Baker Population served: 3,900

River basin: St. Marys River (07 02 04)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, 700 to 750 feet deep; yields 750 to 1500 gal/min

Rated plant capacity: 2.16 Mga1/d

Pumpage: Year— 197.83 Average daily—0.54a/ Mgal

Highest month: April, 17.98 Mgal Lowest month: July, 12.76 Mgal

Per capita use: 138 ga1/d

Finished-water storage: 0.06 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological, chemical, color, turbidity,

pH/monthly

Sewage discharge: 0.48-0.50 Mga1/d

Sewage treatment: Chlorination, holding pond, three polishing ponds

Waste discharged to: Turkey Creek, St. Marys River

Remarks: Average daily pumpage increased from 0.195 Mgal/d in 1956 to 0.54 Mgal.d in 1975.

a/ Includes 0.078 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-14-75 SAMPLING POINT: 301655082075501, B-13

Silica (SiO ₂)	18	Dissolved solids	
Calcium (Ca)	38	(residue at 180°C)	204
Magnesium (Mg)	14	Total hardness	
Sodium (Na)	9.8	(as CaCO ₃)	150
Potassium (K)	1.7	Noncarbonate hardness	
Strontium (Sr)	.7	(as CaCO ₃)	19
Bicarbonate (HCO ₃)	159	Alkalinity (as CaCO3)	131
Sulfate (SO4)	24	pH (units)	8.3
Chloride (C1)	12	Specific conductance	
Fluoride (F)	5	(umhos/cm at 25°C)	335
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.05	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	
Phosphorus, total (P)			

MADISON

Population served: 4,760 County: Madison

River basin: Aucilla River (11 01 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; three wells, 119 to 260 feet deep; yield 400 to 1,200 gal/min

Rated plant capacity: 2.736 Mga1/d

Average daily-0.83^a/Mga1 Pumpage: Year- 303.19 Mgal

Lowest month: February, 21.53 Mgal Highest month: May, 29.47 Mgal

Per capita use: 174 ga1/d

Finished-water storage: 0.10 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.50 Mga1/d

Sewage treatment: Primary, secondary, trickling filter, secondary settling,

chlorination

Waste discharged to: Pond (plant), ground (septic tanks)

Remarks: Average daily pumpage increased from 0.33 Mgal/d in 1956 to 0.83 Mgal/d in 1975. A number of residents use septic tanks.

a/ Includes 0.298 Mgal/d industrial use, 0.042 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

COLLECTION DATE: ANALYSIS BY: U.S. Geological Survey 12-8-75

SAMPLING POINT: 302821082243601

Silica (SiO ₂)	8.9	Dissolved solids	
Calcium (Ca)	45	(residue at 180°C)	164
Magnesium (Mg)	7.7	Total hardness	
Sodium (Na)	4	(as CaCO ₃)	140
Potassium (K)	.6	Noncarbonate hardness	
Strontium (Sr)	.03	(as CaCO ₃)	.00
Bicarbonate (HCO3)	176	Alkalinity (as CaCO ₃)	144
Sulfate (SO4)	3.3	pH (units)	7.7
Chloride (C1)	3.0	Specific conductance	
Fluoride (F)	.02	(umhos/cm at 25°C)	280
Nitrate (NO ₃ -N)	.22	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.04	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	21
Nitrogen		Carbon, organic, total (C)	- 1
(ammonia, total (NH4-N))	.07	Orthophosphate	
Iron (Fe)	.00	total (PO4-P)	
Phosphorus, total (P)		104-17	

MAYO

County: Lafayette Population served: 1,020

River basin: Suwannee River below Withlacoochee River excluding Santa Fe

River (11 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, to 175 feet

deep; yield 200 to 350 gal/min

Rated plant capacity: 0.792 Mga1/d

Pumpage: Year—52.54 Mgal Average daily—0.144 Mgal

Highest month: June, 5.88 Mgal Lowest month: February, 3.16 Mgal

Per capita use: 141 gal/d

Finished-water storage: 0.10 Mga1

Treatment: Aeration, chlorination, stabilization

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 0.06 Mgal/d in 1956 to 0.14 Mgal/d in 1975.

a/ Includes 0.032 Mgal/d commercial use, 0.026 Mgal/d air conditioning.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-25-75 SAMPLING POINT: 300334083101801

Silica (SiO ₂)	5.8	Dissolved solids	
Calcium (Ca)	26	(residue at 180°C)	116
Magnesium (Mg)	8.4	Total hardness	
Sodium (Na)	3.1	(as CaCO ₃)	100
Potassium (K)	.3	Noncarbonate hardness	
Strontium (Sr)	.34	(as CaCO ₃)	21
Bicarbonate (HCO3)	96	Alkalinity (as CaCO ₃)	79
Sulfate (SO4)	12	pH (units)	7.8
Chloride (C1)	5.6	Specific conductance	7.0
Fluoride (F)	.1	(umhos/cm at 25°C)	210
Nitrate (NO3-N)	.07	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.01	Temperature (°C)	23
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	4.22
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	
Phosphorus, total (P)		(4 -/	

MONTICELLO

County: Jefferson Population served: 3,000

River basin: Aucilla River (11 01 03)

Ownership of supply or system: Distribution system, city; wells and pumps, Fla. Power Corp Source of water: Ground water, Floridan aquifer; three wells, 220 to 312 feet deep; yield 350 to 750 gal/min

Rated plant capacity: 2.09 Mga1/d Pumpage: Year—158.98 Mga1 Average daily—0.43^a/Mga1

Highest month: July, 15.5 Mgal Lowest month: February, 8.4 Mgal

Per capita use: 145 ga1/d

Finished-water storage: 0.15 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthlyb/; chemical, color, turbidity, metals/annuallyc/

Sewage discharge: 0.30 Mga1/d

Sewage treatment: Primary, secondary, chlorination

Waste discharged to: Rocky Branch Creek

Remarks: Average daily pumpage increased from 0.30 Mgal/d in 1956 to 0.43 Mgal/d in 1975. Service connections: domestic, 1,000; undifferentiated, 75. City supplies water to areas adjacent to city (0.03 Mgal/d).

a/ Includes 0.022 Mgal/d agricultural, 0.009 Mgal/d industrial use, 0.022 Mgal/d commercial use, 0.004 Mgal/d air conditioning.

b/ Raw water. c/ Treated water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 1-8-76 SAMPLING POINT: 303254083520901

Silica (SiO ₂)	12	Dissolved solids	
Calcium (Ca)	47	(residue at 180°C)	166
Magnesium (Mg)	6.7	Total hardness	
Sodium (Na)	2.9	(as CaCO ₃)	140
Potassium (K)	.4	Noncarbonate hardness	
Strontium (Sr)	.08	(as CaCO ₃)	3
Bicarbonate (HCO3)	172	Alkalinity (as CaCO3)	141
Sulfate (SO ₄)	3	pH (units)	7.4
Chloride (C1)	4	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	250
Nitrate (NO ₃ -N)	.22	Color (Pt-Co units)	
Nitrite (NO2-N)	.01	Temperature (°C)	21
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.02	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	
Phosphorus, total (P)		a mode, most con-	

NEPTUNE BEACH

County: Duval Population served: 4,800

River basin: Coastal area between St. Johns River and Ponce de Leon Inlet

(08 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 4 wells, 800 to 1,200 feet

deep; yield 500 to 2,000 gal/min

Rated plant capacity: 2.5 Mga1/d Pumpage: Year— 255.50 Mga1 Highest month: May, 28 Mga1

Average daily-0.70 Mgal

Lowest month: February, 19 Mgal

Per capita use: 146 gal/d

Finished-water storage: 0.80 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/annually

Sewage discharge: 0.54 Mga1/d

Sewage treatment: Contact stabilization

Waste discharged to: Intracoastal Waterway

Remarks: Average daily pumpage increased from about 0.23 Mgal/d in 1956 to 0.70 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-13-75 SAMPLING POINT: 301852081240301, Well D-605

Silica (SiO ₂)	24	Dissolved solids	
Calcium (Ca)	62	(residue at 180°C)	424
Magnesium (Mg)	37	Total hardness	
Sodium (Na)	12	(as CaCO ₃)	310
Potassium (K)	2.3	Noncarbonate hardness	(7.7.7)
Strontium (Sr)	1.2	(as CaCO ₃)	180
Bicarbonate (HCO ₃)	160	Alkalinity (as CaCO3)	131
Sulfate (SO4)	170	pH (units)	8.3
Chloride (C1)	14	Specific conductance	
Fluoride (F)	.8	(umhos/cm at 25°C)	627
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.2	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	122
Phosphorus, total (P)			

ORANGE PARK

Population served: 9,000 County: Clay

River basin: St. Johns River below Oklawaha River (08 01 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; one well, 862 feet deep; yield 2,500 gal/min

Rated plant capacity: 2.5 Mga1/d

Average daily-1.2ª/ Mga1 Pumpage: Year- 438.0 Mgal Lowest month: February, 0.7 Mgal Highest month: August, 1.7 Mgal

Per capita use: 133 gal/d

Finished-water storage: 0.5 Mgal

Treatment: Not Reported

Type/Frequency of analysis: Bacteriological/twice monthlyb/; chemical, color, turbidity/biannually; Bacteriological/monthlyc/

Sewage discharge: 0.9 Mga1/d

Sewage treatment: Activated sludge

Waste discharged to: St. Johns River

Remarks: 'Average daily pumpage increased from 0.9 Mgal/d in 1970 to 1.2 Mgal/d in 1975.

a/ Includes 0.06 Mgal/d industrial use, 0.06 Mgal/d air conditioning, 0.18 Mgal/d commercial use.

c/ Raw water. b/ Treated water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 11-3-75 **SAMPLING POINT:** 301058081423801, Well C-93

Silica (SiO ₂)	15	Dissolved solids	
Calcium (Ca)	33	(residue at 180°C)	228
Magnesium (Mg)	20	Total hardness	
Sodium (Na)	6.9	(as CaCO ₃)	170
Potassium (K)	2.3	Noncarbonate hardness	
Strontium (Sr)	2.3	(as CaCO ₃)	72
Bicarbonate (HCO ₃)	120	Alkalinity (as CaCO3)	98
Sulfate (SO ₄)	73	pH (units)	7.7
Chloride (C1)	6.6	Specific conductance	
Fluoride (F)	.8	(umhos/cm at 25°C)	366
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.00	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.14	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.01
Phosphorus, total (P)	.01	-875 BE 18 - 3.0 - 4.0 - 6	.01

PALATKA

County: Putnam Population served: 10,000

River basin: St. Johns River below Oklawaha River (08 01 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer, 8 wells, 400 to 500 feet

deep; yield 500 to 1,650 gal/min

Rated plant capacity: 3.8 Mga1/d

Pumpage: Year— 730.0 Mgal Average daily— 2.0 Mgal

Highest month: May 69.1 Mgal Lowest month: February 39.2 Mgal

Per capita use: 200 gal/d

Finished-water storage: 1.5 Mgal

Treatment: Aeration, chlorination, filtration, stabilization, fluoridation

Type/Frequency of analysis: Bacteriological/monthly; chemical/3 times daily

Sewage discharge: 1.4 Mgal/d

Sewage treatment: Contact stabilization =/

Waste discharged to: St. Johns River

Remarks: Average daily pumpage increased from 1.35 Mgal/d in 1956 to 2.25 Mgal/d in 1975. City supplies water to Junior College, College Park, and Rolling Hills. Snell and Anderson (1970).

a/ Operational as of April 1973. Formerly primary treatment.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-11-75 SAMPLING POINT: 293805081382901, Palatka City well 7

Silica (SiO ₂)	12	Dissolved solids	
Calcium (Ca)	79	(residue at 180°C)	530
Magnesium (Mg)	28	Total hardness	
Sodium (Na)	75	(as CaCO ₃)	260
Potassium (K)	2.4	Noncarbonate hardness	
Strontium (Sr)	1.6	(as CaCO ₃)	140
Bicarbonate (HCO3)	141	Alkalinity (as CaCO3)	115
Sulfate (SO ₄)	55	pH (units)	7.6
Chloride (C1)	190	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	945
Nitrate (NO3-N)	.00	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.00	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	•
(ammonia, total (NH4-N))	.48	Orthophosphate	.01
Iron (Fe)	.01	total (PO4-P)	.01
Phosphorus, total (P)	.01		

PERRY

County: Taylor Population served: 8,497 River basin: Coastal area between the Suwannee and Aucilla Rivers $(11 \ 01 \ 02)$

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; four wells, 80 to 365

feet deep; yield 450 to 1,000 gal/min

Rated plant capacity: 4.25 Mga1/d Pumpage: Year— 442.38 Mgal

Average daily_1.21\frac{a}{Mga1} Highest month: May, 45.94 Mga1 Lowest month: December 32.22 Mgal

Per capita use: 143 ga1/d

Finished-water storage: 0.66 Mgal

Treatment: Aeration, chlorination, filtration

Type/Frequency of analysis: Bacteriological/monthly, chemical, color, turbidity/ daily

Sewage discharge: 0.74 Mga1/d

Sewage treatment: Filtration, chlorination

Waste discharged to: Rocky Creek, Fenholloway River, Gulf of Mexico

Remarks: Average daily pumpage increased from 0.61 Mgal/d in 1956 to 1.21 Mgal/d in 1975. City supplies water to subdivisions adjacent to city.

a/ Includes 0.242 Mgal/d commercial use, 0.036 Mgal/d air conditioning.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-25-75 **SAMPLING POINT:** 300710083350501, Well 3

Silica (SiO ₂)	6.4.	Dissolved solids	
Calcium (Ca)	49	(residue at 180°C)	206
Magnesium (Mg)	14	Total hardness	
Sodium (Na)	4.7	(as CaCO ₃)	180
Potassium (K)	1	Noncarbonate hardness	
Strontium (Sr)	.3	(as CaCO ₃)	11
Bicarbonate (HCO ₃)	206	Alkalinity (as CaCO3)	170
Sulfate (SO4)	6.8	pH (units)	7.4
Chloride (C1)	7.6	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	369
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.01	Temperature (°C)	21
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.08	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	
Phosphorus, total (P)			

QUINCY

County: Gadsden Population served: 10,870

River basin: Ochlockonee River (12 00 03)

Ownership of supply or system: Municipal

Source of water: Surface water, Quincy Creek, 100 percent of supply. Ground water, Floridan aquifer; stand by well, 1,354 feet deep; yield 400 gal/min.

Rated plant capacity: 2.5 Mga1/d Pumpage: Year-432.64 Mgal

Average daily-1.18a/ Mga1 Highest month: July, 43.26 Mgal

Lowest month: April, 28.99 Mgal

Per capita use: 107 gal/d

Finished-water storage: 2.3 Mgal

Treatment: Chlorination, coagulation, filtration, flocculation, taste and

odor control

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually; color, turbidity, pH, alkalinity/dailyb/

Sewage discharge: 0.49 Mgal/d Sewage treatment: Primary, secondary, contact stabilization, chlorination

Waste discharged to: Quincy Creek

Remarks: Average daily pumpage increased from 0.70 Mgal/d in 1956 to 1.40 Mgal/d in 1970 then decreased to 1.18 Mgal/d in 1975. Total service connections: domestic, 3,197; undifferentiated, 780. Water supplied to areas adjacent to city. a/ Includes 0.04 Mgal/d commercial use. b/ Treated water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 SAMPLING POINT: 02329534, Quincy Creek at S-267

Silica (SiO ₂)	4.5	Dissolved solids	
Calcium (Ca)	4.9	(residue at 180°C)	44
Magnesium (Mg)	1.4	Total hardness	
Sodium (Na)	2.8	(as CaCO ₃)	18
Potassium (K)	.8	Noncarbonate hardness	
Strontium (Sr)	.02	(as CaCO ₃)	4
Bicarbonate (HCO ₃)	17	Alkalinity (as CaCO ₃)	14
Sulfate (SO4)	.9	pH (units)	6.5
Chloride (C1)	9.5	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	57
Nitrate (NO ₃ -N)	.27	Color (Pt-Co units)	140
Nitrite (NO2-N)	.02	Temperature (°C)	
Nitrogen, organic (N)	.55	Turbidity (JTU)	50
Nitrogen		Carbon, organic, total (C)	8
(ammonia, total (NH4-N))	.04	Orthophosphate	
Iron (Fe)	.12	total (PO4-P)	.08
Phosphorus, total (P)	.11	*	

QUINCY

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75 SAMPLING POINT: 303554084344801

Silica (SiO ₂)	16	Dissolved solids	
Calcium (Ca)	28	(residue at 180°C)	378
Magnesium (Mg)	16	Total hardness	
Sodium (Na)	82	(as CaCO ₃)	140
Potassium (K)	4.9	Noncarbonate hardness	
Strontium (Sr)	2	(as CaCO ₃)	13
Bicarbonate (HCO ₃)	155	Alkalinity (as CaCO3)	127
Sulfate (SO4)	42	pH (units)	7.8
Chloride (C1)	110	Specific conductance	
Fluoride (F)	.8	(umhos/cm at 25°C)	693
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.00	Temperature (°C)	21.5
Nitrogen, organic (N)	.05	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.09	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.01
Phosphorus, total (P)	.01		

ST. AUGUSTINE

County: St. Johns Population served: 20,000

River basin: Coastal area between St. Johns River and Ponce de Leon

Inlet (08 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow sand aquifers; 15 wells, 45 to 96 feet deep; yield 200 to 250 gal/min; North and South well fields. Surface

water, infiltration gallery, 50 percent of supply.

Rated plant capacity: 5.0 Mga1/d

Pumpage: Year— 932.48 Mgal Average daily—2.55a/ Mgal

Highest month: May, 85.70 Mgal Lowest month: February, 65.19 Mgal

Per capita use: 173 gal/d

Finished-water storage: 1.65 Mgal

Treatment: Chlorination, softening, coagulation, flocculation, filtration,

carbonation, taste and odor control, algae control

Type/Frequency of analysis: Bacteriological/weekly; chemical (pH, chloride)/

daily; color, turbidity, alkalinity/weekly

Sewage discharge: 2.5 Mgal/d

Sewage treatment: Activated sludge, secondary (both plants)

Waste discharged to: South Matanzas River

Remarks: Average daily pumpage increased from 1.50 Mgal/d in 1956 to 2.55 Mgal/d in 1975. Supplies water to beach communities through Anastasia Sanitary District (fig. 12).

a/ Includes 0.1 Mgal/d industrial use, 0.65 Mgal/d other public supply.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-11-75 SAMPLING POINT: 295357081211801, Well 1A

Silica (SiO ₂)	7.2	Dissolved solids	
Calcium (Ca)	180	(residue at 180°C)	622
Magnesium (Mg)	3.4	Total hardness	
Sodium (Na)	18	(as CaCO ₃)	460
Potassium (K)	2.4	Noncarbonate hardness	
Strontium (Sr)	.93	(as CaCO ₃)	130
Bicarbonate (HCO ₃)	397	Alkalinity (as CaCO3)	325
Sulfate (SO4)	140	pH (units)	7.3
Chloride (C1)	25	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	910
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	90
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.20	Turbidity (JTU)	20
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.46	Orthophosphate	
Iron (Fe)	3.9	total (PO4-P)	.15
Phosphorus, total (P)	.17		

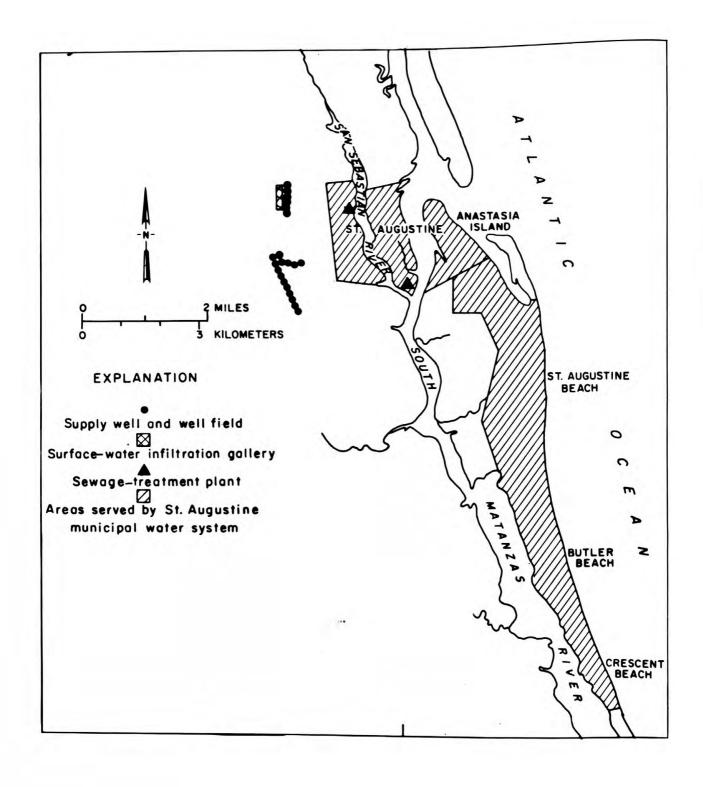


Figure 12.--Areas supplied water by the city of St. Augustine

STARKE

County: Bradford

Population served: 6,800

River basin: Santa Fe River (11 02 06)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; four wells, 503 to 600 feet deep.

Rated plant capacity: 3.0 Mga1/d Pumpage: Year— 252.9 Mga1 Highest month: Not reported

Average daily—0.693^a/Mgal
Lowest month: not reported

Per capita use: 102 gal/d

Finished-water storage: 0.35 Mgal

Treatment: Softening, stabilization, chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.75 Mga1/d

Sewage treatment: Secondary, chlorination, activated sludge, contact

stabilization, settling

Waste discharged to: Alligator Creek to Rowell Lake

Remarks: Average daily pumpage increased from 0.42 Mgal/d in 1956 to 0.69 Mgal/d in 1975.

a/ Includes 0.160 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 12-16-75 SAMPLING POINT: 295633082062701, Power Plant Well

Silica (SiO ₂)	28	Dissolved solids	
Calcium (Ca)	44	(residue at 180°C)	236
Magnesium (Mg)	18	Total hardness	
Sodium (Na)	16	(as CaCO ₃)	180
Potassium (K)	1.1	Noncarbonate hardness	
Strontium (Sr)	.2	(as CaCO ₃)	.00
Bicarbonate (HCO3)	234	Alkalinity (as CaCO3)	192
Sulfate (SO ₄)	3.3	pH (units)	7.4
Chloride (C1)	14	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	380
Nitrate (NO ₃ -N)	.03	Color (Pt-Co units)	5
Nitrite (NO2-N)	.02	Temperature (°C)	22
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (NH4-N))	.08	Orthophosphate	
Iron (Fe)	.10	total (PO4-P)	.02
Phosphorus, total (P)		and the second of the second o	

TALLAHASSEE

Population served: 92,789 County:

River basin: Ochlockonee River and St. Marks and Wakulla Rivers and coastal

areas between the Aucilla and Ochlockonee Rivers (12 00 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 15 wells, 350 to 450 deep; vield 1,500 to 3,200 gal/min

Rated plant capacity: 35.4 Mga1/d Pumpage: Year-5,229.06 Mgal

Average daily-14.33^a/Mga1 Lowest month: May, 383.91 Mgal Highest month: June, 524.13 Mgal

Per capita use: 154 ga1/d

Finished-water storage: 1.5 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/4 times daily; chemical/annually

Sewage discharge: 10.86 Mga1/d

Sewage treatment: Primary, secondary, high rate trickling filter, activated sludge, secondary settling, chlorination

Waste discharged to: Lake Munson, ground and spray irrigation

Remarks: Average daily pumpage increased from 5.57 Mgal/d in 1956 to 14.33 Mgal/d in 1975. Total yearly pumpage, 1933-75 is shown on figure 13. Total service connections, differentiated, 27,291. City also supplies water to Woodville and subdivisions adjacent to city. a/Includes estimated 2.86 Mgal/d, commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 1-8-76 SAMPLING POINT: 302722084184101, City well 13

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	43	(residue at 180°C)	172
Magnesium (Mg)	10	Total hardness	
Sodium (Na)	3.5	(as CaCO ₃)	150
Potassium (K)	.4	Noncarbonate hardness	
Strontium (Sr)	.11	(as CaCO ₃)	2
Bicarbonate (HCO3)	179	Alkalinity (as CaCO ₃)	147
Sulfate (SO ₄)	5.4	pH (units)	7.3
Chloride (C1)	5.8	Specific conductance	7.5
Fluoride (F)	.1	(umhos/cm at 25°C)	280
Nitrate (NO ₃ -N)	.39	그리고 그는 그렇게 하다는 사람이 많은 내가 그녀를 하는 것이 하는 것이 하는 것이 없다면 하는 것이 없다면 하는 것이다.	
Nitrite (NO2-N)	.01	Color (Pt-Co units) Temperature (°C)	13
Nitrogen, organic (N)		Turbidity (JTU)	20.5
Nitrogen			
(ammonia, total (NH4-N))	.02	Carbon, organic, total (C) Orthophosphate	
Iron (Fe)	.01		
Phosphorus, total (P)		total (PO4-P)	

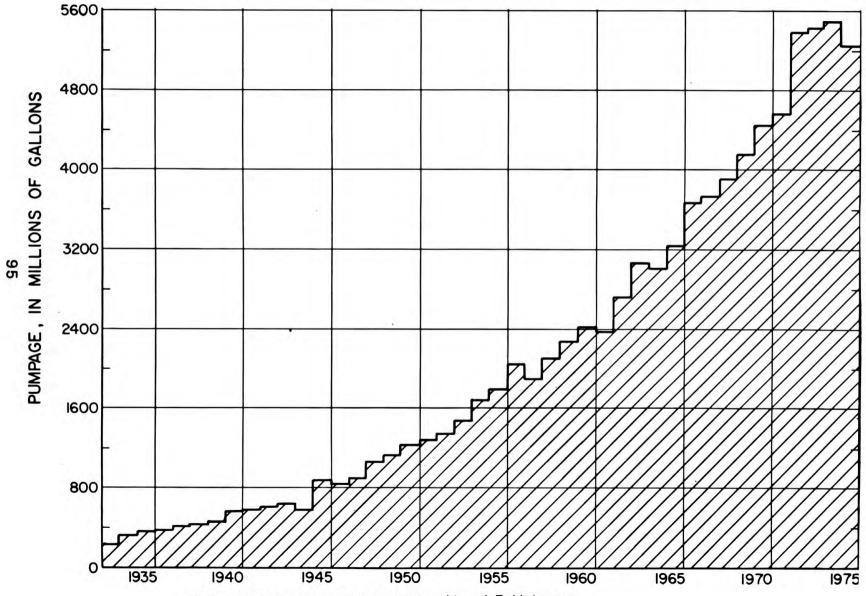


Figure 13.--Total yearly pumpage, city of Tallahassee.

TRENTON

Population served: 1,250 County: Gilchrist

River basin: Suwannee River below Withlacoochee River excluding

Santa Fe River (11 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; three wells, 90 to 525

feet deep; yield 250 to 320 gal/min

Rated plant capacity: 0.8ª/ Mgal/d Pumpage: Year- 126.66 Mgal

Average daily-0.35 Mgal Lowest month: September, 6.1 Mgal Highest month: April, 22.0 Mgal

Per capita use: 280 gal/d

Finished-water storage: 0.08 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/intermittently

0.05b/ Mga1/d Sewage discharge:

Sewage treatment: Aeration

Waste discharged to: Evaporation ponds

Average daily pumpage increased from 0.10 Mgal/d in 1956 to 0.35 Mgal/d in 1975.

a/ Estimated.

b/ 50 percent of population use septic tanks.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 2-19-76 **SAMPLING POINT: 293653082493202**

Silica (SiO ₂)	4.7	Dissolved solids	
Calcium (Ca)	78	(residue at 180°C)	242
Magnesium (Mg)	4.4	Total hardness	
Sodium (Na)	5.5	(as CaCO ₃)	210
Potassium (K)	.8	Noncarbonate hardness	
Strontium (Sr)	.11	(as CaCO ₃)	20
Bicarbonate (HCO ₃)	231	Alkalinity (as CaCO ₃)	190
Sulfate (SO4)	16		7.1
Chloride (C1)	10	pH (units)	,
Fluoride (F)	.1	Specific conductance	250
Nitrate (NO ₃ -N)	.22	(umhos/cm at 25°C)	350
Nitrite (NO2-N)	.00	Color (Pt-Co units)	.00
Nitrogen, organic (N)		Temperature (°C)	19.5
Nitrogen		Turbidity (JTU)	
	01	Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	
Phosphorus, total (P)			

CENTRAL FLORIDA

The central Florida section of this report includes data for 17 counties and covers about 14,300 mi² extending southward from the northern boundary of Marion County to the east-west line forming the northern boundaries of St. Lucie, Okeechobee, Highlands, Hardee and Manatee Counties. The extent of this section and locations of municipalities for which water-use data are given are shown in figure 14.

The principal sources of municipal ground-water supplies are the Floridan aquifer and the shallow-sand aquifer. During 1975, 89,239 Mgal were pumped from the Floridan aquifer and 2,702 Mgal from the shallow-sand aquifer. Surface water sources, the Hillsborough River and Lake Washington, supplied 22,486 Mgal or 20 percent of the total water used for public supply. Water supplied for municipal use in the Tampa-St. Petersburg and the Orlando areas was 58,970 Mgal or 52 percent of the total water reported supplied in the section and 66 percent of the water pumped from the Floridan aquifer.

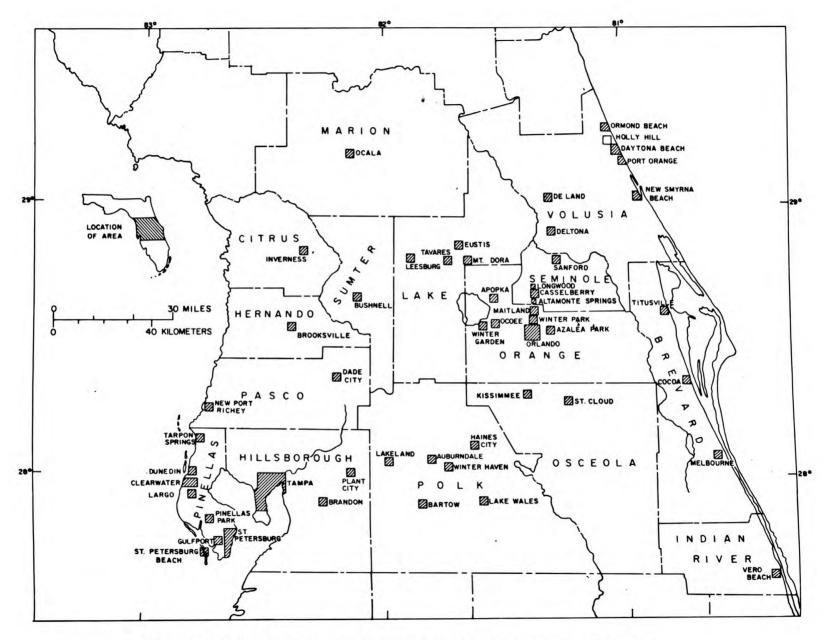


Figure 14.--Municipalities in central Florida for which water-use data are given.

ALTAMONTE SPRINGS

County: Seminole Population served: 16,710

River basin: St. Johns River above Oklawaha River (08 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aguifer: 8 wells, 382 to 572 feet deep:

yield 500 to 1,670 gal/min

Rated plant capacity: 10.0 Mga1/d Pumpage: Year- 1,314.0 Mgal

Average daily-3.64 Mgal Highest month: May, 134.6 Mga1 Lowest month: June, 99.2 Mgal

Per capita use: 215 gal/d

Finished-water storage: 2.4 Mga1 Treatment: Aeration, chlorination

Bacteriological/monthly Type/Frequency of analysis:

Sewage discharge: Not Reported Sewage treatment: Activated sludge

Waste discharged to: Not Reported

Remarks: Only 6 wells in operation at time reported. a/ Includes 0.396 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 **SAMPLING POINT:** 283949081213301

Silica (SiO ₂) Calcium (Ca)	9.6 30	Dissolved solids (residue at 180°C)	126
Magnesium (Mg)	8.1	Total hardness	
Sodium (Na)	5.1	(as CaCO ₃)	110
Potassium (K)	1.1	Noncarbonate hardness	
Strontium (Sr)	.1	(as CaCO ₃)	8
Bicarbonate (HCO ₃)	124	Alkalinity (as CaCO3)	102
Sulfate (SO4)	2.2	pH (units)	8.2
Chloride (C1)	7.3	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	225
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.0
Nitrite (NO ₂ -N)	.01	Temperature (°C)	25.5
Nitrogen, organic (N)	.10	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (NH4-N))	.12	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.05
Phosphorus, total (P)	.06		

APOPKA

County: Orange Population served: 12,012

River basin: Oklawaha River (08 01 02)

Ownership of supply or system: City of Apopka

Source of water: Ground water, Floridan aquifer; 4 wells, 230 to 705 feet deep;

yield 500 to 1,200 gal/min

Rated plant capacity: 3 Mga1/d Pumpage: Year— 576.70 Mga1

mpage: Year— 576.70 Mgal

Highest month: April, 67.20 Mgal

Lowest month: February, 39.48 Mgal

Per capita use: 132 gal/d

Finished-water storage: 0.5 Mgal
Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/4 times weekly; chemical/daily

Sewage discharge: 0.35 Mgal/d

Sewage treatment: Secondary, aeration, activated sludge

Waste discharged to: Spray field one mile south of city limit.

Remarks: No chemical analysis available. Average daily pumpage increased from 0.35 Mgal/d in 1956 to 1.58 Mgal/d in 1975.

AUBURNDALE

County: Polk Population served: 12,000

River basin: Peace River (10 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, two on standby,

155 to 633 feet deep; yield of one well 1,140 gal/min

Rated plant capacity: 5.0 Mga1/d

Pumpage: Year— 474.25 Mgal Average daily— 1.30^a/ Mgal

Highest month: April, 60.7 Mgal Lowest month: December, 26.2 Mgal

Per capita use: 108 gal/d

Finished-water storage: 0.46 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually

Sewage discharge: 0.51 Mgal/d

Sewage treatment: Trickling filter, coagulation

Waste discharged to: Lake Hancock

Remarks: Average daily pumpage increased from 0.75 Mgal/d in 1956 to 1.30 Mgal/d in 1975. Supplies water to areas adjacent to the city. Robertson (1971, 1973). a/ Includes 0.14 Mgal/d industrial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-24-75
SAMPLING POINT: 280346081473700, composite 2 wells

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	30	(residue at 180°C)	142
Magnesium (Mg)	6	Total hardness	
Sodium (Na)	5.9	(as CaCO ₃)	100
Potassium (K)	1	Noncarbonate hardness	
Strontium (Sr)	.04	(as CaCO ₃)	.0
Bicarbonate (HCO ₃)	122	Alkalinity (as CaCO3)	100
Sulfate (SO ₄)	2.9	pH (units)	8
Chloride (C1)	8.4	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	235
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.2	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.16	Orthophosphate	
Iron (Fe)	.06	total (PO4-P)	.04
Phosphorus, total (P)	.04		

AZALEA PARK

County: Orange Population served: 5,500 River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: First Florida Utilities Source of water: Ground water, Floridan aquifer; 2 wells, 1,300 to 1,350 feet deep

Rated plant capacity: 2.52 Mga1/d Pumpage: Year— 222.65 Mga1

mpage: Year— 222.65 Mgal

Highest month: April, 25.30 Mgal

Average daily— 0.61 Mgal

Lowest month: January, 14.87 Mgal

Per capita use: 111 gal/d

Finished-water storage: 0.25 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/4 times weekly; chemical/biannually=/

Sewage discharge: 1.0 Mgal/d

Sewage treatment: Contact stabilization

Waste discharged to: Azalea Park outfall canal

Remarks: First Florida Utilities sold to Orange County, December 1975.

No chemical analysis available.

a/ Treated water. Chemical analysis of chlorine content made daily.

BARTOW

County: Polk Population served: 17,000

River basin: Peace River (10 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aguifer: 10 wells, 285 to 765 feet

deep; yield 350 to 2,300 gal/min

Rated plant capacity: 4.1 Mga1/d

Average daily-3.39 a/ Mga1 Pumpage: Year- 1237.3 Mgal

Lowest month: September, 77.9 Mgal Highest month: April. 154.5 Mgal

Per capita use: 191 gal/d

Finished-water storage: 0.9 Mgal

Treatment: Aeration, filtration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical irregularly

Sewage discharge: 1.34 Mga1/d

Sewage treatment: Primary, secondary, filtration, chlorination

Waste discharged to: Peace River

Remarks: Average daily pumpage increased from 1.50 Mgal/d in 1956 to 3.24 Mgal/d in 1975. Robertson (1971, 1973), Robertson and Mills (1974).

a/ Includes 0.5 Mgal/d industrial use, 1.0 Mgal/d agricultural use, and 0.4 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-21-75 SAMPLING POINT: 275352081494301, composite

Silica (SiO ₂)	17	Dissolved solids	
Calcium (Ca)	86	(residue at 180°C)	464
Magnesium (Mg)	23	Total hardness	
Sodium (Na)	8.6	(as CaCO ₃)	310
Potassium (K)	1.1	Noncarbonate hardness	
Strontium (Sr)	1.9	(as CaCO ₃)	160
Bicarbonate (HCO ₃)	184	Alkalinity (as CaCO3)	151
Sulfate (SO4)	170	pH (units)	7.8
Chloride (C1)	9.6	Specific conductance	
Fluoride (F)	.5	(umhos/cm at 25°C)	673
Nitrate (NO ₃ -N)	.04	Color (Pt-Co units)	.0
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	. 27	Turbidity(JTU)	3
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.21	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	.05
Phosphorus, total (P)	.05		

BRANDON

County: Hillsborough Population served: 25,000

River basin: Hillsborough River (10 02 05)

Ownership of supply or system: HCUD (Hillsborough County Utility Department)

Source of water: Ground water, Floridan aquifer, 20 wells

Rated plant capacity: 14 Mga1/d Pumpage: Year— 1,460 Mga1 Highest month: Not reported

Average daily— 4^a/Mgal
Lowest month: Not reported

Per capita use: 160 gal/d

Finished-water storage: Not reported

Treatment: Not reported

Type/Frequency of analysis: Not reported

Sewage discharge: Not reported

Sewage treatment: b/

Waste discharged to: Not reported

Remarks: Average daily pumpage increased from 0.01 Mgal/d in 1956 to an estimated 4 Mgal/d in 1975. The Brandon Water Company was purchased by the HCUD, August 1975.

a/ Estimated from water use 1970-74.

b/ Sewage treated by HCUD since 1972.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-28-75 SAMPLING POINT: 275638082163100, composite

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	53	(residue at 180°C)	204
Magnesium (Mg)	4.5	Total hardness	
Sodium (Na)	6.1	(as CaCO ₃)	150
Potassium (K)	.5	Noncarbonate hardness	130
Strontium (Sr)	.52	(as CaCO ₃)	47
Bicarbonate (HCO ₃)	126	Alkalinity (as CaCO3)	and the same of
Sulfate (SO4)	39	pH (units)	103
Chloride (C1)	9.4	# - () 경우() 이 - 이라는 [() () () () () () () () () (8.1
Fluoride (F)		Specific conductance	252
	. 2	(umhos/cm at 25°C)	338
Nitrate (NO ₃ -N)	2.2	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.2	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (
(ammonia, total (NH4-N))	.04	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	06
Phosphorus, total (P)		total (FU4-P)	.06
	.06		

BROOKSVILLE

County: Hernando Population served: 5,000

River basin: Withlacoochee River (11 02 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 3 wells, 251 to 757 deep;

yield of one well, 220 gal/min

Rated plant capacity: 2.5 Mga1/d

Pumpage: Year—272.53 Mgal Average daily—0.75 Mgal

Highest month: December, 30.15 Mgal Lowest month: July, 15.92 Mgal

Per capita use: 150 gal/d

Finished-water storage: 0.63 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/once every 5 years.

Sewage discharge: 0.56 Mga1/d

Sewage treatment: Extended aeration, trickling filter

Waste discharged to: Man-made lake (Cone Quarry)

Remarks: Average daily pumpage increased from 0.28 Mgal/d in 1956 to 0.75 Mgal/d in 1975. Cherry and others (1970).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-23-75
SAMPLING POINT: 28341008222900, composite 3 wells

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	65	(residue at 180°C)	222
Magnesium (Mg)	9.5	Total hardness	TOTAL S
Sodium (Na)	5.1	(as CaCO ₃)	200
Potassium (K)	. 4	Noncarbonate hardness	745
Strontium (Sr)	.16	(as CaCO ₃)	21
Bicarbonate (HCO ₃)	218	Alkalinity (as CaCO3)	178
Sulfate (SO4)	14	pH (units)	8.2
Chloride (C1)	9.2	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	390
Nitrate (NO ₃ -N)	.33	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.08	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.03
Phosphorus, total (P)	.03	a secondary second	

BUSHNELL

County: Sumter Population served: 926

River basin: Withlacoochee River (11 02 03)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 2 wells, 610 to 620 feet deep;

yield 350 gal/min

Rated plant capacity: 0.5 Mga1/d Pumpage: Year— 49.03 Mga1 Highest month: June, 5.42 Mga1

Average daily 0.13a/ Mga1

Lowest month: April, 3.62 Mgal

Per capita use: 140 3a1/d

Finished-water storage: 0.175 Mgal

Treatment: Chlorination, aeration, coagulation, corrosion control

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 0.07 Mgal/d in 1956 to 0.13 Mgal/d in 1975. City supplies water to 50 persons outside city limits. a/ Includes 0.062 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5- 8-75 SAMPLING POINT: 284002082064201, Bushell water plant

Silica (SiO ₂)	15	Dissolved solids	
Calcium (Ca)	68	(residue at 180°C)	282
Magnesium (Mg)	10	Total hardness	202
Sodium (Na)	5.8	(as CaCO ₃)	210
Potassium (K)	1.1	Noncarbonate hardness	210
Strontium (Sr)	1.1	(as CaCO ₃)	55
Bicarbonate (HCO ₃)	189	Alkalinity (as CaCO ₃)	155
Sulfate (SO4)	54	pH (units)	7.9
Chloride (C1)	8.6	Specific conductance	,.,
Fluoride (F)	.5	(umhos/cm at 25°C)	450
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.0
Nitrite (NO2-N)	.00	Temperature (°C)	1,50,50
Nitrogen, organic (N)	.01	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	1 2
(ammonia, total (NH4-N))	.05	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	.01
Phosphorus, total (P)	.02	1909 500 100	

CASSELBERRY

County: Seminole Population served: 14,429

River basin: St. John River above Oklawaha River (08 01 01)

Ownership of supply or system: City of Casselberry

Source of water: Ground water, Floridan aquifer; three wells, 213 to 500 feet

deep; yield 600 to 700 gal/min

Rated plant capacity: Not reported

Pumpage: Year— 475.23 Mga1 Average daily—1.30 Mga1

Highest month: April, 55.38 Mgal Lowest month: November, 33.33 Mgal

Per capita use: 90 ga1/d

Finished-water storage: 0.26 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Chemical/intermittently

Sewage discharge: 0.83 Mgal/d

Sewage treatment: Aeration, chlorination, trickling filter, polishing pond.

Waste discharged to: Gee Creek to Lake Jessup to St. Johns River

Remarks: Average daily pumpage increased from 0.17 Mgal/d in 1956 to 1.30 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 SAMPLING POINT: 283910081194901

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	33	(residue at 180°C)	146
Magnesium (Mg)	8.7	Total hardness	1515
Sodium (Na)	5.6	(as CaCO ₃)	120
Potassium (K)	1	Noncarbonate hardness	772
Strontium (Sr)	.2	(as CaCO ₃)	.00
Bicarbonate (HCO3)	154	Alkalinity (as CaCO3)	126
Sulfate (SO4)	3.5	pH (units)	8.3
Chloride (C1)	7	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	249
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.13	Turbidity (JTU)	2
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (NH4-N))	.21	Orthophosphate	
Iron (Fe)	.00	total (PO4-P)	.05
Phosphorus, total (P)	.06		

CLEARWATER

County: Pinellas Population served: 73,310

River basin: Coastal area from Tampa Bay to the Withlacoochee River (10 02 07)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 19 wells, 157 to 360 feet

deep; yield 200 to 600 gal/min

Rated plant capacity: 14.0 Mga1/d

Average daily 11.21b/ Mgal Pumpage: Year— 4091.40a/ Mgal

Lowest month: December, 188.49 Mgal Highest month: April, 241.66 Mgal

Per capita use: 153 gal/d

Finished-water storage: 3.0 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually

Sewage discharge: 11.14 Mgal/d

Sewage treatment: Activated sludge, polishing pond

Waste discharged to: Tampa Bay and Gulf of Mexico

Remarks: City supplies water to areas adjacent to city limits. Cherry and others (197 a/ Includes 1,423.34 Mgal purchased from Pinellas County Water System. b/ Includes 0.153 Mgal/d industrial use, 0.376 Mgal/d agricultural use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6- 3-75 SAMPLING POINT: 275635082463301

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	68	(residue at 180°C)	372
Magnesium (Mg)	9.8	Total hardness	3,1
Sodium (Na)	24	(as CaCO ₃)	210
Potassium (K)	1.2	Noncarbonate hardness	
Strontium (Sr)	.51	(as CaCO ₃)	44
Bicarbonate (HCO ₃)	203	Alkalinity (as CaCO3)	166
Sulfate (SO4)	1.9	pH (units)	7.6
Chloride (C1)	71	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	568
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.12	Turbidity (JTU)	3
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.24	Orthophosphate	
Iron (Fe)	.12	total (PO4-P)	.03
Phosphorus, total (P)	.03		

COCOA

County: Brevard Population served: 100,000

River basin: Coastal area between Ponce de Leon Inlet and Sebastian Inlet

(08 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 22 wells, 115 to 794 feet deep;

yield 500 to 1,950 gal/min

Rated plant capacity: 40 Mga1/d Pumpage: Year— 5,262.66 Mga1 Highest month: August, 523.2 Mga1

Average daily— 14.41^a/ Mgal

Lowest month: November, 387.5 Mgal

Per capita use: 144 gal/d

Finished-water storage: 16.8 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/4 times weekly; chemical/weekly

Sewage discharge: 1.4 Mgal/d

Sewage treatment: Primary, trickling filter, chlorination, sludge thickening,

digestion

Waste discharged to: Indian River

Remarks: Average daily pumpage increased from 2.08 Mgal/d (surface water) in 1956 to 14.41 Mgal/d (ground water) in 1975. Water supplied to Cape Canaveral, Cocoa Beach, Cape Kennedy, Merritt Island, Rockledge, and Districts 2 and 4 Military-Patrick Air Force Base. Total yearly pumpage is shown on figure 15. Knochenmus (1974), Lichtler (1972).

a/ Includes 12.9 Mgal/d supplied other municipalities.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-12-75 SAMPLING POINT: 282531081075601, Cocoa 13

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	556
Magnesium (Mg)	13	Total hardness	
Sodium (Na)	45	(as CaCO ₃)	330
Potassium (K)	2.0	Noncarbonate hardness	
Strontium (Sr)	1.1	(as CaCO ₃)	91
Bicarbonate (HCO ₃)	291	Alkalinity (as CaCO3)	239
Sulfate (SO ₄)	85	pH (units)	
Chloride (C1)	77	Specific conductance	
Fluoride (F)	3	(umhos/cm at 25°C)	
Nitrate (NO ₃ -N)		Color (Pt-Co units)	0
Nitrite (NO2-N)		Temperature (°C)	24.5
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))		Orthophosphate	
Iron (Fe)		total (PO4-P)	
Phosphorus, total (P)		SAR	1.1

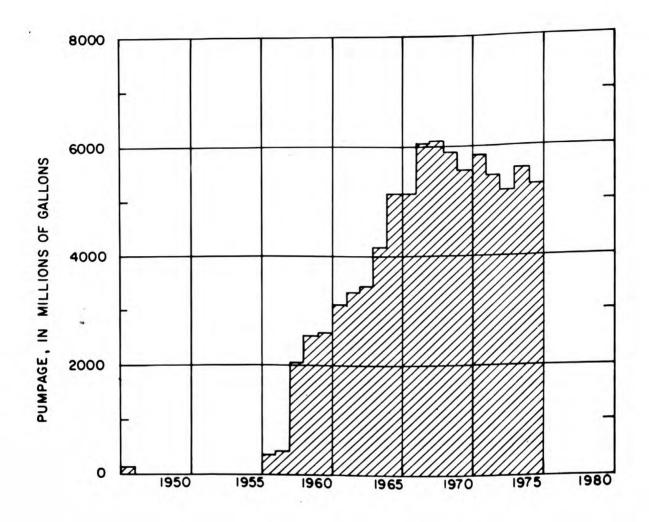


Figure 15.--Total yearly pumpage, city of Cocoa.

DADE CITY

County: Pasco Population served: 9,000

River basin: Withlacoochee River (10 02 08)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 4 wells, 116 to 200 feet

deep; yield 500 to 850 gal/min

Rated plant capacity: 4 Mga1/d
Pumpage: Year— 386.9 Mga1

Average daily— 1.06 Mga1

Highest month: May, 41.05 Mgal Lowest month: December, 23.37 Mgal

Per capita use: 118 gal/d

Finished-water storage: 0.42 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.42 Mga1/d

Sewage treatment: Primary, activated sludge

Waste discharged to: Canals to Withlacoochee River

Remarks: Average daily pumpage increased from 0.68 Mgal/d in 1957 to 1.06 Mgal/d in 1975. Total service connections 2,890. Total yearly pumpage (1957-75) is shown on figure 16.

a/ Includes 0.1 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-23-75 SAMPLING POINT: 282148082122900, composite, 2 wells

Silica (SiO ₂)	9	Dissolved solids	
Calcium (Ca)	49	(residue at 180°C)	176
Magnesium (Mg)	5.2	Total hardness	
Sodium (Na)	4.7	(as CaCO ₃)	140
Potassium (K)	.3	Noncarbonate hardness	
Strontium (Sr)	.18	(as CaCO ₃)	18
Bicarbonate (HCO ₃)	149	Alkalinity (as CaCO3)	122
Sulfate (SO4)	15	pH (units)	8.1
Chloride (C1)	6.8	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	294
Nitrate (NO ₃ -N)	.84	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	122
Nitrogen, organic (N)	.11	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total	(C)
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.0	total (PO4-P)	.03
Phosphorus, total (P)	.03		

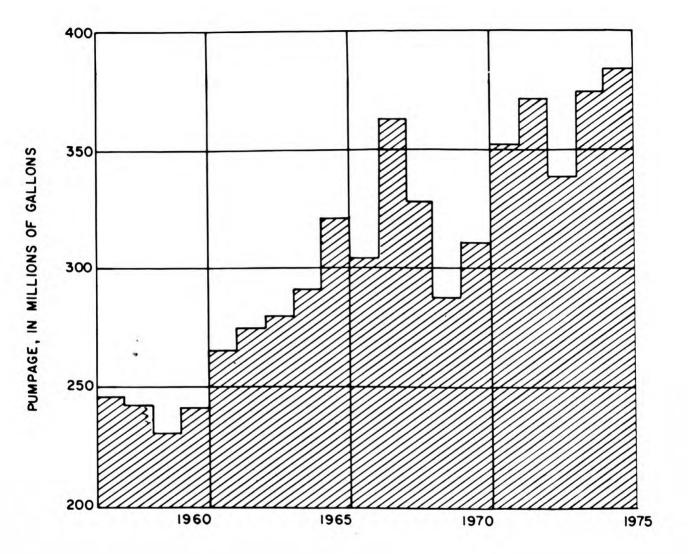


Figure 16.--Total yearly pumpage, Dade City.

DAYTONA BEACH

County: Volusia Population served: 62,300
River basin: Coastal area between St. Johns River and Ponce de Leon Inlet

(08 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 14 wells, 160 to 485 feet deep; yield 700 to 1,400 gal/min. Two plants.

Rated plant capacity: 22 Mga1/d Pumpage: Year— 4,062.45 Mga1 Highest month: March, 392 Mga1

Average daily— 11.13 a/ Mgal Lowest month: January, 287 Mgal

Per capita use: 179 gal/d Finished-water storage: 6 Mgal

Treatment: Chlorination, softening, coagulation, fluoridation, algae control, clarification, filtration, flocculation, pH control, taste and odor control

Type/Frequency of analysis: Bacteriological/weekly; chemical/daily; color and turbidity/monthly

Sewage discharge: 12 Mgal/d

Sewage treatment: Aeration, activated sludge, chlorination, clarification, comminution, diffused air, digestion, filtration, grit chambers, skimming, secondary

Waste discharged to: Halifax River

Remarks: Average daily pumpage increased from 4.00 Mgal/d in 1956 to 11.13 Mgal/d in 1975. Total service connections 18,321. Knochenmus and Beard (1971), Lichtler (1972).

a/ Includes 1.8 Mgal/d supplied South Daytona and Daytona Beach Shores.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-2-75 SAMPLING POINT: 291228081013001

Silica (SiO ₂)	19	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	404
Magnesium (Mg)	8.8	Total hardness	404
Sodium (Na)	26	(as CaCO ₃)	310
Potassium (K)	1.4	Noncarbonate hardness	310
Strontium (Sr)	.47	(as CaCO ₃)	18
Bicarbonate (HCO ₃)	356	Alkalinity (as CaCO3)	292
Sulfate (SO4)	. 2	pH (units)	7.4
Chloride (C1)	42	Specific conductance	
Fluoride (F)	.6	(umhos/cm at 25°C)	699
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	20
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.21	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	8
(ammonia, total (NH4-N))	. 39	Orthophosphate	
Iron (Fe)	. 2	total (PO4-P)	.15
Phosphorus, total (P)	.17		

DE LAND

County: Volusia Population served: 18,000 River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 7 wells, 275 to 511 feet

deep; yield 200 to 1,100 gal/min

Rated plant capacity: 8.0 Mga1/d
Pumpage: Year— 1.164.40 Mga1

Average daily— 3.19a/ Mga1

Highest month: April. 125.2 Mgal Lowest month: February, 81.4 Mgal

Per capita use: 177 gal/d

Finished-water storage: 0.90 Mgal

Treatment: Chlorination, softening, stabilization, pH control

Type/Frequency of analysis: Bacteriological/monthly, chemical, spectrographic, color, and turbidity/intermittently

Sewage discharge: 1.5 Mgal/d

Sewage treatment: Activated sludge, aeration, chlorination, clarification, comminution, digestion, drying, grit chambers, polishing pond, secondary

Waste discharged to: Aeration lagoons, St. Johns River

Remarks: Average daily pumpage increased from 1.60 Mgal/d in 1956 to 3.19 Mgal/d in 1975. Total service connections 6,488. Water supplied to areas adjacent to city. Knochenmus and Beard (1971), Lichtler (1972). a/ Includes 0.25 Mgal/d industrial use, 0.25 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-2-75
SAMPLING POINT: 290156081183301

Silica (SiO ₂) Calcium (Ca)	7.7 50	Dissolved solids (residue at 180°C)	208
Magnesium (Mg)	4	Total hardness	200
Sodium (Na)	10	(as CaCO ₃)	140
Potassium (K)	2	Noncarbonate hardness	140
Strontium (Sr)	.16	(as CaCO ₃)	4
Bicarbonate (HCO ₃)	166	Alkalinity (as CaCO3)	136
Sulfate (SO4)	13	pH (units)	7.7
Chloride (C1)	17	Specific conductance	1000
Fluoride (F)	.4	(umhos/cm at 25°C)	350
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.03	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total	(C) 3
(ammonia, total (NH4-N))	.18	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.06
Phosphorus, total (P)	.06		

DELTONA

County: Volusia Population served: 12,000

River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: Deltona Utility Co.

Source of water: Ground water, Florida aquifer; 11 wells, 230 to 330 feet

deep; yield 250 to 500 gal/min

Rated plant capacity: 8.6 Mgal/d

Pumpage: Year— 584.0 Mgal Average daily—1.6 Mgal

Highest month: April, 83.1 Mgal Lowest month: January, 38.8 Mgal

Per capita use: 133 gal/d

Finished-water storage: 1.0 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.5 Mga1/d

Sewage treatment: Activated sludge, aeration, chlorination, drying, clarification,

contact stabilization, digestion, polishing pond, settling, secondary

Waste discharged to: Lake Monroe

Remarks: Total service connections 4,600. No chemical analysis available.

Knochenmus and Beard (1971).

DUNEDIN

Population served: 25,000 County: Pinellas

Coastal area from Tampa Bay to Withlacoochee River (10 02 07) River basin:

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 15 wells, 96 to 332 feet

deep; yield to 500 gal/min

Rated plant capacity: 6.25 Mga1/d Pumpage: Year-1,299.03 Mgal

Average daily— 3.56^a/ Mgal September, 71 Mgal Lowest month: May, 142 Mgal Highest month:

Per capita use: 142 gal/d

Finished-water storage: Not reported

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical annually

2.54 Mga1/d Sewage discharge:

Sewage treatment: Aeration, chlorination, digestion, clarification, activated

sludge, contact stabilization, primary

Waste discharged to: St. Joseph Sound, Gulf of Mexico

Remarks: Average daily pumpage increase from 0.85 Mgal/d in 1956 to 3.56 Mgal/d in 1975. Total service connections 8,200. Cherry and others (1970).

a/ Includes 0.178 Mgal/d industrial use, 0.355 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6- 3-75 **SAMPLING POINT:** 280123082454701

0414 (040-)			
Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	78	(residue at 180°C)	474
Magnesium (Mg)	12	Total hardness	4/4
Sodium (Na)	53	(as CaCO ₃)	010
Potassium (K)	3.6		240
Strontium (Sr)	77.7	Noncarbonate hardness	
Bicarbonate (HCO ₃)	.52	(as CaCO ₃)	63
	216	Alkalinity (as CaCO3)	177
Sulfate (SO4)	36	pH (units)	7.9
Chloride (C1)	100		1.5
Fluoride (F)	.3	Specific conductance	
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	765
Nitrite (NO2-N)	.02	Color (Pt-Co units)	5
Nitrogen, organic (N)	.01	Temperature (°C)	
	.12	Turbidity(JTU)	5
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.24	Orthophosphate	
Iron (Fe)	.14		
Phosphorus, total (P)		total (PO4-P)	.23
(4)	.49		

EUSTIS

County: Lake 10,812 Population served:

River basin: Oklawaha River (08 01 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 3 wells, 2 in use, 300 to 1,000 feet deep; yield 800 to 4,000 gal/min

Rated plant capacity: 7 Mgal/d Pumpage: Year 623.50 Mgal

Average dailv_1.71a/ Mgal April, 74.59 Mgal Highest month: September, 38.43 Mgal Lowest month:

Per capita use: 158 gal/d Finished-water storage: 125 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.84 Mgal/d Sewage treatment: $\frac{b}{Activated}$ sludge, chlorination, clarification, filtration,

primary

Waste discharged to: Swamp to Trout Lake

Remarks: Average daily pumpage increased from 0.90 Mgal/d in 1956 to 1.71 Mgal/d in 1975. Total service connections 4,080. Water supplied to Three Lake and Lake Louise subdivisions and areas adjacent to city. Knochenmus (1971). a/ Includes 0.17 Mgal/d industrial use (citrus concentration). \overline{b} / Small package treatment plant in operation at Pine Meadows.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-13-75 **SAMPLING POINT:** 285104081404701, Well 850-140-111

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	22	(residue at 180°C)	102
Magnesium (Mg)	7.8	Total hardness	102
Sodium (Na)	5.1	(as CaCO ₃)	87
Potassium (K)	1	Noncarbonate hardness	٠,
Strontium (Sr)	.1	(as CaCO ₃)	5
Bicarbonate (HCO ₃)	100	Alkalinity (as CaCO3)	
Sulfate (SO4)	3.7	pH (units)	82 8.2
Chloride (C1)	7	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	189
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.02	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total	(C) 2
(ammonia, total (NH4-N))	.09	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.03
Phosphorus, total (P)	.04		

GULFPORT

County: Pinellas Population served: 12,000

River basin: Coastal area from Tampa Bay to the Withlacoochee River (10 02 07)

Average daily— 0.82 Mgal

Ownership of supply or system: City of St. Petersburg Source of water: a/ Ground water, Floridan aquifer

Rated plant capacity: $\frac{a}{}$

Pumpage: Year— 299.0 Mgal

Highest month: April, 32.98 Mgal Lowest month: January, 21.41 Mgal

Per capita use: 68 ga1/d Finished-water storage: <u>a/</u>

Treatment: a/

Type/Frequency of analysis: a/

Sewage discharge: 1.32 Mgal/d

Sewage treatment: a/

Waste discharged to: St. Petersburg sewage system, southwest treatment plant, Boca Ciega Bay

Remarks: Average daily pumpage increased from 0.40 Mgal/d in 1956 to 0.82 Mgal/d in 1975. Unincorporated areas near Gulfport supplied 0.09 Mgal/d by St. Petersburg. For chemical analysis of water see St. Petersburg.

a/ See St. Petersburg (p. 148).

HAINES CITY

County: Polk Population served: 13,000 River basin: Peace River (10 01 01), Kissimmee River (09 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 6 wells, 490 to 950 feet deep; yield 900 to 1.763 gal/min

Rated plant capacity: 6.0 Mga1/d

Pumpage: Year— 608.0 Mgal Average daily— 1.67 Mgal

Highest month: April, 73 Mgal Lowest month: September, 35 Mgal

Per capita use: 128 gal/d

Finished-water storage: 1.3 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/intermittently

Sewage discharge: 0.69 Mgal/d

Sewage treatment: Aeration, trickling filter, digestion, primary

Waste discharged to: Lake Marion

Remarks: Average daily pumpage increased from 0.96 Mgal/d in 1956 to 1.66 Mgal/d in 1975. Robertson (1971, 1973), Robertson and Mills (1974).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-25-75
SAMPLING POINT: 280637081374200, composite 4 wells

Silica (SiO ₂)	12	Dissolved solids	
Calcium (Ca)	49	(residue at 180°C)	208
Magnesium (Mg)	7.1	Total hardness	200
Sodium (Na)	10	(as CaCO ₃)	150
Potassium (K)	1.4	Noncarbonate hardness	130
Strontium (Sr)	.06	(as CaCO ₃)	.00
Bicarbonate (HCO3)	190	Alkalinity (as CaCO3)	156
Sulfate (SO4)	4.5	pH (units)	8.1
Chloride (C1)	13	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	358
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.18	Turbidity (JTU)	3
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.54	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.05
Phosphorus, total (P)	.06	2 A A D D C A A A A A A A A A A A A A A A	

HOLLY HILL

County: Volusia Population served: 8,599

River basin: Coastal area between St. Johns River and Ponce de Leon Inlet (08 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, 220 to 230 feet deep; yield 350 to 450 gal/min

Rated plant capacity: 2.3 Mga1/d
Pumpage: Year— 333.46 Mga1

Average daily— 0.91^{a/} Mga1

Highest month: August, 30.64 Mgal Lowest month: January, 25.81 Mgal

Per capita use: 106 gal/d

Finished-water storage: 1.23 Mgal

Treatment: Aeration, algae control, anti-precipitation and corrosion control chlorination, clarification, coagulation, softening, filtration, pH control, recarbonation*

Type/Frequency of analysis: Bacteriological/weekly

Sewage discharge: 0.73 Mgal/d

Sewage treatment: Aeration, chlorination, activated sludge, comminution, clarification, digestion, drying, settling, skimming, secondary

Waste discharged to: Halifax River

Remarks: Average daily pumpage increased from 0.40 Mgal/d in 1956 to 0.91 Mgal/d in 1975. Snell and Anderson (1970), Knochenmus and Beard (1971).

* Sedimentation, stabilization, taste and odor control.
a/ Includes 0.1 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-2-75 SAMPLING POINT: 291402081024401

Silica (SiO ₂)	21	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	484
Magnesium (Mg)	12	Total hardness	
Sodium (Na)	43	(as CaCO ₃)	320
Potassium (K)	1.9	Noncarbonate hardness	320
Strontium (Sr)	.45	그는 사람들에 가는 이번 것 같아요. 나는 사람들이 가지 않아 다른다.	21
Bicarbonate (HCO3)	364	(as CaCO ₃)	298
Sulfate (SO ₄)	.2	Alkalinity (as CaCO ₃)	
Chloride (C1)		pH (units)	8.3
Fluoride (F)	76	Specific conductance	
	.7	(umhos/cm at 25°C)	800
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	20
Nitrite (NO ₂ -N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.07	Turbidity(JTU)	1
Nitrogen			÷
(ammonia, total (NH4-N))	.51	Carbon, organic, total (C)	,
Iron (Fe)		Orthophosphate	
	.02	total (PO4-P)	.12
Phosphorus, total (P)	.14		

INVERNESS

County: Citrus Population served: 2,900

River basin: Withlacoochee River (10 02 08)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 2 wells, 272 to 277 feet deep; yield 520 gal/min^a

Rated plant capacity: 1.5 Mgal/d

Pumpage: Year— 120.4 Mga1 Average daily—0.33b/ Mga1

Highest month: April, 14.19 Mgal Lowest month: November, 8.31 Mgal

Per capita use: 114 gal/d

Finished-water storage: 0.1 Mga1

Treatment: Aeration, chlorination, filtration, softening, coagulation

Type/Frequency of analysis: Bacteriological/monthly; chemical/semiannually

Sewage discharge: 0.24 Mgal/d

Sewage treatment: Secondary, trickling filter

Waste discharged to: Lake Voight

Remarks: Average daily pumpage increased from 0.12 Mgal/d in 1956 to 0.33 Mgal/d in 1975. Cherry and others (1970).

a/ Estimated from plant capacity.

b/ Includes 0.19 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 8-23-75
SAMPLING POINT: 284948082191801, Public Supply Well

Silica (SiO ₂)	5.1	Dissolved solids	
Calcium (Ca)	59	(residue at 180°C)	216
Magnesium (Mg)	3	Total hardness	
Sodium (Na)	6.3	(as CaCO ₃)	160
Potassium (K)	.5	Noncarbonate hardness	7
Strontium (Sr)	.08	(as CaCO ₃)	16
Bicarbonate (HCO ₃)	175	Alkalinity (as CaCO3)	144
Sulfate (SO4)	5.7	pH (units)	8.2
Chloride (C1)	12.0	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	332
Nitrate (NO ₃ -N)	.04	Color (Pt-Co units)	20
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	. 35	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.47	Orthophosphate	
Iron (Fe)	.07	total (PO4-P)	.08
Phosphorus, total (P)	. 08		

KISSIMMEE

Population served: 11.848 County: Osceola

River basin: Kissimmee River (09 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 6 wells, 398 to 1,200 feet

deep; yield, maximum, 2,000 gal/min

Rated plant capacity: 13.5 Mgal/d Pumpage: Year- 830.45 Mgal

Average daily—2.27a/ Mgal Lowest month: September, 56.3 Mgal Highest month: April, 88.4 Mgal

Per capita use: 192 ga1/d

Finished-water storage: 2.5 Mga1 Treatment: Aeration, chlorination

Type/Frequency of analysis: Chemical/irregularly

1.7 Mgal/d Sewage discharge:

Sewage treatment: Secondary, chlorination

Waste discharged to: Lake Tohopekaliga

Remarks: Average daily pumpage increased from 0.85 Mgal/d in 1956 to 2.27 Mgal/d in 1975. City of Kissimmee purchased the Kissimmee Highlands well field from the General Waterworks Corp. in Dec. 1975. Highlands well field-source of water, Floridan aquifer; 2 wells, 375 to 467 ft. deep; yield 495 to 500 gal/min; population served 750; average daily pumpage 0.2 Mgal/d. Lichtler (1972). a/ Includes 0.227 Mgal/d industrial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-15-75 **SAMPLING POINT: 281725081242501**

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	30	(residue at 180°C)	116
Magnesium (Mg)	5.7	Total hardness	116
Sodium (Na)	4.1	(as CaCO ₃)	00
Potassium (K)	.9	Noncarbonate hardness	99
Strontium (Sr)	.18	(as CaCO ₃)	6
Bicarbonate (HCO ₃)	113	Alkalinity (as CaCO3)	93
Sulfate (SO4)	3.7	pH (units)	8.2
Chloride (C1)	5.5	Specific conductance	0.2
Fluoride (F)	. 2	(umhos/cm at 25°C)	206
Nitrate (NO ₃ -N)	.01		206
Nitrite (NO2-N)	.01	Color (Pt-Co units) Temperature (°C)	
Nitrogen, organic (N)			
Nitrogen	.04	Turbidity (JTU)	1
(ammonia, total (NH4-N))		Carbon, organic, total (C)	4
Iron (Fe)	.1	Orthophosphate	
Phosphorus, total (P)	.01	total (PO4-P)	.04
Thosphorus, total (F)	.04		

LAKELAND

County: Polk Population served: 82,000

River basin: Peace River (10 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 3 plants, 34 wells, 252 to

1,216 feet deep; yield 150 to 5,000 gal/min

Rated plant capacity: 38 Mga1/d

Pumpage: Year— 6,224.27 Mgal Average daily— 17.05 Mgal

Highest month: April, 754.98 Mgal Lowest month: February, 432.11 Mgal

Per capita use: 208 gal/d

Finished-water storage: 1.6 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually

Sewage discharge: 5.62 Mgal/d

Sewage treatment: Primary, secondary, trickling filter

Waste discharged to: Banana Lake then to Peace River

Remarks: Average daily pumpage increased from 6.61 Mgal/d in 1956 to 17.05 Mgal/d in 1975. Water also supplied (0.25 Mgal/d) to Polk City and Highland City. Total yearly pumpage 1928-75 is shown on Figure 17. Robertson (1971, 1973), Robertson and Mills (1974).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-24-75
SAMPLING POINT: 280331081572601, Oconee plant well

Silica (SiO ₂)	16	Dissolved solids	
Calcium (Ca)	62	(residue at 180°C)	228
Magnesium (Mg)	11	Total hardness	220
Sodium (Na)	5.3	(as CaCO ₃)	200
Potassium (K)	.8	Noncarbonate hardness	200
Strontium (Sr)	.1	(as CaCO ₃)	9
Bicarbonate (HCO ₃)	232	Alkalinity (as CaCO3)	191
Sulfate (SO4)	.7	pH (units)	8.1
Chloride (C1)	7.4	Specific conductance	7.7
Fluoride (F)	. 3	(umhos/cm at 25°C)	390
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	10
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.29	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	8
(ammonia, total (NH4-N))	1.0	Orthophosphate	
Iron (Fe)	.08	total (PO4-P)	.1
Phosphorus, total (P)	.1		

LAKELAND

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-24-75 SAMPLING POINT: 280151081572901, Dixieland plant well

Silica (SiO ₂)	17	Dissolved solids	
Calcium (Ca)	40	(residue at 180°C)	178
Magnesium (Mg)	12	Total hardness	
Sodium (Na)	6.5	(as CaCO ₃)	150
Potassium (K)	.8	Noncarbonate hardness	
Strontium (Sr)	.04	(as CaCO ₃)	.00
Bicarbonate (HCO ₃)	188	Alkalinity (as CaCO3)	154
Sulfate (SO4)	.5	pH (units)	8.0
Chloride (C1)	8.2	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	330
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.19	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.9	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.05
Phosphorus, total (P)	.05	A STATE OF THE STA	

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-24-75 SAMPLING POINT: 275731081570302, Southside plant well

Silica (SiO ₂)	16	Dissolved solids	
Calcium (Ca)	54	(residue at 180°C)	264
Magnesium (Mg)	15	Total hardness	
Sodium (Na)	5.7	(as CaCO ₃)	200
Potassium (K)	. 7	Noncarbonate hardness	
Strontium (Sr)	.31	(as CaCO ₃)	64
Bicarbonate (HCO3)	166	Alkalinity (as CaCO ₃)	136
Sulfate (SO ₄)	57	pH (units)	8.1
Chloride (C1)	6.8	Specific conductance	3/5
Fluoride (F)	.3	(umhos/cm at 25°C)	394
Nitrate (NO ₃ -N)	.04	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.11	Turbidity (JTU)	2
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.21	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.04
Phosphorus, total (P)	.04		• • •

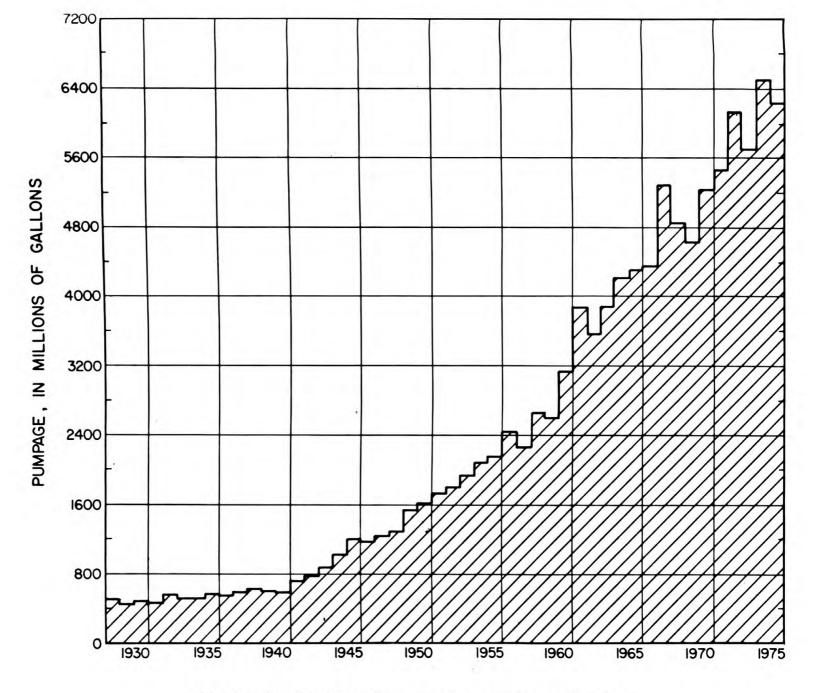


Figure 17.--Total yearly pumpage, city of Lakeland

LAKE WALES

14,000 Population served: County: Polk

River basin: Kissimmee River (09 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, 809 to 1,056 feet

deep; yield 1,400 to 1,600 gal/d

Rated plant capacity: 9.2 Mga1/d Average daily— 2.36a/ Mga1 Pumpage: Year— 860.73 Mgal

Lowest month: September, 48.31 Mgal Highest month: April, 122.27 Mgal

Per capita use: 169 gal/d

Finished-water storage: 1.15 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/trimonthly; chemical/intermittently

Sewage discharge: 0.86 Mga1/d Sewage treatment: Trickling filter

Waste discharged to: Lake Effie to Peace Creek drainage canal.

Remarks: Average daily pumpage increased from 1.33 Mgal/d in 1956 to 2.36 Mgal/d in 1975.

a/ Includes 0.2 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-22-75 SAMPLING POINT: 275417081351800, composite, 5 wells

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	35	(residue at 180°C)	154
Magnesium (Mg)	7.7	Total hardness	134
Sodium (Na)	5.9	(as CaCO ₃)	120
Potassium (K)	1.5	Noncarbonate hardness	120
Strontium (Sr)	.38		12
Bicarbonate (HCO ₃)	132	(as CaCO ₃)	108
Sulfate (SO4)	13	Alkalinity (as CaCO ₃)	8.0
Chloride (C1)		pH (units)	0.0
Fluoride (F)	9	Specific conductance	270
Nitrate (NO ₃ -N)	.2	(umhos/cm at 25°C)	270
Nitrite (NO2-N)	.11	Color (Pt-Co units)	.00
Nitrogen, organic (N)	.02	Temperature (°C)	
Nitrogen	.19	Turbidity (JTU)	2
		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.14	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.06
Phosphorus, total (P)	.06	STATE OF THE STATE	

LARGO

County: Pinellas Population served: 46.415

River basin: Coastal area from Tampa Bay to the Withlacoochee River (10 02 07)

Ownership of supply or system: \underline{a} /

Source of water: Ground water, Floridan aquifer

Rated plant capacity: a/

Pumpage: Year— Not reported Average daily— Not reported Lowest month: Not reported

Per capita use: $69^{\frac{b}{2}}$ gal/d Finished-water storage: a/

Treatment: a/

Type/Frequency of analysis: a/

Sewage discharge: 5.17 Mgal/d

Sewage treatment: Activated sludge, contact stabilization

Waste discharged to: Northeast end of Cross Bayou

Remarks: Per capita use based on estimated average, 1970-74 \underline{a} / Pinellas County Water System (p. 142). \underline{b} / Estimated.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-3-75 SAMPLING POINT: 275511082471701

Silica (SiO ₂)	35	Dissolved solids	
Calcium (Ca)	55	(residue at 180°C)	306
Magnesium (Mg)	12	Total hardness	
Sodium (Na)	18	(as CaCO ₃)	190
Potassium (K)	1	Noncarbonate hardness	
Strontium (Sr)	.51	(as CaCO ₃)	30
Bicarbonate (HCO3)	195	Alkalinity (as CaCO3)	160
Sulfate (SO4)	4.6	pH (units)	7.8
Chloride (C1)	51	Specific conductance	
Fluoride (F)	.6	(umhos/cm at 25°C)	472
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	5
Nitrite (NO2-N)	.02	Temperature (°C)	
Nitrogen, organic (N)	.09	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.20	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	
Phosphorus, total (P)	.07		

LEESBURG

Population served: 14,200 County: Lake

River basin: Oklawaha River (09 01 02)

Ownership of supply or system: City of Leesburg Source of water: Ground water, Floridan aquifer; 9 wells, 94 to 936 feet deep; yield 544 to 1,590 gal/min

Rated plant capacity: 13.86 Mga1/d

Average daily-3.88ª/Mga1 Pumpage: Year-1,415.17 Lowest month: February, 91.50 Mgal Highest month: April, 162.55 Mgal

Per capita use: 273 ga1/d

Finished-water storage: 2.2 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological and chemical/monthlyb/

Sewage discharge: 2.02 Mga1/d

Sewage treatment: Activated sludge, chlorination, clarification, digestion, drying, primary, secondary

Waste discharged to: Ponds, and direct to Lake Griffin

Remarks: Average daily pumpage increased from 1.72 Mgal/d in 1956 to 4.64 Mgal/d in 1970. Pumpage decreased 0.76 Mgal/d from 1970 through 1975.

a/ Includes 0.2 Mgal/d industrial use, 2.2 Mgal/d commercial use.

b/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-13-75 **SAMPLING POINT:** 284822081523201, Leesburg 11

Silica (SiO ₂) Calcium (Ca)	15 48	Dissolved solids (residue at 180°C)	174
Magnesium (Mg)	6.6	Total hardness	-,
Sodium (Na)	6	(as CaCO ₃)	150
Potassium (K)	1.3	Noncarbonate hardness	7.77
Strontium (Sr)	.11	(as CaCO ₃)	7
Bicarbonate (HCO ₃)	174	Alkalinity (as CaCO ₃)	143
Sulfate (SO ₄)	1.3	pH (units)	8.2
Chloride (C1)	9.5	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	204
Nitrate (NO ₃ -N) Nitrite (NO ₂ -N)	.01	Color (Pt-Co units)	.00
Nitrogen, organic (N)	.01	Temperature (°C)	
Nitrogen, Organic (N)	.07	Turbidity(JTU)	1
(ammonia, total (NH4-N))	.03	Carbon, organic, total (C)	3
Iron (Fe)	.03	Orthophosphate	
Phosphorus, total (P)	.12 .07	total (PO4-P)	.06

LONGWOOD

County: Seminole Population served: 4,000

River basin: St. Johns River above Oklawaha River (08 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer, two wells, 372 to 390

feet deep; yield 500 to 700 gal/min

Rated plant capacity: 1.9 Mgal/d Pumpage: Year— 228.5 Mgal

npage: Year— 228.5 Mgal Average daily—0.64 Mgal

Highest month: April 27.73 Mgal Lowest month: December, 12.16 Mgal

Per capita use: 160 gal/d

Finished-water storage: 0.76 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical, spectrographic, color, turbidity/annually

Sewage discharge: 0.07 Mgal/d Sewage treatment: Activated sludge

Ponds

Waste discharged to:

Remarks: Average daily pumpage increased from 0.05 Mgal/d in 1956 to 0.69 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 SAMPLING POINT: 284238081212201

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	35	(residue at 180°C)	146
Magnesium (Mg)	9.8	Total hardness	
Sodium (Na)	4.8	(as CaCO ₃)	130
Potassium (K)	1	Noncarbonate hardness	
Strontium (Sr)	.13	(as CaCO ₃)	8
Bicarbonate (HCO3)	149	Alkalinity (as CaCO3)	122
Sulfate (SO4)	.9	pH (units)	8.3
Chloride (C1)	7.1	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	263
Nitrate (NO3-N)	.01	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.00	Temperature (°C)	25
Nitrogen, organic	(N) .16	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total	$(NH_4-N))$.12	Orthophosphate	-
Iron (Fe)	.02	total (PO4-P)	.06
Phosphorus, total	(P) .06		

MAITLAND

Population served: 8,325 County: Orange River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: City of Maitland Source of water: Ground water, Floridan aquifer, 6 wells

Rated plant capacity: 7.7 Mga1/d

Average daily-1.44 Mgal Pumpage: Year— 527.78 Mga1 Lowest month: August, 33.22 Mgal Highest month: April, 75.21 Mgal

Per capita use: 173 gal/d Finished-water storage: 0.8 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 1.1 Mga1/d

Sewage treatment: Secondary, polishing ponds

Waste discharged to: Lake Howell

Remarks: Average daily pumpage increased from 0.18 Mgal/d in 1956 to 1.44 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-30-75 **SAMPLING POINT:** 283743081214501, 837-121-01

Silica (SiO ₂)	8.7	Dissolved solids	
Calcium (Ca)	41	(residue at 180°C)	168
Magnesium (Mg)	5.4	Total hardness	
Sodium (Na)	11	(as CaCO ₃)	120
Potassium (K)	1.4	Noncarbonate hardness	7.00
Strontium (Sr)	.32	(as CaCO ₂)	25
Bicarbonate (HCO ₃)	115	Alkalinity (as CaCO ₃)	95
Sulfate (SO ₄)	14		7.7
Chloride (C1)	15	pH (units)	
Fluoride (F)	.2	Specific conductance	050
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	252
Nitrite (NO2-N)	.02	Color (Pt-Co units)	.00
Nitrogen, organic (N)	.00	Temperature (°C)	
	.1	Turbidity(JTU)	3
Nitrogen		Carbon, organic, total (C)	.00
(ammonia, total (NH4-N))	.07	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.02
Phosphorus, total (P)	.02	(104-1)	• • • •

MELBOURNE

County: Brevard Population served: 90,000 River basin: Coastal area between Ponce de Leon and Sebastian Inlets (08 02 02)

Ownership of supply or system: Municipal, Melbourne/Eau Gallie

Source of water: Surface water, Lake Washington

Rated plant capacity: 12 Mga1/d Pumpage: Year—3,248.5 Mga1 Highest month: April, 360 Mga1

Average daily— 8.9 Mga1

Lowest month: June, 186 Mgal

Per capita use: 99 ga1/d

Finished-water storage: 7.6 Mga1

Treatment: Chlorination, coagulation, filtration, flocculation, clarification fluoridation, pH control, sedimentation, softening

Type/Frequency of analysis: Bacteriological and chemical/daily, color and turbidity/hourlya/; Bacteriological/weekly, chemical, color, turbidity/dailyb/Sewage discharge: 4.51c/Mgal/d (4 plants)

Sewage treatment: Aeration, chlorination, comminution, contact stabilization, diffused air, digestion, drying, skimming, primary, secondary

Waste discharged to: Indian River

Remarks: Average daily pumpage increased from 0.70 Mgal/d (ground water) in 1956 to 10.8 Mgal/d in 1975 (surface water). City also supplies all water to West Melbourne, Melbourne Village, Melbourne Beach, Satellite Beach, Indialantic, Indian Harbor Beach, Eau Gallie and partial supply to Palm Bay and Patrick AFB.

a/ Treated water.

b/ Raw water.

c/ Septic tanks and small independent sewage treatment systems in operation.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-3-75 SAMPLING POINT: 02232100, Lake Washington near Eau Gallie

Silica (SiO ₂)	.5	Dissolved solids	
Calcium (Ca)	70	(residue at 180°C)	640
Magnesium (Mg)	16	Total hardness	
Sodium (Na)	86	(as CaCO ₃)	240
Potassium (K)	2.7	Noncarbonate hardness	
Strontium (Sr)	2.7	(as CaCO ₃)	140
Bicarbonate (HCO3)	116	Alkalinity (as CaCO3)	95
Sulfate (SO4)	57	pH (units)	7.9
Chloride (C1)	200	Specific conductance	
Fluoride (F)	.6	(umhos/cm at 25°C)	921
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	130
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	1.6	Turbidity (JTU)	7
Nitrogen	.01	Carbon, organic, total (C)	42
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.02
Phosphorus, total (P)	.02		

MELBOURNE

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-3-75 SAMPLING POINT: 02232100, Lake Washington near Eau Gallie

	Tr	ace Elements	
Arsenic (As)	1 -	Manganese (Mn)	20
Barium (Ba)	0	Mercury (Hg)	.0
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr)	<10	Zinc (Zn)	20
Copper (Cu)	1		
Iron (Fe)	120	pH(units)	
Lead (Pb)	7	Temperature (°C)	
		Pesticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.03
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.00
Heptachlor epoxide	.00	2,4-DP	.00
and the second second		2,4,5-T	.00

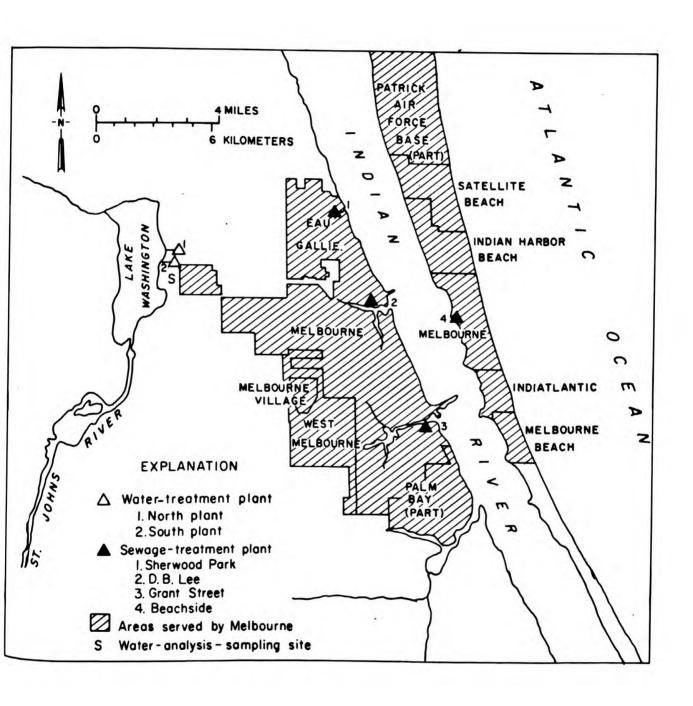


Figure 18.--Areas supplied water by the city of Melbourne.

MT DORA

County: Lake Population served: 6,200

River basin: Oklawaha River (08 01 02)

Ownership of supply or system: City of Mt. Dora Source of water: Ground water, Floridan aquifer; four wells, about 725 feet deep; yield 200 to 3,000 gal/min

Rated plant capacity: 10 Mga1/d Pumpage: Year— 600.88 Mgal

Average daily_1.65ª/ Mgal Lowest month: October, 41.32 Mgal Highest month: April, 78.56 Mgal

Per capita use: 266 gal/d Finished-water storage: 1.5 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Not reported

Sewage discharge: 1.0 Mgal/d

Sewage treatment: Activated sludge, chlorination, digestion, primary,

secondary

Waste discharged to: ponds to Lake Dora

Remarks: Average daily pumpage increased from 0.55 Mga1/d in 1956 to 1.65 Mgal/d in 1975. Water supplied to suburbs adjacent to city. Knochemmus (1971). No chemical analysis available. a/ Includes 0.082 Mgal/d commercial use.

NEW PORT RICHEY

County: Pasco Population served: 17,300

River basin: Coastal area from Tampa Bay to Withlacoochee River (10 02 07)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 12 wells, 93 to 550 feet

deep; yield 250 to 500 gal/min

Rated plant capacity: 4.8 Mgal/d Pum_age: Year— 697.15Mgal

n_age: Year— 697.15Mgal Average daily—1.91 Mgal

Highest month: April, 76.84 Mgal Lowest month: February, 42.86 Mgal

Per capita use: 110 gal/d Finished-water storage: 1.1 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological and chemical/monthly

Sewage discharge: 0.81 Mgal/d

Sewage treatment: Primary, clarification, filtration

Waste discharged to: Gulf of Mexico

Remarks: Average daily pumpage increased from 0.33 Mgal/d in 1956 to 1.91 Mgal/d in 1975. Three wells abandoned because of high chloride and iron in water. Total service connections, 5,182. City supplies water (0.81 Mgal/d) to Port Richey and Gulf Harbors. Cherry and others (1970).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-5-75 SAMPLING POINT: 281500082384501

Silica (SiO ₂)	8.4	Dissolved solids	
Calcium (Ca)	57	(residue at 180°C)	170
Magnesium (Mg)	2.9	Total hardness	
Sodium (Na)	4.2	(as CaCO ₃)	150
Potassium (K)	.4	Noncarbonate hardness	
Strontium (Sr)	.12	(as CaCO ₃)	10
Bicarbonate (HCO ₃)	176	Alkalinity (as CaCO3)	144
Sulfate (SO4)	6	pH (units)	7.8
Chloride (C1)	5.6	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	309
Nitrate (NO ₃ -N)	.05	Color (Pt-Co units)	10
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.16	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (NH4-N))	.45	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.05
Phosphorus, total (P)	.12	SAR	.01
Carbon Dioxide (CO ₂)	4.5		

NEW SMYRNA BEACH

County: Volusia Population served: 13,500
River basin: Coastal area between Ponce de Leon Inlet and Sebastian

Inlet (08 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, 200 to 220 feet deep; yield 600 to 700 gal/min

Rated plant capacity: 3 Mga1/d Pumpage: Year—907.74 Mga1 Average daily— 2.42^a/ Mgal

Highest month: April, 86.8 Mgal

Lowest month: September, 65.4 Mgal

Per capita use: 179 gal/d

Finished-water storage: 2.15 Mgal

Treatment: Aeration, chlorination, pH control, softening

Type/Frequency of analysis: Bacteriological, color/monthly; chemical/daily

Sewage discharge: 1.4 Mga1/d

Sewage treatment: Activated sludge, chlorination, clarification, digestion, grit chambers, settling, skimming, primary, secondary

Waste discharged to: Indian River

Remarks: Average daily pumpage increased from 1.25 Mgal/d in 1956 to 2.45 Mgal/d in 1975. Total service connections: undifferentiated, 5,705. Knochenmus and Beard (1971).

 \underline{a} / Includes 0.03 Mgal/d industrial use (power generating station).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-2-75 SAMPLING POINT: 290103080552301, composite

Silica (SiO ₂)	22	Dissolved solids	
Calcium (Ca)	120	(residue at 180°C)	486
Magnesium (Mg)	8.8	Total hardness	
Sodium (Na)	39	(as CaCO ₃)	340
Potassium (K)	1.7	Noncarbonate hardness	
Strontium (Sr)	.61	(as CaCO ₃)	28
Bicarbonate (HCO ₃)	360	Alkalinity (as CaCO ₃)	312
Sulfate (SO ₄)	.1	pH (units)	8.5
Chloride (C1)	68	Specific conductance	
Fluoride (F)	.6	(umhos/cm at 25°C)	800
Nitrate (NO ₃ -N)	.00		50
Nitrite (NO2-N)	.01	Color (Pt-Co units) Temperature (°C)	
Nitrogen, organic (N)	.23	Turbidity(JTU)	90
Nitrogen		Carbon, organic, total (C)	8
(ammonia, total (NH4-N))	.57	Orthophosphate	0
Iron (Fe)	7.5	total (PO4-P)	.01
Phosphorus, total (P)	. 2	104-1)	.01

OCALA

County: Marion Population served: 30,975

River basin: Oklawaha River (08 01 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, 187 to 265 feet

deep; yield 700 to 4,200 gal/min

Rated plant capacity: 6.0 Mga1/d Pumpage: Year—1858.84 Mga1

Highest month: May, 203.49 Mgal

Average daily—5.09 Mgal Lowest month: February, 127.57 Mgal

Per capita use: 170 gal/d

Finished-water storage: 3.5 Mgal

Treatment: Chlorination, anti-precipitation and corrosion control, coagulation,

filtration, fluoridation, stabilization, softening

Type/Frequency of analysis: Bacteriological/weekly; chemical/intermittently

Sewage discharge: 2.6 Mgal/d (2 plants)

Sewage treatment: Aeration, chlorination, diffused air, contact stabilization, grit chambers, filtration, digestion, polishing pond, secondary, clarification,

comminution, skimming, drying, settling

Waste discharged to: Lagoon area

Remarks: Average daily pumpage increased from 1.82 Mgal/d in 1956 to 5.09 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-24-76 SAMPLING POINT: 291215082051401, City 2

Silica (SiO ₂)	9.5	Dissolved solids	
Calcium (Ca)	78	(residue at 180°C)	317
Magnesium (Mg)	13	Total hardness	
Sodium (Na)	10	(as CaCO ₃)	250
Potassium (K)	.9	Noncarbonate hardness	
Strontium (Sr)	1	(as CaCO ₃)	56
Bicarbonate (HCO3)	236	Alkalinity (as CaCO3)	194
Sulfate (SO4)	78	pH (units)	7.9
Chloride (C1)	.0	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	490
Nitrate (NO3-N)	.49	Color (Pt-Co units)	10
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.05	total (PO4-P)	
Phosphorus, total (P)			

OCOEE

County: Orange Population served: 5,600 River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: City of Ocoee

Source of water: Ground water, Floridan aquifer, two wells, 400 to 600

feet deep; yield 700 to 1,800 gal/min

Rated plant capacity: 0.9 Mgal/d Pumpage: Year—255.5 Mgal

npage: Year—255.5 Mgal Average daily—0.7 Mgal
Highest month: May, 23.87 Mgal Lowest month: March, 19.84 Mgal

Per capita use: 125 ga1/d

Finished-water storage: 1.25 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/4 times weekly. chemical/biannually $\frac{a}{}$; Chemical/daily $\frac{b}{}$

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 0.10 Mgal/d in 1956 to

0.7 Mgal/d in 1975. No chemical analysis available.

a/ Raw water.

b/ Treated water .

ORLANDO

County: Orange Population served: 196,000 River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 21 wells, 450 to 1,500

feet deep; yield, maximum, 5,500 gal/min

Rated plant capacity: 105 Mgal/d

Pumpage: Year—14,881.05 Mgal Average daily— 40.77 Mgal

Highest month: April, 1,682.7 Mgal Lowest month: February, 1,061.3 Mgal

Per capita use: 208 ga1/d Finished-water storage: 20 Mga1

Treatment: Aeration, chlorination, fluoridation

Type/Frequency of analysis: Bacteriological/weekly; chemical, spectrographic/

annually

Sewage discharge: 19.05 Mga1/d

Sewage treatment: Biofiltration (two plants)

Waste discharged to: Little Econolockhatchee River and Shingle Creek near Turkey Lake

Remarks: Average daily pumpage increased from 15.03 Mgal/d in 1956 to 40.97 Mgal/d in 1975. Total yearly pumpage, 1941-75, is shown on figure 19. Knochenmus (1974), Lichtler (1972).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-30-75 SAMPLING POINT: 283353081222401, Ivanhoe 2

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	34	(residue at 180°C)	148
Magnesium (Mg)	8.2	Total hardness	
Sodium (Na)	6.6	(as CaCO ₃)	120
Potassium (K)	1	Noncarbonate hardness	
Strontium (Sr)	.39	(as CaCO ₃)	23
Bicarbonate (HCO ₃)	138	Alkalinity (as CaCO3)	97
Sulfate (SO4)	5	pH (units)	7.6
Chloride (C1)	8.2	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	267
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.11	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	2
(ammonia, total (NH4-N))	.34	Orthophosphate	177
Iron (Fe)	.02	total (PO4-P)	.05
Phosphorus, total (P)	.05		3.7-

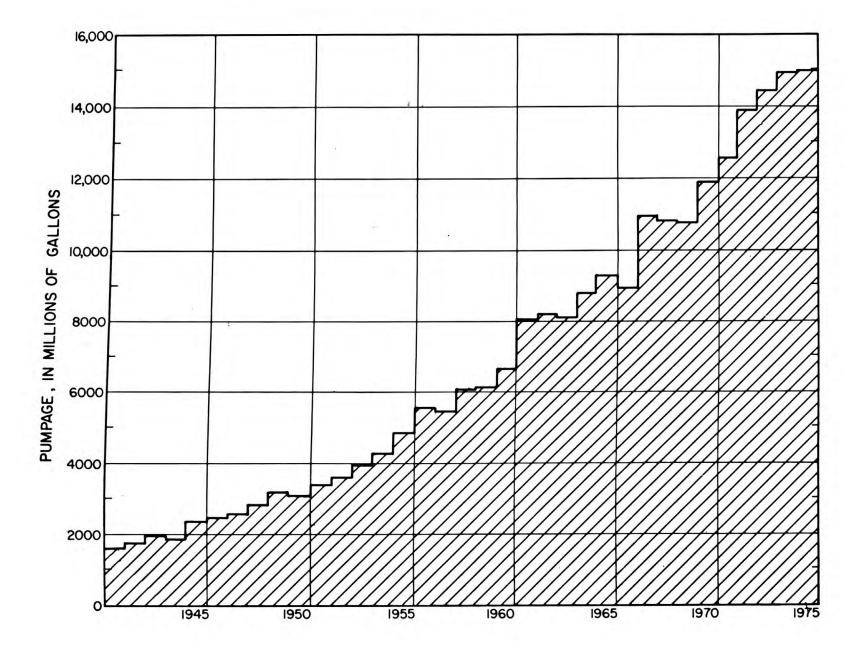


Figure 19.--Total yearly pumpage, city of Orlando.

ORMOND BEACH

County: Volusia Population served: 25,668
River basin: Coastal area between St. Johns River and Ponce de Leon

Inlet (08 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 16 wells, 180 to 220

feet deep; yield 150 to 300 gal/min

Rated plant capacity: 3 Mga1/d Pumpage: Year—1,204.5 Mga1

npage: Year-1,204.5 Mgal Average daily-3.3 Mgal

Highest month: July, 108.1 Mgal Lowest month: January, 92.5 Mgal

Per capita use: 129 gal/d

Finished-water storage: 1.8 Mgal

Treatment: Aeration, chlorination, coagulation, filtration, fluoridation,

softening

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 2.53 Mgal/d

Sewage treatment: Aeration, chlorination, grit chambers, filtration,

contact stabilization, drying

Waste discharged to: Halifax River

Remarks: Average daily pumpage increased from 0.90 Mgal/d in 1956 to 3.3 Mgal/d in 1975. Total service connections: undifferentiated, 10,267. Knochenmus and Beard (1971), Lichtler, (1972).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-2-75 SAMPLING POINT: 291645081034701

Silica (SiO ₂)	21	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	620
Magnesium (Mg)	17	Total hardness	
Sodium (Na)	72	(as CaCO ₃)	340
Potassium (K)	2.4	Noncarbonate hardness	
Strontium (Sr)	.62	(as CaCO ₃)	60
Bicarbonate (HCO ₃)	341	Alkalinity (as CaCO3)	280
Sulfate (SO4)	7	pH (units)	8.3
Chloride (C1)	160	Specific conductance	. 7.7
Fluoride (F)	.7	(umhos/cm at 25°C)	1,040
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	20
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.21	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total	(C) 7
(ammonia, total (NH4-N))	.52	Orthophosphate	(-)
Iron (Fe)	.03	total (PO4-P)	.11
Phosphorus, total (P)	.12		

PINELLAS COUNTY WATER SYSTEM

Population served: 319,110* County: Pinellas

River basin: Tampa Bay and coastal area (10 02 06)

Ownership of supply or system: Pinellas County Water System Source of water: Ground water, Floridan aquifer; 47 wells, 140 to 503 feet

deep; yield 230 to 2,800 gal/min (Eldridge-Wilde well field)

Rated plant capacity: 55 Mgal/d

Average daily 33.05 Mgal Pumpage: Year-12,055.91a/ Mga1

Highest month: April, 1,087.22c/ Mgal Lowest month: September, 760.48c/ Mga

Per capita use: 96 ga1/d

Finished-water storage: Not reported

Treatment: Aeration, chlorination, fluoridation

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 13.56 Mgal/d (6 plants)

Sewage treatment: Not reported

Waste discharged to: Not reported

Remarks: Total service connections, 60,000. Water supplied to Clearwater, Pinellas Park, Safety Harbor, Tarpon Springs, Largo, St. Petersburg Beach.

a/ Includes 818.48 Mgal, East Lake well field.

Includes 2.24 Mgal/d, East Lake well field.

c/ Figure shown for Eldridge-Wilde well field. East Lake well field: highest month, April 132.24 Mgal; lowest, November 17.0 Mgal (pump test in November). CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-4-75 SAMPLING POINT: 280905082402501, Water Plant 1

issolved solids
(residue at 180°C) 228
otal hardness
(as CaCO ₃) 210
oncarbonate hardness
(as CaCO ₃) 13
lkalinity (as CaCO ₃) 196
H (units)
pecific conductance
(umhos/cm at 25°C) 404
olor (Pt-Co units) 10
emperature (°C)
1 / 1/4 / TMTT)
arbon, organic, total (C)
rthophosphate
total (PO4-P) .05
.03
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

* Includes 33,000 population served in Hillsborough County, 172,000 population served in Pinellas County, and populations of municipalities listed under "Remarks" which includes partial and complete supply.

PINELLAS PARK

County: Pinellas Population served: 29,230

River basin: Tampa Bay and coastal areas (10 02 06)

Ownership of supply or system: Pinellas County Water System

Source of water: All water purchased from Pinellas County Water System

Rated plant capacity: a/

Pumpage: Year— 970.90 Mgal

npage: Year— 970.90 Mgal

Highest month: April, 92.6 Mgal

Lowest month: February, 74.7 Mgal

Per capita use: 91 gal/d Finished-water storage: a/ Treatment: Chlorination

Type/Frequency of analysis: $\underline{a}/$

Sewage discharge: 2.66 Mgal/d

Sewage treatment: Aeration, activated sludge

Waste discharged to: Cross Bayou Canal

Remarks: Average daily pumpage increased from 0.12 Mgal/d in 1956 to 2.66 Mgal/d in 1975. For analysis of water see Pinellas County Water System.

a/ See Pinellas County Water System (p. 142).

PLANT CITY

County: Hillsborough Population served: 18,000

River basin: Hillsborough River (10 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 5 wells, 367 to 1,200

feet deep; yield, each well, 1,200 gal/min

Rated plant capacity: 8.6 Mgal/d

Average daily-1.85 a/ Mga1 Pumpage: Year— 675.87 Mgal

Lowest month: September, 53.11 Mgal Highest month: April, 80.87 Mgal

Per capita use: 103 gal/d

Finished-water storage: 1.38 Mgal

Treatment: Chlorination, stabilization

Type/Frequency of analysis: Bacteriological/biweekly; chemical/biannually

Sewage discharge: 2.7 Mga1/d

Activated sludge, aeration Sewage treatment:

Waste discharged to: Canal 31, Lake Tohopekaliga sludge to landfill

Remarks: Average daily pumpage increased from 1.13 Mgal/d in 1956 to 1.85 Mgal/d in 1975. Well yield estimated from plant capacity. Robertson (1971, 1973), Robertson and Mills (1974).

a/ Includes 0.45 Mgal/d industrial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-21-75 SAMPLING POINT: 280109082071901, City well 1

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	57	(residue at 180°C)	242
Magnesium (Mg)	10	Total hardness	
Sodium (Na)	9.4	(as CaCO ₃)	180
Potassium (K)	.8	Noncarbonate hardness	100
Strontium (Sr)	.07	(as CaCO ₂)	.00
Bicarbonate (HCO ₃)	236		193
Sulfate (SO ₄)	.7	Alkalinity (as CaCO ₃)	
Chloride (C1)	13	PH (units)	8.1
Fluoride (F)	.4	Specific conductance	
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	401
Nitrite (NO ₂ -N)	.00	Color (Pt-Co units)	.00
	.00	Temperature (°C)	
Nitrogen, organic (N)	.2	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.21	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	.04
Phosphorus, total (P)	.11	104-1)	

PLANT CITY

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-21-75 SAMPLING POINT: 280110082071701, City Well 2

Silica (SiO ₂)	25	Dissolved solids	
Calcium (Ca)	43	(residue at 180°C)	204
Magnesium (Mg)	14	Total hardness	5911
Sodium (Na)	9	(as CaCO ₃)	170
Potassium (K)	.7	Noncarbonate hardness	1,0
Strontium (Sr)	.03	(as CaCO ₃)	1
Bicarbonate (HCO3)	206	Alkalinity (as CaCO ₃)	169
Sulfate (SO4)	3.8	pH (units)	7.9
Chloride (C1)	9.8		7.9
Fluoride (F)	.5	Specific conductance	256
Nitrate (NO ₃ -N)	.00	(umhos/cm at 25°C)	356
Nitrite (NO2-N)	.00	Color (Pt-Co units)	5
	.08	Temperature (°C)	 -
Nitrogen, organic (N)	.00	Turbidity (JTU)	2
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.19	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	.09
Phosphorus, total (P)	.1	104-1)	.09

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-21-75 SAMPLING POINT: 280108082071601, City well 3

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	53	(residue at 180°C)	246
Magnesium (Mg)	11	Total hardness	
Sodium (Na)	9.2	(as CaCO ₃)	180
Potassium (K)	.8	Noncarbonate hardness	
Strontium (Sr)	.06	(as CaCO ₃)	.00
Bicarbonate (HCO3)	230	Alkalinity (as CaCO3)	189
Sulfate (SO4)	1.7	pH (units)	8.1
Chloride (C1)	1.2	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	394
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	100
Nitrogen, organic (N)	. 2	Turbidity(JTU)	3
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.25	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.07
Phosphorus, total (P)	.07		

PORT ORANGE

Population served: 10,562 County: Volusia

River basin: Coastal between the St. Johns River and Ponce de Leon Inlet (08 02 01)

Ownership of supply or system: City of Port Orange

Source of water: Ground water, Floridan aquifer; 5 wells, 160 feet deep;

vield, each well, 350 gal/min

Rated plant capacity: 3.0 Mga1/d Pumpage: Year— 637.08 Mgal

Average daily-1.75 Mgal Highest month: April, 65.5 Mgal Lowest month: December, 43.9 Mgal

Per capita use: 166 gal/d

Finished-water storage: 0.4 Mgal

Treatment: Chlorination, clarification, filtration, pH control, recarbonation,

softening, stabilization, taste and odor control

Type/Frequency of analysis: Bacteriological/monthly; chemical (pH, turbidity, chlorine, hardness, alkalinity)/hourly

Sewage discharge: 0.45 Mgal/d

Sewage treatment: Aeration, contact, stabilization, diffused air, drying,

skimming

Waste discharged to: Halifax River

Remarks: Average daily pumpage increased from 0.206 Mga1/d in 1956 to 1.75 Mgal/d in 1975. Total service connections: undifferentiated, 4,653. City also supplies water to Allendale, Harbor Oaks, Ponce Inlet, and Wilbur-by the-sea. Knochenmus and Beard (1971).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-2-75 SAMPLING POINT: 290755080592701

Silica (SiO ₂)	21	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	464
Magnesium (Mg)	11	Total hardness	
Sodium (Na)	49	(as CaCO ₃)	300
Potassium (K)	2.4		300
Strontium (Sr)	.6	Noncarbonate hardness	01
Bicarbonate (HCO ₃)	340	(as CaCO ₃)	21
Sulfate (SO4)	3.3	Alkalinity (as CaCO3)	279
Chloride (C1)		PH (units)	8.2
Fluoride (F)	79	Specific conductance	
	.7	(umhos/cm at 25°C)	799
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	20
Nitrite (NO ₂ -N)	.01	Temperature (°C)	20
Nitrogen, organic (N)	.13	Turbidity (JTU)	1
Nitrogen			7
(ammonia, total (NH4-N))	.5	Carbon, organic, total (C)	
Iron (Fe)	.02	Orthophosphate	
Phosphorus, total (P)	.1	total (PO4-P)	.1

ST. CLOUD

County: Osceola

Population served: 6,345

River basin: Kissimmee River (09 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; three wells, 670 to 680

feet deep; yield 2,300 to 3,000 gal/min

Rated plant capacity: 10 Mgal/d Pumpage: Year—432.84 Mgal

Highest month: May, 43.61 Mgal

Average daily— 1.18^a/ Mga1

Lowest month: August, 29.00 Mgal

Per capita use: 186 ga1/d

Finished-water storage: 1.5 Mgal

Treatment: Aeration, chlorination, fluoridation

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually

Sewage discharge: 1.0 Mgal/d

Sewage treatment: Chlorination, digestion, filtration, primary, secondary

Waste discharged to: Flood Control District Canal 31, to Lake Tohopekaliga

Remarks: Average daily pumpage increased from 1.09 Mgal/d in 1956 to 1.36 in 1970 then decreased to 1.18 Mgal/d in 1976.

a/ Includes 0.118 Mgal/d industrial use. No chemical analysis available.

ST. PETERSBURG

County: Pinellas Population served: 253,000

River basin: Tampa Bay and coastal areas (10 02 06)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 34 wells, 297 to 728 feet deep; yield 525 to 7,700 gal/min. Three well fields: (a)Cosme-Odessa; (b) Section 21 in Hillsborough County; (c) Section 34 in Pasco County.

Rated plant capacity: 44 Mgal/d

Pumpage: Year—12,796.17^b/ Mga1 Average daily— 35.06 Mga1

Highest month: (a) April, 396.99 Mgal

Lowest month: (a) December, 180.79 Mg.

(b) December, 348.93 Mgal (c) April, 627.33 Mgal (b) October, 199.52 Mga

Per capita use: 139 gal/d

(c) August 413.85 Mgal

Finished-water storage: 17 Mga1

Treatment: Chlorination, aeration, softening, coagulation, fluoridation, filtration, stabilization. All water treated at Cosme-Odessa Plant.

Type/Frequency of analysis: Bacteriological, chemical/daily

Sewage discharge: 36.22 Mgal/d

Sewage treatment: Contact stabilization, activated sludge

Waste discharged to: Boca Ciega Bay, Tampa Bay and Upper Tampa Bay

Remarks: Average daily pumpage increased from 19.6 Mgal/d in 1956 to 35.05 Mgal/d in 1975. Areas served: Gulf Port, Oldsmar and South Pasadena.

- a/ Cyress Creek well field not operational, 7 wells 600 to 700 feet deep, Floridan aquifer.
- \underline{b} / Total pumpage, 3 well fields. Includes 1.083 Mgal/d supplied to Gulfport and Oldsmar.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-5-75 SAMPLING POINT: 280547082354801, Cosme Water Works

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	74	(residue at 180°C)	234
Magnesium (Mg)	3.8	Total hardness	
Sodium (Na)	5.5	(as CaCO ₃)	200
Potassium (K)	.7	Noncarbonate hardness	
Strontium (Sr)	.11	(as CaCO ₃)	.00
Bicarbonate (HCO ₃)	245	Alkalinity (as CaCO ₃)	201
Sulfate (SO ₄)	.6	pH (units)	7.7
Chloride (C1)	8.4	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	401
Nitrate (NO ₃ -N)	.02		
Nitrite (NO2-N)	.00	Color (Pt-Co units) Temperature (°C)	10
Nitrogen, organic (N)	.14		2
Nitrogen	.14	Turbidity(JTU)	2
(ammonia, total (NH4-N))	E /.	Carbon, organic, total (C)	
	.54	Orthophosphate	200
Iron (Fe)	.06	total (PO4-P)	.05
Phosphorus, total (P)	.05		

ST. PETERSBURG BEACH

County: Pinellas Population served: 10,580

River basin: Coastal area from Tampa Bay to Withlacoochee River (10 02 07)

Ownership of supply or system: Pinellas County Water System

Source of water: All water purchased from the Pinellas County Water System

Rated plant capacity: $\frac{a}{b}$ Pumpage: Year— $\frac{b}{b}$ Highest month: $\frac{b}{b}$

Average daily— $\frac{b}{b}$ /
Lowest month: $\frac{b}{b}$

Per capita use: b/

Finished-water storage: b/
Treatment: Chlorination

Type/Frequency of analysis: a/

Sewage discharge: b/

Sewage treatment: Activated sludge, contact stabilization, aerobic digestion

Waste discharged to: Boca Ciega Bay (St. Petersburg Sewer System)

Remarks: For analysis of water see Pinellas County Water System (p. 142).

a/ See Pinellas County Water System.

b/ Not reported.

SANFORD

Population served: 22,636 County: Seminole River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; Plant 1, 8 wells, 80

to 226 feet deep; yield 200 to 450 gal/min. Plant 2, 6 wells. 360 to 444

feet deep; yield 600 to 800 gal/min

Average daily-4.37ª/ Mgal

Rated plant capacity: 7.01^a/Mga1
Pumpage: Year—a/1,595.05 Mga1
Highest month: a/April, 154.2 Mga1 Lowest month: (1) November 18.1 Mga1 (2) October, 99.6 Mgal

Per capita use: 193 gal/d

Finished-water storage: 3.8 Mgal

Treatment: Aeration, chlorination, fluoridation

Type/Frequency of analysis: Bacteriological and chemical/monthly: fluoride daily

4.65 Mgal/d Sewage discharge:

Secondary, mixing, activated sludge Sewage treatment:

Waste discharged to: Lake Monroe (St. Johns River)

Remarks: Average daily pumpage increased from 1.25 Mgal/d in 1956 to 4.37 Mgal/d in 1975. Water also supplied to Sunland Estates. Lichtler (1972).

a/ Total, both plants.

b/ Includes 0.524 Mgal/d, commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 SAMPLING POINT: 284705081192001

Silica (SiO ₂)	8.9	Dissolved solids	
Calcium (Ca)	44	(residue at 180°C)	166
Magnesium (Mg)	7.5	Total hardness	
Sodium (Na)	7.2	(as CaCO ₃)	140
Potassium (K)	1.1	Noncarbonate hardness	
Strontium (Sr)	.0	(as CaCO ₃)	14
Bicarbonate (HCO ₃)	1 30	Alkalinity (as CaCO ₃)	126
Sulfate (SO ₄)	8.5	pH (units)	8.4
Chloride (C1)	15	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	302
Nitrate (NO ₃ -N)	.52	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.01	Temperature (°C)	24.5
Nitrogen, organic (N)	.14	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	.00
(ammonia, total (NH4-N))	.05	Orthophosphate	, , ,
Iron (Fe)	.00	total (PO4-P)	.07
Phosphorus, total (P)	.07	(104-1)	73.00

TAMPA

County: Hillsborough Population served: 350,000

River basin: Tampa Bay and coastal areas (10 02 06)

Ownership of supply or system: Municipal

Source of water: Surface water, Hillsborough River

Rated plant capacity: 96 Mga1/d Pumpage: Year—19,237.51 Mga1

Pumpage: Year—19,237.51 Mgal Average daily—52.71 Mgal

Highest month: April, 1,834.0 Mgal Lowest month: February, 1,382.6 Mgal

Per capita use: 150 gal/d Finished-water storage: 12 Mgal

Treatment: Chlorination, coagulation, filtration, flocculation, sedimentation,

pH control, stabilization; taste, odor, and algae control.

Type/Frequency of analysis: Bacteriological, chemical/daily

Sewage discharge: 45.60^a/ Mgal/d

Sewage treatment: Primary, secondary, chlorination

Waste discharged to: Hillsborough Bay (Hooker Point Plant)

Remarks: Average daily pumpage increased from 22 Mgal/d in 1956 to 52.71 Mgal/d in 1975. Total service connections, 100,000. Total year pumpage, 1961-75 is shown on figure 20. Cherry and others (1970).

a/ Sewage plant capacity increased to 96 Mgal/d.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-16-75 SAMPLING POINT: 02304500, Hillsborough River at Tampa

Silica (SiO ₂)	29	Dissolved solids	
Calcium (Ca)	54	(residue at 180°C)	288
Magnesium (Mg)	6	Total hardness	
Sodium (Na)	21	(as CaCO ₃)	160
Potassium (K)	2.2	Noncarbonate hardness	
Strontium (Sr)	.0	(as CaCO ₃)	33
Bicarbonate (HCO3)	155	Alkalinity (as CaCO3)	128
Sulfate (SO4)	30	pH (units)	8.1
Chloride (C1)	35	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	412
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	30
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.88	Turbidity(JTU)	4
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.35
Phosphorus, total (P)	.42		

TAMPA

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-16-75 SAMPLING POINT: 02304500, Hillsborough River at Tampa

	Trace	Elements	
Arsenic (As)	0	Manganese (Mn)	20
Barium (Ba)	10	Mercury (Hg)	.1
Cadmium (Cd)	0	Selenium (Se)	
Chromium (Cr)	10	Zinc (Zn)	20
Copper (Cu)	210		
Iron (Fe)	560	pH(units)	
Lead (Pb)	10	Temperature (°C)	
	Pes	ticides	
Aldrin	.00	Heptachlor	00
Chlordane	.1	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin .	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.01
Heptachlor epoxide	.00	2,4-DP	.00
		2,4,5-T	.00

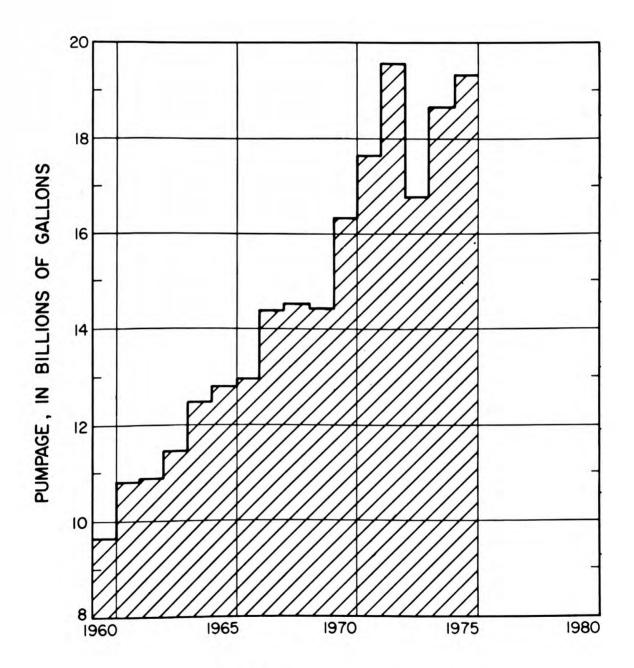


Figure 20.--Total yearly pumpage, city of Tampa.

TARPON SPRINGS

Population served: 10,910 County: Pinellas River basin: Coastal area from Tampa Bay to the Withlacoochee River

(10 02 07)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; four wells, 100 to 125

feet deep

Rated plant capacity: Not reported

Average daily-1.788 Mgal Pumpage: Year— 652.74 Mgal Lowest month: September, 7.48 Mgal Highest month: April, 11.24 Mgal

Per capita use: 164 gal/d

Finished-water storage: Not reported

Treatment: Chlorination

Type/Frequency of analysis: Not reported

Sewage discharge: 1.0 Mga1/d

Sewage treatment: Primary, secondary

Waste discharged to: Anclote River

Remarks: Average daily pumpage increased from 0.35 Mgal/d in 1956 to 1.788 Mgal/d in 1975. Total service connections, 3,086. Cherry and others (1970)

a/ Includes 1.517 Mgal/d purchased from Pinellas County Water System and 0.317 Mgal/d industrial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-5-75 SAMPLING POINT: 280847082440401, Tarpon Avenue well

Silica (SiO ₂)	8.1	Dissolved solids	
Calcium (Ca)	37	(residue at 180°C)	160
Magnesium (Mg)	3.4	Total hardness	
Sodium (Na)	17	(as CaCO ₃)	110
Potassium (K)	.9	Noncarbonate hardness	
Strontium (Sr)	.05	(as CaCO ₃)	19
Bicarbonate (HCO3)	111	Alkalinity (as CaCO ₃)	91
Sulfate (SO4)	10	그는 그래나 얼마나는 어디로 되었다. 그렇게 그리면 되었다. 그런 어린 그 때문 다시 아니다.	7.9
Chloride (C1)	26	pH (units)	
Fluoride (F)	.1	Specific conductance	299
Nitrate (NO ₃ -N)	1.5	(umhos/cm at 25°C)	
Nitrite (NO2-N)	.00	Color (Pt-Co units)	5
		Temperature (°C)	
Nitrogen, organic (N)	.08	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)		total (PO4-P)	.04
Phosphorus, total (P)	.04	104-1	1.0

TARPON SPRINGS

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-5-75 SAMPLING POINT: 280843082451001, Tarpon Springs Water Works

Silica (SiO ₂)	8.7	Dissolved solids	
Calcium (Ca)	52	(residue at 180°C)	382
Magnesium (Mg)	11	Total hardness	
Sodium (Na)	72	(as CaCO ₃)	180
Potassium (K)	3.5	Noncarbonate hardness	
Strontium (Sr)	.14	(as CaCO ₃)	62
Bicarbonate (HCO ₃)	144	Alkalinity (as CaCO ₃)	118
Sulfate (SO ₄)	28	pH (units)	8.0
Chloride (C1)	120	Specific conductance	0.0
Fluoride (F)	.2	(umhos/cm at 25°C)	696
Nitrate (NO ₃ -N)	2.3	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.13	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	-1
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)		total (PO4-P)	.05
Phosphorus, total (P)	.05		

TAVARES

County: Lake Population served: 3,976

River basin: Oklawaha River (08 01 02)

Highest month: April, 27.9 Mgal

Ownership of supply or system: Municipal
Source of water: Ground water, Floridan aquifer; 3 wells, 223, 417, and 494 feet deep,
yield about 1,000 gal/min each; 4th well not in service, 447 feet deep, test pumped

at 1,600 gal/min

Rated plant capacity: 2.3 Mga1/d Pumpage: Year—227.00 Mga1

Average daily—0.62^a/Mgal Lowest month: September, 14.9 Mgal

Per capita use: 156 gal/d

Finished-water storage: 0.25 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: Septic tanks serve 62 percent of the population

Sewage treatment: Aeration, chlorination, clarification, diffused air, activated sludge, skimming, contact stabilization, settling, primary, secondary

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 0.40 Mgal/d in 1956 to 0.45 Mgal/d in 1970 then increased to 0.62 Mgal/d in 1975. Total service connections: undifferentiated, 1,400. Knochenmus (1971), Lichtler (1972). a/ Includes 0.012 Mgal/d commercial use. b/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 2848081432810, City of Tavares 3

Silica (SiO ₂)	15	Dissolved solids	
Calcium (Ca)	32	(residue at 180°C)	162
Magnesium (Mg)	9.4	Total hardness	
Sodium (Na)	5.9	(as CaCO ₃)	120
Potassium (K)	1	Noncarbonate hardness	120
Strontium (Sr)	.1	(as CaCO ₃)	.00
Bicarbonate (HCO3)	148	Alkalinity (as CaCO ₃)	122
Sulfate (SO4)	.0		7.3
Chloride (C1)	7.8	pH (units)	7.5
Fluoride (F)	.2	Specific conductance	
Nitrate (NO ₃ -N)	.02	(umhos/cm at 25°C)	257
Nitrite (NO2-N)		Color (Pt-Co units)	5
	.00	Temperature (°C)	
Nitrogen, organic (N)	.04	Turbidity(JTU)	3
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (NH4-N))	.06	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.03
Phosphorus, total (P)	.03	(104-1)	.03

TITUSVILLE

County: Brevard Population served: 33,094
River basin: Coastal area between Ponce de Leon Inlet and Sebastian

Inlet (08 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, 48 wells in shallow sand aquifer, one deep

well in Floridan aquifer

Rated plant capacity: 16 Mga1/d Pumpage: Year—1,274.58 Mga1 Highest month: April, 134.22

Average daily— 3.5 Mgal

Lowest month: February, 84.65 Mgal

Per capita use: 106 gal/d

Finished-water storage: 2.9 Mgal Treatment: Chlorination, softening

Type/Frequency of analysis: Bacteriological/weekly; chemical/hourly

Sewage discharge: 2.3 Mga1/d

Sewage treatment: Secondary, high rate activated sludge

Waste discharged to: Indian River (2 plants) and South Lake (1 plant)

Remarks: Average daily pumpage increased from 0.32 Mgal/d in 1956 to 3.4 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-3-75 SAMPLING POINT: 283832080513301

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	96	(residue at 180°C)	382
Magnesium (Mg)	4.2	Total hardness	
Sodium (Na)	28	(as CaCO ₃)	260
Potassium (K)	.9	Noncarbonate hardness	
Strontium (Sr)	.35	(as CaCO ₃)	87
Bicarbonate (HCO ₃)	211	Alkalinity (as CaCO3)	173
Sulfate (SO4)	62	pH (units)	8.0
Chloride (C1)	54	Specific conductance	
Fluoride (F)	.1	(umhos/cm at 25°C)	632
Nitrate (NO ₃ -N)	.12	Color (Pt-Co units)	5
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.15	Turbidity(JTU)	8
Nitrogen		Carbon, organic, total (C)	1
(ammonia total (NH4-N))	.03	Orthophosphate	
Iron (Fe)	.61	total (PO4-P)	.05
Phosphorus, total (P)	.05		

VERO BEACH

Population served: 15,500 County: Indian River

River basin: Coastal area Sebastian Inlet to St. Lucie River

(08 02 03)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer; 10 wells, 90 to 100 feet;

Total yield 5,550 gal/min

Rated plant capacity: 6.0 Mga1/d Pumpage: Year— 1,427.50 Mgal

Average daily— 3.91 Mga1 Highest month: April, 141.5 Mgal

Lowest month: July, 94.0 Mgal

Per capita use: 252 gal/d

Finished-water storage: 6.0 Mgal

Treatment: Carbonation, chlorination, coagulation, filtration, pH control,

softening, stabilization, taste and odor control.

Type/Frequency of analysis: Bacteriological/weekly; chemical, partial/daily;

chemical, complete/annually Sewage discharge: 2.35ª/ Mga1/d

Sewage treatment: Activated sludge, aeration

Waste discharged to: Indian River

Remarks: Average daily pumpage increased from 1.40 Mgal/d in 1956 to 3.91 Mgal/d in 1975. City also supplies water to the Moorings, Indian River Shores, and John's Island (fig. 21). Crain (1975), Lichtler (1972) a/ Estimated on basis of 1974 sewage discharge. New plant in operation, March 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75 SAMPLING POINT: 273907080241901, City Well 2

Silica (SiO ₂) Calcium (Ca)	16 120	Dissolved solids	501
Magnesium (Mg)	6.5	(residue at 180°C) Total hardness	504
Sodium (Na)	42	(as CaCO ₃)	330
Potassium (K) Strontium (Sr)	1.3	Noncarbonate hardness	
Bicarbonate (HCO ₃)	.59 322	(as CaCO ₃)	66
Sulfate (SO4)	55	Alkalinity (as CaCO ₃)	264 7.7
Chloride (C1)	68	PH (units)	1.1
Fluoride (F)	.2	Specific conductance (umhos/cm at 25°C)	681
Nitrate (NO ₃ -N)	.2	Color (Pt-Co units)	110
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N) Nitrogen	.49	Turbidity (JTU)	8
(ammonia, total (NH4-N))	.33	Carbon, organic, total (C)	8
Iron (Fe)	.9	Orthophosphate	
Phosphorus, total (P)	.16	total (PO4-P)	.15

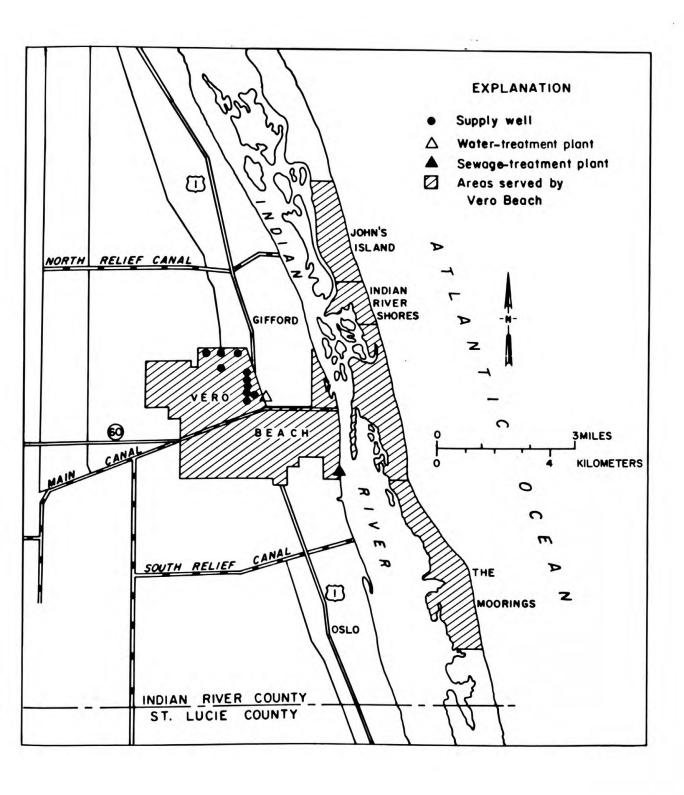


Figure 21.--Areas supplied water by the city of Vero Beach.

WINTER GARDEN

Population served: 7,500 County: Orange

River basin: Oklawaha River (08 01 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; two wells, 1,200 feet

deep; yield 700 gal/min

Rated plant capacity: 1.5 Mga1/d

Pumpage: Year- 365.0 Mga1 Average daily 1.0 Mgal

Highest month: December, 42.78 Mgal Lowest month: February, 19.88 Mgal

Per capita use: 133 ga1/d

Finished-water storage: 0.34 Mgal Treatment: Aeration, chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.72 Mga1/d

Sewage treatment: Secondary, trickling filter

Waste discharged to: Lake Apopka

Average daily pumpage increased from 0.60 Mgal/d in 1956

to 1.0 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-19-75 **SAMPLING POINT:** 283348081351201, City well 1

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	32	(residue at 180°C)	144
Magnesium (Mg)	7.5	Total hardness	144
Sodium (Na)	5.1	(as CaCO ₃)	110
Potassium (K)	1.5	Noncarbonate hardness	110
Strontium (Sr)	. 2	(as CaCO ₃)	
Bicarbonate (HCO ₃)	120	Alkalinity (as CaCO ₃)	11
Sulfate (SO ₄)	13		99
Chloride (C1)	8	pH (units)	8.2
Fluoride (F)	.1	Specific conductance	
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	243
Nitrite (NO2-N)	.00	Color (Pt-Co units)	.00
Nitrogen, organic (N)	.01	Temperature (°C)	
Nitrogen	.06	Turbidity (JTU)	1
		Carbon, organic, total (C)	.00
(ammonia, total (NH4-N)) Iron (Fe)	.01	Orthophosphate	
	.00	total (PO4-P)	.05
Phosphorus, total (P)	.05		

WINTER HAVEN

County: Po1k Population served: 45,000

River basin: Peace River (10 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 12 wells, 593 to 743 feet

deep; yield 350 to 1,500 gal/min

Rated plant capacity: 9.6 Mga1/d Pumpage: Year— 1,981.46 Mgal

Average daily 5.43a Mgal Highest month: April, 234.85 Mgal

Lowest month: September, 130.55 Mgal

Per capita use: 121 gal/d

Finished-water storage: 2.5 Mga1

Treatment: Aeration and chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/intermittently

Sewage discharge:

3.5 Mga1/d

Sewage treatment:

Secondary, trickling filter, activated sludge

Waste discharged to: Lake Lulu

Average daily pumpage increased from 3.00 Mgal/d in 1956 to 5.43 Mgal/d in 1975. Robertson (1971, 1973), Robertson and Mills (1974). a/ Includes 0.35 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-24-75 SAMPLING POINT: 280209081430600, Fairfax Plant - composite

Silica (SiO ₂)	14	Dissolved solids	
Calcium (Ca)	37	(residue at 180°C)	160
Magnesium (Mg)	7.8	Total hardness	200
Sodium (Na)	6.7	(as CaCO ₃)	120
Potassium (K)	1.3	Noncarbonate hardness	
Strontium (Sr)	.07	(as CaCO ₃)	.00
Bicarbonate (HCO ₃)	139	Alkalinity (as CaCO3)	120
Sulfate (SO4)	9.9	pH (units)	8.4
Chloride (C1)	8.2	Specific conductance	0.4
Fluoride (F)	. 2	(umhos/cm at 25°C)	280
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.14	Turbidity (JTU)	1
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.23	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.04
Phosphorus, total (P)	.04		

WINTER PARK

County: Orange Population served: 60,000 River basin: St. Johns River above the Oklawaha River (08 01 01)

Ownership of supply or system: General Water Works Corp.

Source of water: Ground water, Floridan aquifer; 7 wells, 400 to 1,350 feet deep; yield, maximum, 5,500 gal/min

Rated plant capacity: 27.8 Mga1/d

Pumpage: Year— 4,133.35 Mgal

Highest month: April, 527.6 Mgal

Lowest month: July, 289.9 Mgal

Per capita use: 189 gal/d

Finished-water storage: 0.3 Mga1

Treatment: Aeration and chlorination

Type/Frequency of analysis: Bacteriological/daily; chemical/annually

Sewage discharge: 3.25 Mga1/d

Sewage treatment: Extended aeration, contact stabilization, trickling filter

Waste discharged to: Howell Branch Creek, Waumpi, Lake Howell

Remarks: Average daily pumpage increased from 3.13 Mgal/d in 1956 to 11.32 Mgal/d in 1975. Total yearly pumpage, 1971-75, is shown on figure 22.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-30-75 SAMPLING POINT: 283547081181401, well 835-118-1

Silica (SiO ₂)		0.7	Discolard - 111	
		9.7	Dissolved solids	
Calcium (Ca)		35	(residue at 180°C)	154
Magnesium (Mg)		7.7	Total hardness	
Sodium (Na)		6.3	(as CaCO ₃)	120
Potassium (K)		1.1		120
Strontium (Sr)			Noncarbonate hardness	
		.5	(as CaCO ₃)	8
Bicarbonate (HCO ₃)		136	Alkalinity (as CaCO3)	112
Sulfate (SO ₄)		5.8	PH (units)	7.6
Chloride (C1)		8.6		7.0
Fluoride (F)			Specific conductance	
Nitrate (NO ₃ -N)		. 2	(umhos/cm at 25°C)	264
		.00	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)		.01	Temperature (°C)	
Nitrogen, organic ((N)	.51	Turbidity(JTU)	1
Nitrogen				- 00
(ammonia, total ((NH/_N))		Carbon, organic, total (C)	.00
Iron (Fe)	(1114-14))	. 36	Orthophosphate	
		.01	total (PO4-P)	.07
Phosphorus, total ((P)	.07		

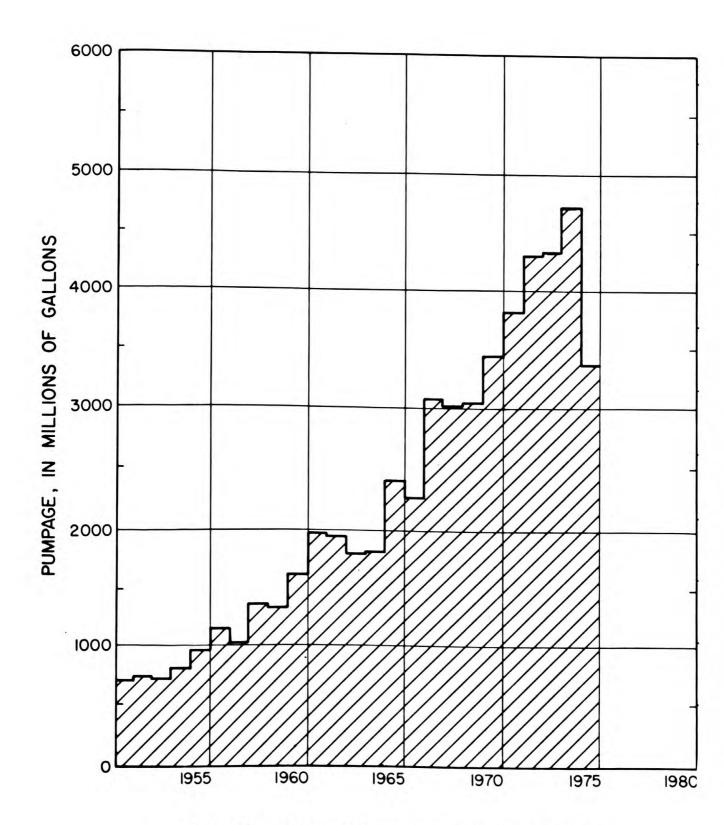


Figure 22.--Total yearly pumpage, city of Winter Park

SOUTHERN AND SOUTHEASTERN COASTAL FLORIDA

The southern Florida section of this report includes the counties south of an east-west line forming the northern boundaries of St. Lucie, Okeechobee, Highlands, Hardee and Manatee Counties—an area of about 17,200 mi². The municipalities listed in this section that are included in the water—use inventory are shown on figure 23. The section includes the rapidly developing areas in Broward, Dade, and Palm Beach Counties in southeastern coastal Florida and the rapidly growing Fort Myers—Naples area on the lower west coast of the State.

During 1975, total ground-water pumpage of municipalities in the section for municipal supply was 177,024 Mgal, of which 147,255 Mgal or 83 percent of the total ground-water pumpage and 75 percent of the total pumpage, all sources, was supplied by the Biscayne aquifer. Of the remaining 29,769 Mgal, the shallow-sand aquifer supplied 19,765 Mgal and the Floridan, Hawthorn and Hawthorn-Tampa aquifers supplied 7,320 Mgal for public supply.

Surface-water supply for municipal use totaled 19,712 Mgal of which 10,408 Mgal were pumped from natural man-made lakes and 9,304 Mgal was pumped from rivers and creeks. Desalination processes converted 1,174 Mgal of salty ground water to freshwater for public supply.

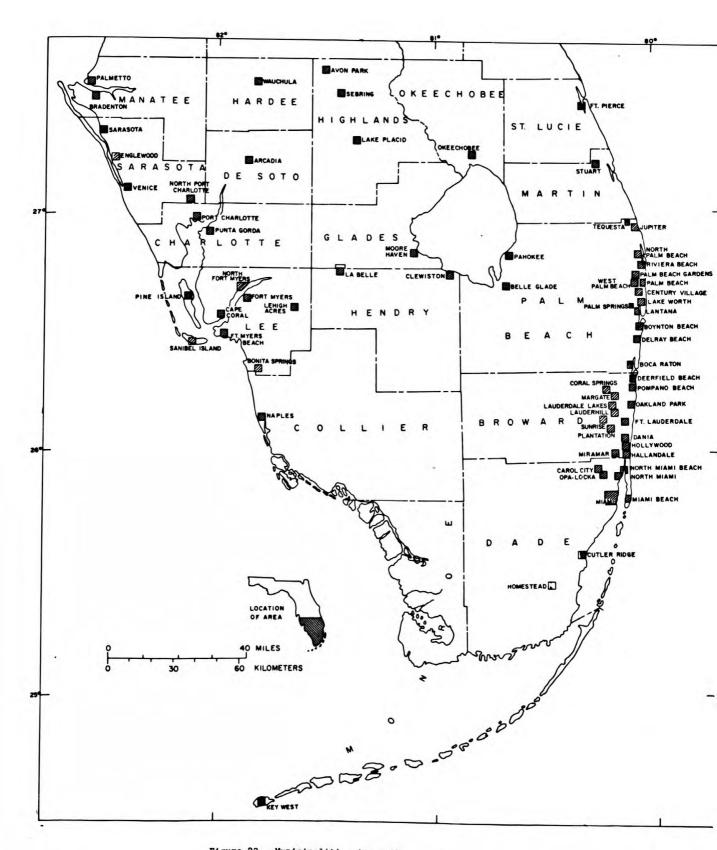


Figure 23.--Municipalities in southern and southeastern coastal Florida for which water-use data are given.

ARCADIA

County: De Soto

Population served: 7,000

River basin: Peace River (10 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, aquifer in the Hawthorn and Tampa formations; 5 wells, 255 to 324 feet deep; total yield 1,735 gal/min (estimated from rated plant capacity)

Rated plant capacity: 2.5 Mga1/d

Pumpage: Year— 277.03 Mga1 Average daily— 0.76a/ Mga1

Highest month: November, 29.8 Mgal Lowest month: August, 17.0 Mgal

Per capita use: 109 gal/d

Finished-water storage: 0.33 Mgal

Treatment: Chlorination, softening, coagulation, filtration, sedimentation,

stabilization

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.39 Mga1/d

Sewage treatment: Secondary, filtration, chlorination

Waste discharged to: Peace River

Remarks: Total service connections 2,775. Supplies water to a few homes outside city limits. Average daily pumpage increased from 0.70 Mgal/d in 1956 to 0.76 Mgal/d in 1975. Robertson and Mills (1974).

a/ Includes 0.05 Mgal/d industrial use, 0.035 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-21-75
SAMPLING POINT: 271253081502901

Silica (SiO ₂)	50	Dissolved solids	
Calcium (Ca)	53	(residue at 180°C)	384
Magnesium (Mg)	27	Total hardness	304
Sodium (Na)	25	(as CaCO ₃)	240
Potassium (K)	2		240
Strontium (Sr)	1.2	Noncarbonate hardness	6
Bicarbonate (HCO3)	285	(as CaCO ₃)	234
Sulfate (SO4)	12	Alkalinity (as CaCO ₃)	7.9
Chloride (C1)	41	PH (units)	1.5
Fluoride (F)	3.4	Specific conductance	-01
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	594
Nitrite (NO2-N)	.00	Color (Pt-Co units)	5
Nitrogen, organic (N)	.00	Temperature (°C)	
Nitrogen	.2	Turbidity(JTU)	4
(ammonia, total (NH		Carbon, organic, total (C)	
Iron (Fe)	4-N)) .7	Orthophosphate	
	.01	total (PO4-P)	.00
Phosphorus, total (P)	.01		

AVON PARK

County: Highlands

River basin: Kissimmee River (09 01 01)

Population served: 9,000

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; 4 wells, 1,250 to 1,500 feet

deep; yield to 2,800 gal/min

Rated plant capacity: 6.3 Mga1/d Pumpage: Year- 401.50 Mgal

Highest month: May, 60.5 Mgal

Average daily— 1.10 Mgal

Lowest month: August, 19.5 Mgal

Per capita use: 122 gal/d

Finished-water storage: 0.20 Mgal

Treatment: None

Type/Frequency of analysis: Bacteriological/monthly; chemical annually

Sewage discharge: 0.30a/ Mga1/d

Sewage treatment:

Secondary, chlorination

Waste discharged to: Lake Glenada to Lakes Lelia and Lotela

Remarks: Average daily pumpage for Avon Park public supply increased from 0.70 Mgal/d in 1956 to 1.10 Mgal/d in 1975. a/ Estimated.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-11-75 SAMPLING POINT: 273607081302801

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	20	(residue at 180°C)	112
Magnesium (Mg)	6.2	Total hardness	
Sodium (Na)	4.3	(as CaCO ₃)	76
Potassium (K)	.5	Noncarbonate hardness	
Strontium (Sr)	.48	(as CaCO ₃)	6
Bicarbonate (HCO ₃)	86	Alkalinity (as CaCO3)	70
Sulfate (SO4)	3.8	pH (units)	7.2
Chloride (C1)	5.8	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	171
Nitrate (NO ₃ -N)	.13	Color (Pt-Co units)	5
Nitrite (NO2-N)	.05	Temperature (°C)	
Nitrogen, organic (N)	.23	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	1
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.05
Phosphorus, total (P)	.05	167	

BELLE GLADE

20,750 Population served: County: Palm Beach River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Surface water, Lake Okeechobee

Rated plant capacity: 6.0 Mga1/d Pumpage: Year- 1,466.93 Mgal

Average daily— 4.02^a/ Mgal Lowest month: May, 100.5 Mgal Highest month: October, 135.5 Mgal

Per capita use: 194 gal/d

Finished-water storage: 2.4 Mgal

Treatment: Coagulation, sedimentation, filtration, chlorination

Type/Frequency of analysis: Bacteriological/twice weekly; chemical/annually;

color and turbidity/daily Sewage discharge: 1.5 Mgal/d

Sewage treatment: Secondary, digestion, chlorination

Waste discharged to: Hillsboro Canal

City supplies water to Okeechobee Labor Camp, State Correctional Institution, Prewitt Village, Sugar Cane Growers No. 3, Runyon Sugar Corporation, and to U.S. Agricultural Experiment Station. Population served includes farm and sugar mill workers. Average daily pumpage increased from 1.0 Mgal/d in 1956 to 4.02 Mgal/d in 1975.

a/ Includes 1.0 Mgal/d industrial use. CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 264125080404300

Silica (SiO ₂)	16	Dissolved solids	
Calcium (Ca)	51	(residue at 180°C)	566
Magnesium (Mg)	29	Total hardness	500
Sodium (Na)	80	(as CaCO ₃)	250
Potassium (K)	6.3	Noncarbonate hardness	250
Strontium (Sr)	1.6	(as CaCO ₃)	70
Bicarbonate (HCO3)	210		78
Sulfate (SO4)		Alkalinity (as CaCO ₃)	172
Chloride (C1)	85	pH (units)	7.9
	110	Specific conductance	
Fluoride (F)	.7	(umhos/cm at 25°C)	840
Nitrate (NO ₃ -N)	.05		90
Nitrite (NO2-N)	.01	Color (Pt-Co units)	27.5
Nitrogen, organic (N)		Temperature (°C)	77.2
Nitrogen	2	Turbidity (JTU)	1
		Carbon, organic, total (C)	27
(ammonia, total (NH4-N	.02	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.01
Phosphorus, total (P)	.01	1041)	
	• 01		

BOCA RATON

County: Palm Beach Population served: 46,200

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 35 wells; 100 to 120 feet deep; yield 500 to 1,200 gal/min

yieiu 300 to 1,200 gai/min

Rated plant capacity: 57.0 Mga1/d Pumpage: Year—6,254.27 Mga1

npage: Year—6,254.27 Mgal

Highest month: December, 693.4 Mgal

Lowest month: November, 405.4 Mgal

Per capita use: 371 gal/d

Finished-water storage: 4.25 Mgal

Treatment: Softening, filtration, chlorination

Type/Frequency of analysis: Bacteriological ; chemical/biannually; turbidity/daily biannually

Sewage discharge: 4.03 Mgal/d

Sewage treatment: Secondary, chlorination

Waste discharged to: Atlantic Ocean

Remarks: Average daily pumpage increased from 0.72 Mgal/d in 1956 to 17.14 Mgal/d in 1975. City supplies water to subdivisions. Land and others (1973), McCoy and Hardee (1970), Rodis (1973), Sherwood and others (1973).

a/ Raw water/monthly; finished water/daily.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75
SAMPLING POINT: 262145080052701

7.5	Dissolved solids	
80	(residue at 180°C)	320
		757
	(as CaCO ₃)	210
1.4	Noncarbonate hardness	
.75	(as CaCO ₃)	36
212	Alkalinity (as CaCO3)	174
26	pH (units)	7
34	Specific conductance	
.3		500
		7.5
.00	Temperature (°C)	28
22	Turbidity (JTU)	
	Carbon, organic, total (C)	
. 31	Orthophosphate	
.08	total (PO4-P)	
	80 2.1 18 1.4 .75 212 26 34 .3 .01 .00	80 (residue at 180°C) 2.1 Total hardness 18 (as CaCO ₃) 1.4 Noncarbonate hardness .75 (as CaCO ₃) 212 Alkalinity (as CaCO ₃) 26 pH (units) 34 Specific conductance .3 (umhos/cm at 25°C) .01 Color (Pt-Co units) .00 Temperature (°C) Turbidity (JTU) Carbon, organic, total (C) .31 Orthophosphate

BONITA SPRINGS

County: Lee Population served: 11,000
River basin: Big Cypress Swamp and southwestern coastal area (09 02 04)

Ownership of supply or system: Municipal

Source of water: Ground water, sandstone aquifer in the Tamiami formation; 7 wells, 61 to 76 feet deep

Rated plant capacity: 0.5 Mgal/d

Pumpage: Year— 112.30 Mga1 Average daily— 0.30 Mga1

Highest month: December, 11.9 Mgal Lowest month: August, 7.5 Mgal

Per capita use: 45 gai/d

Finished-water storage: 0.2 Mgal

Treatment: Aeration, softening, chlorination

Type/Frequency of analysis: Not Reported

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Total service connections, 2,000. City also supplies area northward to Estero River.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 8-11-75 SAMPLING POINT: 262042081455101, Bonita Springs Water Plant

Silica (SiO ₂)	50	Dissolved solids	
Calcium (Ca)	62	(residue at 180°C)	499
Magnesium (Mg)	24	Total hardness	427
Sodium (Na)	71	(as CaCO ₃)	250
Potassium (K)	8	Noncarbonate hardness	230
Strontium (Sr)	.55	(as CaCO ₃)	2
Bicarbonate (HCO ₃)	308	Alkalinity (as CaCO ₃)	253
Sulfate (SO4)	50	PH (units)	7.3
Chloride (C1)	77		1.14
Fluoride (F)	.7	Specific conductance	780
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	15
Nitrite (NO2-N)	.00	Color (Pt-Co units)	
	.00	Temperature (°C)	26
Nitrogen, organic (N)	. 33	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	7
(ammonia, total (NH4-N))	.33	Orthophosphate	
Iron (Fe)			.01
Phosphorus, total (P)		total (PO4-P)	.01
	.01		

BONITA SPRINGS

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. SAMPLING POINT:	Geological Survey Raw water intake	COLLECTION DATE:	8-11-75
Aluminum (Al)	20	Lead (Pb)	0
Arsenic (As)	0	Lithium (Li)	6
Barium (Ba)	100	Manganese (Mn)	0
Boron (B)	210	Mercury (Hg)	.1
Cadmium (Cd)	0	Molybdenum (Mo)	0
Chromium (Cr)	0	Nickel (Ni)	0
Chromium (Cr+6)	0	pH(units)	7.3
Cobalt (Co)	0	Selenium (Se)	0
Specific conductance	e	Vanadium (V)	.0
(umhos/cm at 25°C		Temperature (°C)	26
Copper (Cu)	0	Zinc (Zn)	10
Iron (Fe)	0	SAR	1.9
Carbon Dioxide	*	Sodium (Na) percent	37
(as CaCo3)	25	Extraction of the state of the state of	
Carbonate	0		

BOYNTON BEACH

County: Palm Beach Population served: 36,800 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer; 11 wells, 60 to 110 feet deep; yield 650 to 800 gal/min

Rated plant capacity: 12 Mga1/d

Pumpage: Year— 2,573.25 Mgal Average daily— 7.05 Mgal

Highest month: April, 271.3 Mgal Lowest month: July, 177.7 Mgal

Per capita use: 192 gal/d

Finished-water storage: 2.6 Mgal

Treatment: Aeration, sedimentation, filtration, chlorination

Type/Frequency of analysis: Bacteriological/weekly; chemical/biannually; color/dail

Sewage discharge: 2.6 Mgal/d

Sewage treatment: Secondary, digestion

Waste discharged to: Intracoastal Waterway

Remarks: City also supplies water to Ocean Ridge and Briny Breeze. Average daily pumpage increased from 0.90 Mgal/d in 1956 to 7.05 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75 SAMPLING POINT: 263048080034801

Silica (SiO ₂)	6.1	Dissolved solids	
Calcium (Ca)	86	(residue at 180°C)	320
Magnesium (Mg)	2.4	Total hardness	320
Sodium (Na)	12	(as CaCO ₃)	226
Potassium (K)	2.6		220
Strontium (Sr)	.68	Noncarbonate hardness	48
Bicarbonate (HCO ₃)		(as CaCO ₃)	
	216	Alkalinity (as CaCO ₃)	177
Sulfate (SO4)	40	pH (units)	7.5
Chloride (C1)	21		111
Fluoride (F)	. 2	Specific conductance	
		(umhos/cm at 25°C)	460
Nitrate (NO ₃ -N)	.04	Color (Pt-Co units)	20
Nitrite (NO2-N)	.02		27
Nitrogen, organic (N)		Temperature (°C)	21
		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.30	Orthophosphate	
Iron (Fe)			
Phosphorus, total (P)	.8	total (PO4-P)	-
rinospilorus, Local (P)			

BRADENTON

County: Manatee Population served: 25,000

River basin: Manatee River (10 02 02)

Ownership of supply or system: Municipal and Manatee County Water System Source of water: Surface water, Braden River (Ward's Lake), one well at plant used as standby

Rated plant capacity: 4.0 Mga1/d Pumpage: Year— 1,397.59a/Mga1

mpage: Year— 1,397.59<u>a/Mgal</u>

Highest month: December, 132.1 Mgal

Lowest month: July, 102.6 Mgal

Per capita use: 153 gal/d

Finished-water storage: 1.35 Mgal

Treatment: Chlorination, softening, coagulation, filtration, taste and odor

control.

Type/Frequency of analysis: Bacteriological and chemical/daily

Sewage discharge: 3.41 Mgal/d

Sewage treatment: Contact stabilization

Waste discharged to: Robinson Creek to Manatee River

Remarks: Average daily pumpage increased from 1.75 Mgal/d in 1956 to 3.83 Mgal/d in 1975.

a/ Includes 261.67 Mgal purchased from Manatee County Water System.

b/ Includes 1.0 Mgal/d industrial.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75 SAMPLING POINT: 272935082212000, Raw intake, Bradenton water plant

Silica (SiO ₂)	2.5	Dissolved solids	
Calcium (Ca)	98	(residue at 180°C)	746
Magnesium (Mg)	46	Total hardness	, ,,,
Sodium (Na)	26.4	(as CaCO ₃)	450
Potassium (K)	. 4	Noncarbonate hardness	430
Strontium (Sr)	13	(as CaCO ₃)	340
Bicarbonate (HCO3)	128	Alkalinity (as CaCO3)	105
Sulfate (SO4)	330	pH (units)	7.6
Chloride (C1)	39	Specific conductance	7.0
Fluoride (F)	.8	(umhos/cm at 25°C)	941
Nitrate (NO3-N)	.08	Color (Pt-Co units)	25
Nitrite (NO2-N)	.01	Temperature (°C)	29
Nitrogen, organic (N)	.63	Turbidity (JTU)	2
Nitrogen		Carbon, organic, total (C)	9
(ammonia, total (NH4-N))	.00	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.02
Phosphorus, total (P)	.04		

BRADENTON

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75
SAMPLING POINT: Raw intake, Bradenton water plant.

	Trace Elements	
0	Manganese (Mn)	20
0	Mercury (Hg)	.0
0	Selenium (Se)	0
10	Zinc (Zn)	20
15		14708
410	pH(units)	22
10	Temperature (°C)	29
	Pesticides	
.00	Heptachlor	.00
.0	Lindane	.00
.00	Malathion	.00
.00	Methyl parathion	.00
.00	Methyl trithion	.00
.00	PCB	.0
.00	PCN	.0
.00	Silvex	.00
.00	Toxaphene	.00
.00	2,4-D	.08
.00		.00
	2,4,5-T	.00
	0 0 10 15 410 10 .00 .00 .00 .00 .00 .00	0

BROWARD COUNTY UTILITIES DEPARTMENT

County: Broward Population served: 136,000

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Broward County Utilities Department

Source of water: Ground water, Biscayne aquifer; 8 well fields, 37 wells,

57 to 178 feet deep; yield 150 to 2,600 gal/min

Rated plant capacity: 33.2 Mgal/d Pumpage: Year- 7,081.0a/ Mgal

Average daily— 19.4 Mgal Highest month: Not reported

Lowest month: Not reported

Per capita use: 143 gal/d

Finished-water storage: 12.17 Mgal

Treatment: Aeration, algae control, anti-precipitation and corrosion control, chlorination, clarification, coagulation, filtration, flocculation, fluoridation, sedimentation, softening

Type/Frequency of analysis: Bacteriological/weekly; chemical, color, and turbidity/

weekly; spectrographic/annually.

Sewage discharge: 10.9 Mgal/d

Sewage treatment: Activated sludge, aeration, chlorination, clarification, comminution, drying, secondary, settling, skimming

Waste discharged to: Atlantic Ocean

Remarks: Supplies water to Hollywood (partial), Welwyn Pk., Lighhouse Point (partial, 47.800 residents, 7.17 Mgal/d), BrentwoodandCollier Estates, Lauderdale Lakes, Broward County areas. No chemical analysis available. Sherwood and others (1973.)

- a/ Includes 1095.0 Mgal supplied to Lauderdale Lakes.
- b/ Also includes stabilization taste and odor control.
- regional plant. This plant, discharges after c/ Broward County Utilities Dept. treatment, an additional 1.024 Mgal/d to a percolation pond and to Canal C-11.

CAPE CORAL

Population served: 22,000 County: Lee

River basin: Caloosahatchee River (09 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, aquifer in the upper Hawthorn Formation, 3 well .

fields, 20 wells, 94 to 281 feet deep; yield 100 to 260 gal/min

Rated plant capacity: 2.0 Mga1/d Pumpage: Year— 730.85 Mgal

Average daily-2.00 Mgal Lowest month: September, 48.5 Mgal Highest month: April, 72.6 Mgal

Per capita use: 91 gal/d

Finished-water storage: 3.7 Mgal

Treatment: Aeration, coagulation, filtration, softening, chlorination

Type/Frequency of analysis: Bacteriological/15 times monthly; chemical/3 times daily

Sewage discharge: 1.56 Mgal/d

Sewage treatment: Aeration, contact stabilization

Waste discharged to: Caloosahatchee River

Domestic service connections, 7,003. A reverse osmosis desalination plant is under construction. The source of water for the plant will be the aquifer in the lower Hawthorn Formation. Estimated plant completion, March 1977.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-15-75

SAMPLING POINT: 263444081575001

Silica (SiO ₂)	48	Dissolved solids	
Calcium (Ca)	56	(residue at 180°C)	532
Magnesium (Mg)	39	Total hardness	
Sodium (Na)	62	(as CaCO ₃)	300
Potassium (K)	12	Noncarbonate hardness	300
Strontium (Sr)	2.5	(as CaCO ₃)	97
Bicarbonate (HCO ₃)	248	Alkalinity (as CaCO3)	203
Sulfate (SO ₄)	15	pH (units)	7.9
Chloride (C1)	150	Specific conductance	
Fluoride (F)	1.2	(umhos/cm at 25°C)	910
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.01	Temperature (°C)	26
Nitrogen, organic (N)	.13	Turbidity(JTU)	8
Nitrogen		Carbon, organic, total	(C) .00
(ammonia, total (NH4-N))	.47	Orthophosphate	
Iron (Fe)		total (PO4-P)	.01
Phosphorus, total (P)	.01		

CAPE CORAL

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. G SAMPLING POINT:	eological Survey 263444081575001	COLLECTION DATE:	5-15-75
Aluminum (Al)	30	Lead (Pb)	7
Arsenic (As)	0	Lithium (Li)	30
Barium (Ba)		Manganese (Mn)	10
Boron (B)		Mercury (Hg)	
Cadmium (Cd)	1	Molybdenum (Mo)	5
Chromium (Cr)	1	Nickel (Ni)	0
Chromium (Cr+6)	0	pH(units)	7.3
Cobalt (Co)	0	Selenium (Se)	
Specific conductance		Vanadium (V)	4.8
(umhos/cm at 25°C)	845	Temperature (°C)	26
Copper (Cu)	0	Zinc (Zn)	0
Iron (Fe)	10	Anthorna Control	3

CAROL CITY

County: Dade Population served: 32,165

River basin: Everglades and southeastern coast area (09-02-02)

Ownership of supply or system: Carol City Utilities

Source of water: Ground water, Biscayne aquifer; 7 wells, 70 feet deep;

yield total, 5,700 gal/min

Rated plant capacity: 4.0 Mga1

Pumpage: Year— 1.507.50 Mgal/d Average daily— 4.13 Mgal

Highest month: April, 158 Mgal Lowest month: June, 120 Mgal

Per capita use: 128 gal/d

Finished-water storage: 0.6 Mgal

Treatment: Aeration, chlorination, softening, coagulation, filtration

Type/Frequency of analysis: Chemical/daily

Sewage discharge: 3

3.5 Mga1/d

Sewage treatment:

Activated sludge

Waste discharged to: Carol City Canal

Remarks: Average daily pumpage increased from 0.34 Mgal/d in 1956 to 4.13 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 255615080154301, Carol City Water Plant

Silica (SiO ₂)	9.5	Dissolved solids	
Calcium (Ca)	84	(residue at 180°C)	300
Magnesium (Mg)	4.7	Total hardness	300
Sodium (Na)	11 .	(as CaCO ₃)	230
Potassium (K)	.9	Noncarbonate hardness	230
Strontium (Sr)	.4	(as CaCO ₃)	32
Bicarbonate (HCO ₃)	241	Alkalinity (as CaCO3)	197
Sulfate (SO4)	29	pH (units)	7.7
Chloride (C1)	16	Specific conductance	0.77
Fluoride (F)	.5	(umhos/cm at 25°C)	470
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	60
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.87	Orthophosphate	
Iron (Fe)	1.0	total (PO4-P)	
Phosphorus, total (P)			

CENTURY VILLAGE

County: Palm Beach Population served: 15,000

River basin: Lake Okeechobee and Everglades (09 02 02)

Ownership of supply or system: Private

Source of water: Ground water, Biscayne aquifer; 3 wells, 155 to 160 feet deep;

yield 900 to 1,000 gal/min

Rated plant capacity: 2.0 Mga1/d

Pumpage: Year— 365.0 Mgal Average daily-1.0 Mgal

Highest month: December, 36.3 Mgal Lowest month: June, 26.2 Mgal

Per capita use: 66 gal/d Finished-water storage: 0.7 Mgal

Treatment: Chlorination, filtration, softening

Type/Frequency of analysis: Bacteriological/weeklya/; chemical/biannually; color and turbidity/daily; Bacteriological, color, turbidity, chemical/weeklyb/ Sewage discharge: 0.70 Mgal/d

Sewage treatment: Secondary, polishing ponds

Waste discharged to: Drainage ditch

Remarks: Total service connections: 7,780. No chemical analysis available.

a/ Treated water.

b/ Raw water.

CLEWISTON

County: Hendry Population served: 6,900

River basin: Lake Okeechobee (09 02 01)

Ownership of supply or system: U.S. Sugar Corporation

Source of water: Surface water, Lake Okeechobee

Rated plant capacity: 4.0 Mgal/d
Pumpage: Year— 424.52 Mgal

Average daily—1.16 Mgal

Highest month: May, 38.94 Mgal Lowest month: June, 30.58 Mgal

Per capita use: 168 gal/d

Finished-water storage: 2.9 Mgal

Treatment: Chlorination, softening, coagulation, filtration, fluoridation

Type/Frequency of analysis: Bacteriological/semi-weekly; chemical, color,

turbidity/daily; spectrographic/intermittently

Sewage discharge: 0.14 Mgal/d

Sewage treatment: Extended aeration, contact stabilization

Waste discharged to: Polishing pond to canal to Lake Okeechobee

Remarks: Average daily pumpage increased from 0.78 Mgal/d in 1970 to 1.16 Mgal/d in 1975. Total domestic service connections, 2,322.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-11-75 SAMPLING POINT: 264417080560701

Silica (SiO ₂)	5	Dissolved solids	
Calcium (Ca)	48	(residue at 180°C)	392
Magnesium (Mg)	17	Total hardness	
Sodium (Na)	57	(as CaCO ₃)	190
Potassium (K)	4.6	Noncarbonate hardness	
Strontium (Sr)	1.3		59
Bicarbonate (HCO3)	150	(as CaCO ₃)	132
Sulfate (SO4)	59	Alkalinity (as CaCO ₃)	
Chloride (C1)	85	PH (units)	8.7
Fluoride (F)	.3	Specific conductance	
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	649
Nitrite (NO2-N)	.04	Color (Pt-Co units)	35
Nitrogen, organic (N)	.01	Temperature (°C)	
이 사람들이 살아가지 않아 가장 살아가 되었다. 그런 그렇게 하는 사람들이 되었다면 하는 것이 없는 것이 없다.	1.1	Turbidity(JTU)	3
Nitrogen		Carbon, organic, total (C)	13
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.02
Phosphorus, total (P)	.03	(100

CORAL SPRINGS

County: Broward Population served: 17,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 8 wells, 55 to 140 feet deep; yield about 500 gal/min

Rated plant capacity: 5.3 Mga1
Pumpage: Year— 620.50 Mga1
Highest month: August, 58 Mga1

Average daily— 1.70a/ Mgal Lowest month: February, 44 Mgal

Per capita use: 100 gal/d

Finished-water storage: 1.0 Mgal

Treatment: Aeration, chlorination, coagulation, filtration, pH control

Type/Frequency of analysis: Bacteriological/daily; chemical/dailyb/

Sewage discharge: 1.67 Mgal/d

Sewage treatment: Contact stabilization, activated sludge, drying, aeration, filtration, grit chambers, primary, secondary, tertiary

Waste discharged to: Containment area, land disposal of dried sludge

Remarks:

- a/ Includes 0.17 Mgal/d commercial use.
- b/ Treated and raw water. Chemical analysis made annually of raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 261634080142401, Coral Springs Water Plant

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	150	(residue at 180°C)	548
Magnesium (Mg)	4.3	Total hardness	540
Sodium (Na)	30	(as CaCO ₃)	390
Potassium (K)	1.7	Noncarbonate hardness	390
Strontium (Sr)	2.1	(as CaCO ₃)	30
Bicarbonate (HCO3)	438	Alkalinity (as CaCO3)	359
Sulfate (SO4)	39	pH (units)	7.5
Chloride (C1)	48	Specific conductance	7.5
Fluoride (F)	.5	(umhos/cm at 25°C)	878
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	30
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	44
(ammonia, total (NH4-N))	.43	Orthophosphate	
Iron (Fe)	.52	total (PO4-P)	
Phosphorus, total (P)			

CUTLER RIDGE

County: Dade Population served: 45,500 River basin: Everglades and southeastern coastal areas (09 02 02)

Ownership of supply or system: Florida Water and Utilities
Source of water: Ground water, Biscayne aquifer; 20 wells, 50 to 80 feet deep; total yield about 12,600 gal/min from 7 well fields a

Rated plant capacity: 12.2 Mgal/d
Pumpage: Year— 3,445.60 Mgal
Average daily— 9.44 Mgal

Highest month: April, 336.46 Mgal Lowest month: February, 247.72 Mgal

Per capita use: 207 gal/d

Finished-water storage: 0.27 Mga1

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological, chemical/monthly; chemical annually b/

Sewage discharge: 3.36^c/ Mgal/d

Sewage treatment: Aeration

Waste discharged to: Black Creek Canal (C-1)

Remarks: Average daily pumpage increased from 1.276 Mgal/d in 1965 to 9.44 Mgal/d in 1975. Supplies water to 9 subdivisions.

 \underline{a} / Coral Reef, Fairway Park, Green Hills, Kings Bay, Perrine Industrial, Pine Meadows, Cutler Ridge.

b/ Raw water.

c/ Population served 26,250.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 253448080211601, Cutler Ridge water plant

Silica (SiO ₂)	4.1	Dissolved solids	
Calcium (Ca)	97	(residue at 180°C)	326
Magnesium (Mg)	2.5	Total hardness	320
Sodium (Na)	16	(as CaCO ₃)	250
Potassium (K)	3.3	Noncarbonate hardness	250
Strontium (Sr)	.96	(as CaCO ₃)	33
Bicarbonate (HCO ₃)	265	Alkalinity (as CaCO ₃)	217
Sulfate (SO ₄)	30	pH (units)	7.5
Chloride (C1)	28	Specific conductance	,
Fluoride (F)	. 2	(umhos/cm at 25°C)	565
Nitrate (NO ₃ -N)	.11		5
Nitrite (NO2-N)	.00	Color (Pt-Co units) Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.04		
Phosphorus, total (P)		total (PO4-P)	

DANIA

Population served: County: Broward 11,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; two wells, 80 to 100 feet deep; yield from 790 to 810 gal/min

Rated plant capacity: 3.02 Mga1/d Pumpage: Year— 543.85 Mgal

Average daily 1.49ª/ Mgal Lowest month: July, 36.54 Mgal Highest month: March, 72.59 Mgal

Per capita use: 135 gal/d Finished-water storage: 0.5 Mgal

Treatment: Chlorination, coagulation, filtration, softening, algae control, odor and taste control.

Bacteriological/twice monthly; chemical/daily; Type/Frequency of analysis: chemical/annuallyb/

Sewage discharge: 1.5 Mgal

Sewage treatment: c/

Waste discharged to: Hollywood regional plant (Broward County Utilities Department).

Remarks: Average daily pumpage increased from 0.50 Mgal/d in 1956 to 1.49 Mgal/d in 1975. Dania sewage treatment plant phased out August 1975. Sherwood and others (1973).

a/ Includes 0.373 Mgal/d commercial and industrial use.

b/ Raw water.

c/ No treatment by Dania.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 260251080091001, Dania water plant

7.8	Dissolved solids	
120	(residue at 180°C)	572
4	Total hardness	312
43	(as CaCO ₃)	320
1.3	Noncarbonate hardness	320
1.1	(as CaCO ₃)	82
290	Alkalinity (as CaCO3)	238
15	pH (units)	7.6
110	Specific conductance	,
.3	(umhos/cm at 25°C)	833
.02	Color (Pt-Co units)	35
.00	Temperature (°C)	
	Turbidity(JTU)	
	Carbon, organic, total (C)	
.67	Orthophosphate	
.56	total (PO4-P)	
	120 4 43 1.3 1.1 290 15 110 .3 .02 .00 	120 (residue at 180°C) 4 Total hardness 43 (as CaCO ₃) 1.3 Noncarbonate hardness 1.1 (as CaCO ₃) 290 Alkalinity (as CaCO ₃) 15 pH (units) 110 Specific conductance .3 (umhos/cm at 25°C) .02 Color (Pt-Co units) .00 Temperature (°C) Turbidity(JTU) Carbon, organic, total (C) .67 Orthophosphate

DEERFIELD BEACH

County: Broward Population served: 31,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 15 wells, 90 to 120 feet

deep; total yield 11,800 gal/min

Rated plant capacity: 12 Mga1/d

Pumpage: Year—1,861.50 Mgal Average daily— 5.1 Mgal

Highest month: April, 257.1 Mgal Lowest month: November, 152.3 Mgal

Per capita use: 165 gal/d

Finished-water storage: 1.3ª/ Mgal

Treatment: Chlorination, filtration, softening, coagulation, aeration

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually

Sewage discharge: 2.0 Mgal/d

Sewage treatment: Contact stabilization, digestion, grit chambers, chlorination

Waste discharged to: Hillsboro Canal

Remarks: Average daily pumpage increased from 0.50 Mgal/d in 1956 to 5.10 Mgal/d in 1975. McCoy (1970), Sherwood and others (1973).

a/ A 4.0 Mgal storage facility under construction.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 261910080062001, Deerfield water plant

Silica (SiO ₂) Calcium (Ca) Magnesium (Mg)	6.4 75 1.9	Dissolved solids (residue at 180°C) Total hardness	270
Sodium (Na) Potassium (K) Strontium (Sr)	14 2.4 .86	(as CaCO ₃) Noncarbonate hardness	200
Bicarbonate (HCO ₃) Sulfate (SO ₄)	238 11	(as CaCO ₃) Alkalinity (as CaCO ₃) PH (units)	5 195 7.6
Chloride (C1) Fluoride (F) Nitrate (NO ₃ -N)	20 .2 .01	Specific conductance (umhos/cm at 25°C)	451 55
Nitrite (NO2-N) Nitrogen, organic (N) Nitrogen	.03	Color (Pt-Co units) Temperature (°C) Turbidity(JTU)	
(ammonia, total (NH4-N)) Iron (Fe) Phosphorus, total (P)	.91 1.3	Carbon, organic, total (C) Orthophosphate total (PO4-P)	
ruces, cocar (1)			

DELRAY BEACH

Population served: 31,000 County: Palm Beach River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Ground water, shallow aquifer; 18 wells, 90 to 105 feet Source of water: deep; yield 400 to 1,000 gal/min

Rated plant capacity: 12 Mgal/d Pumpage: Year-3,179.15 Mgal

Average daily— 8.71 Mgal Lowest month: June, 224.70 Mgal Highest month: April, 318.30 Mgal

Per capita use: 281 gal/d

Finished-water storage: 5.63 Mgal

Treatment: Aeration, sedimentation, filtration, chlorination

Type/Frequency of analysis: Chemical/biannually; color and turbidity/daily;

Bacteriological/monthlya/ Sewage discharge: 3.60 Mga1/d

Sewage treatment: Aeration, comminution, chlorination

Waste discharged to: Atlantic Ocean

Remarks: Average daily pumpage increased from 2.90 Mgal/d in 1956 to 8.71 Mgal/d in 1975. a/ Treated water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

	cal Survey 80042801	COLLECTION DATE: 6-	9-75
Silica (SiO ₂)	18	Dissolved solids	
Calcium (Ca)	90	(residue at 180°C)	322
Magnesium (Mg)	2.5	Total hardness	322
Sodium (Na)	22	(as CaCO ₃)	230
Potassium (K)	1.9	Noncarbonate hardness	230
Strontium (Sr)	. 29	(as CaCO ₃)	13
Bicarbonate (HCO3)	265	Alkalinity (as CaCO3)	217
Sulfate (SO4)	.0	pH (units)	7.3
Chloride (C1)	40	Specific conductance	510
Fluoride (F)	.3	(umhos/cm at 25°C)	310
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	55
Nitrite (NO2-N)	.00	Temperature (°C)	28
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.5	Orthophosphate	
Iron (Fe)	.11	total (PO4-P)	
Phosphorus, total (P)			

ENGLEWOOD

County: Sarasota Population served: 10,000
River basin: Coastal area between Myakka and Manatee Rivers (10 02 01)

Ownership of supply or system: Englewood Water District

Source of water: Ground water, nonartesian sand aquifer, Pleistocene and upper Miocene aquifers; well depths 40 to 90 feet, yield 30 to 100 gal/min

Rated plant capacity: 3.0 Mga1/d

Pumpage: Year— 367.39 Mgal Average daily— 1.01 Mgal

Highest month: March, 42.34 Mgal Lowest month: September, 21.44 Mgal

Per capita use: 100 gal/d

Finished-water storage: 0.6 Mgal

Treatment: Aeration, chlorination, softening, filtration

Type/Frequency of analysis: Chemical/daily

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 0.52 Mgal/d in 1970 to 1.01 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75 SAMPLING POINT: 2651713082205601, composite

Silica (SiO ₂)	14	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	546
Magnesium (Mg)	14	Total hardness	340
Sodium (Na)	60	(as CaCO ₃)	330
Potassium (K)	1	Noncarbonate hardness	330
Strontium (Sr)	.9	(as CaCO ₃)	87
Bicarbonate (HCO ₃)	296	Alkalinity (as CaCO ₃)	243
Sulfate (SO4)	14	pH (units)	7.8
Chloride (C1)	130	Specific conductance	7.0
Fluoride (F)	. 4	(umhos/cm at 25°C)	902
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	55
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.66	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	11
(ammonia, total (NH4-N))	.61	Orthophosphate	
Iron (Fe)	.18	total (PO4-P)	. 27
Phosphorus, total (P)	.27		

FORT LAUDERDALE

County: Broward Population served: 226,430 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 59 wells, 75 to 189 feet deep; yield 400 to 2,100 gal/min

Rated plant capacity: 60 Mga1/d Pumpage: Year— 16,798.39 Mga1

npage: Year— 16,798.39 Mgal

Highest month: April, 1,822.2 Mgal

Lowest month: October, 1,172.3 Mgal

Per capita use: 203 ga1/d Finished-water storage: 20 Mga1

Treatment: Aeration, chlorination, coagulation, filtration, flocculation, pH control, softening, taste and odor control

Type/Frequency of analysis: Bacteriological, chemical, color, and turbidity/daily; spectrographic/30 times yearly

Sewage discharge: 16.97 Mgal/d (5 sewage treatment plants)

Sewage treatment: Chlorination, clarification, comminution (all); activated sludge, drying, grit chamber, skimming (2); aeration, digestion (3); contact stabilization, incineration (1)

Waste discharged to: North Fork New River Canal; Intracoastal Waterway (2); South Fork New River; North Fork Middle River

Remarks: Average daily pumpage increased from 17.10 Mgal/d in 1956 to 46.0 Mgal/d in 1975. City supplied at total of 6.576 mgd to Wilton Manors, Oakland Pk, Lazy Lake and Tamarac. City also supplies Lauderdale-by-the-sea, Sea Ranch Lake, Ft. Lauderdale-Hollywood airport andPort Everglades. Supplementary supply for Dania, Plantation and Broward County Utilities Dept. (fig 24). Leach and others (1972), Sherwood and others (1973). a/ Combined pumpage, Dixie and Prospect Well Fields. CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75
SAMPLING POINT: 261044080092001, Prospect water plant

Silica (SiO ₂)	9.7	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	388
Magnesium (Mg)	2.8	Total hardness	
Sodium (Na)	19	(as CaCO ₃)	260
Potassium (K)	1.5	Noncarbonate hardness	
Strontium (Sr)	. 78	(as CaCO ₃)	15
Bicarbonate (HCO3)	299	Alkalinity (as CaCO3)	245
Sulfate (SO4)	26	pH (units)	7.4
Chloride (C1)	33	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	619
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	45
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.63	Orthophosphate	
Iron (Fe)	1.8	total (PO4-P)	
Phosphorus, total (P)			

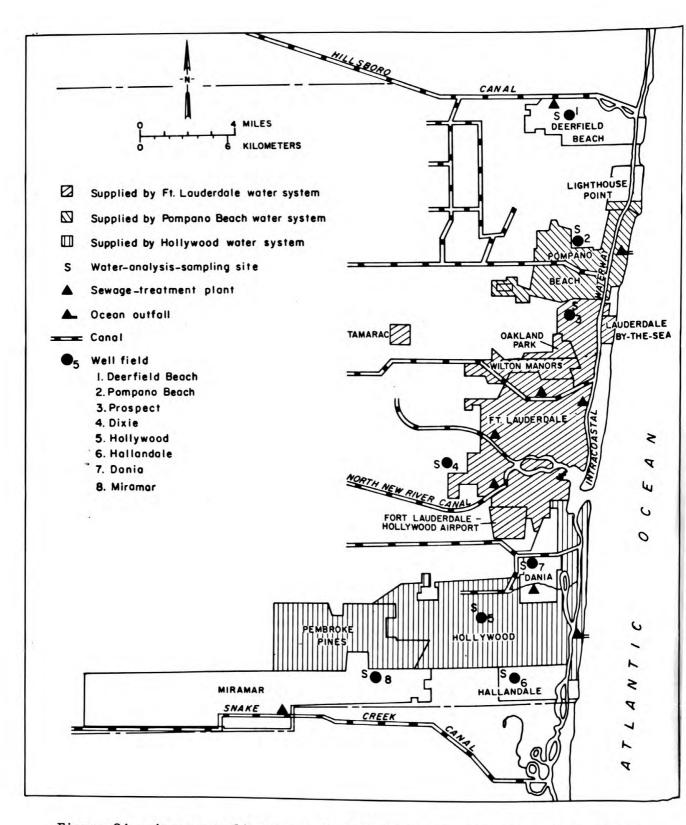


Figure 24.--Areas supplied water by individual and composite water systems, Broward County.

FORT MYERS

County: Lee Population served: 38,000

River basin: Caloosahatchee River (09 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, water-table aquifer in Pleistocene sand, 50 percent of supply; 11 wells 16 to 44 feet deep; yield 300 to 750 gal/min;

surface water, Caloosahatchee River, 50 percent of supply

Rated plant capacity: 8.3 Mga1/d

Pumpage: Year— 2089 Mgal Average daily— 5.7^a/ Mgal

Highest month: May, 208 Mgal Lowest month: September, 148 Mgal

Per capita use: 150 gal/d Finished-water storage: 2 Mgal

Treatment: Chlorination, filtration, coagulation, aeration, fluoridation,

recarbonation, softening

Type/Frequency of analysis: Bacteriological/weekly; chemical/daily; color,

turbidity/monthly

Sewage discharge: 6.65 Mgal/d (2 plants)

Sewage treatment: High rate trickling filter-Central Plant; contact stabilization-

South Plant

Waste discharged to: Caloosahatchee River (Fig. 25)

Remarks: Average daily pumpage increased from 2.50 Mgal/d in 1956 to 5.72 Mgal/d in 1975. Service connections: domestic, 10,374; commercial 1,153. Boggess (1970), Sproul and others (1972),0'Donnell (1977).

a/ Includes 2.85 Mgal/d pumped from the Caloosahatchee River to recharge the aquifer at the well field.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-13-75
SAMPLING POINT: 263824081513702, Ft. Myers Water Plant, composite

Silica (SiO ₂)	5.2	Dissolved solids	
Calcium (Ca)	81	(residue at 180°C)	566
Magnesium (Mg)	14	Total hardness	
Sodium (Na)	81	(as CaCO ₃)	260
Potassium (K)	4.1	Noncarbonate hardness	
Strontium (Sr)	1	(as CaCO ₃)	73
Bicarbonate (HCO ₃)	217	Alkalinity (as CaCO3)	187
Sulfate (SO ₄)	49	pH (units)	7.2
Chloride (C1)	136	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	850
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	100
Nitrite (NO2-N)	.00	Temperature (°C)	24.5
Nitrogen, organic (N)	.72	Turbidity(JTU)	5
Nitrogen		Carbon, organic, total (C)	61
(ammonia, total (NH4-N))	.22	Orthophosphate	
Iron (Fe)	1.6	total (PO4-P)	.01
Phosphorus, total (P)	.02		

FORT MYERS

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Ge	eological Survey	COLLECTION DATE:	5-13-75
SAMPLING POINT:	Ft. Myers Water P	lant, Raw composite	
Aluminum (Al)	8	Lead (Pb)	1
Arsenic (As)	3	Lithium (Li)	4
Barium (Ba)		Manganese (Mn)	10
Boron (B)		Mercury (Hg)	.1
Cadmium (Cd)	0	Molybdenum (Mo)	4
Chromium (Cr)	1	Nickel (Ni)	0
Chromium (Cr+6)	0	pH(units)	7.5
Cobalt (Co)	0	Selenium (Se)	
Specific conductance		Vanadium (V)	8.7
(umhos/cm at 25°C)	850	Temperature (°C)	24.5
Copper (Cu)	0	Zinc (Zn)	3
Iron (Fe)		The state of the s	•

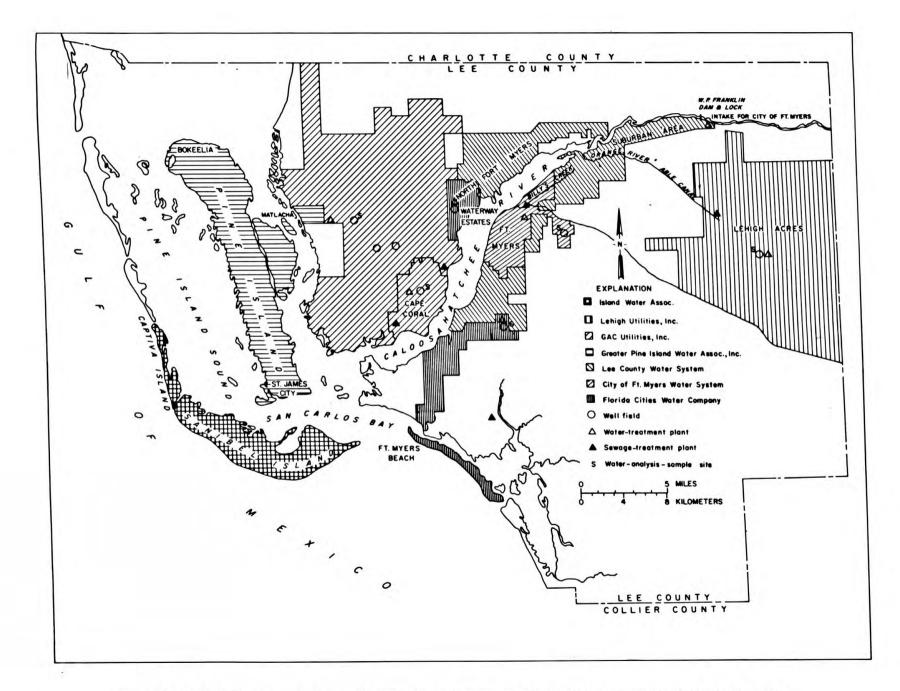


Figure 25 .-- Well fields, treatment plants, and service areas of public and private water-supply systems in the Ft. Myers area.

FT MYERS BEACH

Population served: 30,000 County: Lee Big Cypress Swamp and the southwestern coastal area (09 02 04) River basin:

Ownership of supply or system: Florida Cities Water Company Source of water: Ground water, aquifer in the upper Hawthorn Formation; 14 wells, 115 to 266 feet deep; yield 55 to 125 gal/min

Rated plant capacity: 5.0 Mga1/d Pumpage: Year— 812.50 Mgal

Average daily—2.23 Mgal Lowest month: November, 52.9 Mgal Highest month: January, 77.5 Mgal

Per capita use: 74 gal/d

Finished-water storage: 2.1 Mgal

Treatment: Aeration, chlorination, coagulation, softening, stabilization

Type/Frequency of analysis: Bacteriological/twice weekly; chemical/daily

Sewage discharge: 0.412 Mga1/d

Sewage treatment: Contact stabilization to February 1975. Currently extended

aeration

Spray irrigation, Myer Leigh and Cypress Lake golf courses. Waste discharged to:

Average daily pumpage increased from 0.12 Mgal/d in 1956 to 2.23 Mgal/d in 1975. Service connections: domestic 4,165; commercial 463. Water also supplied to south central Lee County along SR 867 and Estero Island. O'Donnell (1977), Sproul and others (1972).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: SAMPLING POINT: 263316081524401, Florida Cities Water Plant

Silica (SiO ₂)	23	Dissolved solids	
Calcium (Ca)	45	(residue at 180°C)	470
Magnesium (Mg)	34	Total hardness	470
Sodium (Na)	74	(as CaCO ₃)	
Potassium (K)	7.3	Noncarbonate hardness	260
Strontium (Sr)	2.1		2.5
Bicarbonate (HCO3)	262	(as CaCO ₃)	40
Sulfate (SO ₄)	15	Alkalinity (as CaCO ₃)	215
Chloride (C1)	120	pH (units)	7.9
Fluoride (F)	2.9	Specific conductance	
Nitrate (NO ₃ -N)		(umhos/cm at 25°C)	838
. BARAN - N N N N N N N	.01	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	26
Nitrogen, organic (N)	.11	Turbidity (JTU)	5
Nitrogen		Carbon, organic, total (C)	2
(ammonia, total (NH4-N))	.21	Orthophosphate	
Iron (Fe)	.05	total (PO4-P)	.00
Phosphorus, total (P)	.00	104-1)	.00

FT MYERS BEACH

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S.	Geological Survey	COLLECTION DATE:	6-12-75
SAMPLING POINT:	263316081524401,	Florida Cities Water	Plant
Aluminum (A1)	0	Lead (Pb)	5
Arsenic (As)	0	Lithium (Li)	70
Barium (Ba)	10	Manganese (Mn)	0
Boron (B)		Mercury (Hg)	.1
Cadmium (Cd)	0	Molybdenum (Mo)	0
Chromium (Cr)	0	Nickel (Ni)	1
Chromium (Cr+6)	0	pH(units)	7.5
Cobalt (Co)	0	Selenium (Se)	0
Specific conductance	2	Vanadium (V)	.0
(umhos/cm at 25°C)		Temperature (°C)	26
Copper (Cu)	0	Zinc (Zn)	0
Iron (Fe)	10		J

FT MYERS (SUBURBAN AREAS)

County: Lee Population served: 35,000

River basin: Caloosahatchee River (09 02 05)

Ownership of supply or system: Lee County Water System Source of water: Surface water, Caloosahatchee River

Rated plant capacity: 5.0 Mga1/d

Pumpage: Year— 1.463.80 Mgal Average daily—4.01 Mgal

Highest month: January, 150.5 Mgal Lowest month: November, 103.3 Mgal

Per capita use: 115 gal/d

Finished-water storage: 1.8 Mgal

Treatment: Aeration, chlorination, softening, coagulation, filtration, flocculation

stabilization

Type/Frequency of analysis: Bacteriological/biweekly; chemical, color, turbidity/

every 3 hours

Sewage discharge: 0.20 Mgal/d

Sewage treatment: Aeration, contact stabilization

Waste discharged to: Spray irrigation (golf course), Caloosahatchee River

Remarks: Average daily pumpage increased from 1.63 Mgal/d in 1970 to 4.01 Mgal/d in 1975. Pumpage includes water supplied to North Fort Myers (Fig. 25), (except Waterway Estates, see p. 224), East Fort Myers and area south of Ft. Myers. Service connections: domestic, 13,732; commercial, 876. Boggess (1970), 0'Donnell (1977).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-12-75
SAMPLING POINT: 264308081410102, Caloosahatchee River at Lee County Water Plant

Silica (SiO ₂)	4.3	Dissolved solids	
Calcium (Ca)	62	(residue at 180°C)	480
Magnesium (Mg)	17	Total hardness	
Sodium (Na)	62	(as CaCO ₃)	230
Potassium (K)	4.8	Noncarbonate hardness	
Strontium (Sr)	1.2	(as CaCO ₃)	76
Bicarbonate (HCO3)	188	Alkalinity (as CaCO3)	154
Sulfate (SO ₄)	57	pH (units)	8.3
Chloride (C1)	96	Specific conductance	0.5
Fluoride (F)	.7	(umhos/cm at 25°C)	730
Nitrate (NO ₃ -N)	.03	Color (Pt-Co units)	40
Nitrite (NO2-N)	.02	Temperature (°C)	29.2
Nitrogen, organic (N)	1.1	Turbidity(JTU)	8
Nitrogen		Carbon, organic, total (C)	37
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.08
Phosphorus, total (P)	.09	(

FT MYERS (SUBURBAN AREAS)

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-12-75 SAMPLING POINT: Caloosahatchee River at Lee County Water Plant

		Trace Elements	
Arsenic (As)		Manganese (Mn)	V26V
Barium (Ba)		Mercury (Hg)	
Cadmium (Cd)		Selenium (Se)	
Chromium (Cr)		Zinc (Zn)	
Copper (Cu)			
Iron (Fe)		pH(units)	8.7
Lead (Pb)	0	Temperature (°C)	29.2
		Pesticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.00	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.00
Heptachlor epoxide	.00	2,4-DP	.00
		2,4,5-T	.00

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-12-75
SAMPLING POINT: Caloosahatchee River at Lee County Water Plant

Aluminum (Al)	20	Lead (Pb)	0
Arsenic (As)	1	Lithium (Li)	3
Barium (Ba)		Manganese (Mn)	10
Boron (B)		Mercury (Hg)	.1
Cadmium (Cd)	0	Molybdenum (Mo)	3
Chromium (Cr)	0	Nickel (Ni)	1
Chromium (Cr+6)	0	pH (Pt-Co units)	8.7
Cobalt (Co)	0	Selenium (Se)	
Specific conductance		Vanadium (V)	2.7
(umhos/cm at 25°C)	710	Temperature (°C)	29.2
Copper (Cu)	1	Zinc (Zn)	20
Iron (Fe)		0xygen	6.7

FORT PIERCE

County: St. Lucie Population served: 35,000
River basin: Coastal area Sebastian Inlet to St. Lucie River (08 02 03)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow sand-and-gravel aquifer; 24 wells, 80 to 120 feet deep; yield 300 to 695 gal/min

Rated plant capacity: 10.0 Mga1/d Pumpage: Year— 2,007.50 Mga1

mpage: Year— 2,007.50 Mgal Average daily—5.50 Mgal
Highest month: April, 202 Mgal Lowest month: September, 148 Mgal

Per capita use: 157 gal/d

Finished-water storage: 4.5 Mga1

Treatment: Chlorination, anti-precipitation and corrosion control, coagulation,

filtration, softening, fluoridation

Type/Frequency of analysis: Bacteriological, color, turbidity/daily; chemical/

annually

Sewage discharge: 3.2 Mgal/d

Sewage treatment: Activated sludge

Waste discharged to: Indian River

Remarks: Average daily pumpage increased from 1.80 Mgal/d in 1956 to 5.50 Mgal/d in 1975. City supplies water to North Beach Water Co. Bearden (1971).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 272507080190201

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	480
Magnesium (Mg)	6.5	Total hardness	400
Sodium (Na)	38	(as CaCO ₃)	300
Potassium (K)	2.2	Noncarbonate hardness	300
Strontium (Sr)	.91	(as CaCO ₃)	54
Bicarbonate (HCO ₃)	300	Alkalinity (as CaCO3)	246
Sulfate (SO4)	46	pH (units)	7.2
Chloride (C1)	65	Specific conductance	1.2
Fluoride (F)	.6	(umhos/cm at 25°C)	730
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	30
Nitrite (NO ₂ -N)	.00	Temperature (°C)	28
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	. 45	Orthophosphate	
Iron (Fe)	.7	total (PO4-P)	
Phosphorus, total (P)		Anna Anna Caranta Cara	

HALLANDALE

County: Broward Population served: 50,000

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer, 8 wells, 68 to 85 feet deep;

yield 800 to 2,775 gal/min

Rated plant capacity: 7.7 Mga1/d Pumpage: Year— 1,971.00 Mga1

umpage: Year— 1,971.00 Mgal Average daily— 5.40 Mgal

Highest month: April, 195 Mgal Lowest month: September, 140 Mgal

Per capita use: 108 ga1/d

Finished-water storage: 2.8 Mga1

Treatment: Chlorination, coagulation, softening, filtration

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually

Sewage discharge: 3.40a/ Mga1/d

Sewage treatment: Sewage processed by Hollywood

Waste discharged to: Hollywood waste treatment plant

Remarks: Average daily pumpage increased from 0.75 Mgal/d in 1956 to 5.40 Mgal/d in 1975. Bearden (1971, 1972), Sherwood and others (1973). a/ Septic tanks in use in part of Hallandale.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75
SAMPLING POINT: 255918080091702, Hallandale water plant

Silica (SiO ₂)	6	Dissolved solids	
Calcium (Ca)	94	(residue at 180°C)	358
Magnesium (Mg)	3.2	Total hardness	330
Sodium (Na)	21	(as CaCO ₃)	250
Potassium (K)	4.1	Noncarbonate hardness	250
Strontium (Sr)	1	(as CaCO ₃)	11
Bicarbonate (HCO ₃)	291	Alkalinity (as CaCO3)	239
Sulfate (SO4)	24	pH (units)	7.6
Chloride (C1)	32	Specific conductance	7.0
Fluoride (F)	.3	(umhos/cm at 25°C)	608
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	30
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	1.2	Orthophosphate	
Iron (Fe)	.34	total (PO4-P)	
Phosphorus, total (P)			

HOLLYWOOD

Population served: 100,000 County: Broward

River basin: Everglades and southeastern coastal area (09 02 02)

Municipal and Broward County Utilities Dept.a/ Ownership of supply or system: Source of water: Ground water, Biscayne aquifer; 19 wells, 65 to 150 feet deep; yield 1,000 to 1,200 gal/min

Rated plant capacity: 20 Mga1/d

Pumpage: Year- 5,292.50 Mgal Average daily-14.50 Mgal Highest month: March, 532 Mgal

Lowest month: September, 391 Mgal

Per capita use: 145 ga1/d

Finished-water storage: 13.5 Mgal

Treatment: Chlorination, algae control, softening, filtration, coagulation,

taste and odor control

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually

Sewage discharge: 20 Mgal/d

Sewage treatment: Primary, settling, grit chamber

Waste discharged to: Atlantic Ocean

Remarks: Average daily pumpage increased from 5.20 Mgal.d in 1956 to 14.50 Mgal/d in 1975. Bearden (1974), Sherwood and others (1973). a/ Broward County Utilities Department supplies 2.7 Mgal/d to 18,000 residents of Hollywood.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 260039080104301, Hollywood water plant

Silica (SiO ₂)	6.5	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	372
Magnesium (Mg)	4.2	Total hardness	7.2
Sodium (Na)	19	(as CaCO ₃)	270
Potassium (K)	2.6	Noncarbonate hardness	
Strontium (Sr)	1	(as CaCO ₃)	26
Bicarbonate (HCO ₃)	298	Alkalinity (as CaCO ₃)	244
Sulfate (SO ₄)	34	pH (units)	7.4
Chloride (C1)	28	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	622
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	20
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.75	Orthophosphate	
Iron (Fe)	1.0	total (PO4-P)	
Phosphorus, total (P)		\$11.5 S.	

HOMESTEAD

County: Dade Population served: 21,000

Everglades and southeastern coastal area (09 02 02) River basin:

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aguifer: 4 wells, 55 to 60 feet deep:

total yield 6,400 gal/min

Rated plant capacity: 6.14 Mga1/d

Average daily 4.75 Mgal Pumpage: Year— 1,734.51 Mgal

Highest month: February, 188.45 Mgal Lowest month: June, 112.66 Mgal

Per capita use: 226 gal/d

Finished-water storage: 0.10 Mgal

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/twice weekly; chemical/annually

Sewage discharge: 1.25 Mga1/d

Sewage treatment: Activated sludge

Waste discharged to: Canal 103S

Remarks: Average daily pumpage increased from 0.65 Mgal/d in 1945 to 4.75 Mgal/d in 1975.

Phosphorus, total (P)

a/ Includes water supplied for crop watering and for fruit and vegetable washing.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6- 6-75 SAMPLING POINT: 252810080283501, Homestead water plant

3.3 Silica (SiO₂) Dissolved solids 96 (residue at 180°C) Calcium (Ca) 338 2.9 Magnesium (Mg) Total hardness 14 Sodium (Na) (as CaCO₃) 250 4.1 Potassium (K) Noncarbonate hardness Strontium (Sr) .82 (as CaCO₃) 77 215 Bicarbonate (HCO₃) Alkalinity (as CaCO3) 176 39 Sulfate (SO₄) PH (units) 7.6 22 Chloride (C1) Specific conductance Fluoride (F) . 2 565 (umhos/cm at 25°C) 2.5 Nitrate (NO₃-N) 5 Color (Pt-Co units) .00 Temperature (°C) Nitrite (NO2-N) Nitrogen, organic (N) Turbidity(JTU) Nitrogen Carbon, organic, total (C) (ammonia, total (NH4-N)) .01 Orthophosphate .03 Iron (Fe) total (PO4-P)

JUPITER

County: Palm Beach Population served: 7,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Private (Tri-Southern Utilities)

Source of water: Ground water, shallow aquifer; 7 wells, 135 to 140 feet deep; yield, average, 250 gal/min

Rated plant capacity: 1.0 Mga1/d Pumpage: Year— 317.55 Mga1 Highest month: April, 30.4 Mgal

Average daily— 0.87 Mga1 Lowest month: June, 19.7 Mga1

Per capita use: 124 gal/d

Finished-water storage: 1.7 Mgal

Treatment: Softening

Type/Frequency of analysis: Bacteriological/monthly; chemical/semiannually

Sewage discharge: a/ 0.1 Mgal/d Sewage treatment: Secondary, no digestion

Waste discharged to: Percolation pond

Remarks: Average daily pumpage increased from 0.045 Mgal/d in 1956 to 0.87 Mgal/d in 1975. Part of Jupiter supplied by Tequesta. Land and others (1973), Rodis (1973). No chemical analysis available.

a/ Septic tanks in use west of U. S. Highway 1.

KEY WEST

County: Monroe Population served: 30,000

River basin: Florida Bay and Florida Keys (09 02 03)

Ownership of supply or system: US Navy & Florida Keys Aqueduct Authority
Source of water: Ground water, Biscayne aquifer; 7 wells, 52 to 60 ft. deep; US Navy
well field at Florida City. Stock Island desalination plant uses multistage flash
evaporation process, converts salty water from wells tapping the Key Largo limestone.

Rated plant capacity: 7.0, 2.62a/

 Pumpage: Year— 751.90, 624.28 Mgal
 Average daily— 2.06, 1.71 Mgal

 Highest month: April, 71.47 Mgal
 Lowest month: April, 14.64 Mgal

 October, 34.80 Mgal

Per capita use: 126 gal/d

Finished-water storage: 15 Mga1

Treatment: Softening, filtration, chlorination, stabilization, fluoridation,

aeration

Type/Frequency of analysis: Bacteriological/daily; chemical/annually

Sewage discharge: Not reported Sewage treatment: Not reported

Waste discharged to: Safe Harbor then to Atlantic Ocean

Remarks: Key West is supplied from the U.S. Navy-owned well field at Florida City about 30 miles southwest of Miami. Water is sold and supplied to the Florida Keys Aqueduct Authority which in turn supplies public and private systems on the Keys including Key West.

a/ Stock Island desalination plant at Key West.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 252619080310202, U.S. Navy Well Field Florida City

Silica (SiO ₂)	3.2	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	356
Magnesium (Mg)	3.8	Total hardness	350
Sodium (Na)	13	(as CaCO ₃)	270
Potassium (K)	5.7	Noncarbonate hardness	-/0
Strontium (Sr)	1.1	(as CaCO ₃)	76
Bicarbonate (HCO ₃)	236	Alkalinity (as CaCO ₃)	194
Sulfate (SO4)	62	pH (units)	7.5
Chloride (C1)	23	Specific conductance	
Fluoride (F)	. 3	(umhos/cm at 25°C)	569
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	. 29	total (PO4-P)	22
Phosphorus, total (P)		15.55 No. 15.54	

KEY WEST

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-11-75
SAMPLING POINT: 243337081440501, Supply well, Stock Island desalination plant

Silica (SiO ₂)	3.9	Dissolved solids	
Calcium (Ca)	460	(residue at 180°C)	38,100
Magnesium (Mg)	1,300	Total hardness	77.
Sodium (Na)	11,400	(as CaCO ₃)	6,500
Potassium (K)	400	Noncarbonate hardness	
Strontium (Sr)	7.8	(as CaCO ₃)	6,300
Bicarbonate (HCO ₃)	184	Alkalinity (as CaCO3)	151
Sulfate (SO ₄)	3,000	pH (units)	7.2
Chloride (C1)	21,000	Specific conductance	
Fluoride (F)	1.7	(umhos/cm at 25°C)	56,000
Nitrate (NO ₃ -N)	.0	Color (Pt-Co units)	5
Nitrite (NO2-N)	.0	Temperature (°C)	26.5
Nitrogen, organic	(N)	Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	(22)
(ammonia, total	(NH4-N)) .53	Orthophosphate	
Iron (Fe)	.18	total (PO4-P)	
Phosphorus, total	(P)		

COLLECTION DATE: 5-17-76

12

CHEMICAL ANALYSIS (milligrams per liter except as indicated

14

ANALYSIS BY: Stock Island plant

Bicarbonate alkalinity

(CaCo₃)

SAMPLING POINT: 243337081440502, composite, treated water Stock Island desalination plant. Dissolved solids Silica (SiO₂) .1 (residue at 180°C) Calcium (Ca) 5.6 225 Magnesium (Mg) Total hardness (as CaCO₃) Sodium (Na) 50 Potassium (K) Noncarbonate hardness Strontium (Sr) 24 (as CaCO₃) Bicarbonate (HCO₃) Alkalinity (as CaCO3) 26 Sulfate (SO4) 20 9.2 pH (units) Chloride (C1) 122 Specific conductance Fluoride (F) 0.0 (umhos/cm at 25°C) Nitrate (NO3-N) .01 Color (Pt-Co units) 0 Nitrite (NO2-N) Temperature (°C) Nitrogen, organic (N) Turbidity(JTU) Nitrogen Carbon, organic, total (C) (ammonia, total (NH4-N)) Orthophosphate .05 Iron (Fe) total (PO4-P) .1 Phosphorus, total (P) Copper (Cu) .1 Manganese (Mn) 0.0 Carbonate alkalinity

(CaCo₃)

LA BELLE

County: Hendry Population served: 3,200

River basin: Caloosahatohee River (09 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer in Tamiami Formation; 3 wells, 16 to

40 feet deep; yield 115 to 250 gal/min

Rated plant capacity: 0.36 Mga1/d

Pumpage: Year— 92.30 Mga1 Average daily—0.25 Mga1

Highest month: December, 8.87 Mgal Lowest month: June, 6.30 Mgal

Per capita use: 78 gal/d

Finished-water storage: 0.51 Mgal

Treatment: Chlorination, filtration, coagulation, softening

Type/Frequency of analysis: Bacteriological/monthly; a/ chemical and color/8

times daily

Sewage discharge: 0.083 Mga1/d

Sewage treatment: Contact stabilization, aeration

Waste discharged to: Caloosahatchee River

Remarks: Total service connections, 800. Average daily pumpage increased from 0.07 Mgal/d in 1956 to 0.55 Mgal/d in 1975. In 1956, supply was from the Floridan aquifer.

a/ Treated water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-11-75 SAMPLING POINT: 264527081262201, La Belle water plant

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	190	(residue at 180°C)	702
Magnesium (Mg)	5.5	Total hardness	702
Sodium (Na)	22	(as CaCO ₃)	500
Potassium (K)	2.7	Noncarbonate hardness	300
Strontium (Sr)	1.3	(as CaCO ₃)	240
Bicarbonate (HCO ₃)	320	Alkalinity (as CaCO3)	262
Sulfate (SO4)	230	pH (units)	7.5
Chloride (C1)	28	Specific conductance	7.5
Fluoride (F)	. 2	(umhos/cm at 25°C)	980
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	65
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.45	Turbidity(JTU)	65
Nitrogen	9.2	Carbon, organic, total (C)	8
(ammonia, total (NH4-N))	.49	Orthophosphate	
Iron (Fe)	.92	total (PO4-P)	.00
Phosphorus, total (P)	.03		1,77

LA BELLE

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. SAMPLING POINT:	Geological Survey 264527081262201, La	Belle water plant	
Aluminum (A1)	0	Lead (Pb)	22
Arsenic (As)	NA	Lithium (Li)	0
Barium (Ba)	8	Manganese (Mn)	40
Boron (B)	NA	Mercury (Hg)	0.0
Cadmium (Cd)	3	Molybdenum (Mo)	16
Chromium (Cr)	2	Nickel (Ni)	4
Chromium (Cr+6)	0	pH(units)	7.0
Cobalt (Co)	1	Selenium (Se)	0
Specific conductano	e	Vanadium (V)	2.7
(umhos/cm at 25°C		Temperature (°C)	24.5
Copper (Cu)	3	Zinc (Zn)	40
Iron (Fe)	5.800		70

LAKE PLACID

County: Highlands Population served: 1,400

River basin: Kissimmee River (09 01 01)

Ownership of supply or system: Municipal

Source of water: Surface water, Lake Sirena; ground water, Florida aquifer; 1 well,

1,680 feet deep; yield 3,000 gal/min; ground water 50 percent of supply

Rated plant capacity: 0.8 Mga1/d Pumpage: Year— 73.0 Mga1

mpage: Year— 73.0 Mgal

Highest month: Not reported

Average daily—0.2 Mgal

Lowest month: Not reported

Per capita use: 143 ga1/d

Finished-water storage: 0.1 Mgal

Treatment: Chlorination, stabilization, softening

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 0.15 Mgal/d in 1956 to 0.6 Mgal/d in 1970 then decreased to 0.2 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-22-75 SAMPLING POINT: 02270900, Lake Sirena at Lake Placid

Silica (SiO ₂)	.8	Dissolved solids	
Calcium (Ca)	8.5	(residue at 180°C)	102
Magnesium (Mg)	6.2	Total hardness	
Sodium (Na)	7.6	(as CaCO ₃)	47
Potassium (K)	4.1	Noncarbonate hardness	
Strontium (Sr)	.3	(as CaCO ₃)	42
Bicarbonate (HCO ₃)	6	Alkalinity (as CaCO3)	5
Sulfate (SO4)	38	pH (units)	7.5
Chloride (C1)	13	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	168
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.00	Temperature (°C)	32
Nitrogen, organic (N)	.39	Turbidity(JTU)	2
Nitrogen	124	Carbon, organic, total (C)	2
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.01	total (PO4-P)	.01
Phosphorus, total (P)	.02		

LAKE PLACID

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-22-75
SAMPLING POINT: Lake Sirena at Lake Placid

		Trace Elements	
Arsenic (As)	0	Manganese (Mn)	10
Barium (Ba)	0	Mercury (Hg)	.0
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr) <	<10	Zinc (Zn)	40
Copper (Cu)	1		
Iron (Fe)	10	pH(units)	7.5
Lead (Pb)	3	Temperature (°C)	32
		Pesticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.26
Heptachlor epoxi	de .00	2,4-DP	.00
70.75		2,4,5-T	.00

LAKE WORTH

County: Palm Beach Population served: 34,200

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer, 14 wells, 90 to 250 feet deep;

yield 392 to 1,461 gal/min

Rated plant capacity: 20 Mga1/d Pumpage: Year— 2,098.75 Mga1

mpage: Year— 2,098.75 Mgal

Highest month: April. 203.20

Average daily— 5.75 Mgal

Lowest month: October, 150.80 Mgal

Per capita use: 168 gal/d

Finished-water storage: 5.9 Mgal

Treatment: Chlorination, coagulation, sedimentation, softening

Type/Frequency of analysis: Bacteriological/monthly; chemical/semiannually; color/daily

Sewage discharge: 3.80^a/Mga1/d Sewage treatment: Aeration^b/

Waste discharged to: Atlantic Ocean

Remarks: Average daily pumpage increased from 3.50 Mgal/d in 1956 to 5.75 Mgal/d in 1975.

a/Includes 1.78 Mgal/d from Lantana, Palm Springs, Atlantis, South Palm Beach, and Palm Beach Junior College.

b/New process. Formerly reported comminution and chlorination.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-9-75
SAMPLING POINT: 263640080040601

Silica (SiO ₂)	6.5	Dissolved solids	
Calcium (Ca)	82	(residue at 180°C)	296
Magnesium (Mg)	2.6	Total hardness	
Sodium (Na)	14	(as CaCO ₃)	220
Potassium (K)	2.3	Noncarbonate hardness	
Strontium (Sr)	. 56	(as CaCO ₃)	42
Bicarbonate (HCO ₃)	212	Alkalinity (as CaCO3)	174
Sulfate (SO ₄)	32	pH (units)	7.6
Chloride (C1)	22	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	460
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	35
Nitrite (NO ₂ -N)	.00	Temperature (°C)	28
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.48	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	
Phosphorus, total (P)			

LANTANA

County: Palm Beach Population served: 8,900 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer; 4 wells, 60 to 80 feet deep; yield 620 to 980 gal/min

Rated plant capacity: 4.0 Mgal/d Pumpage: Year— 580.35 Mgal

Highest month: April, 59.0 Mgal Lowest month: July, 37.7 Mgal

Average daily—1.59 Mgal

Per capita use: 179 gal/d

Finished-water storage: 1.7 Mgal

Treatment: Aeration, sedimentation, filtration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical, color, turbidity/semiannually

Sewage discharge: 0.59 Mga1/d

Sewage treatment: a/

Waste discharged to: City of Lake Worth plant

Remarks: Average daily pumpage increased from 0.35 Mgal/d in 1956 to 1.59 Mgal/d in 1975.

a/ See Lake Worth (p. 207).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 263457080032201

Silica (SiO ₂)	5.3	Dissolved solids	
Calcium (Ca)	74	(residue at 180°C)	242
Magnesium (Mg)	1.7	Total hardness	242
Sodium (Na)	12	(as CaCO ₃)	190
Potassium (K)	2.1	Noncarbonate hardness	190
Strontium (Sr)	.62	(as CaCO ₃)	28
Bicarbonate (HCO3)	198	Alkalinity (as CaCO ₃)	- 5.50
Sulfate (SO ₄)	30	Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	162
Chloride (C1)	19	PH (units)	7.6
Fluoride (F)		Specific conductance	
	. 2	(umhos/cm at 25°C)	440
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	27
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.34	Orthophosphate	
Iron (Fe)	.88	total (PO4-P)	
Phosphorus, total (P)		104-1)	

LAUDERDALE LAKES

County: Population served: 24,000 Broward River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Broward County Utility Department Source of water: Ground water, Biscayne aquifer; 5 wells, 100 to 150 feet deep; vield 1,010 to 2,600 gal/min

Rated plant capacity: 4.53 Mga1/d. Pumpage: Year- 1,095.0 Mgal

Average daily 3.5a/ Mga1 Highest month: April, 136 Mgal Lowest month: September, 81 Mgal

Per capita use: 125 ga1/d

Finished-water storage: 2.5 Mga1

Aeration, chlorination, filtration, coagulation, flocculation, taste and odor control, fluoridation, algae control, clarification, sedimentation softening, stabilization

Type/Frequency of analysis: Bacteriological/monthly; chemical, color, turbidity/ daily; spectrographic/annually

Sewage discharge: 2.5 Mga1/d

Sewage treatment: Activated sludge chlorination, drying, primary, secondary

Waste discharged to: Regional waste water treatment plant

Remarks: No chemical analysis available. a/ Includes 0.15 Mgal/d commercial use.

LAUDERHILL

County: Broward Population served: 26,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 6 wells, 120 to 150 feet deep; yield 1,000 to 2,800 gal/min

Rated plant capacity: 11 Mga1/d

Pumpage: Year— 1,277.50 Mga1 Average daily— 3.50^a/ Mga1

Highest month: April, 150.0 Mgal Lowest month: October, 77.5 Mgal

Per capita use: 135 gal/d

Finished-water storage: 4.25 Mgal

Treatment: Chlorination, filtration, fluoridation, softening, taste and odor

control

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually

Sewage discharge: 3.0 Mga1/d

Sewage treatment: Primary, secondary, chlorination, activated sludge, comminution,

digestion, grit chambers

Waste discharged to: Canal to evaporation - percolation ponds. Dried sludge is land disposed.

Remarks:

a/ Includes 0.10 Mgal/d industrial use, 0.42 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 260909080130401, Lauderhill water plant

Silica (SiO ₂)	9.4	Dissolved solids	
Calcium (Ca)	98	(residue at 180°C)	358
Magnesium (Mg)	1.8	Total hardness	
Sodium (Na)	15	(as CaCO ₃)	250
Potassium (K)	.8	Noncarbonate hardness	
Strontium (Sr)	.7	(as CaCO ₃)	11
Bicarbonate (HCO ₃)	291	Alkalinity (as CaCO3)	239
Sulfate (SO ₄)	12	pH (units)	7.6
Chloride (C1)	27	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	565
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	110
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	1.7	total (PO4-P)	
Phosphorus, total (P)			

LEHIGH ACRES

County: Lee Population served: 13,500

River basin: Caloosahatchee River (09 02 05)

Ownership of supply or system: Lehigh Utilities, Inc.

Source of water: Ground water, sandstone aquifer in Tamiami Formation,

9 wells, 57 to 86 feet deep

Rated plant capacity: 1.8 Mgal/d

Pumpage: Year— 213.60 Mga1 Average daily—0.59 Mga1

Highest month: March, 20.7 Mgal Lowest month: August, 15.1 Mgal

Per capita use: 44 gal/d Finished-water storage: 1 Mgal

Treatment: Softening, aeration, filtration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical, color/daily

Sewage discharge: 0.58 Mgal/d

Sewage treatment: Contact stabilization, retention ponds

Waste discharged to: Retention ponds

Remarks: Average daily pumpage increased from 0.38 Mgal/d in 1970 to 0.59 Mgal/d in 1975. Service connections: domestic 4,037; undifferentiated 406. 0'Donnell (1975, 1977).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 SAMPLING POINT: 263624081380602, Lehigh Acres Water plant 2

Silica (SiO ₂)	17	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	486
Magnesium (Mg)	14	Total hardness	
Sodium (Na)	41	(as CaCO ₃)	330
Potassium (K)	1.3	Noncarbonate hardness	
Strontium (Sr)	.45	(as CaCO ₃)	30
Bicarbonate (HCO3)	368	Alkalinity (as CaCO3)	302
Sulfate (SO4)	10	pH (units)	7.7
Chloride (C1)	76	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	835
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	35
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic	(N) .35	Turbidity(JTU)	2
Nitrogen		Carbon, organic, total (C)	8
(ammonia, total	(NH4-N)).42	Orthophosphate	
Iron (Fe)		total (PO4-P)	.01
Phosphorus, total	(P) .02	SAR	. 84

LEHIGH ACRES

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 SAMPLING POINT: 263624081380602, Water Plant 2

Aluminum (A1)	0	Lead (Pb)	1
Arsenic (As)	2	Lithium (Li)	1
Barium (Ba)		Manganese (Mn)	10
Boron (B)		Mercury (Hg)	.1
Cadmium (Cd)	1	Molybdenum (Mo)	0
Chromium (Cr)	0	Nickel (Ni)	1
Chromium (Cr+6)	0	pH(units)	7.1
Cobalt (Co)	0	Selenium (Se)	
Specific conductance		Vanadium (V)	1.3
(umhos/cm at 25°C)	830	Temperature (°C)	25.5
Copper (Cu)	0	Zinc (Zn)	8
Iron (Fe)	220	1989 S.	

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-20-75 SAMPLING POINT: 263624081380601, Lehigh Acres Water Plant 1 well

Silica (SiO ₂)	18	Dissolved solids	
Calcium (Ca)	130	(residue at 180°C)	786
Magnesium (Mg)	24	Total hardness	
Sodium (Na)	110	(as CaCO ₃)	430
Potassium (K)	2.4	Noncarbonate hardness	
Strontium (Sr)	5.2	(as CaCO ₃)	130
Bicarbonate (HCO ₃)	367	Alkalinity (as CaCO ₃)	301
Sulfate (SO4)	68	pH (units)	7.7
Chloride (C1)	220	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	1300
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	20
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.32	Turbidity(JTU)	5
Nitrogen	.32	Carbon, organic, total (C)	5
(ammonia, total (NH4-N))	.5	Orthophosphate	
Iron (Fe)	.43	total (PO4-P)	.00
Phosphorus, total (P)	.02		

LEHIGH ACRES

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geol SAMPLING POINT: Lehig		COLLECTION DATE: Plant 1 well	5-20-75
Aluminum (A1)	0	Lead (Pb)	8
Arsenic (As)	2	Lithium (Li)	4
Barium (Ba)	0	Manganese (Mn)	10
Boron (B)		Mercury (Hg)	.1
Cadmium (Cd)	1	Molybdenum (Mo)	1
Chromium (Cr)	0	Nickel (Ni)	1
Chromium (Cr+6)	0	pH(units)	7.2
Cobalt (Co)	0	Selenium (Se)	
Specific conductance		Vanadium (V)	6.7
(umhos/cm at 25°C)	1280	Temperature (°C)	25
Copper (Cu)	0	Zinc (Zn)	5
Iron (Fe)	520	and the seconds	

MANATEE COUNTY WATER SYSTEM

Population served: 55,000 County: Manatee

River basin: Little Manatee River Basin (10 02 03)

Ownership of supply or system: Manatee County Source of water: Surface water, Manatee River

Rated plant capacity: 27 Mga1/d Pumpage: Year- 3,613.5 Mgal

Average daily-9.9ª/ Mgal Highest month: May, 418.50 Mgal Lowest month: August, 261.49 Mgal

Per capita use: 180 ga1/d

Finished-water storage: Not reported

Treatment: Not reported

Type/Frequency of analysis: Not reported

Sewage discharge: 4.5b/ Mga1/d Sewage treatment: Not reported

Waste discharged to: Not reported

Remarks: County system supplies all water to: Palmetto; Holmes Beach; Longboat Key; Anna Maria; Bradenton Beach. City of Bradenton partially supplied by the Manatee County Water System (p. 173).

a/ Additional 6.0 Mgal/d supplied for industrial use (Borden Chemical Co.) \overline{b} / New 9 Mgal/d sewage treatment plant in operation. November 1975. CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75 SAMPLING POINT: 272935082212000, Lake Manatee, raw intake SE

Silica (SiO ₂)	1.6	Dissolved solids	
Calcium (Ca)	15	(residue at 180°C)	138
Magnesium (Mg)	8.3	Total hardness	
Sodium (Na)	8	(as CaCO ₃)	72
Potassium (K)	3	Noncarbonate hardness	
Strontium (Sr)	.65	(as CaCO ₃)	36
Bicarbonate (HCO3)	44	Alkalinity (as CaCO ₃)	36
Sulfate (SO4)	31	pH (units)	7.0
Chloride (C1)	14	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	198
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	60
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.01	Turbidity(JTU)	5
Nitrogen		Carbon, organic, total (C)	5 9
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.08	total (PO4-P)	.11
Phosphorus, total (P)	.16	2022 (104-1)	

MANATEE COUNTY WATER SYSTEM

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75 SAMPLING POINT: 272935082212000, Lake Manatee, raw intake SE

		Trace Elements	
Arsenic (As)	0	Manganese (Mn)	30
Barium (Ba)	0	Mercury (Hg)	.0
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr)	20	Zinc (Zn)	10
Copper (Cu)	5		
Iron (Fe)	730	pH(units)	7.4
Lead (Pb)	12	Temperature (°C)	30
		Pesticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.00
Heptachlor epoxide	.00	2,4-DP	.00
		2,4,5-T	.00

MARGATE

County: Broward Population served: 25,000

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer, 8 wells, average 100 feet deep; yield 800 to 1,500 gal/min.

Rated plant capacity: 10 Mga1/d Pumpage: Year—2,190.0 Mga1 Highest month: April, 203 Mga1

Average daily— 6.0ª/ Mga1

Lowest month: June, 135 Mgal

Per capita use: 240 gal/d Finished-water storage: 3 Mgal

Treatment: Chlorination, clarification, filtration, softening, pH control

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually

Sewage discharge: 3.5 Mgal/d

Sewage treatment: Activated sludge, chlorination, comminution, filtration, grit chamber, settling, primary, secondary.

Waste discharged to: Ground, deep injection well (3,300 feet deep)

Remarks: Water supplied to Collier County (partial) and Coconut Creek south of Parkway.

<u>a</u>/ Includes 0.12 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 261424080124402

Silica (SiO ₂)	10	Dissolved solids	
Calcium (Ca)	130	(residue at 180°C)	480
Magnesium (Mg)	2.3	Total hardness	(1) T. F.
Sodium (Na)	30	(as CaCO ₃)	340
Potassium (K)	.9	Noncarbonate hardness	
Strontium (Sr)	1.6	(as CaCO ₃)	42
Bicarbonate (HCO3)	363	Alkalinity (as CaCO ₃)	297
Sulfate (SO4)	28	pH (units)	7.7
Chloride (C1)	53		
Fluoride (F)	.4	Specific conductance (umhos/cm at 25°C)	765
Nitrate (NO ₃ -N)	.01		35
Nitrite (NO2-N)	.00	Color (Pt-Co units) Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		네트 경기가 되었다. 아이에 얼마나에 맞아 하는 이 얼마나 아니까지 그래요. 그 아이는 그래요. 이번 다음을 되었다. 그	
(ammonia, total (NH4-N))	.53	Carbon, organic, total (C)	
Iron (Fe)	.47	Orthophosphate	
Phosphorus, total (P)		total (PO4-P)	1775

MIAMI

County: Dade Population served: 1,210,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Miami-Dade Water and Sewer Authority Source of water: Ground water, Biscayne aquifer, 50 wells, 55 to 110 feet deep; yield 4,000 to 7,000 gal/min. Three plants (well fields) Orr, Preston, and Hialeah.

Rated plant capacity: 230 Mga1/d (3 plants)

Pumpage: Year— 68,875.5 Mgal Average daily— 188.7 Mgal

Highest month: April, 6,393 Mgal Lowest month: February, 5,341.3 Mgal

Per capita use: 156 ga1/d

Finished-water storage: 33 Mgal

Treatment: Chlorination, filtration, stabilization, fluoridation, softening,

recarbonation and pH control

Type/Frequency of analysis: Bacteriological, color, turbidity/weekly2/; Pesticides, herbicides, radio-chemical, nutrients/semiannually

Sewage discharge: 64.7 Mgal/d

Sewage treatment: Activated sludge, aeration, chlorination, digestion, grit chambers, primary, secondary.

Waste discharged to: Atlantic Ocean

Remarks: Water supplied to Bay Harbor Islands, Coral Gables, Hialeah, El Portal Key Biscayne, Miami Shores, Medley, Indian Creek Village, Miami International Airport, Miami Springs, North Bay Village, South Miami, Surfside, Virginia Gardens, Sweetwater, West Miami, parts of unincorporated areas in Dade Co. (fig. 26). Total yearly pumpage 1940-75 is shown on fig. 27. Leach and others (1972), a/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 254950080171201, Preston Water Plant

Silica (SiO ₂)	7	Dissolved solids	
Calcium (Ca)	90	(residue at 180°C)	394
Magnesium (Mg)	5.4	Total hardness	
Sodium (Na)	38	(as CaCO ₃)	250
Potassium (K)	3	Noncarbonate hardness	
Strontium (Sr)	.87	(as CaCO ₃)	27
Bicarbonate (HCO3)	272	Alkalinity (as CaCO3)	223
Sulfate (SO4)	28	pH (units)	7.6
Chloride (C1)	57	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	663
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	55
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen	1.1	Carbon, organic, total (C)	
(ammonia, total (NH4-N))	1.1	Orthophosphate	
Iron (Fe)	.90	total (PO4-P)	
Phosphorus, total (P)		3 11 11 2310 231	

IMAIM

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 254231080201001, Orr Water Plant

Silica (SiO ₂)	4.3	Dissolved solids	
Calcium (Ca)	92	(residue at 180°C)	322
Magnesium (Mg)	3.2	Total hardness	
Sodium (Na)	16	(as CaCO ₃)	240
Potassium (K)	1.7	Noncarbonate hardness	
Strontium (Sr)	.74	(as CaCO ₃)	28
Bicarbonate (HCO3)	259	Alkalinity (as CaCO3)	212
Sulfate (SO4)	28	pH (units)	7.5
Chloride (C1)	25	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	540
Nitrate (NO3-N)	.25	Color (Pt-Co units)	5
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	
Phosphorus, total (P)			

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 261044080092001, Prospect Water Plant

Silica (SiO ₂)	9.7	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	388
Magnesium (Mg)	2.8	Total hardness	
Sodium (Na)	19	(as CaCO ₃)	260
Potassium (K)	1.5	Noncarbonate hardness	
Strontium (Sr)	.78	(as CaCO ₃)	15
Bicarbonate (HCO3)	299	Alkalinity (as CaCO3)	245
Sulfate (SO4)	26	pH (units)	7.4
Chloride (C1)	33	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	619
Nitrate (NO3-N)	.01	Color (Pt-Co units)	45
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic	(N)	Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total	$(NH_4-N))$.63	Orthophosphate	
Iron (Fe)	1.8	total (PO4-P)	
Phosphorus, total	(P)	W	

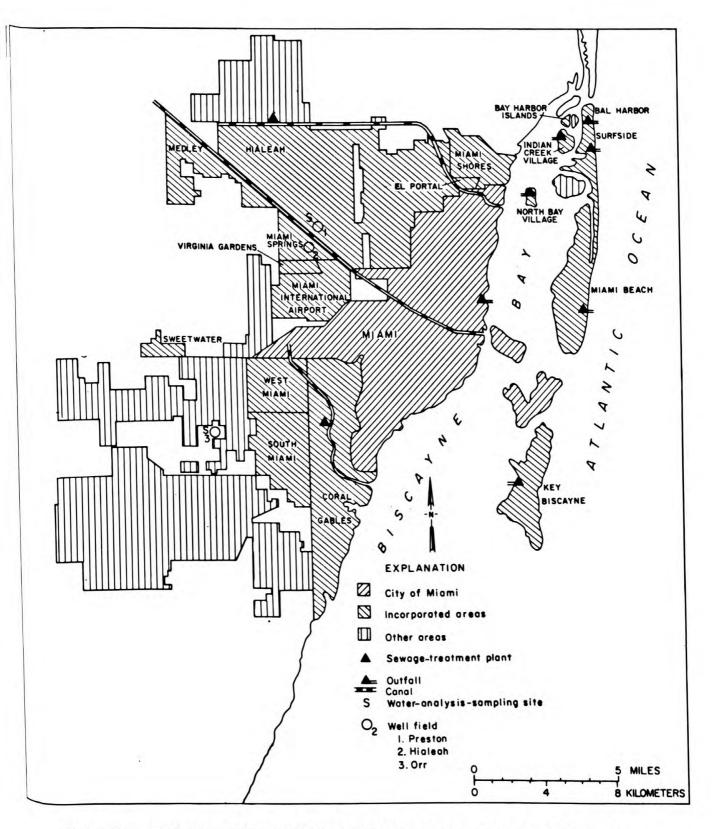


Figure 26.--Municipalities served by the Miami-Dade Water and Sewer Authority.

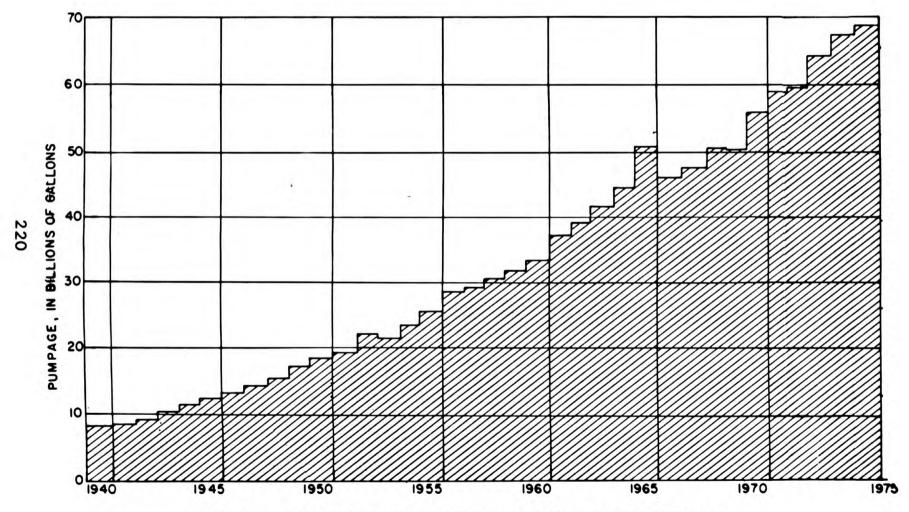


Figure 27.--Total yearly pumpage, Miami-Dade Water and Sewer Authority.

MIRAMAR

County: Broward Population served: 33,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 9 wells, 110 to 120 feet deep; yield 400 to 1,250 gal/min.

Rated plant capacity: 6.3 Mga1/d Pumpage: Year—1,277.50 Mga1

npage: Year—1,277.50 Mgal

Highest month: March, 94.8 Mgal

Lowest month: September, 69.9 Mgal

Per capita use: 106 gal/d

Finished-water storage: 1.57 Mgal

Treatment: Chlorination, coagulation, filtration, softening

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually

Sewage discharge: 3.25 Mga1/d

Sewage treatment: Activated sludge, aeration, chlorination, drying, filtration, grit chamber, primary, secondary, settling, polishing pond.

Waste discharged to: Aeration ponds, Turnpike Canal, Snake Creek Canal. Dried sludge is land disposed.

Remarks: Average daily pumpage increased from 0.06 Mgal/d in 1956 to 3.50 Mgal/d in 1975. Septic tanks in use. Sherwood and others (1973).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 255918080131701, Mirimar Water Plant

Silica (SiO ₂)	8.3	Dissolved solids	
Calcium (Ca)	94	(residue at 180°C)	350
Magnesium (Mg)	5.2	Total hardness	
Sodium (Na)	14	(as CaCO ₃)	260
Potassium (K)	1.3	Noncarbonate hardness	
Strontium (Sr)	.79	(as CaCO ₃)	30
Bicarbonate (HCO ₃)	280	Alkalinity (as CaCO3)	230
Sulfate (SO4)	22	pH (units)	7.8
Chloride (C1)	22	Specific conductance	40.7
Fluoride (F)	.4	(umhos/cm at 25°C)	549
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	80
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	1.0	Orthophosphate	
Iron (Fe)	1.2	total (PO4-P)	
Phosphorus, total (P)			

MOORE HAVEN

County: Glades Population served: 1,200

River basin: Caloosahatchee River (09 02 05)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer in Tamiami Formation;

four wells, 85 to 110 feet deep; yield to 100 gal/min

Rated plant capacity: 0.6 Mga1/d

Pumpage: Year-52.93 Mgal

Highest month: December, 6.90 Mgal

Average daily = 0.14 Mga1

Lowest month: May, 3.68 Mgal

Per capita use: 117 gal/d

Finished-water storage: 0.1 Mgal

Treatment: Aeration, chlorination, filtration, softening, taste and odor control, stabilization, pH control, algae control, anti-precipitation and corrosion control

Type/Frequency of analysis: Bacteriological/monthly; chemical/intermittently

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground

Remarks: Average daily pumpage increased from 0.09 Mgal/d in 1956 to 0.16 Mgal/d in 1970. During 1970-75, pumpage decreased 0.02 Mgal/d.

a/ Includes 0.02 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-22-75
SAMPLING POINT: 265030081053001

11	Dissolved solids	
120	(residue at 180°C)	674
13	Total hardness	
56	(as CaCO ₂)	350
6		
1		58
326		292
110		6.8
71		
.3		1,040
.00		120
.01		
1.8		5
		23
2.0	그 아이들	77
1.2		.04
.04		-
	120 13 56 6 1 326 110 71 .3 .00 .01 1.8	120 (residue at 180°C) 13 Total hardness 56 (as CaCO ₃) 6 Noncarbonate hardness 1 (as CaCO ₃) 326 Alkalinity (as CaCO ₃) 110 pH (units) 71 Specific conductance .3 (umhos/cm at 25°C) Color (Pt-Co units) Temperature (°C) 1.8 Turbidity(JTU) Carbon, organic, total (C) 2.0 Orthophosphate 1.2 total (PO4-P)

NAPLES

County: Collier Population served: 45,192
River basin: Big Cypress Swamp and southwestern coastal area (09 02 04)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow sand aquifers, 41 wells, 60 to 100 feet deep; yield 350 gal/min

Rated plant capacity: 23 Mga1/d Pumpage: Year—3,624.79 Mga1 Highest month: March, 383 Mga1

Average daily—9.98^a/Mgal
Lowest month: September, 207 Mgal

Per capita use: 220 ga1/d Finished-water storage: 5.75 Mga1

Treatment: Chlorination, softening, coagulation, filtration, sedimentation, stabilization, flocculation, fluoridation

Type/Frequency of analysis: Bacteriological/weekly; chemical, spectrographic,
 color, turbidity/quarterly

Sewage discharge: 2.9 Mgal/d

Sewage treatment: Activated sludge, extended aeration, chlorination, drying, clarification, polishing pond, comminution, digestion, grit chambers, settling, skimming

Waste discharged to: Polishing ponds, Naples Bay

Remarks: Average daily pumpage increased from 0.70 Mgal/d in 1956 to 9.93 Mgal/d in 1975. Total service connections, 12,912. City supplied water to North Naples, East Naples, and Lely Estates. Klein (1972), McCoy (1972, 1973, 1974, 1975).

a/ Includes 2.5 Mgal/d, lawn sprinkling, 0.025 Mgal/d each industrial, commercial, and air conditioning use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-5-75 SAMPLING POINT: 261002081475201, Naples Water Plant

Silica (SiO ₂)	11	Dissolved solids	
Calcium (Ca)	120	(residue at 180°C)	586
Magnesium (Mg)	9	Total hardness	
Sodium (Na)	63	(as CaCO ₃)	340
Potassium (K)	2	Noncarbonate hardness	
Strontium (Sr)	.31	(as CaCO ₃)	110
Bicarbonate (HCO ₃)	281	Alkalinity (as CaCO ₃)	231
Sulfate (SO4)	47	pH (units)	7.6
Chloride (C1)	130	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	927
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	25
Nitrite (NO2-N)	.00	Temperature (°C)	25
Nitrogen, organic (N)		Turbidity(JTU)	
		Carbon, organic, total (C)	
Nitrogen (ammonia, total (NH4-N))	.43	Orthophosphate	
	.38		
Iron (Fe)	.30	total (PO4-P)	-
Phosphorus, total (P)			

NORTH FT. MYERS (WATERWAY ESTATES)

County: Lee Population served: 5,300

River basin: Caloosahatchee River (09 02 05)

Ownership of supply or system: Florida Cities Water Company

Source of water: Ground water, water-table aquifer, 6 wells, 20 to 49 feet deep; yield 20 gal/min each well; aquifer in the Hawthorn Formation; 3

wells, 119 to 236 feet deep Rated plant capacity: 0.7 Mgal/d

Pumpage: Year— 176.30 Mgal Average daily— 0.48 Mgal

Highest month: April, 18.4 Mgal Lowest month: August, 11.9 Mgal

Per capita use: 91 gal/d

Finished-water storage: 0.17 Mgal

Treatment: Aeration, chlorination, filtration, sedimentation, softening,

coagulation, stabilization

Type/Frequency of analysis: Bacteriological/biweekly; chemical/daily;

fecal coliforms, total solids, BOD/quarterly

Sewage discharge: 0.32 Mga1/d

Sewage treatment: Activated sludge, chlorination, aeration, digestion,

settling

Raw water intake

Waste discharged to: Pond to Caloosahatchee River

Remarks: Service connections: domestic, 1,515; commercial, 30.

Boggess (1970), O'Donnell (1977).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 8-11-75 SAMPLING POINT: 263857081550201, composite, Waterway Estates Plant,

Silica (SiO ₂)		11	D411 111	
		14 -	Dissolved solids	223
Calcium (Ca)		100	(residue at 180°C)	506
Magnesium (Mg)		14	Total hardness	
Sodium (Na)		44	(as CaCO ₃)	310
Potassium (K)		1.5	Noncarbonate hardness	
Strontium (Sr)		.41	(as CaCO ₃)	86
Bicarbonate (HCO ₃)		271	Alkalinity (as CaCO3)	222
Sulfate (SO ₄)		35	pH (units)	7.0
Chloride (C1)		91	Specific conductance	
Fluoride (F)		.4	(umhos/cm at 25°C)	760
Nitrate (NO ₃ -N)		.01	Color (Pt-Co units)	75
Nitrite (NO2-N)		.00	Temperature (°C)	27.5
Nitrogen, organic (N)	.4	Turbidity(JTU)	8
Nitrogen		0.40	Carbon, organic, total (C)	7
(ammonia, total (NH4-N))	.27	Orthophosphate	4.0
Iron (Fe)	107. VAE	.94	total (PO4-P)	.04
Phosphorus, total (P)	.04		
			SAR	1.1

NORTH FT. MYERS (WATERWAY ESTATES)

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

	Geological Survey Raw water intake	COLLECTION DATE:	8-11-75
Aluminum (Al)	20	Lead (Pb)	12
Arsenic (As)	0	Lithium (Li)	4
Barium (Ba)	100	Manganese (Mn)	10
Baron (B)	90	Mercury (Hg)	.1
Cadmium (Cd)	1	Molybdenum (Mo)	0
Chromium (Cr)	1	Nickel (Ni)	0
Chromium (Cr+6)	0	pH(units)	7
Cobalt (Co)	0	Selenium (Se)	0
Specific conductance		Vanadium (V)	6.9
(umhos/cm at 25°C)		Temperature (°C)	27.5
Copper (Cu)	1	Zinc (Zn)	10
Iron (Fe)			
Carbon Dioxide	43		

NORTH MIAMI

County: Dade Population served: 65,000

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 15 wells, 50 to 100 feet deep; (1) Eastside plant and (2) westside plant; total yield about

9,230 gal/min

Rated plant capacity: 10 Mga1/d

Pumpage: Year-4,131.80 Mgal Average daily-11.32 Mgal

Highest month: (1) May, 187.27 Mgal

(2) March, 208.0 Mgal

(2) July, 170.5 Mgal

(2) July, 170.5 Mgal

Per capita use: 174 gal/d

Finished-water storage: 1.66 Mgal

Treatment: Aeration, chlorination, softening, coagulation, filtration,

fluoridation

Type/Frequency of analysis: Bacteriological/weekly; chemical/hourly;

photometric/daily

Sewage discharge: 33.3^a/ Mga1/d

Sewage treatment: Primary

Waste discharged to: Ocean

Remarks: Average daily pumpage increased from 4.50 Mgal/d in 1956 to 11.32 Mgal/d in 1975.

a/ Includes sewage discharge from North Miami Beach.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 255306080150401, West Side Plant

Silica (SiO ₂)	5.5	Dissolved solids	
Calcium (Ca)	92	(residue at 180°C)	334
Magnesium (Mg)	2.7	Total hardness	
Sodium (Na)	20	(as CaCO ₃)	240
Potassium (K)	2.6	Noncarbonate hardness	
Strontium (Sr)	.75	(as CaCO ₃)	32
Bicarbonate (HCO3)	254	Alkalinity (as CaCO3)	208
Sulfate (SO ₄)	42	pH (units)	7.8
Chloride (C1)	29	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	572
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	35
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.23	Orthophosphate	
Iron (Fe)	1.2	total (PO4-P)	
Phosphorus, total (P)			

NORTH MIAMI BEACH

County: Dade Population served: 165,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 36 wells, 50 to 141 feet deep; Total yield 33,720 gal/min. three water plants and well fields:

(1) Myrtle Grove; (2) Norwood (Oeffler); (3) Sunny Isles

Rated plant capacity: 29.6 Mgal/d

Pumpage: Year-9,176.10 Mgal Average daily-25.14^a/Mgal

Highest month: (1) May, 174 b/ Mgal
(2) March, 361.7 Mgal
(2) August, 211.4 Mgal

Per capita use: 152 ga1/d

Finished-water storage: 6.2 Mga1

Treatment: Chlorination, filtration, coagulation, softening, recarbonation,

sedimentation

Type/Frequency of analysis: Bacteriological/monthly; chemical/daily; spectrographic annually

Sewage discharge: ,Unmetered

Sewage treatment:

Waste discharged to: North Miami sewer system

Remarks: Average daily pumpage increased from 2.80 Mgal.d in 1956 to 25.14 Mgal/d in 1975.

- a/ Pumpage: Myrtle Grove, 5.09 Mgal/d; Norwood, 9.19 Mgal/d; Sunny Isles, 10.86 Mgal/d.
- \underline{b} / Highest (3) April, 373.2 Mgal. Lowest (3) October, 304.4 Mgal.

c/ No treatment by North Miami Beach.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 255710080124902, Norwood Water Plant

Silica (SiO ₂)	7	Dissolved solids	
Calcium (Ca)	92	(residue at 180°C)	330
Magnesium (Mg)	4.1	Total hardness	
Sodium (Na)	22	(as CaCO ₃)	250
Potassium (K)	2.2	Noncarbonate hardness	
Strontium (Sr)	.45	(as CaCO ₂)	35
Bicarbonate (HCO ₃)	262	Alkalinity (as CaCO ₃)	215
Sulfate (SO4)	26	pH (units)	7.6
Chloride (C1)	32	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	549
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	55
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.41	Orthophosphate	
Iron (Fe)	.47	total (PO4-P)	
Phosphorus, total (P)		, , , , , , , , , , , , , , , , , , ,	

NORTH MIAMI BEACH

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 255521080092502, Sunny Isles Water Plant

Silica (SiO ₂)	7	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	366
Magnesium (Mg)	4	Total hardness	
Sodium (Na)	24	(as CaCO ₃)	270
Potassium (K)	.7	Noncarbonate hardness	
Strontium (Sr)	.36	(as CaCO ₃)	40
Bicarbonate (HCO ₃)	281	Alkalinity (as CaCO3)	230
Sulfate (SO ₄)	32	pH (units)	7.6
Chloride (C1)	37	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	613
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	55
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.70	Orthophosphate	
Iron (Fe)	1.1	total (PO4-P)	
Phosphorus, total (P)			

NORTH PALM BEACH

County: Palm Beach Population served: 22,700 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Palm Beach County Utilities, Inc. Source of water: Ground water, Biscayne aquifer; 17 wells, 60 to 196 feet deep; yield 300 to 700 gal/min. Two well fields

Rated plant capacity: 9 Mga1/d Pumpage: Year—1,850.55 Mga1

mpage: Year—1,850.55 Mga1 Average daily—5.07 Mga1
Highest month: August, 207.1 Mga1 Lowest month: June, 119.2 Mga1

Lowest month: June, 119.2 mgal

Per capita use: 223 ga1/d

Finished-water storage: 1.55 Mgal

Treatment: Aeration, coagulation, filtration, sedimentation, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/semiannually;

chemical (partial analysis), color, turbidity/daily

Sewage discharge: 3.1 Mga1/d Sewage treatment: Secondary

Waste discharged to: Earman River

Remarks: Average daily pumpage increased from 3.78 Mgal/d in 1970 to 5.07 Mgal/d in 1975. Water supplies to Juno Isles, Lake Park, Lost Tree Village. Treats part of Lake Park sewage.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 264850080045701

Silica (SiO ₂)	13	Dissolved solids	
Calcium (Ca)	98	(residue at 180°C)	408
Magnesium (Mg)	6.1	Total hardness	
Sodium (Na)	36	(as CaCO ₃)	270
Potassium (K)	1.2	Noncarbonate hardness	
Strontium (Sr)	1.4	(as CaCO ₃)	10
Bicarbonate (HCO3)	317	Alkalinity (as CaCO ₃)	260
Sulfate (SO4)	5.4	pH (units)	7.4
Chloride (C1)	60	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	650
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	30
Nitrite (NO2-N)	.00	Temperature (°C)	25.5
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	1.2	Orthophosphate	
Iron (Fe)	.2	total (PO4-P)	
Phosphorus, total (P)		(4 -)	

NORTH PORT CHARLOTTE

County: Sarasota Population served: 5,000

River basin: Myakka River (10 01 02)

Ownership of supply or system: General Development Utilities, Inc. Source of water: Surface water, Myakka-Hatchee River (Big Slough)

Rated plant capacity: 4.4 Mga1/d
Pumpage: Year—359.11 Mga1

Average daily— 0.98a/Mga1

Highest month: April, 53.53 Mgal Lowest month: August, 18.87 Mgal

Per capita use: 196 gal/d

Finished-water storage: 0.2 Mgal

Treatment: Chlorination, softening, coagulation, filtration, taste

and odor control, pH control

Type/Frequency of analysis: Bacteriological/weekly, chemical/monthlyb/;

Bacteriological/bimonthly^C/
Sewage discharge: 0.37 Mgal/d

Sewage treatment: Contact stabilization, polishing ponds

Waste discharged to: Drainfield, irrigation system

Remarks: Average daily pumpage increased from 0.25 Mgal/d in 1970 to 0.98 Mgal/d in 1975. Water supplied to Harbor Cove Trailer Park and El Jobean. Sutcliffe (1975).

a/ Includes 0.132 Mgal/d commercial use 0.094 Mgal/d other public supply.

b/ Treated water.

c/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: 270242082142401, composite raw water

Silica (SiO ₂)	.3	Dissolved solids	
Calcium (Ca)	64	(residue at 180°C)	420
Magnesium (Mg)	12	Total hardness	
Sodium (Na)	37	(as CaCO ₃)	210
Potassium (K)	1.2	Noncarbonate hardness	
Strontium (Sr)	.92	(as CaCO ₃)	110
Bicarbonate (HCO3)	115	Alkalinity (as CaCO ₃)	94
Sulfate (SO4)	99	pH (units)	7.7
Chloride (C1)	68	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	639
Nitrate (NO ₃ -N)	.04	Color (Pt-Co units)	75
Nitrite (NO2-N)	.02	Temperature (°C)	
Nitrogen, organic (N)	.87	Turbidity (JTU)	25
Nitrogen		Carbon, organic, total (C)	9
(ammonia, total (NH4-N))	.16	Orthophosphate	
Iron (Fe)	.14	total (PO4-P)	.12
Phosphorus, total (P)	.15		•••

NORTH PORT CHARLOTTE

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: Composite raw water

	Trac	ce Elements	
Arsenic (As)	3	Manganese (Mn)	10
Barium (Ba)	0	Mercury (Hg)	.1
Cadmium (Cd)	1	Selenium (Se)	0
Chromium (Cr)	<10	Zinc (Zn)	180
Copper (Cu)	78	,	
Iron (Fe)	950	pH(units)	
Lead (Pb)	4	Temperature (°C)	
	Pe	esticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.02
Heptachlor epoxide	.00	2,4-DP	.00
Series Constitution of Paris Alberta		2,4,5-T	.00

OAKLAND PARK

County: Broward Population served: 29,000

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: All water purchased from Ft. Lauderdale Five Ash water

plant; ground water, Biscayne aquifer

Rated plant capacity: a/

Pumpage: Year-1,277.50 Mgal

Highest month: Not reported

Average daily— 3.50b/Mga1
Lowest month: Not reported

Per capita use: 121 ga1/d Finished-water storage: a/ Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 3.2 Mga1/d

Sewage treatment: Aeration, chlorination, activated sludge, clarification,

filtration, drying, settling, primary, secondary

Waste discharged to: Canal C-14 (Middle River). Sludge is vacuum dried and

land disposed

Remarks: Average daily pumpage increased from 0.16 Mgal/d in 1956 to 3.50 Mgal/d in 1975. City supplies water to North Andrews and Prospect Gardens. For chemical analysis of water supplied, see Ft. Lauderdale.

a/ See Ft. Lauderdale (p. 187).

b/ Includes 1.05 Mgal/d commercial use.

OKEECHOBEE

County: Okeechobee Population served: 8,225 River basin: Taylor Creek and inflow to Lake Okeechobee from north

Ownership of supply or system: Municipal

Source of water: Surface water, Lake Okeechobee

Rated plant capacity: 2.88 Mga1/d

Average daily-1.04a/ Mgal Pumpage: Year-380.44 Mgal

Highest month: April, 37.6 Mgal Lowest month: July, 27.8 Mgal

Per capita use: 126 gal/d

Finished-water storage: 1.5 Mgal

Treatment: Aeration, chlorination, clarification, coagulation, filtration,

flocculation, pH control, sedimentation, softening

Type/Frequency of analysis: Bacteriological/monthly; chemical. color, turbidity/ daily

0.12 Mga1/d Sewage discharge:

Activated sludge, aeration, chlorination, clarification, Sewage treatment: contact stabilization, diffused air, digestion, grit chambers, settling,

primary, secondary

Waste discharged to: Taylor Creek

Remarks: Average daily pumpage increased from 0.26 Mgal/d in 1956 to 1.04 Mgal/d in 1975. Water supplied to Okeechobee Beach Water Association.

a/ Includes 0.104 Mgal/d commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-22-75 SAMPLING POINT: 02276400

Silica (SiO ₂)	1.3	Dissolved solids	
Calcium (Ca)	32	(residue at 180°C)	294
Magnesium (Mg)	11	Total hardness	
Sodium (Na)	37	(as CaCO ₃)	130
Potassium (K)	3.4	Noncarbonate hardness	
Strontium (Sr)	.96	(as CaCO ₃)	46
Bicarbonate (HCO3)	102	Alkalinity (as CaCO ₃)	84
Sulfate (SO4)	39	pH (units)	8.5
Chloride (C1)	58	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	450
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	110
Nitrite (NO2-N)	.01	Temperature (°C)	30
Nitrogen, organic (N)	1.4	Turbidity(JTU)	7
Nitrogen		Carbon, organic, total (C)	21
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.02
Phosphorus, total (P)	.04	and the second of the second	

OKEECHOBEE

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-22-75 SAMPLING POINT: 02276400

	Trac	e Elements	
Arsenic (As)	1	Manganese (Mn)	10
Barium (Ba)	0	Mercury (Hg)	.1
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr)	<10	Zinc (Zn)	30
Copper (Cu)	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Iron (Fe)	200	pH(units)	8.5
Lead (Pb)	1	Temperature (°C)	30
	Pe	sticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.16
Heptachlor epoxide	.00	2,4-DP	.00
		2.4.5-T	.00

OPA-LOCKA

County: Dade Population served: 16,000

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aguifer, 6 wells, 50 to 100 feet

deep; total yield 4,750 gal/min

Rated plant capacity: 2.5 Mga1/d

Pumpage: Year-1,200.85 Mgal Average daily- 3.29 Mgal

Highest month: October, 120.9 Mgal Lowest month: January, 84.6 Mgal

Per capita use: 206 gal/d

Finished-water storage: 0.9 Mga1

Treatment: Aeration, chlorination, softening, coagulation, filtration,

stabilization, taste and odor control

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually

Sewage discharge: 1.5 Mgal/d Sewage treatment: Chlorination

Waste discharged to: Ocean outfall, North Miami

Remarks: Average daily pumpage increased from 0.75 Mgal/d in 1956 to 3.29 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 255403080150001, Opa-Locka Water Plant

Silica (SiO ₂)	8.7	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	392
Magnesium (Mg)	6	Total hardness	
Sodium (Na)	28	(as CaCO ₃)	270
Potassium (K)	2	Noncarbonate hardness	
Strontium (Sr)	.45	(as CaCO ₃)	48
Bicarbonate (HCO3)	271	Alkalinity (as CaCO3)	222
Sulfate (SO4)	70	pH (units)	7.7
Chloride (C1)	36	Specific conductance	
Fluoride (F)	.8	(umhos/cm at 25°C)	637
Nitrate (NO ₃ -N)	.03	Color (Pt-Co units)	45
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.72	Orthophosphate	
Iron (Fe)	.9	total (PO4-P)	
Phosphorus, total (P)			

PAHOKEE

County: Palm Beach Population served: 9,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Surface water, Lake Okeechobee

Rated plant capacity: 1.8 Mga1/d

Pumpage: Year-303.68 Mgal Average daily— 0.83 Mga1

Highest month: December 28.3 Mgal Lowest month: February, 22.4 Mgal

Per capita use: 92 gal/d

Finished-water storage: 0.4 Mgal

Treatment: Aeration, coagulation, sedimentation, filtration, chlorination,

taste and odor control

Type/Frequency of analysis: Bacteriological/monthly; chemical/biannually; color/dailya/; color/monthlyb/

Sewage discharge: 0.7 Mgal/d

Sewage treatment: Secondary, digestion, polishing pond

Waste discharged to: Polishing pond to canal to Lake Okeechobee, when drainage pumps are operating.

Average daily pumpage increased from 0.45 Mgal/d in 1956 to 0.83 Mgal/d in 1975. Water supplied to Canal Point, Pahokee Housing Authority, and Streamline Camp.

a/ Treated water.

b/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 26492708039580, intake from Lake Okeechobee

Silica (SiO ₂)	6.6	Dissolved solids	
Calcium (Ca)	52	(residue at 180°C)	442
Magnesium (Mg)	18	Total hardness	
Sodium (Na)	59	(as CaCO ₃)	205
Potassium (K)	4.8	Noncarbonate hardness	
Strontium (Sr)	1.3	(as CaCO ₃)	59
Bicarbonate (HCO ₃)	178	Alkalinity (as CaCO ₃)	146
Sulfate (SO4)	64	pH (units)	8.3
Chloride (C1)	89	Specific conductance	
Fluoride (F)	.5	(umhos/cm at 25°C)	690
Nitrate (NO ₃ -N)	.29	Color (Pt-Co units)	45
Nitrite (NO2-N)	.06	Temperature (°C)	30
Nitrogen, organic (N)	1.8	Turbidity(JTU)	10
Nitrogen		Carbon, organic, total (C)	18
(ammonia, total (NH4-N))	.05	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.03
Phosphorus, total (P)	.05		

PALM BEACH

County: Palm Beach Population served: 10,030

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: All water purchased from West Palm Beach

Rated plant capacity: a/

Pumpage: Year-1,941.80 Mga1 Average daily-5.32 Mga1

Highest month: Not Reported Lowest month: Not Reported

Per capita use: 530 ga1/d Finished-water storage: \underline{a} / Treatment: \underline{a} /

Type/Frequency of analysis: $\frac{a}{}$

Sewage discharge: 3.25 Mga1/d

Sewage treatment: Chlorination, comminution

Waste discharged to: Atlantic Ocean

Remarks: For chemical analyses of water see West Palm Beach. a/ See West Palm Beach (p. 260).

PALM BEACH GARDENS

County: Palm Beach Population served: 9,300 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Palm Beach Utilities, Inc.

Source of water: Ground water, shallow aquifer; 7 wells, 85 to 155 feet deep; yield 150 to 1,200 gal/min

Rated plant capacity: 4 Mga1/d

Pumpage: Year—934.40 Mga1 Average daily—2.56 Mga1

Highest month: April, 105.4 Mgal Lowest month: September, 62.3 Mgal

Per capita use: 275 gal/d

Finished-water storage: 2.2 Mgal

Treatment: Aeration, coagulation, sedimentation, filtration, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/biannually; color, turbidity/daily ; color, turbidity/every 2 days ...

Sewage discharge: 0.99 Mga1/d

Sewage treatment: Secondary, digestion

Waste discharged to: Percolation ponds

Remarks: Average daily pumpage increased from 1.62 Mgal/d in 1970 to 2.56 Mgal/d in 1975. Total service connections, 2,801. Water supplied to RCA plant.

a/ Treated water.

b/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 264938080055401

Silica (SiO ₂)	17	Dissolved solids	
Calcium (Ca)	120	(residue at 180°C)	514
Magnesium (Mg)	5.1	Total hardness	
Sodium (Na)	49	(as CaCO ₃)	320
Potassium (K)	1.3	Noncarbonate hardness	7.00
Strontium (Sr)	1.4	(as CaCO ₃)	25
Bicarbonate (HCO ₃)	360	Alkalinity (as CaCO ₃)	295
Sulfate (SO4)	18	pH (units)	7.4
Chloride (C1)	84	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	830
Nitrate (NO ₃ -N)	.05	Color (Pt-Co units)	45
Nitrite (NO ₂ -N)	.00	Temperature (°C)	26
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.94	Orthophosphate	
Iron (Fe)	.04	total (PO4-P)	
Phosphorus, total (P)			

PALMETTO

County: Manatee

River basin: Manatee River (10 02 02)

Population served: 8,500

Ownership of supply or system: Manatee County Water System

Source of water: Surface water, Manatee River. All water purchased from

Manatee County Water System

Rated plant capacity: --

Pumpage: Year- 196.86 Mgal

Highest month: May, 20.01 Mgal

Average daily-0.54 Mgal

Lowest month: September, 13.88 Mgal

Per capita use: 64 gal/d

Finished-water storage: 4.75 Mgal

Treatment: Softening

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.59 Mgal/d

Sewage treatment: Chlorination, secondary

Waste discharged to: Terra Ceia Bay to Gulf of Mexico

Remarks: Average daily pumpage increased from 0.49 Mgal/d (ground water) in 1956 to 0.54 Mgal/d (surface water) in 1975. For chemical analysis of water see Manatee County Water System (p. 214).

PALM SPRINGS

County: Palm Beach Population served: 13,100 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer; 7 wells, 170 to 200

feet deep; yield 300 to 600 gal/min

Rated plant capacity: 4 Mgal/d Pumpage: Year—635.10 Mgal

Pumpage: Year—635.10 Mgal Average daily—1.74 Mgal

Highest month: April, 83.9 Mgal Lowest month: January, 41.3 Mgal

Per capita use: 133 ga1/d

Finished-water storage: 1.5 Mgal

Treatment: Softening, filtration, chlorination

Type/Frequency of analysis: Bacteriological/4 times weekly; chemical/biannually;

color/dailya/; color/5 times weekly-

Sewage discharge: 1.0 Mgal/d

Sewage treatment: see Lake Worth, page

Waste discharged to: Lake Worth Sewage Treatment plant

Remarks: Total service connections, 2,539. No chemical analysis available.

a/ Treated.

b/ Untreated water.

PINE ISLAND

County: Lee Population served: 3,300

River basin: Charlotte Harbor and coastal area (10 01 03)

Ownership of supply or system: Greater Pine Island Water Assoc., Inc.

Source of water: Ground water, aquifers in the lower and upper Hawthorn Formations and Suwannee Formation; 13 wells (Upper Hawthorn Formation) 280 to 300 feet deep; yield 80 to 180 gal/min; one well (lower Hawthorn and Suwannee Formation) 850 feet deep.

Rated plant capacity: 1.7 Mgal/d

Pumpage: Year-113.16 Mgal Average daily-0.31 Mgal

Highest month: March, 22.91 Mgal Lowest month: September, 4.79 Mgal

Per capita use: 94^a/ga1/d Finished-water storage: 0.78 Mga1

Treatment: Aeration, coagulation, filtration, softening, chlorination

Type/Frequency of analysis: Bacteriological/monthly; chemical/daily; color, turbidity/intermittently

Sewage discharge: Septic tanks; pond, drainage canal, Pine Island Sound b/

Sewage treatment: None

Waste discharged to: Ground

Remarks: Average daily pumpage decreased from 0.53 Mgal/d in 1970 to 0.31 Mgal/d in 1975. Pine Island formerly supplied water to Sanibel and Captiva Islands. Water presently supplied to Matlacha, Bokeelia, and St. James City (fig. 25). Reverse osmosis desalination plant in operation; source, brackish water, lower Hawthorn and Suwannee Formations. O'Donnell (1977).

a/ Estimated from permanent population of 3,300, including tourists 9,000.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-15-75
SAMPLING POINT: 263814082020702, Pine Island Water Plant, Raw composite. Reverse

		OSMOS1S.	
Silica (SiO ₂)	17	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	2,020
Magnesium (Mg)	91	Total hardness	
Sodium (Na)	410	(as CaCO ₃)	670
Potassium (K)	19	Noncarbonate hardness	
Strontium (Sr)	18	(as CaCO ₃)	510
Bicarbonate (HCO3)	188	Alkalinity (as CaCO ₃)	154
Sulfate (SO4)	250	pH (units)	8.1
Chloride (C1)	780	Specific conductance	
Fluoride (F)	1.2	(umhos/cm at 25°C)	3,280
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.00	Temperature (°C)	28.5
Nitrogen, organic (N)	.08	Turbidity (JTU)	9
Nitrogen		Carbon, organic, total (C	
(ammonia, total (NH4-N))	.29	Orthophosphate	
Iron (Fe)		total (PO4-P)	.00
Phosphorus, total (P)	.01	244 2042 12 to 1245 2 to	1,111
그는 이 살을 하는 동네가 하는 것은 이 그 사람들이 있는 사람들이 가는 사람들이 되었다.			

 $[\]underline{b}$ / from reverse osmosis desalination plant.

PINE ISLAND

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-15-75
SAMPLING POINT: Pine Island water plant, raw, composite

Aluminum (A1)	0	Lead (Pb)	6
Arsenic (As)	0	Lithium (Li)	30
Barium (Ba)	12	Manganese (Mn)	10
Boron (B)		Mercury (Hg)	
Cadmium (Cd)	0	Molybdenum (Mo)	3
Chromium (Cr)	2	Nickel (Ni)	0
Chromium (Cr+6)	0	pH(units)	7.5
Cobalt (Co)	0	Selenium (Se)	- 4
Specific conductance		Vanadium (V)	24
(umhos/cm at 25°C)	3,230	Temperature (°C)	28.5
Copper (Cu)	0	Zinc (Zn)	3
Iron (Fe)	10		

CHEMICAL ANALYSIS a (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-17-75 SAMPLING POINT: 263814082020702, Pine Island Water plant

Silica (SiO ₂)	3.5	Dissolved solids	
Calcium (Ca)	2.8	(residue at 180°C)	158
Magnesium (Mg)	2.9	Total hardness	
Sodium (Na)	44	(as CaCO ₃)	20
Potassium (K)	2.8	Noncarbonate hardness	
Strontium (Sr)	.05	(as CaCO ₃)	19
Bicarbonate (HCO ₃)	1	Alkalinity (as CaCO3)	1
Sulfate (SO ₄)	4.3	pH (units)	5.1
Chloride (C1)	78	Specific conductance	
Fluoride (F)	.0	(umhos/cm at 25°C)	295
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	0
Nitrite (NO2-N)	.00	Temperature (°C)	30.0
Nitrogen, organic (N)	.04	Turbidity(JTU)	1
Nitrogen		Carbon, organic, total (C)	.00
(ammonia, total (NH4-N))	.1	Orthophosphate	
Iron (Fe)	.03	total (PO4-P)	.00
Phosphorus, total (P)	.03		
Carbon Dioxide (CO2)	13		

a/ Treated water

PLANTATION

County: Broward Population served: 35,000

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 8 wells, 74 to 95 feet

deep; yield 525 to 750 gal/min

Rated plant capacity: 7 Mga1/d

Pumpage: Year-1,892.89 Mga1 Average daily-5.19a/Mga1

Highest month: March, 210.5 Mgal Lowest month: October, 129.9 Mgal

Per capita use: 148 gal/d

Finished-water storage: 1.85 Mgal

Treatment: Aeration, chlorination, filtration, softening, fluoridation

Type/Frequency of analysis: Bacteriological daily ; chemical, color, turbidity/annually; bacteriological/twice weekly c

Sewage discharge: 2.0 Mga1/d

Sewage treatment: Activated sludge, aeration, chlorination, contact stabilization, drying, polishing pond, secondary

Waste discharged to: Holloway Canal

Remarks: Average daily pumpage increased from 0.05 Mgal/d in 1956 to 5.19 Mgal/d in 1975.

a/ Includes 0.726 Mgal/d commercial use.

b/ Treated water.

c/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 260738080140701, Plantation Water Plant

Silica (SiO ₂)	8.6	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	416
Magnesium (Mg)	2.8	Total hardness	
Sodium (Na)	27	(as CaCO ₃)	287
Potassium (K)	.8	Noncarbonate hardness	
Strontium (Sr)	.89	(as CaCO ₃)	38
Bicarbonate (HCO ₃)	304	Alkalinity (as CaCO3)	249
Sulfate (SO4)	24	pH (units)	7.5
Chloride (C1)	48	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	668
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	95
Nitrite (NO ₂ -N)	.00	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.9	Orthophosphate	
Iron (Fe)	1.9	total (PO4-P)	
Phosphorus, total (P)			

POMPANO BEACH

County: Broward Population served: 63,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 16 wells, 90 to 193 feet deep; yield 900 to 2,500 gal/min

Rated plant capacity: 30 Mga1/d Pumpage: Year— 5,475 Mga1

mpage: Year— 5,4/5 Mgal

Highest month: April, 670 Mgal

Average daily—15 Mgal

Lowest month: June, 384 Mgal

Per capita use: 238 ga1/d Finished-water storage: 8 Mga1

Treatment: Chlorination, filtration

Type/Frequency of analysis: Bacteriological/weekly; chemical/annually

Sewage discharge: 9 Mgal/d

Sewage treatmenta/

Waste discharged to: North Regional Broward County Treatment plant, Atlantic Ocean

Remarks: Average daily pumpage increased from 2.0 Mgal/d in 1956 to 15 Mgal/d in 1975. City also supplies Palm Aire and South End of Lighthouse Point (see Broward County Utilities Department (p.175). Sherwood and others (1973).

a/ No treatment by Pompano Beach.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-12-75 SAMPLING POINT: 261437080071401, Pompano Beach Water Plant

Silica (SiO ₂)	8	Dissolved solids	
Calcium (Ca)	86	(residue at 180°C)	306
Magnesium (Mg)	2.3	Total hardness	300
Sodium (Na)	12	(as CaCO ₃)	220
Potassium (K)	1.4	Noncarbonate hardness	
Strontium (Sr)	.75	(as CaCO ₃)	32
Bicarbonate (HCO ₃)	229	Alkalinity (as CaCO3)	188
Sulfate (SO4)	36	pH (units)	7.5
Chloride (C1)	18	Specific conductance	,,,
Fluoride (F)	.4	(umhos/cm at 25°C)	510
Nitrate (NO ₃ -N)	.43	Color (Pt-Co units)	15
Nitrite (NO2-N)	.04	Temperature (°C)	
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen	1955	Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.22	Orthophosphate	
Iron (Fe)	.18	total (PO4-P)	
Phosphorus, total (P)			

PORT CHARLOTTE

County: Charlotte Population served: 22,000

River basin: Charlotte Harbor and coastal area (10 01 03)

Ownership of supply or system: General Development Utilities, Inc.

Source of water: Ground water (GW), Hawthorn Formation; 8 percent of supply; 6 wells; 133 to 232 feet deep; yield 125 to 300 gal/min. Surface water (SW), Fordham Waterway; 92 percent of supply.

Rated plant capacity: 1.73 Mgal/d (GW), 2.22 Mgal/d (SW)

Average daily— 2.27 a/ Mgal Pumpage: Year-827.63 Mgal Highest month: April, 107.71 Mgal Lowest month: July, 40.14 Mgal

Per capita use: 103 gal/d Finished-water storage:

Treatment: Chlorination, algae control, filtration, taste and odor control, coagulation, softening, stabilization

Type/Frequency of analysis: Bacteriological/weekly and chemical/dailyb/: bacteriological/bimonthlyc/

Sewage discharge: 1.02 Mga1/d

Sewage treatment: Extended aeration, digestion, filtration, polishing ponds

Waste discharged to: Spray irrigation system

Average daily pumpage increased from 1.46 Mgal/d in 1970 to 2.27 Mgal/d Remarks: Total service connections, 8,230. Water also supplied to Charlotte in 1975. Harbor Water District, Kings Lake Estates, Port Charlotte Village. Sutcliffe (1975) a/ Includes 0.441 Mgal/d commercial use, 0.118 Mgal/d other public supply. b/ Treated water.

c/ Raw water.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: 265924082044701, Port Charlotte Plant 2

Silica (SiO ₂)	12	Dissolved solids	
Calcium (Ca)	82	(residue at 180°C)	462
Magnesium (Mg)	10	Total hardness	
Sodium (Na)	42	(as CaCO ₃)	250
Potassium (K)	1.1	Noncarbonate hardness	
Strontium (Sr)	.74	(as CaCO ₃)	90
Bicarbonate (HCO3)	191	Alkalinity (as CaCO ₃)	156
Sulfate (SO4)	59	pH (units)	7.9
Chloride (C1)	77	Specific conductance	
Fluoride (F)	.6	(umhos/cm at 25°C)	669
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	55
Nitrite (NO2-N)	.01	Temperature (°C)	23
Nitrogen, organic (N)	1.1	Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	6 17
(ammonia, total (NH4-N))	.24	Orthophosphate	17
Iron (Fe)	.25	total (PO4-P)	.21
Phosphorus, total (P)	.23	104-1)	. 21

PORT CHARLOTTE

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: 265924082044701, Port Charlotte Plant 2

	Trac	e Elements	
Arsenic (As)	3	Manganese (Mn)	20
Barium (Ba)	0	Mercury (Hg)	.1
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr)	10	Zinc (Zn)	20
Copper (Cu)	140		
Iron (Fe)	870	pH(units)	
Lead (Pb)	0	Temperature (°C)	
	Pe	sticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.05
Heptachlor epoxide	.00	2,4-DP	.00
		2,4,5-T	.00

PUNTA GORDA

County: Charlotte Population served: 10,000

River basin: Charlotte Harbor and coastal area (10 01 03)

Ownership of supply or system: Municipal Source of water: Surface water, Shell Creek

Rated plant capacity: 4.3 Mga1/d

Pumpage: Year-666.30 Mgal Average daily-1.84 Mgal

Highest month: April, 71.97 Mgal Lowest month: August, 40.56 Mgal

Per capita use: 184 gal/d

Finished-water storage: 1.0 Mgal

Treatment: Chlorination, softening, coagulation, filtration, taste and

odor control

Type/Frequency of analysis: Bacteriological/weekly; chemical/daily

Sewage discharge: 1.0ª/ Mga1/d

Sewage treatment: Primary, secondary, trickling filter

Waste discharged to: Canals to Peace River

Remarks: Average daily pumpage increased from 0.25 Mgal/d in 1956 to 1.84 Mgal/d in 1975. Total service connections: Undifferentiated, 3,750. Sutcliffe (1975).

a/ Estimated.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: 265904081560901, Shell Creek

Silica (SiO ₂)	6.1	Dissolved solids	
Calcium (Ca)	68	(residue at 180°C)	672
Magnesium (Mg)	23	Total hardness	
Sodium (Na)	99	(as CaCO ₃)	270
Potassium (K)	5.4	Noncarbonate hardness	
Strontium (Sr)	8.8	(as CaCO ₃)	180
Bicarbonate (HCO ₃)	112	Alkalinity (as CaCO ₃)	92
Sulfate (SO ₄)	94	pH (units)	7.5
Chloride (C1)	200	Specific conductance	7.5
Fluoride (F)	.5	(umhos/cm at 25°C)	1,040
Nitrate (NO ₃ -N)	.05	Color (Pt-Co units)	90
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	1.1	Turbidity(JTU)	5
Nitrogen		Carbon, organic, total	(C) 15
(ammonia, total (NH4-N))	.14	Orthophosphate	77
Iron (Fe)	.19	total (PO4-P)	.12
Phosphorus, total (P)	.13		4.7

PUNTA GORDA

CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-24-75 SAMPLING POINT: Shell Creek

	Trac	e Elements	
Arsenic (As)	1	Manganese (Mn)	60
Barium (Ba)	0	Mercury (Hg)	.1
Cadmium (Cd)	0	Selenium (Se)	0
Chromium (Cr)	10	Zinc (Zn)	10
Copper (Cu)	1	77.340.47.50	
Iron (Fe)	200	pH(units)	
Lead (Pb)	1	Temperature (°C)	
	Pe	sticides	
Aldrin	.00	Heptachlor	.00
Chlordane	.0	Lindane	.00
DDD	.00	Malathion	.00
DDE	.00	Methyl parathion	.00
DDT	.00	Methyl trithion	.00
Diazinon	.00	PCB	.0
Dieldrin	.00	PCN	.0
Endrin	.00	Silvex	.00
Ethyl parathion	.00	Toxaphene	0
Ethyl trithion	.00	2,4-D	.03
Heptachlor epoxide	.00	2,4-DP	.00
ANGELONE STATE OF THE STATE OF		2,4,5-T	.00

RIVIERA BEACH

County: Palm Beach Population served: 30,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer, 20 wells, 60 to 240 feet

deep; yield 250 to 500 gal/min

Rated plant capacity: 14 Mgal/d Pumpage: Year—2,157.15 Mgal

mpage: Year—2,157.15 Mgal Average daily—5.91 Mgal

Highest month: August, 224.9 Mgal Lowest month: June, 151.4 Mgal

Per capita use: 197 gal/d

Finished-water storage: 3.0 Mgal

Treatment: Aeration, coagulation, filtration, softening, chlorination

Type/Frequency of analysis: Bacteriological/bimonthly; chemical/biannually

Sewage discharge: 2.7 Mgal/d Sewage treatment: Secondary

Waste discharged to: Earman River

Remarks: Average daily pumpage increased from 0.90 Mgal/d in 5.91 Mgal/d in 1975. Water supplied to Palm Beach Shores and Holiday Trailer Park. Land and others (1973).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 264700080040201

Silica (SiO ₂)	9.5	Dissolved solids	
Calcium (Ca)	77	(residue at 180°C)	258
Magnesium (Mg)	1.7	Total hardness	
Sodium (Na)	10	(as CaCO ₃)	200
Potassium (K)	.8	Noncarbonate hardness	
Strontium (Sr)	.89	(as CaCO ₃)	10
Bicarbonate (HCO3)	232	Alkalinity (as CaCO ₃)	190
Sulfate (SO4)	5.8	pH (units)	7.4
Chloride (C1)	14	Specific conductance	
Fluoride (F)	.2	(umhos/cm at 25°C)	410
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	15
Nitrite (NO2-N)	.00	Temperature (°C)	25
Nitrogen, organic (N)		Turbidity(JTÜ)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.25	Orthophosphate	
Iron (Fe)	.18	total (PO4-P)	
Phosphorus, total (P)			

SANIBEL

County: Lee Population served: 6,000^a/

River basin: Charlotte Harbor and coastal area (10 01 03)

Ownership of supply or system: Island Water Association, Inc. Source of water: Ground water, aquifer in the lower Hawthorn Formation, 9 wells, 495 to 620 feet deep; yield, each well, 350 gal/min

Rated plant capacity: 1.8 Mgal/d

Pumpage: Year—437.51 Mga1 Average daily—1.19 Mga1
Highest month: June, 43.48 Mga1 Lowest month: February, 24.14 Mga1

Per capita use: 198 gal/d

Finished-water storage: 2.37 Mgal (3 facilities)
Treatment: Aeration, softening, filtration b/

Type/Frequency of analysis: Bacteriological, color, turbidity/intermittently;

chemical/daily

Sewage discharge: Septic tanks

Sewage treatment: None

Waste discharged to: Ground (septic tanks); Gulf of Mexico (from electro-dialysis plant)

Remarks: Service connections: domestic 1,480; air conditioning (mostly motels) 2,320. Water also supplied to Captiva Island. Pine Island supplies water during periods of large demand. Boggess (1974, O'Donnell (1977).

a/ Population: permanent 6,000; maximum including tourists 12,000.

b/ Electro-dialysis water treatment plant in operation since November 1973.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-21-75 SAMPLING POINT: 262627082061802, composite, Sanibel Water Plant

Silica (SiO ₂)	32	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	3,510
Magnesium (Mg)	110	Total hardness	
Sodium (Na)	850	(as CaCO ₃)	710
Potassium (K)	54	Noncarbonate hardness	
Strontium (Sr)	9.7	(as CaCO ₃)	530
Bicarbonate (HCO ₃)	219	Alkalinity (as CaCO3)	180
Sulfate (SO4)	350	pH (units)	7.6
Chloride (C1)	1,500	Specific conductance	
Fluoride (F)	.7	(umhos/cm at 25°C)	4,460
Nitrate (NO ₃ -N)		Color (Pt-Co units)	0
Nitrite (NO ₂ -N)		Temperature (°C)	26.5
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total	(C)
(ammonia, total (NH4-N))	Orthophosphate	
Iron (Fe)		total (PO4-P)	
Phosphorus, total (P)		SAR	14
Carbon Dioxide (CO ₂)	8.8		

SANIBEL

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-21-75 SAMPLING POINT: 262627082061803, Sanibel Island Water Plant

Silica (SiO ₂) Calcium (Ca)	34 8.4 11	Dissolved solids (residue at 180°C) Total hardness	610
Magnesium (Mg) Sodium (Na) Potassium (K)	180 4.8	(as CaCO ₃) Noncarbonate hardness	67
Strontium (Sr) Bicarbonate (HCO ₃)	.77	(as CaCO ₃) Alkalinity (as CaCO ₃)	11 57
Sulfate (SO4) Chloride (C1)	120 210	pH (units) Specific conductance	6.8
Fluoride (F) Nitrate (NO ₃ -N)	.4 .01 .00	(umhos/cm at 25°C) Color (Pt-Co units)	1,090 0
Nitrite (NO2-N) Nitrogen, organic (N)	.00	Temperature (°C) Turbidity(JTU)	28.0 1
Nitrogen (ammonia, total (NH4-N))	.01	Carbon, organic, total Orthophosphate	
Phosphorus, total (P)	.00	total (PO4-P) SAR	9.6
Carbon Dioxide (CO ₂) Carbonate (CO ₃)	0		

a/ CHEMICAL ANALYSIS (micrograms per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 4-21-75 SAMPLING POINT: 262627082061803, Sanibel Island Water Plant

Aluminum (A1)	0	Lead (Pb)	2
Arsenic (As)	5	Lithium (Li)	10
Barium (Ba)	-	Manganese (Mn)	10
Boron (B)	750	Mercury (Hg)	.2
Cadmium (Cd)	0	Molybdenum (Mo)	0
Chromium (Cr)	0	Nickel (Ni)	0
Chromium (Cr+6)	0	pH(units)	6.8
Cobalt (Co)	0	Selenium (Se)	_
Specific conductance		Vanadium (V)	3.2
(umhos/cm at 25°C)	1,090	Temperature (°C)	28.0
Copper (Cu)	2 2	Zinc (Zn)	6
Iron (Fe)	0		

a/ Treated water.

SARASOTA

County: Sarasota Population served: 60,000 River basin: Coastal area between Myakka and Manatee Rivers (10 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, aquifers in Hawthorn and Tampa Formations;

42 wells, 100 to 720 feet deep; yield 190 to 584 gal/min

Rated plant capacity: 12.7 Mga1/d Pumpage: Year—2,595.15 Mga1

Average daily— 7.11 Mga1

Highest month: April, 252 Mgal Lowest month: February, 192 Mgal

Per capita use: 119 ga1/d

Finished-water storage: 2.85 Mga1

Treatment: Aeration, chlorination, filtration, softening (ion exchange)

Type/Frequency of analysis: Bacteriological/weekly; chemical (partial)/daily,

and (complete/annually Sewage discharge: 6.02 Mga1/d

Sewage treatment: Contact stabilization, aerobic digestion, chlorination

Waste discharged to: Whittaker Bayou at Highway 41

Remarks: Average daily pumpage increased from 2.45 Mgal/d in 1956 to 7.11 Mgal/d in 1975.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75 SAMPLING POINT: 272252082175401, composite

Silica (SiO ₂)	34	Dissolved solids	
Calcium (Ca)	110	(residue at 180°C)	730
Magnesium (Mg)	52	Total hardness	
Sodium (Na)	21	(as CaCO ₃)	510
Potassium (K)	3	Noncarbonate hardness	
Strontium (Sr)	16	(as CaCO ₃)	340
Bicarbonate (HCO3)	212	Alkalinity (as CaCO ₃)	174
Sulfate (SO ₄)	320	pH (units)	7.9
Chloride (C1)	25	Specific conductance	7.75
Fluoride (F)	1.8	(umhos/cm at 25°C)	995
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	5
Nitrite (NO2-N)	.01	Temperature (°C)	
Nitrogen, organic (N)	.27	Turbidity(JTU)	3
Nitrogen	.27	Carbon, organic, total (C)	2
(ammonia, total (NH4-N))	.27	Orthophosphate	7
Iron (Fe)	.07	total (PO4-P)	.00
Phosphorus, total (P)	.01	104-1)	• • • •

SEBRING

County: Highlands Population served: 14,000

River basin: Kissimmee River (09 01 01)

Ownership of supply or system: Sebring Utilities Commission

Source of water: Ground water, Floridan aquifer; 5 wells, 1,200 to 1.400

feet deep; yield 400 to 2,800 gal/min

Rated plant capacity: 13.1 Mga1/d

Average daily 3.06ª/ Mga1 Pumpage: Year- 1,117.34 Mgal

Lowest month: September, 65.38 Mgal Highest month: April, 131.28 Mgal

Per capita use: 219 ga1/d

Finished-water storage: 0.8 Mga1

Treatment: Aeration, chlorination, taste and odor control

Type/Frequency of analysis: Bacteriological and chemical/monthly

Sewage discharge: 0.8 Mga1/d

Sewage treatment: Activated sludge, diffused air, filtration, primary, chlorination, clarification, contact stabilization, drying, grit chambers, skimming, polishing

ponds, secondary

Waste discharged to: Polishing Ponds

Remarks: Average daily pumpage increased from 1.50 Mgal/d in 1956 to 3.06 Mgal/d in 1975. City supplies water to Sebring Hills, Sebring Shores, Avacado Park and to a few houses outside the city limits. a/ Includes 0.306 Mgal/d, commercial use.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 5-22-75 SAMPLING POINT: 272920081260300, well 4

Silica (SiO ₂)	9.9	Dissolved solids	
Calcium (Ca)	16	(residue at 180°C)	88
Magnesium (Mg)	5.4	Total hardness	1.7
Sodium (Na)	3.9	(as CaCO ₃)	64
Potassium (K)	.6	Noncarbonate hardness	
Strontium (Sr)	1.4	(as CaCO ₃)	6
Bicarbonate (HCO3)	70	Alkalinity (as CaCO ₃)	57
Sulfate (SO4)	6	pH (units)	7.5
Chloride (C1)	4.6	Specific conductance	7.5
Fluoride (F)	.2	(umhos/cm at 25°C)	153
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.00	Temperature (°C)	.00
Nitrogen, organic (N)	.1	Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	.00
(ammonia, total (NH4-N))	.02	Orthophosphate	.00
Iron (Fe)	.01	total (PO4-P)	.02
Phosphorus, total (P)	.03	(4 1)	10.22

STUART

County: Martin Population served: 10,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow sand aquifer; 22 wells, 60 to 140

feet deep; yield 50 to 225 gal/min

Rated plant capacity: 6 Mga1/d

Pumpage: Year— 1,095.0 Mga1

Highest month: April, 108 Mga1

Lowest month: July, 69 Mga1

Per capita use: 300 ga1/d Finished-water storage: 2.5 Mga1

Treatment: Chlorination

Type/Frequency of analysis: Bacteriological/monthly ; chemical, color, turbidity/biannually

Sewage discharge: 1.0 Mga1/d

Sewage treatment: Aeration, secondary, trickling filter

Waste discharged to: St. Lucie River

Remarks: Average daily pumpage increased from 0.25 Mgal/d in 1956 to 3.0 Mgal/d in 1975. City also supplies water to Hutchinson Island and Sewalls Point. Yearly pumpage, 1941-75 shown on figure 28.

<u>a</u>/ Includes 90 percent for public supply.

b/ Treated water only.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 271120080141501

Silica (SiO ₂)	12	Dissolved solids	
Calcium (Ca)	100	(residue at 180°C)	324
Magnesium (Mg)	2.6	Total hardness	
Sodium (Na)	17	(as CaCO ₃)	260
Potassium (K)	1.3	Noncarbonate hardness	
Strontium (Sr)	.34	(as CaCO ₃)	16
Bicarbonate (HCO ₃)	298	Alkalinity (as CaCO3)	244
Sulfate (SO4)	19	pH (units)	7.2
Chloride (C1)	24	Specific conductance	
Fluoride (F)	.3	(umhos/cm at 25°C)	570
Nitrate (NO ₃ -N)	.02	Color (Pt-Co units)	5
Nitrite (NO ₂ -N)	.00	Temperature (°C)	28
Nitrogen, organic (N)		Turbidity (JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.25	Orthophosphate	
Iron (Fe)	.32	total (PO4-P)	
Phosphorus, total (P)	 -		

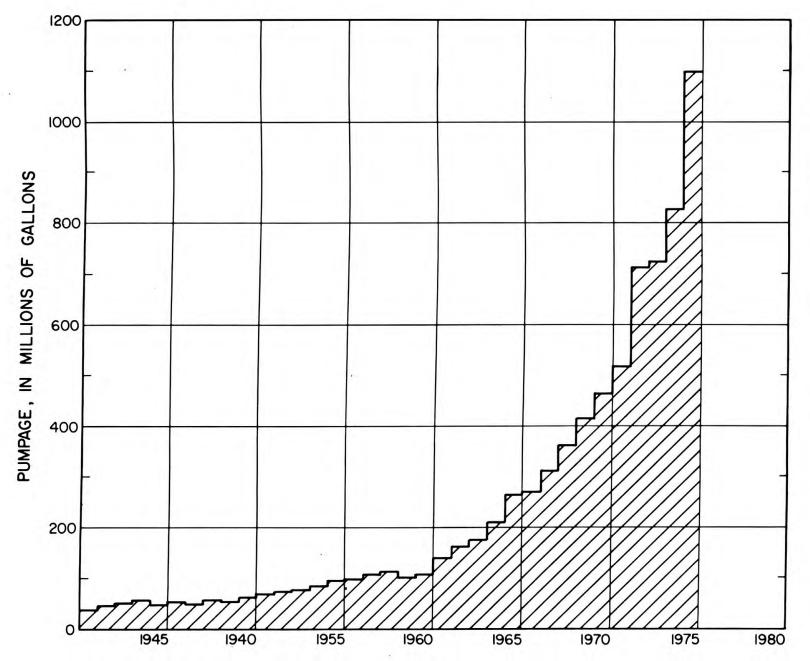


Figure 28. -- Total yearly pumpage, city of Stuart.

SUNRISE

County: Broward Population served: 26,000 River basin: Everglades and southeastern Coastal areas (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, Biscayne aquifer; 22 wells, 60 to 200 feet

deep; yield 700 to 1,000 gal/min; two water treatment plants.

Rated plant capacity: 13.5 Mga1/d Pumpage: Year— 1,679.0 Mga1

npage: Year— 1,679.0 Mgal Average daily—4.6 Mgal
Highest month: April, 175 Mgal Lowest month: October, 107 Mgal

Per capita use: 177 gal/d

Finished-water storage: 4.5 Mga1

Treatment: Chlorination, filtration, softening, (plants 1 and 2); pH control,

clarification, (plant 1)

Type/Frequency of analysis: Bacteriological/monthly; chemical/annually

Sewage discharge: 5.4 Mgal/d (two plants)

Sewage treatment: Aeration, chlorination, primary (plants 1 and 2); comminution, filtration, grit chambers, secondary, settling (plant 1); clarification, contact stabilization, digestion (plant 2)

Waste discharged to: Spring Tree Golf Course and Feeder Canal (plant 1); golf course (plant 2)

Remarks: City also supplies water (0.6 Mgal/d) to Alpine Woods, Isla Merita, Park City, Pine Island Ridge, and Valencia. No chemical analysis available.

TEQUESTA

County: Palm Beach Population served: 5,000 River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Ground water, shallow aquifer; 22 wells, 45 to 88 feet deep; yield 50 to 200 gal/min

Rated plant capacity: 3.7 Mga1/d

Pumpage: Year— 562.10 Mgal

Highest month: August, 67.47 Mgal

Lowest month: June, 32.67 Mgal

Per capita use: 308 gal/d

Finished-water storage: 1.06 Mga1

Treatment: Aeration, chlorination, filtration

Type/Frequency of analysis: Bacteriological/monthly; chemical, color,

turbidity/biannuallyb/

Sewage discharge: 0.25 Mgal/d Sewage treatment: Secondary

Waste discharged to: Loxahatchee River Environmental Control District Plant

Remarks: Two wells not in use because of salt water intrusion. City also supplies part of Jupiter, Jupiter Inlet Colony and outlying areas including 7 condominiums.

a/ Includes 0.108 Mgal/d commercial use, 0.631 Mgal/d other public supply.

b/ All analyses of treated water only.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-10-75 SAMPLING POINT: 265722080051101, faucet on line by well

Silica (SiO ₂)	5.3	Dissolved solids	
Calcium (Ca)	62	(residue at 180°C)	258
Magnesium (Mg)	2.5	Total hardness	
Sodium (Na)	21	(as CaCO ₃)	170
Potassium (K)	1.9	Noncarbonate hardness	
Strontium (Sr)	.39	(as CaCO ₃)	31
Bicarbonate (HCO3)	170	Alkalinity (as CaCO3)	139
Sulfate (SO4)	16	pH (units)	7.3
Chloride (C1)	40	Specific conductance	
Fluoride (F)	. 2	(umhos/cm at 25°C)	435
Nitrate (NO ₃ -N)	1.1	Color (Pt-Co units)	.00
Nitrite (NO ₂ -N)	.01	Temperature (°C)	26
Nitrogen, organic (N)		Turbidity(JTU)	
Nitrogen		Carbon, organic, total (C)	
(ammonia, total (NH4-N))	.03	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	
Phosphorus, total (P)			

VENICE

County: Sarasota Population served: 17,000

River basin: Coastal area between the Myakka and Manatee Rivers

(10 02 01)

Ownership of supply or system: Municipal

Source of water: Ground water, aquifer in Hawthorn Formation, 50 wells; nonartesian aquifer, three wells; aquifers in Pleistocene and Hawthorn formations, two wells; aquifers in Hawthorn and Tampa Formations, one well; yields 25 to 2,500 gal/min.

Rated plant capacity: 4 Mga1/d

Pumpage: Year— 438 Mgal Average daily— 1.2 Mgal

Highest month: March, 51.3 Mgal Lowest month: July, 29.1 Mgal

Per capita use: 71 gal/d

Finished-water storage: 1.5 Mgal

Treatment: Aeration, chlorination, coagulation, filtration, softening,

desalinationa/

Type/Frequency of analysis: Chemical/3 times monthly

Sewage discharge: 1.1 Mga1/d

Sewage treatment: Secondary, comminution

Waste discharged to: Red Lake and Inland Waterway

Remarks: Average daily pumpage increased from 0.30 Mga1/d in 1956

to 1.2 Mgal/d in 1975. Desalination plant effluent discharged to WCIND* Canal.

a/ Reverse osmosis water treatment process in operation, 2 Mgal/d capacity, currently processing 1 Mgal/d.
*West Coast Inland Navigation District.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-17-75 SAMPLING POINT: 270601082261401, composite

Silica (SiO ₂)	21	Dissolved solids	
Calcium (Ca)	170	(residue at 180°C)	990
Magnesium (Mg)	44	Total hardness	
Sodium (Na)	64	(as CaCO ₃)	610
Potassium (K)	2.9	Noncarbonate hardness	
Strontium (Sr)	3	(as CaCO ₃)	380
Bicarbonate (HCO ₃)	278	Alkalinity (as CaCO ₃)	228
Sulfate (SO ₄)	350	pH (units)	7.6
Chloride (C1)	100	Specific conductance	
Fluoride (F)	.7	(umhos/cm at 25°C)	1,320
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	45
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.51	Turbidity (JTU)	9
Nitrogen		Carbon, organic, total	
(ammonia, total (NH4-N))	.35	Orthophosphate	10
Iron (Fe)	.5	total (PO4-P)	.03
Phosphorus, total (P)	.04	(,03

WAUCHULA

County: Hardee Population served: 4,000

River basin: Peace River (10 01 01)

Ownership of supply or system: Municipal

Source of water: Ground water, Floridan aquifer; four wells, 629 to 1,152

feet deep; yield 550 to 2,000 gal/min

Rated plant capacity: 4.8 Mgal/d Pumpage: Year—331.7 Mgal

npage: Year—331.7 Mgal Average daily—0.91 Mgal

Highest month: April, 41.0 Mgal Lowest month: June, 24.3 Mgal

Per capita use: 228 gal/d

Finished-water storage: 0.55 Mgal

Treatment: Aeration, chlorination, anti-precipitation and corrosion control

Type/Frequency of analysis: Bacteriological/monthly

Sewage discharge: 0.77 Mga1/d

Sewage treatment: Griffin Oxinite process

Waste discharged to: Peace River

Remarks: Average daily pumpage increased from 0.40 Mgal/d in 1956 to 0.91 Mgal/d in 1975. Water supplied to Riverview Subdivision and areas north, south, and west of city limits. Robertson and Mills (1974).

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 7-21-75 SAMPLING POINT: 273249081480501, Wauchula Public Supply 3

Silica (SiO ₂)	18	Dissolved solids	
Calcium (Ca)	78	(residue at 180°C)	590
Magnesium (Mg)	36	Total hardness	
Sodium (Na)	8.5	(as CaCO ₃)	370
Potassium (K)	2	Noncarbonate hardness	
Strontium (Sr)	26	(as CaCO ₃)	250
Bicarbonate (HCO3)	151	Alkalinity (as CaCO ₃)	124
Sulfate (SO4)	250	pH (units)	7.8
Chloride (C1)	11	Specific conductance	15.5.5
Fluoride (F)	.6.	(umhos/cm at 25°C)	818
Nitrate (NO ₃ -N)	.00	Color (Pt-Co units)	.00
Nitrite (NO2-N)	.00	Temperature (°C)	
Nitrogen, organic (N)	.16	Turbidity (JTU)	2
Nitrogen (ammonia, total (NH4-N))	.25	Carbon, organic, total (C) Orthophosphate	54) .
Iron (Fe)	.02	total (PO4-P)	.00
Phosphorus, total (P)	.00		

WEST PALM BEACH

County: Palm Beach Population served: 79,950

River basin: Everglades and southeastern coastal area (09 02 02)

Ownership of supply or system: Municipal

Source of water: Surface water, Clear Lake, Lake Mangonia and catchment area

Rated plant capacity: 36 Mgal/d Pumpage: Year-7,759.90 Mgal

Average daily— 21.26^a/ Mga1

Highest month: April, 735.9 Mgal Lowest month: February, 536.1 Mgal

Per capita use: 266 gal/d

Finished-water storage: 11 Mgal

Treatment: Coagulation, filtration, sedimentation, softening, chlorination

Type/Frequency of analysis: Bacteriological, color, turbidity/daily:

chemical/monthly

Sewage discharge: 9.1 Mga1/d Sewage treatment: Secondary

Waste discharged to: Intracoastal Waterway, Atlantic Ocean

Remarks: Average daily pumpage increased from 10.50 Mgal/d in 1956 to 21.26 Mgal/d in 1975. Total service connections 23,000. City supplies Palm Beach and South Palm Beach. Leach and others (1973), Rodis (1973).

a/ Includes 5.32 Mgal/d supplied to Palm Beach.

CHEMICAL ANALYSIS (milligrams per liter except as indicated)

ANALYSIS BY: U.S. Geological Survey COLLECTION DATE: 6-6-75 SAMPLING POINT: 264255080035000, Intake at Water plant

Silica (SiO ₂)	4.5	Dissolved solids	
Calcium (Ca)	48	(residue at 180°C)	388
Magnesium (Mg)	12	Total hardness	
Sodium (Na)	63	(as CaCO ₃)	171
Potassium (K)	4	Noncarbonate hardness	
Strontium (Sr)	.92	(as CaCO ₃)	48
Bicarbonate (HCO3)	150	Alkalinity (as CaCO3)	131
Sulfate (SO4)	45	pH (units)	8.5
Chloride (C1)	95	Specific conductance	
Fluoride (F)	.4	(umhos/cm at 25°C)	640
Nitrate (NO ₃ -N)	.01	Color (Pt-Co units)	35
Nitrite (NO2-N)	.01	Temperature (°C)	29.5
Nitrogen, organic (N)	1.2	Turbidity (JTU)	2
Nitrogen		Carbon, organic, total (C)	9
(ammonia, total (NH4-N))	.01	Orthophosphate	
Iron (Fe)	.02	total (PO4-P)	.01
Phosphorus, total (P)	.01	177 797 Yes 7 7 7	

TABLE 5.--Public water supplies of 111 communities and municipalities of generally less than 5,000 population, 1975.

(Pumpage: Includes water supplied for agricultural, industrial, commercial, air conditioning uses as well as domestic use. Plant capacity: Based on reported plant capacity or upon well output if known. Source (aquifer): B, Biscayne; F, Floridan; SG, sand-and-gravel aquifer in northwest Florida; S shallow aquifer (sand-and-shell aquifer in Palm Beach County); Water treatment: A, aeration; C, chlorination; D, flocculation; F, filtration; G, coagulation; T, stabilization; V, softening; X, pH control.)

<u>County</u> Municipality	Pumpage Mgal/d	Plant capacity	Population served	Source (aquifer)	Water treatment
Alachua					
Alachua	0.016		1,000	F	C
High Springs	.30	0.3	3,000	F	c, v
Bay					
Mexico Beach	0.20	1.0	1,000	F	A, C, V
Bradford					
Brooker	0.022	0.36	425	F	
Hampton	.04	.09	422	F	
Calhoun	12.02.41		1		
Altha	0.056	0.43	561	F	
Clay					
Keystone Heights	0.33		723	F	C
Kingsley	1.83	4.3	15,000	F	A, C
Penney Farms	.038		350	F	С.
Dixie					
Horseshoe Beach	0.05	0.7	500	F	C, D, X
Duval					
Baldwin	0.166	0.43	2,100	F	C
Escambia					
Beulah	0.096		1,241	SG	C, X
Bratt/Davisville	.213	0.576	2,138	SG	C, X
Cottage Hill	.130	.36	1,598	SG	C, X
Farm Hill	.10	.18	1,380	SG	C, X
Gonzalez	.167	.217	1,527	SG	С
Molino	.20	.576	2,686	SG	С
Walnut Hill	.20	.504	1,779	SG	C, X
South Flomaton	.15	.504	2,937	SG	C, X

TABLE 5.--Public water supplies of 111 communities and municipalities of generally less than 5,000 population, 1975. (Continued)

County Municipality	Pumpage Mgal/d	Plant capacity	Population served	Source (aquifer)	Water treatment
Flagler					
Flagler Beach	0.16	1.0	1,500	S	c, v
Franklin					
Carrabelle	0.250	0.72	1,400	F	С
East Point	.125		1,258	F	C
Lanark Village	.06		600	F	. С
Gadsden					
Greensboro	0.100	0.43	720	F	С
Gretna	.088	.75	1,100	F	С
Havana	.37	1.44	2,995	F	С
Gulf					
Highland View	0.06		646	F	С
Hamilton					
Jennings	0.05	0.60	707	F	C
White Springs	.04	.10	1,085	F	A, C
Holmes					
Esto	0.013	0.216	408	F	С
Jackson					
Alford	0.024		480	F	
Campbellton	.033		326	F	C
Cottondale	.089	2.3	886	F	C
Graceville	:353	1.15	2,775	F	C
Grand Ridge	.044	0.3	620	F	С
Greenwood	.038	.432	.480	F.	C
Sneads	.150		1,807	Ŧ	С
ake	200				
lermont	0.83	4.0	4,850	F	
finneola	.10	3.0	1,000	F	С
matilla	.27	2.0	2,000	F	A, C
evy					
edar Key	0.11		889	F	C, G,
hiefland	.24	0.5	2,000		C
illiston	.43		2,100	F	C C
ankeetown	.07		720		C, T

TABLE 5.--Public water supplies of 111 communities and municipalities of generally less than 5,000 population, 1975. (Continued)

County Municipality	Pumpage Mgal/d	Plant capacity	Population served	Source (aquifer)	Water treatment	
Madison						
Cherry Lake	0.036	0.36	500	F		
Greenville	.20	.7	1,496	F	С, G,	T
Marion	48.05		2022	- 		
Belleview	0.13		1,500	F	С	
Ounnellon	.18		1,200	F	C, X	
lassau	8.00		2.0			
Callahan	0.067		350	F		
Hilliard	.105	1.0	1,560	F		
Okaloosa		02023	2.20			
Auburn	0.173	0.792	2,840	F	С	
Baker	.068	.936	1,213	F	С	
estin	.94	2.46	4,039	F	C	
lolt	.037	0.175	642	F	С	
Laurel Hill	.032	.216	485	F	С	
fary Ester	.336	1.3	3,400	F	C	
Milligan	.037	2.6	782	F	С	
Orange	12.22					
or. Phillips	0.79	7.9	1,860	F	A, C	
Eatonville	.28	1.75	2,180	F	C	
Dakland	.04	0.45	700	F	C	
[aft	.14	1	2,200	F	A, C	
[angerine	.07	0.504	500	F	С	
Zellwood	.08	1.1	600	F	С	
Palm Beach	0.44	1507	2-12-22	1		
Atlantis	0.46	1.4	2,500	S	A, C	
Greenacres City	.23	1.01	2,500	S	C, F,	
Golf Village	.15	0.5	1,000	· S	C, F,	V
Gulf Stream	.65	1.87	2,000	S	C	
Highland Beach	.52	1.89	3,500	S	C, F,	Å
Juno Beach	.29	0.79	1,500	S	A, C	
Lake Clark Shores	.23	1.2	1,500	S	C	
lanalapan	.62	2.2	1,500	S	C	
Mangonia Park	.22	0.5	3,000	S	C	
Royal Falm Beach Village	.43	1.0	7,000	S	A, C,	F

TABLE 5.--Public water supplies of 111 communities and municipalities of generally less than 5,000 population, 1975. (Continued)

<u>County</u> Municipality	Pumpage Mgal/d	Plant capacity	Population served	Source (aquifer)	Water treatment	
Putnam						
Cresent City	0.25	1.73	2,300	F	A, C	
Interlachen	.095	.5	185	F	c c	
Santa Rosa						
Avalon Beach	0.085	0.75	782	SG	C	
Bagdad/Garcon	.14	.36	1,893	SG	C	
Berrydale	.10	.72	1,000	SG	C	
Chumuckla	.065	.1	850	SG	C	
Holley Navarre	.058	1.2	1,445	F	C C	
Jay	.144	0.59	1,710	SG	Č	
Mount Carmel	.10	1.10	1,798	SG	č	
Midway $\frac{1}{}$.133	1.44	1,615	F	A, C	
Seminole						
Oviedo	0.25	1.5	2,500	F	C	
Winter Springs	.3	3.938	3,450	F	C A, C	
Sumter						
Center Hill	0.083		670	F	C	
Lake Panasoffkee	.10	0.28	1,570	F	G	
Webster	.07		700	F	Ċ	
Wildwood	.216	0.5	3,700	F	C	
Suwannee						
Branford	0.150	1.08	870	-		
Wellborn	.012	0.432	452	F	C	
METIDOLU	.012	.0.432	432	F .	С	
Taylor	0.010					
Dekle Beach	0.010		187	F	С	
Keaton Beach	.017	 -	367	F	С	
Steinhatchee	.112		1,122	F	С	
<i>V</i> olusia	20.22					
DeBary	0.07	0.55	780	F	A, C.	
Edgewater	. 35	.5	4,219	F	A, C,	
Lake Helen	. 2	1.4	2,038	F	c	
Orange City	.4	2.3	2,215	F	С	
Vakulla						
Panacea	0.08	0.749	1,530	F	С	
St. Marks	.048	.144	394			
,					C, D,	

TABLE 5.--Public water supplies of 111 communities and municipalities of generally less than 5,000 population, 1975. (Continued)

County	Pumpage	Plant	Population	Source	Water
Municipality	Mgal/d	capacity	served	(aquifer)	treatment
Walton					
Argyle	0.014	0.18	340	F	C
Choctaw Beach	.019		326	F	C
Freeport	.046	0.936	880	F	С
Grayton Beach	.01	.144	105	F	C
Inlet Beach	.011	.187	357	F	C
Paxton	.066	.432	1,139	F	C
Villa Tasso	.022	.144	221	F	С
Washington		5-0.5	40.0		
Caryville	0.067	0.43	875	F	C
Vernon	.07	.18	795	F	С
Wausau	.016	.14	272	F	C

Table 6 follows.

EXPLANATION OF SYMBOLS

COUNTY (CO.): 01, ALACHUA; 02, BAKER; 03, BAY; 04, 3RADFORD; U5, BREVARD; 06, BROWARD; 07, CALHOUN; 08, CHARLOTTE; 09, CITRUS; 10, CLAY; 11, COLLIER; 12, COLUMBIA; 13, DADE; 14, DESOTO; 15, DIXIE: 16, DUVAL; 17, ESCAMBIA; 18, FLAGLER; 19, FRANKLIN; 20, GADSDEN; 21, GILCHRIST; 22, GLADES; 23, GULF; 24, HAMILTUN; 25, HARDEE; 26, HENDRY; 27, HERNANDC; 28, HIGHLANDS; 29, HILLSBOROUGH; 30, HOLMES; 31, INDIAN RIVER; 32, JACKSCN; 33, JEFFERSON; 34, LAFAYETTE; 35, LAKE; 36, LEE; 37, LFON; 38, LEVY; 39, LIBERTY; 40, MADISON; 41, MANATEE; 42, MARION; 43, MARTIN; 44, MONROE; 45, NASSAU; 46, DKALOOSA; 47, OKEECHOBEE; 48, DRANGE; 49, OSCEDLA; 50, PALM BEACH; 51, PASCO; 52, PINELLAS; 53, POLK; 54, PUTNAM; 55, ST. JOHNS; 56, ST. LUCIE; 57, SANTA ROSA; 58, SARASCTA; 59, SEMINOLE; 60, SUMTER; 61, SUMANNEE; 62, TAYLOR; 63, UNION; 64, VGLUSIA; 65, MAKULLA; 66, MALTON; 67, WASHINGTON.

SOURCES OF MATER (S): G, GROUND WATER; S, SURFACE WATER; X, GROUND AND SURFACE WATER.

MONTH OF HIGHEST PUMPAGE: 1-9, JANUARY-SEPTEMBER; O, OCTOBER; N, NOVEMBER; D, DECEMBER.

PUMPAGE HIGHEST AND LOWEST MONTH: N/R = NOT REPORTED.

WATER TREATMENT: A, AERATION; C, CHLORINATION; D, FLGCCULATION; L, ALGAE CONTROL; F, FILTRATION;
G, COAGULATION; H, TASTE AND ODOR CONTROL; I, CARBONATION; J, SOFTENING AND
FILTRATION; K, DETENTION:
L, CLARIFICATION; M, COAGULATION,
FLOCCULATION, SEDIMENTATION, STABILIZATION AND CLARIFICATION; N, NONE;
O, COAGULATION AND SOFTENING; P, ANTI-PRECIPITATION AND CORROSION CONTROL;
Q, SEDIMENTATION AND SOFTENING; R, RECARBONATION; S, SEDIMENTATION; T, STABILIZATION;
U, FLUORIDATION; V, SOFTENING; X, PH CONTROL; Z, CHLORINATION AND FLUORIDATION.

TYPE OF ANALYSIS: B, BACTERIOLOGICAL; C, CHEMICAL; P, PHOTOMETRIC; S, SPECTROGRAPHIC.

FREQUENCY OF ANALYSIS: SAME AS TYPE ANALYSIS: I.E. FREQUENCY MI, M APPLIES TO B AND I APPLIES TO C UNDER TYPE ANALYSIS. A, ANNUALLY; D, DAILY; H, HOURLY; I, INTERMITTENTLY; M, MONTHLY; Q, QUARTERLY; S, SEMIANNUALLY; N, WEEKLY; X, SEMIMONTHLY.

SEWAGE TREATMENT: A, AERATION; B, BIOFILIRATION; C, CHLORINATION; D, DIGESTION; E, CLARIFICATION; F, FILTRATION; G, GRIT CHAMBERS; H, DIFFUSED AIN; I, INCINERATION; J, DRYING; L, NOT REPORTED; M, OXIDATION; N, NONE; O, COMMINUTION; P, POLISHING POND; Q, SKIMMING; R, SPIRO VORTEX; S, ACTIVATED SLUDGE; T, SEPTIC TANKS; U, CONTACT STABILIZATION; V, SETTLING; X, PRIMARY; Y, SECOHOARY; Z, TERTIARY.

TABLE 6.--WATER USE BY SELECTED MUNICIPALITIES, 1945, 1947, 1956, 1965, 1970-74.--CONTINUED

MUNICIPALITY	CO	POPUL - ATION SERVED	S	RATED PLANT CAP.	PUMPAGE MGAL/Y	PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL - YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAG DISCH MGAL/
							1945 ^a									
APALACTICALA	19	4 - 0CO	G	1.2	36.50	.10	1./2	1/8	N/R	N/R	AC .	3 C		25	CY	. 32
APENSIL	14	1.500	S	.5	146.00	- 40	N/K	N/R	N/R	::/R	AC ORF Q			114	N	. 20
A UBUR NOAL F.	53	1 .500	C	1.4	62.05	. 17	ALG	NIR	N/R	MIR	N			94		- CO
A YON PARK	28	2 .h25	G	1.6	109.50	. 30	NIR	N/R	N/R	N/R	N			114	SIV	. 12
BARTUM	53	6.000	G	1.9	237.25	. 65	NAB	N/R	N/R	NIR	N			109	VGC	.00
BELLE SLADE	50	4.000	S	.2	.00	.00	N/R	N/R	N/R	NZR	AFC	С				.00
MOTAS ADDI	50	950	C	1.0	109.50	. 30	N/R	N/R	N/R	V/R	AFVR			315		. 00
BCNIFA	30	1,120	G		27.37	.07	N/R	N/R	MA	N/R	N			63	V	.05
HOYNION BCH	50	12000.27			.00	.00	N/R	N/R	N/R	M/R						.00
BRADENTIN	41				.00	.00	N/R	N/R	NZR	N/R						.00
HRANDOM	29				.00	. 00	NIR	N/R	NIR	N/R						• 99
1RIS 10L	39				. 00	.00	N/R	N/R	N/R	N/R						.00
JRONS **	38					.00	N/R	N/R	N/R	N/R						. 60
BROOKSVILLE	27				.00	.00	NZR	N/R	N/R	1/3						
BUNNELL	18				. 60	.00	NZR	N/R	NIR	NZR						.00
BUSHNELL	60				.00	.00	N/R	N/R	NZR	NZR						. 00
APE CORAL	36				.00	.00	N/R	N/R	NZR	N/R						.00
CARIL CITY	13				.00	.00	VZR	N/R	N/R	N/3						.00
CASSELBERRY	59				.00	.00	NZR	NYR	N/R	N/R						
HATTATIOCHE	20				.00	.00	N/R	N/R	NIR	N/R						.00
CHIPLEY	67				. co	.00	N/R	N/R	N/R	N/R						.00
CLEARNATER	52				.00	.00	N/R	N/R	1/3	N/R						.00
CLEWISTON	26				. 00	.00	N/R	N/R	N/R	N/R						.00
ACCO	05				.00	.00	N/R	N/R	N/R	N/R						.00
CRAWFROVILLE	65	150	G	.0	4.38	.01	NIR	N/R	N/R	N/R	N			67		.00
CRESTYTEN	46	1.700	G	•2	51.10	.14	N/R	N/R	N/R	NZR	N .			82	٧	• 00
CRUSS CITY	15	1.250	G	.3	36.50	.10	N/R	N/R	N/R	N/R	AFSO			50		.00
CUTLER PIDGE	13			- 14.7.7°	.00	.00	N/R	N/R	N/R	N/R				3.4		. 00
DAJE CTTY	51	2,500	G	.2	58.40	.15	NZR	N/R	N/R	N/R	N			64	V	.00
AINAC	06	2.900	C	1.0	91.25	.25	NIR	N/R	NIR	N/R	Ċ			86	•	.00
DAYTINA BCH	64	25.000	G	4.0	730. CC	2.00	N/P	NZR	N/R	N/R	ADSRFC	вс		30	С	.00
DEERFLD BCH	06	1.850	G	.4	25.55	.07	N/R	N/R	N/R	N/R	N			37		• 00
DE FUNAK SPR	66	2.700	G	. 4	54.75	.15		N/R	N/R	N/R	c			55	N	. 00
DE LAND	64	10.000	G	5.3	365.00	1.00	0.000.000	N/R	N/R	N/R	N			100	VDS	1.00
DELRAY BCH	50	3,600	G	1.5	182.50	.50	N/R	N/R	WIR	N/R	N			1 38	VO	.00
DUNEDIN	52	2.000	G	1.8	73.00	.20	N/R	N/R	N/R	N/R	N			100	٧	. 00
ENGLENTED	58			45.5	. 00	.00		N/R	N/R	N/R						.00
EUSTIS	35	4 . OCO	G	1.3	51.10	.14		N/R	N/R	N/R	N			35	V	.00
FERNANDNA BC	45	1.800	C	2.1	101.18	.27	6	9.41	1	7.30	C			150	N	.00
FTLAUPEDALE	06	45 . OCO	;	6.0	1460.CO	4.00		N/R	N/R	N/R	COFA	вс		88	DCUS	.00

a S-e footnotes at end of table.

FT MYERS	36	11,000	G	2.0	328.50	. 90	N/R	N/R	N/R	N/R	ACFSV	C	92		44	
FT MYERS BCH	36				.00	.00	N/R	N/R	N/R	N/R	ACT 34	•	82	N	.00	
FT MYER SUBN	36				.00	.00	N/R	N/R	N/R	N/R					• 00	
FT PIERCE	56	10.000	X	2.0	547.50	1.50	N/R	N/R	N/R	N/R	AORPTC	ВС	150	N		
FT WALTH BCH	46	1.500	G	.7	36.50	.10	N/R	N/R	N/R	N /R	AC	00	66	CVS	•00 •20	
GAINESVILLE	01	16,000	X	4.9	511.00	1.40	N/R	N/R	N/R	N/R	C		87	VS	3.25	
GRN COVE SPR	10	2,000	G	1.4	73.00	.20	N/R	N/R	N/R	N/R	N		100	N	.00	
GULFPORT	52	1,200	G		.00	.00	N/R	N/R	N/R	N/R					• 00	
HAINES CITY	53	3,4CO	G	2.9	146.00	. 40	N/R	N /R	N/R	N/R	N		.117	FDS	.00	
HALLANDALE	06				.00	.00	N/R	N/R	N/R	N/R			115.5		.00	
HOLLY HILL	64				.00	.00	N/R	N/R	N/R	N/R					• 00	
HOLLYWOOD	06	2 .810	G	1.0	255.50	.70	N/R	N/R	N/R	N/R	AFC		98	C	.00	
HOMES TEAD	13	3,200	G	2.2	237.25	. 65	N/R	N/R	N/R	N/R	N		203	X	.00	
INVERNESS	09	1.200	G	1.0	43.80	.12	N/R	N/R	N/R	N/R	N		100	x	.07	
JACKSONVILLE	16	135,000	G	24.0	7998.41	21.91	3	774.91	2	551.69	AC	В	110	Ñ	.00	
JACKSNVLE BC	16	15,000	G	1.2	.00	.00	N/R	N/R	N/R	N/R						
JASPER	24	1,200	G	.8	47.45	.13	N/R	N/R	N/R	N/R	N N			N	• 00	
KEY WEST	44	25,000	G	• 0	.00	.00	N/R	N/R	N/R					N	• 00	
KISSIMMEE	49	3,200	G	2.2	146.00	.40	N/R	N/R	N/R	N/R	C			COSDF	2.62	
LA BELLE	26	600	G	2.2	.00		N/R	N/R	N/R	N/R	A		1 25	FV	- 00	
LA SELEC	20	000	ď		• 00	-00	N/K	NVN	N/ K	N/R	N			FV	.00	
LAKE BUTLER	63	350	G	.7	36.50	.10	N/R	N/R	N/R	N/R	N		28	FV	.05	
LAKE CITY	12	9,0CO	G	1.5	365.0C	1.00	N/R	N/R	N/R	N/R	AORFS	C	110	VFCDS	.37	
LAKELAND	53	22,100	G	5.7	1200.00	3.28	N/R	N/R	N/R	N/R	AC		67	GOVFAD	2.00	
LAKE PLACID	28	500	S	1.0	36.50	.10	N/R	N/R	N/R	N/R	N		200		.00	
LAKE WALES	53	5,020	G	1.4	127.75	. 35	N/R	N/R	N/R	N/R	AC		70	٧	- 00	
LAKE WORTH	50	6,500	G	4.0	730.00	2.00	N/R	N/R	N/R	N/R	С		307	٧	.00	
LANTANA	50	235	G	7	65.70	.01	N/R	N/R	N/R	N/R	N		70	v	•02	
LARGU	52	1.0CO	G	•2	65.70	.18	N/R	N/R	N/R	N/R	N		180	v	.00	
LEESBURG	35	4 .7 CO	G	1.2	182.50	.50	N/R	N/R	N/R	N/R	N		106	CVODS	. 25	
LEHIGH ACRES	36				- 00	.00	N/R	N/R	N/R	N/R					.00	
LIVE DAK	61	2.700	G	.5	62.05	-17	N/R	N/R	N/R	N/R	AOSFC		63	GV	. 09	
MACCLENNY	02				. 00	.00	N/R	N/R	N/R	N/R			03		.00	
MADISON	40	2.200	G	.6	70.36	.19	6	7.93	2	4.42	N		77		500.00	
MAITLAND	48	450	G	.7	18.25	. 05	N/R	N/R	N/R	N/R	N		110		.00	
MARIANNA	32	5,500	G	.9	73.00	.20	N/R	N/R	N/R	N/R	C		36	OVCS	• 00	
CYAM	34	450	G	.1	.00	.00	N/R	N/R	N/R	N/R	N					
MELBOURNE	05	3,8CO	G	.2	51.10	.14	N/R	N/R	N/R	N/R	ARFCSO		37	.,	• 00	
MIAMI	13	213,400	G	30.0	12639.00	34.63	N/R	N/R	N/R	N/R	ACOSR	ВС	103	V N	- 00	
MILTON	57	1.800	G	. 3	36.50	.10	N/R	N/R	N/R	N/R	N	50	103	CVS	.00	
MIRAMAR	06	2777		1.0	.00	.00	N/R	N/R	N/R	N/R	1			CVS	.00	
MONTICELLO	33	1.000	G	.7	36.50	.10	N/R	N/R	N/R	N/R	N		100			
MCORE HAVEN	22	750	S	.2	14.60	.04	N/R	N/R	N/R	N/R	ACOSFP		100 53	V	• 00	
NAPLES	11	750	G	1.1	25.55	.07	N/R	N/R	N/R	N/R	N		93		.00	
NEW PT RICHY	51	1.000	G	.7	91.25	.25	N/R	N/R	N/R	N/R	N		250		.00	
NEW SMYRNA B	64	4,700	G	1.0	182.50	.50	N/R	N/R	N/R	N/R	ACF		106	V N	.00	
NICEVILLE	46				0.0	00	NZP	N / P		N 40						
NORTH MIAMI	13				• 00 • 00	.00	N/R N/R	N/R N/R	N/R	N/R					.00	
NO MIAMI BCH	13	700	G	1 /	29.20	.00	N/R		N/R	N/R	450				. 00	
NC PALM BCH	50	300	G	1.4	.00	.08	N/R	N/R N/R	N/R	N/R	ASO		2 67		• 00	
									N/R	N/R					.00	
N PT CHARLOT	58				.00	.00	N/R	N/R	N/R	N/R					.00	

APALACHICOLA 19 ARCADIA 14 AUBURNDALE 53 BOCA RATON 50 BOCA SVILLE 57 BOCA 50	000 G 215 G 000 S 000 S 000 G 700 X 000 G 000 G 000 G 000 S 500 G 000 S 500 G 000 S	1.0 20.0 .5 3.3 2.6 1.2 1.0 1.6 2.3 4.5 3.0 .5 .4 .9 2.1	54.75 2190.00 54.75 240.90 127.75 240.90 127.75 36.50 164.70 182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 .00 .00 .00 .00 .00	.15 6.00 .15 .66 .35 .10 .45 .50 .32 1.00 .75 .00 .30 1.30 .00 .02 .17 .05	N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	ASC ACFSC N N AGRFC AGSFRC N N AGSCFT	BC BC C BC	25 113 100 88 100 88 300 133 108	N NT	.000 .000 .000 .000 .000 .000 .000 .00
APALACHICOLA 19 APALACHICOLA 19 ARCADIA 14 AUBURNDALE 53 BARTOM 53 BOCA RATON 50 BONIFAY 30 BONIFAY	000 G 215 G 000 S 000 S 000 G 700 X 000 G 000 G 000 G 000 S 500 G 000 S 500 G 000 S	1.2 1.0 1.6 2.3 4.5 3.0 .5 .4 .9 2.1	36.50 127.75 36.50 164.70 182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 7.30 62.05 18.25 73.00	.15 .66 .35 .10 .45 .50 .32 1.00 .70 .75 .00 .30 1.30	N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	ASC ACFSC N N N AGRFC AGSFRC N N AGSCFT	BC C	25 113 100 68 100 88 300 133 108	N N	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
APALACHICOLA 19 4, APALACHICOLA 19 4, ARCADIA 14 4, AUBURNDALE 53 5, AVON PARK 28 4, BARTON 53 10, BELLE GLADE 50 8, BOCA RATON 50 2, BONIFAY 30 12, BONIFAY 30 12, BONIFAY 30 12, BONIFAY 30 2, BONIF	000 G 215 G 000 G 000 S 000 G 700 X 000 G 000 G 250 G 000 S 175 G 200 G 100 G	3.3 2.6 1.2 1.0 1.6 2.3 4.5 3.0 .5 .4 .9 2.1	240.90 127.75 36.50 164.70 182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 7.30 62.05 18.25 73.00	.66 .35	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R 7 b N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	ASC ACFSC N N N AGRFC AGSFRC N N AGSCFT	BC C	94 56 25 113 100 68 100 88 300 133 108	N	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
APALACHICOLA 19 4, ARCADIA 14 4, AUBURNDALE 53 5, AVON PARK 28 4, BARTON 53 10, BELLE GLADE 50 8, BOCA RATON 50 2, BOCA RATON 51 2, BOCA RATON 51 2, BOCA RATON 51 2, BOCA RATON 52 2, BOCA RATON 52 2, BOCA RATON 53 3, BOCA RATON 54 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, BUSHNELL 60 5, CCOA 05 6, CRAHFROVILLE 65 CRESTVIEW 46 4,	215 G 000 G 000 S 000 G 700 X 000 G 000 S 500 G 000 S 500 G 000 S 175 G 220 G 100 G	1.2 1.0 1.6 2.3 4.5 3.0 .5 .4 .9 2.1	36.50 164.70 182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 7.30 62.05 18.25	. 35 . 10 . 45 . 50 . 32 1.00 . 70 . 75 . 00 . 30 1. 30 . 00 . 00 . 02 . 17 . 05 . 20 . 00	194 N/R N/R N/R N/R N/R N/R N/R N/R N/R N/	N/R 7 b N/R N/R N/R N/R N/R N/R N/R N/R N/R N/	N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	ASC ACFSC N N N AGRFC AGSFRC N N AGSCFT	BC C	25 113 100 68 100 88 300 133 108	N	.00 .00 .00 .00 .00 .00 .00 .00 .00
APALACHICOLA 19 ARCADIA 14 4, AUBURNDALE 53 5, AVON PARK 28 4, BARTOW 53 10, BELLE GLADE 50 8, BOCA RATON 50 2, BONIFAY 30 2, BOYNTON BCH 50 2, BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CHAPLEY 67 2,	0CO G 0CO S 0CO G 7CO X 0CO G	1.2 1.0 1.6 2.3 4.5 3.0 .5 .4 .9 2.1	36.50 164.70 182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 7.30 62.05 18.25	.10 .45 .50 .32 1.00 .70 .75 .00 .30 1.30	194 N/R N/R N/R N/R N/R N/R N/R N/	7 b N/R N/R N/R N/R N/R N/R N/R N/	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	ASC ACFSC N N N AGRFC AGSFRC N N AGSCFT	BC C	25 113 100 68 100 88 300 133 108	N	.00 .00 .00 .00 .00 .00 .00 .00
ARCADIA AUBURNDALE AUBURNDALE SAYON PARK BARTON BELLE GLADE BOCA RATON BONIFAY BOYNTON BCH BOYNTON BCH BORANDON BRANDON BRANDON BRANDON BRONSON BRONSO	000 S 000 G 700 X 000 G 000 S 500 G 000 G 250 G 000 S	1.0 1.6 2.3 4.5 3.0 .5 .4 .9 2.1	164.70 182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 .00 .00 .00 .00 .00 .00	. 45 .50 .32 1.00 .70 .75 .00 .30 1.30 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	ACFSC N N N AGRFC AGSFRC N N AGSCFT	BC C	113 100 68 100 88 300 133 108		.00
ARCADIA AUBURNDALE AVON PARK BARTOM BELLE GLADE BOCA RATON BONIFAY BOYNTON BCH BOYNTON BCH BOYNTON BCH BRANDON BRANDON BRANDON BRANDON BRONSON BRONSON	000 S 000 G 700 X 000 G 000 S 500 G 000 G 250 G 000 S	1.0 1.6 2.3 4.5 3.0 .5 .4 .9 2.1	164.70 182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 .00 .00 .00 .00 .00 .00	. 45 .50 .32 1.00 .70 .75 .00 .30 1.30 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	ACFSC N N N AGRFC AGSFRC N N AGSCFT	BC C	113 100 68 100 88 300 133 108		.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
A UBURNDALE 53 5, A VON PARK 28 4, B ARTOW 53 10, B B B B B B B B B B B B B B B B B B B	000 G 700 X 000 G 000 S 500 G 000 G 250 G 000 S	1.6 2.3 4.5 3.0 .5 .4 .9 2.1	182.50 116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 .00 7.30 62.05 18.25 73.00 .00	.50 .32 1.00 .70 .75 .00 .30 1.30 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	AGRFC AGSFRC N N AGSCFT	BC C	100 68 100 88 300 133 108		.00
A VON PARK 28 4, BARTON 53 10, BELLE GLADE 50 8, BOCA RATON 50 2, BONIFAY 30 2, BONIFAY 30 2, BONIFAY 30 2, BONIFAY 30 2, BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 61 1, CAPE CORAL 61 1, CAPE CORAL 62 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CLEAR WATER 52 25, CLEAR WATER 52 25, CRAWFRDVILLE 65 CRESTVIEW 46 4,	7CO X 0CO G 0CO S 5CO G 0CO G 250 G 0CO S 175 G 2CO G 1CO G	2.3 4.5 3.0 .5 .4 .9 2.1	116.80 365.00 255.50 273.75 .00 109.50 474.50 .00 .00 7.30 62.05 18.25 73.00 .00	.32 1.00 .70 .75 .00 .30 1.30 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R	AGRFC AGSFRC N AGSCFT	С	68 100 88 300 133 108	NT	.00
BARTON 53 10, BELLE GLADE 50 8, BOCA RATON 50 2, BONIFAY 30 2, BOYNTON BCH 50 2, BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSEL BERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CHEMISTON 26 5, CCOA 05 6, CRAHFRDVILLE 65	000 G 000 S 500 G 000 G 250 G 000 S	4.5 3.0 .5 .4 .9 2.1	365.00 255.50 273.75 .00 109.50 474.50 .00 .00 7.30 62.05 18.25 73.00 .00	1.00 .70 .75 .00 .30 1.30 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R	AGRFC AGSFRC N N AGSCFT	С	100 88 300 133 108	NT	. 0 . 0 . 0 . 0 . 0
BELLE GLADE 50 8, BOCA RATON 50 2, BOCA RATON 50 2, BONIFAY 30 2, BONIFAY 30 2, BOYNTON BCH 50 2, BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARWATER 52 25, CCCOA 05 6, CRAMFROVILLE 65	000 S 500 G 000 G 250 G 000 S	3.0 .5 .4 .9 2.1	255.50 273.75 .00 109.50 474.50 .00 .00 .7.30 62.05 18.25 73.00 .00	.70 .75 .00 .30 1.30 .00 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R	AGRFC AGSFRC N N AGSCFT N AGSCFT	С	88 300 133 108	NT	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
BOCA RATON 50 2, BONIFAY 30 2, BONIFAY 30 2, BOYNTON BCH 50 2, BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEAR WATER 52 25, CRESTVIEW 46 4,	5CO G 0CO G 250 G 0CO S 175 G 2CO G 1CO G	.5 .4 .9 2.1	273.75 .00 109.50 474.50 .00 .00 7.30 62.05 18.25 73.00 .00	.75 .00 .30 1.30 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R	AGSFRC N N AGSCFT N N ACS	С	300 133 108	NT	.0 .0 .0 .0
BONIFAY 30 2, BOYNTON BCH 50 2, BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARWATER 52 25, CCOA 05 6, CRANFROVILLE 65	000 G 250 G 000 S 175 G 200 G 100 G	1.9 2.1	.00 109.50 474.50 .00 .00 7.30 62.05 18.25 73.00	.00 .30 1.30 .00 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R	N / R N / R N / R N / R N / R N / R N / R	N AGSCFT N N ACS		1 33 1 08	NT	.0 .0 .0
BOYNTON BCH 50 2, BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSEL BERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEAR WATER 52 25, CCCOA 05 6, CRAHFR DVILLE 65 CRESTVIEW 46 4,	250 G 0C0 S 175 G 2C0 G 1C0 G	1.8 .3	109.50 474.50 .00 .00 7.30 62.05 18.25 73.00 .00	.30 1.30 .00 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R N/R	N AGSCFT N N ACS	вс	108 77 45	NT	.0 .0 .0
BRADENTON 41 12, BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSEL BERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEAR WATER 52 25, CRAHFR DVILLE 65 CRESTVIEW 46 4,	000 S 175 G 200 G 100 G 700 G	1.9	474.50 .00 .00 7.30 62.05 18.25 73.00 .00	1.30 .00 .00 .02 .17 .05	N/R N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R	AGSCFT N N ACS	вс	108 77 45	NT	. 0 . 0 . 0
BRANDON 29 BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEAR WATER 52 25, CCCOA 05 6, CRAMFROVILLE 65 CRESTVIEW 46 4,	175 G 200 G 100 G	1.9	.00 .00 7.30 62.05 18.25 73.00	.00 .00 .02 .17 .05	N/R N/R N/R N/R N/R	N/R N/R N/R N/R N/R	N/R N/R N/R N/R	N/R N/R N/R N/R	N N ACS	вс	77 45	NT	• 0 • 0 • 0
BRISTOL 39 BRONSON 38 BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARWATER 52 25, CLEARWATER 52 25, CCCOA 05 6, CRAWFROVILLE 65	2CO G 1CO G 7CO G	- 3	.00 7.30 62.05 18.25 73.00 .00	.00 .02 .17 .05	N/R N/R N/R N/R N/R	N/R N/R N/R N/R	N/R N/R N/R N/R	N/R N/R N/R	N ACS		45	NT	• 0 • 0 • 0
BRONSON 38 BRONSON 38 BRONSON 38 BRONSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARWATER 52 25, CLEARWATER 52 25, CCCOA 05 6, CRAWFROVILLE 65	2CO G 1CO G 7CO G	- 3	7.30 62.05 18.25 73.00 .00	.02 .17 .05	N/R N/R N/R N/R	N/R N/R N/R	N/R N/R N/R	N/R N/R N/R	N ACS		45	NT	.0 .0
BROOKSVILLE 27 2, BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARWATER 52 25, CLEARWATER 52 25, CCCOA 05 6, CRAHFROVILLE 65	2CO G 1CO G 7CO G	- 3	62.05 18.25 73.00 .00	.17 .05 .20	N/R N/R N/R	N/R N/R	N/R N/R	N/R N/R	N ACS		45	NT	• 0
BUNNELL 18 1, BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEAR WATER 52 25, CLEAR ISTON 26 5, CCCOA 05 6, CRAWFROVILLE 65	1CO G 7CO G	- 3	73.00 .00 .00	.05 .20 .00	N/R N/R N/R	N/R N/R	N/R	N/R	ACS		45	NT	.0
BUSHNELL 60 CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEWISTON 26 5, CCCOA 05 6, CRAHFROVILLE 65 CRESTVIEW 46 4,	700 G		73.00 .00 .00	•20 •00	N/R N/R	N/R						NT	
CAPE CORAL 36 CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARWATER 52 25, CLEARWATER 52 25, CCCOA 05 6, CRAWFROVILLE 65		.4	-00	.00	N/R		N/R	N /R	- 94		286		. 0
CAROL CITY 13 CASSELBERRY 59 CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARWATER 52 25, CLEMISTON 26 5, CCCOA 05 6, CRAHFRDVILLE 65 CRESTVIEW 46 4,	000 6		.00					10.7	N				- 0
CASSELBERRY 59 CHATTAHOOCHE 20 4. CHIPLEY 67 2. CLEARWATER 52 25. CLEMISTON 26 5. CCCOA 05 6. CRAWFRDVILLE 65 CRESTVIEW 46 4.	000 6			.00		N/R	N/R	N/R					. 0
CHATTAHOOCHE 20 4, CHIPLEY 67 2, CLEARMATER 52 25, CLEMISTON 26 5, CCCOA 05 6, CRAMFROVILLE 65 CRESTVIEW 46 4,	000 6		0.0		N/R	N/R	N/R	N/R					• 0
CHIPLEY 67 2, CLEAR WATER 52 25, CLEWISTON 26 5, CCCOA 05 6, CRAMFR DVILLE 65 CRESTVIEW 46 4,	000 6			.00	N/R	N/R	N/R	N/R					.0
CLEARWATER 52 25, CLEMISTON 26 5, CCCOA 05 6, CRAHFRDVILLE 65	000 G	.4	29.20	.08	N/R	N/R	N/R	N/R	C		20		- 0
CCCOA 05 6, CRAWFROVILLE 65 CRESTVIEW 46 4,	200 G	.6	40-15	. 11	N/R	N/R	N/R	N/R	N		50		.0
CCCOA 05 6, CRAWFROVILLE 65 CRESTVIEW 46 4,	0 CO G	4.0	547.50	1.50	N/R	N/R	N/R	N/R	N		€0		. 0
CRAMFROVILLE 65 CRESTVIEW 46 4,	000 S		102.20	.28	N/R	N/R	N/R	N/R	CAGFST	C	56		. 0
CRESTVIEW 46 4,	500 S	.7	127.75	.35	N/R	N/R	N/R	N/R	GSTFC	C	54		. 0
	1CO G	-0	3.65	.01	N/R	N/R	N/R	N/R	N		100	NT	. 0
PROSS CITY 15 1.	500 G	.7	131.40	.36	N/R	N/R	N/R	N/R	N		80		. 0
	2 CO G	.2	54.75	.15	N/R	N/R	N/R	N/R	ASFC		1 25		. 0
CUTLER RIDGE 13			.00	.00	N/R	N/R	N/R	N/R					. 0
DADE CITY 51 3,		2.2	83.95	-23	N/R	N/R	N/R	N/R	N		66		. 0
DANIA 06 3,	500 G	1.3	146.00	. 40	N/R	N/R	N/R	N/R	ASC		114		. 0
DAYTONA BCH 64 35,		5.0	1095.00	3.00	N/R	N/R	N/R	N/R	AGSRFC	ВС	86		. 0
TOT (THE SECOND SE	OCO G	. 8	54.75	.15	N/R	N/R	N/R	N/R	A		75		. 0
DE FUNAK SPR 66 3,		- 4	109.50	. 30	N/R	N/R	N/R	N/R	C		100		• 0
DE LAND 64 10,		5.0	365.00	1.00	N/R	N/R	N/R	N/R	CG		100		.0
DELRAY BCH 50 7,	750 G	3.1	365.00	1.00	N/R	N/R	N/R	N/R	AS		1 29		- 0

PUMP"

MNTH

PUMP

WATER

TYPE FREQ- PFR

SEWAGE

SEWAGE

PUMPAGE PUMPAGE MNTH

POPUL-

RATED

	AYO	34	630	G	.1	.00	.00	N/R	N/R	N/R	N/R	N		1.62	NT	.00
	ELBOURNE	05	5,7C0	S	.3	73.00	.20	N/R	N/R	N/R	N/R	AGCF	-3225	35		.00
	IAMI	13	233,000	G	60.0	13140.00	36.00	N/R	N/R	N/R	N/R	GCSF	BC	155		.00
	HILTON	57	2,000	G	.9	36.50	.10	N/R	N/R	N/R	N/R	C		50		- 00
1	IRAH AR	06				- 00	• 00	N/R	N/R	N/R	N/R					.00
	MONTICELLO	33	2,300	G	1.0	61.58	.17	8	6.55	2	3.65	N		74		.00
	HOORE HAVEN	22	1,3CO	S		58.40	.16	N/R	N/R	N/R	N/R	ACGEST	C	123		.00
	NAPLES	11	1 .000	G	-4	36.50	.10	N/R	N/R	N/R	N/R	ACGFT	C	100		.00
	NEW PT RICHY	51	1,000	G	.7	65.70	. 18	N/R	N/R	N/R	N/R	N		180		.00
	NEW SMYRNA B	64	6,000	G	1.3	408.80	1.12	N/R	N/R	N/R	N/R	AFTC	C	187		.00
	NICEVILLE	46				.00	.00	N/R	N/R	N/R	N/R					.00
	NORTH MIAMI	13	2,500	G	1.6	127.75	.35	N/R	N/R	N/R	N/R	AGSFC		1 40		.00
	NO MIAMI BCH	13	1,500	G	2.2	47.45	.13	N/R	N/R	N/R	N/R	AGSC		86		
	NC PALM BCH	50	1,,00	٠	2.2	.00	.00	N/R	N/R	N/R	N/R	Adac		00		.00
																.00
	N PT CHARLOT	58				.00	.00	N/R	N /R	N/R	N/R					• 00
	DAKLAND PARK	06				.00	.00	N/R	N/R	N/R	N/R	-		0.27		.00
	O CAL A	42	10,000	G	4.9	547-50	1.50	N/R	N/R	N/R	N/R	С	12.	1 50		- 00
	OKEECHOBEE	47	1 .800	S	.7	54.75	-15	N/R	N/R	N/R	N/R	AGFTC	C	94		.00
	OPA-LOCKA	13	1,500	G	.6	51.10	. 14	N/R	N/R	N/R	N/R	ACGST	C	93		- 00
	O RLANDO	48	65,000	S	8.0	2491.60	6.82	N/R	N/R	N/R	N/R	AGCFS	BC	108		.00
	ORMOND BCH	64	2,000	G	1.0	182.50	.50	N/R	N/R	N/R	N/R	AGFC		250		.00
	PAHOKEE	50	9,500	S	.4	146.00	-40	N/R	N/R	N/R	N/R	AFSC		42		.00
	PALATKA	54	7,5CO	S	1.7	313.90	. 86	N/R	N/R	N/R	N/R	CSFT		115		.00
	PALM BEACH	50	30.17.77	S	10.0	• 00	.00	N/R	N/R	N/R	N/R					.00
	PALM BCH GDN	50		- 2		.00	.00	N/R	N/R	N/R	N/R					.00
	PALMETTO	41	2,500	G	1.3	69.35	.19	N/R	N/R	N/R	N/R	AC		76		.00
	PANAMA CITY	03	27,000	G	4.4	519.15	1.42	7	55.76	2	32.48	ACSFG	BC	53		.00
	PENSACOLA	17	40,600	S	8.4	1723.20	4.72	7	180.60	2	112.90	ASC	50	116		.00
	PERRY	62	6-000	G	1.1	167.63	. 46	1	18.93	D	10.60	ACFS		76		•00
	PINELLAS PK	52	0 - 000	G		.00	.00	N/R	N/R	N/R	N/R	ALIG		, 0		.00
	PINE ISLAND	36				.00	.00	N/R	N/R	N/R	N/R					
																- 00
	PLANT CITY	29	8,800	G	2.8	219.00	- 60	N/R	N/R	N/R	N/R	N		68		• 00
	POMPANO BCH	06	5,400		1.1	109.50	. 30	N/R	N/R	N/R	N/R	A		56		• 00
	PT CHARLOTTE	08		_		- 00	.00	N/R	N/R	N/R	N/R					• 00
	PORT ST JOE	23	2,500	G	.4	47.45	-13	N/R	N/R	N/R	N/R	AFTC		52		• 00
- 9	UNTA GORDA	08	2,000	S	.5	91.25	.25	N/R	N/R	N/R	N/R	ACGSFT	ВС	1 25		.00
	DUINCY	20	5,500	G	1.7	182.50	• 50	N/R	N/R	N/R	N/R	N		91		00.
-	RIVIERA BCH	50	2,000	G	. 3	76-65	.21	N/R	N/R	N/R	N/R	N		105		.00
- 3	ST AUGUSTINE	55	17,500	S	2.0	456.25	1.25	N/R	N/R	N/R	N/R	ACGSFT	BC	71		.00
	ST CLOUD	49	3,500	G	2.2	375.95	1.03	N/R	N/R	N/R	N/R	ASCT		294		.00
	T PETERBURG	52	107,400	G	12.0	2591-50	7.10	N/R	N/R	N/R	N/R	ACGES		66		- 00
	T PETE BCH	52		-		.00	.00	N/R	N/R	N/R	N/R					.00
	SANFORD	59	10,800	G	1.6	292.00	. 80	N/R	N/R	N/R	N/R	AC		74		
	SARASOTA	58	17,500	G	2.0	456.25	1.25	N/R	N/R	N/R	N/R	AFSC		71		•00
	EBRING	28	6,250	X	5.5	273.75	.75	N/R	N/R	N/R	N/R	AC		120		.00
									22	=	30.00					
	TARKE	04	4,5CO	G	1.3	109.50	. 30	N/R	N/R	N/R	N/R	C		66		• 00
- 0	TUART	43	5,500	G	• 6	42.47	.12	1	4-14	9	310.00	AFS		218		.00
	ALLAHASSEE	37	23,675	G	10.8	865.12	2.37	3	60. 43	7	81.65	С	2.0	1 00		• 00
	AMPA	29	193,2CO	X	36.7	6040.75	16.55	N/R	N/R	N/R	N/R	GFSRC	BC	85		.00
	ARPON SPRS	52	4,000	G	2.2	73.00	.20	N/R	N/R	N/R	N/R	N	0.0	50		.00

MUNICIPALITY	CO	POPUL - ATION SERVED	S	RATED PLANT CAP.	PUMPAGE MGAL/Y	PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/D
						1947	Con	TINUED								
TAVARES	35	1,700	G	.6	47.45	.13	N/R	N/R	N/R	N/R	N			76		•00
TITUSVILLE	05	2.500	S	.1	10.95	177.7		N/R	N/R	N/R	N			120		- 00
TRENTON	21	700	G	.4	18.25			N/R	N/R	N/R	N			72		- 00
V ALP ARA IS O	46	1.5CO	G	. 3	. CO	.00	N/R	N/R	N/R	N/R	N					.00
VENICE	58	2.000	G	1.1	36.50	. 10	N/R	N/R	N/R	N/R	AC			50		.00
VERO BEACH	31	3,600	G	1.0	219.00	.60	N/R	N/R	N/R	N/R	AGFTC			166		.00
WAUCHULA	25	2,400	G	1.7	109.50			N/R	N/R	N/R	N			125		.00
WARRINGTON	17	12,388	S	3.0	273.75			N/R	N/R	N/R	GFC			60		.00
WEST PALM BC	50	40,557	S	20.0	2920.00			N/R	N/R	N/R	AGSCFT	вс		197		.00
WINTER GARDA	48	3,400	Ğ	.9	73.00			N/R	N/R	N/R	AC	50		58		.00
WINTER HAVEN	53	13.000	G	2.8	365.00	1.00	N/R	N/R	N/R	N/R	AC			77		.00
WINTER PARK	48	10,000	G	5.0	365.00			N/R	N/R	N/R	AC			1 CO		- 00
							1956	c								
APALACHICOLA	19	2,600	G	1.1	73.20	.20	N/R	N/R	N/R	N/R	ACS			77		.00
ARCADIA	14	4 ,5 CO	S	1.0	256.20	.70	N/R	N/R	N/R	N/R	CSHTFG	BC		155		.00
AUBURNDALE	53	7,5CO	G	5.1	274.50	. 75	N/R	N/R	N/R	N/R	N			100		.00
AVON PARK	28	6,5CO	G	1.8	256.20	.70	N/R	N/R	N/R	N/R	N			108		.00
BARTOW	53	11,200	G	5.6	549.00	1.50	N/R	N/R	N/R	N/R	AOSRFC	BC		1 34		.00
BELLE GLADE	50	7,000	S	2.2	366.CC	1.00	N/R	N/R	N/R	N/R		3 C		1 43		.00
BLOUNTSTOWN	07	2.500	G	. 7	73.20	.20	N/R	N/R	N/R	N/R	N			80		.00
BOCA RATON	50	3,260	G	1.0	263.52	. 72	N/R	N/R	N/R	N/R	ACORFS	C		306		.00
BONIFAY	30	2,260	G	. 6	80.52	. 22	N/R	N/R	N/R	N/R	C			100		.00
BOYNTON BCH	50	5,500	G	3.4	329.40	.90	N/R	N/R	N/R	N/R	CPT		1	264		.00
BRADENTON	41	20,000	S	4.0	640.50	1.75	N/R	N/R	N/R	N/R	HCOTAF	8 C		87		.00
BRANDON	29	1 CO		. 6	36.60	.01	N/R	N/R	N/R	N/R	C		- 1	1 CO		.00
RISTOL	39	160	G	.2	36.60	.01	N/R	N/R	N/R	N/R	N			62	NT	-00
RONSON	38				.00	.00	N/R	N/R	N/R	N/R						.00
ROOKSVILLE	27	2,500	G	1.8	102.48	.28	N/R	N/R	N/R	N/R	AS			112		• 00
UNNELL	18	1,027	G	1.0	65.88	.18	N/R	N/R	N/R	N/R	ACPTS		1	175		.00
USINELL	36	7 CO		.9	25.62	.07	N/R	N/R	N/R	N/R	N		1	1 CO		.00
APE CORAL	36				.00	.00	N/R	N/R	N/R	N/R						.00
AROL CITY	13	2,500	G	1.0	124.44	. 34	N/R	N/R	N/R	N/R	AGSFC	C		1 36		.00
ASSELBERRY	59	1 ,250	G	.8	62.22	.17	N/R	N/R	N/R	N/R	ASCPTX		1	1 36		.00
HATTAHOOCHE	20	4,000	G	1.1	65.88	.18	N/R	N/R	N/R	N/R	С			45		.00
CHISLEA	67	3,300	G	1.0	118.95	- 32	N/R	N/R	N/R	N/R	C			97		.00
CLEARWATER	52	35,0CO	G	17.2	2013.00	5.50	N/R	N/R	N/R	N/R	ADPTS			1 57		.00
LEWISTON	26	2,600	S	2.8	366.00	1.00	N/R	N/R	N/R	N/R	ZF OHP T	BC		384		.00
CCOA	05	9 .5CO	S	1.5	370.84	2.08	N/R	N/R	N/R	N/R	AGVSFT	BC	2	2 10		.00

CRAWFROVILLE	65	1 CO	G	.0	2.93	.00	N/R	N/R	N/R	N/R	N		80		- 00
CRESIVIEW	46	8,000	G	2.6	208.62	. 57	N/R	N/R	N/R	N/R	C		71		.00
CROSS CITY	15	1.700	G	1.7	76.86	.21	N/R	N/R	N/R	N/R	ACF		123		.00
CUTLER RIDGE	13										ACI		163		
					.00	.00	N/R	N/R	N/R	N/R					.00
DADE CITY	51				.00	.00	N/R	N/R	N/R	N/R					- 00
DANIA	06	6,500	G	1.8	183.00	. 50	N/R	N/R	N/R	N/R	ACS		77		
DAYTONA BCH	64	61 .0CO	G					0.00							.00
생선이다고 하면 하다 맛이 되는 것 같아 보았다.				5.0	1464.00	4.00	N/R	N/R	N/R	N/R	AOSRFC		66		.00
DEERFLD BCH	06	3,500	G	2.8	183.00	- 50	N/R	N/R	N/R	N/R	ACTSP		1 42		.00
DE FUNAK SPR	66	5,500	G	2.0	219.60	.60	N/R	N/R	N/R	N/R	C		109		.00
DELRAY BCH	50	10,300	G	7.2	1061.40	2.90	N/R	N/R	N/R	N/R	ACSF		281		.00
05		17 500	•		505 (0								2.2		
DE LAND	64	13,5CO	G	6.7	585.60	1.60	N/R	N/R	N/R	N/R	CPTX		118		- 00
DUNEDIN	52	6,000	G	3.7	311.10	.85	N/R	N/R	N/R	N/R	N		1 41		.00
ENGLE WOOD	58				.00	.00	N/R	N/R	N/R	N/R					- 00
EUSTIS	35	7,8C0	G	2.8	329.40	.90	N/R	N/R	N/R	N/R	AS		115		.00
FERNANDNA BC	45	6,500	G	3.3	259.86	.71	8	32.36	2	15.57	ADS		109	Y	
T Eliman Ma 30		07300	٠	3.3	237.00	7.15	U	32. 30		13.3	AU 3		107		•00
FT LAUNEDALE	06	85,0CO	G	22.0	6258.60	17.10	N/R	N/R	N/R	N/R	ACGOHF	BC	201		.00
FT MYERS	36	18,0CO	G	6.0	915.00	2.50	N/R	N/R	N/R	N/R	AORCES	BC	1 69		.00
FT MYERS BCh	36	1.800	G	.5	43.92	.12	N/R	N/R	N/R	N/R	AOSFCT	C	166		-00
FT MYER SUBN	36				.00	.00	N/R	N/R	N/R	N/R	H00.01		100		
- 10 JUNE 1 WAS STAN STAN TO STANF		21 000		7.0									2.2		.00
FT PIERCE	56	21 -000	X	3.0	658.80	1.80	N/R	N/R	N/R	N/R	AJHCST		86		- 00
FT WALTH BCH	46	9.000	G	2.0	201.30	.55	N/R	N/R	N/R	N/R	ACS		€1		.00
GAINESVILLE	01	29,000	Ğ	3.0	1306.62	3.57	N/R	N/R	N/R	N/R	ACGVSF	C	123		.00
												•			
GRN COVE SPR	10	4,200	G	1.8	153.72	. 42	N/R	N/R	N/R	N/R	N		100	NT	.00
GULFPORT	52	7,500	G		146.40	. 40	N/R	N/R	N/R	N/R		BC	53		.00
HALLANDALE	06	6,700	G	2.0	274.50	.75	N/R	N/R	N/R	N/R	AC VG	BC	1 11		.00
HAINES CITY	53	8,500	G	5.2	351.69	.96	N/R	N/R	N/R	N/R	N		1 47		0.0
															.00
HCLLY HILL	64	6,650	G	1.1	146.40	. 40	NYR	N/R	N/R	N/R	AOSFCT		60		-00
HOLLYWOOD	06	40.0CO	G	12.0	1903.20	5.20	N/R	N/R	N/R	N/R	ACFTS	C	1 30		.00
HOMESTFAD	13	6,8CO	G	4.1	- 00	.00	N/R	N/R	N/R	N/R	N				.00
INVERNESS	09	1 .200	G	1.6	43.92	.12	N/R	N/R	N/R	N/R	N		100		.00
	0.0	(20 a) (10 a)													
JACKSONVILLE	16	247,000		67.6	12532.46	34.33	5 1	275.90	2	801-34	ACF	В	1 39		.00
JACKSNVLE BC	16	10,5CO	G	5.9	475.80	1.30	N/R	N/R	N/R	N/R	ACFGS	C	123		.00
JASPER	24	2,000	G	1.4	73.20	.20	N/R	N/R	N/R	N/R	C		100		.00
JUPITER	50	150	G	.3	16.43	.04	N/R	N/R	N/R	N/R	C		150		.00
KEY WEST	44		Ğ	• •	.00	.00	N/R	N/R	N/R	N/R	·		1.50		
NET WEST			9		. 00	. 00	N/K	NYN	N/N	HIA					- 00
KISSIMMEE	49	6,000	G	2.5	311.10	. 85	N/R	N/R	N/R	N/R	ACS		1 4 1		-00
LA BELLE	26	650	G.		25.62	.07	N/R	N/R	N/R	N /R	N		107		.00
LAKE BUTLER	63	870	G	1.3	36.60	.10	N/R	N/R	N/R	N/R	C		115		
	0.00		G								The second second				.00
LAKE CITY	12	8,600		2.0	366.00	1.00	N/R	N/R	N/R	N/R	ACOSF	В	116		.00
LAKELAND	53	40,000	G	23.7	2412.09	6.61	6	248.00	9	139.00	ACS		164		.00
LAKE PLACID	28	1,100	S	1.6	54.90	.15	N/R	N/R	N/R	N/R	С		1 36		.00
LAKE WALES	53	9,000	G	4.6	484.37	1.33	N/R	N/R	N/R	N/R	ASC		110		.00
LAKE WORTH	50														
		16,000	G	18.3	1281.00	3.50	N/R	N/R	N/R	N/R	С		219		.00
LANTANA	50	1,720	G	2.1	128.10	. 35	N/R	N/R	N/R	N/R	N		203		.00
LARGO	52	5 .5CO	G	1.9	219.60	. 60	N/R	N/R	N/R	N/R	N		109		- 00
LEESBURG	35	13,000	G	6.7	629.52	1.72	N/R	N/R	N/R	N/R	C		1 32		00
- [구] (구) (가 가 가 가 가 가 있는) ()		13,000	u	0.7							·		1 32		• 00
LEHIGH ACRES	36		-1	100	.00	.00	N/R	N/R	N/R	N/R					.00
LIVE DAK	61	6,120	G	1.3	183.00	. 50	N/R	N/R	N/R	N/R	ACSPTX		81		.00
LONGWOOD	59	1,150	G	.4	18.25	. 05	N/R	N/R	N/R	N/R	N		43		.00
LYNN HAVEN	03	2,300	G	. 5	A3.95	.23	N/R	N/R	N/R	N/R	AS C		100		.00
											2.14.00				

MUNICIPALITY	CO	POPUL- ATION SERVED	S	RATED PLANT CAP.	PUMPAGE MGAL/Y	PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- PER - ANAL- CAP YSIS USE	SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/D
						195	6Co	NTINUED							
MACCLENNY	02	1,750	G	1.0	69.54	.19	N/R	N/R	N/R	N/R	CPT	С	108	X D	• 00
MADISON	40	3,320	G	1.4	123.28	. 33	6	12.69	2	7.76	N		100		-00
MAITLAND	48	1 .4CO		.8	65.88	.18	N/R	N/R	N/R	N/R	CPT		1 28		.00
MARIANNA	32	7,500	G	3.4	256.20	.70	N/R	N/R	N/R	N/R	COSF		93		.00
OYAM	34	6 CO	G	.3	21.96	. 00	5 N/R	N/R	N/R	N/R	CPT		1 00	1:	.00
MELBUURNE	05	8 .5CO	G	1.5	256.20	.70	N/R	N/R	N/R	N/R	AGVPTC	вс	82		.00
HIAMI	13	508,000		100.0	28548. C				N/R	N/R	ZOFSR	ВС	1 53		.00
MILTON	57	3,4CO	G	.6	91.5				N/R	N/R	CPTX		7		.00
MIRAMAR	06	300	G	1.0	21.9				N/R	N/R	ACTPS	C	200		.00
MONTICFLLO	33	3,0CO	G	2.1	111.1				N/R	N/R	N		1 00		.00
MOORE HAVEN	22	700	G	.4	32.9	4 .09	9 N/R	N/R	N/R	N/R	AJSC	C	1 28		.00
MT DORA	35	7,000	G	8.6	200.7				N/R	N/R	ASC		78		.00
NAPLES	11	5,0C0	G	2.7	256.20	.70	N/R	N/R	N/R	N/R	AZGFSR	BC	1 40		.00
NEPTUNE BCH	16	2,300	G	2.3	83.9				N/R	N/R	ASC		100		- 00
NEW PT RICHY	51	4,230	G	.9	120.7				N/R	N/R	N		76		.00
NEW SMYRNA B	64	8 , 420	G	3.3	457.50	1.25	N/R	N/R	N/R	N/R	ASFTXC		1 48		.00
NICEVILLE	46	4 .2 CO	G	.7	91.50	.25	N/R	N/R	N/R	N/R	C		EC		.00
NORTH MIAMI	13	38,5CO	G	8.0	1647.00	4.50	N/R	N/R	N/R	N/R	AJCSG	BC	117		.00
NO MIAMI BCH	13	59,0CO	G	7.1	1024.80	2.80	N/R	N/R	N/R	N/R	ACS	C	47		.00
NO PALM BCH	50				.00	.00	N/R	N/R	N/R	N/R					.00
N PT CHARLOT	58				. 00	.00	N/R	N/R	N/R	N/R					.00
DAKLAND PARK	06	2,500	G	.5	58.56	. 16	N/R	N/R	N/R	N/R	CVTSF	C	€4		-00
DCALA	42	14,5CO	G	4.0	667.58	1.82	N/R	N/R	N/R	N/R	COSRFU	ВС	1 2 5		.00
OCOEE	48	1 -120	G	.8	36.50	.10	N/R	N/R	N/R	N/R	C	7.0	89		.00
OKEECHOBEE	47	3,000	S	1.2	95.16			N/R	N/R	N/R	ACQHFT	С	86		.00
OPA-LOCKA	13	9.000	G	1.3	274.50	. 75	N/R	N/R	N/R	N/R	GSCF	C	83		• 00
DRLANDO	48	90,000	X	34.0	5500.65	15.03	N/R	N/R	N/R	N/R	ACOSTF	BC	1 67		.00
DRMOND BCH	64	6,000	G	1.0	329.40	. 90		N/R	N/R	N/R	AOSFC	-	150		.00
PAHOKEE	50	4 .817	S	.9	164.70	. 45		N/R	N/R	N/R	CHOFS		93		.00
PALATKA	54	10,500	Ģ	4.6	494.10	1.35		N/R	N/R	N/R	CSFPT		1 28		.00
PALM BEACH	50				.00	.00	N/R	N/R	N/R	N/R					• 00
PALM BCH GDA	50				. 00	.00		N/R	N/R	N/R					.00
PALMETTO	41	4 .7CO	G	3.2	182.26	. 49	N/R	N/R	N/R	N/R	ACS		104		.00
PANAHA CITY	03	35,000	G	7.9	981.37	2.68		112.15	2	57.89	CASTP	BC	77		.00
PENSACCLA	17	68,0C0	G	24.9	3209.20	8.79		362.20	2	199.90	ASCTP		1 29		•00
PERRY .	62	4 , 825		1.3	223.80	.61	6	26.09	2	13.49	ASCF	С	126		.00
PINELLAS PK	52	3,5CO	G	19.30	43.92	.12		N/R	N/R	N/R	2.3.3.	-			.00
PINE ISLAND	36				.00	.00	N/R	N/R	N/R	N/R					.00
PLANT CITY	29	12,000	G	3.0	413.58	1.13		N/R	N/R	N/R	N		94		.00
PLANTATION	06	500	G	.5	18.25	.05		N/R	N/R	N/R	ACJTP		100		.00

POMPANO BCH	06	14 - OCO	G	4.9	732.00	2.00	N/R	N/R	NIR	N/R	ACS		1 43		- 00
PORT ORANGE	64	3,000	G	1.1	76.65	.21	N/R	N/R	N/R	N/R			70		.00
PT CHARLOTTE	08				.00	.00	N/R	N/R	N/R	N/R					.00
PT ST JOE	23	3,200	S	.6	131.76	. 36	N/R	N/R	N/R	N/R	COPTS	С	112		.00
PUNTA GORDA	08	4.500	S	.5	91.50	.25	N/R	N/R	N/R	N/R	ACHSGT	C	55		.00
PUNIA GUNDA	00	4,500	3	•	91.30	• 23	WYN	M. K	W K	WYN	Achisai		,,		• 00
UINCY	20	8,000	S	1.5	256.20	.70	N/R	N/R	N/R	N/R	COSFTP	BC	88		.00
RIVIERA BCH	50	8,026	G	2.9	329.40	.90	N/R	N/R	N/R	N/R	C		112		- 00
ST AUGUSTINE	55	19,500	G	4.5	549.00	1.50	N/R	N/R	N/R	N/R	DHSRSF	ВС	77		.00
ST CLOUD	49	4,500	G	5.3	398.94	1.09	N/R	N/R	N/R	N/R	ADS		2 42		.00
ST PETERBURG	52	156 .000	G	19.6	7139.40	19.56	N/R	N/R	N/R	N/R	ASOZRF	BC	1 25		-00
					.00	00	N/R	N/R	N/R	N/R					• 00
ST PETE BCH	52	20 000	•	7.0		.00		N/R	N/R	N/R	ACS		62		
SANFORD	59	20,000	G	3.0	457.50	1.25	N/R	55722				00			.00
SARASOTA	58	41 - 0CO	G	8.8	896.70	2.45	N/R	N/R	N/R	N/R	ASFC	BC	60		.00
SEBRING	28	8,5CO	G	5.4	549.00	1.50	N/R	N/R	N/R	N/R	ASC		176		.00
STARKE	04	4,240		1.3	153.72	. 42	N/R	N/R	N/R	N/R	С		1 00		.00
STUART	43	3,5CO	G	.8	91.89	.25	D	9.32	9	6.78	ATFC	С	70		.00
TALLAHASSEE	37	45 - 0CO	G	19.9	2041.61	5.57	3	210.49	0	135.64	C		123		.00
TAMPA	29	220.000	S	27.7	8052.00	22.00	N/R		N/R	N/R	CJSRG	BC	100		.00
TARPON SPRS	52	5,300	G	3.0	128.10	.35	N/R	N/R	N/R	N/R	N		66		
TAVARES	35	2,600	G	2.3	146.40	.40	N/R	N/R	N/R	N/R	N		153	NT	.00
			, T										1.55		• 00
TITUSVILLE	05	3,500	G	1.3	117.12	. 32	N/R	N/R	N/R	N/R	C		91		.00
TRENTON	21	700	G	1.2	36.50	-10	N/R	N/R	N/R	N/R	CXP		143		.00
V ALP ARAISO	46	2,200	G	.9	31.11	.08	N/R	N/R	N/R	N/R	C		36		.00
VENICE	58	2 ,050	G	2.1	109.80	.30	N/R	N/R	N/R	N/R	ASC		146		.00
VERD BEACH	31	11,000		2.0	512.40	1.40	N/R	N/R	N/R	N/R	AORFC	BC	127		.00
WAUCHULA	25	3,100	G		146 40		N/R	N 40	N / D	W 4D	100		1.20		
				1.3	146.40	- 40		N/R	N/R	N/R	ACS		1 29	40 <u>2</u> 00	-00
WARR ING TON	17	22,300	G	3.8	779.58	2.13	N/R	N/R	N/R	N/R	CPT	1022	96	T	.00
WEST PALM BC	50	55,600	S	25.0	3843.00	10.50	-N/R	N/R	N/R	N/R	AHOSKT	BC	189		- 00
WINTER GARDN	48	5,370	G	2.4	219.60	- 60	N/R	N/R	N/R	N/R	ACS		1 1 1		.00
WINTER HAVEN	53	22,500	G	8.5	1022.64	2.80	N/R	N/R	N/R	N/R	ACS		1 33		.00
WINTER PARK	48	28,000	G	14.6	1145.70	3.13	3	140.62	0	59.11	ACS	ВС	98		.00
							196	5 ^d							
AP AL A CHICOL A	19	3,2CO	G	1.4	146.00	. 40	N/R	N/R	N/R	N/R	AC	С	125	CFXY	. 35
ARCADIA	14	6,5CO	X	1.1	262.80	.72	5	27.40	2	17.70	AC	č	110	F	.60
AUBURNDALE	53	10.000	Ĝ	5.0	350.40	.96	5	45.60	6	18.30	AC	Č	96	Y	• 00
A VON PARK	28	.6,073	G	5.1	365.00	1.00	N/R	N/R	N/R	N/R	N		165	F	• 00.
BARTOW	53	18,000	G	4.1	828.55	2.27	5	122.00	2	53.70	ACF	C	126	Y	•00
05115 61405	50	15.000		7.0	77.0 00	2 00		75 00	7	76 00	ACEC				
BELLE GLADE BLOUNTSTOWN	07	15,000	S	3.0	730.00	2.00	4	75.00		36.00	ACFS	C	1 3 3	S	- 40
MI DUNININININ		2 ,5CO	G	.7	80.30	. 22	N/R	N/R	N/R	N/R	AC	C	88	CT	- 00
				8.0	1095.00	3.00	5	256.00	2	123.00	С	С	2 50	S	.00
BOCA RATON	50	12,000	G								C	C			
BOCA RATON BONIFAY	50 30	2 .222	G	1.2	73.00	.20	N/R	N/R	N/R	N/R			90	CT	• 00
BOCA RATON BONIFAY	50					.20 3.00	5 5	132.70	9	73.00	ACGU	c	214	F	.60
BOCA RATON BONIFAY BOYNTON BCH	50 30	2 .222	G	1.2	73.00								214	F	.60
BOCA RATON BONIFAY BOYNTON BCH BRADENTON	50 30 50	2 • 2 2 2 14 • 0 C 0 22 • 0 C 0	G G S	1.2 12.0 4.0	73.00 1095.00 963.60	3.00 2.64	5 N/R	132.70 87.06	9 N/R	73.00	ACGU CGT	С	214 120		.60 3.50
BOCA RATON BONIFAY BOYNTON BCH BRADENTON BRANDON	50 30 50 41 29	2,222 14,000 22,000 4,305	G G S G	1.2 12.0 4.0 3.7	73.00 1095.00 963.60 292.00	3.00 2.64 .80	5 N/R 5	87.06 53.69	9 N/R 1	73.00 70.50 16.77	ACGU CGT C	c c	214 120 185	F XYFD	.60 3.50 .00
BOCA RATON BONIFAY BOYNTON BCH BRADENTON BRANDON BRISTOL	50 30 50 41 29 39	2 • 2 2 2 14 • 0 C 0 22 • 0 C 0	G G S	1.2 12.0 4.0	73.60 1095.00 963.60 292.00 36.50	3.00 2.64 .80 .10	5 N/R 5 N/R	132.70 87.06 53.69 N/R	9 N/R 1 N/R	73.00 70.50 16.77 N/R	ACGU CGT	С	214 120	F	.60 3.50 .00
BOCA RATON BONIFAY BOYNTON BCH BRADENTON BRANDON BRISTOL BRONSON BRONSON	50 30 50 41 29	2,222 14,000 22,000 4,305	G G S G	1.2 12.0 4.0 3.7	73.00 1095.00 963.60 292.00	3.00 2.64 .80	5 N/R 5	87.06 53.69	9 N/R 1	73.00 70.50 16.77	ACGU CGT C	c c	214 120 185	F XYFD	.60 3.50 .00

TABLE 6.--WATER USE BY SELECTED MUNICIPALITIES, 1945, 1947, 1956, 1965, 1970-74.--CONTINUED

MUNICIPALITY	, co	POPUL- ATION SERVED	s	RATED PLANT CAP.	PUMPAGE MGAL/Y	PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS	0.700	SEWAGE TREAT- MENT	SEWAG DISCH MGAL/
						1965	5Con	TINUED								
BUNNELL	18	1,832	G		63.86	.17	N/R	N/R	N/R	N/R	С			92		.00
BUSHNELL	60	640	G	1.0	29.20	.08		N/R	N/R	N/R	AC GP	C		80	NT	.00
CAPE CORAL	36		G		140.70	. 38		14.00	6	9.30						.00
CAROL CITY	13	14,820	G	4.0	533.03	1.46		60.05	N/R	32.13	ACFV	C		99	S	1 - 41
CASSELBERRY	59	3,500	G		146.00	- 40	N/R	N/R	N/R	N/R				125		• 00
CHATTAHOOC	1E 20	4,000	G	.4	116.80	. 32	5	11.71	9	6.39	C	C		77	CDVX	.10
CHIPLEY	67	3,800	G	1.1	120.45	. 33	N/R	13.80	N/R	3.00	C	C		79	CX	.00
CLEAR WATER	52	53,500	G	14.0	1022.00	2.80	N/R	N/R	N/R	N/R	C	C		134	S	.00
CLEWISTON	26				.00	.00	N/R	N/R	N/R	N/R						.00
AC303	05	58,0C0	G	28.7	5146.50	14.10	8	545.84	1	307.91	ASTZ			97	DFS	1.35
CRAWFROVIL	E 65				.00	.00	N/R	N/R	N/R	N/R		18.1				- 00
CRESTVIEW	46	8,5CO	G	1.5	576.70			N/R	N/R	N/R	C	вс	CM	185	x	.60
CROSS CITY	15	2,500	G	.7	146.00			21.00	N/R	12.00	ACF	Č	•	1 60	TN	.00
CUTLER RID	GE 13	9 . 786	G	3.9	467.20			50.97	N/R	28.59	C	C		1 30	5	1.60
DADE CITY	51	8 . 260	G	2.5	322.46			46.74	2	21.52	N	C		120	Y	. 34
DANIA	06	7,500	G	3.0	365.00	1.00	N/R	N/R	N/R	N/R	ACFV	c		133		.00
DAYTONA BC		51,000	Ğ	14.0	1963.70			229.70	1	144.30	CGV	Č		106	S	6.00
DEERFLO BC		15,200	G	5.0	949.00			113.30	2	55.90	ACFV	č		171	CDFGOV	
DE FUNAK SI		5,200	G	3.3	346.02			N/R	1	N/R	C	č		182	XYFC	.20
DELAND	64	16,000	G	12.0	912.50			145.70	i	36.20	CVX	č		1 49	SDC	.80
DELRAY BCH	50	15.0CO	S	15.0	1095.00	3.00	5	212.00	0	100.00	AC	С		200		.51
DUNEDIN	52	18,000	Ğ		748.25			123.23	N/R	42.39	c	Č		113	YS	.00
ENGLEWOOD	58	2,800	G	1.0	51.10			.19	N/R	.13	CGTVX	č		49	NT	.00
EUSTIS	35	10,200	G	9.4	730.00	4 10 10		N/R	N/R	N/R	C			196	XY	.40
FERNANDNA	BC 45	7,5CO	G	7.0	365.00			49.47	2	23.07	AC	BC		1 33	Y	.00
FT LAUDEDAL	E 06	116,700	G	60.0	10439.00	28.60	N/R	N/R	N/R	N/R	ACFV	С		2 45	ADV	5.45
FT MYERS	36				• 00			N/R	N/R	N/R				- 12	,,,,,,,	.00
FT MYERS BE					. 00			N/R	N/R	N/R						.00
FT MYER SU	BN 36				.00			N/R	N/R	N/R						.00
FT PIERCE	56	29,000	G		1095.00			N/R	N/R	N/R				103		.00
FT WALTH BE	CH 46	15,0CO	G	4.0	850.45	2.33	5	3.73	1	1.63	AC			155	F	. 00
GAINESVILL	E 01	65,0CO	G	15.0	2833.49	7.76	N/R	N/R	N/R	N/R	K	BC	DM	120	AF	5.00
GRN COVE S	PR 10	4,800	G	1.8	156.95	. 43	N/R	N/R	N/R	N/R	C			90	NT	.00
GULFPORT	52				.00	.00	N/R	N/R	N/R	N/R						.00
HAINES CIT	Y 53	10.5CO	G	4.3	639.97	1.75	5 5	94.00	7	32.70	С	С		167	Y	. 00
HALLANDALE	06	17.000	G	3.0	657.00	1.80	5	60.80	5	41.20	ACFV	С		105	3	. 56
HOLLY HILL	64		G	1.1	226.30			25.70	0	12.00	CGV	Č		80	AS	.17
HOLLYACOD	06		G	16.0	2555.00			336.00	0	166.50	ACV	C		97	DFS	5.60
HOMESTEAD	13		G	12.0	1074.49			114.73	N/R	76.20	C	C		274	F	1.25
INVERNESS	0 9	2,700	G	1.7	76.65		5	10.71	6	2.99	AC			77	Y	- 15
JACKS ONVIL	LE 16	262,215	G	94.3	13415.90	36.75	5 5	1610.70	2	855.30	AC	С		1 37		. 00
JACKS NVLE		. ^ - 시간이 공급하고 중에서	Ğ	5.0	686.20		7		N/R	39.40	ACV	C		150		• 00
JASPER	24		G	.9	62.05				N/R	3.50		C		67	CFV	. 10
KEY WEST	4		u	• • •	.00				N/R	N/R				e,	Cr V	- 00
KISSIMMEE	4				. 0					NIR						-0

LA BELLE	26	1,540	G		.00	.00	N/R	N/R	N/R	N/R						00	
LAKE BUTLER	63	1 - 450	G	1.4	36.50	.10	N/R	N/R	N/R	N/R				71	U	• 00	
LAKE CTTY	12	10,000	G	3.0	430.70	1.18	N/R	44.90	N/R	26.20	***				F		
LAKELAND	53	64,340	G	38.0	4358.00		5				CAS	В		118		1.50	
LAKE PLACID	28	830	S	1.5	219.00	11.93	N/R	657.00	2 N/R	270.00	C F	С	A	102	Y	. 00	
CANE TEACTO	20	030	3	1.5	219.00	.60	N/K	N/R	NYK	N/R					TN	• 00	
LAKE WALES	53 50	11,4C0 25,0C0	s	9.2	609.55	1.67	5	95.90	D	34.30	AC	C		1 46	Y	.00	
	0.11			12.0	1241.00	3.40	5	155.00	N	85.00	CDS	C		1 3 6		1.16	
LANTANA	50	5,000	G	3.6	730.00	2.00	N/R	N/R	N/R	N/R	ACG	C		400		• 00	
L ARGO	52	11,588	G		• 00	.00	N/R	N/R	N/R	N/R	_			2.22	4.0	• 00	
L EES B URG	35	12,700	G	18.0	1204.50	3.30	5	210.00	2	76.00	Z			2 60	x	1.60	
LEHIGH ACRES	36				.00	.00	N/R	N/R	N/R	N/R						- 00	
LIVE OAK	61	7,000	G	1.5	219.00	. 60	N/R	22.50	N/R	15.00	CFV			86	XYFC	. 42	
MACCLENNY	02	2,060	G	1.3	71.66	.19	5	7.86	2	4.45	CV			92	VDMJX	.00	
MADISON	40	5,000	G	.6	193.45	.53	7	26.71	D	11.47	N	C		106	XYVEC	.00	
MAITLAND	48	5,000	G	4.5	219.00	. 60	N/R		N/R	17.00	C	Č		120	YFPDC	.26	
MARIANNA	32	10,176	G	2.7	357.70	. 98	N/R		N/R	23.66	C	C		96	DFC	.00	
MAYO	34	950	G	•5	36.50	-10	N/R		N/R	N/R	CTH	C		105	I	.00	
MELBOURNE	05	40,0CO	S	8.0	1314.00	3.60	N/R	0.000	N/R	N/R	C	BC		90	CDFOV	1.00	
MIAMI	13	2 3 3 3	G	180.0	50278.75	137.75		5150.86	2	3643.79	CFUV	BC			S	37.50	
MILTON	57	5,000	G	1.4	292.00	. 80	N/R	N/R	N/R	N/R	С	С		1 €0	XYFDC	• 00	
MIRAMAR	06	13,900	G	5.2	438.00	1.20	5	34.50	0	28.60	ACFV	C		86	CDFGCV	1.70	
MONTICELLO	33	2,5CO	G	- 8	116.07	. 32	6	14.45	3	7.24	N	C		126	CFGXYV	.00	
MOORE HAVEN	22	1,000	G	.7	51.10	.14	N/R	N/R	N/R	N/R	CMT			140		.00	
NAPLES	11				.00	.00	N/R	N/R	N/R	N/R	•					- 00	
NEW PT RICHY	51	8,000	G	2.9	237.25	• 65	5	38.00	9	16.00	С	С		81	YT	.00	
NEW SMYRNA E	64	14,000	G	3.6	638.75	1.75	6	2.85	1	1.20	CVGX	C		122	S	• 50	
NICEVILLE	46	9,000	G	.7	219.00	.60	8	N/R	2	N/R	C	BC		70	YF	- 40	
NCRTH MIAMI	13	55,270	G	15.0	2317.75	6.35	N/R	282.43	N/R	156.37	ACFV	C		115	S	6 . 45	
NO MIAMI BCH	13	92,906	G	19.0	4149.71	11.37	N/R	470.80	N/R	285.83	CF V	C		122	S	1.83	
NC PALM BCH	50				.00	.00	N/R	N/R	N/R	N/R						• 00	
N PT CHARLOT	58	1,500	S	1.0	73.00	.20	N/R	9.00	N/R	3.00	CVTX	C		1 33	D	.00	
JAKLAND PARK	06	7,800			.00	.00	N/R	N/R	N/R	N/R						.00	
O CAL A	42	18,5CO	G	4.0	912.50	2.50	5	152.00	2	91.00	CFOT	C		1 35	XY	2.50	
OKEECHOBEE	47	3,500	S	1.9	328.50	.90	7	31.00	0	18.00	COF	C	I	260	S	. 17	
DPA-LOCKA	13	13,200	G	3.5	431.43	1.18	N/R	49.04	N/R	30.47	ACFV	C		90		.00	
3 RLANDO	48	144,216	G	71.0	9275.11	25.41	5	1402.29	2	591.76	ACU	С		176	YF	11.00	
ORMOND BCH	64	22,000	G	3.0	554.80	1.52	5	66.00	D	36.00	CGUVX	C		70	F	77	
PAHOKEF	50	12,000	S	1.4	255.50	.70	1	25.00	9	17.90	C	С		58	T	• 00	
PALATKA	54	12,000	G		.00	.00	N/R	N/R	N/R	N/R				30	17	.00	
PALM BEACH	50	,			.00	.00	N/R	N/R	N/R	N/R						.00	
PALM BCH GDN	50	3.000	G	.4	54.75	.15	N/R	N/R	N/R	N/R	ACF			189	F	.00	
PALMETTO	41	5,900	G	20.0	149.65	. 41	5	18.90	9	12.10	CS	С		69	YP	.72	
PANAMA CITY	03	38,000	G	4.0	1324.66	3.63	5	172.07	2	80.55	ACV	ČC		100	S		
PENSACOLA	17	98,300	G	44.0	4723.00	12.93	N/R		N/R	270-00	CT	č	A	1 31	3	• 00	
	62		G									c			VVEUC		
PERRY	02	9,500	u	1.5	357.70	.98	5	48.35	2	22.89	CF	L	A	103	XYFVC	• 55	
PINELLAS PK	52	16,500	G		408.80	1.12	N/R	N/R	N/R	N/R				68		.00	
PINE ISLAND	36	10 000	•		.00	.00	N/R	N/R	N/R	N/R	00					- 00	
PLANT CITY	29	18,000	G	4.5	562.10	1.54	N/R		N/R	32.88	CD			86	- v	.00	
POMPANO BCH	06	25,000	G	12.0	2971.10	8.14	5	393.20	0	177.00	AC	C		197	F V	1.50	
PT CHARLOTTE	08	12,500	X	2.1	397.85	1.09	5	51.00	8	19.50	ACFV	С		85	AM	. 47	

TABLE 6.--WATER USE BY SELECTED MUNICIPALITIES, 1945, 1947, 1956, 1965, 1970-74.--CONTINUED

MUNICIPALITY	CO	POPUL- ATION SERVED	S	RATED PLANT CAP.	PUMPAGE MGAL/Y	PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/E
						1965	Cont	INUED *								
PT ST JOE	23	4,800	S	1.0	118.63	. 33	N/R	N/R	N/R	N/R	CMT			€8	xc	• 00
PUNTA GORDA	08	6,000	S	2.4	182.50	.50	4	21.60	1	3.80	ACFV			84	F	.00
QUINCY	20	10 -1 CO	S	1.5	423.61	1.16	5	47.33	2	25.96	CGT	C		115	ACDFO	.75
RIVIERA BCH	50	14.0CO	G	3.5	912.50	2.50	5	115.00	N	61.00	ZS	C		179	F	1.20
ST AUGUSTINE	55		X	5.0	.00	.00	N/R	N/R	N/R	N/R	CEHIKS	BC		500	X	.00
ST CLOUD	49	5,000	G	8.8	900.35	2.47	5	147.56	7	39.66	AC			494	YF	.00
ST PETFRBURG	52	255,000	G		8468.80	23.20	N/R	966.41	N/R	615.33	ACFV	C		91	SU	• 00
ST PETE BCH	52				.00	.00		N/R	N/R	N/R		•			00	.00
SANFORD	59	20,500	G	7.4	866.61	2.30		90.85	2	51.95	AZ	C		136	S	.00
SARASOTA	58	40,000	G	6.5	1408.90	3.86		145.30	2	96.10	ACQ	Č		97	FCD	6.00
SEBRING	28	10,000	G	12.7	1241.00	3.40	9	401.40	5	59.72	С			3 40	A	00
STARKE	04	3,400	G	3.0	109.50			N/R	N/R	N/R	C			3 40		• 00
STUART	43	4,8C0	G	3.0	259.22			28.31	2	16.39	FCVG	С		1 48	F	• 00
TALLAHASSEE	37	60,000	G	15.0	3244.85											.00
TAMPA	29	271,000	X	15.0	12753.00			371.01 1499.00	2 N/R	217.96 864.00	С	C		1 48 1 50	CDFOS V XYC	5.50 .00
TARPON SPRS	52	7,700	G		40.21	.11	N/R	N/R	N/R	N/R	С			84	XY	• 00
TAVARES	35	3,900	G	4.3	146.00			N/R	N/R	N/R	č	C		102	î	.00
TEMPLE TERR	29	5,3C0	G	1.1	262.80	.72		25.00	N/R	10.69	Č	-		1 35		.00
TITUSVILLE	05	20,000	G	6.0	1460.00			N/R	N/R	N/R	C			200	YS	.78
TRENTON	21	1,160	G	1.7	43.80			9.36	1	1.80	Ň			103	TM	.00
VALPARAISO	46	5,960	G	2.4	730.00	2.00	N/R	2.50	N/R	1.20	С	С	м	103	XYFVC	. 32
VENICE	58	7,000	G	1.5	195-00			36.00	N/R	12.00	COTSX	č		86	Ŷ	. 31
VERO BEACH	31	12,500	G	6.0	547.50			60.00	N/R	30.00	ACDV	Č		120	YF	1.50
WAUCHULA	25	4,800	G	3.2	248.20			26.70	7	14.70	AC	Č		141	Y	.60
WARRINGTON	17	26,000	Ğ	5.2	1277.50			100.30	2	46.71	CT	č		1 35	Ť	.00
WEST PALM BC	50	70,000	S	26.0	4745.00	13.00	5	608.80	2	344.50	CF	С		186	S	6.79
WINTER GARDA	48	8,000	G	1.5	277.40			35.00	N/R	13.00	AC	C		95	YF	. 67
WINTER HAVEN	53	30,000	G	9.6	1339.12			N/R	N/R	N/R	AC	C		122	Y	.00
WINTER PARK	48	46,094	G	27.5	2391.54	6.55		456.15	2	138-19	AC	Č		121	YF	2.10
							1970									
							13,0									
AP AL A CHICOL A	19	3,000	G	1.2	130.00	.35		N/R	N/R	N/R	AC	BC	MI	117	XYC	. 38
ARCADIA	14	6,000	G	2.5	183.90	-50		20.00	6	12.00	CVGFST	B C B C	MI	084	YFC	.17
AUBURNDALE	53	14,000	G	5.0	510.00			N/R	N/R	N/R	AC		MA	100	F	. 30
A VON PARK	28	8,500	G	6.3	360.00			52.00	7	21.00	N	BC	MA	115	YC	.16
BARTOW	53	15,000	G	4.1	865.00	2.37	5	122.00	1	52.00	ACF	BC	MI	158	XYFC	1.03
BELLE GLADE	50	18,500	S	6.0	988.04			102.00	9	55.00	CVGFU	BC	PD	1 46	Y	.98
BLOUNTSTOWN	07	2,700	G	1.4	59.00				N/R	N/R	C	BC	HI	0 60	XYC	.20
BOCA RATON	50	35,0CO	G	37.0	3945.00			440.00	6	230.00	CVGFT	BC	MS	309	X	2.17
BONIFAY	30	2,200	G	1.0	82.00			N/R	N/R	N/R	С	BC	MI	100	XCT	.12
BOYNTON BCH	50	19,000	G	12.0	1309.00			142.00	0	75.00	CF	BC	MD	190	FUJ	1.50
BRADENTON	41	22,500	S	4.0	1228.80			118.00	N	93.00	CVGFH	BC	DD	153	U	2.69
BRANDON	29	10,0CO	G	5.5	415.09			69.00	1	21.00	С	BC	MI	114	Y	.02
BRISTOL	39	1,600	G	.2	58.00			N/R	N/R	N/R	C	BC	MI	100	NT	.00
BRONSON	38	812	G	.7	29.20			3.90	0	2.00	AC	BC	M I MP	110	NT AF	- 00
BROOKSVILLE	27	5.000	G	2.5	202.1	. 5	5 7	1.44	1	1.00	AC		1.11	. 10		

BUNNELL	18	1,554	G	. 6	66.00	.18	7	6.00	1	4.00	CFVX	BC	MD	116	NT	-00
BUSHNELL	60	700	G	1.0	44.00	.12	5	7.30	1	N/R	AC	BC	MI	172	NT	.00
CAPE CORAL	36	12,500	G	2.0	415.50	1.14	5	45.00	9	28.00	ACVGFT	BC	PD	080	UF	.66
CAROL CITY	13	15,556	G	4.0	845.80		Ď		2	54.00	ACFGV		D	1 49	S	
						2 - 32		85.00				C		-	11 15 15 15 15 15 15 15 15 15 15 15 15 1	1.84
CASSELBERRY	59	9,450	G	2.8	358.00	.98	5	48.00	3	18.00	AC	C	I	104	ACFP	.50
	12.		_		100000	4.5	12.	0.0 0.5		2010	201	0.5				
CHATTAHOOCHE	20	2,878	G	• 5	111.00	• 30	6	11.90	2	7.40	AC	B C	MI	105	XYSC	. 21
CHIPLEY	67	4,0CO	G	1.2	273.00	.75	N/R	N/R	N/R	N/R	C	BC	MI	117	XC	.25
CLEARWATER	52	52,047	G	14.0	e 966.00	2.60	5	149.00	2	58.00	AC	BC	MA	173	S	7.10
CLEWISTON	26	4 .7 CO	S	3.0	f 283.00	.78	5	30.00	7	20.00	CFGVU	BC	PO	165	U	.60
CCCOA	05	100,0C0	G	40.0	5595.60	15.30	5	597.00	N	389.00	ACV	BC	WP	153	CDFSX	1.20
								371000		307400	H-0.4		- 4		00.34	1.20
CRAWFRDVILLE	65	100	G	.0	4.00	01	N/R	N/R	N/R	N/R		ВС				
						. 01					N		AI	110	NT	.00
CRESTVIEW	46	10,000	G	2.0	400.00	1.10	N/R		N/R	N/R	C	9 C	MI	1 10	CFXY	. 40
CROSS CITY	15	2,000	G	.8	153.00	. 42	N/R		N/R	N/R	ACFT	8 C	MM	210	CSTVXY	.02
CUTLER RIDGE	13	12,170	G	3.9	619.88	1.69	5	63.00	2	29.00	C	BC	MA	1 38	A	2.30
DADE CITY	51	8,5CO	G	4.0	310.50	.85	5	41.00	2	20.00	N	BC	MI	100	XY	. 40
DANIA	06	8 -8 CO	G	3.0	607.32	1.66	D	58.00	2	40.00	ACDFSV	ВС	MD	193	FRS	.72
DAYTONA BCH	64	56,606	G	10.8	3498.00	9.58	5	366.00	2	192.00	ACFGUV	BC	MD	170	UD	
			G													11.00
DEERFLD BCH	06	16,500		15.7	1494.66	4.10	N/R		N/R	N/R	CFGTV	BC	ММ	2 48	CS	.75
DE FUNAK SPR	66	6 • 8 5 0	G	1.4	228.40	. 60	4	25.40	2	15.80	C	8 C	MI	091	CFXY	. 37
DE LAND	64	16,691	G	12.0	895.82	2.45	5	106.00	2	55.00	CTV	BC	WI	1 47	S	.85
DELRAY BCH	50	20,000	G	16.4	1970.00	5.40	4	235.00	6	122.00	ACSV	BC	MA	270	C	2.30
DUNEDIN	52	17,639	G	6.2	908.82	2.40	5	125.00	3	59.00	C	8 C	MA	130	SY	1.32
ENGLEWOOD	58	10,000	G	2.0	192.02	. 52	D	20.00	9	11.00	ACFV	C	D	053	NT	
		7000000000000		7.1.3							1,000		_			.00
EUSTIS	35	9,122	G	8.8	714.00	1.96	5	86.00	2	39.00	AC	В	M	215	FY	.61
FERNANDNA BC	45	6,844	G	7.0	711.91	1.95	5	72.48	2	42.21	AC	BC	MI	284	X	• 50
227- 227-12	125	1110-21	4	-2.27	0.104.2 40	12 20		Lunia min	1.5		10.13 to 12.2	3.4.5	2.47	1 -12-0	Te.of	
FT LAUDEDALE	06	186,715	G	60.0	14866.54	40.73		1424.00	6	270.00	ACDFQT	BCS	DDA	218	CFSU	9.57
FT LAUDEDALE	06		G		.00	.00		1126.00	2	729.00						- 00
FT MYERS	36	27,000	X	0.8	1256.00	3.44	5	132.00	2	84.00	CFGV	BC	WD	094	FU	8.60
FT MYERS BCH	36	8,000	G	1.6	322.90	.88	D	36.00	9	21.00	AC	BC	MD	094	U	. 11
FT MYER SUBN	36	26,000	S	5.0	594.70	1.63	D	72.00	6	41.00	ACFOTH	ВĆ	MD	052	NT	.00
						1.03		, 2.00	·	*1.00	ACI OIII	•	110			•00
FTPIERCE	56	29,000	G	9.0	1352.20	3.63	5	145.00	2	90.00	DFGLQZ	BC	DD	125	ACDS	3.40
FT WALTH BCH	46	19,949	G	4.1	1012.00	2.80	N/R	N/R	N/R	N/R	AC	BC	MI	1 40	CFVXY	2.00
GAINESVILLE	01	70,000	G	15.0	3975.00	10.90	0	400.00	D	280.00	AGTVXZ	BC	WM	155	AF	6.30
GRN COVE SPR	10	3 ,857	G	1.8	141.00	.39	N/R	N/R	N/R	N/R	C	ВС	HI	100	NT	
GULFPORT a	52	9,730	Ğ	1.0	250.20	.69	5	24.00	1	19.00	Č	00	"1	072		.00
docrroxig	25	77730	G		230.20	. 69	,	24.00		19.00	C			072		1 - 40
HAINES CITY							_		_			2220	1000			
	53	13,000	G	4.3	55 3 . 69	1.52	5	75.00	2	32.00	AC	BC	MI	117	AF	.75
HALLANDALE	06	27,000	G	7.8	1226.31	3.36	D	126.00	6	77.00	ADFOTZ	BC	PO	124		1.20
HCLLY HILL	64	8,191	G	1.1	264.96	.73	3	24.00	2	19.00	ACDIJX	BC	MD	090	AS	.50
HOLLYWOOD	06.	100,0C0	G	20.0	4974.00	13.62	4	532.00	6	321.00	CFGTV	BC	WD	136	AGSX	12 - 40
HOMES TE AD	13	13,432	G	12.0	1237.50	3.39	5	116.00	2	86.00	C	BC	PA	253	5	.90
	17.7	1000					-		7		4				•	• , 0
INVERNESS	09	2,500	G	1.5	86.78	.24	5	13.00	2	4.70	C	BC	MS	096	FY	.20
JACKSNVILLE	16	190,000	G	110.0	15521.80	44.00										
								1615.00	2	1042.00	AC	BC	DQ	1 32	AISX	25.00
JACKSNVLE BC	16	12,600	G	5.9	730.00	2.00	5	79.00	0	53.00	ACV	BC	MA	150	U	1.80
JASPER	24	3,034	G	1.0	161.00	. 44	0	15.00	D	12.00	CFGV	BC	MI	1 42	CUVXY	. 30
KEY WEST	44	27,500	G	2.6	h 576.70	1.58	2	61.96	0	23.88		BC	DA			-00
KEY WEST	44	27,5CO	G	7.0	970.90	2.66	N/R	N/R	N/R	N/R	FPTVXZ	BC	DA	097	L	.30
KISSIMMEE	49	8 . OCO	G	13.5	498.50	1.36	N/R	51.00	N/R	31.00	AC	C	I	100	CY	.99
LA BELLE	26	1 ,787	G	.5	58.24	.16	D	5.71	2	3.83	CFGV	ВС	MD	082	CDPU	.05
LAKE BUTLER	63	1,598	G	1.4	37.00	.10	N/R	N/R	N/R	N/R	C	C	I		U	
	. 10 %		1.5											0 68	and the second second second	.30
LAKE CITY	12	16,600	G	4.9	625.00	1.72	5	69.00	2	32.00	С	В	M	104	CFVXY	1.20

TABLE 6.--WATER USE BY SELECTED MUNICIPALITIES, 1945, 1947, 1956, 1965, 1970-74.--CONTINUED

MUNICIPALITY	СО	POPUL- ATION SERVED	S	RATED PLANT CAP.		PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/D
						1970-	-Cont	INUED								
LAKELAND	53	81,5CO	G	38.0	5237.00	14.30	5	700.00	2	295.00	AC	80	WA	175	FXY	6.50
LAKE PLACIE		750	S	-8	219.00	.60		N/R	'N/R	N/R	CV	BC	MD	092	NT	.00
LAKE WALES	53	14,0CO	G	9.2	653.40	1.80	5	94.00	2	39.00	AC	BC	PI	128	• F	.72
LAKE WORTH	50	26,000	G	16.0	1569.00	4.30		183.00	6	103.00	CGSV	BC	MD	165	CO	2.67
LANTANA	50	7,000	G	3.0	489.60	1.34	5	55.00	2	29.00	ACFSV	BC	MP	192		.72
LARGO	52	22,031	G	.4	146.00	. 40	3	14.00	2	12.00	C	вс	MS	0 6 1	SU	2.30
LEESBURG	35	11,869	G	18.0	1693.00			219.00	2	82.00	Z	BC	MD	390	AXY	2.00
LEHIGH ACRE	5 36	9,500	G	.5	138.90			13.00	9	9.90	CFGV	ВС	MD	037	Ü	. 43
LIVE OAK	61	7,000	G	2.7	219.00	13.5			N/R	N/R	ACF	BC	MM	086	CFXY	43
MACCLENNY	02	2,648	G	1.0	109.50				N/R	N/R	CV	BC	MI	113	NAMED	-10
MADISON	40	5,000	G	3.2	197.00	.54	0	20.00	2	14.00	С	вс	MI	108	CFTVXY	.28
MAITLAND	48	7,500	G	7.7	481.00			74.00	2	25.00	AC	BC	HI	176	PY	.83
MARIANNA	32	7,200	G	2.0	394.00			37.00	4	.28.00	Ĉ	BC	MI	150	CXY	.55
CYAM	34	900	Ğ	.2	39.10			. 15	D	.08	ACT	BC	MI	119	NT	.00
MELBOURNE	05	63,464	S	14.0	2818.00			294.00	2	178.00	COFHUV	BC	WD	121	ΧZ	3.30
IPAIM	13	789 .644	G	220.0	55879.40	153.10	5	5259.00	2	3991.00	FILOTZ	BCS	DDP	220	S	49.90
HILTUN	57	9,000	G	2.3	310.00				N/R	N/R	CT	BC	MI	157	CDFXY	1.20
MIRAMAR	06	26,500	G	6.0	742.00			76.00	2	31.00	ACFGTV	BC	MP	077	Y	2.14
MONTICELLO	33	2,700	G	.8	132.00			17.00	1	7.00	c	C	M	134	CFXY	.18
MCORE HAVEN		1,200	G	.7	59.00			3. 10	3	2.80	ACFGTV	ВС	MI	1 33	NT	.00
NAPLES	11	26,500	G	16.0	1606.00	4.40	5	187.00	9	92.00	CFORST	вс	ws .	166	APS	1.80
NEW PT RICH	Y 51	12.960	G	2.5	342.60	.94		44.00	2	20.00	C	BC	MM	075	EFX	. 39
NEW SMYRNA	E 64	10,580	G	3.6	625.60	1.71		67.00	2	40.00	ACTV	BC	MI	161	AS	1.20
NICEVILLE	46	6,770	G	1.4	250.00	. 70			N/R	N/R	C	BC	MI	103	CFVXY	.00
NCRTH MIAMI	13	55,000	G	10.0	3441.50	9.42		333.00	2	237.00	ACFGUV	BCP	WH D	171	X	7.00
NO MIAMI BC	H 13	95,000	G	26.0	6529.80	17.89	5	663.00	2	430.00	CFGRSV	BCS	MDA	1 88	S	2.50
NC PALM BCH	50	16,9CO	G	7.0	1381.00	3.78	5	144.00	2	84.00	ACFGTV	C	I	224	AF	1.80
N PT CHARLO	T 58	2,5CO	S	2.2	92.90	. 25	5	13.00	9	5.60	CFGHVX	BC	WD	102	PU	. 27
DAKLAND PAR	K 06	16,2CO	G		i 892.10	2.44	6	92.00	5	58.00	C	717		150	SY	1.20
DCALA	42	25,000	G	4.0	1305.00	3.34	5	145.00	2	84.00	CRTUV	ВС	10	143	CDFSUY	3.49
DKEECHOBEE	47	4,500	S	1.9	222.00	. 61	5	22.00	2	13.00	CDEHV	С	1	136	S	.49
DPA-LOCKA	13	14,000	G	2.5	826.04	2.26	5	83.00	2	56.00	ACFGTV	ВС	QD	1 60	c	1.20
ORLANDO	48	175,000	G	125.0	11825.00	32.40		1453.00	2	699.00	ACU	BCS	WAA	185	В	13.50
ORMOND BCH	64	25,565	G	3.0	731.96	2.01	5	71.00	2	49.00	ADEOXZ	BC	MD	079	F	1.39
PAHOKEE	50	10,000	S	1.9	229.69	. 63	D	23.00	9	16.00	ACFGHT	BC	WD	0 6 3	S	.55
PALATKA	54	12,000	G	3.5	807.00	2.21	5	81.00	2	51.00	ACFTU	вс	MA	184	x	-06
PALY BEACH	50	8 . 488	S		.00	.00	N/R	N/R	N/R	N/R	N	BC	DD	175	N	.00
PALM SCH GD	50	6,000	G	4.0	591.30	1.62	5	67.00	1	34.00	CGSV	BC	MA	270	F	.75
PALMETTO	41	7,5CO	S	12.0	j 203.06	.56	5	22.23	ō	13.89	1	7.7		074	YC	- 00
PANAMA CITY	03	30,916	5		k 1566. CC	4.30	N/R	N/R	N/R	N/R	CFGTV	BC	MI	1 39	FXY	3.90

PLANT CITY	29	18,000	G	8.6	641.30	1.76	5	80.00	•	41.00	СТ	0.0	PS			7.0
POMPANO BCH	06	50,000	G			14.02	4		2			BC		100	S	.78
PT CHARLOTTE	08	22,000	X	24.0	5116.00	1.46	5	541.00	6	326.00 36.00	ACFG CEFHOT	B C	WA	280 066	OQ V AFP	3.36 .50
PORT ST JOE	23	4 .5 CO	ŝ	.4	163.00			16.60	2	10.50	CDFHTV		DD			
PUNTA GORDA	08	8,500	S	2.4	364.80	1.00	1 D	32.00	6	27.00	CFGHV	B C	WD	099	CX	- 10
TONIA SUNDA	00	0,000	3	2.4	304.50	1.00	U	32.00		27.00	Crunv		MO	1 18	FXY	.75
QUINCY	20	10 -1 CO	X	1.5	512.18	1.40	N/R		2	35.31	ACFGT	ВС	HI	1 38	CFSXY	.93
RIVIERA BCH	50	23,000	G	14.0	1335.00	3.66	5	147.00	0	74.00	ACFGTV	BC	MD	160	MZ	1.80
ST AUGUSTINE		12,352	X	5.0	684.10	1.90	8	69.00	2	43.00	CEHIKS	BC	OP	1 52	X	. 36
ST CLOUD	49	6,5CO	G	10.0	496.80	1.36	5	64.00	2	36.00	AC	C	I	200	DEFXY	. 1.04
ST PETERBURG	52	250,000	G	44.0	10204.50	28.00	5	1079.00	2	705.00	AFOTZ	BC	DD	1 30	SU	29.00
ST PETE BCH	52	8,024	G		321.20	.88	N/F	R N/R	N/R	N/R	C			110	DSU	2.00
SANFORD	59	22,400	G	5.0	975.00	2.70	5	100.00	2	66.00	ACU	BC	MX	121	CEX	3.00
SARASOTA	58	42,000	G	10.0	2075.70	5.70	5	199.00	2	152.00	ACFV	BC	WD	1 30	CDU	6.40
SEBRING	28	8,3CO	G	12.6	1132.00	3.10	5	97.00	2	38.00	AC	BC	AS	390	AS	-20
STARKE	04	5,500	G	3.0	245.00	• 60	N/F	R N/R	N/R	N/R	CTV	C	I	120	CY	- 60
STUART	43	8.000	G	2.4	472.20	1.29	8	48.00	2	30.00	CFGV	вс	мо	1 62	F	.42
TALL A HASSEE	37	77.700	G	33.6	4393.34	12.00	5	519.00	D	295.00	C	BC	WI	155	CFSVXY	8.10
TAMPA	29	307,000	S	65.0	16265.00	44.60	5	1807.00	2	1027.00	CEFHMX	BC	DD	116	CXY	40.00
TARPON SPRS	52	7,118	G	03.0	284.70	.78	3	37.00	2	17.00	C	50	UU	109	XY	.75
TAVARES	35	3,842	G	2.3	163.00	. 45	5	19.00	1	9.40	č	ВС	MI	117	NT	.00
I AVAILES	•	37042	ď	2.5	103.00	• • • •	٠.	17.00		7.40	·	00		117		.00
TITISVILLE	05	30,515	G	16.0	1273.40	3-49	5	170-00	2	86-00	CV	BC	WH	114	SY	2.14
TRENTON	21	1,200	G	- 4	54.80	.15	N/R		N/R	N/R	N	BC	WI	120	AY	.08
VALPARAISO	46	6,000	G	2.4	255.00	. 70	N/R	N/R	N/R	N/R	C	BC	MI	117	CFVXY	. 50
VENICE	58	10,000	G	3.0	371.83	1.02	5	38.00	9	25.00	ACFGV	C	P	102	DY	.75
VERO BEACH	31	16,000	G	6.0	971-66	2.66	5	111.00	0	59.00	ACDV	BC	WA	166	CDFXY	1.66
W AUCH UL A	25	4 - OCO	G	4.8	236.60	.50	5	30.00	2	15.00	ACP	BC	MI	1 62	Ĺ.	.22
WARR INGTON	17	24,750	G	6.4	873.00	2.40	5	101-00	N	44.00	CT	BC	MI	096	T	.00
WEST PALM BC	50	66,0CO	S	36.0	5430.00	14.87	5	562.00	2	348.00	CFGISV	BC	DD	2 59	A D	12.00
WINTER GRON	48	9,000	G	1.5	398.70	1.10	4	45.00	3	24.00	AC	3 C	MI	121	FY	.68
WINTER HAVEN	53	18,000	G	9.6	1685.00	4.62	5	217.00	2	103.00	AC	BC	MI	1 48	ESY	3.10
WINTER PARK	48	53,809	G	27.8	3454.79	9.46	5	477.00	2	185.00	AC	вс	PA	175	AFU	.30
							197	1								
ALTHONTE SPR	59	4 - 4 CO	G	4.0	285.20	. 78	5	35.00	8	15.00	AC	В	М	177	S	
APALACHICOLA	19	3,000	G	1.2	160.CC	. 43	6	19.86	2	9.80	AC	ВС	MI	117	XYC	.80 .40
ARCADIA	14	6,000	G	2.5	227.28	. 62	5	24.61	9	16.76	CVGFST	BC	MI	84	ŶFC	.50
AUBURNDALE	53	14,000	G	5.0	510.00	1.40	N/R		N/R	N/R	AC	BC	MA	100	F	.30
AVON PARK	28	8 > 500	G	6.3	385.93	1.06	5	46.93	9	25.64	N	ВС	MA	115	YC	.16
BARTUN	53	15.0CO	G	4.1	926.54	2.54	4	106.19	8	64.87	ACF	вс	ні	1 58	XYFC	1 70
BELLE GLADE	50	18,500	S	6.0	1102.00	3.02	1	111.00	8	63.00	CVGFU	BC	PD	1 46	Y	1.30
BLOUNTSTOWN	07	2,700	G	1.4	72.00	.19	8	6.75	2	4.50	C	BC	MI	60	XYC	** Z + ** Z **
BOCA RATON	50	35,000	G	37.0	4019.00	11.01	4	441.00	9	258.00	CVGFT	BC	MS	309	X	- 20
BONIFAY	30	2,200	G	1.0	91.00	.25	8	8.00	2	4.00	C	BC	MI	100	XCT	2.20
BOYNTON BCH	50	19,0C0	G	12.0	1607.00	4.40	4	172.00	9	112.00	CF	ВС	MD	190	FUJ	
BRADENTON	41	22,500	S	4.0	1302.56	3.56	3	122.43	8	89.99	CVGFH	BC	0.00			1.60
BRANDON	29	12,000	G	5.5	581.37	1.59	5	82.64	9	26.01	CVGFH	BC	DD	153	U	2.96
BRISTOL	39	1,600	G	•2	58.40	.16	7	- 18	2		C			1 32	Y	.02
BRONSON	38	812	G	.7	29.20	.08	5	3.90	0	.12		BC	MI	100	NT	- 00
		016	G	• 1	270 CU	• 00	,	3. 70	U	2.00	AC	BC	MI	98	NT	.00

MUNICIPALITY	СО	POPUL- ATION SERVED	S	RATED PLANT CAP.		PUMPAGE MGAL/D	MNTH HIGH PUMP	HIGH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/
		SERVED		CAI .		1071.				MATT	MEINT	1313	1313	USE	MENT	MGAL/I
						13/ 1	CON	II THOLD	• .							
BROOKSVILLE	27	5,0C0	G	2.5	203.16	. 56			N/R	N/R	AC.	BC	MP	110	AF	. 39
BUNNELL	18	1,554	G	.6	84.55	.27		8.38	D	5.92	CVFX	BC	MD	116	NT	.00
BUSHNELL	60	700	G	1.0	49.47	-13		6.57	2	2.58	AC	BC	MI	172	NT	.00
CAPE CORAL	36	12,500	G	2.0	437.40	1.20		45.51	8	29.98	ACVGFT	BC	PD	80	UF	.66
CAROL CITY	13	15,556	G	4.0	1036.10	2.80	3	104.11	9	77.68	ACVGF	C	D	180	S	2.57
CASSELBERRY	59	9,450	G	2.8	439.26	1.20	5	45.48	1	24.82	AC	С	I	127	ACFP	.52
CHATTAHOOCHE	20	2,878	G	.5	101.44	.27	1	10.26	N	7.10	AC	BC	MI	105	XYSC	.21
CHIPLEY	67	4 . OCO	G	1.2	250.00	. 68	D	30.20	9	10.60	C	BC	MI	117	XC	.20
CLEARWATER	52	62,000	G	14.0	1 32 4. 40	3.60	5	131.90	7	93.10	AC	BC	MA	171	S	7.10
CLEWISTON	26	4,700	S	3.0	f 304.88	.84	4	29.57	N	23.28	CFGUV	BC	PD	1 78	U	.12
COCOA	05	100,000	G	40.0	5847.10	16.00	5	656.90	D	379.90	AVC	вс	WP	153	XSFCD	1.20
CRAWFRDVILLE	65	100	G	-0	4.00	.01		. 50	1	• 30	N	BC	AI	110	NT	.00
CRESTVIEW	46	10,000	G	2.0	412.40	1.13			N/R		C	BC	MI	110	XYFC	. 43
CROSS CITY	15	2,000	G	-8	128.50	. 35		14.88	D	10.62	ACFT	BC	MM	210	TXYSVC	.02
CUTLER RIDGE	13	12,170	G	3.9	1765.88			186.58	6	129.92	C	BC.	MA	1 38	A	2.40
DADE CITY	51	8,500	G	4.0	352.66	.97	5	44.20	2	25.01	N	вс	MI	100	XY	.44
DANIA	06	8,800	G	3.0	501.08	1.37		55.53	ō	35.48	ACDESV	BC	MD	155	RSF	.80
DAYTONA BCH	64	56,606	G	10.8	3536.90	9.69		338.24	2	246.11	ACVGFU	ВС	MD	170	UD	11.30
DE FUNAK SPR	66	6,850	G	1.4	234.14	.64		21.93	2	15.84	C	BC	MI	91	XYFC	.32
DE LAND	64	16,691	Ğ	12.0	956.08	2.62		106.06	2	65.78	CVT	BC	WI	1 47	S	1.00
DEERFLD BCH	06	16,500	G	15.7	1475.36	4.04	3	157.26	9	92.62	CVGFT	вс	мм	2 48	sc	.89
DELRAY BCH	50	20,000	G	16.4	1890.00	5.18	4	215.00	9	174.00	ACSV	BC	MA	270	C	2.50
DUNED IN	52	17,639	G.	6.2	1022.53	2.80	5	133.67	9	49.61	C	BC	MA	1 30	YS	2.00
ENGLEWOOD WD	58	10.0CO	G	2.0	224.97	. 61	3	25.21	9	12.68	ACVF	C	D	53	NT	- 00
EUSTIS	35	9,122	G	8.5	688.38	1.89	5	80.20	9	46.04	AC	В	H	215	YF	- 60
FERNANDNA BC	45	6 , 844	G	7.0	709.00	1.94	6	82.00	1	43.00	AC	вс	MI	2 50	x	• 00
FT LAUDEDALE	06	186,715	X	60.0	14688.75	40.24		1509.91	9	967.06	ACQDET	BCS	DDA	218	CSFU	12.26
FT MYERS	36	27,000	X	8.0	1775.07	4.42	5	154.86	9	113.50	CVGF	BC	WD	1 63	FU	5.40
FT MYERS BCH	36	8,000	G	1.6	422.52	1.16	4	47. 45	9	24.08	AC	BC	MD	94	U	. 19
FT MYER SUBN	36	26,000	S	5.0	953.50	2.61	5	98.11	9	68.25	ACOFTH	ВС	MD	100	MT	.00
FTPIERCE	56	29,000	G	9.0	1415.99	3.88	4	141.27	0	99.72	ZDFGQL	вс	DD	125	SADC	2.62
FT WALTH BCH	46	19,949	G	4.1	1075.00	2.94	5	114.10	1	6 4. 30	AC	BC	MI	147	XYFVC	2.10
GAINESVILLE	01	70,0C0	G	15.0	4485.01	12.29	5	459.62	2	316.00	AZVGTX	BC	WM	175	FA	5.12
GRN COVE SPR	10	3,857	G	1.8	122.00	. 33	6	12.38	N	7.15	C	BC	MI	100	NT	.00
GULFPORT g	52	9,730	G		.00	.00	N/R		N/R	N/R	c			72		.00
HAINES CITY	53	13,000	G	4.3	437.59	1.19	5	52.77	2	24.22	AC	вс	MI	117	AF	.80
HALLANDALE	06	27,000	G	7.8	1398-01	3.83	3	142.80	6	91.16	AZDFOT	BC	PQ	124		1.20
HCLLY HILL	64	8 - 191	G	1.1	276.00	.76	8	26.23	1	20.16	ACJDIX	BC	MD	90	AS	
H CLLY WOOD	06	100,000	G	20.0	5165.74	14.15	3	530.12	9	252.58	CVGFT	BC	WD	141	XSGA	.50
HOMESTEAD	13	13,432	G	12.0	1551.45	4.25	4	143.66	2	103.55	C	BC	PA	316	S	13.90
INVERNESS	09	2,500	G	1.5	104.00	.29	5	12.11	2	4.93	c	вс	MS	96	YF	.25
JACKSNVILLE	16	190,000	G	110.0	18172.46	49.78	100	1701.24	2	1186.26	AC	BC	DO	1 32	XASI	30.80
JACKSNVLE BC	16	12,600	G	5.9	647.67	1.80	5	62.56	2	42.40	ACV	BC	MA	143	U	
JASPER	24	3,034	G	1.0	173.40	. 48	0	18.30	2	9.90	CVGF	BC	MI	143	XYUVC	2.70
KEY WEST	44	3,034	G						2	100000000000000000000000000000000000000	CVGI	BC		1 42	ATUVC	.30
WEI MESI			u	2.6	h 357.70	.98	1	43.31	2	17.38		BC	DA			-00

KEY WEST	44	27,500	G	7.0	1069.45	2.93	4	188.60	9	154.40	FPTVXZ	вс	DA	106	L	.30
KISSIMMEE	49	8 • 000	G	13.5	738.40	2.00	D	106.70	3	40.80	AC	C	I	100	YC	1.20
LA BELLE	26	1,787	G	.5	60.46	.16	5	6.38	8	4.42	CFGV	ВС	MD	82	UDCP	.05
LAKE BUTLER	63	1,598	Ğ	1.4	106.80	.32	6	. 40	2	. 21	C	C	I	68	U	.33
LAKE CITY	12	16,600	Ğ	4.9	609.52	1.67	5	64.09	2	35.88	č	В	H	104	XYFVC	2.20
	••		-		007032	1.01	•	01.07	-	33.00			· O	104	X11 VC	2.20
LAKELAND	53	81,500	G	38.0	5441.50	14.91	5	663.00	2	376.00	AC	BC	WA	183	XYF	6.00
LAKE PLACID	28	750	S	.8	292.00	.80	8	6.00	5	3.50	CV	BC	MD	106	MT	.00
LAKE WALES	53	14,000	G	9.2	708.80	1.90	5	93.00	8	46.10	AC	BC	PI	1 28	F	.75
LAKE WORTH	50	26,000	G	16.0	1936.00	5. 30	4	203.00	6	135.00	CGSV	BC	MD	203	OC	1.82
LANTANA	50	7,000	G	3.0	493.00	1.36	4	55.10	9	34.10	ACFSV	BC	MP	192		1.00
								7.0000		2.3522		-	***	-		1.00
LARGO	52	22,031	G	. 4	228.07	. 62	0	23.26	2	10.43	C	BC	MS	61	US	3.00
LEESBURG	35	11 .869	G	18.0	1649.92	4.52	5	219.40	D	117.70	Z	BC	MD	390	XAY	3.00
LEHIGH ACRES	36	9,500	G	.5	169.06	. 46	3	18.12	9	11.24	CFGV	BC	MD	37	U	. 47
LIVE DAK	61	7,000	G	2.7	310.00	. 85	9	30.11	D	26.42	ACF	BC	MM	86	XYFC	. 45
MACCLENNY	02	2,648	G	1.0	109.50	. 30	N/		N/R	.25	CV	BC	MI	113	KVDJM	. 30
MACCECAMI	02	27040		1.0	107.30	• 30	.47		W/ II	• 2 3		o c	HT.	113	X V D JH	• 30
MADISON	40	5,000	G	3.2	233.00	.64	0	24.10	1	14.20	C	BC	MI	108	XYFVCT	.38
MAITLAND	48	7,500	G	7.7	542.76	1.48	5	68.99	7	30.96	AC	BC	MI	176	YP	1.09
MANTE CO UTL	41	36,000	S	12.0	1908.30	5.23	5	201.61	8	122.59	CFGHV	В	M	118		.00
MARIANNA	32	7,200	G	2.0	408.90	1.12	0	. 37	2	. 29	С	BC	MI	1 50	XYC	.55
DYAM	34	900	G	.2	37.90	. 10	6	- 14	1	.07	CCT	BC	MI	119	NT	.00
							_		_							
MELBOURNE	05	63,464	S	14.0	2975.42	8.15	5	293.78	2	203.74	CVDFUH	BC	MD	121	ΧZ	3.45
H IAM I	13	789,644	G	220.0	58730-20	159.10	4	5550-10	6	4385-12	ZFOTLI	BCS	DDP	201	S	48.50
MILTON	57	5,400	G	2.3	330.00	.90	8	3.75	4	1.75	CT	BC	MI	157	XYFDC	1.30
HIRAMAR	06	26,500	G	6.0	733.53	2.01	4	74.69	9	49.18	ACVGFT	BC	MP	77	Y	2.21
M CNT I CELLO	33	2,700	G	.8	138.95	.38	6	16.49	1	8.54	С	С	н	134	XYFC	- 18
MOORE HAVEN	22	1,200	G	.7	57.29	.16	4	5.78	7	3.97	ACVGFT	вс	MI	133	NT	.00
NAPLES	11	26,500	G	16.0	2189.30	5.99	4	253.28	9	109.43	COFSTR	BC	WS	166	SAP	-14
NEW PT RICHY	51	12,960	G	2.8	368.58	1.00	5	40.28	2	24.51	C	BC	MM	75		
	64		G			34.4	-		2	700000000000000000000000000000000000000	-	BC	MI		XEF	. 45
NEW SMYRNA B		10,580		3.6	531.38	1.46	8	57.12		39.05	ACVT		10.7	161	AS	1.10
NICEVILLE	46	6,770	G	1.4	272.00	.74	7	26.50	2	16.50	С	ВС	MI	103	XYFVC	• 35
NORTH MIAMI	13	55,000	G	10.0	3313.66	9.08	9	247.51	3	330.28	ACVGFU	BCP	WHD	165	x	11.60
NO MIAMI BCH	13	95,000	G	26.0	7064.63	19.36	3	729.38	9	520.74	CVGFSR	BCS	MDA	204	S	2.40
NO PALM BCH	50	16,900	G	7.0	1507.00	4.13	4	158.60	6	95.10	ACVGFT	C	I	224	AF	2.37
N PT CHARLOT	58	2,500	S	2.2	166.99	. 46	6	15.81	9	6.25	CFGHVX	BC	WD	102	ÜP	.18
DAKLAND PRK	06	16,200	G		i 842.00	2.30	4	86.00	5	58.00	C			150	YS	3.08
JAKEANO TAK	00	107200	•		2042.00	2.30		00.00		20.00	Ü			1 30		3.00
O CAL A	42	25,000	G	4.0	1444.43	3.96	5	153.99	2	97.02	CVUTR	BC	DI	1 58	YFSCDU	3.54
OKEECHOBEE	47	4,500	S	1.9	262.14	.72	5	25.92	9	19.61	CVDHE	C	1	136	S	.19
OPA-LOCKA	13	14,000	G	2.5	759.08	2.07	4	7 5. 68	9	50.10	AC VGF T	BC	QD	160	C	1.07
DRLANDO	48	175,000	G	125.0	12457.39	34.10	5	1069.54	2	858.42	ACU	BCS	WAA	185	В	11.38
ORMOND BCH	64	25,565	G	3.0	762-18	2.09	8	72.77	2	52.59	AZODXE	BC	MD	79	F	1.50
PAHOKEE	50	10,000	S	1.9	233.00	. 64	5	21.80	7	16.50	ACGFTH	BC	MD	63	S	.70
PALATKA	54	12,000	G	3.5	751.00	2.06	5	91.70	D	47-10	ACFTU	BC	MA	171	X	1.70
PALM BCH GDA	50	6,000	G	4.0	712.00	1.95	4	86.90	N	48.40	CGSV	BC	MA	270	F	.80
PALM BEACH	50	8,488	S	36.0	1941.00	5.32	4	227.00	9	112.00	N	BC	DD	1 75	N	3.40
PALMETTO	41	7,500	S		j 250.00	. 68	N/	R N/R	N/R	N/R				090	YC	.79
PANAHA CITY	03	30,916	s		k1574.44	4.32	6	189.04	3	97.36	CGVFT	вс	MI	1 39	XYF	7 71
				** *												3.34
PENSACCLA	17	125,000	G	36.0	7053-92	19.32	5	816.83	2	438.40	ACT	BC	MI	154	XYFSC	9.86
PERRY	62	9,580	G	1.5	351.94	.96	6	46.04	1	22.88	ACF	BC	MI	112	XYFVC	.78
PIN CTY WTR	52	112,000	G	55.0	10464.32	29.55	6	1207.65	1	642.69	ACTF	BC	MI	234	N	500.00
PINE ISLAND	36	5,000	G	1.2	228.85	. 62	3	23.81	9	12.95	ACVGFT	BC	MD	91	NT	• 00

TABLE 6.--WATER USE BY SELECTED MUNICIPALITIES, 1945, 1947, 1956, 1965, 1970-74.--CONTINUED

MUNICIPALITY	CO	POPUL- ATION SERVED	S	PLANT CAP.		PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAG DISCH MGAL/
						1971-	-Сонт	INUED								
PINELLAS PK	52	22,300	G		1 831.05	2.28	6	80.04	1	56.34	С			086	AS	1.80
PLANT CITY	29	18 . OCO	G	8.6	670.89	1.83	5	68.28	2	46.99	CT	BC	PS	100	S	1.80
POMPANO BCH	06	50,000	G	24.0	5420.51	14.85	4	645.57	9	319.04	ACGF	BC	WA	297	0 V O	3.50
PORT ST JOE	23	4,500	S	.4	158.80	-44	6	17.00	2	10.50	CDFHTV	BC	0.0	099	XC	- 10
PT CHARLOTTE	80	22,000	X	1.7	600.27	1. 64	5	79.03	4	24.64	COFTHE	ВС	MD	66	AFP	.55
PUNTA GORDA	08	8,500	S	2.4	443.86	1.22	5	47.92	9	26.80	CVGFH	вс	WD	118	XYF	.70
QUINCY	20	10,100	X	1.5	546.84	1.49	6	57.72	2	33.94	ACGFT	BC	MI	1 30	XYFSC	.90
RIVIERA BCH	50	23,000	G	14.0	1676.00	4.59	3	186.00	N	107.00	ACVGFT	BC	WD	160	ZM	2.00
ST AUGUSTNE	55	12,352	X	5.0	997.74	2.73	7	76.86	2	57.19	CKSIHE	BC	DP	221	X	1.24
ST CLOUD	49	6,500	G	10.0	477.34	1.30	D	47.34	1	33.28	AC	C	I	200	XYFED	.70
ST PETERBURG	52	250,000	G	44.0	m 6517.00	17.90	5	633.00	3	381.30	AZOFT	BC	DD	1 30	us	8.50
ST PETERBURG	52		G		n 4425.30	12.10	3	576.90	9	190.10	AZOFT	BC	DO			.00
ST PETF BCH	52	8 - 024	G		i .00	.00	N/R	N/R	N/R	N/R	С			110	SUD	1.90
SANFURD	59	22,400	G	5.0	1027.81	2.82	5	105.14	2	69.25	ACU	BC	MX	126	XEC	2.86
SARASOTA	58	42,000	G	10.0	2525.90	6.92	5	229.17	2	183.01	ACVF	BC	WD	1 30	UDC	5.87
SEBRING	28	8,300	G	12.6	707.62	1.94	5	85.44	7	39.49	AC	ВС	AS	390	SA	.25
STARKE	04	5,5CO	G	3.0	245.57	. 67	N/R	N/R	N/R	N/R	CVT	C	I	120	YC	. 67
STUART	43	8 .000	G	2.4	512.54	1.40	4	48.40	9	37.96	CVGF	BC	MQ	162	F	. 43
TALLAHASSEE	37	77 .7 CO	G	33.6	4511.58	12.36	5	417.33	1	318.76	C	BC	WI	1 59	XYFSVC	8 . 4 4
TAMPA	29	307,000	S	65.0	17599.46	48.21	5	1851.60	2	1224.21	CEMFXH	BC	DD	116	XYC	39.00
TARPON SPRS	52	7 - 118	G		1 443.28	1.18	N/R	N/R	N/R	N/R	С			109	XY	.96
TAVARES	35	3,842	G	2.3	171.52	. 47	5	20.62	1	10.56	C	BC	MI	117	NT	.00
TITUSVILLE	05	30,515	G	16.0	1349.62	3.69	5	157.54	N	93.16	CV	BC	WH	114	YS	1.74
TRENTON	21	1,200	G	. 4	54.80	.15	N/R	N/R	N/R	N/R	N	BC	WI	117	AY	.09
VALPARAISO	46	6,000	G	2.4	114.55	- 31	5	13. 45	N	3.34	С	ВС	MI	117	XYFVC	• 15
VENICE	58	10,000	G	3.0	385.93	1.06	4	36.32	7	25.26	ACVGF	С	P	102	YD	.97
VERO BEACH	31	16,000	G	6.0	996.74	2.76	8	98.51	N	74.02	ACVD	BC	WA	173	XYFDC	1.96
WARRINGTON	17	24,750	G	6.4	974.00	2.66	5	111.00	2	61.00	CT	BC	MI	96	T	.00
WAUCHULA	25	4 , OCO	G	4.8	266.66	. 73	4	31.27	8	18.25	ACP	BC	MI	1 62	L	.82
WEST PALM BC	50	66,000	S	36.0	6606.50	18.01	D	476.00	4	288.00	CFGISV	BC	DD	2 60	AD	11.80
WINTER GRON	48	9,000	G	1.5	431.44	1.18	4	47.42	2	28.56	AC	ВС	HI	121	YF	.72
WINTER HAVEN	53	18,0CO	G	9.6	1770.00	4.80	5	212.00	7	122.00	AC	BC	MI	1 48	YFS	3.00
WINTER PARK	48	53,809	G	27.8	3848.18	10.54	5	473.84	1	260.74	AC	ВС	PA	195	AUF	3.10
							1972	2								
ALTMONTE SPR	59	8,203	G	6.5	400.00	1.10	4	38.00	2	21.00	AC	В	м	134	S	.90
APALACHICOLA	19	3,000	Ğ	1.2	17.8.82	. 49	7	18.66	2	10.47	AC	ВС	MI	163	XYC	.48
ATLANTIC BCH	16	8 - 200	Ğ	3.5	363.51	.99	8	38.71	2	22.83	AC	7.7	743	125	ΧU	-00
ARCAD IA	14	6,000	G	2.5	222.81	. 61	5	20.82	3	15.86	CFGSTV	BC	HI	100	YFC	. 70
AUBURNDALE	53	14.0CO	G	5.0	360.00	1.00	4	46.00	0	20.00	AC	BC	MA	071	F	. 45

AVON PARK	28	8,500	G	6.3	370.00	1.01	4	43.00	8	24.00	N	ВС	MA	117	YC	.24
BARTOW	53	15,0CO	G	4.1	1000.80	2.74	4	103.60	2	59.90	ACF	BC	MI	183	CFXY	1.40
BELLE GLADE	50	18,500	S	6.0	1212.20	3.32	3	114.00	9	65.80	CFGUV	BC	PD	146	Y	1.09
BLOUNTSTOWN	07	2,700	G	1.4	73.00	.19	8	6.77	Ď	4.56	C	BC	MI	70	XYC	.20
	50		G				0					BC	MS	309	X	
BOCA RATON	50	35,000	G	37.0	4234.00	11.60	U	436.80	6	232.50	CFGTV	ВС	нэ	309		2.61
BONIFAY	30	2,200	G	1.0	91.50	.25	8	8.20	2	4.00	C	ВС	MI	113	XCT	.14
			G									BC			10.0	
BOYNTON BCH	50	19,000		12.0	1641.00	4.49	0	170.80	6	100.50	CF	1,777	MD	190	FJU	1.18
BRADENTON	41	22,500	S	4.0	1128.00	3.10	3	118.00	6	89.00	CFGHV	BC	DD	1 38	V	2.75
BRANDON	29	12,000	G	5.5	500.00	1.37	7	115.00	N	40.00	С	BC	HI	114	Y	.66
BRISTOL	39	1,600	G	•2	58.40	.16	7	.18	2	.12	С	BC	MI	1 CO	NT	.00
BRONSON	38	812	G	.7	17.00	.04	8	2.00	1	1.00	AC	ВС	MI	0 49	NT	.00
BROOKSVILLE	27	5,000	G	2.5	213.00	. 58	1	19.64	7	16.62	AC	BC	MP	116	AF	
			G	-	77.7.4		5				CFVX	BC	MD			. 45
BUNNELL	18	1,554		.6	81.76	• 22	0.5	10.00	N	5.00				142	NT	.00
BUSHNELL	60	700	G	1.0	47-00	-12	5	5.00	2	3.00	A C	ВС	HI	171	NT	.00
CAPE CORAL	36	16,000	G	2.0	500.78	1.37	N/F	R 47.84	9	36.50	ACFGTV	ВС	PD	90	UF	.77
CAROL CITY	13	15,556	G	4.0	1207.64	3.31	8	114.29	2	79.97	ACVGF	С	D	212	S	2.30
CASSELBERRY	59	12,150	G	2.8	545.68	1.49	7	50.99	2	31.45	AC	C	Ī	122	ACFP	.66
CHATTAHOOCHE	20	2,878	G	.5	101.90	.28	6	10.90	3	6.50	AC	ВС	MI	097	XYSC	.20
							100							125		
CHIPLEY	67	4,0C0	G	1.2	182.50	.50	6	37.40	1	7.10	C	BC	MI		X C	- 21
CLEAR WATER	52	62,000	G	14.0	1775.50	4.86	5	177.40	2.	101.30	AC	ВС	MA	195	S	8.75
CLEWISTON	26	4,700	S	0 3.0	p 321.48	.88	N/R	N/R	N/R	N/R	CFGUV	ВС	PD	187	U	.17
COCOA	05	100,000	G	40.0	5437.30	14.89	8	521.48	2	317.98	ACV	BC	WP	1 48	CDFSX	1.25
CORAL SPRNGS	06	6,715	G	1.0	203.00	. 56	7	22.00	9	11.00	ACKX	BC	MD	83	ACDEJP	.21
				47 (3.5)												
CRAWFRDVILLE	65	288	G	9	4.02	.01	7	- 38	2	- 28	C	BC	AI	0 38	NT	.00
CRESTVIEW	46	10.000	G	2.0	420.00	1.15	N/R	N/R	N/R	N/R	С	ВС	MI	115	XYFC	. 43
CROSS CITY	15	2,000	G	.8	128.50	. 35	5	14.80	D	10.60	ACFT	ВС	MM	175	TXYSVC	. 02
CUTLER RIDGE	13	12,170	G	3.9	1780.42	4.88	4	186.50	6	129.93	C	BC	MA	400	A	2.34
DADE CITY	51	8,500	G	4.0	370.00	1.01	4	39.90	D	23.30	N	BC	MI	119	XY	. 45
DANIA	06	9,660	G	3.1	546.94	1.49	D	58.64	5	21.15	ACDESV	BC	MD	154	FRS	1.14
	2.2	56,606	G	4.2.7.7			7	Europe Company of the	Ñ	254.79	ACFGUV	BC	MD	176	UD	
DAYTONA BCH	64	20,000	G	10.8	3669.64	10.05	1	353.91	14	234.17	ACTOO	ВС	HU	170	UD	12.23
DEERFLD BCH	06	16,500	G	15.7	1534.68	4.19	8	161.81	6	94.40	CFGTV	BC	MM	254	SC	1.06
DE FUNAK SPR	66	6 .850	G	1.4	284.70	. 78	5	22.00	2	16.00	C	BC	MI	113	XYFC	. 29
DE LAND	64	16,691	G	12.0	944.22	2.58	9	94.94	2	61.56	CTV	BC	WI	154	S	1.20
DELRAY BCH	50	20,000	G	16.4	2326.00	6.37	0	265.00	6	140.20	ACSV	ВС	MA	270	C	2.68
DUNED IN	52	17,639	Ğ	6.2	1116.00	3.06	5	142.00	ž	76.00	č	BC	MA	173	SY	3.30
DONLOIN	,,,	11,7037	•	0.2	1110.00	3.00	-	142.00	-						٥.	3.30
ENGLEWOOD	58	10,000	G	2.0	260.08	.71	4	28-21	9	15.99	ACFV	C	D	071	NT	- 00
EUSTIS	35	9,122	G	8.8	807.24	2.21	6	87.02	2	48.22	AC	В	H	242	YF	.85
FERNANDNA BC	45	6 , 844	G	7.0	822.61	2.25	4	80.99	1	53.73	AC	BC	MI	328	Y	25.13
FT LAUNEDALE	06	196,000	G	60.0	14709.30	40.18	8	1416.90	6	1022-17	ACDFOT	BCS	DDA	2 0 5	CFSU	15.07
FT MY ERS	36	27,000	X	8.0	1852.30	5.07	4	17 0. 91	2	140.68	CFGV	BC	WD	187	FU	5.50
FT MYERS BCH	36	8,000	G	1.6	441.80	1.21	3	50.06	9	25.08	AC	BC	HD	094	U	.23
FT MYER SUBN	36	26,000	S	5.0	1065-98	2.92	N	101.69	2	73.07	ACFHOT	BC	MD	112	NT	- 00
FT PIERCE	56	29,000	G	9.0	1453.21	3.97	3	133.52	2	105.26	DFGLQZ	BC	DD	1 37	ADCS	2.98
FT WALTH BCH	46	19,949	G	4.1	1139.79	3.12	7	136.49	D	64.48	AC	BC	MI	156	XYFVC	2.50
GAINESVILLE	01	70,0C0	G	15.0	4754.79	12.56	9	456.39	D	327.79	CGTVXZ	BC	DM	179	FA	7.66
C.III C.D.O.T. 7		0 770	_													12.2
GULFPORT 9	52	9,730	G	100	.00	.00	N/R		N/R	N/R	C	2.2		072	100	r . 00
GRN COVE SPR	10	3,857	G	1.8	108-49	. 29	6	11.07	3	7.86	С	BC	MI	075	NT	• 00
HAINES CITY	53	13,000	G	4.3	620.66	1.70	4	85.50	D	38.60	AC	BC	MI	1 30	AFXD	1.00
HALLANDALE	06	27,000	G	7.6	1532.59	4.18	8	143.62	6	103.72	ADFOTZ	BC	PQ	155		.00
HOLLY HILL	64	8 . 191	G	1.2	284.00	.77	7	27.00	D	20.00	ACDIJX	BC	MD	098	AS	.57

MUNICIPALITY	СО	POPUL- ATION SERVED	s	RATED PLANT CAP.	PUMPAGE MGAL/Y		MNTH HIGH PUMP	HIGH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/
						1972	Cont	INUED .								
H CLL Y WOOD	06	100,000	G	20.0	4960.66	13.55	3	480.09	6	363.27	CFGTV	вс	WD	1 35	AGSX	816.74
HOMESTEAD	13	13,432	G	12.0	1639.62	4.49	8	144.78	6	130.84	C	BC	PA	3 3 4	S	1-10
INVERNESS	09	2,500	G	1.5	126-35	. 35	6	12.30	2	7.60	C	BC	MS	1 40	YF	.24
JACKSONVILLE JACKS NVLE BC	16 16	190,000 12,600	G	110.0	20145.61 665.26	55.19 1.82	9 8	1945.00 65.42	2	1376.00	AC V	B C B C	D Q MA	290	A I S X	19.30 2.67
JASPER	24	3,034	G	1.0	174.90	.48		17.00	1	12.10	CVGF	вс	MI	1 58	XYUVC	.30
KEY WEST	44	27,500	G	7.0	t 1051.20	2.88	2	178.85	7	163.40	FPTVXZ	BC	DA	105	L	.80
KEY WEST	44	and the second	G	2.6	h 424.92	1.16	4	54.94	0	15.51		BC	DA			.00
KISSIMMEE	49	9,935	G	13.5	u 846.30	2. 32		104.50	N	51.70	AC	C	I	166	YC	.96
LA BELLE	26	1,787	G	•5	67.10	.18	5	6. 40	2	4.77	CFGV	ВС	MD	1 00	COPU	.06
LAKE BUTLER	63	1,598	G	1-4	182.50	.50		N/R	N/R	N/R	C	C	I	0 68	U	.35
LAKE CITY	12	16,600	G	4.9	645.12	1.76		66.78	2	43.62	C	В	M	106	XYFVC	2.20
LAKE PLACID	28	750	S	. 8	71.00	. 19	8	7.00	5	4.00	CV	BC	MD	210	NT	.00
LAKELAND LAKE WALES	53 53	81,500 14,000	G	38.0 9.2	6121.24 793.00	16.70 2.17	9	677.10 82.84	2	345.60 53.86	AC AC	B C B C	PI	204	FXY	5.76 .75
				7.6		2.17	,	02.04	U	33.00	AC	ьс	P1	155		• 15
LARGO	52	22,031	G	.4	1 744.88	2.04		72.07	1	55.78	C	BC	MS	093	SU	3.00
LAKE WORTH	50	26,000	G	16.0	1780.00	4.86		182.30	6	111.90	CGSV	BC	MD	187	OC	v 1.95
LANTANA	50	7,000	G	3.0	471.70	1.29	3	48.60	6	28.70	ACFSV	BC	MP	184		. 78
LEESBURG LEHIGH ACRES	35 36	9,500	G	18.0	1763.54 196.92	4.02 .54		206.39 19.08	6	86.04 14.25	Z ACFGV	B C B C	MD	3 38 0 57	X A Y	1.93
LIVE DAK	61	7,000	G	2.7	367.36	1.00	6	35.66	2	25.32	ACF	вс	нн	1 43	XYFC	.50
MACCLENNY	02	2,648	G	1.0	129.33	. 35		14.61	ī	7.87	CV	30	MI	1 32	DJMVX	. 33
MADISON	40	5,000	G	3.2	251.90	. 69	-	27.33	3	19.13	ť.	BC	MI	1 38	XYFVCT	. 41
MAITLAND	48	7,5CO	G	7.7	594.24	1.63		68.08	2	29.98	AC	BC	MI	217	U	1.50
MARIANNA	32	7,200	G	2.0	355.47	. 97	0	34.16	5	17.81	C	BC	MI	134	XYC	.55
MAYD	34	900	G	•2	37.30	. 10	7	. 15	2	.08	ACT	ВС	MI	111	NT	.00
MELBOURNE	05	63,464	S	14.0	2893.79	7.93		277.96	2	203.56	CDFHUV	BC	MD	1 25	ΧZ	5.00
MIAMI	13 57	789,644 9,000	G	220.0	59557.80	162.73	100	5384.80	2	4513.70	FILQTZ	BCS	DDP	204	\$	56.80
MILTON MIRAMAR	06	26,500	G	2.3 6.0	282.60 820.00	.77 2.24	6	38.20 76.38	6	12.70 59.52	CT ACFGTV	B C B C	MI MP	086 084	XYFDC	1.30 2.31
MONTICELLO	33	2,700	G	.8	156.37	. 43	0	16.44	3	9.83	С	С	н	1 59	XYFC	.16
MOORE .HAVEN	22	1,200	G	.7	57.00	.16		6.00	7	4.00	ACFGTV	BC	MI	1 33	NT	.00
NAPLES	11	26,500	G	16.0	2480.00	6.80		8.30	9	5.00	COFSTR	BC	WS	2 39	APS	1.90
NEW PT RICHY	51	12,960	G	2.8	465.10	1.27		45.70	2	28.80	C	BC	MM	097	EFX	.53
NEW SMYRNA E	64	10,580	G	3.6	590.00	1.62	8	60.00	1	40.00	ACTV	ВС	MI	1 42	AS	2.00
NICEVILLE	46	7,000	G	1.4	511.00	1.40		68.00	N	36.00	C	ВС	HI	200	XYFVC	. 37
NCRTH MIAMI	13	55,000	G	10	w 3747.47	10.27		336.35	2	245.85	ACFGUV	BCP	WHD	187	X	8.60
NO MIAMI BCH	13	95,000	G	26.0	7399.43	20.27		653.58	N	539.61	CFGRSV	BCS	MDA	213	S	2.40
NO PALM BCH N PT CHARLOT	50 58	16,9C0 2,500	S	7.0	1559.30 156.32	4.26		158.70 16.48	6 2	95.60 9.83	ACFGTV CFGHVX	C BC	WD	252	AF UP	2.90
JAKLAND PARK	06	16,200	G		i 877.00	2.40	N	83.00	1	56.00	С			1 48	YS	x 2.35
DCALA	42	25,000	G	6.8	1636.66			153.30	2	106.66	CRTUV	ВС	DI	1 58	FCDSUY	3.48
DKEECHOBEE	47	4,500	S	1.9	240.90	. 66		23.00	1	17-00	CDEHV	C	I	1 46	S	.17
OPA-LOCKA	13		G	2.5	570.18			67.43	9	32.18	ACFGTV	ВС	QD.	110	c	1.60
ORLANDO	48	175,000	G	125.0	13781.34	37.75		1 35 3 . 54	2	810.75	ACU	BCS	WAA	216	В	16.00

ORMOND BCH	64	25,565	G	3.0	864.00	2.36	7	86.00	5	60.00	ADEOXZ	ВС	MD	092	F	1.75
	50	10,000	S	1.9		. 69	3	24.40	8	19.00	ACFGHT	BC	WD	0 69	S	
PAHOKEE	54				250.80		7				ACFTU	BC		141	XY	.86 1.70
PALATKA		12,000	G	3.5	620.20	1.69		61-10	2	42.50			MA			
PALM BEACH	50	8 - 488	S	36.0	y 2134.90	5.83	8	221.30	6	105.50	N	BC	DD	175	N	3.37
PALM BCH GDN	50	6,000	G	4.0	767.10	2.10	3	82.20	6	49.50	CGSV	BC	MA	3 50	F	.73
PALMETTO	41	7,500	S		j 345.00	.95	N/R	N/R	N/R	N/R	4				YC	2.50
PANAHA CITY	03	30,916	S		k 1812.05	4.96	8	211.12	3	101.55	CGVFT	BC	MI	160	XYF	2.60
PENSACOLA	17	125,0C0	G	36.0		21.90	7	881.61	2	453.72	ACT	ВС	MI	175	XYFSC	9.34
PERRY	62	9,580	G	1.5	362.17	.99	6	46.52	2	21.72	ACF	BC	MI	103	XYFVC	. 65
PINELLAS PK	52	22,300	G	-0	11006-18	2.80	N/F	R N/R	N/R	N/R	C			125	AS	3.40
PINE ISLAND	36	5,000	G	1.2	256.00	.70	3	25.76	9	16.55	ACFGTV	вс	M D	091	NT	.00
PLANT CITY	29	18,0CO	G	8.6		2.02	6	80.88	N	46.48	CT	BC	PS	112	5	2.50
POMPANO BCH	06	50,0C0	G	25.7		13.84	ŏ	492.23	6	334.14	ACGF	BC	WA	276	OOV	4.36
PT CHARLOTTE	08	22,000	X	z 1.7		2.01	4	86.01	8	50.20	CEFHOT	BC	WD	091	AFP	.97
PT ST JOE	23	4,500	ŝ	.4	242.95	.66	6	19.37	2	14.12	CVDFTH	BC	DD	146	XC	.50
7 1 3 1 JUL	23	47500	,	• •	242.73	•00	٠	17.31	-	14.12	CVDITI	00	00	140	^-	• 50
PUNTA GORDA	08	8,5CO	S	2.4	484.20	1.33	4	48.70	9	34.00	CFGHV	BC	WD	1 56	FXYZ	aa .64
QUINCY	20	10,1CO	X	1.5		1.38	6	52.79	2	33.63	ACGFT	BC	MI	1 38	XYFSC	1.00
RIVIERA BCH	50	23,0CO	G	14.0	1604.70	4.38	7	161.10	6	105.20	ACFGTV	BC	MD	190	ZM	2.17
ST AUGUSTINE	55	12,352	X	5.0	870.28	2.38	8	86.16	2	56.60	CKSIHE	BC	DP	193	X	2.00
ST CLOUD	49	6,500	G	10.0	506.24	1.38	N	43.03	6	30.52	AC	C	I	210	DEFXY	.77
ST PETERBURG	52	250,000	G	44.0	m 5858.25	16.05	8	574.43	2	320.45	AFOTZ	BC .	DD	1 35	US	38.00
ST PETERBURG	52		G		n 6522.55	17.87	8	608.84	D	509.02	AFOTZ	BC	DD	7.7	7.7	• 00
ST PETE BCH	52	8 , 024	G		1 .00	.00	N/R		N/R	N/R	C	7.5			SDU	1.80
SANFORD	59	22,400	G	5.0	1116.81	3.06	9	106.47	2	46.82	ACU	ВС	MX	136	ECX	3.00
SARASOTA	58	42,000	G	12.7	2568.60	7.04	0	234.40	2	187.00	ACFV	BC	WD	1 67	CDU	6.40
CEDITAC	20	8,300	G	12.7	794.00	2.00	5	81.00	2	48.00	AC	ВС	AS	240	AS	25
SEBRING	28						N/R					C			CY	• 25
STARKE	04	5,500	G	3.0	284.70	. 78			N/R	N/R	CTV		I MQ	140	F	.83
STUART	43	8,000	G	4.2	713.06	1.95	8	83.94	1	46 . 46 35 8 . 69		B C B C	WI			.50
TALLAHASSEE	37	78,000		33.6	5348.92	14.66		583.72	2		C	-	DD	188	CXY	8.91
TAMPA	29	307,000	S	€5.0	19499.00	53.42	4	1819.61	2	1322.73	CEFHMX	BC	UU	174	CXI	33.68
TARPON SPRS	52	7,118	G		bb 526.83	1.49	0	1.76	9	.74	C			209	XY	.99
TAVARES	35	3,842	G	2.3	205.29	.56	N	19.56	2	11.35	C	BC	MI	1 45	NT	.00
TITUSVILLE	05	30,515	G	16.0	1232.48	3.38	4	114.18	2	87.34	CV	BC	WH	110	SY	2.05
TRENTON	21	1 ,200	G	- 4	58.40	.16	7	N/R	D	N/R	N	BC	WI	125	AY	.25
VALPARAISO	46	6,000	G	2.4	135.31	. 37	6	18.80	2	7.29	C	BC	MI	0 62	XYFVÇ	- 14
VENICE	58	10,000	G	3.0	418.19	1.15	D	44.30	9	24.99	ACFGV	C	Р	115	DY	. 84
VERO BEACH	31	16,0C0	G	6.0	1152.66	3.16	8	111.60	2	73.92	ACDV	BC	WA	197	CDFXY	2.20
WARRINGTON	17	24,750	G	7.1	995.45	2.73	7	112.00	N	60.29	CT	BC	MI	110	T	.00
WAUCHULA	25	4 . 000	G	4.8	272.00	.74	4	26.00	2	19.00	ACP	BC	MI	185	Ĺ	.71
WEST PALM BC	50	66,000	S	36.0		26.70	3	594.00	6	399.00	CFGISV	BC	DD	253	AD	12.55
UINTED CARRY		0 000	_		125 35			10.10								
WINTER GARDN	4 8 5 3	9,000	G	1.5	425.37	1.16	6	42.68	N	12.11	AC	BC	MI	1 28	FY	. 67
WINTER HAVEN		18,000		9.6	1942.43	5.32	4	205-30	2	131.50	AC	BC	MI	295	FSY	3.19
WINTER PARK	48	53,809	G	27.8	4318.81	11.83	4	440-59	2	251.69	AC	BC	PA	219	AFU	3.00
,							197	73 ·								
AL THONTE COE	59	11.200	G	7.8	510.00	14.05	N es	3 450.02	N/R	320.01	СВ	н		2 5 5		14 00
ALTHONTE SPE	19	3,127	G	1.2		.47	6	19.11	2	10.99	AC B	вс	MI 1	150	XYC	14.00
ARCADIA	14	7,000	G	2.5		.80	D	21.20	9	14.11	CFGSTV	BC	MI	114	YFC	• 43
ATLANTIC BCH	16	8,000	G	3.5		1.03	7	41.90	2	21.32	AC	00		130	XU	.73
	53	12,000	G	5.0			6	68.07	8	18.75	AC	ВС	MA	117	F	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AUBURNDALE	23	12,000	G	5.0	301.40	1 - 40	0	00.01	0	10.12	AL	96	пА	11/		• 50

MUNICIPALITY	СО	POPUL- ATION SERVED	S	RATED PLANT CAP.	PUMPAGE MGAL/Y	PUMPAGE MGAL/D	MNTH HIGH PUMP	PUMP HIGH MNTH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/D
						1973-	Cont	INUED								
AVON PARK	28	8,500	G	6.3	354.49	.96	6	43.61	8	17.76	N	вс	MA	113	YC	. 30
BARTOW	53	17,0CO	G	4.1	940.39	2.58	5	108.14	2	59.09	ACF	BC	MI	151	CFXY	1.40
BELLE GLADE	50	22,000	S	6.0	1268.50	3.48	5	119.90	9	78.60	CFGUV	BC	PD	158	YC	1.05
BLOUNTSTOWN	07	2,400	G	1.4	74.00	.20	8	7.02	D	4.56	C	BC	MI	83	CXY	. 30
BCCA RATON	50	45,000	G	37.0	4778.43	13.09	4	504.50	9	311.10	CFGTV	BC	MS	290	AS	4.50
BONIFAY	30	2,500	G	1.0	68.40	.18	7	6.20	2	2.80	С	ВС	HI	72	CTX	.15
BOYNTON BCH	50	24,000	G	12.0	2077.57	5.69	4	214.01	2	147.09	CF	BC	MD	2 37	FJU	2.40
BRADENTON	41	25,000	S	4.0	1341.36		5	126.58	2	96.08	CFGHV	BC	DO	146	U	3.00
BRANDON	29	18,0CO	G	5.5	1380.00	3.00	- (165.00	-	90.00	C	BC	MI	166	Y	.00
BRISTOL	39	1,600	G	.2	58.40	.16	7	. 18	2	.12	С	ВС	MI	100	NT	- 00
BRONSON	38	812	G	.7	17.00	.04	8	2.00	1	1.00	AC	ВС	HI	49	NT	.00
BROOKSVILLE	27	5,000	G	2.5	145. C			15.00	9	9.00	AC	ВС	MP	79	AF	. 52
BUNNELL	18	1,900	G	-6	75.8			7. 51	1	5.76	CF VX	BC	MD	105	NT	.18
BUSINELL	60	800	G	1.0	49.00		3 D	6.00	3	2.50	AC	BC	MI	1 62	NT	.00
CAPE CORAL	36	16,000	G	2.0	546.40	1.50	5	56.51	2	38.79	ACFGTV	BC	PD	94	UF	.77
CAROL CITY	13	15,556	G	4.0	1580.0	4.3	3 4	164.70	1	110.52	ACFGV	C	D	2 78	S	3.30
CASSELBERRY	59	14,300	G	2.8	: 512.00			50.00	D	35.00	AC	C	I	94	ACFP	.97
CHATTAHOOCHE	20	3,000	G	.5	104.5			11.20	D	7.00	AC	ВС	MI	93	CSXY	.15
CHIPLEY	67	4 ,5 CO	G	1.2	134.9			20.00	3	8.50	C	BC	MI	82	CX	. 36
CLEARWATER	52	62,000	G	14.0	2155.0	5.9	0 5	453.00	9	262.00	AC	ВС	MA	183	S	10.25
CLEWISTON	26	4,700	S	0 3.0	f 377.00	1.0	3 N/R	N/R	N/R	N/R	CFGUV	вс	PD	219	U	. 20
COCOA	05	125,000	G	40.0	5135.17			548.39	D	340.47	ACV	BC	WP	112	CDFSX	1.50
CORAL SPRNGS		6,700	G	1.2	360.00			44.00	7	33.00	ACKX	ВС	MD	150	ACDEJP	1.00
CRAWFRDVILLE	65	288	G	9 .0	5.70			.55	0	. 43	C	BC	AI	69	NT	.00
CRESTVIEW	46	10,0CO	G	2.0	495.3				N/R	N/R	C	BC	MI	136	CFXY	. 45
CROSS CITY	15	2,200	G	.8	129.00	.3	5 N/R	N/R	N/R	N/R	ACFT	ВС	нн	159	CSTVXY	.03
CUTLER RIDGE	13	14,500	G	3.9	2323.78			243.78	2	141.87	C	BC	MA	439	A	2.93
DADE CITY	51	8,500	G	4.0	338.00			36.36	2	24.63		BC	MI	105	XY	.60
DANIA	06	9,600	G	3.1	647.96			61.65	9	50.97	ACDFSV	BC	MD	184	FGRS	1.35
DAYTONA BCH	64	63,000	G	10.8	3499.90	9.50	3 7	341.43	D	261 - 47	ACFGUV	BC	MD	1 52	DU	12.50
DEERFLD BCH	06	20,000	G	15.7	1680.96	4.61	4	180.18	9	112.83	CFGTV	ВС	мм	2 30	S C	1.60
DE FUNAK SPR	66	6,850	G	1.4	274.60	.75	5 6	21.70	2	16.20	C	BC	MI	109	CFXY	.30
DE LAND	64	18,000	G	12.0	870. 40	2.38	3 5	100.40	2	64.60	CTV	BC	WI	1 32	ADS	2.00
DELRAY BCH	50	23,700	G	16.4	2565.3	7.0	5 D	309.23	1	154.00	ACSV	BC	MA	296	AC	3.19
DUNEDIN	52	21,000	G	6.2	1206.9	3.45	5 5	142.16	2	79.29	С	BC	MA	164	SY	2.96
ENGLE WOOD	58	10,000	G	2.0	304.5	.90	0 5	33.33	9	19.17	ACFV	C	D	90	NT	.00
EUSTIS	35	9,500	G	8.8	839.7			91.02	2	51.02		В	M	242	FY	. 85
FERNANDNA BC	45	7,100	G	7.0	873.3			3.55	3	1.19		BC	MI	3 3 6	Y	.00
FT LAUDEDALE	06	205,000	G	60.0	15600.6	42.7	4 4	1600.68	6	1166.06	ACDFOT	BCS	DDA	208	CFSU	16.57
FT MY ERS	36	30,850	X	8.0	2057.0			196. 30	2	149.50		ВС	WD	1 46	FU	5.80
FT MYERS BCH	36	8.000	G	2.6	554.8	0 1.5	2 N	53.75	7	37.11		вс	MD	190	U	. 32
FT MYER SUBN		26,000	S	5.0	1178.6			124.40	9	83.90		BC	MD	124	NT	.00
FT PIERCE	56	31,550	G	15.0	1648.5		2 5	166.26	2	107.91	DFGLQZ	BC	DD	1 4 3	ADCS	3.37
FT WALTH BCH		21,800	G	4.1	1149.3			127.86	2	66.71	AC	BC	MI	144	CFVXY	2.51
GAINESVILLE	01	80,000	G	15.0	5617.3	5 15.3	9 8	642.01	D	302.93	CGTVXZ	BC	DM	192	AF	8.31

GRN COVE SPR	10	3,837	G	1.8	126.79	. 35	9	11.95	2	8.71	C	вс	HI	91	NT	.00
GULFPORT 9	52	9 , 730	G		.00	.00	N/R		N/R	N/R	č		,,,			r.00
HAINES CITY	53	13,000	G	4.3	565.81	1.55	5	65.42	9	36.24	AC	BC	MI	1 20	ADFX	.90
HALLANDALE	06	30,850	G	7.6	1663.30	4.56	3	171.83	9	106.92	ADFOTZ	BC	PO	1 48		-00
H CFF A MOOD	06	134,000	G	20.0	4802-00	13.50	4	456.00	9	360.00	CFGTV	ВС	MD	1 00	AGSX	8 18.62
HCLLY HILL	64	8 .700	G	1.2	291.33	.79	7	27.69	2	18.97	ACDIJX	ВС	MD	91	AS	.65
HOMESTEAD	13	17,5CO	G	12.0	1884.30	5.16	D	166.60	2	128.90	C	BC	PA	294	S	.99
INVERNESS	09	2,900	G	1.5	114.86	. 31	5	13.91	9	6.49	C	BC	MS	106	FY	.17
JACKSONVILLE	16	250,0C0	G	110.0	20010.58	54.54	5	1918.96	2	1432.12	AC	BC	DQ	114	AISX	.00
JACKSNVLE BC	16	13,400	G	5.9	643.56	1.75	7	62.50	2	43.05	ACV	ВС	MA	1 30	U	2.20
JASPER	24	3,034	G	1.0	167.70	. 46	7	19.10	2	11.10	CFGV	ВС	MI	152	CUVXYS	.30
KEY WEST	44	27,500	G	7.0	t1100.00	3.00	N/I		N/R	N/R	FPTVXZ	BC	DA			.80
KEY WEST	44	22.22	G	2.6	h 584.80	1.60	4	64.76	0	33.02		BCD	A	1024	443	- 00
KISSIMMEE	49	13,000	G	13.5	u 757.63	2.07		70-67	N	58.20	AC	C	I	1 59	CY	1.43
LA BELLE	26	2 • 2 00	G	.5	76.78	•21	0	8.26	2	5.00	CFGV	BC	MD	095	CDPU	.07
LAKE BUTLER	63	1,645	G	1.4	182.00	- 52	N/		N/R	N/R	C	C	I	-	U	.38
LAKE CITY	12	14,000	G	4.9	631.39	1.73	5	70.57	2	41.55	С	В	н	123	CFVXY	2.00
LAKELAND	53	81,500	G	38.0	5703.53	15.63	5	711-95	2	350 - 59	AC	BC	WA	192	FXY	6.70
LAKE PLACID	28	750	S	.8	72.88	.19	8	?.00	1	?.00	CV	BC	MD	253	NT	- 00
LAKE WALES	53	14,000	G	9.2	766.66	2.10	5	9 3. 20	2	46.90	AC	ВС	PI	1 50	F	.81
LARGO	52	32,300	G	.4	1 747.80	2.00	N	80.50	9	51.20	C	BC	MS	62	SU	4.76
LAKE WORTH	50	26,000	G	16-0	1717.96	4.71	4	172.06	9	129.19	CGS V	BC	MD	187	OC	v 3.70
LANTANA	50	7,650	G	3.0	514.95	1.41	4	57.08	2	35.30	ACFSV	BC	MP	184		.77
LAUDERHILL	06	13,500	G	15.0	1236.90	3.38	D	153.30	2	71-10	J			250		2.16
LEESBURG	35	12,960	G	18.0	1464.30	4.06	5	161.90	2	96.70	Z	BC	MD	325	AXY	2.20
LEHIGH ACRES	36	9,500	G	1.7	202.39	.55	N	18.54	8	14.77	ACFGV	ВС	MD	58	U	• 52
LIVE DAK	61	7,000	G	2.7	357.08	.97	0	36.26	2	23.53	ACF	BC	MM	1 39	CFXY	.34
MACCLENNY	02	3,400	G	1.0	128.00	. 35	N/F		N/R	N/R	CV	BC	HI	102	DJHVX	. 34
MADIS ON	40	5,5CO	G	3.2	296.10	- 81	3	27.40	1	21.30	С	BC	MI	1 47	CFTVXY	.30
MAITLAND	48	8 • 051	G	7.7	538.38	1.47	5	70.03	2	33.41	AC	вс	MI	182	U	1.20
MARIANNA	32	7,200	G	2.0	356.28	.97	8	37.81	D	18.54	C	ВС	HI	120	CXY	.55
MANTEE CTY W	41	late of a	1.1		471.50	7.00	5	325.00	8	178.00	100		10.0	112	100	2.50
MAYO	34	900	G	•2	40.21	. 11	D	5.18	N	2.33	ACT	BC	HI	1 22	NT	.00
MELBOURNE	05	66,700	S	14.0	3123-10	8.57	5	289.78	2	212.92	CDFHUV	BC	WD	1 28	ΧZ	5.65
IMAIM	13	844,050	G	220.0	64683.30	177.21	5	5808.70	2	4636.30	FILOTZ	BCS	DDP	209	S	63.05
MILTON	57	10,000	G	2.3	354.00	.97	9	33.20	2	26.50	CT	BC	MI	97	XYFDC	1.20
MIRAMAR	06	23,000	G	6.0	878.00	2.40	4	94.00	7	63.00	ACFGTV	BC	MP	89	YA	2.60
MONTICELLO	33	3,800	G	.8	142.08	.39	N	13.45	3	9.71	C	C	H	102	CFXY	. 35
MOORE HAVEN	22	1,200	G	.7	61.40	.20	4	5. 47	1	3.57	ACFGTV	BC	MI	166	NT	.00
NAPLES	11	42,000	G	16.0	2890-49	7.92	5	307.87	8	151.46	CFOSTR	BC	WS	188	APS	2.10
NEPTUNE BCH	16	4,730	G	2.5	239.81	.65	5	24.53	9	16.15				137		.50
NEW PT RICHY	51	12,960	G	2.8	553.80	1.51	5	56.10	2	33.59	С	BC	MM	116	EFX	.63
NEW SMYRNA B	64	12,100	G	3.6	780.91	2.14	7	78.31	2	52.75	ACTV	BC	MI	176	AS	1.20
NICEVILLE	46	7,0CO	G	1.4	445.40	1.22	8	42.10	4	30.80	С	BC	MI	174	CFVXY	. 39
NORTH MIAMI	13	55,000	G	10.0	dd 3705.61	10.15	4	227.85	9	148.00	AC	BCP	WHD	184	X	13.42
NO MIAMI BCH	13	95,000	G,	26.0	8499.85	23.28	4	815.13	1	629.95	CFGRSV	BCS	MDA	2 45		• 00
NO PALM BCH	50	16,900	G	7.0	1626.32	4.46	4	180.00	9	100.00	ACFGTV	C	I		AF	2.84
N PT CHARLOT	58	2 , 837	S	2.2	259.29	.71	N	35.93	9	12.10	CFGHVX	BC	WD	250	UP	- 35
DAKLAND PARK	06	19,000	G		i 946.00	2.59	N/F		N/R	N/R	С		2.2	1 36	YS	x 2.72
J CAL A	42	25,500	G	6.8	1636.69	4.48	5	180.35	2	110.99	CRTUV	BC	DI	175	CDFSUY	3.78

MUNICIPALITY	СО	POPUL- ATION SERVED	s	RATED PLANT CAP.		PUMPAGE MGAL/D	MNTH HIGH PUMP	HIGH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAGE DISCH MGAL/E
						1973-	Con	TINUED	•							
O KES CHOBEE	47	4.5CO	s	1.9	356.34	.97	D	36.73	2	25.01	CDEHV	C	I	215	SEF	.12
JPA-LOCKA	13	14.000	G	2.5	762.85	2.09	0	71.17	2	48.50	ACFGTV	BC	Q D	1 49	·C	.00
ORLANDO	48	190,000	G	125.0	14332.31	39.26	5	69.50	1	39.89	ACU	8 CS	WAA	206	В	.00
JRMOND BCH	64	27,600	G	3.0	1019.73	2.79	6	101. 28	N	58.73	ADEOXZ	BC	MD	101	F	2.04
PAHOKEE	50	10,000	S	1.9	257.36	.71	2	25.48	8	15.42	ACFGHT	ВС	WD	71	5	.77
PALATKA	54	12,000	G	3.5	728.20	1.99	5	80.60	2	42.00	ACFTU	вс	MA	165	XYU	1.50
PALM BEACH	50	10,000	S	36.0	y 1946.37	5.33	N/F		N/R	N/R	N	ВС	DO	175	N	3.30
PALM BCH GDA	50	7,600	G	4.0	728.36	2.00	4	86.98	9	48.29	CGSV	BC	MA	263	F	.78
PALMETTO	41	8,500	S	7.0	j 256.25	.70	3	26. 34	8	15.42		12.7		82	CY	. 65
PANAMA CITY	03	35,000	S		k 1665.33	4.56		158.79	3	105.51	CGVFT	ВС	HI	1 30	FXY	3.29
PENSACOLA	17	170,000	G	36.0	7388.20	20.24	5	785.60	D	488.60	ACT	вс	MI	1 19	CFSXY	8.00
PERRY	62	9,580	G	1.5	430.92	1.18		56.86	2	23.27	ACF	BC	MI	123	CFVXY	.95
PIN CTY WT S	52		G		12260.31	33.58		1305.50	9	807.54		••			OI TAI	.00
PINELLAS PK	52	27,100	Ğ		1 925.81	2.53		90.60	Ď	70.30	C			93	AS	2.50
PINE ISLAND	36	5,000	G	1.2	234.40	.64		24.50	9	11.91	ACFGTV	ВС	MD	91	NT	.00
PLANT CITY	29	18,000	G	8.6	711.16	1.95	5	80.86	2	47.28	СТ	вс	PS	108	S	3.10
POMPANO BCH	06	58,740	G	25.7	5466.56	14.98		582.83	9	395.95	ACGF	BC	WA	255	DOV	5.03
PORT DRANGE	64	5,270	G		369.38	1.01	0	36.96	í	23.83				194	N	.70
PORT ST JOE	23	4,500	S	.4	214.77	. 59	9	19.85	ž	14.91	CDFHTV	BC	DD	131	CX	.50
PT CHARLOTTE	08	22,000	X	1.7	z 809.17	2.22	5	123.93	7	47.74	CEFHOT	ВС	MD	100	AFP	1.10
PUNTA GORDA	08	8,500	S	2.4	501.12	1.37	5	53.71	6	31.92	CFGHV	ВС	WD	161	FXYZ	.00
QUINCY	20	10,1CO	X	1.5	499.50	1.37		62.21	2	32.35	ACFGT	ВС	MI	135	CESXY	2.00
RIVIERA BCH	50	25,190	Ĝ	14.0	1685.67	4.62	4	173.85	2	105.60	ACFGTV	BC	WD	183	MZ	2.20
ST AUGUSTINE	55	12,8C0	X	5.0	931.06	2.55	7	96.85	2	62.40	CEHIKS	ВС	DP	199	X	2.75
ST CLOUD	49	6,500	Ĝ	10.0	451.18	1.23	5	45.81	2	32.23	AC	Č	I	189	DEFXY	.86
ST PETERBURG	52	250,000	G	44.0	m 4774.20	13.08	3	593.65	7	225.68	AFOTZ	вс	DD	1 42	US	42.50
ST PETERBURG	51				ee4226.70	11.58	7	583.73	N/R	N/R						.00
ST PETERBURE	52		G		n3934.70	10.78	1	510.26	9	183.60	AFOTZ	BC	DD			.00
ST PETE BCH	52	8,024	G		i .00	.00	N/R	N/R	N/R	N/R	C					.00
SANFORD	59	25,000	G	5.0	1591.20	4.35	4	149.71	9	120.66	ACU	BC	MX	174	CEXS	3.00
SARASOTA	58	50,000	G	12.7	2825.83	7.74	5	277.50	9	198.10	ACFV	ВС	WD	154	CDU	6.11
SEBRING	28	13,000	G	12.7	948.59	2.60	5	117.05	9	56.22	AC	BC	AS	200	AS	.28
STARKE	04	5,500	G	3.0	274.00	. 75	N/R	N/R	N/R	N/R	CTV	C	I	1 36	CY	.87
STUART	43	8 .000	G	4.8	724.08	1.98	4	76.93	9	51.77	CFGV	BC	MO	2 48	F	.60
TALL AHASSEE	37	81,640	G	33.6	5065.33	14.70	5	514.33	D	371.59	C	BC	WI	180	CFSVXY	9.38
TAMPA	29	350,000	S	65.0	16779.69	45.97	5	1802.19	9	1074.93	CEFHMX	ВС	DD	1 31	CXY	39.44
TARPON SPRS	52	8,800	G		ff .00	.00	N/F	N/R	N/R	N/R	C				XY	1.01
T AVAR ES	35	3 . 842	G	2.3	204.62	. 56	5	24.38	9	13.35	C	BC	MI	147	NT	- 00
TITUSVILLE	05	34,000	G	16.0	1391.00	3.81	5	159. 20	2	95.50	CV	BC	WH	112	SY	2.25
TRENTON	21	1,200	G	.4	148.00	. 45	0	19.60	1	9.50	N	ВС	WI	375	AY	.05
VALP ARA ISO	46	6.600	G	2.4	109.97	.30	7	13.13	D	7-17	C	вс	MI	45	CFVXY	.17
VENICE	58	15,000	G	3.0	485.47	1.33	3	50.66	9	30.69	ACFGV	C	P	88	DY	. 88
VERO BEACH	31	16,0CO	G	6.0	1247.25	3.40	7	115.88	2	94.15	ACDV	BC	WA	212	CDFXY	2.12
WAUCHULA	25	4 . OCO	G	4.8	287.00	.78	5	32.00	2	20.00	ACP	ВС	MI	195		.68
WARRINGTON	17	24 , 750	G	7.1	929.00	2.55	8	102.60	2	57.70	CT	ВС	MI	103	NT	-00

WEST PALM BC WINTER GARDN	50 48	69,662 9,000	S	36.0 1.5	6577.98 458.00	18.02	5	670.88 51.00	2 2	457.22 25.00	CFGISV AC	B C B C	D D M I	258 144	AD FY	11.00
WINTER HAVEN WINTER PARK	53 48	45,000 53,809	G	9.6 27.8	1861.70 4338.25	5.10 11.88	5	214.06 474.61	9	129.05 261.52	AC AC	9 C	MI PA	113 220	F S Y A F U	1.90
							197	4								
ALTAHONTE SP	59	15,400	G	6.9	990-10	2.70	4	103.50	9	81.30	AC	В	н	175	S	2.00
APALACHICOLA ARCADIA	19	3,127 7,000	G	2.5	171.27 302.54	.46	8	16.26 33.65	8	10.65	CFGSTV	BC	MI	147	X Y C Y F C	• 43
ATLANTIC BCH	16	8 - 000	G	3.5	449.39	1.25	5	45.56	2	28.02	AC	BC	MQ	156	XU	. 42
AUBURNDALE	53	12,000	Ğ	5.0	512.93	1.41	4	60.65	2	18.02	AC	BC	MA	117	F	.55
AVON PARK	28	8 - 500	G	6.3	418.69	1.16	4	58.95	9	20.09	N	ВС	MA	1 36	YC	99 . 30
BARTON	53	17,0CO	G	4.1	1136.63	3. 11	4	114.58	2	77.19	ACF	BC	MI	151	CFXY	1.50
BAY CTY WTR	03	31 , OCO	S		hh 12493.97	34.23		1126.51	9	934.86	CVFU		4.5	110	AP	.00
BELLE GLADE	50	22,000	S	6.0	1260.84	3.45	3	119.29	0	90.95	CFGUV	BC	PD	1 58	YCP	1.20
BLOUNTSTOWN	07	2,400	6	1.4	82.51	.23	U	7.75	4	5.56	С	BC	MI	83	CXA	. 30
BOCA RATON	50	45,0C0	G	37.0	5704.00	15.63	3	612.00	8	396.50	CFGTV	BC	MS	3 47	AS	4.60
BCNIFAY	30	2,500	G	1.0	68.60	.19	N/R		N/R	N/R	С	BC	MI	72	CTX	.16
BONITA SPRS	36	11,000	G	.5	129.00	. 35	3	. 43	7	-24	ACV	0.0		32	F 111	.00
BCYNTON BCH BRADENTON	50 41	24,0C0 25,0C0	G S	12.0	240 7.83 1357.80	6.60 3.72	3	234.08 123.57	9	180.15	CF CF GHV	BC BC	M D D D	275 166	F JU	2.80 3.05
BRANDON	29	25,000	G	5.5	1720.00	3.50	N/R	210.00	N/R	130.00	С	вс	MI	166	Y	ii .00
BRISTOL	39	1,600	G	.2	51.00	-14	7	. 16	2	.11	Č	BC	MI	87	NT	.00
BRONSON	38	551	G	.7	18.50	. 05	<i>jj</i> 6	2.00	1	1 - 30	AC	BC	MI	93	NT	.00
BROOKSVILLE	27	5,0C0	G	2.5	228.00	.62	0	21.43	8	17.17	AC	BC	MP	79	AF	• 51
BUNNELL	18	1,900	G	.6	80.53	.22	5	8.07	2	5.95	CFVX	BC	MD	115		.17
BUSINELL	60	800	G	1.0	48.30	. 13	6	5. 42	8	2.91	AC	BC	MI	1 62	NT	- 00
CAPE CORAL CAROL CITY	36 13	22,000 15,556	G	4.0	659.44 1595.90	1.81	4 N/R	67.26 N/R	7 N/R	43.61 N/R	ACFGTV	BC	PD D	82 283	UF S	1.14
CASSELBERRY	59	14 -8CO	G	2.3	511.43	1.40	4	58.88	0	33.31	AC	Č	I	94	ACFP	.86
CHATTAHOOCHE	20	3,000	G	.5	113.90	. 31	7	11.90	1	7.30	AC	ВС	MI	100	CSXY	. 25
CHIPLEY	67	4,500	G	1.2	135.60	. 37	7	16.20	2	8.10	С	ВС	MI	.82	CX	. 36
CLEAR WATER	52	62,0C0	G	14.0	2415.99	6.62	4	405.00	2	301.00	AC	BC	MA	182	SP	11.58
CLEWISTON	26	4 .7 CO	S	3.0	397.84	1.09	N/R	N/R	N/R	N/R	CFGUV	BC	PD	2 31	U	. 17
CCCOA	05	125,0CO	G	40.0	kk 5505.93	15.08	3	497.64	2	394.78	ACV	ВС	WP	120	CDFSX	1.50
CORAL SPRING	06	6 ,8 CO	G	1.2	592.20	1.40	4	59.40	6	45.00	ACKX	ВС	MD	205	ACDEJP	1.40
CRAWFRDVILLE	65	288	G	9 .0	6.90	. 02	N/R	N/R	N/R	N/R	C	BC	AI	69	NT	.00
CRESTVIEW	46	10,000	G	2.0	495.33	1.36	8	47.17	2	39.31	С	BC	MI	136	CFXY	- 50
CROSS CITY	15	2,300	G	.8	162.00	. 4 4	8	N/R	1	N/R	ACFT	BC	MM	190	CSTVXY	.06
CUTLER RIDGE	13	14,5CO	G	3.9	2920.50	118.00	5	262.80	2	165.03	C	BC	MA	439	A	mm 3.20
DADE CITY	51	8,500	G	4.0	372.87	1.02	5	39.11	2	25.17	N	ВС	MI	1 20	XY	. 41
DANIA DAYTONA BCH	06 64	9,7CO 63,0CO	G	3.7 12.5	638.00 3683.51	1.75	3	74.00 345.25	6 D	27.00 262.37	ACDFSV	B C B C	MD DD	180 160	FGRS	1.30
DEERFLD BCH	06	20,000	G	15.7	2060.01	5.64	3	219.35	1	130.58	CFGTV	BC	MM	282	SC	1.50
DE FUNAK SPA	66	6,850	G	2.3	288.30	. 79	6	22.80	2	17.00	C	BC	MI	115	CFXY	.31
DELAND	64	18,0CO	G	12.0	1176.90	3.22	4	116.90	2	85.10	CTV	ВС	WI	1 34	ADS	1.50
DELRAY BCH	50	27,000	G	16.4	3062.90	8.39	1	316.90	6	198.10	ACSV	BC	MA	3 10	AC	3.50
DUNEDIN	52	26,600	G	6.2	1275.64	3.49	5	143.88	8	82.57	C	BC	MA	1 31	ACDESY	2.66
ENGLEWOOD	58	10,000	G	2.0	371.16	1.01	3	42.83	9	21.25	ACFV	C	0	100	NT	.00
EUSTIS	35	9,500	G	8.8	776.00	2.13	6	78.00	9	51.00	AC	В	M	224	FY.	. 92
FERNANDNA BC	45	7 -1 CO	G	7.0	896.81	2.46	5	86.47	2	61.47	AC	BC	MI	3 46	Y	.85

IMAIM	13	844,050	G	220.0		184.70	4	6512.70	6	5726.80	FILOTZ	BCS	DOP	2 39	S	62.00
MILTON	57	10,000	G	2.3		.97	8	35.22	3	22.72	CT	BC	MI	97	XYFDC	1.26
MIRAMAR	06	23,000	G	6.0	944.91	2.59	3	91.94	6	69.75	ACFGTV	BC	MP	113	AY	2.64
MONTICELLO	33	3 .8CO	G	.8	155.08	. 43	8	15.25	4	10.59	C	C	M	113	CFXY	- 30
MOORE HAVEN	22	1,200	G	. 7	54.69	.15	3	6.05	6	4.26	ACFGTV	BC	MI	125	NT	• 00
NAPLES	11	42,000	G	16.0	3263.00	8.90	4	368.00	9	170.00	CFOSTR	ВС	WS	211	APS	2.30
NEPTUNF BCH	16	5 . OCO	G	2.5	25 4 . 6 4	. 69	3	23.29	0	13.76	AC	ВС	IM	1 38	A	.60
NEW PT RICHY	51	13.000	G	4.8		1.67	5	62.48	9	43.06	C	BC	MM	128	EFX	.70
NEW SMYRNA B	64	12,100	G	3.6		2.25	5	75.85	2	57.73	ACTV	BC	MI	185	AS	1.40
NICEVILLE	46	7,000	G	1.4		.91	6	44.30	1	16.95	C	вс	HI	1 30	CFVXY	. 40
	•	F 700							_							
NORTH FTMYER	36	5,300	G	. 7		. 45	4	19.20	7	9.92	AOFTVC	1,12		75	1.2	.00
NCRTH MIAMI	13	55,0C0	G	10.0		8.20	D	350.40	6	185.60	AC	BCP	WHD	1 49	X	20.00
NO MIAMI BCH	13	95,000	G	26.0		24.90	5	835.80	0	709.30	CFGRSV	BCS	MDA	2 62		ww - 00
NO PALM BCH	50	16,900	G	7.0		5.07	3	187.81	1	132.59	ACFGTV	C	I	300	AF	2.66
N PT CHARLOT	58	2,900	S	2.2	319.18	.87	4	46.20	8	3.60	CFGHVX	BC	MD	300	UP	- 35
JAKLAND PARK	06	19.000	G		i 1106.94	3.03	N/1	R N/R	N/R	N/R	C			159	SY	3.00
DCALA	42	25,5CO	G	6.8	1818.36	4.98	0	189.14	2	126.95	CRTUV	BC	DI	195	CDFSUY	3.25
O KEE CHOSEE	47	4,5CO	S	1.9		1.05	3	39.84	8	27.06	CDEHV	C	I	2 3 3	SEF	1.20
OPA-LOCKA	13	14,000	G	2.5	984.66	2.70	0	119.10	6	64.40	ACFGTV	BC	QD	192	C	$ww \cdot 00$
DRANGE PARK	10	8 .950	G	1.5	295.83	.81	0	30.54	2	8.26	AC	ВС	31	90	UP	.80
DRLANDO	48	190,000	G	125.0	14952.00	41.00	4	1512.00	2	1047.00	ACU	BCS	WAA	215	В	17.00
ORMOND BCH		27,600	G	3.0			9	86.14						89	F	
	50	10,000	S	1.9	900.32	2.47	5		D	61.91	ADEOXZ	B C	MD	82	S	1.92
PAHOKEF	54	7 7 7 7 7 7 7	1.5	-577	298.01	. 92		27.95	0	24.19	ACFGHT		MD	1.07	1 5 La 10 La	. 75
PALATKA		12,000	G	3.5	76 3. 30	2. 09	5	79.70	2	50.30	ACFTU	BC	MA	174	XYU	1.50
PALM BEACH	50	10,000	S	36.0	y 2115.87	5.80	4	233.60	1	141.60	N	ВС	DD	175	N	3.08
PALM BCH GON	50	7.600	G	4.0	837.34	2.29	5	92.54	7	54.28	CGSV	BC	. MA	301	F	.78
PALMETTO	41	8,5CO	S		j 206.61	.60	5	20.16	8	13.89					CY	.75
PANAMA CITY	03	35,0CO	S		k 1954.33	5.35	7	236.97	2	121.28	CGVFT	BC	MI	153	FXY	4.00
PENSACOLA	17	170,0CO	G	36.0	8700.71	23.84	7	1011.45	2	468.08	ACT	BC	MI	1 40	CFSXY	11.39
PERRY	62	9,580	G	1.5	434.38	1.19	5	46.31	2	24.98	ACF	BC	MI	124	CFVXY	. 96
PIN CTY WT S	52	140,000	G	55.0	12221.11	33.48	0	1199.04	2	887.80	ACU	В	н	110		.00
PINELLAS PK	52	27,1CO	G		1 1017.80	2.80	5	106.80	2	74.10	C			103	AS	2.50
PINE ISLAND	36	5,000	G	1.2	246.78	. 68	í	11.03	7	4.11	ACFGTV	вс	MD	46	NT	.00
PLANTATION	06	37,500	G	8.5	1983.00	5.40	4	204.00	6	139.00	V	BC	WA	144	CSM	2.00
PLANT CITY	29	18,0C0	G	8.6	772.28	2.11	4	81.36	2	50.46	СТ	BC	PS	117	S	1.80
		200	12	3.75	7.120.50			0	100	200.10	1.5	150	1111			
POMPANO BCH	06	59,000	G	31.0	6094.75	16.70	3	630.82	1	444.63	ACGF	BC	WA	283	DQV	5 . 56
PT CHARLOTTE	08	22,0CO	X	1.7	900-85	2.47	4	107.65	9	51.71	CEFHOT	BC	WD	112	AFP	1.10
PORT CRANGE	64	5,300	G	2.5	513.00	1.40	4	52.26	7	28.17	ACJ	В	М	264	U	.60
PORT ST JOE	23	4,5CO	S	. 4	229.96	.63	5	21.40	2	15.52	CDFHTV	BC	DD	1 40	CX	• 50
PUNTA GORDA	08	8,500	S	2.4	641.15	1.70	4	70.21	8	34.53	CFGHV	BC	WD	2 00	FXYZ	.00
QUINCY	20	10,100	X	1.5	453.12	1.24	7	51.37	2	30.72	ACFGT	8 C	MI	122	CUSXY	.00
RIVIERA BCH	50	25,200	G	14.0	1905.54	5.22	3	193.86	6	131.02	ACFGTV	BC	WD	207	M Z	2.30
ST AUGUSTINE	55	12,800	X	5.0	95 2. 25	2. 61	5	89.96	2	63.84	CEHIKS	BC	DP	203	Y	2.61
	-		Ĝ				4		D	35.00	AC	C	I	204	DEFXY	. 98
ST CLOUD ST PETERBURG	4 9 5 2	6,500 250,000	G	10.0	484.23 m 3244.85	1.33	N	48.88 308.22	9	204.18	AFOTZ	вс	מם	1 38	US	.00
ST PETFRBURG	52		G		n 3124.40	8.57	4	339.14	8	195.86	AFOTZ	BC	DD			- 00
ST PETERBURG	51		G		ee 6193.68	16.98	5	626.79	2	418.04						• 00
ST PETE BCH	52	8 . 024	G		1 .00	.00	N/R		N/R	N/R	С	12.	10.5	1.22	2238	r .00
SANFORD	59	25,0CO	G	5.0	1599.49	4.38	5	151.95	7	122.08	AC U	BC	MX	175	CEXS	4.00
SARASTTA	58	50,000	G	12.7	2661.00	7.20	4	236.00	8	200.00	ACFV	BC	MD	144	CDU	6.60

MUNICIPALITY	СО	POPUL- ATION SERVED	S	RATED PLANT CAP.	PUMPAGE MGAL/Y	PUMPAGE MGAL/D	MNTH HIGH PUMP	HĬGH	MNTH LOW PUMP	PUMP LOW MNTH	WATER TREAT- MENT	TYPE ANAL- YSIS	FREQ- ANAL- YSIS		SEWAGE TREAT- MENT	SEWAG DISCH MGAL/
						1974	Con	TINUED ,	×							
SEBRING	28	13,000	G	12.7	1141.87	3.13	3	142.29	8	65.12	AC	ВС	AS	241	AS	*.00
SPRINGFIELD	03	7,0CO	S		k 213.20	.58	7	25.59	D	13.20				82		.00
STARKE	04	5,500	G	3.0	283.00	.77	N/R		N/R	N/R	CTV	C	I	1 40	CY	.80
STUART	43	8,000	G	4.8	823.98	2.25	4	86.64	7	53.22	CFGV	BC	MO	281	F	.60
TALLAHASSEE	37	82,000	G	33.6	5452.12	14.94	5	517. 38	2	374.67	C	BC	WI	182	CFSVXU	9.50
TAMPA	29	350,000	S	65.0	18700.70	51.23	0	1885.87	1	1230.73	CEFHMX	вс	DD	1 46	CXY	40.20
TARPON SPRS	52	8,800	G		xx 573.98	1.57	N	60.46	2	30.38	C				XY	.80
TAVARES	35	3,900	G	2.3	225.11	. 62	4	24.25	7	12.46	C	BC	MI	159	NT	. 45
TITUSVILLE	05	34,000	G	16.0	1336.19	3.66	4	137.95	8	96.67	CV	ВС	WH	107	SY	2.25
TRENTON	21	1,200	G	.4	196.70	.54	5	22.00	N	11.20	N	BC	WI	450	AY	. 05
V ALP ARA ISO	46	6,600	G	2.4	147.08	. 40	7	14.95	2	7.17	C	ВС	MI	€0	CFVXY	.19
VENICE	58	15,000	G	3.0	529.43	1.45	3	55.74	7	35.44	ACFGV	C	P	96	DY	1.00
VERO BEACH	31	16,000	G	6.0	1386.87	3.80	5	135.30	1	90.23	ACDV	BC	WA	237	CDFXY	2.34
WARRINGTON	17	24,750	G	7.1	994.60	2.70	7	120.10	D	62.70	CT	BC	MI	109	NT	.00
WATERWAY EST	36	4.200	G	2.6	yy 165.64	. 45	4	19.23	7	9.98	AC	BC	MD	100		• 30
HAUCHULA	25	4,000	G	4.8	317.00	.87	4	34.00	7	20.00	ACP	вс	MI	217	22	.70
WEST PALM BC	50	70,000	S	36.0	7008.85	19.20	4	702.16	1	493.88	CFGISV	BC	DD	274	AD	8.32
WINTER GARDN	48	9,000	G	1.5	439.10	1.20	7	53.50	D	23.80	AC	BC	MI	1 33	FY	.76
WINTER HAVEN	53	45,000	G	9.6	2044.64	5.60	4	212.63	9	139.53	AC	BC	MI	124	FSY	3.90
WINTER PARK	48	53,9CO	G	27.8	4758.45	13.01	4	662.05	8	321.17	AC	BC	PA	241	AFU	3.00

- a Source: Inventory of water and sewage facilities in the United States, 1945: Federal Security Agency, Public Health Service, Cincinnati,
- Ohio, 1948.
 b Source: Tabulation of water supply data, Jan. 1, 1948: Florida State Board of Health, Bureau of Sanitary Engineering, Jacksonville, Florida.
- c Source: Inventory of public water supplies in Florida, 1956: Florida State Board of Health, Bureau of Sanitary Engineering, Jacksonville 1,1949.
- d Source: Water use records, 1965, 1970-1974, U.S.Geological Survey, Water Resources Division, Tallahassee, Florida.
- @ Additional 2,320.60 Mgal (million gallons); 2,554.90 Mgal (1971); 2,664.50 Mgal (1972); 1,998.00 Mgal (1973); 1715.50 Mgal (1974) purchased from Pinellas County Water System.
- f Supplied by U.S. Sugar Corporation.
- a Supplied by the city of St. Petersburg.
- h Supplied by Stock Island desalination plant.
- i Supplied by the city of Ft. Lauderdale.
- i Supplied by Manatee County Utilities System.
- k Supplied by Bay County Water System.
- 1 Supplied by Pinellas County Water System.
- m Section 21 well field.
- n Cosme well field.
- o U.S. Sugar Corporation water supply plant.
- p Purchased from U.S. Sugar Corporation.
- q Plant capacity, 30,000 gal/d (gallons per day).
- r Sewage discharged to city of St. Petersburg sewer system.
- 8 Includes sewage from the city of Hallandale.
- t Supplied by the U.S. Navy at Florida City.
- u Includes cooling for electric generating plant.
- v Includes sewage from the municipalities of Atlantis, Lantana, Palm Springs, and Palm Beach Jr. College.
- w Includes 834.73 Mgal purchased from the city of Miami.
- x Includes sewage from Wilton Manors.
- y Purchased from West Palm Beach.
- 2 Supplied by General Development Utilities.

FOOTNOTES TO TABLE 6, CONTINUED.

```
aa Estimated from 5-month daily average.
bb Includes 517.5 Mgal from Pinellas County Water System.
cc Includes water supplied to the municipalities of Palm Beach and South Palm Beach.
dd Includes 1.572.4 Mgal purchased from Miami.
ee Section 34 well field, Pasco County.
ff Not reported. All water supplied by Pinellas County Water System.
gg Estimated.
hh Period of record: October, 1973-September, 1974.
ii Sewage treated by Hillsborough County Utility Department.
jj Also July.
kk Additional 1.708.51 Mgal purchased from Pinellas County Water System.
11 Includes 9 subdivisions.
mm Cutler Ridge only.
nn Five new 0.510 Mgal capacity package plants began operation in 1974.
00 New plant in operation, August, 1974; capacity 2.16 Mgal/d (million gallons per day).
pp Plant capacity, 0.5 Mgal/d, in operation August, 1974.
qq Supplied by Midway Water Company.
rr Processed by Hollywood.
88 Hydrogen peroxide used for odor control.
tt Sewage treated by Lake Worth plant.
uu Includes 66.7 Mgal pumped by Largo.
vv Supplied by Broward County Utilities Department.
www Discharged to Atlantic Ocean through city of North Miami outfall.
xx Supplied by Pinellas County Water System, includes 14.2 Mgal pumped by Tarpon Springs.
yy Supplied by Florida Cities Water Company.
zz Griffin Oxinite Process.
```

REFERENCES

- Anderson, Warren, and Goolsby, D. A., 1973, Flow and chemical characteristics of the St. Johns River at Jacksonville, Florida: Florida Dept. Nat. Resources, Inf. Circ. 82.
- Bearden, H. W., 1971, Water in canals and shallow sediments in St. Lucie County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 62.
- _____ 1972, Ground water in the Hallandale area, Florida: Florida

 Dept. Nat. Resources, Bur. Geology Inf. Circ. 77.
- _____1974, Ground-water resources of the Hollywood area, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 77.
- Boggess, D. H., 1970, A test of flushing procedures to control saltwater intrusion at the W. P. Franklin Dam near Ft. Myers, Florida; The magnitude and extent of salt-water contamination in the Caloosahatchee River between La Belle and Olga, Florida: Florida Dept. Nat. Resources, Bur. Geology Inf. Circ. 62.
- ______1974, The shallow fresh-water system of Sanibel Island, Lee County, Florida, with emphasis on the sources and effects of saline water: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 69.
- Cherry, R. N., and Stewart, J. W. and Mann, J. U., 1970, General hydrology of the middle Gulf area, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 56.
- Coble, R. W., 1973, The Anclote and Pithlachascotee Rivers as water supply sources: Florida Dept. Nat. Resources, Map Ser. 61.
- Conover, C. S., and Leach, S. D., 1975, River Basin and hydrologic unit map of Florida: Florida Dept. Nat. Resources, Bur. Geology Map Ser. 72.
- Crain, L. J., Hughes, J. H., and Snell, L. J., 1975, Water resources of Indian River County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 80.
- Durfor, C. N., and Becker, Edith, 1964, Public water supplies of the 100 largest cities in the United States, 1962: U.S. Geol. Survey Water-Supply Paper 1812, 364 p.
- Fair, Gordon M., and Geyer, John C., 1954, Water supply and waste-water disposal, Wiley and Sons, New York.

- Fairchild, R. W., 1972, The shallow aquifer system in Duval County, Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 59.
- Florida State Department of Commerce, 1971, Population of Florida: 1971 edition, Tallahassee, Florida.
- Foster, J. B., 1972, Guide to users of ground water in Bay County, Florida: Florida Bur. Geology Map Ser. 46.
- Foster, J. B., and Pascale, C. A., 1971, Selected water resources records for Okaloosa County and adjacent areas: Florida Dept. Nat. Resources Bur. Geology Inf. Circ. 67.
- Healy, H. G., 1972, Public water supplies of selected municipalities in Florida, 1970: Florida Dept. Nat. Resources, Bur. Geology Inf. Circ. 81.
- _____1974, Water levels in artesian and nonartesian aquifers of Florida, 1971-72: Florida Dept. Nat. Resources, Inf. Circ. 85.
- 1976, Water levels in artesian and nonartesian aquifers of Florida, 1973-74: U.S. Geol. Survey Water-Resources Inv. 76-101.
- Hem, John D., 1970, Study and interpretation of the chemical characteristics of natural water, second edition: U.S. Geol. Survey Water-Supply Paper 1473.
- Hughes, G. H., 1970, Hydrologic setting of Deer Point Lake near Panama City, Florida: Florida Dept. Nat. Resources, Bur. Geology Map Ser. 38.
- Hull, J. E., 1972, Hydrologic conditions during 1970 in Dade County, Florida: U.S. Geol. Survey open-file rept.
- Joyner, B. F., 1974, Chemical and biological conditions of Lake Okeechobee, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 71.
- Klein, Howard, 1971, Depth to base of potable water in the Floridan aquifer: Florida Dept. Nat. Resources, Bur. Geology Map Ser. 42.
- ______1972, The shallow aquifer of southwest Florida: Florida Dept.
 Nat. Resources, Bur. Geology Map Ser. 53.
- Knochenmus, D. D., and Beard, M. E., 1971, Evaluation of the quantity and quality of the water resources of Volusia County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 57.
- Knochenmus, D. D., 1971, Ground water in Lake County, Florida: Florida Dept. Nat. Resources, Bur. Geology Map Ser. 44.

- 1974, Hydrologic concepts of artifically recharging the Floridan aquifer in eastern Orange County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 72.
- Land, L. L., and Rodis, H. G., and Schneider, J. J., 1973, Appraisal of the water resources of eastern Palm Beach County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 67.
- Leach, S. D., 1977, Water use inventory in Florida, 1975: U.S. Geol. Survey Open-File Rept.
- Leach, S. D., and Klein, Howard, and Hampton, E. R., 1972, Hydrologic effects of water control and management of southeastern Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 60.
- Lichtler, W. R., 1972, Appraisal of water resources in the east-central Florida region: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 61.
- McCoy, H. J., 1972, Hydrology of Western Collier County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 63.
- 1973, Summary of hydrologic conditions in Collier County, Florida, 1972: U.S. Geol. Survey open-file rept.
- 1974, Summary of hydrologic conditions in Collier County, Florida, 1973: U.S. Geol. Survey open-file rept.
- 1975, Summary of hydrologic conditions in Collier County, Florida, 1974: U.S. Geol. Survey open-file rept.
- McCoy, H. J., and Hardee, J., 1970, Ground-water resources of the Lower Hillsborough Canal area, southeastern Florida: Florida Geol. Survey Rept. Inv. 55.
- National Academy of Sciences and National Academy of Engineering, 1973, Water Quality Criteria, 1972 (U.S.) Environmental Protection Agency, EPA, R373033, 594 p.
- O'Donnell, T. H., 1975, Fluctuations of ground water levels in Lee County, Florida, in 1975 water year: U.S. Geol. Survey Open-File Rept. 76-854.
- _____ 1977, Municipal water supplies in Lee County, Florida, 1974: U.S. Geol. Survey Open-File Rept. 77-277.
- Pascale, C. A., 1974, Water resources of Walton County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 76.
- _____ 1975, Estimated yield of fresh-water wells in Florida: Florida Dept. Nat. Resources, Bur. Geology Map Ser. 70.
- Phelps, G. G., 1977, Chemical quality of natural waters used for municipal supply in Florida; 1975: Florida Dept. Nat. Resources, Bur. Geology Map Ser.

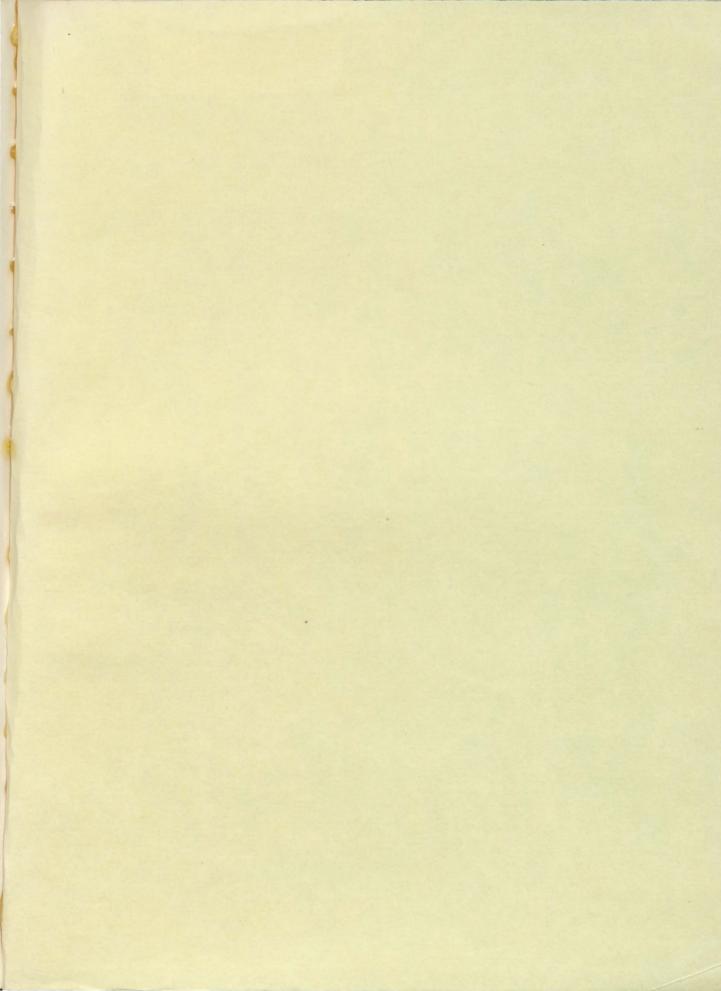
- , 1977, Principal users of freshwater in Florida, 1975: U.S. Geol. Survey, Water-Resources Inv. (In process).
- Pride, R. W., 1970, Estimated water use in Florida, 1965: Florida Dept. Nat. Resources, Bur. Geology Map Ser. 36.
- 1973, Estimated water use in Florida, 1970: Florida Dept. Nat. Resources, Bur. Geology Inf. Circ. 83.
- Robertson, A. F., 1971, A preliminary evaluation of hydrologic conditions of the Lakeland Ridge area of Polk County, Florida: U.S. Geol. Survey Open-file rept.
- 1973, Hydrologic conditions in the Lakeland Ridge area of Polk County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 64.
- Robertson, A. F., and Mills, L. R., 1974, Ground-water withdrawals in the Upper Peace and Upper Alafia River Basins, Florida: Florida Dept. Nat. Resources, Map Ser. 67.
- Rodis, H. G., 1973, Encroaching salt water in northeast Palm Beach County, Florida: Florida Dept. Nat. Resources, Map Ser. 59.
- Schneider, W. J., 1968, Data for metropolitan areas: U.S. Geol. Survey, Water-Supply Paper 1871.
- Sherwood, C. B., and McCoy, H. J., and Galliher, C. F., 1973, Water resources of Broward County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 65.
- Snell, L. J., and Anderson, Warren, 1970, Water resources of northeast Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 54.
- Sproul, C. R., Boggess, D. H., and Woodward, H. J., 1972, Saline-water intrusion from deep artesian sources in the McGregor Isles of Lee County, Florida: Florida Dept. Nat. Resources, Inf. Circ. 75.
- Sutcliffe, H., 1975, Appraisal of the water resources of Charlotte County, Florida: Florida Dept. Nat. Resources, Bur. Geology Rept. Inv. 78.
- Trapp, H., 1971, Availability of ground water for public water supply in the Pensacola area, Florida: U.S. Geol. Survey Open-File rept.
- University of Florida, Bureau of Economic and Business Research, 1976, Florida estimates of population, July, 1975, state, counties and municipalities.

ALPHABETICAL INDEX OF CITIES AND WATER SYSTEMS

																					Page
Altamonte Spri	ngs	s.				•	٠		•	•			•							•	99
Apalachicola .							•				•									•	26
Apopka	•	•	•							•											100
Arcadia		•	•	•			•														166
Atlantic Beach	•																				62
Auburndale		•.													•						101
Avon Park						•	•	•	•					٠.		•					167
Azalea Park					•			•													102
Bartow																					103
Bay County Wate	er	Sy	ysi	tei	n.																27
Belle Glade																					168
Blountstown																					30
Boca Raton					•																169
Bonifay					•																31
Bonita Springs	٠																				170
Boynton Beach.												•									172
Bradenton		•			•				•											•	173
Brandon				•		•					•										104
Bristol																					32
Bronson																					63
Brooksville																					
Broward County																			2		175

																														Page
	Bunnel1		•	•		•		•	•		•							•										•		64
	Bushne1	1.	•			•		•	•																					106
	Callawa	у.					•			•	٠	•			•			•					•							33
	Cape Co	ral					•		•																					176
	Carol C	ity	•			èġ		•		•		•									•			•						178
	Casselb	erry							•	•	•	•	•				•							٠					٠	107
	Century	Vi1	1ag	ge.					•	•	•						•				•									179
	Chattaho	ooch	ee.							•	•	•									•					,		٠		34
	Chipley			•			- 6				•		•																	35
	Clearwat	er .									•	٠	•									•								108
	Clewisto	n		•								•	•					Š						•						180
	Cocoa		•								•		•																	109
(Coral Sp	ring	s.	•		•	•					•		•													•			181
(Crawford	vill	e.	•	•	•																								65
(Crestvie	w	٠	•	•										٠															36
(Cross Ci	ty .	•	٠	٠								•																	66
C	Cutler R	idge		•	•	•									•															182
D	ade City	y	•	•	•	•	•	•	•																		•			111
D	ania		٠		•		•	•													٠									183
D	aytona E	Beacl	1.			•	•			•								•		•										113
D	e Land.		•	•		•	•		•							•			•											114
D	eerfield	Bea	ich	•				•									•				•						•			184
D	e Funiak	Spr	in	gs.					•		•																			37
De	elray Be	ach																												185

Pag	ge
Deltona	5
Dunedin	6
Englewood	36
Eustis	17
Fernandina Beach	67
Fort Lauderdale	37
Fort Myers	39
Fort Myers Beach	2
Fort Myers (suburban areas)	4
Fort Pierce	6
Ft. Walton Beach	8
Gainesville	8
Green Cove Springs	9
	0
Gulfport	8
Haines City	
7-111-1-	
Holly Hill	
Homestead	
Inverness	
Jacksonville	
Jacksonville Beach	
Jasper	7


																									Page
Jupit	ter.	•								•			•				٠	•	•	•			•		200
Key V	Vest											•		•		٠									201
Kissi	immee					•		•		•					•		•		٠						122
La Be	e11e								٠	•	•														203
Lake	But1	er									٠														78
Lake	City												•												79
Lakel	and																								123
Lake	P1ac	id.																							205
Lake	Wale:	s .				•																			126
Lake	Wortl	h.					•																		207
Lanta	na.					•	•																•		208
Largo																									127
Laude	rdale	e I	ak	e	S																				209
Laude	rhil	1.																							210
Leesb	urg .			- 4			•																		128
Lehig	h Acı	res																							211
Live	Oak .																								80
Longw	ood .																								129
Lynn	Haver	ı .																							41
Maccl																									
Madis																									
Maitl																									
Manat																									
Marga																					7	3			216

Page	
Marianna	
Mayo	
Melbourne	
Miami	
Milton	
Miramar	
Monticello	9
Moore Haven	
Mt. Dora	
Naples	
Neptune Beach	
New Port Richey	
New Smyrna Beach	,
Niceville	
North Ft. Myers (Waterway Estates)	L
North Miami	
N1 P-1- P-1	
North Port Charlotte)
Oakland Park	
Ocala	,
Ocoee	3
Okaloosa County Water System	j
Okeechobee	3

																							Page
Opa-locka		•	•	•	•	•	•					•	•	•	•	•		٠		•		٠	235
Orange Park.			•		•		•			•		•											86
Orlando		•		•	•	•	•	٠						٠									139
Ormond Beach		•		•				٠					٠							•			141
Pace		•		•																			46
Pahokee																							236
Palatka			•		•	•					٠												87
Palm Beach					•			•															237
Palm Beach Gar	der	ıs		•	•	•																	238
Palmetto		•															٠	•					239
Palm Springs .																							240
Panama City																							47
Panama City Be																							49
Pensacola																							50
Perry																							88
Pine Island																							241
Pinellas Count																							142
Pinellas Park																							143
Plantation																							
Plant City																							
Pompano Beach																							
Port Charlotte																							
Port Orange .																							
Port St. Joe																							53
Punta Gorda .		•	•	•		•			•														247

																													P	age
Quir	ncy .			•	٠			•		•	•			•	•				•	٠	•		•		•	•	•	•		89
Riv:	iera	Beac	h.							٠	•						•		•						•				2	249
St.	Augu	stin	e.					•	•	٠	•			•																91
St.	Clou	d																												147
St.	Pete	rsbu	rg																											148
St.	Pete	rsbu	rg	Ве	eac	ch				•																				149
San	ford.																													150
	ibel																											Ī		250
	asota			۰			Ī				•							•			•	•	•			•	•	•		252
			•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		
Seb	ring.	• •	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•		253
Spr	ingfi	eld.	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•		56
Sta	rke .	٠.,					•			•	•							•	•	•			•							93
Stu	art .			•					•										•											254
Sun	rise.		•					•	•																					256
Tal	lahas	see.																												94
Tam	pa																													151
	pon S		128																		17									154
			-6-								i				•	•	•	•	•	•	•	•	•	•	•			•		156
Tav	ares.	• •	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	•		150
Teq	uesta	٠.	•	٠	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		257
Tit	usvi]	le .	٠					•										•				•	•				•			157
Tre	nton.											•	٠			•											•			96
Va1	parai	so .							٠																					57
Ven	ice .																													258
	o Bea																													158

																								Page
Warrington	٠	٠	•	٠		•	٠	•	٠	٠	٠			•	•	•	٠	•		•			•	. 58
Wauchula	•		•			•		•	•					•	•				•	•	•		•	. 259
West Palm Beach.	•								•					•					•	•	•			. 260
Wewahitchka		•	•	•	•	•	•		٠	•			•	•	•	•		•			•	•	•	. 59
Winter Garden		•			•		•					•	•		•									. 160
Winter Haven	•		•	•		•									•						•			. 161
Winter Park											•													. 162

USGS LIBRARY - RESTON

3 1818 00102761 2

UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
325 John Knox Rd--Suite F240
Tallahassee, Florida 32303

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT. 413

FIRST CLASS

