

Prepared in cooperation with the CALIFORNIA DEPARTMENT OF WATER RESOURCES

BIBLIOGRAPHIC DATA SHEET	1. Report No.	2.	3. Recipient's Accession No.
4. Title and Subtitle WATER-OHALITY INVI	ESTIGATION, UPPER SANTA CLARA	RIVER BASIN.	5. Report Date March 1978
CALIFORNIA			6.
7. Author(s) James C. Bowers and	nd George A. Irwin		8. Performing Organization Rept. No. USGS/WRI 77-99
	urvey, Water Resources Divisio	n	10. Project/Task/Work Unit No.
345 Middlefield Ro Menlo Park, Calif			11. Contract/Grant No.
12. Sponsoring Organization	Name and Address urvey, Water Resources Division	n	13. Type of Report & Period Covered Final
345 Middlefield R			August 1974-June 1976
Menlo Park, Calif	. 94025		14.

15. Supplementary Notes

Prepared in cooperation with the California Department of Water Resources

16 Abstracts

The water-quality reconnaissance involved data collection for nitrogen, phosphorus, total organic carbon, trace elements, detergents, and pesticide compounds in the upper Santa Clara River basin. Because of the limited number of samples, the data are only an estimate of conditions that existed in the basin. Results indicate that most constituents were fairly low in concentration near the headwaters at Ravenna and higher below the urban and agricultural area near Saugus. Mean specific conductance in the river ranged from 745 micromhos per centimeter at 25°C below the headwaters near Lang to 2,640 micromhos at the Los Angeles-Ventura County line. Results also indicate that discharge was not the single factor controlling the concentration variance for most constituents. Results of regression analyses indicate a high correlation between specific conductance and most major inorganic chemical constituents, and between specific conductance and discharge.

17. Key Words and Document Analysis. 170. Descriptors

*Baseline studies, *Nutrients, *Pesticide residues, *Statistics, *Trace elements, *Water quality, Basic-data collection, California

17b. Identifiers/Open-Ended Terms

Upper Santa Clara River basin

17c. COSATI Field Group

18. Availability Statement		21. No. of Pages
No restriction on distribution	Report) UNCLASSIFIED	48
No restriction on distribution	20. Security Class (This	22. Price
	Page UNCLASSIFIED	

WATER-QUALITY INVESTIGATION

UPPER SANTA CLARA RIVER BASIN, CALIFORNIA

By James C. Bowers and George A. Irwin

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 77-99

Prepared in cooperation with the

California Department of Water Resources

UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

W. A. Radlinski, Acting Director

For additional information write to:

District Chief Water Resources Division U.S. Geological Survey 345 Middlefield Road Menlo Park, Calif. 94025

CONTENTS	
2. Santa Clara River above Pailrond Station neer tang	
	Page
Conversion factorsAbstract	IV
Abstract	1
Introduction	
Area description	2
Description of variables	. 5
Major inorganic chemical constituents	5
Nitrogen and phosphorus	5
Total organic carbon	7
Trace elements	7
Pesticide compounds	8
Detergents (MBAS)	8
Methods and procedures	8
Frequency and sources of samples	8
Methods of collection and analysis	9
Results	10
Major inorganic chemical constituents	10
Specific conductance-water discharge relations	15
Nitrogen, phosphorus, and total organic carbon	17
Selected trace elements	20
Detergents (MBAS)	24
Selected pesticide compounds	25
Summary	26
Selected references	29
Nitrogen, phosphorus, and total organic carbon data	31
Trace-element data	36
The Louve of the design of the design of the control of the contro	
not the single factor controlling rather verlance for most contents with the state of the same	
ILLUSTRATION	
	Dane
Figure 1 Man showing sampling sites	3
righte i. Pap showing sampling sites	

IV CONTENTS

TABLES

			Page
Table		Description of sampling sites	6
	2-5.	Summary of dissolved major inorganic chemical-constituent data for the:	
		2. Santa Clara River above Railroad Station near Lang (11107745), August 1974 through March 1976	11
		3. Santa Clara River at Bouquet Junction	
		(342526118322101), August 1974 through June 1976 4. Santa Clara River near Saugus (11108000),	12
		May 1951 through June 1976	13
		5. Santa Clara River at Los Angeles-Ventura County	
		line (11108500), April 1951 through June 1976	14
	6.	Results of regression analyses of the relation between	
		specific conductance and water discharge for selected	
		sites	16
	7.	Summary of nitrogen, phosphorus, and total organic carbon data for selected sites, August 1974 through June 1976	18
	8.	Summary of trace-element data for selected sites,	0.1
		August 1974 through June 1976	21
		Selected trace elements in bottom-material samples	24
	10.	Summary of detergent (MBAS) concentration data for selected	0.5
		sites, August 1974 through June 1976	25
	11.	Selected pesticide compounds in bottom-material and whole- water samples, August 1974 through June 1976	27

CONVERSION FACTORS

For readers who prefer metric units rather than U.S. customary units, the conversion factors for the terms used in this report are listed below:

Multiply U.S. customary unit	By	To obtain metric unit
acre-ft (acre-feet) acres ft (feet) ft ³ /s (cubic feet per second) mi (miles) mi ² (square miles)	1.233 x 10 ⁻³ 4.047 x 10 ⁻³ 3.048 x 10 ⁻¹ 2.832 x 10 ⁻² 1.609 2.590	cubic hectometers square kilometers meters cubic meters per second kilometers square kilometers

WATER-QUALITY INVESTIGATION, UPPER SANTA CLARA RIVER BASIN, CALIFORNIA

By James C. Bowers and George A. Irwin

lentura County Than sites were gottected by the California Department of Wat

OBJECT OF THE RESERVE WELL STORY ABSTRACT

This report summarizes water-quality data collected in the upper Santa Clara River basin, California, during a reconnaissance study from August 1974 through June 1976 and during past monitoring programs. Data were collected for nitrogen, phosphorus, total organic carbon, trace elements, detergents, and pesticide compounds.

Because of the limited number of samples, the data are only an estimate of conditions that existed in the basin. Sampling was designed so that samples from each site would represent seasonal variations in discharge. Results indicate that most constituents were fairly low in concentration near the headwaters at Ravenna and higher below the urban and agricultural area near Saugus. Mean specific conductance in the river ranged from 745 micromhos per centimeter at 25°C below the headwaters near Lang to 2,640 micromhos at the Los Angeles-Ventura County line. Results also indicate that discharge was not the single factor controlling the concentration variance for most constituents.

Results of regression analyses indicate a high correlation between specific conductance and most major inorganic chemical constituents, and between specific conductance and discharge.

lead of the north line at the out of the unner hash in the the

INTRODUCTION

The purpose of this study was to determine the concentration and distribution of nitrogen, phosphorus, total organic carbon, trace elements, detergents, and pesticides in the upper Santa Clara River basin. These variables were selected because they are important indexes of water quality and few data existed on their concentrations in the surface water of the area.

In addition to the results of the special reconnaissance, this report also summarizes historical major inorganic chemical data. Most of these historical data for the Santa Clara River near Saugus and for the Los Angeles-Ventura County line sites were collected by the California Department of Water Resources and local agencies.

From August 1974 through June 1976, the U.S. Geological Survey made a special reconnaissance of the water quality of the upper Santa Clara River basin. The sites were at Ravenna (A in fig. 1), near Lang (11107745), at Bouquet Junction (B in fig. 1), near Saugus (11108000), and at Los Angeles-Ventura County line (11108500). The major tributary systems were also sampled and included Bouquet Creek near Saugus (11107860), the South Fork of the Santa Clara River near Saugus (F-135 in fig. 1), and Castaic Creek below Castaic Reservoir (C in fig. 1).

This study is one of several water-quality investigations of rivers that have been started as a result of a letter (November 1971) of understanding between the California Department of Water Resources and the U.S. Geological Survey.

Acknowledgment is made to the many organizations that furnished hydrologic and water-quality data for use in this study. These include California Department of Water Resources, Southern District Office; Los Angeles County Flood Control District, Hydrology Division; and United Water Conservation District in Santa Paula, Calif.

AREA DESCRIPTION

The upper Santa Clara River basin lies northwest of Los Angeles near the center of the Transverse Ranges of southern California. It is bounded by the Santa Susanna and San Gabriel Mountains on the south and the Sawtooth Mountains on the north (fig. 1). The outlet of the upper basin is in the southwest corner at the Santa Clara River at Los Angeles-Ventura County line gaging station (11108500), where the Pico Formation forms a natural constriction. The basin has an area of 644 mi² and ranges in altitude from 795 ft to about 6,500 ft. From its source on the north-facing slopes of the San Gabriel Mountains in Los Angeles County, the Santa Clara River flows westward for about 35 mi to the Los Angeles-Ventura County line, and then predominantly west-southwestward for about 37 mi to the Pacific Ocean near

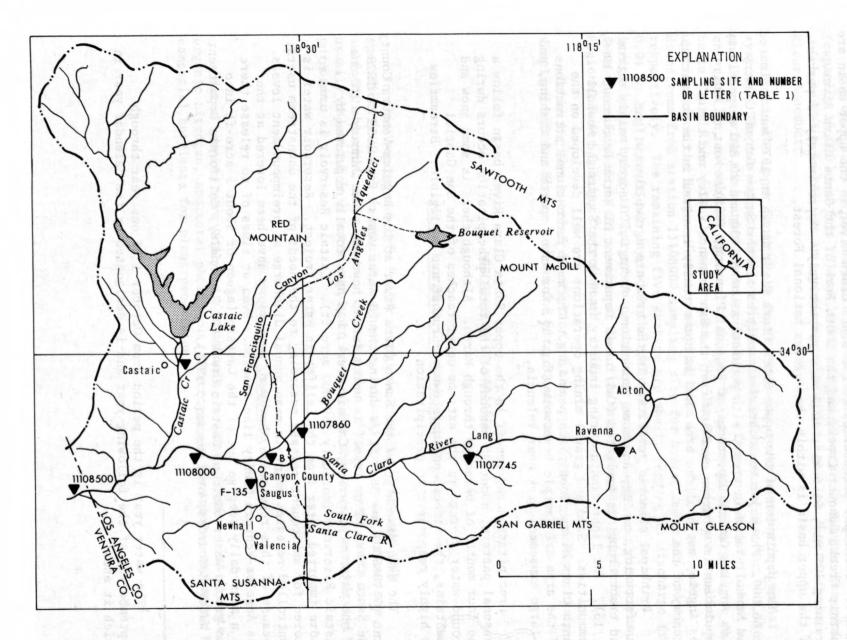


FIGURE 1.--Sampling sites.

Oxnard. Principal tributaries to the Santa Clara River in the upper basin are Castaic Creek, Bouquet Creek, and the South Fork of the Santa Clara River, draining $127~\text{mi}^2$, $51.6~\text{mi}^2$, $40.9~\text{mi}^2$, respectively. Approximately 75 percent of the upper basin is within the Angeles National Forest.

The population of the upper Santa Clara River basin in 1975 was estimated at 66,000. The major residential communities are the Saugus-Canyon Country and Newhall-Valencia areas, with populations of 36,830 and 20,810 respectively (Los Angeles County Department of Regional Planning, 1975). Most of the population is suburban overflow from the San Fernando Valley and the Los Angeles metropolitan area, and is not actually involved in the commercial economy of the area.

Principal economic activities in the area are agriculture, light manufacturing, mining, and some recreation. About 6,500 acres, mainly citrus and truck crops, is irrigated (California Department of Water Resources, 1968, p. 13). The light manufacturing industry is near the Saugus and Newhall communities. Sand and gravel mining operations are well developed on the Santa Clara River flood plain near Lang. The main recreational attractions of the area are Castaic Reservoir (fig. 1), for water sports and fishing, and a large amusement park near Valencia.

Precipitation and runoff in the upper Santa Clara River basin follow a seasonal pattern; about 80 percent of the total precipitation occurs during the four months of December through March. Although there is some snow and ground-water storage in the extreme upper reaches of the San Gabriel Mountains, the effects on surface-water runoff are negligible. Streamflow is highly responsive to precipitation.

The mean discharge of the Santa Clara River at Los Angeles-Ventura County line (11108500) was 36.7 ft³/s during the 23 water years¹ from 1952 to 1975. The Santa Clara River itself is unregulated; however, since January 1972 one of the major tributaries, Castaic Creek, has been totally regulated by Castaic Reservoir (capacity 350,000 acre-ft). Castaic Reservoir is used to store imported water from the California Water Project. Reservoir water is stored for subsequent release according to the needs of the downstream users. Controlled releases maintain mean annual discharge at preimpoundment levels. Because of this regulation, however, peak flows have been lowered at the Los Angeles-Ventura County line station. Even at times of no release there is a mean daily seepage out of the Castaic Lagoon of about 5 acre-ft into the ground-water basin of Castaic Creek (D. R. Hendley, California Department of Water Resources, oral commun., 1976).

¹The water year is the period from October 1 of one year through September 30 of the following year and is designated by the calendar year in which it ends.

The only other major reservoir in the basin is Bouquet Reservoir (capacity 36,000 acre-ft). There is also imported water in Bouquet Reservoir which serves primarily as an equalizing reservoir to the Los Angeles-Owens River Aqueduct.

Within the upper Santa Clara River basin are seven wastewater disposal systems. The two largest are Los Angeles County Sanitation District Nos. 26 and 32, serving the Saugus-Newhall communities. After secondary treatment and chlorination, a combined total of 16.9 acre-ft per day is discharged into the Santa Clara River from the two systems. The discharge points are immediately upstream from the Bouquet Junction sampling site (B in fig. 1) and just downstream from station 11108000 sampling site for District Nos. 26 and 32, respectively. The remaining five systems are small, ranging in discharge from 0.04 to 2.10 acre-ft per day, with the effluents being used for on-site irrigation or being discharged to percolation ponds. Wastewater discharges from these five sites all receive at least primary treatment (California Regional Water Quality Control Board, 1971).

Table 1 gives a brief description of the upper Santa Clara River basin sampling sites. Figure 1 shows the site locations.

DESCRIPTION OF VARIABLES

Major Inorganic Chemical Constituents

In this report the term "major inorganic chemical constituents" specifically refers to calcium, magnesium, sodium, potassium, bicarbonate, sulfate, chloride, and nitrate. Consideration of these constituents is usually important in a water supply to be used for domestic or agricultural purposes.

Nitrogen and Phosphorus

Water samples were analyzed for ammonia, nitrate, nitrite plus nitrate, organic nitrogen, and total phosphorus. Nitrogen and phosphorus are among the essential nutrients for plant production.

TABLE 1.--Description of sampling sites

Samplin	ng site	Drainage	Period of	Mean dis-			
No. and letter Name		area (mi ²)	recorded stream- flow	charge (ft ³ /s)	Description of flow		
A A A A A A A A A A A A A A A A A A A	Santa Clara River at Ravenna	85.4	d (1616) ass y skewsous y skewsous ampling	11.4	Flow is affected by small diversions for irrigation upstream. No regulation above site.		
11107745	Santa Clara River above Railroad Station near Lang	157	1949-75	4.99	There is no regulation above station. Flow can be slightly affected by small diversions upstream for irrigation and recreation.		
B Santa Clara River at Bouquet Junction		235	operation do nother latin offe operate Hermite A		Flow is affected by ground- water pumping for irrigation. At times water is released into river above site from city of Los Angeles-Owens River Aqueduct blowoff at river crossing. Base flow is sustained by treated sewage discharge immediately above site.		
11107860	Bouquet Creek near Saugus	51.6	1970-75	.61	Flow is partly regulated by Bouquet Reservoir, 12 miles upstream, and by groundwater pumping for irrigation.		
F-135 (Los Angeles County number)	South Fork Santa Clara River (at Saugus- Ventura Road)	40.9	1947-75	4.0	Flow is partly affected by ground-water pumping for irrigation. At times water is released into river above station from city of Los Angeles-Owens River Aqueduct blowoff.		
11108000	Santa Clara River near Saugus	407	1929-75	11.4	Flow is affected by ground- water pumping for irrigation. At times water is released into river above station from city of Los Angeles-Owens River Aqueduct blowoff at river crossing.		

¹See footnote at end of table.

TABLE	1.	Description	of	sampling	sites Continued
-------	----	-------------	----	----------	-----------------

Samplin	g site	Period Drainage of	Mean dis-	Insecticides and her	
No. and letter (See fig. 1)	Name	area (mi ²)	recorded stream- flow	charge (ft ³ /s)	Description of flow
C c cdreet Lecensor-Act cach year for porent sorth thraggarian	Castaic Creek below Castaic Reservoir	127	creconica ray corsu stic lin schede moxy acid	(2)	Flow is completely regulated by Castaic Reservoir. Imported water from California Water Project stored and released at Castaic Dam.
11108500	Santa Clara River at Los Angeles- Ventura County line	644 LOTA	1952-75	36.7	Flow is partly regulated since January 1972 by Castaic Reservoir. (Imported water from California Water Project stored and released at Castaic Dam.) Base flow is affected by ground-water pumping for irrigation and seepage out of the Castaic Dam lagoon.

¹Mean of discharges at time of sampling.

Total Organic Carbon

Total organic carbon is an index to the concentration of dissolved and suspended carbonaceous matter. High concentrations of organic matter in an aquatic environment can be a prime factor in influencing the dissolved-oxygen balance. If decomposable organic matter occurs in sufficient concentrations, intensive bacterial activity can result in complete oxygen depletion.

Trace Elements

Concentrations of arsenic, cadmium, chromium, lead, manganese, mercury, and selenium are considered to be a potential hazard to an aquatic environment. Few data are available on their concentrations in most California rivers. Determinations for boron and iron were also made because of their significance in public and agricultural water supplies.

²Most samples were taken from lagoon below dam.

Pesticide Compounds

Insecticides and herbicides are used for insect and plant control, but many of these compounds are lethal to higher organisms. Even low concentrations of pesticides in the aquatic environment are hazardous because of their sorptive properties. Because they have an affinity for particulate material, they may be concentrated within food chains as the material to which they are sorbed are consumed by organisms.

Samples were analyzed for insecticide and herbicide compounds from the chlorinated hydrocarbon, chlorophenoxy acids, and organic phosphorus groups. Chlorinated hydrocarbons included aldrin, chlordane, DDD, DDE, DDT, dieldrin, endrin, heptachlor epoxide, and lindane. Chlorophenoxy acids included 2,4-D, 2,4,5-T, and silvex. Organic phosphorus compounds included diazinon, malathion, methylparathion, and parathion.

Detergents (MBAS)

Detergents (methylene blue active substances) are a common component of sewage and industrial effluents, and thus they are an indicator of pollution from urban areas. These surfactant compounds may contaminate a stream system by acting as a catalyst dispersing normally insoluble organic compounds, some of which may be detrimental to aquatic life.

METHODS AND PROCEDURES

Frequency and Sources of Samples

During the period 1951-72, the California Department of Water Resources (DWR) collected samples monthly for the determination of major inorganic chemical constituents in the Santa Clara River near Saugus and at the Los Angeles-Ventura County line. An analysis usually comprised the determination of concentrations of calcium, magnesium, sodium, bicarbonate, sulfate, chloride, and nitrate and the measurement or calculation of dissolved-solids residue, total hardness, and specific conductance. During some months, however, only a partial analysis for bicarbonate, chloride, hardness, and specific conductance was made. During this period, a few samples for determination of major inorganic chemical constituents were also collected by the Los Angeles County Flood Control District (LACFCD) and by the United Water Conservation District (UWCD) near Saugus and at the Los Angeles-Ventura County line.

From 1972 to 1974, samples for determination of major inorganic chemical constituents were collected quarterly by DWR near Saugus and at the Los Angeles-Ventura County line, and also a few samples were collected at these sites by LACFCD. The second of the sec

During the period August 1974 through June 1976, the Geological Survey collected monthly water samples for determination of concentrations of nitrogen, phosphorus, total organic carbon, and selected trace elements at all sites except near Ravenna which was sampled only during the winter months December-March. Two samples at low flow and one at high flow were taken each year for pesticide analysis at all sites except Ravenna during this period. (No pesticide samples were taken on Castaic Creek from August 1975 through June 1976.)

Samples for determination of major inorganic chemical constituents were collected monthly by the Survey from January 1975 through June 1976 at sites on the Santa Clara River near Lang, at Bouquet Junction, near Saugus, and at the Los Angeles-Ventura County line.

Methods of Collection and Analysis the American Public of Heriah Association and others! Analytical Merical wayd by

Samples collected by the Geological Survey during the study period August 1974-June 1976 were obtained using depth integration methods described by Guy and Norman (1970), except at extreme low flows when such methods were not practical. The most common method used was the equal discharge increment (EDI) or three-section method.

All water samples collected by the Survey were processed in the field as prescribed by Brown, Skougstad, and Fishman (1970) and Goerlitz and Brown (1972). Initially, the samples that were collected for nitrite and nitrate, ammonia nitrogen, organic nitrogen, total phosphorus, and total organic carbon were not filtered but were preserved with 0.75 mL (milliliter) of concentrated sulfuric acid per 250 mL of sample. The use of sulfuric acid as a preservative in these samples was discontinued in January 1975, and subsequently samples were unfiltered and chilled to 4°C (degrees Celsius). Water and bottom-material samples for pesticide analysis were collected in pretreated glass bottles. Initially, these samples were shipped airmail without preservation to the laboratory within 24 hours after collection. After July 1975 the samples for pesticide analysis were chilled to 4°C before shipment.

Samples collected by the Survey for determination of major inorganic chemical constituents, nitrogen, phosphorus, total organic carbon, and trace elements were analyzed in the Salt Lake City, Utah, Central Laboratory, using the methods described by Brown, Skougstad, and Fishman (1970). Water and bottom-material samples were analyzed for pesticides by the Denver, Colo., and Doraville, Ga., Central Laboratories, using the methods described by Goerlitz and Brown (1972).

Methods of sample collection for the major constituents for most of the historical data are not precisely known; however, probably few samples were depth integrated using the methods suggested by Guy and Norman (1970). Preservation procedures for samples collected during this period are also not known; however, probably most were transported to the laboratories untreated and not preserved.

Analytical methods used by DWR were from the appropriate publication of the American Public Health Association and others. Analytical methods used by LACFCD and UWCD are presumed to be consistent with American Public Health Association specifications (1971).

RESULTS

Major Inorganic Chemical Constituents

Tables 2, 3, 4, and 5 summarize major chemical-constituent data for the upper Santa Clara River basin sampling sites on the Santa Clara River near Lang, at Bouquet Junction, near Saugus, and at the Los Angeles-Ventura County line.

TABLE 2.--Summary of dissolved major inorganic chemical-constituent data for the Santa Clara River above Railroad Station near Lang (11107745), August 1974 through March 1976 (Source of data: U.S. Geological Survey)

[Specific-conductance summary: 13 samples; mean = 745 µmho/cm (micromhos per centimeter); standard deviation = 43 µmho/cm; range = 680-820 µmho/cm]

No.	Dissolved ch	emical co	onstituents	\$ 42-130	Regression summary				Specific conductance [Ec] (µmho/cm at 25°C)	
of sam-		Concentration (mg/L)			HOUS * 177 1 4 94762 80	Corre- lation	Standard error	ples in	1,340	
ples	Constituent	Mean	Standard devia- tion	Range	Regression equation	coeffi- cient	of estimate (mg/L)	re- gres- sion	Mean	Range
8	Calcium (Ca)	77	3	72-82	Ca = 37.46 + 0.053 Ec	0.86	1.9	8	742	680-820
8	Magnesium (Mg)	22	1	21-24	Mg = 21.11 + 0.001 Ec	.06	1.1	8	742	680-820
8	Sodium (Na)	55	4	49-59	Na = 10.46 + 0.060 Ec	.87	2.1	8	742	680-820
8	Potassium (K)	2.8	.5	2.4-3.8	K = 2.19 + 0.001 Ec	.11	.5	8	742	680-820
8	Bicarbonate (HCO ₃)	303	7	293-311	$HCO_3 = 227.7 + 0.102 Ec$.84	4.0	8	742	680-820
8	Sulfate (SO ₄)	91	8	78-100	$SO_4 = 6.11 + 0.114 Ec$.83	4.6	8	742	680-820
8	Chloride (C1)	39	4	33-45	C1 = -11.48 + 0.068 Ec	. 85	2.6	8	742	680-820
2	Nitrate (NO ₃)	3.6	.2	3.5-3.8	p -t age plant of	partia		2		rence ted
	Dissolved solids									
8	Residue at 180°C	465	28	424-503	DS = 127.8 + 0.454 Ec	.91	13	8	742	680-820
5	Calculated (sum of determined	482	12	470-495	DS = 7.20 + 0.633 Ec	.67	9.8	5	750	740-770
	constituents)									
	Hardness as CaCO ₃									
8	(Ca, Mg)	284	11	270-300	H = 169.3 + 0.154 Ec	.81	6.7	8	742	680-820

TABLE 3.--Summary of dissolved major inorganic chemical-constituent data for the Santa Clara River at Bouquet Junction (342526118322101), August 1974 through June 1976 (Source of data: U.S. Geological Survey)

[Specific-conductance summary: 22 samples; mean = 1,340 µmho/cm (micromhos per centimeter); standard deviation = 92 µmho/cm; range = 1,110-1,500 µmho/cm]

No.	Dissolved ch	nemical	constituents	42 1-2 8 12 12-42	Regression s	No. of sam-	Specific conductance [Ec] (µmho/cm at 25°C)			
of sam-	Sulfate (50a)	Concentration (mg/L)			2 20° = 0.11 = 951.6 345	Corre-	Standard	ples	3 -45	080-670
ples	Constituent	Mean	Standard devia- tion	Range	Regression equation	lation coeffi- cient	of estimate (mg/L)	re- gres- sion	Mean	Range
17	Calcium (Ca)	82	8	69-100	Ca = 81.08 + 0.001 Ec	0.01	8.0	17	1,340	1,110-1,500
17	Magnesium (Mg)	27	2	22-31	Mg = 7.06 + 0.015 Ec	.52	2.1	17	1,340	1,110-1,500
17	Sodium (Na)	166	14	120-180	Na = -3.71 + 0.126 Ec	.73	9.7	17	1,340	1,110-1,500
17	Potassium (K)	14	2	9.9-17	K = -3.09 + 0.013 Ec	.63	1.3	17	1,340	1,110-1,500
17	Bicarbonate (HCO ₃)	394	33	348-460	$HCO_3 = 177.1 + 0.162 Ec$.39	32	17	1,340	1,110-1,500
17	Sulfate (SO ₄)	189	19	160-240	$SO_4 = 46.79 + 0.106 Ec$.45	17	17	1,340	1,110-1,500
17	Chloride (C1)	116	12	92-140	C1 = -24.62 + 0.105 Ec	.67	9.4	17	1,340	1,110-1,500
10	Nitrate (NO ₃)	69	32	42-130	$NO_3 = -127.0 + 0.147 Ec$.44	31	10	1,340	1,110-1,500
	Dissolved solids									
22	Residue at 180°C	846	34	767-928	DS = 501.7 + 0.257 Ec	.70	25	22	1,340	1,110-1,500
0	Calculated (sum of determined		randard \$	Gright Tour	= 43 maho/cm; range #	680- <u>82</u> 0 g	muo\col}	0		Englis
	constituents)						Tanking De			
	Hardness as CaCO ₃					10 dp 10	3 5			5. 5. 5. 5.
17	(Ca, Mg)	318	24	280-360	H = 220.3 + 0.073 Ec	.24	24	17	1,340	1,110-1,500

TABLE 4.--Summary of dissolved major inorganic chemical-constituent data for the Santa Clara River near Saugus (11108000), May 1951 through June 1976 (Source of data: California Department of Water Resources and U.S. Geological Survey)

[Specific-conductance summary: 99 samples; mean = 1,560 µmho/cm (micromhos per centimeter); standard deviation = 426 µmho/cm; range = 439-2,685 µmho/cm]

No.	Dissolved	chemical c	onstituents	0-03	Regression summary				Specific conductance [Ec] (µmho/cm at 25°C)	
of sam-		Concentration (mg/L)		301	Corre-	Standard	ples	3 830	446-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
ples	Constituent	Mean	Standard devia- tion	Range	Regression equation	lation coeffi- cient	of estimate (mg/L)	re- gres- sion	Mean	Range
97	Calcium (Ca)	166	56	46-321	Ca = -23.82 + 0.121 Ec	0.93	21	97	1,560	439-2,685
96	Magnesium (Mg)	57	24	13-137	Mg = -20.34 + 0.049 Ec	.90	10	96	1,570	439-2,685
96	Sodium (Na)	116	37	21-217	Na = -7.14 + 0.078 Ec	.90	16	96	1,570	439-2,685
94	Potassium (K)	6.0	2.0	2.6-14.4	K = 4.33 + 0.001 Ec	.24	1.9	94	1,550	439-2,685
97	Bicarbonate (HCO ₃)	371	95	62-600	$HCO_3 = 98.88 + 0.174 Ec$.79	59	97	1,560	439-2,685
96	Sulfate (SO ₄)	453	211	104-1,027	$SO_4 = -243.9 + 0.445 Ec$.91	88	96	1,570	439-2,685
97	Chloride (C1)	77	27	5-170	C1 = -8.17 + 0.055 Ec	.85	14	97	1,560	439-2,685
93	Nitrate (NO ₃)	26	16	0-96	$NO_3 = -34.15 + (-0.005) E$	c13	16	90	1,550	439-2,685
	Dissolved solids									
77	Residue at 180°C	1,148	427	310-2,165	DS = -249.5 + 0.908 Ec	.98	93	77	1,540	439-2,685
36	Calculated (sum of determined constituents)	1,030	274	278-2,110	DS = -188.2 + (-0.803) E	c .95	87	36	1,520	439-2,425
	Hardness as CaCO ₃									
85	(Ca, Mg)	650	222	169-1,424	H = -186.4 + 0.533 Ec	.92	87	85	1,570	439-2,577

TABLE 5.--Summary of dissolved major inorganic chemical-constituent data for the Santa Clara River at Los Angeles-Ventura County line (11108500), April 1951 through June 1976 (Source of data: California Department of Water Resources and U.S. Geological Survey)

[Specific-conductance summary: 334 samples; mean = 2,640 µmho/cm (micromhos per centimeter); standard deviation = 1,200 µmho/cm; range = 668-7,620 µmho/cm]

No.	Dissolved	chemical co	onstituents	8168	Regression summary				Specific conductance [Ec] (µmho/cm at 25°C)	
of sam-	Sud-ate (50.)	Concentration (mg/L)			.301 × .301 a × 0 418 14 .	Corre- lation	Standard	ples	1,520	423-2,685 8100-8,005
ples	Constituent	Mean	Standard devia- tion	Range	Regression equation	coeffi- cient	of estimate (mg/L)	re- gres- sion	Mean	Range
197	Calcium (Ca)	205	66	53-419	Ca = 77.04 + 0.050 Ec	0.91	28	197	2,560	677-6,680
197	Magnesium (Mg)	108	65	21-352	Mg = -25.01 + 0.052 Ec	.97	15	197	2,560	677-6,680
242	Sodium (Na)	315	210	38-1,081	Na = -123.0 + 0.157 Ec	.98	40	242	2,780	677-7,620
156	Potassium (K)	7.2	2.5	0-18	K = 6.103 + 0.0005 Ec	.28	2.1	152	2,550	740-6,680
319	Bicarbonate (HCO ₃)	348	68	109-534	$HCO_3 = 258.3 + 0.033 Ec$.59	55	319	2,687	668-7,620
215	Sulfate (SO ₄)	1,010	633	128-3,368	$SO_4 = -297.8 + 0.525 Ec$.99	90	214	2,480	740-6,680
334	Chloride (C1)	145	96	17-585	C1 = -59.40 + 0.078 Ec	.97	23	334	2,640	668-7,620
174	Nitrate (NO ₃)	5.9	8.3	0-67	$NO_3 = 8.159 + 0.0005$ Ec	07	8.6	146	2,400	677-6,680
	Dissolved solids									
188	Residue at 180°C	2,050	1,150	387-5,986	DS = -240.9 + 0.915 Ec	.99	190	187	2,510	677-6,680
148	Calculated (sum of determined	2,005	1,100	491-5,982	DS = -270.2 + 0.876 Ec	.99	190	148	2,600	740-6,680
	constituents)									
	Hardness as CaCO ₃									
211	(Ca, Mg)	921	421	42-2,412	H = 75.96 + 0.341 Ec	.97	100	210	2,490	677-6,680

The water type of the Santa Clara River in the upper basin varies. Moving downstream, the water is affected by urban-area wastes, irrigated-agriculture runoff, and rising ground-water levels introducing water with high concentrations of dissolved solids. Above the area of urban influence, the water type of the Santa Clara River near Lang (11107745) is calcium bicarbonate. At Bouquet Junction (B in fig. 1) (located below a sewage outfall), the water type becomes sodium bicarbonate. Below the major agricultural region near Saugus, at the Santa Clara River near Saugus gaging station (11108000), the water type is calcium sulfate. At the Santa Clara River at the Los Angeles-Ventura County line gaging station (11108500), the water type is sodium sulfate. At this farthest downstream site the surface flow is strongly influenced by rising ground-water levels between the site and the confluence with Castaic Creek and by irrigated-agriculture runoff.

The mean concentration of dissolved solids (residue at 180°C) ranges from 465 mg/L (milligrams per liter) near Lang to 2,050 mg/L at the Los Angeles-Ventura County line. The concentrations exhibit a downstream increase.

The results of regression analyses of the relation between concentrations of individual constituents and specific conductance are also given in tables 2-5. Correlation coefficients indicate significance at the 1-percent probability level for only some of the element relations tested by regression for samples collected at the two upstream sites, near Lang and at Bouquet Junction. The lack of definition was perhaps due to the limited number of samples.

Correlation coefficients indicate significance at the 1-percent probability level for all relations at the two downstream sites, except coefficients for potassium and nitrate at the site near Saugus and for nitrate at the Los Angeles-Ventura County line site.

Specific Conductance-Water Discharge Relations

Table 6 summarizes the results of regression analyses using specific conductance and water discharge. The regression results for the sites near Lang and at Bouquet Junction are based on data collected by the Survey. Results for the sites near Saugus and at the Los Angeles-Ventura County line are based on data collected by the Survey and on historical data collected by DWR and LACFCD.

Coefficients of correlation exhibit the same degree of definition at each site as they did for the major inorganic chemical constituents, not having significance at the 1- or 5-percent probability level for the upstream sites near Lang and at Bouquet Junction. Coefficients of correlation at the downstream sites near Saugus and at the Los Angeles-Ventura County line were again both significant at the 1-percent probability level.

TABLE 6.--Results of regression analyses of the relation between specific conductance and water discharge for selected sites

(200) WRi no. 77-99

Disc	harge [Q]	No.	Specific	conductance		Regress	Regression summary Corre-		
	(ft ³ /s)	of sam-		Specific conductance [Ec] (umho/cm at 25°C)		Regression equation		Standard error of estimate	
Mean	Range	ples	Mean	Range	,		coeffi- cient	(log units)	
		1110774		ara River above sust 1974 throug		ad Station near	Lang,		
1.9	0.01-8.5	13	745	680-820	Ec =	724/Q ^{0.0912}	-0.33	0.84	
		342		l Santa Clara ugust 1974 thro		Bouquet Junction 1976	on,		
6.4	3.0-12.0	22	1,340	1,110-1,500	Ec = 6	5,310/Q ^{0.8726}	21	.17	
				0 Santa Clara May 1951 throug					
39	0.03-2,000	70	1,570	439-2,685	Ec = 1	,820/Q ^{0.2470}	70	.59	
		1110850		ara River at Lo pril 1951 thro		es-Ventura County 1976	line,	,	
66	0.4-1,907	201	2,110	668-5,155	Ec = 3	$3,311/Q^{0.2262}$	88	.38	

NOTE: The regression summaries for the sites near Lang and at Bouquet Junction probably are not meaningful because of the limited discharge range sampled.

THE ADMINISTRAL SEVER ASASO AND RESULTS NOT ADDITION YER ADMINISTRAL TO 17

Differences in the intercepts and slopes of the regression lines were greatest for the sites near Lang and at Bouquet Junction. This is inferred to be the result of a limited number of samples at these sites and the limited range in discharge represented by those samples.

Regression results for the sites near Saugus and at the Los Angeles-Ventura County line, based on a larger set of samples, show much more similarity of the intercepts and slopes of the regression lines, with the slopes differing less than 10 percent.

Nitrogen, Phosphorus, and Total Organic Carbon

Table 7 summarizes nitrogen, phosphorus, and total organic carbon data collected at the selected sites in the upper Santa Clara River basin from August 1974 through June 1976.

Mean concentrations of total ammonia nitrogen and total organic nitrogen exhibited an overall downstream increase in the Santa Clara River from the station at Ravenna to the station near Saugus. The highest mean concentrations were found below the sewage outfall at Bouquet Junction (B in fig. 1), as the water quality at this site is influenced by the sewage effluent, particularly during periods of low flow. The mean concentrations of total ammonia nitrogen and total organic nitrogen were 0.04 and 0.27 mg/L at Ravenna, increasing to 1.2 and 1.6 mg/L near Saugus. Median concentrations also indicated the same general downstream increase.

Mean concentrations of ammonia nitrogen and organic nitrogen decreased from near Saugus downstream to the Los Angeles-Ventura County line. This decrease was probably because of dilution by the imported water released from Castaic Reservoir into Castaic Creek. The imported water enters the Santa Clara River between Saugus and the Los Angeles-Ventura County line. Mean concentrations of ammonia nitrogen and organic nitrogen were 0.19 and 1.0 mg/L at the Los Angeles-Ventura County line.

Mean concentrations of nitrite and nitrate nitrogen in the Santa Clara River ranged from 0.13 mg/L near Lang to 4.4 mg/L near Saugus.

Mean concentrations of total phosphorus and total organic carbon exhibited the same downstream increase and decrease patterns as did those for ammonia nitrogen and organic nitrogen, with the maximum concentrations again found at Bouquet Junction. Mean concentrations of total phosphorus and total organic carbon were 0.06 and 1.8 mg/L at Ravenna, increasing to 9.4 and 17 mg/L at Bouquet Junction, and then decreasing to 2.6 and 9.6 mg/L near Saugus. Mean concentrations then decreased further to 1.1 and 7.3 mg/L at the Los Angeles-Ventura County line. Median concentrations exhibited the same general pattern as did the mean concentrations.

TABLE 7.--Summary of nitrogen, phosphorus, and total organic carbon data for selected sites, August 1974 through June 1976

range in discharge represented by those samples.

	he pare some		Concen		
Constituent	No. of	70 788 49		ms per liter	3-876300
19117 A.1 TH COSHE 1-1	samples	Mean	Standard deviation	Range	Median
34261	3118131601	Santa Cl	ara River at l	Payonna	
34201	3110131001	Santa Ci	ara Kiver at i	Kaveilla	
Nitrite and nitrate, total as N	9	1.56	1.17	0.00-2.6	2.3
Nitrogen, ammonia, total as N					.04
Nitrogen, total organic as N	9	.27	.13	0.07-0.43	.32
Phosphorus, total as P					
Carbon, total organic					
and see ranapacos name	nta Clara F	River abov	e Railroad St	ation near Lan	g
Nitrite and nitrate, total as N					
Nitrogen, ammonia, total as N	13	.48	1.54	0-5.6	.05
Nitrogen, total organic as N					
Phosphorus, total as P				0.01-9.3	
Carbon, total organic				0.8-12	
	122101 Sant	ta Clara R	liver at Bouque		
Nitrite and nitrate, total as N	22	2.7	3.1	0-10	1.4
Nitrogen, ammonia, total as N	21	6.4	4.9	0.08-16	6.0
Nitrogen, total organic as N	21	3.1	3.5	0.24-11.3	1.5
Phosphorus, total	22	9.4	4.1		9.8
Carbon, total organic	22	17	13	2.0-49	13

ASSISTANT AND RESULTS WOLFADERSOME WILLIAMO

TABLE 7.--Summary of nitrogen, phosphorus, and total organic carbon data for selected sites, August 1974 through 1976--Continued

ation,	Lineonol		Concent		
Constituent	No. of	in milligrams per		s per liter	Section 1
Range Median	samples	Mean	Standard deviation	Range	Mediar
	11107860 Bo	uquet Cre	ek near Saugu	SALIDADIAE	
Nitrite and nitrate, total as N	\$1 000	0	8414	and niewate.	derite total
Nitrogen, ammonia, total as N	1 70	.09		Osafronska Osio W as	
Nitrogen, total organic as N	21	1.1	eM	4100 - M an s	
Phosphorus, total	170.	.92	:13	068##01 ku	
Carbon, total	1	18	1is	0-1 is/07	
F-135 South	Fork Santa C	lara Rive	r (at Saugus-	Ventura Road)	
Nitrite and nitrate, total as N	2	0	0	726 0 sla bas	
Nitrogen, ammonia, total as N	2		55	0.12-0.37	nego za li Lugar
Nitrogen, total organic as N	2		35	0.24-2.9	negydeis tê Lesgao
Phosphorus, total as P	2		22	1.2-1.3	Todgewill 11 se
Carbon, total organic	2 - 2	2.3	22	26-210	lesgio
11	1108000 Sant	a Clara R	iver near Sau	gus	
Nitrite and nitrate, total as N	15	4.4	2.8	0-7.5	5.9
Nitrogen, ammonia, total as N	15	1.2	2.4	0.02-8.9	.1
Nitrogen, total organic as N	15	1.6	2.0	0.25-8.1	.95
Phosphorus, total as P	15	2.6	3.0	0.31-9.4	.77
Carbon, total	15	9.6	5.5	1.8-22	9.6

TABLE 7.--Summary of nitrogen, phosphorus, and total organic carbon data for selected sites, August 1974 through 1976--Continued

Constituent 799 8	No. of			tration, ms per liter	
Constituent	samples	Mean	Standard deviation	Range	Median
3430401183	61801 Casta	aic Creek	below Castaio	c Reservoir	
Nitrite and nitrate, total as N	11	0.05	0.09	0-0.27	0
Nitrogen, ammonia, total as N	11	.09	.07	0-0.24	.08
Nitrogen, total organic as N	11	.43	.19	0.18-78	.34
Phosphorus, total as P	11	.04	.07	0.01-0.25	
Carbon, total organic	11	5.6	1.3	4.00-8.4	5.5
11108500 San	ita Clara Riv	ver at Los	Angeles-Ven	tura County li	ne
Nitrite and nitrate, total as N	22	2.3	2.2	0-8.0	2.6
Nitrogen, ammonia, total as N	22	.19	.19	0.02-1.3	
Nitrogen, total organic as N	22	1.0	1.5	0-7.1	.59
Phosphorus, total as P	22	1.1	1.1	0.23-5.9	.87
Carbon, total organic	22	7.3	5.5	1.9-23	5.8

Selected Trace Elements

Table 8 summarizes trace-element data collected at selected sites in the upper Santa Clara River basin. The period of record for the total-trace-element samples was August 1974-June 1976.

For some trace elements the mean and the standard deviation are not given because some concentrations were below the analytical detection limit.

TABLE 8 .-- Summary of trace-element data for selected sites, August 1974 through June 1976

ration	Concent			ration,	
Constituent	No. of		in microgram	s per liter	
Rappe	samples	Mean	Standard deviation	Range	Median
					. 435
34261	3118131601	Santa Clara	a River at R	avenna	
Total arsenic (As)	8	0.6	0.74	0-2 one	0.
Total boron (B)	0			(8) ao	rad hero
Total cadmium (Cd)	9	<10		0-10	<10
Total chromium (Cr)	9	(¹)		0-10	0
Total iron (Fe)	9	79	80	0-260	50
Total lead (Pb)	9	<100		<100	<100
Total manganese (Mn)	9	9	11	0-30	
Total mercury (Hg)	9	(1)	4	0-0.1	
Total selenium (Se)	9	.2	.4	(0-1 mg/mg	
11107745 San	ta Clara Riv	ver above Ra	ailroad Stat	ion near Lang	3
Total arsenic (As)	13	1	1.3	0-4	era (a 1 o
Total boron (B)	8	300	52		8
Total cadmium (Cd)	13	(1)		<10-20	13
Total chromium (Cr)	13	(1)		0-10	0
Total iron (Fe)	13	235	296	30-1,000	120
Cotal lead (Pb)	13	(1)	<u></u> -	<100-100	<100
Total manganese (Mn)	13	(1)		0-40	<10
Total mercury (Hg)	13	(1)	-1-	0-3.4	O al her
Cotal selenium (Se)	13	1	.3	0-1	1 0
3425261181	22101 Santa	a Clara Rive	er at Bouque	t Junction	
Total arsenic (As)	22	3.2	1.9	1-8	3
Total boron (B)	17	1,800	600	930-3,500	1,700
Total cadmium (Cd)		(1)		0-20	<10
Total chromium (Cr)	22	(1)		0-40	<10
otal iron (Fe)		500	1,200	30-4,700	100
otal lead (Pb)	22	(1)		0-100	<100
otal manganese (Mn)	22	20	30	0-100	20
otal mercury (Hg)	22	.2	.2	0-0.6	
otal mercury ingl	44	. 4-	. 4		A STATE OF THE REAL PROPERTY.

¹See footnote at end of table.

TABLE 8. -- Summary of trace-element data for selected sites, August 1974 through June 1976 -- Continued

1,001.4	Concents			tration,	
Constituent	No. of	ir in		ns per liter	
naibaM . pgnafi	samples	Mean	Standard deviation	Range	Median
	11107860	Bouquet Cree	ek near Saug	ıs	
Potal amounia (As)	83.01			Senio VIV-0-0	
Total arsenic (As) Total boron (B)	0	14		- (A) then	
Total cadmium (Cd)		30	1 10	0 - QU'Di mu Flais	
	1	70	12	(41) muchmon	
Total chromium (Cr)	1		197-2		
Total iron (Fe)	101	58,000		0.18-24 (eR) no	
Total lead (Pb)	1	200		(d9) bus	
Total manganese (Mn)		1,000	07 J. 44	v. vya vy are onogn	
Total mercury (Hg)	1	0		HAN AIRDI	
Total selenium (Se)	1	1	143 m = 12	4 .00(<u>22</u>)) muinel	98 - L -10
F-135 South	Fork Santa	Clara Rive	r (at Saugus	-Ventura Road)	
Total arsenic (As)	2	1		6-16	rs <u>te</u> rc
Total boron (B)	0	203.00%	Z - 2	0-4-0(8) mon	00
Total cadmium (Cd)	2	(<10-20	no Late
Total chromium (Cr)	2	- 140 4	13 44	0-80	io Luio
Total iron (Fe)	2	245		23,000-62,000	ri Pers
Total lead (Pb)	2	41.0 (4)-	1.5	<100-100	a L≓ ⊈k do
Total manganese (Mn)	2	(4)	-1-	380-840	na Laro
Total mercury (Hg)	2	3.1(4)	1.1	0-0.1	on Table
Total selenium (Se)	2			5-6	aa Lefo
rgspic noisosul l	1108000 Sa	nta Clara R	iver near Sa	ugus	
		nta Clara R: 5	iver near Sa	ugus 1-16	3
otal arsenic (As)					
otal arsenic (As)	15	5 5	5	1-16	13
otal arsenic (As) otal boron (B) otal cadmium (Cd)	15 13	5 1,100	5 380	1-16 610-1,700	13 <10
Total arsenic (As) Total boron (B) Total cadmium (Cd) Total chromium (Cr)	15 13 15	5 1,100 (¹)	5 380 	1-16 610-1,700 0-10	13 <10 0
Total arsenic (As) Total boron (B) Total cadmium (Cd) Total chromium (Cr) Total iron (Fe)	15 13 15 15	5 1,100 (¹) 10 9,400	5 380 20	1-16 610-1,700 0-10 0-80	13 <10 0 1,400
Total arsenic (As) Total boron (B) Total cadmium (Cd) Total chromium (Cr) Total iron (Fe) Total lead (Pb)	15 13 15 15 15 15	5 1,100 (¹) 10 9,400 (¹)	5 380 20 19,000	1-16 610-1,700 0-10 0-80 300-72,000 0-100	13 <10 0 1,400 <100
Cotal arsenic (As) Cotal boron (B) Cotal cadmium (Cd) Cotal chromium (Cr) Cotal iron (Fe) Cotal lead (Pb) Cotal manganese (Mn) Cotal mercury (Hg)	15 13 15 15	5 1,100 (¹) 10 9,400	5 380 20	1-16 610-1,700 0-10 0-80 300-72,000 0-100	13 <10 0 1,400 <100 150

¹See footnote at end of table.

RESULTS 23

TABLE 8.--Summary of trace-element data for selected sites,

August 1974 through June 1976--Continued

ed for selected	No.	of	ngmee gala e	in m	Concent	ration, s per liter	A MG Sice-edge
Constituent	samp	les	Mean	St	andard viation	Range	Mediar
						TABLE 9 Sel	
343040118	363801	Castaic	Creek	below	Castaic	Reservoir	
Total arsenic (As)	11		2.5	5	2.9	0-10	1
Total boron (B)	0						
Total cadmium (Cd)	11		(1)		Level	<10-10	<10
Total chromium (Cr)	11		(1)		HATE OF	0-10	0
Total iron (Fe)	11		190		150	60-420	100
Total lead (Pb)	11		(1)			<100-100	<100
Total manganese (Mn)	11		10		12	0-30	10
Total mercury (Hg)	10		. (06	.13	0-0.4	0
Total selenium (Se)	11		0		0	0	0
11100500 San	to Clam	o Divon	at Lac	Angol	oc-Vontu	ra County line	
11108300 Sali	ta Clai	a Kiver	at Los	Aliger	es-venta.	ra county fine	
Total arsenic (As)	22		3		2	1-10	3
Total boron (B)	17		730		220	570-1,500	660
Total cadmium (Cd)	22		(1)			0-20	<10
Total chromium (Cr)	22		(1)		3/11/0888	0-70	<10
Total iron (Fe)	22		4,200	5	,500	240-25,000	1,600
Cotal lead (Pb)	22		(1)		12	0-100	<100
Total manganese (Mn)	22		160		93	70-470	140
Total mercury (Hg)	22			1	<.1	0-0.7	0
Total selenium (Se)	21		3		BILL B	0-5	3

¹Some concentrations below analytical detection.

Total-trace-element concentrations varied among the sites but generally increased downstream. The range in concentration for total arsenic, chromium, iron, and manganese was greater at the Los Angeles-Ventura County line and near Saugus than at the upstream sites at Ravenna and near Lang. For example, at Ravenna the concentration ranges were: Total arsenic, 0-2 μ g/L (micrograms per liter); total chromium, 0-10 μ g/L; total iron, 0-260 μ g/L; and total manganese, 0-30 μ g/L. Near Saugus the ranges were: Total arsenic, 1-16 μ g/L; total chromium, 0-80 μ g/L; total iron, 300-72,000 μ g/L; and total manganese, 100-750 μ g/L.

T

T

T T

T

To

Te

Most samples were collected at relatively low flow conditions, and the results show a wide variance in concentrations. A wider range in discharge should be sampled in order to develop a more definite concentration-discharge relation.

In August 1974, bottom-material samples were collected for selected trace-element analysis at four of the sites. Table 9 gives the results of those analyses.

TABLE 9. -- Selected trace elements in bottom-material samples [Concentration, in micrograms per gram]

Date	Total arsenic	Total cadmium	Total cyanide	Total lead	Total mercury	Total selenium
	11107745 S	anta Clara Riv	ver above Ra	ilroad Sta	tion near La	ing was las
8-26-74	1	<1	0	10	0.00	0.0
	34252611	8122101 Santa	a Clara Rive	r at Bouqu	et Junction	
8-27-74	2	<1	0	<10	.00	0.00
	34204011	8363801 Casta	aic Creek be	elow Castai	c Reservoir	
8-27-74	000, 21-042, 50,10 07,007	<1	0(1)	<10	.01	tal menge
	11108500 Sa	nta Clara Rive	er at Los An	geles-Vent	ura County 1	ine
8-27-74	2	<1	0	<10	.01	.0

Detergents (MBAS) The range in concentration for total arsenic greater at the Los Angeles-Ventura County 1

Samples were collected for detergent (MBAS) analysis from August 1974 through June 1976 at all sites. Table 10 summarizes results. Median concentrations were zero at all sites except at Bouquet Junction and near Saugus where the concentrations were 0.2 and 0.1 mg/L, respectively. The greatest variation in MBAS was found near Saugus, with concentrations ranging from 0 to 2.0 mg/L.

THE ANALY ANALY ANALY ARESULTS AND TABLESHAM THE ACCUMENTATION 2

TABLE 10.--Summary of detergent (MBAS) concentration data for selected sites,

August 1974 through June 1976

Sampling site	No. of	SLAMARY		centration, igrams per lit	er
Sampling site	sam- ples	Mean	Standard deviation	Range	Median
342613118131601 Santa Clara River at Ravenna			0.05		
11107745 Santa Clara River near Lang			.05	0-0.16	0
342526118322101 Santa Clara River at Bouquet Junction	20	.2 bns	algur .2 mag Ba	0.01-0.7	
11107860	the rest	of cence of	continue analysis continue anguar on the aigual	e indicate the sets. Based	discharg the duta
F-135 South Fork Santa Clara River (at Saugus- Ventura Road)	smit 2 mgs those fo	.025	ran hemos fed seut franco fed uchare plus da	0-0.05	relevano mejor in
11108000 Santa Clara River near Saugus	13	.3	igns: .3	0-2.0	lidalyev ilalyeve
343040118363801 Castaic Creek below Castaic Reservoir	9	.08	.03	0-0.5	0
11108500 Santa Clara River at Los Angeles-Ventura County line	19	.03	.17	0-0.6	0

Selected Pesticide Compounds

Water samples were collected for pesticide determination at all sites except Ravenna from August 1974 through June 1976 during low-flow and high-flow periods. The analyses included determinations for several of the compounds, commonly used in the area, from the chlorinated hydrocarbon, chlorophenoxy acids, and organic phosphorus pesticide groups.

Samples of bottom material were collected for pesticide analysis in August 1974 at four of the sites. Table 11 gives the results of pesticide analyses for whole-water and bottom-material samples.

SUMMARY

Results of the special sampling reconnaissance for nitrogen, phosphorus, total organic carbon, trace elements, detergents, and pesticide compounds indicate a wide variability among sites and among individual samples at each site. Because of the high concentrations of some elements, continued analysis for selected constituents is warranted.

The results of regression analysis indicate high correlations between specific conductance and all major chemical constituents, except nitrate and potassium, at the sites near Saugus and at the Los Angeles-Ventura County line, which had the largest data sets. Correlations were not as high for the sites near Lang and at Bouquet Junction, perhaps owing to the small data sets used. Results of regression analysis relating specific conductance to water discharge indicate the same degrees of definition, varying with the size of the data sets. Based on the significance of the results obtained at the downstream sites and with more data covering a wider range in discharge, good correlations might be developed at all sites to estimate concentrations of major inorganic chemical constituents, except those for potassium and nitrate.

If a more thorough understanding of the factors controlling concentration variability in the upper Santa Clara River basin is to be developed, a more specialized and comprehensive sampling program will be required.

TABLE 11.--Selected pesticide compounds in bottom-material and whole-water samples, August 1974 through June 1976

[NOTE:	No	entry	means	compound	not	detected	in	analysis]	
--------	----	-------	-------	----------	-----	----------	----	-----------	--

		ne				E	E	1944	uo	
0	rin	orda				zino	ldri	dane	athi	
Date	Ald	Chlo	OOO	DDE	DDT	Diaz	Die	Lin	Ma.1	PCB

11107745 Santa Clara River above Railroad Station near Lang

No compounds detected in one bottom-material sample, August 26, 1974, and five whole-water samples, August 26, 1974, December 19, 1974, January 16, February 10, March 7, 1975.

8-27-74 2 2.9 3.2 0.1 Whole Water (micrograms per liter) 8-27-74 0.08 12- 9-74 0.01 0.01 1-16-75 0.01 0.01 2-10-75 0.01 0.02 3-07-75 0.02 0.04 3-23-76 0.01 0.01 11107860 Bouquet Creek near Saugus Whole Water (micrograms per liter)	0.01	(micrograms per liter) 0.08 0.01 0.01 13 0.01 0.02 0.02	Whole Water (mi <0.01 <0.01 <.01	8-27-74 12- 9-74 1-16-75
8-27-74 12-9-74 1-16-75 2-10-75 2-10-75 3-27-75 9-16-75 3-23-76 6-22-76 11107860 Bouquet Creek near Saugus	.02	0.08 .01 0.01 2.01 2.01 .02 .03	<0.01 <0.01 <.01	12- 9-74 1-16-75
12- 9-74 1-16-75 2-10-75 3-07-75 9-16-75 3-23-76 6-22-76 11107860 Bouquet Creek near Saugus	.02	.01 0.01 0.01 .13 6.01 .02 .02 .04	<0.01 <0.01 <.01	12- 9-74 1-16-75
1-16-75	.02	0.01 .13 .02 .03 .03 .02	<0.01 <0.01 <.01	1-16-75
2-10-75		.01 .02 .03 .03	<0.01 < .01	
2-10-75 <0.01		.01 .02 .03 .03	<0.01 < .01	
3-07-75 9-16-75 3-23-76 6-22-76 .02 .04 .01 .01 .03 .03	.03	.02 .04		2-10-75 <0.
9-16-75 3-23-76 6-22-76 .02 .04 0.01 .01 11107860 Bouquet Creek near Saugus	5 00380113 57-01 57-01 57-01 57-01	.02 .04		7 07 75
3-23-76 6-22-76 0.01 .01 11107860 Bouquet Creek near Saugus	5 00380113 57-73 57-83 57-83 57-93	0.01 01	.02	9-16-75
11107860 Bouquet Creek near Saugus	5 00880111	0.01 .01		3-23-76
Allosome Sares faura River at Los ingeles-Ventura County Jime	F 00884111			6-22-76
Whole Water (micrograms per liter)		ouquet Creek near Saugus	11107860 Bouqu	
[전문] [[[[[[[] - [[] - [[] - [[] - [[] - [] - [[] - [] - [] - [] - [[] - [] - [] - [] - [] - [[] - [] - [] - [] - [] - [] - [[] - [] - [] - [] - [[] - [] - [] - [] - [] - [] - [] - [[] - [] - [] - [] - [[] - [] - [] - [] - [] - [[] - [] - [] - [] - [] - [[] - [] - [] - [] - [] - [] - [] - [[] - [] - [] - [] - [] - [] - [] - [] - [] - [] - [[] - [] -		(micrograms per liter)	Whole Water (mi	
2-10-75 <0.1 0.01 0.01 0.01 0.02 0.05	1 0.02 0.05	0.01 0.01 0.01 0.02	<0.1	2-10-75
F-135 South Fork Santa Clara River (at Saugus-Ventura Road)	ura Road)	Clara River (at Saugus-Ventura Road)	F-135 South Fork Santa Clar	F
Whole Water (micrograms per liter)	9-74	(micrograms per liter)	Whole Water (mi	

TABLE 11. -- Selected pesticide compounds in bottom-material and whole-water samples, August 1974 through June 1976 -- Continued

		Je				_	_		ű.	
	5	Chlordane				Diazinon	Dieldrin	ne	Malathion	
Date	Aldrin	101	0	ш	Н	azi	e1d	Lindane	at	~
Da	A1	-C	aaa	DDE	DDT	Dia	Die	Lir	Ma	PCB
de grand	ea. Let	111	108000	Santa Cla	ıra River	near Sa	ugus	ride to	apptine	5 1
Be about	o o year r		Whole War	ter (micr	rograms p	er liter	aentäs 2	AS COURT IN	ued Ri	
9-25-74			0.03	0.30	0.40					
2-19-74			0.03	0.30	0.40					
1-16-75			And Apply							
2-10-75	BIC PRINCE H	0.1	4 N N N N N N N N N N N N N N N N N N N							
3- 7-75		Lines		.01	.01	0.01				
9-16-75				.38	.33	tions.				
6-22-76			.03	.19	.66	.05				
A STATE OF THE STA	34304	1011836	53801 C	astaic Cr	reek belo	w Castai	c Reserv	oir	al riv	
	ces und a magne bu	Bott	tom Mate	rial (mic	rograms	per kilo	gram)			
8-27-74	ice a complex magnet but sid chamber	Bott	tom Mate	rial (mic	crograms	per kilo	gram)			
8-27-74	THE STATE OF THE S		180.0			hose f				
	icen appla eigent bu eigent bu eigente eigente eigente eigente eigente		180.0	rial (mic	rograms p	er liter) catro			
8-27-74	icen apple rie Chamba re gaernagi re gaernagi ar shiku yap rafi akkaya		180.0		rograms p	er liter)entro			
8-27-74 12-19-74	icen and a signe bu- sie chemic re successi re sissuap mai a bb yra		180.0		rograms p	er liter)entro			
8-27-74 2-19-74 1-16-75	nen and a migrat bu vie chemic re thereign et this hope min compare		180.0		rograms p	er liter)entro			
8-27-74 12-19-74	the application of the control of th		180.0	ter (micr	rograms p	er liter)entro		0.03	
8-27-74 2-19-74 1-16-75 2-10-75	11108500	e end	Whole Was	ter (micr	rograms p	er liter	or pos postro poste de postro post	Y60.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8-27-74 12-19-74 1-16-75 2-10-75	11108500	Santa	Whole War	ter (micr	rograms p	er liter) ura Cour	Y60.		1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
8-27-74 2-19-74 1-16-75 2-10-75	11108500	Santa	Whole War	ter (micr	rograms p	er liter) ura Cour	Y60.		4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
8-27-74 2-19-74 1-16-75 2-10-75 3-07-75	11108500	Santa	Whole War	ter (micr River at	Los Ange	er liter les-Vent per kilo	ura Cour gram)	Y60.		
8-27-74 2-19-74 1-16-75 2-10-75 3-07-75 8-27-74	11108500	Santa	Whole War	ter (micr River at rial (mic 2.4	Los Ange	er liter les-Vent per kilo	ura Cour gram)	nty Line		2.000 (100 mm) (100 m
8-27-74 2-19-74 1-16-75 2-10-75 3-07-75 8-27-74	11108500	Santa	a Clara tom Mate	River at rial (mic 2.4 ter (micr 0.09	Los Angeerograms 3.7 rograms p 0.11	les-Vent per kilo er liter	ura Courgram)	nty Line		25.00 (A)
8-27-74 2-19-74 1-16-75 2-10-75 3-07-75 8-27-74 8-27-74 2-19-74 1-17-75	,0 -0.0 (bath)	Santa	a Clara tom Mate	River at rial (mic 2.4 ter (micr 0.09	Los Ange	er liter les-Vent per kilo er liter 0.04	ura Courgram)	nty Line		25.00 E
8-27-74 2-19-74 1-16-75 2-10-75 3-07-75 8-27-74 8-27-74 2-19-74 1-17-75 2-10-75	,0 -0.0 (bath)	Santa	a Clara tom Mate	River at rial (mic 2.4 ter (micr 0.09	Los Ange	er liter er liter per kilo er liter 0.04 .01	ura Courgram)	nty Line		4-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-
8-27-74 12-19-74 1-16-75 2-10-75 3-07-75 8-27-74 8-27-74 12-19-74 1-17-75	,0 -0.0 (bath)	Santa	a Clara tom Mate	River at rial (mic 2.4 ter (micr 0.09	Los Ange	er liter les-Vent per kilo er liter 0.04	ura Courgram)	nty Line	0.03	4 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1

SELECTED REFERENCES

American Public Health Association, 1971, Standard methods for examination of water and wastewater [13th ed.]: Washington, D.C., Am. Public Health Assoc., 874 p.

Brown, Eugene, Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geol. Survey Techniques Water-Resources Inv., book 5, chap. Al, 160 p.

California Department of Water Resources, 1968, Ground water basin protection projects; Santa Clara River valley water quality study: 128 p.

1974, Hydrologic data: 1973, Southern California: Bull. 130-73, v. 5,

1976, Hydrologic data: 1974, Southern California: Bull. 130-74, v. 5, 481 p.

California Regional Water Quality Control Board, Los Angeles Region, 1971, Interim water quality management plan, Santa Clara and Los Angeles River basins: Summary report, 111 p.

Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geol. Survey Techniques Water-Resources Inv., book 5, chap. A3, 40 p.

Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. C2, 59 p.

Los Angeles County Department of Regional Planning, July 1, 1975: Quarterly Bulletin, No. 129, 6 p.

Rainwater, F. H., and Thatcher, L. L., 1960, Methods for collection and analysis of water samples: U.S. Geol. Survey Water-Supply Paper 1454, 301 p.

NITROGEN, PHOSPHORUS, AND TOTAL ORGANIC CARBON DATA

	Instan-	Total nitrite	Total ammonia	Total organic	Total	Total
	taneous	and	nitro-	nitro-		organio
Date	dis-	nitrate	gen	gen	phorus	carbon
(3)	charge	(N)	(N)	(N)	(P)	(C)
	(ft^3/s)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	4					
	342	61311813160	1 Santa Cla	ra River a	t Ravenna	
1974			No.			74
Aug. 26	0.30	0.00	0.02	0.32	0.05	2.9
Dec. 19	1.0	.05	.05	.08	.04	2.9
1975						
Jan 16	.30	2.3	.05	.36	.07	1.5
Feb. 10	3.5	.00	.09	.07	.06	1.8
Mar. 7	4.0	2.4	.03	.32	.08	1.3
Dec. 10	.90	2.1	.00	.38	.06	1.3
976						01 79.1
Jan. 27	2.4	2.6	.04	.43	.09	1.4
eb. 26	1.5	2.3	.04	.25	.06	2.1
lar. 23	1.5	2.3	.03	.19	.05	1.4
pt. 7	11107745 Sa	nta Clara R	iver above H	Railroad S	tation near	Lang
1974						
ug. 26	.02	.05	.09	.32	.09	3.6
Sept. 25	.01	.00	5.6	1.9	9.3	12
ct. 16	.30	.00	.11	.13	.07	3.8
lov. 18	.50	.00	.05	.11	.11	3.0
ec. 19	1.0	.03	.09	.02	.11	1.5
	7 0	21 3 0 - 1	1.1	. 0	1.1	0.0 0.88
.975						
an. 16	.70	.26	.09	.53	.08	1.5
eb. 10	4.0	.00	.01	.16	.08	2.0
lar. 7	4.0	.09	.06	.20	.12	5.5
pr. 16	8.5	.00	.05	.04	.07	2.1
lay 22	3.0	.06	.00	.09	.01	.8
une 26	1.2	.18	.00	.16	.11	.8
.976						
eb. 26	1.0	.61	.04	.20	.14	3.0

NITROGEN, PHOSPHORUS, AND TOTAL ORGANIC CARBON DATA

		47			The state of the s		
		Total	Total	Tota	11		
	Instan					1 Tot	a1
	taneou		nitro	401 303 040 00 00 00 00 00 00 00 00 00 00 00 00	THE REPORT OF THE PARTY OF THE PARTY.		
Date	dis-	nitrat		ger	The state of the s		bon
baco	charge		(N)	(N)		(C	
	(ft ³ /s		(mg/L)				
(4/34/3)	(10 /3	(mg/2)	(118/12)	(III) (III)	1) (1/8m)(mg/L	/ (mg/	ц)
	34252	6118322101	Santa Clara	River at	Bouquet Junc	tion	
1974							
Aug. 27	3.0	0.02	CF 0	' ea . 	17	16	
Sept. 25		.28	0.13	0.24			2000
Oct. 16	3.0	.00	1.1	.9	9.8	13	
Nov. 18	3.5	.00	11	1.0	4.2	15	
Dec. 19	6.5	.03	11	1.0	3.7	8.6	l nsi
. 2 4		2.0		09	no -	7 7 7	
1975							
Jan. 16		.00	6.0	00 .7	9.7	9.7	, 189
Feb. 10	4.0	.00	.43	1.4	12	9.8	
Mar. 7	10	5.8	6.4	.3	12	9.3	
Apr. 16	9.0	.00	6.0	.3	12	9.0	
May 22	9.5	1.9	11	3.0	1.8	13	
June 26	7.2	9.4	3.4	3.0	13	13	, de 1
Aug. 28	3.0	1.2	12	1.0	9.3	13	
Sept. 16	8.0	1.4	4.5	2.0	8.9	2.0	
Oct. 20	7.0	5.2	4.8	.3	11	17	
Nov. 19	7.0	4.9	16		aver 11.	19	
Dec. 10	9.0	7.0	7.7	11	10	49	
Dec. 10	9.0	7.0	1.1	11	10	49	
1976	1						
Jan. 27	6.0	3.2	16	10	12	14	
Feb. 26	6.0	10	1.1	2.8		14	
Mar. 23	12	2.8	.08	10.9		47	
Apr. 21			2.5	6.3	9.6	47	, vor
May 28	5.0	1.4	6.5		15	12	
June 26	4.5		6.8	1.6	11		
Julie 20		1.6	0.8	4.2	11	12	
		111070	60 Pouguet C	mook moon	Course		
6.6			60 Bouquet C	reek near			
1075				40.		16 8.5	TU
1975 Feb. 10		00	00	00.	80.	0.6	
Feb. 10	.5	.00	.09	1.6	.92	18	

NITROGEN, PHOSPHORUS, AND TOTAL ORGANIC CARBON DATA

		Total	Total	Total		
	Instan-	nitrite	ammonia	organic	Total	Total
	taneous	and	nitro-	nitro-	phos-	organio
Date	dis-	nitrate	gen	gen	phorus	carbon
	charge	(N)	(N)	(N)	(P)	(C)
	(ft^3/s)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
A SA			Salaria Salaria Perezia			
	F-135 South	Fork Santa	Clara Rive	r (at Saugu	s-Ventura Ro	ad)
1974					1.0	26
Aug. 27	0.25	0.00	0.37	0.24	1.2	26
1975					0	22 . 39
Feb. 10	.50	.00	.12	2.9	1.3	210
		11108000 Sar	nta Clara Ri	ver near Sa	ugus	
1974		3.g 87.				31.6-4
Sept. 25	7.5	.00	.60	1.2	4.1	7.8
Dec. 19	3.0	.05	.04	.62	.47	4.6
1975						
Jan. 16	1.5	.00	.09	.64	.38	3.4
Feb. 10	8.0	.00	.06	.92	.62	9.6
Mar. 7	20	7.5	.25	.95	.77	10
Sept. 16		6.4	2.0	1.1	4.8	22
Oct. 20	6.0	6.0	3.0	1.6	6.9	10
Nov. 19		6.8	2.7	1.9	6.6	13
Dec. 11	5.0	3.9	.02 °	1.28	1.7	8.1
1976						
Jan. 27	7.0	4.7	8.9	8.1	9.4	12
Feb. 27	3.0	6.9	.1	.66	.59	13
Mar. 24		5.9	.03	.25	.46	6.0
Apr. 21	2.0	5.7	.03	.89	.34	4.4
May 28	1.5	5.9	.03	.25	.31	1.8
June 22	2.5	6.4	.05	3.0	1.4	18

NITROGEN, PHOSPHORUS, AND TOTAL ORGANIC CARBON DATA

Date	Instantaneous discharge (ft ³ /s)	Total nitrite and nitrate (N) (mg/L)	Total ammonia nitro- gen (N) (mg/L)	Total organic nitro- gen (N) (mg/L)	Total phos- phorus (P) (mg/L)	Total organic carbon (C) (mg/L)
	3430401	18361801 Cas	staic Creek	below Castai	ic Reservoir	-4
1974						
Aug. 27	10	0.00	0.24	0.218	0.25	7.0
Sept. 25	10	.00	.10	.69	.01	6.1
Oct. 16	10	.00	.09	.33	.02	5.9
Nov. 18	10	.00	.21	.33	.04	4.8
Dec. 19	10	.02	.06	.32	.01	4.5
1975						
Jan. 16	10	.27	.08	.78	.05	8.4
Feb. 10	10	.00	.06	.34	.02	5.1
Mar. 7	10	.11	.10	.28	.01	6.1
Apr. 16	10	.00	.03	.18	.01	4.0
May 22	25	.01	.02	. 59	.02	5.5
June 26	13	.14	.00	.38	.02	4.6
1 100	1108500 Sa	anta Clara F	River at Los	Angeles-Ven	itura County	line
1974	0.					
Aug. 17	12	.00	.46	.05	1.8	13
Sept. 25	12	.00	.12	1.08	1.5	9.8

.22

.06

.12

.58

.50

.52

1.0

.79

.80

6.0

3.8

3.8

See footnote at end of table.

.00

.00

.02

Oct. 16

Nov. 18

Dec. 19

18

16

30

NITROGEN, PHOSPHORUS, AND TOTAL ORGANIC CARBON DATA

	Instan-	Total nitrite and	Total ammonia nitro-	Total organic nitro-	Total phos-	Total organic
Date	dis-	nitrate	gen	gen	phorus	carbon
	charge	(N)	(N)	(N)	(P)	(C)
	(ft ³ /s)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)

11108500 Santa Clara River at Los Angeles-Ventura County line (Continued)

1055						
$\frac{1975}{\text{Jan.}}$ 17	15	3.7	0.72	0.58	0.86	3.9
						21
Feb. 10	50	.00	.06	2.14	1.6	
Mar. 7	120	2.7	.24	.59	.63	7.7
Apr. 16	25	.00	.08	.52	.81	3.7
May 22	21	2.5	.04	.96	.23	7.8
June 25	15	2.7	.03	.97	.88	8.7
Aug. 28	8.5	3.2	.03	.78	.90	4.8
Sept. 16	7.0	2.8	.06	.74	1.1	4.6
Oct. 20	10	2.9	.07	.84	1.2	5.7
Nov. 19	17	3.0	.04	1.96	.97	6.9
Dec. 11	17	6.8	1.3	7.1	5.9	23
1976						
Jan. 28	20	4.0	.41	1.59	1.7	5.9
Feb. 27	25	2.9	.02	.46	.75	8.5
Mar. 24	20	2.4	.04	.45	.60	4.4
Apr. 21	17	8.0	.02	.00	.45	3.0
May 28	9.6	1.3	.05	.19	.42	1.9
June 22	6.6	1.2	.04	.09	.30	2.2

¹Sampled in reservoir.

TRACE-ELEMENT DATA

Date	Instan- taneous dis- charge (ft ³ /s)	Total arsenic (As) (µg/L)	Total boron (B) (µg/L)	Total cadmium (Cd) (µg/L)	Total chromium (Cr) (µg/L)
(0.730)	34261311	8131601 Santa	Clara River a	t Ravenna	** (ms/1)
1974					
Aug. 26	0.30	J terenigradi disensi	gale but Jasu	<10	111 0 500 Sa
Dec. 19	1.0	2	<u>-</u>	<10	0
1075	n AR D H C				
1975	7.0	1	8059		
Jan. 16 Feb. 10	3.5	0			
	4.0	0	80 33		
Mar. 7 Dec. 10	.90	0	40 32	<10	0
Dec. 10	.90		÷0	10	ne 25 15
1976					
Jan. 27	2.4	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ao	<10	0
Feb. 26	1.5	0	re _ 34	<10	0 10
Mar. 23	1.5	30_1,30	6004	<10	10
25 35	0.3				11 419 .00
				112	
111	.07745 Santa C	lara River abo	ve Railroad S	Station near La	ang
1974					25 Z Z Z
Aug. 26	.02	0	n en	<10	0
Sept. 25	.01	4	24	.10	0
Oct. 16	.30	2		<10	0
Nov. 18	.50	1 2	- 95	<10	-0
Dec. 19	1.0	4		<10	0
1975					
Jan. 16	.70	1	330	20	0
Feb. 10	4.0	Ō	270	<10	ő
Mar. 7	4.0		220	10	10
Apr. 16	8.5	2	240	<10	0
May 22	3.0	î	300	10	ő
June 26	1.2	3	330	<10	0
1076					
1976	1 0		760	.10	_
Feb. 26	1.0	1	360	<10	0
Mar. 23	.80	0	350	<10	10

TRACE-ELEMENT DATA

	200	Total		Total	
Total	Total	manga-	Total	selen-	
iron	1 ead	nese	mercury	ium	
(Fe)	(Pb)	(Mn)	(Hg)	(Se)	
(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	
	342613118	3131601 Santa C1	ara River at Ra	venna	
-0	.100		0.0	0	
50	<100	0	0.0	0	
40	<100	0	<.1	2 20 1	
	101>			2.2	
80	<100	20	.0	0	
260	<100	0	.0	1	
50	<100	10	.0	0	
60	<100	10	.1	0	
20	<100	0	.0	0	
0	<100	30	.0	0	Mary 22"
150	<100	10	.0	0	
111	.07745 Santa C	ara River above	Railroad Stati	on near Lang	Seps. 1 Oct. 20 Nov. 19
				0.0	ar her
120	<100	0	.0	0	
130	<100	0	.0	0 0 1	
70	<100	0	.0	0.00	
70	<100	<10	.0	0	
60	100	00.50	<.1	0	
500	<100	30	.0	0	
210	<100	•	.0	0	
1,000	<100	40	3.4	0	
640	20	20	.2	0	
120	<100	10	.0	0	
50	<100	0	.0	0	
30	<100	40	.0	0	
60	<100	10	.0	0	

TRACE-ELEMENT DATA

Date	Instan- taneous dis- charge (ft ³ /s)	Total arsenic (As) (µg/L)	Total boron (B) (µg/L)	Total cadmium (Cd) (µg/L)	Total chromium (Cr) (µg/L)
	3425261183221	101 Santa Clara	River at Bou	guet Junction	
1974	0120201100221	or sanca stara	KIVCI at boo	.quee euneezen	
Aug. 27	3.0	0.02	0-	<10	0
Sept. 25	4.5	D-1	- 0-	<10	0
Oct. 16	3.0	3		<10	0
Nov. 18	3.5	2	-	<10	<10
Dec. 19	6.5	3	2 14 0g	<10	0
1975					
Jan. 16	4.5	2	1,700	0	0
Feb. 10	4.0	1	1,800	<10	10
Mar. 7	10	3	1,600	<10	0
Apr. 16	9.0	2	1,800	<10	0
May 22	9.5	4	1,500	10	0
June 26	7.2	8	2,000	<10	0
Aug. 28	3.0	4	1,600	<10	10
Sept. 16	8.0	7	2,100	0	0
Oct. 20	7.0	5	930	0	40
Nov. 19	7.0	6	1,900	20	10
Dec. 10	9.0	4	1,700	<10	10
1976					U ne r
Jan. 27	6.0	2	1,900	<10	0
Feb. 26	6.0	3	1,800	<10	10
Mar. 23	12	1	1,500	<10	10
Apr. 21	5.0	3	3,500	<10	10
May 28	6.0	2	1,500	0	10
June 22	4.5	3	1,000	0	10
	111	07860 Bouquet	Creek near Sa	ugus	
1975					
Feb. 10	.5	14	-30007-	30	70
F	-135 South Fork	Santa Clara F	River (at Saug	gus-Ventura Ro	ad)
1974					
Aug. 27	.25	6	25504 2	<10	10 00
1975 Feb. 10	.5	16		20	80

TRACE-ELEMENT DATA

Total iron (Fe) (µg/L)	Total lead (Pb) (µg/L)	Total manga- nese (Mn) (µg/L)	Total mercury (Hg) (µg/L)	Total selen- ium (Se) (µg/L)	作がお
	3425261183221	01 Santa Clara	River at Bouquet	Junction	
70	<100	0	0.0	2	
50	<100	0	.3	0	
70	<100	0	.0	1	
120	<100	10	.1	Ō	
	<100	0 0		1	
100	1200	028200	<.1		
100	<100	20	.6	1	
80	<100	0	.0	1 0	
250	<100	10	.0		
170	<100	10	.6	1	
100	<100	30	.0	1	
	<100	20		ī	
90	<100	20	.0	Ō	
150			.1		
3,900	100	100	.1	0	
30	100	30	.0	1	
150	<100	0 5	.0	1	
450	<100	20	.4	1	- C (100)
40	<100	10	.1	0	
	100	30	.0	1	
80	<100	100		Ō	
4,700	100	30	.1	1	
100			.2		
100	0	20	.4	1	
150	14	20	.4	1	
	319 11 319 11	1107860 Bouquet	Creek near Saugu	S	90
8,000	200	1,000	.0	1	
	F-135 South Fe	ork Santa Clara	River (at Saugus	-Ventura Road)
3,000	<100	380	.0	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,000	100	840	1	5	

TRACE-ELEMENT DATA

Date	Instan- taneous dis- charge (ft ³ /s)	Total arsenic (As) (µg/L)	Total boron (B) (µg/L)	Total cadmium (Cd) (µg/L)	Total chromium (Cr) (µg/L)
	111080	000 Santa Clar	a River near	Saugus	
1974					
Sept. 25	7.5	6	0_	<10	0
Dec. 19	3.0	2	0_	<10	0
		V-V-		21001>	
1975	1.5		01	10	0001
Jan. 16	1.5	1	960	10	0
Feb. 10	8.0	5	890	10	20
Mar. 7	20.0	5	850	<10	0
Sept. 16	6.0	14	1,600	0	40
Oct. 20	6.0	0.3	830	0	40
Nov. 19	4.5	4	1,700	10	0
Dec. 11	5.0	0. 1	740	<10	0
1976					
Jan. 27	7.0	4	1,700	<10	0
Feb. 27	3.0	3	1,100	10	0
Mar. 24	3.0	1	1,000	<10	20
Apr. 21	2.0	2	1,400	<10	10
May 28	1.5	1	740	0	10
June 22	2.5	16	610	0	80
	3430401183618	301 Castaic Cr	eek below Cas	taic Reservoir	188
1974					1007
Aug. 27	10	1		<10	000
Sept. 25	10	10	10.000	<10 <10	0
Oct. 16	10	2		<10	0
Nov. 18	10	2 3			<10
Dec. 19	1 ₀	1	radio oscino se git	<10 <10	0
					4
1975	10			10	0
Jan. 16	10	1		<10	10
Feb. 10	10	0	reg to Cauru		0
Mar. 7	10	2	erk Santa Clar	<10 <10	0
Apr. 7		1		10	10
May 22	25	6	0.88	<10	0
June 26	13	0		<10	U

See footnote on page 42.

TRACE-ELEMENT DATA

Total	To4 - 1	Total manga-	Total	Total	
iron	Total	nese	mercury	selen-	
(Fe)	1ead	(Mn)	(Hg)	ium	
(μg/L)	(Pb)	(µg/L)	(µg/L)	(Se)	
	(μg/L)	(48/ 11)	C Carlo C	(μg/L)	
	11108	3000 Santa Clara	River near Sauş	gus	
7,900	<100	200	0.0	5	
1,400	100	160	<.1	6	
4 4 4 4 4	100			5 2	
		110	.0	6	
500	<100	110	.0	10	
11,000	100	200	.9	7	
7,200	<100	150	.2	7	
33,000	100	600 140	.0	4	
1,700	<100	100	.1	4	7.1 ato
1,400	<100	150	.1	4	
1,600	<100	150			
950	<100	100	.1	3	
300	<100	220	.2	10	
500	<100	140	.0	8	
920	100	170	.1	6	
1,200	0	130	.3		ST THE
72,000	32	750	1.3	8	
	34304011836180	01 Castaic Creek	below Castaic	Reservoir	
				25	
60	<100	636 0	.0	0	AY . 78
60	<100	0		0	
420	<100	0	.0	0	
80	<100	10	.0	0	
100	100	0	.1	0	
100	<100	30	.0	est at tolom	
490	100	30	.0	0	
340	<100	20	.1	0	
240	<100	10	.4	0	
130	<100	10	.0	0	
80	<100	0	.0	0	

TRACE-ELEMENT DATA

	Instan-				
	taneous	Total	Total	Tota1	Total
Date	dis-	arsenic	boron	cadmium	chromium
	charge	(As)	(B)	(Cd)	(Cr)
	(ft^3/s)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)

11108500 Santa Clara River at Los Angeles-Ventura County line

1974					
Aug. 27	12	2	601	<10	0
Sept. 25	12	3		<10	0
Oct. 16	18	3	<u>-</u>	<10	0
Nov. 18	16	4	011-	<10	<10
Dec. 19	30	3	004	<10	0.0
1975		2.			
Jan. 17	15	1	650	10	10
Feb. 10	50	10	610	10	40
Mar. 7	120	3	620	<10	10
Apr. 16	25	3	570	<10	0
May 22	21	3 5	620	<10	20
June 25	15	5	670	<10	0
Aug. 28	8.5	4	770	<10	10
Sept. 16	7.0	3	830	0	10
Oct. 20	10	2	580	0	70
Nov. 19	17	2	770	20	10
Dec. 11	17	2	1,500	<10	0
1976					
Jan. 28	20	2	830	<10	0
Feb. 27	25	2	680	<10	0
Mar. 24	20	2	660	<10	0
Apr. 21	17	1	750	<10	10
May 28	9.6	1	770	0	10
June 22	6.6	2	580	0	20

¹Sampled in reservoir.

TRACE-ELEMENT DATA

Total iron (Fe) (µg/L)	Total lead (Pb) (µg/L)	Total manga - nese (Mn) (µg/L)	Total mercury (Hg) (µg/L)	Total selen- ium (Se) (µg/L)
	11108500 Santa Clara	River at Los	Angeles-Ventura	County line
	11100300 Santa Clara	KIVCI de Boo		
5,400	<100	220	0.0	3 3
6,500	100	140	.0	3
1,600	<100	120	.0	2
1,700	100	130	.0	2
1,500	<100	120	.0	4
950	<100	140	.0	3
25,000	<100	470	.6	3
4,600	<100	140	.2	5
2,900	<100	130	.1	5
2,000	<100	280	.0	3
6,000	<100	310	.1	3
930	<100	90	.0	3
2,500	<100	180	.1	4
280	100	70	.0	2
2,600	<100	100	.0	3
970	<100	180	.4	5
		21.0	0	3
1,600	<100	210	.0	4
630	<100	150	.2	2
2,400	<100	130	.0	3
240	<100	90	.0	-
1,400	0	100	.7	3
960	10	70	• 1	3

RETURN IF NOT DELIVERED

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

California District Office—Water Resources Division 855 Oak Grove Avenue Menlo Park, California 94025

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
U. S. DEPARTMENT OF THE INTERIOR
INT 413

01

U.S. GEOLOGICAL SURVEY LIBRARY NATIONAL CENTER, MAIL STOP # 950 12201 SUNRISE VALLEY DR. RESTON VA 22092