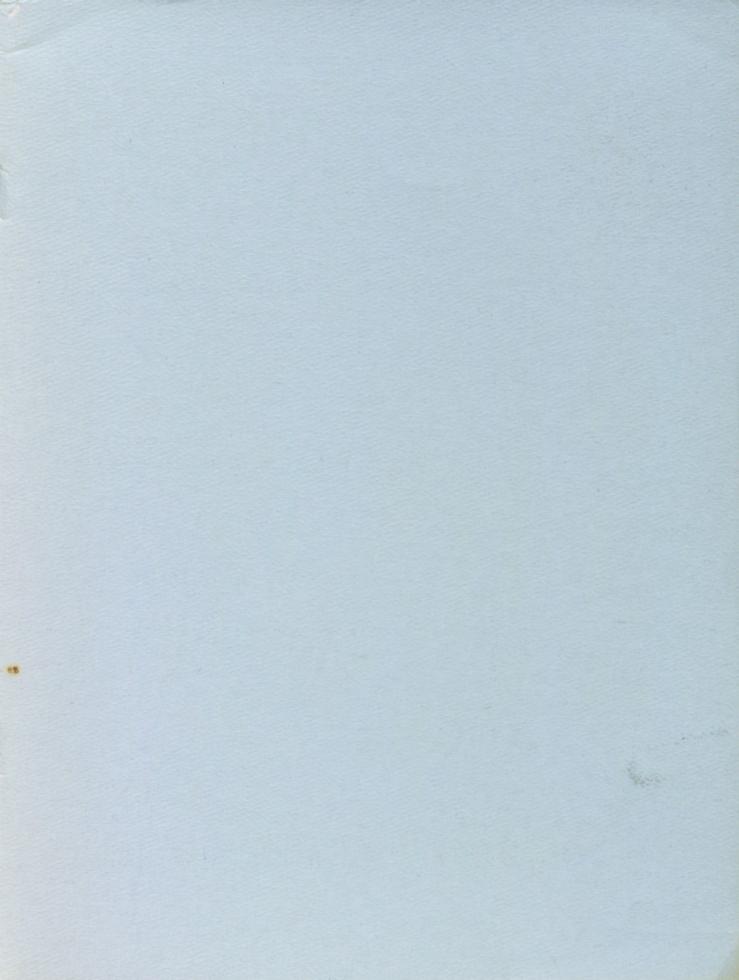
(200) WRi no.77-108

# RECONNAISSANCE OF GROUND-WATER RESOURCES IN THE MOUNTAIN HOME PLATEAU AREA, SOUTHWEST IDAHO


# U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 77-108

Open-File Report

Prepared in cooperation with the Idaho Department of Water Resources





# RECONNAISSANCE OF GROUND-WATER RESOURCES IN THE MOUNTAIN HOME PLATEAU AREA, SOUTHWEST IDAHO

By H.W. Young

# U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 77-108 Open-File Report

Prepared in cooperation with the Idaho Department of Water Resources



## UNITED STATES DEPARTMENT OF THE INTERIOR

Cecil D. Andrus, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

For additional information write to:

U.S. Geological Survey Box 036, FBUSCH 550 West Fort Street Boise, Idaho 83724

# CONTENTS

|         |       |                                             | Page     |
|---------|-------|---------------------------------------------|----------|
| Convers | ion   | factors                                     | 1 2      |
| ADSCIAC |       | n                                           | . 3      |
| Introdu | ctio  | n                                           | 5        |
| Lo      | cati  | on and general features                     |          |
| Pr      | evio  | us studies                                  | . 5      |
| Ac      | know  | ledgments                                   | . 6      |
| We      | 11-   | and spring-numbering system                 | . 6      |
| Geology |       |                                             | . 6      |
| Ground  | wate: | r                                           | . 9      |
| 0c      | curr  | ence                                        | . 9      |
| So      | urce  | and recharge                                | 10       |
|         |       | nt                                          |          |
| Di      | scha  | rge                                         | - 11     |
| Wa      | ter-  | level fluctuations                          | 20       |
| Water q | uali  | ty                                          | 25       |
| Ch      | emic  | al composition                              | 25       |
| Is      | otop  | ic composition                              | 29       |
| Effects | of    | irrigation-return flows                     | . 33     |
| Suggest | ions  | for monitoring                              | 35       |
| Potenti | al f  | or ground-water development and focuses for |          |
| futur   | e st  | udy                                         | . 36     |
| Summary | and   | conclusions                                 | . 37     |
| Selecte | d re  | ferences                                    | . 39     |
|         |       |                                             |          |
|         |       |                                             |          |
|         |       | ILLUSTRATIONS                               |          |
|         |       |                                             |          |
|         |       |                                             |          |
| Figure  | 1.    | Map showing area covered by report          | - 4      |
|         | 2.    | Diagram showing well- and spring-numbering  |          |
|         |       | system                                      | - 7      |
| 4-1     | 3.    | Map showing generalized geology and lines   |          |
|         |       | of geologic sections                        | - pocket |
|         | 4.    | Diagram showing geophysical and drillers'   |          |
|         |       | logs for selected wells                     | - pocket |
|         | 5.    | Generalized hydrogeologic sections          | -        |
|         | 6.    | Map showing water-table contours, perched-  |          |
|         |       | water zones, and well locations             | -        |
| 7       | -8.   | Hydrographs showing:                        |          |
|         | ٠.    | 7. Ground-water levels in selected wells,   |          |
|         |       | 1976 and 1977                               | - 21     |
|         |       | 8. Ground-water levels in selected wells    | 21       |
|         |       | 1967 to 1976                                | - 24     |
|         |       | 150, 60 15,0                                | 24       |

# ILLUSTRATIONS--Continued

|        |     |                                                                                                    | Dago      |
|--------|-----|----------------------------------------------------------------------------------------------------|-----------|
|        |     |                                                                                                    | Page      |
| Figure | 9 9 | <ol> <li>Map showing locations of sampling sites<br/>and cation balance of ground water</li> </ol> | _ pocket  |
|        | 10  | <ol> <li>Graph showing calcium and sulfate concentrations in selected waters</li> </ol>            |           |
|        | 13  | 1. Graph showing isotope variations in water                                                       |           |
|        |     | from selected wells and springs                                                                    | _ 32      |
|        |     |                                                                                                    |           |
|        |     | TABLES                                                                                             |           |
|        |     |                                                                                                    |           |
| Table  | 1.  | Description and water-bearing characteristic of geologic units in the Mountain Home                | S         |
| -      |     | plateau area                                                                                       |           |
|        | 2.  | Records of wells in the Mountain Home platea                                                       | u<br>- 12 |
|        | 3.  | Chemical analyses of water from selected wells and springs in the Mountain Home plateau area       | - 27      |
|        | 4.  | Isotopic analyses of water from selected wells and springs in the Mountain Home plateau area       |           |

#### CONVERSION FACTORS

The following conversion table is included for the convenience of those who prefer to use International System (SI) Units rather than English units. Chemical data for concentrations are given in milligrams per liter (mg/L), which are (within the range of values presented) numerically equal to parts per million.

| Multiply English Units            | By                       | To Obtain SI Units                                                      |
|-----------------------------------|--------------------------|-------------------------------------------------------------------------|
|                                   | Length                   |                                                                         |
| inches (in) feet (ft) miles (mi)  | 25.40<br>0.3048<br>1.609 | millimeters (mm)<br>meters (m)<br>kilometers (km)                       |
|                                   | Area                     |                                                                         |
| acres<br>square miles (mi²)       | 4047<br>2.590            | square meters (m <sup>2</sup> )<br>square kilometers (km <sup>2</sup> ) |
|                                   | Volume                   |                                                                         |
| acre-feet (acre-ft) gallons (gal) | 1233<br>3.785            | cubic meters (m³)<br>liters (L)                                         |
|                                   | Flow                     |                                                                         |
| gallons per minute (gal/min)      | 0.06309                  | liters per second (L/s)                                                 |

The following table shows the relation between °C (degrees Celsius) and °F (degrees Fahrenheit).

| °C                       | °F                                   | °C                        | °F                                           | °C                         | °F                                           |
|--------------------------|--------------------------------------|---------------------------|----------------------------------------------|----------------------------|----------------------------------------------|
| -2<br>-1<br>0<br>+1<br>2 | 28.4<br>30.2<br>32.0<br>33.8<br>35.6 | 9<br>10<br>11<br>12<br>13 | 48.2<br>50.0<br>51.8<br>53.6<br>55.4<br>57.2 | 20<br>21<br>22<br>23<br>24 | 68.0<br>69.8<br>71.6<br>73.4<br>75.2<br>77.0 |
| 5<br>6<br>7              | 39.2<br>41.0<br>42.8<br>46.4         | 16<br>17<br>18            | 59.0<br>60.8<br>62.6<br>64.4<br>66.2         | 27<br>28<br>29             | 78.8<br>80.6<br>82.4<br>84.2<br>86.0         |

# RECONNAISSANCE OF GROUND-WATER RESOURCES IN THE MOUNTAIN HOME PLATEAU AREA, SOUTHWEST IDAHO

### By H. W. Young

#### ABSTRACT

The Mountain Home plateau area occupies approximately 1,220 square miles of the western Snake River Plain in southwestern Idaho. About 40,000 acres are presently (1977) irrigated with ground water, about 30,000 acres with surface water. An estimated 450,000 acres are potentially irrigable, if water is available. Development of ground-water resources has caused water-level declines in several places. Largest declines are south of Mountain Home, where water levels dropped more than 20 feet in the last 9 years.

Ground water in the area occurs primarily under watertable conditions. Perched-water zones are present in several locations. The most productive aquifer in the eastern part of the plateau is basalt of the Bruneau Formation of the Idaho Group. In the western part, the most productive aquifers are sand and gravel of the older terrace gravel lithologic unit and the Idaho Group.

Recharge to the ground-water system is water from the Boise River drainage basin, precipitation on the plateau and adjacent mountains, and leakage from irrigation structures. Ground-water movement is generally south or southwest. Natural ground-water discharge from the plateau is about 18,000 acre-feet annually.

The chemical composition of the ground water generally reflects water characteristics in the area of the source of recharge and, for the most part, is good. Deuterium and oxygen-18 isotope analyses suggest that the water at the lower end of the ground-water flow system underlying the plateau was recharged a long time ago, although climatic conditions then were similar to current conditions in the Boise River basin.

Additional large-scale ground-water development will probably result in economically prohibitive pumping lifts, which also would consume excessive amounts of energy. Therefore, large-scale new agricultural development would depend heavily on the availability of surface water. However, one or several deep test holes, in selected places, could help answer some questions about the occurrence of

ground water and perhaps encourage further exploration for untapped deep artesian aquifers.

The occurrence of perched-water zones beneath lands irrigated by surface water suggests that more zones of this type could develop if water is imported into the area to irrigate additional lands, and if the efficiency of the present distribution systems remains unchanged.

#### INTRODUCTION

The Mountain Home plateau area occupies approximately 1,220 mi<sup>2</sup> in southwestern Idaho (fig. 1). The plateau has long been recognized as a potential area for increased agricultural development. However, plans for increased development are limited by the availability of water.

Potential sources of additional water for irrigation are importation of water from the Boise River drainage basin, diversion of Snake River water, and increased pumping from aquifers underlying the plateau.

The major objectives of this study are to (1) describe, on a reconnaissance level, the geologic conditions and hydrologic systems underlying the Mountain Home plateau; (2) indicate any potential for additional ground-water development; (3) make preliminary estimates of the probable effects that irrigation-return flows may have on the ground-water system; and (4) indicate needs for further study to fully assess the ground-water resources.

To meet these objectives, this report includes (1) descriptions of aquifer systems, (2) documentation of changes in ground-water storage caused by water-supply development, (3) mapping of the water-table and perched-water zones and determination of direction of ground-water flow, and (4) definition of ground-water recharge and discharge areas.

Work accomplished during this 1-year investigation included an inventory of 260 wells and 14 springs; monthly water-level measurements at 27 wells; collection of water samples for chemical analyses from 37 wells and 10 springs; collection of water samples for isotopic analyses from 15 wells and 10 springs; and collection of borehole geophysical logs from 5 wells. In addition, many geologic and hydrologic data from previous studies were used in this report.

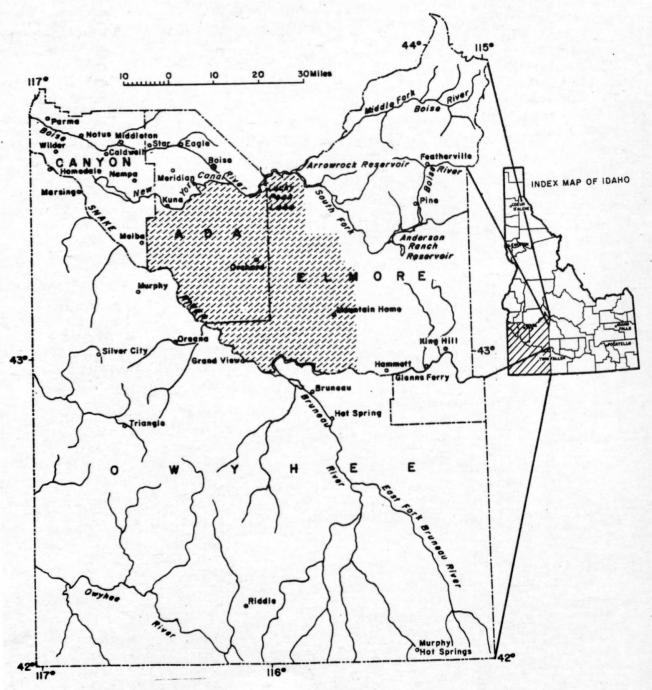



Figure 1. Area covered by this report

## Location and General Features

The Mountain Home plateau area is on the western Snake River Plain in southwestern Elmore and southern Ada Counties, Idaho (fig. 1). The broad, flat surface of the plateau is interrupted at a few places by cinder cones and shield volcanoes. It extends northeastward from the Snake River to the mountains that form its northern boundary. The plateau generally is above 3,000 ft in altitude, except in the extreme western part. The mountains that form the northern boundary rise to a maximum altitude of 6,694 ft at Danskin Peak.

The climate of the area ranges from arid on the plateau to semiarid on the higher mountain ranges. Mean annual precipitation ranges from about 7 in on the plateau to slightly more than 20 in at the higher altitudes. Generally, the climate of the plateau is characterized by hot, dry summers and cold winters.

No perennial streams cross the plateau. Only intermittent streams drain the bordering mountains. In the central and southeastern part of the plateau, the streams flow southward to the Snake River. Northwest of a divide in the vicinity of Orchard, the streams flow northwestward to the Boise River.

Present agricultural development on the plateau generally is centered along the western and northwestern margin and in the area adjacent to and south of Mountain Home. About 70,000 acres of land are irrigated. Surface water from the Snake River and Boise River basin and streams draining to the plateau supplies about 30,000 acres; the remaining 40,000 acres are irrigated with ground water. An estimated 450,000 acres are potentially irrigable if water is available.

# Previous Studies

Several hydrologic studies have been made of parts of the Mountaim Home plateau area. Nace, West, and Mower (1957) included part of the area in a study of the feasibility of exchanging ground-water from Boise River valley for Boise River water, which could then be used on the plateau. However, because of limited data, little reference was made to the plateau. The study addressed primarily the

adequacy of the water supply in the Boise River basin to irrigate both Boise River valley and the plateau. More recent studies of the ground-water resources of the area were made by Ralston and Chapman (1968, 1970). These two studies described general hydrologic and geologic conditions as ascertained from available data. Dion (1972) studied the Boise River valley, including the northwestern part of the plateau, but dealt mainly with a shallow ground-water system adjacent to Boise River.

# Acknowledgments

The author expresses gratitude to Mr. John Black of the Simplot Livestock Company, Grand View, Idaho, for his help in supplying spring-discharge records, and to the many residents of the Mountain Home plateau for supplying pertinent information on their wells and for allowing access to their property.

# Well- and Spring-Numbering System

The numbering system used by the Geological Survey in Idaho indicates the location of wells or springs within the official rectangular subdivision of the public lands, with reference to the Boise base line and meridian. The first two segments of the number designate the township and range. The third segment gives the section number, followed by three letters and a numeral, which indicate the quarter section, the 40-acre tract, the 10-acre tract, and the serial number of the well within the tract, respectively. Ouarter sections are lettered A, B, C, and D in counterclockwise order from the northeast quarter of each section (fig. 2). Within the quarter sections, 40-acre and 10-acre tracts are lettered in the same manner. Well IS-IE-6CCD1 is in the SE4SW4SW4 sec. 6, T. 1 S., R. 1 E., and is the first well inventoried in that tract. Springs are designated by the letter "S" following the last numeral; for example, 4S-3E-35CAD1S.

#### GEOLOGY

The rocks exposed within the Mountain Home plateau area range in age from Cretaceous to Holocene. The areal extent of the rock units is shown in figure 3; their descriptions and water-bearing characteristics are given in table 1.

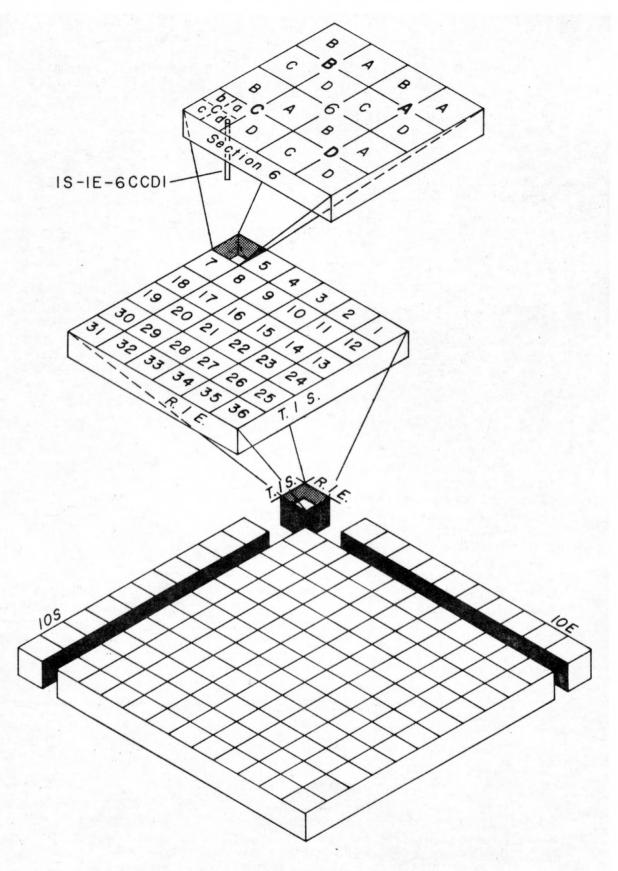



Figure 2. Well- and spring-numbering system

Table 1. Description and water-bearing characteristics of geologic units in the Mountain Home plateau area

| Period                        | Epoch                       | Geologic unit                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water-bearing characteristics                                                                                                                                                                                                               |
|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quaternary                    | Holocene .                  | Alluvium                                 | Unconsolidated clay, silt, sand, and gravel occurring beneath flood plains of Boise and Snake Rivers. Crops out in narrow belts along major tributaries and in a broad belt near Mountain Home. Thickness probably does not exceed 70 ft.                                                                                                                                                                                                             | Bydraulic conductivity generally high: however, because of thinness and irregularity of beds, yields to wells are generally small to moderate. Most important along Boise River flood plain where well yields of 2,500 gal/min are reported |
|                               | Holocene and<br>Pleistocene | Younger terrace gravel                   | Unconsolidated clay, silt, sand, and fine to very coarse gravel.  Mapped only along Holocene alluvium near Boise River and western part of study area. Thickness probably does not exceed 100 ft.                                                                                                                                                                                                                                                     | Hydraulic conductivity generally high: however, unit is almost entirely above water table in study area.                                                                                                                                    |
|                               | Holocene and<br>Pleistocene | Basalt of Snake River<br>Group           | Vesicular olivine basalt, light<br>to dark gray, irregular to col-<br>umnar jointing. Crops out on<br>much of Mountain Home plateau<br>and in Boise Valley. Intercal-<br>ated in places with older terrace<br>gravels. Thickness of flows prob-<br>ably does not exceed 550 ft.                                                                                                                                                                       | Hydraulic conductivity variable. Where saturated, reported well yields range from 20 to 3,100 gal/min; however, the basalt is above water table in most of study area.                                                                      |
|                               | Pleistocene                 | Older terrace gravel                     | Unconsolidated clay, sand, and<br>fine to coarse gravel. Occurs<br>only in western part of study area<br>where thickness does not exceed<br>150 ft.                                                                                                                                                                                                                                                                                                   | Hydraulic conductivity generally high. Reported well yields range from 20 to 2,700 gal/min.                                                                                                                                                 |
| Quaternary<br>and Tertiary    | Pleistocene<br>and Pliocene | Idaho Group,<br>undifferentiated         | Poorly to well-stratified fluvial<br>and lake deposits of unconsoli-<br>dated to consolidated silt, sand,<br>and gravel, with layers of ash and<br>intercalated basaltic lava flows.<br>Thickness unknown.                                                                                                                                                                                                                                            | Hydraulic conductivity generally high. Reported well yields range from 15 to 3,000 gal/min.                                                                                                                                                 |
| Quaternary                    | Pleistocene                 | Bruneau Formation of<br>Idaho Group      | Includes fan deposits consisting largely of coarse sands derived from decayed granitic rocks. Thickness of fan deposits does not exceed 300 ft. Also includes vesicular olivine basalt, dark gray to black, weathers to reddish-gray-brown. Thickness of basaltic flows is about 800 ft in study area. Unit also includes detrital material, dominated by massive lake beds of whiteweathering fine silt, clay, diatomite, and minor amounts of sand. | Fan deposits are generally above water table. Basalt composes principal aquifer in Mountain Home area. Reported well yields from basalt range from 10 to 3,500 gal/min. Detrital material generally has low hydraulic conductivity.         |
| Quaternary<br>and<br>Tertiary | Pleistocene<br>and Pliocene | Glenns Ferry Formation<br>of Idaho Group | Poorly consolidated detrital material and minor flows of olivine basalt. Includes lake and stream deposits consisting of massive silt layers, cemented sand beds, thin beds of dark clay, olive silt, and granitic sand and fine pebble gravel. Maximum thickness is about 2,000 ft.                                                                                                                                                                  | Hydraulic conductivity generally low<br>Reported well yields range from 3 to<br>350 gal/min.                                                                                                                                                |
| Tertiary                      | Miocene                     | Idavada Volcanics                        | Silicic latite; chiefly thick<br>layers of devitrified welded tuff,<br>but includes some vitric tuff and<br>lava flows. Maximum thickness is<br>about 2,000 ft.                                                                                                                                                                                                                                                                                       | Hydraulic conductivity variable.                                                                                                                                                                                                            |
| Cretaceous                    |                             | Idaho batholith                          | Quartz monzonite and granodiorite,<br>light to medium gray.                                                                                                                                                                                                                                                                                                                                                                                           | Hydraulic conductivity low. Yields to wells small.                                                                                                                                                                                          |

In figure 3, basalt of the Snake River Group is hatchured where mapped by Malde and others (1963). Some of the remainder of the basalt (not hatchured) shown as Snake River Group may correlate with flows that were assigned to the Bruneau Formation of the Idaho Group, as mapped by Malde and others (1963). In addition, fan gravel, assigned to the Bruneau Formation by Malde and others (1963), may be equivalent to some of the younger terrace gravel in the western part of the plateau, as mapped by Ross and Forrester (1947) and Savage (1958).

To gain more information about subsurface conditions, geophysical logs were made of five wells that provided areal coverage and data on representative geologic units. These logs are shown in figure 4, along with the lithologic logs obtained from the drillers.

Geologic data derived from geophysical and drillers' logs show that the plateau is underlain by basalt flows or sedimentary rocks to at least 1,128 ft. Indirect data, such as gravity measurements (Hill, 1963), suggest that the basement complex, thought to be granitic rocks of the Idaho batholith, is overlain by at least 10,000 ft of material. This suggests that deeply buried, thick, untapped aquifers may underlie the plateau.

The hydrogeologic sections shown in figure 5 illustrate the stratigraphic relation of geologic units to known occurrence of ground water within the study area. The sections were drawn using drillers' logs and data from wells having geophysical logs (fig. 4). The sections indicate geologic and hydrologic conditions that may be encountered in wells drilled near the section traverses.

# GROUND WATER Occurrence

Ground water occurs in virtually every geologic unit within the study area, as described in table 1. The aquifers primarily consist of basalt, sand and gravel, and crystalline rocks. Water is contained in voids, fractures, joints, and interflow zones in basalt; in intergranular spaces in sand and gravel; and in fractures and weathered zones in crystalline rocks.

In the eastern part of the area, the more productive aquifers are basalt flows of the Bruneau Formation of the Idaho Group and in the western part, sand and gravel of the older terrace gravel and the Idaho Group. The Snake River Group also is a source of water in the western part; however, it is above the water table in most places.

Water in the aquifers is mostly under water-table conditions. Localized perched-water zones occur in several places (figs. 5 and 6); the most extensive one is near Mountain Home. Water can also be under artesian conditions where clay, silt, or cemented sand beds constitute confining layers. Water-level data are insufficient, however, to discern or map any extensive potentiometric (pressure) surfaces.

# Source and Recharge

The main sources of recharge to the area are water from the Boise River drainage basin, infiltration of local runoff, and precipitation on the Idavada Volcanics.

The ground-water system underlying the western part of the area is recharged with water from the Boise River. This recharge results from leakage from the many irrigation canals, laterals, and ditches that cross the area and from downward percolation of applied irrigation water. Leakage directly from the channel of the Boise River between Lucky Peak and Barber Dams also recharges the ground-water system (Ralston and Chapman, 1970). Some recharge may also result from leakage directly from Lucky Peak Reservoir.

Recharge to the ground-water system adjacent to the mountains that are composed of granitic rocks of the Idaho batholith (fig. 3) is derived from precipitation within the drainage basin. This recharge results from infiltration of water from the many intermittent streams draining the area.

The ground-water systems underlying the eastern part of the area are recharged with water derived from precipitation both within and outside the drainage basin. This recharge occurs in several ways. Recharge directly to the regional water table results from precipitation on the Idavada Volcanics (fig. 3) and downward percolation from perched-water zones. Recharge to the perched-water zones results from leakage from Canyon and Rattlesnake Creeks, Mountain Home Reservoir, and canals and laterals. Imported irrigation

water from Little Camas Reservoir, about 20 mi northeast of Mountain Home, to Mountain Home Reservoir increases the amount of water available to recharge the aquifers.

Because of the generally low amounts of precipitation and the high potential for evaporation and plant transpiration, direct precipitation on the lowlands of the plateau contributes little recharge.

### Movement

The general direction of regional ground-water movement can be inferred from the water-table map (fig. 6). Movement is down the hydraulic gradient and roughly perpendicular to the water-table contours, from areas of recharge to areas of discharge. The position of the water table in fall 1976 is shown in figure 6. Depth-to-water measurements in wells are shown in table 2.

Ground-water movement is generally to the south and southwest. Irregularities in the general pattern may be caused by localized recharge, such as that which occurs from the New York Canal east of Kuna (fig. 6).

Contours on the perched-water zones near Mountain Home are also shown in figure 6 (see insert). Water in these zones generally moves to the south, where some percolates downward to the regional water table and some discharges at Rattlesnake Springs (see fig. 5, hydrogeologic sections C-C' and D-D').

# Discharge

Water is discharged from the aquifers by springs, underflow, and pumping. Principal discharge is by pumping for irrigation.

Discharge through springs is estimated to be about 3,000 acre-ft/yr. The springs are in the Snake River Canyon and issue generally from the contact between basalt and underlying fine-grained sediments of the Bruneau Formation. Main areas of spring discharge are in T. 4 S., R. 3 E., sec. 35, and T. 5 S., R. 4 E., secs. 11, 12, and 14 (see fig. 9 for spring locations). Surface-water gaging-station records indicate no detectable amount of ground-water discharge directly to the Snake River (C. A. Thomas, oral commun., 1977).

Altitude: From topographic map Aquifer: Qal - alluvium; Use of water: C - commercial; Qytg - younger terrace gravel; D - dewater; Well finish: F - gravel packed and perforated; Qsb - basalt of Snake River Group; H - domestic; G - gravel packed and screened; Qotg - older terrace gravel; I - irrigation; 0 - open end; QTi - Idaho Group; N - industrial; Qb - Bruneau Formation of Idaho Group; P - perforated; P - public supply; S - screened; QTg - Glenns Ferry Formation of Idaho Group; S - stock; X - open hole Tiv - Idavada Volcanics; U - unused Ki - Idaho batholith

Water level: P - pumping;

R - recently pumped;
S - nearby well pumping

Remarks: A - anode; hole drilled for gasline ground;

C - currently being drilled (1976);
GL - geophysical log available;
log - driller's log available;
OW - chemical analysis of water
available (table 3);
WLR - water level reported by driller

|             | Altitude<br>of land               | Reported                  | Ca               | sing                             |                |                        |                  | 7-163            | Depth                                 |                  | Depth                                 |                        |                                  |             |            |
|-------------|-----------------------------------|---------------------------|------------------|----------------------------------|----------------|------------------------|------------------|------------------|---------------------------------------|------------------|---------------------------------------|------------------------|----------------------------------|-------------|------------|
|             | surface<br>(feet<br>above<br>mean | depth of well (feet below |                  | Feet<br>below<br>land<br>surface |                | Water<br>Feet<br>below | level            |                  | to major<br>aquifer<br>(feet<br>below |                  | to minor<br>aquifer<br>(feet<br>below | Reported               | Reported<br>specific<br>capacity | Use         |            |
| ell number  | sea<br>level)                     | land<br>surface)          | Diameter<br>(in) | to first<br>perforation          | Well<br>finish | land<br>surface        | Date<br>measured | Major<br>aquifer | land<br>surface)                      | Minor<br>aquifer | land<br>surface)                      | discharge<br>(gal/min) | (gal/min)/ft<br>of drawdown      | of<br>water | Remarks    |
| N-1E-36ADA1 | 2,820                             | 330                       | 4                | 276                              | P              | 119.52 S               | 09-23-76         | Qotg             | 106                                   | 9                | 1                                     |                        | 3                                | н           | Log        |
| N-2E-21BCC1 | 2,751                             | 58                        | 14               |                                  | P              | 9.63                   | 09-21-76         | Qytg             |                                       |                  |                                       | 550                    |                                  | D           |            |
| 25BBB1      | 2,746                             | 65                        | 18               | 42                               | P              | 9.40                   | 09-21-76         | Qa1              |                                       |                  |                                       | 1,650                  | 52                               | D           | Log        |
| 27ABD1      | 2,776                             | 79                        | 4                | 79                               | 0              | 47.50 R                | 09-21-76         | Qytg             | 43                                    |                  |                                       | -,                     |                                  | н           | Log        |
| 28BDB1      | 2,830                             | 280                       | 6                | 275                              | S              | 126.61 R               | 09-21-76         | Qotg             | 125                                   |                  |                                       | 20                     | 1                                | N           | Log        |
| 29CAB1      | 2,805                             |                           |                  |                                  |                | 116.36                 | 09-20-76         | Qotg             |                                       |                  |                                       |                        |                                  | Н           | Log        |
| 30CBC1      | 2,768                             | 157                       | 6                | 157                              | 0              | 62.40                  | 09-20-76         | Qotg             | 157                                   |                  |                                       |                        |                                  | Н           | Log        |
| -3E-29CDC1  | 2,825                             | 147                       | 8                |                                  |                | 72.32 S                | 09-23-76         | Qytg             |                                       |                  |                                       |                        |                                  | U           |            |
| 31ABD1      | 2,856                             |                           | 10               |                                  |                | 177.86                 | 09-20-76         |                  |                                       |                  |                                       |                        |                                  | 1           |            |
| -1W-11ADA1  | 2,685                             | 130                       | 16               | 64                               | P              | 65.72                  | 09-23-76         | Qotg             | 98                                    |                  |                                       |                        |                                  | 1           | Log; Q     |
| 33CAA1      | 2,725                             |                           | 4                |                                  |                | 116.80                 | 09-30-76         |                  |                                       |                  |                                       |                        |                                  | н           | Log, Qw    |
| 34CCD1      | 2,810                             | 350                       | 12               | 349.5                            | 0              | 217.36                 | 09-29-76         | Qotg             | 236                                   |                  |                                       |                        |                                  | н           | T 01       |
| 34DAD1      | 2,790                             | 353                       | . 14             | 258                              | F              | 175.39                 | 10-04-76         | Qotg             |                                       |                  |                                       | 1,500                  | 38                               | I           | Log; Qu    |
| 35BDC1      | 2,790                             | 218                       | 12               | 155                              | P              | 174.62                 | 04-28-76         | Qotg             | 189                                   |                  |                                       | 1,120                  | 93                               | Î           | Log<br>Log |
| N-1E-01BDD1 | 2,754                             | 115                       | 6                | 115                              | 0              | 53.87                  | 09-27-76         | Qotg             | 103                                   |                  |                                       |                        |                                  | н           | 1          |
| 12CAB1      | 2,833                             | 290                       | 8                | 290                              | 0              | 231.40                 | 09-28-76         | QT1              | 252                                   |                  |                                       |                        |                                  | Н           | Log        |
| 15ABA1      | 2,766                             | 243                       | 6                | 240                              | X              | 128.35                 | 09-27-76         | QT1              | 143                                   |                  |                                       |                        |                                  | Н           | Log        |
| 16DDC1      | 2,885                             | 320                       | 12               | 230                              | G              | 151.07                 | 09-27-76         | QT1              | 151                                   |                  |                                       |                        |                                  | I           | Log        |
| 21DCB1      | 2,780                             |                           |                  |                                  |                | 149.13                 | 09-27-76         |                  |                                       |                  |                                       |                        |                                  | 1           | Log        |
| 22DCA1      | 2,836                             | 444                       | 16               | 420                              | P              | 211.70                 | 10-05-76         | QT1              |                                       |                  |                                       | 3,000                  | 100                              | I           | Log        |
| 23BAD1      | 2,910                             | 386                       | 12               | 332                              | P              | 277.68                 | 04-27-76         | Qotg             | 223                                   |                  |                                       | 2,000                  | 200                              | I           | Log        |
| 26DAA1      | 2,871                             | 315                       | 16               | 268                              | P              | 252.83                 | 10-05-76         | Qotg             | 250                                   | QT1              | 267                                   |                        |                                  |             | Log        |
| 28 ADD1     | 2,800                             | 402                       | 16               | 167                              | P              | 128.32                 | 09-27-76         | Qsb              | 142                                   | QT1              | 168                                   |                        |                                  | I           | Log        |
| 28BBC1      | 2,770                             | 202                       | 4                |                                  |                | 134.60                 | 10-06-76         | Qotg             | 156                                   | AIT              | 100                                   |                        |                                  | н           | Log        |
| 29DCA1      | 2,742                             | 130                       | 8                | 19                               | X              | 46.15 R                | 09-28-76         | Qsb              | 130                                   |                  |                                       | 20                     | 2                                | Н           | Log; QW    |
| 31DDC1      | 2,748                             | 248                       | 6                | 225                              | X              | 129.96                 | 09-28-76         | Qotg             | 145                                   |                  |                                       | 20                     | 1.3                              | Н           | Log, Qw    |
| 32BCC1      | 2,738                             | 112                       | 8                | 23                               | X              | 30.64 R                | 09-28-76         | Qsb              | 1                                     |                  |                                       | 20                     | 2                                | Н           | Log        |
| 33CAC1      | 2,758                             | 224                       | 8                | 16                               | X              | 141.80 R               | 10-06-76         | QTi              | 220                                   |                  |                                       | 15                     |                                  | Н           | Log        |
| 34CCB1      | 2,782                             | 335                       | 12               | 10                               | X              | 171.20                 | 04-26-76         | QT1              | 315                                   |                  |                                       | -                      |                                  | I           | Log        |
| 35BBC1      | 2,825                             | 340                       | 16               | 230                              | P              | 213.39                 | 10-01-76         | Qotg             | 215                                   |                  |                                       | 2,700                  | 180                              |             | Log        |
| 36BBB1      | 2,867                             | 305                       | 6                | 300                              | o              | 256.02                 | 09-23-76         | QTi              | 213                                   |                  |                                       | 2,700                  | 100                              | Ü           | Log        |

|          | 2N-2E-01DAD1 | 3,042  | 381   | 8  | 360  | P   | 354.60 R | 09-21-76 | Qotg | 352 |      |     |       |      | H   | Log      |
|----------|--------------|--------|-------|----|------|-----|----------|----------|------|-----|------|-----|-------|------|-----|----------|
|          | 03AAA1       | 2,910  | 530   | 12 | 470  | P   | 232.30   | 09-23-76 | QT1  | 255 |      |     | 1,200 | 21   | I   | Log      |
|          | 04CBA1       | 2,884  | 400   | 16 | 300  | P   | 198.89   | 09-21-76 | QT1  | 225 | Qotg | 190 | 600   | 9.2  | I   | Log      |
|          | 05CCA1       | 2,840  | 333   | 12 | 210  | • P | 162.51   | 04-23-76 | QT1  | 235 | Qotg |     |       |      | U   | Log      |
|          | 06CCC2       | 2,770  | 195   | 6  | 185  | X   | 87.40 R  | 09-21-76 | Qotg | 98  |      |     |       |      | Н   | Log      |
|          | 08AAD1       | 2,873  | 640   | 12 | 362  | P   | 198.88   | 09-21-76 | QT1  |     |      |     | 100   | 0.6  | I   | Log      |
|          | 10BCB1       | 2,928  | 243   | 14 | 502  |     | Dry      | 09-21-76 |      |     |      |     |       |      |     |          |
|          | 17AAD1       | 3,150  | 880   | 16 | 537  | P   | 492.02   | 09-21-76 | QTi  | 490 |      |     |       |      | I   | Log      |
|          | 18DDC1       | 3,073  | 912   | 16 | 542  | P   | 438.69   | 09-08-70 | QT1  | 445 |      |     | 2,260 | 78   | I   | Log      |
|          | 19AAD1       | 3,082  | 870   | 16 | 618  | P   | 460      | 06-15-68 | QT1  | 465 |      |     | 1,980 | 28   | I   | Log; WLR |
|          | 20BCA1       | 3,075  | 896   | 16 | 585  | P   | 453.04   | 09-21-76 | QT1  | 480 |      |     |       |      | I   | Log      |
|          | 21BAB1       | 3,140  | 800   | 16 | 523  | P   | 481.31   | 09-07-70 | QT1  | 495 |      |     |       |      | T   | Log      |
|          | 27DCD1       | 3,117  | 775   | 16 | 570  | P   | 490.01   | 09-22-76 | QT1  |     |      |     | 1,705 | 20   | I   | Log      |
|          | 29AAD1       | 2,980  |       |    |      |     | 350.45   | 09-22-76 |      |     |      |     |       |      | I   |          |
|          | 30DDA1       | 2,970  |       |    |      |     | 346.55   | 09-22-76 |      |     |      |     |       |      | 1   |          |
|          | 31DCD1       | 2,932  | 440   | 14 | 368  | P   | 321.04   | 10-07-76 | QTi  |     |      |     | 2,000 | 100  | I   | Log      |
|          | 32DBA1       | 2,985  | 564   | 16 | 492  | P   | 378.78   | 09-22-76 | QT1  | 390 |      |     | 3,000 | 75   | I   | Log      |
|          | 34CCD1       | 3,045  | 504   | 8  | 484  | P   | 442.65   | 09-22-76 | QTi  | 420 |      |     | 22    |      | Н   | Log; QW  |
|          | 5,1000       | .,     |       |    |      |     |          |          |      | 100 |      |     |       |      |     | nog, du  |
|          | 2N-3E-06BCC1 | 3,000  | 520   | 8  | 420  | P   | 329.49   | 05-10-76 | Qsb  | 300 |      |     |       |      | Н   | Log; QW  |
|          | 09ACC1       | 3,138  | 490   |    |      |     | 414.22   | 09-20-76 |      |     |      |     |       |      | H   |          |
|          | 10BCB1       | 3,182  | 471   | 8  | 431  | P   | 397.28   | 09-20-76 | QTi  | 382 |      |     |       |      | Н   | Log; QW  |
|          | 11ACC1       | 2,838  | 100   | 8  | 39.5 | X   | 13.10    | 10-01-76 | Qsb  | 24  |      |     | 70    | 0.97 | U   | Log      |
|          | 12CCB1       | 3,180  | 275   | 8  | 26   | X   | 32.71    | 05-04-76 | Qsb  | 37  |      |     | 12    |      | Н   | Log      |
|          | 18ACB1       | 3,095  | 470   | 6  | 470  | 0   | 401.70   | 09-20-76 |      |     |      |     |       |      | Н   |          |
|          | 28CAC1       | 3,355  | 975   | 8  | 866  | F   | 674.60   | 09-20-76 | QT1  |     |      |     |       |      | P   | Log; QW  |
| $\vdash$ | 35BBC1       | 3,421  | 1,128 | 12 | 720  | P   | 686.56   | 09-23-76 | QT1  | 715 |      |     |       |      | U   | Log; CL  |
| ω        |              |        |       |    |      |     |          |          |      |     |      |     |       |      |     | 0. 00    |
|          | 2N-4E-19CDC1 | 3,940  | 995   | 8  | 940  | P   | 451.78   | 05-05-76 | QT1  | 570 |      |     | 10    |      | Н   | Log; QW  |
|          | 29ADB1       | 3,680  | 227   | 8  | 20   | P   | 10.26    | 09-27-76 | K1   | 8   |      |     | 8     | 0.06 | Н   | Log      |
|          | 34BCB1       | 3,700  | 260   | 6  | 135  | P   | 87.34    | 06-30-76 | Ki   | 168 |      |     | 80    |      | I   | Log      |
|          | 1N-1W-01ADD1 | 2,794  | 423   | 16 | 275  | P   | 188      | 08-10-62 | QT1  |     |      |     | 1,800 | 53   | I   | Log; WLR |
|          | O1BDB1       | 2,794  | 401   | 16 | 183  | P   | 188.60   | 10-04-76 | QT1  | 180 |      |     | 1,800 | 35   | I   | Log      |
|          | 02ADC1       | 2,850  | 455   | 16 | 245  | P   | 242.80   | 10-04-76 | QT1  | 236 |      |     | 2,700 | 77   | 1   | Log      |
|          | 05BCC1       | 2,695  |       | 6  |      |     | 121.90 R | 09-30-76 |      |     |      |     |       |      | Н   | Log      |
|          | 07ACC1       | 2,802  | 590   | 18 | 18   | X   | 234.99   | 09-30-76 | Qsb  |     |      |     | 930   | 52   | T   | Log      |
|          | 08BBC1       | 2,765  | 426   | 16 | 26   | X   | 187      | 01-20-62 | Qsb  | 180 |      |     | 1,300 |      | T   | Log; WLR |
|          | 15DAA1       | 2,890  | 541   | 16 | 293  | P   | 300.74   | 10-05-76 | Qsb  | 306 | QTi  | 505 | 1,500 |      | T   | Log; QW  |
|          | 16ADD1       | 2,900  | 450   | 10 | 273  | X   | 326.28   | 10-05-76 | Qsb  | 306 | 12   |     |       |      | T   | Log      |
|          | 16BCA1       | 2,996  | 374   | 23 | 22   | X   | 218.00   | 10-05-76 | Qsb  | 300 |      |     | 2,610 | 326  | T . | Log      |
|          | TOPONI       | -,,,,, | 3,4   | 23 | 22   | ^   | 210.00   | 10-03-70 | USD  |     |      |     | 2,010 | 320  | I.  |          |

Table 2. Records of wells in the Mountain Home plateau area (Continued)

|   |              | Altitude                             |                                       | Ca               | sing                               |                |                                  |                  |                  |                                    |                  |                                    |                                    |                                                     |                    |          |
|---|--------------|--------------------------------------|---------------------------------------|------------------|------------------------------------|----------------|----------------------------------|------------------|------------------|------------------------------------|------------------|------------------------------------|------------------------------------|-----------------------------------------------------|--------------------|----------|
|   |              | of land<br>surface<br>(feet<br>above | Reported<br>depth<br>of well<br>(feet |                  | Feet<br>below<br>land              |                |                                  | r level          |                  | Depth<br>to major<br>aquifer       |                  | Depth<br>to minor<br>aquifer       |                                    | Reported                                            |                    |          |
|   | Well number  | mean<br>sea<br>level)                | below<br>land<br>surface)             | Diameter<br>(in) | surface<br>to first<br>perforation | Well<br>finish | Feet<br>below<br>land<br>surface | Date<br>measured | Major<br>aquifer | (feet<br>below<br>land<br>surface) | Minor<br>aquifer | (feet<br>below<br>land<br>surface) | Reported<br>discharge<br>(gal/min) | specific<br>capacity<br>(gal/min)/ft<br>of drawdown | Use<br>of<br>water | Remarks  |
|   | 17BCC1       | 2,738                                |                                       | 8                |                                    |                | 168.73                           | 09-30-76         |                  |                                    |                  |                                    |                                    |                                                     | н                  |          |
|   | 21ACD1       | 2,861                                | 743                                   | 12               | 386                                | P              | 287.57                           | 09-30-76         | QT1              | 405                                |                  |                                    | 1,460                              | 44                                                  | I                  | Log      |
|   | 22DDD1       | 2,888                                | 502                                   | 12               | 345                                | P              | 302                              | 466              | QT1              | 314                                |                  |                                    | 1,340                              | ***                                                 | I                  |          |
|   | 24BDB1       | 2,880                                | 302                                   |                  | 343                                |                | 303.11                           | 10-05-76         | VII              | 314                                |                  |                                    | 1,340                              |                                                     | 1                  | Log; WLE |
|   | 24CCB1       | 2,922                                | 448                                   | 16               | 356                                | P              | 341.18                           | 10-03-76         | 0-4-             | 222                                |                  | 212                                | 1 400                              | 20                                                  | ī                  |          |
|   | 27ADD1       | 2,904                                | 500                                   | 16               | 500                                | 0              | 348.70                           |                  | Qotg             | 333                                | Qsb              | 242                                | 1,400                              | 20                                                  | U                  | Log      |
|   | 27BBB1       | 2,875                                | 365                                   | 16               | 18                                 | X              |                                  | 09-23-76         | Qotg             | 283                                | QT1              | 430                                | 1,250                              | 12                                                  | I                  | Log      |
|   | 30AAD1       | 2,800                                | 360                                   | 20               | 21                                 |                | 297.75                           | 04-06-76         | Qsb              | 291                                |                  |                                    | 2,280                              | 228                                                 | _                  | Log      |
|   | 31BCD1       | 2,755                                | 350                                   |                  |                                    | X              | 252.43                           | 10-05-76         | Qsb              | 251                                |                  |                                    | 3,105                              | 259                                                 | I                  | Log      |
|   | 316001       | 2,733                                | 330                                   | 16               | 125                                | X              | 276.65                           | 09-29-76         | Qsb              | 276                                |                  |                                    | 2,380                              |                                                     | I                  | Log      |
| 1 | IN-1E-01ADC1 | 2,875                                | 480                                   | 16               | 280                                | P              | 264 10                           | 10 01 76         |                  |                                    |                  |                                    |                                    |                                                     |                    | T OU     |
| • | 03CCC1       | 2,782                                | 288                                   | 10               | 280                                | r              | 264.10                           | 10-01-76         | Qotg             | 212                                | QTi              | 383                                | 2,100                              | 1,050                                               | 1                  | Log; QW  |
|   | 04CCD1       |                                      |                                       | 16               | 200                                |                | 172.92                           | 09-28-76         |                  |                                    |                  |                                    |                                    |                                                     | 1                  |          |
|   | 05CCD1       | 2,792                                | 302                                   | 16               | 200                                | P              | 189.30                           | 10-05-76         | Qotg             | 174                                | QT1              | 276                                |                                    |                                                     | I                  | Log      |
|   |              | 2,817                                | 440                                   | 16               | 279                                | G              | 218.56                           | 09-28-76         | QT1              | 214                                |                  |                                    |                                    |                                                     | I                  | Log      |
|   | 10ACC1       | 2,798                                | 300                                   |                  |                                    |                | 175.35                           | 10-07-76         |                  |                                    |                  |                                    |                                    |                                                     | 1                  |          |
|   | 16AAC1       | 2,805                                | 335                                   | 20               |                                    |                | 196.42                           | 09-30-76         |                  |                                    |                  |                                    |                                    |                                                     | 1                  | Log      |
|   | 19ADB1       | 2,880                                | 440                                   | 16               | 18                                 | X              | 292.85                           | 10-05-76         | Qsb              | 290                                | Qotg             | 353                                | 2,700                              |                                                     | 1                  | Log      |
|   | 23CDA1       | 2,824                                |                                       |                  |                                    |                | 239.00                           | 10-07-76         |                  |                                    |                  |                                    |                                    |                                                     | I                  |          |
|   | 25DBA1       | 2,852                                | 530                                   | 20               | 35.5                               | X              | 257.55                           | 10-04-76         | Qsb              | 272                                | QT1              | 484                                | 2,700                              | 64                                                  | 1                  | Log; QW  |
|   | 26CDA1       | 2,828                                |                                       | B. Harris        |                                    |                | 249.59                           | 09-30-76         |                  |                                    |                  |                                    |                                    |                                                     | I                  |          |
|   | 34BBB1       | 2,855                                | 400                                   | 20               |                                    |                | 269.45                           | 09-23-76         |                  |                                    |                  |                                    |                                    |                                                     | I                  |          |
|   | 36AAD1       | 2,862                                |                                       |                  |                                    |                | 263.30                           | 10-06-76         |                  |                                    |                  |                                    |                                    |                                                     | 1                  |          |
| 1 | N-2E-04BBA1  | 3,005                                | 625                                   | 16               | 488                                | • F            | 400.20                           | 10-07-76         | OTA              | 200                                |                  |                                    | 2 000                              |                                                     | U                  | 1        |
|   | 05CDC1       | 2,930                                | 390                                   | 6                | 388                                | X              | 324.95 R                         | 10-01-76         | QT1              | 280                                |                  |                                    | 2,000                              |                                                     | Н                  | Log      |
|   | O7CBB1       | 2,862                                | 455                                   | 16               | 360                                | G              |                                  |                  | QT1              | 360                                | om.              | 201                                | 12                                 | 0.6                                                 | N                  | Log      |
|   | 08ADA1       | 2,933                                | 384                                   | 6                | 384                                | 0              | 263.04                           | 10-01-76         | Qotg             | 285                                | QTi              | 364                                | 1,200                              | 86                                                  | Н                  | Log      |
|   | 15DCA1       | 2,970                                | 600                                   |                  | 304                                | 0              | 328.04 R                         | 05-06-76         | QT1              | 337                                |                  |                                    | 20                                 |                                                     |                    | Log      |
|   | IJUCAI       | 2,970                                | 600                                   | 6                |                                    |                | 364.11                           | 09-23-76         | QT1(?)           |                                    |                  |                                    |                                    |                                                     | U                  |          |
| 1 | N-3E-03BAB1  | 3,320                                | 700                                   | 6                |                                    |                | cir ==                           | 00 07 76         | 001/01           |                                    |                  |                                    |                                    |                                                     | н                  |          |
| • | 18DCD1       | 3,118                                | 401                                   | 10               |                                    |                | 645.75                           | 09-27-76         | QT1(?)           |                                    |                  |                                    |                                    |                                                     |                    |          |
|   | 34ADD1       | 3,190                                | 502                                   | 12               | 19                                 | x              | Dry<br>Dry                       |                  |                  |                                    |                  |                                    |                                    |                                                     | U                  | Log; A   |
|   | 5            | 3,230                                | 302                                   |                  | .,                                 | ^              | Dry                              |                  |                  |                                    |                  |                                    |                                    |                                                     | U                  | Log; A   |
| 1 | N-4E-12CAC1  | 3,590                                |                                       | 4                |                                    |                | 21.78                            | 09-27-76         | Qa1(?)           |                                    |                  |                                    |                                    |                                                     | I                  |          |
|   | 23AAB1       | 3,500                                | 68                                    | 18               | 25                                 | F              | 20.64                            | 09-29-76         | Qa1(:)           |                                    |                  |                                    |                                    |                                                     | I                  |          |
|   | 23DDC1       | 3,400                                | 19                                    | 48               |                                    |                | 6.34                             | 09-29-76         | Qa1              |                                    |                  |                                    |                                    |                                                     | Н                  | QW       |
|   | 27ACC1       | 3,425                                | 200                                   | 16               | 18                                 | F              | 8.68                             | 09-28-76         |                  | 10                                 |                  |                                    | 200                                |                                                     | U                  | Log      |
|   | 32AAB1       | 3,370                                | 711                                   | 8                | 711                                | 0              | 617.44 R                         | 06-02-76         | QT1<br>QT1       | 10<br>602                          |                  |                                    | 200<br>45                          | 45                                                  | Н                  | Log; QW  |
|   |              |                                      |                                       |                  |                                    |                | 027.44 K                         | 00-02-70         | AII              | 002                                |                  |                                    | 43                                 | 43                                                  |                    | 2061 4"  |
| 1 | N-5E-07BBB1  | 3,680                                |                                       | 50               |                                    |                | 5.28                             | 09-27-76         |                  |                                    |                  |                                    |                                    |                                                     | S                  |          |
|   | 17BBA1       | 3,640                                | 82                                    | 8                | 53                                 | S              | 12.33                            | 04-30-76         | Qa1              | 25                                 |                  |                                    | 25                                 | 1                                                   | U                  | Log      |
|   | 18DBD1       | 3,600                                |                                       |                  |                                    |                | 4.16                             | 09-27-76         | Qa1              | 23                                 |                  |                                    | 23                                 |                                                     | U                  |          |
|   | 21DDB1       | 3,760                                |                                       | 6                |                                    |                | 25.29                            | 09-28-76         | Aur              |                                    |                  |                                    |                                    |                                                     |                    |          |
|   | 28ADC1       | 3,600                                | 300                                   | 6                | 71                                 | х              | 70.46 R                          | 09-28-76         | Qa1              | 45                                 |                  |                                    |                                    |                                                     | Н                  | Log      |

| 1S-1W-05ABC1 | 2,750 | 370   | 20 | 9     | x  | 272.84   | 09-29-76 | Qsb  | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,600 |       | 1 |              |
|--------------|-------|-------|----|-------|----|----------|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---|--------------|
| 07CBB1       | 2,450 | 225   | 6  | 183.5 | X  | 131.24   | 09-29-76 | Qotg | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,000 |       |   | Log; QW      |
| 18BCD1       | 2,597 | 400   | 12 | 169   | F  | 150      | 03-08-73 | QT1  | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 700   | 11    | H | Log; QW      |
| 19AAB1       | 2,615 | 388   | 16 | 225   | P  | 225.30   | 09-29-76 | QT1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 700   | 11    |   | Log; WLR     |
| 29CBC1       | 2,575 | 285   | 16 | 200   | P  | 193.40   | 10-06-76 | Ootg | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | I | Log          |
| 29CBD1       | 2,590 | 300   | 10 | 259   | G  | 207.06   | 10-07-76 | Qotg | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,470 | 23    | I | Log          |
| 36BBC1       | 2,800 | 550   | 8  | 13.8  | X  | 425      | 04-27-69 |      | 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | I | Log          |
| 308861       | 2,000 | 330   | 0. | 13.0  | ^  | 423      | 04-27-09 | Qsb  | 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | H | Log; QW; WLR |
| 1S-1E-06CCD1 | 2,965 | 597   | 16 | 442   | P  | 433.84   | 09-23-76 | QT1  | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 725   | 7     | U | Log; GL      |
| 07CBA1       | 2,935 |       | 20 |       |    | 409.03   | 10-05-76 | QT1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | U | 106, 01      |
| 1S-3E-14ADC1 | 3,156 |       | 3  |       |    | 494.57   | 09-29-76 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | U |              |
| 1S-4E-03ADB1 | 3,375 | 530   | 4  | 530   | 0  | 455.58   | 09-28-76 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | U |              |
| 07ADD1       | 3,214 | 695   | 6  | 673   | P  | 512.02   | 10-14-76 | QTi  | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25    | 2.1   |   |              |
| 10DAD1       | 3,300 | 525   | 10 | 485   | S  | 341.35   | 09-27-76 | QT1  | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23    | 2.1   | S | Log          |
| 17AAB1       | 3,235 | 570   | 10 | 508   | X  | 450      | 04-30-73 | QT1  | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | _ | Log          |
| 17CCC1       | 3,188 | 600   | 6  | 300   |    | 535.10   | 09-29-76 | Qb   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | U | Log; A; WLR  |
| 20BBB1       | 3,188 | 682   | 6  | 676.5 | х  | 557      | 01-25-51 | Qb   | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | Н | QW           |
| 23BBB1       | 3,260 | 563   | 6  | 533   | P  | 489.59   | 09-29-76 | Qb   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | Н | Log; WLR     |
| 30AAC1       | 3,150 | 637   | 12 | 550   | X  | 484.45   | 09-27-76 | Qb   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | Н | Log          |
| JOAACI       | 3,130 | 037   | 12 | 550   | ^  | 404.43   | 09-27-76 | Qb   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | U | Log          |
| 2S-1E-23ADD1 | 3,155 | 816   | 16 | 615   | P  | 695.11   | 09-23-76 | QT1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240   | 48    | U | Log; GL      |
| 2S-4E-02BBD1 | 3,170 | 535   | 8  | -370  | X  | 490.25   | 09-29-76 | Qb   | 528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | c | Log; QW      |
| 09DDD2       | 3,122 | 600   | 6  | 226   | X  | 418.95   | 09-27-76 | QЬ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | U | Log, qu      |
| 11BCD1       | 3,148 | 660   | 20 | 181.5 | X  | 450.43   | 09-27-76 | QЬ   | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,150 | 10    | U | Log          |
| CI 23DDB1    | 3,106 | 1,035 | 16 |       |    | 350.45   | 09-29-76 | Qb   | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,150 |       | U | Log; GL      |
| 25BDD1       | 3,106 | 600   | 16 | 227   | X  | 271.11   | 09-29-76 | QЬ   | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | U | Log, GL      |
| 27DDC1       | 3,080 | 540   | 16 | 140   | X  | 248      | 09-20-74 | QЬ   | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,200 | 9.8   | I |              |
| 27DDD1       | 3,080 | 1,190 | 20 | 149   | X  | 253.08   | 09-30-76 | Qb   | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,200 | 21    | i | Log; WLR     |
| 28ABD1       | 3,082 | 621   |    |       |    | 285      | 10-08-76 | 1    | Total Personal Property of the Party of the | 2,200 | 21    |   | C; WLR       |
| 34AAC1       | 3,078 | 1,100 | 16 | 40    | P  | 247.86   | 09-30-76 | Qb   | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | 1 |              |
| 36DCC1       | 3,080 | 575   | 16 | 162   | P  | 244.19   | 09-29-76 | Qb   | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,500 |       | ī | Log          |
| 36DCC2       | 3,080 | 380   | 14 | 312   | X  | 242.76   | 09-30-76 | Qb   | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,650 | 1,325 | ī | Log; QW      |
|              | .,    |       |    |       |    |          | 0, 30 70 | 40   | 23,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,630 | 1,323 |   | Log          |
| 2S-5E-01DDA1 | 3,360 | 295   | 14 | 31    | X  | 187.30   | 09-28-76 | Qb   | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       | U | Log          |
| O3BAB1       | 3,300 |       | 6  |       |    | 272.14   | 10-01-76 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | н | шов          |
| 11BAA1       | 3,300 | 388   | 6  | 388   | .0 | 349.49   | 09-30-76 | Qb   | 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30    |       | н | Log; QW      |
| 11DAB1       | 3,315 |       |    |       |    | 325.80 R | 09-30-76 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | I | 208, 4"      |
| 12BCD1       | 3,300 |       | 18 |       |    | 354.18   | 09-30-76 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | Ü |              |
| TZBCDI       |       | 0.0   |    |       |    |          |          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |   |              |
| 12BDB1       | 3,332 | 865   |    |       |    | 300.70   | 04-30-76 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | I |              |

Table 2. Records of wells in the Mountain Home plateau area (Continued)

|              | Altitude<br>of land    | Reported                           | Ca               | sing                             |                |               |                      |                  | Pepth                                 |                  | Depth                                 |                        |                                  |             |            |
|--------------|------------------------|------------------------------------|------------------|----------------------------------|----------------|---------------|----------------------|------------------|---------------------------------------|------------------|---------------------------------------|------------------------|----------------------------------|-------------|------------|
|              | (feet<br>above<br>mean | depth<br>of well<br>(feet<br>below |                  | Feet<br>below<br>land<br>surface |                | Feet<br>below | r level              |                  | to major<br>aquifer<br>(feet<br>below |                  | to minor<br>aquifer<br>(feet<br>below | Reported               | Reported<br>specific<br>capacity | Use         |            |
| Well number  | sea<br>level)          | land<br>surface)                   | Diameter<br>(in) | to first<br>perforation          | Well<br>finish | land          | Date<br>measured     | Major<br>aquifer | land<br>surface)                      | Minor<br>aquifer | land<br>surface)                      | discharge<br>(gal/min) | (gal/min)/ft<br>of drawdown      | of<br>water | Remarks    |
| 184441       | 3,190                  | 625                                | 10               |                                  |                | 145           | 08-10-66             | Qb               | 506                                   |                  |                                       |                        |                                  | U           | Logs MI P  |
| 22BDA1       | 3,220                  | 545                                | 12               | 545                              | 0              | 316.44        | 10-01-76             | Qb               | 340                                   |                  |                                       |                        |                                  | U           | Log; WLR   |
| 23BBC1       | 3,245                  | 421                                | 8                | 421                              | 0              | 324.32        | 10-01-76             | QЬ               | 300                                   |                  |                                       | 15                     |                                  | В           |            |
| 24BCB1       | 3,381                  | 430                                | 14               | 13                               | X              | 329           | 07-09-68             | Qb               | 376                                   |                  |                                       |                        |                                  | U           | Log; QW    |
| 26BDB1       | 3,205                  | 428                                | 8                |                                  |                | 307.41        | 10-08-76             |                  |                                       |                  |                                       |                        |                                  | U           | Log; A; W  |
| 29CCD1       | 3,120                  |                                    |                  |                                  |                | 278.61        | 09-29-76             | Qb               |                                       |                  |                                       |                        |                                  |             | 4944       |
| 30DBC1       | 3,108                  | 1,250                              | 16               | 163                              | X              | 269.66        | 04-09-76             | Qb               | 260                                   |                  |                                       | 1 700                  |                                  | Н           | QW         |
| 31CDD1       | 3,090                  | 300                                |                  |                                  |                | 251           | 09-30-76             | do               | 200                                   |                  |                                       | 1,700                  | 4.2                              | I           | Log        |
| 36BBB1       | 3,190                  | 356.9                              | 6                | 50                               | х              | 281.71        | 09-29-76             | Qb               |                                       |                  |                                       |                        |                                  | U           | C; WLR     |
| 2S-6E-11DAC1 | 3,400                  | 1,620                              | 12               | 1,040                            | x              | 106.15        | 09-28-76             | Qb               |                                       |                  |                                       |                        |                                  | U           |            |
| 23CDA1       | 3,400                  |                                    |                  |                                  |                | 7.20 P        | 05-03-76             |                  |                                       |                  |                                       |                        |                                  | S           |            |
| 32BAD1       | 3,510                  | 564                                | 12               | 7                                | x              | 505           | 09-10-66             | Qb               |                                       |                  |                                       |                        |                                  | U           | Log; A; WI |
| 2S-7E-13BCB1 | 4,720                  | 364.9                              | 6                | 130                              | P              | 165.20        | 10-01-76             | Tiv              | 410                                   |                  |                                       |                        |                                  | U           | Log        |
| 3S-5E-06CBB1 | 3,080                  |                                    |                  |                                  |                | 242.24        | 00 20 76             |                  |                                       |                  |                                       |                        |                                  |             |            |
| 07BDD1       | 3,074                  | 497                                | 12               | 240                              | P              |               | 09-30-76             | 01               | 225                                   |                  |                                       |                        |                                  | I           |            |
| 07DBB1       | 3,074                  | 497                                | 12               | 240                              |                | 242.24 240.88 | 09-27-76<br>10-01-76 | Qb               | 235                                   |                  |                                       | 320                    |                                  | U           | Log        |
| 3S-6E-01DDD1 | 3,275                  | 100                                | 40               | 38                               | x              | 32.15         | 05-04-76             | Qb               | 38                                    |                  |                                       |                        |                                  | н           | Log        |
| 02ACA1       | 3,275                  |                                    |                  |                                  |                | 62.22         | 09-30-76             |                  |                                       |                  |                                       |                        |                                  | I           | 200        |
| 09DCD1       | 3,200                  | 200                                | 7                | 140                              | P              | 125.67        | 09-30-76             | Qb               | 140                                   |                  |                                       | 60                     |                                  | Н           | Log; QW    |
| 10CDD1       | 3,210                  |                                    | 5                |                                  |                | 54.07         | 09-30-76             |                  |                                       |                  |                                       | 3F 1375                |                                  | Н           | rob, du    |
| 10DBA1       | 3,225                  | 394                                | 16               | 50                               | P              | 37.90         | 10-05-76             | Qa1              |                                       | Qb               | 146                                   | 720                    | 3                                | I           | Log        |
| 11ACB1       | 3,243                  | 200                                | 6                | 26                               | X              | 28.30         | 05-12-76             | QЪ               |                                       | do               | 140                                   | 15                     |                                  | c           | Log        |
| 11CBC1       | 3,230                  | 28                                 | 14               | 8                                | P              | 14.63         | 09-30-76             | Qa1              | 24                                    |                  |                                       | 50                     | 120                              | I           | Log        |
| 11DCD1       | 3,243                  | 140                                | 8                | 30                               | X              | 20.45         | 09-30-76             | Qb               | 35                                    |                  |                                       | 30                     | 120                              | I           |            |
| 12DBA1       | 3,262                  | 370                                | 14               | 21                               | X              | 40.08         | 10-01-76             | Qb               | 57                                    |                  |                                       |                        |                                  | I           | Log        |
| 13AAD1       | 3,250                  | 525                                | 12               | 10                               | X              | 61.84 P       | 05-04-76             | Qb               | 35                                    |                  |                                       | 1,485                  |                                  | ī           | Log        |
| 13BBA1       | 3,240                  | 150                                | 12               |                                  |                | 29.30         | 09-28-76             | Qb               |                                       |                  |                                       | 270                    |                                  | U           | Log        |
| 13BCC1       | 3,270                  |                                    | 8                |                                  |                | 38.09         | 05-17-76             |                  |                                       |                  |                                       | 270                    |                                  | U           |            |
| 14ABA1       | 3,235                  |                                    | 13               |                                  |                | 106.41 P      | 05-10-76             |                  |                                       |                  |                                       |                        |                                  | S           |            |
| 14CDD1       | 3,186                  | 253                                | 8                | 65                               | X              | 131.67        | 09-30-76             | Qb               | 230                                   |                  |                                       |                        |                                  |             |            |
| 15BCD1       | 3,195                  | 402                                | 8                | 175                              | X              | 168.06        | 09-30-76             | Qb               | 246                                   |                  |                                       |                        |                                  | H           | Log        |
| 15DDA1       | 3,190                  | 300                                | 6                | 85                               |                | 142.07        | 09-30-76             | Qb               | 285                                   |                  |                                       | 30                     |                                  | U           | Log        |
| 24CDA1       | 3,150                  | 550                                |                  |                                  |                | 400.96        | 10-05-76             | QTg              | 420                                   |                  |                                       | 30                     |                                  | Н           | Log        |
| 26ADA1       | 3,150                  | 940                                | 24               | 78                               |                | 400.75        | 05-19-76             | Ob               | 120                                   |                  |                                       | 1,200                  | a female la                      | U           | Log        |
| 27ACD1       | 3,163                  | 475                                | 8                | 79                               |                | 197.38        | 10-05-76             | Qb               |                                       |                  | 1 1                                   | 1,200                  |                                  | P           | Log        |
| 27CDD1       | 3,156                  | 500                                | 10               | 12                               |                | 411.29        | 06-07-76             | Qb               | 428                                   |                  |                                       |                        |                                  | U           | Log        |
| 33AAD1       | 3,145                  | 500                                | 6                | 18                               |                | 395.75        | 05-21-76             | Qb               | 420                                   |                  |                                       | 20                     |                                  | H           | Log        |
| 34DDD1       | 3,135                  | 350                                | 8                | 18.5                             |                | 149.60 R      | 05-21-76             | Qb               | 153                                   |                  |                                       | 30                     |                                  |             | Log; QW    |
| 35ABB1       | 3,135                  | 14.5                               | 12               | 14.5                             | o              | 3.15          | 09-28-76             | Qal              | 133                                   |                  |                                       |                        |                                  |             | Log        |
| 35BCC1       | 3,145                  | 902                                | 12               | 6                                |                |               |                      |                  |                                       |                  |                                       |                        |                                  |             | QW         |
| 36ADD1       | 3,122                  | 902                                | 24               | 0                                | X              | 398.14        | 09-28-76             | Qb<br>O-1        |                                       |                  |                                       |                        |                                  |             | Log; GL    |
| JUNDDI       | 3,122                  |                                    | 24               |                                  | Λ.             | 9.40          | 10-06-76             | Qa1              |                                       |                  |                                       |                        |                                  | U           |            |

| 3S-7E-01ACA1     | 3,747   | 175  | 6    |       |   | 149.53   | 10-01-76             |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | н |             |
|------------------|---------|------|------|-------|---|----------|----------------------|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|-------------|
| 03CDC1           | 3,460   | 411  | 6    |       |   | 36.53    | 09-29-76             | QЬ |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Н | QW          |
| 07BDD1           | 3,280   | 200  | 6    | 22.5  | X | 41.56    | 10-01-76             | Qb | 50  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Н |             |
| 08DBB1           | 3,313   | 225  | 6    |       | X | 70.00    | 10-01-76             | Qb | 76  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   | Log         |
| 18CAA1           | 3,270   | 250  | 6    | 20    | X | 49.67    | 10-01-76             | QЬ | 76  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | H | Log         |
| 198881           | 3,230   | 261  | 8    | 19    | X | 113.62 R | 09-29-76             | Qb | 90  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Н | Log; QW     |
| 20BCC1           | 3,295   | 360  | 12   | 6     | X | 196      | 07-17-67             | QЬ | 203 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | S | Log         |
| 30BBB1           | 3,172   | 300  |      |       | ^ | 73.16    | 10-04-76             | QU | 203 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | U | Log; A; WLR |
| 31ADA1           | 3,182   | 130  | 12   | 4.6   | x | 95       | 06-01-55             | Qb | 94  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1 |             |
| JIRDAI           | 3,102   | 130  |      | 4.0   | ^ | 93       | 00-01-33             | QU | 74  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | U | Log; WLR    |
| 4S-3E-23CDD1     | 2,917   | 600  | 20   | .65.5 | х | 243.28   | 09-28-76             | Qb | 287 | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9 | U | Log         |
| 4S-4E-30DDB1     | 2,902   | 500  | 16   | 200   | F | 238.19   | 09-22-76             | Qb | 225 | 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26  | I | Log         |
| 31DDA1           | 2,890   | 387  | 16   | 226   | P | 222      | 07-10-74             | Qb | 172 | 1,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13  | I | Log; WLR    |
| 32DDC1           | 2,925   | 395  | 12   | 275   | P | 269.27   | 09-30-76             |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | I | Seg, mak    |
| 4S-5E-09DCB1     | 3,045   | 500  | 8    | 20    | x | 365.40 P | 09-22-76             | QЪ |     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | н | Log; QW     |
| 10CAC1           | 3,080   | 706  | 20   | 18    | X | 403.60 R | 09-22-76             | Qb | 388 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | I |             |
| 10DDA1           | 3,075   | 735  | 20   | 70    | X | 393.87 R | 09-22-76             | Qb | 341 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   | Log         |
| 13DDA1           | 3,100   | 578  | 20   | 10    | X | 422.33   | 09-21-76             | QЬ | 398 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | I | Log         |
| 15BBC1           | 3,058   | 500  | 6    | 20    | X | 387.18   | 09-22-76             | QЬ | 390 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | I | Log         |
| 19ABC1           | 3,002   | 485  | 18   | 8     | X | 336.55 P | 05-17-76             | Qb |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250 | H | Log         |
| 19CBA1           | 3,000   | 490  | 18   | 4     | X | 344.80   | 10-08-76             | Qb | 321 | 2,250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250 | I | Log         |
| 21CAD1           | 2,995   | 588  | 8    | 299   | P | 316      | 10-04-53             | Qb | 321 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1 | Log         |
|                  | 3,019   | 61.0 | 10   | 425   | F | 361.70   | 09-23-76             | QЬ |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | P | Log; WLR    |
|                  | 3,092   | 553  | 8    | 6     | X | 412.28   |                      | Qb |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | P | Log         |
| 24AAB1<br>25BBC1 | 3,048   | 530  | 0    | 0     | A |          | 09-22-76             | Qb |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | U | Log         |
| 25DDD1           | 3,059   | 330  | 8    |       |   | 384.54   | 09-28-76<br>04-15-76 | QЬ |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | I | Log; QW     |
| 27BCD1           | 2,999   | 409  | 8    | 330   | P | 399.98   |                      | Qb | 220 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | U |             |
|                  |         |      | 8    | 330   |   | 330      | -42                  | Qb | 330 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150 | P | Log; WLR    |
| 27BDB1           | 2,998   | 425  | _    | 227   | P | 330      | -43                  | QЬ |     | AND THE RESERVE OF THE PARTY OF |     | P | Log; WLR    |
| 28BAD1           | 2,992   | 604  | 16   | 337   | P | 324.75   | 09-23-76             | QЬ | 323 | 1,950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98  | P | Log         |
| 33CDC1           | 2,996   | 422  |      |       |   | 326      | -53                  | QЬ | 330 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | P | Log; WLR    |
| 36CAD1           | , 3,038 | 460  |      |       |   | 378.30   | 09-22-76             |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | I |             |
| 4S-6E-02DAA1     | 3,112   | 420  | 8    | 27    | x | 327.30   | 06-16-76             | Qb | 350 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | н | Log         |
| 07CBB1           | 3,129   | 504  | 6    | 18.8  | X | 420.55   | 09-27-76             | QЪ | 417 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6   |   | Log         |
| 10DBC1           | 3,131   | 510  | 6    | 19    | X | 426.07   | 09-27-76             | QЬ |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Н | Log         |
| 11CDC1           | 3,094   | 291  | 8    | 20    | X | 151.97   | 09-27-76             | QЬ | 160 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | H | Log         |
| 12DAA1           | 3,096   | 400  | 10   | 50    | X | 298      | 03-31-72             | QЬ | 225 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Н | Log; WLR    |
| 13ABA1           | 3,088   | 416  | . 16 | 39    | X | 132.90   | 04-22-76             | QЬ | 101 | 2,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68  | I | Log         |
| 14ACA1           | 3,084   |      |      |       |   | 360.30   | 09-27-76             |    |     | 7,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00  |   |             |
| 14CCB1           | 3,073   | 525  | 6    | 22    | X | 362      | 03-19-74             | QЬ | 305 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Н | Log: WLR    |
| 15BCB1           | 3,103   | 500  | 6    | 18    | X | 382      | 04-21-76             | Qb |     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | н | Log; WLR    |
| 19BAC1           | 3,085   | 537  | 18   | 19    | X | 403.00   |                      |    | 400 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |             |
| TABACT           | 3,085   | 537  | 18   | 19    | Х | 403.00   | 09-28-76             | QЬ | 400 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | I | Log         |
|                  |         |      |      |       |   |          |                      |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |             |

Table 2. Records of wells in the Mountain Home plateau area (Continued)

|             | Altitude           |          | Ca       | sing        |        |          |          | 11/11/11 |                  |         |          |           |              |       |        |
|-------------|--------------------|----------|----------|-------------|--------|----------|----------|----------|------------------|---------|----------|-----------|--------------|-------|--------|
|             | of land<br>surface | Reported |          | Feet        |        | Vater    | r level  |          | Depth            |         | Depth    |           |              |       |        |
|             | (feet              | of well  |          | below       |        | Water    | Tevel    |          | to major         |         | to minor |           |              |       |        |
|             | above              | (feet    |          | land        |        | Feet     |          |          | aquifer<br>(feet |         | aquifer  |           | Reported     |       |        |
|             | mean               | below    |          | surface     |        | below    |          |          | below            |         | (feet    |           | specific     |       |        |
|             | sea                | land     | Diameter | to first    | Well   | land     | Date     | Water    |                  |         | below    | Reported  | capacity     | Use   |        |
| ell number  | level)             | surface) | (in)     | perforation |        |          |          | Major    | land             | Minor   | land     | discharge | (gal/min)/ft | of    |        |
| err number  | Idvel)             | surrace) | (111)    | perioration | finish | surface  | measured | aquifer  | surface)         | aquiter | surface) | (gal/min) | of drawdown  | water | Remar  |
| 19CAC1      | 3,070              | 610      | 12       | 526         | P      | 406.21   | 09-28-76 | Qb       | 385              |         |          | 2,300     | 70           | I     | Lon    |
| 20ACA1      | 3,095              | 625      | 10       | 400         | X      | 411.65   | 04-16-76 | Qb       | 485              |         |          | 1,780     | 178          | I     | Log    |
| 22CCC1      | 3,080              | 500      | 6        | 159         | X      | 392.93   | 09-28-76 | Qb       | 478              |         |          | 30        | 170          | -     | Log    |
| 24CCB1      | 3,065              | 760      | 16       | 308         | P      | 366.45   | 04-22-76 | Qb       | 432              |         |          | 2,800     | 1/0          | H     | Log;   |
| 25DDB1      | 3,058              | 596      | 16       | 216         | P      | 355.47   | 04-22-76 | Qb       | 431              |         |          |           | 140          | I     | Log    |
| 35BBD1      | 3,058              | 455      | 6        | 428         | P      | 397.40   | 09-29-76 | Qb       | 340              |         |          | 2,630     | 50           | I     | Log    |
| 35DCA1      | 3,048              | 730      | 16       | 380         | P      | 361.80   | 04-21-76 | Qb       | 360              | QTg     | 533      | 1 100     | 10           | Н     | Log    |
| 36DCB1      | 3,053              | 615      | 16       | 347         | P      | 370.51   | 09-29-76 | Qb       | 360              | dig.    | 233      | 1,100     | 18           | U     | Log    |
| S-7E-06AAA1 | 3,128              | 535      | 12       | 14          | x      | 221.05   | 10-04-76 | Qb       | 432              |         |          | 1,800     | 360          | 1     | Log    |
| 06BCB1      | 3,100              | 610      | 18       | 230         | X      | 303.30   | 09-20-76 | Qb       | 310              |         |          | 2,360     | 21           | ī     | Log    |
| 06DAA1      | 3,140              |          |          |             |        | 333.50   | 09-20-76 | Qb       | 4-1              |         |          | 2,300     | 21           | I     | Inog   |
| O7DBA1      | 3,095              | 660      | 12       | 190         | P      | 314.10   | 09-20-76 | Qb       | 305              | QTg     | 520      | 586       | 7            | T     | Log    |
| 09DCC1      | 3,152              | 862      | 20       | 630         | X      | 383.35   | 09-28-76 | Qb       | 351              | 4.6     | 320      | 1,350     | 15           | I     | Log    |
| 16BBB1      | 3,106              | 569      | 20       | 12          | X      | 320.35   | 09-20-76 | Qb       | 311              |         |          | 3,200     | 145          | I     | Log    |
| 17CAB1      | 3,088              | 383      | 8        | 20          | X      | 309.26   | 09-20-76 | Qb       | 305              |         |          | 20        | 145          | _     |        |
| 19BDB1      | 3,080              | 605      | 20       | 50          | X      | 378.39   | 10-04-76 | Qb       | 325              |         |          | 20        |              | Н     | Log    |
| 20CAA1      | 3,075              | 456      | 16       | 4           | X      | 350.70   | 09-21-76 | Qb       | 301              |         |          |           |              | I     | Log;   |
| 21CCB1      | 3,080              | 460      | 6        | 460         | 0      | 365      | 04-12-75 | QTg      | 430              |         |          | 20        |              | I     | Log    |
| 28BBA1      | 3,075              | 464      | 6        | 456         | X      | 372.89   | 09-20-76 | QTg      | 342              |         |          | 30        |              | Н     | Log; W |
| 30ADA1      | 3,055              | 170      | 6        | 42          | x      | 111.37 R | 09-20-76 | Qb       | 123              |         |          | 30<br>20  |              | H     | Log    |
| S-4E-05BBA1 | 2,885              | 360      | 16       | 180         | P      | 239.04   | 10-04-76 | QŁ       | 184              | QTg     | 220      | 1,800     | 26           | I     | Log    |
| 05CAA1      | 2,850              | 600      | 14       | 225         | P      | 202.27   | 10-04-76 | Qb       | 185              | QTg     | 226      | 2,250     | 30           | ī     | Log; Q |
| 06ADA1      | 2,855              | 354      | 12       | 280         | S      | 211.40   | 10-08-76 | QTg      | 184              | 1-0     |          | 2,250     | 30           | I     | Log, Q |
| 28ЛВВ1      | 2,750              | 405      | 8        | 366         | X      | 325      | 0465     | QЬ       | 330              |         |          |           |              | н     | Log; W |
| S-6E-01AAA1 | 3,065              | 435      | 10       | 135         | x      | 381.20   | 09-20-76 | QTg      | 385              |         |          |           |              | Н     | Log    |
| 04EBC1      | 3,035              | 492      | 16       | 167         | X      | 379.15   | 09-30-76 | Qb       |                  |         |          |           |              | I     | Log    |
| 05ABC1      | 3,037              | 407      | 18       | 407         | 0      | 379.17   | 09-30-76 | Qb       | 346              |         |          | 2,600     | 1,300        | I     | Log    |
| 06CAA1      | 3,030              | 412      | 16       | 390         | X      | 369.90   | 10-04-76 | QЪ       | 360              |         |          | 2,700     | 270          | Ü     | Log    |
| 14BAA1      | 3,030              | 408      | 8        | 30          | X      | 380.97   | 09-19-76 | QTg      |                  |         |          | 20        | 4            | Н     | Log    |
| 15BCD1      | 3,022              | 570      | 26       | 330         | P      | 377.13   | 09-28-76 | QTg      | 376              |         |          | 350       | 4            | Н     | Log; Q |
| S-7E-03ADB1 | 3,090              | 890      | 8        | 580         | P      | 411.33   | 09-20-76 | QTg      | 441              |         |          | 21        | 1            | U     | Log    |
| 16ABD1      | 3,025              | 450      | 6        | 440         | X      | 395.80   | 09-21-76 | QTg      | 449              |         |          |           |              | Н     | Log; Q |
| 24DDC1      | 2,944              | 560      | 6        | 378         | X      | 345      | 01-13-72 | QTg      | 325              |         |          | 3         |              | н     | Log: W |

Ground-water discharges as underflow beneath the western part of the area, near Kuna. The amount leaving along the Ada-Canyon County line in T. 1 N and T. 1 S (fig. 6) was estimated using available data and the following equations:

$$T \simeq 0.134 \times SC \times 2,000$$
 (1)

(Thomasson and others, 1960), and

$$Q=TILxsin\theta$$
 (2)

(Ferris and others, 1962), where:

T = transmissivity, in feet squared per day;

SC = specific capacity, in gallons per minute per foot
 of drawdown;

Q = discharge, in cubic feet per day;

I = hydraulic gradient, in feet per mile;

L = width, in miles, of section through which discharge occurs; and

 $sin\theta$  = angle correction for flow crossing section.

The underflow for each township was estimated as follows:

- T. 1 N--Assuming an average SC of 180 (gal/min)/ft of drawdown (from drillers' logs), a T of 48,200 ft²/d is calculated using equation 1. Using equation 2 and a T of 48,200 ft²/d, an I of 10 ft/mi, an L of 6 mi, and a sinθ of 0.5, the subsurface underflow through T. 1 N is 1,446,000 ft³/d, or 12,000 acre-ft annually.
- T. 1 S--Using the same equations and a  $\sin\theta$  of 0.5, an SC of  $\overline{20}$  (gal/min)/ft of drawdown, an I of 25 ft/mi, and an L of 5.5 mi, underflow through T. 1 S is 3,000 acre-ft annually.

Total underflow crossing the study area boundary to the west is thus about 15,000 acre-ft annually.

An estimate of ground-water pumpage was not made in this reconnaissance; however, as discussed in the following section on water-level fluctuations, local ground-water pumpage, based on a long-term decline of ground-water levels, has exceeded recharge in several parts of the plateau.

### Water-Level Fluctuations

Ground-water levels fall in response to discharge from an aquifer and rise in response to recharge. For purposes of analysis, fluctuations are important on both short-term (minutes, days, months) and long-term (years) bases. Hydrographs of water-level fluctuations can reveal the kind of stresses working in an aquifer and whether water in storage is either gaining or losing over the long term.

The character of the fluctuations in agricultural areas depends on whether ground water or surface water is the principal source for irrigation. Where surface water is the source, ground-water levels start to rise after the beginning of an irrigation season, as some of the applied water percolates to the saturated zone. A decline in levels is generally observed shortly after the end of the season. This decline normally continues until the start of the next season. Where ground water is the principal source, water levels start to decline at the beginning of the irrigation season. The decline continues through the season until pumping ceases. Levels then generally recover gradually.

Water levels in areas not influenced by irrigation are either relatively stable or start to rise in early spring in response to snowmelt. This rise peaks in late spring or early summer when it reverts to a gradual decline. The decline continues through fall and winter until spring snowmelt again recharges the aquifers.

Hydrographs of water levels in selected wells are shown in figures 7 and 8. The well locations are shown in figure 6. The hydrographs in figure 7 indicate seasonal fluctuations, whereas those in figure 8 indicate long-term trends, in addition to seasonal fluctuations.

Fluctuations in the western part of the plateau generally reflect the source of irrigation water. Well 2N-1W-1lADAl (fig. 7) shows fluctuations typical of an area of predominantly surface-water irrigation, where pumping effects are more or less overshadowed by recharge. Well lN-1W-27ADDl shows fluctuations typical of an area of ground-water irrigation.

Water levels in the central part of the plateau, as shown by well 1S-4E-10DAD1 (fig. 7), show no direct influence by irrigation. However, well 3S-5E-7BDD1, in an area of new agricultural development using ground water, shows a decline corresponding to the irrigation season. A longer period of record would more fully evaluate this response.

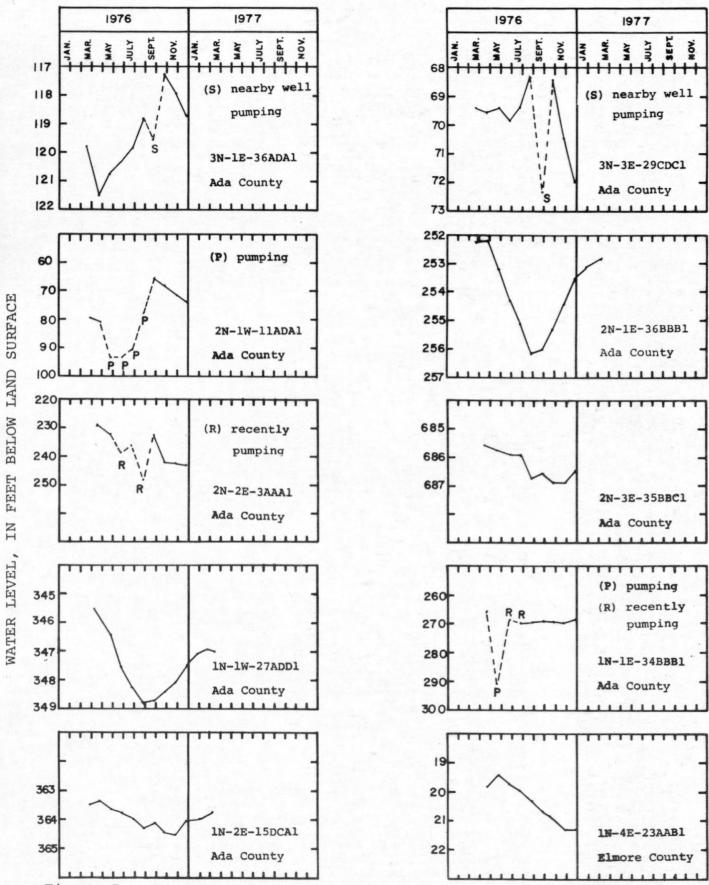



Figure 7. Ground-water levels showing short-term fluctuations in selected wells

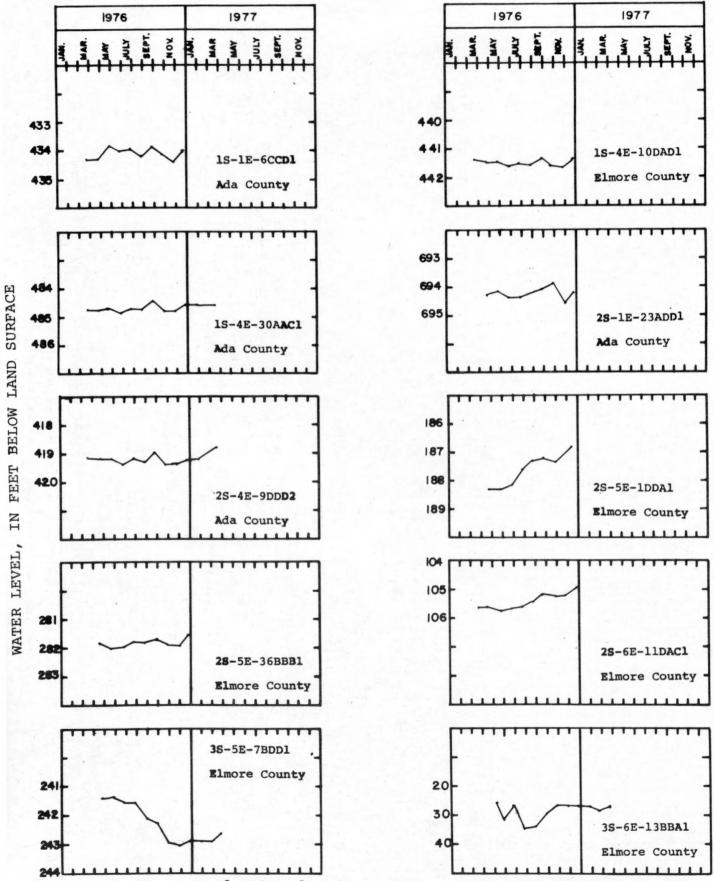



Figure 7. Ground-water levels showing short-term fluctuations in selected wells (Continued).

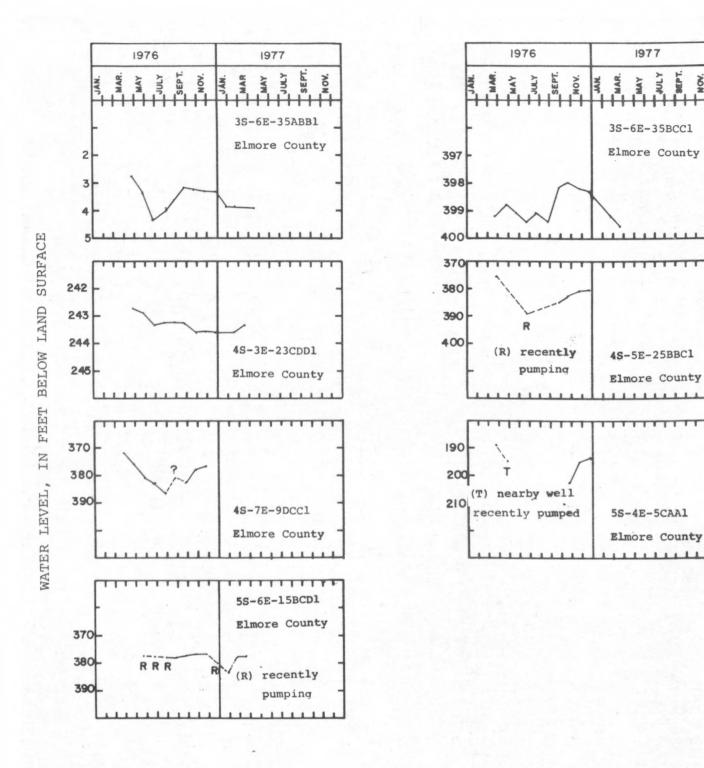



Figure 7. Ground-water levels showing short-term fluctuations in selected wells (Continued)

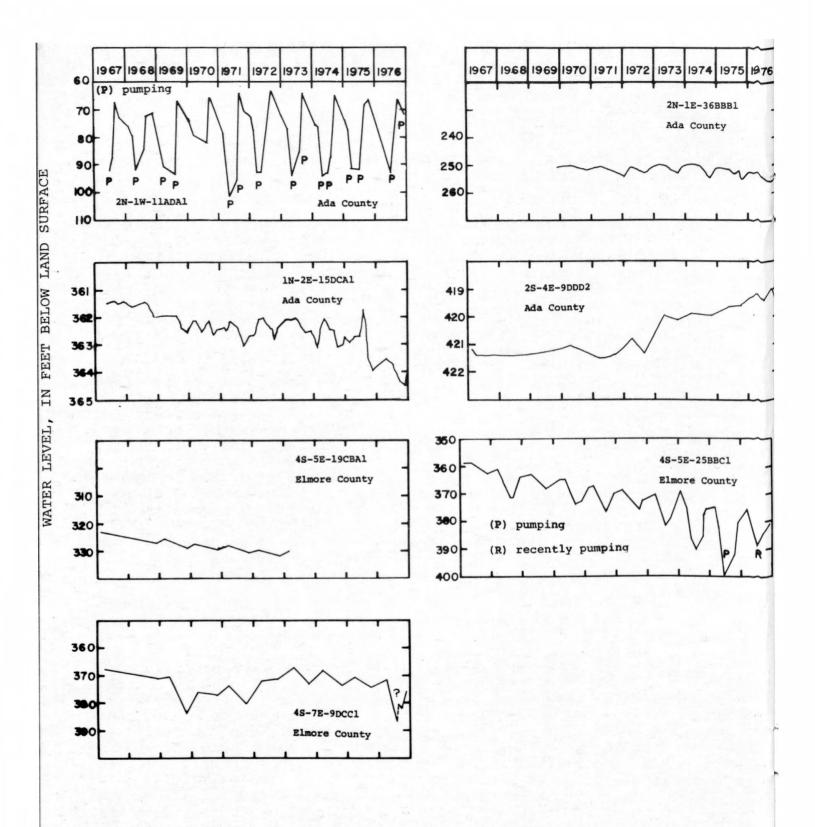



Figure 8. Ground-water levels showing long-term trends in selected wells

Fluctuations in the eastern part of the plateau are generally influenced by ground-water pumping, as shown by well 4S-7E-9DCCl (fig. 7). The slight rise in water level in August is apparently due to a brief shutdown of nearby irrigation wells.

Water levels in perched-water zones also generally fluctuate in response to ground-water irrigation. Hydrographs for wells 3S-6E-13BBAl and 35ABBl both show effects of irrigation pumping.

Hydrographs in figure 8 show several years of record in selected wells. The hydrograph for well 2N-1W-1lADA1, located in an area of extensive surface-water irrigation, presently shows a slight downward trend (based on peaks), indicating no buildup in the water table that could lead to water logging. Water levels in several wells near and in heavy ground-water pumping areas also show slight declines. For example, water levels in wells 2N-1E-36BBB1 and 1N-2E-15DCA1, south of Boise, have dropped in the last several years. Although these declines are small (½ to 2 ft/yr), they may indicate that pumpage in the area is exceeding recharge, or that the aquifers are adjusting to increasing withdrawals. Declines of about 2 to 4 ft/yr are evident south and southeast of Mountain Home, as shown by the hydrographs of wells 4S-5E-19CBA1, 4S-5E-25BBC1, and 4S-7E-9DCC1.

The hydrograph for well 2S-4E-9DDD2 (fig. 8), in the central part of the plateau, shows a rise of about 2 ft in the last 5 years, which could be due to above-normal recharge. However, new agricultural development using ground water has occurred in the area, which could reverse the rising trend.

# WATER QUALITY Chemical Composition

The chemical similarities of ground water underlying parts of the study area make it possible to identify probable recharge sources. Water derived from the Idavada Volcanics is a sodium calcium bicarbonate type and has low concentrations of dissolved solids. Ground water whose source is thought to be leakage from the Boise River between Lucky Peak and Barber Dams and possibly from Lucky Peak Reservoir is a calcium bicarbonate type, having dissolved-solids concentrations slightly lower than the calcium bicarbonate type water that is derived from runoff from the adjacent mountains (Idaho batholith). Ground water pumped in areas

where excess surface-water irrigation recharges the aquifers is mostly a sodium or calcium bicarbonate type, having dissolved-solids concentrations (900 mg/L) that are higher than the other waters (generally less than 500 mg/L).

Chemical analyses of water from 37 wells and 10 springs are listed in table 3. The locations of the sampling sites are shown in figure 9.

The cation balance of ground water in the eastern part of the plateau is shown on the trilinear plot in figure 9 (see insert A). The plot shows an orderly increase in percentage of calcium and magnesium ions and a decrease in sodium potassium ions, from the recharge area, through the ground-water system, to the discharge area. As expected, dissolved-solids concentrations (table 3) of these samples also increase as the water moves through the system. Thus, it seems that much of the ground-water recharge in the eastern plateau area is derived from precipitation on Idavada Volcanics.

The analyses of water in springs (lN-6E-35CBAlS, lN-7E-20BBBlS, and lS-8E-32CCDlS) issuing from the Idavada Volcanics suggest that spring water is chemically similar to precipitation, particularly in having low dissolved-solids concentration and low pH. The major difference is in the ratio of silica to bicarbonate. In the spring water, silica concentrations are appreciable and approximately twice those of bicarbonate, whereas in precipitation, the bicarbonate concentrations exceed those of silica. High concentrations of silica in ground water are commonly associated with rocks that contain abundant feldspar (Idavada Volcanics) and that have been leached by carbon dioxide-rich water, such as rain (or snowmelt).

Calcium versus sulfate concentrations for ground water in the area and water from silicic volcanics and quartz monzonite, as reported by White, Hem, and Waring (p. F14, 1963), are shown in figure 10. Water from silicic volcanic rocks and quartz monzonite are considered to be representative of water from the Idavada Volcanics and the Idaho batholith, respectively. The majority of water samples shown fall near a line drawn between the silicic volcanics and quartz monzonite. This suggests that most of the ground water underlying the plateau originated as precipitation on outcrops of the Idavada Volcanics and Idaho batholith.

Ground water whose source is probably leakage from the Boise River between Lucky Peak and Barber Dams and possibly Lucky Peak Reservoir shows an increase in concentrations of dissolved solids as the water moves to the southwest (figs.

Table 3. Chemical analyses of water from selected wells and springs in the Mountain Home plateau area

| WELL<br>LOCATION<br>NUMBER                                                                | TOTAL<br>DEPTH<br>OF<br>WELL<br>(F.1) | DATE                                                     | DIS-<br>SOLVED<br>SILICA<br>(SIO2)<br>(MG/L) | DIS-<br>SOLVED<br>CAL-<br>CIUM<br>(CA)<br>(MG/L) | DIS-<br>SOLVED<br>MAG-<br>NE-<br>SIUM<br>(MG)<br>(MG/L) | DIS-<br>SULVED<br>SODIUM<br>(NA)<br>(MG/L) | DIS-<br>SOLVED<br>PO-<br>IAS-<br>SIUM<br>(R)<br>(MG/L) | BICAP-<br>BONATE<br>(HCQ3)<br>(HG/L) | DIS-<br>SOLVED<br>SULFATE<br>(SO4)<br>(MG/L) | OIS-<br>SOLVED<br>CMLO-<br>HIDE<br>(CL)<br>(MG/L) | DIS-<br>SOLVED<br>FLUG-<br>RIDE<br>(F) | OIS-<br>SOLVED<br>NITRITE<br>PLUS<br>NITRATE<br>(N)<br>(MG/L) | TOTAL<br>PHOS-<br>PHORUS<br>(F)<br>(MG/L) | SOLVED<br>SOLIDS<br>(SUM OF<br>CONSTI-<br>TUENTS)<br>(HG/L) | DIS-<br>SOLVED<br>SOLIDS<br>(TONS<br>PER<br>AC-FT) | HARD-<br>NESS<br>(CA.HG)<br>(MG/L) | HON-<br>CAH-<br>HOHATE<br>HARD-<br>NESS<br>(MG/L) | PENCENT                    | SODIUM<br>AD-<br>CORP-<br>TION<br>PATTO | SPE-<br>CIFIC<br>CON-<br>UNCI-<br>ANCE<br>(WHIOS/CM<br>AT 25°C) | (IN) 15)                        | TEMPER-<br>ATURE<br>(DEG C)                  |
|-------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|------------------------------------|---------------------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------------------------------|---------------------------------|----------------------------------------------|
| 01H 01E 01ADC1<br>01H 01F 25CHA1<br>01H 01H 07ACC1<br>01H 04F 12HDH15                     | 530<br>590<br>541                     | 76-09-12<br>76-09-02<br>76-00-12<br>76-00-12<br>76-00-04 | 31<br>36<br>45<br>47<br>54                   | 22<br>17<br>52<br>20<br>26                       | 5.6<br>20<br>1.0<br>5.7                                 | 30<br>50<br>37<br>17                       | 2.6<br>2.3<br>6.8<br>4.9<br>2.0                        | 119<br>171<br>130<br>146             | 35<br>15<br>100<br>37                        | 17<br>6.8<br>43<br>15                             | .7                                     | 1.0                                                           | .02<br>.01<br>.00<br>.01                  | 23A<br>174<br>470<br>240<br>191                             | .30<br>.22<br>.54<br>.54<br>.30                    | 79<br>53<br>210<br>79              | 70                                                | 56<br>54<br>33<br>50<br>28 | 2.4<br>1.6<br>1.5<br>1.9                | 347<br>287<br>656<br>331<br>255                                 | M.1<br>7.9<br>M.0<br>M.1<br>6.7 | 25.0<br>21.0<br>22.5<br>16.5                 |
| OIN O4F 23DDC1<br>OIN O4F 32AAR1<br>OIN O4F 35DAH15<br>OIN O4F 35CHA15<br>OIN O4F 20HRH15 |                                       | 76-08-11<br>76-09-03<br>76-08-05<br>76-08-05<br>76-08-05 | 45<br>46<br>46<br>43                         | 20<br>22<br>30<br>4.7<br>2.5                     | 5.1<br>1.1<br>.3                                        | 14<br>15<br>18<br>4.5<br>3.8               | 9.1<br>2.0<br>1.8<br>1.5                               | 122<br>141<br>141<br>29<br>20        | 8.2<br>13<br>3.5<br>1.9                      | 4.9<br>3.6<br>4.4<br>1.0                          | :5                                     | 1.6<br>-31<br>-10<br>-12<br>-26                               | 77.<br>50.<br>25.<br>01.<br>50.           | 166<br>163<br>189<br>74                                     | .21<br>.05.<br>01.<br>01.                          | 66<br>75<br>96<br>16               | :                                                 | 28<br>30<br>29<br>35       | .7<br>.6<br>.8<br>.5                    | 229<br>227<br>255<br>56<br>40                                   | 7.0<br>7.5<br>8.0<br>6.1        | 13.5<br>21.0<br>13.0<br>14.0                 |
| OLS OLM OSABEL<br>OLS OLM JEABLIS<br>OLS OLM JEABLIS<br>OLS OLM JEABLIS                   | 725<br>550                            | 76-08-13<br>76-08-04<br>76-08-12<br>76-08-04<br>76-08-12 | 36<br>32<br>32<br>36                         | 16<br>67<br>36<br>19<br>27                       | 6.9<br>24<br>25<br>5.7<br>12                            | 49<br>66<br>70<br>54<br>130                | 4.7<br>5.6<br>4.9<br>4.6<br>6.7                        | 133<br>286<br>334<br>114<br>376      | 11<br>120<br>38<br>62<br>71                  | 15<br>17<br>13<br>20                              | .5<br>.4<br>.5                         | 1.4<br>8.9<br>6.7<br>3.7<br>3.1                               | .01<br>.01<br>.03<br>.01                  | 247<br>508<br>411<br>268<br>495                             | .31<br>.65<br>.50<br>.34                           | 71<br>190<br>71<br>120             | 35                                                | 58<br>35<br>43<br>68       | 2.5<br>1.8<br>2.2<br>2.8<br>5.2         | 346<br>776<br>654<br>386<br>770                                 | 7.5<br>9.1<br>9.1<br>7.0        | 25.5<br>17.0<br>16.5<br>23.0<br>16.0         |
| OIS DAE 17CCCI<br>OIS DAE 17CCCIS<br>OZN DIE ZYDCAI<br>OZN DIW 11ADAI<br>OZN DIW 14CCDI   | 130<br>130<br>350                     | 76-09-06<br>76-09-13<br>76-08-02<br>76-08-02<br>76-09-12 | 56<br>25<br>56<br>46<br>31                   | 3.5<br>77<br>63<br>15                            | 6.3<br>.7<br>31<br>37<br>1.2                            | 13<br>2.9<br>69<br>190<br>38               | 3.7<br>1.2<br>6.1<br>9.1<br>2.0                        | 115<br>14<br>398<br>381<br>127       | 2.8<br>64<br>260<br>14                       | 5.9<br>.8<br>13<br>67<br>6.8                      | .3<br>.1<br>.5<br>.7                   | 1.9<br>8.6<br>5.3                                             | 10.<br>15.<br>50.                         | 178<br>52<br>571<br>904<br>174                              | .22<br>.07<br>.71<br>1.17                          | 93<br>12<br>320<br>310<br>42       | 0                                                 | 24<br>32<br>31<br>56<br>65 | 1.7<br>4.7<br>2.5                       | 276<br>44<br>844<br>1478<br>257                                 | 7.1.<br>6.9<br>7.3<br>7.5       | 17.5<br>12.0<br>14.5<br>14.5<br>25.0         |
| 05N 03E 04CHAI<br>05N 03E 06HCCI<br>05N 03E 10HCHI<br>05N 03E 2HCACI                      | 504<br>520<br>471<br>975              | 76-08-03<br>76-08-02<br>75-08-03<br>76-08-03<br>76-08-03 | 34<br>21<br>30<br>32                         | 17<br>20<br>17<br>23                             | 1.0                                                     | 27<br>61<br>21<br>14<br>19                 | 1.7                                                    | 160<br>129<br>100<br>77<br>119       | 62<br>35<br>15<br>16<br>7.6                  | 7.6<br>7.6<br>7.3                                 | :                                      | 1.0<br>2.3<br>2.4<br>1.3<br>2.0                               | .00<br>.00<br>.03<br>.01                  | 276<br>235<br>199<br>136<br>172                             | .35                                                | 160<br>47<br>68<br>60<br>78        | 0 0                                               | 27<br>73<br>49<br>33       | 3.9<br>1.1<br>.6                        | 41A<br>301<br>241<br>193<br>232                                 | 7.1<br>0.2<br>7.7<br>7.9<br>7.4 | 19.0<br>22.5<br>19.0<br>20.0                 |
| 02N 04E 19CDC1<br>02S 04E 02HBU1<br>02S 04E 3ADCC1<br>02S 05E 11MAA1<br>02S 05F 23MHC1    | 995<br>535<br>575<br>336<br>421       | 76-08-05<br>76-08-06<br>76-08-06<br>76-08-10<br>76-08-10 | 46<br>52<br>40<br>48                         | 16<br>10<br>25                                   | 5.7<br>4.3<br>5.0<br>7.3<br>6.9                         | 10<br>11<br>33<br>34                       | 1.1<br>4.2<br>3.0<br>7.3<br>6.5                        | 75<br>101<br>77<br>167<br>139        | 9.3<br>6.9<br>20                             | 8.9<br>4.9<br>2.9<br>11<br>8.3                    | .7                                     | 5.0<br>.90<br>1.4<br>.72<br>1.3                               | .06<br>.03<br>.04<br>.01                  | 167<br>162<br>123<br>238<br>215                             | .21<br>.20<br>.15<br>.30<br>.27                    | 78<br>58<br>46<br>93<br>71         | 16                                                | 25<br>30<br>31<br>41       | 1.6<br>.7<br>1.5<br>1.6                 | 241<br>199<br>149<br>339<br>272                                 | 7.0<br>7.1<br>7.0<br>7.0        | 17.0<br>22.5<br>16.5<br>18.0<br>21.5         |
| 075 05E 29CED1<br>035 06E 09CD1<br>035 06E 33AAD1<br>035 06E 35ABD1<br>035 07E 01ACA1     | 200<br>500<br>14<br>175               | 76-0A-06<br>76-0A-09<br>76-0A-09<br>76-0A-09<br>76-0A-13 | 30<br>42<br>37<br>59                         | 28<br>34<br>7.9<br>49<br>26                      | 11 5.6                                                  | 13<br>35<br>7.5<br>42<br>10                | 2.6<br>5.4<br>2.0<br>5.7<br>5.8                        | 131<br>176<br>58<br>245<br>108       | 18<br>34<br>5.7<br>24<br>15                  | 9.9<br>17<br>2.5<br>13                            | :1                                     | 2.7<br>3.8<br>.92<br>5.8<br>2.6                               | 10.<br>50.<br>50.<br>60.                  | 207<br>270<br>104<br>326<br>209                             | .26<br>.34<br>.13<br>.41                           | 120<br>130<br>36<br>170            | 13                                                | 19<br>36<br>30<br>34<br>29 | 1.3<br>.5<br>1.4                        | 291<br>443<br>112<br>504<br>273                                 | 8.0<br>6.9<br>8.3<br>7.0<br>7.5 | 16.5<br>16.5<br>16.5<br>16.5<br>12.5<br>20.6 |
| 035 07F 19CAA1<br>045 02F 11CAA15<br>045 03F 15CA015<br>045 05E 09DCH1<br>045 05E 25HHC1  | 500                                   | 76-08-09<br>76-08-19<br>76-08-16<br>76-08-16<br>76-08-16 | 39<br>43<br>39<br>35<br>41                   | 22<br>22<br>13<br>15<br>13                       | 7.7<br>5.7<br>3.6<br>4.9<br>2.6                         | 15<br>20<br>12<br>13                       | 3.0<br>5.7<br>3.5<br>3.1<br>3.0                        | 175<br>136<br>82<br>81<br>72         | 9.9<br>6.0<br>11                             | 3.5<br>4.9<br>2.1<br>4.9<br>2.3                   | .3                                     | 1.2<br>.25<br>.69<br>1.4<br>.63                               | .04<br>.04<br>.01<br>.05                  | 167<br>181<br>123<br>133<br>117                             | .21<br>.22<br>.15<br>.17                           | 78<br>46<br>56                     |                                                   | 27<br>34<br>31<br>31       | 1.0                                     | 249<br>248<br>148<br>182<br>178                                 | 7.9<br>7.8<br>8.2<br>7.8<br>8.2 | 16.0<br>17.0<br>19.5<br>17.5<br>24.0         |
| 045 04E 22CCC1<br>045 07E 1940H1<br>055 04E 05CAA1<br>055 04E 110FR15<br>055 04E 28AHR1   | 500<br>605<br>600                     | 76-08-11<br>76-08-10<br>76-08-11<br>76-08-19<br>76-08-11 | 65<br>37<br>36                               | 30<br>23<br>11<br>14<br>30                       | 11<br>8.1<br>3.5<br>3.6<br>7.9                          | 15<br>27<br>12<br>11<br>16                 | 3.4<br>5.6<br>4.1<br>3.0                               | 111<br>144<br>51<br>79<br>141        | 29<br>19<br>6.0<br>6.9                       | 17<br>9.3<br>2.1<br>3.1<br>3.3                    | 1.0<br>.3<br>.3                        | 1.7<br>1.1<br>.76<br>.A7<br>.35                               | 50.<br>10.<br>50.                         | 209<br>234<br>120<br>121<br>166                             | .27<br>.30<br>.15<br>.15                           | 120<br>91<br>42<br>51              | 27<br>0<br>0                                      | 31<br>36<br>31<br>21       | 1.2<br>.8<br>.7                         | 309<br>306<br>146<br>150<br>292                                 | 8.2<br>8.0<br>8.4<br>8.2<br>8.0 | 17.5<br>26.0<br>21.0<br>19.0<br>22.5         |
| 055 DAE 154CD1                                                                            | 570<br>450                            | 76-08-11<br>76-08-10                                     | 51                                           | 54<br>51                                         | 12                                                      | 19                                         | 7.0                                                    | 170                                  | 68<br>77                                     | 45                                                | 1.3                                    | 1 1.0                                                         | .03                                       | 353<br>369                                                  | .45                                                | 220                                | #1<br>24                                          | 16                         | 1:1                                     | 545<br>515                                                      | F. 2                            | 22.0                                         |

Note: In all analyses, carbonate (CO<sub>5</sub>) concentrations were zero (0), except in well 05S 04E 05CAA1, where it was 1 mg/L.

<sup>&#</sup>x27;Micromhos per centimeter at 25°C

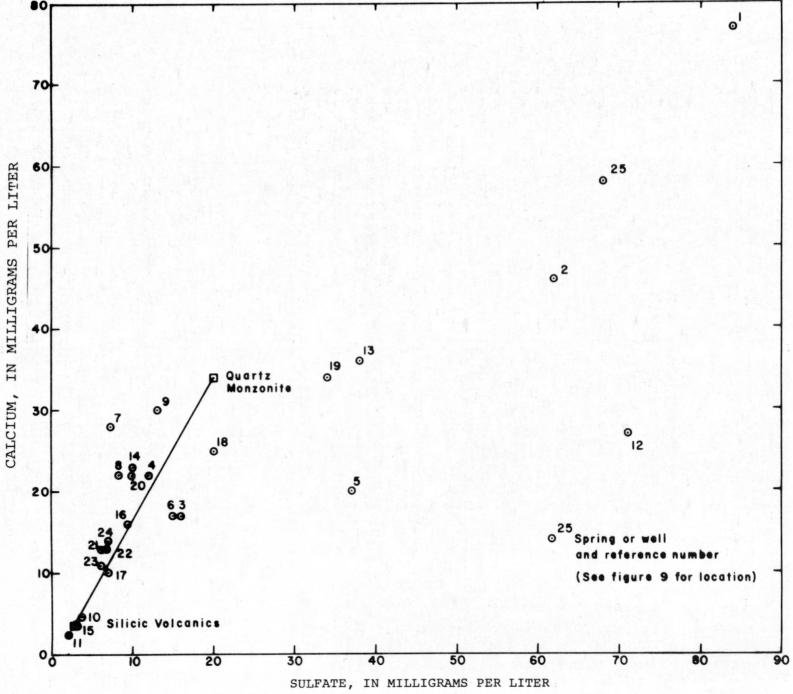



FIGURE 10. -- Calcium and sulfate concentrations in selected waters

6 and 9 and table 3). However, ground water near the recharge source (well 2N-3E-10BCB1) is a calcium bicarbonate type, whereas water downgradient tends toward a sodium bicarbonate type.

The chemical quality of water derived from areas where surface-water-irrigation excess recharges the aquifers in the western and northwestern margins of the study area is probably similar to that issuing from spring 1S-2W-28ABB1S (just outside the study area, to the west).

Waters in the perched-water zones near Mountain Home vary in chemical composition. Generally, these waters are a sodium or calcium bicarbonate type having dissolved-solids concentrations higher than water in the regional aquifer.

The chemical quality of the ground water underlying the plateau, with few exceptions, is satisfactory for all present uses. However, in a few places, mostly along the extreme western margin of the plateau where excess surfacewater-irrigation probably is the principal source of recharge, the chemical suitability for domestic use may be questionable. Concentrations of dissolved solids are somewhat high in wells 2N-1W-1lADAl (north of Kuna, outside the study area), 2N-1E-29DCAl, and 1S-1W-7CBBl, being 904, 571, and 508 mg/L, respectively. More importantly, perhaps, nitrite plus nitrate as nitrogen concentrations of these waters approach 10 mg/L, indicating contamination from land-surface sources. Nitrogen concentrations in excess of 10 mg/L may cause blood disorders in infants (National Academy of Sciences - National Academy of Engineering, 1973).

# Isotopic Composition

The stable isotopes, deuterium (D), and oxygen-18 (180), can yield valuable information about the source, age, and environment of ground water. Basically, all other factors considered, the 180 and D composition of water decreases with decreasing temperature at the time of condensation (precipitation). Thus, waters can be compared with respect to their isotopic composition as to source area, and inferences can be drawn as to climatic conditions (warm or cold) at the time of their precipitation (see Rightmire and others, 1976, p. 57). Water samples for D and 180 analyses were collected from the aquifers as an aid toward understanding the flow system. Specifically, the following questions are significant: (1) Are the aquifers filled with fossil water? (2) Is a deep-circulating system feeding the

aquifers from a distant source, such as the Bruneau-Grand View area south of the plateau? and (3) Is the isotopic composition of the ground water compatible with local meteoric (atmospheric) water?

Stable isotopic variations are expressed in delta units  $(\delta)$ , defined as:

$$\delta = \left[ \frac{R \text{ sample-R standard}}{R \text{ standard}} \right] x1,000 \quad \text{where}$$

δ = reporting unit in o/oo (parts per mil, which is per 1,000),

R sample = ratio of isotopic concentration, for example, 180/160, or D/H (deuterium/hydrogen), of the sample, and

R standard = ratio of isotopic concentration of the standard SMOW (Standard Mean Ocean Water) (Craig, 1961a).

Reported values of D and  $^{1\,8}\text{O}$  in this report are accurate to +0.5 o/oo and +0.1 o/oo, respectively.

Isotope ratios were determined for samples taken from 15 wells and 10 springs at various points in the flow system, including the suspected recharge areas, to enable comparison of meteoric water with water in the aquifers. The isotopic analyses are given in table 4; the locations of the sample sites are shown in figure 9. Comparison of waters as to isotopic compositions is shown in figure 11.

As shown in figure 11, all samples cluster near the meteoric line (Craig, 1961b) and differ only in their position up or downslope. The more depleted the sample in 180 and D, the further downslope the plot (to the left in figure 11). Water from springs thought to represent current recharge water (samples 7, 9, 10, 15, and 11) show an orderly depletion in 180 and D with increased altitude (see fig. 9), consequently, decreased temperature at the time of condensation.

The isotopic composition of sample 11 is comparable with the downgradient spring samples 12, 13, 20, 21, and 24, and perched-water sample 1. Sample 1 is thought to be leakage from the New York Canal, hence, the Boise River. Samples 12 and 13 also represent water from Boise River drainage basin. As the Boise River basin is higher (peak altitude 9,867 ft) and cooler than the Mountain Home plateau, the river water would be expected to be depleted in <sup>18</sup>O and D relative to present-day precipitation on the plateau. No sample of Boise River water was collected to verify this.

Table 4. Isotopic analyses of water from selected wells and springs in the Mountain Home plateau area

| 2N-1E-29DCA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well or spring<br>location<br>number | δD<br>SMOW<br>(0/00) | δ <sup>18</sup> Ο<br>SMOW<br>(0/00) | Δ <sup>18</sup> Ο (0/00) | Reference<br>number<br>(fig. 9) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|-------------------------------------|--------------------------|---------------------------------|
| 2N-2E-04CBA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2N-1E-29DCA1                         | -126.8               | -17.6                               | 50                       | 1                               |
| 2N-3E-10BCB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                      |                                     |                          |                                 |
| 2N-4E-19CDC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                      | -17.5                               |                          |                                 |
| 1N-1W-15DAA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | -120.4               |                                     |                          |                                 |
| 1N-1E-25DBA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lN-lW-15DAAl                         | -132.9               | -16.9                               | + .96                    | 5                               |
| 1N-4E-12BDB1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | -128.8               | -16.7                               |                          |                                 |
| 32AAB1 -125.0 -16.6 + .28 8 1N-5E-35DAB1S -117.8 -15.4 + .58 9 1N-6E-35CBA1S -119.9 -15.7 + .54 10 1N-7E-20BBB1S -126.1 -17.659 11 1S-2W-28ABB1S -125.6 -17.885 12 1S-1W-32AAD1S -129.5 -17.616 13 1S-4E-17CCC1 -128.4 -17.410 14 1S-8E-32CCD1S -124.6 -16.6 + .23 15 2S-4E-02BBD1 -129.1 -17.3 + .09 16 36DCC1 -127.1 -16.4 + .74 17 2S-5E-11BAA1 -129.4 -16.4 +1.03 18 3S-6E-09DCD1 -118.2 -16.217 19 4S-2E-11CAA1S -130.8 -17.4 + .20 20 4S-3E-35CAD1S -128.8 -17.3 + .05 21 4S-5E-25BBC1 -128.5 -17.3 + .01 22 5S-4E-05CAA1 -127.8 -16.6 + .63 23 11DCB1S -130.2 -17.827 24 5S-6E-15BCD1 -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                              | lN-4E-12BDB1S                        | -115.5               | -15.4                               |                          |                                 |
| 1N-6E-35CBA1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32AAB1                               | -125.0               | -16.6                               | + .28                    |                                 |
| 1N-7E-20BBB1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lN-5E-35DAB1S                        | -117.8               | -15.4                               | + .58                    | 9                               |
| 1S-2W-28ABB1S       -125.6       -17.8      85       12         1S-1W-32AAD1S       -129.5       -17.6      16       13         1S-4E-17CCC1       -128.4       -17.4      10       14         1S-8E-32CCD1S       -124.6       -16.6       +.23       15         2S-4E-02BBD1       -129.1       -17.3       +.09       16         36DCC1       -127.1       -16.4       +.74       17         2S-5E-11BAA1       -129.4       -16.4       +1.03       18         3S-6E-09DCD1       -118.2       -16.2      17       19         4S-2E-11CAA1S       -130.8       -17.4       +.20       20         4S-3E-35CAD1S       -128.8       -17.3       +.05       21         4S-5E-25BBC1       -128.5       -17.3       +.01       22         5S-4E-05CAA1       -127.8       -16.6       +.63       23         11DCB1S       -130.2       -17.8      27       24         5S-6E-15BCD1       -125.0       -16.7       +.18       25 | LN-6E-35CBA1S                        | -119.9               | -15.7                               | + .54                    | 10                              |
| 1S-1W-32AAD1S     -129.5     -17.6    16     13       1S-4E-17CCC1     -128.4     -17.4    10     14       1S-8E-32CCD1S     -124.6     -16.6     +.23     15       2S-4E-02BBD1     -129.1     -17.3     +.09     16       36DCC1     -127.1     -16.4     +.74     17       2S-5E-11BAA1     -129.4     -16.4     +1.03     18       3S-6E-09DCD1     -118.2     -16.2    17     19       4S-2E-11CAA1S     -130.8     -17.4     +.20     20       4S-3E-35CAD1S     -128.8     -17.3     +.05     21       4S-5E-25BBC1     -128.5     -17.3     +.01     22       5S-4E-05CAA1     -127.8     -16.6     +.63     23       11DCB1S     -130.2     -17.8    27     24       5S-6E-15BCD1     -125.0     -16.7     +.18     25                                                                                                                                                                                                 | lN-7E-20BBBlS                        | -126.1               | -17.6                               | 59                       | 11                              |
| 1S-4E-17CCC1       -128.4       -17.4      10       14         1S-8E-32CCD1S       -124.6       -16.6       +.23       15         2S-4E-02BBD1       -129.1       -17.3       +.09       16         36DCC1       -127.1       -16.4       +.74       17         2S-5E-11BAA1       -129.4       -16.4       +1.03       18         3S-6E-09DCD1       -118.2       -16.2      17       19         4S-2E-11CAA1S       -130.8       -17.4       +.20       20         4S-3E-35CAD1S       -128.8       -17.3       +.05       21         4S-5E-25BBC1       -128.5       -17.3       +.01       22         5S-4E-05CAA1       -127.8       -16.6       +.63       23         11DCB1S       -130.2       -17.8      27       24         5S-6E-15BCD1       -125.0       -16.7       +.18       25                                                                                                                                 | ls-2W-28ABBls                        | -125.6               | -17.8                               | 85                       | 12                              |
| 1S-8E-32CCD1S     -124.6     -16.6     + .23     15       2S-4E-02BBD1     -129.1     -17.3     + .09     16       36DCC1     -127.1     -16.4     + .74     17       2S-5E-11BAA1     -129.4     -16.4     +1.03     18       3S-6E-09DCD1     -118.2     -16.2    17     19       4S-2E-11CAA1S     -130.8     -17.4     + .20     20       4S-3E-35CAD1S     -128.8     -17.3     + .05     21       4S-5E-25BBC1     -128.5     -17.3     + .01     22       5S-4E-05CAA1     -127.8     -16.6     + .63     23       11DCB1S     -130.2     -17.8    27     24       5S-6E-15BCD1     -125.0     -16.7     + .18     25                                                                                                                                                                                                                                                                                                    | ls-lW-32AADls                        | -129.5               | -17.6                               | 16                       | 13                              |
| 2S-4E-02BBD1 -129.1 -17.3 + .09 16 36DCC1 -127.1 -16.4 + .74 17 2S-5E-11BAA1 -129.4 -16.4 +1.03 18 3S-6E-09DCD1 -118.2 -16.217 19 4S-2E-11CAA1S -130.8 -17.4 + .20 20 4S-3E-35CAD1S -128.8 -17.3 + .05 21 4S-5E-25BBC1 -128.5 -17.3 + .01 22 5S-4E-05CAA1 -127.8 -16.6 + .63 23 11DCB1S -130.2 -17.827 24 5S-6E-15BCD1 -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1S-4E-17CCC1                         | -128.4               | -17.4                               | 10                       | 14                              |
| 36DCC1 -127.1 -16.4 + .74 17 2S-5E-11BAA1 -129.4 -16.4 +1.03 18 3S-6E-09DCD1 -118.2 -16.217 19 4S-2E-11CAA1S -130.8 -17.4 + .20 20 4S-3E-35CAD1S -128.8 -17.3 + .05 21 4S-5E-25BBC1 -128.5 -17.3 + .01 22 5S-4E-05CAA1 -127.8 -16.6 + .63 23 11DCB1S -130.2 -17.827 24 5S-6E-15BCD1 -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ls-8E-32CCD1S                        | -124.6               | -16.6                               | + .23                    | 15                              |
| 2S-5E-11BAA1 -129.4 -16.4 +1.03 18 3S-6E-09DCD1 -118.2 -16.217 19 4S-2E-11CAA1S -130.8 -17.4 + .20 20 4S-3E-35CAD1S -128.8 -17.3 + .05 21 4S-5E-25BBC1 -128.5 -17.3 + .01 22 5S-4E-05CAA1 -127.8 -16.6 + .63 23 11DCB1S -130.2 -17.827 24 5S-6E-15BCD1 -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2S-4E-02BBD1                         | -129.1               | -17.3                               | + .09                    | 16                              |
| 3S-6E-09DCDl -118.2 -16.217 19 4S-2E-11CAA1S -130.8 -17.4 + .20 20 4S-3E-35CAD1S -128.8 -17.3 + .05 21 4S-5E-25BBCl -128.5 -17.3 + .01 22 5S-4E-05CAA1 -127.8 -16.6 + .63 23 11DCB1S -130.2 -17.827 24 5S-6E-15BCDl -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36DCC1                               | -127.1               | -16.4                               | + .74                    | 17                              |
| 4S-2E-11CAA1S       -130.8       -17.4       + .20       20         4S-3E-35CAD1S       -128.8       -17.3       + .05       21         4S-5E-25BBC1       -128.5       -17.3       + .01       22         5S-4E-05CAA1       -127.8       -16.6       + .63       23         11DCB1S       -130.2       -17.8      27       24         5S-6E-15BCD1       -125.0       -16.7       + .18       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | -129.4               |                                     | +1.03                    | 18                              |
| 4S-3E-35CAD1S       -128.8       -17.3       + .05       21         4S-5E-25BBC1       -128.5       -17.3       + .01       22         5S-4E-05CAA1       -127.8       -16.6       + .63       23         11DCB1S       -130.2       -17.8      27       24         5S-6E-15BCD1       -125.0       -16.7       + .18       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3S-6E-09DCD1                         | -118.2               | -16.2                               |                          | 19                              |
| 4S-5E-25BBCl -128.5 -17.3 + .01 22<br>5S-4E-05CAA1 -127.8 -16.6 + .63 23<br>11DCB1S -130.2 -17.827 24<br>5S-6E-15BCDl -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4S-2E-11CAA1S                        | -130.8               |                                     | + .20                    | 20                              |
| 5S-4E-05CAA1 -127.8 -16.6 + .63 23<br>11DCB1S -130.2 -17.827 24<br>5S-6E-15BCD1 -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4S-3E-35CAD1S                        |                      |                                     |                          |                                 |
| 11DCB1S -130.2 -17.827 24<br>5S-6E-15BCD1 -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                      |                                     |                          |                                 |
| 5S-6E-15BCD1 -125.0 -16.7 + .18 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5S-4E-05CAA1                         | -127.8               |                                     |                          | 23                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11DCB1S                              |                      |                                     |                          | 24                              |
| Average -125.9 -16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5S-6E-15BCD1                         | -125.0               | -16.7                               | + .18                    | 25                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average                              | -125.9               | -16.8                               |                          |                                 |

<sup>&</sup>lt;sup>1</sup>Deviation from meteoric water line shown in figure 11; (-) to left of line, (+) to right.

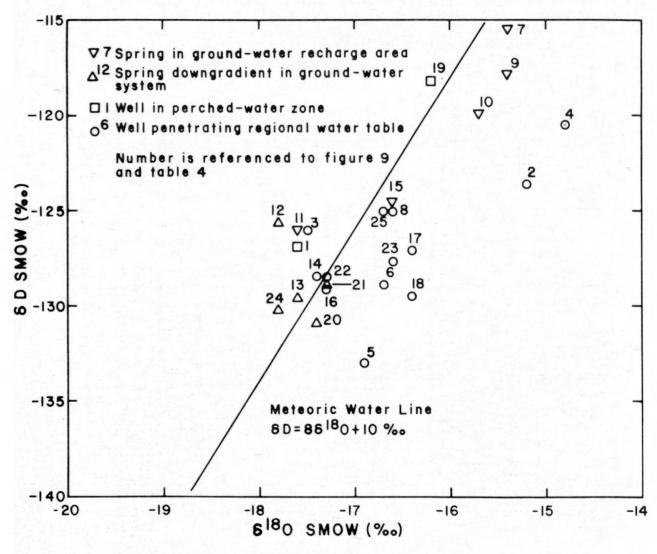



FIGURE 11.--Isotope variations in water from selected wells and springs

Compatibility of the isotopic composition of spring sample 11 with spring samples 20, 21, and 24 suggests that downgradient ground water at the eastern end of the flow system is fossil water, which was recharged at an earlier time, although under climatic conditions similar to current conditions in the Boise River basin. As the regional climate moderated, water of the isotopic composition of spring samples 7, 9, and 10 recharged the eastern part of the plateau, possibly represented by sample 19 from the perchedwater zone. At the same time, Boise River water, slightly enriched in 180 and D, continued to recharge the western part of the plateau. Well samples 5 and 6, which are depleted in 180 and D, may represent residual Boise River recharge at a time comparable to the time of recharge to the downgradient water in the eastern part of the plateau.

No data suggest recharge from a distant, deep-circulating system to the south.

### EFFECTS OF IRRIGATION-RETURN FLOWS

Irrigation-return flows have influenced the ground-water systems in the Mountain Home plateau area. Recharge to aquifers underlying the western part of the plateau is principally from adjacent surface-water-irrigated tracts. The perched water in and north of Mountain Home is partly derived from leakage from the irrigation system which stores and conveys surface water.

Three potential effects of irrigation-return flows on the land and ground-water resources are (1) water logging of agricultural land, caused by a rise of the water table; (2) deterioration of ground-water quality; and (3) development of perched-water zones. Although water logging and waterquality deterioration are undesirable, development of perched-water zones can be beneficial under certain conditions.

Water-logging problems have not developed in the plateau area. However, an apparent deterioration of ground-water quality is evident in some places that are adjacent to surface-water-irrigated lands, principally along the western and northwestern margins of the plateau.

The potential for developing perched-water zones is related to local subsurface conditions. At some places, strata (probably clay) of low vertical hydraulic conductivity can restrict downward movement of water. However,

more important than occurrence is the areal extent of these strata. If the low-conductivity beds are localized and discontinuous, they will not develop large perched-water bodies. An extensive bed could develop a large perched zone, if a prolific source of recharge water were available.

The perched water in and north of Mountain Home (see fig. 6) occurs in sufficient quantities so that at least part of it is recoverable for domestic use and limited irrigation in most of that area. The source of water is partly leakage from surface-irrigation-water storage and conveyance systems and partly from runoff and recharge from adjacent highlands. The perching material seems to be clay beds in interflow zones of the basalt.

As the perched water moves southward and downward toward the regional water table south of Mountain Home, it enters an unsaturated zone and is not recoverable. Subsurface information from the geophysical and driller's logs for well 3S-6E-35BCCl (fig. 4) does not indicate any large perched-water zones.

Several perched-water zones occur northwest of Mountain Home, along the mountain front. Geophysical and driller's logs (fig. 4) for well 2N-3E-35BBCl near Blacks Creek indicate a perched zone at a depth of about 400 ft. The perching material seems to be a sandy clay bed about 20 ft thick. The other perched-water zones along the mountain front probably result from similar geologic conditions. The source of water in all places is probably runoff and recharge from adjacent uplands.

Perched water east of Kuna (fig. 6) is probably caused by intercalated clay beds in underlying basalt flows or in sand and gravel deposits. The source of water is leakage from irrigation canals and downward percolation of applied surface water.

Geophysical and drillers' logs (fig. 4) indicate two other perched-water zones in the western part of the plateau (see fig. 6 for locations). Perched water in well IS-IE-6CCDl south of Kuna occurs at a depth of about 380 ft. The perching material seems to be a sandy clay bed about 30 ft thick. Two perched-water zones occur in well 2S-IE-23ADDl east of Swan Falls. The first zone seems to be in basalt at a depth of about 220 ft. The second is at about 530 ft, at the contact between fine-grained sediments of the Idaho Group and overlying basalt of the Snake River Group. The source of water in these two areas is probably natural

runoff and recharge; however, some perched water in well 1S-1E-6CCDl could be from irrigation-return flows from the irrigated area to the northeast.

Several perched-water zones have developed in different parts of the area, despite the limited source of water. This suggests that additional perched zones may develop, even if only moderate amounts of imported water are available for new irrigation growth.

# SUGGESTIONS FOR MONITORING

To provide data for management of the ground-water resources in the Mountain Home plateau area, the following network to monitor ground-water-level fluctuations and water-quality changes is suggested:

- 1. To monitor the effects of ground-water development; (a) initiate monthly water-level measurements in wells lN-lW-27ADD1, 2S-5E-26BDB1, 3S-5E-7BDD1, 4S-3E-23CDD1, and 4S-5E-24AAB1; (b) continue bimonthly measurements in State observation-network wells 2N-lE-36BBB1, lN-2E-15DCA1, and 2S-4E-9DDD2; and (c) continue semiannual measurements in State observation-network wells lS-lE-6CCD1, 4S-5E-25BBC1, 4S-7E-9DCC1, and 5S-4E-5CAA1.
- 2. To monitor the effects of surface-water irrigation, (a) initiate monthly water-level measurements in wells 3S-6E-13BBA1, 3S-6E-35ABB1, and 5S-6E-15BCD1; (b) continue bimonthly measurements in State observation-network well 3S-6E-35BCC1; and (c) continue semiannual measurements in State observation-network wells 3N-1E-36ADA1 and 2N-1W-11ADA1.
- 3. To monitor water-quality changes, initiate yearly water-quality sampling in wells 2N-1E-29DCA1, 2N-2E-34CCD1, 1S-1W-5ABC1, 2S-4E-36DCC1, 3S-6E-35ABB1, 4S-5E-25BBC1, 4S-7E-19BDB1, and spring 4S-3E-35CAD1S.

The semiannual water-level measurements should be made in mid-April (before irrigation begins) and mid-October (after irrigation ends). Water-quality samples should be collected in August when most irrigation wells are likely to be pumping.

# POTENTIAL FOR GROUND-WATER DEVELOPMENT AND FOCUSES FOR FUTURE STUDY

Considering the great potential thickness of saturated sediments and basalts underlying the plateau area (see p.9 and fig. 5), it seems that much ground water remains in storage both above and below the level of the Snake River (altitude 2,300 ft). This storage could be available for additional irrigation on the plateau, providing the deeper rocks are porous and permeable. The deepest known irrigation well in the area is well 2S-5E-30DBC1 (table 2), which was drilled to an altitude of 1,858 ft (1,250 ft below land surface) and penetrated the Bruneau Formation of the Idaho Group (table 2). Because the well is completed mostly as open hole (reported to have 163 ft of casing), it is not known which rocks along the well bore are contributing the most water.

In places, ground-water withdrawals in the area are causing water levels to decline to where pumping lifts may become prohibitive from an economic, as well as an energy-expenditure standpoint (see figs. 7 and 8). But the dist-tribution of heads (ground-water pressures) in untapped deep-lying aquifers is unknown. If Idavada Volcanics underlie the deepest known aquifers, if they are in hydraulic connection with the rocks in their outcrop area, and if the contained water is under artesian pressure, then a potential exists for that water to rise to levels that may be near land surface. However, depending on depth of circulation, such water could be much warmer than the water now being pumped—it may even be thermal water. Using presently available knowledge of the geology and hydrology, this set of conditions can only be postulated.

Again, considering the potential thickness of saturated sediments and basalts and the number of test holes that would be needed to describe the geology and evaluate the hydrology, it is impractical to assume that enough funds would be available to fully assess the ground-water resources in the plateau area. However, one or several deep test holes, in selected places, could help answer some questions about the occurrence of ground water and perhaps encourage further exploration for untapped deep aquifers.

Estimates made during this reconnaissance show that about 18,000 acre-ft of water discharges by natural means from the ground-water system annually. At least part of this natural discharge could be captured by strategically placed wells and used for irrigation. Assuming that two-thirds could be captured, then 12,000 acre-ft of additional

water would be available for development, a small but useful amount in relation to the 450,000 potentially irrigable acres.

Large-scale new agricultural development in the Mountain Home plateau area, because of an apparent limitation of ground-water resources, would depend heavily on importation of surface water. Evaluation of the efficiency of present surface-water-irrigation systems would be beneficial, for excessive use and leakage from the irrigation systems has resulted in the formation of perched-water zones in the subsurface. More efficient systems would allow for more acres to be irrigated.

When water rights and other legal constraints are satisfied and proposed irrigation areas are selected, plans for additional study could be formulated. Test drilling and geophysical logging at sites where increased irrigation is planned would provide information for predicting potential effects of new development.

However, until additional water is available for large-scale development, it would be helpful to focus future work on management of the ground-water resources. In addition to water-level and water-quality monitoring, a ground-water-pumpage inventory would be desirable. After an initial inventory is completed and total withdrawals in the area are known, selected wells could be monitored for continuing determination of annual ground-water withdrawals. Using data derived from these wells, the annual effects of variations in precipitation, increased development, and crop rotation on ground-water withdrawals could be assessed.

#### SUMMARY AND CONCLUSIONS

Development of the ground-water resources in the Mountain Home plateau area has caused water-level declines in several places, the largest of which are south of Mountain Home, where ground-water levels have declined more than 20 ft in the past 9 years. Although the total amount of water in storage in the aquifers may be considerable, it has not yet been determined. Present well-hydrograph data indicate that additional large-scale ground-water development will probably result in increased long-term water-level declines, which may result in economically prohibitive pumping lifts and the use of excessive amounts of energy. Therefore, it seems that large-scale new agricultural development on the plateau would depend heavily on the availability of surface water.

Sources of recharge to the ground-water systems are water from the Boise River basin, runoff from adjacent mountains, and precipitation on outcrops of the Idavada Volcanics. Ground-water movement is generally to the south and southwest. Ground-water discharge is by pumping, subsurface outflow, and spring discharge. Estimated annual discharge in springs and subsurface outflow is about 18,000 acre-ft. Part of this discharge could be captured for irrigation within the area.

The chemical composition of ground water generally reflects water characteristics in the area of the source of recharge. Higher concentrations of dissolved solids are associated with recharge from surface-water-irrigated areas; low concentrations of dissolved solids are associated with recharge from the Idavada Volcanics. In several places, dissolved solids and nitrate plus nitrite as N concentrations make the chemical suitability of ground water for domestic use questionable.

Deuterium and <sup>18</sup>O isotope data suggest that the aquifers at the lower end of the flow system underlying the plateau contain fossil water, although recharge occurred at an earlier time when climatic conditions were similar to current conditions in the Boise River basin.

The rocks underlying the plateau are composed mainly of basalt and unconsolidated clay, sand, and gravel. Several perched-water zones have developed near surface-water-irrigated areas, which suggests that present surface-water-irrigation systems may be inefficient. Additional agricultural development using imported surface water could lead to the development of additional perched-water zones if the efficiency of the present distribution systems remains unchanged.

Future work could focus mainly on (1) test drilling to determine the occurrence of deep, untapped aquifers containing water under high head, and (2) better ground-water-resource management aided by monitoring of water-level fluctuations, water quality, and annual pumpage.

## SELECTED REFERENCES

- Craig, Harmon, 1961a, Standard for reporting concentrations of deuterium and oxygen-18 in natural waters: Sci., v. 133, p. 1833.
- 1961b, Isotopic variations in meteoric waters: Sci., v. 133, p. 1702.
- Dion, N. P., 1972, Some effects of land-use changes on the shallow ground-water system in the Boise-Nampa area, Idaho: Idaho Dept. Water Adm. Water Inf. Bull. no. 26, 47 p.
- Ferris, J. G., and others, 1962, Theory of aquifer tests: U.S. Geol. Survey Water-Supply Paper 1536-E, p. 169-
- Hill, D. P., 1963, Gravity and crustal structures in the western Snake River Plain, Idaho: Jour. Geophysical Research, v. 68, no. 20, p. 5807-5819.
- Malde, H. E., 1959, Fault zone along northern boundary of western Snake River Plain, Idaho: Sci., v. 130, no. 3370, p. 272.
- Malde, H. E., and Powers, H. A., 1962, Upper Cenozoic stratigraphy of western Snake River Plain, Idaho: Geol. Soc. America Bull., v. 73, p. 1197-1220.
- Malde, H. E., Powers, H. A., and Marshall, C. H., 1963, Reconnaissance geologic map of west-central Snake River Plain, Idaho: U.S. Geol. Survey Misc. Geol. Inv. Map I-373, 1 sheet.
- Nace, R. L., West, S. W., and Mower, R. W., 1957, Feasibility of ground-water features of the alternate plan for the Mountain Home Project, Idaho: U.S. Geol. Survey Water-Supply Paper 1376, 121 p.
- National Academy of Sciences National Academy of Engineering, 1973, Water-quality criteria 1972: U.S. Environmental Protection Agency Rept. EPA R3-73-033, 594 p.
- Ralston, D. R., and Chapman, S. L., 1968, Ground-water resources of the Mountain Home area, Elmore County, Idaho: Idaho Dept. Reclamation Water Inf. Bull. no. 4, 63 p.
- ern Elmore Counties, Idaho: Idaho Dept. Reclamation Water Inf. Bull. no. 15, 52 p.
- Rightmire, C. T., Young, H. W., and Whitehead, R. L., 1976, Isotopic and geochemical analyses of water from the Bruneau-Grand View and Weiser areas, southwest Idaho, Part 4, Geothermal investigations in Idaho: Idaho Dept. Water Resources Water Inf. Bull. 30, 28 p.

Ross, C. P., and Forrester, J. D., 1947, Geologic map of the State of Idaho: U.S. Geol. Survey and Idaho Bur. Mines and Geology, 1 map.

Savage, C. N., 1958, Geology and mineral resources of Ada and Canyon Counties: Idaho Bur. Mines and Geology

County Rept. no. 3, 94 p.

Thomasson, H. G., Olmsted, F. H., and LeRoux, E. F., 1960, Geology, water resources, and ground-water storage capacity of part of Solano County, California: U.S. Geol. Survey Water-Supply Paper 1464, 693 p.

White, D. E., Hem, J. D., and Waring, G. A., 1963, Data of geochemistry, sixth edition, chemical composition of subsurface waters: U.S. Geol. Survey Prof. Paper 440-

F, 67 p.

POCKET CONTAINS

1TEMS.

