
(200) NR: co = in process

AND FREQUENCY OF FLOODS IN DELAWARE

U.S. GEOLOGICAL SURVEY

WATER-RESOURCES INVESTIGATIONS 78-93 OPEN-FILE REPORT

Prepared in cooperation with
STATE OF DELAWARE
DEPARTMENT OF TRANSPORTATION
and the
U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION

TECHNIQUE FOR ESTIMATING MAGNITUDE

AND FREQUENCY OF FLOODS IN DELAWARE

By R. H. Simmons and D. H. Carpenter

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 78-93 Open-File Report

Prepared in cooperation with

State of Delaware
Department of Transportation
and the
U.S. Department of Transportation
Federal Highway Administration

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

Open-File Report

For additional information write to:

U.S. Geological Survey 208 Carroll Building 8600 La Salle Road Towson, Maryland 21204

CONTENTS

	Pa
Abstract	
Introduction	
Conversion of measurement units	
Design method	
Ungaged streams	
Gaged streams	
Accuracy and limitations	1
Remarks	one dep -1 ainst
Physiography of the region	
Data analysis	
Available data	
Station flood-frequency analysis	AMERICAN PARTY AND 2
Rainfall-runoff model	
Flood-peak synthesis	
Combining flood-frequency curves	
Regression analysis	
Summary	
Selected references	
Supplemental data	

COVER PHOTOGRAPH--Meredith Branch near Sandtown, flood of August 4, 1967. Photograph furnished by Delaware Department of Transportation

galges is assiminate manthem Leanna ..

ILLUSTRATIONS

			Page
Plates	1-3. Map	os showing the extent of Type A and Type D soils.	
		1. Northern Delaware 2. Central Delaware 3. Southern Delaware	In pocket
Figure	1. Map	showing location of gaging stations	
	2. Gra	in Delaware, Maryland, and Pennsylvania aph of observed and estimated 50-year	1011ows 10
	p	aph of observed and estimated 50-year beak discharges for southern region	sidallavA 1
	3. Gra	aphical method for raising basin characteristics' values to decimal powers	
	p	oowers	Sooli 1:
		slaylens /	
		TADIRC 883m	
		TADIRC 883m	
		TADIRC 883m	Regression Summary Selected refere Supplemental da
Table		TABLES and and ard errors of estimate for regression	Regression Schecked refere Supplemental de Page
[able	е	TABLES andard errors of estimate for regression equations, in percent	Regression Schecked refere Supplemental de Page
Table	2. Sta	TABLES andard errors of estimate for regression equations, in percent ————————————————————————————————————	Page
Table	2. Sta	TABLES andard errors of estimate for regression equations, in percent	Page
Table	2. Sta	TABLES andard errors of estimate for regression equations, in percent ————————————————————————————————————	Page
Table	2. Sta	TABLES andard errors of estimate for regression equations, in percent ————————————————————————————————————	Page Page Page 1
Table	2. Sta e m 3. Bas 4. Bas	TABLES andard errors of estimate for regression equations, in percent ————————————————————————————————————	Page 1
Table	2. Sta 3. Bas 4. Bas 5. Ann	TABLES andard errors of estimate for regression equations, in percent ————————————————————————————————————	Page 1 4 4
Table	2. Sta 3. Bas 4. Bas 5. Ann	TABLES andard errors of estimate for regression equations, in percent	Page

TECHNIQUE FOR ESTIMATING MAGNITUDE

AND FREQUENCY OF FLOODS IN DELAWARE

by R. H. Simmons and D. H. Carpenter

ABSTRACT

A flood-estimating method is presented which applies to drainage basins without urban development and covers selected recurrence intervals from 2 to 100 years. The method was developed by multiple-regression techniques.

The State is divided into two regions and sets of equations for calculating peak discharges based on physical basin characteristics are provided for each region. The boundary between regions generally corresponds with the division between the Piedmont and Coastal Plain provinces. In the northern region, flood-peak discharges were related to basin drainage area and storage. In the southern region, flood peaks were related to drainage area, slope, storage, forest cover, and two composite soil categories. Standard errors of estimate for the regression equations in the northern region ranged from 30 to 39 percent. For the southern region, the standard errors of estimate varied from 38 to 40 percent. Without using the two soil parameters in the southern region, the standard errors of estimate varied from 70 percent.

Annual flood peaks, basin characteristics, and flood-frequency distributions are tabulated for the 60-gaged sites used in the regression analysis. At 23 of these sites, a rainfall-runoff model generated additional flood-peak data which were used in defining the flood-frequency distributions.

bine and their soulicebility was statistic

INTRODUCTION

The purpose of this report is to provide a convenient and reliable technique for estimating the magnitude and frequency of floods for Delaware streams. Such flood information is required for efficient design of bridges, culverts, embankments, and flood-protection structures, and is a prerequisite for effective flood-plain management.

Relatively little flood-discharge data were available for small streams in Delaware prior to 1964. To obtain this information and to develop the flood-estimating technique, a small-streams flood investigation was initiated in 1964 in cooperation with the Delaware Department of Transportation and the Federal Highway Administration.

Flood-discharge records at 60 gaging stations (including 32 sites in nearby Maryland and Pennsylvania) were included in the analysis used to develop the flood-estimating method. Flood magnitude and frequency characteristics were determined for these sites using U.S. Water Resources Council (WRC) Bulletin 17 guidelines. (See table 3.) Annual maximum flood-peak data for 74 gaging stations (including stations not used in the analysis) are given in table 5.

The technique for estimating floods was developed by relating flood magnitude/frequency characteristics to basin characteristics such as drainage area and forest cover at the 60 sites mentioned above. Generalized relationships were determined by multiple-regression analyses. These relationships between the flood-frequency characteristics and basin characteristics were considered to apply to ungaged drainage basins and their applicability was statistically tested. The northern region of the State (see pl. 1), which generally coincides with the Piedmont province, was found to have a set of generalized flood-frequency relationships different from the southern region, which generally coincides with the Coastal Plain.

Large-stream flood data were included with the small-stream data used in the analysis. Combining the data strengthened the technique and provided continuity for its use throughout a wide range in drainage area sizes.

A rainfall-runoff model developed by the U.S. Geological Survey was used to generate long-term records of flood peaks at 23 sites used in the analysis. The generated data were combined with observed peak data to develop flood magnitude/frequency distributions utilized in the multiple-regression analysis.

Previous reports by Tice (1968), and Cushing, Kantrowitz, and Taylor (1973) presented methods for estimating flood magnitudes, but these methods were based on considerably fewer data within the study area and did not apply to small drainage basins.

Special acknowledgment is made to the U.S. Soil Conservation Service for their assistance in providing natural soil group maps. The maps of Delaware were prepared by the Soil Conservation Service in cooperation with the Delaware Agricultural Experiment Station. The maps of the Eastern Shore of Maryland were prepared by the Maryland Department of State Planning from information furnished by and with the assistance of the Soil Conservation Service in cooperation with the Maryland Agricultural Experiment Station. Long-term daily precipitation data and storm rainfall at 5-minute intervals were obtained from the National Oceanic and Atmospheric Administration. The technical support of the Surface Water Branch of the Water Resources Division of the U.S. Geological Survey is appreciated. The assistance of W. O. Thomas was especially helpful in the analysis phase of the study.

This report does not necessarily reflect the official views of the Delaware Department of Transportation or the Federal Highway Administration.

Conversion of Measurement Units

The following factors may be used to convert the U.S. customary units appearing in this report to SI metric units.

To convert from	Multiply by	To obtain
foot (ft)	0.305	meter (m)
mile (mi)	1.61	kilometer (km)
foot per mile (ft/mi)	0.189	meter per kilometer (m/km)
mile ² (mi ²)	2.59	kilometer ² (km ²)
foot ³ per second (ft ³ /s)	0.0283	meter ³ per second (m ³ /s)

DESIGN METHOD

Ungaged Streams

Peak discharges may be estimated for ungaged streams (with the separation between northern and southern regions shown on plate 1) by the following equations:

Northern Region

$$Q_2 = 13,600 \text{ A}^{0.742} \text{St}^{-1.948},$$
 (1)

$$Q_5 = 23,700 \text{ A}^{0.703} \text{st}^{-1.914},$$
 (2)

$$Q_{10} = 33,200 \text{ A}^{0.675} \text{St}^{-1.893},$$
 (3)

$$Q_{25} = 52,000 \text{ A}^{0.640} \text{St}^{-1.887},$$
 (4)

$$Q_{50} = 68,200 \text{ A}^{0.616} \text{St}^{-1.868},$$
 (5)

$$Q_{100} = 89,300 \text{ A}^{0.591} \text{St}^{-1.853},$$
 (6)

Southern Region

$$Q_2 = 28.6 \text{ A}^{0.910} \text{S1}^{0.681} \text{St}^{-0.148} \text{F}^{-0.647} \text{S}_a^{-0.309} \text{S}_d^{0.560},$$
 (7)

$$Q_5 = 119 A^{0.989} s1^{0.843} st^{-0.533} F^{-0.731} s_a^{-0.369} s_d^{0.577},$$
 (8)

$$Q_{10} = 306 \text{ A}^{1.016} \text{S1}^{0.911} \text{St}^{-0.820} \text{F}^{-0.804} \text{S}_{a}^{-0.367} \text{S}_{d}^{0.624},$$
 (9)

$$Q_{25} = 936 A^{1.039} S1^{0.974} St^{-1.114} F^{-0.868} S_a^{-0.384} S_d^{0.655},$$
 (10)

$$Q_{50} = 2,120 \text{ A}^{1.051} \text{S1}^{1.009} \text{St}^{-1.321} \text{F}^{-0.916} \text{S}_{a}^{-0.396} \text{S}_{d}^{0.676},$$
 (11)

$$Q_{100} = 4,800 \text{ A}^{1.060} \text{S1}^{1.035} \text{St}^{-1.519} \text{F}^{-0.963} \text{S}_{a}^{-0.410} \text{S}_{d}^{0.695},$$
 (12)

where

Q₂, Q₅...Q₁₀₀ = peak discharges for floods with recurrence intervals of 2 years, 5 years...100 years;

A = drainage area, in mi²;

S1 = main channel slope (10-85 percent points), in ft/mi;

St = storage (lakes, ponds and swamps), in percent plus 10;

F = forest cover, in percent plus 10;

S = type A soils, in percent plus 10; and

S_d = type D soils, in percent plus 10.

These characteristics may be determined from topographic maps and the soils maps included with this report. See table 4 for detailed definition of basin characteristics and explanation of how they are determined. Basin characteristics expressed in percent (St, F, S_a, and S_d) must have a constant of 10.0 added before being entered into the estimating equations. If the value of one of these characteristics is zero before adding the constant, the characteristic still must be included in the equation (as 10^{\times}).

An alternate set of equations for estimating peak discharges in the southern region is presented below.

Southern Region (Alternate)

$$Q_2 = 1,450 \text{ A}^{0.757} \text{St}^{-0.229} \text{F}^{-0.849},$$
 (13)

$$Q_5 = 14,300 \text{ A}^{0.784} \text{St}^{-0.642} \text{F}^{-1.056},$$
 (14)

$$Q_{10} = 53,100 \text{ A}^{0.791} \text{St}^{-0.926} \text{F}^{-1.132},$$
 (15)

$$Q_{25} = 2.29 \times 10^5 \text{ A}^{0.795} \text{St}^{-1.226} \text{F}^{-1.222},$$
 (16)

$$Q_{50} = 6.34 \times 10^5 \text{ A}^{0.799} \text{St}^{-1.437} \text{F}^{-1.284},$$
 (17)

$$Q_{100} = 1.66 \times 10^6 \text{ A}^{0.801} \text{St}^{-1.639} \text{F}^{-1.341}.$$
 (18)

The alternate method requires fewer basin characteristics as input data. However, the resulting flood estimates are less accurate than those computed by equations 7 to 12.

The equations apply to basins under natural conditions (not significantly affected by urbanization or other manmade changes). (See section on "Accuracy and Limitations" for further details.)

The equations will not work with metric units. To obtain answers in cubic meters per second, peak discharges must be computed first in cubic feet per second and then multiplied by 0.0283.

A drainage basin under study may lie partly in both the northern and southern regions. If the overlap is significant, the discharge may be computed twice, as though the basin were entirely in each region, using the alternate method for the southern region. The two results are then combined, weighted by the percentages of the total basin area falling in each region.

The following step by step example shows how to use the estimating equations to determine a peak discharge at a site on an ungaged stream.

Problem: Estimate the 50-year flood on Murderkill River at U.S. Hwy. 13, near Felton, Del.

Determine drainage area. Outline the drainage basin above U.S. Hwy. 13 on best available topographic maps and planimeter area.
 A = 13.6 mi².

2. Determine slope. Measure length, in miles, of main channel (L) on topographic map from U.S. Hwy. 13 to basin rim; L = 6.10 mi. Obtain channel elevation from topographic map at distances of 0.10L and 0.85L upstream from U.S. Hwy. 13;

$$Elev_{0.10} = 29 \text{ ft. } Elev_{0.85} = 58 \text{ ft.}$$

$$S1 = \frac{Elev_{0.85} - Elev_{0.10}}{0.75L} = 6.3 \text{ ft/mi.}$$

3. Determine storage. On the topographic map, planimeter the area of lakes, ponds, and swamps within the drainage basin. Planimetered area = 0.0880 mi².
A = 13.6 mi² from step 1 above.

$$St = (\frac{0.088}{A}) 100 + 10 = 10.6 \text{ percent.}$$

4. Determine forest cover. On the topographic map, measure the forested area within the drainage basin (shaded green on U.S. Geological Survey maps) by grid method = 4.76 mi².

$$F = (\frac{4.76}{A}) 100 + 10 = 45 \text{ percent.}$$

5. Determine type A soils. Outline the drainage basin on soils map (pl. 2) provided with this report. Planimeter the area of type A soil = 0.95 mi².

$$S_a = (\frac{0.95}{A}) 100 + 10 = 17 \text{ percent.}$$

6. Determine type D soils. Planimeter the area of type D soil within the drainage basin on soils map (p1. 2) = 5.85 mi².

$$S_d = (\frac{5.85}{A}) 100 + 10 = 53 \text{ percent.}$$

 Determine peak discharge. Using equation 11 (southern region),

$$Q_{50} = 2,120 \text{ A}^{1.051} \text{S1}^{1.009} \text{St}^{-1.321} \text{F}^{-0.916} \text{S}_{a}^{-0.396} \text{S}_{d}^{0.676}$$

By substitution,

$$Q_{50} = 2,120 (13.6)^{1.051} (6.3)^{1.009} (10.6)^{-1.321}$$

$$(45)^{-0.916} (17)^{-0.396} (53)^{0.676}$$

$$Q_{50} = 2,120 \times 15.5 \times 6.41 \times 0.0442 \times 0.0306 \times 0.326 \times 14.6$$

$$Q_{50} = 1,360 \text{ ft}^3/\text{s}.$$

Gaged Streams

Peak discharges may be estimated for gaged streams (fig. 1) in the following manner: (1) If the estimate is needed directly at a gaged location, use data from table 3. (2) If the estimate is needed away from a gaged site, transfer the gaged-site discharge value (table 3) upstream or downstream to the location in question by the following equation:

$$Q_u = Q_g \left(\frac{A_u}{A_g}\right)^n$$
, (19)

and then, combine the above transferred "gaged" value with a value from the estimating equations by the following equation:

$$Q_{W} = Q_{r} \left(\frac{2\Delta A}{A_{g}} \right) + Q_{u} \left(1 - \frac{2\Delta A}{A_{g}} \right) . \tag{20}$$

where

Q = discharge at the ungaged site transferred from a gaged site by drainage area ratio;

Q = discharge at the nearby gaged site for a selected recurrence interval from table 3;

 Q_w = weighted discharge at the site in question determined by combining the transferred gaged discharge (Q_u) with the estimating equation discharge (Q_r) ;

Q_r = discharge at the ungaged site determined by the regional estimating equations;

n = regional drainage area exponent
 northern region = 0.66
 southern region = 0.62;

A = drainage area at the ungaged site;

 A_g = drainage area at the nearby gaged site; and

 ΔA = difference between the drainage areas at the gaged and ungaged sites (absolute value).

The drainage-area exponents (n values in eq. 19) were determined by using the multiple-regression technique to relate drainage areas alone to Q_2 , Q_5 ... Q_{100} , and averaging the results for each region.

In equation 20, the weighting effect of the transferred "gaged" peak discharge value (Q_u) is phased out as ΔA increases to 50 percent of A_g . Therefore, if the drainage area at the site where the discharge is to be determined differs by more than 50 percent from the nearest gaged site, the estimating equations (eqs. 1-18) alone should be used to determine the peak.

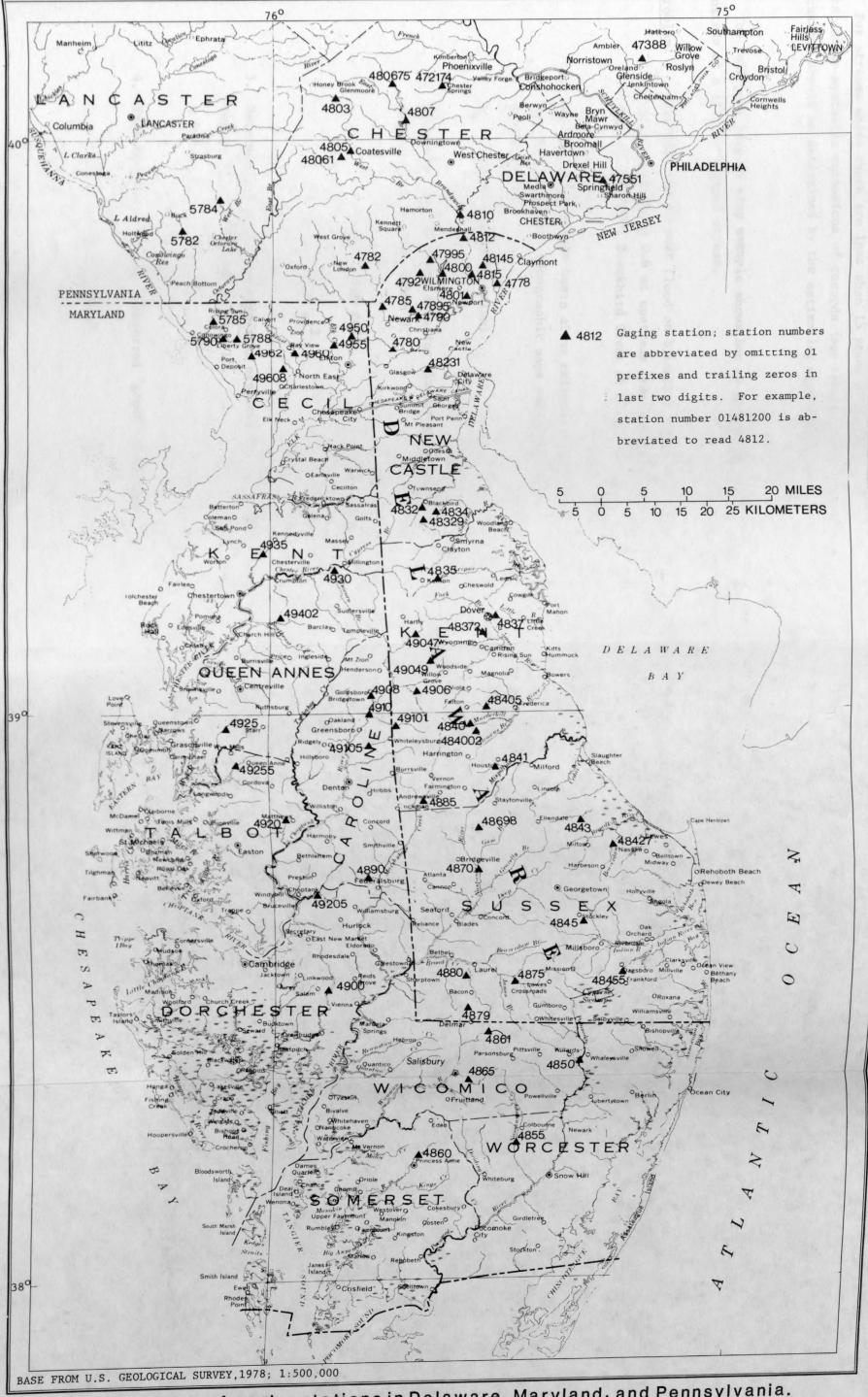


Figure 1. Location of gaging stations in Delaware, Maryland, and Pennsylvania.

For streams where there are less than 15 years of recorded annual peaks and no synthetic extensions of records (see tables 3 and 5), peak discharges should be determined by the estimating equations alone (p. 5-7).

The following step by step example shows how to estimate a flood magnitude at a site on a gaged stream.

<u>Problem:</u> Estimate the 10-year flood on Blackbird Creek at railroad crossing 0.6 mi upstream from gaging station 01483200, Blackbird Creek at Blackbird, Del.

 Outline the drainage basin above railroad crossing on the best available topographic maps and planimeter drainage area.

$$A_{ij} = 3.60 \text{ mi}^2 \text{ (assumed value)}.$$

2. Obtain Q_{10} and drainage area for Blackbird Creek at gaging station, from table 3.

$$Q_{10} = 408 \text{ ft}^3/\text{s},$$

$$A_g = 3.85 \text{ mi}^2$$
.

 Determine regional drainage-area exponent for southern region from definition on page 10.

$$n = 0.62$$
.

4. From equation 19, the transferred "gaged" discharge is:

$$Q_u = Q_g \left(\frac{A_u}{A_g} \right)^n$$
.

By substitution, and and are systa systa amostra

$$Q_u = 408 \left(\frac{3.60}{3.85}\right)^{0.62}$$
.

 Determine Q_r by same procedure as shown in example for ungaged streams on page 7.

$$Q_r = 300 \text{ ft}^3/\text{s}$$
 (assumed value).

6. Compute
$$\Delta A = A_u - A_g$$
,

By substitution, who where specialists and outline

$$\Delta A = 3.85-3.60$$
.

$$\Delta A = 0.25 \text{ mi}^2$$
.

7. From equation 20, the weighted estimated discharge is:

$$Q_w = Q_r(\frac{2\Delta A}{A_g}) + Q_u(1 - \frac{2\Delta A}{A_g}).$$

By substitution,

$$Q_W = 300 \left(\frac{2 \times 0.25}{3.85}\right) + 391 \left(1 - \frac{2 \times 0.25}{3.85}\right).$$

$$Q_{tr} = 379 \text{ ft}^3/\text{s.}$$

Accuracy and Limitations

The accuracy of results that may be expected when using the flood-peak estimating technique is indicated to some extent by the standard error of estimate of the equations. The standard error of estimate is a measure of how well the computed peaks agree with the observed peaks used to derive the estimating equations. The observed values for approximately two out of three data points used to define a relationship (as done in this study) fall within one standard error of estimate of the computed values. In other words, the standard error of estimate is computed in such a way that for a statistically defined "normal distribution", two out of three points fall within one standard error of estimate. The observed values for approximately 19 out of 20 points fall within 2 standard errors of estimate of the computed values. Figure 2 illustrates how the standard error of estimate envelops the data points defining a relationship.

Standard errors of estimate have been computed for the floodmagnitude estimating equations and are listed in table 1.

TABLE 1.--Standard errors of estimate for regression equations, in percent.

Flood peak	Northern region	Southern region	Southern region (alternate)
Q_2	30	38	57
Q ₅	28	37	61
Q ₁₀	29	37	- 63
Q ₂₅	32	38	66
Q ₅₀	35	38	68
Q ₁₀₀	39	40	70

0.0 29 37 63

FIGURE 2.- Observed and estimated 50-year peak discharges for southern region.

The standard errors of estimate indicate that estimating equations 7 to 12 for the southern region give much better results than the alternate set of equations, 13 to 18. The improvement comes from evaluating the effects of soils and main channel slope. In general, it should be worth the effort to determine the soils' characteristics and use equations 7 to 12. In particular, use of these equations should greatly reduce the probability of an occasional estimate being "out of the ballpark."

However, the alternate method may be desirable for some purposes.

The estimating equations should give satisfactory results, as generally reflected by the standard errors of estimate, within the range of basin characteristics used in developing the estimating equations.

The basin characteristics' ranges are as follows:

Basin characteristic	Northern region	Southern region
Drainage area	0.4 to 87.8 (mi ²)	$0.6 \text{ to } 113 \text{ (mi}^2)$
Slope Slope	od peaks daterstood by th	1.5 to 36.6 (ft/mi)
Storage	0 to 6.1 (percent)) 0 to 15.8 (percent
Forest cover	exceeded once. In is in	8 to 85 (percent
Type A soil		0 to 96 (percent
Type D soil	ario in is, or a A-percentic. Though anch	4 to 100 (percent

At stream sites where drainage areas exceed the ranges above, the reliability of the estimating equations is diminished. On these streams, however, nearby observed flood data generally are available and peak discharge estimates may be computed from equation 19 (p. 9). Refinement with equation 20 in these cases is not warranted because of the reduced reliability of the estimating equations.

The estimating equations were developed from data on natural streams. The equations therefore are not considered reliable for streams where flood peaks are affected significantly by urban development or regulation by dams, etc. The equations are not applicable where significant portions of the drainage basins are tidal marshes or have been created or altered by dredging spoil. In addition, the equations may not be reliable for drainage basins where abnormally high infiltration conditions are apparent. Such conditions are believed rare and were observed at only one (01488000) of the 74 gaging stations studied. Further information on this site is presented on page 33.

Caution should be exercised in using the equations to determine flood peaks for basins that overlap the divide between the northern and southern regions. An acceptable solution under these conditions is described on page 7.

Remarks

The frequencies of the flood peaks determined by the design method are expressed in terms of recurrence intervals. A recurrence interval is defined as the average interval of years during which a given peak discharge can be expected to be exceeded once. It is inversely related to the probability of the peak being exceeded in any single year. Thus, a 25-year flood would have 1 chance in 25, or a 4-percent probability of being exceeded in any given year. Though unlikely, such a flood could occur 2 years in a row.

A graph for raising the basin characteristics' values to decimal powers (fig. 3) is provided for convenience in solving the estimating equations.

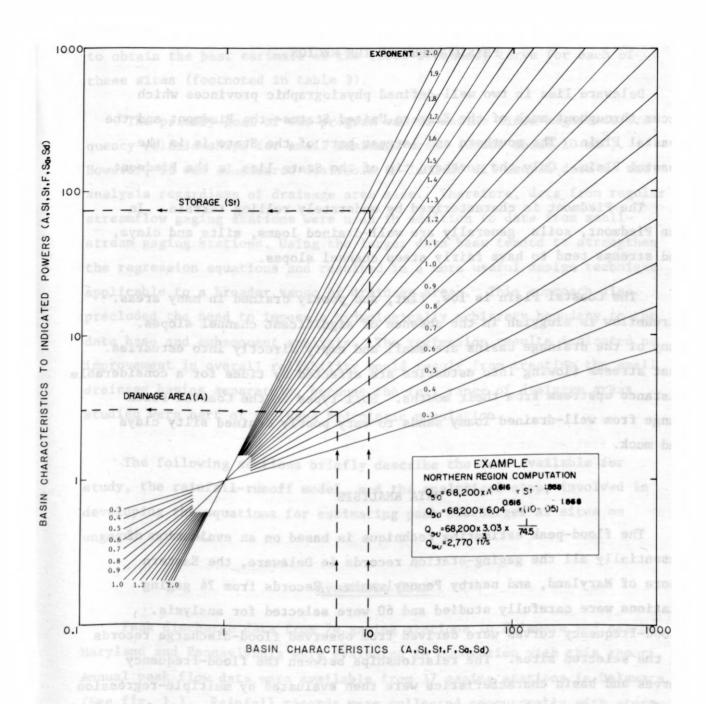


FIGURE 3.- Graphical method for raising basin characteristics' values to decimal powers.

PHYSIOGRAPHY OF THE REGION

Delaware lies in two well-defined physiographic provinces which occur throughout much of the Eastern United States—the Piedmont and the Coastal Plain. The southern and largest part of the State is in the Coastal Plain. Only the northern tip of the State lies in the Piedmont.

The Piedmont is characterized by moderately rolling terrain. In the Piedmont, soils generally are well-drained loams, silts and clays, and streams tend to have fairly steep channel slopes.

The Coastal Plain is low, flat, and poorly drained in many areas. Streamflow is sluggish in the absence of significant channel slopes. Many of the drainage basins are small and empty directly into estuaries. Most streams flowing into estuaries are affected by tides for a considerable distance upstream from their mouths. Soil types in the Coastal Plain range from well-drained loamy sands to very poorly drained silty clays and muck.

DATA ANALYSIS

The flood-peak estimating technique is based on an evaluation of essentially all the gaging-station records in Delaware, the Eastern Shore of Maryland, and nearby Pennsylvania. Records from 74 gaging stations were carefully studied and 60 were selected for analysis. Flood-frequency curves were derived from observed flood-discharge records at the selected sites. The relationships between the flood-frequency curves and basin characteristics were then evaluated by multiple-regression analysis to develop the flood-discharge estimating equations.

At 23 of the selected gaging stations on small drainage basins, a rainfall-runoff model was used to simulate long records of annual flood peaks to supplement the observed flood-discharge data. Flood-frequency curves were derived from the simulated flood data and also from the observed flood data. The simulated and observed curves were then combined

to obtain the best estimate of the flood-frequency curve for each of these sites (footnoted in table 3).

the which are discussed on page

luddeal station velues are given to t

Proposed a few hors windows TP boots off all beau s

The primary goal of the program was to define flood magnitude/frequency relationships for small drainage areas (under about 10 mi²). However, it was considered desirable to include all useful data in the analysis regardless of drainage area size. Therefore, data from regular streamflow gaging stations were used in addition to data from small-stream gaging stations. Using the larger data base tended to strengthen the regression equations and resulted in a more useful design technique applicable to a broader range of drainage areas. This approach also precluded the need to impose a hydrologically arbitrary boundary to the data base and subsequent analysis. The regression results indicated no improvement in overall reliability would result from treating the small drainage basins separately, because the full range of drainage areas studied were part of the same hydrologic population.

The following sections briefly describe the data available for study, the rainfall-runoff model, and the analytical steps involved in developing the equations for estimating peak discharges at sites on ungaged streams.

Available Data

Peak discharge data from 74 gaging stations in Delaware and nearby Maryland and Pennsylvania were evaluated in connection with this report. Annual peak flow data were available from 37 gaging stations in Delaware. (See fig. 1.) Rainfall records were collected concurrently with storm hydrographs at 25 of these gaging stations. Annual peak flow data were available from 25 gaging stations on the Eastern Shore of Maryland, including 3 sites with rainfall records. Peak data from 12 stations in nearby Pennsylvania were evaluated along with the Maryland and Delaware data. The annual peak data are presented in table 5 along with the locations of the gaging stations.

Sixty of the seventy-four stations available were used in the regression analysis. Fourteen stations were excluded for a variety of reasons which are discussed on page 33.

Long-term daily and continuous storm rainfall records from two National Weather Service sites were used in the study: Baltimore City, Md., and Atlantic City, N.J. Daily evaporation data were obtained from National Weather Service stations at Newark and Georgetown, Del.

A number of basin characteristics which intuitively appeared to be related to flood magnitudes were determined for the basins being studied. These characteristics were: Drainage area, channel slope, channel length, basin elevation, area of lakes and ponds, forest cover, annual precipitation, intensity of precipitation, and extent of different soils types grouped by runoff potential. The soils types are discussed in detail in the section on "Regression Analysis." The basin characteristics that were used in the estimating equations are described in table 4 and individual station values are given in table 3.

Station Flood-Frequency Analysis

developing the soust

In general, only gaging stations having 10 or more years of record were used in the flood-frequency analysis. Flood-frequency curves were developed from the observed records at 63 gaging stations, including 3 stations not used in the regression analysis. The curves define the relationship between flood-peak magnitudes and recurrence intervals. Flood magnitudes were determined for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The flood-frequency curves were derived by fitting the log-Pearson type III distribution to records of observed annual peak discharges as recommended in the U.S. Water Resources Council (WRC) Bulletin 17. A log-Pearson type III distribution is defined by three parameters: (1) Mean, (2) standard deviation, and (3) coefficient of skewness.

A generalized skew of 0.7 was used for stations having less than 25 years of observed record. This skew value was obtained from the generalized

skew map in WRC Bulletin 17. For stations having more than 25 years of observed record, the generalized skew was weighted with the station skew.

Historical flood information and outliers were treated following guidelines outlined in WRC Bulletin 17. Outliers are flood events that depart significantly from the trend of the rest of the data.

Rainfall-Runoff Model

A rainfall-runoff model was used to simulate flood-peak data at 23 of the 28 peak flow stations where concurrent rainfall data were collected in Delaware and Maryland. These generated data were analyzed along with the observed flood-peak data. The rainfall-runoff model was developed by the U.S. Geological Survey to generate flood hydrographs for small drainage basins using daily rainfall, daily evaporation and unit storm-rainfall data as input. The model consists of three components which are briefly described as follows:

- (1) Antecedent moisture component to simulate moisture redistribution in the soil column and evapotranspiration from the soil.
- (2) Infiltration component to deal with entry into the soil of water available at the soil surface.
- (3) Surface runoff (routing) component to distribute precipitation excess by time to produce the flood hydrograph.

The model has seven parameters which deal with volume of surface runoff and three parameters which control the shape of the flood hydrograph.

There are two phases involved in using the model—calibration and synthesis. In the calibration phase, concurrent rainfall and runoff data collected directly at the gaged sites and evaporation data from nearby locations are used to fit the model to the hydrologic conditions at the gaged basins. The model uses the observed storm rainfall as input to simulate flood hydrographs which are compared with the observed

flood hydrographs. An optimization process keeps revising the model parameter values and then recomputing the discharges to minimize the scatter between the actual and computed runoff. The final values of several parameters are determined by this optimization process. In the synthesis phase, long-term rainfall and evaporation data are used as input to the calibrated model to generate a long-term series of flood peaks. A more detailed discussion of the rainfall-runoff model is given by Dawdy, Lichty, and Bergmann (1972).

An adequate calibration of the model was obtained at 25 of the 28 small-stream gaging stations where concurrent rainfall and runoff data were collected. However, 2 of the 25 calibrated sites were urbanized basins and were not included in the final regression analysis. Evaporation data from the National Weather Service station at Newark, Del., were used with the northern sites and from the station at Georgetown, Del., with the southern sites. At each modeled site, an average of 18 storm events was used for calibration.

Flood-Peak Synthesis

Synthesized peak discharges were generated for 23 calibrated sites using long-term daily and unit rainfall and daily evaporation data as input to the model in conjunction with the optimized parameters. Seventy-two years of rainfall records from Baltimore, Md., and 55 years of records from Atlantic City, N.J., were used to generate long-term synthetic records of annual peaks. The long-term evaporation data used were generated values based on averaged data from short-term actual records. Newark, Del., evaporation data were used with the calibrated sites in the north, and Georgetown, Del., data were used with sites in the south.

Continuous records of rainfall available at Baltimore and Atlantic City were translated into unit values at 5-minute intervals for the more significant storm periods each year. These unit data (about four storms per year on the average) were used as input to the model, along with daily rainfall and evaporation data, to produce the arrays of simulated annual peak discharges.

The rainfall-runoff model does not treat base flow. Base flow is considered to be that part of streamflow which comes from ground-water storage. Base flow is subtracted from the storm hydrographs used to calibrate the model. For some streams in the Coastal Plain, base flow is a significant part of the total discharge even at flood stage. Therefore, when the model was used to generate peaks on those streams, it was necessary to add in a base-flow component of discharge. Analysis indicated that for some of the calibrated sites, the base flows were fairly constant regardless of flood magnitudes, while at other sites base flow varied with peak magnitude. Adjustments were made to the generated peaks based on the results of this analysis. No adjustments were made unless, on the average, base flow amounted to more than 5 percent of total peak flow.

Flood magnitude/frequency curves were developed from the arrays of simulated annual peaks in the same manner as for the observed station data using the log-Pearson type III distribution. The flood curves generated from the Atlantic City rainfall had significantly larger peaks in general than those from Baltimore, especially at the higher recurrence intervals.

Combining Flood-Frequency Curves

Since considerable variation was observed between the synthetic flood-frequency curves derived from Baltimore and Atlantic City rainfall, a weighting procedure was needed to combine the two sets of curves. To determine the best procedure to use, rainfall intensities were investigated for various recurrence intervals and storm durations at three recording rainfall gages in Delaware, each with about 15 years of record, and also at the gages in Baltimore and Atlantic City. The analysis indicated the rainfall distributions on the Delmarva Peninsula were much more similar to Baltimore than Atlantic City. The final weighting procedure was based on the 100-year 6-hour rainfall distribution shown in U.S. Weather Bureau Technical Paper No. 29, July 1958. The synthetic flood-frequency curves were combined using weighting factors of 2/3 and 1/3 for Baltimore and Atlantic City, respectively.

The weighted synthetic flood-frequency curves were then combined with the observed flood-frequency curves based on an analysis of variance of the two distributions. The following paragraphs briefly describe the procedure (Lichty and Liscum, 1978) used to determine the final combined synthetic/observed curves.

The average variance of synthetic estimates of discharge for different recurrence intervals was computed for the network by the following equation:

$$\overline{V}_{\text{model}} = V_{\text{total}} - \overline{V}_{\text{Ti}} (1-r)$$

where

 $\overline{V}_{\text{model}}$ = average variance of synthetic estimates of discharge for recurrence interval T,

V total = variance of differences between observed and synthetic estimates of discharge for recurrence interval T.

 \overline{V}_{Ti} = average time-sampling variance of the observed annual peak discharges, and

r = average interstation correlation coefficient for annual
 peaks.

The final combined weighted estimates of the flood peaks at each site were then determined by the following equation:

$$Q_{T} = \frac{Q_{o} (\overline{V}_{model}) + Q_{s} (V_{Ti})}{\overline{V}_{model} + V_{Ti}}$$

where

 Q_{T} = weighted estimated discharge for recurrence interval T,

Q = observed estimated discharge for recurrence interval T,

 $Q_{\rm S}$ = synthetic estimated discharge for recurrence interval T, and $V_{\rm Ti}$ = individual station time sampling variance.

For a more detailed description of time-sampling variance and interstation correlation coefficient, refer to Hardison (1971). This procedure was applied individually to the modeled gaged sites in the northern part of the peninsula. However, in order to dampen out effects of an apparent significant variation in time-sampling error south of Dover, Del., average weighting factors for combining the observed and synthetic frequency curves were used. These weighting factors were based on individual station results using the above procedure, and are listed below:

octions and in instance add = X 10

Recurrence	Weighting factors		
(years)	0bserved	Synthetic	
2	0.9	0.1	
equations can be determined to	.8	.2	
stimate (described on page 01).	to wins brabe	and the end was fine	
25	7	.3	
being and enoliaupe noissonger e	.6	.4	
ent for the primary sets o 101 Lat	Ted 0.6 of 06 me	V38V 3.4 99	

Flood-frequency characteristics for gaging stations where long-term synthesized flood data were utilized are included in table 3.

Regression Analysis

The flood-estimating method presented in this report was developed by multiple-regression analysis. To obtain long-term observed flood data at all streams in any region is economically impractical. Therefore, a method is needed for transferring flood information from sites where observed data are available to ungaged locations. Multiple regression is a useful technique for determining transferable flood-frequency relationships (Riggs 1973).

The regression analysis defines the relationships which exist between different basin characteristics such as drainage area and slope, and flood magnitudes (Q_2, Q_5, \ldots, Q_n) within a region, and determines how

significant those relationships are. The regression analysis quantifies the relationships in mathematical expressions (regression equations) of the form

$$Q_{T} = KA^{a} \cdot B^{b} \cdot C^{c} \cdot \dots I^{i}$$

where

 Q_{T} = peak discharge with recurrence interval of T years,

K = the constant of the equation,

A.B.C...I = related basin characteristics, and

a,b,c...i = exponents applied to the basin characteristics.

The reliability of the regression equations can be determined to some extent by the standard error of estimate (described on page 13). The standard errors of estimate for the regression equations presented in this report vary from 30 to 40 percent for the primary sets of relationships for the northern and southern regions, and from 57 to 70 percent for the southern region alternate method. (See table 1.) Hardison (1971) relates reliability of regression equations to standard errors of estimate.

Both step-backward and step-forward regression techniques (Riggs 1973) were used in the analysis to determine the final estimating (regression) equations.

In this study, numerous multiple regressions were run testing the effects of a broad range of physical basin and climatic characteristics utilizing nearly all of the gaging-station records which reflected natural conditions in Delaware, the Eastern Shore of Maryland, and nearby Pennsylvania.

Sixty of the seventy-four gaging stations evaluated were used as the data base (table 3) for the final regression equations. All of the stations included in the final regressions either had 10 or more years of annual peak data or had records extended by the rainfall-runoff model, except for two Pennsylvania sites with 9 years of data each.

A summary of the sizes of the drainage areas and average years of observed record for the stations used is given in the following table.

Drainage ₂ area (mi ²)	Number of gaged basins	Average years of observed record
STATE OF THE PARTY	to Tiood Sugnitudes La. 1 through 1) for	
	5	
	12	
	19	18 and 17 and 18
10-20	ranging by and separate	20
20-50	9	24
50-120	6	29

The 14 gaging stations excluded from the data base for the regression equations are discussed on page 33.

Twelve basin characteristics were analyzed by the regression technique for possible effect on flood magnitudes. They were: Drainage area, main channel slope, main channel length, basin elevation, storage (lakes, swamps, and ponds), forest cover, mean annual precipitation, 2-year 24-hour rainfall, and the extent of four different types of soils.

The soils types investigated were classified by the U.S. Soil Conservation Service in a system which groups soils according to various physical and chemical properties (Maryland Department of State Planning, 1973). The following qualitative groupings, arranged by runoff potential, were delineated on natural soil group maps obtained from the U.S. Soil Conservation Service and were studied in detail.

- Type A. Low runoff potential.
- Type B. Moderately low runoff potential.
- Type C. Moderately high runoff potential.
- Type D. High runoff potential.

Type A soils (low runoff potential) and type D soils (high runoff potential) were found to be highly related to flood magnitudes and their outlines were transferred to base maps (pls. 1 through 3) for use with the design method.

Only those basin characteristics which were determined to be significant at a 95-percent confidence level appear in the final estimating equations. The storage characteristic did not prove significant for recurrence intervals under 10 years in the southern region equations and under 25 years in the southern region alternate equations. Storage was included, however, throughout the range of recurrence intervals in the southern region because it was highly significant at the higher recurrence intervals. Each basin characteristic included in the final estimating equations effectively reduced the standard errors of estimate for the equations. The basin characteristics used in the estimating equations are described in detail in table 4 and the individual station values are given in table 3. The soil characteristics are of particular interest because the soils are analyzed in groupings not believed to have been investigated before in relation to floods, and in the southern region, basically Coastal Plain, they were found to be highly related to flood peaks. Previous studies in the East have, in general, encountered considerable difficulty in identifying any significant relationships between soil characteristics and flood peaks in Coastal Plain areas.

The relationships between flood magnitudes and basin characteristics were evaluated to see if the entire area could be modeled effectively as a single region by one set of regression equations, or whether it should be separated into two areas roughly coinciding with the Piedmont and the Coastal Plain. The two-region approach was selected as more realistic and probably more reliable with the dividing line reflecting a rather abrupt change in topography generally agreeing with the Fall Line.

The area was divided because of two indications of the existence of hydrologically different regions. The soil characteristics were found to be not significant in the northern region, and a graph of the residuals for an area-wide trial model plotted against forest cover exhibited two clusters of data points corresponding to the two regions under consideration. The separate clusters were considered a strong indication of separate populations.

The stability of the two primary sets of final regionalized regression equations was tested by informal split-sampling techniques. Rigorous split-sample tests were not appropriate because of the relatively small number of data sets available. The northern region was tested by modeling the 14 stations in Delaware and Maryland separately from the final 24-station regression which included Pennsylvania sites. The 14-station model agreed very closely with the 24-station model.

The southern region was tested by running a regression with 20 sites and using the results to compute flood peaks for the remaining 16 stations to compare with observed peaks. The 20-station regression model was similar to the final 36 station regression and did a reasonable job of estimating flood peaks at the other 16 sites (Q_{50} residuals: mean = 0.035 log units, standard deviation = 0.20 log units).

Because of the large number of basin characteristics in the regression equations for the southern region, it was decided to analyze the region without the soils factors in order to provide another set of estimating equations which would be easier to use. Therefore, the alternate set of regression equations for the southern region was developed, but, as it turned out, at a considerable sacrifice in accuracy. The standard errors of estimate for the alternate model ranged from 57 to 70 percent as opposed to 38 to 40 percent for the model including soils characteristics. (See table 1.) The slope parameter did not prove significant in the alternate model apparently because of a high negative intercorrelation (-0.67) between slope and type D soil. Type D soil which was not treated in this model appears to have masked much of the direct relationship between slope and discharge.

Along with the higher standard errors accompanying the simpler alternate model, the extreme values of observed flood data were much more widely scattered about the line of relationship than with the model including soils. For example, the maximum departures of the observed peaks from the Q_{100} regression for the southern region alternate model were ± 0.43 and ± 0.78 log units as opposed to ± 0.33 and ± 0.34 log units for the primary southern region model. It can be inferred from this scatter that a gross error in estimating a design flood is much more likely to occur when the alternate set of equations is used. The southern region alternate equations are particularly unreliable for small drainage areas. (See table 2.) Although the alternate regression equations may be useful under some circumstances, it is strongly recommended that, in general, the primary set of equations be used for the southern region.

Standard errors of estimate were computed for the drainage basins used in the final regression equations separated into two classes—less than 10 mi² and more than 10 mi². The results (listed in table 2) indicate the larger basins fit the regression relationships better.

TABLE 2.--Standard errors of estimate for estimating equations for drainage areas less than and more than 10 mi.

n relation of look to the total to the total to the total to	Flood	Standar	Standard error of estimate (percent)					
Estimating equations	recurrence interval (years)	Sites under 10 mi	Sites over 10 mi ²	All sites				
Northern region	10	36	16	29				
	100	43	38	39				
Southern region	10	45	28	37				
	100	48	31	40				
Southern region alternate	10	74	40	63				
	100	83	43	70				

These results are not surprising. In general, the records of flood data available for the larger basins are considerably longer. Therefore, there probably is less time-sampling error in the flood-frequency curves for those basins which would account in part for their having a better fit. Also, the larger basins generally have a more evenly distributed and better balanced mixture of basin characteristics which tends to reduce the scatter.

Use of the multiple-regression analysis carries the assumption of linearity between the dependent and independent variables. Previous hydrologic investigations (Thomas and Benson, 1970) have determined that most basin characteristics when transformed into log units are linearly related to flood magnitudes. All characteristics used in the analysis were transformed into logs. The transformation requires adding a constant to the characteristics for which values can go to zero in order for the equations to function. Previous studies generally have used a constant of 1.0 for convenience in using the estimating equations. However, in this study, with several characteristics expressed in percent, a constant of 10.0 gave better results.

The table on page 32 illustrates the smoother and more reasonable transitions in the evaluated expressions for the basin characteristics throughout their ranges when using a constant of 10. For comparison purposes, the values of the expressions are converted to a common base with the expanded expression equaling 1.00 when the characteristic percentage equals zero. All the other values are given in proportional relation to the base values which were set at unity.

All the significant basin characteristics were plotted against the residuals ($\log Q_{\rm observed} - \log Q_{\rm computed}$) for the stations used in the final regression equations to test for nonlinearity. The relations appeared to be linear. The residuals at the gaged sites used were also plotted on a map to test for areal bias in the regression equations. No areal bias was indicated.

Expanded basin characteristic expressions

Basin characteristic value			(conve	erted to 1	relative va	lues)		
(percent)	THOUSE VA	rage	Fore	est	Type A	soil	Type D	soil
· · · · · · · · · · · · · · · · · · ·	c* = 10	C = 1	C = 10	C = 1	C = 10	C = 1	C = 10	c = 1
0 4 11	1.00	1.00	†1.00	†1.00	1.00	1.00	†1.00	†1.00
i	.87	.73	+ .91	+ .66	.96	.89	†1.07	†1.48
5	.54	.45	+ .68	† .34	.85	.74	1.33	2.78
8 7 8 7	.41	.38	.57	.27	.79	.69	1.50	3.50
10	.35	.34	.51	.23	.75	.67	1.62	3.92
15	.25	.29	.41	.19	.69	.63	1.89	4.86
20	† .19	† .26	.35	.16	.64	.60	2.15	5.67
40	† .09	† .19	.21	.11	.52	.53	3.06	8.30
60	† .05	+ .16	.15	.08	.45	.50	3.87	10.41
80 8 8	+ .04	† .14	.12	.07	.41	.48	4.60	12.24
100	+ .03	+ .13	.10	.06	.37	.46	5.29	13.88
. 1 5 6 6 4 5 5 6	0 4 10 B	(4) F.O.	9 H 10	SO ON	an we we a	10 E E 60	12 12	2 2

C = constant added to basin characteristic values.

Data are from southern region Q_{100} estimating equations derived with C = 10 and C = 1.

Outside of range used in calibration.

Fourteen of the seventy-four gaging stations evaluated for use in the regression analysis were excluded from the final regression equations. Of the 14 stations (see table 5), 4 had less than 10 years of record, and 3 had extensive regulation of peak flows by dams. The remaining seven stations were excluded for the following reasons:

Station Number	Remarks
01475510, 01477800 and 01481450	- significant urban development,
01481000 and 01481500	- oversize drainage areas (see below),
01478500	 nearly duplicate of Station 01490000, on same stream, included in analysis,
01488000	- abnormally high infiltration (see below).

Stations 0148100 and 01481500 on Brandywine Creek were considered outliers and excluded because their drainage areas (287 and 314 mi²) far exceeded the rest of the sites in the northern region analysis (next largest drainage area = 87.8 mi²). Reliable estimates of peak discharges for sites on Brandywine Creek may be made with equation 19 (p. 9) alone, without weighting results by estimating equations which would be unreliable for such large drainage areas (see discussion on p. 15).

Station 01488000, Holly Ditch near Laurel, Del., was excluded from the regression equations because of pronounced attenuation of the lower recurrence interval peaks. This dampening effect probably resulted from excessive soil infiltration or perhaps from drainage from the streambed. In any event, the phenomenon was observed at only 1 of the 74 sites studied and is believed to be rare. Comparative observed and computed peak discharge values for different recurrence intervals at Holly Ditch are presented in the following table.

Drozez 3	erano Olono in	Peak discharge	es (ft ³ /s)
Station	Recurrence intervals (years)	Computed (Model with soils)	Observed
01488000	2	54	8.1
	5	88	25
	played 10 m	126	48
	25	oslavovo 193	104
	50	259	178
	100	345	297

The tendency of the values to converge at the higher recurrence interval floods is particularly interesting.

re soil infiltration or perhaps from drainage from the streambed.

SUMMARY

Prior to 1964, relatively little flood-discharge data were available for small drainage basins in Delaware. The U.S. Geological Survey, in cooperation with the Delaware Department of Transportation and the Federal Highway Administration, began a small-streams flood investigation in 1964 to fill the data gap and to develop a method to predict flood magnitudes and frequencies. The design method in this report is the result of that investigation.

A thorough evaluation has been made of flood-flow records from 74 gaging stations on the Delmarva Peninsula and in nearby Pennsylvania. The estimating equations presented herein are based on data from 60 of those stations and provide a convenient means to estimate flood discharges for selected recurrence intervals from 2 to 100 years. The estimating equations apply to natural basins and were calibrated over a range in drainage areas from 0.4 to 110 mi^2 .

The State has been divided into two regions, each with a set of estimating equations. The boundary between the regions generally follows the Fall Line. In the northern region, a significant relationship was found between peak discharges and two basin characteristics. In the southern region, six basin characteristics were found to be significant, including the areal extent of two soils groupings which were highly related to the peak discharges.

Standard errors of estimate which varied from 30 to 40 percent, along with other evaluations of the estimating equations, indicate the equations should give satisfactory results within the range of parameters used in their derivation.

SELECTED REFERENCES

- Benson, M. A., 1962, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geol. Survey Water-Supply Paper 1580-B, 64 p.
- Cushing, E. M., Kantrowitz, I. H., and Taylor, K. R., 1973, Water resources of the Delmarva Peninsula: U.S. Geol. Survey Prof. Paper 822, 58 p.
- Dawdy, D. R., Lichty, R. W., and Bergmann, J. M., 1972, A rainfall-runoff simulation model for estimation of flood peaks for small drainage basins: U.S. Geol. Survey Prof. Paper 506-B, 28 p.
- Hardison, C. H., 1969, Accuracy of streamflow characteristics: U.S. Geol. Survey Prof. Paper 650-D, p. D210-D214.
- 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites: U.S. Geol. Survey Prof. Paper 750-C, p. C228-C236.
- Lichty, R. W., and Liscum, Fred, 1978, A rainfall-runoff modeling procedure for improving estimates of T-year (annual) floods for small drainage basins: U.S. Geol. Survey Water-Resources Inv. 78-7, 44 p.
- Maryland Department of State Planning, 1973, Natural soil groups technical report: Maryland Dept. of State Plan., pub. no. 199, 153 p.
- Riggs, H. C., 1973, Regional analyses of streamflow characteristics: U.S. Geol. Survey Techniques of Water-Resources Inv., book 4, chap. B3, 15 p.
- Thomas, D. M., and Benson, M. A., 1970, Generalization of streamflow characteristics from drainage basin characteristics: U.S. Geol. Survey Water-Supply Paper 1975, 55 p.
- Tice, R. H., 1968, Magnitude and frequency of floods in the United States, pt. 1-B, North Atlantic slope basins, New York to York River: U.S. Geol. Survey Water-Supply Paper 1672, 585 p.
- U.S. Soil Conservation Service [1976], Natural soil group map, [New Castle County, Delaware]: scale 1:48,000.
- [1976], Natural soil group map, [Kent County, Delaware]: scale 1:63,360.
- ____[1976], Natural soil group map, [Sussex County, Delaware]: scale 1:63,360.

- U.S. Water Resources Council, 1976, Guidelines for determining flood flow frequency: Water Resources Council Bull. no. 17, 26 p.
- U.S. Weather Bureau, 1958, Rainfall intensity-frequency regime, pt. 3, the middle Atlantic region: U.S. Weather Bur. Tech. Paper no. 29, 38 p.

SUPPLEMENTAL DATA SUPPLEMENTAL

40

TABLE 3. -- Basin characteristics and flood-frequency characteristics for selected gaging stations.

		Bas	in charac	teristic	s			Flood-	frequen	cy chara	acterist	ics
Identification No.	Drainage area	Channel slope	Storage	Forest cover	Soil Type A	Soil Type D						second, in year
	(mi ²)	(mi ²) (ft/mi) (Percent)					2	5	10	25	50	100
01472174	5.98	39.6	0	14	_	_	530	1,170	1,880	3,280	4,820	6,950
01473880	2.01	86.0	0	14	-	-	182	355	530	846	1,170	1,590
01478000	20.5	22.7	0.07	19	0	7	1,710	2,400	2,940	3,720	4,370	5,100
01478200	12.7	29.0	0	11	_	-	994	1,770	2,510	3,760	4,980	6,500
01478500*	66.7	18.4	.07	19	0	7	2,970	4,370	5,500	7,210	8,690	10,400
01478950+	6.04	54.0	.05	25	0	6	844	1,630	2,340	3,420	4,370	5,460
01479000	87.8	15.0	.09	23	0	8	3,750	5,270	6,440	8,130	9,560	11,100
01479200†	4.19	40.9	0	9	0	13	550	953	1,240	1,920	2,460	3,070
01479950+	0.38	154	0	27	0	2	43	79	121	197	277	383
01480000	47.0	16.6	.82	18	0	7	2,250	3,100	3,760	4,710	5,510	6,390
01480100	6.70	44.5	.16	14	0	15	849	1,560	2,240	3,430	4,610	6,100
01480300	18.7	28.2	0	30	E-	_	1,220	2,220	3,170	4,800	6,380	8,360
01480500#	45.8	22.5	.35	18	5-	-	1,910	3,890	5,920		13,500	18,500
01480610	2.57	67.2	0	23	5 -	-	282	565	854	1,380	1,920	2,620
01480675	8.57	24.8	6.07	27	-	-	299	534	753	1,120	1,480	1,920
01480700	60.6	24.3	0	19	-	-	2,890	4,690	6,250	8,720	11,000	13,600
01481000*	287	14.5	.16	-	-		6,810	10,400		17,500	21,200	25,300
01481200+	0.97	136	.31	43	0	7	100	208	321	526	741	1,030
01481500*	314	14.5	.17		-	-	7,800	12,000	15,600	21,100	26,000	31,700
01482310†	1.07	36.6	.96	9	0	5	141	260	371	543	696	869
01483200†	3.85	15.8	1.90	43	8	43	134	273	408	632	842	1,100

^{*} Site not used in regression analysis.

⁺ Flood-frequency data are weighted estimates based on observed and synthetic flood-frequency curves.

[#] Flood-frequency data adjusted for historical flood information.

41

TABLE 3.--Basin characteristics and flood-frequency characteristics for selected gaging stations--Continued.

		Bas	in charac	teristic	s			Flood-f	requenc	y chara	cterist	ics
Identification No.	Drainage Channel area slope		Storage	Forest cover	Soil Type A	Soil Type D		lischarge, in cubic feet pe dicated recurrence interva				
01578200 E H	(mi ²)	(ft/mi)	(Percent)			2	5	10	25	50	100	
01483290 †	1.30	11.1	0	17	0	40	143	261	372	569	762	1,020
01483400+	0.6	26.4	5.2	26	0	36	24	35	46	66	85	108
01483500 +	9.35	10.4	.10	21	0	40	223	456	696	1,110	1,530	2,040
01483700	31.9	3.86	2.27	46	1	50	500	826	1,110	1,580	2,020	2,540
01483720 +	2.3	18.4	0	20	0	7	158	289	420	644	855	1,110
01484000 #	13.6	6.26	0.65	35	7	43	284	559	828	1,290	1,760	2,340
01484002 ++	0.97	17.6	0	28	96	4	18	29	40	60	80	105
01484050 †	3.29	12.6	. 0	16	1	15	64	139	214	356	510	733
01484100 +	2.83	7.12	0.36	45	30	70	53	86	119	176	231	300
01484270 +	6.10	7.73	2.20	57	82	5	27	36	43	53	61	69
01484300	7.08	7.89	3.95	54	88	10	37	59	77	107	134	165
01484500 †	5.24	4.87	.04	51	27	69	62	86	147	226	302	397
01484550 +	8.78	5.43	.15	46	5	94	273	405	541	785	1,020	1,320
01485000	60.5	1.49	15.8	30	4	95	613	770	881	1,030	1,150	1,280
01485500	44.9	3.56	6.20	85	8	84	495	698	856	1,090	1,280	1,500
01486000	4.80	5.47	0	57	0	100	124	234	342	532	723	967
01486100†	4.1	8.47	2.90	77	6	71	90	143	191	272	347	439
01486980+	5.28	3.49	.21	68	10	66	41	58	73	97	117	141
01487000 ±	, 75.4	3.23	1.70	40	18	48	551	966	1,350	1,980	2,590	3,330
01487900+	3.47	4.23	0	44	0	65	77	106	140	207	278	370
01488500±	44.8	2.65	.30	29	0	79	674	1,360	2,040	3,250	4,460	6,020

[†] Flood-frequency data are weighted estimates based on observed and synthetic flood-frequency curves.

[#] Flood-frequency data adjusted for historical flood information.

TABLE 3.--Basin characteristics and flood-frequency characteristics for selected gaging stations--Continued.

		Bas	in charac	teristic	s			Flood-f	requenc	y chara	acterist	ics	
Identification No.	Drainage area	Channel slope	Storage	Forest cover	Soil Type A	Soil Type D					ic feet per second, ce interval, in years		
OFFINESOS	(mi ²)	(mi ²) (ft/mi) (Percent)				2	5	10	25	50	100		
01489000‡	7.10	7.65	0.47	33	0	50	172	401	656	1,150	1,690	2,430	
01490000	15.0	4.53	.10	50	5	35	210	342	458	643	814	1,020	
01490600++	8.4	5.98	1.20	48	2	88	208	350	487	714	928	1,190	
01490800	3.9	7.67	.71	29	0	69	184	338	486	745	1,000	1,330	
01491000#	113	3.01	1.91	35	5	76	1,670	2,770	3,730	5,260	6,670	8,340	
01491010†#	1.9	10.9	.14	28	0	36	70	151	233	376	524	717	
01491050#	3.8	6.06	.07	25	0	35	65	120	173	266	361	483	
01492000	5.85	14.8	0	26	6	24	276	542	813	1,300		2,470	
01492050	8.4	9.81	0	23	0	14	98	200	305	501	706	978	
01492500	8.09	8.80	0	32	0	15	198	441	713	1,250		2,670	
01492550	4.6	16.9	. 34	14	5	20	131	286	456	788	1,150	1,650	
01493000	22.3	6.06	1.54	43	3	40	281	497	699	1,040		1,790	
01493500‡	12.7	9.15	.20	8	0	7	374	756	1,150	1,900		3,720	
01495000#	52.6	17.9	.05	14	0	8	3,030	5,000	6,690	9,340		14,500	
01495500	26.8	23.7	.06	23	0	7	1,720	2,550	3,230	4,260		6,200	
01496000	24.3	24.0	.09	22	0	11	1,560	2,480	3,270	4,510		6,980	
01496080	1.7	125	.03	96	0	0	300	460	595	803	989	1,200	
01578200	8.71	74.2	0	23	-	-	516	915	1,290	1,910		3,240	
01578400	5.98	108	0	22	IAND V	INDE D	607	1,010	1,360	1,930	2,450	3,080	
01578800+	1.3	69.8	.18	12	0	10	364	556	725	1,030		1,750	
01579000†	5.31	37.0	.08	22	0	3	720	1,350	1,980	3,130	4,350	6,000	

⁺ Flood-frequency data are weighted estimates based on observed and synthetic flood-frequency curves.

[#] Flood-frequency data adjusted for historical flood information.

- 1. <u>Drainage area</u> (A), in square miles: Planimetered from best available topographic maps.
- 2. Main channel slope (S1), in feet per mile: Determined from topographic maps as follows.
 - A. Measure length of main channel from site in question (catch point) to basin rim with dividers, electronic distance measuring device, etc. Above a confluence, the branch draining the largest area is considered the main channel regardless of its name.
- B. Determine the channel elevation by interpolation at locations 10 percent and 85 percent of the channel length upstream from the catch point.
- C. Compute slope by taking the elevation at the 85-percent point minus the elevation at the 10-percent point and dividing by the horizontal distance between the two points.
- 3. Storage (St), in percent: Determined from topographic maps as follows. Planimeter area of lakes, ponds, and swamps: Express that area in percent (to nearest 0.1 percent) of total drainage area and increase its value by 10.0. It is recommended that St be expressed to nearest 0.1 percent because the discharge is very sensitive to this parameter.
- 4. Forest cover (F), in percent: Determined from topographic maps as follows. Measure the area of the basin covered by forests (shaded green on U.S. Geological Survey maps) by the grid method (a minimum of 100 grid intersections is recommended): Express that area in percent of the total drainage area and increase its value by 10.
- Determine S_a in percent from soils maps (pls. 1-3) as follows. Planimeter area of the drainage basin covered by type A soil: Express that area in percent of the total drainage area and increase its value by 10.
- 6. Type D soils (Sd), classified as having "high runoff potential."

 Determine Sd in percent from soils maps (pls. 1-3) as follows.

 Planimeter area of the drainage basin covered by type D soil:

 Express that area in percent of the total drainage area and increase its value by 10.

01472174 Pickering Creek near Chester Springs, Pa.

Location. -- Lat 40°05'22", long 75°37'50", Chester County, at bridge on Horseshoe Trail Road, 0.75 mi southwest of Chester Springs.

Drainage Area. -- 5.98 mi².

Water Year	Discharge	Water Year	Discharge	Water	Discharge	Water Year	Discharge
1967 1968 1969	385 267 282	1970 1971	222 1,640	1972 1973	2,410 580	1974 1975	412 1,340

01473880 Pine Rum Tributary at Fort Washington, Pa.

Location. --Lat 40°08'13", long 75°11'21", Montgomery County, at culvert on Delaware Road in Fort Washington Industrial Park at Fort Washington.

Drainage Area. -- 2.01 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1962	147	1966	206	1970	83	1973	1,580
1963	88	1967	300	1971	198	1974	152
1964	243	1968	120	1972	128	1975	400
1965	163	1969	190	1000000	abilit as av	Filmon	4 4

01475510 Darby Creek near Darby, Pa.*

Location. --Lat 39°55'44", long 75°16'22", Delaware County, 30 ft upstream from Providence Road Bridge, and 1.1 mi northwest of Upper Darby.

Drainage Area. -- 37.4 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1965	1,480	1968	4,610	1971	4,370	1974	5,920
1966	2,690	1969	2,910	1972	4,370	1975	3,330
1967	2,550	1970	3,640	1973	4,940	17/3	3,330

^{*} Not used in final regression model.

01477800 Shellpot Creek at Wilmington, Del.*

<u>Location</u>.--Lat 39°45'39", long 75°31'10", New Castle County, in Clifton Park, 700 ft downstream from North Market Street in Wilmington.

Drainage Area. -- 7.46 mi2.

Remarks. -- Peak flow affected by urban development.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water	Discharge
1946	1,340	1954	830	1962	730	1969	1,080
1947	2,140	1955	2,280	1963	560	1970	1,970
1948	1,440	1956	1,330	1964	1,020	1971	6,850
1949	715	1957	1,000	1965	990	1972	2,240
1950	565	1958	1,140	1966	695	1973	2,030
1951	1,290	1959	1,540	1967	4,650	1974	3,300
1952	4,080	1960	1,930	1968	1,220	1975	1,390
1953	785	1961	1,210	1966	3.770	7.075	6.076

01478000 Christina River at Coochs Bridge, Del.

Location.--Lat 39°38'14", long 75°43'43", New Castle County, at highway bridge, 0.5 mi southeast of Coochs Bridge.

Drainage Area. -- 20.5 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1943	2,150	1952	2,730	1960	3,300	1968	2,190
1944	1,280	1953	1,590	1961	1,220	1969	1,190
1945	2,620	1954	1,170	1962	1,250	1970	1,680
1946	1,680	1955	3,250	1963	638	1971	2,110
1947	4,330	1956	1,950	1964	1,570	1972	3,320
1948	1,170	1957	1,310	1965	978	1973	2,400
1949	1,680	1958	1,390	1966	1,650	1974	1,920
1950 1951	1,000 1,500	1959	955	1967	2,610	1975	2,500

^{*} Not used in final regression model.

01478200 Middle Branch White Clay Creek near Landenberg, Pa.

Location.--Lat 39°46'54", long 75°48'03", Chester County, at bridge on Legislative Route 15017, 1.8 mi west of Landenberg.

Drainage Area. -- 12.7 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1960	1,900	1964	1,250	1968	794	1972	3,860
1961	360	1965	672	1969	784	1973	826
1962	510	1966	1,420	1970	1,160	1974	874
1963	489	1967	1,540	1971	1,820	1975	2,570

01478500 White Clay Creek above Newark, Del.*

Location. -- Lat 39°42'52", long 75°45'34", New Castle County, 1.7 mi southeast of Delaware-Maryland-Pennsylvania State corner, and 2.2 mi north of Newark.

Drainage Area. -- 66.7 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1953	2,620	1958	2,830	1966	3,910	1971	4,320
1954	1,840	1959	3,160	1967	4,540	1972	10,200
1955	4,050	1963	2,060	1968	1,930	1973	2,800
1956	1,930	1964	3,480	1969	2,430	1974	2,690
1957	2,960	1965	2,410	1970	2,560	1975	6,330

01478950 Pike Creek near Newark, Del.

Location. --Lat 39°42'11", long 75°41'41", New Castle County, at bridge on State Highway 2, 2.6 mi northeast of Newark.

Drainage Area. -- 6.04 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1969	2,550	1971	494	1973	1,160	1975	745
1970	427	1972	942	1974	494	13/3	743

^{*} Not used in final regression model.

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01479000 White Clay Creek near Newark, Del.

Location. --Lat 39°42'01", long 75°41'00", New Castle County, 300 ft upstream from Baltimore & Ohio Railroad bridge, and 3.5 mi east of Newark.

Drainage Area. -- 87.8 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1932	3,030	1947	3,170	1956	3,250	1967	6,640
1933	6,230	1948	3,310	1957	3,800	1968	2,360
1934	3,870	1949	2,850	1960	6,340	1969	18.5 + 20.8
1935	3,790	1950	4,590	1961	2,300	1970	3,000
1936	6.030	1951	3,310	1962	1,970	1971	5,170
1943	3,020	1952	5,750	1963	2,160	1972	9,080
1944	4,050	1953	3,020	1964	3,610	1973	4,340
1945	3,870	1954	2,550	1965	2,640	1974	4,760
1946	5,960	1955	6,010	1966	3,770	1975	6,900

01479200 Mill Creek at Hockessin, Del.

Location. --Lat 39°46'31", long 75°41'26", New Castle County, at bridge on Brackenville Road, 0.9 mi southeast of Hockessin.

Drainage Area. -- 4.19 mi², of which 0.15 mi² is probably noncontributing.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966 1967 1968	504 727 272	1969 1970 1971	2,100 579 524	1972 1973	687 444	1974 1975	372 625

01479950 Red Clay Creek Tributary near Yorklyn, Del.

<u>Location</u>.--Lat 39°47'50", long 75°39'33", New Castle County, at culvert on private road, 1.1 mi southeast of Yorklyn.

Drainage Area. -- 0.38 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water	Discharge
1966	22	1969	200	1972	56	1974	23
1967	49	1970	69	1973	43	1975	62
1968	24	1971	64		56 - 1,08c	19	18

[†] Discharge not determined.

01480000 Red Clay Creek at Wooddale, Del.

Location. -- Lat 39°45'52", long 75°38'08", New Castle County, at bridge on State Highway 48, 0.3 mi south of Wooddale.

Drainage Area. -- 47.0 mi2.

Water Year	Discharge	Water	Discharge	Water Year	Discharge	Water Year	Discharge
1943	1,730	1952	2,750	1960	4,780	1968	1,750
1944	1,670	1953	1,800	1961	1,390	1969	4,500
1945	2,810	1954	1,260	1962	1,870	1970	2,100
1946	2,510	1955	3,650	1963	1,560	1971	3,520
1947	2,030	1956	1,520	1964	2,620	1972	4,120
1948	1,730	1957	2,520	1965	2,070	1973	2,040
1949	1,880	1958	2,370	1966	2,730	1974	1,870
1950	1,570	1959	2,020	1967	2,910	1975	5,010
1951	2,740	019	65 a mad 17		55 6.01	61 0	96.5

01480100 Little Mill Creek at Elsmere, Del.

Location. --Lat 39°44'05", long 75°35'14", New Castle County, at highway bridge on North Du Pont Road at Elsmere.

Drainage Area. -- 6.70 mi².

Water Year	Discharge	Water	Discharge	Water Year	Discharge	Water Year	Discharge
1964	735	1967	3,960	1970	652	1973	714
1965	478	1968	500	1971	2,650	1974	1,070
1966	567	1969	562	1972	1,380	1975	882

01480300 West Branch Brandywine Creek near Honey Brook, Pa.

Location. --Lat 40°04'22", long 75°51'40", Chester County, at bridge on Legislative Route 15185, at Birdell, and 3.0 mi southeast of Honey Brook.

Drainage Area. -- 18.7 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1960	1,870	1964	1,180	1968	704	1972	8,140
1961	810	1965	1,130	1969	1,150	1973	3,140
1962	810	1966	1,080	1970	673	1974	848
1963	810	1967	990	1971	1,820	1975	2,480

01480500 West Branch Brandywine Creek at Coatesville, Pa.

Location. --Lat 39°59'08", long 75°49'40", Chester County, 1,200 ft upstream from bridge on old Lincoln Highway, and 0.6 mi downstream from Rock Run.

Drainage Area. -- 45.8 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1942 1944 1945	8,600 1,340 3,670	1947 1948 1949	675 1,170 1,170	1951 1970 1971	3,330 996 2,850	1973 1974 1975	8,100 1,770 2,370
1946	1,570	1950	835	1972	7,770		

01480610 Sucker Run near Coatesville, Pa.

Location. --Lat 39°58'20", long 75°51'06", Chester County, at bridge on State Highway 372, 2 mi west of Coatesville.

Drainage Area. -- 2.57 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1964	224	1967	312	1970	590	1973	1,010
1965	126	1968	90	1971	300	1974	195
1966	208	1969	422	1972	926	3871.00	A-21 300 at

01480675 Marsh Creek near Glenmoore, Pa.

Location. -- Lat 40°05'52", long 75°44'31", Chester County, 300 ft north of Pennsylvania Turnpike, and 3 mi northeast of Glenmoore.

Drainage Area. -- 8.57 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1967 1968 1969	292 158 201	1970 1971	201 586	1972 1973	946 659	1974 1975	190 277
Vacar-	Discharge	Water	Lienape		Diversion	- Sherer	Trincharge No-artA mas

Isbou notesenger fault ni beau toli t

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01480700 East Branch Brandywine Creek near Downingtown, Pa.

Location. --Lat $40^{\circ}02'05''$, long $75^{\circ}42'32''$, Chester County, at bridge on Dowlin Forge Road, 2.2 mi north of Downingtown.

Drainage Area. -- 60.6 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966 1967 1968	3,530 3,240 1,740	1969 1970 1971	1,620 2,050 4,440	1972 1973	8,070 5,820	1974 1975	2,090 2,540

01481000 Brandywine Creek at Chadds Ford, Pa.*

Location.--Lat 39°52'11", long 75°35'37", Delaware County, at Penn Central Railroad bridge at Chadds Ford and 1,200 ft downstream from U.S. Highway 1.

Drainage Area. -- 287 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1912	10,600	1926	5,900	1940	6,190	1955	16,400
1913	3,900	1927	7,010	1941	5,060	1963	5,900
1914	4,320	1928	8,620	1942	16,800	1964	7,110
1915	16,500	1929	6,520	1943	5,360	1965	6,470
1916	4,790	1930	4,670	1944	7,880	1966	8,600
1917	4,430	1931	8,240	1945	8,240	1967	7,700
1918	10,200	1932	5,460	1946	8,810	1968	6,840
1919	7,180	1933	14,800	1947	2,500	1969	7,270
1920	17,200	1934	4,670	1948	6,190	1970	5,310
1921	2,560	1935	7,000	1949	5,360	1971	14,300
1922	4,100	1936	9,000	1950	4,690	1972	23,800
1923	3,220	1937	3,790	1951	11,600	1973	11,400
1924	6,840	1938	9,400	1952	6,050	1974	6,790
1925	7,700	1939	8,060	1953	6,200	1975	9,600

01481200 Brandywine Creek Tributary near Centerville, Del.

Location. -- Lat 39°50'08", long 75°35'57", New Castle County, at culvert on State Highway 100, 1.4 mi northeast of Centerville.

Drainage Area. -- 0.97 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966 1967	43 64	1969 1970	333 154	1972	170	1974	78
1968	37	1971	405	1973	5/	1975	195

^{*} Not used in final regression model.

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01481450 Willow Run at Rockland, Del.*

Location.--Lat 39°47'32", long 75°33'16", New Castle County, at culvert on Country Club Drive, 1.0 mi east of Rockland.

Drainage Area. -- 0.37 mi².

Remarks. -- Peak flow affected by urban development.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	144	1969	177	1972	263	1974	296
1967	372	1970	375	1973	209	1975	204
1968	146	1971	620	TOTAL DE		1 1077	

01481500 Brandywine Creek at Wilmington, Del.*

Location.--Lat 39°46'09", long 75°34'25", New Castle County, 0.2 mi downstream from Henry Clay Bridge, in Wilmington.

Drainage Area. -- 314 mi2.

Water Year	Discharge	Water	Discharge	Water Year	Discharge	Water Year	Discharge
1947 1948 1949 1950 1951 1952 1953 1954	4,730 5,160 4,940 4,610 11,500 6,960 5,820 3,780	1955 1956 1957 1958 1959 1960 1961	17,800 5,020 9,620 7,790 4,950 15,600 7,660	1962 1963 1964 1965 1966 1967 1968	9,750 7,990 9,050 8,740 10,900 9,510 7,500	1969 1970 1971 1972 1973 1974 1975	8,730 7,120 21,300 29,000 10,400 5,890 8,400

01482310 Doll Run at Red Lion, Del.

Location. -- Lat 39°35'53", long 75°39'43", New Castle County, at culvert on secondary road, 0.7 mi south of Red Lion.

Drainage Area. -- 1.07 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	28	1969	134	1972	215	1974	79
1967	97	1970	117	1973	360	1975	243
1968	83	1971	140	9774			

^{*} Not used in final regression model.

01483200 Blackbird Creek at Blackbird, Del.

Location.--Lat 39°21'58", long 75°40'10", New Castle County, at highway bridge 0.5 mi upstream from Barlow Branch, and 0.6 mi southwest of Blackbird.

Drainage Area. -- 3.85 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1952	195	1959	49	1965	30	1971	194
1953	115	1960	510	1966	82	1972	712
1955	202	1961	131	1967	97	1973	222
1956	95	1962	56	1968	158	1974	83
1957	231	1963	70	1969	229	1975	277
1958	152	1964	72	1970	129		

01483290 Paw Paw Branch Tributary near Clayton, Del.

Location. -- Lat 39°18'41", long 75°40'08", New Castle County, at culverts on road No. 483, 2.4 mi northwest of Clayton.

Drainage Area. -- 1.3 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	92	1969	350	1972	760	1974	89
1967	91	1970	99	1973	163	1975	197
1968	131	1971	207				

01483400 Sawmill Branch Tributary near Blackbird, Del.

Location. -- Lat 39°20'57", long 75°38'31", New Castle County, at culvert on U.S. Highway 13, 1.8 mi southeast of Blackbird.

Drainage Area. -- 0.6 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	25	1969	39	1972	37	1974	18
1967	17	1970	7	1973	17	1975	35
1968	23	1971	28	2775	ager" Disch	1975	make 33

01483500 Leipsic River near Cheswold, Del.

Location. --Lat 39°13'58", long 75°37'57", Kent County, at highway bridge on road No. 91, 2.6 mi northwest of Cheswold.

Drainage Area. -- 9.35 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1943	250	1952	730	1960	1,340	1968	197
1944	316	1953	185	1961	306	1969	301
1945	136	1954	103	1962	118	1970	186
1946	144	1955	334	1963	167	1971	424
1947	100	1956	131	1964	111	1972	785
1948	250	1957	1,120	1965	<53	1973	432
1949	215	1958	640	1966	88	1974	181
1950	144	1959	107	1967	233	1975	203
1951	215		tier to an order to	rest fact w	Telbuturu nav	TOTAL IN	2 Muncleadel

01483700 St. Jones River at Dover, Del.

Location. -- Lat 39°09'49", long 75°31'10", Kent County, 150 ft upstream from Division Street in Dover.

Drainage Area. -- 31.9 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1958 1959 1960 1961 1962	1,260 217 1,900 602 276	1963 1964 1965 1966 1967	285 498 107 93 652	1968 1969 1970 1971	404 505 440 852	1972 1973 1974 1975	996 720 310 718

01483720 Puncheon Branch at Dover, Del.

Location. --Lat 39°08'25", long 75°32'20", Kent County, at culvert on New Burton Road in Dover.

Drainage Area. -- 2.3 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water	Discharge
1966	129	1969	136	1972	183	1974	99
1967	284	1970	70	1973	205	1975	520
1968	36	1971	172				

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01484000 Murderkill River near Felton, Del.

Location. -- Lat 38°58'33", long 75°34'03", Kent County, at bridge on U.S. Highway 13, 2.2 miles south of Felton.

Drainage Area. -- 13.6 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1932	346	1963	370	1968	192	1972	370
1933	490	1964	278	1969	388	1973	265
1960	805	1965	64	1970	388	1974	204
1961	292	1966	69	1971	260	1975	1,150
1962	219	1967	2,090	611368	56 871 13	6113/4 0	or 8

01484002 Murderkill River Tributary near Felton, Del.

Location. -- Lat 38°58'19", long 75°33'31", Kent County, at culvert on road No. 426, 2.9 mi south of Felton.

Drainage Area. -- 0.97 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	37	1969	27	1972	15	1974	19
1957	360	1970	25	1973	14	1975	15
1968	10	1971	19	skill / sgr	arbatton usd	13/3	er ve Dische

01484050 Pratt Branch near Felton, Del.

Location. --Lat 39°00'37", long 75°31'46", Kent County, at bridge on road No. 33, 2.6 mi east of Felton.

Drainage Area. -- 3.29 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966 1967 1968	<7 459 33	1969 1970 1971	157 72 65	1972 1973	54 43	1974 1975	60 162

720 Puncheon Breadn at Dayer, Del.

01484100 Beaverdam Branch at Houston, Del.

Location. --Lat 38°54'20", long 75°30'49", Kent County at bridge on State Highway 384, 0.8 mi south of Houston.

Drainage Area. -- 2.83 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1958	79	1963	80	1968	37	1972	50
1959	45	1964	45	1969	60	1973	55
1960	176	1965	16	1970	59	1974	31
1961	60	1966	26	1971	35	1975	115
1962	63	1967	76				386

01484270 Beaverdam Creek near Milton, Del.

Location. --Lat 38°45'41", long 75°16'03", Sussex County, at culvert on road No. 88, 2.5 mi east of Milton.

Drainage Area. -- 6.10 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	21	1969	25	1972	43	1974	23
1967	20	1970	24	1973	42	1975	32
1968	21	1971	34	1963 Yes	2.24 19	seY1964	

01484300 Sowbridge Branch near Milton, Del.

Location. --Lat 38°48'51", long 75°19'39", Sussex County, at highway bridge, 2.5 mi north of Milton.

Drainage Area. -- 7.08 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1957	28	1962	26	1967	134	1972	85
1958	80	1963	30	1968	37	1973	46
1959	44	1964	26	1969	32	1974	24
1960	38	1965	17	1970	46	1975	40
1961	41	1966	22	1971	58	201	502

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01484500 Stockley Branch at Stockley, Del.

Location. -- Lat 38°38'19", long 75°20'31", Sussex County, at highway bridge in Stockley.

Drainage Area. -- 5.24 mi².

Water Year	Discharge	Water	Discharge	Water	Discharge	Water Year	Discharge
1943	44	1952	53	1960	46	1968	65
1944	54	1953	60	1961	75	1969	85
1945	64	1954	30	1962	92	1970	96
1946	77	1955	51	1963	71	1971	75
1947	34	1956	27	1964	68	1972	65
1948	132	1957	36	1965	38	1973	105
1949	49	1958	118	1966	73	1974	51
1950	45	1959	58	1967	107	1975	97
1951	30						

01484550 Pepper Creek at Dagsboro, Del.

Location.--Lat 38°32'50", long 75°14'39", Sussex County, at bridge on State Highway 26 at Dagsboro.

Drainage Area. -- 8.78 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1960	< 36	1964	280	1968	137	1972	545
1961	215	1965	182	1969	330	1973	403
1962	292	1966	54	1970	479	1974	303
1963	156	1967	346	1971	259	1975	521

01485000 Pocomoke River near Willards, Md.

Location.--Lat 38°23'20", long 75°19'30", Worcester County, at bridge on State Highway 346, 1.3 mi east of Willards.

Drainage Area. -- 60.5 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1950	502	1957	559	1964	796	1970	492
1951	391	1958	882	1965	503	1971	452
1952	830	1959	562	1966	445	1972	924
1953	816	1960	565	1967	586	1973	710
1954	679	1961	709	1968	560	1974	522
1955	645	1962	884	1969	541	1975	1,000
1956	670	1963	690		341	17/3	1,000

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01485500 Nassawango Creek near Snow Hill, Md.

Location. -- Lat 38°13'44", long 75°28'19", Worcester County at bridge on State Highway 12, 5.5 mi northwest of Snow Hill.

Drainage Area. -- 44.9 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1950	215	1957	542	1964	597	1970	437
1951	258	1958	761	1965	121	1971	347
1952	486	1959	597	1966	200	1972	1,320
1953	988	1960	361	1967	452	1973	760
1954	430	1961	653	1968	434	1974	365
1955	920	1962	669	1969	480	1975	615
1956	348	1963	615	2,0,	(A) (A)	07	and the second

01486000 Manokin Branch near Princess Anne, Md.

<u>Location</u>.--Lat 38°12'50", long 75°40'18", Somerset County, 45 ft downstream from bridge on private road, 1.4 mi northeast of Princess Anne.

Drainage Area. -- 4.80 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1951	97	1957	154	1963	224	1968	126
1952	84	1958	174	1964	140	1969	547
1953	210	1959	111	1965	38	1970	311
1954	41	1960	184	1966	46	1971	194
1955	237	1961	152	1967	72	1975	265
1956	54	1962	218	200	STORIUS TON	7-190	TOWN TO SE

01486100 Andrews Branch near Delmar, Md.

Location.--Lat 38°26'15", long 75°31'46", Wicomico County, at culvert on Rum Ridge Road, 2.8 mi southeast of Delmar.

Drainage Area. -- 4.1 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1967	155	1970	70	1973	191	1975	118
1968	77	1971	93	1974	58	1976	42
1969	147	1972	112			_	

01486500 Beaverdam Creek near Salisbury, Md.*

Location.--Lat 38°21'05", long 75°34'11", Wicomico County, at Schumaker Dam, 2 mi southeast of Salisbury.

Drainage Area. -- 19.5 mi².

Remarks. -- Peak flow affected by Schumaker Dam.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1930	76	1943	86	1954	502	1965	317
1931	36	1944	260	1955	338	1966	135
1932	115	1945	115	1956	209	1967	296
1933	+	1946	252	1957	300	1968	175
1936	234	1947	69	1958	337	1969	303
1937	334	1948	1,480	1959	733	1970	366
1938	443	1949	217	1960	214	1971	212
1939	283	1950	95	1961	337	1972	469
1940	234	1951	143	1962	487	1973	417
1941	111	1952	207	1963	239	1974	254
1942	392	1953	653	1964	631	1975	339

01486980 Toms Dam Branch near Greenwood, Del.

Location. -- Lat 38°48'04", long 75°33'28", Sussex County, at bridge on State Highway 16, 1.5 mi east of Greenwood.

Drainage Area. -- 5.28 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	54	1969	34	1972	52	1974	14
1967	88	1970	28	1973	39	1975	56
1968	42	1971	26				

01487000 Nanticoke River near Bridgeville, Del.

Location.--Lat 38°43'42", long 75°33'44", Sussex County, at highway bridge, 2.5 mi southeast of Bridgeville.

Drainage Area. -- 75.4 mi².

^{*} Not used in final regression model.

01487000 Nanticoke River near Bridgeville, Del.--Continued

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1943	400	1952	776	1960	1,620	1968	526
1944	420	1953	468	1961	728	1969	227
1945	435	1954	248	1962	985	1970	†
1946	730	1955	680	1963	867	1971	700
1947	386	1956	270	1964	572	1972	522
1948	830	1957	635	1965	229	1973	828
1949	590	1958	2,300	1966	435	1974	490
1950 1951	216 290	1959	930	1967	2,360	1975	1,730

01487500 Trap Pond Outlet near Laurel, Del.*

Location.--Lat 38°31'40", long 75°28'58", Sussex County, 200 ft downstream from Trap Pond Dam, and 5 mi southeast of Laurel.

Drainage Area. -- 16.7 mi².

Remarks.--Peak flow affected by Trap Pond Dam.

Water Year	Discharge	Water	Discharge	Water	Discharge	Water Year	Discharge
1952	200	1958	315	1964	265	1970	161
1953	181	1959	133	1965	43	1971	172
1954	148	1960	223	1966	259	1972	315
1955	172	1961	265	1967	608	1973	473
1956	94	1962	462	1968	138	1975	560
1957	150	1963	192	1969	341	Land William	THE CLASS

01487900 Meadow Branch near Delmar, Del.

Location. -- Lat 38°29'05", long 75°35'16", Sussex County, at culverts on road No. 503B, 2.1 mi northwest of Delmar.

Drainage Area. -- 3.47 mi².

Water Year	Discharge	Water	Discharge	Water Year	Discharge	Water Year	Discharge
1967	99	1970	52	1972	100	1974	68
1968	34	1971	61	1973	112	1975	89
1969	76	T T			1	4	

^{*} Not used in final regression model.

[†] Discharge not determined.

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01488000 Holly Ditch near Laurel, Del.*

Location. -- Lat 38°32'20", long 75°35'55", Sussex County, at culverts on road No. 494, 1.5 mi southwest of Laurel.

Drainage Area. -- 2.19 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1951	2	1960	31	1965	ascharget 728	1971	4 8
1952	12	1961	62	1967	26	1972	41
1953	8	1962	5 C 7 + TAG	1968	14	1973	28
1954	2	1963	Z50 +	1969	8	1974	9 135 4 1
1955 1956	3	1964	115 † 252	1970	8	1975	35

01488500 Marshyhope Creek near Adamsville, Del.

Location. -- Lat 38°50'59", long 75°40'24", Kent County, 45 ft upstream from highway bridge, 1.6 mi northeast of Adamsville.

Drainage Area. --43.9 mi² (area at site prior to Oct. 1, 1971, 44.8 mi²).

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1943	486	1951	325	1959	597	1966	126
1944	626	1952	1,020	1960	1,440	1967	3,060
1945	678	1953	635	1961	805	1968	452
1946	1,040	1954	328	1962	762	1972	1,430
1947	404	1955	743	1963	1,200	1973	1,480
1948	933	1956	310	1964	618	1974	1,390
1949	730	1957	1,440	1965	162	1975	3,700
1950	232	1958	2,270	370		1376	14

01489000 Faulkner Branch at Federalsburg, Md.

Location.--Lat 38°42'44", long 75°47'34", Caroline County, at highway bridge on Nichols Road, 1.6 mi northwest of Federalsburg.

Drainage Area. -- 7.10 mi2.

Water Year	Discharge	Water Year	Discharge	Water	Discharge	Water	Discharge
1950	38	1952	175	1954	45	1956	94
1951	39	1953	58	1955	433	1957	198

^{*} Not used in final regression model.

01489000 Faulkner Branch at Federalsburg, Md.--Continued

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water	Discharge
1958	440	1963	283	1968	205	1972	283
1959	250	1964	138	1969	192	1973	211
1960	672	1965	492	1970	199	1974	130
1961	298	1966	33	1971	156	1975	1,680
1962	203	1967	792	usel	THE PROPERTY OF	Tear	Terro Continue

01490000 Chicamacomico River near Salem, Md.

Location. --Lat 38°30'43", long 75°52'51", Dorchester County, 30 ft downstream from Big Mill Pond Dam, and 1.6 mi east of Salem.

Drainage Area. -- 15.0 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1951	85	1958	285	1964	176	1970	218
1952	326	1959	202	1965	182	1971	210
1953	152	1960	419	1966	128	1972	300
1954	106	1961	470	1967	518	1973	542
1955	314	1962	157	1968	226	1974	168
1956	78	1963	230	1969	169	1975	478
1957	260	2703	230	2,07	V-810/Minge-	100	

01490470 Tappahanna Ditch near Hartly, Del.*

Location.--Lat 39°08'07", long 75°41'30", Kent County, at bridge on road No. 103, 2.7 mi southeast of Hartly.

Drainage Area. -- 5.93 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water	Discharge
1966	32	1968	+	1970	117	1972	127
1967	80	1969	86	1971	119	1973	120

^{*} Not used in final regression model.

01490490 Beachy Neidig Ditch near Willow Grove, Del.*

Location.--Lat 39°04'57", long 75°39'27", Kent County, at culverts on road No. 226, 1.8 mi northwest of Willow Grove.

Drainage Area. -- 2.43 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	13	1969	67	1972	+	1974	<31
1967	67	1970	76	1973	†	1975	7
1968	45	1971	†	4,500 7	- 60	-	

01490600 Meredith Branch near Sandtown, Del.

Location. --Lat 39°02'23", long 75°41'52", Kent County, at bridge on State Highway 10, 1.2 mi east of Sandtown.

Drainage Area. -- 8.4 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	16	1969	226	1972	242	1974	169
1967	2,140	1970	191	1973	233	1975	431
1968	210	1971	210	5861 magest	OETHARCIE IN	E96Tummar	8/ medians

01490800 Oldtown Branch at Goldsboro, Md.

Location. --Lat 39°01'23", long 75°47'16", Caroline County, at culvert on State Highway 313, 0.7 mi south of Goldsboro.

Drainage Area. -- 3.9 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1967	690	1970	170	1973	350	1975	200
1968 1969	125	1971	235	1974	68	1976	170
1707	100	1972	340	4.75		Chica -	

^{*} Not used in final regression model.

01491000 Choptank River near Greensboro, Md.

Location.--Lat 38°59'50", long 75°47'09", Caroline County, at highway bridge, 2 mi northeast of Greensboro.

Drainage Area. -- 113 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1948	1,600	1955	1,140	1962	1,580	1969	1,620
1949	1,700	1956	989	1963	1,890	1970	1,650
1950	1,050	1957	4,140	1964	1,890	1971	1,570
1951	840	1958	4,380	1965	525	1972	2,760
1952	3,640	1959	758	1966	150	1973	2,660
1953	1,330	1960	5,040	1967	6,970	1974	944
1954	1,180	1961	2,400	1968	1,620	1975	2,860

01491010 Sangston Prong near Whiteleysburg, Del.

Location. --Lat 38°58'25", long 75°43'32", Kent County, at culvert on road No. 269, 1.2 mi north of Whiteleysburg.

Drainage Area. -- 1.9 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	35	1969	51	1972	68	1974	36
1967	765	1970	66	1973	62	1975	484
1968	52	1971	70	1971	18 AC.	761	22

01491050 Spring Branch near Greensboro, Md.

Location. -- Lat 38°56'34", long 75°47'25", Caroline County, at culvert on Knife Box Road, 2.2 mi southeast of Greensboro.

Drainage Area. -- 3.8 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1967	965	1970	95	1973	80	1975	150
1968	42	1971	82	1974	41	1976	60
1969	33	1972	70		DAS., I 129 3	011 1979	011 7 500

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01492000 Beaverdam Branch at Matthews, Md.

Location.--Lat 38°48'41", long 75°58'15", Talbot Jounty, at bridge on State Highway 328, 1 mi west of Matthews.

Drainage Area. -- 5.85 mi².

Water	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
Year	181	1957	1,020	1964	116	1970	238
1950	148	1958	1,050	1965	545	1971	562
1951	276	1959	231	1966	181	1972	357
1952		1960	2,200	1967	693	1973	441
1953	222	1961	251	1968	269	1974	150
1954	023 5 133	1962	162	1969	180	1975	301
1955	476	1963	307	1,0,	000	13/3	301
1956	109	1903	307	1014		O.C.	THAT I

01492050 Gravel Run at Beulah, Md.

Location. --Lat 38°40'54", long 75°53'53", Dorchester County, at culvert on State Highway 16, 0.3 mi north of Beulah.

Drainage Area. -- 8.4 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	53	1969	97	1972	120	1975	690
1967	220	1970	145	1973	85	1976	36
1968	95	1971	81	1974	71	197	52

01492500 Sallie Harris Creek near Carmichael, Md.

Location. --Lat $38^{\circ}57'55''$, long $76^{\circ}06'30''$, Queen Annes County, at bridge on U.S. Highway 50, 2 mi northeast of Carmichael

Drainage Area. -- 8.09 mi².

Water. Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1952	327	1958	577	1964	71	1970	219
1953	214	1959	75	1965	51	1971	220
1954	116	1960	1,240	1966	71	1972	290
1955	1,030	1961	154	1967	1,180	1973	502
1956	91	1962	135	1968	304	1974	202
1957	155	1963	286	1969	136	1975	233

Location. --Lat 38°55'00", long 76°03'42", Talbot County, at culvert on U.S. Highway 50, 1.5 mi north of Skipton.

Drainage Area. -- 4.6 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1966	99	1969	88	1972	105	1975	165
1967	1.520	1970	165	1973	135	1976	72
1968	190	1971	140	1974	59	10.77	

01493000 Unicom Branch near Millington, Md.

Location.--Lat 39°14'59", long 75°51'40", Kent County, at bridge on State Highway 313, 1.4 mi southwest of Millington.

Drainage Area. -- 22.3 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1949	277	1956	167	1963	840	1970	296
1950	222	1957	630	1964	226	1971	524
1951	282	1958	370	1965	106	1972	1,020
1952	383	1959	116	1966	85	1973	467
1953	253	1960	1,060	1967	582	1974	168
1954	157	1961	429	1968	266	1975	365
1955	359	1962	246	1969	430	Della Della	6 80

01493500 Morgan Creek near Kennedyville, Md.

Location. -- Lat 39°16'48", long 76°00'54", Kent County, 200 ft upstream from highway bridge, 2 mi southwest of Kennedyville.

Drainage Area. -- 12.7 mi².

Water Year	Discharge	Water	Discharge	Water	Discharge	Water Year	Discharge
1951	208	1958	834	1964	160	1970	340
1952	622	1959	446	1965	86	1971	760
1953	428	1960	1,530	1966	129	1972	7,500
1954	269	1961	625	1967	823	1973	912
1955	630	1962	198	1968	397	1974	466
1956	291	1963	301	1969	426	1975	376
1957	293	2703	at an area from the second		And the second second	-	

01494020 Browns Branch Tributary near Church Hill, Md.*

Location. --Lat 39°10'05", long 75°58'41", Queen Annes County, at culvert on John Powell Road, 1.8 mi north of Church Hill.

Drainage Area. -- 1.7 mi2.

Water	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
Year 1971 1972	890 450	1973 1974	230 255	1975	130	1976	70

01495000 Big Elk Creek at Elk Mills, Md.

<u>Location</u>.--Lat 39°39'26", long 75°49'20", Cecil County, at highway bridge at Elk Mills. Drainage Area.--52.6 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1884	18,000	1943	2,860	1954	1,340	1965	2,020
1932	3,020	1944	2,380	1955	5,860	1966	3,690
1933	7,530	1945	6,030	1956	1,540	1967	6,120
1934	2,620	1946	7,080	1957	2,880	1968	1,570
1935	4,720	1947	5,220	1958	2,590	1969	1,050
1936	+	1948	2,120	1959	3,420	1970	2,640
1937	10,600	1949	1,720	1960	6,180	1971	4,030
1938	2,310	1950	3,400	1961	1,610	1972	8,720
1939	2,620	1951	2,620	1962	2,180	1973	2,010
1940	2,700	1952	3,280	1963	1,620	1974	
1941 1942	5,680 3,380	1953	2,740	1964	3,030	1975	2,040 4,540

01495500 Little Elk Creek at Childs, Md.

Location.--Lat 39°38'30", long 75°52'00", Cecil County, at highway bridge, 0.2 mi southeast of Childs.

Drainage Area. -- 26.8 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1949 1950 1951	1,120 1,700 1,540	1952 1953 1954	2,420 1,600 1,280	1955 1956	5,400 1,520	1957 1958	1,890 1,620

^{*} Not used in final regression model.

TABLE 5.--Annual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01496000 Northeast Creek at Leslie, Md.

Location.--Lat 39°37'38", long 75°56'40", Cecil County, at highway bridge, 0.7 mi northeast of Leslie.

Drainage Area. -- 24.3 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1949	1,340	1956	858	1963	814	1970	1,770
1950	1,640	1957	1,850	1964	1,020	1971	2,040
1951	1,460	1958	3,220	1965	1,050	1972	4,800
1952	2,410	1959	1,210	1966	2,000	1973	1,560
1953	1,870	1960	2,790	1967	4,060	1974	2,120
1954	834	1961	1,020	1968	912	1975	3,410
1955	2,590	1962	838	1969	1,440	Stare H	Object 275

01496080 Northeast River Tributary near Charlestown, Md.

Location.--Lat 39°35'53", long 75°58'37", Cecil County, at culvert on U.S. Highway 40, 1.6 mi north of Charlestown.

Drainage Area. -- 1.7 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1967	260	1970	480	1973	150	1975	700
1968	<125	1971	395	1974	215	1976	320
1969	<125	1972	615		Let Make to be	doe 1	9 mil most of

01496200 Principio Creek near Principio Furnace, Md.*

<u>Location</u>.--Lat 39°37'34", long 76°02'27", Cecil County, at highway bridge on Belvedere Road, 3.5 mi north of Principio Furnace.

Drainage Area. -- 9.03 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1967 1968	4,260 634 7,060	1970 1971	896 1,260	1972 1973	3,020 1,210	1974 1975	934 3,050
1969	7,060	V 080	2 0001	000	2 2001 2001	002	AC.

^{*} Not used in final regression model.

TABLE 5.--Armual maximum discharges at gaging stations--Continued (Discharges in cubic feet per second)

01578200 Conowingo Creek near Buck, Pa.

Location.--Lat $39^{\circ}50'35''$, long $76^{\circ}11'45''$, Lancaster County at bridge on Legislative Route 36135, 2.5 mi southeast of Buck.

Drainage Area. -- 8.71 mi².

Water	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
<u>Year</u> 1963 1964 1965	456 643 245	1967 1968 1969	340 285 391	1970 1971 1972	693 533 1,270	1973 1974 1975	3,780 427 936
1966	498	- 220	Local Contract	- 007	2 000	- 070	200

01578400 Bowery Run near Quarryville, Pa.

Location. -- Lat 39°53'41", long 76°06'50", Lancaster County, at single-span bridge, 1.1 mi upstream from mouth and 2.5 mi east of Quarryville.

Drainage Area. -- 5.98 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1963	305 2,220	1967 1968	724 344	1970 1971	842 720	1973 1974	660 629
1964 1965	291	1969	629	1972	1,050	1975	955
1966	430	19		19 4	-1.616 100	1973	104

01578500 Octoraro Creek near Rising Sun, Md.*

Location.--Lat 39°41'24", long 76°07'43", Cecil County, at Porter Bridge, 3.5 mi west of Rising Sun.

Drainage Area. -- 193 mi².

Remarks. -- Peak flow regulated by Chester-Octoraro Reservoir since Feb. 22, 1951.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1884	60,000	1934	2,910	1938	5,970	1942	35,000
1918	27,700	1935	17,200	1939	4,250	1943	2,780
1932	980	1936	9,340	1940	5,080	1944	8,300
1933	34,500	1937	2,280	1941	3,630	1945	7,820

^{*} Not used in final regression model.

01578500 Octoraro Creek near Rising Sun, Md. -- Continued

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1946	5,900	1953	6,400	1963	7,370	1970	2,830
1947	3,550	1954	1,930	1965	568	1971	11,800
1948	4,040	1955	7,960	1966	1,980	1972	29,000
1949	3,550	1956	2,090	1967	6,870	1973	4,880
1950	2,900	1957	1,450	1968	2,220	1974	5,460
1951 1952	5,600 9,240	1958	6,870	1969	1,580	1975	17,300

01578800 Basin Run at West Nottingham, Md.

Location.--Lat 39°39'23", long 76°04'30", Cecil County, at culvert on State Highway 276, 0.9 mi south of West Nottingham.

Drainage Area. -- 1.3 mi².

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1967 1968	820 310	1970 1971	335 420	1973 1974	640 220	1975 1976	710 160
1969	700	1972	660	1774			

01579000 Basin Run at Liberty Grove, Md.

Location. --Lat 39°39'30", long 76°06'10", Cecil County, at highway bridge, 0.9 mi east of Liberty Grove.

Drainage Area. -- 5.31 mi2.

Water Year	Discharge	Water Year	Discharge	Water Year	Discharge	Water Year	Discharge
1949 1950 1951 1952 1953 1954	354 511 1,440 596 425 460	1955 1956 1957 1958 1965 1966	967 176 724 1,560 625 660	1967 1968 1969 1970 1971	3,500 645 2,800 790 1,200	1972 1973 1974 1975 1976	2,600 1,770 460 2,120 435