
c. I sent on

WRi'

(200)

No. 78-125 HYDROLOGIC DATA FROM URBAN WATERSHEDS IN THE TAMPA BAY AREA, **FLORIDA**

U.S. GEOLOGICAL SURVEY

WATER-RESOURCES INVESTIGATIONS 78-125

Prepared in cooperation with the SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, the CITIES OF CLEARWATER, ST. PETERSBURG, and TAMPA, and HILLSBOROUGH and PINELLAS COUNTIES

BIBLIOGRAPHIC DATA SHEET	1. Report No.	2.		3. Recipient's	Accession No.		
4. Title and Subtitle HYDRCLOGIC DATA FO FLORIDA	5. Report Date August 1979 6.						
7. Author(s) M. A. Lopez and D.	M Michaelie			8. Performing Organization Rept. No. USGS/WRI 78-125			
9. Performing Organization N	Name and Address				sk/Work Unit No.		
U.S. Geological Su 325 John Knox Road Tallahassee, Flori		ion		11. Contract/G	rant No.		
12. Sponsoring Organization U.S. Geological Su 325 John Knox Road	rvey, Water Resources Divis	ion		13. Type of Report & Period Covered			
Tallahassee, Flori	da 32303			14.			
	ation with the Southwest Fleer, St. Petersburg, and Tam						
Tampa Bay area, Fl percent for a resi Tampa watershed. institutional, rec Rainfall and storm other sites throug minute intervals a Daily rainfall at the WATSTORE daily six sites, base fl are also stored in selected storms, d report. Water-qua 17. Key Words and Documen Data collection, I Hydrologic data, W	data are being collected is orida. The gaged watershed dential watershed in north Land-use types, including reational, and open space, a runoff data collected since he September 1976, have been and are stored in the U.S. Go 12 sites and daily pan evapor values file. Chemical and low for seven sites, and analy the WATSTORE water-quality laily rainfall, and daily part Analysis. 170. Elscriptors Data storage and retrieval, Mater quality, Urbanization	s have is Tampa to oads, re have been been been been been biologically and the nevapor quality	mpervious nearly 10 sidential, in determin or one sited. These I Survey Wat one sited analyst bottom ma Rainfall a samples ar	areas that O percent to commercial ed for each e and since data are to the commercial end to the commercial form the commercial form are summate also list	range from 19 for a downtown l, industrial, n watershed. e 1975 for six recorded at 5- it values file n stored in m runoff for seven sites unoff for rized in this ted.		
17b. Identifiers/Open-Ended Terms							
Tampa Bay area, Fl	lorida						
18. Av. lability Statement			19. Security C Report)	lass (This	21. No. of Pages		
No restriction on	distribution		UNCLA 20. Security C	SSIFIED lass (This	56 22. Price		
The second second second second			Page	CCIEIED			

HYDROLOGIC DATA FROM URBAN WATERSHEDS IN THE TAMPA BAY AREA, FLORIDA

By M. A. Lopez and D. M. Michaelis

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 78-125

Prepared in cooperation with the
SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT,
the CITIES OF CLEARWATER, ST. PETERSBURG, and TAMPA,
and HILLSBOROUGH and PINELLAS COUNTIES

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

For additional information write to:

U.S. Geological Survey Water Resources Division 325 John Knox Road, Suite F-240 Tallahassee, Florida 32303

CONTENTS

Page

		factors	V
		THE RES ARE THE THE THE THE THE THE THE THE THE TH	1.
		n	2
		scope	2
Tampa B	ay a	rea urban storm-water project	3
Urban w	ater	shed data	3
Wa	ters	hed selection	5
Wa	ters	hed descriptions	5
Wa	ters		15
Hydrolo	gic		20
Ra	inta	II did I dile II	21
Wa	ter	quality	26
Hydrolo	gic		31
St	orm		31
Wa	ter-	quarte) acco	31
Da	ily		50
Data av	aila	DIIICI	50
Di	rect	access to WATSTORE	21
Re	ques	t through U.S. Geological Survey	51
Referen	ces		51
		ILLUSTRATIONS	
		p	age
Figure	1.	Map showing Tampa Bay area urban watersheds	4
	2.	Map showing land use in Artic Street Storm Drain water-	
	4.	shed	6
		Sileu	O
	3.	Map showing land use in Kirby Street Drainage Ditch	
		watershed	8
	1.	Man sharring land use in St. Louis Street Drainage Ditch	
	4.	Map showing land use in St. Louis Street Drainage Ditch watershed	9
		watersned	9
	5.	Map showing land use in Cass Street Storm Drain water-	
		shed	10
	,	Mary 1 and a land was in Conda Paul around Proinces Ditch	
	0.	Map showing land use in Gandy Boulevard Drainage Ditch	12
		watershed	12
	7	Map showing land use in Allen Creek watershed	13
		Map showing land use in Booker Creek watershed	
	8.	Map showing land use in Booker Creek watershed	14
	8. 9.	Map showing land use in Booker Creek watershed Map showing land use in Bear Creek watershed	14 16
	8.	Map showing land use in Booker Creek watershed	14 16
	8.9.10.	Map showing land use in Booker Creek watershed Map showing land use in Bear Creek watershed	14 16

ILLUSTRATIONS - Continued

Page

Figure	12.	Photograph of digital rainfall and stage recorders 22	
	13.	Graph showing storm runoff hydrograph and rainfall hyetograph on July 16, 1975, at Allen Creek near Largo, Florida 25	
	14.	Graph showing concentrations and load of 5-day BOD on July 16, 1975, at Allen Creek near Largo, Florida 27	
	15.	Graph showing concentrations and load of total organic nitrogen on July 16, 1975, at Allen Creek near Largo, Florida	
	16.	Graph showing concentrations and load of total phosphorus on July 16, 1975, at Allen Creek near Largo, Florida	
	17.	Graph showing concentrations of fecal coliform bacteria on July 16, 1975, at Allen Creek near Largo, Florida - 30	
		TABLES	
		Page	2
Table	1.	Watershed characteristics 19	
	2.	Descriptions of hydrologic-data collection sites 23	
	3.	Tampa Bay area urban storm runoff and rainfall data in WATSTORE unit values file as of September 30, 1977 32	
	4.	Example rainfall data retrieval from WATSTORE unit values file for rain gage at Allen Creek near Largo, Florida 36	
	5.	Example discharge data retrieval from WATSTORE unit values file for streamflow gage at Allen Creek near Largo, Florida 37	
	6.	Analysis of bottom material, Tampa Bay area urban storm runoff hydrologic data sites 38	
	7.	Analysis of base flow samples, Tampa Bay area urban storm runoff hydrologic data sites 42	
	8.	Analysis of storm runoff samples, St. Louis Street Drainage Ditch at Tampa, Florida 44	
	9.	Analysis of storm runoff samples, Gandy Boulevard Drainage Ditch at Tampa, Florida 46	
	10.	Analysis of storm runoff samples, Allen Creek near Largo, Florida 47	

TABLES - Continued

			Page
Table	11.	Analysis of storm runoff samples, Bear Creek at St. Petersburg, Florida	- 48
	12.	Analysis of storm runoff samples, Saint Joes Creek at St. Petersburg, Florida	49

CONVERSION FACTORS

For use of those readers who may prefer to use SI (metric) units rather than inch-pound units, the conversion factors for the terms used in this report are listed below:

Multiply inch-pound unit	Ву	To obtain SI (metric) unit
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km²)
acre	0.4047	hectare (ha)
pound (1b)	0.4536	kilogram (kg)
pound per acre (1b/acre)	1.12	kilogram per hectare (kg/ha)
cubic ₃ foot per second (ft ³ /s)	0.02832	cubic meter per second (m /s)

HYDROLOGIC DATA FROM URBAN WATERSHEDS IN THE TAMPA BAY AREA, FLORIDA

By M. A. Lopez and D. M. Michaelis

ABSTRACT

Hydrologic data are being collected in 10 urbanized watersheds located in the Tampa Bay area, Florida. The gaged watersheds have impervious areas that range from 19 percent for a residential watershed in north Tampa to nearly 100 percent for a downtown Tampa watershed. Landuse types, including roads, residential, commercial, industrial, institutional, recreational, and open space, have been determined for each watershed. Rainfall and storm runoff data collected since 1971 for one site and since 1975 for six other sites through September 1976, have been processed. These data are recorded at 5-minute intervals and are stored in the U.S. Geological Survey WATSTORE unit values file. Daily rainfall at 12 sites and daily pan evaporation at one site have been stored in the WATSTORE daily values file.

Chemical and biological analyses of storm runoff for six sites, base flow for seven sites, and analyses of bottom material for seven sites are also stored in the WATSTORE water-quality file.

Rainfall and storm runoff for selected storms, daily rainfall, and daily pan-evaporation data are summarized in this report. Water-quality analyses of all water-quality samples are also listed.

INTRODUCTION

Urban growth and related land use have a major impact on the water resources in the Tampa Bay area, Florida. Major problems accompanying rapid urban growth include reduced infiltration and resultant increased flood potential, pollution of streams, and the degradation of water quality of Tampa Bay and the Gulf beaches. Municipal and county governments in the Tampa Bay area are under increasing pressure from Federal and State regulatory agencies to incorporate into storm drainage systems design features that reduce pollutants carried to the receiving water. those communities where the Federal Insurance Administration has conducted flood insurance studies, flood insurance rates are based on the 100and 500-year flood elevations. Present Flood Insurance Study guidelines (U.S. Dept. of Housing and Urban Development, 1976) require estimates of flood-peak discharge and resulting flooding in areas designated for detailed study which have drainage areas over one square mile. ent methods of estimating flood-peak discharge or pollutant loads in urban areas are based on data from other geographical areas and have not been verified in the Tampa Bay area.

The investment in capital improvements to Tampa's drainage system has been about \$6 million annually since 1972 (Brundage, 1977). At present (1978), the city plans to continue to budget about \$6 million for drainage system improvements (Donald Terp, City of Tampa, oral commun., 1978). Pinellas County is planning to invest approximately one-half million dollars during the next several years for a master storm drainage study (Charles Diggs, oral commun., 1978).

Solutions to urban storm water problems will require an extensive data collection and analysis program involving land use, rainfall, runoff, and quality of water information for developing areas. In response to the need for storm-runoff data from urban watersheds in the Tampa Bay area, the U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, cities of Clearwater, St. Petersburg, and Tampa, and counties of Hillsborough and Pinellas, initiated a comprehensive study in 1974.

PURPOSE AND SCOPE

This report summarizes the progress of the Tampa Bay area urban storm water project during fiscal years 1975 and 1976. The first phase consists of watershed selection, construction of gages, and establishment of a hydrologic data base for urban watersheds. Descriptions of watersheds, instrumentation, and data collection methods are presented. Rainfall, runoff, and evaporation data through September 30, 1976, stored in the U.S. Geological Survey WATSTORE (Water Storage and Retrieval) system are summarized. Water-quality analyses of water samples collected during selected storms in 1975-76 stored in WATSTORE are listed.

The study area, referred to in this report as the Tampa Bay area, includes the counties of Hillsborough and Pinellas in west-central Florida (fig. 1). The objectives of the project are: (1) To assess the quantity and quality of storm water; (2) to relate the storm-water runoff and water quality to land use and intensity of development; and (3) to develop the planning and management information needed for the design and management of storm drainage systems to meet both peak flow and water-quality criteria. To accomplish these objectives, a multi-phase program was designed as follows:

- (1) Establish a hydrologic data base for the Tampa Bay area consisting of land use, storm-runoff quantity and quality, and rainfall.
- (2) Calibrate and verify digital rainfall-runoff models for use in simulating flood histories of urban areas under varying degrees of development using historical rainfall and evaporation records.
- (3) Develop flood-frequency curves using results of rainfall-runoff model simulations.
- (4) Relate flood peaks of various recurrence intervals and waterquality concentrations to characteristics of land use, climate, and physiography.

Progress on the project has been on schedule with the construction of 10 streamflow gaging stations and 12 recording rain gages and tabulation of watershed land use completed in 1975. Storm-runoff and rainfall data and samples of water quality have been collected since 1975. Runoff and rainfall data for selected storms from August 1971 to September 1976 at one site which was part of the State-wide small streams project have been stored in WATSTORE. Storm runoff and rainfall from June 1975 to September 1976 at six other sites are stored in WATSTORE. Daily rainfall from June 1975 to September 1976 at 12 rain gages in the project area and daily pan-evaporation data from October 1972 to September 1976 at a nearby evaporation station have been stored in WATSTORE.

URBAN WATERSHED DATA

The data network is a system of data collection sites selected and operated to provide representative and transferable information defining the spatial and temporal variability of flood peaks and water quality of urban watersheds in the Tampa Bay area. Although the objectives of such a network should emphasize the concepts of "representative samples" and "transferability" of collected data to ungaged sites, they must also consider the short-term and long-term uses of these data.

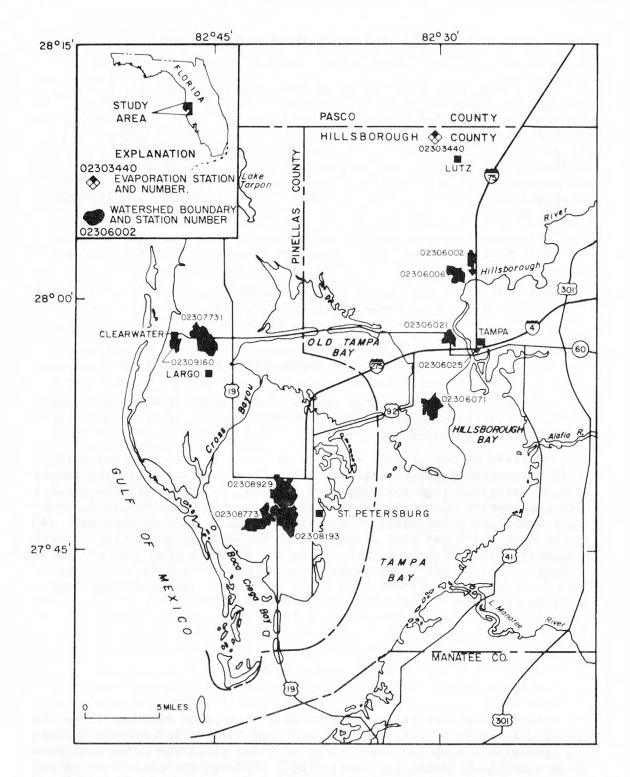


Figure 1.--Tampa Bay area urban watersheds.

Watershed Selection

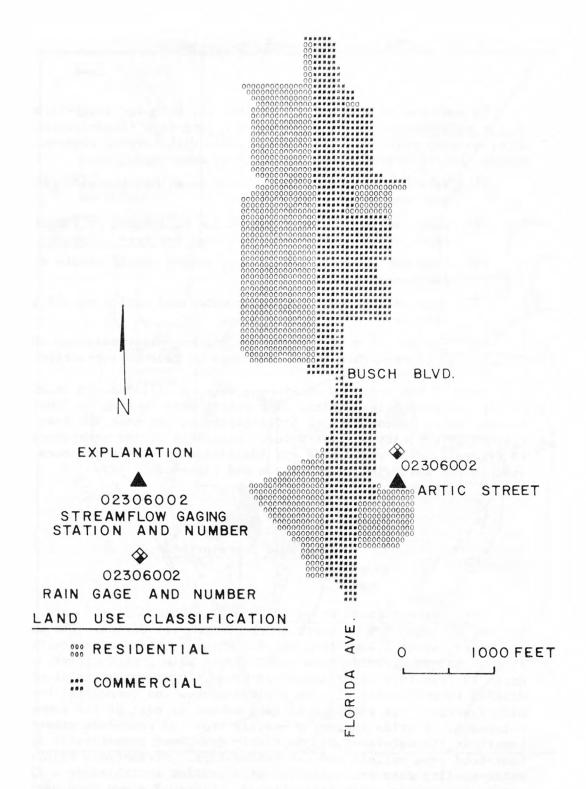
To meet the objectives of the project, both for short-term modeling of the rainfall-runoff relation and for long-term flood-frequency and water-quality relationships in watersheds with varying degrees of development, the following selection criteria were used:

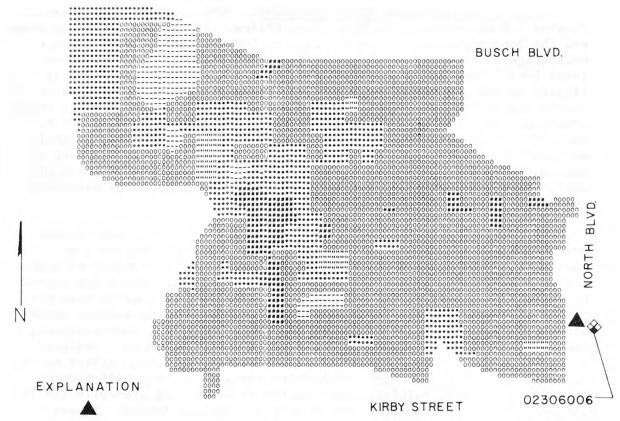
- (1) Watershed drainage area should be within the size range of most drainage system designs.
- (2) Land use in the watershed should be typical of the different types of development in the Tampa Bay area.
- (3) Land-use type and development should remain stable during the investigation.
- (4) Stage-discharge relation at watershed outlet should be defined by current meter measurement.
- (5) Samples of storm runoff for water-quality analyses should be collected throughout the range of discharge experienced.

Five of the selected watersheds were in Hillsborough County, all within the Tampa city limits. The others were located in Pinellas County, three in the city of St. Petersburg, one near the town of Largo, and one in the city of Clearwater. Locations of the watersheds are shown in figure 1. The watersheds are identified by station numbers which are used in the following descriptions and figures.

Watershed Descriptions

Artic Street Storm Drain (02306002).—This 0.34 mi² watershed is in Sulphur Springs, 5.5 mi north of the Tampa Post Office. The watershed is elongated, about 1.4 mi long and 0.5 mi wide, and drains southward through an underground storm—sewer system with grated street inlets. The drain is tributary to Hillsborough River. Development is about evenly divided between older single—unit residences and commercial businesses with several large shopping centers making up most of the commercial development. Florida Avenue, a heavily traveled four—lane street, runs the length of the watershed and is highly developed commercially including fast—food type outlets and car dealerships. Streamflow, rainfall, and water—quality data are collected at a station installed in a 72—in. diameter storm sewer under Artic Street. Figure 2 shows land use in Artic Street Storm Drain watershed and locations of streamflow and rain gages.




Figure 2.--Land use in Artic Street Storm Drain watershed.

Kirby Street Drainage Ditch (02306006).—This 1.15 mi watershed is located 5.6 mi north of the Tampa Post Office. It is trapezoidal in shape and the longest distance from the gage to boundary is 1.7 mi. A large percentage of land use in the basin is residential with most units on large lots. Open space comprises most of the remaining area which is lightly wooded and naturally vegetated. A small lake (0.04 mi) is at the headwater of the watershed. Except for a few short sections of storm sewers at the outer edges of the watershed, drainage is by open ditch. The ditch is tributary to the Hillsborough River. Streamflow, rainfall, and quality of water data are collected at the southeastern boundary of the watershed where a 72-in. diameter culvert outlets under North Boulevard. Figure 3 shows land use in Kirby Street Drainage Ditch watershed and locations of streamflow and rain gages.

St. Louis Street Drainage Ditch (02306021).--The St. Louis Street Drainage Ditch drains 0.51 mi of an older residential section 3 mi northwest of the Tampa Post Office. The basin shape is roughly triangular with extensions around the perimeter where outlying areas are served by individual storm sewers. The longest distance from gage to boundary is 1.2 mi. Land use is predominantly residential with an average impervious area for each house of 1,900 ft. The commercial, institutional, recreational, and open space land use is generally balanced. Drainage is eastward through an underground storm-sewer system that outlets under Tampania Avenue into an open ditch which empties into the Hillsborough River. Streamflow, rainfall, and quality of water data are collected in the open ditch section about 300 ft east of Tampania Avenue. Figure 4 shows land use in St. Louis Street Drainage Ditch watershed and locations of streamflow and rain gages.

Cass Street Storm Drain (02306025).--This 0.02 mi² watershed is in downtown Tampa with the Post Office inside its southern boundary. The watershed is elongated and drains westward through an underground storm-sewer system with grated street inlets. Land use is commercial with a large percentage of paved streets contributing to its 100 percent impervious area. Streamflow is measured at the storm sewer outlet under the Cass Street-Hillsborough River Bridge. The drain is tributary to the Hillsborough River. Figure 5 shows land use in Cass Street Storm Drain and location of the streamflow gage.

Gandy Boulevard Drainage Ditch (02306071).—This 1.29 mi² watershed lies roughly in the center of Interbay Peninsula 5 mi southwest of the Tampa Post Office. The watershed shape is irregular with extensions in several directions draining outlying areas. The longest distance from gage to boundary is 1.8 mi. Drainage is westward through a network of underground storm sewers with grated street inlets. The ditch is tributary to Old Tampa Bay. Land use is predominantly residential, commercial, and open space. The residential areas consist of high density developments of smaller houses. Commercial development consists mainly of retail centers with large parking areas. Open space is evenly divided between heavily vegetated undeveloped land and grassy open fields.

02306006 STREAMFLOW GAGING STATION AND NUMBER

0

02306006

RAIN GAGE AND NUMBER

LAND USE CLASSIFICATION

RESIDENTIAL

::: COMMERCIAL

III INSTITUTIONAL

::: POND

... OPEN OR RECREATIONAL

0 1000 FEET

Figure 3.--Land use in Kirby Street Drainage Ditch watershed.

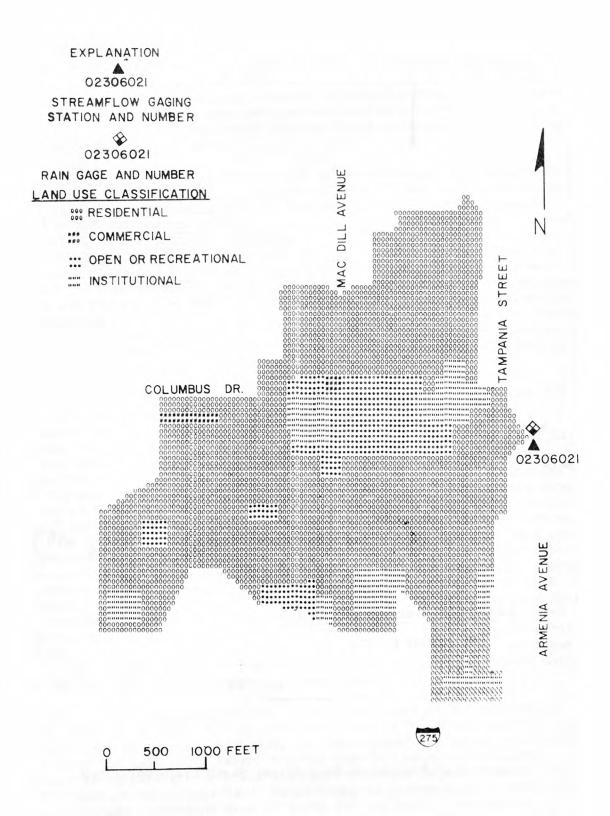


Figure 4.--Land use in St. Louis Street Drainage Ditch watershed.

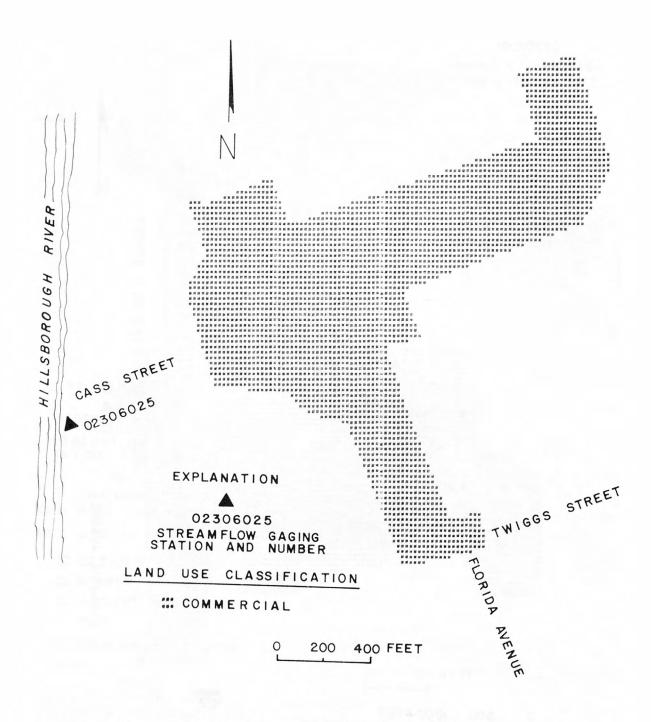


Figure 5.--Land use in Cass Street Storm Drain watershed.

Streamflow, rainfall, and water-quality data are collected where the drain outlets into an open ditch at the western boundary of the water-shed. A supplemental rain gage (station 275336082300900) is 1.0 mi east of the streamflow station near the centroid of the watershed. Figure 6 shows land use in Gandy Boulevard Drainage Ditch watershed and locations of streamflow and rain gages.

Allen Creek (02307731).—This 1.88 mi² watershed is in a newer residential area 3 mi northeast of the town of Largo. The watershed is elongated in the southerly direction of drainage and the longest distance from the gage to the boundary is 3.3 mi. Land use is predominantly single residential with a few condominium units. The average impervious areas for each single and multiple unit are 2,800 ft² and 6,500 ft². Heavily traveled Gulf-to-Bay Boulevard (U.S. Highway 60), running east and west, divides the watershed. The northern half is drained by a network of storm sewers and the southern half by open ditch. Allen Creek is tributary to Old Tampa Bay. Streamflow, rainfall, and water-quality data are collected below a control structure at the watershed's southern boundary on Nursery Road. Figure 7 shows land use in Allen Creek watershed and locations of streamflow and rain gages.

Booker Creek (02308193). -- The Booker Creek, watershed is 1.0 mi west of the St. Petersburg Post Office. The 3.76 mi watershed is roughly triangular with the longest distance from gage to boundary of 3.5 mi. Drainage is southeasterly with networks of storm sewers that connect with the main stem open channel at points along its conveyance to Tampa Bay. During the study, construction of Interstate Highway 275 has progressed from the watershed's northern boundary to a point just south of its intersection with Booker Creek. Changes to the channel have included construction of a retention basin and control structure upstream of the intersection with I-275, and a box culvert through the highway system. 2 Land use is predominantly older residential with an average of 1,670 ft of impervious area per house. Commercial land use includes a considerable amount of warehousing and distributing activity along the railway system that converges in the watershed. Streamflow, rainfall, and water-quality data are collected in an open channel at the culvert under 17th Street North about 0.2 mi downstream from the I-275 box culvert exit. A supplemental rain gage (station 274739082400400) in the watershed is 1.6 mi northwest of the streamflow station. Figure 8 shows land use in Booker Creek watershed and locations of streamflow and rain gages.

Bear Creek (02308773).—This 1.89 mi² watershed is 4.5 mi west of the St. Petersburg Post Office. The watershed is "L" shaped with the longer leg of 2.1 mi running east—west, and the shorter leg of 1.5 mi running north from the east end. Except for the last 0.7 mi of open channel, drainage is by underground sewer with grated street inlets. Bear Creek is tributary to Boca Ciega Bay. Development is predominantly residential with an average impervious area of 1,703 ft per unit. Streamflow, rainfall, and water-quality data are collected at the southwestern boundary of the watershed under 1st Avenue North, 1.9 mi upstream from Boca Ciega

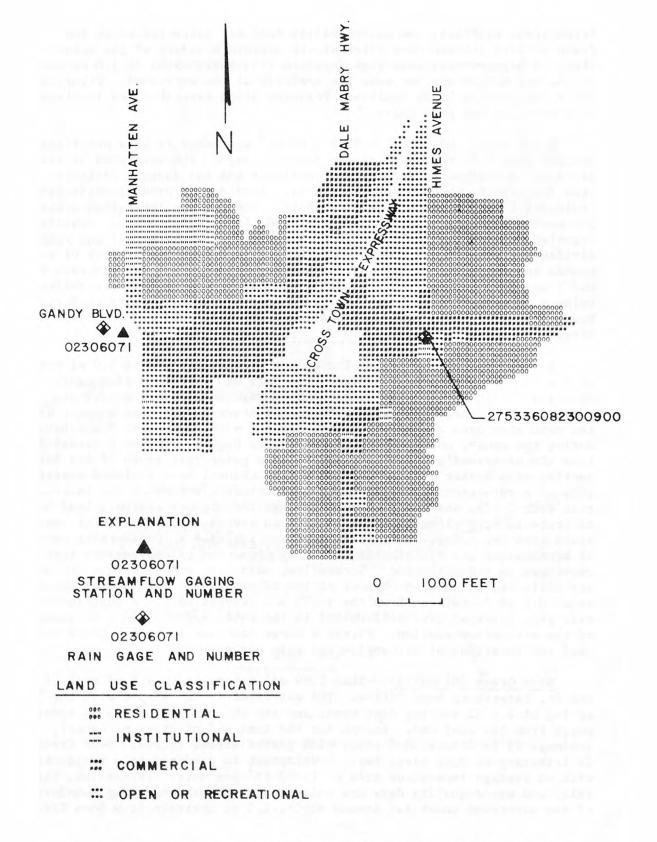


Figure 6.--Land use in Gandy Boulevard Drainage Ditch watershed.

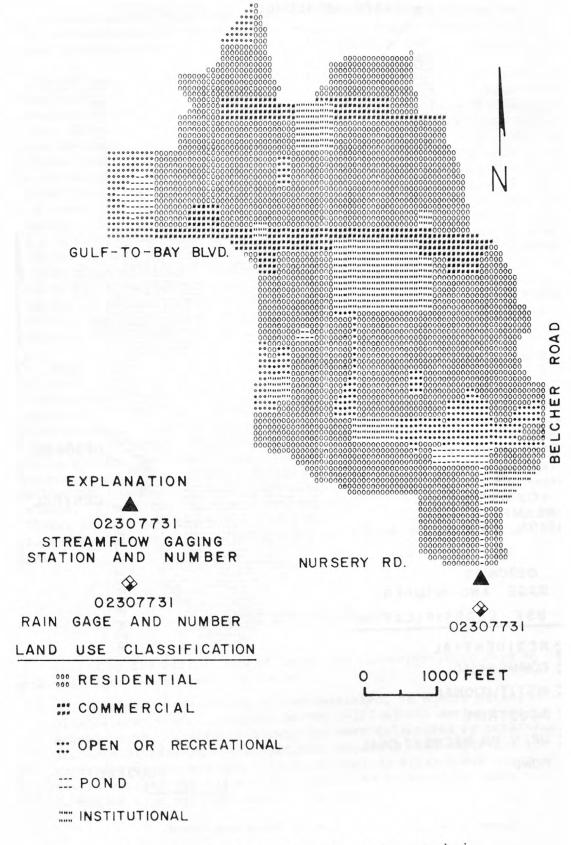


Figure 7.--Land use in Allen Creek watershed.

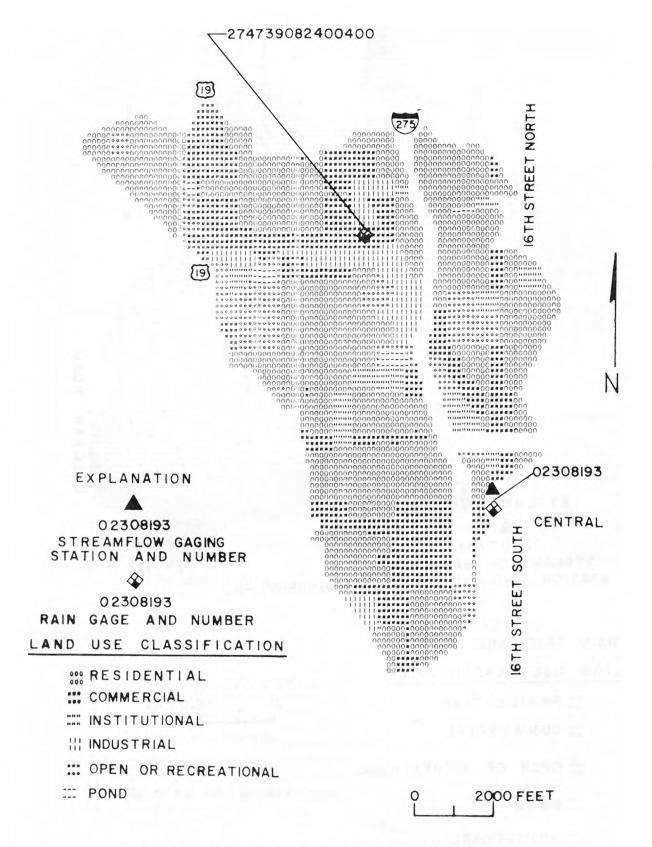


Figure 8.--Land use in Booker Creek watershed.

Bay. A supplemental rain gage (station 274645082410800) in the watershed is 1.7 mi northeast of the streamflow station. Figure 9 shows land use in Bear Creek watershed and locations of streamflow and rain gages.

Saint Joes Creek (02308929).--The Saint Joes Creek watershed is 3.5 mi northwest of the St. Petersburg Post Office. The 1.72 mi watershed is roughly square with the longest distance from the gage to boundary of 1.8 mi. Saint Joes Creek flows east-to-west, is channelized, and receives drainage from the upper third of the basin by open ditch and from the lower two-thirds by underground storm sewers. Interstate Highway 275 runs north-south inside the eastern boundary, and the Seaboard Coastline railroad lies diagonally across the southwest third of the basin servicing a commercial and light industrial development. Residential land use is mainly older houses and mobile homes with an average impervious area of 1,650 ft per unit. Streamflow, rainfall, and water-quality data are collected at the downstream side of a culvert outlet under U.S. Highway 19. The stage-discharge relation is affected by a small lake 0.1 mi downstream. A supplemental rain gage (station 274739082400400) is 1.5 mi southeast of the streamflow station and 0.4 mi south of the watershed boundary. Figure 10 shows land use in Saint Joes Creek watershed and locations of streamflow and rain gages.

Turner Street Storm Drain (02309160).—The Turner Street Storm Drain watershed is 0.8 mi southeast of the Clearwater Post Office. The 0.24 mi watershed is roughly square with the longest distance from gage to boundary of 0.8 mi. Drainage is by underground storm sewer northward to the north boundary at Turner Street and then westward under Turner Street to the Gulf of Mexico. Residential development is mainly older houses with an average impervious area of 2,640 ft per unit. A railroad yard runs north—south through the watershed and serves the light industrial development. Commercial development includes an auto dealership—repair business. Streamflow, rainfall, and water—quality data are collected at a 72—in. storm sewer under Turner Street. Figure 11 shows land use in Turner Street Storm Drain watershed and locations of streamflow and rain gages.

Watershed Characteristics

Following are definitions of watershed characteristics used to describe the watersheds listed in table 1:

Drainage area. -- Area of the watershed, in square miles, planimetered from Geological Survey 7-1/2-minute series topographic maps. Watershed boundaries were delineated by outlining drainage divides on the topographic maps and then modifying the natural drainage area to include or exclude areas where storm sewers crossed the natural drainage divides, based on sewer information from city and county agencies.

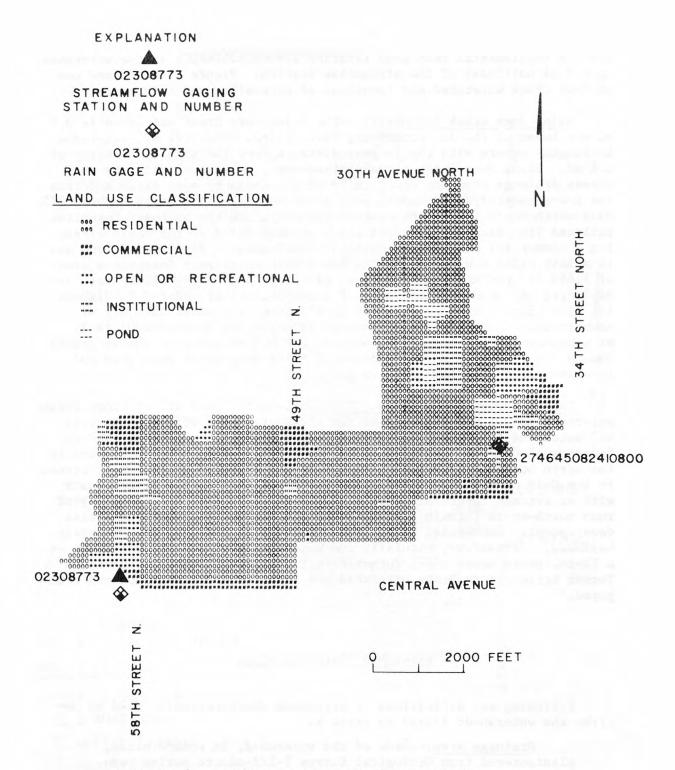
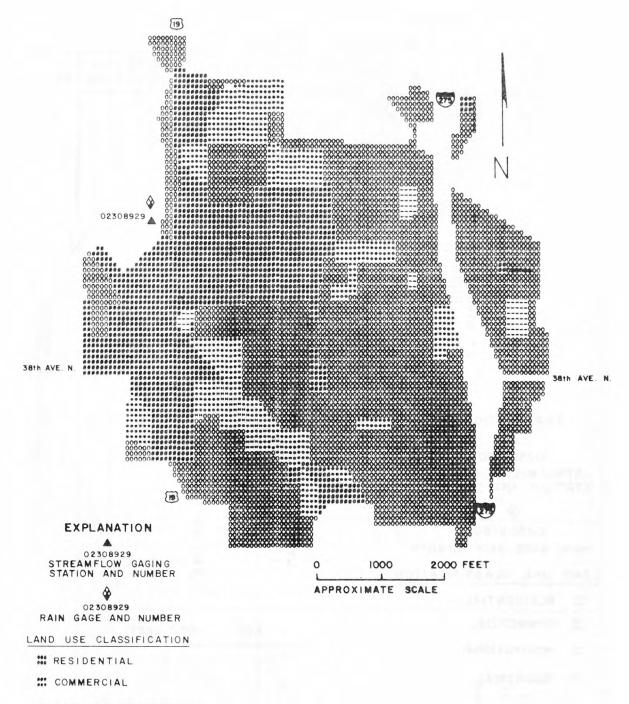



Figure 9.--Land use in Bear Creek watershed.

... OPEN OR RECREATIONAL

POND

Figure 10.--Land use in Saint Joes Creek watershed.

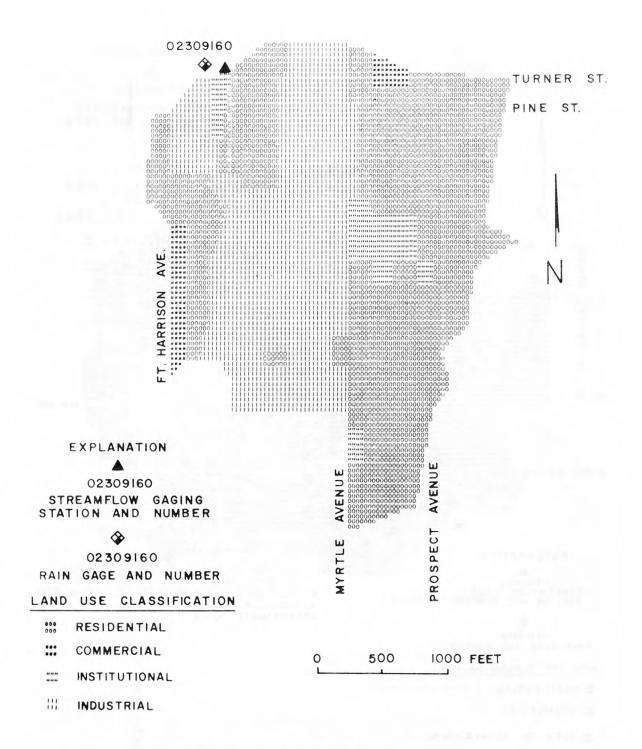


Figure 11.--Land use in Turner Street Storm Drain watershed.

	1.2			Lan	d use,	percen	t of to	tal ar	ea		rea
Station no. and name	Drainage area (mi ²)	Population density (persons/acre)	Roads	Single-family residential	Multi-family residential	Commercial	Industrial	Institutional	Recreational	Open space	Impervious area percent of total ar
02306002 Artic Street Storm Drain	0.34	6.6	14.7	46.2	0	36.5	0	1.5	0	1.1	61
02306006 Kirby Street Drainage Ditch	1.15	6.8	4.4	69.0	3.3	4.5	0	2.2	1.0	15.6	19
02306021 St. Louis Street Drainage Ditch	.51	8.2	11.8	68.1	0	3.3	0	6.5	2.3	8.0	27
02306025 Cass Street Storm Drain	.02		30.9	0	0	69.1	0	0	0	0	100
02306071 Gandy Blvd. Drainage Ditch	1.29	5.7	8.5	31.6	5.1	21.0	0	3.9	5.6	24.3	38
02307731 Allen Creek	1.88	6.9	10.3	59.0	3.9	7.0	0	7.9	0.5	11.4	36
02308193 Booker Creek	3.76	5.8	12.3	48.8	1.7	18.1	4.4	3.0	2.7	9.0	41
02308773 Bear Creek	1.89	6.9	12.8	66.1	4.3	5.8	0	5.5	1.0	4.5	32
02308929 Saint Joes Creek	1.72	5.3	12.0	47.7	.1	16.2	7.7	1.8	1.9	12.6	38
02309160 Turner Street Storm Drain	.24	6.9	11.8	47.3	1.1	5.9	28.4	5.5	0	0	48

Population density.—The number of persons per acre computed by dividing the population within the watershed boundary by the watershed area, in acres. Population was estimated from the 1970 U.S. Census.

Land Use

Roads. -- The area within the watershed covered by paved roads, in percent of the total watershed area.

<u>Single-family residential</u>.—The area within the watershed covered by single-family homes, in percent of the total watershed area.

<u>Multifamily residential.</u>—The area within the watershed covered by multifamily homes or apartments, in percent of the total watershed area.

<u>Commercial</u>.--The area within the watershed covered by commercial buildings and parking lots, in percent of total watershed area.

Industrial. -- The area within the watershed covered by industrial buildings, railroad sidings, storage areas and parking lots, in percent of total watershed area.

<u>Institutional</u>.—The area within the watershed covered by public service institutions such as schools, colleges, hospitals, and clinics, in percent of total watershed area.

Recreational. -- The area within the watershed covered by recreational facilities, in percent of total watershed area.

Open space. -- The area within the watershed covered by unused, undeveloped, or agricultural land, in percent of total watershed area.

Impervious area. -- The total of all impervious area within the watershed, in percent of total watershed area.

HYDROLOGIC DATA COLLECTION

The data collection network was designed within the framework of the short-term objective of calibration of a rainfall-runoff model and the long-term objectives of defining the flood-frequency relation for urban areas and the relation between land use and quantity and quality of urban storm runoff.

Criteria for locating rain gages and stage recorders, type of instrumentation, density of gages, and a description of the instrumentation is described in the following section. The section on water quality contains the strategy for sampling storm runoff and the selection of water-quality

parameters to be measured. The equipment used for processing the samples is also described and methods of sample preparation and shipment to the laboratory are given.

Rainfall and Runoff

Because both the peak rate of runoff and the volume of flow are important factors in design, continuous records of rainfall and runoff were collected for each watershed. Density of rain gages was determined on the basis of watershed size and the spatial and temporal variability of rainfall during storm events. Recording rain gages were co-located with the streamflow gages at all sites except one, and three watersheds have multiple rain gage installations. (Refer to figures 2 through 11.) Each streamflow gaging station is identified by an eight-digit, downstream order, station number. Rain gages co-located with the streamflow gages have the same station number, while three others located away from the streamflow stations have 15-digit station numbers based on latitude and longitude. Table 2 lists the streamflow and rain gage locations and gives a brief description of the type of recording instruments.

A typical rainfall and stage recording station is shown in figure 12. The two battery operated digital recorders are regulated by a single electronic timer. Five-minute observations of rainfall depth and stream stage are punched synchronously on 16-channel paper tapes.

Rainfall is collected by means of an 8-in. diameter standard rain gage funnel attached to the top of the gage cover and drains into a 3-in. diameter pipe well. The accumulation of rainfall in the pipe is recorded by a float and tape assembly attached to a recorder drive shaft. Rainfall depth is recorded to the nearest 0.01 in.

Stage at open-channel sites is measured in a stilling well, usually a 12-in. diameter pipe, that is open to the channel through a series of holes in the pipe bottom. A float-tape arrangement is used to record gage-heights to the nearest 0.01 ft.

The bubble gage, a gas-purged servocontrolled-manometer system (Beck and Goodwin, 1970), is used to record water-surface level at two sites where stilling wells were not practical. This instrumentation, housed near the storm sewer, regulates nitrogen gas through a 1/8-in. polyethylene tubing to the bottom of the sewer pipe. The head of water above the tubing orifice establishes a pressure which is sensed and converted by the servocontrolled-manometer to a rotation of the recorder drive shaft.

The recorded stage is used to calculate discharge by means of a stage-discharge relation developed for each streamflow station. The stage-discharge relation is determined by current meter discharge measurements made throughout the range in stage experienced at the station. A typical discharge hydrograph and hyetograph (rainfall depth graph) are shown in figure 13.

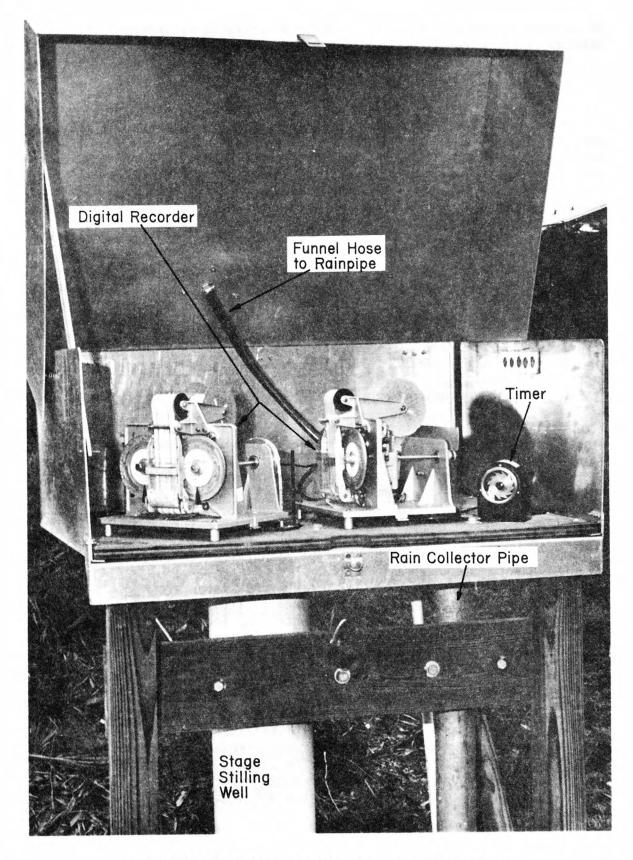


Figure 12.--Digital rainfall and stage recorders.

Station no.	Name and location
02306002	Artic Street Storm Drain at Sulphur Springs, Fla. Lat $28^{\circ}01'43''$, long $082^{\circ}27'22''$, in SE1/4 sec. 24, T.28S, R.18E, Hillsborough County. Digital water level recorder driven by a gas-purged servo-controlled manometer and digital rain gage in a 6- x 8-ft metal shed on Yukon Street on south side of Northgate Shopping Center parking lot.
02306006	Kirby Street Drainage Ditch at Tampa, Fla. Lat 20°01'07", long 082°28'04", in NE1/4 sec. 26, T.28S, R.18E, Hillsborough County. Digital water level recorder driven by a float-tape and digital rain gage in metal shelter over a stilling well attached to the upstream face of abutment at culvert under North Boulevard, 250 ft north of Kirby Street.
02306021	St. Louis Street Drainage Ditch at Tampa, Fla. Lat 72°57'54", long 082°27'52", in NW1/4 sec. 24, T.29S, R.18E, Hillsborough County. Digital water level recorder driven by a float-tape and digital rain gage in metal shelter over a stilling well attached to braces on south bank of ditch at edge of St. Louis Street, 1,450 ft west of Armenia Avenue.
02306025	Cass Street Storm Drain at Tampa, Fla. Lat 27°56'59", long 082°27'52", in NW1/4 sec. 24, T.29S, R.18E, Hillsborough County. Digital water level recorder driven by a float-tape in metal shelter attached to wall on east bank of Hillsborough River at south side of Cass Street bridge.
02306071	Gandy Boulevard Drainage Ditch at Tampa, Fla. Lat 27°53'37", long 082°31'07", in SE1/4 sec. 5, T.30S, R.17E, Hillsborough County. Digital water level recorder driven by a float-tape and digital rain gage in metal shelter over a stilling well attached to east headwall of box culvert under the Zayres parking lot, 350 ft west of Manhattan Avenue.
02307731	Allen Creek near Largo, Fla. Lat 27°56' 30", long 082°45'00", in SE1/4 sec. 24, T29S, R.15E, Pinellas County. Digital water level recorder driven by float-tape and rain gage in metal shelter over a stilling well on east wingwall on south side of bridge at Nursery Road, 1,000 ft west of Belcher Road.

Station no.	Name and location
02308193	Booker Creek at St. Petersburg, Fla. Lat 27°46'23", long 082°39'42", in NW1/4 sec. 24, T.31S, R.16E, Pinellas County. Digital water level recorder in metal shelter over a stilling well on downstream abutment of triple culvert under 17th Street N., 150 ft north of 2nd Avenue N. in St. Petersburg. Digital rain gage in metal shelter at upstream wingwall at south side of culvert.
02308773	Bear Creek at St. Petersburg, Fla. Lat 27°46'17", long 082°42'51", in NE1/4 sec. 20, T.31S, R.16E, Pinellas County. Digital water level recorder and rain gage in separate metal shelters on south side of bridge on 1st Avenue N., 600 ft west of 58th Street N.
02308929	Saint Joes Creek at St. Petersburg, Fla. Lat 27°48'48", long 082°40'47", in SE1/4 sec. 3, T.31S, R.16E, Pinellas County. Digital water level recorder driven by a float-tape and rain gage in metal shelter over stilling well on north bank, about 100 ft northwest of 34th Street N.
02309160	Turner Street Storm Drain at Clearwater, Fla. Lat 27°57'36", long 082°47'56", in NE1/4 sec. 16, T.29S, R.15E, Pinellas County. Digital water level recorder driven by a gas-purged servomanometer and rain gage recorder in metal walk-in shelter at southwest corner of Turner Street and Indiana Avenue.
274645082410800	Lafayette Street rain gage at St. Petersburg, Fla. Lat 27°46'45", long 082°41'08" in SE1/4 sec. 15, T.31S, R.16E, Pinellas County. Digital rain gage in metal shelter over 3-in. pipe in ground near intersection of Lafayette Street and 7th Avenue N.
274739082400400	Twenty-fifth Street rain gage at St. Petersburg, Fla. Lat 27°47'39", long 082°40'04", in SE1/4 sec. 11, T.31S, R.16E, Pinellas County. Digital rain gage in metal shelter over 3-in. pipe in ground in vacant lot near intersection of 25th Street N. and 25th Avenue N.
275336082300900	Himes Avenue rain gage at Tampa, Fla. Lat 27°53'36", long 082°30'09", in NE1/4 sec. 9, T.30S, R.18E, Hills-borough County. Digital rain gage in metal shelter over 3-in. pipe in ground northwest of the Himes Avenue Fire Station.

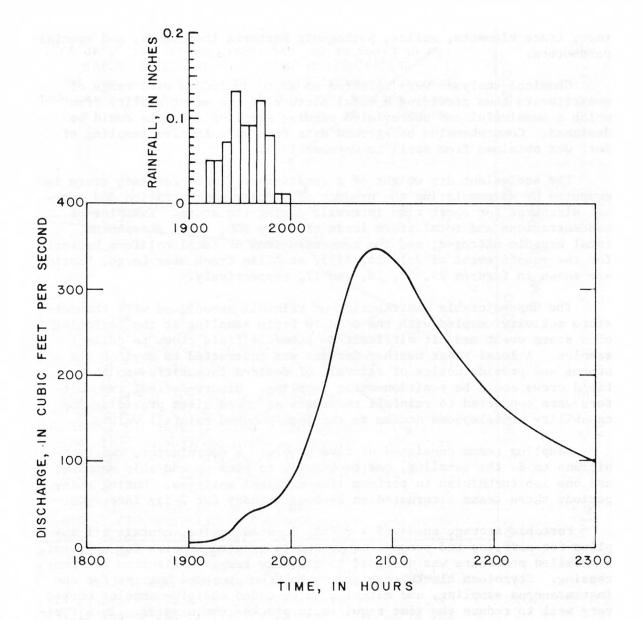


Figure 13.--Storm runoff hydrograph and rainfall hyetograph on July 16, 1975, at Allen Creek near Largo, Florida.

Water Quality

Water-quality data of interest in urban hydrology fall into seven classes: common constituents and indicators, nutrients, organic indicators, trace elements, solids, pathogenic bacteria indicators, and special parameters.

Chemical analyses were selected so as to include a wide range of constituents thus providing a total picture of the water quality from which a meaningful and abbreviated ongoing sampling schedule could be designed. Comprehensive background data from an intensive sampling effort was obtained from April to October 1975.

The equivalent dry weight of a constituent (load) for each storm is computed by accumulating the product of average concentration and average discharge for short time intervals during the storm. Examples of concentrations and total storm loads of 5-day BOD, total phosphorus, total organic nitrogen, and the concentrations of fecal coliform bacteria for the runoff event of July 16, 1975, at Allen Creek near Largo, Florida, are shown in figures 14, 15, 16, and 17, respectively.

The unpredictable distribution of rainfall associated with thunderstorm activity coupled with the need to begin sampling at the beginning of a storm event made it difficult to schedule field crews to collect samples. A local radar weather service was contracted to monitor the storms and provide notice of rainfall of desired intensities so that field crews could be positioned for sampling. Binary-decimal transmitters were connected to rainfall recorders at three sites providing the capability of telephone access to the last-punched rainfall values.

Sampling teams consisted of five people: a coordinator, two technicians to do the sampling, one technician to pick up and ship samples, and one lab technician to perform time-critical analyses. During rainy periods three teams alternated on 24-hour standby for 7-day intervals.

Portable storage sheds (5 x 8 ft), located onsite, contain all supplies for sampling and provide equipment to prepare samples for shipment. A detailed procedure was designed to organize sample collection and processing. Styrofoam blocks, cut out to hold color-coded bottles for one instantaneous sampling, and matching color-coded additive ampules worked very well to reduce the time required to process the samples. In a typical storm event, the maximum time from initial radar alert to shipment of samples was 4 hours.

Samples were analyzed in the U.S. Geological Survey water-quality laboratories using standard analytical techniques described in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter Al (Brown and others, 1970) and Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1971).

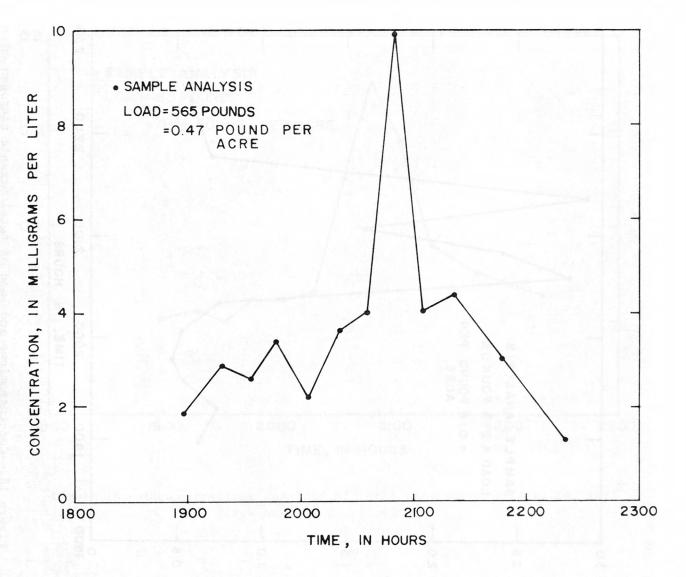


Figure 14.--Concentrations and load of 5-day BOD on July 16, 1975, at Allen Creek near Large, Florida.

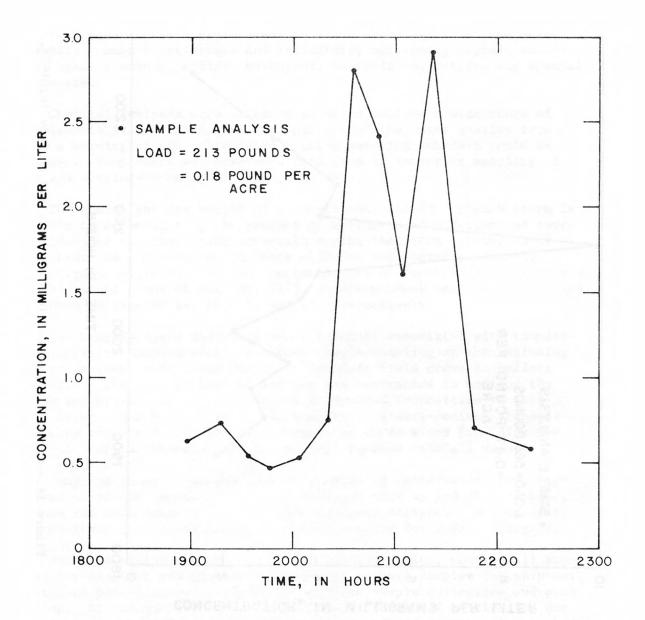


Figure 15.--Concentrations and load of total organic nitrogen on July 16, 1975, at Allen Creek near Largo, Florida.

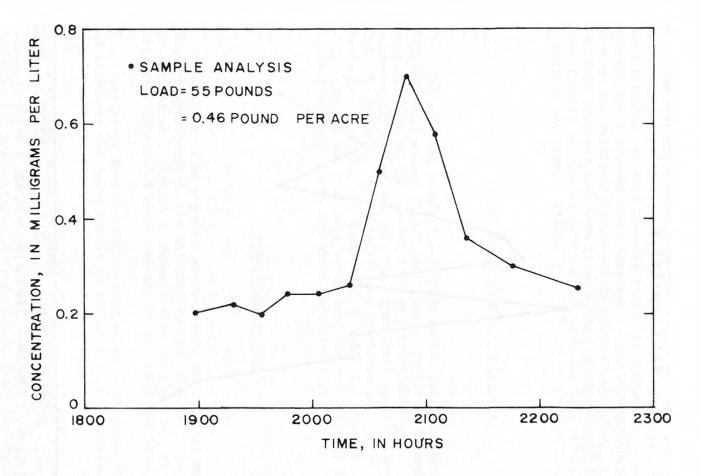


Figure 16.--Concentrations and load of total phosphorus on July 16, 1975, at Allen Creek near Largo, Florida.

Figure 17.--Concentrations of fecal coliform bacteria on July 16, 1975, at Allen Creek near Largo, Florida.

HYDROLOGIC DATA FILES

The systematic processing and storage of the voluminous data being collected was carried out using existing data processing programs and facilities of the USGS Computer Center in Reston, Va. Data are processed, stored, and retrieved using programs in the WATSTORE—National Water Data Storage and Retrieval System—Users Guide (Hutchinson, 1975). Selected WATSTORE programs have been grouped into cataloged procedures prepared specifically to process data for use with the USGS rainfall—runoff models (Carrigan and others, 1976).

Storm Rainfall and Runoff Data

The recorded rainfall and storm runoff data are stored in the WATSTORE unit values file. Additional data inputs or updates to existing data are made on the current file on a continuing basis. The data are subsequently edited and only the significant runoff events are kept in the unit values file. The rainfall and discharge unit value data through September 30, 1976, are summarized in table 3. Examples of unit values file rainfall and discharge retrievals for the July 16, 1975, storm at Allen Creek near Largo are shown in tables 4 and 5.

Water-Quality Data

The results of physical measurements and chemical analyses of water samples are stored in the WATSTORE Quality of Water File. Three series of samples were planned to characterize the physical, chemical, and biological condition of urban streams in the Tampa Bay area.

Samples of bottom material were taken to evaluate the accumulation of nutrients and heavy metals in stream benthic deposits. Analyses of bottom material are shown in table 6.

Base flow is the sustained fair-weather runoff which is composed mainly of ground-water discharge. Analyses of base-flow samples are shown in table 7 for three stations. Analyses of storm-runoff samples taken at St. Louis Street Drainage Ditch, Gandy Boulevard Drainage Ditch, Allen Creek, Bear Creek, and Saint Joes Creek are listed in tables 8, 9, 10, 11, and 12.

Table 3.--Tampa Bay area urban storm runoff and rainfall data in WATSTORE unit values file as of September 30, 1977

Station no.	Data	Discha	arge	Rainfall
and name	Date of storm	Peak (ft ³ /s)	Total (in.)	total (in.)
02306006 Kirby Street Drainage Ditch at Tampa, Fla.	June 5, 1975 June 18, 1975 June 30, 1975 July 15, 16, 1975 July 19, 20, 1975	34 34 32 33 57 95	0.16 0.17 0.16 0.65 0.58	0.57 1.11 0.79 1.11 2.59
	August 30, 31, 1975 October 28, 29, 1975 May 15, 16, 1976 June 2, 3, 1976 June 18, 19, 1976	27 113 33 97	0.87 0.62 1.24 0.46 0.68	3.83 2.29 4.09 1.73 2.58
	June 20, 21, 1976 June 23, 24, 1976 June 29, 30, 1976 August 4, 5, 1976 August 17, 1976	85 61 113 93 83	0.73 0.89 1.81 0.98 0.54	1.21 0.63 1.73 1.96 2.46
02306021 St. Louis Street Drainage Ditch at Tampa, Fla.	June 8, 1975 June 18, 1975 July 15, 1975 July 31, 1975 August 20, 1975	85 340 72 74 85	0.33 0.62 0.18 0.27 0.20	2.04 2.57 1.30 1.21 0.86
	August 30, 1975 September 3, 1975 September 11, 1975 September 23, 24, 1975 October 4, 1975	161 341 132 50 80	0.38 0.72 0.27 0.40 0.27	2.24 2.54 1.76 1.96 0.84
	May 15, 1976 June 18, 1976 June 20, 1976 July 7, 1976 August 11, 1976 August 17, 1976	357 226 51 193 82 106	0.94 0.40 0.09 0.44 0.15 0.27	4.09 2.27 0.91 1.94 1.30 2.70

Table 3.--Tampa Bay area urban storm runoff and rainfall data in WATSTORE unit values file as of September 30, 1977 - continued

	Records in	unit valu	es file	2
Station no		Discha	irge	Rainfall
and name	Date of storm	Peak (ft /s)	Total (in.)	total (in.)
02306071 Gandy Boulevard Drainage Ditch at Tampa, Fla.	May 28, 1975 June 3, 1975 June 18, 19, 1975 June 24, 25, 1975 July 11, 12, 1975	226 143 223 209 301	0.35 0.32 0.65 0.79 1.36	1.76 1.54 1.69 1.11 2.22
	July 13, 14, 1975 July 30, 1975 July 31-August 1, 1975 August 7, 8, 1975 August 9, 10, 1975	206 112 156 207 150	1.19 0.39 0.75 1.28 0.98	2.32 0.92 2.23 1.30 1.33
	October 18, 1975 October 28, 29, 1975 May 15, 16, 1976 May 17, 1976 June 27, 28, 29, 1976	109 281 692 410 294	0.37 1.27 2.61 0.90 0.89	0.51 1.67 4.29 2.10 1.69
	August 8, 9, 1976 September 11, 12, 1976	152 183	0.74 1.06	0.91 0.94
02307731 11en Creek nea		164	0.44	0.64
Largo, Fla.	1971 August 27, 28, 1972 August 1, 2, 1973 September 8, 9, 1973	552 567 307 336	2.57 1.56 1.09 0.98	2.76 2.12 2.74 2.46
	September 24, 1973 June 24, 25, 1974 June 26, 27, 1974 July 30, 31, 1974 June 8, 1975	277 668 718 243 129	0.61 2.40 3.11 0.67 0.35	1.52 8.17 4.81 1.49 0.89
	June 30-July 1, 1975 July 16, 1975 September 19, 20, 1975 September 28, 29, 1975 August 31-September 1, 1976	133 344 365 442	0.46 0.71 0.94 1.32	0.77 0.71 0.25 2.00

Table 3.--Tampa Bay area urban storm runoff and rainfall data in WATSTORE unit values file as of September 30, 1977 - continued

			es file	
Station no. and name	Date of	Discha	irge	Rainfall
	storm	Peak (ft /s)	Total (in.)	total (in.)
02308193	May 15, 1975	183	0.11	1.03
Booker Creek at	May 26, 1975	374	0.21	2.28
St. Petersburg,	May 27, 28, 1975	130	0.76	0.41
Fla.	July 13, 14, 1975	504	1.67	4.51
	August 18, 19, 1975	231	0.26	1.99
	August 20, 21, 1975	164	0.36	1.81
	August 29, 30, 1975	160	0.18	1.60
	September 1, 1975	231	0.14	0.94
	September 28, 29, 1975	191	0.42	1.31
	September 30, 1975	250	0.18	0.63
	October 3, 4, 1975	189	0.34	0.70
	October 6, 1975	307	0.29	1.44
	October 7, 8, 1975	279	0.94	1.71
	May 15, 16, 1976	551	1.72	5.65
	June 20, 21, 1976	264	0.21	0.97
	July 17, 18, 1976	360	0.58	2.40
	September 4, 1976	267	0.23	1.16
	September 5, 1976	169	0.19	0.47
en Guert et alle	of works in the same of	SU/G		- 1111062
02308773	May 15, 1975	253	0.35	1.04
Bear Creek at	May 26, 1975	599	0.86	2.28
St. Petersburg,	May 27, 28, 1975	209	0.51	1.02
la.	June 18, 1975	107	0.12	0.81
	July 21, 1976	316	0.37	1.02
	July 22, 1976	268	0.41	1.10
	July 26, 1976	325	0.50	1.01
	August 17, 18, 1976	355	0.61	1.76
	September 5, 1976	384	0.58	1.84
	September 6, 1976	106	0.36	1.45
	September 18, 1976	245	0.33	1.19

Table 3.--Tampa Bay area urban storm runoff and rainfall data in WATSTORE unit values file as of September 30, 1977 - continued

	Records i	n unit valu	es file	2
Station no.	Date of	Discha	rge	Rainfall
and name	storm	Peak (ft ³ /s)	Total (in.)	total (in.)
02309160 Turner Street Storm Drain at Clearwater, Fla.	June 8, 1975 August 15, 1975 August 21, 1975 August 26, 1975 September 14, 1975	30 20 46 31 20	0.07 0.12 0.22 0.14 0.14	2.13 0.53 1.06 0.55 0.43
	September 19, 1975 August 4, 1976 August 16, 1976	54 35 25	0.56 0.45 0.35	2.62 1.87 0.77

Table 4.--Example rainfall data retrieval from WATSTORE unit values file for rain gage at Allen Creek near Largo, Florida

AGENCY		TION FICATION BER	LAT-	ON LOCA LONG- ITUDE	SEQ	STATE	DISTRICT	COUNTY	SITE CODES	HYDROLEGIC UNIT CODE		CONTRI DRAINA AREA	GE	
USGS		02307731	275630	0824500	00	12	12	103	SW	0310020	1.88			
•		NAME OR L	OCAL WEL	L NUMBE	R		EOLOGIC	WELL				TERNAL U		
ALLEN C	REEK NR	LARGO. FL	.A.							15.58	NULL NULL 1	11111001		
						- E2 - 51.								
STATION	ID =	02307	731		PARAME	TER COL)E =	00045		STATISTIC	CODE = 00	0006		
DEPTH X-SECTI		999.00				DATE O	F REC =	790127		STATE CODE			RCD RET DATE PROCESS CODE	
DATE:	JULY 16,	1975			READIN	IGS PER	DAY =	288		NO VALUE	INDICATOR=999	9999.00	RCD 8	ISP =
HR.	IN.SEC	VALVE	HR.MIN	SEC V	ALUE	HR.M	IN.SEC	VALUE	HR.MIN.SEC	VALUE	HR.MIN.SEC	VALUE	HRSMIN.SEC	VALUE
15	15.00	0.01	15.20	.00	0.00	15.	25.00	0.00	15.30.00	0.00	15.35.00	0.00	15.40.00	0.00
	45.00	0.00	15.50		0.00		55.00	0.00	16.00.00	0.00	16.05.00	0.00	16.10.00	0.00
	15.00	0.00	16.20		0.00	16.	5.00	0.00	16.30.00	0.00	16.35.00	0.00	16.40.00	0.00
	45.00	0.00	16.50		0.00	16.	55.00	0.00	17.00.00	0.00	17.05.00	0.00	17.10.00	0.00
	15.00	0.00	17.20		0.00	17.	25.00	0.00	17.30.00	0.00	17.35.00	0.00	17.40.00	0.00
	45.00	0.00	17.50		0.00		55.00	0.00	18.00.00	0.00	18.05.00	0.00	18.10.00	0.00
	15.00	0.00	18.20	.00	0.00		25.00	0.00	18.30.00	0.00	18.35.00	0.00	18.40.00	0.00
	45.00	0.00	18.50	.00	0.00		55.00	0.00	19.00.00	0.00	19.05.00	0.00	19.10.00	0.00
	15.00	0.05	19.20		0.05		25.00	0.07	19.30.00	0.13	19.35.00	0.09	19.40.00	0.09
19.	45.00	0.12	19.50	.00	0.08	19.	55.00	0.01	20.00.00	0.08				

Table 5.--Example discharge data retrieval from WATSTORE unit values file for streamflow gage at Allen Creek near Largo, Florida

STATION ID =	02307	731	PARAMET	TER CODE	= 00060		STATISTI	C CODE = 0	0011		
	99999.00			DATE OF REC	= 790126 =******		STATE CO			PROCESS CODE	
DATE: JULY 16	, 1975		READING	SS PER DAY	= 288		NO VALUE	INDICATOR=99	9999.00	RCD D	ISP =
HR.MIN.SEC	VALUE	HR.MIN.SEC	VALUE	HR.MIN.SEC	VALUE	HR.MIN.SEC	VALUE	HR.MIN.SEC	VALUE	HR.MIN.SEC	VALUE
00.05.00	9.50	00.10.00	9.30	00.15.00	9.10	00.20.00	9.10	00.25.00	9.10	00.30.00	9.00
00.35.00	8.80	00.40.00	8.80	00.45.00	8.80	00.50.00	8.70	00.55.00	8.70	01.00.00	8.50
01.05.00	8.40	01.10.00	8.40	01.15.00	8.20	01.20.00	8.20	01.25.00	8.20	01.30.00	8.10
01.35.00	8.10	01.40.00	8.10	01.45.00	7.90	01.50.00	7.90	01.55.00	7.90	02.00.00	7.80
02.05.00	7.80	02.10.00	7.80	02.15.00	7.80	02.20.00	7.70	02.25.00	7.70	02.30.00	7.50
02.35.00	7.50	02.40.00	7.50	02.45.00	7.50	02.50.00	7.40	02.55.00	7.40	03.00.00	7.40
03.05.00	7.40	03.10.00	7.40	03.15.00	7.40	03.20.00	7.20	03.25.00	7.20	03.30.00	7.20
03.35.00	7.20	03.40.00	7.20	03.45.00	7.20	03.50.00	7.20	03.55.00	7.20	04.00.00	7.10
04.05.00	7.10	94.10.00	7.10	04.15.00	7.10	04.20.00	6.90	04.25.00	6.90	04.30.00	6.90
04.35.00	6.90	04.40.00	6.90	04.45.00	6.90	04.50.00	6.90	04.55.00	6.80	05.00.00	6.80
05.05.00	6.80	05.10.00	6.80	05.15.00	6.80	05.20.00	6.80	05.25.00	6.80	05.90.00	6.80
05.35.00	6.80	95.40.00	6.80	05.45.00	6.80	05.50.00	6.70	05.55.00	6.70	06.00.00	6.70
06.05.00	6.70	96.10.00	6.70	06.15.00	6.70	06.20.00	6.70	06.25.00	6.70	06.30.00	6.70
06.35.00	6.50	96.40.00	6.50	06.45.00	6.50	06.50.00	6.50	06.55.00	6.50	07.00.00	6.50
07.05.00	6.50	07.10.00	6.50	07.15.00	6.50	07.20.00	6.50	07.25.00	6.50	07.90.00	6.50
07.35.00	6.50	07.40.00	6.50	07.45.00	6.50	07.50.00	6.50	07.55.00	6.50	08.00.00	6.50
08.05.00	6.40	08.10.00	6.40	08.15.00	6.40	08.20.00	6.40	08.25.00	6.40	08.30.00	6.40
08.35.00	6.40	98.40.00	6.40	08.45.00	6.40	08.50.00	6.40	08.55.00	6.40	09.00.00	6.40
09.05.00	6.40	09.10.00	6.40	09.15.00	6.40	09.20.00	6.40	09.25.00	6.40	09.30.00	6.40
09.35.00	6.40	09.40.00	6.30	09.45.00	6.30	09.50.00	6.30	09.55.00	6.30	10.00.00	6.30
10.05.00	6.30	10.10.00	6.30	10.15.00	6.30	10.20.00	6.30	10.25.00	6.30	10.30.00	6.30
10.35.00	6.30	10.40.00	6.30	10.45.00	6.30	10.50.00	6.30	10.55.00	6.30	11.00.00	6.30
11.05.00	6.30	11.10.00	6.30	11.15.00	6.30	11.20.00	6.30	11.25.00	6.30	11.30.00	6.30
11.35.00	6.30	11.40.00	6.30	11.45.00	6.30	11.50.00	6.30	11.55.00	6.30	12.00.00	6.30
12.05.00	6.20	12.10.00	6.30	12.15.00	6.20	12.20.00	6.20	12.25.00	6.20		6.20
12.35.00	6.20	12.40.00	6.20	12.45.00	6.20	12.50.00	6.20	12.55.00	6.20	13.00.00	6.00
	6.00	13.10.00	6.00	13.15.00	6.00	13.20.00	6.00	13.25.00	6.00		6.00
13.05.00	6.00	13.40.00	6.00	13.45.00	6.00	13.50.00	6.00	13.55.00	6.00	14.00.00	6.00
13.35.00	6.00	14.10.00	6.00	14.15.00	6.00	14.20.00	6.00	14.25.00	6.00	14.30.00	6.00
14.05.00		14.40.00	6.00	14.45.00	6.00	14.50.00	6.00	14.55.00	5.90		5.90
14.35.00	6.00	15.10.00	5.90	15.15.00	5.90	15.20.00	5.90	15.25.00	5.90	19.30.00	5.90
15.05.00	5.90	15.40.00	5.90	15.45.00	5.90	15.50.00	5.90	15.55.00	5.90	16.00.00	5.90
15.35.00	5.90	16.10.00	5.90	16.15.00	5.90	16.20.00	5.90	16.25.00	5.40	16.90.00	5.90
16.05.00	5.90		5.90	16.45.00	5.90	16.50.00	5.90	16.55.00	5.90	17.00.00	5.40
16.35.00	5.90	16.40.00	5.90	17.15.00	5.90	17.20.00	5.90	17.25.00	5.90		5.90
17.05.00	5.40	17.10.00	5.90	17.45.00	5.40	17.50.00	5.20	17.55.00	5.20	18.00.00	5.20
17.35.00	5.90	17.40.00	5.70	18.15.00	5.90	18.20.00	5.90	18.25.00	5.90		5.90
18.05.00	5.20	18.10.00	5.70	18.45.00	5.80	18.50.00	5.80	18.55.00	5.80	19.00.00	5.80
18.35.00	5.50	19.10.00	5.90	19.15.00	6.40	19.20.00	10.00	19.25.00	20.00		32.00
19.05.00	5.90	19.40.00	42.00	19.45.00	47.00	19.50.00	54.00	19.55.00	64.00		78.00
19.35.00	39.00		117.00	20.15.00	149.00	20.20.00	186.00	20.25.00	228.00	20.30.00	269.00
20.05.00	94.00	30.10.00	329.00	20.45.00	341.00	20.50.00	344.00	20.55.00	342.00	24.00.00	334.00
20.35.00	309.00	20.40.00	309.00	21.15.00	294.00	21.20.00	275.00	21.25.00	259.00	21.30.00	245.00
21.05.00	325.00	21.10.00	219.00	21.45.00	207.00	21.50.00	194.00	21.55.00	184.00	22.00.00	175.00
21.35.00	231.00	21.40.00		22.15.00	149.00	22.20.00	142.00	22.25.00	135.00		128.00
22.05.00	164.00	32.10.00	156.00	22.45.00	111.00	22.50.00	106.00	22.55.00	102.00		98.00
22.35.00	122.00	22.40.00	116.00	23.15.00	88.00	23.20.00	85.00	23.25.00	83.00		80.00
23.05.00	95.00	33.10.00	91.00	23.45.00	74.00	23.50.00	72.00	23.55.00	71.00		68.00
23.35.00	78.00	22.40.00	76.00	23,45.00	74.00	23.30.00	,	20,00			

Table 6.--Analysis of bottom material, Tampa Bay area urban storm runoff hydrologic data sites

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02306006 - KIRBY STREET DRAINAGE DITCH AT TAMPA, FLA.

					WATER	QUALITY 0	ATA					
DATE	TIME	SOLIDS. VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	NITRO- GEN.NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, NO2+NO3 TOT. IN BOT MAT (MG/KG AS N)	PHOS- PHORUS, TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, ORGANIC TOT. IN BOTTOM MAT. (G/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM+ RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
SEP . 1	975											
03	1150	1770	5500	96	1.5	57	• 1	•1	0	<10	<10	<10
DATE	TIMF	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/L AS HG)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT. TOTAL IN BOT- TOM MA- TERIAL (UGØKG)
SEP . 1									37		3.4	3.9
03	1150	<10	150	<10	<10	.0	<10	.0	37	6.9	3.4	3.9
DA		DI ELDR TOT IN F TOM IME TER (UG.	RIN+ ENDI	PIN. CHE TAL TO BOT- IN F MA- TOM RIAL TES	OR CHL	IN IN E	TAL TOT	MA- TOM	TAL TOT	TAL TOT	MA- TOM	TAL BOT-
SEP	. 1975									44.6		
03	1	150	4.5	.0	.0	1.0	• 0	0	.0	0	0	0

				UN	TED STAT	ES DEP	RTMENT	OF I	NTERIOR -	GEOLO	GICAL S	URVEY TAMPA	, FLA.	DISTRICT	CODE 12
						WATE	R QUAL	ITY D	ATA						
DATE	TIME	SOLII VOL TILE BOTT MA TER	IN OM E	TOTAL IN BOTTOM MA- TERIAL (MG/KG)	NITRO- GEN.NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO GEN NO2+NO TOT. BOT M (MG/I	PHO D3 TO IN IN AT M	RUS. TAL BOT. IAT.	CARBON. INOR- GANIC. TOT IN BOT MAT (G/KG AS C)	CARBO ORGAN TOT. BOTT MAT (G/K AS C	IC TO IN IN OM TOM TE G (U	ENIC TAL BOT- MA- RIAL G/G AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (U6/G AS CD)	CHRO- MIUM. RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT: RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
SEP . 19	1100	14	000	17000	470		.5	110	.4		.7	0	<10	<10	<10
		COPP	F 0	IRON.	LEAD.	MANG	A MF	CURY	ZINC.		СН	LOR-			
		REC		RECOV.	RECOV.	NESE	, RE	COV.	RECOV.	ALDRI		NE .	000+	DD€.	DDT.
		FM B		FM BOT-	FM BOT-	RECO		BOT-	FM BOT-	TOTA		BOT-	TOTAL IN BOT-	IN BOT-	IN BOT-
		TOM		TOM MA-	TOM MA-	TOM M		RIAL	TOM MA-	TOM M		MA-	TOM MA-	TOM MA-	
	TIME	(UG		(UG/G	(UG/G	TERI		IG/L	(UG/G	TERI		RIAL	TERIAL	TERIAL	
DATE		AS		AS FE)	AS PB)	(UG/	5) AS	HG)	AS ZN)	(UG/K	G) (UG	/KG)	(UG/KG)	(UG/KG)	(UG≱KG)
SEP . 19	975												16	12	12
03	1100		<10	1300	<10	<	10	.1	30		.0	74	10	12	16
			DI-		HE	PTA-	HEPTA-					TO			
			ELDRI				CHLOR	LIND			ILVEX.				•5-T
			TOTA				POXIDE	TOT		TAL	TOTAL				BOT-
			IN BO				OT. IN	IN B			N BOT-				MA-
		TIME	TOM M			RIAL	MATL.	TER		RIAL	TERIAL		RIAL TE	RIAL TE	RIAL
DA		1.1	(UG/K				UG/KG)	(UG/		/KG)	UG/KG)	(UG	(KG) (UG	/KG) (UC	(KG)
SEP	. 1975														
		1100		.8	. 0	. 0	.0		.0	8	.0		0	0	0

Table 6.--Analysis of bottom material, Tampa Bay area urban storm runoff hydrologic data sites - continued

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02306071 - GANDY HOULEVARD DRAINAGE DITCH AT TAMPA, FLA. DISTRICT COOF 12 WATER QUALITY DATA SOLIDS. NITPO-PHOS-CARBON. CARBON. ARSENIC CADMIUM CHRO-COBALT. C.O.D. NITRO-MIUM. PECOV. VOLA-TOTAL GFN+NH4 GEN, PHORUS . INOR-OPGANIC TOTAL RECOV. RECOV. FM BOT-FM BOT-GANIC . IN BOT-TOT. IN TILE IN + OKG. N02+N03 TOTAL FM BOT-TOM MA-TOT IN BOTTOM MA-TOT IN TOT. IN IN BOT. BOTTOM TERIAL MAT. MAT. TERIAL TFRIAL TOM MA-MA-TERIAL (116/6 106/5 TIME TERIAL TERIAL (MG/KG (MG/KG (MG/KG IG/KG (G/KG (UG/6 AS COI (06/6) AS CO) AS AS) (MG/KG) (MG/KG) AS N) AS NI AS P) AS CI AS C) DATE SEP . 1975 <10 1.1 <10 23400 26000 790 .0 200 . 1 0 < 10 1010 04 . . . COPPER. MANGA-MERCURY ZINC. CHLOR-IRON. I EAD. ALDRIN, DOT. NESE . nnn. DDF . RECOV. RECOV. RECOV. DANE . RECOV. RECOV. TOTAL TOTAL TOTAL TOTAL TOTAL FM BOT-FM BOT-FM BOT-RECOV. FM BOT-FM BOT-TOM MA-IN BOT-IN BOT-IN BOT-IN BOT-IN BOT-FM BOT-TOM MA-TOM MA-TOM MA-TOM MA-TOM MA-TOM MA-TERIAL TERIAL TFRIAL TOM MA-TOM MA-TOM MA-TERIAL TERIAL TERIAL TERIAL TERIAL TEPTAL TERTAL (UG/G TERIAL (UG/L (UG/G TIME (UG/G (UG/G (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG#KG) AS CU) AS FE) AS ZN) AS PB) (UG/G) AS HG) DATE SEP . 1975 11 2.8 . 0 46 <10 <10 . 1 20 <10 680 04 . . . 1010 HEPTA-HEPTA-TOXA-DI-2.4.5-T LINDANE PCB. SILVEX. PHENE . 2,4-0. ELDRIN. ENDRIN. CHLOP . CHLOP TOTAL TOTAL TOTAL FPOXIDE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL IN BOT-IN BOT-IN BOT-IN BOT-IN BOT-IN BOT-TOT. IN IN BOT-IN BOT-IN ROT-TOM MA-TOM MA-TOM MA-TOM MA-BOTTOM TOM MA-TOM MA-TOM MA-TOM MA-TERIAL TERIAL TERIAL TERIAL TERIAL TERIAL TERIAL TERIAL TERIAL MATL . TIME (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) DATE (UG/KG) (UG/KG) (UG/KG) SEP . 1975

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02307731 - ALLEN CREEK NR LARGO, FLA. WATER QUALITY DATA

. 0

5.2

. 0

2.3

04 ...

1010

.0

15

.0

DISTRICT CODE 12

0

0

DATE	TIME	VO TIL ROT M	IDS. LA- E IN TOM A- RIAL /KG)	C.O.D. TOTAL IN ROTTOM MA- TERIAL (MG/KG	GEN + 0 TOT BOT (M	TRO- • NH4 RG. IN MAT G/KG N)	GE NO2+ TOT. ROT	IN MAT	PHOR TOT IN P MA (MG/ AS	AL OT.	CARB INC GAN TOT BOT (G/ AS	IC. IN MAT		IN TOM	ARSE TOT IN B TOM TER (UG AS	AL OT- MA- IAL /G	RECO FM BO TOM M TERI (UG/ AS C	V. T- A- AL G	CHRO MIUM RECO FM BO TOM M TERI (UG/	V. T- A- AL	COBALT RECOV FM BOT TOM MA TERIA (UG/G AS CO	· L
SEP . 19	75																				- 1	
03	1550	1	1100	1800	0 4	30		1.0		300		.2		•5		0		10	•	10	<1	U
DATE	TIME	FM TOM TE	PER, COV. BCT- MA- RIAL IG/G CU)	IRON+ RECOV FM BOT TOM MA TERIA (UG/G AS FE	- FM - TOM L TE	AD. COV. BOT- MA- RIAL JG/G PB)	REC FM E TOM	COV.	TOM TER	CURY COV. BOT- MA- RIAL S/L HG)	FM F	NC. COV. BOT- MA- RIAL G/G ZN)	IN TOM	RIN. TAL BOT- MA- RIAL /KG)	DAN TOT IN E	AL BOT- MA-	DDD TOTA IN BO TOM M TERI (UG/K	IL IT- IA-	DDE TOTA IN BO TOM H TERI (UG/K	T-	DOTAL TOTAL IN BOT TOM MA TERIA	L T - A -
		-																				
SEP • 19	1550		<10	58	0	<10		<10		• 1		20		.0		29		• 0		•3		.6
DA	TE	TIME	DI ELDR TOT IN R TOM TER (UG/	IN. EN	IDRIN. TOTAL I ROT- IM MA- ERIAL IG/KG)	TOM	MA-	EPOX TOT. BO	IN TOM	IN F	TAL BOT-	IN F	CB. TAL BOT- MA- RIAL /KG)	IN TOM	VEX+ TAL BOT- MA- RIAL /KG)	IN E	MA-	Z,44 TOT IN B TOM TER (UG/	AL OT- MA- IAL	TOT IN B TOM TER	AL OT- MA-	
	• 197			2.3			0		6		.0		0		.0		0		0		0	
03	• • •	1550		2.3	.0		.0		.6		• 0		U				•					

Table 6.--Analysis of bottom material, Tampa Bay area urban storm runoff hydrologic data sites - continued

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02308193 - ROOKER CREEK AT ST. PETERSBURG, FLA.

DISTRICT CODE 12

WATER	MILLE	TTV	DATA

DATE	TIME	SOLIDS. VOLA- TILE IN ROTTOM MA- TERIAL (MG/KG)	TOTAL IN ROTTOM MA- TERIAL (MG/KG)	NITRO- GEN•NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN+ NO2+NO3 TOI. IN BOT MAT (MG/KG AS N)	PHORUS. TOTAL IN ROT. MAT. (MG/KG AS P)	CARBON. INOR- GANIC. TOT IN BOT MAT (G/KG AS C)	CARBON+ ORGANIC TOT- IN BOTTOM MAT. (G/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM. RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
SEP . 19	75											
03	1350	2240	2900	39	1.5	21	•1	• 1	0	<10	<10	<10
DATE	TIME	COPPER. RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON. RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/L AS HG)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	ALDRIN. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD. TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT. TOTAL IN BOT- TOM MA- TERIAL (UG#KG)
SEP . 19							.10		9	.8	1.2	1.6
03	1350	<10	110	<10	<10	.0	<10	.0	,	•0	1.6	1.0
DAT	F	ELD TO IN TOM TIME TE (UG	MA- TOM	RIN. CHE TAL TO BOT- IN 6 MA- TOM RIAL TES	OR CHL	IDE TOT	BOT- IN MA- TOM	TAL TO BOT- IN B MA- TOM RIAL TE	VEX+ PHE TAL TO BOT- IN E MA- TOM RIAL TER	TAL TOT	MA- TOM	5-T TAL BOT- MA- RIAL /KG)
SEP 03.	. 1975	1350	•3	.0	• 0	.0	•0	34	.0	0	0	0

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02308773 - REAR CREEK AT ST. PETERSBURG, FLA.

DISTRICT CODE 12

WATER QUALITY DATA

DATE	TIME	SOLIDS, VOLA- TILE IN ROTTOM MA- TERIAL (MG/KG)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	NITRO- GEN:NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN+ NOZ+NO3 TOI- IN BOT MAT (MG/KC AS N)	PHORU TOTA IN BO	S. IN L GA T. TOT BOT G (G	OR- O NIC, T IN MAT /KG	ARBON, RGANIC OT. IN BOTTOM MAT. (G/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
SEP . 197	5												
03	1425	56900	75000	5600	2.0	10	00	• 8	2.3	1	<10	<10	<10
DATE	TIME	COPPER. RECCV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON. RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV FM BOT- TOM MA- TERIAL (UG/G	FM BC	OV. REDT- FM	BOT- MA- 1 RIAL 1	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT+ TOTAL IN BOT- TOM MA- TERIAL (UGPKG)
		23 667											
SEP • 197	1425	20	1000	<10	2	0	.2	50	.0	360	47	36	16
	1975	D: ELDF TO: IN F TOM TMF TEF (UG.	RIN. ENDR	PIN. CHE AL TOT BOT IN F MA TOM PIAL TER	PTA- HI OR, CI TAL EP BOT- TO MA- BI	EPTA- HLOR L OXIDE T. IN I OTTOM I	INDANE TOTAL IN BOT- FOM MA- TERIAL (UG/KG)	PCB. TOTAL IN BOT TOM MA TERIA (UG/K)	T- IN E	PHI TAL TO BOT- IN MA- TOM RIAL TE	TAL TO BOT- IN MA+ TOM RIAL TE	TAL TO BOT- IN MA- TOM RIAL TE	+5-T TAL BOT- MA- RIAL /KG)
03.	. 1	425	21	.0	• 0	2.2	• 0	1	13	.0	0	0	

Table 6.--Analysis of bottom material, Tampa Bay area urban storm runoff hydrologic data sites - continued

			ı	UNITED 02		DEPART										DIST	RICT	CODE 12
						WATER	QUAL	ITY D	ATA									
DATE	TIL BOT M	IDS. DLA- E IN TOM MA- CRIAL	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG	GEN+ OR TOT BOT (MG	NH4 RG. N IN T MAT B	NITRO- GEN, 102+N03 OT. IN OT MAT (MG/KG AS N)	PHO TO IN M (MG	OS- RUS, TAL BOT. AT. /KG	TOT	IN MAT		IN TOM T.	ARSE TOT IN B TOM TER (UG AS	AL OT- MA- IAL	CADMIL RECOVEM BOT TOM MA TERIA (UG/O AS CO	T- REA- FM	RO- IUM. COV. BOT- MA- ERIAL JG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)
SEP • 1975 03 1505		9510	1500	0 15	50	•5		160		2.2		.3		1	<1	10	<10	<10
DATE	FM TON TE	PPER. ECOV. BOT- M MA- ERIAL JG/G ECU)	IRON. RECOV FM BOT TOM MA TERIAL (UG/G AS FE	TOM TEF	OV. BOT- MA- F	MANGA- NESE, RECOV. M BOT- OM MA- TERIAL (UG/G)	FM TOM TE (U	CURY COV. BOT- MA- RIAL G/L HG)	TOM TER	NC, COV. BOT- MA- RIAL G/G ZN)	ALDF TOT IN E TOM TEF	MA-	DAN TOT IN B	MA-	DDD: TOTAL IN BO TOM MI TERI:	T- IN A- TOP AL TE	DOE + DTAL BOT- MA- FRIAL G/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP • 1975 03··· 1505	5	10	210	0 1	1500	30		•1		60		• 0		14	1	•1	• 0	•0
DATE	TIME	TOM	RIN. ENTAL TO BOT- IN MA- TO RIAL T	DRIN+ OTAL BOT- M MA- ERIAL G/KG)	HEPT CHLO TOTAL IN BO TOM M TERI (UG/K	R. CH L EPC T- TOT A- BC AL N	PTA- HLOR DXIDE I. IN DTTOM MATL.	IN TOM TE	DANE TAL BOT- MA- RIAL /KG)	IN TOM	CB. TAL BOT- MA- RIAL /KG)	IN E	VEX+ TAL BOT- MA- RIAL VKG)	TOT IN B	NE.	2.4-D. TOTAL N BOT- OM MA- TERIAL UG/KG)	IN TOM TE	+5-T TAL BOT- MA- RIAL ZKG)
SEP • 1979	1505		4.2	.0		.0	.3		.0		37		.0		0	0		0

Table 7.--Analysis of base flow samples, Tampa Bay area urban storm runoff hydrologic data sites

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02307731 - ALLEN CREEK NR LARGO, FLA.

DISTRICT CODE 12

WATER QUALITY DATA

DATE	TIME	STREAM STAGE (FT ABOVE DATUM)	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN DEMAND, BIÖ- CHEM- ICAL, 5 DAY (MG/L)
SEP . 19	974						100,000	
30	1415	4.66	5.9	30.0		388	7.8	
NOV		I HELDER	100	21. 0		388	6.5	THE ENGLY
26	1035	4.39	3.1	21.0	49	366	0.5	ALMOTERS IN
JAN , 19	975 1450	4.49	4.0	23.5	44 - 1 55	405	5.2	1708 UV
AUG								
16	2035	8.83	2.7					
SEP								
03	1550			30.2				

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY
02308193 - BOOKER CREEK AT ST. PETERSBURG, FLA.
WATER QUALITY DATA

					SPE-
					CIFIC
		STREAM	STREAM-		CON-
		STAGE	FLOW,		DUCT-
		(FT	INSTAN-	TEMPER-	ANCE
	TIME	ABOVE	TANEOUS	ATURE	(MICRO-
DATE		DATUM)	(CFS)	(DEG C)	MHOS)
OCT , 19	74				
01	1230	4.44	4.4	25.0	385
NOV					
25	1530	4.54	3.1	24.5	300
FER . 19	975				
04	0830	4.28		20.5	258
SEP					
03	1350			29.6	
04	0830	4.28	2.8		

Table 7.--Analysis of base flow samples, Tampa Bay area urban storm runoff hydrologic data sites - continued

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02308773 - BEAR CREEK AT ST. PETERSBURG, FLA.

DISTRICT CODE 12

WATER QUALITY DATA

		STREAM STAGE (FT	STREAM- FLOW, INSTAN-	TEMPER-	COLOR (PLAT- INUM-	SPE- CIFIC CON- DUCT- ANCE	OXYGEN, DIS-	OXYGEN. DIS- SOLVED (PER- CENT	OXYGEN DEMAND, BIO- CHEM- ICAL,	OXYGEN DEMAND, CHEM- ICAL (LOW	РН
DATE	TIME	ABOVE DATUM)	TANEOUS (CFS)	ATURE (DEG C)	COBALT UNITS)	(MICRO- MHOS)	SOL VED	SATUR- ATION)	5 DAY (MG/L)	(MG/L)	(UNITS)
SEP . 19	74										
30		7.28	3.7	29.5		380					
15 25 FER , 19	1230	7.26 7.32	7.0	23.0	30	585 294	6.0	71	3.0	43	6.0
03	1520	7.09		24.5		354					
		CARBON				NITRO-	NITRO- GEN.	NITRO- GEN.	MITRO- GEN.	PHOS- PHATE,	PHOS-
		DIOXIDE DIS- SOLVED	ALKA- LINITY (MG/L	BICAR- BONATE (MG/L	OIL	GEN, ORGANIC TOTAL	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	ORTHO, DIS- SOLVED	PHORUS, DIS- SOLVED
	TIME	(MG/L	AS	AS	GREASE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE		AS COZ)	CACO3)	HC03)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P04)	AS P)
NOV . 19		163	94	114	0	1.5	•33	.01	•10	.15	.05
		PHOS- PHORUS,		CARBON.		HARD-	HARD- NESS.	CALCIUM	MAGNE-	SODIUM.	SODIUM
		DIS- SOLVED	CARBON+ ORGANIC TOTAL	INOR- GANIC: TOTAL	CARBON.	NESS (MG/L	NONCAR- BONATE	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	SORP- TION
DATE	TIME	(MG/L AS P)	(MG/L AS C)	(MG/L AS C)	(MG/L AS C)	CACO3)	(MG/L CACO3)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	PATIO
NOV . 19	974				44	190	99	62	9.0	40	1.3
15	1230	.05	17	27	44	190	77	OZ.	,		
			POTAS- SIUM.	CHLO- RIDE .	SULFATE	FLUO- RIDE,	SILICA. DIS-		CADMIUM TOTAL RECOV-	COPPER,	IRON. TOTAL RECOV-
	TIME	SODIUM	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SOLVED (MG/L AS	ARSENIC TOTAL (UG/L	ERABLE (UG/L	SOL VED	ERABLE (UG/L
DATE		PERCENT	AS K)	AS CL)	AS 504)	AS F)	2105)	AS AS)	AS CD)	AS CU)	AS FE)
NOV , 19										2	1500
15	1230	31	2.3	100	45	.3	9.9	3	0	2	1500
		IRON. DIS- SOLVED	LEAD, DIS- SOLVED	SUS- PENDED RECOV- ERABLE	LEAD. TOTAL RECOV- ERABLE	MANGA- NESE. SUS- PENDED RECOV.	MANGA- NESE, TOTAL RECOV- ERABLE	MANGA- NESE + DIS- SOLVED	NICKEL + TOTAL RECOV- ERABLE	STRON- TIUM, DIS- SOLVED	ZINC, DIS- SOLVED
DATE	TIME	(UG/L AS FE)	(UG/L AS_PB)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS MN)	AS MN)	AS NI)	AS SR)	AS ZN)
NOV • 1		110	1	30	31	50	67	17	0	310	20
		ALUM- INUM. TOTAL	COLI- FORM, TOTAL,		STREP- TOCOCCI	SOLIDS. SUSP. TOTAL.	SOLIDS, RESIDUE AT 180	SOLIDS. SUM OF CONSTI-	AMMONIA	NITRO- GEN. NITRATE	NITRO- GEN. NITRITE
	****	RECOV- ERABLE	(COLS.	UM-MF	(COLS.	AT 110 DEG. C	DEG. C DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L
DATE	TIME	AS AL)	PER 100 ML)	(COLS./	PER 100 ML)	(MG/L)	(MG/L)	(MG/L)	AS NH4)	AS NO3)	AS NO2)
NOV . 1	974										
	1230	110	8600	816	500	28	374	325	.43	.40	.03

Table 8.--Analysis of storm runoff samples, St. Louis Street
Drainage Ditch at Tampa, Florida

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY
02306021 " ST. LOUIS STREET DRAINAGE DITCH AT TAMPA, FLA. DISTRICT CODE 12

WATER	QUALI	TY	DATA
-------	-------	----	------

DATE	TIME	NITRO- GEN: ORGANIC TOTAL (MG/L AS N)	NITRO- GEN. AMMONIA TOTAL (MG/L AS N)	NITRO- GEN. NITRITE TOTAL (MG/L AS N)	NITRO- GEN: NITRATE TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	CARBON+ INOR- GANIC+ TOTAL (MG/L AS C)	CARBON, TOTAL (MG/L AS C)	COLI- FORM, CON- FIRMED (MPN)	COLI- FORM, FECAL, EC BROTH (MPN)
JUL . 1	975						12	37	26	63	24000	930
31	1605	•90	1.1	.03	.04	.17	·12	13	28	41	46000	15000
31	1625	.71 .89	1.2	.03	.02	.22	.12	11	40	51	110000	46000
31	1640 1650	1.8				.57		19	53	42	1100000	93000
31	1700	1.5				.52		7.0	3.0	9.0	240000	110000 75000
31	1710	2.2				.30		7.0	3.0	10	150000	21000
31	1720	.98				.39		4.0	3.0	7.0	390000	240000
31	1735 1755	.63				.27		7.0	3.0	10	240000	240000
31	1756					.28				7.0	110000	110000
31	1820	.36				.28		4.0	30	7.0	110000	110000
AUG		.52	1.5	.01	.00	.12	.10	13	41	54	4600	2400
20	1150 1210	1.0	1.5	.01		.58		8.0	39	47	110000	46000
20	1215	.71				.30		9.0	38	47	240000	43000
20	1220	•59				.28		9.0	47	60 51	240000 460000	150000
20	1225	.77				.32		7.0	17	24	150000	93060
20	1230	2.6				.39		4.0	6.0	10	1100000	460000
20	1247	8.0				.56		5.0	3.0	8.0	2400000	2400000
20	1300	1.1				.36		7.0	3.0	9.0	150000 240000	150000 240000
20	1317	.57	.32	.02	.36	.29	.23	7.0	4.0	11	460000	75000
20	1335	•41				•31						
DATE	TIME	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	ARSENIC TOTAL (UG/L AS AS)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	LEAD. TOTAL RECOV- ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE+ TOTAL (UG/L)
	0.75											
JUL + 1	1605	.30	0	10	38	.2		0	.00	<.1	.00	.00
31	1625	.20	1	13	96	.3	110	0	.00	<.1	•00	
31	1640	20	1 4	13 28	100 360	.6	110	0	.00	.4	.00	.04
31	1650	.20	3	28	460	.3	180					
31	1710	.10	1	13	240	.6		0	.00	.4	•00	.04
31	1720		2	13	210	• 4	100	0	.00	.2	.00	.02
31	1735	.10	1	18 10	140	.2	100					
31	1755 1820		2	10	100	.4	60					
AUG	1020										.00	.00
20	1150	.10	1	10	36	.3		0	.00	.0	.01	.03
20	1210	.10	8	20	130	.5	100					
20	1215		1	12	190	.3	120					
20	1225	.10	2	11	210	.3		1	.00	•1	.01	.01
20	1230		5	26	580	.2	200 190					
20	1237	.70	3	12	500 190	.1	170	0	.01	.3	.00	.03
20	1247	• 70	5	17	220	.2	140					
20	1317		1	11	550	.1	150					
20	1335	**	1	11	130	•5	110					
							A -30					
								HEPTA-				
		10.000	DI-			TOX-	HEPTA-	CHLOR			2	2 /45 7
	TTME	DDT .	ELDRIN	ENDRIN.	LINDANE	APHENE .	TOTAL	TOTAL	PCB, TOTAL	SILVEX.	Z,4-D,	2,495-T
DATE	TIME	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
JUL • 1	1975	.00	.01	.00	.00	0	.00	.00	.0	.00	.00	.00
31	1625	.00	.01	.00	.00	Ö			.0	.00		.00
31	1650	.10	.02	.00	.00	0	.00	.00	.0	.00		.00
31	1710	.10	.02	.00	.00	0			.0	.00		.00
31	1735	.06	- 00	.00	.00	0	.00	.00	.0	.00	.00	• • • •
20	1150	.00	.00	.00	.00	0	.00	.00	.0	.00		.00
20	1210	.09	.00	.00	.00	0	.00	.00	.0	.00		.00
20	1225	-02	.00	.00	.00	0			.0	.00		.00
20	1247	.07	.00	.00	*00	0	.00	.00	. 0	.00	.00	

Table 8.--Analysis of storm runoff samples, St. Louis Street

Drainage Ditch at Tampa, Florida - continued

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02306021 - ST. LOUIS STREET DRAINAGE DITCH AT TAMPA, FLA. DISTRICT CODE 12

WATER	OLLAL	TTV	DATA

		STREAM STAGE	STREAM- FLOW:		COLOR (PLAT-	SPE- CIFIC CON- DUCT-	OIL	ALKA- LINITY	BICAR- BONATE	CAR-	HARD- NESS	HARD- NESS+ NONCAR-
		(FT	INSTAN-	TEMPER-	INUM-	ANCE	AND	(MG/L	(MG/L	BONATE	(MG/L	BONATE
	TIME	ABOVE DATUM)	TANEOUS (CFS)	ATURE (DEG C)	COBALT UNITS)	(MICRO- MHOS)	GREASE (MG/L)	AS CACO3)	HCO3)	(M6/L AS CO3)	CACO3)	(MG/L CACO3)
DATE		DATOM	(CFS)	(DEG C)	011137	HN037	(HO/L)	CHOOST		NO 0001		
JUL . 19	975		05		23	285	1	109	133	0	120	10
31	1605 1625	11.40	.95		20	288	5	109	133	0	120	7
31	1640	12.52	5.8									
31	1650	14.51	61		30	252	1	96	117	0	100	4
31	1700	14.77	74									
31	1710	14.69	70		15	63	6	18	22	0	25	7
31	1720	14.41	56									
31	1735	13.73	29		15	69	5	26	32	0	25	0
31	1755	13.04	12									
31	1756	13.03	12									
31	1820	12.69	7.4									
AUG							-		160	0	170	30
20	1150	11.30	.75	27.9	42	391	5	138	168 185	0	170	17
20	1210	12.79	8.5	27.1	240	400	1	152	105			
20	1215	14.28	50	27.0		368						
20	1220	14.98	85	27.5		373		133	162	0	150	20
20	1225	14.93	83	27.5	60	382	1	133	102			
20	1230	14.61	66	26.5		177						
20	1237	14.17	46	26.5		120	1	28	34	.0	27	0
20	1247	13.67	28	26.2	28	81 85	1					
20	1300	13.18	15	26.0		78						
20	1317	12.75	8.0	26.2		82						
20	1335	12.41	4.9	26.5		02						
					00716	0111.0		51.110-	CTI TCA.	SOLIDS.	DEMAND.	DEMAND.
			MAGNE-	20011111	POTAS-	CHLO-	CIN FATE	FLUO-	SILICA.	RESIDUE	DEMAND.	DEMAND,
		CALCIUM	SIUM.	SODIUM,	SIUM.	RIDE.	SULFATE	RIDE .	DIS-	RESIDUE AT 180	BIO-	DEMAND .
		DIS-	SIUM. DIS-	DIS-	SIUM. DIS-	RIDE.	DIS-	RIDE . DIS-	DIS- SOLVED	AT 180 DEG. C	BIO- CHEM-	CHEM- ICAL
	TIME	DIS- SOLVED	SIUM, DIS- SOLVED	DIS- SOLVED	SIUM. DIS- SOLVED	RIDE. DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED (MG/L	AT 180 DEG. C DIS-	BIO- CHEM- ICAL,	DEMAND .
DATE	TIME	DIS-	SIUM. DIS-	DIS-	SIUM. DIS-	RIDE.	DIS-	RIDE . DIS-	DIS- SOLVED	AT 180 DEG. C	BIO- CHEM-	DEMAND, CHEM- ICAL (HIGH
		SOLVED (MG/L	SIUM. DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM. DIS- SOLVED (MG/L	RIDE + DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	RESIDUE AT 180 DEG. C DIS- SOLVED	BIO- CHEM- ICAL, 5 DAY	DEMAND, CHEM- ICAL (HIGH LEVEL)
JUL • 19	975	DIS- SOLVED (MG/L AS CA)	SIUM+ DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	DEMAND, CHEM- ICAL (HIGH LEVEL)
JUL , 19	975 1605	DIS- SOLVED (MG/L AS CA)	SIUM. DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	RIDE + DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED	BIO- CHEM- ICAL, 5 DAY	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)
JUL • 19 31	975 1605 1625	DIS- SOLVED (MG/L AS CA)	SIUM. DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L)
JUL , 19 31 31 31	975 1605 1625 1640	DIS- SOLVED (MG/L AS CA)	SIUM. DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120
JUL , 19 31 31 31	975 1605 1625 1640 1650	DIS- SOLVED (MG/L AS CA)	SIUM. DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS 504)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 6.6	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130
31 31 31 31 31	975 1605 1625 1640 1650 1700	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM, DIS- SOLVED (MG/L AS K)	RIDE, DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4) 20 19 17	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 7.5 6.6 4.8	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98
JUL 19 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710	DIS- SOLVED (MG/L AS CA) 43 42 36	SIUM. DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM. DIS- SOLVED (MG/L AS K)	RIDE. DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4) 20 19 17	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 7.5 6.6 4.8 4.0	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73
JUL 19 31 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7	SIUM+ DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 7.8 7.7 6.7	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 2.3	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4) 20 19 17 5.7	RIDE+ DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 36	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 7.5 6.6 4.8 4.0 3.1	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53
JUL , 19 31 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710 1720 1735	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 7.8 7.7 6.7 1.1	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS 504) 20 19 17 5.7 4.0	RIDE, DIS- SOLVED (MG/L AS F) .7 .531	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 46	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 7.5 6.6 4.8 4.0 3.11 4.2	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53
31 31 31 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710 1720 1735 1755	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7	SIUM, DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 3.3	DIS- SOLVED (MG/L AS NA) 7.8 7.7 6.7 1.1	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4) 20 19 17 5.7 4.0	RIDE+ DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8 1.00	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 36	DEMAND. BIO- CHEM- ICAL, 5 DAY (MG/L) 4.2 4.0 7.6 6.6 4.8 4.0 3.1 4.2	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53
31 31 31 31 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710 1720 1735 1755	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 7.8 7.7 6.7 1.1	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0	RIDE+ DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS 504) 20 19 17 5.7 4.0	RIDE, DIS- SOLVED (MG/L AS F) .7 .531	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 46	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 7.5 6.6 4.8 4.0 3.11 4.2	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53
31 31 31 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710 1720 1735 1755	DIS- SOLVED (MG/L AS CA) 43 42 36 9.4	SIUM, DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 .3 .3	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 .8	RIDE - OIS - SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS SO4) 20 19 17 5.7 4.00	RIDE, 01S- 50LVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 1.00	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 46	DEMAND. BIO- CHEM- ICAL, 5 DAY (MG/L) 4.2 4.0 7.5 6.6 4.8 4.0 3.1 4.2 3.8	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53 346
31 31 31 31 31 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710 1720 1735 1755	DIS- SOLVED (MG/L AS CA) 43 42 36 9.4	SIUM, DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 .3 .3	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 8	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 8.5 1.6	DIS- SOLVED (MG/L AS 504) 20 19 17 5.7 4.0	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8 1.0	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 36 	DEMAND. BIO- CHEM- ICAL, 5 DAY (MG/L) 4.2 4.0 7.6 6.6 4.8 4.0 3.1 4.2 3.8	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53 38 46
31 31 31 31 31 31 31 31 31 31	975 1605 1625 1640 1650 1700 1710 1720 1735 1755 1756 1820	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7	SIUM, DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 .3 .3 .3 .3 .3 .3 .3 .4 .5 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	DIS- SOLVED (MG/L AS NA) 7.8 7.7 6.7 1.1 .5	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 8.6 3.6 3.7	RIDE. 0IS- 50LVED (MG/L AS CL) 10 9.8 8.5 1.6 1.5 1.6	DIS- SOLVED (MG/L AS 504) 20 19 17 4.0 28 29	RIDE, DIS- SOLVED (MG/L AS F) .7 .5 .3 .1 .2 .6 .3	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8 1.0 8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 46 36 244 360	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 6.6 4.8 4.0 3.1 1.2 3.8	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53 38 46
31 31 31 31 31 31 31 31 31 31 31 31 31 31 20 20	975 1605 1625 1640 1650 1710 1720 1735 1755 1756 1820	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7 9.4	SIUM. DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 .3 .3 .3 .3	DIS- SOLVED (MG/L AS NA) 7.8 7.7 6.7 	SIUM. DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 1.6 .5 19 18	DIS- SOLVED (MG/L AS SO4) 20 19 17 4.00 28 29	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 1.00 .8 	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 46 36 244 360	DEMAMD. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.5 6.6 4.8 4.0 3.1 4.2 3.8	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 38 46
31 31 31 31 31 31 31 31 31 31 31 20 20	1605 1625 1640 1650 1700 1710 1720 1735 1755 1755 1756 1820	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7 9.4 	SIUM, DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 .3 3.3 4.5	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 8 3.6 3.7	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 8.5 1.6 19 18 18	DIS- SOLVED (MG/L AS 504) 20 19 17 5.7 4.0 28 29	RIDE, DIS- SOLVED (MG/L AS F) -7 -5 -3 -3 -1 -1 -26 -3 -3	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8 1.0 .8 	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 36 244 360	DEMAND. BIO- CHEM- ICAL, 5 DAY (MG/L) 4.2 4.0 7.6 6.6 4.8 4.0 3.1 4.2 	DEMAND, CHEM- HIGH (HIGH (HIGH (HG/L)) 39 56 58 120 130 98 73 53 38 46
31 31 31 31 31 31 31 31 31 31 20 20 20 20 20	975 1605 1625 1640 1650 1700 1710 1720 1735 1756 1820 1150 1210 1215 1225	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7 9.4 59 60	SIUM, DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 3.3 3.3 5.0 4.5	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 8.6 3.6 3.7 3.8	RIDE. 0IS- 50LVED (MG/L AS CL) 10 9.8 8.5 1.6 19 18	DIS- SOLVED (MG/L AS SO4) 20 19 17 4.0 28 29 28	RIDE, 01S- 50LVED (MG/L AS F) -7 .5- .3 -1 .1- .2 .6 .3	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 1.0 10 8.9 9.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 6.6 4.8 4.0 3.1 1.2 3.8 2.0 8.4 4.4 4.4 4.7	DEMAND, CHEM- CHEM- (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53 846 26
JUL , 19 31 31 31 31 31 31 31 31 31 31 20 20 20 20 20	975 1605 1625 1640 1650 1700 1710 1720 1735 1756 1820 1150 1215 1220 1225 1230	DIS- SOLVED (MG/L AS CA) 43 42 36 9.4 59 60 53	SIUM. DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 3.3 .3 .3 .3 .3	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM. DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 8.6 3.7 3.6 3.7 	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 8.5 1.6 19 18 18	DIS- SOLVED (MG/L AS 504) 20 19 17 5.7 4.0 28 29 28	RIDE, DIS- SOLVED (MG/L AS F) .7 .5 .3 .1 .1 .26 .3 .34	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 1.00 .8 10 8.9 9.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 46 36 244 360	DEMAMD. BIO- CHEM- ICAL, 5 DAY (MG/L) 4.2 4.0 7.5 6.6 4.8 4.0 3.1 4.2 3.8 2.0 8.4 4.4 7.6 11	DEMAND. CHEM- CHEM- CHIGH LEVEL) (MG/L) 39 56 58 120 130 98 46 26 70 40 30 44
JUL 10 31 31 31 31 31 31 31 31 31 31 20 20 20 20 20 20 20	975 1605 1625 1640 1650 1700 1710 1720 1735 1755 1755 1820 1210 1210 1215 1220 1225 1237	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7 9.4 59 60 53	SIUM, DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 .3 3.3 5.0 4.5	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 8 3.6 3.7 3.8	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 8.5 1.6 19 18 18	DIS- SOLVED (MG/L AS 504) 20 19 17 5.7 4.0 28 29 28	RIDE, DIS- SOLVED (MG/L AS F) -7 -5 -3 -3 -126 -34	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8 1.0 8 10 8.9 9.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 36 244 360 332	DEMAND. BIO- CHEM- ICAL, 5 DAY (MG/L) 4.2 4.0 7.6 6.6 4.8 4.0 3.1 4.2 3.8 2.0 8.4 4.4 7.6 11 6.3	DEMAND, CHEM- CHEM- (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 53 38 46
JUL , 19 31 31 31 31 31 31 31 31 31 20 20 20 20 20 20	975 1605 1625 1640 1650 1700 1710 1720 1735 1756 1820 1150 1215 1225 1230 1237 1247	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7 9.4 59 60 53 9.5	SIUM. DISP. SIUM. SI	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM. DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 88 3.6 3.7 3.8 4.1	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 1.6 19 18 18	DIS- SOLVED (MG/L AS SO4) 20 19 17 4.0 28 29 28 28	RIDE, 01S- 50LVED (MG/L AS F) -7 .5 -3 -1 	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 1.0 1.0 8.9 9.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 146 244 360 332	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 7.5 6.6 4.8 4.0 3.1 1.4 2.0 0.8 4.4 4.4 4.4 4.4 4.7 6.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 120 130 98 73 53 846 26 70 40 30 44 71 40 56
JUL , 19 31 31 31 31 31 31 31 31 31 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	1605 1625 1640 1650 1700 1710 1720 1735 1756 1820 1150 1215 1220 1225 1230 1237 1247	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7 9.4 59 60 53 9.5	SIUM. DIS- SOLVED (MG/L AS MG) 2.8 2.8 2.5 3.3 3.3 5.0 4.5	DIS- SOLVED (MG/L AS NA) 7.8 7.7 6.7 	SIUM, DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 .8 	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 8.5 1.6 18 18 18	DIS- SOLVED (MG/L AS 504) 20 19 17 5.7 4.0 28 29 28 7.3	RIDE, DIS- SOLVED (MG/L AS F) .7 .5 .3 .1 .1 .26 .3 .4 .4 .4 .2	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 4.8 1.00 8.9 9.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 46 46 36 244 360 332	DEHAMD. BIO- CHEM- ICAL, 5 DAY (MG/L) 4.2 4.0 7.5 6.6 4.8 4.0 3.1 4.2 3.8 2.0 8.4 4.4 7.6 11 6.3 7.2	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 120 130 98 66 70 40 30 64 71 40 56
JUL , 19 31 31 31 31 31 31 31 31 31 20 20 20 20 20 20	975 1605 1625 1640 1650 1700 1710 1720 1735 1756 1820 1150 1215 1225 1230 1237 1247	DIS- SOLVED (MG/L AS CA) 43 42 36 9.7 9.4 59 60 53 9.5	SIUM. DISP. SIUM. SI	DIS- SOLVED (MG/L AS NA) 7.8 7.7 	SIUM. DIS- SOLVED (MG/L AS K) 2.7 2.7 2.3 1.0 88 3.6 3.7 3.8 4.1	RIDE. DIS- SOLVED (MG/L AS CL) 10 9.8 1.6 19 18 18	DIS- SOLVED (MG/L AS SO4) 20 19 17 4.0 28 29 28 28	RIDE, 01S- 50LVED (MG/L AS F) -7 .5 -3 -1 	DIS- SOLVED (MG/L AS SIO2) 6.5 6.1 1.0 1.0 8.9 9.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 175 170 146 146 244 360 332	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L) 4.2 4.0 7.6 7.5 6.6 4.8 4.0 3.1 1.4 2.0 0.8 4.4 4.4 4.4 4.4 4.7 6.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG/L) 39 56 58 120 130 98 73 33 46 26 70 40 30 44 71 40 56

Table 9.--Analysis of storm runoff samples, Gandy Boulevard
Drainage Ditch at Tampa, Florida

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02306071 - GANDY BOULEVARD DRAINAGE DITCH AT TAMPA, FLA. DISTRICT CODE 12 WATER QUALITY DATA

DATE	TIME	STREAM STAGE (FT ABOVE DATUM)	STREAM- FLOW. INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	COLOR (PLATA INUM- COBALT UNITS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	OIL AND GREASE (MG/L)	ALKA- LINITY (MG/L AS CACO3)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
AUG . 19	75				90	352	0	107	130	0	140	38
08	1615	11.81	4.4								130	34
08	1659	12.04	8.2		90	307	0	98	120			
08	1715	12.83	38 67	29.4	55	169	1	53	64	0	60	7
08	1745	13.49	96 95	28.5 27.5	43	108	1	38	46	0	44	7
08	1800 1820	13.48	94	28.0		==						
08	1840	13.45	92 84	28.0							-:	==
08	1930	13.30	76	28.0	160	211		73	89		91	18
06	2005	13.16	MAGNE- SIUM,	SODIUM.	POTAS- SIUM.	CHLO-	SULFATE	FLUO- RIDE.	SILICA. DIS-	SOLIDS. RESIDUE AT 180	OXÝGEN DEMAND. BIO-	DEMAND, CHEM-
		DIS-	DIS- SOLVED	DIS- SOLVED	SOLVED	DIS- SOLVED	DIS- SOL VED	SOLVED	SOL VED	DEG. C	CHEM-	ICAL (HIGH
	TIME	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	AS	SOLVED	5 DAY	LEVEL)
DATE		AS CA)	AS MG)	AS NA)	AS K)	AS CL)	AS 504)	AS F)	\$102)	(MG/L)	(MG/L)	(MG/L)
AUG + 19	75						24		4.7	224	4.1	25
08	1615	52	3.6	14	2.4	26	26	.6			4.7	35
08	1659	48	3.0	12	5.5	19	24	.8	4.3	196	7.0	54
08	1715	22	1.2	4.6	1.2	6.8	14	.8	1.9	89	12	56
08	1745 1800	16	1.1	2.8	.8	4.0	10	.8	1.7	49	5.6	36 34
08	1820										3.7	25
08	1840		- ::								5.6	35 32
08	1930				:				3.4	131	5.2	37 40
08	2005	33	2.1	7.0	1.7	11	17	.5	3.4	131	4.0	40
		NITRO- GEN. ORGANIC	NITRO- GEN. AMMONIA	NITRO- GEN. NITRITE	NITRO- GEN. NITRATE	PHOS-	PHOS- PHORUS, ORTHO.	CARBON. ORGANIC	CARBON. INOR- GANIC.	CARBON.	COLI-	COLI- FORM, FECAL,
	****	TOTAL	TOTAL	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	(MG/L	CON- FIRMED	EC BROTH
DATE	TIME	AS N)	AS N)	AS N)	AS NI	AS P)	AS P)	AS C)	AS C)	AS CI	(MPN)	(MPN)
AUG . 19	75											
08	1615	.86	.33	.03	.21	.32	•19	12	29	41	210000	15000
08	1645	.62	.52	.03	.22	.29	·19	9.0	30 26	39 37	2400000	110000
08	1715	.62	.38	.03	.23	.31	.18	10 8.0	26 16	36	460000 240000	150000
08	1730	.65	.94	.03	.47	.30	.17				110000	46000
08	1800	1.9	.52	.02	.26	.24	.16	5.0	9.0	14	240000	240000
08	1840	.57	.53	.03	.27	.37	.23				150000	240000
08	1904	•55 •56	.50	.03	.26	.38	.25				240000	110000
08	2005	.52	.46	.03	.21	.44	.28	8.0	20	28	1100000	460000
		METHY- LENE BLUE		COPPER. TOTAL	LEAD. TOTAL	MERCURY TOTAL	ZINC.					
		ACTIVE SUB-	TOTAL	RECOV-	RECOV-	RECOV-	RECOV- ERABLE	PHENOLS	ALDRIN.	CHLOR-	DDD.	DDE .
	TIME	STANCE	(UG/L	(UG/L	(UG/L	(UG/L AS HG)	(UG/L	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
DATE		(MG/L)	AS AS)	AS CU)	AS PB)	AS HUI	AS ZIVI	100/11	100727	100/2/	100727	
AUG . 19	1615	.20	5	6	43	.3	90	0	.00	.0	.00	.00
08	1645		2	7	20	.5	90		.00	.0	.00	.00
08	1659 1715	.10	5	5	110 58	.2	90					
08	1730	.10	1	8	160	.2	100	0	.00	.0	•00	.00
08	1745	.30	1	5	89	.5	100	0	.00	<.1	.00	.00
08	1820		1 2	7	98 83	.2	100		- ::			
08	1904		5	4	100	.4	90					==
08	1930	.20	2	8	83 66	.5	90	0	.00	.0	.00	.00
00	2003											
			01-			TOX-	HEPTA-	HEPTA- CHLOR				
		DOT.	ELDRIN	ENDRIN.	LINDANE	APHENE .	CHLOR,	EPOXIDE	PCB,	SILVEX.	2,4-D,	2.4.5-T
DATE	TIME	(UG/L)	(UG/L)	(UG/L)	TOTAL (UG/L)	(UG/L)	(UG/L)	(UG/L)	TOTAL (UG/L)	(UG/L)	(UG/L)	(UG/L)
		130/2/	.50, 6,	0,2,	0, 0,							
AUG . 1	1615	.00	.00	.00	.00	0	.00	.00	.0	.00	.00	.04
08	1659	.00	<.01	.00	.00	0	.00	.00	.0	.00	.00	.03
00		.00	4.01	- 0.0	- 0.0	n	.00	.00	.0	.00	.00	.00
08	1730 1800 2005	.00	<.01 .00 <.01	.00	.00	0	.00 .00	.00	.0	.00	.00	.00

Table 10.--Analysis of storm runoff samples, Allen Creek near Largo, Florida

			UN	ITED STAT	ES DEPART	MENT OF I	HTERIOR -	GEOLOGIC	AL SURVEY		DISTRICT	C00F 12
						QUALITY D					013,11101	
						SPE-						
		STREAM	STREAM-		COLOR (PLATA	CIFIC CON- DUCT-	OIL	ALKA-	BICAR-	CAR-	HARD-	HAPD- NESS, NONCAR-
1.1	TIME	ABOVE	INSTAN-	TEMPER-	INUM-	ANCE	GREASE	MG/L AS	MG/L AS	BONATE (MG/L	AS	BONATE
JUL 19	75	DATUM)	(CFS)	(DEG C)	UNITS	MHOS)	(MG/L)	CACO3)	HC03)	AS CO3)	CACO3)	CACO31
16	1220 1858	4.66	6.2	-:	55	241						
16	1918	4.85	8.6			341		89	109		140	49
16	1933 1947	5.90	36 51	==								
16	2020	8.06	88 186		40	241	0	61	74	0	95	34
16	2035	9.15	309 344		-:	::		==				-:
16	2105	9.27	325	27.0	50	104	0	35	43	0	42	6
16	2121	8.86	272	==		==	- ::	==	-:			
16	2220	7.57	142		50	132	0	38	46	SOL 105 +	OXYGEN	OXYGEN
			HAGNE-		POTAS+	CHLO-		FLUO-	SILICA.	RESIDUE	DEMAND.	DEMAND.
		DIS-	SIUM. DIS-	DIS-	STUM.	RIDE .	SULFATE DIS-	DIS-	SOLVED	DEG. C	BIO- CHEM-	ICAL
	TIME	SOL VED	SOL VED	SOL VED	SOL VED	SOL VED	SOL VED	SOLVED (MG/L	AS AS	DIS-	ICAL +	(HIGH
DATE		AS CA)	AS MG)	AS NA)	AS K)	AS CL)	AS 504)	AS F)	5102)	(MG/L)	(MG/L)	(MGPL)
JUL + 19	75 1858	49	3.9	15	3.4	28	35	.3	7.4	226	1.9	31
16	1918				3-2			==			2.9	36 34
16	1933 1947				-4					150	3.4	24 15
16	2020	33	3.0	9.9	2.8	18	24	.5	5.0		3.6	26
16	2035										10	26 48
16	2105	15	1.0	2.0	1.4	3.0	8.3	.3	1.4	56	4.0	91 53
16	2146	18	1.5	4.3	1.6	7.1	12		2.3	61	3.0	46 17
16	2220					,				••		
		GEN. ORGANIC	MITRO- GEN, AMMONIA	MITRO- GEN. NITRITE	GEN. NITRATE	PHOS- PHORUS.	PHOS- PHORUS, ORTHO.	CARBON, ORGANIC	INOR- GANIC+	CARBON.	COLI-	FORM, FECAL,
	*****	TOTAL	TOTAL	TOTAL	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	TOTAL (MG/L	CON- FIRMED	EC BROTH
DATE	TIME	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS CI	AS C)	AS C)	(MPN)	(MPN)
JUL . 19	75											
16	1220 1858	.62	.44	.06	.18	.20	.15	13 15	23	20 98	4600	2400
16	1918	.73	.42	.07	1.5	.22	.16	14	22	36 38	24000 24000	24000
16	1947	·48 ·52	.48	.05	.24	.24	-18 -18	16 13	18 16	29	1100000 750000	24000
16	2020	.75	.40	.04	.25	.26	.18	10	17 16	27	460000	20000
16	2035 2050	2.8				.70		11	9.0	20	1500000	120000
16	2105	2.9				.58		2.0	6.0	8.0	110000	11000
16	2146	.70 .58			::	.30		10	9.0	19	28000 11000	28000 11000
16	2220			-	-	•••						
		METHY-		COPPER.	LEAD,	MERCURY	ZINC.					
		ACTIVE	ARSENIC	RECOV-	TOTAL RECOVA	RECOV-	RECOV-	PHENOLS	ALDRIN.	CHLOR-	000+	00ۥ
	TIME	STANCE	TOTAL (UG/L	ERABLE (UG/L	ERABLE (UG/L	(UG/L	(UG/L		TOTAL	TOTAL	TOTAL	TOTAL (UG/L)
DATE		(MG/L)	AS AS)	AS CU)	AS PB)	AS HG)	AS ZN)	(UG/L)	(UG/L)	(U6/L)	(UG/L)	100727
JUL . 19	1858	.10	1	5	30	.1	30	0	.00	.1	.00	.00
16	1918		i	8 10	40 22	.0	70 70					
16	1933		1	9	33	.1	60		.00	.1	.00	.00
16	2020	-10	0	28	22	.1	50	==	==	==	=	- ::
16	2035		3	22	300	.1	130 170					.00
16	2105	-10	5	15 20	230 160	.2	120	0	-00	.8		
16	2121		1	11	76 50	:1	70			.2	.00	.00
16	5550	.10	1	6	50		-					
			01-			TOX-	HEPTA-	HEPTA- CHLOR				
		DOT.	ELDRIN	ENDRIN.	LINDANE	APHENE .	CHLOR,	EPOXIDE		SILVEX.	2.4-0. TOTAL	2.4.5-T
DATE	TIME	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)			(UG/L)
JUL • 1	975											
16	1858 2003	.00	.02	.00	.00	0		.00	.0	.00	.90	.00
16	2105	.00	.09	.00	.00	0	.00	.00	.0	.00	.88	

Table 11.--Analysis of storm runoff samples, Bear Creek at St. Petersburg, Florida

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02308773 - BEAR CREEK AT ST. PETERSBURG, FLA.

WATER	QUAL	ITY	DATA

					WATER O	DUALITY D	ATA					
						SPE-						HARD-
	TIME	STREAM STAGE (FT ABOVE	STREAM- FLOW, INSTAN- TANEOUS	TEMPER-	COLOR (PLAT- INUM- COBALT	CIFIC CON- DUCT- ANCE (HICRO-	OIL AND GREASE	ALKA- LINITY (MG/L AS	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	HARD- NESS (MG/L AS CACO3)	NESS+ NONCAR- BONATE (MG/L CACO3)
DATE		DATUM	(CFS)	(DEG C)	UNITSI	MHOS)	(MG/L)	CACO3)	HC03)	AS CO3)	CACOSI	CACOSI
SEP . 19	75								105	0	140	54
11	1840	6.69	1.7	31.0	26	399 378	0	86	105		140	
11	1850	10.06	126	30.5	-4	423						
11	1914	11.03	203	29.5	19	263	0	61	74	0	84	23
11	1923	11.44	240	28.2	18	108	0	41	50	0	54	13
11	1943	11.26	223	27.2	-4	99		25	30	0	24	0
11	2000	9.62	170	26.5	18	87 101	0		30			
11	2021	7.02	,,,	-1.00						501 *D5	OXYGEN	OXYGEM
DATE	TIME	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM+ DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	CMLO- RIDE: DIS- SOLVED (MG/L AS CL)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)	DEMAND. CHEM- ICAL (HIGH LEVEL) (MG#L)
SEP . 19	75								7.0	250		
11	1840	47	5.6	55	1.9	51	26	.3	7.0	258		33
11	1907	29	2.8	13	1.7	30	16	.3	3.9	144	6.2	53 210
11	1923					5.9	7.6	.2	1.1	54	6.4	93
11	1931	20	.9	2.8	1.1							33 29
11	2000	8,6	.7	1.2	1.2	2.3	5.2	• 2	.8	33		35
11	2027											
DATE	FIME	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN: AMMONIA TOTAL (MG/L AS N)	MITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO4 GEN, NITRATE TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO. TOTAL (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	CARBON, INOR- GANIC, TOTAL (MG/L AS C)	CARBON, TOTAL (MG/L AS C)	COLI- FORM, CON- FIRMED (MPN)	FORM, FECAL, EC BROTH (MPN)
SEP . 19		.88	.12	.01	.03	.09	.03	14	26	40	75000	9300
11	1840	.60	.11	.01	.03	.08	.03	10	24	34	240000	24000 110000
11	1907	.51	.40	.01	.07	.10	.14	8.0	24 15	35 23	150000	43000
11	1914	.70				.20		4.0	11	15	460000	2400000
11	1931	.42				.30	==	3.0	12	15	110000	110000
11	2000	.57			-4	.28		7.0	9.0	16	460000	460000
11	2027	1.0				.34		5.0	10	15	466000	460400
		METHY- LENE BLUE		COPPER. TOTAL RECOV-	LEAD. TOTAL RECOV	MERCURY TOTAL RECOV-	ZINC, TOTAL RECOV-			CHLOR-		
DATE	TIME	STANCE	TOTAL (UG/L AS AS)	ERABLE (UG/L AS CU)	ERABLE (UG/L AS PB)	ERABLE (UG/L AS HG)	ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOVAL (UG/L)
SEP . 19		20	2	8	50	.2	60	1	.00	.0	.00	.00
11	1840	.20	3	7	67	.1	40					
11	1907	7-	3	12	75 190	.4	70	2	.00	.2	.00	.00
11	1914	•20	2 4	13	220	.1	160			.2	.00	.00
11	1931	.10	2	9	140	.1	70 60	5	.00	•		
11	2000	.10	3	11	120	.3	50	2	.00	.1	.00	.00
11	2027		2	11	98	.5	60					
								HEPTA-				
DATE	TIME	DOT+ TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)	LINDANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	PCB, TOTAL (UG/L)	SILVEX. TOTAL (U6/L)	2.4-0. TOTAL (UG/L)	2.495-T TOPAL (UG/L)
SEP . 19	975						1,0				.00	.23
11	1840	.00		.00	.00	0		.00	.0	.00	10	.12
11	1914	.00	.00	.00	.00	0	.00	.00	.0	.06	3.5	.06
11	2000	.00			.00	0	.00	.00	.0	.11	.75	. • •

Table 12.--Analysis of storm runoff samples, Saint Joes Creek at St. Petersburg, Florida

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 02308929 - SAINT JOES CREEK AT ST.PETERSBURG.FLA

WATER	QUAL	TTY	DATA

	TIME	STREAM STAGE (FT ABOVE	STREAM- FLOW. INSTAN- TANEOUS	TEMPER-	COLOR (PLAT* INUM- COBALT	SPE- CIFIC CON- DUCT- ANCE (MICRO-	OIL AND GREASE	ALKA- LINITY (MG/L AS	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	HARD- NESS (MG/L AS CACO3)	HARD- NESS+ NONCAR- BONATE (MG/L CACO3)
DATE		DATUM)	(CFS)	(DEG C)	UNITS	MHOS)	(MG/L)	CACO3)	HC03)	AS CO3)	CACOSI	CACOST
AUG . 19	75			21.0	80	285	1	78	95	0	100	24
29	1804 1819	11.07	6.2	31.0 27.5	-4	115						
29	1835	10.94	5.3	27.8	19	105	2	31	38	0	32	
29	1850	10.85	3.6	28.8		157 276						
29	1926	10.74	2.5	29.0	38	241	0	71	87	0	86	14
DATE	TIME	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	CHLO- RIDE, DIS- SOLVED (MG/L AS. CL)	SULFATE DIS- SOLVED (MG/L AS SO4)	FLUO- RIDE+ DIS- SOLVED (MG/L AS F)	SILICA: DIS- SOLVED (MG/L AS SIO2)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DEMAND, BIO- CMEM- ICAL, 5 DAY (MG/L)	DEMAND. CHEM- ICAL (HIGH LEVEL) (MGFL)
AUG . 19	75											
29	1804	37	2.3	12	2.0	17	31	.7	7.0	206		120 66
29	1819 1835	12	.4	1.7	.9	2.1	9.7	.3	1.1	48	7.3	38
29	1850											52 48
29	1926						22	.6	5.6	128	5.2	49
29	5005	31	2.0	8.5	2.4	12	22	• 0	3.0	160		
		DATE	TIME	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS. TOTAL (MG/L AS P)	CARBON+ ORGANIC TOTAL (MG/L AS C)	CARBON. INOR- GANIC. TOTAL (MG/L AS C)	CARBON. TOTAL (MG/L AS C)	COLI- FORM, CON- FIRMED (MPN)	FORM. FECAL. EC BROTH (MPN)		
		AUG , 1			24				460000	29000		
		29	1804 1819	.78	.26	21	3.0	24	75000	39000		
		29	1835	.55	.24	14	2.0	16	110000	46000 110000		
		29	1850	.69 .75	.26	11	21	32	1100000	460000		
		29	1926	.69	.27	**			1.10E+07	1.10E+07		
DATE	TIME	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	ARSENIC TOTAL (UG/L AS AS)	COPPER+ TOTAL RECOV- ERABLE (UG/L AS CU)	LEAD, TOTAL RECOVA ERABLE (UG/L AS PB)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS (UG/L)	ALDRIN. TOTAL (UG/L)	CHLOR- DANE + TOTAL (UG/L)	DDD. TOTAL (UG/L)	DDE+ TOTAL (UG/L)
AUG , 19	975						300	1	.00	.3	.00	.00
29	1804	.90	2	100	800 280	.2	180					
29	1819 1835	.20	1	17	370	.2	160	0	.00	•1	•00	.00
29	1850		1	54	270	•2	180 120					
29	1926	.20	2	78 45	110	.2	90	0	.00	.3	.00	.00
DATE	TIME	DDT+ TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDRIN, TOTAL (UG/L)	LINDANE TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	PCB, TOTAL (UG/L)	SILVEX+ TOTAL (UG/L)	TOTAL	2+475-T TOTAL (UG/L)
AUG , 1		1					^^		.0			
29	1804 1835	.00	.01	.00	.00	0		.00	.0	.00		.00
29	2002	.00		.00	.00	ő		.00		.00		.00

Daily Rainfall and Daily Pan-Evaporation Data

Daily rainfall data are collected at each of the rain gages in the study area and daily pan-evaporation data is collected at Lake Padgett near Lutz, Florida. These data will be used in the next study phase as input to the rainfall-runoff model. The following records have been stored in the WATSTORE daily values file:

Daily Rainfall

I.D. No.	Station Name	Daily Values
02306002	Artic Street Storm Drain	8/21/74-9/30/76
02306006	Kirby Street Drainage Ditch	11/18/74-9/30/76
02306021	St. Louis Street Drainage Ditch	11/15/74-9/30/76
02306071	Gandy Boulevard Drainage Ditch	3/21/75-9/30/76
02307731	Allen Creek	6/19/71-9/30/76
02308193	Booker Creek	8/21/74-9/30/76
02308773	Bear Creek	8/21/74-9/30/76
02308929	Saint Joes Creek	11/15/74-9/30/76
02309160	Turner Street Storm Drain	6/2/75-9/30/76
274645082410800	Lafayette Street Rain Gage	8/21/74-9/30/76
274739082400400	25th Street Rain Gage	8/21/74-9/30/76
275336082300900	Himes Avenue Rain Gage	2/3/75-9/30/76
		The state of the s

Daily Pan Evaporation

02303440 Lake Padgett near Lutz, Florida 10/1/72-9/30/76

DATA AVAILABILITY

Data collected during this study will be made available upon request. Access to the 5-minute interval rainfall and discharge data on a timely basis will permit city and county planners and their consultants to use these data as needed. The data are stored in the WATSTORE unit values file, daily values file, and water-quality file which can be accessed by a compatible computer terminal.

Direct Access to WATSTORE

WATSTORE is available to Federal agencies and selected cooperators of the Geological Survey who acquire or use water data. Authorization to use WATSTORE must be obtained from the Chief Hydrologist, U.S. Geological Survey, National Center, Mail Stop 409, Reston, Va. 22092. When the request is approved, a notice of authorization along with an assigned agency (user) code and account numbers are provided to the requester. Retrievals are made using the procedure described in the WATSTORE User's Guide or User's Guide for U.S. Geological Survey Rainfall-Runoff Models, revised 1976. The cost of the retrieval is charged to the user's account.

Request Through U.S. Geological Survey

A request for data stored in WATSTORE can be made through a U.S. Geological Survey field office with a terminal connected to the National Center. The station identification number, type of data, and dates desired will be needed by Survey personnel to process the requester's WATSTORE retrieval. The cost of preparing the requester's control cards and the computer charges may be billed to the requester, depending on the time and effort required.

REFERENCES

- American Public Health Association, and others, 1971, Standard methods for the examination of water and wastewater, 12 ed: American Public Health Association, New York, 769 p.
- Beck, J. R., and Goodwin, C. R., 1970, Response of gas-purged manometers to oscillations in water level: U.S. Geological Survey Water-Supply Paper 1869-E, 24 p.
- Brown, Eugene, Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter Al, 160 p.
- Brundage, Daniel W., 1977, The application of retention basins in the City of Tampa's storm sewer systems: Proceedings of Stormwater Retention/Detention Basins Seminar, Report ESEI. 77-9, p. 130-149, Florida Technological University College of Engineering.
- Carrigan, H. P., Jr., Dempster, G. R., Jr., and Bower, D. E., User's Guide for U.S. Geological Survey Rainfall-Runoff Models, revised 1976: U.S. Geological Survey Open-file Report 77-884, 269 p.
- Hutchinson, N. E., 1975, WATSTORE -- National water data storage and retrieval system -- User's guide: U.S. Geological Survey Open-file Report 75-426, 505 p.
- U.S. Department of Housing and Urban Development, 1976, Flood insurance study guidelines and specifications: U.S. Department of Housing and Urban Development, Federal Insurance Administration.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY
325 John Knox Rd--Suite F240
Tallahassee, Florida 32303

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT. 413

FIRST CLASS

