HYDROLOGIC AND RELATED DATA FOR WATER-SUPPLY PLANNING IN AN INTENSIVE-STUDY AREA, NORTHEASTERN WICHITA COUNTY, KANSAS

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 79-105

Prepared in cooperation with the Western Kansas Groundwater Management District No. 1

REPORT DOCUMENTATION 1. RE PAGE	EPORT NO.	2.	3. Recipient's Accession No.
4. Title and Subtitle			5. Report Date
HYDROLOGIC AND RELATED	DATA FOR WATER-SUPPLY PL	ANNING IN AN	December 1979
INTENSIVE-STUDY AREA, N	ORTHEASTERN WICHITA COUN	TY, KANSAS	6.
7. Author(s)		Contraction of the second	8. Performing Organization Rept. No.
Jack Kume, L. E. Dunlap	, E. D. Gutentag, and J.	G. Thomas	WRI 79-105
9. Performing Organization Name and Add			10. Project/Task/Work Unit No.
W.C. Contented Survey	Unter Pressence Divisio		
1950 Avenue "A" - Campus	Water Resources Divisio	n	11. Contract(C) or Grant(G) No.
Lawrence, Kansas 66045			(C)
Lawrence, Kansas 00045			(G)
and the second second second	And the second		(6)
12. Sponsoring Organization Name and Add	dress		13. Type of Report & Period Covered
U.S. Geological Survey, 1950 Avenue "A" - Campus	Water Resources Divisio	n	Final
Lawrence, Kansas 66045			14.
15. Supplementary Notes			
Prepared in cooperation	with the Western Kansas	Groundwater Mar	nagement District No. 1
16. Abstract (Limit: 200 words)		the second states of	
Data are presented	that result from an int	ensive geohydrol	logic study for water-supp
			ral Kansas. These data in
			nd-water levels, rainfall,
			op acreage. Interpretatio
	-related data indicates	The second s	
	t an average annual rate		

of water-level and crop-related data indicates that water levels in the unconsolidated aquifer are declining at an average annual rate of about 1 to 2 feet per year (1950-78). This decline is the aquifer's response to pumping by irrigation wells for watering corn, wheat, grain sorghum, and other crops.

17. Document Analysis a. Descriptors

Hydrology, geology, climate, irrigation efficiency, crop production

b. Identifiers/Open-Ended Terms

Water-supply planning, Wichita County, Kansas

c. COSATI Field/Group

18. Availability Statement

No restriction on distribution

See Instructions on Reverse

19. Security Class (This Report)

UNCLASSIFIED

20. Security Class (This Page) UNCLASSIFIED

> OPTIONAL FORM 272 (4–77) (Formerly NTIS–35) Department of Commerce

51

21. No. of Pages

22. Price

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

HYDROLOGIC AND RELATED DATA FOR WATER-SUPPLY PLANNING

IN AN INTENSIVE-STUDY AREA, NORTHEASTERN WICHITA COUNTY, KANSAS

By Jack Kume, L. E. Dunlap, E. D. Gutentag, and J. G. Thomas

U.S. GEOLOGICAL SURVEY

WATER-RESOURCES INVESTIGATIONS 79-105

Prepared in cooperation with the

Western Kansas Groundwater Management District No. 1

Lawrence, Kansas

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, SECRETARY

GEOLOGICAL SURVEY

H. WILLIAM MENARD, DIRECTOR

For additional information write to:

U.S. Geological Survey 1950 Avenue "A" - Campus West University of Kansas Lawrence, Kansas 66045

CONTENTS

Pa	ge
stract	1
troduction	2
Conversion factors	4
Well-numbering system	5
ohydrologic data	5
	25
ell-production data	43
	46
	50
knowledgments	50
•	51

ILLUSTRATIONS

Figu	re	Page
1.	Map showing location of the intensive-study area	3
2.	Sketch showing well-numbering system	6
3.	Map showing location of collection sites for	
	geohydrologic and climatic data	24
4.	Graph showing soil moisture used and irrigation water	
	applied at test field 17-36W-27DBC	38

TABLES

Table	e		Page
1.	Generalized section of geologic units and their water-		
	yielding characteristics	-	7
2.	Records of selected wells and test holes in the Ogallala		
	Formation	-	8
3.	Logs of wells and test holes in the intensive-study area	-	12
4.	Chemical analyses of water from selected wells in the		
	Ogallala aquifer	-	26
5.	Ground-water levels in selected observation wells in the		
	Ogallala aquifer	-	27
6.	Changes in depth to water in observation wells and in the		
	saturated thickness of the Ogallala aquifer	-	35
Table	es 7-13, Records of:		
7.	Recorder-gage rainfall data	-	36
8.	Weekly rainfall amounts for Garden City, Tribune, and Leoti		
	compared with rainfall amounts for three test fields in		
	study area	-	37
9.	Soil moisture in test fields	-	39
10.	Well production, line pressure, and power factors	-	44
11.	Solar radiation at Scott City, Kansas	-	47
12.	Average crop yields in test fields	-	48
13.	Crop acreage in intensive-study area	_	49

HYDROLOGIC AND RELATED DATA FOR WATER-SUPPLY PLANNING

IN AN INTENSIVE-STUDY AREA, NORTHEASTERN WICHITA COUNTY, KANSAS

Jack Kume,* L. E. Dunlap,* E. D. Gutentag,* and J. G. Thomas**

ABSTRACT

Data are presented that result from an intensive geohydrologic study for water-supply planning in a 12-square-mile area in northeastern Wichita County, Kansas. These data include records of wells, test drilling, chemical analyses, ground-water levels, rainfall, soil moisture, well yield, solar radiation, crop yield, and crop acreage. Data indicate that water levels in the unconsolidated aquifer are declining at an average annual rate of about 1 to 2 feet per year (1950-78). This decline is the aquifer's response to pumping by irrigation wells for watering corn, wheat, grain sorghum, and other crops.

^{*} U.S. Geological Survey

^{**} Kansas State University

INTRODUCTION

This basic-data report serves two purposes: (1) to make available the basic geohydrologic and water-management data for use in studying and planning water-resources development, in increasing irrigation efficiency, and in conserving ground water and energy, and (2) to supplement an interpretive geohydrologic study.

This report is a product of an intensive investigation of the geology, hydrology, and water-resources management in a 12-square-mile area of intensive study north of Marienthal in Wichita County, Kansas (fig. 1). The study was done during 1976-78 by the U.S. Geological Survey in cooperation with the Western Kansas Groundwater Management District No. 1. Other agencies who were interested and gave assistance during the operation of this program were the Ozarks Regional Commission; the Kansas Water Resources Board; the Kansas State Board of Agriculture, Division of Water Resources; the Kansas State University; and the Kansas Geological Survey.

The data in this report include records of 53 selected irrigation and observation wells and test holes; lithologic logs of 10 test holes and private wells; chemical analyses from 8 representative wells; ground-water levels in 10 observation wells; amount of rainfall, soil moisture, well discharge, and solar radiation; and crop yield and acreage.

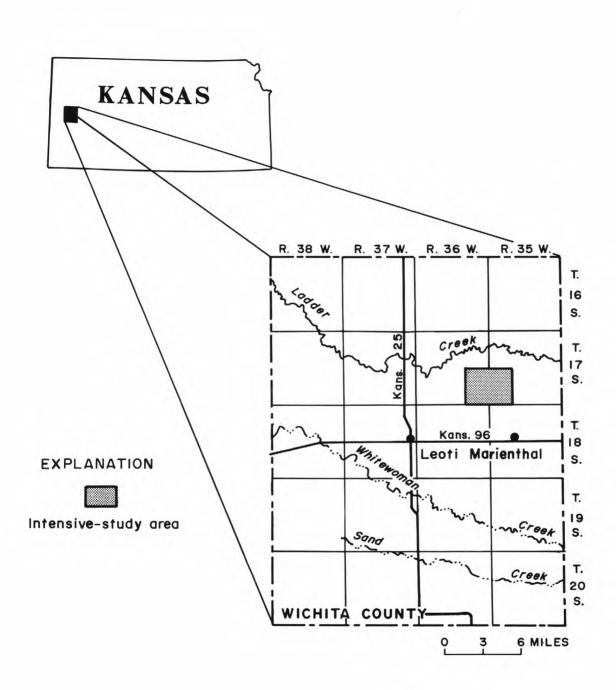


Figure 1.--Location of the intensive-study area.

To convert from inch-pound units	To SI units	Multiply by
	51 00110	
Length		
inch (in)	millimeter (mm) centimeter (cm)	25.4 2.54
foot (ft)	meter (m)	.3048
mile (mi)	kilometer (km)	1.609
Area		
acre	square meter (m^2)	4,047.
square mile (mi ²)	square kilometer (km ²)	2.590
Volume		
gallon (gal)	liter (L)	3.785
cubic foot (ft ³)	cubic meter (m_2^3)	.02832
acre-foot (acre-ft)	cubic meter (m ³)	1,233.
Flow		
gallon per minute (gal/min)	liter per second (L/s)	.06309
gallon per minute per foot [(gal/min)/ft]	liter per second per meter [(L/s)/m]	•2070
cubic foot per second (ft ³ /s)	cubic meter per second (m ³ /s)	.02832
foot per day (ft/d)	meter per day (m/d)	.3048
square foot per day (ft ² /d)	square meter per day (m ² /d)	.0929

For those readers who may prefer to use metric units rather than inchpound units, the conversion factors for the International System (SI) of Units and abbreviations for terms used in this report are listed below:

Well-Numbering System

The well-numbering system, as shown in figure 2, gives the data-site location for a well or test hole according to the Bureau of Land Management's system of land subdivision. In this system, the first set of digits of a well number indicates the township; the second set, the range east or west of the sixth principal meridian; and the third set, the section. The first letter after the section number denotes the 160-acre tract; the second, the 40-acre tract; and the third, the 10-acre tract. Where two or more wells are located in a 10-acre tract, consecutive numbers are added, beginning with 2, in the order in which data from the well were collected. Thus in Wichita County, the number 17-35W-15DAA means that the well is in the NE1/4NE1/4SE1/4 sec.15, T.17 S., R.35 W.

GEOHYDROLOGIC DATA

This report should be useful in predicting geohydrologic units and waterlevel conditions that might occur when drilling a new well. Information, such as the geologic unit and its water-yielding characteristics, is given in table 1. Specific data, such as depth of well, depth to water, yield, and so forth, are given in table 2 for selected wells and test holes. Lithologic logs of wells and test holes, most of which were drilled by the Kansas Geological Survey, are given in table 3. The location of wells, test holes, and weather stations used for the collection of hydrologic and climatic data in and near the intensivestudy area are shown in figure 3. Thus, a proposed drilling site could be located in figure 3 and cross-referenced with the geologic section in table 1 and with the records and logs of nearby wells and test holes in tables 2 and 3.

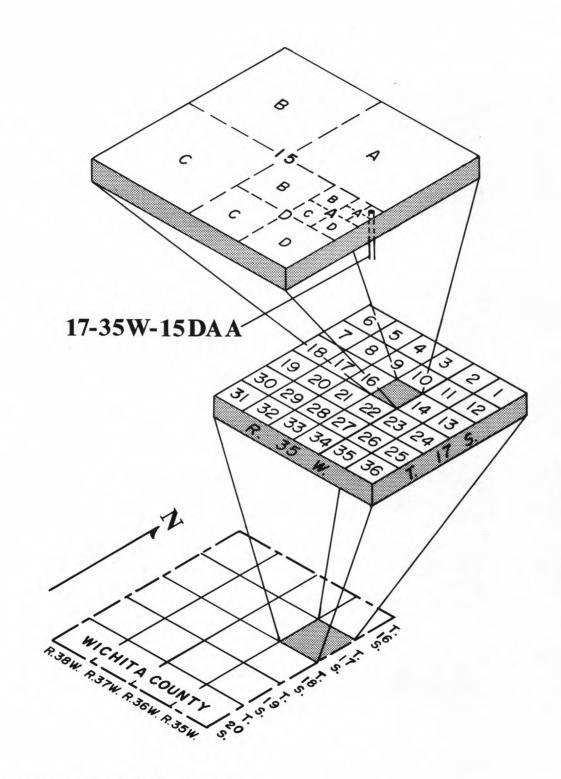


Figure 2.--Well-numbering system.

Table 1.--Generalized section of geologic units and their water-yielding characteristics

[The classification and nomenclature of the stratigraphic units used in this report are those of the U.S. Geological Survey and differ somewhat from those of the Kansas Geological Survey]

System	Series	Geologic unit Undifferentiated deposits		unit Undifferentiated						0		Physical character	Water supply
Quaternary	Pleistocene					15- 40	Silt, clayey, and silty clay; mostly eolian and unconsolidated. Sand, silty, fine- to medium- grained; unconsolidated basal unit.	Deposits are above the water table.					
Tertiary	Miocene	Ogallala Formation		155-185	Sand, gravel, clay, silt, and caliche. Mortar beds, mostly unconsoli- dated, but cemented lo- cally by calcium car- bonate.	Principal unconsoli- dated aquifer in the report area. Yields moderate to large quantities of water to wells. Wells yield as much as 950 gal/min.							
Cretaceous	Upper Cretaceous	Niobrara Forma- tion	Smoky Hill Chalk Member	65	Shale and clay, chalky.	Yields little or no water to wells. Forms an impermeable base for the overlying Ogallala Formation.							
			Fort Hays Limestone Member		Chalk, limestone, and chalky shale.	Not known to yield water to wells.							

7

Table 2.--Records of selected wells and test holes in the Ogallala Formation

- (1) Well-numbering system described in "Introduction."
- (2) Depths of wells, in feet below land surface--no letter after number, measured; R, reported.
- (3) Method of lift--T, turbine; N, none; SUB, submersible. Type of power--D, diesel; E, electric; NG, natural gas.
- (4) Use--Irrigation; O, observation; N, none; T, test.
- (5) Yield gal/min--Yield, in gallons per minute--no letter, measured during present study; A, measured prior to present study; R reported.

Well no.	Owner or user	Year com- pleted (19)	Depth of well (ft)	Dia- meter of casing (in)	Method of lift and type of power
(1)			(2)		(3)
17-35W-15CDC	Louis Simons		204 R		T,NG
17-35W-17CCC	R. L. Simon	67	200 R	16	T,NG
17-35W-18ACB	Wesley Shumard	47	195 R	18	T,NG
17-35W-19BBB2	U.S. Geological Survey	77	194 -		N
17-35W-19BBC	L. Simons				T,NG
17-35W-19BCC	L. Simons				T,NG
17-35W-19CCC	L. + I. Simons				T,NG
17-35W-20ACD	Frank Schreck	68	204 R	16	T,NG
17-35W-20CCC	Herman Baker	64	199 R	16	T,NG
17-35W-20DCB	Herman Baker	71	203 R	16	T,NG
17-35W-20DCC	Herman Baker	71	195 -		N
17-35W-27CCC	L. C. Beeson	55	210 R	16	T,NG
17-35W-29BDC	Joe Zellner	57	218 R		T,NG
17-35W-29CBC	F. H. Biermann	63	221 R		T,NG
17-35W-29CBC2	U.S. Geological Survey	78	219 -	2	N
17-35W-30ABB	Herman Baker	54	212 R	16	T,NG
17-35W-30BBC	A. F. Baker				T,NG
17-35W-30CBB	Robert Mastel	47	218 R	18	T,NG
17-35W-30DCB	F. H. Biermann	47	219 R		T,NG
17-35W-31ABB	L. J. Baker				T,NG

- (6) Altitude of land surface, in feet above mean sea level--measured during present study.
- (7) Depth to water below land surface datum (LSD), in feet--measured depths of less than 100 feet given to the nearest 0.1 foot, 100 feet or more given to the nearest 1.0 foot; no letter, measured during recent study; R, reported.
- (8) Date of water-level measurement--month and year.
- (9) Chemical data--C, complete analysis given in table 4; CN, complete analysis available but not given in table 4.

Use	Yield (gal/min)	Altitude of land surface above mean sea level (ft)	Dept to wate belo LSD (ft)	er W	Date of mea- sure- ment	Chem- ical data	Acres irri- gated
(4)	(5)	(6)	(7)		(8)	(9)	
I,0	740 A	3,194	128	-	1/78		
I	725 R	3,220	107	R	67	С	230
I,0	800 R	3,226	134	-	1/78	С	120
Ν,Τ		3,229	142	-			290
Ι	510 -	3,230		-			290
I	415 -	3,231		-			120
I	285 -	3,232		-			200
I	800 -	3,210	125	R	71		145
I	485 -	3,218	110	R	64		160
I	715 -	3,212	115	R	71		160
Ν,Τ		3,214	132	-			
Ι,Ο	835 R	3,195	144	-	1/78	С	160
I	355 -	3,220		-			
I	780 -	3,223		-			185
Ν,Ο		3,219	149	-	7/78		
I	560 -	3,226	105	R	54		160
I	620 -	3,232		-		CN	
Ι,Ο	625 -	3,235	156	-	1/78		160
I	905 -	3,227		-			210
I	250 -	3,227		-			

7.7-35W-31CBB U.S. Geological Survey 77 191 N 7.7-35W-31CCB2 C. + J. Wimmer 40 200 R 18 T,E 7.7-35W-31CCB2 C. + J. Wimmer T,NG 7.7-35W-31DCA B. + L. Baker T,NG 7.7-35W-32CCB Joe Zellner T,NG 7.7-36W-14DAD H. R. Schwindt T,NG 7.7-36W-23BAA H. R. Schwindt T,NG 7.7-36W-23BCC H. R. Schwindt T,NG 7.7-36W-23BCC2 H. R. Schwindt T,NG 7.7-36W-23BCC2 H. R. Schwindt T,NG 7.7-36W-24BCB Albert Biel 72 205 R 18 T,NG 7.7-36W-24CBC Gerald Smith T,NG 7.7-36W-25CCD R. L. Simons 56 211 R 16 T,NG 7.7-36W-25BCB Gus Luebbers 57 222 R N 17-36W-26CBB Henry Asm	Well no.	Owner or user	Year com- pleted (19)	Depth of well (ft)	Dia- meter of casing (in)	Method of lift and type of power
7.7-35W-31CBB U.S. Geological Survey 77 191 N 7.7-35W-31CCB2 C. + J. Wimmer 40 200 R 18 T,E 7.7-35W-31CCB2 C. + J. Wimmer T,NG 7.7-35W-31DCA B. + L. Baker T,NG 7.7-35W-32CCB Joe Zellner T,NG 7.7-36W-14DAD H. R. Schwindt T,NG 7.7-36W-23BAA H. R. Schwindt T,NG 7.7-36W-23BCC H. R. Schwindt T,NG 7.7-36W-23BCC2 H. R. Schwindt T,NG 7.7-36W-23BCC2 H. R. Schwindt T,NG 7.7-36W-24BCB Albert Biel 72 205 R 18 T,NG 7.7-36W-24CBC Gerald Smith T,NG 7.7-36W-25CCD R. L. Simons 56 211 R 16 T,NG 7.7-36W-25BCB Gus Luebbers 57 222 R N 17-36W-26CBB Henry Asm	(1)			(2)		(3)
7-35W-31CCBC. + J. Wimmer40200 R18T.E $7-35W-31CCB2$ C. + J. WimmerT.NG $7-35W-31CCB$ B. + L. BakerT.NG $7-35W-32ACC$ Mrs. Harry Paul55205 R16T.NG $7-35W-32ACB$ Joe ZellnerT.NG $7-35W-14DAD$ H. R. SchwindtT.NG $7-36W-14DAD$ H. R. SchwindtT.RE $7-36W-23BCC2$ H. R. SchwindtT.RE $17-36W-23BC2$ H. R. SchwindtT.NG $17-36W-23CC2$ H. R. SchwindtT.NG $17-36W-23CC2$ H. R. SchwindtT.NG $17-36W-24BCB$ Albert Biel72205 R18T.NG $17-36W-24BCB$ Albert Biel72205 R18T.NG $17-36W-25ACC$ Gus Luebbers57222 RT.NG $17-36W-25ACC$ Gus Luebbers57222 RT.NG $17-36W-25CD$ R. L. SimonsT.E $17-36W-26CBB$ Henry Asmussen57214 R16T.NG $17-36W-26CBBHenry Asmussen57214 R16T.NG17-36W-26CBBKent McKinney21 RT.E17-36W-26CBBKent McKinney21 RT.E17-36W-26CBBKent McKinney<$	17-35W-31BBB	Pahis + Zellner				T,NG
7.7-35W-31CCBC. + J. Wimmer40200 R18T, E7.7-35W-31CCB2C. + J. WimmerT, NG7.7-35W-31DCAB. + L. BakerT, NG7.7-35W-32ACCMrs. Harry Paul55205 R16T, NG7.7-35W-32ACBJoe ZellnerT, NG7.7-35W-14DADH. R. SchwindtT, NG7.7-36W-14DADH. R. SchwindtT, NG7.7-36W-23BACH. R. SchwindtT, NG7.7-36W-23BCCH. R. SchwindtT, NG17-36W-23BCBAlbert Biel72205 R18T, NG17-36W-23CBCH. R. SchwindtT, NG17-36W-24CBCGerald SmithT, NG17-36W-25AAAU.S. Geological Survey77198N17-36W-25ACCGus Luebbers57222 RT, NG17-36W-25CDR. L. SimonsNN17-36W-25CCDR. L. SimonsNN17-36W-26CBBHenry Asmussen57214 R16T, NG17-36W-26CBBHenry Asmussen57214 R16T, NG17-36W-26CBBKent McKinney211 RT, E17-36W-26CBBLos Ceological Survey78192 -2N17-36W-26CBBKent McKinney211 RT	17-35W-31CBB	U.S. Geological Survey	77	191 -		
7-35W-31CCB2C. + J. WimmerT, NG $7-35W-31DCA$ B. + L. BakerT, NG $17-35W-32CBA$ Joe ZellnerT, NG $17-35W-32CBB$ Joe ZellnerT, NG $17-35W-32CBB$ Joe ZellnerT, NG $17-36W-32BAA$ H. R. SchwindtT, NG $17-36W-23BAC$ H. R. SchwindtT, E $17-36W-23BCC$ H. R. SchwindtT, NG $17-36W-23BCC2$ H. R. SchwindtT, NG $17-36W-23CDB$ H. R. SchwindtT, NG $17-36W-24BCB$ Albert Biel72205 R18T, NG $17-36W-24BCB$ Albert Biel72205 R18T, NG $17-36W-25ACC$ Gus Luebbers57222 RN $17-36W-25ACC$ Gus Luebbers57222 RT, NG $17-36W-25DCC$ R. L. SimonsN $17-36W-25DCC$ R. L. SimonsN $17-36W-26CBB$ Henry Asmussen57214 R16T, NG $17-36W-26CBB$ Henry Asmussen57214 R16T, NG $17-36W-26CBBKent McKinney21 RT, E17-36W-26BBAKent McKinney21 RT, E17-36W-26BBAKent McKinney21 R$	17-35W-31CCB	C. + J. Wimmer	40	200 R	18	T,E
7.7-35W-31DCA B. + L. Baker T,NG 7.7-35W-32ACC Mrs. Harry Paul 55 205 R 16 T,NG 7.7-35W-32CBB Joe Zellner T,NG 7.7-36W-14DAD H. R. Schwindt T,NG 7.7-36W-23BAA H. R. Schwindt T,E 7.7-36W-23BCC H. R. Schwindt T,E 7.7-36W-23BCC2 H. R. Schwindt T,NG 7.7-36W-23BCB H. R. Schwindt T,NG 7.7-36W-24CBC Gerald Smith T,NG 7.7-36W-24CBC Gus Luebbers 76 N 17-36W-25ACC Gus Luebbers 57 222 R T,NG 17-36W-25CD R. L. Simons N N 17-36W-25CD R. L. Simons N N 17-36W-26CBB Henry Asmussen 57 214 R 16 T	17-35W-31CCB2	C. + J. Wimmer				
7.7-35W-32CBB Joe Zellner T, NG 7.7-36W-14DAD H. R. Schwindt T, NG 7.7-36W-23BAA H. R. Schwindt T, E 7.7-36W-23BCC H. R. Schwindt 40 240 R 18 T, E 17-36W-23BCC H. R. Schwindt T, NG 17-36W-23BCC H. R. Schwindt T, NG 17-36W-23CC2 H. R. Schwindt T, NG 17-36W-24CBC Gerald Smith T, NG 17-36W-24CBC Gerald Smith T, NG 17-36W-25AAA U.S. Geological Survey 77 198 - N 17-36W-25CC Gus Luebbers 57 222 R T, NG 17-36W-25DCC R. L. Simons T, E T, 76 17-36W-26CBB Henry Asmussen 57 214 R 16 T, NG 17-36W-26CBB Henry Asmussen 57 214 R 16 T, NG 17-36	17-35W-31DCA	B. + L. Baker				
7.7-35W-32CBB Joe Zellner T, NG 7.7-36W-14DAD H. R. Schwindt T, NG 7.7-36W-23BAA H. R. Schwindt T, E 7.7-36W-23BCC H. R. Schwindt 40 240 R 18 T, E 17-36W-23BCC H. R. Schwindt T, NG 17-36W-23BCC H. R. Schwindt T, NG 17-36W-23CC2 H. R. Schwindt T, NG 17-36W-24CBC Gerald Smith T, NG 17-36W-24CBC Gerald Smith T, NG 17-36W-25AAA U.S. Geological Survey 77 198 - N 17-36W-25CC Gus Luebbers 57 222 R T, NG 17-36W-25DCC R. L. Simons T, E T, 76 17-36W-26CBB Henry Asmussen 57 214 R 16 T, NG 17-36W-26CBB Henry Asmussen 57 214 R 16 T, NG 17-36	17-35W-32ACC	Mrs. Harry Paul	55	205 R	16	T.NG
1.7-36W-14DAD H. R. Schwindt T,NG 7.7-36W-23BAA H. R. Schwindt 40 240 R 18 T,E 1.7-36W-23BCC H. R. Schwindt 40 240 R 18 T,E 1.7-36W-23BCC2 H. R. Schwindt T,NG 1.7-36W-23CDB H. R. Schwindt T,NG 1.7-36W-23CDB H. R. Schwindt T,NG 1.7-36W-24BCB Albert Biel 72 205 R 18 T,NG 1.7-36W-24CBC Gerald Smith T,NG 1.7-36W-25AAA U.S. Geological Survey 77 198 - N 1.7-36W-25ACC Gus Luebbers 57 222 R T,NG 1.7-36W-25CDC R. L. Simons N N 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Kent McKinney <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1.7-36W-23BAA H. R. Schwindt T, E 1.7-36W-23BCC H. R. Schwindt 40 240 R 18 T, E 1.7-36W-23BCC2 H. R. Schwindt T, E 1.7-36W-23BCC2 H. R. Schwindt T, NG 1.7-36W-23DB H. R. Schwindt T, NG 1.7-36W-24BCB Albert Biel 72 205 R 18 T, NG 1.7-36W-24CBC Gerald Smith T, NG 1.7-36W-25ACC Gus Luebbers 76 D 1.7-36W-25BCB Gus Luebbers 57 222 R T, NG 1.7-36W-25CCD R. L. Simons T, E T, S6 1.7-36W-26CAA U.S. Geological Survey 77 197 - N 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T, NG 1.7-36W-26CBB Kent McKinney 221 R T, E 1.7-36W-28BAC J. F. Gers		H. R. Schwindt				
1.7-36W-23BCC H. R. Schwindt 40 240 R 18 T,E 1.7-36W-23BCC2 H. R. Schwindt SUB,E 1.7-36W-23CDB H. R. Schwindt						
1.7-36W-23CDB H. R. Schwindt T,NG 1.7-36W-24BCB Albert Biel 72 205 R 18 T,NG 1.7-36W-24CBC Gerald Smith T,NG 1.7-36W-24CBC Gerald Smith T,NG 1.7-36W-25AAA U.S. Geological Survey 77 198 - N 1.7-36W-25ACC Gus Luebbers 76 D 1.7-36W-25BCB Gus Luebbers 57 222 R T,NG 1.7-36W-25CCD R. L. Simons T,E 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Kent McKinney 21 R T,E 1.7-36W-26CBB Kent McKinney 221 R T,E 1.7-36W-26CBB Kent McKinney 221 R T,E 1.7-36W-38BCC J. F. Gerstberger <td>17-36W-23BCC</td> <td></td> <td>40</td> <td>240 R</td> <td>18</td> <td></td>	17-36W-23BCC		40	240 R	18	
1.7-36W-23CDB H. R. Schwindt T,NG 1.7-36W-24BCB Albert Biel 72 205 R 18 T,NG 1.7-36W-24CBC Gerald Smith T,NG 1.7-36W-24CBC Gerald Smith T,NG 1.7-36W-25AAA U.S. Geological Survey 77 198 - N 1.7-36W-25ACC Gus Luebbers 76 D 1.7-36W-25BCB Gus Luebbers 57 222 R T,NG 1.7-36W-25CCD R. L. Simons T,E 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Kent McKinney 21 R T,E 1.7-36W-26CBB Kent McKinney 221 R T,E 1.7-36W-26CBB Kent McKinney 221 R T,E 1.7-36W-38BCC J. F. Gerstberger <td>17-36W-23BCC2</td> <td>H. R. Schwindt</td> <td></td> <td></td> <td></td> <td>SUB E</td>	17-36W-23BCC2	H. R. Schwindt				SUB E
1.7-36W-24BCB Albert Biel 72 205 R 18 T,NG 1.7-36W-24CBC Gerald Smith T,NG 1.7-36W-25ACA U.S. Geological Survey 77 198 - N 1.7-36W-25ACC Gus Luebbers 76 N N 1.7-36W-25BCB Gus Luebbers 57 222 R T,NG 1.7-36W-25DCC R. L. Simons 56 211 R 16 T,NG 1.7-36W-25DCC R. L. Simons T,E 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Kent McKinney 202 - N N 1.7-36W-26CBB Kent McKinney 211 R T,E 1.7-36W-26CBB Kent McKinney 21 R T,E 1.7-36W-28CCC B. Walk 56 212 R 16 T,NG 1.7-36W-33BCB Eugene Berning						
17-36W-24CBC Gerald Smith T,NG 17-36W-25AAA U.S. Geological Survey 77 198 - N 17-36W-25ACC Gus Luebbers 76 D 17-36W-25BCB Gus Luebbers 57 222 R T,NG 17-36W-25BCD R. L. Simons 56 211 R 16 T,NG 17-36W-25DCC R. L. Simons T,E T,E 17-36W-26AAA U.S. Geological Survey 77 197 - N 17-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 17-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 17-36W-26CBB Kent McKinney 221 R T,E 17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-33BCB Eugene Berning 187 R 16 T,NG 17-36W-33BCB Eugene Berning 215 R 16 T,NG 17-36W-35BBC			72	205 R	18	
1.7-36W-25AAA U.S. Geological Survey 77 198 N 1.7-36W-25ACC Gus Luebbers 76 D 1.7-36W-25BCB Gus Luebbers 57 222 R T,NC 1.7-36W-25BCD R. L. Simons 56 211 R 16 T,NG 1.7-36W-25DCC R. L. Simons T,E T,E 1.7-36W-26AAA U.S. Geological Survey 77 197 - N 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 1.7-36W-26CBB Kent McKinney 21 R T,E 1.7-36W-26BB Kent McKinney 221 R T,E 1.7-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 1.7-36W-33BCB Eugene Berning 187 R 16 T,NG 1.7-36W-33BCB Eugene Berning 215 R 16 T,NG 1.7-36W-35BBC				205 R		
17-36W-25BCB Gus Luebbers 57 222 R T,NG 17-36W-25CCD R. L. Simons 56 211 R 16 T,NG 17-36W-25DCC R. L. Simons T,E 17-36W-26AAA U.S. Geological Survey 77 197 - N 17-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36	17-36W-25AAA			198 -		
17-36W-25BCB Gus Luebbers 57 222 R T,NG 17-36W-25CCD R. L. Simons 56 211 R 16 T,NG 17-36W-25DCC R. L. Simons T,E 17-36W-26AAA U.S. Geological Survey 77 197 - N 17-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36	17-36W-25ACC	Gus Luebbers	76			D
17-36W-25CCD R. L. Simons 56 211 R 16 T,NG 17-36W-25DCC R. L. Simons T,E 17-36W-26AAA U.S. Geological Survey 77 197 - N 17-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-28BAC J. F. Cerstberger 46 202 - 18 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-3				222 R		
17-36W-25DCC R. L. Simons T,E 17-36W-26AAA U.S. Geological Survey 77 197 - N 17-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-26DBB Kent McKinney 212 R 16 T,NG 17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-28BCB B. Walk 56 212 R 16 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB					16	
17-36W-26AAA U.S. Geological Survey 77 197 - N 17-36W-26CBB Henry Asmussen 57 214 R 16 T,NG 17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-28BAC J.F. Gerstberger 46 202 - 18 T,NG 17-36W-28BAC B. Walk 56 212 R 16 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB R. E. Bergh 55 221 R 18 T,NG						
17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-28BCC B. Walk 56 212 R 16 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-35ABB Kent McKinney 216 R T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB R. E. Bergh 55 221 R 18 T,NG	17-36W-26AAA			197 -		
17-36W-26CBB2 U.S. Geological Survey 78 192 - 2 N 17-36W-26DBB Kent McKinney 221 R T,E 17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-28BCC B. Walk 56 212 R 16 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-35ABB Kent McKinney 216 R T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB R. E. Bergh 55 221 R 18 T,NG	17-36W-26CBB	Henry Asmussen	57	214 R	16	TNG
17-36W-26DBB Kent McKinney 221 R T,E 17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-28BAC B. Walk 56 212 R 16 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-33BCB Eugene Berning 216 R T,NG 17-36W-35ABB Kent McKinney 216 R T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB R. E. Bergh 55 221 R 18 T,NG						
17-36W-28BAC J. F. Gerstberger 46 202 - 18 T,NG 17-36W-28CCC B. Walk 56 212 R 16 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-33BCB Kent McKinney 216 R T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB R. E. Bergh 55 221 R 18 T,NG						
17-36W-28CCC B. Walk 56 212 R 16 T,NG 17-36W-33BCB Eugene Berning 187 R 16 N 17-36W-33BCB Kent McKinney 216 R T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB Cloy Logan 66 207 R T,NG			46			
17-36W-35ABB Kent McKinney 216 R T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB Cloy Logan 66 207 R T,NG	17-36W-28CCC					
17-36W-35ABB Kent McKinney 216 R T,NG 17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB Cloy Logan 66 207 R T,NG	17-36W-33BCB	Eugene Berning		187 R	16	N
17-36W-35BBC Henry Asmussen 61 215 R 16 T,NG 17-36W-35CCC Kent McKinney T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB Cloy Logan 66 207 R T,NG						
17-36W-35CCC Kent McKinney T,NG 17-36W-35CDD U.S. Geological Survey 77 186 - 17-36W-36BBB R. E. Bergh 55 221 R 18 T,NG 17-36W-36CBB Cloy Logan 66 207 R T,NG						
17-36W-35CDDU.S. Geological Survey7718617-36W-36BBBR. E. Bergh55221 R18T,NG17-36W-36CBBCloy Logan66207 RT,NG						
17-36W-36CBB Cloy Logan 66 207 R T,NG	17-36W-35CDD			186 -		
17-36W-36CBB Cloy Logan 66 207 R T,NG	17-36W-36888	R. E. Bergh	55	221 R	1.8	TNC
					10	
	17-36W-36DAB	J. Wimmer	56	207 R 201 R		T,NG

Table 2Records of	selected	wells	and	test	holes	in	the	Ogallala	Formation
Continued									

Use	Yield (gal/min)	Altitude of land	Depth to	Date of	Chem- ical	Acres
		surface above	water below	mea- sure-	data	gated
		mean sea	LSD	ment		
		level	(ft)	mente		
		(ft)	(10)			
(4)	(5)	(6)	(7)	(8)	(9)	
I	130 -	3,234				160
Ν,Τ		3,232	154 -	1/77		
I	250 -	3,233	91.9-	4/51	С	100
I	145 -	3,233				
I	255 -	3,221				
I	210 -	3,212	100 R	55		
I	340 -	3,220				
I I	270	3,250			С	
	270 -	3,251				
Ι,Ο	320 -	3,258	152 -	1/78		
I	170 -	3,258				
I	545 -	3,253				
Ι	475 -	3,245	105 R	52		200
I	750 -	3,245				
Ν,Τ		3,230	148 -	1/77		
I	514 -					160
I	505 -	3,244				150
I	690 -	3,243	108 R	56		190
I	255 -					90
Ν,Τ		3,243	158 -	1/77		
I	560 -	3,254				250
Ν,Ο		3,219	155 -	4/78		
I	300 -	3,251				
I	490 -	3,277	94.9-	4/51	C	
I	820 A	3,288	97 R	56	С	160
0		3,286	139 -	9/76		
I	595 -	3,251	94.0-	5/51		
I	550 -	3,257				180
I	295 -	3,254				
Ν,Τ		3,248	125 -	1/77		
1,0	750 -	3,246	154 -	1/78	С	310
I	330 -	3,242				
I	385 -	3,231	90 R	56		70

[Logs are for wells and test holes drilled by the Kansas Geological Survey, except where noted as drilled by a commercial driller. Altitudes are referenced to mean sea level datum and are reported to the nearest foot. Depth of drill hole and depth to water (if available) are reported in feet below land surface.]

WICHITA COUNTY

<u>17-35W-19BBB2</u> Drilled August 25, 1977. Altitude 3,229 1 142 feet (1977).	feet. Depth	to water
	Thickness,	-
QUATERNARY SYSTEM	in feet	in feet
Pleistocene Series, undifferentiated		145
Soil, silty clay loam, dusky-brown	- 3	3
Silt, clayey, sandy, gray-brown		6
Clay, silty, sandy, dark-yellow-brown		16
Silt, sandy, calcareous, very pale orange		24
Clay, silty, very sandy, very pale orange	- 7	31
Sand, silty, clayey, calcareous	- 7	38
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Caliche, and very coarse loosely cemented sand ·	- 8	46
Clay, sandy, light-brown	- 5	51
Sand, loosely cemented, fine to medium	- 8	59
Clay, sandy, calcareous, very pale orange		65
Sand, fine to very coarse $ -$	- 9	74
Sand, cemented, fine to coarse	- 3	77
Sand, fine to very coarse, interbedded with		
pale-yellow-brown silty clay	- 19	96
Sand, very fine to very coarse, some loosely		
cemented		107
Clay, sandy, very light brown	- 5	112
Sand, very fine to very coarse	- 8	120
Clay, light-brown, interbedded with cemented		
sand	- 6	126
Sand, very fine to very coarse, with thin		
layers of clay and cemented sand		142
Clay, silty, sandy, light-brown		146
Sand, silty, very fine to very coarse		149
Clay, silty, sandy, light-brown		150
Sand, silty, very fine to very coarse		161
Sand, medium to very coarse, and fine gravel - \cdot	- 16	177
Gravel, fine, and fine to very coarse sand with		
a few thin clay layers	- 17	194
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Clay, grayish-orange	- 21	215
Shale, grayish-brown	- 7	222
12		

feet. Depth to water 132 feet.	A BALLEY	
	Thickness,	
QUATERNARY SYSTEM	in feet	in feet
Pleistocene Series, undifferentiated		
Clay	29	29
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Caliche	3	32
Sand, coarse	7	39
Caliche	22	61
Sand, medium	14	75
Sand, coarse	4	79
Sand, fine, and clay	10	89
Sandstone	2	91
Sand, fine, and clay	34	125
Sandstone	1	126
Sand, fine, and clay	34	160
Sand, fine	7	167
Sand, fine, and clay	18	185
Sand, fine	4	189
Sand and gravel	6	195
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Shale, yellow	30	225

<u>17-35W-20DDC</u> Drilled May 21, 1971 by a commercial drill feet. Depth to water 128 feet (1971).	er. Altitud	de 3,210
	Thickness,	Depth,
QUATERNARY SYSTEM	in feet	
Pleistocene Series, undifferentiated		
Clay	24	24
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Caliche	16	40
Sandstone	4	44
Caliche	25	69
Clay, sandy	31	100
Sandstone	6	106
Sand, fine, and clay	59	165
Clay	8	173
Sand, fine, and clay	12	185
Sand, fine, good	4	189
Sand, coarse	6	195
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Shale, vellow	25	220

QUATERNARY SYSTEM	Thickness, in feet	
Pleistocene Series, undifferentiated	In Iccc	In ICCC
Clay	29	29
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Caliche	2	31
Clay	4	35
Sand, coarse	8	43
Caliche	28	71
Clay, sandy	37	108
Sand, fine, and clay	15	123
Sandstone	5	128
Sand, fine, and clay	36	164
Clay	9	173
Sand, fine, and clay	8	181
Sand, fine	8	189
Sand, coarse	6	195
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		

<u>17-35W-29CBC</u> Drilled October 18, 1977. Altitude 3,219 150 feet (1978).	feet.	Depth	to water
	Thic	kness,	Depth,
QUATERNARY SYSTEM		feet	-
Pleistocene Series, undifferentiated			
Soil and sand, medium to coarse, dark-brown Soil and sand, medium to coarse, with very fine	-	2	2
light-brown gravel	-	4	6
Silt, clayey, and fine sand	_	2	8
Clay, silty, light-brown, and fine sand $$	_	3	11
Clay, silty, light-brown, caliche, cream-white			
clay and fine sand	-	4	15
Clay, light-brown, and fine sand	_	3	18
oray, right brown, and rine sand		-	10
TERTIARY SYSTEM Miocene Series			
Ogallala Formation			
Caliche, fragments, white, and fine sand at			
25 to 35 feet	-	14	32
Caliche, fragments, white, and white sandy			
clay	-	5	37
Sand, very fine to medium	-	2	39
Caliche, white, and very fine to very coarse			
subangular sand	-	2	41
Sand, very fine to very coarse, and very fine			
gravel, feldspar, and quartz	-	7	48
Sand, medium to very coarse, and fine sub-			
angular gravel	-	1	49
Caliche, fragments, and medium sand	-	1	50
Caliche, white to clear (siliceous), and dark			
dendritic mineral (manganese?)	-	19	69
Caliche, fragments, silica with black dendritic			
mineral, and very fine to coarse sand	-	10	79
Sand, very fine, and white to clear caliche,			
and clay	-	2	81
Clay, sandy, light-tannish-brown, and very			
fine to fine sand	-	6	87
Sand, silty, fine to medium	-	9	96
Sand, clayey, fine to medium, and caliche	-	9	105
Clay, sandy, very fine to fine, and caliche	-	4	109
Sand, very fine to medium, clay, and fine			
gravel	-	4	113
Sand, very fine to very coarse, fine gravel,			
and caliche	-	7	120
Clay, sandy, light-tan, very fine to coarse			
sand, and caliche fragments		2	122
Sand, very fine to medium, white clay, and			
fine gravel	-	11	133
Sand, very fine to coarse, light-brown clay,			
and caliche	-	2	135
16			10 mm 10

	Thickness,	Depth,
	in feet	in feet
Gravel, fine, and coarse to very coarse		
sand	11	146
Clay, silty, orange-brown, fine to medium		
sand, and fine gravel	19	165
Sand, clayey, fine to medium	6	171
Caliche and white clay	4	175
Clay, sandy, very fine to fine	3	178
Sand, very fine to medium, and silty white		
clay	6	184
Gravel, coarse	3	187
Sand, very fine to medium	5	192
Sand, very fine to very coarse, and fine to		
coarse gravel	5	197
Sand, fine	4	201
Sand, very fine to very coarse	3	204
Sand, coarse, and fine gravel	12	216
Gravel, fine, and coarse sand	3	219
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Clay, yellow	1	220
Clay, yellow, and black clay	5	225

<u>17-35W-31CBB</u> Drilled August 23, 1977. Altitude 3,232 fee 154 feet (1977).	et. Depth t	o water
	Thickness,	Depth,
QUATERNARY SYSTEM	in feet	in feet
Pleistocene Series, undifferentiated		
Soil, silty, and dark-brown clay loam	- 3	3
Silt, light-brown, and some coarse sand	- 12	15
Silt, clayey, light-brown	- 3	18
Silt, clayey, very light brown, sandy	- 3	21
Clay, silty, very light brown	- 3	24
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Mortar bed, hard, light-tan to white, with white		
clay	- 8	32
Sand, coarse, cemented, interbedded with		
light-brown clay	- 12	44
Sand, coarse to very coarse	- 7	51
Sand, fine to very coarse, cemented, hard	- 8	59
Clay, silty, light-brown	- 3	62
Clay, light-brown, with very fine cemented		
sand	- 5	67
Clay, light-brown, sandy	- 5.5	72.5
Sand, fine to very coarse, alternating with		
light-brown clay		104
Sand, fine to very coarse, and fine gravel		106.5
Clay, very sandy, and some fine gravel	- 2	108.5
Sand, fine to very coarse	- 3.5	112
Clay, sandy, light-brown	- 4	116
Mortar bed, fine to very coarse cemented sand,		
and fine gravel		123
Sand, very fine to medium, and some fine gravel \cdot		128
Clay, sandy, and very fine to fine sand $$		134
Sand, fine to coarse	- 11	145
Silt, sandy, light-brown	- 2	147
Sand, silty, very fine to fine	- 8	155
Clay, silty, dark-yellow-orange, interbedded		
with very fine sand	- 27	182
Sand, fine to coarse	- 4	186
Sand, coarse to very coarse	- 5	191
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Clay, pale-yellowish-orange, sandy	- 5	196
Shale, weathered, dark-grayish-brown	- 14	210

<u>17-36W-25AAA</u> Drilled August 24, 1977. Altitude 3,230 148 feet (1977).		D 1
OUL MEDNIA DV OVOMEN	Thickness, in feet	the second s
QUATERNARY SYSTEM	In leet	In leet
Pleistocene Series, undifferentiated	5	5
Soil, silty, and medium-brown clay loam	- 5	10
Silt, clayey, sandy, olive-brown	- 5	15
Silt, clayey, yellow-brown	- 8	23
Silt, sandy, very light gray	- 8	
Sand, silty, light-brown	- 6	29
Clay, sandy, calcareous, very light gray	- 4	33
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Mortar bed, and medium to very coarse		
cemented sand	- 2	35
Sand, medium to coarse	· - 3	38
Sand, medium to very coarse, and fine gravel	- 5.5	43.5
Sand, cemented, very fine	- 3.5	47
Sand, very fine to medium, and some very fine		
gravel	- 9	56
Sand, fine, clayey	- 2	58
Mortar bed, and fine to coarse cemented sand	- 3	61
Clay, sandy, light-brown	- 3	64
Sand, medium to very coarse, clayey	- 6	70
Sand, fine to coarse	- 4	74
Sand, clayey, fine to very coarse	- 8	82
Sand, very fine to coarse, and fine gravel	- 6	88
Sand, clayey, very fine to very coarse	- 4.5	92.5
Sand, loosely cemented, very fine to coarse	- 6	98.5
Sand, clayey, very fine to medium	- 3.5	102
Clay, very sandy, light-brown	- 2.5	104.5
Sand, very fine to coarse, some cemented,	20 E	125
alternating with sandy clay		135
Sand, medium to very coarse, and fine gravel		143
Clay, sandy, light-brown		150
Sandy, clayey, very fine to coarse	- 5	155
gravel	- 25	180
Sand, very clayey, medium to coarse	- 5.5	185.5
Sand, medium to very coarse, and some fine grave		190
Sand, clayey, medium to coarse	- 3	193
Sand, coarse to very coarse, and fine gravel		198
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Clay, yellowish-orange, sandy	- 15	213
Shale, dark-gray-brown, soft	- 13	226

17-36W-26AAADrilled August 25, 1977. Altitude 3,243 f 158 feet (1977).	eet. Depth	to wate:
150 1000 (1577).	Thickness,	Depth,
QUATERNARY SYSTEM	in feet	in fee
Pleistocene Series, undifferentiated		
Soil, silty, and brown clay loam	- 3	3
Silt, clayey, light-brown	- 5	8
Silt, sandy, clayey, gray-brown	- 8	16
Sand, silty, fine to medium	- 6	22
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Caliche, sandy, clayey	- 6	28
Clay, sandy, white, interbedded with very fine		
to fine sand	- 8	36
Sand, fine to very coarse	- 7	43
Sand, medium to very coarse, loosely		
cemented	- 2	45
Sand, silty, fine to very coarse	- 2.5	47.
Sand, medium to very coarse	- 3.5	51
Clay, sandy, medium-brown, interbedded with		
fine to very coarse sand	- 14	65
Sand, silty, fine to coarse	- 5	70
Sand, coarse to very coarse, and loosely		
cemented fine gravel	- 6	76
Sand, very fine to very coarse, interbedded		
with sandy pale-yellow-brown clay	- 35	111
Clay, sandy, medium-brown	- 4	115
Sand, silty, very fine to very coarse		124
Clay, sandy, medium-brown	- 5	129
Sand, very fine to very coarse, interbedded		
with pale-yellow-brown clay	- 13	142
Sand, very fine to very coarse, loosely		
cemented	- 6	148
Clay, silty, yellow-brown	- 3	151
Sand, silty, very fine to very coarse, some		
loosely cemented	- 8	159
Sand, very fine to very coarse, interbedded with		
silty brown clay	- 8	167
Sand, cemented	- 2	169
Sand, very fine to very coarse, and silty dark-		
yellow-orange clay	- 8	177
Clay, silty, dark-yellow-orange	- 7	184
Sand, medium to very coarse, and fine gravel - \cdot		197
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Clay, pale-yellow-orange	- 14	211
Shale, firm, dusky-brown	- 24	235

Table 3Logs of wells and test holes in the intensive-st	udy area0	Continued
<u>17-36W-26CBB</u> Drilled October 18, 1977. Altitude 3,254 fe 155 feet (1978).	et. Depth	to water
A	Thickness,	Depth,
QUATERNARY SYSTEM	in feet	in feet
Pleistocene Series, undifferentiated		
Soil, silty, and dark-gray-brown clay loam	4	4
Clay, silty, medium-brown	1	5
Silt, clayey, tannish-brown	5	10
Silt, and some light-brown sand	8	18
Silt, clayey, very light brown, with fine		
sand	4	22
TERTIARY SYSTEM		
Miocene Series		
Ogallala Formation		
Caliche, soft, sandy, with cemented fine sand	3	25
Sand, coarse to very coarse, caliche fragments,		
and very light brown clay	4	29
Sand, very fine to medium, pale-green, caliche		
fragments, and some gravel	5	34
Sand, very fine to very coarse, fine to medium		
gravel, gray-green silt, and caliche fragments	6	40
0	0	40
Caliche fragments, cemented sand, and fine to very coarse sand	10	50
Caliche fragments, small, with medium to very	10	50
coarse sand	3	53
Caliche and sand, as above, with gravel	2	55
	2	55
Sand, very fine to very coarse, fine gravel,	3	58
and caliche fragments	2	30
ments, very fine to coarse friable sand, and some gravel	9	67
	9	07
Sand, very fine to very coarse, and fine	3	70
gravel	2	70
Clay, grayish-brown, very fine to very coarse	1.	74
sand, and gravel	4	74
Caliche fragments, grayish-green, very fine to		
very coarse silty sand, cemented fine sand,	3	77
and fine to medium gravel	2	//
caliche fragments	12	89
Sand, very silty, very fine to coarse, fine	12	09
gravel, white clay, caliche fragments, and		
cemented sand	3	92
Silt and sand, cemented, very fine, with some	2	72
coarse reddish-brown sand	3	95
Sand, very fine to very coarse, fine gravel,	J	,,
silt, and some cemented sand	3	98
Silt, clayey, sandy, greenish-brown, with some	5	90
cemented gravel and sand	2	100
comented Braver and Sand	2	100

	Thickness, in feet	Depth, in feet
Sand, silty, very fine to very coarse, fine	2	102
gravel, and caliche fragments Gravel, very fine to medium, and very fine to	2	102
very coarse silty sand	6	108
Sand, very fine to very coarse, fine gravel,	·	200
and silt	4	112
Silt, clayey, sandy, white, and caliche		
fragments	6	118
Sand, very silty, very fine to very coarse,		1.0.0
and caliche fragments	2	120
Silt, cemented, very fine cemented and some	5	125
friable sand, and gravel	,	125
fragments	3	128
Silt, very sandy, and very fine cemented		
sand	3	131
Silt, cemented, and very fine light-brown sand,		
with some friable very fine to very coarse		
silty cemented sand	9	140
Sand, very fine to very coarse, silty, with some		
cemented sand	10	150
Sand, very fine to medium, silty, with some cemented sand	10	160
Sand, very fine to very coarse, and cemented	10	160
silty sand	4	164
Sand, as above, coarser	6	170
Sand, very fine to coarse, silty		180
Sand, as above, with some fine gravel	4	184
Sand, as above, with very light brown silt $$	1	185
Sand, as above, with mostly very coarse sand,		
and fine gravel	2	187
Sand, very coarse, fine gravel, and yellow-		100
brown silt	2	189
Gravel, fine to medium, and very coarse silty	3	192
sand	2	192
CRETACEOUS SYSTEM		
Upper Cretaceous Series		
Niobrara Formation Smoky Hill Chalk Member		
Clay, yellow	4	196

17-36W-35CDD.--Drilled August 27, 1977. Altitude 3,248 feet. Depth to water 125 feet (1977). Thickness. Depth. in feet in feet QUATERNARY SYSTEM Pleistocene Series, undifferentiated 3 Soil, silty, and dark-brown clay loam - - - - -3 Silt, clayey, grayish-orange - - - - - - -7 10 4 14 3 17 19.5 2.5 Silt, sandy, clayey, white to very light brown -4.5 24 Clay, sandy, calcareous, white to light-brown - -8 32 Sand, very fine, cemented, light-brown, and white caliche --------3 35 9 Sand, coarse to very coarse, subrounded - - - - -44 TERTIARY SYSTEM Miocene Series Ogallala Formation Mortar bed, hard, fine to very coarse cemented sand, and very fine to medium gray-white 9 53 . 2 55 Sand, medium to coarse, and hard cemented silt -8 63 7 70 Sand, medium to very coarse, and fine gravel, contains white cemented silt - - - - - - -76 6 2 78 Sand, very fine to coarse, and fine clayey 9 87 Mortar bed, hard, cemented, silty, sandy, 2 89 Sand, very fine to medium, slightly clayey, 10 99 Sand, very fine to medium, clayey, dark-17 116 Clay, silty, yellowish-brown, and very fine 9 125 Sand, very fine to coarse, clayey - - - - - - -10 135 Sand, fine to coarse, and some fine gravel - - -6 141 5 146 Sand, medium to very coarse, clayey - - - - - -6 152 Sand, medium to coarse, and fine gravel - - - -4 156 Sand, fine to very coarse, alternating with 20 176 10 186 CRETACEOUS SYSTEM Upper Cretaceous Series Niobrara Formation -- Smoky Hill Chalk Member 8 194 Shale, firm, dark-gravish-brown - - - - - - - -16 210

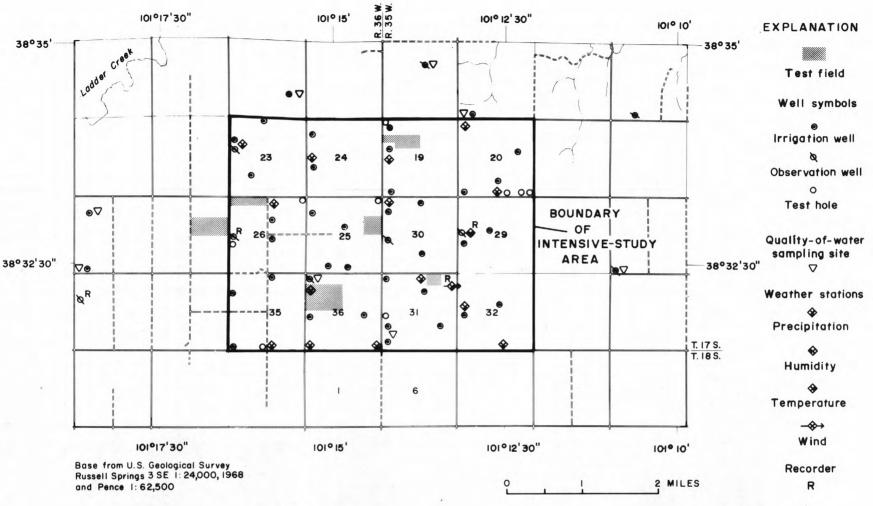


Figure 3.--Location of collection sites for geohydrologic and climatic data.

24

Information concerning the quality of water from the Ogallala aquifer is listed in table 4. Concentrations of the major dissolved constituents in water from wells are given in milligrams per liter (mg/L) and micrograms per liter (ug/L), and specific conductance is given in micromhos per centimeter (umhos/cm) at 25°C. The limits recommended by the Kansas State Board of Health (1973) for drinking-water standards are listed as follows:

Constituent	Recommended limits, in milligrams per liter	Recommended limits, in micrograms per liter
Dissolved solids	500	
Iron (Fe)	.3	300
Manganese (Mn)	.05	50
Sulfate (SO ₄)	250	
Chloride (Cl)	250	
Fluoride (F)	1.5	
Nitrate (NO ₃)	45	

Concentrations of iron and fluoride in water from most of the wells in table 4 exceed these recommended limits.

Ground-water levels from observation wells in the Ogallala aquifer typifying the seasonal fluctuations and long-term trends of the area are available in table 5 and several published reports. Water-level records during 1966-70 are available in Broeker and McNellis (1973) and during 1971-75 in Broeker, McIntyre, and McNellis (1977). Water-level changes in west-central Kansas during 1950-74 are given by Pabst and Jenkins (1974). Depth to water in wells below LSD (land surface datum) is listed by Stullken and others (1974).

The changes in depth to water, water level, and saturated thickness of the Ogallala aquifer are shown in table 6 for various wells in and near the study area and for selected periods of time. Changes are related to a predevelopment year (designated as 1950), the year following an abnormally high rainfall and minimum pumpage (1966), and the project study years of 1977 and 1978.

CLIMATIC DATA

Weekly and monthly rainfall data collected at the recording gages within the intensive-study area are given in table 7. Table 8 gives the adjusted weekly rainfall at or near three of the six test fields (shown in figure 3) compared with National Weather Service records of rainfall at Garden City (about 40 miles southeast), Tribune (about 25 miles west), and Leoti (shown in figure 1).

Data on soil moisture measured on various days during 1978 at different sampling depths and at different locations in four test fields (fig. 3) are given in table 9.

The relation of applied irrigation water and the soil moisture used at different depths at test field 17-36W-27DBC is shown in figure 4.

Table 4.--Chemical analyses of water from selected wells in the Ogallala aquifer

Well no.	Depth (ft)	Date of collection	Temper- ature (C°)	Dis- solved solids (mg/L resi- due at 180°C)	Dis- solved silica (mg/L SiO ₂)		Dissolved manganese (ug/L Mn)	Dissolved calcium (mg/L Ca)	l Dissolved magnesium (mg/L Mg)
17-35W-17CCC	200	6-19-72		355	39	110	0.0	48	24
17-35W-18ACB		8- 4-65		391	38	10	.0	53	23
17-35W-27CCC		4-19-72		360	38	30	.0	45	23
17-35W-31CCB		6-22-72	15.0	408	45	160	.0	56	24
17-36W-14DAD		6-22-72	16.0	392	39	60	.0	59	24
17-36W-28BAC		9-14-64		354	46	0	.0	46	24
17-36W-28CCC		6-22-72	15.0	374	48	60	.0	46	25
17-36W-36BBB		3- 1-72		370	49	60	.0	48	21
Average	206		15.3	376	43	61	.0	50	24
Well no.	Sodium and	Bicar-	Dissolved	Dissolved	Dissolved	Dissolve	od Har	dness	Constraint
well no.	potassium (mg/L Na+K)	bical- bonate (mg/L HCO ₃)	sulfate (mg/L SO ₄)	chloride (mg/L Cl)	fluoride (mg/L F)	nitrate (mg/L NO ₃)		CaCo ₃ Noncar- bonate (mg/L)	Specific conduct- ance (umhos/ cm at 25°C)
17-35W-17CCC	potassium (mg/L Na+K) 36	bonate (mg/L HCO ₃) 231	sulfate (mg/L SO ₄) 58	chloride (mg/L Cl) 24	fluoride (mg/L F) 2.2	nitrate (mg/L NO ₃) 8.0	e <u>as</u> Total (mg/L) 220	CaCo ₃ Noncar- bonate (mg/L) 28	conduct- ance (umhos/ cm at 25°C) 540
17-35W-17CCC 17-35W-18ACB	potassium (mg/L Na+K) 36 48	bonate (mg/L HCO ₃) 231 271	sulfate (mg/L SO ₄) 58 63	chloride (mg/L Cl) 24 25	fluoride (mg/L F) 2.2 1.6	nitrate (mg/L NO ₃) 8.0 5.8	e <u>as</u> Total (mg/L) 220 230	CaCo ₃ Noncar- bonate (mg/L) 28 4	conduct- ance (umhos/ cm at 25°C) 540 610
17-35W-17CCC 17-35W-18ACB 17-35W-27CCC	potassium (mg/L Na+K) 36 48 38	bonate (mg/L HCO ₃) 231 271 193	sulfate (mg/L SO ₄) 58 63 80	chloride (mg/L C1) 24 25 23	fluoride (mg/L F) 2.2 1.6 2.0	nitrate (mg/L NO ₃) 8.0 5.8 9.7	2 <u>as</u> Total (mg/L) 220 230 210	CaCo ₃ Noncar- bonate (mg/L) 28 4 4	conduct- ance (umhos/ cm at 25°C) 540 610 520
17-35W-17CCC 17-35W-18ACB 17-35W-27CCC 17-35W-31CCB	potassium (mg/L Na+K) 36 48 38 39	bonate (mg/L HCO ₃) 231 271 193 193	sulfate (mg/L SO ₄) 58 63 80 88	chloride (mg/L Cl) 24 25 23 37	fluoride (mg/L F) 2.2 1.6 2.0 1.7	nitrate (mg/L NO ₃) 8.0 5.8 9.7 13	2 <u>as</u> Total (mg/L) 220 230 210 240	CaCo ₃ Noncar- bonate (mg/L) 28 4 49 80	conduct- ance (umhos/ cm at 25°C) 540 610 520 590
17-35W-17CCC 17-35W-18ACB 17-35W-27CCC 17-35W-21CCB 17-36W-14DAD	potassium (mg/L Na+K) 36 48 38 39 44	bonate (mg/L HCO ₃) 231 271 193 193 278	sulfate (mg/L SO ₄) 58 63 80 88 64	chloride (mg/L Cl) 24 25 23 37 25	fluoride (mg/L F) 2.2 1.6 2.0 1.7 1.9	nitrate (mg/L NO ₃) 8.0 5.8 9.7 13 2.0	2 <u>as</u> Total (mg/L) 220 230 210 240 250	CaCo ₃ Noncar- bonate (mg/L) 28 4 49 80 18	conduct- ance (umhos/ cm at 25°C) 540 610 520 590 610
17-35W-17CCC 17-35W-18ACB 17-35W-27CCC 17-35W-21CCB 17-36W-14DAD	potassium (mg/L Na+K) 36 48 38 39 44 36	bonate (mg/L HCO ₃) 231 271 193 193 278 198	sulfate (mg/L SO ₄) 58 63 80 88 64 72	chloride (mg/L Cl) 24 25 23 37 25 21	fluoride (mg/L F) 2.2 1.6 2.0 1.7 1.9 2.0	nitrate (mg/L NO ₃) 8.0 5.8 9.7 13 2.0 8.9	e <u>as</u> Total (mg/L) 220 230 210 240 250 210	CaCo ₃ Noncar- bonate (mg/L) 28 4 49 80 18 52	conduct- ance (umhos/ cm at 25°C) 540 610 520 590 610 530
Well no. 17-35W-17CCC 17-35W-18ACB 17-35W-27CCC 17-35W-31CCB 17-36W-14DAD 17-36W-28BAC 17-36W-28CCC	potassium (mg/L Na+K) 36 48 38 39 44 36 37	bonate (mg/L HCO ₃) 231 271 193 193 278 198 198	sulfate (mg/L SO ₄) 58 63 80 88 64 72 80	chloride (mg/L Cl) 24 25 23 37 25 21 25	fluoride (mg/L F) 2.2 1.6 2.0 1.7 1.9 2.0 2.0	nitrate (mg/L NO ₃) 8.0 5.8 9.7 13 2.0 8.9 7.5	e <u>as</u> Total (mg/L) 220 230 210 240 250 210 220	CaCo ₃ Noncar- bonate (mg/L) 28 4 49 80 18 52 56	conduct- ance (umhos/ cm at 25°C) 540 610 520 590 610 530 540
17-35W-17CCC 17-35W-18ACB 17-35W-27CCC 17-35W-31CCB 17-36W-14DAD 17-36W-28BAC	potassium (mg/L Na+K) 36 48 38 39 44 36 37	bonate (mg/L HCO ₃) 231 271 193 193 278 198	sulfate (mg/L SO ₄) 58 63 80 88 64 72	chloride (mg/L Cl) 24 25 23 37 25 21	fluoride (mg/L F) 2.2 1.6 2.0 1.7 1.9 2.0	nitrate (mg/L NO ₃) 8.0 5.8 9.7 13 2.0 8.9	e <u>as</u> Total (mg/L) 220 230 210 240 250 210	CaCo ₃ Noncar- bonate (mg/L) 28 4 49 80 18 52	conduct- ance (umhos/ cm at 25°C) 540 610 520 590 610 530

[See figure 3 for location of the quality-of-water sampling sites]

Table 5.--Ground-water levels in selected observation wells in the Ogallala aquifer

[Location of observation wells shown in figure 3]

17-35W-15CDC. Louis Simons. Irrigation well. Depth 204 feet. Measuring point, hole in southeast side of pump base, 0.8 foot above LSD. G = Measured by Kansas State Board of Agriculture. Altitude of land surface 3,194 feet. Highest water level 110.00 feet below LSD, Jan. 19, 1966. Lowest water level 130.50 feet below LSD, Jan. 20, 1976. Records available 1965-76. Water Water Water Water level level level Date Date Date Date level Jan. 29, 1965 110.34 Jan. 18, 1968 118.55G Jan. 18, 1971 116.59G Jan. 22, 1974 119.53 Jan. 19, 1966 Jan. 21, 1969 Jan. 17, 1972 Jan. 14, 1975 121.94 114.2 G 110.00G 118.10G

Jan. 18, 1973

118.08

Jan. 20, 1976

130.50

27

Jan. 25, 1967

17-35W-18ACB. Wesley Shumard. Irrigation well. Depth 195 feet, diameter 18 inches. Measuring point, hole in north side of pump base, at LSD. G = Measured by Kansas State Board of Agriculture. Altitude of land surface 3,225.7 feet.

113.49G

Highest water level 96.94 feet below LSD, May 4, 1951.

Lowest water level 128.77 feet below LSD, Jan. 19, 1976.

Jan. 19, 1970

Records available 1951, 1965-76.

115.60G

1	Date		Water level	D	ate		Water level	1	Date		Water level		Date		Water level
May	4,	1951	96.94	Jan.	18,	1968	114.24G	Jan.	18,	1971	119.36G	Jan.	22,	1974	124.71
Jan.	29,	1965	122.76	Jan.	21,	1969	116.35G	Jan.	17,	1972	122.50G	Jan.	14,	1975	126.74
Jan.	19,	1966	110.8 G	Jan.	19,	1970	116.95G	Jan.	18,	1973	122.00	Jan.	19,	1976	128.77
Jan.	25,	1967	114.06G												

Table 5.--Ground-water levels in selected observation wells in the Ogallala aquifer--Continued

17-35W-27CCC. L.C. Beeson. Irrigation well. Depth 210 feet, diameter 16 inches. Measuring point, hole in east side of pump base, at LSD. G = Measured by Kansas State Board of Agriculture. Altitude of land surface 3,195 feet. Highest water level 91.00 feet below LSD, Jan. 1, 1955. Lowest water level 139.96 feet below LSD, Jan. 19, 1976. Records available 1955, 1965-76.

Date	Water level	Date	Water level	Date	Water level	Date	Water level
Jan. 1, 1955 Jan. 19, 1965 Mar. 16, 1966 Jan. 25, 1967		Jan. 18, 1968 Jan. 21, 1969 Jan. 19, 1970	122.9 G	Jan. 18, 1971 Jan. 17, 1972 Jan. 18, 1973	131.55G	Jan. 22, 1974 Jan. 14, 1975 Jan. 19, 1976	130.20 139.10 139.96

28

17-35W-29CBC2. U.S. Geological Survey. Observation well. Depth 219 feet, diameter 2 inches. Measuring point, top of casing, 3 feet above LSD. Altitude 3,219 feet. Records available 1978.

Date	Water level		
Mar. 28, 1978	150.19	 	
June 2, 1978	148.66	-	
July 2, 1978	149.21		

Table 5.--Ground-water levels in selected observation wells in the Ogallala aquifer--Continued

17-35W-30CBB. Robert Mastel. Irrigation well. Depth 218 feet, diameter 18 inches. Measuring point, east side of concrete base, at LSD. G = Measured by Kansas State Board of Agriculture. Altitude of land surface 3,235.2 feet.

Highest water level 94.12 feet below LSD, Apr. 19, 1951.

Lowest water level 158.43 feet below LSD, Sept. 22, 1976.

Records available 1951, 1965-76.

Date	Water level	Date	Water level	Date	Water level	Date	Water level
Apr. 19, 1951	94.12	Jan. 18, 1968	130.73G	June 23, 1971	137.24G	Dec. 17, 1973	143.74
Jan. 29, 1965	130.8	June 19	131.76G	Sept. 29	140.20G	Jan. 22, 1974	138.98
June 16	119.34G	Sept. 16	135.50G	Dec. 28	138.07G	Mar. 14	143.820
Sept. 28	130.42G	Jan. 20, 1969	133.2	Jan. 17, 1972	137.35G	June 18	149.290
Jan. 19, 1966	126.6 G	Apr. 23	138.05G	June 27	146.20G	Dec. 11	153.260
June 15	131.72G	Sept. 29	133.89G	Sept. 19	142.66G	Jan. 14, 1975	143.60
Sept. 27	128.32G	Dec. 23	137.05	Dec. 12	140.16G	Mar. 14	148.160
Dec. 20	127.06G	Jan. 24, 1970	130.73G	Jan. 18, 1973	139.20	June 25	144.870
Jan. 25, 1967	129.40G	Apr. 14	130.01G	Mar. 13	138.16	Jan. 19, 1976	150.74
June 14	128.05G	Sept. 21	136.28G	June 6	136.97	June 16	153.41
Sept. 19	131.23G	Jan. 18, 1971	134.68G	Sept. 18	143.77	Sept. 22	158.43
Dec. 18	131.79	Mar. 23	133.85G				

Table 5.--Ground-water levels in selected observation wells in the Ogallala aquifer--Continued

17-36W-23BCC. H. R. Schwindt. Irrigation well. Depth 240 feet, diameter 18 inches. Measuring point, hole in south side of pump, at LSD. G = Measured by Kansas State Board of Agriculture. Altitude of land surface 3,258.1 feet. Highest water level 89.00 feet below LSD, Apr. 19, 1940, July 25, 1947. Lowest water level 147.24 feet below LSD, Jan. 19, 1976. Records available 1940, 1947, 1951, 1965-76.

Date	Water level	Date	Water level	Date	Water level	Date	Water level
Apr. 19, 1940 July 25, 1947 Apr. 20, 1951	89.00 89.00 100.14	Jan. 19, 1966 Jan. 25, 1967 Jan. 18, 1968	125.35G 128.10G 128.27G	Jan. 19, 1970 Jan. 18, 1971 Jan. 17, 1972	129.57G 133.38 135.75	Jan. 22, 1974 Jan. 13, 1975 Jan. 19, 1976	136.82 140.57 147.24
Jan. 29, 1951	124.22	Jan. 21, 1969	130.8	Jan. 18, 1973	136.94	Jan. 19, 1976	147.24

17-36W-26CBB2. U.S. Geological Survey. Observation well with water-level recorder. Depth 192 feet, diameter 2 inches. Measuring point, top of casing, 2.5 feet above LSD. Altitude 3,219 feet. Records available 1978.

30

	Water	
Date	level	
pr. 19, 1978	160.44	
pr. 19, 1978 pr. 28, 1978	155.22	
uly 5, 1978	152.55	

Table 5.--Ground-water levels in selected observation wells in the Ogalla aquifer--Continued

17-36W-33BCB. Eugene Berning. Observation well with water-level recorder. Depth 187 feet, diameter 16 inches. Measuring point, top of casing, 0.5 foot above LSD. Continuous records available from Kansas State Board of Agriculture. EOM = end of month.

Altitude of land surface 3,286.0 feet.

Highest water level 112.35 feet below LSD, Mar. 30, 1966. Lowest water level 177.22 feet below LSD, Mar. 15, 1967. Records available 1965-76.

1965

Day	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
5						114.12	113.92	118.51	116.67	116.59	115.21	114.36
10						113.94	115.85G	118.21	118.22	116.32	115.03	114.10
15					115.30	113.73	116.68	118.90	118.97	116.07	114.87	114.06
20					114.87	113.61	117.30	118.25	117.85	115.91	114.69	113.92
25					114.55	113.41	117.86	117.44	117.25	115.71	114.48	113.80
EOM		•••••			114.33	113.37	118.20	117.00	116.91	115.44	114.42	113.70
						1966						
5	113.69	113.00	112.89		113.95	113.32	116.12	117.63	115.83	115.32	114.70	
10	113.62	113.1	112.66		113.50	115.70	115.80	116.97	115.77	115.22	114.70	
15		112.9	112.64		113.54	115.38	117.42	116.63	115.73	115.15		
20		112.9	112.61		113.37	115.92	117.58	116.39	115.62	114.90		114.60
25	113.30	112.8	112.50		113.27	116.46	116.78	116.15	115.63	114.90		114.59
EOM			112.35	114.34	113.26	117.06	116.50	115.98	115.50	114.80		114.60

Table 5Ground-water	levels	in	selected	observation	wells	in	the	Ogallala	aquifer-	-Continued
				196	57					

Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
114.43	115.80	117.71	119.60	117.61	117.03	116.58	120.20	120.33	118.65		
114.56	116.89	117.80	119.73	117.41	116.88	116.50	119.50	119.83	118.45		
114.42	117.90	117.22	110.01	117.37	116.84	116.40	120.70	119.50	118.45		
114.38	118.83	118.11	118.33	117.34	116.73	117.97	121.16	119.24	118.33		117.48
114.38	118.02		117.94		116.72	119.10					
114.47	•••••	117.39	117.39	117.07	116.62	119.77	121.22	118.82	118.28	•••••	117.33
					1968						
117.32	119.15	120.38	118.29	120.25	118.85	121.39	121.71	121.75	119.96		118.86
117.21	119.93	119.78	118.32	119.84	118.83	121.71	122.33	121.26	119.68		118.80
117.24	120.70		118.24	119.61	118.74	122.06	121.60	120.90	119.62		118.80
117.21	121.00										118.73
117.06	121.60										118.64
117.05	•••••	118.40	120.86	119.03	120.65	122.57	122.27	120.13	119.28	118.82	118.75
					1969						
118.55	120.98	119.32	118.68	118.33	117.98	121.13			121.52	120.70	120.30
118.58	120.91	119.28	118.58	118.28	119.69	120.92			121.30	120.65	120.23
119.68	120.33	119.12	118.51	118.17	120.66	121.45			121.30	120.55	120.18
120.90											120.05
120.71											120.10
120.26	119.56	118.77	118.35	117.93	119.89	122.50	•••••	121.53	120.84	120.33	120.00
					1970						
120.00		122.46	122.90	123.96	121.75	123.90	126.21	125.78	124.00	123.25	123.10
119.78		123.06	123.60	123.46	121.52	124.50	126.46	125.22	123.89	123.20	123.03
119.78		123.50	124.10	123.00	121.27	124.90	126.76	125.01	123.85	123.15	122.90
119.87	119.64	119.76	123.78	124.38	122.70	122.60	125.33	126.89	124.52	123.70	123.08
119.80	121.30	123.37		122.38	122.90	125.59	126.98	124.65	123.70	123.03	122.84
119.62	121.82	122.80	124.30	124.26	122.00	122.65	125.90	127.17	124.23	123.50	122.86
	114.43 114.56 114.42 114.38 114.38 114.47 117.32 117.21 117.24 117.21 117.06 117.05 118.55 118.58 119.68 120.90 120.71 120.26 120.00 119.78 119.78 119.87 119.80	114.43 115.80 114.56 116.89 114.42 117.90 114.38 118.83 114.38 118.02 114.38 118.02 114.47 117.32 119.15 117.21 119.93 117.24 120.70 117.05 118.55 120.98 118.58 120.91 119.68 120.33 120.90 119.97 120.26 119.56 120.71 119.68 120.26 119.56 120.71 119.68 120.73 119.78 119.78 119.87 119.64 119.80 121.30	114.43 115.80 117.71 114.56 116.89 117.80 114.42 117.90 117.22 114.38 118.83 118.11 114.38 118.02 117.92 114.38 118.02 117.92 114.47 117.39 117.32 119.15 120.38 117.21 119.93 119.78 117.24 120.70 117.06 121.60 117.05 118.40 118.55 120.90 119.97 119.68 120.33 119.12 120.90 119.97 119.01 120.71 119.68 118.77 120.00 122.46 119.78 123.06 119.78 123.06 119.78 123.50 119.87 119.64 119.76 119.80 121.30 123.37	114.43 115.80 117.71 119.60 114.56 116.89 117.80 119.73 114.42 117.90 117.22 110.01 114.38 118.83 118.11 118.33 114.38 118.02 117.92 117.94 114.47 117.39 117.39 117.32 119.15 120.38 118.29 117.21 119.93 119.78 118.32 117.24 120.70 118.24 117.21 121.00 120.22 117.06 121.60 120.99 117.05 118.40 120.86 118.58 120.91 119.28 118.58 119.68 120.33 119.12 118.45 120.90 119.97 119.01 118.45 120.71 119.68 118.77 118.35 120.26 119.56 118.77 118.35 120.00 122.46 122.90 119.78 123.06 123.60	114.43 115.80 117.71 119.60 117.61 114.56 116.89 117.80 119.73 117.41 114.42 117.90 117.22 110.01 117.37 114.38 118.83 118.11 118.33 117.34 114.38 118.02 117.92 117.94 117.19 114.47 117.39 117.39 117.07 117.21 119.93 119.78 118.29 120.25 117.21 120.70 118.24 119.61 117.21 121.00 120.22 119.36 117.06 121.60 120.99 119.23 117.05 118.40 120.86 119.03 118.58 120.91 119.28 118.58 118.28 119.68 120.33 119.12 118.45 118.17 120.90 119.97 119.01 118.45 118.17 120.90 119.97 119.01 118.45 118.19 120.71 119.68 118.77 118.35 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.43 115.80 117.71 119.60 117.61 117.03 116.58 120.20 120.33 114.56 116.89 117.80 119.73 117.41 116.88 116.50 119.50 119.83 114.42 117.90 117.32 110.01 117.37 116.48 116.40 120.70 119.50 114.38 118.02 117.92 117.94 117.19 116.72 119.10 120.70 118.98 114.47 117.39 117.07 116.62 119.77 121.22 118.82 I968 117.32 119.15 120.38 118.29 120.25 118.85 121.39 121.71 121.75 117.21 119.93 119.78 118.32 119.84 118.61 122.45 120.04 120.68 117.06 121.60 120.92 119.36 118.61 122.45 122.04 120.68 117.05 118.40 120.86 119.03 120.65 122.57 122.27 120.13 1969	114.43 115.80 117.71 119.60 117.61 117.03 116.58 120.20 120.33 118.65 114.56 116.89 117.80 119.73 117.41 116.88 116.50 119.50 119.83 118.45 114.42 117.90 117.22 110.01 117.37 116.84 116.40 120.70 119.50 118.45 114.38 118.83 118.11 118.33 117.34 116.73 117.97 121.16 119.24 118.33 114.47 117.39 117.07 116.62 119.77 121.22 118.82 118.28 117.32 119.15 120.38 118.29 120.25 118.85 121.39 121.71 121.75 119.96 117.21 119.93 119.78 118.32 119.84 118.83 121.71 122.33 121.26 119.68 117.21 120.07 118.24 119.64 118.74 122.06 120.00 119.62 117.21 121.00 120.29 119.31 122.45 122.04	114.43 115.80 117.71 119.60 117.61 117.03 116.58 120.20 120.33 118.65 114.42 117.90 117.80 119.73 117.41 116.88 116.50 119.50 118.45 114.42 117.90 117.22 110.01 117.37 116.84 116.40 120.70 119.50 118.45 114.43 118.02 117.92 117.94 117.19 116.72 119.71 121.61 119.24 118.33 114.47 117.39 117.07 116.62 119.77 121.22 118.28 114.47 117.39 117.07 116.62 119.77 121.27 119.96 117.21 119.93 119.78 118.29 120.25 118.85 121.39 121.71 121.75 119.96 117.24 120.03 118.41 122.06 122.06 120.60 120.62 117.24 120.070 118.24 118.74 122.06 12

Table 5.--Ground-water levels in selected observation wells in the Ogallala aquifer--Continued

Day	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
5	122.80	125.39	124.10	123.49	123.27	123.10	125.98	126.15	126.80	125.73	125.20	124.57
10	122.70	124.92	123.82	123.25	123.30	123.10	125.85	126.32	126.44	125.47	125.00	124.73
15	122.80	124.68	123.76	123.22	123.24	123.08	126.40	127.05	126.20	125.46	124.90	124.62
20	123.99	124.52	123.45	123.20	123.18	123.79	126.80	126.35	125.98	125.35	124.85	124.53
25	124.73	124.18	123.60	123.30	123.16	124.70	126.44	127.40	125.80	125.24	124.67	124.37
EOM	125.36	124.13	123.40	123.32	123.20	125.39	126.88	127.30	125.69	125.11	124.76	124.38
						1972						
5	124.44	124.27	125.48	128.02	126.50	126.45	127.26	128.25		127.71	127.10	126.80
10	124.53	124.43	126.20	127.63	126.44	126.46	127.07	128.58		127.62	127.11	126.61
15	124.44	124.36	126.90	127.16	126.45	126.40	128.61	129.46		127.40	126.89	126.65
20	124.52	124.30	127.49	126.88	126.43	126.32	128.96	129.57	128.30	127.34	126.93	126.52
25	124.40	124.36	127.75	126.60	126.41	127.83	128.98		128.00	127.26	126.67	126.50
EOM	124.30	124.17	128.40	126.50	126.38	127.60	128.58		127.82	127.20	126.75	126.40
						1973						
5	126.28	126.00	125.67	125.34	125.12	125.22	127.46	129.60	130.12	128.93	128.22	127.75
10	126.20	125.86	125.60	125.22	125.18	125.08	127.96	129.87	129.85	128.88	128.10	127.63
15	126.10	125.85	125.85	125.30	125.21	125.20	128.27	129.67	129.72	128.75	127.98	127.70
20	126.14	125.80	125.62	125.32	125.23	126.35	128.70	130.20	129.40	128.60	128.02	127.48
25	126.00	125.82	125.60	125.28	125.12	126.93	129.00	130.35	129.20	128.44	127.98	127.51
EOM	125.98	125.72	125.45	125.20	125.18	127.08	129.35	130.48	129.13	128.28	127.75	127.48

1	0	-	1	
	Q	1		
	_		т.	

Date	Water level	Date	Water level	Date	Water level	Date	Water level
Jan. 1, 1974	127.24	Oct. 1, 1974	132.68	June 1, 1975	131.85	Feb. 5, 1976	135.70
Feb. 1	126.93	Nov. 1	131.84	July 1	132.20	Mar. 5	136.91
Mar. 1	126.72	Dec. 1	131.10	Aug. 1	134.75	Apr. 5	136.65
Apr. 1	130.69	Jan. 1, 1975	130.75	Sept. 1	135.45	May 5	135.62
May 1	131.16	Feb. 1	131.85	Oct. 1	134.92	June 5	134.92
June 1	129.68	Mar. 1	133.85	Nov. 1	134.23	July 5	137.05
July 1	130.80	Apr. 1	133.82	Dec. 1	133.76	Aug. 5	138.04
Aug. 1 Sept. 1	132.78 134.35	May 1	132.24	Jan. 5, 1976	133.28	Sept. 5	138.95

Table 5.--Ground-water levels in selected observation wells in the Ogallala aquifer--Continued

17-36W-36BBB. R.E. Bergh. Irrigation well. Depth 221 feet, diameter 18 inches. Measuring point, hole in west side of pump, 1.0 foot above LSD. G = Measured by Kansas State Board of Agriculture. Altitude of land surface 3,246 feet.

Highest water level 125.10 feet below LSD, Jan. 19, 1966. Lowest water level 147.09 feet below LSD, Jan. 19, 1976. Records available 1965-76.

Date		Water level	Date	Water level	Date	Water level	Date	Water level
Jan. 29,	1965	127.13	Jan. 18, 1968	130.59	Jan. 18, 1971	134.07G	Jan. 22, 1974	136.26
lan. 19, 1	1966	125.10	Jan. 21, 1969	131.50	Jan. 17, 1972	135.50G	Jan. 14, 1975	141.45
Ian. 25,	1967	128.17	Jan. 19, 1970	129.88	Jan. 18, 1973	135.99	Jan. 19, 1976	147.09

Table 6.--Changes in depth to water in observation wells and in the saturated thickness of the Ogallala aquifer

Well number	Depth to water in 1977 (ft)	Water- level change 1976-77 (ft)	Water- level change 1966-77 (ft)	Water- level change 1950-77 (ft)	Average annual water-level change 1966-77 (ft/year)	Average annual water-level change 1950-77 (ft/year)	Satu- rated thick- ness in 1977 (ft)	Satu- rated thick- ness in 1950 (ft)	Percent- age change in satu- rated thickness 1950-77
17-35W-15CDC	125.65	4.85	-15.65	-27.65	-1.42	-1.02	78.35	106.00	-26.08
17-35W-18ACB	134.36	-5.59	-23.56	-37.36	-2.14	-1.38	60.64	98.00	-38.12
17-35W-27CCC	140.99	-1.03	-31.39	-49.99	-2.85	-1.85	69.01	119.00	-42.01
17-35W-30CBB	154.44	-3.70	-27.84	-60.44	-2.53	-2.24	63.56	124.00	-48.74
17-36W-23BCC	153.10	-5.86	-27.75	-53.10	-2.52	-1.97	74.90	128.00	-41.48
17-36W-33BCB	137.17	-2.54	-23.86	-39.17	-2.17	-1.45	70.83	110.00	-35.61
17-36W-36BBB	152.76	-5.67	-27.66	-58.76	-2.51	-2.18	63.24	122.00	-48.16
	Depth to water in	Water- level change	Water- level change	Water- level change	Average annual water-level change	Average annual water-level change	Satu- rated thick- ness	Satu- rated thick- ness	Percent- age change in satu- rated
Well number	1978 (ft)	1977-78 (ft)	1966-78 (ft)	1950-78 (ft)	1966-78 (ft/year)	1950 - 78 (ft/year)	in 1978 (ft)	in 1950 (ft)	thickness 1950-78
17-35W-15CDC	128.10	-2.45	-18.10	-30.10	-1.51	-1.08	75.90	106.00	-28.40
17-35W-18ACB	134.34	0.02	-23.54	-37.34	-1.96	-1.33	60.66	98.00	-38.10
17-35W-27CCC	144.18	-3.19	-34.58	-53.18	-2.88	-1.90	65.82	119.00	-44.69
17-35W-30CBB	156.24	-1.80	-29.64	-62.24	-2.47	-2.22	61.76	124.00	-50.19
17-36W-23BCC	152.46	0.64	-27.11	-52.46	-2.26	-1.87	75.54	128.00	-40.98
17-36W-33BCB	137.80	-0.63	-24.50	-39.80	-2.04	-1.42	70.20	110.00	-36.18
	153.73	-0.97	-28.63	-59.73	-2.39	-2.13	62.27	122.00	-48.96

[See figure 3 for location of observation wells]

		age 17-35W-29CBB	1078		gage 17-35W-31AA	
		24 to October 2, 8 Rainfall	1978		l to October 2, 77 Rainfall	19//
Date	Weekly	Monthly		Weekly	Month	1y
	(inches)	(inches		(inches)	(inch	
Apr. 24-25*	0.0	Apr. 24-30*	2.31			
Apr. 26-May 2	3.22	•				
May 3-9	1.90	May	4.57		May 31*	0.0
May 10-16	.86				,	
May 17-23	.85				•	
May 24-30	.05					
May 31-June 6	1.51	June	2.79	0.0	June	4.30
June 7-13	.12			.55		
June 14-20	.07			1.49		
June 21-27	.48			2.23		
June 28-July 4	.61	July	.49	.03	July	3.30
July 5-11	.29			.22		
July 12-18	0.0			2.63		
July 19-25	.04			.45		
July 26-Aug. 1	.16	Aug.	1.36	0.0	Aug.	3.80
Aug. 2-8	.69			.90		
Aug. 9-15	0.0			2.54		
Aug. 16-22	0.0			.06		
Aug. 23-29	.64			.09		
Aug. 30-Sept. 5	.03	Sept.	.11	.35	Sept.	• 5
Sept. 6-12	0.0			.36		
Sept. 13-19	•02			0.0		
Sept. 20-26	.09			0.0		
Sept. 27-Oct. 2*	0.0	Oct. 1-2*	0.0	.05	Oct. 1-2*	0.0
TOTAL	11.63		11.63	11.95		11.9

Table 7.--Records of recorder-gage rainfall data

* Weekly or monthly record not entirely available

Week	Weekly av for a 51 perio (inche	-year d			Rainfall inches)				Rainfall inches)	
					Test field	s*		Т	est fields*	
	Garden City	Tri- bune	Leoti	17-35W-31B	17-35W-19B	17-36W-26B	Leoti	17-35W-31B	<u>17-35W-19B</u>	17-36W-26B
June 7-13	0.74	0.61	0.21	0.12	0.12	0.12	0.65	0.52	0.65	0.71
June 14-20	.52	.56	.98	.40	.25	.32	.18	.15	.18	.07
June 21-27	.57	.55	.21	.15	.10	.09	1.15	3.78	3.53	2.45
June 28-Jul	y 4 .47	.57	.76	.46	.23	.32	0.0	.02	.01	T**
July 5-11	.58	.45	.58	.34	.22	.30	.30	.24	.19	.21
July 12-18	.51	.77	.04	.27	.04	.07	2.06	2.39	2.09	2.19
July 19-25	.60	.47	.44	.50	.70	.62	.46	.53	.84	.96
July 26-Aug	. 1 .50	.53	.14	.27	.27	.16	0.0	.01	.01	.01
Aug. 2-8	.65	•64	.70	.53	.49	.62	1.40	1.01	.37	.93
Aug. 9-15	.66	.64	0.0	0.0	0.0	0.0	1.38	2.81	1.79	2.31
Aug. 16-22	.52	.39	0.0	0.0	0.0	0.0	.16	.09	.07	.16
Aug. 23-29	.46	.49	.60	.64	.70	.40	.10	.10	.12	.11
Aug. 30-Sep	t.5.45	•38	.70	.03	.06	.08	.23	.12		
TOTAL	8.08	7.05	5.36	3.71	3.18	3.10	8.07	11.77	9.85	10.11

Table 8.--Records of weekly rainfall amounts for Garden City, Tribune, and Leoti compared with rainfall amounts for three test fields in study area

* These values were corrected by comparison of standard rain-gage readings and recording rain gages that were stationed adjacent to each other

** Trace

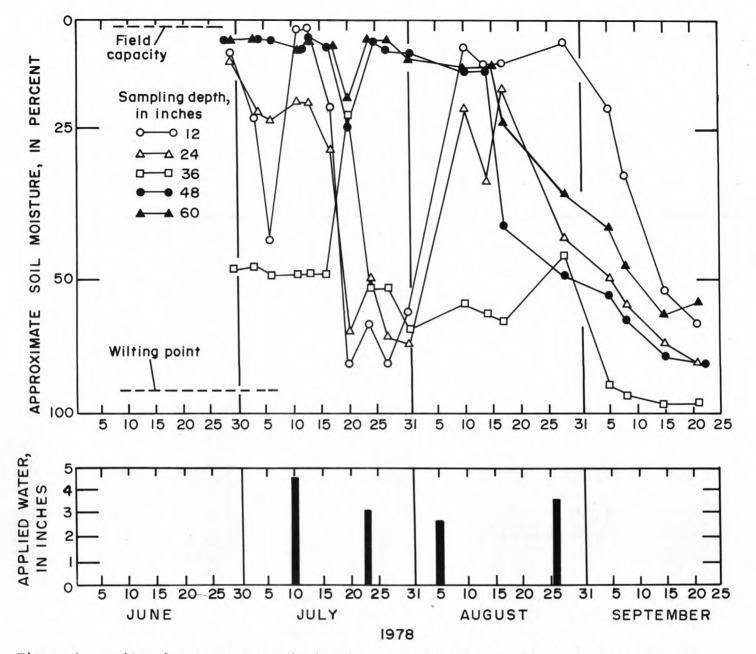


Figure 4.--Soil moisture used and irrigation water applied at test field 17-36W-27DBC.

Location of	Sample		GR		C MOISTU ntage by 1978	JRE CONTE weight)	NT	
test field	depth (inches)	July 10	July 11	July 20	July 30	July 31	Aug. 1	Aug. 14
17 2511 21404	10	15	• • • • • • • • • • • • • • • • • • •					17
17-35W-31ABA	12	15					29	17
	24	16					30	11
	36	17					31	12
	48	22					29	15
	60	22					29	15
17-35W-31ABB	12	16					22	17
	24	15					21	16
	36	16					21	16
	48	20					22	18
	60	22					25	20
17-35W-31ABC	12	22					37	12
	24	26					27	13
	36	24					27	
	48	26					31	
	60							
17-35W-31ABD	12	25					23	
	24	19						
	36	21						
	48	23						
	60	23						
17-36W-25AAC	12	19		16			28	13
	24	22		22			33	13
	36	25		24			32	12
	48	26		24			28	
	60	24		23			31	
17-36W-25AAD	12	18		21			27	14
	24	20		24			25	14
	36	20		25			26	14
	48	21		24			29	16
	60	21		25			35	17
17-36W-27ACA	12		16					
-, 500 2/11011	24		28					
	36		20					
	48		23					
	-0		25					

Table 9.--Records of soil moisture in test fields

Location of	Sample		GR.		C MOISTU ntage by 1978	RE CONTE weight)	NT	
test field	depth	July	July	July	July	July	Aug.	Aug.
	(inches)	10	11	20	30	31	1	14
17-36W-27ACB	12		17					
	24		18					
	36		21					
	48		24					
	60		26					
17-36W-27ACC	12			19		23		14
	24			23		24		13
	36			25		22		13
	48			24		24		13
	60			25		28		15
17-36W-27ACD	12			18		22		
	24			22		26		
	36					27		
	48			23		31		
	60			24		29		
17-36W-27ACD2	12							13
	24							12
	36							11
	48							11
	60							14
17-36W-27ADA	12		18					
	24		21					
	36		23			`		
	48		23					
	60		25					
17-36W-27ADD	12					25		13
	24					25		16
	36					28		18
	48					35		20
	60					39		21
17-36W-27DAA	12					28		14
	24							
	36					26		
	48					22		13
	60					25		14

Location of	Sample	GRAVIMETRIC MOISTURE CONTENT (percentage by weight) Sample 1978									
test field	depth (inches)	July 10	July 11	July 20	July 30	July 31	Aug. 1	Aug. 14			
17-36W-27DAD	12		18								
	24		20								
	36		23								
	48		20								
	60		15								
17-36W-27DBA	12					23		14			
	24					22		12			
	36					22					
	48					26					
	60					26					
17-36W-27DBB	12					26		15			
	24					26		14			
	36					24		15			
	48					27		15			
	60					31		16			
17-36W-27DBC	12		21								
	24		24								
	36		26								
	48		24								
	60		24								
17-36W-27DBD	12		21								
17-30W-27DDD	24		21								
	36		23								
	48		23								
	40 60		24								
	00		24								
17-36W-36BAD	12	23					25	22			
	24	26					24	11			
	36	26					24	11			
	48	27					29	11			
	60	28					29	13			
17-36W-36BBC	12	19					30	23			
	24	25					55	24			
	36	26					33	17			
	48	27					41	17			
	60	28					66	18			

Location of	Sample	GRAVIMETRIC MOISTURE CONTENT (percentage by weight) Sample 1978									
test field	depth (inches)	July 10	July 11	July 20	July 30	July 31	Aug. 1	Aug. 14			
17-36W-36BCC	12	17					24	16			
	24 36	20 23					24 28	10 10			
	48 60	23 23					29 33	11 16			
17-36W-36BDD	12	22					28	11			
	24	24					30	16			
	36	25					31	16			
	48	25					33	17			
	60	25					33	15			

Records of measured irrigation-well discharges in gallons per minute, line pressures in pounds per square inch, and calculated power factors are shown in table 10. The power factor, or the energy consumed to pump lacre-foot of water, was determined for irrigation pumps powered by natural gas, electricity, or diesel fuel.

The power factor is useful in estimating the cost of applying various amounts of irrigation water and the relative efficiency of the pumping opera-Comparison of power factors also gives a rough indication of the capation. bility of the pump. A high power factor generally indicates less efficiency than a low power factor. Some differences also may occur from site-to-site and from time-to-time as a result of differences in total head (pumping lift plus line pressure head). Power factors were computed using the following equations:

For natural gas-powered pump motors,

 $K_{g} = \frac{(1.955 \cdot 10^{7})(V)(P)}{(Q)(T_{g})} ,$

where

- K_g = power factor, determined as cubic feet of natural gas to pump 1 acre-foot of water;
- V = cubic feet of natural gas consumed, in T_{σ} seconds;
- P_g = conversion factor for correcting measured line pressure (between engine and meter) to a standardized between the little engine and meter) to a standardized base and altitude;
- Q = pump discharge, in gallons per minute;
- T_{σ} = time, in seconds, to consume V cubic feet of natural gas.

For electric-powered pump motors,

 $K_{e} = \frac{(1.955 \cdot 10^{4})(R)(K_{h})}{(0)(T_{h})}$,

where

- K_{ρ} = power factor determined as kilowatthours to pump 1 acre-foot of water;
- R = revolutions of meter disc, in T_{ρ} seconds;
- $K_{\rm b}$ = constant for each meter (generally stamped on the nameplate of the instrument) giving the number of watthours represented by one revolution of the meter disc:
- Q = pump discharge, in gallons per minute;
- T_{ρ} = time, in seconds, for meter disc to make R revolutions.

 $K_{d} = \frac{(3.259 \cdot 10^{5})(G)}{60(0)} = \frac{5431.7(G)}{Q}$, For diesel-powered pump motors,

where

- K_d = power factor determined as gallons of diesel fuel to pump 1 acre-foot of water;
- G = consumption of diesel fuel, in gallons per hour;
- Q = pump discharge, in gallons per minute.

Irrigation well ¹			Pressure ^{2/} (1b/in ²)	Pow	Power type4/			
WCII	1978	1977	1976	1977	1978	1977	1976	
17-35W-19BBC	390	475	510	3	6,915	7,765	10,500	NG
17-35W-19BCC	430	345	415	2	9,985	7,765	10,500	NG
17-35W-19CCC	260	280	400	2	13,775	11,150	8,700	NG
17-35W-20ACD	1,080	870	585_,	2.5	4,825	6,325	9,200	NG
17-35W-20CCC	415	530	UTM ⁵ /	3.5	11,965	13,900	UTM	NG
17-35W-20DCB	UTM	775	950	1.5	UTM	6,280	6,065	NG
17-35W-29BDC	375	355	285		9,980	17,540	12,870	NG
17-35W-29CBC	560	850	580		UTM	4,290	7,475	NG
17-35W-30ABB	610	610	510	4.5	11,040	10,805	11,720	NG
17-35W-30BBC	485	620	475		12,600	9,855	11,900	NG
17-35W-30CBB	475	625	130		8,055	6,605	29,200	NG
17-35W-30DCB	785	910	690		UTM	4,290	7,475	NG
17-35W-31ABB	115	275	305	1	12,6257/	8,470	7,200	NG
17-35W-31BBB	UTM	140	265		12,025	30,985	14,440	NG
17-35W-31CCB	65	250	230	1	735	270	360	Е
17-35W-31CCB2	215	160	75	1	11,200	13,565	33,800	NG
17-35W-31DCA	270	255	350			8,470	8,060	NG
17-35W-32ACC	260	210			15,800	19,685		NG
17-35W-32CBB	260	340	300		18,795	13,225	15,610	NG
17-36W-23BAA	485	295	UTM	14.5	230	645	UTM	E
17-36W-23BCC	5656/	240	UTM	4	155	525	UTM	E
17-36W-23BCC2		185	UTM	10	290	645	UTM	Е
17-36W-23CDB	560	590	UTM		13,140	5,260	UTM	NG
17-36W-24BCB	505	515	475	2	6,055	5,580	7,230	NG
17-36W-24CBC	905	765	UTM	1	8,800	5,320	UTM	NG

Table 10.--Records of well production, line pressure, and power factors

Irrigation well ¹	Pump discharge (gal/min)		$\frac{\text{Pressure}^{2}}{(1b/in^2)}$	Powe	Power type4/			
	1978	1977	1976	1977	1978	1977	1976	51
17-36W-25ACC	500	515	520	4.5	UTM	30	UTM	D
17-36W-25BBB	445	550	435	2	9,565	7,755	8,335	NG
17-36W-25CCD	700	750	885	2 1	8,370	6,285	5,955	NG
17-36W-25DCC	240	275	280	2.5	575	465	460	E
17-36W-26ACB	265	215	245	1	585	505	450	Е
17-36W-26CBB	540	610	635	0	UTM	8,475	8,895	NG
17-36W-26DBB		300	385	2		535	400	E
17-36W-35ABB	510	595	565		11,750	5,930	8,470	NG
17-36W-35BBC	445	600	550	1.5	UTM	8,475	8,895	NG
17-36W-35CCC	220	320	275	0	21,735	16,960	16,230	NG
17-36W-36BBB	630	815	785	1.5	8,325	7,090	UTM	NG
17-36W-36CBB	UTM	UTM	330		UTM	UTM	11,640	NG
17-36W-36DAB	185	420	265	1	22,385	7,390	16,175	NG

Table 10.--Records of well production, line pressure, and power factors--Continued

^{1/} See figure 3 for location of irrigation wells

- 2/ Pressures in pounds per square inch (lb/in²) in front of orifice plates on water meters
- 3/ In units of: K_g in (ft³/acre-ft) K_e^g in (kWh/acre-ft) K_d in (gal/acre-ft)

- $^{4/}$ NG = natural gas, E = electric, D = diesel fuel
- 5/ UTM = Unable to measure
- 6/ Combined pump discharge for wells 17-36W-23BCC and BCC2
- 7/ Combined natural gas for both wells 17-35W-31ABB and BBB

CROP-PRODUCTION DATA

Data on weekly and monthly averages and ranges of solar radiation at Scott City (about 15 miles east of the study area) during 1978 are given in table 11. The solar radiation was measured with a pyranometer and is expressed in langley units per day (1y/d). Langley units are the calories of energy per square centimeter.

Records of average crop yields for the six test fields in the study area (fig. 3) during 1977-78 are given in table 12. The yields of corn and grain sorghum in bushels per acre (bu/acre) are compared with the 8-year average (1969-76) for Wichita County. Records of crop acreage per year during 1973-78 are given in table 13 for the intensive study area. The average acreage of each crop also is given for the period 1973-78.

• Date	Weekly average (ly/d)	Weekly range (ly/d)	Month	Monthly average (ly/d)	Monthly range (ly/d)
Apr. 7-11*	479	364-594	Apr. 7-30*	488	103-678
Apr. 12-18	371	103-626			
Apr. 19-25	579	378-678			
Apr. 26-May 2	414	66-642	May	518	66-726
May 3-9	370	139-726			
May 10-16	687	567-715			
May 17-23	525	229-713			
May 24-30	611	439-740			
May 31-June 6	462	323-565	June	604	172-734
June 7-13	643	172-734			
June 14-20	655	492-732			
June 21-27	626	347-705			
June 28-July 4	669	564-714	July	625	325-884
July 5-11	547	325-708			
July 12-18	691	573-884			
July 19-25	568	438-676			
July 26-Aug. 1	642	512-687	Aug.	536	194-657
Aug. 2-8	480	194-657			
Aug. 9-15	590	378-639			
Aug. 16-22	606	552-650			
Aug. 23-29	515	347-584			
Aug. 30-Sept. 5	484	264-567	Sept. 1-22*	497	334-565
Sept. 6-12	446	469-565			
Sept. 13-19	485	367-531			
Sept. 20-22*	389	334-464			

Table 11.--Records of solar radiation at Scott City, Kansas

Period of record -- Apr. 7 to July 9, July 14 to July 18, and July 20 to Sept. 22, 1978

* Weekly or monthly record not entirely available

Table 12.--Records of average crop yields in test fields

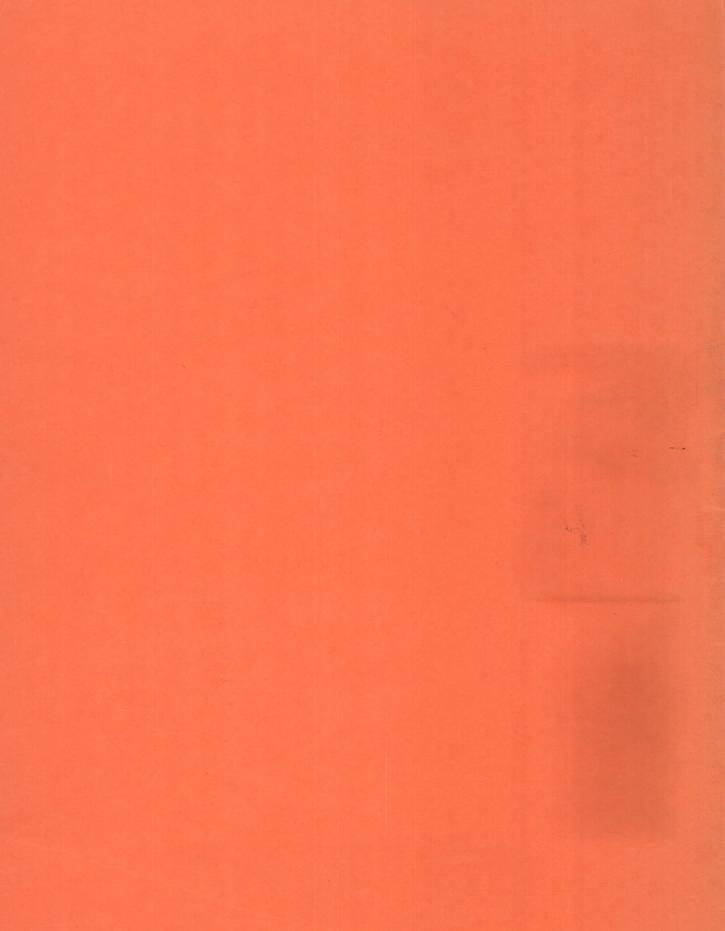
		1977		1978					
Test field location	Corn (bu/acre)	Grain sorghum (bu/acre)	Above (+) or below (-) 8-year (1969-76) county average (bu/acre)	Corn moisture (percent)	Corn weight (1b/bu)	Corn yield (bu/acre)	Above (+) or below (-) 8-year (1969-76) county average (bu/acre)		
17-35W-19B	74		-39						
17-35W-31A				16.9	54.0	74.8	-38.2		
17-36W-25A	153.1		+40.1	22.0	52.8	116.1	+ 3.1		
17-36W-26B		112	+31.2						
17-36W-27A				19.3	54.6	119.5	+ 6.5		
17-36W-36B	121		+ 8			123.5	+10.5		
Average	116.0	112	+10.1	19.4	53.8	108.5	- 4.5		

[See figure 3	for location	of test fields]
---------------	--------------	----------------	---

Year	Crop acreage	Corn	Wheat	Grain sorghum	Barley	Millet	Sunflowers	Alfalfa	Soy- beans	Pinto beans	Fallow and no- crop acreage
1978	5,167	2,257	1,828	544		41	195	215	87		2,513
1977	5,319	2,885	1,670	644				120			2,361
1976	4,458	2,336	1,699	316				47		60	3,222
1975	5,751	2,964	1,866	787	12			122			1,929
1974	6,018	3,338	1,853	709	10			108			1,662
1973	5,469	2,989	1,668	604	11			197			2,211
Average	5,364	2,795	1,764	601	11	41	195	134	87	60	2,316

Table 13.--Records of crop acreage in intensive-study area

CONCLUSIONS


This data report, when used with the available literature, may be used in determining the extent of geologic formations, making an assessment of water resources, and planning an orderly development of water supplies. Interpretive information presently is available in reports of Wichita and Greeley Counties by Prescott, Branch, and Wilson (1954) and Slagle and Weakly (1976).

ACKNOWLEDGMENTS

The authors express their appreciation and thanks to many Wichita County residents and individual water users in and near the project who permitted access to their property and supplied information about their wells, amount of pumpage, and crop yield and acreage. Drilling equipment of the Kansas Geological Survey at Lawrence was used to drill the test holes and to install the observation wells.

- Broeker, M. E., and McNellis, J. M., 1973, Ground-water levels in observation wells in Kansas, 1966-70: Kansas Geological Survey Basic Data Series, Ground-Water Release No. 3, 373 p.
- Broeker, M. E., McIntyre, H. J., Jr., and McNellis, J. M., 1977, Ground-water levels in observation wells in Kansas, 1971-75: Kansas Geological Survey Basic Data Series, Ground-Water Release 6, 526 p.
- Kansas State Board of Health, 1973, Water quality criteria for interstate and intrastate waters of Kansas: Kansas State Board of Health Regulations 28-16-28, 5 p.
- Prescott, G. C., Jr., Branch, J. R., and Wilson, W. W., 1954, Geology and ground-water resources of Wichita and Greeley Counties, Kansas: Kansas Geological Survey Bulletin 108, 134 p.
- Pabst, M. E., and Jenkins, E. D., 1974, Water-level changes in west-central Kansas, 1950-74: Kansas Geological Survey Journal, Oct. 1974, 15 p.
- Slagle, S. E., and Weakly, E. C., 1976, Ground-water resources of Greeley and Wichita Counties, western Kansas: Kansas Geological Survey Irrigation Series No. 2, 21 p.
- Stullken, L. E., Weakly, E. C., Gutentag, E. D., and Slagle, S. E., 1974, Hydrogeologic data from Greeley, Wichita, Scott, and Lane Counties, Kansas: Kansas Geological Survey Basic Data Series, Ground-Water Release No. 4, 58 p.

∑> U.S. GOVERNMENT PRINTING OFFICE: 1979-667-891/95

