

9. lanton

METHODS AND APPLICATIONS OF DIGITAL-MODEL SIMULATION OF THE RED RIVER ALLUVIAL AQUIFER, SHREVEPORT TO THE MOUTH OF THE BLACK RIVER, LOUISIANA

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 79-114

Prepared in cooperation with the

U.S. Army Corps of Engineers

and the

U.S. Soil Conservation Service

Two anal

15. Supplementary Notes

New Orleans, Louisiana 70160

Prepared in cooperation with the U.S. Army Corps of Engineers and the U.S. Soil Conservation Service

16. Abstract (Limit: 200 words)

The Red River Waterways Project provides for the construction of five locks and dams on the Red River from the Mississippi River to Shreveport, La. The methodology used by the U.S. Geological Survey in studying the effects of the navigation pools on the ground-water-flow regime involved digital modeling of steady- and nonsteady-state conditions. The steady-state model, CWFLOW, computes the head response in an aquifer due to various boundary conditions. The nonsteady-state model, SUPERMOCK, was designed to simulate transient stress and response in an alluvial-flow system.

In addition to the simulation models, several computer programs were developed during the study to aid in the preparation of field data for input to the models and in the calibration of the models. Calibration techniques unique to each of the models were developed for the investigation.

17. Document Analysis a. Descriptors

*Groundwater, *Aquifer characteristics, *Alluvial aquifers, Groundwater movement, Model studies.

b. Identifiers/Open-Ended Terms

*Red River Valley, Digital modeling.

c. COSATI Field/Group

c. ocontrinelly droup		
18. Availability Statement	19. Security Class (This Report)	21. No. of Pages
	UNCLASSIFIED	109
Release unlimited	20. Security Class (This Page) UNCLASSIFIED	22. Price

METHODS AND APPLICATIONS OF DIGITAL-MODEL SIMULATION OF THE RED RIVER ALLUVIAL AQUIFER, SHREVEPORT TO THE MOUTH OF THE BLACK RIVER, LOUISIANA

By A. H. Ludwig and J. E. Terry

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 79-114

Prepared in cooperation with the

U.S. Army Corps of Engineers

and the

U.S. Soil Conservation Service

METHODS AND APPLICATIONS OF DIGITAL-MODELSIMULATION OF THE BED BIVER ALBUVIAL AQUIRER, SHREVERORY TO THE MOUTH OF THE BLACE CIVER LOUISIANA SECURE SECURE TO A TOTAL TOTAL

party the artist that me out to be used surely the

was an a second of the contract of the contrac

NO. LIVE WAS COME. graph last with the

By the M. Londwick and London Street

The first and a substitution of the Walter o

Control of the contro

Tion 801 Control of Manager Control of the Control

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

Attachment B; RIVCHANCE program-

For additional information write to:

U.S. Geological Survey P.O. Box 66492 Baton Rouge, Louisiana 70896

CONTENTS

Fact	ors for converting inch-pound units to International System (SI)
of	metric units
Abst	ract
Intr	oduction
	Background of the investigation
	Purpose and scope
	collection
Mode	eling the hydrologic system
1	Conceptual model
	Digital model
	Nonsteady state
	Steady state
Prep	paration of digital-model input
	Nonsteady-state model
	Root depth
	Land-surface elevation
	Initial potentiometric surface and water table
	Observed potentiometric surface and water-table elevations
	Transmissivity
	Conductivity of the upper confining layer
	Relation of evapotranspiration to depth to water
	Thickness of streambed material
	Specific yield and storage coefficient
	Precipitation and potential evapotranspiration
	River stage
	Steady-state model
	Transmissivity
	Change in evapotranspiration with change in potentiometric
	surface
	Thickness of streambed material
	Head conditions in confined aquifer (node-level map)
	Changes in stream stage
Cal	ibration and verification of the nonsteady-state model
Mod	lel output
Con	tinuing studies
Se1	ected references
Att	achments
	Attachment A, AVERAGE program
	Attachment B, ATMOFLUX program
	Attachment C, POTEET program
	Attachment D, RIVCHANGE program
	Attachment E, TRIBCHANGE program
	Attackment C DELETER A SYCONOMIC CONTRACTOR OF THE SECOND

24. Esample of composed output from steady-state model showing

Controls may showing composed beed change, these and Date 3

ILLUSTRATIONS

	Project
34-	E. Maps showing the data-collection network:
JA-	A. Lock and Dam 1 area
	B. Lock and Dam 2 area
	C. Lock and Dam 3 area
	D. Lock and Dam 4 area
	E. Lock and Dam 5 area
	4. Idealized hydrogeologic section of the Red River Valley
	 Diagram showing relation between soil-moisture accounting, vertical-flow, and horizontal-flow components of SUPERMOCK
-	program
	7. Example of alphameric root-depth map
	3. Map showing topographic coverage of the project area
	Example of alphameric transmissivity map
	O. Trilinear graph of soil-classification scheme showing
	hydraulic-conductivity values for soil classes used in ATMOFLUX program
- 11	
12	
13	
14	 Example of alphameric specific-yield and storage-coefficient map and explanation of symbols
15	Flow diagram of digital-model procedure for steady-state analysis
16	Example of alphameric map of ΔΕΤ/ΔΗ and explanation of symbols
17	. Example of alphameric streambed-thickness map for steady- state analysis
18	B. Example of node-level map
	Plan-and-profile views of a segment of river channel showing the method for computing stage change
20	Program and fall calibration charts from DATE program
21	. Example of accretion-summation chart
22	The state of the s
23	
24	
25	. Contour map showing computed head change, Lock and Dam 3

Figure			Page
	26.	Map showing computed average postconstruction potentiometric	
		surface, Lock and Dam 3 area	59
	27.	Generalized chart showing relationship of digital programs	
100		that prepared data for input to SUPERMOCK and GWFLOW models	
			72
	29.	Example of output from AVERAGE programExample of output from DELETDELH program	,
	27.	Example of output from DELEIDELH program	103
	31	itiply inch-pound units 3y To obtain 31 un	nM.
		TABLES	
	(3)	m) relem erquey Aque Terry enter enter en	
		(in.) 23:40 millimeter (nm)	Page
Table	1.	Specifications for lock and dam arrangements studied in the investigation	16
	2.	Input data for AVERAGE program	64
	3.	AVERAGE program listing	66
	4.	Input data for ATMOFLUX program	74
	5.	ATMOFLUX program listing	76
	6.	Input data for POTEET program	80
	7.	POTEET program listing	82
	8.	Input data for RIVCHANGE program	86
	9.	RIVCHANGE program listing	88
	10.	Input data for TRIBCHANGE program	94
			96
	11.	TRIBCHANGE program listing	
	12.	Input data for DELETDELH program	100
	12. 13.	Input data for DELETDELH program DELETDELH program listing	100 101
	12. 13.	Input data for DELETDELH program DELETDELH program listing	100 101
	12. 13.	Input data for DELETDELH program DELETDELH program listing	100 101
	12. 13.	Input data for DELETDELH program DELETDELH program listing	100 101
	12. 13.	Input data for DELETDELH program DELETDELH program listing	100
	12. 13.	Input data for DELETDELH program DELETDELH program listing	100
	12. 13.	Input data for DELETDELH program DELETDELH program listing	100
	12. 13.	Input data for DELETDELH program	100
	12.	Input data for DELETDELH program	100
	12.	Input data for DELETDELH program	100
	12.	Input data for DELETDELH program	100
	12.	Input data for DELETDELH program	100
	12.	Input data for DELETDELH program	100
	12.	Input data for DELETDELH program	100
	12.	Input data for DELETDELH program————————————————————————————————————	100
	12. 13.	Input data for DELETDELH program————————————————————————————————————	100
	12. 13.	Input data for DELETDELH program————————————————————————————————————	100
	12.	Input data for DELETDELH program————————————————————————————————————	100
	12.	Input data for DELETDELH program	100
The and need called ground above a GWFLOW, condited water I like accordance to the a	12.	Input data for DELETDELH program————————————————————————————————————	100
The and need to be a seed to a seed	12. 13.	Input data for DELETDELH program	100
The and need to be a seed to a seed	12. 13.	Input data for DELETDELH program————————————————————————————————————	100
The and need to be a seed to be seed to be a	12. 13.	Input data for DELETDELH program	100
The and need to be a seed to a seed	12. 13.	Input data for DELETDELH program	100

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM (SI) OF METRIC UNITS

A dual system of measurements--inch-pound units and the International System (SI) of metric units--is given in this report. SI is a consistent system of units adopted by the Eleventh General Conference of Weights and Measures in 1960. The conversion factors for terms used in this report are as follows:

Multiply inch-pound unit	Ву	To obtain SI unit
acre	4,047	square meter (m ²)
inch (in.)	25.40	millimeter (mm)
inch per day (in/d)	25.40	millimeter per day (mm/d)
foot (ft)	0.3048	meter (m)
foot per day (ft/d)	0.3048	meter per day (m/d)
foot per year (ft/yr)	0.3048	meter per year (m/year)
foot squared per day (ft ² /d)	0.09290	meter squared per day (m ² /d)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km ²)

AND THE STATE OF THE STATE AND SELECTION AND THE STATE OF THE STATE OF

METHODS AND APPLICATIONS OF DIGITAL-MODEL SIMULATION OF THE RED RIVER ALLUVIAL AQUIFER, SHREVEPORT TO THE MOUTH OF THE BLACK RIVER, LOUISIANA

By A. H. Ludwig and J. E. Terry

lights, observed Vator-table and potentionetric levels with maintaining

readenable limits on the rate of accretion to the aquifer.

ABSTRACT

The Red River Waterways Project of the U.S. Army Corps of Engineers provides for the construction of a series of locks and dams on the Red River from the Mississippi River to Shreveport, La. The locks and dams will cause a permanent rise in the level of the river, creating changes in the ground-water flow system. The U.S. Geological Survey, in cooperation with the Corps and the U.S. Soil Conservation Service, began an investigation in 1968 to study the effects of the planned navigation pools on the ground-water flow regime.

The Red River downstream from Shreveport flows through an alluvial valley that ranges from 2 to 12 miles (3.2 to 19 kilometers) in width. Along the thalweg of the valley, the alluvium ranges from 75 to 200 feet (23 to 61 meters) in thickness and is composed of a silt and clay layer, underlain by a coarse sand and gravel aquifer. The aquifer is hydraulically connected in varying degrees to the Red River and its major tributaries.

The methods used in the investigation involved digital modeling of steady-and nonsteady-state conditions. The nonsteady-state model, utilizing a program called SUPERMOCK, was designed to simulate transient stress and response in a ground-water flow system that includes a water table in a confining layer above an artesian aquifer. The steady-state model, utilizing a program called GWFLOW, computes the head response in an aquifer due to various boundary conditions.

Principal data requirements for the models include climatic data, definition of the hydraulic characteristics of the upper confining layer and aquifer, water-table levels in the upper confining layer and potentiometric levels in the aquifer, and stream-stage data for the Red River and its tributaries.

In addition to the simulation models, several computer programs were developed to aid in preparation of data and in the calibration of the models. The programs were designed to compute the harmonic-mean water level at each observation well (AVERAGE), compute the harmonic-mean conductivity for layered

materials and the potential upward movement of water due to evapotranspiration at the land surface (ATMOFLUX), compute daily evapotranspiration (POTEET), provide main-stem and tributary stream-stage data sets for the nonsteady-state model (RIVCHANGE and TRIBCHANGE), and to compute the change in the rate of evapotranspiration due to a change in protentiometric head (DELETDELH).

Calibration techniques unique to each of the models were developed for the investigation. The calibration procedure for the nonsteady-state model involved reproducing, by manipulation of model parameters within plausible limits, observed water-table and potentiometric levels while maintaining reasonable limits on the rate of accretion to the aquifer.

INTRODUCTION

Background of the Investigation

The Red River Waterways Project of the U.S. Army Corps of Engineers was authorized by the 90th Congress in the Rivers and Harbors Act of 1958. Project plans include a 9- by 200-foot (2.7- by 61-m) navigation channel, beginning at the confluence of the Red and Mississippi Rivers and winding northwestward along the present course of the Red River to Shreveport, La. From Shreveport the channel will follow Twelvemile and Cypress Bayous to a point in Lake O' the Pines Reservoir near Daingerfield, Tex. (fig. 1). A series of eight locks and dams will be required to provide the navigation depths and the necessary 225-foot (69-m) lift from the Mississippi River to the head of navigation.

The natural ground-water flow system in the Red River alluvial valley will be altered by the formation of navigation pools except at locks 7 and 9, which are to be built into existing dams on Caddo Lake and Lake 0' the Pines. Predominant effects of the navigation pools on the ground-water regime will be a rise in water levels and changes in the ground-water flow pattern. In April 1963, at the request of the Corps of Engineers, the U.S. Geological Survey began a preliminary study of the preconstruction and postconstruction ground-water conditions. The study characterized, using available data, the existing ground-water conditions in the valley and provided steady-state projections of the effects of proposed navigation structures on ground-water levels. The projections were made with the aid of an analog model.

In 1968 the Corps requested that the Geological Survey refine the projections made in the earlier study and that a continuing ground-water data-collection program in the Red River Valley be established. The study area was the alluvial valley from the confluence of the Red and Black Rivers to Shreve-port, La., a distance of 241 river miles or 388 km (fig. 2). The Corps of Engineers considered several arrangements of either five or six locks and dams within this reach of the river. An arrangement of five locks and dams, known as the B-3 modified plan, was considered the most feasible plan of construction.

The effects of increased river stages, caused by the formation of navigation pools, on the ground-water regime were projected for steady- and nonsteady-

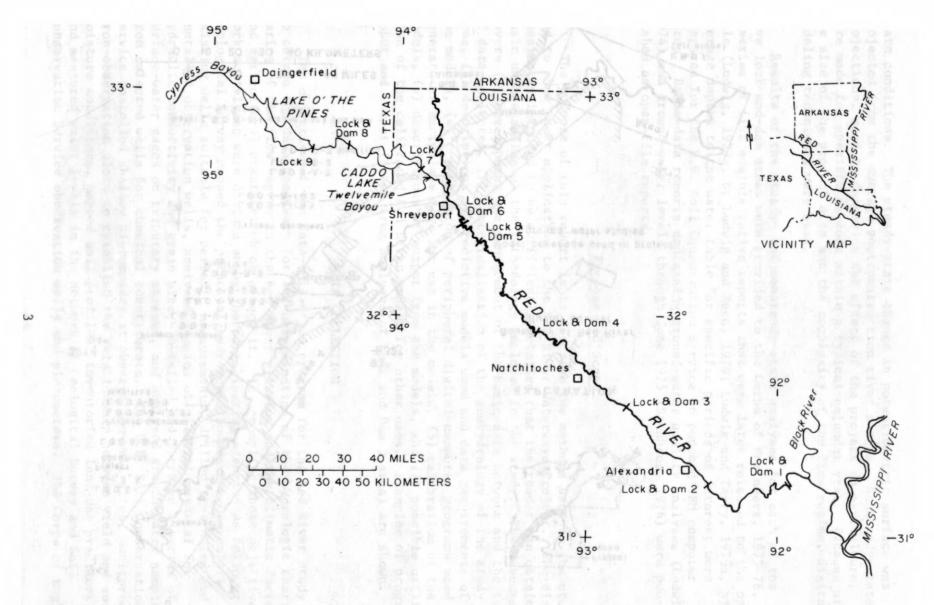


Figure 1.--Planned navigation features, Red River Waterways Project.

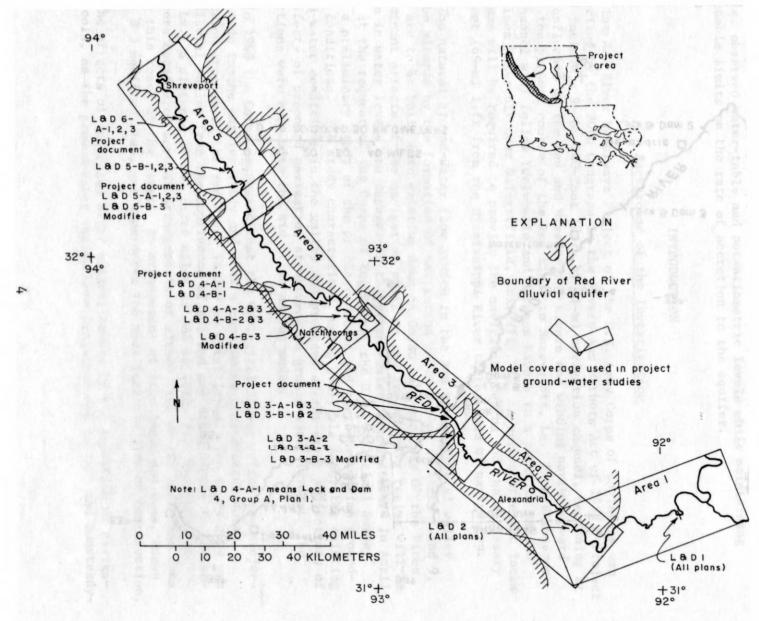


Figure 2.--Location of project area and model coverage.

state conditions. The steady-state change in potentiometric surface was projected from the average postconstruction river stages. Nonsteady-state projections, used to determine the effect of the project on agriculture, were made for specific periods within a typical calendar year. Because of the size of the project area and the complexity of the flow regime, digital-modeling techniques were used.

Results of the steady- and nonsteady-state analyses for each of the five lock-and-dam areas were provided to the Corps of Engineers, 1975-76, in a series of five administrative reports that were later released to the open file (Ludwig, 1979a, b; Ludwig and Reed, 1979; Ludwig and Terry, 1979a, b). Average depths to the water table for specific periods of interest were prepared for the U.S. Soil Conservation Service on punched IBM computer cards. Basic-data reports containing ground-water quality analyses (Ludwig, 1974) and ground-water levels through June 1975 (Stephens, 1976) were published as open-file reports.

Purpose and Scope

The purpose of this report is to describe the methods used in the study and to show their application to the Red River Waterways Project. The discussion is intended to be sufficiently detailed that the reader can obtain a basic understanding of the methodology employed in the study. The discussion covers (1) development and management of the basic-data network and the types of data collected, (2) conceptualization of the geohydrology of the study area, (3) descriptions of predictive models used and data requirements of the models, (4) presentation of peripheral digital-computer programs used to generate or manipulate data for use in the models, (5) calibration of the models, (6) descriptions of output from the models, and (7) possible utilization of the calibrated Red River models for other uses. Examples of program input and output (taken from analyses of Lock and Dam 3 area) are shown.

DATA COLLECTION

the ranging from I to 10 ft

The objective of the data-collection program for the Red River study was to obtain the data necessary for the determination of the hydrologic characterics of the flow regime in the Red River alluvium and the climatic factors and agricultural practices which affect it. To accomplish these objectives, work activities were divided among the participating agencies as follows: Geological Survey mapped the principal hydrologic boundaries, inventoried existing wells suitable for periodic measurements, drilled test holes and installed observation wells, analyzed samples of alluvial material for hydraulic conductivity and grain size, installed and operated a series of surface-water gages on tributary streams, and analyzed ground-water samples from selected wells for chemical constituents. The U.S. Soil Conservation Service installed shallow piezometers at observation-well sites, monitored crop-observation plots to establish the relationship between yield and soilmoisture conditions, mapped soil profiles, inventoried land-use practices, and measured water levels in the network of Geological Survey and Soil Conservation Service observation wells and piezometers. The Corps of Engineers provided average preconstruction and postconstruction stage profiles of the Red River to be used in developing input to the steady-state model. The Corps also provided time-variant preconstruction and postconstruction stage data in the form of 5-day averages at 2-mile (3.2-km) increments for the period December 1967 to September 1973 for the entire reach of the Red River in the project area.

The test-drilling program conducted by the Geological Survey was completed during a series of field sessions from 1968 to 1971. Approximately 350 test holes were drilled in the valley, from Shreveport to the mouth of the Black River. Test holes were drilled with solid-stem power-auger drilling equipment, and soil samples were collected at selected depths for analyses of hydraulic conductivity and particle-size distribution. Most of the test holes were drilled and logged through the entire alluvial section and into the underlying Tertiary bedrock. The test holes were cased with 1½-inch (32-mm) galvanized-iron pipe and screened with 3-foot (0.9-m), 60-gage well screens. The screens were set opposite coarse sand and gravel at depths ranging from 20 to 140 ft (6 to 43 m) below the land surface. The locations of the observation wells are shown in figures 3A-E.

In the vicinity of the proposed construction sites and along the river, the wells are more closely spaced in anticipation of greater variations in water levels in these areas. At greater distances from the river, fewer wells are required. The amount of pumpage from the alluvium is small; therefore, where little change was expected, the data from a particular well could be extrapolated over a relatively large area. The density of wells ranged from one well per square mile $(2.6~{\rm km}^2)$ in the vicinity of the locks and dams to about one well per 3 mi 2 $(7.8~{\rm km}^2)$ elsewhere in the valley.

Shallow piezometers were placed adjacent to most of the observation wells to obtain data on the position of the water table in the upper confining layer. The piezometers consisted of lengths of 3/4-inch (19-mm) galvanized-iron pipe, driven into the ground to selected depths ranging from 1 to 20 ft (0.3 to 6.1 m) below the land surface. The lower end of the pipe was left open to the soil to allow movement of water into and out of the pipe. Two to five piezometers were installed at each observation-well location, depending on the variations in lithology in the upper section.

Water-level measurements in all observation wells and piezometer tubes were made monthly by Soil Conservation Service personnel. Digital recorders were installed on 16 wells in the study area. Fourteen of the wells were near the Red River to provide daily water-level data for the computation of aquifer diffusivity. In addition, water samples were collected from all of the observation wells at the time of installation and from many piezometer tubes and analyzed for chemical quality.

Stream-stage data were collected from a network of 45 continuous recorders, staff gages, and wire-weight gages (figs. 3A-E). Most of the gages were part of the regular surface-water data-collection network operated by the Geological Survey and the Corps of Engineers. However, 14 additional gages were installed at intervals along tributary streams between existing recording gages and on

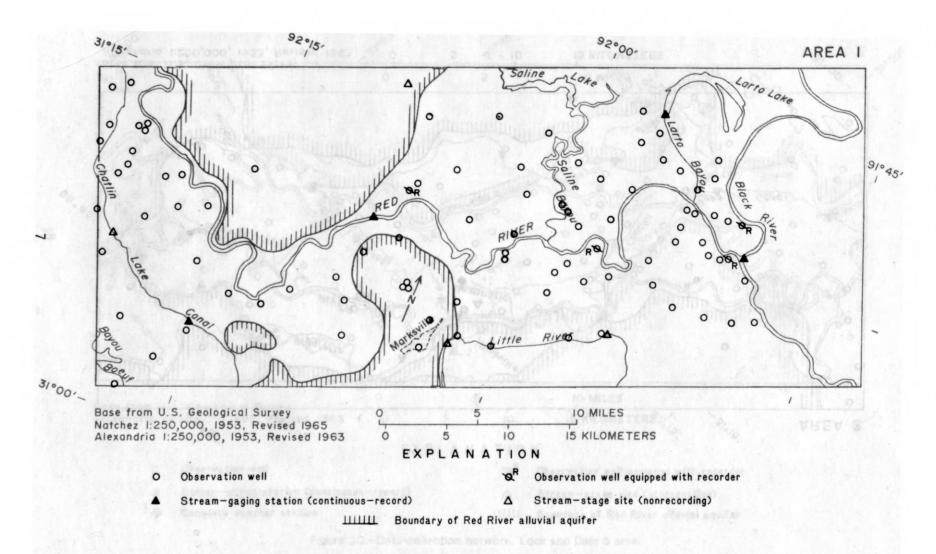


Figure 3A.--Data-collection network, Lock and Dam 1 area.

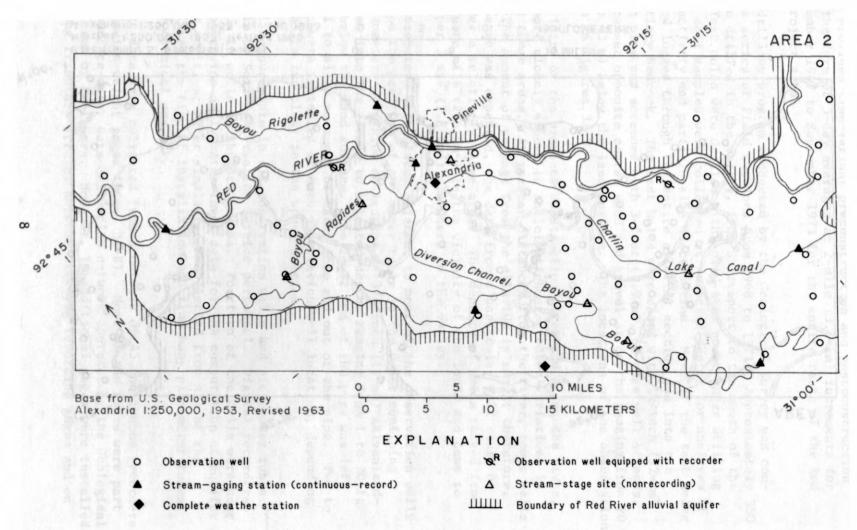


Figure 3B.--Data-collection network, Lock and Dam 2 area.

Figure 3C.--Data-collection network, Lock and Dam 3 area.

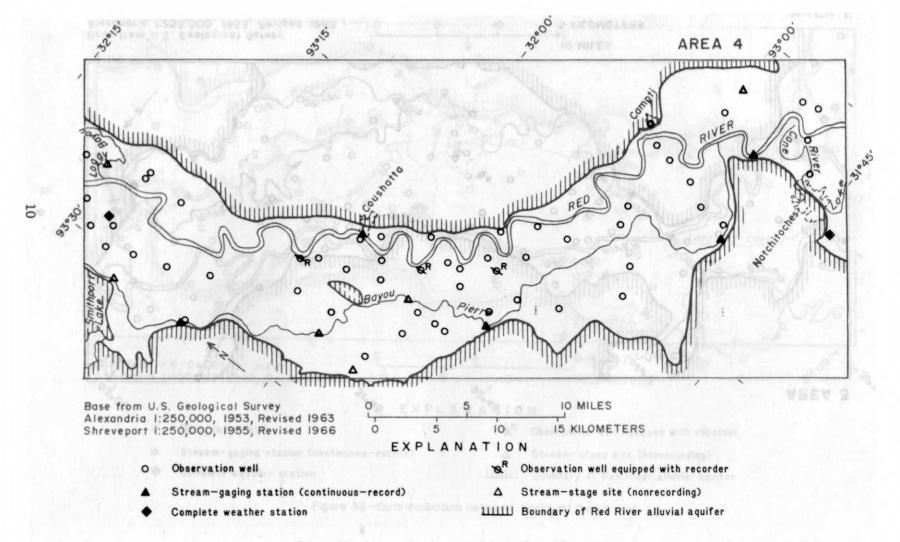


Figure 3D.--Data-collection network, Lock and Dam 4 area.

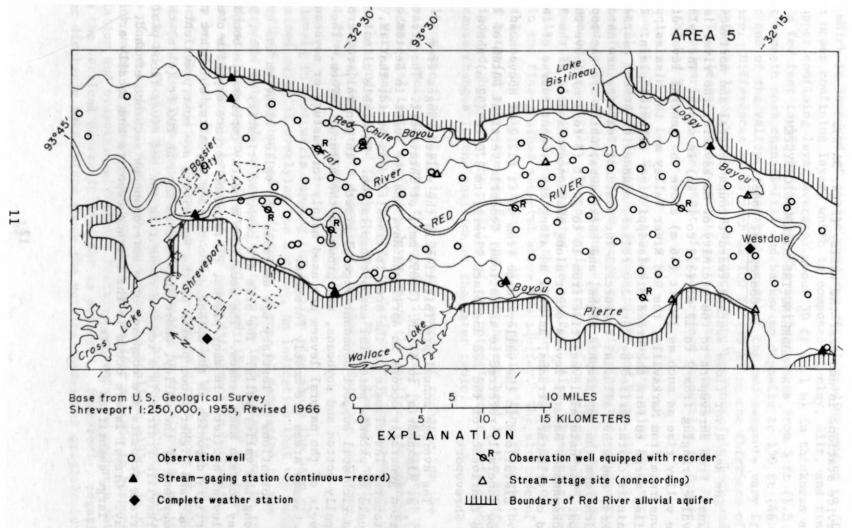


Figure 3E.--Data-collection network, Lock and Dam 5 area.

lakes in the valley. These gages provide supplementary data for the determination of stream profiles. Climatic data, including maximum and minimum daily temperature and daily precipitation, were obtained from five National Weather Service stations in and near the valley (figs. 3A-E).

MODELING THE HYDROLOGIC SYSTEM

Conceptual Model

The Red River flows southeastward through central and northwestern Louisiana. From Shreveport to the vicinity of Marksville, the river is confined in a valley ranging from 2 to 12 mi (3.2 to 19 km) in width. The uplands bordering the valley rise as much as 150 ft (46 m) above the general level of the valley. Downstream from Marksville, the Red River Valley and the Mississippi River valley merge to form the broad Mississippi River alluvial plain. The flood plain is characterized by very low relief, meandering stream courses, oxbow lakes, and other alluvial features. The dominant features are natural levees, which form the topographic highs, and backswamps, which are the topographic lows. The natural levees rise from 10 to 20 ft (3 to 6 m) above the adjoining backswamps. Natural levees occur along abandoned channels of the Red River and on tributary streams, as well as along the present course of the river.

Elevations in the valley range from 40 ft (12.2 m) above mean sea level (now generally referred to as National Geodetic Vertical Datum of 1929), near the confluence of the Red and Black Rivers, to 170 ft (52 m) above sea level, at Shreveport.

The average annual precipitation in the valley ranges from 57 in. (1,448 mm), at Alexandria, to 43 in. (1,092 mm), at Shreveport. The greatest precipitation generally occurs in April and May, and the least in September and October. The climate of the area is classified as humid; that is, precipitation equals or exceeds potential evapotranspiration. Favorable climatic conditions and rich soil support abundant vegetal growth. In general, row crops, principally cotton and soybeans, are grown on the natural levees. The lower levels of the natural levees are used mainly for pasture or soybeans, and the backswamp areas are mostly forested.

Formations of Tertiary age underlie the valley alluvium and crop out along the valley walls. The beds are composed primarily of clay, but locally they contain sand lenses. The beds form a nearly impermeable boundary to the alluvial aquifer. In many places, Pleistocene terrace deposits overlie the Tertiary deposits in the upland. The terrace deposits, which are remnants of older and higher flood plains of the Red River, are most prevalent in the lower end of the valley, where they are as much as 200 ft (61 m) thick. The Marksville Prairie is a terrace remnant in the Red River flood plain. The terrace deposits are composed of a heterogeneous sequence of sand, silt, and clay. Gravel layers occur in the terrace deposits and locally are the source of large quantities of water.

The alluvium in the valley generally ranges from about 75 ft (23 m) in thickness, in the upper end of the area, to about 200 ft (61 m), downstream from Marksville. The alluvium can be divided into two segments: a lower unit or aquifer, which is composed of coarse sand and gravel grading upward to fine sand, and an upper confining layer, which is composed of clay, silt, and fine sand. The upper confining layer averages about 30 ft (9.1 m) in thickness and ranges from a few feet to 140 ft (43 m). The aquifer ranges from 5 ft (1.5 m) in thickness beneath some channel-fill and backswamp deposits to 150 ft (46 m) in the lower end of the valley. The thicknesses of the two segments vary from place to place. Differences of as much as 100 ft (30 m) in the thickness of the upper confining layer within short distances have been noted in Lock and Dam 1 area. To a lesser extent, variations in thickness occur at many places in the valley, primarily as the result of fine-grained deposition in former channels of the Red River.

Throughout the Red River Valley, the Red River and its major tributaries are hydraulically connected in varying degrees to the Red River alluvial aquifer. Therefore, changes in stream stages resulting from the construction of the proposed locks and dams would induce similar changes in the potentiometric surface of the aquifer. The potentiometric surface refers to the level to which water will rise in wells tapping the aquifer. Also, throughout the Red River Valley a water table exists as the upper surface of the zone of saturation in the fine-grained material above the aquifer. The altitude of the water table at any point is a function of the transient flow through the fine-grained material above the aquifer and the transient head in the aquifer. Therefore, induced changes in the position of the potentiometric surface would indirectly cause changes in the position of the water table.

Rainfall on the flood plain is the primary source of recharge for the alluvial aquifer. Moisture reaches the aquifer indirectly by infiltrating the fine-grained material in the confining layer above the aquifer. An unknown, but probably very small, amount of recharge is derived from the formations of Tertiary age that underlie and flank the valley. Most of the water moving downgradient through the terrace deposits is discharged into the tributary streams that flow along the margin of the valley.

Water levels in most wells tapping the aquifer rise above the base of the fine-grained material overlying the aquifer, an indication that the water is under confined or semiconfined conditions. A zone of saturation in the upper fine-grained material, extending from near the land surface down to the aquifer, indicates the presence of water-table conditions. These two conditions exist simultaneously because of the great difference in hydraulic conductivity between the fine-grained material overlying the aquifer and the aquifer itself. The position of the water table may be either above or below the potentiometric level in the aquifer, as reflected by the direction of the resultant vertical flow in the fine-grained material between the water table and the top of the aquifer. Accretion, as defined by Stallman (1956), is the rate at which water is gained or lost through the aquifer surface in response to precipitation and evapotranspiration. Positive accretion or recharge takes place where the vertical hydraulic gradient is downward. Conversely, negative accretion or discharge takes place where the vertical hydraulic gradient is upward.

The natural movement of water in the alluvium is toward discharge points along the Red River and its tributaries in the valley. Because pumpage of water from wells is not significant, water levels in the alluvium fluctuate in response to seasonal variations in precipitation, evapotranspiration, and to changes in river stage.

The recharge, movement, and discharge of water from the alluvial aquifer are shown graphically in the idealized section in figure 4. The direction of water movement, indicated by arrows, shows that the aquifer is being recharged in zone 1 where the gradient is downward through the clay and silt. Discharge takes place to the Red River and vertically upward in zone 2. The flow conditions shown in the diagram may change. At any given location, the rate of accretion is neither constant nor in the same direction at all times. Seasonal weather changes, changes in river stage, and pumping may cause variations in the magnitude and direction of water movement in the aquifer.

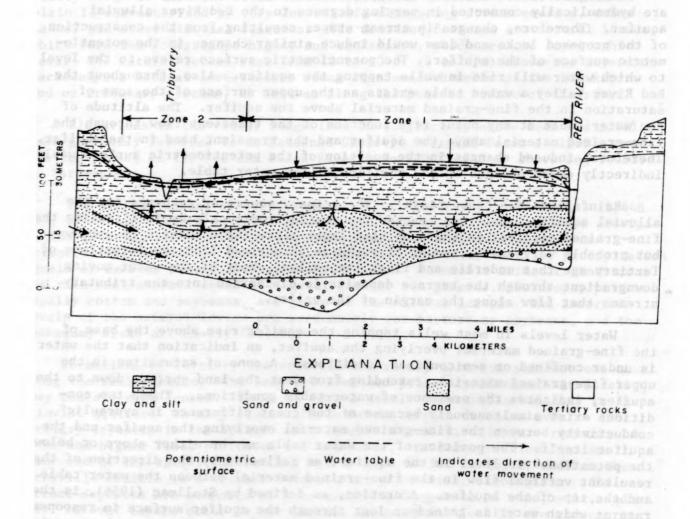


Figure 4.--Idealized hydrogeologic section of the Red River Valley

Digital Model

Two types of digital models were used in the analyses. A steady-state model, GWFLOW (Bedinger and others, 1973), was used to provide projections of changes in the potentiometric surface. A nonsteady-state model, SUPERMOCK (Reed and others, 1976), was used to simulate fluctuations of the head in the aquifer and the water table. For purposes of analysis, the project area was divided into five overlapping model areas. Each area contained one or more of the proposed lock-and-dam construction sites. These areas are identified by referring to a particular lock-and-dam area (fig. 2). To aid the Corps of Engineers in determining the best arrangement of locks and dams, steady-state analyses were run for all alternate plans, including the B-3 modified plan. Specifications for dam locations and pool elevations for the plans considered are shown in table 1. The nonsteady-state model was used to make projections for the B-3 modified plan only.

The framework for the digital models consisted of a rectangular grid of 34 rows and 80 columns superimposed on a map of the area having a scale of 1:62,500. The spacing between each intersection (node) in the grid represented a distance of 0.5 mi (0.8 km). Thus, each model represented a 17- by 40-mile (27- by 64-km) area. Five such models were used, each representing a lock-and-dam area, to cover the 190-mile (306-km) reach of navigation channel in the study area (figs. 2, 3A-E).

The examples used in this report to illustrate the various model inputs and outputs are taken from the analysis of Lock and Dam 3 area. The tables and alphameric maps employed are representations of the modeled area; each symbol or figure represents a value for a grid node (which represents an area 0.5 by 0.5 mi, or 0.8 by 0.8 km).

To provide for continuity in modeling the entire navigation reach, the models were designed to include an area of overlap on the adjacent model. Adjacent models were overlapped a minimum distance equivalent to 6 mi (9.7 km). This overlap aided in the identification of errors associated with model boundary conditions and enabled the preparation of a complete suite of data for the navigation reach. As the models for adjacent areas were analyzed, the data developed for areas common to each model were examined and compared to determine the extent of boundary effects. Model boundaries parallel to the river were placed at a distance far enough from the river so that the effects of river-induced water-level changes would not extend to the boundaries.

Nonsteady State

Nonsteady-state analyses for the investigation were made by using three digital programs called SUPERMOCK, DATE, and HYDROG (Reed and others, 1976), which were developed particularly for this study. SUPERMOCK was designed to simulate transient stress and response in a ground-water flow system that includes a water table in the confining layer above an artesian aquifer. The model incorporates all the components of stress in the flow field. SUPERMOCK models three component layers: a soil-moisture-accounting component, a vertical-flow component, and a horizontal-flow component (fig. 5). DATE assigns calendar

Table 1.--Specifications for lock and dam arrangements studied in the investigation

Plan designation			
Project document		44	40
or albergranden; 16 cove	2	87	60
to the Red River	3	152	95
Paradian the Salaminay	4	- 206	115
levations for the plans	5	243	135
	and the second second	270	150
Group A, plan 1	acvectnt in t	44	40
	2	87	65
consisted of a rectangula	3 (6170)	145	95
up of the area having a s			115
ection (node) in the grid			135
		270	150
Group A, plan 2,		44	40
m) reach of navigation ch		87	60
12 310121281 10 113033 (5	3	137	90
	4 000	195	115
llustrate the various mor	l of 5roger al	243	135
Lock and Dam 2 area Th		270	150
Group A, plan 3	- 1	44	40
rid node (which remoser	2 2	87	65
	3	145	90
	4	195	115
the entire navigation of	onlie 5	243	135
	6	270	150
Group B, plan 1	1	44	40
tion of errors associate	2	87	65
	3	145	95
m wrow gasts insomibs to	1.	206	120
del were examined and con	-	250	145
Group B, plan 2	dary effects	and eparts for ha	40
from the river so that		87	65
	3	1/5	90
	4	195	120
	5		145
Group B, plan 3	Nons Leady S	44	40
0.143	2	87	60
	3	137	90
		7 O T.J.A.H.H 기존 ~ 발티얼	120
study. SHPERMOOK was d	5	250	145
Group B, plan 3	Larry 101 VIII		40
modified	L 2 2 1 1 noo a	87	58
tress in the flow field.	3		8/
sture-accounting compone	4 denogram	185	115
sture-accounting compone conent (fig. 5). DATE as	ontal-file com		145

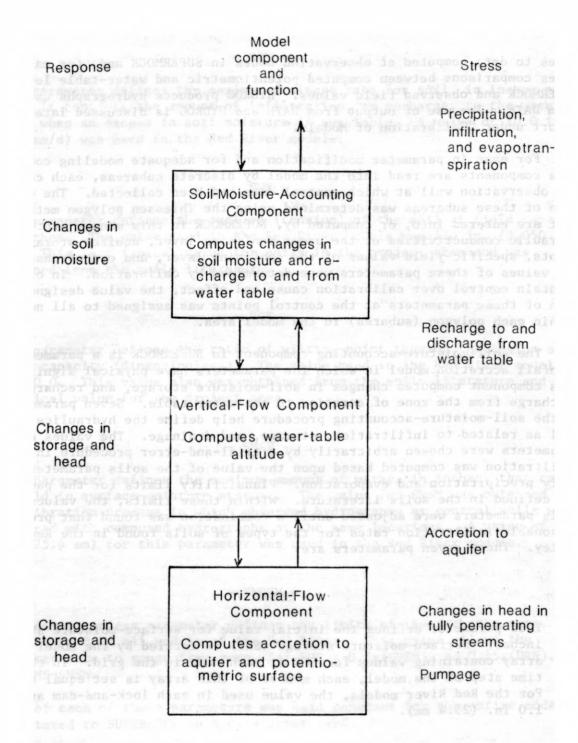


Figure 5.--Relation between soil-moisture-accounting, vertical-flow, and horizontal-flow components of SUPERMOCK program. (From Reed and others, 1976.)

dates to data computed at observation nodes in SUPERMOCK and, for calibration, makes comparisons between computed potentiometric and water-table levels from SUPERMOCK and observed field values. HYDROG produces hydrographs using output from DATE. The use of output from DATE and HYDROG is discussed later in this report under "Calibration of Models."

For ease in parameter modification and for adequate modeling control, key data components are read into the model by discrete subareas, each containing one observation well at which control data had been collected. The configuration of these subareas was determined using the Thiessen polygon method. Data that are entered into, or computed by, SUPERMOCK in this manner are: the hydraulic conductivities of the upper confining layer, aquifer storage coefficients, specific-yield values of the confining layer, and evapotranspiration. The values of these parameters were determined by calibration. In order to maintain control over calibration cause and effect, the value designated for each of these parameters at the control points was assigned to all nodes within each polygon (subarea) in the model area.

The soil-moisture-accounting component in SUPERMOCK is a parametric rainfall accretion model in which the parameters have physical significance. This component computes changes in soil-moisture storage, and recharge to and discharge from the zone of aeration to the water table. Seven parameters used in the soil-moisture-accounting procedure help define the hydraulics of the soil as related to infiltration, storage, and drainage. The values of these parameters were chosen arbitrarily by a trial-and-error procedure in which infiltration was computed based upon the value of the soils parameters and daily precipitation and evaporation. Plausibility limits for the parameters are defined in the soils literature. Within these limits, the values of the soils parameters were adjusted until a combination was found that produced reasonable infiltration rates for the types of soils found in the Red River Valley. These seven parameters are:

- SMSIN -

This parameter defines the initial value for surface-moisture storage, in inches. Surface-moisture storage (SMS) is carried by the model in an array containing values for SMS at each node in the grid. In the first time step of the model, each member of this array is set equal to SMSIN. For the Red River models, the value used in each lock-and-dam area was 1.0 in. (25.4 mm).

- KSAT -

This parameter defines the saturated hydraulic conductivity for soil, in inches per day. For the Red River models, a value of $10.0 \, \text{in/d} \, (254 \, \text{mm/d})$ was used. This value was within plausible limits and seemed to produce the best results based upon observed data.

This parameter defines the maximum drainage rate for soil, in inches per day. It controls the amount of infiltration, or recharge, to the water table when an excess in soil moisture is available. A value of 10.0 in/d (254 mm/d) was used in the Red River models.

piracing, or megalive atress, is sul- TWS - I from sull-moisture storage up to

This parameter defines the suction (tension) of the soil at field capacity, in inches. The value used in the Red River models was 120 in. (3,050 mm). This is a typical value for soils in the project area and was obtained from the soils literature.

the potentional fit and the sale mo - RGF - on the sale restriction of the sale

This parameter defines the ratio of wilting-point tension to tension at field capacity (dimensionless). The value used in the Red River models was 40.0. This value also was obtained from the soils literature and is a typical value for the project area.

layer after soil moisture is deplet - MRMS - into oq-asspotration from

This parameter defines the maximum amount of water, in inches, that can be held in surface-moisture storage. The value for SMSM was obtained by a calibration process in which observed hydrographs at control wells were compared with computed hydrographs at the same locations. A value of 1.0 in. (25.4 mm) for this parameter was used in the Red River models.

and lower the company of the contract of the c

This dimensionless parameter defines the limits of the recharge rate. It was set to 3 in all models of the Red River. This value allows the recharge rate to range from zero, for SMS < 0.5x(SMSM), to 0.15x(DRN), for SMS=SMSM.

The value of each of these parameters was held constant for the entire model and was entered to SUPERMOCK on a data input card.

The stress on the soil-moisture-accounting component is the daily difference between precipitation and potential evapotranspiration which is input to SUPERMOCK on cards. When the stress is positive, infiltration to soil moisture is computed as a function of precipitation in excess of evapotranspiration, the amount of moisture already in storage, and the hydraulic properties of the soil. Infiltration, or positive downward flux, is computed by the model, using a modified version of a routine from a model by Dawdy, Lichty, and Bergmann (1972, p. B5-B8). This routine, which uses 5-minute rainfall periods, was modified to correspond to the 1-day rainfall periods used in this model.

Overland runoff, or infiltration residual computed in the routine of Dawdy, Lichty, and Bergmann (1972), was dropped from the soil-moisture-accounting procedure in SUPERMOCK. Due to the 1-day rainfall period, it was necessary to impose an upper limit (SMSM), as previously mentioned, on soil-moisture storage because redistribution of moisture occurred only once each day. The value of this limit used in the Red River models was 1 in. (25.4 mm). Because the surficial material of the Red River alluvium is generally fine grained, a limit of soil-moisture storage of 1 in. (25.4 mm) is reasonable. Evapotranspiration, or negative stress, is subtracted from soil-moisture storage up to the amount of water available. When soil moisture is reduced to zero, evapotranspiration is derived from ground-water storage in the water-table zone in the confining bed until soil moisture is replenished from rainfall.

The vertical-flow component in SUPERMOCK computes the elevation of the water table in the fine-grained material above the aquifer as a function of the elevation of the water table in the preceding time step, the elevation of the potentiometric surface, and recharge from the soil-moisture zone. By use of this water-table elevation, flow to or from the aquifer can be determined and used by the horizontal-flow component. SUPERMOCK computes the redistribution of soil moisture (recharge) to the water table as a decaying exponential function of soil moisture throughout the range from 1 to 0.5 in. (25.4 to 12.7) mm). For soil moisture less than 0.5 in. (12.7 mm), SUPERMOCK sets recharge to the water table to zero. Initially, the model takes evapotranspiration from soil moisture and then from ground-water storage in the upper confining layer after soil moisture is depleted. The limit on evapotranspiration from ground water is the steady-state rate of upward movement of water, as determined by the method of Ripple, Rubin, and van Hylckama (1972). ATMOFLUX, a peripheral data-preparation program developed for the investigation, was used to compute these data. ATMOFLUX uses a method requiring a specified relation between unsaturated hydraulic conductivity and soil suction (Ripple and others, 1972, p. A6, eq. 10). Two parameters of this specification, n, an integer soil coefficient, and S_2^1 , soil suction at which the unsaturated conductivity is one-half the saturated conductivity, are used to express the limiting steady-state evapotranspiration in a nondimensional form. Values of n, ranging from 2 for clays to 5 for sands, and values of S_2 , ranging from 1 for sands to 2 for finer materials, were used in this study. Output from ATMOFLUX includes punched cards containing values of evapotranspiration divided by saturated hydraulic conductivity for depths to the water table ranging from 1 to 30 ft (0.3 to 9.1 m) for four ranges in hydraulic conductivity associated with each soil coefficient, n. These punched cards are used as input to SUPERMOCK. The actual limiting rate of evapotranspiration used by SUPERMOCK was obtained by multiplying the computed upward rate associated with depth to the water table at a particular time by the saturated hydraulic conductivity of the upper segment (HCU) of the upper confining layer in a particular subarea. The method of Ripple, Rubin, and van Hylckama (1972) assumed bare soil and moisture transport to the land surface. Practically all the Red River project area is covered by vegetation. Therefore, moisture transport was calculated to the base of the root zone. The secretary of the said state in demonstration of

soil. Infiltration, or positive downward flux, is computed by the models using a modified version of a routine from a model by bandy, Lichty, and Bergmann (1972, p. 85-88). This routine, which uses 5-minute rainfall periods was modified to correspond to the 1-day rainfall periods used in this model.

The horizontal-flow component in SUPERMOCK computes the transient elevation of the potentiometric surface in the aquifer. In the Red River models, the stresses on the aquifer that were simulated included the imposition of time-variant stream stages for the main stem of the Red River and its major tributaries and accretion, which is computed by SUPERMOCK as a function of the water-table elevation. Where a computed water table does not exist, the model uses infiltration, or recharge, from the soil-moisture zone as accretion to the aquifer.

The time-step increment used in the nonsteady-state analyses of the Red River models was 10 days. Time-variant stream-stage and climatic data were used as input, and the potentiometric surface and water-table elevations at each node in the grid were computed for each time step.

Calibration of the nonsteady-state model was based upon preconstruction stream stages and comparisons of computed and observed hydrographs at observation wells. After calibration, the model was used to compute postconstruction elevations of the potentiometric surface and water table. Postconstruction output was based upon the imposition of postconstruction stream stages on the main stem of the Red River. The availability of the time-varying elevation of the water table allowed the computation of average depths to the water table for specific periods of interest requested by the Soil Conservation Service.

Vo berluper with responsed not the second state and applications are ", sorthough

Steady-state projections of the postconstruction potentiometric surface in the Red River alluvial aquifer were made using techniques developed during similar studies in the Arkansas River valley (Bedinger and others, 1970). During the Arkansas River study, these techniques were applied to analog modeling. For the Red River investigation, these techniques were incorporated into a digital model called GWFLOW (Bedinger and others, 1973). GWFLOW is a two-dimensional representation of an aquifer.

The principal data needs of the GWFLOW model for use in steady-state analysis are transmissivity of the aquifer, the ratio of change in evapotranspiration to change in aquifer head ($\Delta ET/\Delta H$), change in stream stages, and thickness and hydraulic conductivity of streambed material. To determine the change in head at any point in the aquifer resulting from a change in river stage, the initial potentiometric surface on the stream boundaries is the change in river stage and is zero at all other nodes in the aquifer.

In the steady-state models of the Red River alluvial aquifer, transmissivity was varied over the modeled area, and $\Delta ET/\Delta H$ was entered as varying by discrete subareas. The method used to determine values of $\Delta ET/\Delta H$ is discussed later under "Preparation of Digital-Model Input" and "Calibration of Models." Stress on the models was imposed at appropriate stream nodes as changes in stream stage from preconstruction to postconstruction conditions. The direct effects of changes in stage for streams with partial hydraulic connection were simulated by applying nonuniform streambed thickness and holding the hydraulic conductivity of the streambed material constant. The

values of $\Delta ET/\Delta H$ have a definite controlling effect on the magnitude of change in the potentiometric surface and on the area of influence of stream-stage change.

Time-step increments for GWFLOW were based on computation times entered on cards. The computation times used in the Red River models, which were those that were recommended for GWFLOW, ranged from 0.00130 to 40,000 days in logarithmic increments. Although analyses indicated that most of the water-level changes had taken place in the first 2-3 years, computation times were extended to 40,000 days to insure complete equilibrium. Primary output from the models consisted of changes in the potentiometric surface at each node in the 0.5-mile (0.8-km) grid. This output was used to contour changes in the potentiometric surface in the aquifer resulting from an increase in river stage.

PREPARATION OF DIGITAL-MODEL INPUT

Preparation of input data for use in the GWFLOW and SUPERMOCK models involved the collection and manipulation of field data. Some of the data required, and also the data format, are common to both GWFLOW and SUPERMOCK. However, because of the greater complexity of the SUPERMOCK model, more detailed and varied types of input were required for it than for the GWFLOW model.

Several data-preparation computer programs, hereinafter termed "peripheral programs," were developed during the investigation to process data required by the models. These programs will be discussed in the following sections. Source listings and data-input requirements of these peripheral programs are included as attachments at the end of this report.

Some of the data read into GWFLOW were dependent upon parameter values determined during the calibration of the nonsteady-state model. Therefore, nonsteady-state analyses for each lock-and-dam area were made before the corresponding steady-state analyses for that area. For purposes of discussion, preparation of data for the two models will also be discussed in that order.

Nonsteady-State Model

Varied types of data were prepared for entry into the nonsteady-state model in order to adequately define the flow field. Most of this input is in the form of alphameric maps that are representations of the modeled area. Many of these maps are outputs from the peripheral programs mentioned previously. The primary data input to the model are depicted in the generalized flow chart in figure 6.

ALL ALL THE WAY TO DESIGN THE RESIDENCE

Root Depth was a second and a control

Root depths of vegetation are key factors required by SUPERMOCK in determining the effective depth to the water table for computation of evapotranspiration. Evapotranspiration is modeled as depleting the moisture content in

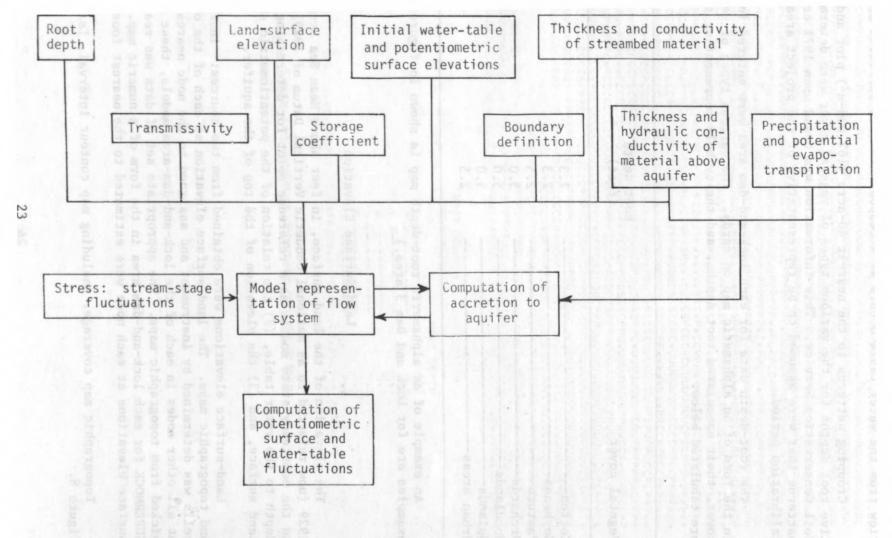


Figure 6.--Flow diagram of digital-model procedure for nonsteady-state analysis.

the soil layer between land surface and the base of the root zone. Upward flow from the water table occurs as a response to this surficial depletion.

Cropping patterns to the nearest 40-acre $(162,000-m^2)$ plot and the effective root depths for the various types of vegetal cover were determined by the Soil Conservation Service. This information was based upon 1971 cropping patterns that were assumed to be representative of the project area for the calibration period.

The root-depth data for each lock-and-dam area were entered into SUPERMOCK in the form of an alphameric map on cards. The various types of vegetal cover, their associated root depths, and the symbols representing those depths are tabulated below:

Vegetal cover	Root depth (feet)	Map symbol
Cotton	2.3	str saloge
Soybeans	2.3	S
Pasture	2.5 -	P
Orchards	5.0	0
Woodlands	5.0	W
Uplands	5.0	U
Urban areas	2.5	E

An example of an alphameric root-depth map is shown in figure 7. (All examples are for Lock and Dam 3 area.)

Land-Surface Elevation

The elevation of the land surface, in feet above Mean Sea Level Datum of 1929 (now referred to as National Geodetic Vertical Datum of 1929), was used in the nonsteady-state models as a reference point for determining (1) the depth to the water table, (2) the relation of the potentiometric surface to land surface, and (3) the elevation of the top of the aquifer.

Land-surface elevations were obtained from two sources: instrument levels and topographic maps. The land-surface elevation at each of the observation wells was determined by instrument and assigned to the node nearest the well. At all other nodes in each of the lock-and-dam-area models, these data were picked from topographic maps. The appropriate set of data was read into SUPERMOCK for each lock-and-dam area in the form of a numeric map. Land-surface elevations at each node were estimated to the nearest foot.

Topographic map coverage, including map contour interval, is shown in figure 8.

UUUUWWCCCCCCPP5PP0WPPPPPWCPWPPPUUUUPPP5WPPP5SWWS5SSPPPPWWPPPUUSSSCCCC5SPP5WWW UUUUUWCCCCPPPWCCCOWPWWW5PWPOPPWPPPPCCCSSPWWWWWWSSSWPWCCWPPWWWWWWWCCCCCSSSPPPWWWW UUUUUWCCCPCCCCCCCCPWPPPSWPWOCWCSSWPSWCSSPSSPWWWOOSSSPCCCWCUUUUUUUUCPCCPPSwWPWWWW UUUUPPPCPCCCPPCPPPCCCCSP000SCCSSWPPWWPPPPPWW0000SSSCCPCWUUUUUUUUUCCCCPPCCPPPWWww UUUUPPPPPPWPWPCCCCPCCCPSSSSSOWCCWWwwPPPPWPOOOSSSCCCUUUUUUUUPSPUPPCCC2CPPPww UUUUUPPWPPPWCC5CCCCCCCCCVPOOOOOCWWPPPPWWCWPOOOSSCPPCWUUUUUUUUPCPUPPPPPOCCPPP UUUUUUPPPPPWPPSPOWWPCCCCCCPP00000PPPPPPPCCCPP00SSSCPPUUUUUUUUUPPUUCCSwwCPPCCPP UUUUUUUPUPPCWPCCCCCCCCOOOUPWPPPPPCCCCPOOOOSPPPUUUUUUUUUUUPPUUUWSWCCCPCCCP ĿႮႱჀႮႮႮჼჃႮႮႮႮႮႮႮႮႮႠႣჿჿჄႼႼႼႼႼႼႼჇႺႺႺႺჼႼႼႼႼჇჿႺႺჼႼႼႼႼჇჿჿႺႽႺႮႱႮႮႮႮႮႮႮႮႮႮႮႮႮႮႮჄႺႼႼႼ_ႯჄ \mathbf{w} $\mathsf{G}_{\mathsf{G}}\mathsf{G}_{\mathsf{G$

Figure 7.--Example of alphameric root-depth map.

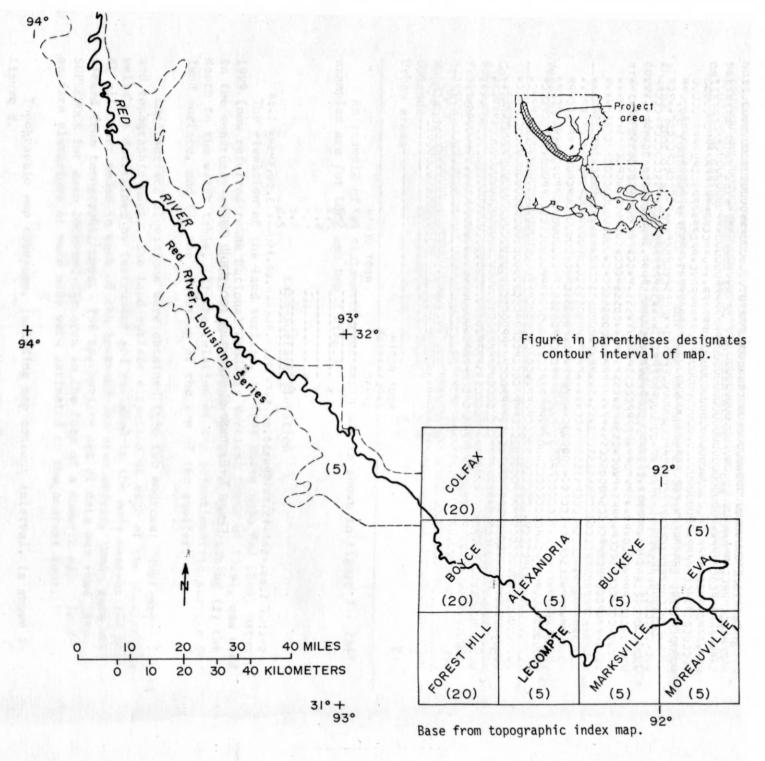


Figure 8.--Topographic coverage of the project area.

Initial Potentiometric Surface and Water Table

The elevation of the water table and potentiometric surface is required by SUPERMOCK as the starting point for computations. In the first time step in the model, the elevation of the water table is set equal to the elevation of the potentiometric surface at corresponding nodes. Therefore, the data input that must be prepared is the initial potentiometric surface.

In the Red River models, the average potentiometric surface for the period of record was used to represent the initial preconstruction potentiometric surface. The elevation of the average potentiometric surface in the aquifer was based on a minimum of 4 years of record. These data were collected from the joint Geological Survey-Soil Conservation Service observation-well network in the valley. Measurements were made monthly in the 350-well network. Water-level measurements at each observation well in a particular lock-and-dam area were averaged on a time-weighted basis using a digital program called AVERAGE, which was developed for this purpose. The only data required by the AVERAGE program are water levels and corresponding dates of measurement at each observation well. A program-source listing, containing input requirements and formats, and an example of program output are included in attachment A. The average values determined from this procedure were plotted and manually contoured to obtain the elevation of the preconstruction potentiometric surface in that lock-and-dam area. The resulting average potentiometric surface represents a hypothetical dynamic-equilibrium condition of head in the aquifer for preconstruction conditions. From the contour map, the elevation of the potentiometric surface was picked for each node in the grid covering a lock-and-dam area. These values were coded into a numeric map containing elevations to the nearest foot at each node. The map was converted into data cards that were used as input to SUPERMOCK.

Observed Potentiometric Surface and Water-Table Elevations

For purposes of calibration, observed levels of the water table and the potentiometric surface were compared with corresponding values computed by SUPERMOCK. The comparisons were made in the DATE program (Reed and others, 1976) that was run in sequence with the SUPERMOCK model. The observed data used in DATE consisted of the spring "high" and fall "low" water table and potentiometric levels for one or more years.

The observed potentiometric levels for the high in the spring and the low in the fall of specified years were read into DATE as exact values. However, because the position of the water table at some sites known only within a certain range, several input format options are allowed. Water-table values may be entered as being greater than or less than a given value, as being within a closed range, as an exact value, or as being unknown.

An example of a calibration table produced by DATE and a discussion of the use of the data are given in the section "Calibration and Verification of the Nonsteady-State Model." Observed data are printed in the table according to the format in which they were entered to DATE. Use of the observed data for comparisons with computed data was invaluable in the calibration process.

Transmissivity

The transmissivity of the alluvial aquifer in the study area ranges from 3,000 to 15,000 ft²/d (279 to 1,390 m²/d). These values were determined at selected sites by analysis of pumping-test data and by analysis of aquifer response to river-stage fluctuations. These data were extrapolated to other areas of the valley by developing relationships between hydraulic conductivity and particle size at the pumping-test sites and extending these values, on the basis of grain-size relationships and thickness, to test-hole sites.

Pumping tests conducted by the Geological Survey as part of earlier studies of the alluvium (Newcome, 1960) provided values of transmissivity at six locations in the valley. Transmissivity values, determined from these tests, ranged from 5,300 to 13,000 ft 2 /d (492 to 1,210 m 2 /d). The hydraulic conductivity ranged from 130 to 160 ft/d (40 to 49 m/d).

Approximately 150 samples of aquifer material were collected from test holes and analyzed for hydraulic conductivity and particle size during the investigation. From these analyses, a relationship was developed between hydraulic conductivity and particle size, using the method of Johnson and Bedinger (1967). From this relationship, an average value of hydraulic conductivity was developed for the alluvial aquifer. Conductivity values obtained by this method were compared with those determined from pumping tests. From these analyses, an average value of hydraulic conductivity of 147 ft/d (45 m/d) was determined for the alluvial aquifer. This value was checked at several locations near the river by using the RIVER-INDUCED FLUCTUATIONS computer program (Bedinger and others, 1973). The transmissivity at each of the test-hole sites was then computed by multiplying the average conductivity by the thickness of aquifer material noted in the test-hole logs.

Transmissivity values for the terrace deposits were estimated using thicknesses obtained from logs of test holes in the deposits. The average hydraulic conductivity was assumed to be 147 ft/d (45 m/d). Terrace deposits were assigned transmissivity values where they are areally extensive and are considered to be hydraulically connected with the alluvial aquifer.

The formations of Tertiary age, which underlie the alluvium and form the uplands bordering the valley, are composed primarily of silt and clay and are relatively impermeable compared with the alluvial aquifer. Estimated transmissivities for sand units in these formations ranged from 50 to 700 ft 2 /d (4.7 to 65 m 2 /d) in areas where they are in hydraulic connection with the alluvial aquifer. These estimates were based upon geologic and pumping-test data collected during earlier studies (Newcome, 1960).

After transmissivity values had been plotted and contoured for the project area, alphameric maps were prepared for each lock-and-dam area; and the data were punched on cards for input to the models. An example of an alphameric transmissivity map from the study and explanation of symbols are shown in figure 9.

```
1 CDEDGEEEEIII VII HHEECBBBBBBCCCBAAAAAAAAABBCCCEEEEEDCCCCDHHIIIIIIIIIIIIIHHCAAAC1
18CEEGGCDEHIIIIIHEEDGCCCCCCCCEBAAAAAAAAAABBCELEEEEEECCCCCDHHHHHHIIIIIIIIIHCCCCCI
1BRDEDCCDEH!IIIIIHEEDDDELHEEEHEBAAAAAAABBDEEELEEEEDCCDDEHHEDEDHIHHHHHHHHHHHHII
1 ABCCEDCCEN I INNI I NEEEEEEEEHHHHHEDBAAABBBBDDDDDDDDDDCCDEHHHDBBBBB I INDDDDDDDH11111
1 ABBCEEDCEHI! HEH! HEEEDDDEHHHHHHDBBBBBBBDDCCCCCCCCCCCCHHDBBAAABE! IDDDDDDHIII!
14ABBCEDGEHIHEEHIHHHEEGHHHEEHHEDCCCCDEEEDCCCCCCCCEHHDBBAAAABEHIHHHHHIIIII111111
1AAAAHBBBBBBCDEEHIIIHEEDDDEEEHHHHHHHEEEEEH1!!!!!!!!HEDGBAAAAAABBBBAABCDDEEGBCCC.
1AAAAAABAAAABCDEEHHHHEEEDCCCDEEEEEEEEEHIIIIIIIIHHEDBAAAAAAAAAAAAAAABDDDDECBBBB
1AAAAAAAAAAH9BDEEEHHHEEEDCCDDDDEEEEEEEEHHHHHHHHHHHEECBAAAAAAAAAAAAAABBBBDECCCC1
1 AAAAAAAAAAAAABCDEEEEHHEEEEEEEEEEEEEEEHHHEEEEEEEEDCBAAAAAAAAAAAAAAAABDEHHHEE 1
```

TRANSMISSIVITY MAP OF AQUIFER AND RESPONDE TRANSMISSIVITY MAP OF ADMINISTRATION OF TRANSMISSIVITY MAP OF TRANSMISSIVITY M EXPLANATION of parentals of the upper containing layer little of statement of sent

```
SYMBOL TRANSMISSIVITY OF THE TRANSMISSIVITY 
   3000.000000
                      C ----- 5000.000000
D ----- 7000.000000
                       muH ------ 11000.00000 mate my the grand as Resemble 4 few (b) m 6 U/s
```

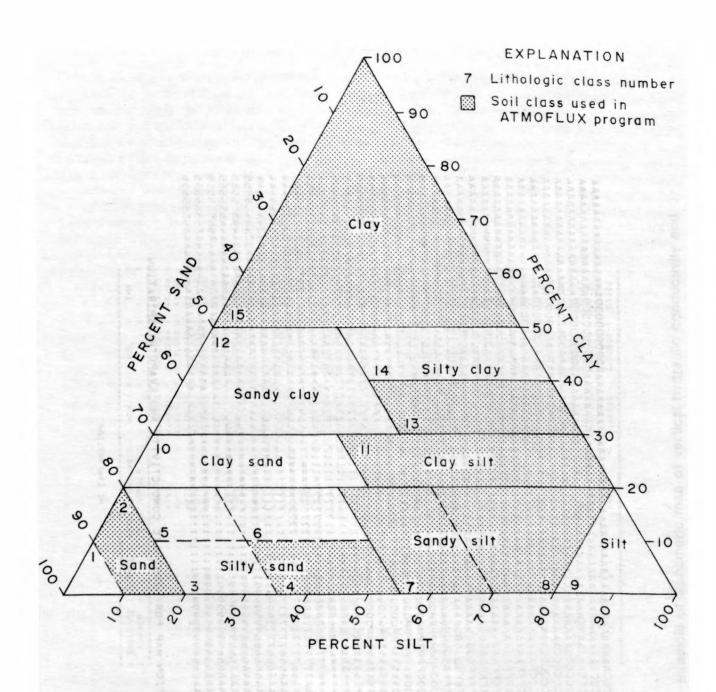
Figure 9.--Example of alphameric transmissivity map.

At comple of an Apparerra age and the accommenter tests defining the all month one same maneline and a local participation of the same and the same and

aliumblyd febia by additioning on auditationen whom and employed the about the

y.oP waysiin

Additional checks were made on the modeled transmissivity values during calibration of the nonsteady-state models. However, only minor adjustments were made, and the maps were used virtually as initially prepared in both the steady- and nonsteady-state models.


Conductivity of the Upper Confining Layer

Movement of water to or from the alluvial aquifer takes place through the upper confining layer, which overlies the aquifer nearly everywhere in the valley. The upper confining layer, which is composed of a heterogeneous sequence of clay, silt, and sand, ranges in thickness from a few feet to 140 ft (43 m). Movement of water through the upper confining layer was modeled as being one-dimensional vertical flow. To provide for greater flexibility in modeling the vertical-flow component, the upper confining layer was modeled as two segments; one segment extending from the base of the root zone to the water table and the other extending from the water table to the top of the aquifer.

Both the upper and lower segments were assigned values of hydraulic conductivity, designated HCU and HCL, respectively. These values were entered in SUPERMOCK by discrete subareas—each subarea having a unique value for HCU and HCL. Each node within a subarea was assigned the same value for HCU and HCL. Initially, HCU and HCL values in a particular subarea were set equal to the same value. This value represented the harmonic mean of the conductivities for materials in the upper confining layer in that subarea. These harmonic—mean conductivities were computed using a digital program, ATMOFLUX, shown in attachment B. The ATMOFLUX program uses as input the thickness and lithologic class for materials in the upper confining layer. Lithologic data for the upper confining layer were obtained from test—hole logs. The scheme used in the study for associating lithologic class and hydraulic conductivity is shown in figure 10.

Hydraulic-conductivity values ranging from 3.0 to 1.0×10^{-5} ft/d (0.9 to 3×10^{-6} m/d) were selected as being the physical plausibility limits within which adjustments could be made to the vertical hydraulic conductivity of the upper confining layer. This range represents the conductivity of materials ranging from fine sand to dense clay. Because of the lateral variability of upper alluvial materials, the initial conductivity values, as determined from test-hole logs, are not necessarily representative of the entire area as modeled. Therefore, the only constraints on adjusting vertical hydraulic conductivity values during calibration was to remain within the physical plausibility limits.

An example of an alphameric map and the accompanying table defining the value of HCU and HCL for each subarea of a lock-and-dam area are shown in figure 11.

Lithologic class number (I)	<pre>Hydraulic conduc- tivity HC(I), (ft/d)</pre>	Lithologic class number (I)	Hydraulic conductivity HC(I), (ft/d)
2 4 7 8	2.65 0.667 0.1 0.133	11 13 15	0.04 0.01 0.0004

Figure 10.--Trilinear graph of soil-classification scheme showing hydraulic-conductivity values for soil classes used in ATMOFLUX program.

AAAAEEEJOOOJOOPP???PPPPOORRESSSAAAAAAAAAAIIIIJJKKKKKLLLLLLDDMMMMMMMMMNNANNNN AAAAEEEOOOOOOPPPPPPPQQQQRRRSSSAAAAAAAVVVVVIIXXXKKKKKLLLLLLMMMMMMMMMMNNNNNNNNN AAAAEEOOOOOOG&PPPPPPQQQQRRRSSTTAAAAVVVVVVVVXXXXXXXKKYYLLLLLLMMMMMMMMNNNNNNNNNN AAAAAE00000055555PPPQQQQRRRRTTTTUUUUVVVWWWXXXXXXYYYYYYYAAMMMMMMZ/NNNNNNNNNN AAAAAEOOO&&\$\$\$\$\$\$\$\$\$PQQQQ@@@++++1UUUUWwwwww222XXZZZZYYYAAAAAMMM///////NNNNNNNN AAAA9999999555555688888@@d++++))))))))1112222277777YAAAAAAAMM////////NNNNNNN AAAAAA^aAAAAAAA66777777778::::::??????====&&&&&&&&>>>AAAAAAAAAAAAAAAAAA333334444

AREA DEFINITION MAP FOR HYDRAULIC CONDUCTIVITY AND EVAPOTRANSPIRATION

Figure 11.--Example of alphameric map of vertical hydraulic conductivity and explanation of symbols.

Relation of Evapotranspiration to Depth to Water

Because the entire valley is covered by vegetation, the removal of water by evapotranspiration is not at the land surface but is at the base of the root zone in the fine-grained layer. To determine the rate of evapotranspiration from the root zone for different depths to water, a function expressing the relationship between dimensionless evapotranspiration and depth to water below the root zone (GWETO) is used by the model. Values of the GWETO function were computed by the ATMOFLUX program (attachment F) and were entered to the model on cards. GWETO includes four different functional relations between evapotranspiration and saturated hydraulic conductivity. The values of the GWETO function for the four ranges in hydraulic conductivity and for depths of from 1 to 30 ft (0.3 to 9.1 m) to the water table are shown in figure 12. The appropriate relation is chosen during program execution based on the value of HCU. The value of evapotranspiration is computed in the program as the product of GWETO at a particular depth to water and the upper hydraulic conductivity (HCU). A detailed discussion of the determination of the GWETO function is given in Reed, Bedinger, and Terry (1976, p. 52).

	Г						

DEPTH TO WATER TABLE (FT)	1	HC<.004	1 .0	004 <hc<.040< th=""><th>1 -</th><th>.040<hc<.400< th=""><th>1 .</th><th>400<hc< th=""></hc<></th></hc<.400<></th></hc<.040<>	1 -	.040 <hc<.400< th=""><th>1 .</th><th>400<hc< th=""></hc<></th></hc<.400<>	1 .	400 <hc< th=""></hc<>
1	1	2.6815	1	1.8021	1	1.5209	1	0.3824
2	1	1.1486	1	0.6498	1	0.4747	1	0.0376
3	1	0.6605	1	0.3068	1	0.1821	1	0.0056
4	+ :	0.4311	1	0.1633	1	0.0763	1	0.0014
5	1	0.3030	1	0.0945	1	0.0351	1	0.0004
6	1	0.2240	1	0.0585	1	0.0178	1	0.0002
7	1	0.1719	1	0.0383	1	0.0098	1	0.0001
8	1	0.1358	1	0.0262	1	0.0058	1	0.0000
9	1	0.1098	1	0.0187	1	0.0037	1	0.0000
10	1	0.0905	1 =	0.0138	1	0.0024	1	0.0000
11	1	0.0758	1	0.0104	1	0.0016	1	0.0000
12	1	0.0644	1	0.0081	1	0.0012	1	0.0
13	1	0.0553	1	0.0064	1	0.0008	1	0.0
14	1	0.0481	1	0.0051	1	0.0006	1	0.0
15	1	0.0421	1	0.0042	1.	0.0005	1 -	0.0
16	1	0.0372	L	0.0034	15	0.0004	1-	0.0
17	1	0.0331	1	0.0029	1	0.0003	1	0.0
18	1	0.0296	1	0.0024	1	50000	1	0.0
19	1	0.0266	1	0.0020	1	200000	1	0.0
50	1	0.0241	1	0.0018	1	0.0001	1	0.0
21	1	0.0219	1	0.0015	1	0.0001	1	0.0
55	1	0.0200	1	0.0013	1	0.0001	1	0.0
23	1	0.0183	1	0.0012	1	0.0001	1	0.0
24	1	0.0168	1	0.0010	1	0.0001	1	0.0
25	1	0.0155	1	0.0009	1	0.0001	1.	0.0
26	1	0.0144	1-	0.0008	1	0.0000	1	0.0
27	1	0.0134	1	0.0007	1	0.0000	1	0.0
28	1	0.0124	i	0.0006	1	0.0000	i	0.0
50	1	0.0116	1	0.0006	1	0.0000	i	0.0
30	1	0.0108	1	0.0005	1	0.0000	i	0.0

Figure 12.--Example of GWETO functions for computation of evapotranspiration.

Thickness of Streambed Material

The Red River and its tributaries do not fully penetrate the alluvial aquifer at all places along their channel. The fine-grained material that exists beneath the stream channels in places retards the movement of water to or from the aquifer. As a result, for preconstruction conditions, water levels in observation wells as close as 200 ft (61 m) to the streams may differ by as much as 3 to 5 ft (0.9 to 1.5 m) from stream levels during transient conditions.

In SUPERMOCK, grid nodes assigned to the main stem of the Red River may optionally be specified as fully or partially penetrating the aquifer. All tributary stream entries are assumed to be partially penetrating. The model requires that all partially penetrating stream nodes be assigned a streambed thickness.

The thickness of material beneath the stream channels was not known initially except through qualitative estimates based on logs of test holes near the stream channels. Therefore, the effective thickness was determined from analysis of SUPERMOCK's response to different thicknesses as indicated by the differences in the computed and observed potentiometric surface at control wells near a stream. The reasonableness of the annual accretion to the aquifer necessary to maintain a computed potentiometric level equal to the observed level at those wells was also considered. An arbitrary value of thickness was assigned to each node in the model that represents a point on a stream channel. Maps showing streambed thickness were then prepared for each of the modeled areas. Separate symbols were used for each stream, and an arbitrary value of thickness was given to each symbol. During calibration, additional symbols were introduced where needed to represent different thicknesses. Where changes were not required, the symbols used initially were retained for ease in identifying various modeled stream channels. For reaches of a stream where zero thickness seemed to be indicated by model response, a very small nonzero value was assigned. The program logic in SUPERMOCK computes no flow through the streambed if a zero thickness is coded for the node in the streambed-thickness map. An example of a streambed-thickness map and its accompanying legend are shown in figure 13. The thickness value associated with the symbols H and C is printed as zero because of the print format in SUPERMOCK. The value is actually a small nonzero fraction. explanation indicates a nonstream node and therefore has no streambed thickness associated with it. The 3's around the edge of the model indicate a noflow boundary.

The thicknesses shown on the maps do not necessarily indicate the physical thickness of fine-grained material at a given location. A single value of 5×10^{-3} ft/d $(1.5 \times 10^{-3}$ m/d) was used in the model as the hydraulic conductivity of the fine-grained material. Therefore, the thickness was adjusted to obtain the correct ratio of hydraulic conductivity to thickness for calibration. Also, because of the 0.5-mile (0.8-km) grid spacing used in the models, any modeled watercourse is effectively 0.5 mi (0.2 km) wide. Thus, the modeled thicknesses must represent the flow characteristics through streambed materials in generally much narrower streams. A near-zero thickness of streambed

```
Breigtion of throng propagation to Denthing Water
3
               TENCETRALERESE AND LEGITETERSHATES DESENAGE PAITOLS AND PARTE BETTOLS AND THE TRANSPORT
          feddeteleilmaladecteleheterekerenerel tak fenegralnetelekererener
              tarbentach von der state betranktig in betra
 3 FF qoire , Bol Francisco del tronde de la contra del contra de la contra del contra de la contra del la contra del contra del la contra d
 3 F F CC CC C 3
                                                                                                                                                                                                                                                                                                                               CC C 3
                     FFFFFF H H H CHANNEL HOUSE CHOOL LINGTED AND THE PROPERTY CCCCCCC
 3
                                     the F by Hor ATMOFLUX program (attachment I) and Megnoralbe
 3
3 A FFH FFFF HHHHHHHGAA C 3
3 AA FF F F JJH HH HHH A FFFII C CC3
3 A F J H H HHH G FF CC 3
3 A AA JKK H HHH FFF 3
A II GGGG D GGG F3
3 DD GG J J G GG F3 3 D FFFFFF GGG H G GFF 3 3 D G AAAA G G G DD J GGG 3
 En analysis of SUPERMOCK of red GOOD OL diffe AAAA Alichmesses das indicated E
        3 differences in the computation of Go of the continue of face at central 3
 3 DGGGI KKJDDDD D TE TETT STEEL STEE
 Forwed level at those walls was also considered 0000m arbitrary value of .
 Map of thickness of streambed and lakebed material
SYMBOL THE THICKNESS (ft) Store County because the provide the pro
                                                                                                        (OUTSIDE SYSTEM)
                                                                                                               tained whose case in identifying various modeled a. . 05
                                                                                                               .05
                                                                                                                 a birdin offere zero diffetmens seemed to be indicing
                                                                                                             no mangorq ago, thongless ask muley oroginal llama vi
                                                                                                           flow through the strenghed if a sero this kneep to too
                                                                                                                  reambed-titteknene map. An example of A streembed-12
                                                                                                               10.
                                                                                                           companying legend are shown in figure-11. The thing to
                                                                                                              the evidence H and the is marked and seven because off
                                                                                                            ERMOCK. The value is setually a shall neared from
                                                                                                       planation indicates a hodgerean node and churchor outs
```

Figure 13.--Example of alphameric streambed-thickness map for nonsteady-state analysis.

Thus, the modeled

material is an indication that at that point the river and aquifer are in perfect hydraulic connection.

Changes in the preconstruction streambed-thickness map required in the postconstruction analysis included only the addition of nodes reflecting postconstruction changes in the position of the navigation channel. The added nodes were assigned the same thickness value as adjoining river nodes.

Specific Yield and Storage Coefficient

The introduction of specific-yield values and aquifer-storage coefficients into the model was done in alphameric form by discrete subareas identical with those used for the entry of HCU and HCL. An example of an alphameric map of specific-yield values and storage coefficients and the explanation for each are shown in figure 14. The scheme for applying calibration values to identical subareas was used so that, during the calibration process, modifications could be made to the values represented by symbols in any one subarea without substantially affecting adjacent areas.

Specific-yield values were limited to a plausibility from 1×10^{-2} to 2×10^{-1} , and the storage coefficient was allowed to vary from 1×10^{-3} to 1×10^{-5} . The final specific-yield values and aquifer storage-coefficient values were adjusted in the calibration procedure by a trial-and-error process within these limits.

Precipitation and Potential Evapotranspiration

Daily precipitation and evapotranspiration data are required by SUPERMOCK. Climatic information used in preparing these data was obtained from National Weather Service stations in, or near, each lock-and-dam area. Data from Weather Service stations at Alexandria, Natchitoches, Westdale, and Shreveport were used in Lock and Dam 2-5 areas, respectively (fig. 3). Data for Lock and Dam 1 area were taken from the Jonesville station, which is about 20 mi (32 km) north of that area.

Daily precipitation, in inches, was taken directly from Weather Service records and coded for card input to SUPERMOCK. The model assumes uniform distribution of precipitation throughout the grid area. Therefore, no nodal specifications were required. SUPERMOCK required that the precipitation data begin on or before the first day of the simulation run and continue through the duration of the period analyzed.

Daily potential-evapotranspiration data were not directly available. Therefore, a computation scheme was required to derive the data. Potential evapotranspiration is the combination of evaporation from the ground surface and transpiration from plants when there is complete vegetal coverage and soil moisture is adequate. Potential evapotranspiration was computed by the method of Thornthwaite (1948). This computation scheme was incorporated into a digital-computer program called POTEET, which was modified from a program

Coefficient of storage map

```
AA4EEEEEOOFFFFGGGGGGGAAAAAAAAAAAAAAAAAAAAIIIIJJJKKKLLLLLLDDDDDMMMMMMNNAAAAN
AAA4EEE0000000PPPPPPP0000RPRSSSAAAAAAAVVVVVIIXXXKKKKKKLLLLLMMMMMMMMMMMNNNNNN
AA44EE000000055PPPPPPQQQGRRRSSTTAAAAVVVVVVVXXXXXXXKKYYLLLLLLMMMMMMMMMMMNNNNNNNN
AAAAAEOOOOOOSSSSSPPPQGQQRRRRTTTTUUUUVVVWWWWXXXXXXYYYYYYYYAAMMMMMM//NNNNNNNNN
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA3344445555
```

i eeun			Symbol	Aguifer	Water-table coefficient
Symbol	Aquifer	Water-table	T	0.00100000	0.09999996
	coefficient	coefficient	U	0.00010000	0.01000000
			٧	0.00001000	0.01000000
~	0.00010000	0.09999996	1	0.00100000	0.01000000
,	0.00100000	0.0999999		0.00100000	0.09999996
A	0.60160000	0.14999998		0.00100000	0.09999996
#	0.00050000	0.14999998	7	0.00100000	0.09999996
3	0.00100000	0.01000000	2	0.00100000	0.09999996
			1	0.00100000	0.09999996
4	0.00100000	0.01060000)	0.00100000	0.02000000
6	0.60016000	0.01000000		0.00090000	0.01000000
7	0.660011000	0.01600000	HELD OVER TO	0.00100000	0.09999996
H	0.00100000	0.19999999	>	0.00100000	0.19999999
8			and an arriva	0.00100000	0.05000000
	0.00100000	0.19959999	*	0.00001000	0.02000000
5	0.00100000	0.09999996	2	0.00100000	0.14999998
3	0.00100000	0.05999996	X	0.00100000	0.14999998
C	0.00050000	0.09999996	G	0.00100000	0.01000000
H		7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0.00100000	0.11999495
	0.00100000	0.61000000	N	0.00100000	0.09999996
0	0.00100000	0.06999999	,	0.00100000	0.05000000
P	0.00001000	0.01000000		0.00100000	0.01000000
0	0.00001000	0.01306000	1	0.00100000	0.09999996
			н н	0.00001000	0.09999996
	0.00010000	6.07999998	0	0.00100000	0.09999996
	0.00100000	0.09999996	3	0.00010000	0.01200000
	0.00160000	0.09999996	5	0.00100000	0.19999999
			4	0.00001000	0.05000000

the land values and squiter of proce-confident value

CONDUCTIVITY OF STREAM AND LAKE BED MATERIAL -- 0.005000

Figure 14.--Example of alphameric specific yield and storage-coefficient map and explanation of symbols.

mire (1948). This comparation school was incorporated in

developed by E. P. Weeks (written commun., 1973). The principal data requirements of this program are minimum and maximum daily air temperatures, monthly average temperatures during the period for which potential evapotranspiration is to be computed, and latitude. A source program listing and complete data requirements for POTEET are included in attachment C. Primary output from POTEET consists of punched computer cards that are in a format compatible with input requirements for SUPERMOCK.

River Stage

Two complete sets of time-variant stream-stage data for the Red River and its major tributaries were required for nonsteady-state analysis. Preconstruction conditions in each lock-and-dam area were simulated and the nonsteady-state model was calibrated to reproduce observed water-table levels and potentiometric-surface elevations at control wells. After successful calibration, the preconstruction stages were replaced by time-variant postconstruction stages, and production runs were made simulating postconstruction conditions in the flow field. Datum for all stream-stage data used in the nonsteady-state model was Mean Sea Level Datum of 1929.

The Corps of Engineers provided time-variant preconstruction and post-construction stages on the main stem of the Red River for the period December 1967 to September 1973. These data consisted of sets of 5-day-average stages at approximately 2-mile (3.2-km) intervals for the entire reach of the Red River in the project area. Each set of associated stage and river-mile data was identified by a sequence number, increased by 5 for each set, to correspond to the time (day) on which the average stages were based. The preconstruction and postconstruction stages comprised two separate data sets, each residing on a separate 7-track magnetic tape. These data sets were transferred to 9-track tapes and used as master input-data sets for the creation of separate lock-and-dam-area main-stem river-stage-data sets, as needed.

The individual lock-and-dam-area sets for the main stem of the Red River were created by use of a digital program called RIVCHANGE, developed specifically for that purpose. The source-program listing of RIVCHANGE and data-input requirements and formats are included in attachment D. Input requirements for RIVCHANGE include the following: (1) beginning and ending sequence numbers corresponding to the beginning and ending dates of a period of time encompassing the period to be analyzed for a particular lock-and-dam area; (2) a number equal to an interpolated sequence number within the period specified in (1) at which computation of 10-day averages is to begin; (3) the length of time, in days, for which computation of 10-day averages is to continue; (4) the beginning and ending river miles in a particular lock-and-dam area; and (5) grid nodes and associated river miles at which 10-day-average river stages were desired. Node designation and associated river mile were determined manually, beginning at the downstream end of the model and proceeding upsteam sequentially to the upstream end of the model area.

RIVCHANGE was designed to interpolate in time and space and compute 10-day-average stages at specified river miles associated with river-stage nodes in the model of a particular lock-and-dam area. The program first located the

specified time period within the master data set and determined the reach of the river to be analyzed. The spatial interpolation was based on river miles and the temporal interpolation was based on sequence numbers and associated calendar dates. As enough daily data became available from the interpolation, RIVCHANGE began computing 10-day-average stages, beginning with the day designated by the beginning sequence number for computations, and continuing for the number of days specified.

Output from RIVCHANGE consisted of 10-day-average river stages associated with specified grid nodes. Each set of average data was identified by a sequence number and a calendar date. These data were printed and also stored in a sequential data set on a magnetic disk pack. The disk data set could then be accessed by SUPERMOCK to obtain main-stem river stage every 10 days for the duration of a simulation period.

Preconstruction and postconstruction main-stem data sets were created by RIVCHANGE. Differences in the preparation of preconstruction- and post-construction-area data sets involved accessing different master data sets and specifying a different set of associated grid nodes and river miles.

Time-variant 10-day-average stages on significant fributaries to the Red River were also required by SUPERMOCK. A digital program called TRIBCHANGE was developed to provide these data in a suitable form. Input requirements for TRIBCHANGE include the following: (1) the total number of tributary-stream nodes to which stages would be assigned, (2) a beginning sequence number--identical with that for the main-stem data set-for computing sequence numbers for sets of tributary-stream output, (3) manually computed 10-day-average stages at gaging stations on each stream, and (4) associated grid nodes and stream miles for each stream. Data for any number of streams can be used as input to TRIBCHANGE, and the entire tributary-stream data set may be created in one run of the program.

TRIBCHANGE was designed to interpolate only spatially because the 10-day averages entered to it were computed manually for the needed time increments. At nodes where tributary streams enter the Red River, the 10-day-average data from the main-stem-data set were entered to TRIBCHANGE as data for the base gage on that stream.

Output from TRIBCHANGE consisted of 10-day-average stages every 10 days at all specified grid nodes for tributary streams in a particular lock-and-dam area. Each set was identified by a sequence number identical with the sequence number of a corresponding average set in the main-stem-data set.

Data from TRIBCHANGE were printed and also stored in a sequential data set on a magnetic disk pack. This disk data set was then accessed by SUPERMOCK to obtain 10-day average tributary-stream stages every 10 days during the duration of a run.

Both preconstruction and postconstruction tributary-stream-data sets were created by TRIBCHANGE. Changes in data used as input to the program for postconstruction included changes in base-gage data at the mouth of streams emptying directly into the Red River, thereby reflecting increased postconstruction stages on the Red River.

A source program listing of TRIBCHANGE and input data requirements and formats are included in attachment E.

Steady-State Model

The data requirements of the GWFLOW model are less complicated than those of SUPERMOCK. GWFLOW simulates only the response of the aquifer to imposed stresses and does not consider the effects upon the overlying water table. Data required by SUPERMOCK for modeling a water table and activities in the unsaturated zone are not required by GWFLOW. A generalized flow chart showing the major input data necessary for GWFLOW is presented in figure 15.

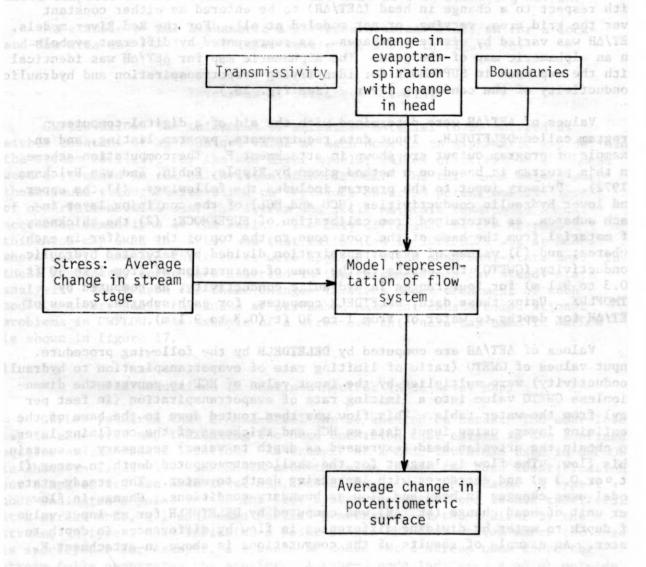


Figure 15.--Flow diagram of digital-model procedure for steady-state analysis.

Transmissivity

The transmissivity of the aquifer may be entered to GWFLOW as constant over the grid area or as a spatially varying parameter. For the Red River models, transmissivity was entered as spatially varying. An alphameric map was used in which each symbol represented a different value of transmissivity. The map was identical with that used in the SUPERMOCK model. (See fig. 9.)

Change in Evapotranspiration with Change in Potentiometric Surface

GWFLOW allows for values representing the change in evapotranspiration with respect to a change in head ($\Delta ET/\Delta H$) to be entered as either constant over the grid area, varying, or not modeled at all. For the Red River models, $\Delta ET/\Delta H$ was varied by discrete subareas, as represented by different symbols in an alphameric map of the grid. The alphameric map for $\Delta ET/\Delta H$ was identical with the map used in SUPERMOCK for identifying evapotranspiration and hydraulic conductivity of the confining layer. (See fig. 16.)

Values of $\Delta \text{ET}/\Delta \text{H}$ were determined with the aid of a digital-computer program called DELETDELH. Input data requirements, program listing, and an example of program output are shown in attachment F. The computation scheme in this program is based on a method given by Ripple, Rubin, and van Hylckama (1972). Primary input to the program includes the following: (1) the upper and lower hydraulic conductivities (HCU and HCL) of the confining layer in each subarea, as determined from calibration of SUPERMOCK; (2) the thickness of material from the base of the root zone to the top of the aquifer in each subarea; and (3) values of evapotranspiration divided by saturated hydraulic conductivity (GWETO) for depths to the zone of saturation of from 1 to 30 ft (0.3 to 9.1 m) for four ranges in hydraulic conductivity, as computed by ATMOFLUX. Using these data, DELETDELH computes, for each subarea, values of $\Delta \text{ET}/\Delta \text{H}$ for depths to water of from 1 to 30 ft (0.3 to 9.1 m).

Values of $\Delta ET/\Delta H$ are computed by DELETDELH by the following procedure. Input values of GWETO (ratio of limiting rate of evapotranspiration to hydraulic conductivity) were multiplied by the input value of HCU to convert the dimensionless GWETO value into a limiting rate of evapotranspiration (in feet per day) from the water table. This flow was then routed down to the base of the confining layer, using input data on HCL and thickness of the confining layer, to obtain the artesian head (expressed as depth to water) necessary to sustain this flow. The flow is largest for the shallowest computed depth to water (1 ft, or 0.3 m) and decreases with increasing depth to water. The steady-state model uses changes in head and flow as boundary conditions. Change in flow per unit of head change ($\Delta ET/\Delta H$) was computed by DELETDELH for an input value of depth to water by dividing differences in flow by differences in depth to water. An example of results of the computations is shown in attachment F.

The relation between evapotranspiration and depth to water is a curvilinear function. The function is computed by the program DELETDELH. Output from this program are tables of $\Delta ET/\Delta H$ values for depths of from 1 to 30 ft (0.3 to 9.1 m) to water. The model calculates the change in evapotranspiration with change in water level as a linear function. Therefore, an iterative

procedure is used with the steady-state model to select the value of $\Delta ET/\Delta H$ for the change in evapotranspiration from the initial water level to the final water level. The model is run initially with $\Delta ET/\Delta H$ not modeled, using change in river stage as the only stress on the model. The model is then run with change in river stage and the $\Delta ET/\Delta H$ values associated with the head change from the initial head to the final head determined in each subarea during the initial run. (See fig. 29.) This computed head change is then subtracted from the average preconstruction water level to obtain the computed water level. Then, from the table of $\Delta ET/\Delta H$ values, a second $\Delta ET/\Delta H$ value is chosen corresponding to the computed water level. The model is run again using the second value of $\Delta ET/\Delta H$. This process is repeated until the final model-computed head is equal to the final head used in selecting $\Delta ET/\Delta H$.

An example of the alphameric-map representation of $\Delta ET/\Delta H$ for a lock-and-dam area and the list of input values are shown in figure 16.

Thickness of Streambed Material

GWFLOW allows the thickness of streambed material to be entered as either constant or as a unique value at each node on an alphameric map defining the stream courses. For the Red River models, values of streambed thickness were determined in the calibration of SUPERMOCK. The thickness values were those found through calibration to reproduce observed potentiometric levels of observation wells near the stream and still maintain reasonable annual-accretion summations at the wells. The only difference in the streambed-thickness map used in GWFLOW and that calibrated in SUPERMOCK was at nodes where small, nonzero thicknesses were applied in the nonsteady-state map. In these instances, zeros were inserted in the thickness map for steady-state analysis. The reason for these changes involves model treatment of such nodes. A very small thickness of streambed material causes computational problems in GWFLOW. An example of a streambed-thickness map used in GWFLOW is shown in figure 17.

Head Conditions in Confined Aquifer (Node-Level Map)

GWFLOW requires that a node-level map be entered on cards. The node-level map is a numeric map indicating the head condition that exists in the confined aquifer at each nodal location. An example of a node-level map used in GWFLOW is shown in figure 18. SUPERMOCK uses the same scheme for node identification but computes its own node-level map, based upon other input data. A type-1 node indicates a point inside the flow system where the head is not specified. At a stream node, a 1 indicates partial penetration of the aquifer by the stream. A type-2 node indicates a point inside the flow system where the head is specified. For example, a 2 would be coded for a stream node where the stream fully penetrates the aquifer. A type-3 node indicates a point outside the flow system, a no-flow boundary. In the Red River models, only the boundaries of the node-level maps were coded as 3. Nodes coded as type 2 were determined by inspection of the streambed-thickness maps calibrated in SUPER-MOCK. A 2 was coded at each node where a small nonzero thickness had been assigned in SUPERMOCK. As mentioned previously, a zero thickness was assigned to these nodes in the streambed-thickness map for GWFLOW. All remaining nodes in the GWFLOW node-level maps were coded as type 1.

MAP OF CHANGE IN EVAPOTRANSPIRATION PER UNIT CHANGE IN HEAD

```
ΑΑΕΕΕΕΕΕΡΡΕΡΕΙΘΟΘΟΜΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΙΙΗΗΗΗΗΗΑΑΥΑΙΟΟΟΟΟΟΟΟΑΑΑΑΜΜΥΜΜΝΑΑΑΑΑ
AAAEEEEEOOFFFF GGGGGGAAAAAAAAAAAAAAAAAAAAIIIIJJJKKKLLLLLLDDDDDUMMMMMMMNNNAAAAN
AAAAEEEOOOOOOPPPPPPPQQRRRSSSAAAAAAAAAAAIIIIIJUKKKKKLLLLLLDDMMMMMMMMMNNANNNN
AAAAEEEU00000UPPPPPPUUUURRKSSSAAAAAAAVVVVVIIXXXKKKKKLLLLLLMMMMMMMMMMNNNNNNN
AAAAEE00000UUSSPPPPPPGGGGÄÄKKSSTTAAAAVVVVVVWXXXXXXKKYYLLLLLLMMMMMMMMMNNNNNNN
AAAAAEOOOOOOSSSSSPPPGGGGGGRRRHTTTTTUUUUVVVwwwXXXXXXXYYYYYYYYAAMMMMM//NNNNNNNNNN
AAAA*****$$$$$$$$$$$$$$$$$$$$$*++++)))))???111122222ZZZZZZZAAAAAA///////33333NNNNNNN
AAA*******777786688666+++)?????????=11112256>>>>AAAAAAA33333333333333NNNA4
AAAAAAAAAAAAAAAAAAAAAAAAAA3344445555
is the world of the control of the world of the control of the con
```

	IN EVAPOTRANSPIRATION, IN DAY PER FOOT CHANGE IN HE		ese Hibthickey Bec
Δ	0.000000		Managara apply a sale (A.A.)
Appettas Mydno	0.000010	Wantella Desired	0.000010
market at been	그 사용하다 경기를 보고 있다면 그 생각을 하는데 바람이 되다고 되었다고 모든데	The let of the later of the	0.000007
1	9.000010	1	0.000020
THE ATT ANT	0.000010	PROPERTY OF STREET, ST	0.000007
- Are and all all	0.000010	variation true torth	0.000002
9	0.000200	? 30 . 7 . 7 . 7	0.000020
6	0.000100	2	0.000007
7	0.000200	SALIDON OF SHOLD TO	0.000007
8	0.000030)	0.000030
R	0.000020	PARKET DIRECTOR OF THE PARKET	0.000010
S	0.000010	8	0.000010
THE THE	0.000010	And a case of the control of the con	0.000010
C C	0.000008	Call and Formand I	0.000008
8	0.000010	K K	0.000150
0	0.0000008	2	0.000010
P	0.000200	X	0.000200
Q	0.000020	WOLL and God well-ye	0.00002
1	0.000030	M. H. H. L.	0.000100
ø	0.000100	N	0.00000
TO THE REAL PROPERTY.	0.000035	made as a major spants ou	0.000100
377 1 00377 35c	0.000009	Campiled Lin 2 West 18-	0.000100
situa tellar e	manual has along Fands 4 1	verticals and the	0.000100
		H	0.000100
		Carried Maria	0.000100
		Boy a strategic at the	
		5	0.000020
	TIME STREET TRANSPORTED A PROPERTY.	A STATE OF THE PARTY OF THE PAR	0.000200
	City program lines a	Totto stor data 16	0.000200

here also and a the war war was and the admitted a the

Figure 16.--Example of alphameric map of ET/H and explanation of symbols.

```
3
                                       3
      B
3
3 F F
3
                                       3
3
3
3
3
                                       3
3
                                       3
                                       3
                                       3
3
                                 GGGG
3
3
                                   G GGFF
                                       3
                                       3
3
                                       3
                                       3
Map of thickness of streambed and lakebed material
        THICKNESS (ft)
           20.
            20.
          0.
            5.
            0.
         10.
      0.
000200.0:15. Istanzan badawa Luna:
       2.
      40.
INITIAL ELEVATION OF POTENTIOMETRIC SURFACE -- 0.
NUMBER OF HOWS -- 34 NUMBER OF COLUMNS -- 80
NODE SPACING -- 2640. OFLET
```

Figure 17.--Example of alphameric streambed-thickness map for steady-state analysis.

NOUE LEVEL MAP OF FLOW SYSTEM EXPLANATION

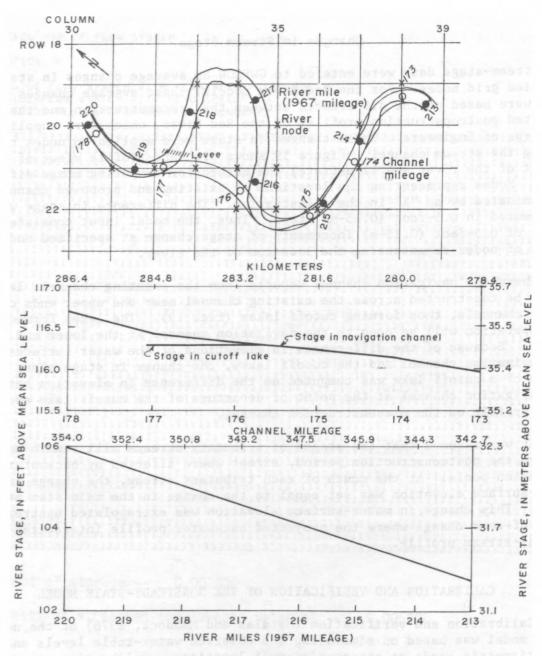
- 1 -- INSIDE FLOW SYSTEM WITH HEAD NOT SPECIFIED
- 2 -- INSIDE FLOW SYSTEM WITH HEAD SPECIFIED
 3 -- OUTSIDE FLOW SYSTEM (NO FLOW BOUNDARY)

Coefficient of storage -- 0.002000

Conductivity of streambed and lakebed material -- 0.005000

Figure 18 .-- Example of node-level map.

Changes in Stream Stage


Stream-stage data were entered to GWFLOW as average changes in stage at specified grid nodes. For the Red River models, these average changes in stage were based on the differences between the preconstruction and the projected postconstruction profiles of the Red River, which were supplied by the Corps of Engineers. These changes in stage were applied to nodes representing the stream channel. Figure 19 shows plan-and-profile views of a segment of the river and illustrates the method for computing stage differences. Nodes representing the locations of existing and proposed channels are indicated by an "X" in the illustration. The difference in stage was incremented in 0.5-foot (0.15-m) steps. Thus, the model input consisted of a series of 0.5-foot (0.15-m) increments of stage change at specified nodes or groups of nodes representing the location of the river.

Where the navigation channel departs from the existing channel, levees are to be constructed across the existing channel near the upper ends of the cutoff channels, thus forming cutoff lakes (fig. 19). The lakes formed by this operation will be open to the navigation channel at the lower end of the cutoff. Because of the differences in elevations of the water surfaces in the navigation channel and the cutoff lakes, the change in stage along the course of a cutoff lake was computed as the difference in elevation between the navigation channel at the point of departure of the cutoff lake and the stage profile on the preconstruction channel.

It was assumed that the stages of tributary streams will remain unchanged through the postconstruction period, except where affected by backwater from navigation pools. At the mouth of each tributary stream, the change in water-surface elevation was set equal to the change in the main stem at that point. This change in water-surface elevation was extrapolated upstream to a point-of-zero change where the projected backwater profile intersected the natural-stream profile.

CALIBRATION AND VERIFICATION OF THE NONSTEADY-STATE MODEL

State model was based on simulating the observed water-table levels and potentiometric heads at observation-well locations. Calibration was effected within established error criteria by adjusting model parameters within established plausibility ranges. Computations were made using river-stage and climatic data for a 4-year period of record to provide sufficient time for inclusion of antecedent conditions. Visual inspection of computed 4-year hydrographs indicated that most of the antecedent conditions were satisfied during the first calibration year and that all had been satisfied by the end of the second year. The third and fourth years of the observed water-level data were split into two periods. The fourth year was chosen as the calibration period for obtaining a match of simulated and measured hydrographs by adjusting model parameters. The model results for the third year were used for verification evaluation by comparing differences between the measured and simulated hydrographs.

Stream-stage data for input to GWFLOW

Change (ft)	Row	Col- umn	Change (ft)		Col- umn	Change (ft)	Row	Col- umn	Change (ft)	Row	Col- umn
10.5	20	30	11.5	19 19	33 34	12.0	20	35 34	12.5	22	35 36
11.0	21 21	31 32		20 21	33 33		21 22	35 34	13.0	19 20 21	38 37 37

Figure 19.--Plan-and-profile views of a segment of river channel showing the method for computing stage change.

In the calibration process, all computed water-table and potentiometricsurface elevations of observation-well locations in the grid were passed by SUPERMOCK on a magnetic-disk data set to DATE. DATE performed several functions, including (in sequence): (1) converting mean sea level elevations to depths below land surface; (2) assigning calendar dates to all water levels; (3) choosing the spring high and the fall low water level for the water table and potentiometric surface for 1 or more years, as specified; (4) comparing these high and low computed values with observed data entered to it on cards; (5) printing a calibration table for analysis; and (6) passing all computed water-table and potentiometric-surface levels for the observation nodes in card images to HYDROG (Reed and others, 1976) on a magnetic-disk data set. example of the calibration table produced by DATE is shown in figure 20. Using these computed data as input, HYDROG plotted hydrographs for both the potentiometric surface and the water table. These computed hydrographs were compared visually with observed hydrographs to check for differences between the two in fluctuations and depths to water.

The parameters that were modified, within predetermined plausibility ranges, during calibration of the nonsteady-state models included the upper and lower hydraulic conductivities of the confining layer (HCU and HCL) in each subarea of the grid, aquifer-storage coefficient in each subarea (S), specific yield in each subarea (WTSTO), and streambed thicknesses (AM). In order to match observed data, a general calibration table from DATE was inspected to determine in which subareas simulated water-table and (or) potentiometric-surface levels were within responding predetermined error criteria. In addition, computed potentiometric-surface and water-table hydrographs from HYDROG were compared to hydrographs developed from observed measurements. After a thorough analysis of a run, indicated changes were made to appropriate parameters, and a new computer run was made. Normally, from 20 to 25 runs were required to calibrate each nonsteady-state model.

The magnitude and direction of changes that were caused by modification of parameters during calibration of the nonsteady-state model are discussed in the following paragraphs.

The hydraulic conductivity of the upper segment of the confining layer (HCU) limits recharge to the water table and thus the aquifer. For positive accretion, an increase in the modeled value of HCU in a particular subarea causes an increase in elevation of the water table and very likely an increase in the elevation of the potentiometric surface unless the conductivity of the lower segment of the confining layer (HCL) is very low. A decrease in the modeled value of HCU has the opposite effect and would likely cause a decrease in the elevation of both the water table and the potentiometric surface.

As previously mentioned, HCL is the designation of the hydraulic conductivity of the confining layer from the water table to the top of the aquifer. An increase in the modeled value of HCL generally results in an increase in the elevation of the potentiometric surface and a decrease in the water table. Decreasing the modeled value of HCL has the opposite effect; that is, the water table will rise and the potentiometric surface will fall.

WELL	MEASURED DEPTH BELUA	DEPTH HELDA	DIFFERENCE	57 E W	WELL	DEPTH BELOW	DEPTH HELD
62	LAND SURFACE	LAND SURFACE	O D he	5 7 4		(ft)	(ft)
	(ft)	(ft)		그 원생, 경기를 가장하는 것이 없는 것	N257		15.4
N257	16.0	16.4	-0.4			0 0 0 0	17.6
N270	20.4	19.0	Liver Gree		N270	00	17.8
N:273	50.5	20.0	0.2		N273		
N276	16.4	14.3	2.1		11576	5.0 <wl< td=""><td>14.8</td></wl<>	14.8
W581	7.3	7.5	-0.2		N5H1	00	7.0
V503	7.1	H.3	-1.2	그러면 병으로 있어요?	N2H3		8.1
Neb4	5.0	4.9	0 . 1	W 0 10 10 10 10 10 10 10 10 10 10 10 10 1	NZH4	3.0 < WL < 5.8	4.1
4542	10.1	h.5	1.6		MEND	0.00	0.4
N287	17.8	17.1	0.7		Nent	00	17.3
NSHA	19.8	19.1	0.7		Neby	0.0	16.0
N290	18.6	19.6	-1.0	to to the line to be to the	V540	12.04.6	13.8
N293	20.0	19.3	0.7		N243	00	11.9
N308	20.2	19.7	0.5		14308		15.H
N3H1	16.3	15.5	0 0.0		NUBL	3.0	5.1
N3H2	4.4	4.7	-0.3		NJHZ		0.0
N3n3	15.5	17.0	-1.5	^ 1개 : 11 (17) 전 1개 전 15 (20) 전 15	N3H3	15.0<**	15.6
1.304	4.0	5.0	-1.0		14344	0.5 < nL < 1.5	1.9
N385	12.7	14.6	-1.4	· · · · · · · · · · · · · · · · · · ·	Nins	13.0	12.9
N386	13.6	14.8	-1.2	- 그를 기계 시간 그를 가는 것이 없는 것이다.	N386	14.6	13.4
N3H7	17.7	17.2	0.5		N387	17.2	18.1
N300	18.0	17.2	0.8	DAM DHHHMEDOW	BHEN	10.5	11.6
N344	14.2	16.6	-2.4		PHLM	9.5	5.4
N390	6 6 13.7	15.3	-1.6		N340	15.3	13.3
N391	17.9	17.8	0.1		N391	15.0 < WL	16.6
N342	13.5	12.8	0.7		N392	14.1	14.1
		15.9			N343	15.0 < +L	15.4
N343	94.4		11.10	A PROPERTY OF	N394	15.0	15.8
N394	15.0	15.0	-0.0	네티즌 1개 - 15는 번 15분 1차 - 1번 - 1번 1년 1년	N345	15.0 <wl< td=""><td>17.0</td></wl<>	17.0
4345	20.5	17.6	2.9		N348	11.7	13.4
M348	11.6	13.5	5 -1.9		N399	11.1	10.5
N399	6 11.3	10.0	1.3			7 Table 7 Tabl	22.4
N400	55.4	23.0	-0.2	See the late of April 15	N400	15.0<*L	25.6
N401	24.7	23.1	1.0	0 5 5 0 8 6 8 8 5	The second second second second	- ESP - TOTAL TOTAL - ESP - ESP	6.4
N402	17.7	16.3	3 1.4 0		N402	5.9	
N:429	5.9	7.2	-1.3		N429	5.0 < NL < 7.1	
11432	10.4	8.5	1.9	n 5 2 6 6 6 6 6 6 6	N432	1.2<=L< 5.1	
N433	5.3	4.1	2	and the second of the late of	N433	3.0 < WL < 5.	
#154	18.4	20.2	-1.0	The Shadelland	w158	14.0<	20.9
6549	12.0	15.5	-0.5	N 0 10 0 5 0 0 0 0	6268	3.0<**	
6270	6.4	4.3	2.10	五月月月日 日 日 日 日 日 日	6270	3.0 < WL < 5.	
6330	10.0	Med 11.4 E	-1.F		6338	5.0 < VL < 10.	
6343	11.5	9.9	1.6	7 6 7 6 6 6 6 6	6343	5.0< WL < 10.	
6347	25.5	24.5	1.0		6347	4 - 0 0 0 0	23.
634H	11.6	0 0 0 4.2	2.4		G346		. 5 a o 3 t
6344	10.4	10.3	0.1		6349	5.0 < WL < 10.	
2654	13.6	11.00	1.8		H654	380 W M 00 C	00 07.
4964	2.1	1.3	0.8		H464	5.0	3.
H970	3.8	3.4	0.0	5 6 5 6 6 6 6	2970	2.5	-0.
		TOTAL	= 10.6	E. F. Saller de Saller de Marine	場合は		
7 9 9	E E . B	AVERAGE	= 0.2	7. 9 E 0 9 B 8 B 6		4 8 8 8 8	
	MAX AHSOL		= 2.9 5	TANDARO S TANDARO			

[.] NEGATIVE IF COMPUTED WATER LEVEL IS LUNER THAN MEASURED WATER LEVEL.

		TENTIOMETHIC SUI	ALACE			WATEY TA	966
ATLL UMHER	MEASURED DEPTH HELOW LAND SUMFACE (ft)	DEPTH OFLOA LAND SUMFACE (ft')	DIFFERENC	900	AELL	MEASURED DEPTH BELUA LAND SURFACE (ft)	DEPTH SELDA LAND SUNFAC
M257	0 19.1	19.1	-0.0	9 4 4 5	N257	00	0 0 17.6
0750	23.3	24.8	-1.5	0 0 1	N270	0.0	18.1
673	23.8	23.6	3.6	Section 10 Dec 1 Dec 10	N273	00	20.7
.276	21.2	9.02	D.6"	The state of the state of the state of the state of	N276	5.0<+1	10.4
1982	10.6	.3.5	-2.4		N2H1	00	13.1
583	11.6	11.6	0.0	다 전도 전환 전환 전상 및 A 작는 소등 기능 기능	NeH3	0.0	11.3
1544	0 5 11.2	9.00		O TO FOR THE USE FOR US DO	N264	4.0 < WL < 11.0	9.6
4245	11.9	12.0	-0.	ACAUM G. L. L. M. B. M. C. W.	N285	AC	12.4
1541	51.5	50.5	1.6	4 1 23 0 5 6 5 5 5 6	N247	0.0	14.3
6421	27.7	Su. e	-0.7		4543	0.0	15.0
11251	50.6	55.7	12.2.3	The Target of the second of the	15.40	14.0 CWL < 14.6	DOMESTIC CONTRACTOR OF THE PARTY OF THE PART
N243	23.4	53.5	2.0	0 0.20 0 8 8 00 54 0 1	N503	0.6	15.9
HUEN	24.4	25.3	-0.4		N30n	0.0	19.8
Nin.	20.0	20.1	0.5		N381	10.4	0.3
1305	16.1	15.3	0.0		Vin5	00	16.3
N3H3	25.1	24.1	1.0		N3A3	15.0<×L	23.6
N384	8.0	O H.3	-0.3		N384	4. U < WL < 8.2	9.0
N385	15.8	10.8	-1.0		N3n5	14.2	15.3
N3-10	16.1	10.6	0.1		Nidh	15.6	14.5
N3n7	25.0	23.3	1.7	A LANGE OF THE REAL PROPERTY OF THE PARTY OF	N387	14.5 KHL	22.5
M388	26.6	53.5	3.4	A MAY 1 J. S. D. P. B. MARSON M. R.	1,348	18.0 <wl< td=""><td>13.5</td></wl<>	13.5
N389	24.6	25.2	3.5		N.3H9	15.0	14.8
N390	17.0	18.2	-6.4		1390	15.0	8 0 07.10
N341	20.5	20.1	0.4	4 5 5 5 5 5	N391	15.0<-	77.3
S654	15.4	15.2	0.2		N342	14.8	14.3
N343	17.4	1h.d	0.6		N393	15.0<*L	15.90
N344	17.4	2 17.4	-6.0		4394	17.4	16.3
N345	29.5	26.6	2.9		N395	15.0 < KL	17.0
N398	15.3	14.6	0.7	0 8 0 0 4	N398	14.5<-	14.6
11399	14.0	13.1	2 1.7		N399	:4.4	12.5
N400	25.4	20.0	76	0 0 0 0	N420	15.0 < NL	22.4
M461	20.8	20.2	****		N4 U1	5.6KmL	25.8
5044	55.4	22.5	0.4	그리 시민 아이를 보고를 잃었다면 하는 것	2044	13.0	10.3
K429	17.8	b 5 16.3	0 4.5	W. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N424	10.0 < WL < 15.0	15.0
N432	15.1	17.7	-0.6	X > URBARE AND STORE US PRINCIPE AND ADDRESS.	N432	5.0 C.L C 8.0	5.H
4433	8.8	9.7	-6.9		N433	5.0 < +L < H.U	8.5
W150	25.4	27.1	-1.2		*120	14.04.	20.6
6200	He Hollitele-	18 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.0	T	6268	m. 0 < x L < 10.0	9.9
6510	4.5	4.4	6.1	3 4 4 5 3 6 6	6270	7.0< 4.0	9.0
G334	5 6.4.0	15.7 0	1 9 4	B	6336	10.0KML	0 6 14.50
6343	16.3	17.0	9 60 9		6343	10.0<**	16.3
(.347	29.0	31.8	-2.11		6347		30.3
G34h	15.5	14.7	0.8	1 0 0 0 1 1 1 1 1	6348	0.0	0 8.20
6344	14.0	14.9	-0.9		6349	10.0 <wl< td=""><td>12.7</td></wl<>	12.7
R554	19.0	10.8	0.2		H654	00	18.4
4964	6.7	1.0	1.1	0 4 5 5 5 0 0 6	H964	4.0 CALC 7.2	7.2
4970	10.7	11.4	-6.7		H970	8.0 <wl< 9.9<="" td=""><td>9.2</td></wl<>	9.2
	21000	TOTAL	= 0.3	A TRUE BY THE BY		155.6	
	B . B	AVEHAGE =	0.0	8 4 8 4 8 4 8	00 4	0 - 5 - 5	
34	MAX ABSOLO	TE DIFFEHENCE :	3.4	STANDARU E BOO BOO BOO		E E E E	
	MIN ABSUL	ITE DIFFERENCE :	0.0	STANDARD DEVIATION = 1.4		80 10 10	0 0 0

Figure 20.--Examples of spring and fall calibration charts from DATE program.

If negative accretion is occurring—that is, the water table has dropped below the potentiometric surface and water is moving up from the aquifer—increases in the modeled value of HCL will raise the water table and lower the potentiometric surface. Decreases in the modeled value of HCL will lower the water table and raise the potentiometric surface. Changes in the modeled value of HCU will either raise or lower both surfaces.

Adjustments to the storage-coefficient (S) and specific-yield (WTSTO) values can be used to control the fluctuations of the potentiometric surface and water table, respectively. Increases in modeled values of either of the two parameters will cause smaller fluctuations, and decreases in these values will cause larger fluctuations. Modifications to these parameters are very useful during calibration for adjusting computed water levels for the spring and fall that differ from observed values by about the same magnitude but in opposite directions.

The thickness of streambed materials can be adjusted to produce a change in the computed water-table and potentiometric levels near the stream. In the Red River Valley, the movement of water generally is from the alluvial aquifer to the river or stream. Therefore, if the modeled thickness of streambed material is too small, computed water levels in observation wells near the stream are lower than the observed levels unless the recharge rate is increased substantially. If increasing the conductivities of the upper confining layer in the affected subareas does nothing more than increase computed accretion values to unreasonable levels without an appreciable rise in water levels, the streambed thickness is too small. The upper plausibility limit on accretion was 1 ft/yr (0.3 m per year). An example of a table of annual accretion summations at observation wells is shown in figure 21.

MODEL OUTPUT

The output from the nonsteady-state model, in addition to that used for calibration, was designed to display the results of the analysis in a form suitable for the determination of the effects of the water table on agriculture. The critical parameter influencing agricultural production is the depth to the water table below land surface. The depth to the water table has a significant effect when it is within the root zone, or within approximately 5 ft (1.5 m) of the land surface. Times of occurrence of shallow depths to the water table are also significant. The most critical periods occur during the plowing, planting, growing, and harvesting seasons of the year. For this reason, output from the model was designed to show the average depth to the water table for either one or two 10-day time frames during these critical periods. A series of 30-day time frames was used to represent water-table conditions during the dormant season. In this manner, the year was divided into 21 time frames associated with specific calendar dates. The dates were selected by the Soil Conservation Service. The actual output consisted of data, punched on computer cards, showing the computed depth to the water table below land surface, to the nearest foot, at each node in the model. Figure 22 is an example of part of the data, in printout form, showing the node location (row and column) and depth to the water table for a particular time frame.

ACCRETION SUMMATION (FT.)

CALENDAR YEAR 1972

WELL NO.	HOW	COL	ACSUM		WELL NO.	ROW	COL	ACSUM	WELL NO.	ROW	COL	ACSUM	Target.	WELL NO.	ROW	COL	ACSUM
N257	19	15	0.25	0 19-88 0 +8-4	N270	19	54	0.23	N273	29	42	0.52		N276	18	-	0.00
N281	31	25	0.54		N283	28	17	0.54	N284	26	19	0.30		N285	22	23	-0.08
N287	17	58	0.36	-	N289	. 16	30	0.04	N290	15	6	0.32	180 15 1	N293	7	9	0.38
N308	7	5	0.10		N381	16	10	0.20	N382	17	19	0.68		N383	18	24	0.29
N3H4	55	12	0.02	00 1 1000	N385	19	28	1.00	N386	20	30	0.15	Bill.	N387	18	32	0.04
N388	19	35	0.04		N389	17	41	0.19	N390	23	42	0.07		N391	25	40	0.18
N392	27	39	-0.05	C.E.	N393	24	37	0.12	N394	22	45	0.01		N395	15	46	0.00
N398	21	34	0.18		N399	59	30	-0.00	N400	26	47	0.01		N401	25	51	0.01
N402	10	15	0.40		N429	15	53	0.90	N432	21	51	0.81		N433	18	49	0.57
w128	11	19	0.00		G268	16	67	1.17	G270	18	73	0.32	2	G338	19	70	1.05
G343	14	57	0.07		6347	13	50	1.35	G348	11	50	0.21	10.10	6349	12	63	
R654	24	71	0.46		R964	29	79	-0.13	R970	28	78	0.46				- 0	

Figure 21.--Example of accretion-summation chart.

AVERAGE FOR 30 DAYS. ENDING UN JAN 4 1971 6 11 9 6 12 8 6 13 9 6 14 9 6 15 8 6 16 8 6 17 8 6 18 8 6 19 9 6 20 7 0 20 9 6 27 7 6 28 9 6 29 7 6 30 9 6 31 9 6 32 7 6 49 9 5 43 6 45 8 6 46 9 6 47 B 6 40 9 6 50 7 6 51 6 6 52 7 6 74 9 0 62 7 59 6 63 6 6 60 6 01 6 6 04 6 65 5 5 66 73 4 75 9 7 10 7 11 8 7 12 9 7 21 8 19 u 7 22 9 7 23 7 7 24 9 7 39 8 7 40 8 7 27 7 20 8 7 25 8 7 26 8 7 28 9 7 29 8 7 30 7 7 35 7 37 7 40 8 7 36 8 7 41 7 7 42 8 7 43 44 9 7 52 7 53 0 7 55 9 7 56 8 7 56 7 7 59 7 60 8 7 67 8 7 68 9 7 69 9 7 70 8 7 72 9 7 75 9 7 73 9 7 74 2 7 71 6 8 13 9 8 21 8 37 8 12 8 8 14 8 8 15 8 8 16 9 8 17 9 8 18 8 8 19 8 8 36 8 8 31 9 8 32 8 8 33 9 8 34 9 8 35 8 8 36 9 5 38 8 8 45 8 8 46 8 8 47 8 8 49 9 8 50 8 8 51 9 8 48 8 8 63 9 8 50 9 8 61 0 H 62 9 9 7 9 9 8 9 8 64 9 8 65 9 6 66 9 8 67 3 9 11 9 9 12 9 9 13 7 8 68 9 8 69 9 8 70 9 9 10 9 8 75 9 9 7 9 6 9 16 8 9 17 9 14 7 9 15 9 23 8 9 24 8 9 25 8 9 26 9 9 27 9 9 28 7 9 29 9 9 31 7 9 32 9 9 33 7 9 36 8 9 37 8 9 38 7 9 39 9 9 40 8 9 41 8 . 9 42 9 9 43 8 9 44 8 9 45 8 9 46 8 9 47 8 9 40 7 9 49 8 9 52 9 9 53 9 9 54 7 9 55 7 9 56 6 9 57 3 9 58 0 9 59 0 9 61 0 9 62 9 9 63 0 9 64 0 9 65 8 9 66 0 9 67 3 9 68 5 9 69 9 9 70 9 9 71 6 9 72 9 9 73 9 9 74 9 9 75 7 10 6 4 10 7 4 10 8 5 10 9 5 10 13 9 10 11 9 10 12 9 10 13 9 10 14 9 10 15 8 10 16 9 10 17 8 10 18 8 10 19 8 10 20 8 10 21 8 10 22 8 10 23 8 10 24 8 10 25 7 10 26 8 10 27 8 10 25 8 10 29 10 30 9 10 31 9 10 32 8 10 33 8 10 34 9 10 35 9 10 36 7 10 37 7 10 38 9 10 39 8 10 40 6 10 41 9 10 42 8 10 43 8 10 44 8 10 45 9 10 46 8 10 47 8 10 48 8 10 49 9 10 50 7 10 51 9 10 52 8 10 53 8 10 54 7 10 55 6 10 56 9 10 57 5 10 58 2 10 59 9 10 60 9 10 61 0 10 62 9 10 63 0 10 64 0 10 65 0 10 66 0 10 67 9 10 68 9 10 69 9 10 70 9 10 71 9 10 72 7 10 73 6 10 74 9 10 75 9 11 6 5 11 7 5 8 5 11 9 3 11 10 3 11 11 9 11 12 9 11 13 9 11 14 9 11 15 9 11 16 9 11 17 9 11 18 9 11 19 9 11 20 8 11 21 8 11 22 8 11 23 11 24 8 11 25 8 11 26 9 11 27 8 11 28 8 11 29 8 11 30 8 11 31 9 11 32 8 11 33 7 11 36 8 11 37 7 11 38 8 11 39 7 11 40 9 11 41 9 11 42 8 11 43 8 11 44 8 11 45 7 11 46 8 11 47 6 11 48 9 11 49 8 11 50 9 11 51 7 11 52 7 11 53 8 11 54 9 11 55 8 11 56 0 11 57 4 11 58 6 11 59 8 11 60 8 11 61 8 11 62 0 11 63 0 11 64 0 11 65 0 11 66 9 11 67 9 11 68 9 11 69 3 1: 70 9 11 71 9 11 72 5 11 73 5 11 74 9 11 75 9 12 6 6 12 7 7 12 8 6 12 9 4 12 10 2 12 11 6 12 12 9 12 13 9 12 14 9 12 15 9 12 16 9 12 17 12 18 9 12 19 9 12 20 8 12 21 8 12 22 8 12 23 9 12 24 8 12 25 8 12 26 7 12 27 7 12 28 8 12 29 6 12 30 7 12 31 8 12 32 8 12 33 12 34 7 12 35 9 12 36 7 12 37 9 12 38 7 12 39 9 12 40 9 12 41 9 12 42 9 12 43 7 12 44 8 12 45 9 12 46 9 12 47 8 12 48 8 12 49 8 12 50 8 12 51 7 12 52 9 12 53 9 12 54 9 12 55 2 12 56 5 12 57 1 12 58 6 12 54 7 12 60 4 12 61 0 12 62 0 12 63 0 12 64 0 12 65 12 66 1 12 67 9 12 68 9 12 69 9 12 70 9 12 71 9 12 72 9 12 73 8 12 74 9 12 75 9 13 6 9 13 7 9 13 8 9 13 9 6 13 10 4 13 11 2 13 12 5 13 13 6 13 14 9 13 15 9 13 16 9 13 17 9 13 16 9 13 19 9 13 20 9 13 21 9 13 22 9 13 23 9 13 24 9 13 25 5 13 26 6 13 27 13 28 9 13 29 9 13 30 9 13 31 8 13 32 7 13 33 8 13 34 9 13 35 9 13 36 9 13 37 9 13 38 9 13 39 8 13 40 7 13 41 9 13 42 9 13 43 9 13 44 9 13 45 8 13 46 8 13 47 8 13 48 8 13 49 9 13 50 7 13 51 9 13 52 6 13 53 1 13 54 2 13 55 1 13 56 3 13 57 7 13 58 8 13 59 5 13 60 0 13 61 0 13 62 0 13 63 0 13 64 9 13 65 9 13 66 3 13 67 9 13 68 9 13 69 9 13 70 9 13 71 9 13 72 8 13 73 9 13 74 7 13 75 8 14 6 9 14 7 7 14 8 4 14 9 9 14 10 6 14 11 7 14 12 5 14 13 4 14 14 4 14 15 9 14 16 9 14 17 9 14 18 9 14 19 9 14 20 9 14 21 9 14 22 9 14 23 9 14 24 8 14 25 8 14 26 9 14 27 9 14 28 9 14 29 9 14 30 9 14 31 8 14 32 8 14 33 9 14 34 9 14 35 9 14 36 9 14 37 9 9 14 39 8 14 40 8 14 41 8 14 42 8 14 43 8 14 44 8 14 45 8 14 46 8 14 47 8 14 48 8 14 49 9 14 50 9 14 51 1 14 14 54 5 14 55 7 14 56 8 14 57 6 14 58 8 14 59 7 14 60 0 14 61 0 14 62 9 14 63 9 14 64 9 14 65 9 14 66 9 14 67 9 14 69 9 14 69 9 14.70 9 14 71 9 14 72 7 14 73 8 14 74 7 14 75 9 15 6 3 15 7 9 15 8 9 15 9 9 15 10 1 15 11 6 15 12 5 15 13 2 15 15 16 9 15 17 8 15 18 8 15 19 9 15 20 9 15 21 9 15 22 9 15 23 9 15 24 9 15 25 9 15 26 8 15 27 9 15 28 9 15 29 9 15 30 9 15 31 9 15 32 9 15 33 9 15 34 9 15 35 7 15 36 9 15 37 9 15 38 9 15 39 9 15 40 8 15 41 8 15 42 8 15 43 8 15 44 9 15 45 7 15 46 6 15 47 9 15 48 9 15 49 9 15 50 9 15 51 0 15 52 1 15 53 0 15 54 0 15 55 7 15 56 7 15 56 8 15 59 8 15 60 9 15 61 7 15 62 9 15 63 9 15 64 6 15 65 9 15 66 9 15 67 9 15 68 9 15 69 9 15 70 9 15 71 9 15 72 7 15 73 7 15 74 8 15 75 5 16 6 6 16 7 9 16 8 9 16 10 9 16 11 3 10 12 5 16 13 9 16 14 4 16 15 3 10 16 9 16 17 9 16 10 9 16 19 9 16 20 9 16 21 9 16 22 9 16 23 9 16 24 9 16 25 9 16 26 9 16 27 9 16 28 9 16 29 9 16 30 9 16 31 9 16 32 9 16 33 9 16 34 8 16 35 8 16 36 8 16 37 9 16 38 9 16 39 6 16 40 6 16 41 8 16 42 9 16 43 9 16 44 9 16 45 8 16 46 9 16 47 9 16 48 6 16 49 6 16 50 6 16 51 1 16 52 1 16 53 0 16 54 0 16 55 6 16 56 8 16 57 8 16 58 6 16 59 9 16 60 9 16 61 7 16 62 8 16 63 9 16 64 9 16 65 9 16 66 9 16 67 9 16 68 9 16 70 9 16 71 9 16 72 9 16 73 9 16 74 9 16 75 9 17 6 6 17 7 6 17 8 7 17 9 9 17 10 9 17 11 9 17 12 9 17 13 6 17 14 7 17 15 6 17 16 9 17 17 6 17 18 8 17 19 8 17 20 9 17 21 9 17 22 7 17 23 9 17 24 7 17 25 7 17 26 8 17 27 7 17 28 9 17 29 9 17 30 9 17 31 9 17 32 9 17 33 9 17 34 9 17 35 9 17 36 9 17 37 8 17 38 8 17 39 9 17 40 9 17 41 9 17 42 9 17 43 8 17 44 9 17 45 8 17 46 8 17 47 9 17 48 6 17 49 6 17 50 6 17 51 0 17 52 0 17 53 0 17 54 0 17 55 8 17 56 8 17 57 4 17 58 7 17 59 9 17 60 9 17 61 9 17 62 9 17 63 9 17 64 9 17 65 9 17 66 9 17 67 9 17 68 9 17 69 9 17 76 9 17 71 7 17 72 7 17 73 7 17 74 8 17 75 7 18 6 7 18 7 9 18 8 6 18 9 9 18 10 4 18 11 9 18 12 9 18 13 5 18 14 0 10 15 9 10 16 3 18 17 9 10 10 5 10 19 5 10 20 5 16 21 5 10 22 5 10 23 5 10 24 5 10 25 0 10 26 5 10 27 9 10 20 9 10 20 16 30 9 18 31 9 18 32 9 18 33 7 18 34 9 18 35 9 18 36 9 18 37 9 18 38 9 18 39 9 15 40 9 18 41 9 13 42 6 18 43 9 18 44 2 15 45 9 18 46 9 18 47 9 18 48 9 18 49 9 18 50 0 18 51 0 18 52 0 18 53 0 18 54 0 18 55 1 18 56 8 18 57 9 18 58 8 18 59 9 18 60 9 18 61 9 18 62 9 18 63 9 18 64 9 18 65 9 18 66 9 18 67 9 18 68 9 18 69 9 18 70 9 18 71 8 18 72 8 16 73 8 18 74 7 18 75 9 19 6 8 19 7 6 19 8 9 19 9 9 19 10 6 19 11 9 19 12 9 19 13 8 19 14 6 19 15 6 19 16 7 19 17 8 19 18 7 19 19 5 19 20 5 19 21 5 19 22 5 19 23 5 14 24 6 19 25 6 19 26 6 19 27 6 19 20 9 19 29 7 19 30 9 19 31 9 19 32 4 19 33 5 19 34 6 19 35 5 19 36 5 19 37 1 19 38 9 19 39 5

LOCK & DAM 4 POSTCONSTRUCTION WATER TABLE LEVELS. DATE OF ANALYSIS 3/4/1975

NOTE.—Figure shows row-column designation, and depth to water. Example underlined means: Row 9, column 60, 7 foot depth to water.

Figure 22.--Example of computed output from nonsteady-state model.

Depths to the water table of as much as 9 ft (2.7 m) below land surface are shown in the printout. Because the table format prints depth as only a single-digit integer, a 9 indicates a depth of 9 ft (2.7 m) or more.

The combination of depth to water table, soil type, and cropping pattern was used by the Soil Conservation Service to determine the beneficial or adverse effects of project-induced changes in water levels. Crop yields obtained during the calibration period were used as the standard for determining the net project effects.

Output from the steady-state analysis consisted primarily of head-change data, shown as tabulations or as maps. Maps of head change with time are available from the model, but only the final or steady-state output was considered significant because it represented the dynamic equilibrium conditions resulting from the change in river stage. This head-change map was used to compute the average postconstruction potentiometric surface. The elements of this computation are shown in figures 23-26. Figure 23 shows the preconstruction potentiometric surface in a lock-and-dam area. The computed head change is shown as a grid plot to the same scale as the model grid (fig. 24) and as a complete contour map (fig. 25). The head change was added algebraically to the preconstruction potentiometric surface to produce the resultant potentiometric configuration shown in figure 26. This method is based on the principle of superposition that assumes that the flow field in the aquifer can be considered a linear system and that the head change component can be analyzed independently. The principle of superposition allows the postconstruction condition to be determined as the sum of the preconstruction head and the head-change component.

CONTINUING STUDIES

The modeling procedures developed for this study, particularly those for the modeling of nonsteady flow, were designed to provide data for an assessment of the effects of project-induced water-level changes on agriculture. However, these procedures can be applied to a variety of situations in connection with the Red River Waterways Study. The calibrated models can, with the appropriate boundary changes, be used to analyze the effects of any arrangement of locks and dams or pool stages. Although the results of the study were primarily concerned with agriculture, the nonsteady-state model can be modified to determine the effects of raised water levels in urban areas. The higher water levels may cause flooding of basements, septic tanks, or sewer systems, or may, because of increased moisture content of surficial clays, cause differential movement of footings of buildings, swimming pools, or bridges. The models can also be used to aid in the design of well fields and surfacedrainage systems that may be needed in places where shallow water-table levels are anticipated.

To achieve the greatest benefit from the study, the water-level-observation network developed for the study should be maintained and water-level measurements continued through the construction phase to verify the predictions made during the study. The data would provide a definition of the actual ground-water conditions resulting from the stage changes and would provide a means of

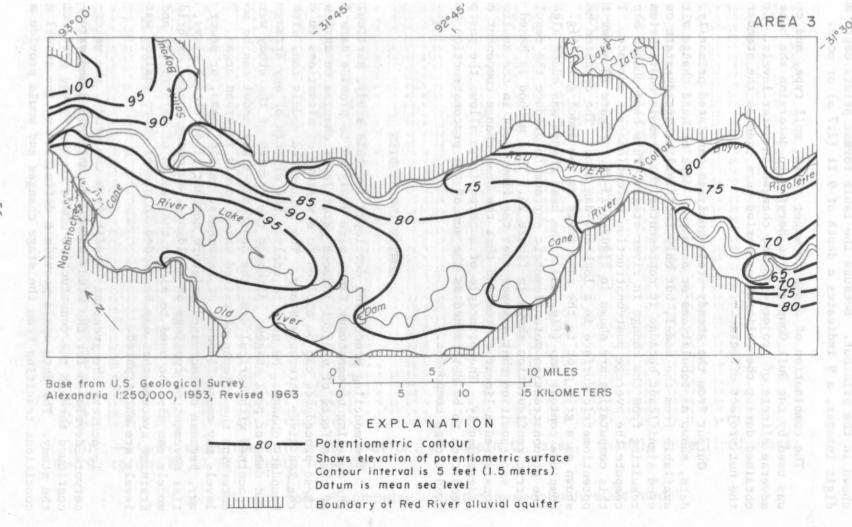


Figure 23.--Average preconstruction potentiometric surface, Lock and Dam 3 area.

TIME IN DAYS-- 40000.00000 80 COLUMNS; ROWS 18 THROUGH 34

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.3	1.8	2.4	3.1	4.3	5.0	5.3	3.7	2.2	1.5	1.1	0.9	0.7	0.5	0.4	0.4	0.0
1.2	1.8	2.3	2.9	3.6	4.2	4.6	4.6	2.4	1.6	1.2	0.9	0.7	0.5	0.4	0.4	0.0
1.2	1.7	2.2	2.7	3.2	3.8	4.4	5.0	2.6	1.7	1.3	0.9	0.7	0.5	0.4	0.4	0.0
1.2	1.7	2.2	2.6	3.0	3.6	4.7	4.7	2.9	1.9	1.4	1.0	0.7	0.5	0.4	0.4	0.0
1.3	1.7	2.1	2.5	2.9	3.4	4.3	4.3	3.5	2.3	1.5	1.0	0.7	0.5	0.4	0.4	0.0
1.4	1.8	2.2	2.5	2.9	3.3	3.5	3.7	3.5	2.4	1.6	1.0	0.7	0.5	0.4	0.4	0.0
1.5	1.9	2.2	2.5	2.9	3.4	3.6	3.6	3.4	2.4	1.6	1.0	0.7	0.5	0.4	0.3	0.0
1.6	1.9	2.2	2.5	2.9	3.3	3.2	3.0	2.7	2.1	1.4	1.0	0.6	0.4	0.3	0.2	0.0
1.8	2.0	2.2	2.6	2.9	3.1	2.8	2.5	1.9	1.3	0.8	0.7	0.4	0.2	0.2	0.1	0.0
1.9	2.1	2.3	2.5	2.6	2.5	2.4	2.0	1.4	0.8	0.3	0.2	0.1	0.1	0.0	0.0	0.0
2.3	2.4	2.4	2.4	2.4	2.2	2.1	1.7	1.0	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0
3.1	2.9	2.7	2.3	2.1	1.9	1.8	1.3	0.6	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0
4.1	3.8	3.1	2.4	1.4	1.3	1.2	0.7	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.7	5.3	3.6	2.4	1.2	1.0	0.7	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9.5	6.1	3.9	2.2	0.9	0.7	0.5	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.5	5.5	3.3	1.8	0.8	0.3	0.3	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.2	4.1	2.2	1.0	0.3	0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.2	2.4	1.0	0.4	. 0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

NOTE.—Eight sheets of printout required for complete coverage of a single modeled area.

Figure 24.--Example of computed output from steady-state model showing a section of head-change map.

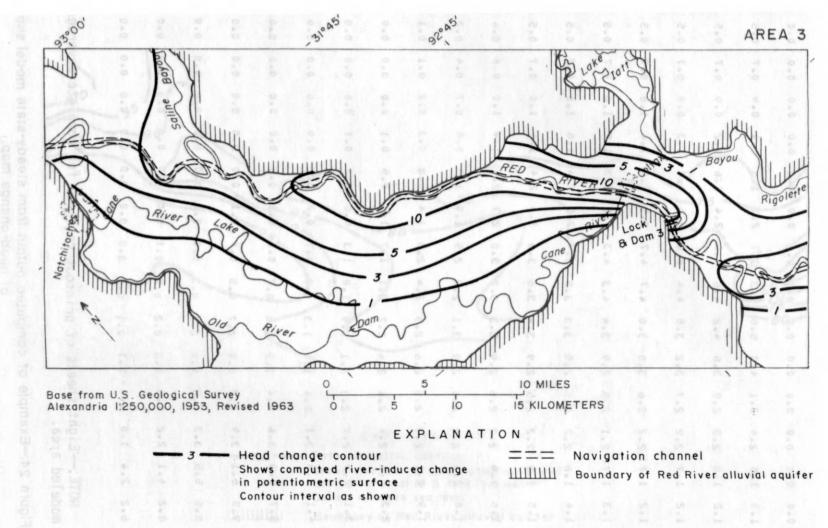


Figure 25.--Contour map showing computed head change, Lock and Dam 3 area.

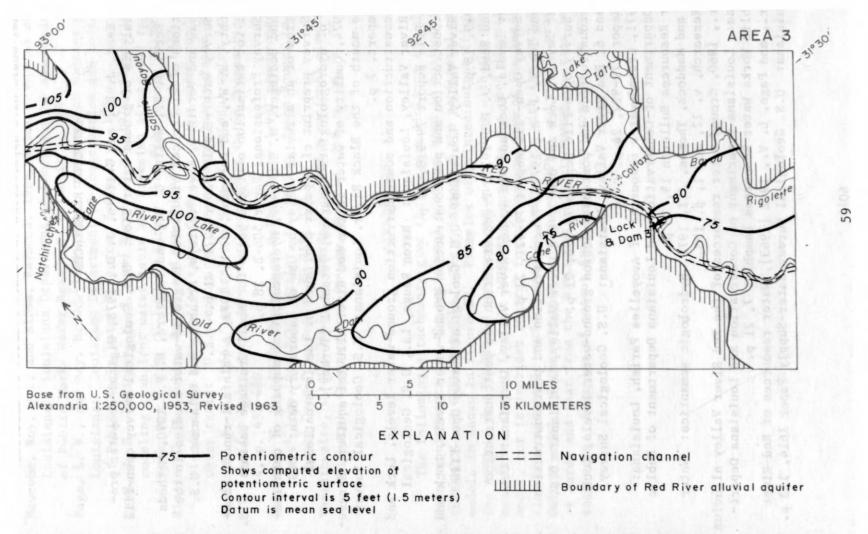


Figure 26.--Computed average postconstruction potentiometric surface, Lock and Dam 3 area.

comparison of observed and predicted water levels. From these comparisons, adjustments could be made, if necessary, to the modeling techniques. Once verified, the model would have application in future studies of alluvial systems.

SELECTED REFERENCES

- Bedinger, M. S., Reed, J. E., and Griffin, J. D., 1973, Digital-computer programs for analysis of ground-water flow: U.S. Geological Survey open-file report, 85 p.
- Bedinger, M. S., Reed, J. E., Wells, C. J., and Swafford, B. F., 1970, Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River valleys, Arkansas and Oklahoma: U.S. Geological Survey Water-Supply Paper 1971, 71 p.
- Dawdy, D. R., Lichty, R. W., and Bergmann, J. M., 1972, A rainfall-runoff simulation model for estimation of flood peaks for small drainage basins: U.S. Geological Survey Professional Paper 506-B, 28 p.
- Johnson, A. I., and Bedinger, M. S., 1967, Hydrogeological mapping of quantitative properties of an alluvial valley by use of laboratory data: U.S. Geological Survey preprint of a paper published by the International Association of Hydrogeologists Congress, Istanbul [Turkey].
- Ludwig, A. H., 1974, Quality of water in the Red River alluvial aquifer, Shreveport, to the mouth of the Black River, Louisiana: U.S. Geological Survey open-file report, 7 p.
- ______1979a, Preconstruction and postconstruction ground-water levels, Lock and Dam 1, Red River Valley, Louisiana: Baton Rouge, La., U.S. Geological Survey Open-File Report 79-918, 17 p.
- 1979b, Preconstruction and postconstruction ground-water levels, Lock and Dam 2, Red River Valley, Louisiana: U.S. Geological Survey Open-File Report 79-919, 18 p.
- Ludwig, A. H., and Reed, J. E., 1979, Preconstruction and postconstruction ground-water levels, Lock and Dam 4, Red River Valley, Louisiana: U.S. Geological Survey Open-File Report 79-921, 22 p.
- Ludwig, A. H., and Terry, J. E., 1979a, Preconstruction and postconstruction ground-water levels, Lock and Dam 3, Red River Valley, Louisiana: U.S. Geological Survey Open-File Report 79-920, 21 p.
- _____1979b, Preconstruction and postconstruction ground-water levels, Lock and Dam 5 and 6, Red River Valley, Louisiana: U.S. Geological Survey Open-File Report 79-922, 24 p.
- Marie, J. R., 1971, Ground-water resources of Avoyelles Parish, Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 15, 70 p.
- Matalas, N. C., and Maddock, Thomas, III, 1976, Hydrologic semantics: Water Resources Research, v. 12, no. 1, p. 123.
- Newcome, Roy, Jr., 1960, Ground-water resources of the Red River Valley alluvium in Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Pamphlet 7, 21 p.
- Newcome, Roy, Jr., and Page, L. V., 1962 [1963], Water resources of Red River Parish, Louisiana: U.S. Geological Survey Water-Supply Paper 1614, 133 p.

- Newcome, Roy, Jr., Page, L. V., and Sloss, Raymond, 1963, Water resources of Natchitoches Parish, Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 4, 189 p.
- Newcome, Roy, Jr., and Sloss, Raymond, 1966, Water resources of Rapides Parish, Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 8, 104 p.
- Page, L. V., and May, H. G., 1964, Water resources of Bossier and Caddo Parishes, Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 5, 105 p.
- Reed, J. E., Bedinger, M. S., and Terry, J. E., 1976, Simulation procedure for modeling transient water table and artesian stress and response: Little Rock, Ark., U.S. Geological Survey Open-File Report 76-792, 173 p.
- Ripple, C. D., Rubin, Jacob, and van Hylckama, T. E. A., 1972, Estimating steady-state evaporation rates from bare soils under conditions of high water table: U.S. Geological Survey Water-Supply Paper 2019-A, 39 p.
- Stallman, R. W., 1956, Numerical analysis of regional water levels to define aquifer hydrology: American Geophysical Union Transactions, v. 37, no. 4, p. 451-460.
- Stephens, J. W., 1976, Records of wells, water-level measurements, and drillers' logs, Red River Valley, Louisiana: Baton Rouge, La., U.S. Geological Survey Open-File Report 76-759, 335 p.
- Thornthwaite, C. W., 1948, An approach toward a rational classification of climate: Geographical Review, January 1948, v. 38, p. 55-94.

ATTACHMENTS

The following attachments give the program listings and show the input data requirements for the peripheral programs used in conjunction with the SUPERMOCK and GWFLOW models. The relation of the peripheral programs to the models in shown in figure 27. Examples of printed output (figs. 28, 29) from the AVERAGE and DELETDELH programs are given along with the respective documentation. Output from the AVERAGE program is not used directly in the GWFLOW model, but it provides control for the contour map of the average preconstruction potentiometric surface used in conjunction with the output from the GWFLOW model. Primary output from the ATMOFLUX and POTEET programs is punched on cards and that from the RIVCHANGE and TRIBCHANGE programs is stored on disk data sets. Examples of output from these four programs are not shown.

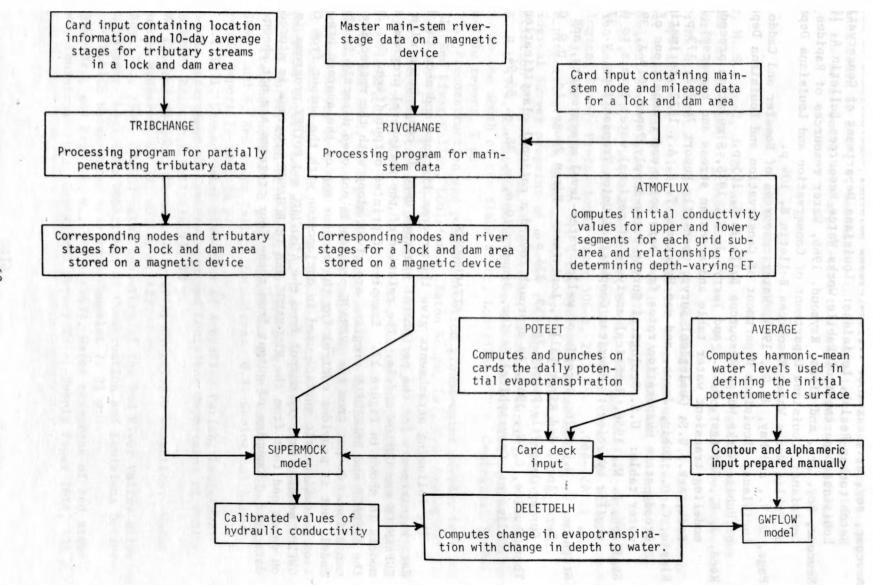


Figure 27.--Generalized chart showing relationship of digital programs that prepare data for input to SUPERMOCK and GWFLOW models

	1	E Y E		t)		
	1995	BONE !	1	numer.	9	
				3	made	
				3	0	
	10.75				allered V	
				-	5	
				Sines.	H. William	
	- 2			00 Per	OF .	- 3
				2 5	0	Koma
				V S T	.014	
					to to	
				4 4		
		-				Andrew Street,
					20 Carlo	
	shtered					
	F 155				-	
	100			1000		
	1.2		- 40	1		
54 55	F-385-19		0	, S	8	
			-			
1.02	100	1 22				
100	(9)	0		190	3	
	5	Sof ned	- 2	1 40		
425	1 3	10			0	
115	CT .	6 1	1 1 1 1	6	1	
SYS	flow dose not		month for partod	· · · · · · · · · · · · · · · · · · ·		
		6			3	
	2	-		7.69).		nga.
906	18	-		(0)	. 9	
- Eyr	No. 150	1 5 1	3	. 5		_ test
	12	691	4 6	AL 102	SABAT.	
3042		10 15	40.00	선명:	12.00	
	130				CD was	
ATTA	CHME	NT A	2 IO.	63	9.3	
		156.55	The same	fields and	profesional and the contract of the contract o	
VED.	05.		2.5	Int	100	
VERA	IGE P	rogram	1.03	7 1	m	
	10					
	1					
	1					St. (SP)
	699					
5					- 5	319970
			(21년)			
544						ABY, 19D
		No.				
		The second second	The second second			
	100					
	70.0					
						1
	7.11.00					Jan 19
. 5,1	Title po	30	pa.	12		†apro P
5,13	100	50 V	10.	15	L/3 eyt	# OVER 10 P
E1"S	Titu garwo	30 31	100	12	U/S end	#AIRYOFF
. S.T3	100	30 31	12		U/S end	e hokuwe
5.13	100	20	r		LC) ent	tanvot to
24 E.S.	100		r	IS	LY EN	Salavo ^A emp
- 60 E.S.	100	100 100 100	2	# IS	20	TARKOR PORTAG
10 7	100	30 30 30	-0 13	12	-5	damyor empiro
6, eu E1'S	100	30 Sec. 1	0-10-	2 de 1.15	20	Colonias Foxuas
107	100	36 81	9-6	2.1 F-C	20	Columns Format
10 7	100		5.E	2-4	20	Columns Louise
10-7	100	50 51 51	2.5 0 E	2-4 IS	20	del Cojstitue Lokates 1 Pes
10-7	100	30 30 31	84 8-8-	3-H	20	ot Columbia Lokary.
10-7	100	30	9-6	2.1.25 1.1.55	20	ends Colomba Postation
10-7	100	307	2.1 0-8	2-4 15	20	Cojnina Lovinst of Cojnina Lovinst
3 16 7	100	30 31 31 31	5-6-2-9	2. E	20	cenda to totalina tokalat
3 16-7	100	\$6 \$1 \$0 -1	21 0 -5	2 · · · · · · · · · · · · · · · · · · ·	20	County County Format
6. ed . e	100	30	90 III	2 T	20	Se of Colonia Postation
6. ed . e	100		51 8-8-	2. TS	20	ocs of Cojugus Royalys
18	100		5-6-2-9	ST	20	Succession Continues to Assess
Co . S	100	36 30 -1	0-5	ST 125	20	Solution county to higher posture.
CO 15 C. M. L.	100		10 14 01 15	21.5 F-0.7	20	Cends Columber Pokalyte
CO 15 C. M. L.	Notton edi		51-6-8-	\$1 ************************************	1,2-1, 1-1, 1-1, 1-1, 1-1, 1-1, 1-1, 1-1	cends columbs columbs columbs
CO (3) C. M	100		5-6	23 P.	-S-1	definition of political po

Table 2 . — Input data for AVERAGE program

Reference	Number of cards	Columns	Format	Program variable	Input item	Remarks
Dates	1	1-2	12	IMØN	Beginning month for period of interest.	These should be
		3-4	12	IYR	Beginning year for period of interest.	two-digit numeric values.
		5-6	12	JMØN	Ending month for period of interest.	
	Torrest to		7-8	12	JYR	Ending year for period of interest.
1		The follo	wing will	be read re	epetitively for each well entered	
Well data	1	61-67	F7.2	ELEV	Land-surface elevation at well.	A WEA XXES
		80	11	INØ	Card number.	Conducted Appropriations values Persons used to
1	1	20-24	F5.1	DEPTH	Depth of well.	poterphonetric corface
		80	11	INØ	Card number.	
	1 or more	21-69	12A4, 2A1	IHED(I)	Heading information for well.	The program will continue to look for cards in this
		79-80	12	INØ	Card number.	format until

Water-level data	l or more	20-75	4(312, A1,F6.2, 1X)	IY(I),	MØ(I)month water-level measurement taken. ID(I)Day measurement taken. IY(I)Year measurement taken. SIN(I)Sign of water level. WL(I)Water level, in feet below land surface.	The program will continue to look for cards in this format until an end of file is encountered.
		78-80	13	JNUM	Card number.	

Table 3.— AVERAGE program listing

```
C
      1
C
                                                                         AVE
                                                                               2
0
                               AVFHAGE
                                                                         AVE
                                                                               3
~
                                  EY
                                                                         AVE
                                                                               4
C
                              JOHN TEPRY
                                                                         AVE
                                                                               5
C
                                                                         AVE
                                                                               6
C
C
        THIS PROGRAM COMPUTES THE HARMONIC (TIME-WEIGHTED) AVERAGE WATEPAVE
C
      LEVEL FOR A SPECIFIED PERIOD OF RECORD FOR ANY NUMBER OF WELLS.
                                                                               0
C
      THE PROGRAM IS DESIGNED TO READ WL1 AND WL2 CARDS IN THE DLD
                                                                              10
C
      GROUND-WATER FORMATS. HOWEVER. IT COULD BE REFORMATTED TO ACCEPT
                                                                              11
C
      WATER-LEVEL CAPDS AS THEY ARE PUNCHED FOR SYSTEM 2000.
                                                                         AVF
                                                                              12
C
                                                                         AVE
                                                                              13
(
      14
                                                                         AVE
                                                                              15
      DIMENSION IDAY (12) . SIGN (3) . IHED (200) . MO (4) . ID (4) . IY (4) . WL (4) .
                                                                         AVE
                                                                              16
                                                                         AVE
     1 SIN(4) . IMO(4) . IID(4) . IIY(4) . AWL (4)
                                                                              17
                                                                         AVE
                                                                              14
      DATA JM.JD.JY.WLM/0.0.0.0.0.0/
                                                                         AVE
      DATA SIGN/ 1+1,1-1,1 1/
                                                                              19
                                                                         AVE
                                                                              20
      DATA IDAY/31,28.31,30.31.30.31.31.30.31.30.31/
                                                                         AVF
                                                                              15
      IRD=5
                                                                         AVE
                                                                              25
      IPT=6
                                                                              23
                                                                         AVE
      IZT=0
                                                                         AVE
                                                                              24
C
                                                                         AVE
                                                                              25
      IMON -- BEGINNING MONTH FOR DESIRED PERIOD OF RECORD.
                                                                         AVE
                                                                              26
                                                                         AVE
                                                                              27
C
      IYR -- BEGINNING YEAR FOR DESIRED PERIOD OF RECORD.
                                                                         AVE
                                                                              28
0
                                                                         AVE
                                                                              29
C
      JMON -- ENDING MONTH FOR DESIRED PERIOD OF RECORD.
                                                                         AVE
                                                                               30
C
                                                                         AVE
                                                                               31
0
      JYP -- ENDING YEAR FOR DESIRED PERIOD OF PECORD.
                                                                         AVE
                                                                               32
C
                                                                          AVE
                                                                               33
      READ (IRD.45) IMON. IYR. JMON. JYP
                                                                          AVE
                                                                               34
C
                                                                          AVE
                                                                               35
C
      ELEV -- LAND-SURFACE FLEVATION AT WELL.
                                                                          AVE
                                                                               36
C
                                                                          AVE
                                                                               37
C
      INO -- CARD NUMBER.
                                                                          AVE
                                                                               38
                                                                          AVF
                                                                               30
    1 READ (IRD.46.END=44) ELEV.INO
                                                                          AVE
                                                                               40
      MQ=0
                                                                          AVE
                                                                               41
      ISM=0
                                                                          AVE
                                                                               42
      JSM=0
                                                                          AVE
                                                                               43
C
                                                                          AVE
                                                                               44
C
      DEPTH -- DEPTH OF WELL.
                                                                          AVE.
                                                                               45
C
                                                                          AVE
                                                                               46
C
      INO -- CARD NUMBER.
                                                                          AVE
                                                                               47
C
                                                                          AVE
                                                                               48
      READ (IRD.47) DEPTH. INO
                                                                          AVE
      IF (DEPTH.EQ.0.0) DEPTH=999.99
                                                                               49
                                                                          AVE
                                                                               50
      JM=0
```

```
WW=0.0
                                                  AVE
                                                     51
PAX=9999.

NP=1
    NP=1
                                              AVE
    NTM=0
NQ=14
                                  AL OT OD 40 DE SYL AVE
                                    AVE
    NQ=14
NG=14
PIN=-999.9
AVEL=999.99
                                           AVE
                                STALL STALL SALL AVE
                                                     57
 PAXEL=999.99
                                                     58
                                CE OT DO CHOME BLACTLION AVE
PINEL=999.99
                                                AVE
                                                     59
CPOI
                                   AVE
C IHED (I) -- HEADING INFORMATION FOR WELL.
                                    AVE
                                                     61
CILI
                                         AVE
C INO -- CARD NUMBER.
                                                     62
                                        AVE.
                                                     63
                                  ((-TL) Marti AVE
C
                                                     64
2 READ (IRD.48) (IHED(I).I=NP.NQ).INO
                                                     65
IF (INO.LT.1) GO TO 3
                                  AE OT GE (ALDTIN) AVE
                                                     66
NP=NP+14
                                                  AVE
                                                     67
NO=NQ+14
                                                AVE
                                                     68
60 TO 2
                                                 AVE
                                                     69
3 MQ=MQ+1
                                                AVE
                                                     70
051 M=1 =0 Weller
                                                AVE
                                                     71
CISI 3VA
                                   AVE
AVE
                                                     72
C SSI MO(I) -- MONTH WATER-LEVEL MEASURMENT TAKEN.
                                                     73
                         AT OT OF TOURS, TENTION AVE - 74
CESI
C = ID(I) -- DAY WATER-LEVEL MEASUREMENT TAKEN.
                                       CINDISTIST AVE
125.0
Casi
   IY(I) -- YEAR WATER-LEVEL MEASUREMENT TAKEN.
                                          AVE
C
                                          AVE 78
   SIN(I) -- SIGN OF WATER-LEVEL VALUE.
COSI
                                            AVE
CPSI
             TI OT DE TILETPYT 3M LIFFT AD TE FOR 3M LINDS AVE SEO
COES WL(I) -- WATER LEVEL

CIES WATER LEVEL

CIES WL(I) -- WATER LEVEL
4 READ ([RD,49) (MO(I), ID(I), IY(I), SIN(I), WL(I), I=1,4), JNUM AVE
IF (MQ.NE.1) GO TO 9

IF (IYP.EQ.0) GO TO 8
                                  AVE
                            AVE 85
IF (IY(IT)-IYR) 7.5.6
                            esetsiyadi to.ca.ta.(1)vincol) AVE
5 IF (MO(IT).LT.IMON) GO TO 7
                                                     RR
6 IF (ISM.EQ.1) GO TO 7
                                     AVE 89
ISM=1
M=IT
                                           AVE 90
                                          STARLES AVE 91
7 CONTINUE
                                         AVE 92
                                 titol-caroniwaci-AVE 93
IF (ISM.EQ.1) GO TO A
IF (JNUM.EQ.0) GO TO 1
GO TO 4
                         AVE 94
                           CONTENTS OF THE PROPERTY OF THE AVE 95
8 LM=MO(M)
                                   VOM LIGHT OF DULL SHITMEN AVE
LD=ID(M)
                                             AVE 97
FA=1A(W)
                           AS OT DO MATOLICETY T- CENTY THE AVE - 98
                                    AVE 99
9 DO 10 I=M.4
                            PS=184 YACT (A.D.S. TA-CISTY FOOK) AVE 100
```

	IF (SIN(I) .EQ.SIGN(1)) WL(I)=WL(I)*(-1.0)	AVE 1	
10	CONTINUE	AVE 1	
	IF (JYR.EQ.0) GO TO 14	AVE 1	03
	IF (JSM.EQ.1) GO TO 37	AVE 1	04
1	IF (JYR.EQ.0) GO TO 14 IF (JSM.EQ.1) GO TO 37 DO 13 JT=M.4 IF (IY(JT)-JYR) 13.11.12 IF (MO(JT).LE.JMON) GO TO 13	AVE 1	05
	IF (IY(JT)-JYR) 13,11,12	AVE 1	06
11	IF (MO(JT).LE.JMON) GO TO 13	AVE 1	07
12	ICM-1	AVE 1	08
1	IF (IT FO. M) GO TO 37	AVE 1	
	MO(JT)=MO(JT-1)		
	ID(JT)=ID(JT-1)	AVE 1	111
	IY(JT) = IY(JT-1)	AVE 1	112
	W (.IT) = W (.IT-1)	AVE)	113
12	CONTINUE	AVE 1	114
14	TY(JT)=1Y(JT-1) WL(JT)=WL(JT-1) CONTINUE IF (M.FQ.4) GO TO 36	AVE 1	115
14	10 23 1-M-3	AVE 1	116
	IKO=0		
	117-0		
	DO 33 I=M,3 IKO=0 JT=0 IJJ=0	AVE	119
	JJJ=0	AVE	120
		AVE	121
	IF (JM.EQ.0) GO TO 15	AVE	122
	TE (MO(T.11 NE A) CO TO 16	AVE	123
15	IF (MO(I+1).NE.0) GO TO 16 MO(I+1)=MO(I)	AVE	124
	MO(1+1)=MO(1)	AVE	125
	10(1+1)=10(1)	AVE	126
	IA(I+I)=IA(I)	AVE	127
	WL(I+1)=WL(I) GO TO 30	AVE	128
	IF (MO(I).NE.MO(I+1).OR.IY(I).NE.IY(I+1)) GO TO 17	AVE	129
16	IF (MO(1).NE.MO(1+1).OR.IY(1).NE.IY(1+1)) GO TO IT	AVE	
	BA=(1.0+(ID(I+1)-ID(I)))/2.0	AVE	131
	WW=WW+(W((1))PHA)+(W((1+1)P(HA=1*(1)))		
	NTM=NTM+(ID(I+1)-ID(I))	AVE	133
	60 TO 30	AVE	134
17	IF (IY(I).NE.IY(I+1)) GO TO 20	AVE	135
	IF (MOD(IY(I),4).EQ.0) IDAY(2)=29	AVE	136
	NTM=NTM+(ID(I+1)-ID(I)) GO TO 30 IF (IY(I).NE.IY(I+1)) GO TO 20 IF (MOD(IY(I).4).EQ.0) IDAY(2)=29 K=MO(I+1)-MO(I) IF (K.EQ.1) GO TO 19	AVE	137
	IF (K.EQ.1) GO TO 19	AVE	138
	IA=MO(I)+1	AVE	130
	IR=M0(I+1)-1	AVE	
	DO 18 J=IA,IB	AVE	
18	JJJ=JJJ+IDAY(J)	AVE	141
19			
	BA=(1.0+NDY+JJJ+ID(I+1))/2.0	AVE	
	WW=WW+(WL(I)*BA)+(WL(I+1)*(BA-1.0))		
	NTM-NTM+ LLI+TD(T+1)+NDY	AVE	
	GO TO 30	AVE	
21	IF ((IY(I+1)-IY(I)).GT.1) GO TO 26	AVE	
	KP=M0(I)+1	AVE	
1	IF (MOD(IY(I),4).EQ.0) IDAY(2)=29		
	IF (KP.GT.12) GO TO 23	AVE	150

	DO 22 J=KP.12		AVE	151
22	JJJ=JJJ+IDAY(J)			152
	그 [자] [장면 10] [전 12] 그 아이들 것 않아 하는 사람들이 아니는		AVE	153
23	IF (MO(I+1).EQ.1) GO TO 25		AVE	154
	IPP=MO(I+1)-1			155
	IF (MOD(IY(I+1),4).EQ.0) IDAY(2)=	29 00 00 00 (10) 00 30 311	AVE	156
	DO 24 J=1. IPP			157
24	IJJ=IJJ+IDAY(J)	(N) GImGM	AVE	158
25	NDY=IDAY(MO(I))-ID(I)		AVE	159
IVA	NDY=IDAY(MO(I))-ID(I) BA=(1.0+JT+NDY+JJJ+IJJ+ID(I+1))/2	.0 25 OT DE (WILM, BK. XAR) SI	AVE	160
	WW=WW+ (WL (I) *BA) + (WL (I+1) * (BA-1.0	D) EAS GHE AMM	AVE	
	NTM=NTM+NDY+JJJ+IJJ+ID(I+1)+JT		AVE	162
	GO TO 30			163
26	KP=(IY(I+1)-IY(I))-1	COMY J MIR	AVE	164
	KKI=365			165
	DO 27 J=1+KP		AVE	166
	IF (MOD((IY(I)+J),4).EQ.0) KKI=36	6	AVE	167
27	JT=JT+KKI		AVE	168
	GO TO 21		AVE	169
	IKO=1	A STATE OF THE STA	AVE	170
	DO 29 K=1,4		AVE	171
	IMO(K)=MO(K)		AVE	172
	IID(K)=ID(K)	1 (S. S. S	AVE	173
BYA	I I Y (K) = I Y (K)		AVE	174
	AWL (K) = WL (K)		AVE	175
	IF (K.EQ.1) GO TO 29		AVE	176
	MO(K)=MO(K-1)			177
	ID(K) = ID(K-1)			178
	IY(K)= Y(K-1)		AVE	179
	WL (K) = WL (K-1)	WRITE (1PT, SO)		
59	CONTINUE		AVE	
				182
				183
	IY(1)=JY		AVE	
	WL(1)=WLM		AVE	185
	GO TO 15	9817E (197,561 WEITE (191,551	AVE	186
	IDAY(2)=28			187
344	IF (IKO.NE.1) GO TO 32	(42.151) 31194	AVE	188
		ALLE TELE PERTY PARTY TARE THE	AVE	189
	MO(K)=JMO(K)			190
	ID(K)=IID(K)	SeeSee [d (XA9) 3]	AVE	191
	IY(K)=IIY(K)			
31	WL(K)=AWL(K)	BO TO AB	AVE	193
	IKO=0			
	JM=0			195
	GO TO 15			196
32	LLM=MO(I+1)			197
341	LLD=ID(I+1)			198
	LLY=IY(I+1)			199
	WPD=WL(I+1)	FORMAT (412)	AVE	200
341				

33 CONTINUE	AVE 20
DO 35 N=M+4	AVE 20
PIN=AMAX1 (PIN, WL (N))	as of on transaction was AVE 20:
PAX=AMIN1 (PAX, WL (N))	AVE 20
	= (S) YAGI (0.03.(A+()) YI) COM 3 AVE 20
MA=MO(N)	AVE 20
MD=ID(N)	AVE 20
MY=IY(N)	AVE 20
34 IF (PAY-NE-WI (N)) GO TO 35	STATE THE THE LEGISLE TO STATE OF THE AVE 20
NMA=MO(N)	The state of the s
NMD=ID(N)	AVE 21
NMY=IY(N)	AVE 21
35 CONTINUE	AVE 21
36 JM=MO(4)	AVE 21
JD=ID(4)	900 E 21
JY=IY(4)	SAC = INCH 10.03.(4+15+(IIVIII100H) SI AVE 21
WLM=WL(4)	AVE 21
37 IF (JNUM.NE.0) GO TO 3	AVE 21
	AVE 21
WW=WW+WPD	AVE 22
NTM=NTM+1	TALON (X) DAT AVE 22
AVE=WW/NTM	AVE 22
IF (ELEV.EQ.0.0) GO TO 38	CHI Y I = CHI Y II AVE 22
AVEL=ELEV-AVE	AVE 22
PAXEL=ELEV-PAX	95 OT 00 11.03.XI 31 AVE 22
PINEL=ELEV-PIN	TENDMENT AVE 22
38 IF (MOD(IZT.3).EQ.0) GO TO 39	AVE 22
WRITE (IPT.54)	AVE 2
GO TO 40	TIERY GO TO LIVE (NEW YORK AVE 2
39 WRITE (IPT.50)	AVE 2
40 WRITE (IPT.51)	AVE 2
WRITE (IPT,52) (IHED(I) . I=1,NQ)	THE STATE OF
WRITE (IPT.53) LM.LD.LY.LLM.LLD	AVE 2
WRITE (IPT.54)	AVE 2
WRITE (IPT,55)	AVE 2
WRITE (IPT.56)	MATE AVE 2
WRITE (IPT.55)	SE OF OB-11 TM-0VII TAVE 2
WRITE (IPT,54)	NA MY DAY NMA NMO NMY PINEL DAVE 2
WRITE (IPT,58) DEPTH, AVE, AVEL,P	IN, MA, MD, MY, PAX, NMA, NMD, NMY, PINEL, PAVE 2
1AXEL	
IF (PAX) 41,42,42	AVE 2
41 WRITE (IPT,57)	2
GO TO 43	AVE -
42 WRITE (IPT,54)	AVE 2
43 WRITE (IPT,51)	AVL C
WRITE (IPT,59)	
IZT=IZT+1	
GO TO 1	716
44 STOP	AVE 2
SPARSE AT LET GO TO PR	AVE 2
45 FORMAT (412)	AVE 2

```
46 FORMAT (60x.F7.2.12x.11)
                                                              AVE 251
47 FORMAT (19X.F5.1.55X.II)
                                                              AVE
                                                                 252
                                                                 253
48 FORMAT (20X.12A4.2A1.8X.12)
                                                              AVE
49 FORMAT (19X.4(312.A1.F6.2.1X).2X.13)
                                                                 254
                                                              AVE
                                                                 255
50 FORMAT (1H1)
                                                                 256
51 FORMAT (140.15X. --
 1-----
                                                                 257
52 FORMAT (19X.1244.241.1244.241)
                                                              AVE
                                                                 258
53 FORMAT (44x. (REGINNING DATE '.IZ. 1/1, IZ. 1/1, IZ. 1) .4x (ENDING DATAVE
 1E '.I2.'/'.I2,'/'.I2,')')
54 FORMAT (1H )
                                                              AVE
1x,!----!,3x,!---!,3x,!----!
56 FORMAT (24X, DEPTH OF WELL . 3X . AVEPAGE DEPTH . 3X . AVERAGE MEAN . 3AVE 264
 1X. MAXIMUM DEPTH . 3X. DATE . 3X. MINIMUM DEPTH . 3X. DATE //42X. BELOAVE 265
 2W LAND . 6x . 'SEA LEVEL' . 6X . 'RELOW LAND' . 13X . 'HELOW LAND' /44X . 'SURFAAVE 266
 3CE . 6X . 'ELF VATION' . 9X , 'SURFACE' . 16X . 'SURFACE')
                                                              AVE 267
57 FORMAT (25X . (NEGATIVE DEPTHS ARE ABOVE LSD) .)
                                                              AVE 268
1..I2../.,I2.5X.F6.2.4X.I2../.,I2../..I2/71X..(ELEV ..F6.2..)..11X.AVE 270
 2 (FLEV 1.F6.2.1)1)
59 FORMAT (25x, * ALL AVERAGES ARE TIME-WEIGHTED AVERAGES 1/25x . (IF EAVE 272
  1LEVATION OR DEPTH IS EQUAL TO 999.99 THEN NO FLEVATION OR DEPTH WAAVE 273
  25 AVAILABLE AT WELL) 1)
                                                              AVE 274
                                                              AVE 275-
  END
```

TERRA							The state of the s	distriction of the second second	-69. MP TOP OF	
3.00	FT ABOVE	LSD.						4 2 6 4 8 4		
			IRE	GINNING	DATE	8/ 3/64)	LENDING DATE	6/ 2/7	5)	
								A		
	DEPTH OF	WELL	AVERAGE BELOW SUR	-	SE	AGE MEAN A LEVEL VATION	MAXIMUM DEPTH BELOW LAND SURFACE	DATE	MINIMUM DEPTH BELOW LAND SURFACE	DATE
								- 0 0 - 4 1		7.5
	69.	0	* 5	1.05	*	86.02	52.90 (ELEV 84.17)	11/ 1/71	46.20 (ELEV 90.87)	6/ 2/75

* ALL AVERAGES ARE TIME-WEIGHTED AVERAGES
(IF ELEVATIONS OR DEPTH ARE EQUAL TO 999.99 THEN NO ELEVATION OR DEPTH WAS AVAILABLE AT WELL)

Figure 28.--Example of output from AVERAGE program.

coded tu unct pe se tubes Aspa	Waxabha Ab	80 N=WHC.JO	ne is is:	Remarks
EXP(I) Values for the integer policy of succession (I). Solid to values of suction (I). Solid to secure the integer policy of succession (I). Solid to secure the succession of which unsaturated white succession at which unsaturated white succession at which unsaturated white succession at which does not successive the succession of succession and succession of succession and	EXB(I) Whimpsk of jubne Asymes of	HC(I). 11c conductivity of the Type. 11d conductivity of the Type.	shi essis areolatif to reduce the telephone of process are described for destrictions are to be read on next card.	med'r Jugal
	HMENT E	LJ*		0 3
ATMOFLU	X Progr	ram	ARC	Program
L(E)) ((2)) ((4)) ((4)) ((4))	1.(5)	£(8'e)] [E(5)* MHC	£(8)	Format
2 2	. p/3	2HFC+10	1-5	2 natur o 3
		ХТ		cards of Mumber
deute representation at which ing soil-water for earth of thick for ea	einefaitleaa fioz	logic types	end pointing stad end to dideb sam bentsma-enti -yd bas isined	gonerales

74

Table 4 . — Input data for ATMOFLUX program

Reference	Number of cards	Columns	Format	Program variable	Input item	Remarks
Data defining the depth of the fine-grained material and hy-	1	1-2	F(2)	NHC	Number of lithologic class iden- tifications and associated hy- draulic conductivities to be read on next card.	Maximum val- ue is 15.
draulic conduc- tivity of litho- logic types	1-X	1- NHC*10	NHC [F(2), F(8,6)]	I,HC(I), J=1,NHC	Lithologic type, I, and hydrau- lic conductivity of the type, HC(I).	I≤15. X= <u>NHC*10</u> .
Soil coefficients and corresponding	1	1-2	F(2)	NEXP	Number of input values of EXP(I).	Maximum val- ue is 10.
constant coefficients representing soil-water suction at which unsaturated hydraulic conductivity divided by saturated hydraulic conductivity equals 1/2.	1 SUN	1-80	NEXP(F(2), F(6))	EXP(I), SUC- TION (I), I=1, NEXP	EXP(I)Values for the integer soil coefficient, N, corresponding to values of suction (I). SUCTION (I)Constant coefficient representing soil-water suction at which unsaturated hydraulic conductivity divided by saturated hydraulic conductivity equals 1/2.	APLE AT ALL
Upper limits for saturated hydraulic conductivity	1	1-72	10F(8,6)	EXP_LIMIT (I),I=1, NEXP(I)-1	Upper limit of saturated hydraulic conductivity for each class, EXP(I).	These values must be coded in ascending order.

Log data for each observa- tion well	Any num-	5-8	A(4)	WELL_NO	Well identification number	One data card for each representative observation	
	F(4)) TH(I		LCD(I), TH(I), I=1,12	LCD(I)Lithologic type number for the Ith unit in the log. TH(I)Thickness of the Ith unit.	well is required. If TH(12)>0, then it is assumed that the log is continued on the next card.		
	10000	1-78	13(F(2), F(4))	LCD(I), TH(I), I=13,25	(Same as preceding.)	Optional cardenter only if TH(12)>0. (Can be blank.)	

```
FT: PROC OPTIONS (MAIN) ;
ATMOFIUX
    THIS PROGRAM COMPUTES POTENTIAL UPWARD MOVEMENT ( DUE TO
   EVAPOTRANSPIRATION AT THE LAND SURFACE) FOR DEPTHS TO THE WATER
   TABLE FROM 1 TO 30 FT. THE PROGRAM
   COMPUTES THE HARMONIC-MEAN HYDRAULIC CONDUCTIVITY FOR LAYERED
   MATERIAL BY: KSAT (HAR. MEAN HYD. COND.) = SUM (THICKNESS) /
                                IT ASSIGNS N AND S1/2 VALUES TO A
   SUM (THICKNESS * HYD . COND .) .
   LOG DEPENDING ON CALCULATED VALUES OF KSAT AND INPUT VALUES OF
   EXP, SUCTION, AND EXP LIMIT. THIS PROGRAM USES
   N(GARDNER'S EXPONENT), AND S1/2 (TENSION AT WHICH
   UNSATURATED H.C./SATURATED H.C. = 1/2) TO COMPUTE VERTICAL FLOW
   AS A FUNCTION OF DEPTH. THE FUNCTION IS EQ. 23(P.A9) OF
   RIPPLE, ET AL, WSP 2019-A.
   *****************
                                                 LCD (25) , TH (25) .
  DCL HC(15) INIT((15)0.) . FINF(2:5,30).
  SUCTION(10) INIT((10)0.) . FXP_LIMIT(9) . (L. KSAT) DEC FLOAT(6) .
  EXP(10) BINARY FIXED(15.0) WELL_NO CHAR(4) PUNCH FILE OUTPUT:
  ON ENDFILE (SYSIN) GO TO P1:
  GET FILE (SYSIN) EDIT
  (NHC , (I , HC (I) DO J=1 TO NHC))
1#
   NHC - NUMBER OF HYD. COND. TO BE READ (MAXIMUM = 15)
   I - NUMBER REFERRING TO A LITHOLOGIC TYPE. MAY BE ARBITRAPILY
   CHOSEN WITHIN THE RANGE OF 1-15.
   HC(I) - HYD. COND. (FT/DAY) OF LITHOLOGIC TYPE I.
                                                         # /
  (COL(1),F(2),SKIP(1),(NHC)(F(2),F(8,6)))
  (NEXP, (EXP(I), SUCTION(I) DO I=1 TO NEXP))
18
   NEXP - NUMBER (MAXIMUM = 10) OF INPUT VALUES OF N.
   EXP(I) - VALUE OF N CORRESPONDING TO SUCTION(I).
   SUCTION(I) - VALUE OF S1/2 (IN FEET) COPRESPONDING TO FXP(I).
  (COL(1) • F(2) • SKIP(1) • (NEXP) (F(2) • F(6)))
  ((EXP_LIMIT(I) DO I=1 TO NEXP-1))
   EXP_LIMIT(I) - UPPER LIMIT OF KSAT FOR EXP(I). NUMBER OF VALUES
   IS NEXP-1 (MAX = 9). EXP_LIMIT VALUES MUST BE ARRANGED IN ASCENDING
   ORDER, (SMALLEST FIRST AND LARGEST LAST). SINCE THEPE IS
   A CORRESPONDENCE BETWEEN EXP(I) AND EXP_LIMIT(I) . FXP(I) WILL
   ALSO BE CODED IN ASCENDING ORDER.
  (COL(1) .10 F(8.6));
```

('H.C. LIMIT' . 'S1/2' . 'EXPONENT' . (FT/DAY) ' . ' (FT) ')

PUT FILE (SYSPRINT) FOIT

```
(X(12), A.X(4), A, COL(1), A, X(5), A, X(5), A)
         ((EXP(I), '< ', EXP_LIMIT(I) . SUCTION(I) DO I=1 TO NEXP-1))
         ((NEXP-1)(COL(1) • X(3) • F(2) • X(7) • A • F(8 • 5) • X(5) • F(4)))
         (FXP(NEXP) . SUCTION (NEXP))
         (COL(1), x(3), F(2), x(21), F(4));
         SUCTION=30.48*SUCTION:
         DO K=1 TO NEXP;
         N=EXP(K):
         S12=SUCTION(K):
        RN=N:
        N1=N-1;
        F=3.14159/(RN*SIN(3.14159/RN));
        x=S12*F/30.48;
        IF X<1. THEN X=1.;
                                                                                                     AVE CONDESS. THEN 202
        DO I=1 TO 30;
                    L=30.48#1;
                     A= (512#F/L) ##N:
                    DO J=1 TO 100;
                                                                          INCOME A CREATER STREET OF A CREATER STREET
                                 XN=X**N:
                                 XN1=XN/X;
                                 XNS=XN]/X:
                                U=(XN-XNI-\Delta)/(N*XNI-NI*XN2):
                                X=X-U;
                                IF U<0. THEN U=-U:
                                IF U<3.E-6 THEN GO TO C2:
                    J=100;
                    FINF (N . I) = x - 1 . :
                    END:
        K=1:
        L=10:
       DO J=1.3:
PUT FILE (PUNCH) EDIT
        (COL(1) .10F(7.6) .X(6) . N=! .F(2)):
        K=K+10;
       L=L+10;
       END:
                                                                  INF (Nat) and a series and a control of the control
Al:GET FILE(SYSIN) FOIT
        (WELL_NO. (LCD(I).TH(I) DO I=1 TO 12))
14
                                                                                  * (A+ (2) X+ (2+0) ) T E : (4) X : [4] X : [4]
          WELL NO - WELL NUMBER.
         LCD(I) - LITHOLOGIC-TYPE NUMBER FOR THE ITH UNIT IN THE LOG
         TH(I) - THICKNESS(FT) OF THE ITH UNIT IN THE LOG.
        (COL(1) • X(4) • A(4) • 12 (F(2) • F(4)));
       IF TH(12) >0. THEN DO:
                   GET FILF (SYSIN) EDIT
                   ((LCD(I) . TH(I) DO I=13 TO 25))
14
         IF TH(12)>0 THEN IT IS NECESSARY TO HAVE A SECOND CAPD (CAN RE
```

```
((ExP(1), a-x(2) *A*COE(1) *A*X(5) *A*X(5)*A*((EXP(1))*A*X(5) *A*X(5) 
        BLANK) FOR LCD, TH.
                  FND:
      THC, THK=0.;
      DO I=1 TO 25;
                  THICK=TH(I); AT LAND, REASONNEY, COMPA, LANDSCRIPTING COMPANY AND LIVENS
                                                                           THE ASSESSED IN ANTI-STREET OF STREET
                  IF THICK<=0. THEN GO TO A2; THK=THK+THICK;
                                                              THETE THIS PROGRAM USES :84.0F TOSIZEX
                  IF HYD_COND<=0. THEN DO;
                  HYD_COND=HC(LCD(I));
                             PUT FILE (SYSPRINT) EDIT
                              ('WELL NUMBER ', WELL_NO, ', UNIT ', I, ', CODE= ', LCD(I),
                              . HYDRAULIC CONDUCTIVITY = 0.)
                              (PAGE, A, A(4), A, F(2), A, F(2), A);
                              GO TO A1;
                              END:
          THC=THC+THICK/HYD_COND;
                  END:
      DO I=1 TO NEXP-1;
A2:KSAT=THK/THC;
                  IF KSAT<EXP_LIMIT(I) THEN DO;
                              N=EXP(I);
                              GO TO C1;
                              END;
                  END:
       N=EXP(NEXP);
C1:PUT FILE (SYSPRINT) EDIT
       ' FT/DAY', 'GARDNER''S EXPONENT = ',N)
       (PAGE, A, A(4), COL(1), A, F(7,4), A, COL(1), A, F(2))
       ('DEPTH', 'TO', 'WATER', '(FT)', ' ET/SHC ', 'ET(FT/DAY)')
       (SKIP(2), A, COL(1), X(2), A, X(19), COL(1), A, X(20),
       COL(1),X(1),A,X(4),A,X(4),A)
       ((I.EINF(N.I), KSAT*EINF(N.I) DO I=1 TO 30))
        (30 (COL(1), X(2), F(2), X(5), F(8,5), X(5), F(8,5)));
       PUT FILE (PUNCH) EDIT
       (WELL_NO, KSAT, KSAT, THK, ...) COST OF LEL OR THAT (1105.1) . OM
        (COL(1),A(4),X(6),3 F(10,5),X(6),A);
       GO TO A1:
       DI:END ET:
```

ATTACHMENT C POTEET Program

80

Table 6.—Input data for POTEET program

Reference	Number of cards	Columns	Format	Program variable	Input item	Remarks
Number of weather bureau stations	1	1-2	12	NSTAS	Number of weather bureau sta- tions to be read.	13 17 12
Average monthly tempera- tures	1	1-72	12F6.2	AMT(J)	Average monthly temperature in degrees Fahrenheit.	
Latitude	1	1-8	F8.3	STALAT	Station latitude as a decimal number.	
Number of years	1	1-2	12	NYR	Number of years of station re- cord to be read.	
Data de- fining period of	1	1-4	14	MØ	Total number of days in period to be processed.	
record		5-9	F5.0	DSE	Number of days since spring (ver- nal) equinox to beginning period of record.	For example, DSE =-80 or -81 for January 1.
Year	1	1-4	14	IYEAR	Calendar year for which potential ET is computed.	
Days per month	1	1-24	1212	MDAY(I), I=1,12	Number of days in each calendar month.	

Maximum	3333	10-11	12	IYRD	Calendar year of data to be read.	11111111111
tempera- ture data		12-13	12	IMØND	Calendar month of data to be read.	ATTEN STILL
		15-74	15-74 10F6.2		First 10 maximum-temperature values for a month.	100 PM
	1	15-74	10F6.2	TEMP(J), J=11,20	Second 10 maximum-temperature values for a month.	These two cards are read with
	TALL AND THE STATE OF THE STATE	15-80	11F6.2	TEMP(J), J=21, ISTOPM	Maximum-temperature values from 21st day to end of month.	one read state- ment. ISTØPM= last day of month.
Minimum	1	10-11	12	IYRD	Calendar year of data to be read.	1827
tempera- ture data		12-13	12	IMØND	Calendar month of data to be read.	OD DEAD
		15-74	10F6.2	TEMP(J), J=1,10	First 10 minimum-temperature values for a month.	THE STATE OF
	1 15-74	15-74	10F6.2	TEMP(J), J=11,20	Second 10 minimum-temperature values to be read.	These two cards are read with one read state-
	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15-80	11F6.2	TEMP(J), J=21, ISTØPM	Minimum-temperature values from 21st day to end of month.	ment. ISTØPM= last day of month.

Table 7 .- POTEET program listing

```
************
                                                                          POT
 C
                                                                          POT
                                                                                2
 C
                                                                          POT
                                                                                3
                               POTEET
 C
                                                                          POT
 C
                                                                          POT
                                                                                5
 C
                                                                          POT
         THIS PROGRAM COMPUTES DAILY POTENTIAL EVAPOTRANSPIRATION,
 C
       IN INCHES PER DAY. USING A METHOD DEVELOPED BY C. W. THORNTHWAITE.POT
                                                                                7
 C
       PRIMARY INPUT IS DAILY MAXIMUM AND MINIMUM AND MONTHLY AVERAGE
                                                                          PQT
                                                                                8
 C
                                                                          POT
                                                                                9
       TEMPERATURE DATA FROM WEATHER BUREAU STATIONS.
 C
                                                                          POT
                                                                               10
 C
                                                                          POT
       ********************
                                                                               11
 C
                                                                          POT
                                                                               12
 C
                                                                          POT
                                                                               13
       COMMON/C2/IRD.IPT.IPCH
                                                                          POT
                                                                               14
       REAL MINT(1850) . MAXT(1850)
                                                                          POT
                                                                               15
       DIMENSION AMT(12), PE(1850)
                                                                          POT
                                                                               16
       IRD=1
                                                                          POT
                                                                               17
       IPCH=16
                                                                          POT
                                                                               18
       IPT=6
                                                                          POT
                                                                               19
 C
       NSTAS=NUMBER OF WEATHER BUREAU STATIONS FOR WHICH POT ET IS COMPUTPOT
                                                                               20
 C
                                                                          POT
                                                                               21
C
                                                                         POT
                                                                               22
      READ (IRD.11) NSTAS
                                                                         POT
                                                                               23
      DO 5 IJKLMN=1.NSTAS
                                                                         POT
                                                                              24
C
                                                                         POT
                                                                              25
C
      AMT=AVERAGE MONTHLY TEMPERATURE. IN DEGREES F
                                                                         POT
                                                                              26
C
                                                                         POT
                                                                              27
      READ ([RD+10) (AMT(J)+J=1+12)
                                                                         POT
C
                                                                              28
                                                                         POT
C
                                                                              29
      HTI=THORNTHWAITE HEAT INDEX
                                                                         POT
C
                                                                              30
                                                                         POT
      HTI=0.0
                                                                              31
                                                                         POT
      DO 3 J=1,12
                                                                              32
                                                                         POT
      IF (AMT(J)-32.) 1,1,2
                                                                              33
                                                                         POT
    1 HI=0.0
                                                                              34
                                                                         POT
                                                                              35
      GO TO 3
                                                                         POT
    2 HI=((AMT(J)-32.)/9.)**1.514
                                                                              36
                                                                         POT
    3 HTI=HTI+HI
                                                                              37
C
                                                                         POT
                                                                              38
C
      A=THORNTHWAITE'S EXPONENT
                                                                         POT
                                                                              39
C
                                                                         POT
                                                                              40
      A=(6.75E-07*(HTI**3.))-(7.71E-05*(HTI**2.))+(1.79E-02*HTI)+4.9E-01POT
                                                                              41
      PI=3.14160
                                                                         POT
                                                                              42
C
                                                                         POT
                                                                              43
C
      STALAT=STATION LATITUDE, AS A DECIMAL NUMBER.
                                                                         POT
                                                                              44
C
                                                                         POT
                                                                              45
      READ (IRD,9) STALAT
                                                                         POT
                                                                              46
C
                                                                         POT
                                                                              47
C
      AMP-AMPLITUDE OF SINE-WAVE VARIATION IN DAYLIGHT FACTOR
                                                                         POT
                                                                              48
C
                                                                         POT
                                                                              49
      AMP=(1.86E-05*(STALAT**3.))-(2.087E-03*(STALAT**2.))+(8.517E-02*STPOT
                                                                              50
```

Table 7.—POTEET program listing—Continued

```
1ALAT)
C
                                       POT 52
 NYR=NUMBER OF YEARS OF STATION RECORD FOR THE GIVEN STATION TO BE POT 53
C
 PEADSO THRUTS THE NUMBER OF CAYS IN EACH NORTH AND MAX, AND MIN, REA
C
                                                        POT
C
                                                            55
 READ (IRD,11) NYR
                                                        POT
                                                            56
                                                        POT
                                                            57
C
C
 MO=TOTAL NUMBER OF DAYS IN PERIOD TO BE PROCESSED.
                                                        POT
                                                            58
                                    POT
C
                                                            59
 DSE=DAYS SINCE SPRING EQUINOX TO BEGINNING OF RECORD TO BE ANALYZEPOT
C
                                                            60
C
       (-80 OR-81 FOR JANUARY 1)
                                                        POT
                                                            61
 READ (IRD+8) MO+DSE
C
                                                            62
                                                            63
C
                                                        POT
                                                            64
 IYEAR=CALENDAR YEAR FOR WHICH POTENTIAL ET IS COMPUTED
C
                                                            65
                                                     POT
C
                                                            66
 READ (IRD.7) IYEAR
                                                        POT
                                                            67
  CALL READSO (MAXT, MO, IRD)
                                                        POT
                                                            68
  CALL READSO(MINT, MO. IRD)
                                                        POT
                                                            69
  PESUM=0.
                                                        POT
                                                            70
  NO=MO-30
                                                        POT
                                                            71
  DO 4 I=1,NO
                                                        POT
                                                            72
  K=I+30
                                                            73
                       TO IN CALL CELEMENT LORONIA GRAIT AT AGREE CARRED
  TSUM=MAXT(K)+MINT(K)
                                                            74
  TEMP=(TSUM/2.-32.)/1.8
                                                            75
  IF (TEMP.LT.O.) TEMP=0.
                                                            76
                                                            77
C
  DLF=DAY LENGTH FACTOR. THE PATIO OF HOURS OF DAYLIGHT TO 12 POT
                                                            78
C
                                     POT
C
  DLF=1.0+((AMP-1.)*SIN(PI*(I+DSE)/183.))
  UPE=.021*(((10.*TEMP)/HTI)**A)
                                                            81
  PE(I)=UPE*DLF
                                                            82
                      POT
  4 PESUM=PESUM+PE(I)
                                                POT
                                                            84
  5 CONTINUE
                                          POT
   WRITE (IPCH.6) (PE(I), I=1, MO)
                                                            85
                                                    POT
  WRITE (IPT+12) PESUM
                                                            86
                                                POT
  STOP
                                                            87
                                               POT
                                                            88
C
                                                 POT
                                                            89
  6 FORMAT (10F7.4.3X. PE 1)
                                               POT
                                                            90
  7 FORMAT (14)
                                             POT
                                                            91
  8 FORMAT (14.F5.0)
                                                POT
                                                            92
  9 FORMAT (F8.3)
                                                  POT
                                                            93
  10 FORMAT (12F6.2)
                                                  POT
                                                            94
  11 FORMAT (I2)
                                                            95
  12 FORMAT (1X, PESUM= , FR. 4)
                                    " (S. 2301 X (+S15 X X) X AMAG POT
                                                            96-
                               S. PORMA I HEX. LOFO. S. P. 165. 1150. 21
```

Table 7.—POTEET program listing—Continued

```
104 SUBROUTINE READSO(SO.ICNT.IPD)
                                                REA 1
TO 9 9 OT MOITATE STATE OF TO PE POT
                                                RFA
C
  READSO INPUTS THE NUMBER OF DAYS IN EACH MONTH AND MAX. AND MIN.REA
C
                              EVAPOLITATION OF THE REA
                                                    5
  TEMPERATURES.
A/C TOR IN THERE'S PER DAY, USING A METHOD DEVELOPED R
                                                REA
  C
                                                RFA
C
  DIMENSION SO(1850), MDAY(12), TEMP(1850), IYR(1850), MON(1850), AND REA
                                                REA
                                                   10
  REA
                                                   11
C
  MDAY(IQ) -- ARRAY CONTAINING THE NUMBER OF DAYS IN EACH CALENDAR REA
C
                                               REA
                                                   13
C
  MONTH.
  READ (IRD,9) (MDAY(IQ),IQ=1,12)
C
                          RASYI (TAGSI) GASS REA
                          A39 CALL READED (MAXTAMO, TRD)
C
                ATHER RUPEAU SSATIONS FOLDELAGE THEM OSCASE JUAN REA
  IYRD -- CALENDAR YEAR
C
C
                                                   20
  IMOND -- CALENDAR MONTH
C
                                                   21
C
  TEMP(J) -- TEMPERATURES FOR FIRST 10 DAYS OF MONTH.
                                       REA
                                                   55
C
                               CHI THERE EXCEL AMENUST REA
                                                   23
C
                                # 1 X( +SE - + 5 XMUST) = 9H3 T REA
                                                   24
  1 READ (IRD,7) IYRD, IMOND, (TEMP(J), J=1,10)
                                . NERMET T. D. T. SMETT REA
                                                   25
  IF (IMOND-2) 4,2,4
                                                   26
  2 IXY=IYRD/4
  3 MDAY(2)=29 TELLER TO A SHORT TO CITAL THE PROTOKE HISWELL YAGE TO REA
                                                   27
                                                   28
  4 ISTOPM=MDAY (IMOND)
                                     • REA
                                                   30
C
  TEMP(J) -- TEMPERATURES FOR DAY 11 TO END OF MONTH.
C
                                                   31
                           REA REA
C
                                                   32
                                        REA
                                                   33
  READ (IRD,8) (TEMP(J), J=11, ISTOPM)
                          ABANTE LIBERTO CELITATELEMEN
  MDAY(2)=28
DO 5 J=1.ISTOPM
                                                   34
                            ADESA (SEVISE) STEEREN
                                                   35
  I=I+1
                                                   36
  IYR(I)=IYRD
                                               RFA
                                                  37
               REA REA
  MON(I)=IMOND
  IDAY(I)=J
                                                  39
  SO(I)=TEMP(J)
                                                  40
  IF (I-ICNT) 1.6.6

REA
                                                  41
                                                  42
  6 CONTINUE
                                   REA
                                                  43
  RETURN
                                                  44
C
                                                  45
  7 FORMAT (9X,212,1X,10F6.2)
                                                  46
  8 FORMAT (14X.10F6.2./.14X.11F6.2)
                                               REA
                                                  47
  9 FORMAT (1212)
                                               REA
                                                  48
   END
                                          REA
                                                  49-
```

ATTACHMENT D RIVCHANGE Program

Table 8.—Input data for RIVCHANGE program

Reference	Number of cards	Columns	Format	Program variable	Input item	Remarks
Beginning	1	1-2	12	IMØN	Beginning month.	98 1 87 1
date		3-4	12	IDAY	Beginning day.	
		5-6	12	IYEAR	Beginning year.	
Control data	1	1-5	15	ICNT	Number of days in period of record.	
		6-10	15	NDAYS	Time increment, in days.	
		11-15	15	NSTAGE	Number of nodes to which river- stage values will be assigned.	
Nodes and river miles	De- pends on NSTAGE	1-80	8(I4, F6.1)	IJ(I), RM(I), I=1, NSTAGE	IJ(I)Array holding node levels. RM(I)Array holding river miles corresponding to nodes in IJ.	
Control data	1	1-5	15	IUM	Number of corresponding river miles and niver stages for each time step in the input master-data set.	Ti and the state of the state o
	1	1-5	15	ISTART	Sequence number of day relative to input master-data set where computation is to begin.	
	1	1-5	15	IBEGN	Sequence number of day in input master-data set where interpolation is to begin.	****

Control data Continued		6-10	15	IEND	Sequence number of day in input master-data set where interpolation is to end.	
		The foll	owing dat	a will be r	read repetitively until DAY=IEND	高速 / 1
River- stage data from	None		20A4	DUMMY	Read date from input file as dummy data.	These data are read from a magnetic disk pack.
input	None		F10.3	DAY	Sequence number on input data.	When DAY=IBEGN, processing begins
master- data set	None	figer rate	8F10.3	GMM(I), EEL(I), I=1, IUM	GMM(I)Array holding river miles on input data set. EEL(I)Array holding river stages corresponding to river miles in GMM.	when DAY=IEND, processing ends.

Table 9.—RIVCHANGE program listing

		74 10 3	D 0		R
	RIVCHANGE	3 0 1	10 2		R
	INTERPOLATION AND AVERAGING	LL C	0 0		R
	PROGRAM				R
					P
	(FOR MAINSTEM)				R
	***********************			****	
***	************	******	******		
		1.50.3	"5		B
	THIS PROGRAM IS DESIGNED TO PROVIDE THE G	GROUND-	WAIER	FLOW	R
SIMUL	ATION MODEL , SUPERMOCK . WITH 10-DAY AVER	RAGE RI	VER-SI	AGF D	AIA R
EVERY	10 DAYS FOR SPECIFIED CORRESPONDING NOD	E LEVE	LS AND	RIVE	
MILES			1 gu .		R
	PRIMARY INPUT IS CORRESPONDING RIVER-STAG				
IN 5-	DAY INCREMENTS WHICH CAN BE READ FROM EI	THER N	MAGNETI	C TAP	F R
OR DI	SK FILES OR FROM CARDS. NODE LEVELS AND	THEIR	APPROP	RIATE	BIAB
	ARE READ FROM CARDS.				R
	HE PROGRAM INTERPOLATES FOR BOTH TIME AN	ID RIVE	P MILE	S AND	R
	TES 10-DAY AVERAGES FOR THE ENTIRE PERIO				R
1	THE FIRST RECORD IN THE OUTPUT DATA SET T	FILS Y	OH HOW	MANY	NODR
LEVEL	S YOU HAVE RIVER STAGE FOR HOW MANY GRO	LIDS OF	10-DA	Y	R
				1 60	P
	GES YOU HAVE, AND THE TIME INCREMENT, IN				R
	HE DATA ARE WRITTEN ONTO A MAGNETIC STOR	PAGE DE	VICE I	14	
UNFOR	MATTED. VARIABLE-LENGTH RECORDS.				R
			1. 1. 2.		R
****	*******	*****	****	***	
					R
*** I	NPUT DATA ***				R
					R
	- REGINNING MONTH;				₩.
T	- IDAY + 10 = DAY OF FIRST 10-DAY AVERAG	E OUTP	TTU:		R
IDAY	TOAT + TO = DAT OF FIRST TO-THE AVENAGE				
-	- BEGINNING YEAR		. 45		R
-			1 3		
IYEAR		100	1 8		P
IYEAR	- BEGINNING YEAR	T)Sec.	P. Sept.		P
IYEAR	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS	T) SAC	District.	1111 57	P:
IYEAR	- BEGINNING YEAR	Day of	District	576	PI PI PI
IYEAR ICNT NDAYS	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT	T) SANCE	Petrole	87 Ab	R) R) R)
IYEAR ICNT NDAYS	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS	10.3 CMS(1	Pri Drittisk	576	R1 R1 R1
IYEAR ICNT NDAYS NSTAG	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT E - NUMBER OF NODE LEVELS	10.3 CMK(1	EW4 DHING	87 Ab	R1 R1 R1 R1
IYEAR ICNT NDAYS NSTAG	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT	1)889 E.0F98	Seve Debide	87 Ab	R1 R1 R1 R1 R1
IYEAR ICNT NDAYS NSTAG IJ -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT E - NUMBER OF NODE LEVELS ARRAY HOLDING NODE LEVELS	E.0138	- ANTHO	szeb golvad	R1 R1 R1 R1 R1
IYEAR ICNT NDAYS NSTAG IJ -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT E - NUMBER OF NODE LEVELS	E.0138	E LEVFI	szeb golvad	R1 R1 R1 R1 R1 R1 R1
IYEAR ICNT NDAYS NSTAG IJ - RM -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT E - NUMBER OF NODE LEVELS ARRAY HOLDING NODE LEVELS ARRAY HOLDING RIVER MILES CORRESPONDING	TO NOD		sand privation	R1 R1 R1 R1 R1 R1 R1
IYEAR ICNT NDAYS NSTAG IJ - RM -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT E - NUMBER OF NODE LEVELS ARRAY HOLDING NODE LEVELS	TO NOD		sand privation	RI RI RI RI RI RI RI RI RI
IYEAR ICNT NDAYS NSTAG IJ - RM -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT E - NUMBER OF NODE LEVELS ARRAY HOLDING NODE LEVELS ARRAY HOLDING RIVER MILES CORRESPONDING	TO NOD		sand privation	CR R
IYEAR ICNT NDAYS NSTAG IJ - RM - IUM -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVEPS - TIME INCREMENT E - NUMBER OF NODE LEVELS ARRAY HOLDING NODE LEVELS ARRAY HOLDING RIVER MILES CORRESPONDING NUMBER OF CORRESPONDING RIVER MILES AND H TIME STEP IN THE INPUT DATA SET.	TO NOD	STAGES	LS.	RI RI RI RI RI RI RI RI RI RI RI
IYEAR ICNT NDAYS NSTAG IJ - RM - IUM -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVEPS - TIME INCREMENT E - NUMBER OF NODE LEVELS ARRAY HOLDING NODE LEVELS ARRAY HOLDING RIVER MILES CORRESPONDING NUMBER OF CORRESPONDING RIVER MILES AND H TIME STEP IN THE INPUT DATA SET.	TO NOD	STAGES	LS.	RI RI RI RI RI RI RI RI RI RI RI
IYEAR ICNT NDAYS NSTAG IJ - RM - IUM -	- BEGINNING YEAR - NUMBER OF DAYS PERIOD OF RECORD COVERS - TIME INCREMENT E - NUMBER OF NODE LEVELS ARRAY HOLDING NODE LEVELS ARRAY HOLDING RIVER MILES CORRESPONDING NUMBER OF CORRESPONDING RIVER MILES AND	TO NOD	STAGES	LS.	RI RI RI RI RI RI RI RI RI RI RI

Table 9.—RIVCHANGE program listing—Continued

```
TO PEGIN.
                                                                        51
                                                  YMMUC (IS-RTI) DABRIV
COI VISCO
                                                                        52
COL VIEND - SEQUENCE NUMBER OF DAY IN INPUT DATA SET WHERE INTERPOLATIRIV
                                                                        53
COI VIA TO END.
                                                           YAG=YAGIRIV
                                                                        54
                               VIREAD (ITP.26) (GMMID: EELIS): (ELIM)
COL AIRO TO 11
                                                                        55
COLIVIDUMMY - DATE ON INPUT DATA SET. 1 07 00 LACORI. 34. YAO11) 3
                                                                        56
COI VIR = NEW
                                                                   RIV
COL VIDAY - SEQUENCE NUMBER ON INPUT DATA SET (MULTIPLES OF FIVE) .
                                                                   PIV
COLIVISE IN FULL LOS
                                                                        59
   GMM - ARRAY HOLDING RIVER MILES ON INPUT DATA SET.
COL
                                         (GMM (J) GE RMINSTAGES AND ..
   VI集(1)上《南路七五
C
                                                                   RIV
                                                                        61
CIL VEEL - ARRAY HOLDING RIVER STAGES CORRESPONDING TO RIVER MILES ON
                                                                   RIV
                                                                        62
   INPUT DATA SET.
                                                                   RIV
                                                                        63
                                                         SLOSSET E C
                                                                   RIV
                                                                        64
                                                            I A MUNICIPAL
C *** OUTPUT DATA ***
                                                                   RIV
                                                                        65
                                                       KINMAD = GMUKIT
CI
   VIRGAY-IDAY+
                                                                   RIV
                                                                        66
                                                    VIAL (NUM, 1) =EEE (1,1)
   NSTAGE - NUMBER OF NODE LEVELS.
CII
                                                                        67
                                                   VIADBALETELTOWA
CIL VIRDAY-TORY-
                                                                        68
CLI VINOSET - NUMBER OF GROUPS OF 10-DAY AVERAGES (RECORDS) YOU RIV
                                                                        69
                                                         SHISTARIZIO
CLI VIA HAVE IN OUTPUT DATA SET.
                                                                   RIV
                                                                        70
                                                   FAC (ITP+21) DUNNY
CSI VISHONEI
                                                                   RIV
                                                                        71
                                                   YMMUS(105.791)3710
                                                                   HIV
C NDAYS - TIME INCREMENT
                                                                        72
                                                   YAO (ES 911) 043RIV
CSI VISE (MODIFIED AGAMI)
                                                                        73
CS IMON. IDAY. IYEAR - MONTH, DAY. AND YEAR. FACH OUTPUT RECORD IS RIV
                                                                        74
                                                              RIV
                      DATED. (MUILIPIN(S)1) 1331 (TS)9
CSI VI80 70 16
                                                                        75
CSINIO - SEQUENCE NUMBER OF EACH RECORD IN OUTPUT DATA SET. MUMATEL PORTV
                                                                VIERDIV
                                                                        76
                                                                        77
CSI VIJ - ARRAY HOLDING NODE LEVELS IN OUTPUT DATA SET. PIV
                                                                        78
C | V H - ARPAY HOLDING RIVER-STAGE VALUES CORRESPONDING TO NODE LEVELS RIV
                                                                        81
CEL VINE IN OUTPUT DATA SET.
                                                                   RIV
                                                                        82
                                                        I+Adll=10BIA
CELLA ALEGNATION INC.
                                                                        83
    CEL
                                                                        84
                                                     YAGSI . IGI=U & ORIV
130
   VIR
                                                                        85
DIMENSION JUAY(12), GMM(150) +EL(150+2) +DUMMY(20)

DIMENSION JDAY(12), GMM(150) +EL(150+2) +DUMMY(20)

PIV
                                                                        86
                                                                        87
TEI2 DATA JDAY/31.28.31.30.31.30.31.31.30.31.30.31/
                                                                        88
                                             VIACETER (1 = SECTION) XIX
DATA GH/10000*0./
                                                                        89
                                   VIGHTI . JTH) = EL (Ivi) + DEL = JJ + SH (I + JTH)
PELZY IRD=5 (1x, 12, 171, 12, 171, 12)
                                                                        90
                                                         VIGO 7 1=1 *NUM
DAISVITP=10
                                                                        91
                                                       VIA (1+1) =EL (1+2)
IDA=9
                                                                        92
                                                          VAOSISVAGIOIV
SALPA IPT=6
                                                                        93
                                                   VIA (DAY-IEND) 4.8.8
READ (IRD.18) IMON. IDAY. IYEAR
                                                                        94
                                                         VIA 9 I=1.50
44 24 IF (MOD (IYEAR.4).EQ.0) JDAY (2) =29
                                                                        95
                                                         VIAL & TEL+500
READ (TRD.19) ICNT.NDAYS.NSTAGE
                                                                        96
                                                   VIGHTI-JL=GHTI-J)/10.
READ (IRD.20) (IJ(I).RM(I).I=1.NSTAGE)
                                                                        97
                                                    VIGOSET=ICNT/NDAYS
                                                                        98
READ (IRD, 24) IUM
                                     PO VIGITE (IDA) NSTAGE, NOSET, NOAYS
BAL VIREAD (IPD.24) ISTART
VREAD (IRD.24) IREGN. IEND
                                                   STATH=ISTAPT/10
BIV 150
```

Table 9.—RIVCHANGE program listing—Continued

```
RIV 101
        1 READ (ITP,21) DUMMY
                                                                                                                              RIV 102
           READ (ITP+25) DAY THE MANAGEMENT OF THE STATE OF THE STAT
           I1DAY=DAY
READ (ITP,26) (GMM(I),EEL(I,1),I=1,IUM)
                                                                                                                                    RIV 103
                                                                                                                                    RIV 104
        IF (IIDAY.NE.IBEGN) GO TO 1
       JZ=0
                                                                                                                                    RIV 106
       IZ=0
                                  TARIV 107
           DO 2 J=1.IUM
                                                                                                                                    RIV 108
           IF (GMM(J).GE.RM(1).AND.IZ.EQ.0) IZ=J-1
       IF (GMM(J).GE.RM(NSTAGE).AND.JZ.EQ.0) JZ=J
2 CONTINUE
                                                                                                                                    RIV 110
                                                                                                                                RIV 111
           NUM=0
                                                                                                                                    RIV 112
       NUM=U
DO 3 I=IZ+JZ
NUM=NUM+1
GM(NUM)=GMM(I)
3 EL(NUM+1)=EEL(I+1)
CDAYS=ISTART-I1DAY
TYTN=TSTART
                                                                                                                                    RIV 113
                                                                                                                                RIV 114
                                                                                                                                    RIV 115
                                                                                                                                    RIV 116
                                                                                                                                    RIV 117
           IXIN=ISTART
IS=ISTART/10
                                                                                                                             RIV 118
       IS=ISTART/10

4 READ (ITP+21) DUMMY
RIV 120
WRITE(IPT+201)DUMMY
READ (ITP+25) DAY
WRITE(IPT+ 30)DAY
READ (ITP+27) (EEL(I+2)+I=1+IUM)
C
C
           READ (ITP.27) (EEL(I,2), I=1, IUM)
                                                                                                                                    RIV 124
           EL (J.2) = EEL (NZ.2)
                                                                                                                                    RIV 127
       5 NZ=NZ+1
                                                   ATM STURTUS WI 213V31 300K BRIGLICH YANGA - CRIV 128
C
           WRITE (IPT, 30) (EL (I,2), I=1, NUM)
                                                                                                                                    RIV 129
           I2DAY=DAY
          IX=I2DAY-I1DAY
ID1=I1DAY+1
                                                                                                                                    RIV 131
                                                                                                                                    RIV 132
       IF (ID1.LT.ISTART) ID1=ISTART RIV 133
       DO 6 J=ID1,I2DAY
                                                                                                                                    RIV 134
       JJ=J-I1DAY
                                                   B. CONSTRUCTION CONSTRUCTION CONSTRUCTION RIV 135
       JTH=(J-ISTART)/10+IS
      DO 6 I=1, NUM

DFL=(EL(I,2)-EL(I,1))/IX

6 GH(I,JTH)=EL(I,1)+DEL*JJ+GH(I,JTH)

RIV 136

RIV 137

RIV 138
                                                                                                                           RIV 139
                                                                                                                           RIV 140
          DO 7 I=1, NUM
       7 EL(I,1)=EL(I,2)
                                                                                                                           RIV 141
       I1DAY=I2DAY
                                                                                                                             RIV 142
      WRITE (IPT.28) NSTAGE, NOSET, NDAYS
                                                                                          CARL RIV 149
          ISTATH=ISTART/10
                                                                                                                                    RIV 150
```

Table 9. - RIVCHANGE program listing - Continued

```
DO 17 J=ISTATH, JTH
                                                                         RIV 151
   DO 13 I=1,NSTAGE
                                                                         RIV 152
   DO 10 K=1.NUM
                                                                         RIV 153
   IF (RM(I).GE.GM(K)) GO TO 10
                                                                         RIV 154
   GO TO 11
                                                                         RIV 155
10 CONTINUE
                                                                         RIV 156
   K=NUM
                                                                         RIV 157
   GO TO 12
                                                                         RIV 158
11 IF (K.FQ.1) GO TO 12
                                                                         RIV 159
   KS=K-1
                                                                         RIV 160
   H(I) = (RM(I) - GM(KS)) / (GM(KS+1) - GM(KS)) * (GH(KS+1,J) - GH(KS,J)) + GH(KS,RIV 161)
  1J)
                                                                         RIV 162
   GO TO 13
                                                                         RIV 163
12 H(I)=GH(K,J)
                                                                         RIV 164
13 CONTINUE
                                                                         RIV 165
   IDAY=IDAY+10
                                                                         RIV 166
   IF (IDAY.LE.JDAY(IMON)) GO TO 16
                                                                         RIV 167
   IDAY=IDAY-JDAY (IMON)
                                                                         RIV 168
   IMON=IMON+1
                                                                         RIV 169
   IF (IMON.LE.12) GO TO 16
                                                                         RIV 170
   IMON=1
                                                                         RIV 171
   IYEAR=IYEAR+1
                                                                         RIV 172
   IF (MOD(IYEAR,4)) 15,14,15
                                                                         RIV 173
14 JDAY(2)=29
                                                                         RIV 174
   GO TO 16
                                                                         RIV 175
15 JDAY(2)=28
                                                                         RIV 176
16 WRITE (IDA) IMON, IDAY, IYEAR
                                                                          RIV 177
   WRITE (IPT,22) IMON, IDAY, IYEAR
                                                                          RIV 178
   WRITE (IDA) J
                                                                          RIV 179
   WRITE (IPT,29) J
                                                                          RIV 180
   WRITE (IDA) (IJ(I) +H(I) +I=1 +NSTAGE)
                                                                          RIV 181
   WRITE (IPT,23) (IJ(I),H(I),I=1,NSTAGE)
                                                                          RIV 182
17 CONTINUE
                                                                          RIV 183
   STOP
                                                                          RIV 184
                                                                          RIV 185
                                                                          RIV 186
18 FORMAT (312)
                                                                          RIV 187
19 FORMAT (1615)
20 FORMAT (8(14,F6.1))
                                                                          RIV 188
21 FORMAT (20A4)
                                                                          RIV 189
22 FORMAT (1x,12,1/1,12,1/1,12)
                                                                          RIV 190
23 FORMAT (7(1x,14,1x,F6.2))
                                                                          RIV 191
24 FORMAT (215)
                                                                          RIV 192
                                                                          RIV 193
25 FORMAT (F10.3)
26 FORMAT (8F10.3)
                                                                          RIV 194
                                                                          RIV 195
27 FORMAT (4(10X,F10.3))
28 FORMAT (1X.515)
                                                                          RIV 196
                                                                          RIV 197
29 FORMAT (1X.15)
                                                                          RIV 198-
   END
```

C

2	5 1	1 10	1 10
F	2		L'O
1	9	ŭ.	1 5
	n		
0 9	SE SE	70	1 9
may the same of	- ID	- 04	Sec. 5
a. D.	N d	19 01	U
109		2.753	
- W	D O	TO U	
3 0	7 1 3	- C	1 8
5 0 1	2 1 5	0	0
n .	5 6	The state of the s	
p = 0 1	N 2	2 69	- 8
p +4+ (DO	2 D	- 0
	0 1	32	E 0
2 01 (1	0 15		g white "
2 th	10	533	1 4
5 0	0 <	31 0	0.0
		1 55 3	1 300
0 0 1	D S	CL U	I mg
2 77	9 5	7.8	pg w
2	2 1 5	1.46	0.8
	드	1 5	
	ATTA	CHMENT	Ē
	. 0		100
	(5)		
VOST T	RIBCH	ANGE Pr	ogram
	W 10		15.93
E contract	D.	3	Property.
	0 -		1
V	5 1 5	N.	1 2
			10.3
		0.03000000	
	2		
	197		
	1 5		
	9		
12	OJ HAN	. 694	
	** E		
			P. Section
	0	100	
	1.00		
		0	
THE PERSON NAMED IN	2	7	
D N		0	
		-	
	15 5 2		
	200	The state of the s	The state of
			1535
			5.17
	5 379 150-71		
	Charles & County	De Carlotte	
	2		
103	38		
101	2000		
101	100000		
- Ch	Siream		
101	21.694		
- Ch	Stream		
101	Stream		
- Ch	25,698		
101	Stream 25		
- Ch	Stream 25		
61.6b	STresm 5	93	
- Ch	95 95 95 95 95 95 95 95 95 95 95 95 95 9		

Table 10. — Input data for TRIBCHANGE program

Reference	Number of cards	Columns	Format	Program variable	Input item	Remarks			
Heading	1	1-80	20A4	DUM	Title heading for printed output.				
Control data	1	1-5	15	NSTRMS	Number of tributary streams to be processed.				
		6-10	15	NDATA	Number of 10-day averages being entered for each stream gage.				
	1	1-5	15	NAVE	Number of 10-day average records to be in output.				
		6-10	15	NSTOT	Number of nodes to be assigned a tributary-stream stage.				
		The	following	will be read	repetitively for each stream:				
Stream data	1	1-5	15	NGAGES	Number of gages on the stream for which data will be entered.				
		6-10	15	NSTAGE	Number of nodes applicable to this stream.				
	The following will be read repetitively for each gage on each stream:								
	1	1-5	F5.2	GEL(I)	Array holding the datum elevation for each gage on the stream.				
		6-10	F5.2	GM(I)	Stream mile of gage.				
	Depends on NDATA	1-75	15F5.2	GH(I,J), J=1,NDATA, I=1,NGAGES	Array holding input 10-day-average stream stages for each gage on the stream.				

Output nodes and stream miles	De- pends on NSTAGE	1-80	8(I4, F6.1)	IJ(I), RM(I)	IJ(I)Array holding nodes for which tributary stream output is desired. RM(I)Corresponding rivermile location of each node.	These arrays accu- mulate all of the corresponding out- put nodes and river miles for all of the streams to be processed.
	Siberm wife? Commemowalwe in The C	PODE TEALS. 10-Da.A-VAEDTE ZEBEVANTENERGES TESAT. *SALEDI * (*SALES-CI* BONTACO (*SALAS-CI* BONTACO (*SALAS-CI*) (*SALAS-CI* BONTACO (*SALAS-CI*	AGES ON FIGURE TO THE SABERM "-	ACH RINSPH AS OR WOOLZ IBISK: PRRIPOSHSZIBEVACZ AS	U-USA VALUE ERENGAT GALLING CLAER AND TENENT GALLING CANDARA CANDA	CAINE 16-044-AAEDARE CINEAU IN SUINAH IN SUINA

Table 11.—TRIBCHANGE program listing

		0 40	
C	*******************	ISIeeee	1
C	55	TRI	1
C	TRIBCHANGE	TRI	1
C	INTERPOLATION PROGRAM	INI	4
C	(FOR TRIBUTARY STREAMS)	TRI	
(4 조근성	InI	6
C	*******************	IALSARRE	1 7
C	1 14 9 1 4 1 2 5 1 1 2 4 3 4	TPI	8
C	THIS PROGRAM PROVIDES 10-DAY-AVERAGE STREAM-STAGE DATA	TRI	9
C	CORRESPONDING TO SPECIFIC NODE LEVELS FOR TRIBUTARY STREAMS	INI	10
C	IN THE AREA.	INI	11
С	10-DAY-AVERAGE DATA FOR DIFFERENT GAGING SITES FOR EACH	INI	12
C	STREAM ARE READ . INTERPOLATION FOR DISTANCE IS PERFORMED	INI	13
C	IN ORDER TO DETERMINE STAGES FOR PARTICULAR NODES.	161	1 4
C	OUTPUT IS WRITTEN ON MAGNETIC DISK FILE TO BE REFERENCED	/ID	15
C	MODELING PROGRAM.	INI	16
C		131	1 7
			. 18
	**********************	Po 10 .3	19
	HAN THOUT DATA HAN	TRI	50
-	*** INPUT DATA ***	IRI	21
	DIM TITLE MEADING FOR DOINTED OUTDUT	TRI	22
0	DUM - TITLE HEADING FOR PRINTED OUTPUT.	TRI	53
C	NSTRMS - NUMBER OF TRIBUTARY STREAMS.	TRI	24
_	NSTRMS - NUMBER OF TRIBUTARY STREAMS.	IPI	25
C	NDATA - NUMBER OF 10-DAY AVERAGES BEING ENTERED FOR FACH STREA	TRI	26
_	NOW IN - NOWSER OF 10-1141 AVENAGES SETING ENTERED FOR FIGURE STATE	TRI	27
C	NAVE - NUMBER OF 10-DAY AVERAGE RECORDS TO BE IN OUTPUT.	TRI	29
C	MARCE - NOMER OF THE DAT AVENAGE RECOMMS TO ME IN CONTO.	TRI	30
C	NSTOT - TOTAL NUMBER OF NODES TO BE ASSIGNED A STREAM STAGE.	TRI	31
C	A STATE OF MODES TO SEE STATE OF MODES TO SE	TRI	32
C	REPFTITIVE FOR EACH STREAM	TRI	33
C		TRI	34
0	NGAGE - NUMBER OF GAGES ON STREAM.	TRI	35
	[10] [12] [12] [12] [12] [12] [12] [12] [12	TRI	36
0	NSTAGE - NUMBER OF NODES APPLICABLE TO THIS STREAM.	TRI	37
		TRI	38
	GEL - FLEVATION OF GAGE.	THI	39
		TRI	40
	GM - STREAM MILE OF GAGF.	TRI	41
•		THI	42
	GH - ARRAY HOLDING 10-DAY-AVERAGE STREAM STAGES.	TRI	43
		TRI	44
	IJ - ARRAY HOLDING NODE LEVELS.	TRI	45
:		ISI	46
	RM - ARRAY HOLDING STREAM MILES CORRESPONDING TO NODE LEVELS.	INI	47
		TRI	48
	*** OUTPUT DATA ***	TRI	49
		TRI	50

```
DUM - TITLE HEADING (IN PRINT ONLY).
                                                                                                              NUG (EILTE (IPT.13) DUM
                                                                                                INTER (IPT. 14) NSTOT, NAVE
                                                                                                 TOTEN (ADI) BYTEN TRI
            NSTOT - TOTAL NUMBER OF NODES.
                                                                                                                                          STIRTRI
                                                                                                                                                            54
            NAVE - NUMBER OF 10-DAY-AVERAGE RECORDS IN OUTPUT (PRINT ONLY). TRI
                                                                                 INTERIOR CONTACT COLUMN STEEL 
      IJ - ARRAY HOLDING ALL NODES.
                                                                                                                                            ISI
                                                                                                                                                            57
                                                                                                                        BYAMVEST & OCTRI
                                                                                                                                                            58
      K - SEQUENCE NUMBER FOR EACH RECORD WRITTEN.
                                                                                                                M TAILIBIL STIRTRI
                                                                                                                                                             59
                                                                                                                              INTERESTE (1DA)
                                                                                                                                                             60
      H - ARPAY HOLDING STREAM-STAGE VALUES CORRESPONDING TO SPECIFIED TRI
                                                                                                                                                            61
                NODE LEVELS AND STREAM MILES TOWN IN THE THE THE TAGES STEELE
                                                                                                                                                            62
       IRT
                                                                                                                                          TPI
                                                                                                                                                             63
       64
                                                                                                                                           TRI
                                                                                                                                                             65
       DIMENSION GH(7.300) . IJ(300) . RM(300) . H(201.182) . GM(7) . GEL(7)
                                                                                                                                                  TRI
                                                                                                                                                             66
       DIMENSION DUM(20)
                                                                                                                       ISTEDRAL (20AC)
                                                                                                                                                             67
       DATA H/36582#0./
                                                                                                                         TAIL TANKS TRI
                                                                                                                                                             68
       DATA IRD/5/+IDA/2/+IPT/6/
                                                                                                                     (S. 2924) TAMSOTRI
                                                                                                                                                             69
      READ (IPD.9) DUM
                                                                                                             ((1.8%.AI)8) TANSONTRI
                                                                                                                                                             70
      READ (TRD.10) NSTRMS.NDATA
                                                                                                                   INTEGREAT (1X 20A4)
                                                                                                                                                             71
       READ (IRD.10) NAVE.NSTOT
                                                                                                                    (BISWAI) TAMES THE
                                                                                                                                                             72
      ISTITT=0
     DEAD TIS=1.NSTRMS
                                                                                                              ((AL-XI)OS) TANSO TRI
                                                                                                                                                             73
                                                                                               INTERRET COURT TOURS TARRESTED
                                                                                                                                                             74
ST THREAD (TRD.10) NGAGES.NSTAGE
                                                                                                                                             TRI
                                                                                                                                                             75
            DO 1 I=1.NGAGES
                                                                                                                                                   TRI
                                                                                                                                                             76
                                                                                                                                                   TRI
            READ (IRD.11) GEL(I),GM(I)
                                                                                                                                                             77
            READ (IRD+11) (GH(I+J)+J=1+NDATA)
                                                                                                                                                   TRI
                                                                                                                                                             78
        1 CONTINUE
                                                                                                                                                   TRI
                                                                                                                                                             79
                                                                                                                                                   TRI
            IT=ITT+1
                                                                                                                                                              80
            ITT=ITT+NSTAGE
                                                                                                                                                   TRI
                                                                                                                                                              81
            (TII.TI=I.(I) Mq.(I)(I) (SI. GAI) GARA
                                                                                                                                                   IST
            DO 6 J=1 NAVE
                                                                                                                                                   TRI
            DO 5 I=IT.ITT
                                                                                                                                                   THI
                                                                                                                                                              84
            DO 2 K=1 . NGAGES
                                                                                                                                                   TRI
                                                                                                                                                              85
                                                                                                                                                    TRI
            IF (RM(I).GE.GM(K)) GO TO 2
                                                                                                                                                              86
                                                                                                                                                   TRI
          GO TO 3
                                                                                                                                                              87
                                                                                                                                                   TRI
                                                                                                                                                              88
        2 CONTINUE
                                                                                                                                                   TRI
                                                                                                                                                              89
            K=NGAGFS
                                                                                                                                                    TRI
                                                                                                                                                              90
             GO TO 4
                                                                                                                                                    TRI
                                                                                                                                                              91
         3 IF (K.FO.1) GO TO 5
                                                                                                                                                    TRI
                                                                                                                                                              92
            KS=K-1
         H(I.J) = (RM(I) - GM(KS))/(GM(KS+1) - GM(KS)) * (GH(KS+1.J) - GH(KS.J) + GEL(KTRI
                                                                                                                                                              93
        15+1)-GFL (KS))+GEL (KS)+GH(KS+J)
                                                                                                                                                              94
                                                                                                                                                    TRI
                                                                                                                                                    TRI
                                                                                                                                                              95
             GO TO 5
                                                                                                                                                    IHT
                                                                                                                                                              96
         4 IF (RM(I).GI.GM(K)) GO TO 5
                                                                                                                                                    IRI
                                                                                                                                                              97
            H(I+J)=GH(K+J)+GEL(K)
                                                                                                                                                    TRI
                                                                                                                                                              98
        5 CONTINUE
                                                                                                                                                    TRI
                                                                                                                                                              99
         6 CONTINUE
                                                                                                                                                    TRI 100
         7 CONTINUE
```

Table 11.— TRIBCHANGE program listing—Continued

C

```
WRITE (IPT-13) DUM TRI 101
                  WRITE (IPT+14) NSTOT+NAVE
WRITE (IDA) NSTOT
WRITE (IDA) (IJ(I)+I=1+NSTOT)
WRITE (IPT+14) NSTOT
WRITE (IPT+15) (IJ(I)+I=1+NSTOT)
TRI 105
WRITE (IPT+15) (IJ(I)+I=1+NSTOT)
                                                                                                                                                                                                                         TRI 106 INT - ARRAY HOLDING ALL NODES.
                  K=9
DO 8 J=1.NAVE
    DO 8 J=1,NAVE

WRITE (IPT,14) K

WRITE (IDA) K

WRITE (IDA) (IJ(I),H(I,J),I=1,NSTOT)

WRITE (IDA) (IJ(I),H(I,J),I=1,NSTOT)

K=K+1

8 CONTINUE

TRI 108

TRI 108

TRI 110

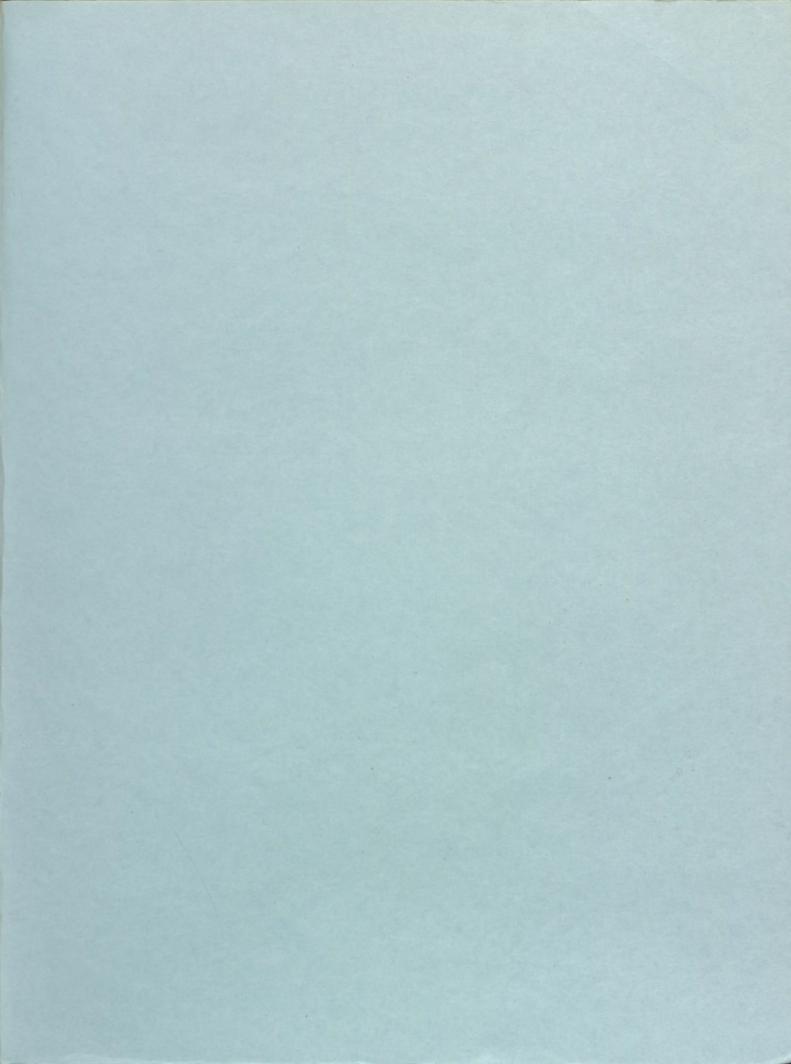
TRI 111

TRI 112
                                                                                                                                                                                                                                                                                                                                                                                                                                 TRI 108
8 CONTINUE
STOP
TRI 115
PRIMAT (20A4)
TRI 116
10 FORMAT (215)
TRI 118
11 FORMAT (15F5.2)
TRI 119
12 FORMAT (8(I4.F6.1))
TRI 120
TRI 121
TRI 121
TRI 122
TRI 122
TRI 123
TRI 123
TRI 124
 15 FORMAT (20(1X.14))
16 FORMAT (10(1X.14.1X.F6.1))
END
TRI 122
TRI 123
TRI 124
TRI 125-
      INDEED OF THE PROPERTY OF THE PARTY STREET PROPERTY TO THE PROPERTY OF THE PARTY OF
                                                                                                                                                                                                                                                                                                                                                  SVAM, [=L & OG 5]
                                                    - HINEER OF CACHE ON STREET, S OT OB ((N)MB. 38. ([]MB] The
                                                                                                                                                                                                                                     191x) 140 (C. 28) -0-(C. 1.28) 00 (C. 1.28) MO-(1.28) MO-(1.28) MO-(1.28) MO-(1.28) MO-(1.28)
     THE THE PROPERTY OF THE MOST EASTER CONSTRUCTION OF THE PROPERTY OF THE PROPER
```

ATTACHMI	ENT E	Could
DELETDELH	Progr	am
	L M	
5	- 1	SAME
	. 5	
- UI	2	
0		
-	- 1	
	- ><	
	-	
CRAYES		. 40
11 9	63	7.5
0 5	2 5	55
5 6	75.0	29%
2003	7.6	-02
Service Street		
9	0	

Table 12.—Input data for DELETDELH program

Reference	Number of cards	Columns	Format	Program variable	Input item	Remarks These cards are output from ATMOFLUX.	
Evapotran- spiration divided by saturated hydraulic conductiv- ity	12	1-70	10F(7,6)	ET	Values of evapotranspiration divided by saturated hydraulic conductivity for 1-30 ft above the water table for four ranges in vertical hydraulic conductivity.		
Data for individ-ual ob-servation wells		1-4	A(4)	WELLNO	Observation-well identifica- tion number.	WSTOT)	
		11-20	F(10)	нси	Vertical hydraulic conductiv- ity from land surface to wa- ter table.	These are calibrat-ed values from SUPER-MOCK.	
		21-30	F(10)	HCL	Vertical hydraulic conductivi- ty from water table to top of aquifer.		
		31-40	F(10)	THICK	Thickness of material from land surface to top of aquifer.	1	
		41-50	F(10)	DTW	Average depth to water.		


```
DELTAET / DELTAH HATJAHTA-3-3-3
         THIS PROGRAM COMPUTES DELTA ET / DELTA H USING
         THE RIPPLE FUNCTIONAL.
         PROCEDURE OPTIONS (MAIN):
  DECLARE ET (2:5,30) . GWETO (30) . DET (30) . WELL NO CHAR (4) :
  ON ENDFILE (SYSIN) GO TO ENDI: 10 10 0 0 0 0 ENDI
  READ VALUES OF ET/SAT. HYD. COND. FOR DEPTHS OF 1 TO 30
  FEET ABOVE THE WATER TARLE FOR FOUR RANGES IN VERTICAL
  HYDRAULIC CONDUCTIVITY.
                                                         2/
  GFT FILE (SYSIN) EDIT (ET) (COL (1) • 10 F (7•6) • X (10)) : no = (1) 0.73 W0 31
  READ DATA FOR INDIVIDUAL OBSERVATION WELLS - ID. NUMBER.
  VERTICAL HYDRAULIC CONDUCTIVITY FOR MATERIAL FROM LAND SURFACE
  TO THE WATER TABLE AND FROM THE WATER TABLE TO TOP OF THE
   AQUIFER. THICKNESS FROM LAND SURFACE TO TOP OF AQUIFER.
   AND AVERAGE DEPTH TO WATER.
                                     I (L) OT THEN GWE TO LESS (4)
                                   LOTSWO-LLOCAMON = (1) TRE/WENT Law
IN1:GET FILF (SYSIN) EDIT (WELLNO, HCU, HCL, THICK, DTW) (COL(1), A(4), X(6),
   4 F(10)):
IF HCU<.04 THENSDO; [all) OT3WD-(1-L) OT3WD) = (12-136, 43HT GE>LATSU ST
        IF HCU<.004 THEN IEXP=2; 07340-(05) 07340-(1)730 43HT 06=1 31
        ELSE IEXP=3;
        END:
                LINEL CHICL.
   ELSE DO:
       IF HCU . 4 THEN IEXP=4;
                                 DINT . FEEST THICKNESSE . THICK
                                  FT) ETTETADAY DEDETADHE PAY SE
        ELSE IEXP=5:
       END:
                                      ((0E, 0], 151, 00 (1) 130. (1) 073
                               ALALA (SKIP() LAAFELLOAS)) SKIR(SEE
   X . E . F = 0 . :
                            11 (17 - 11 ) 7 . (2) X . (7 - 11 ) 7 . (2) X . (3) 7 . (21 ±0
   DO I=1 TO 30;
        F.F=0.;
        X=X+1.;
        Y=X:
        J= 1:
        IF J>30 THEN ETO=0.:
A1:
        ELSE ETO=HCU*ET(IEXP,J);
        IF THICK >Y THEN DO:
            FLOW=HCL*(Y-X)/(THICK-Y);
             IF FTO>FLOW THEN DO:
                  Y=Y+1.;
                  J=J+1;
                  E=ETO:
                  F=FLOW;
                  GO TO Al:
```

```
END:
             ELSE DO:
                  G=E-F-ETO+FLOW;
                  IF G>0. THEN GWETO(I) = E-(E-ETO) * (E-F)/G;
                  ELSE GWETO(I)=0.;
                  GO TO AZ:
                  END:
             END:
        ELSE DO;
             IF E>.0000005 THEN DO;
                  EETO=E-ETO:
                  EHYT=ETO+HCL+EETO* (Y-THICK); P) OT TWO . (OE . P : S) 1
                  DY= (SQRT (EHYT ** 2+4 . *HCL * (THICK-X) *EETO) - EHYT)
                  /(2. *EETO);
                  GWETO(I)=ETO+EETO*(Y-THICK+DY);
                                             BURAT STAN BHT S
                  END FOUR HANGES IN VERTIGORS
             ELSE GWETO(I)=ETO;
             END:
        IF GWETO(I)>.00822 THEN GWETO(I)=.00822;
: SA
        END:
              FOR ITED IVERIAL PRSERVATION WELL TO JUNEAU P.
   J=DTW+ . 51
   NO I = 1 TO 30; COMPLETE FOR MAJER HAT FROM LAND STRUCTURED OF
   IF J =1 THEN GWETOJ=GWETO(1); AT PATAL SHT MERS ONE BEAT 931
   THICKNESS FROM I AND SUPERATE THE SUPERIE : . O = LOTSWD WHIT DE J THI
   IF I = J THEN DET(I) = (GWETO(I) - GWETOJ)/(J-I);
   ELSE DO:
        IF J=1 THEN DET(I)=GWETO(1)-GWETO(2);
        IF J>1&J<30 THEN DET(I)=(GWETO(J-1)-GWETO(J+1))/2.;
        IF J=30 THEN DET(I)=GWETO(29)-GWETO(30);
            END;
       END:
  PUT FILE (SYSPRINT) EDIT (WELLNO, 'HCU= ', HCU, 'HCL= ', HCL,
   AVE. DTW = ',DTW, 'THICKNESS= ',THICK,
   'DTW(FT) ET(FT/DAY) DET/DH(1/DAY)',
   (I, GWETO(I), DET(I) DO I=1 TO 30))
   (PAGE . A (4) , 4 (SKIP(1) . A . F (10,5)) , SKIP(2) . A .
  30 (COL(5) .F(2) .X(3) .F(10.7) .X(5) .F(10.7)));
  GO TO IN1;
FND1: END DELET:
                                              >30 THEN ETD=0.1
```

```
HCU=
         0.02000
HCL=
         0.00500
AVE. DTW =
               3.00000
THICKNESS=
              14.00000
DTW(FT)
          ET (FT/DAY)
                       DET/DH(1/DAY)
     1
           0.0021079
                            0.0002980
     2
           0.0017863
                            0.0002745
           0.0015119
     3
                            0.0002880
     4
           0.0012104
                            0.0003014
     5
           0.0009873
                            0.0002623
           0.0007551
                            0.0002523
     6
     7
           0.0005939
                            0.0002295
           0.0004560
                            0.0002112
     8
     9
           0.0003467
                            0.0001942
    10
           0.0002647
                            0.0001782
           0.0002044
    11
                            0.0001634
    12
           0.0001601
                            0.0001502
           0.0001266
                            0.0001385
    13
    14
           0.0001020
                            0.0001282
    15
           0.0000832
                            0.0001191
                            0.0001110
    16
           0.0000686
    17
           0.0000572
                            0.0001039
    18
           0.0000482
                            0.0000976
           0.0000410
                            0.0000919
    19
    20
           0.0000352
                            0.0000869
           0.0000304
                            0.0000823
    21
                            0.0000782
           0.0000264
    2.2
    23
           0.0000232
                            0.0000744
    24
                            0.0000710
           0.0000204
    25
           0.0000180
                            0.0000679
                            0.0000650
    26
           0.0000160
    27
           0.0000144
                            0.0000624
                            0.0000600
    28
           0.0000128
           0.0000116
    29
                            0.0000577
                            0.0000556
           0.0000104
     30
```

329

Figure 29 .- Example of output from DELETDELH program.

