NRI MOSTATISTICAL ANALYSES OF

SURFACE-WATER-QUALITY VARIABLES

IN THE COAL AREA OF SOUTHEASTERN MONTANA

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 80-40

Prepared in cooperation with the U.S. Bureau of Land Management and U.S. Environmental Protection Agency

		-1	

REPORT DOCUMENTATION PAGE	1. REPORT NO.	2.	3. Recipient's Accession No.
	LYSES OF SURFACE-WATER F SOUTHEASTERN MONTANA		5. Report Date June 1980 6.
7. Author(s) J. R. Knapton a	nd R. F. Ferreira		8. Performing Organization Rept. No. USGS/WRI 80-40
	Survey, Water Resource lding, Drawer 10076	es Division	10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) (G)
	Survey, Water Resource lding, Drawer 10076	es Division	13. Type of Report & Period Covered Final 14.

15. Supplementary Notes

Prepared in cooperation with the U.S. Bureau of Land Management and U.S. Environmental Protection Agency.

16. Abstract (Limit: 200 words) Since 1974 a network of water-quality stations has been operated in the coal area of southeastern Montana. This evaluation updates a previous report with 2 years of additional data collection and presents statistics and regression equations for water-quality variables. The most apparent feature of the study is the variability of water quality. Time-trend differences are most noticeable, with areal differences being present but more subtle. In comparing stations at the mouths of the five major drainages entering the Yellowstone River from the study area, water from the Powder River ranks near the middle of the group in dissolved-solids concentration (mean of 1,390 mg/L), but far exceeds the other drainage in suspended-sediment concentration, often exceeding 10,000 mg/L. The Tongue River generally has the best overall quality with respect to dissolved constituents; extremes are moderated by mixing in the Tongue River Reservoir. Suspended sediment ranged from 5 to 4,360 mg/L. Rosebud Creek shows about a 50-percent average increase in dissolved solids concentration from the most upstream station to the mouth. Armells and Sarpy Creeks, smallest of the five drainages, have a pool-riffle configuration that influences both dissolved and suspended constituents. Pools permit greater evaporation, thus increasing dissolved-constituent concentrations. They also act as sediment traps.

17. Document Analysis a. Descriptors

water quality, streamflow, cation, anion, dissolved solids, trace elements, baseflow, runoff, sediment load, specific conductance, computer programs, regression analysis, Montana

b. Identifiers/Open-Ended Terms

Sarpy Creek basin, Armells Creek basin, Rosebud Creek basin, Tongue River basin, Powder River basin, water classification

c. COSATI Field/Group

18. Availability Statement	19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 132
No restriction on distribution	20. Security Class (This Page) UNCLASSIFIED	22. Price

STATISTICAL ANALYSES OF SURFACE-WATER-QUALITY

VARIABLES IN THE COAL AREA OF SOUTHEASTERN MONTANA

By J. R. Knapton and R. F. Ferreira

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 80-40

Prepared in cooperation with the
U.S. Bureau of Land Management and
U.S. Environmental Protection Agency

US GEOLOGICAL SURVEY
LIBRARY

OCT 11 2017

RESTON, VA

UNITED STATES DEPARTMENT OF THE INTERIOR
CECIL D. ANDRUS, Secretary
GEOLOGICAL SURVEY
H. William Menard, Director

For additional information write to:

U.S. Geological Survey 428 Federal Building Drawer 10076 Helena, Montana 59601

CONTENTS

	Page
Metric conversion table	. IV
bstract	
ntroduction	•
Purpose and scope	
Previous work.	. 2
Physical setting	. 4
Vater quality	. 4
Physical measurements	. 5
Streamflow	. 5
Suspended sediment	. 6
Temperature	. 7
Chemical measurements	. 7
Dissolved solids	. 8
W. Jan	. 10
Major anions	. 11
Specific conductance	. 12
Dissolved oxygen	. 12
	. 13
Hydrogen-ion concentration	. 13
Biochemical oxygen demand	. 14
Major plant nutrients	. 14
Nitrogen	. 15
Total phosphorus	. 15
Minor elements	. 15
Aluminum	. 16
Arsenic	. 16
Beryllium	. 16
	. 17
Cadmium	. 17
Chromium	. 17
Copper	. 18
Iron	
Lead	. 18
Lithium	. 18
Manganese	. 19
Mercury	. 19
Molybdenum	. 19
Nickel	
Selenium	. 20
Vanadium	. 20
Zinc	-
Water-quality evaluation	. 21
Functional relationships between water-quality variables	. 21
Regression models	
Application of regression analysis	. 27

																Page
Drainage summaries	ANDRU	1	2.0													31
Powder River drainage		201			: :			:	:	:		:	:	:	:	31
Tongue River drainage											0	Ŏ.				32
Rosebud Creek drainage															100	33
Armells and Sarpy Creek drainag										ì						33
References														•		34
ILI																
Figure 1Map showing locations quality stations 2Graph showing simulat to Yellowstone River	ed di	ssol	Lve	d-s	soli	ds	1	oac			20		8.00	i		3
Rivers, 1978 water y				•	#B		•	•								30
	TABL	ES														
Table 1. Statistical summary of	data	for		0.01			1 -	I a			30	10	100			36
2. Water-quality appraisa															:	22
3. Simulated monthly mean	dies	017	-60	•	114		00		·		+1/	on	21	ho	•	
monthly and annual dis	ssolve	d-s	oli	de	10	ade	2	+	th	ra	0 (et:	at	io	ne	
during the 1978 water	vear.				-		a	-	-111							29
4. Station descriptions.																
																1-4
METRIC (CONVER	SIO	N T	ABI	LE											
			_													

The following factors may be used to convert inch-pound units published herein to the International System (SI) of metric units.

Multiply inch-pound unit	By	To obtain SI unit
acre-foot (acre-ft) acre cubic foot per second (ft ³ /s) foot (ft) foot per mile (ft/mi) inch (in) mile (mi) pound (1b) ton (short) per day (ton/day)	1233 0.4047 28.32 0.3048 0.1894 25.40 1.609 453.6 0.9072	cubic meter (m ³) hectare (ha) liter per second (L/s) meter (m) meter per kilometer (m/km) millimeter (mm) kilometer (km) gram (g) megagram per day (Mg/d)

temperature, degrees Celsius (°C) = 0.556 (°F-32)

STATISTICAL ANALYSES OF SURFACE-WATER-QUALITY

VARIABLES IN THE COAL AREA OF SOUTHEASTERN MONTANA

and he and the soul grant bearing a senate By an board bearing the ansend their about

J. R. Knapton and R. F. Ferreira

ABSTRACT

-wantionings for agelenthurs-

Since 1974 a network of water-quality stations has been operated in the coal area in southeastern Montana. This report updates a previous report with 2 years of additional data and presents descriptive statistics and regression equations for water-quality variables.

The most apparent finding of the study is the variability of water quality. Time-trend differences are most noticeable, with areal differences present but more subtle. The dominance of either the base-flow or the direct-runoff components of flow accounts for much of the variability in time. Areal differences are produced mostly by lithology, soil types, and land-use practices.

In comparing stations at the mouths of the five major drainages entering the Yellowstone River from the study area, water from the Powder River ranks near the middle of the group in dissolved-solids concentrations, but far exceeds the other drainages in suspended-sediment and total recoverable-constituent concentrations. The Powder River near Locate has a mean dissolved-solids concentration of 1,380 mg/L (milligrams per liter) and suspended-sediment concentrations that are often in excess of 10,000 mg/L.

The Tongue River generally has the best overall quality with respect to dissolved solids; extremes are moderated by mixing in the Tongue River Reservoir. The mean dissolved-solids concentration is 548 mg/L with a range of 234-912 mg/L. Water that is relatively free of sediment as it passes from the dam picks up sediment in transit downstream. Suspended-sediment concentration ranged from 5 to 4,360 mg/L at the mouth.

Rosebud Creek shows about a 50-percent average increase in dissolved-solids concentration from the most upstream station to the mouth, and a modification in the chemical character of the water. Mean dissolved-solids concentration at the mouth is 878 mg/L and mean suspended-sediment concentration is 572 mg/L.

Armells and Sarpy Creeks, smallest of the five drainages, have a poolriffle configuration that influences both dissolved and suspended constituents. Pools permit greater evaporation and transpiration, thus increasing dissolvedconstituent concentrations. Pools also act as sediment traps. Primarily as a result of the pools, these streams had the highest and lowest concentrations, respectively, for dissolved solids and suspended sediment.

Using the available data and statistical techniques, regression equations were developed for the physical and chemical water-quality variables. Regressions were used to simulate dissolved-solids loads for selected stations.

INTRODUCTION

Vast deposits of low sulfur coal that underlie much of southeastern Montana will likely serve as a means to satisfy part of the Nation's future energy demand. Recent and proposed land-use changes resulting from mining of the coal and related activities are thought by many to be a threat to the environment. Of special concern is the degradation of the quality of the water, both surface and subsurface.

Historically the major water use in the region has been for agriculture-predominantly for irrigation of croplands and for stock watering. Agricultural use of water is shown to be responsible for varying degrees of change in the quality and quantity of water (Bondurant, 1971). In this region hundreds of small and a few large impoundments and diversions of water for croplands give evidence that the quality and quantity of surface water have been subject to the influence of agriculture. Mining, which presently is accelerating, has had little measured affect on surface-water quality to date. However, at this time (1979), mining may be in its infancy.

This report is the second in a series of evaluations of data obtained from a surface-water-quality network (fig. 1) that was initiated in 1974. It provides an insight into water quality throughout the area of study and enables comparisons of values from stream locations to some of the important water-use standards. Funding for the network was provided by the U.S. Geological Survey, the U.S. Bureau of Land Management, and the U.S. Environmental Protection Agency.

Purpose and scope

The purpose of this report is to summarize and evaluate water-quality data acquired within the study area from October 1974 to September 1978. The report updates an initial report with information obtained from 2 years of additional data collection. The additional data enable a more comprehensive statistical evaluation, including development of regression equations between water-quality variables.

The network of stations consists of 43 stream sites at which routine sampling is done for about 60 different water-quality variables. Stations considered as primary sites are operated in conjunction with gaging stations and are planned to be semipermanent. The remaining stations are designated as secondary. These sites are generally in the upper parts of drainages or on small tributaries. Once a 2-3 year data base is acquired at secondary stations, they are subject to relocation.

Previous work

This report represents the second phase of evaluation of data from the Geological Survey water-quality network of southeastern Montana. The first phase of the evaluation culminated in a report (Knapton and McKinley, 1977)

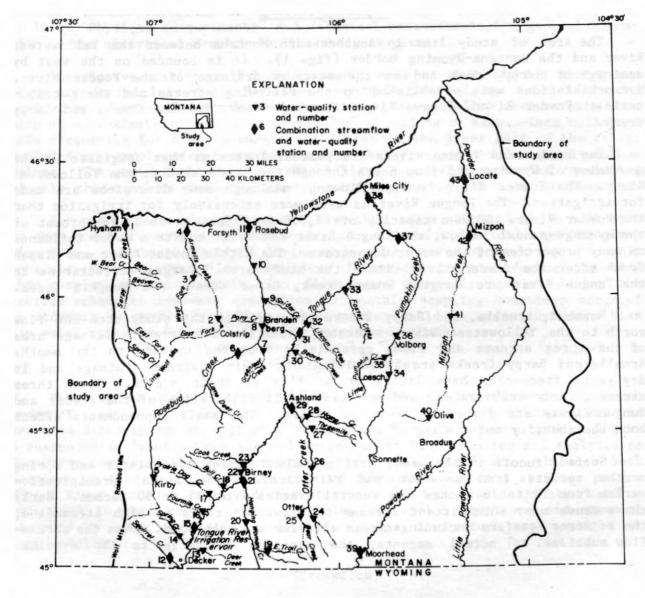


Figure 1.--Location of study area and water-quality stations.

that included a comprehensive description of water-quality conditions at each network site and a comparison of conditions at stations within each major drainage. The evaluation was done after the first 2 years of network operation, prior to the time that any stations had been relocated. The report gave much detail regarding physical descriptions of each drainage and conditions at individual stations. It also gave information regarding drainage, climate, geology, water-bearing characteristics, soils, and land use as well as comprehensive background of the physical and chemical properties that were measured.

Physical setting

The area of study lies in southeastern Montana between the Yellowstone River and the Montana-Wyoming border (fig. 1). It is bounded on the west by drainage of Sarpy Creek and on the east by drainage of the Powder River. Network stations were established on the following streams and their tributaries: Powder River, Tongue River, Rosebud Creek, Armells Creek, and Sarpy Creek.

The Powder and Tongue Rivers are perennial streams that originate in the mountains of Wyoming and flow north through the study area to the Yellowstone River. The Powder River is free flowing, although some diversions are made for irrigation. The Tongue River is used more extensively for irrigation than the Powder River. With a capacity of 68,000 acre-feet or about 18 percent of the average annual inflow, the Tongue River Reservoir exerts a major influence on many properties of the water downstream. The Little Powder River and Mizpah Creek enter the Powder River within the study area. Largest tributaries to the Tongue River are Hanging Woman Creek, Otter Creek, and Pumpkin Creek.

Rosebud, Armells, and Sarpy Creeks originate in the study area and flow north to the Yellowstone River. Rosebud Creek has the largest drainage area of the three streams and flows perennially from the uplands to the mouth. Armells and Sarpy Creeks are intermittent in their upstream drainage and in dry years frequently have little or no flow at their mouths. These three streams, their tributaries, and the many small tributaries of the Powder and Tongue Rivers are dammed in numerous places. The small impoundments affect both the quantity and quality of the water.

Surface runoff in the area, most prevalent during late winter and spring months, results from snowmelt and rainstorms. Mean annual precipitation varies from 12 to 16 inches and snowfall varies from 35 to 50 inches. Early thaws cause many intermittent streams to flow. At times of high streamflow, the adjacent aquifers including stream alluvium are recharged. When the streamflow subsides to normal amounts, the aquifers discharge to the streams.

WATER QUALITY

Because of the large number of variables, no simple quantitative means is available to describe all aspects of water. By convention, water-quality variables are divided into categories of physical, chemical, and biological; and each category includes a large number of variables. Values of measurements are often compared to criteria that have been established to judge the suitability of water for various uses. Water that is suitable for a particular use may not necessarily meet the criteria for other uses.

In this study emphasis was placed on the physical and chemical aspects of water quality. Under each category, water-quality variables or variable groups are discussed. Each discussion includes a brief definition of the variable, and when appropriate, a reference to user criteria or water-quality standards

that are deemed important to the study area. Under the following sections entitled "Physical measurements" and "Chemical measurements," a general summation of the analytical results for the study is given.

Descriptive statistics for measurements made at each station during the study are included in table 1. The upper left part of the table lists the variables and several descriptive statistics. Water-quality measurements were made at approximately 1-month intervals during periods of flow. Data collected less frequently for minor elements are listed in the lower part of the table; included are sample size (number of measurements), minimum values, and maximum values. The upper right part of table 1 lists regression summaries consisting of only those values that represent conditions during the time of sampling.

For the data base to be statistically valid, water samples must be collected so they are representative of the entire streamflow (population) over the given time frame. Although sampling during this study was programmed on a monthly schedule, extreme streamflow conditions influenced to some degree the time when samples were collected. Low flows were generally sampled during the routine schedule; however, disruption in monthly sampling sometimes occurred in attempts to sample high flows. Data users should be aware that some bias may exist owing to deviation from the programmed schedule.

Physical measurements

Physical measurements consist of instantaneous stream discharge, suspended sediment, and water temperature. Discharge at the time of sampling either was measured directly or was obtained indirectly from continuous-recording gages. A suspended-sediment sample was collected during each sampling and analyzed to determine concentration and percentage finer than 0.0625 mm. Although both stations on the Powder River and the two farthest-downstream stations on the Tongue River are also daily sediment stations, the data from daily observations were used in this report only to develop regression equations and are not included in other statistical measures. Water temperature was measured at each sampling.

Streamflow |

Streamflow hydrographs indicate typical prairie streams having conditions of near base flow, or at times no flow, from late summer through winter. Rainstorms or snowmelt occasionally causes sharp rises in streamflow. Prairie runoff generally occurs in late winter or early spring. The Tongue River and frequently the Powder River have a second period of runoff, often of a greater magnitude, that is caused by snowmelt in the high mountains of Wyoming. Perennial streamflow is common only to the larger drainages. The natural streamflow characteristics of the Tongue River and many smaller streams have been altered by irrigation diversions and impoundments for irrigation and stock watering.

An estimate of the surface-water yield for drainages, or those parts of drainages within the study area, is possible using records from gaging stations at strategic locations. The following table lists the average annual yields for drainages or parts of drainages in the study area.

The Drainage way the first all white and making head the	Average annual water yield (acre-feet)
Sarpy Creek (5 years of record) Armells Creek (4 years of record)	6,100 6,700 (approx)
Rosebud Creek (4 years of record)	54,000 (approx)
Tongue River within study area (34 years of record)	-15,000
Powder River within study area (39 years of record)	115,000

Water yields for Sarpy, Armells, and Rosebud drainages, which have short periods of record at gaging stations near their mouths, may not be indicative of long-term conditions. Long-term records for the Tongue River show nearly a 5-percent loss between gaging stations below the Tongue River Dam and the mouth, even though there are more than 3,600 mi² of contributing drainage and evidence of ground-water inflows within the reach. The overall loss is largely attributable to evapotranspiration associated with the irrigation network between the dam and the mouth. The Powder River, with much less irrigation, shows a 35-percent increase in water yield for the area when records at streamflow stations near the mouth and at Moorhead are compared. The Little Powder River, which enters the study area from Wyoming (fig. 1), accounts for some of this gain.

Suspended sediment

Suspended sediment in streams within the study area is derived from a combination of channel erosion and soil erosion from overland flow. The particles that were in suspension as they passed the sampling station were measured as suspended sediment. This measurement does not include that part of the transported load that moves along the streambed.

Although standards are lacking for suspended sediment, high concentrations are detrimental to most water uses and hazardous to many forms of aquatic life. Sediment causes problems in abrasion and clogging when water is pumped for use in sprinkler irrigation. Suspended sediment can affect aquatic organisms by abrasive injury, by obstructing respiratory passages of flora and fauna, and by blanketing the habitat of benthic organisms and spawning beds of fish. By means of adsorption and absorption, suspended sediment also acts as a transporting mechanism for chemical constituents such as phosphorus, nitrogen, carbon, and many of the minor elements.

Concentrations of suspended sediment less than 20 mg/L (milligrams per liter) were infrequently measured at most stations. The majority of concentrations were within the 20-100 mg/L range and only in a few instances did measurements exceed 5,000 mg/L. Daily stations on the Powder River, however, often had concentrations in excess of 10,000 mg/L; the highest concentration for the Powder River at Moorhead was 49,700 mg/L.

Maximum concentrations occurred at times of direct runoff from thawed surfaces, when both channel scour and overland flow contributed sediment to

the streams. Most of the lower concentrations were from periods of base flow or near base flow. The smaller streams are generally of a pool-riffle nature. Maximum and minimum sediment concentrations in the smaller streams are affected by pools which act as sediment traps at lower flows and are flushed at times of rising stream stages. Sediment samples collected on the large streams during periods of maximum runoff, in addition to having much higher concentrations, generally had higher percentages of fine material. Conversely, samples from lower flows often carried a higher percentage of coarse material. Overland flow at times of high flow makes sediment fines available. As flows diminish, availability of fine sediment from overland flow decreases, leaving only coarse material in the channel available for transport.

Because the Tongue River Reservoir acts as a sediment trap, the river downstream from the dam is relatively free of suspended sediment. Sediment concentrations gradually increase from the dam to the mouth.

The Powder River within the study area is often near its sediment-carrying capacity. During years or periods of reduced flows on the Powder River, sediment accumulates in the channel. At times of higher flows the sediment is resuspended and selected reaches of the channel are periodically flushed, the net result being erratic sediment movement from year to year.

Temperature

Temperature is a property of water that has a varying influence on physical, chemical, and biological processes that occur in a stream. Water temperature controls the bacterial oxidation rate of organic matter and the physiological processes of organisms. Many temperature standards exist for various water uses; however, comparisons from the study area are difficult because of the limited amount of continuous record.

Even with limited record, evidence shows that stream temperatures follow seasonal and diel cycles in response to insolation. Cyclical lags are most noticeable on larger streams and probably are influenced most by stream depth. With few exceptions, the perennial streams are ice covered and at 0°C during the winter period; summertime temperatures reach maximums within the range of 20°-30°C. The Tongue River Dam tends to moderate both high and low downstream temperatures. During the winter, ice is noticeably absent in the stream reach downstream from the dam. The highest recorded temperatures generally were in the upstream parts of small drainages that are of the pool-riffle configuration.

Chemical measurements

Historically, the mode of transport of chemical constituents in a stream was thought to be primarily in the dissolved phase, which is considered here to be any substance passing through a 0.45 micrometer (micron) filter. More recent studies (U.S. Geological Survey, 1977) show that some constituents are transported as colloids that are often sorbed to sediment particles, especially clays and organic debris. These constituents apparently move to and from the sediment particles, depending upon a variety of conditions in the stream environment. Initial efforts have been made in the past few years to sample and

analyze suspended particles for constituents that may be sorbed to them.

Suspended sediment is not evenly distributed throughout the vertical and horizontal dimensions of the stream cross section, as is generally true with dissolved constituents. To obtain accurate quantitative analytical results for constituents sorbed to sediment, a representative sample of water-sediment mixture must be obtained. In this study, a representative mixture sample was obtained by collecting and compositing depth-integrated samples at several verticals in the stream section using modified suspended-sediment samplers (Guy and Norman, 1970). A laboratory digestion process was used to liberate sorbed constituents to the native water, followed by analyses for particular constituents (Skougstad and others, 1979). The analytical result was the sum of the particular constituent transported in the dissolved and suspended phases. The result is referred to as the total recoverable-constituent concentration, such as "total recoverable iron."

To determine the concentration of a constituent in the dissolved phase, laboratory analysis was made on a water sample passed through a 0.45 micrometer filter at streamside. The analytical difference between the total recoverable and dissolved concentrations is considered to be that portion of the constituent transported by the sediment particles. Some constituents were analyzed as both total recoverable and dissolved; others were analyzed as either total recoverable or dissolved depending upon their common mode of transport.

Most of the water-quality variables measured during this study are included in the chemical category and are described in this section. A few of the variables are discussed individually, but the majority are conveniently placed into groups. The groups include major ions, major nutrients, and minor elements. With the exception of samples for minor elements, all samples were collected monthly during periods of flow. Minor-element samples were collected periodically.

Dissolved solids

Dissolved solids is the sum of all dissolved constituents in water and in reality is the total of the major ions in solution. In this study the ions most frequently comprising the higher percentages of dissolved solids were the cations calcium, magnesium, and sodium and the anions bicarbonate, sulfate, and chloride. Silica is also included in the major ion constituent category even though silica is nonionic at the pH of most natural waters (6.0 to 8.5). Specific conductance was used extensively as a semiquantitative measure of dissolved solids. With few exceptions, samples had dissolved solids-specific conductance ratios within the range of 0.60-0.80. A more limited range was evident when individual stations or streams were considered.

Numerous water-use standards have been established for dissolved solids. Of primary interest in the study area are those standards pertaining to domestic drinking water, irrigation water, and stock watering. The U.S. Environmental Protection Agency (1977) secondary drinking water standards specify that dissolved-solids concentrations should not exceed 500 mg/L if more suitable

supplies are available. It is generally agreed, however, that higher concentrations can be consumed without harmful physiological effects.

Salinity hazards from dissolved solids pertaining to irrigation waters are dependent to a large extent on physical factors such as soil type, drainage condition, and crop type. The upper limit for best crop growth is considered to be near 1,000~mg/L. The classification shown in the following table, as modified from the U.S. Salinity Laboratory Staff (1954), is often used with respect to irrigation water.

Salinity hazard

Range in dissolved solids

Low Medium High Very high

Less than 170 mg/L 170-500 mg/L 500-1,500 mg/L More than 1,500 mg/L

The ability of livestock to tolerate levels of dissolved solids is dependent upon the type of stock as well as the period of adjustment to higher levels. Poultry, pigs, horses, cattle, and sheep in respective order have increasing degrees of tolerance to salinity. Arbitrary stockwater standards for Montana waters (McKee and Wolf, 1971) are shown below:

Category

Range of dissolved solids

Good Fair Poor Unfit Less than 2,500 mg/L 2,500-3,500 mg/L 3,500-4,500 mg/L More than 4,500 mg/L

Ranges in concentration of dissolved solids varied considerably, not only areally but also temporally at individual stations. Concentrations as low as 40-100 mg/L were measured in some intermittent streams at times of snowmelt. Conditions that influenced the low values were frozen ground, which prevented water from penetrating the soil, and an absence of the base-flow component, which generally has high dissolved-solids concentrations.

The highest concentrations of dissolved solids ranged from about 5,000 to 6,500 mg/L. These concentrations generally were observed during late summer at the upstream parts of small drainages that characteristically had the pool-riffle configuration. Ground-water inflow, in which dissolved-solids concentrations were augmented by evaporation and transpiration from the pools, accounted for the high values.

In comparing stations near the mouths of the five drainages flowing into the Yellowstone River, the Tongue River had the smallest range (234-912 mg/L) and the lowest mean (548 mg/L) for dissolved-solids concentrations. The limited range is partly the result of the Tongue River Reservoir in which mixing of the base-flow and runoff components tends to moderate both the high and the low values. The lower mean concentration is due to the influence of snowmelt and rainfall from the high mountains of Wyoming.

Rosebud Creek was second to the Tongue River in low values for both range and mean concentration of dissolved solids. In contrast to the Tongue River this stream, like the other smaller streams, has a greater percentage of low-land runoff and less regulation.

At times many of the small tributary streams as well as the Powder River and Armells Creek show downstream decreases in dissolved solids—contrary to the usual pattern of downstream increases. The condition probably results from ponding in the upper reaches allowing for greater amounts of evaporation and transpiration. This in turn causes concentrations of dissolved solids in streams to increase beyond concentrations of ground water flowing into the stream. At some point in passage downstream, inflowing ground water acts to dilute the stream, thus decreasing the dissolved—solids concentration.

Major cations

Calcium, magnesium, sodium, and potassium—the major cations found in water—were present in varying concentrations at all stations. The first three cations each dominated at different times in samples from throughout the study area.

Calcium and magnesium are the principal constituents that account for water hardness in the study area. Although hardness is not reported in the tables, high values of either or both of these cations have a direct relationship to hardness.

High concentrations of sodium in water constitute a hazard to soils by causing accumulations of exchangeable sodium ions, resulting in a soil of low permeability and poor tilth. If the proportion of sodium in water is high, the alkali (sodium) hazard is high; conversely if calcium and magnesium predominate, the hazard is low. A measure of the sodium hazard (sodium-adsorption ratio or SAR) is defined by the U.S. Salinity Laboratory Staff (1954) as follows:

SAR =
$$\frac{(Na^{+})}{\sqrt{(Ca^{+2}) + (Mg^{+2})}}$$

For the purpose of irrigation, the Salinity Laboratory has established the classification listed below. Some consideration must be given to soil type, however, and soil stress becomes progressively greater with finer soil textures and soils that are less apt to leach.

SAR value	Alkali (sodium) hazard
0-10	Low
10-18	Medium
18-26	High
26-Above	Very high

Generally, ion ratios showed that calcium increases with direct runoff and sodium is dominant in the base-flow component of streamflow. Magnesium concentrations seemed to be less dependent upon the flow component, showing a more stable ion ratio throughout the entire flow cycle. Of all the cations, sodium had the greatest percentage of increase with the passage of water downstream.

Concentrations of the two most dominant cations, calcium and sodium, are high for most stations during much of the year. Based on calcium and magnesium concentrations, water from the perennial streams is frequently classified as "very hard" (Durfor and Becker, 1964). Even though dominant much of the time, percentages of sodium were variable at the stations. During periods in late summer and fall, sodium frequently exceeded 50 percent of the total cations; however, SAR values seldom were greater than 10. The lowest sodium percentages were from runoff water in intermittent streams.

The Tongue River, owing to mixing of waters in the Tongue River Reservoir, showed the least fluctuation in cation ratios during the annual flow cycle. Conversely, the smaller perennial streams generally exhibited the largest variations in cation ratio. Sodium percentages were highest in the streams near the east side of the study area (Pumpkin Creek, Mizpah Creek, Powder River) as well as at the downstream parts of all drainages.

Major anions

Bicarbonate and sulfate are anions which occur in the highest concentrations and each is the dominant anion at different times during the study. Fluoride, chloride, and nitrate, the remaining major anions, were present, but in lower concentrations.

Even though excessive amounts of bicarbonate add to the dissolved solids, at the concentrations measured bicarbonate is seldom a problem for irrigation or animal consumption. A recommended upper limit for sulfate is 250 mg/L for secondary drinking water standards (U.S. Environmental Protection Agency, 1977) and a threshold limit for cattle consumption is suggested at 1,000 mg/L (McKee and Wolf, 1971). Although various standards are established for other anions, concentrations detected in the study indicate that few problems are present.

Bicarbonate like calcium was found to be dominant more frequently in direct-runoff water, and sulfate was generally associated with the sodium cation in the base-flow component. Although concentrations of chloride fluctuated greatly, they generally decreased with increased direct runoff and were highest at times of base flow. Fluoride concentrations were low (generally less than recommended limits for primary drinking water) but had a pattern similar to that of chloride with respect to direct runoff and base flow.

Because of mixing of waters in the Tongue River Reservoir, the anion ratios, like the cation ratios, showed the least fluctuation in this stream. The largest variations in anion ratios occurred on the smaller perennial streams when comparisons were made between high direct-runoff and base-flow conditions.

Although chloride concentrations were generally low, the Powder River frequently had concentrations that accounted for as much as 25 percent of the total anions, compared to about 1 percent for most other streams. The higher chloride concentrations in the Powder River drainage were not apparent from a study conducted during 1946-50 (Hembree and others, 1952), which suggests that more recent activities in the basin may be responsible.

Specific conductance

Specific conductance (conductance) of water is dependent upon the ability of ionized material in solution to conduct an electrical current; therefore, it gives an indication of the concentration of ions in the water. Conductance is also influenced by water temperature, increasing with an increase in temperature. All conductance values reported in this study are given in units of micromhos per centimeter (μ mho/cm) at 25°C.

Because it can be measured readily at streamside or inexpensively in the laboratory, conductance has been used extensively in this study. Specific conductance had good correlation with dissolved solids and in many instances correlated well with many of the specific ions in solution. Regression statistics describing the relationship between specific conductance and several other water-quality variables were determined for the stations in the study area. They are listed in table 1 and are discussed in the text under the section heading "Functional relationships between water-quality variables."

Dissolved oxygen

Oxygen dissolved in natural waters is life-sustaining to most aquatic organisms and is the single most important constituent that allows a stream to purify itself of wastes. Concentrations of dissolved oxygen are influenced by many factors including water temperature, atmospheric pressure, reaeration at the water surface, photosynthetic production of oxygen, oxidation of constituents in the water, and respiration of aquatic flora and fauna. Dissolved-oxygen values for the study are reported in milligrams per liter and in percent of saturation.

Although considerable information pertaining to dissolved-oxygen requirements for aquatic life has been published, few standards exist for other water uses. Minimum concentrations of oxygen to sustain fish life are dependent upon species and age of the fish, prior acclimatization, water temperature, and concentrations of other gases and some trace elements in the water. For productive warm-water fisheries, however, McKee and Wolf (1971) recommend that dissolved-oxygen concentrations do not fall below 5 mg/L during extended periods throughout the day.

Dissolved-oxygen values at stations in the study area were most frequently within the range of 80-110 percent of saturation, although during some periods of the year values both below and above this range were measured. Values outside the range were much more frequent in the smaller streams, which are generally slower moving and often support a greater density of aquatic flora.

Depressed dissolved oxygen was associated with ice conditions, which prevented reaeration as organic matter was oxidized. To a lesser degree oxygen depletions were evident at times of high flows—caused also by oxidation of organic matter that was carried from land surfaces to streams by overland flow. Many of the largest fluctuations of dissolved oxygen occurred during the summer at times of maximum aquatic plant growth. The lowest values were measured during the early morning after night—long respiration had depleted the oxygen supply. Values above saturation were found in the late afternoon following all—day photosynthetic activity that produced oxygen in excess of that consumed.

Hydrogen-ion concentration

The hydrogen-ion concentration is normally expressed as pH. Strictly speaking, pH is the negative logarithm (base-10) of the hydrogen-ion activity. In a practical sense, however, hydrogen-ion activity is approximately equal to the hydrogen-ion concentration. The pH of a neutral solution is 7 with deviations below and above being acidic and basic, respectively. Carbon dioxide in the atmosphere generally causes rain and snow to be slightly acidic. Water that has had extensive contact with carbonate rocks of an aquifer tends to be basic. River water in areas not influenced by pollution generally has a pH between 6.5 and 8.5 (Hem, 1970). However, pH values can be in excess of this range when abundant aquatic photosynthesis takes up much of the dissolved carbon dioxide.

In this study pH values ranged from 6.9 to 8.9. The low values were frequently associated with direct runoff in which the water had characteristics of rain and snow. The higher pH values were often measured during periods of base flow and probably were influenced by the lithology of aquifers. It was also evident, especially during periods of late summer base flow, that aquatic photosynthesis caused some pH values to be elevated even higher.

Statistical computations in table 1 for pH are based on the actual values of pH and not the hydrogen-ion concentration.

Biochemical oxygen demand

The biochemical oxygen demand (BOD) is a measure of the utilization of dissolved oxygen by bacteria. In this study BOD refers to the amount of oxygen used by bacteria in oxidizing organic material during a period of 5 days while the sample was maintained at a constant temperature of 20°C.

The average BOD value for most of the perennial streams was near 2 mg/L but values in excess of 8 mg/L occurred infrequently at most stations. The highest values were measured during winter storms when overland flows across partly frozen surfaces carried large amounts of organic debris into the streams. The lower values were generally measured during periods of low to moderate flows.

Major plant nutrients

Nitrogen and phosphorus species are recognized as major plant nutrients, and in sufficient concentrations they can cause biological enrichment. At least 19 other elements in some chemical combination are essential for aquatic plants (Britton and others, 1975), but unlike nitrogen and phosphorus they rarely become exhausted to the degree that they limit plant growth. Nitrogen is originally derived from the atmosphere and the primary source of phosphorus is mostly from the mineral apatite associated with igneous rocks. Soils and sedimentary rocks are secondary sources for both nitrogen and phosphorus. Although nutrient enrichment occurs naturally in water, a most important cause of high concentrations of nitrogen and phosphorus is the activity of man-principally urbanization and agricultural production.

Nitrogen

Nitrogen commonly occurs in organic, ammonia, nitrite, and nitrate forms—the last species being the most highly oxidized. Because nitrogen may be transported in the suspended phase, samples of the water-sediment mixture were analyzed. Analyses were made for total organic, total ammonia, and total nitrite plus nitrate nitrogen. The sum of these species (total nitrogen) in the water-sediment mixture accounts for all the nitrogen transported in both dissolved and suspended phases.

Cyclical trends for nitrogen were noticed at most stations, with the highest concentrations occurring at times of high flows. Although these increases were associated with high flows, evidence suggests that the nitrogen is transported by the particulate matter that enters streams from overland flow. The particulate matter may be organic debris or fine sediment particles that sorb the nitrogen. In all instances where total nitrogen was high, the organic species accounted for most of the total.

Stations on the Tongue River generally had the lowest concentrations of nitrogen species and the Powder River had the highest--probably a result of the reservoir acting as a nitrogen sink for the Tongue River and high sediment loads contributing nitrogen to the Powder River. Respective mean concentrations of total nitrogen for these two drainages were 0.85 and 3.2 mg/L. The highest concentration measured on the main stem Tongue River was 4.3 mg/L and for the main stem Powder River, 53 mg/L. Among the smaller streams, those in the eastern part of the study area had the highest concentrations of nitrogen--a reflection of high sediment movement in this area. Total ammonia, with a mean concentration of 0.07 mg/L for the study area, tended to be cyclical and showed increased concentrations during the winter. This condition was caused by decomposition of organic matter under the ice and was frequently associated with decreased dissolved oxygen. This dissolved oxygen sag is most evident in data from East Fork Armells Creek. Other apparent nitrogen variations likely resulted from nitrogen uptake by plants during the growing periods and from use of crop fertilizers.

Total phosphorus

Total phosphorus concentrations in natural water usually are low and generally less than the total nitrogen concentrations. Unlike nitrogen, the atmosphere does not serve as a source for replenishing phosphorus in water. Phosphorus, therefore, is easily exhausted by algae and aquatic plant growth, and most often is the limiting nutrient. When more of it is made available, plant productivity may increase. Maximum contaminant levels have not been established for phosphorus in natural waters. However, the U.S. Council on Environmental Quality (1976) suggested 0.1 mg/L total phosphorus as the maximum concentration for protection of aquatic life.

Even though concentrations of total phosphorus were much less than those for total nitrogen, their patterns during the annual flow cycle in the study area were similar. Suspended sediment plays an important role in the transport of phosphorus. The highest mean concentration (0.85 mg/L) and the highest maximum concentration (9.5 mg/L) observed in the study area were from the main stem Powder River. Armells Creek and the Tongue River drainages had the lowest concentrations.

During the period of study, mean concentrations of total phosphorus for samples from the Powder River at Moorhead and near Locate were, respectively, 0.72 mg/L and 0.85 mg/L. Using water discharge at these stations and the above values, an estimate of mean phosphorus loading was computed to be 1,800 lb/day and 2,900 lb/day. This represents a gain of about 60 percent from within the study area. Similar calculations for the Tongue River at the mouth show a loading of 450 lb/day. Because of the infrequent sampling, these figures represent only an approximation; however, they suggest that the Powder River carries a high total phosphorus load—much higher than the other streams in the study area.

Minor elements

Substances that typically occur in water at concentrations less than 1 mg/L are commonly referred to as minor or trace elements. Generally minor elements are nontoxic to plants and animals at concentrations found in most natural waters, and in fact most are essential to plant growth as micro nutrients. High concentrations of minor elements are often toxic to organisms and frequently result from industrial and mining activities.

Some minor elements are only moderately soluble in water, but sorb strongly to clay particles and to other particulates in a manner similar to the nutrients. Minor elements that are more soluble often revert from the dissolved to the suspended phase as a function of various stream conditions, primarily pH. For this reason, both filtered water and the water-sediment mixture were analyzed to determine dissolved and total recoverable concentrations, respectively.

Aluminum

Toxicity of aluminum varies with hardness, turbidity, and pH. In most natural waters, concentrations of dissolved aluminum greater than 100 $\mu g/L$ (micro-

grams per liter) would be deleterious to growth and survival of fish (National Academy of Sciences and National Academy of Engineering, 1973). Except for one sample on Snider Creek, all concentrations of dissolved aluminum were much below this limit.

Total recoverable aluminum was second highest in concentration of the minor elements. Only total iron concentrations were greater. High total recoverable aluminum might be expected because of its association with clays and because of the abundance of the element in the lithosphere. The highest measured concentration (270,000 $\mu g/L$) occurred in the Powder River at a time (June 19, 1975) when sediment concentrations were exceptionally high. Total recoverable aluminum and suspended sediment consistently had a direct relation during the study.

Arsenic

Arsenic, a constituent of certain pesticides, can be added to surface water from overland flow and runoff across agricultural land. High arsenic concentrations in natural water can also result from industrial waste disposal. Primary drinking water standards (U.S. Environmental Protection Agency, 1975) set an upper limit of $50~\mu\text{g/L}$ for dissolved arsenic.

Dissolved arsenic was below the drinking water standard in all samples from the study area, with mean values ranging from 1 to 3 $\mu g/L$ at most stations. Mean concentrations for total recoverable arsenic were only slightly higher than those for dissolved. One exception was the Powder River at Moorhead. Two of the 12 samples obtained for total recoverable arsenic at this location contained concentrations of 300 and 350 $\mu g/L$. Both were collected during times of high sediment movement when clay particles were highly dominant in the particle-size distribution.

Beryllium

Beryllium is relatively rare in nature and commonly occurs in the form of a silicate as a constituent of the mineral beryl (Hem, 1970). In water of low pH, beryllium is strongly adsorbed by suspended clay particles and at higher pH, beryllium forms complexes with hydroxides that are slightly soluble.

In the study, analyses showed little more than detectable amounts of beryllium in either the dissolved phase or the water-sediment mixture. Only in samples from Armells Creek, Otter Creek, Mizpah Creek, and the Powder River were amounts slightly higher than 10 $\mu g/L$.

Boron

Boron is found in nearly all natural waters, with concentrations varying from traces to several thousand micrograms per liter. Sources of boron are minerals of granitic rocks and certain sedimentary evaporites that contain boric salts. Boron is essential to plant growth, but is highly toxic to many crops at concentrations only slightly above optimum. Although crops differ in

susceptibility to boron, the U.S. Salinity Laboratory Staff (1954) found that plant injury often occurs with concentrations in excess of 1,000 μ g/L.

Boron should create few problems in irrigation waters throughout the area. Mean values of dissolved boron were less than 500 $\mu g/L$ at 80 percent of the stations, and at only two stations did the maximum concentration exceed 1,000 $\mu g/L$. The two highest values were in water from the most-upstream Pumpkin Creek station and in water from East Fork Armells Creek; respective concentrations were 1,800 and 1,500 $\mu g/L$.

Cadmium

Because amounts of cadmium in rocks are small, concentrations of cadmium in natural water are generally low. Evidence suggests that high concentrations of cadmium in drinking water are highly toxic. For this reason, a maximum contaminant level of 10 $\mu g/L$ has been set by the U.S. Environmental Protection Agency (1975).

Measured concentrations of dissolved cadmium exceeded primary drinking water standards at least once in water from stations on Hanging Woman, Cook, and Otter Creeks. The streams are relatively small, but all are perennial in their lower reaches. Total recoverable cadmium concentrations frequently exceeded or equaled the $10~\mu g/L$ value at most stations.

Chromium

Chromium, which is a relatively common element in the environment, is frequently associated with industrial wastes. Primary drinking water standards (U.S. Environmental Protection Agency, 1975) set an upper limit of 50 $\mu g/L$. Upper limits for stock and wildlife watering, and fish life, have been set at 5,000 $\mu g/L$ and 1,000 $\mu g/L$, respectively (McKee and Wolf, 1971).

Concentrations of dissolved chromium did not equal or exceed the 50 $\mu g/L$ drinking water limit. However, values of total recoverable chromium frequently were above this limit; maximum concentration for the study area was 500 $\mu g/L$ on June 19, 1975, for the Powder River at Moorhead. At the time of sampling, sediment concentrations were high and consisted predominantly of clay-size particles.

Copper

Copper is a widely distributed element in the environment, but because of solubility controls, occurs only in trace concentrations in natural waters. Water is sometimes contaminated by mining and by industrial activities. Secondary drinking water standards (U.S. Environmental Protection Agengy, 1977) set an upper limit for dissolved copper at 1,000 $\mu g/L$ and McKee and Wolf (1971) recommend an upper threshold of 20 $\mu g/L$ for fresh-water aquatic life.

Samples from most stations had mean dissolved concentrations of copper that were less than 5 $\mu g/L$. Water from Mizpah Creek near the mouth showed the highest dissolved concentration with a maximum of 28 $\mu g/L$. Water from the

Powder River at Moorhead had the highest total recoverable copper concentration, with values of 500 and 900 $\mu g/L$; both samples were collected during spring runoff at times of high sediment movement.

Iron

Although iron is one of the more abundant elements in rocks and soils, streams having near-neutral pH will not contain bothersome dissolved concentrations. Waters of low pH, which can result from industrial water and mine drainage, may have much higher dissolved concentrations. Particulate iron can be found in most all types of water. Secondary drinking water standards (U.S. Environmental Protection Agency, 1977) set an upper limit of 300 µg/L for dissolved iron.

Concentrations of dissolved iron from samples throughout the study area frequently exceeded drinking water standards. The highest values were measured at the small streams (Pumpkin Creek, Mizpah Creek, and Hanging Woman Creek) during times of depressed pH. In contrast to dissolved iron, high concentrations of total recoverable iron were found in samples from the two largest streams, the Tongue and Powder Rivers. The highest total recoverable concentration for the study area was $600,000~\mu g/L$ for the Powder River at Moorhead.

Lead

Lead, like some other minor elements, is probably limited in the stream environment by its solubility. Because of its toxicity to humans, the U.S. Environmental Protection Agency (1975) set a limit for dissolved lead at 50 μ g/L in the primary drinking water standards. At a concentration of 100 μ g/L, lead may be deleterious to fish life (McKee and Wolf, 1971).

One sample from Sarpy Creek had a concentration of dissolved lead (56 $\mu g/L)$ that surpassed the primary drinking water standards; however, maximum concentrations of lead in several streams were slightly less than 50 $\mu g/L$. Maximum concentrations of total recoverable lead were frequently near 100 $\mu g/L$ for most streams. The highest value for total recoverable lead (800 $\mu g/L)$ was measured from the Powder River at Moorhead.

Lithium

Lithium is not widely found in nature, but being a highly mobile ion, it generally remains dissolved once brought into solution by weathering. No limits have been established for lithium in domestic water; however, toxicity to plants has been demonstrated with concentrations in water ranging from 1,000 to 5,000 $\mu g/L$ (McKee and Wolf. 1971).

A sample from Otter Creek had the highest dissolved lithium concentration at 340 $\mu g/L$. The maximum total recoverable lithium concentration of 450 $\mu g/L$ was measured at the Powder River at Moorhead. Differences between dissolved and total recoverable lithium at stations tended to be much less than those for other minor elements.

Manganese

Although not as abundant as iron, manganese concentrations in natural water are often high in comparison to most minor elements. Manganese is essential for plant growth, but concentrations as low as 500 μ g/L have been reported to cause toxicity to selected plants (McKee and Wolf, 1971). National secondary drinking water regulations (U.S. Environmental Protection Agency, 1977) set an upper limit of 50 μ g/L (dissolved) to prevent brownish staining of laundry and objectionable tastes to certain beverages.

The highest concentrations of dissolved manganese were measured in samples from small perennial streams during winter ice cover. The most upstream station on Pumpkin Creek had the highest measured dissolved concentration of 8,500 $\mu g/L$. High concentrations of total recoverable manganese correlated directly with suspended sediment throughout the study area. Samples from the Powder River had the highest values of total recoverable manganese.

Mercury

The background concentration of mercury in surface and ground waters is probably less than 0.1 $\mu g/L$ (Jenne, 1972). Higher concentrations of mercury in natural water can result from mining, metallurgical, or other industrial wastes. Mercury and mercuric salts are considered to be toxic to human, fish, and plant life. Thus, a primary drinking water standard of 2 $\mu g/L$ was set for dissolved mercury (U.S. Environmental Protection Agency, 1975).

One sample from the Powder River at Moorhead contained a concentration $(4.0~\mu g/L)$ of dissolved mercury that exceeded the primary drinking water standard. The mean dissolved concentrations for most stations were less than 0.1 $\mu g/L$. Mean concentrations for total recoverable mercury were only slightly higher. The highest total recoverable mercury concentration, 4.0 $\mu g/L$, was observed in a sample from Spring Creek near Decker. It should be noted that other investigators (for example, Mike Bishop, Montana Department of State Lands, oral commun., 1979) have measured mercury in and downstream from the Tongue River Reservoir in concentrations that are higher than those reported by the U.S. Geological Survey.

Molybdenum

Molybdenum is rare in nature and is not considered to be significant in water pollution. Low concentrations of the metal are essential for plant growth and certain microbiological processes. No contaminant levels for drinking water standards have been set; however, a toxicity problem may occur when domestic animals forage on plants grown in areas having high amounts of available molybdenum. For this reason, the National Academy of Sciences and National Academy of Engineering (1973) recommend a maximum concentration of 10 $\mu \mathrm{g}/\mathrm{L}$ in water continually used for irrigation.

Differences between dissolved and total recoverable molybdenum throughout the area were small; concentrations for both were generally less than $5~\mu g/L$. Molybdenum in samples from stations in the Otter Creek drainage were slightly higher, with maximum dissolved and total recoverable concentrations near 10 $\mu g/L$. Poorer correlations were found between total recoverable molybdenum and suspended sediment than between most other minor elements and sediment.

Nickel

Elemental nickel is nearly insoluble in water; however, many ores and industrial compounds of nickel are highly soluble. The toxicity of nickel to humans is probably very low although it has been shown to be toxic to plants. An upper limit of 200 μ g/L is recommended for irrigation waters that are continually used on soils (National Academy of Sciences and National Academy of Engineering, 1973).

Concentrations of dissolved nickel ranged from 0 to 21 $\mu g/L$ in water samples from the study area. This range probably represents natural background conditions and compares to the median value of 10 $\mu g/L$ for North American rivers as determined by Durum and Haffty (1963). Total recoverable nickel concentrations were considerably higher, with a maximum of 650 $\mu g/L$ measured in a sample from the Powder River. Fine sediment particles apparently play a major role in the transport of nickel in the study area.

Selenium was to broken as well and believe the box

Elemental selenium is highly insoluble; however, in an oxidized form appreciable amounts can occur in water. Because selenium is toxic to both animals and plants, various limits have been established. Primary drinking water regulations (U.S. Environmental Protection Agency, 1975) set upper limits of $10~\mu g/L$ for dissolved selenium. Recommended upper limits for livestock and irrigation waters are given, respectively, as 50 and 20 $\mu g/L$ (National Academy of Sciences and National Academy of Engineering, 1973).

In no instance did dissolved concentrations surpass any of the above limits. The highest dissolved selenium concentrations of 7 μ g/L were found in samples from both the Powder River near Locate and Squirrel Creek near Decker. The highest measured concentration of 17 μ g/L total recoverable selenium was in a sample from the Powder River near Locate during a peak flow containing a high sediment load on May 22. 1978.

Vanadium

At concentrations found in natural waters, vanadium is generally not considered to be toxic to humans; thus, contaminant levels have not been set for drinking water. However, the National Academy of Sciences and National Academy of Engineering (1973) suggest an upper limit of 100 $\mu g/L$ for livestock watering and continuous use as irrigation water on all soils.

Because of problems with analytical techniques, analyses were made for only the dissolved form of vanadium. Concentrations were consistently 10 or less $\mu g/L$ with the most notable exception being Rosebud Creek. Samples from

four stations on Rosebud Creek each had concentrations near 15 $\mu g/L$ during a sampling period in November 1976.

Zinc

Zinc is common in ores and has many industrial uses. The metal has no known adverse physiological effects upon man except at very high concentrations (McKee and Wolf, 1971). However, for considerations of taste secondary drinking water regulations (U.S. Environmental Protection Agency, 1977) set an upper limit of 5,000 μ g/L for dissolved zinc. Limits for livestock water are 25,000 μ g/L (U.S. Environmental Protection Agency, 1977).

Measured concentrations for both dissolved and total recoverable zinc were much lower than the standards set for drinking water. Although dissolved zinc concentrations in samples from the Tongue River below Hanging Woman Creek were generally low, the maximum value (1,900 μ g/L) for the study area was detected there. A high total recoverable zinc concentration of 2,700 μ g/L was detected in water from the Powder River at Moorhead during a peak-runoff period.

Water-quality evaluation

Many attempts have been made to develop indices for evaluating water quality by means of numerical or other types of rating. All seem to have certain shortcomings when multiple water usage is considered. Table 2 has been designed to help appraise the water quality throughout the study area for several uses and to eliminate some of the informational loss inherent in the use of one-number indices. Unlike many methods for evaluating water, the table does not attempt to rank or categorize the stations.

The conditions listed at the top of table 2 are discussed in foregoing sections of the text and generally relate to esthetic values; standards for drinking water, stock water, and irrigation water; and ranges of values for the stations. For each station the lower numeral is the number of times samples have been analyzed for the particular water-quality variable; the upper numeral indicates the times that a value is greater than or less than the given condition. The table will allow users to easily determine the exceptions to the listed conditions and to make comparisons of water-quality conditions between stations. Although mean daily values are available for some of the variables at selected sites, only instantaneous values are used in this table.

FUNCTIONAL RELATIONSHIPS BETWEEN WATER-QUALITY VARIABLES

Certain functional relationships are often found to exist between constituents and the chemical or physical properties of a stream. Examination of the data using statistical techniques is a way of determining the strengths of such relationships. In this study the following simple and multiple linear regression models were used to describe the relationships.

Table 2.--Water-quality appraisal chart

[Lower numeral, number of times sampled; upper numeral, number of times sample was greater or less than stated value. Abbreviations: SAR, sodium-adsorption ratio; Na, sodium; BOD, biochemical oxygen demand; NH4, ammonia; P, phosphorus; Fe, iron; Mn, manganese]

						/									Con	diti	on			
Station number (fig. 1)	/	120 KS	100/100/1	sec	spendimer dimer	it /	100 00 00 00 00 00 00 00 00 00 00 00 00		ssoli soli	ds /	12	2/2/00/	/ su	Disolved 1-	d or	solve	/	Milly	01/	Station name
1	9 31	19 31	0 31	0 32	3 32	32	0 32	0. 32	18 32	3 32	15 32	14 31	0 31	0 32	30	9 32	5 32	3 32	3 8	Sarpy Cr nr Hysham
2	15 35	33 35	0 35	1 35	1 35	2 35	1 35	0 35	0 35	1 35	33 35	933	6 33	2 35	2 35	16 35	5 35	1 35	9	E. Fk. Armells Cr nr Colstrip
3	6 18	13 18	0 18	0 20	1 20	1 20	12 20	9 20	19 20	20	18 20	5 20	0 20	20	1 19	5 20	20	1 20	2 3	W. Fk. Armells Cr nr Forsyth
4	1 42	21 42	0 42	1 43	3 43	6 43	0 43	18 43	38 43	3 43	35 43	3 42	6 42	3 42	1 42	12 43	10 43	1 43	8 10	Armells Cr nr Forsyth
5	1 9	4 9	0 9	0	2 11	10 11	0 11	0 11	0	11 11	0 11	0 10	0 10	0 11	0 9	3 11	2 11	0	1 4	Rosebud Cr at Kirby
6	1 45	22 45	0 45	0 45	1 45	44 45	0 45	0 45	0 45	9 45	0 45	3 44	0 44	3 45	2 44	10 45	12 45	0 45	0 12	Rosebud Cr nr Colstrip
7	0 2	2 2	0 2	0 2	2 2	2 2	0 2	0 2	0 2	2 2	0 2	0 2	0 2	0 2	2 2	2 2	2 2	0 2	0	Greenleaf Cr nr Colstrip
8	1 36	18 36	0 36	0 37	1 37	33 37	0 36	0 37	0 37	6 37	0 37	5 36	1 36	4 37	0 35	7 37	14 37	0 37	0 8	Rosebud Cr ab Pony Cr
9	0 2	0 2	0 2	0 2	2 2	2 2	0 2	0 2	0 2	2 2	0 2	0 2	0 2	0 2	0 2	2 2	2 2	0 2	0	Snider Cr nr Brandenberg
10	1 32	6 32	0 32	0 32	2 32	24 32	0 32	0 32	0 32	6 32	0 32	2 32	0 32	1 32	1 32	6 32	11 32	0 32	1 7	Rosebud Cr nr Rosebud

						/									Con	diti	on			
				Su	spen	ded	150	Di	ssol	ved	/	/		Di solve		D: solve	is- ed	/	/	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Station		,	/	se	dime	nt /			soli	de /	40	3/	/ -		-	an d	/	Mil	0.0	the solided will be station name
number fig. 1)	/	20 1	200	5.00	tight of	500	100	14. CO	MR R	or cer	100 m	200	100 Pe	Till 2	DH?	8007	200	Total	D1880	Station name
11	0 46	7 46	1 46	0 49	3 46	32 46	0 46	0 47	3 47	6 47	0 47	3 46	4 46	3 48	1 46	11 47	22 47	47	0 10	Rosebud Cr at mouth
12	33	22 33	0 33	0 33	333	33 33	0 33	0 33	0 33	10 33	0 33	33	2 33	1 32	0 33	1 33	6 33	1 33	6 11	Squirrel Cr nr Decker
13	1 9	7 9	0 9	0 10	2	2 10	3 10	0	0	2 10	7 10	2 10	10	0	2 10	5 10	3 10	0	1	Deer Cr nr Decker
14	0 2	1 2	0 2	0 2	1 2	1 2	0 2	0 2	0 2	1 2	0 2	0 2	0 2	0 2	1 7	1 2	1 2	0 2	0	Spring Cr nr Decker
15	24 33	33 33	0 33	0 35	17 34	34 34	0 34	0 35	0 34	33 34	0 34	0 34	2 34	4 35	0 33	13 35	0 35	1 35	2 12	Tongue R at Tongue R Dam
16	0 2	1 2	0 2	0 2	2 2	2 2	0 2	0 2	0 2	2 2	0 2	0 2	0 2	0 2	1 2	0 2	2 2	0 2	0	Fourmile Cr nr Birney
17	0 4	2 4	0 4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	Prairie Dog Cr nr Birney
18	0 2	2 2	0 2	0 2	1 2	2 2	0 2	0 2	0 2	2 2	0 2	0 2	0 2	0 2	1 2	0 2	1 2	0 2	0	Bull Cr nr Birney
19	2 9	8 9	0 9	0 9	0 7	1 7	2 7	0 7	0 7	0 7	4 7	5 7	0 7	0 8	0 4	3 7	2 7	0 7	3	E. Trail Cr nr Otter
20	2 8	6 8	0 8	0 9	0 9	0 9	1 9	0 9	4 9	0 9	8 9	2 9	1 9	0 9	0 9	3 9	2 9	0 9	4 5	Hanging Woman Cr bl Horse Cr
21	47	34 47	0 47	0 48	3 46	4 46	0 46	0 46	3 46	3 47	12 47	10 47	47	0 47	2 46	11 47	9 46	3 46	6	Hanging Woman Cr nr Birney

						/									Con	diti	on			
Station number fig. 1)	/	20 10	1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1	000	spend limen	T / -	12/00/1	Dis	ssoli	la /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2/	/ su	te/	d sox ge	Di olve	4	Attu-	00000	Station name
22	19 41	34 41	0 41	0 48	24 44	45	0 44	0 45	0 45	37 46	0 46	1 48	48	7 48	0 36	4 45	7 45	0 47	2 18	Tongue R bl Hanging Woman Cr
23	14 34	31 34	0 34	0 34	1 33	333	0 33	0 33	0 33	1 34	0 34	3 34	2 34	2 34	0 34	1 34	34	0 33	5 7	Cook Cr nr Birney
24	2 9	8 9	0 9	1 9	0 9	0 9	6 9	0	0	0	8 9	2 9	4 9	1 9	0 9	0	2 9	0	0 3	Otter Cr nr Otter
25	0 5	5 5	0 5	0 5	3 5	4 5	0 5	0 5	0 5	3 5	1 5	2 5	0 5	0 5	3 4	2 5	4 5	0 5	0	Bear Cr at Otter
26	3 9	8 9	0 9	0 9	1 9	1 9	0 9	0 9	0 9	1 9	8 9	5 9	2 9	0 9	0 9	2 9	1 9	. 9	3 5	Otter Cr bl Fifteenmile Cr
27	0 2	1 2	0 2	0 2	2 2	2 2	0 2	0 2	0 2	2 2	0 2	0 2	0 2	0 2	2 2	1 2	2 2	0 2	0	Threemile Cr nr Ashland
28	5 16	14 16	0 16	0 16	0 16	1 16	0 16	0 16	8 16	0 16	14 16	8 15	2 15	0 16	0 16	5 16	4 16	1 16	5 6	Home Cr nr Ashland
29	3 45	33 45	0 45	1 46	3 45	4 45	0 45	0 46	11 46	3 46	33 46	10 45	1 45	5 45	2 46	18 45	8 46	2 46	3 10	Otter Cr at Ashland
30	4 9	9	0 9	0 9	2 9	3 9	0 9	0 9	0 9	2 9	6 9	4 9	0 9	0 9	2 8	2 9	3 9	0 9	0	Beaver Cr nr Ashland
31	13	9 13	0 13	0 47	17 44	44	0 44	0 45	0 45	26 44	0 44	4 46	1 46	1 45	1 44	3 44	9 45	0 45	0 12	Tongue R bl Brandenberg Br
32	0 3	2 3	0 3	0 3	3	3	0 3	0 3	1 3	3	0	0 3	0 3	0 3	1 2	1 3	3	0 3	0	Liscom Cr nr Ashland

						/									Con	diti	on			
Station number (fig. 1)	/1	20 10	100/1	sed	spend dimen	1 / -	12/00/	18/2	ssoli soli	ds/	107	2/2/00/	/ su	. /	d sox ge	olve	/	ARIA TO LOT OF THE PROPERTY OF	0.00	Station name
33	3 14	6 14	0 14	0 14	3 14	4 14	1 14	7 14	13 14	3 14	7 14	4 14	0 14	0 14	2 14	6 14	7 14	1 14	1 2	Foster Cr nr Volborg
34	2 21	11 21	0 21	1 21	0 21	1 21	8 21	0 21	4 21	0 21	20 21	15 21	4 21	0 21	0 21	5 21	5 21	2 21	3 4	Pumpkin Cr nr Loesch
35	3 6	6	0	1 6	0 6	0	0 6	0 6	0	0 6	5 6	4 6	1 6	0	0	1 6	1 6	1 6	2 2	Little Pumpkin Cr nr Volborg
36	4 9	8 9	0 9	1 9	0 9	0 9	3 9	2 9	9	0 9	9	3 9	1 9	0 9	0 9	1 9	1 9	1 9	0	Pumpkin Cr nr Volborg
37	0 23	8 23	2 23	2 24	5 22	8 22	0 22	5 22	22 22	5 22	6 22	3 23	3 23	4 24	2 23	8 23	11 23	0 22	1 6	Pumpkin Cr nr Miles City
38	3 36	19 36	0 36	1 73	15 50	50 50	0 50	0 50	1 50	28 50	0 50	1 73	2 73	3 73	0 7	1 14	18 50	0 18	0 18	Tongue R at Miles City
39	0 11	0	6	1 65	0 53	8 53	0 53	0 54	16 54	0 53	3 53	9 48	0 48	3 54	0 43	25 55	35 55	0 49	0 9	Powder R at Moorhead
40	18	12 18	0 18	0 19	0 19	0	5 19	0	0 19	0	19 19	11 18	6 18	0 19	1 18	7 19	8 19	2 19	5 5	Mizpah Cr at Olive
41	17	15 17	0 17	4 18	0	1 18	0	0 18	18 18	0	13 18	8 17	3 17	0	0	1 17	1 18	1 18	5 5	Mizpah Cr nr Volborg
42	0 24	6 24	5 24	2 25	4 22	9 22	0 22	12 22	22 22	5 24	7 24	5 24	24	7 25	2 24	9 23	14 24	1 22	3 8	Mizpah Cr nr Mizpah
43	0 41	1 41	12	0 78	1 49	10 49	0 49	0 49	24 49	2 49	2 49	9 72	1 72	0 72	0 5	4 14	38 49	0	0	Powder R nr Locate

(simple linear regression)

$$y = B_0 + B_1 X$$
 (1)

where: y = dependent water-quality variable,

Bo = regression constant (y intercept),

B₁ = regression coefficient of the independent variable, and

X = independent water-quality variable (either specific conductance or stream discharge).

(multiple linear regression)

$$y = B_0 + B_1X_1 + B_2X_2$$
 (2)

where: y = dependent water-quality variable,

Bo = regression constant (y intercept),

 B_1 = partial regression coefficient for the

first independent variable,

X₁ = first independent water-quality variable (discharge),

B₂ = partial regression coefficient for the second independent variable, and

X₂ = second independent variable (specific conductance).

Regression summaries for each water-quality variable are listed in table 1 along with descriptive statistics for each set of variable values. strengths of functional relationships listed in the regression summaries are indicated by the coefficient of determination, standard error of estimate, significance of the partial regression coefficients, and significance of the correlation coefficient. The coefficient of determination, r2, indicates the proportion of variance in the dependent variable that is explained by the regression equation; it can range from 0 to 1. The standard error of estimate is the standard deviation of the predicted values from the measured values. The a = 0.05 significance of the partial regression coefficient indicates a 95-percent likelihood that the regression coefficient is not equal to zero. The a = 0.05 significance of the correlation coefficient, r, indicates a 95percent likelihood that a non-zero relationship exists between the dependent and independent variables. The correlation coefficient indicates the degree to which the variation in one variable is related to the variation in another variable and ranges from -1 to +1. No relationship exists if the correlation coefficient is zero, whereas a perfect relationship exists if the correlation coefficient is -1 or +1.

Regression models

Two sets of simple linear regressions were developed for most constituents using specific conductance and water discharge separately as independent variables. Based on the coefficient of determination, the better of the two equations was selected and included in table 1.

Specific conductance of water is dependent upon the concentration of ions in solution and, therefore, often correlates highly with the total of the dissolved constituents in solution, as well as with those individual constituents that are dominant in the dissolved phase. Correlations tend to be lower with the less dominant species. Most of the physical measurements had low correlation with specific conductance.

Because many of the physical and chemical characteristics are influenced by streamflow, higher correlations were sometimes found using discharge rather than specific conductance. On unregulated streams, low flows are associated with base flow and high flows with overland flow. Base flow contains high dissolved-solids concentration and low suspended-sediment concentration. Periods of overland flow tend to show the reverse conditions. Thus, variations in discharge resulting from base flow and overland flow tend to correlate with certain water-quality variables.

In an effort to improve the correlations found in the simple linear regression models, conductance and streamflow were used concurrently to produce multiple-linear regressions as given in table 1. By adding a second independent variable into the regression equation, one can expect a reduction in the standard error of estimate and an increase in the coefficient of determination. As would be expected, improvements were shown over use of the simple regression equations. However, as noted in table 1, improvements were often not large.

In general, throughout the study area those constituents that comprise the higher percentages of cationic and anionic species have a high correlation with conductance. This includes the cations magnesium, sodium, and calcium along with the anions sulfate and bicarbonate. The highest and most consistent correlations occur with dissolved solids and conductance. Other major ions present, but less dominant, frequently have low correlation with conductance—a result of the small percentage of electrical conductivity contributed by these ions. On occasion, the less dominant ions show better correlation with discharge than do the more dominant ions.

Discharge as the independent variable in the simple regression is used much less than is specific conductance. The highest correlations with discharge are found with physical measurements such as suspended sediment and turbidity. Occasionally the nutrients, and especially total phosphorus, were related better to discharge than to specific conductance. Regulation of streamflow from stock dams and irrigation diversions may result in discharge being a poor predictor for many water-quality variables.

Application of regression analysis

Regression equations can be used in different ways. By applying the independent variable(s) to the regression equation within the range of data used to develop the equation, values of the dependent variable can be simulated. Then it is only necessary to collect periodic check samples to test the adequacy of the regression relationship. In using equations from the regression summaries listed in table 1, certain limitations should be kept in mind. The significance tests used for linear regression equations are based on the assumptions that the samples are drawn at random and that the values for the dependent and independent variables are normally distributed and linearly related. In addition, any array of the dependent variables should have the same variance.

Data which, through examination of scatter plots and residuals, do not satisfy these assumptions can be transformed and then tested. The most often used transformation is the log transformation; however, many others might provide a better fit.

The data in table 1 are presented to show which relationships are potentially strong. The number of stations and variables preclude close examination of the data to determine what transformations might be needed. Therefore, the regression equations are based on untransformed data. These data should be examined in greater detail to assure that the basic assumptions are satisfied if more sensitive regressions are required for simulation or for other purposes.

In some instances regressions may be used to assess land-use changes. For stations having adequate data, selected equations will serve to denote baseline conditions. Deviation from established regression equations may be due to alteration of water quality as a result of man's activity. However, further investigation of relationships between other variables might prove to be more sensitive for assessing land-use changes.

In this study, regression equations are used to simulate dissolved-solids concentrations and loads for the most downstream stations on both the Tongue and the Powder Rivers and for the Yellowstone River near Miles City for the 1978 water year. A computer program has been developed for simulating chemical quality of streamflow. The program utilizes daily records of specific conductance and stream discharge in conjunction with the appropriate regression equations. Use of the program enables daily solute concentrations and loads to be simulated as well as weekly, monthly, and annual averages to be computed.

Daily mean dissolved-solids concentrations were computed using regression equations in which the independent variable X is the daily mean conductance. Once simulated, the concentrations in milligrams per liter were further transformed into a daily mean dissolved-solids load in tons per day using equation 3. The program output is condensed in table 3 with simulated monthly and annual dissolved-solids loads given in tons. In addition to monthly loads the simulated monthly mean dissolved-solids concentrations are also listed in table 3. Daily and weekly loads and concentrations were omitted for the purpose of brevity.

where: C is dissolved-solids load in tons per day,

Q is daily mean water discharge in cubic feet per second,

C; is daily mean concentration in milligrams per liter, and

K = 86,400 seconds per day x 62.4 pounds per cubic foot = 0.0027. 2,000 pounds per ton x 1,000,000 mg per liter

Table 3.—Simulated monthly mean dissolved-solids concentration and monthly and annual dissolved-solids loads at three stations during the 1978 water year

Month	Yellowstone River near Miles City		Tongue River at Miles City		Powder River near Locate								
							solved solids (mg/L)	Dis- solved solids (tons)	Dis- solved solids (mg/L)	Dis- solved solids (tons)	Dis- solved solids (mg/L)	Dis- solved solids (tons)	
	October	430	211,000	596	11,900	1,460							41,600
	November	458	144,000	674	10,100	1,740							24,700
	December	458	190,000	683	11,100	1,850							22,700
	January	582	239,000	707	9,500	1,730	19,900						
February	597	287,000	693	9,370	1,520	14,800							
March	404	482,000	525	47,600	983	186,000							
April	545	458,000	596	31,200	1,590	105,000							
May	491	1,060,000	563	135,000	1,300	636,000							
June	327	984,000	349	108,000	746	235,000							
July	302	847,000	314	34,400	1,140	139,000							
August	350	414,000	428	21,600	1,630	60,300							
September	424	417,000	577	17,500	1,670	37,000							
Total (rounded)	andia ma	5,733,000	sevel obs	447,300	O 10-	1,522,000							

A graphical display of dissolved-solids loading for the three stations further illustrates the program output (fig. 2). The area beneath the lower

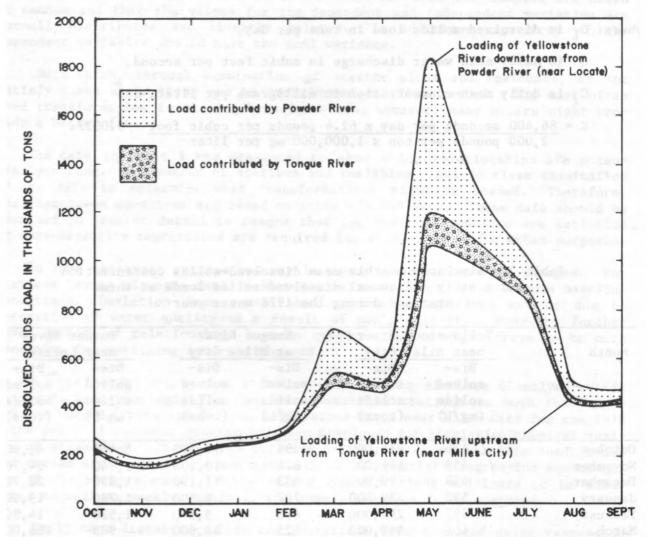


Figure 2.—Simulated dissolved-solids loading to Yellowstone River from Tongue and Powder Rivers, 1978 water year.

curve represents loading of the Yellowstone River upstream from the Tongue and Powder Rivers; the total area under the upper curve represents loading downstream from the Tongue and Powder Rivers. Loading contributed by the Tongue and Powder Rivers can be compared by observing the areas between curves. At this time sufficient data are not available to determine loading for the three smaller streams (Sarpy, Armells, and Rosebud Creeks) that flow directly into the Yellowstine River or to determine loading from just those parts of the Tongue and Powder River basins within the study area.

DRAINAGE SUMMARIES

This report describes water quality at selected stream locations in south-eastern Montana and makes comparisons with various water-use classification standards. The most apparent feature of the study is the variability of water quality. The greatest variations are cyclic in nature, being most noticeable at individual stations throughout the annual flow cycle. Areal differences both within and between drainages in the study also are apparent but are more subtle than changes with time at individual stations.

Much of the water-quality variability during the annual cycle can be related to the dominance of either the base-flow or the direct-runoff component of streamflow at various periods of the year. Areal differences are influenced mostly by lithology, soil types, and land-use practices. Other natural and artificial conditions tend to affect both time and areal variability of water quality. Evaporation and transpiration, reactions of water with sediment, and aquatic biota all cause changes. In addition, the many impoundments and diversions for agricultural purposes affect the quality of water.

Although not entirely consistent in all drainages, the base-flow component of streamflow was generally associated with high concentrations of dissolved solids. Sodium and sulfate were the dominant cation and anion, respectively. Low discharge during periods of base flow resulted in minimal suspended-sediment loads and in turn minimum values for those constituents (total recoverable) analyzed from the water-sediment mixture. In contrast, direct-runoff water is generally low in concentrations of dissolved solids and characterized by the calcium cation and the bicarbonate anion. Direct-runoff water, often with much material in suspension, had high concentrations of total nutrients and total recoverable minor elements.

Powder River drainage

In comparing stations at the mouths of the five drainages in the study area that enter the Yellowstone River, water from the Powder River ranked near the middle of the group in dissolved-constituent concentrations, but far exceeded others in total recoverable-constituent concentrations and suspended sediment. Dissolved-solids concentration near the mouth of the Powder River ranged from 408 to 2,130 mg/L with a mean value of 1,380 mg/L. Percentages of sodium were slightly higher and the chloride-ion concentration was much higher than those observed in the other drainages. Total nutrients and total minor elements were generally the highest measured in the study area and showed increases with increased sediment concentrations.

Unlike other study-area streams, the water quality of the Powder River shows little change and at times slight reductions in major ions in passage from the Montana-Wyoming border to the Yellowstone River. Although the processes of evaporation, transpiration, and irrigation cause increased concentrations of major ions as water passes downstream, the combined effect of ground-water and surface-water inflow in this reach of the Powder River is to dilute the stream water. Streamflow in this reach of the river increases about 35 percent downstream.

Sediment movement in the Powder River appears to be erratic from year to year and is governed by intensity and duration of storms and spring runoff. During years of below-average streamflow, sediment apparently accumulates in the channel. During high flows the accumulated sediment is resuspended and transported downstream, thus periodically flushing selected reaches of the river channel. Suspended-sediment concentrations frequently exceed 10,000 mg/L during the periods of spring runoff and storms.

Mizpah Creek drains parts of the study area between the Tongue and Powder Rivers and enters the Powder River upstream from Locate. Streamflow in Mizpah Creek is sustained by ground-water inflow during much of the year, although samples were collected from flows in excess of 1,000 ft 3 /s during storms and spring runoff. The water had a wider range of dissolved solids than did water of the Powder River, but the mean concentration was nearly the same. The sediment concentration was second only to the Powder River, and mean concentrations at the mouth for total nitrogen (3.82 mg/L) and total phosphorus (1.06 mg/L) were the highest in the study area.

Tongue River drainage

Of the water at the mouths of the drainages, the Tongue River generally had the best overall quality with respect to major ions, even though tributaries with inferior quality water contribute to the flow. The mean dissolved-solids concentration at the mouth was 548 mg/L with a range of 234-912 mg/L. The concentration increased about 25 percent as the Tongue River passed through the study area. The increased dissolved-solids concentration results from a combination of surface and subsurface inflow, irrigation practices, and evaporation and transpiration in the main channel.

The Tongue River Dam modifies many of the natural water-quality conditions of the streamflow. The reservoir with its capacity of 68,000 acre-feet moderates streamflow and causes mixing of dissolved constituents. The result is a reduction in range of concentrations. Many of the physical properties of water are affected in a like manner. Much of the suspended sediment carried by the river upstream from the reservoir settles to the bottom. In turn, those constituents transported by the sediment are, at least temporarily, lost from the stream.

Water that is relatively free of sediment as it leaves the Tongue River Dam increases in sediment concentration during passage downstream, particularly as overland flows contribute to inflow. Suspended-sediment concentrations at the mouth ranged from 5 to 4,360 mg/L with a mean of 428 mg/L; only Sarpy and Armells Creeks had lower mean concentrations. Total nitrogen and phosphorus concentrations associated with sediment fines also were less than most other streams.

Hanging Woman Creek, Otter Creek, and Pumpkin Creek, the three major tributaries to the Tongue River, contribute water high in dissolved solids during much of the year. Maximum dissolved-solids concentrations from the streams ranged from 2,700 to 3,200 mg/L with means in excess of 1,000 mg/L.

Exceptions to the high dissolved-solids concentrations occur during storms and periods of snowmelt when overland flow dilutes the base-flow component of streamflow, decreasing the dissolved-solids concentrations. However, these are generally times of maximum sediment concentration when total nutrients and total recoverable minor elements are at their highest.

The majority of the tributaries to the Tongue River are intermittent and contribute most of their water during surface-runoff periods. Extended flows generally persist as the alluvial aquifers are dewatered. Samples analyzed from the initial runoff are low in dissolved constituents, but because of runoff intensity the streamflow carries organic and inorganic particulate matter in suspension. However, during extended flows, as the alluvium is dewatered, the water has had longer contact with consolidated and unconsolidated materials under the land surface; thus, the concentrations of dissolved constituents increase as flows diminish. In addition, many of the streams are subject to both natural and artificial ponding, a condition that causes even higher dissolved-solids concentrations owing to increased evaporation and transpiration.

Rosebud Creek drainage

Mean dissolved-solids concentration at the mouth of Rosebud Creek is 876 mg/L or about 60 percent higher than Rosebud Creek at Kirby in the upstream drainage. In addition to having low dissolved-solids concentration in the upstream drainage, the chemical character of the water is modified in passage downstream. The combined effects of surface- and ground-water inflow between the stations increase the percentages of sodium and sulfate. Although the upstream to downstream changes in both dissolved solids and ion ratios are obvious when comparing annual means, these changes are not consistent throughout the flow cycle owing to differing affects of base-flow and direct-runoff components of streamflow.

Mean sediment concentration (572 mg/L) at the mouth of Rosebud Creek is slightly higher than the mean values from the Tongue River, Sarpy Creek, and Armells Creek but is much less than that of the Powder River. A comparison of the four Rosebud stations indicates that more than half the sediment load is contributed to the stream in the downstream one-fourth of the drainage. Total nitrogen and phosphorus follow the same pattern as suspended sediment and assume a like rank when the five major study area drainages are compared.

Armells and Sarpy Creek drainages

Armells Creek and Sarpy Creek are the smallest of the five drainages that enter the Yellowstone River. Both have many similar drainage and channel characteristics as well as water-quality similarities. The pool-riffle configurations of these streams affect both dissolved— and suspended-constituent concentrations.

The pooling, which is common throughout the two drainages but more prevalent in upper reaches, allows for increased evaporation and transpiration, leading to increased dissolved-solids concentrations in the streams. For much of the year Armells Creek shows a reduction in dissolved-solids concentra-

tion as the water passes downstream. The condition probably results from inflow of ground water lower in dissolved solids, which dilutes water from upstream. Throughout periods of surface runoff this condition is not apparent and the normal downstream increase in dissolved-solids concentration persists. Respective mean dissolved-solids concentrations at the mouths of Armells and Sarpy Creeks are 2,840 and 1,850 mg/L—the highest for the five drainages. These mean values, however, have a tendency to mask the broad range of measured concentrations.

Suspended-sediment concentrations and total recoverable constituent concentrations are low in comparison to the other drainages. The pooling nature of the stream and dense aquatic growth tend to trap sediment as it moves downstream, thus accounting for the relatively low concentrations.

REFERENCES

- Bondurant, J. A., 1971, Quality of surface irrigation runoff: Transactions of the American Society of Agricultural Engineers, v. 14, no. 6, p. 1001-1003.
- Britton, L. J., Averett, R. C., and Ferreira, R. F., 1975, An introduction to the processes, problems, and management of urban lakes: U.S. Geological Survey Circular 601-K, 22 p.
- Durfor, C. N., and Becker, Edith, 1964, Public water supplies of the 100 largest cities in the United States, 1962: U.S. Geological Survey Water-Supply Paper 1812, 364 p.
- Durum, W. H., and Haffty, Joseph, 1963, Implication of the minor element content of some major streams of the world: Geochimica et Cosmochimica Acta, v. 27, p. 1-11.
- Guy, H. P., and Norman, V. W., 1970, Field methods of measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water (2d ed): U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Hembree, C. H., Colby, B. R., Swenson, H. A., and Davis, J. R., 1952, Sedimentation and chemical quality in the Powder River drainage basin, Wyoming and Montana: U.S. Geological Survey Circular 170, 92 p.
- Jenne, E. A., 1972, Mercury in waters of the United States: U.S. Geological Survey open-file report, 32 p.

- Knapton, J. R., and McKinley, P. W., 1977, Water quality of selected streams in the coal area of southeastern Montana: U.S. Geological Survey Water-Resources Investigations 77-80, 145 p.
- McKee, J. E., and Wolf, H. W., 1971, Water quality criteria (2d ed): California State Water Quality Control Board Publication 3-A, 548 p.
- National Academy of Sciences and National Academy of Engineering, 1973, Water quality criteria, 1972: U.S. Government Printing Office, 594 p. [1974].
- Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdman, D. E., and Duncan, S. S., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 625 p.
- U.S. Council on Environmental Quality, 1976, Environmental quality, 1976--Seventh annual report of Council on Environmental Quality: Washington, D.C., U.S. Government Printing Office, 378 p.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking water regulations: Federal Register, v. 40, no. 248, Part IV, Dec. 24, p. 59566-59587.
- _____1977, National secondary drinking water regulations (proposed): Federal Register, v. 42, no. 62, Mar. 31, Part I, p. 17143-17147.
- U.S. Geological Survey, 1977, National handbook of recommended methods for water-data acquisition, chap. 5--Chemical and physical quality of water and sediment: 193 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department Agriculture Handbook 60, 160 p.

Table 1.--Statistical summary of data for each station

Station

and high out there's left withoutstone of

No. (USGS): 06294940

Station name:

Sarpy Creek near Hysham, MT

DESCRIPTIVE STATISTICS

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	33	0.00	31.08	411.90	87.37
Specific conductance (µmho/cm)	32	215.00	2558.50	4300.00	991.31
pH (units)	32	7.60	8.16	8.50	.24
Temperature (°C)	32	.00	7.16	23.00	7.50
Turbidity (JTU)	31	2.00	29.55	290.00	52.19
Oxygen, dissolved (mg/L)	31	1.80	9.10	12.60	2.14
Oxygen, dissolved (percent)	31	16.40	80.87	108.00	17.05
Biochemical oxygen demand (mg/L)	30	.00	2.66	12.00	2.68
Calcium, dissolved (mg/L)	32	18.00	92.50	190.00	37.29
Magnesium, dissolved (mg/L)	32	8.00	110.34	240.00	57.86
Sodium, dissolved (mg/L)	32	14.00	366.78	880.00	165.77
Sodium (percent)	32	23.00	51.91	65.00	9.48
Sodium-adsorption ratio	32	.60	5.98	10.00	2.16
Potassium, dissolved (mg/L)	32	7.10	9.88	14.00	2.03
Bicarbonate (mg/L)	32	89.00	544.81	886.00	188.91
Carbonate (mg/L)	32	.00	5.09	30.00	8.18
Sulfate, dissolved (mg/L)	32	40.00	974.81	2500.00	490.97
Chloride, dissolved (mg/L)	32	3.00	13.83	33.00	5.92
Fluoride, dissolved (mg/L)	32	.10	0.34	.50	.10
Silica, dissolved (mg/L)	32	.50	7.69	15.00	3.84
Dissolved solids, calculated (mg/L)	32	150.00	1847.69	4280.00	812.91
Nitrogen, NO2+NO3 total (mg/L as N)	35	.00	0.07	.46	.10
Nitrogen, ammonia total (mg/L as N)	35	.00	0.08	.44	.10
Nitrogen, organic total (mg/L as N)	32	.20	0.82	2.50	.52
Nitrogen, total (mg/L as N)	32	.39	0.97	2.90	.58
Phosphorus, total (mg/L as P)	32	.00	0.08	.46	.11
Sediment, suspended (mg/L)	31	6.00	90.94	416.00	95.88

and the state with the state of the state of

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	8	0.00	40.00			
Arsenic (µg/L)	8	1.00	3.00			
Beryllium (µg/L)	8	.00	10.00			
Boron (µg/L)	32	110.00	780.00			
Cadmium (µg/L)	8	.00	3.00			
Chromium (µg/L)	8	.00	20.00			
Copper (µg/L)	8	.00	6.00			
Iron (µg/L)	32	10.00	410.00			
Lead (µg/L)	8	1.00	56.00			
Lithium (µg/L)	8	10.00	80.00			
Manganese (µg/L)	8	30.00	170.00			
Mercury (µg/L)	8	.00	.10			
Molybdenum (µg/L)	8	.00	5.00			
Nickel (µg/L)	8	.00	7.00			
Selenium (µg/L)	7	.00	.00			
Zinc (µg/L)	8	.00	50.00			
Vanadium (µg/L)	8	.00	8.00			

		MINISTER.	D. 1915	REGRESSI	ON SUMMARY			
	SIMPLE RE	EGRESSION			MULT	IPLE REGRESSI	ON	
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres- sion		regression icient ³	Coeffi- cient of deter-	Standard error of
stant	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
		0		10.0	11	0.05210	mil Sent 220/	
Q		0.500*	691 0.243		77	(165\0544)	0.00519	0.247
16.6 Q 11.3 K	00088	.451* .169*	39.3 1.96	35.7	0.337*	-0.00681	.460* .167	39.7
1 70 K	0055	.0303	17.4				.0309	17.7
1.79 Q	.0255	.748*	1.37	3.21	.0215*	00052	.764*	1.35
14.6 K	.0305	.657*	21.5	16.3	00855	.0299*	.657*	21.8
10.0 K	.0466	.633*	34.6	-25.0	.0782	.0516*		34.9
17.9 K	.151	.816*	70.1	-2.24	0818	.146*	.817*	71.0
54.7 Q	0783	.523*	6.54	54.2	0770*	.00017	.524*	6.64
1.61 K	.00173	.621*	1.32	3.38	00919*	.00115*	.692*	1.21
7.50 K	.00091	.196*	1.80	6.83	.00350	.00114*	.208*	1.82
114 K	.169	.783*	88.4	213	509*	.137*	.811*	83.9
K		.0288	8.06	0802	00198	.00127	.0290*	8.19
-127 K	.429	.750*	242	218	.472	.459*	.754*	244
1.76 K	.00497	.508*	4.77	2.09	00171	.00486*	.509*	4.85
.374 Q	00088	.585*	.0650	.260	00056*	.00004*	.663*	.0594
Q		.00428	3.80	45.7			.00654	3.85
68.9 K	.749	.834*	326	-110	.216	.762*	.834*	331
.205 K	00005	.251*	.0889	.244	00021	00007*	.267*	.0894
.256 K	00007	.453*	.0768	.177	.00041	00005*	.513*	.0739
.734 Q	.00308	.275*	.438	1.02	.00227	00010	.294*	.438
1.91 K	00037	.395*	.445	1.45	.00237	00020	.461*	.427
0468 Q	.00111	.757*	.0552	.110	.00094*	00002	.777*	.0538
66.4 Q	.742	.484*	222	51.1	.785*	.00548	.485*	71.2

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Sample size	Minimum value	Maximum value	
8	110.00	2400.00	
12	.00	11.00	
12	.00	10.00	
0			
12	.00	20.00	
12	.00	20.00	
12	10.00	90.00	
12	140.00	11000.00	
11	100.00	100.00	
12	10.00	70.00	
12	20.00	6000.00	
12	.00	.30	
12	.00	10.00	
11	.00	100.00	
12	.00	2.00	
8	8.00	120.00	

Table 1.--Statistical summary of data for each station--Continued

No. (fig. 1): 2

Station

No. (USGS): 06294980

Station East Fork Armells name: Creek near Colstrip, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard
Discharge, instantaneous (ft ³ /s)	35	0.01	7.46	169.00	28.35
Specific conductance (µmho/cm)	35	290.00	4208.57	6990.00	1303.15
pH (units)	35	7.50	8.08	8.60	.26
Temperature (°C)	35	.00	8.75	26.00	8.57
Turbidity (JTU)	35	.00	7.74	40.00	9.33
Oxygen, dissolved (mg/L)	3.5	6.00	9.77	12.00	1.50
Oxygen, dissolved (percent)	33	66.00	92.76	141.00	19.76
Biochemical oxygen demand (mg/L)	35	.10	1.88	11.00	2.25
Calcium, dissolved (mg/L)	35	22.00	236.06	310.00	64.80
Magnesium, dissolved (mg/L)	35	13.00	333.54	460.00	102.97
Sodium, dissolved (mg/L)	35	13.00	356.71	490.00	101.95
Sodium (percent)	35	19.00	27.94	33.00	2.63
Sodium-adsorption ratio	35	.50	3.45	4.50	.74
Potassium, dissolved (mg/L)	35	7.40	17.38	23.00	3.56
Bicarbonate (mg/L)	35	71.00	473.89	656.00	128.81
Carbonate (mg/L)	35	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	35	-75.00	2222.14	3000.00	655.04
Chloride, dissolved (mg/L)	35	2.00	48.03	86.00	17.86
Fluoride, dissolved (mg/L)	35	.00	.35	.70	.18
Silica, dissolved (mg/L)	35	.50	8.67	17.00	5.04
Dissolved solids, calculated (mg/L)	35	178.00	3457.34	4580.00	965.98
Nitrogen, NO2+NO3 total (mg/L as N)	. 35	.00	.13	.88	.20
Vitrogen, ammonia total (mg/L as N)	35	.00	. 25	1.50	.40
Nitrogen, organic total (mg/L as N)	35	.00	.90	2.60	.57
Nitrogen, total (mg/L as N)	35	.43	1.27	3.20	.76
Phosphorus, total (mg/L as P)	35	.00	.06	.33	.07
Sediment, suspended (mg/L)	35	4.00	42.94	180.00	39.87

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	11	0.00	30.00			
Arsenic (µg/L)	11	1.00	4.00			
Beryllium (µg/L)	11	.00	10.00			
Boron (µg/L)	35	120.00	1500.00			
Cadmium (µg/L)	11	.00	6.00			
Chromium (µg/L)	11	.00	20.00			
Copper (µg/L)	11	.00	16.00			
Iron (µg/L)	35	20.00	710.00			
Lead (µg/L)	11	.00	41.00			
Lithium (µg/L)	10	60.00	110.00			
Manganese (µg/L)	11	.00	1100.00			
Mercury (µg/L)	11	.00	.10			
Molybdenum (µg/L)	10	2.00	5.00			
Nickel (µg/L)	11	.00	21.00			
Selenium (µg/L)	10	.00	2.00			
Zinc (µg/L)	11	10.00	20.00			
Vanadium (µg/L)	10	.00	1.60			

con-stant1 coefficient mination2 error of estimate constant coefficient3 determination2 error of mination2 sion Q coefficient3 determination2 error of R 4430 Q -27.3 .345* 1070		SIMPLE RE	EGRESSION		MULTIPLE REGRESSION					
4430 Q	sion con-	sion coeffi-	cient of deter-	error of	sion	coeff		cient of deter-	Standard error of estimate	
6.13 Q .216 .431* 7.15 13.2 .173*00161 .464* 7 Q .0184 1.49 .0737 1 Q .0103 19.7 .0188 1 1.48 Q .0530 .447* 1.70 4.56 .0341*00070 .554* 1 6.5 K .0374 .573* 42.5 116 .649* .0292* .626* 4 6.5.8 K .0638 .648* 62.0 115802 .0537* .679* 6 92.7 K .0633 .624* 64.7 158 -1.08* .0497* .679* 6 92.8 S Q .057 .349* 2.23 30.10676*0003 .369* 2 8.5 Q .0202 .558* .511 2.530134* .0002* .677* 1 17.9 Q .0678 .291* 3.00 17.70665* .0005 .292* 3 188 K .0679 .472* 95.0 270 -1.33 .0509* .528* 5					81.					
6.13 Q .216 .431* 7.15 13.2 .173*00161 .464* 7 Q .0184 1.49 .0737 1 Q .0103 19.7 .0188 1 1.48 Q .0530 .447* 1.70 4.56 .0341*00070 .554* 1 6.5 K .0374 .573* 42.5 116 .649* .0292* .626* 4 6.5.8 K .0638 .648* 62.0 115802 .0537* .679* 6 92.7 K .0633 .624* 64.7 158 -1.08* .0497* .679* 6 92.8 S Q .057 .349* 2.23 30.10676*0003 .369* 2 8.5 Q .0202 .558* .511 2.530134* .0002* .677* 1 17.9 Q .0678 .291* 3.00 17.70665* .0005 .292* 3 188 K .0679 .472* 95.0 270 -1.33 .0509* .528* 5	de la	923		25	1940.44	5	(a)(fil) auto	orania selli.	epsint	
6.13 Q .216 .431* 7.15 13.2 .173*00161 .464* 7.00	4430 Q Q	-27.3		.254	90.54	15	(mp/c:447)		.256	
Q .0184 1.49 .0737 1.0188 1.48 Q .0103 19.7 .0188 1.48 Q .0530 .447* 1.70 4.56 .0341*00070 .554* 1.70.5 K .0374 .573* 42.5 116649* .0292* .626* 4.65.8 K .0638 .648* 62.0 115802 .0537* .679* 692.7 K .0633 .624* 64.7 158 -1.08* .0497* .679* 679* 692.7 K .0633 .624* 64.7 158 -1.08* .0497* .679* 679* 679* 679* 679* 679* 679* 679*					12.2	172.	00161		7.05	
1.48 Q .0530	Q	.216	.0184	1.49	13.2	.173*	00161	.0737	1.47	
76.5 K	4	.0530			4.56	.0341*	00070		1.55	
92.7 K .0633	76.5 K								40.4	
28.5 Q057 .349* 2.23 30.10676*0003 .369* 2 3.63 Q0202 .558* .511 2.530134* .0002* .677* . 17.9 Q0678 .291* 3.00 17.70665* .0005 .292* 3 188 K .0679 .472* 95.0 270 -1.33 .0509* .528* 9	65.8 K								60.1	
3.63 Q0202 .558* .511 2.530134* .0002* .677*									60.7	
17.9 Q0678 .291* 3.00 17.70665* .00005 .292* 3.00 188 K .0679 .472* 95.0 270 -1.33 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .528* 95.0 .0509* .0509* .528* 95.0 .0509* .0509									2.23	
188 K .0679 .472* 95.0 270 -1.33 .0509* .528* 9 505 K .408 .664* 382 873 -6.04* .332* .708* 50.5 Q304 .230* 15.8 55.1332*00103 .234* 1 .369 Q00228 .135* .163 .54800337*00004 .195* K									.443	
505 K .408 .664* 382 873 -6.04* .332* .708* 50.5 Q304 .230* 15.8 55.1332*00103 .234* 1 .369 Q00228 .135* .163 .54800337*00004 .195* K .0806 4.86 883 K .612 .685* 548 1,460 -9.56* .492* .735* .00280 .206									3.04	
505 K .408 .664* 382 873 -6.04* .332* .708* 50.5 Q304 .230* 15.8 55.1332*00103 .234* 1 .369 Q00228 .135* .163 .54800337*00004 .195* K .0806 4.86 .117 883 K .612 .685* 548 1,460 -9.56* .492* .735* K .00280 .206 K .0181 .395 .0117 .00089 .00005 .0207 1.79 K00021 .232* .502 1.850009300022* .233* K .0748 .735	188 K	.0679	.472*	95.0		-1.33			91.2	
50.5 Q304 .230* 15.8 55.1332*00103 .234* 1 .369 Q00228 .135* .163 .54800337*00004 .195* K .0806 4.86 .117 4 883 K .612 .685* 548 1,460 -9.56* .492* .735* K .00280 .206				202		6 04.			362	
369 Q00228 .135* .163 .54800337*00004 .195*									15.9	
K .0806 4.86 883 K .612 .685* 548 1,460 -9.56* .492* .735* K .00280 .206 K .0181 .395 .0117 .00089 .00005 .0207 1.79 K00021 .232* .502 1.850009300022* .233* K .0748 .735										
883 K .612 .685* 548 1,460 -9.56* .492* .735* .00280 .206 .00488 K .0181 .395 .0117 .00089 .00005 .0207 .775 K .00021 .232* .502 1.850009300022* .233* .0748 .735	.369 Q	00228			.548	0033/*	00004		.160 4.86	
K .00280 .206 .00488 .00488 K .0181 .395 .0117 .00089 .00005 .0207 .79 K00021 .232* .502 1.850009300022* .233* .0748 .735	K				1 460	0 56.	402.		509	
K .0181 .395 .0117 .00089 .00005 .0207 1.79 K00021 .232* .502 1.850009300022* .233* K .0748 .735		.612			1,460	-9.30*	.492*		.209	
1.79 K00021 .232* .502 1.850009300022* .233* .0748 .735					0117	00000	00005			
K .0748 .735									.126	
A	1.79 K	00021			1.85	00093	00022*		.509 .746	
175 V 00077 7764 065X 139 1000700007 .3894 1	K				120	00050	00000			
	.175 K	.00027	.226*		.139	.00039	00002		.0654 40.6	

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

²Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at $\alpha = 0.05$ ³Asterisk denotes that partial regression coefficient is significant at $\alpha = 0.05$

	LE	TAL RECOVERAB	TO
- rafdalan	Maximum value	Minimum value	Sample size
	210.00	20.00	8
	5.00	.00	10
	10.00	.00	10
	*****		0
	20.00	10.00	10
	30.00	.00	10
	40.00	10.00	10
	2400.00	200.00	10
	100.00	100.00	10
	130.00	10.00	10
	760.00	30.00	10
	.40	.00	10
	4.00	.00	10
	100.00	50.00	10
	1.00	.00	10
	40.00	.00	8

Table 1.--Statistical summary of data for each station--Continued

Station

No. (USGS): 06294991

Station

name: West Fork Armells Creek near Forsyth, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation	
Discharge, instantaneous (ft ³ /s)	21	0.00	2.62	28.00	6.88	
Specific conductance (µmho/cm)	20	765.00	4987.75	7100.00	1503.32	
pH (units)	20	7.40	7.98	8.90	.39	
Temperature (°C)	20	.00	7.60	22.50	7.71	
Turbidity (JTU)	50	2.00	15.30	100.00	23.48	
Oxygen, dissolved (mg/L)	20	6.40	9.48	13.20	1.78	
Oxygen, dissolved (percent)	20	49.00	86.60	108.00	14.53	
Biochemical oxygen demand (mg/L)	19	.50	2.07	8.40	2.03	
Calcium, dissolved (mg/L)	20	33.00	193.95	290.00	66.31	
Magnesium, dissolved (mg/L)	50	27.00	212.55	300.00	74.46	
Sodium, dissolved (mg/L)	50	57.00	827.85	1200.00	294.59	
Sodium (percent)	50	38.00	55.80	62.00	4.94	
Sodium-adsorption ratio	20	1.80	9.53	13.00	2.52	
Potassium, dissolved (mg/L)	20	6.90	12.90	16.00	2.14	
Bicarbonate (mg/L)	20	134.00	569.85	875.00	189.40	
Carbonate (mg/L)	20	.00	.85	11.00	2.74	
Sulfate, dissolved (mg/L)	50	180.00	2586.50	3800.00	906.56	
Chloride, dissolved (mg/L)	20	4.30	29.97	81.00	15.07	
Fluoride, dissolved (mg/L)	50	.10	.32	.60	.10	
Silica, dissolved (mg/L)	50	1.00	8.32	19.00	4.17	
Dissolved solids, calculated (mg/L)	50	383.00	4154.65	5710.00	1400.59	
Nitrogen, NO2+NO3 total (mg/L as N)	20	.00	.04	.33	.08	
Nitrogen, ammonia total (mg/L as N)	50	.00	.04	.11	.03	
Nitrogen, organic total (mg/L as N)	20	.35	.95	2.40	.49	
Nitrogen, total (mg/L as N)	50	.43	1.03	2.50	.50	
Phosphorus, total (mg/L as P)	50	.00	.04	.27	.06	
Sediment, suspended (mg/L)	18	7.00	73.56	261.00	79.28	

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	3	0.00	50.00			
Arsenic (µg/L)	3 3	1.00	1.00			
Beryllium (µg/L)	3	.00	10.00			
Boron (µg/L)	20	130.00	710.00			
Cadmium (µg/L)	3	.00	1.00			
Chromium (µg/L)	3 3 3	.00	10.00			
Copper (µg/L)		1.00	14.00			
Iron (µg/L)	50	10.00	420.00			
Lead (µg/L)	3	.00	2.00			
Lithium (µg/L)	3	10.00	60.00			
Manganese (µg/L)	3	40.00	470.00			
Mercury (µg/L)	3	.00	.10			
Molybdenum (µg/L)	3 3	.00	2.00			
Nickel (µg/L)	3	4.00	10.00			
Selenium (µg/L)		.00	1.00			
Zinc (µg/L)	3	10.00	20.00			
Vanadium (µg/L)	3	.50	1.70			

	2	DESCRIPTIONS OF	TENTER SE	REGRESSIO	N SUMMARY			
SIMPLE REGRESSION					MULTI	PLE REGRESSION	ON	
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant		regression cient ³	Coeffi- cient of deter- mination ²	Standard error of estimate
5410 Q 7.36 K	-152 .00012			14.6	# E	(a) Erb) restrict (ma) actually	.223	.366
6.58 Q K K	3.18		7.47 1.81 14.6	-2.12	3.42*	.00161	.909* .0303 .0402	7.48 1.85 15.1
7.36 K 31.1 K -10.3 K	00108 .0326 .0447	.608* .548*	45.8	6.33 32.3 -26.0	.0508 0590 .812	00090* .0324* .0474*	.548*	1.32 47.1 33.7
-91.9 K 57.3 Q 1.89 K	.184 542 .00153	.595*	3.23	-153 51.7 2.66	3.15 384* 0400	.195* .00104 .00140*	.644* .841*	104 3.12 1.06
8.28 K 130 K K	.00093		139 2.71	10.2	101 143	.00059 .0877*	.477* .490* .0856	1.64 143 2.77
-224 K 883 K Q K	.00583			-381 -1.42	8.13 .119	.590* .00623*		339 12.9 .0983 4.30
-212 K	.875			-440	11.8	.915*		503 .0740 .0330 .497
.0208 Q 48.5 Q	.00789	.0826 .867*	.0222	.0425 -53.8	.00728* 11.1*	-00000 .0188	.0912 .873* .630*	.501 .0225 51.3

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

independent variable 2Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at = 0.05 3Asterisk denotes that partial regression coefficient is significant at = 0.05

10	TAL RECOVERA	BLE	
Sample size	Minimum	Maximum value	
5	20.00	300.00	
7 7 0	.00	10.00	
7	10.00	30.00	
7 7 7	10.00	30.00	
7 7 7	230.00	100.00	
7	10.00	800.00	
7 7	.00	1.00	
7 7	.00	150.00	
_5	10.00	40.00	

Table 1.--Statistical summary of data for each station--Continued

Station
No. (USGS): 06294995 Station
name: Armells Creek near Forsyth, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard
Discharge, instantaneous (ft ³ /s)	43	0.01	25.09	462.00	91.27
Specific conductance (\u03c4mho/cm)	43	395.00	3757.00	7000.00	1534.74
pH (units)	42	7.40	8.24	8.70	.25
Temperature (°C)	43	.00	10.00	26.50	9.45
Turbidity (JTU)	42	1.00	71.55	780.00	146.31
Oxygen, dissolved (mg/L)	42	7.00	10.18	13.20	1.55
Oxygen, dissolved (percent)	42	69.10	96.72	138.00	14.32
Biochemical oxygen demand (mg/L)	42	.00	2.79	9.90	2.14
Calcium, dissolved (mg/L)	43	24.00	106.86	220.00	52.36
Magnesium, dissolved (mg/L)	43	12.00	119.37	260.00	65.39
Sodium, dissolved (mg/L)	43	35.00	647.51	1100.00	276.83
Sodium (percent)	43	36.00	63.12	80.00	11.45
Sodium-adsorption ratio	43	1.50	10.39	18.00	4.27
Potassium, dissolved (mg/L)	43	6.50	10.24	17.00	1.95
Bicarbonate (mg/L)	43	89.00	526.60	913.00	199.70
Carbonate (mg/L)	42	.00	5.57	100.00	17.53
Sulfate, dissolved (mg/L)	43	110.00	1653.26	2800.00	713.42
Chloride, dissolved (mg/L)	43	4.50	28.17	260.00	37.39
Fluoride, dissolved (mg/L)	43	10	.40	.60	.13
Silica, dissolved (mg/L)	43	.00	6.47	14.00	3.28
Dissolved solids, calculated (mg/L)	43	245.00	2837.88	4470.00	1156.65
Nitrogen, NO2+NO3 total (mg/L as N)	43	.00	.06	.23	.07
Witrogen, ammonia total (mg/L as N)	43	.00	.07	.59	.11
Nitrogen, organic total (mg/L as N)	43	.12	.92	3.10	.55
Nitrogen, total (mg/L as N)	43	.40	1.05	3.50	.63
Phosphorus, total (mg/L as P)	43	.01	.12	.86	.16
Sediment, suspended (mg/L)	42	13.00	196.95	1860.00	324.72

	DISSOLVED						
Variable	Sample size	Minimum value	Maximum value				
Aluminum (µg/L)	10	0.00	40.00				
Arsenic (µg/L)	10	.00	2.00				
Beryllium (µg/L)	10	.00	10.00				
Boron (µg/L)	43	120.00	620.00				
Cadmium (µg/L)	10	.00	2.00				
Chromium (µg/L)	10	.00	20.00				
Copper (µg/L)	10	.00	7.00				
Iron (µg/L)	43	.00	510.00				
Lead (µg/L)	10	.00	13.00				
Lithium (µg/L)	10	10.00	60.00				
Manganese (µg/L)	10	30.00	230.00				
Mercury (µg/L)	10	.00	.10				
Molybdenum (µg/L)	10	.00	6.00				
Nickel (µg/L)	10	3.00	10.00				
Selenium (µg/L)	8	.00	1.00				
Zinc (µg/L)	10	.00	30.00				
Vanadium (µg/L)	10	.00	9.00				

		STREETATE A	Virusbeni	REGRESSI	ON SUMMARY			
SIMPLE REGRESSION			MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of			Partial regression coefficient ³		Standard error of
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
		V.S 18	-19			(e) (1)	and made all	out adea in
4000 Q	-8.56	.254*	1320	83, 500		(00) (00)	Correspondings	olities, E
8.00 K	.00006	.173*	.226	8.07	00052	.00005	.200*	.224
11 6 0			440	105	700	0070	.558*	99.7
44.6 Q	1.05	.438*	110	195	.728*	0379*		
Q		.0275	1.53				.0397	1.54
6 11 Q		.0198	14.2	F 07	0005	00071		14.4
6.44 K	0010	.501*	1.53	5.27	.0085*	00071*	.601*	1.38
37.5 K	.0184	.297*	43.5	4.30	0401	.0172*	.301*	43.9
13.1 K	.0285	.446*	48.6	14.9	0131	.0281*	.447* .888*	49.1
1.43 K	.173	.885*	95.6	27.2	188	.167*		
49.4 K	.0036	.241*	9.9	54.4	0362	.00256*	.303*	9.6
2.55 K	.00209	.561*	2.83	3.55	00731	.00187*	.578*	2.81
7.41 K	.00077	.353*	1.60	7.39	.00015	.00078*	.353*	1.62
107 K	.112	.743*	102	139	234	.105*	.752*	101
9.21 K	.00389	.121*	16.4	440	101	*	.131	16.5
85.0 K	.421	.796*	327	143	421	.408*	.798*	329
1.23 K	.00712	.0872*	35.3		000/0	00005	.0872	35.7
.181 K	.00006	.469*	.0943	.238	00042*	.00005*	.532*	.0895
Q		.0273	3.33		770		.0660	3.30
198 K	.707	.859*	440	303	770	.684*	.861*	441
.142 K	00002	.201*	.0642	.122	.00015	00002*	.226*	.0640
K		.0385	.108			00011	.0392	.109
.816 Q	.00414	.474*	.393	1.26	.00319*	00011*	.547*	.370
.930 Q	.00456	.437*	.468	1.47	.00340*	00014*	.520*	.437
0845 Q	.00126	.508*	.112	.271	.00086*	00005*	.657*	.0948
131 K	2.59	.540*	223	360	2.10*	0578*	.597*	211

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Т			
Sample	Minimum value	Maximum value	
9	210.00	17000.00	
14	.00	6.00	
14	.00	20.00	
0	60102		
13	10.00	20.00	
13	.00	64.00	
13	10.00	300.00	
14	250.00	30000.00	
13	100.00	100.00	
14	10.00	60.00	
14	30.00	730.00	
14	.00	.60	
14	.00	6.00	
13	50.00	100.00	
14	.00	1.00	
9	10.00	130.00	

Table 1.--Statistical summary of data for each station--Continued

Station

Station

No. (fig. 1): 5 No. (USGS): 06295110

Station

name: Rosebud Creek at Kirby, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	11	4.80	41.52	231.00	67.97
Specific conductance (µmho/cm)	11	657.00	870.27	929.00	81.38
pH (units)	11	8.00	8.17	8.50	.16
Temperature (°C)	11	.00	6.55	15.00	5.96
Turbidity (JTU)	9	5.00	54.67	180.00	69.71
Oxygen, dissolved (mg/L)	10	8.20	10.19	11.80	1.35
Oxygen, dissolved (percent)	10	82.00	92.00	97.00	4.67
Biochemical oxygen demand (mg/L)	9	.60	1.44	2.80	.87
Calcium, dissolved (mg/L)	11	56.00	75.55	87.00	8.73
Magnesium, dissolved (mg/L)	11	47.00	66.73	74.00	7.27
Sodium, dissolved (mg/L)	11	13.00	24.09	31.00	5.34
Sodium (percent)	11	7.00	9.73	12.00	1.68
Sodium-adsorption ratio	11	.30	.49	.60	.09
Potassium, dissolved (mg/L)	11	5.70	7.54	10.00	1.21
Bicarbonate (mg/L)	11	330.00	447.82	510.00	57.89
Carbonate (mg/L)	11	.00	2.36	26.00	7.84
Sulfate, dissolved (mg/L)	. 11	100.00	127.27	150.00	13.48
Chloride, dissolved (mg/L)	11	2.40	3.40	4.20	.59
Fluoride, dissolved (mg/L)	11	. 40	.54	.70	.10
Silica, dissolved (mg/L)	11	11.00	15.64	19.00	2.80
Dissolved solids, calculated (mg/L)	11	414.00	544.18	612.00	54.14
Nitrogen, NO2+NO3 total (mg/L as N)	11	.07	17	.38	.10
Nitrogen, ammonia total (mg/L as N)	11	.00	.05	.17	.06
Nitrogen, organic total (mg/L as N)	11	.23	.66	1.60	.46
Nitrogen, total (mg/L as N)	11	.32	.88	2.10	.58
Phosphorus, total (mg/L as P)	11	.00	.11	.37	.13
Sediment, suspended (mg/L)	9	12.00	208.89	612.00	203.68

	DISSOLVED						
Variable	Sample size	Minimum value	Maximum				
Aluminum (µg/L)	4	0.00	80.00				
Arsenic (µg/L)	4	1.00	11.00				
Beryllium (µg/L)	4	.00	.00				
Boron (µg/L)	11	70.00	170.00				
Cadmium (µg/L)	4	1.00	3.00				
Chromium (µg/L)	4	.00	.00				
Copper (µg/L)	4	1.00	9.00				
Iron (µg/L)	11	20.00	100.00				
Lead (µg/L)	4	.00	16.00				
Lithium (µg/L)	4	40.00	60.00				
Manganese (µg/L)	4	30.00	60.00				
Mercury (µg/L)	4	.00	.00				
Molybdenum (µg/L)	4	2.00	5.00				
Nickel (µg/L)	4	2.00	2.00				
Selenium (µg/L)	4	.00	4.00				
Zinc (µg/L)	4	10.00	30.00				
Vanadium (µg/L)	4	1.00	2.00				

The same		STATISTICS	COTTON SE	REGRESSIO	ON SUMMARY			
SIMPLE REGRESSION			MULTIPLE REGRESSION					
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant		regression Ficient ³	Coeffi- cient of deter- mination ²	Standard error of estimate
355.00	9155	10		1000		(e)(e))	feetant ma	agrades t
925 Q	1.10	.739*	42.9	00-012-		(May Local et al.)	SOUTH TRANSPORT	G. S. Miles S
Q		.131	.148				.190	.148
0774		9		100			(329)	307 6354mm
663 K	705	.808*	32.6	824	239	879*	.823*	33.8
Q		.290	1.14				.378	1.13
K	24479	.303	4.11				.322	430
7.36 K	0069	.496*	.659				.542	.679
14.3 K	.0708	.440*	671	46.3	.0962	.135*	.569*	6.18
-11.9 K	.0908	.897*	2.58	-5.67	0099	.0842*	.899*	2.68
27.3 Q	0695	.715*	2.88	7.25	0456	.0217	.745*	2.85
10.6 Q	0189	.568*	1.08	11.3	0197	00075	.568*	1.13
.543 Q	0011	.611*	.0595	.271	00081	.00029	.629*	.0608
K		.197	1.03				.208	1.08
-100 K	.630	.783*	28.1	3.65	158	.519*	.792×	29.1
Q		.0230	7.78				.0231	8.20
-9.59 K	.164	.312*	20.5				.327	21.3
-2.17 K	.0064	.708*	.348	-3.10	.0015	.0074*	.713*	.362
197 K	.0008	.489*	.0722	312	.00018	.00096	.493*	.0754
-2.64 K	.0209	.417*	2.08				.423	2.17
-69.3 K	.712	.859*	24.3	-90.2	.0334	.734*	.859*	25.4
.998 K	0010	.585*	.0678	.772	.0004	00072	.598*	.0699
K	3550	.234	.049			If no diam, As	.238	.0512
4.39 K	0042	.621*	.277	3.71	.0011	0035	.628*	.289
5.69 K	0055	.656*	.333	4.84	.0013	0046	.663*	.345
1.27 K	0013	.788*	.0581	1.35	00013	0014*	.789*	.0608
2075 K	-2.16	.892*	71.6	2144	103	-2.24*	.892*	77.2

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

²Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at $\alpha = 0.05$ ³Asterisk denotes that partial regression coefficient is significant at $\alpha = 0.05$

	Sample	Minimum value	Maximum value					
	706.1	6900.00	6900.00					
	1	2.00	5.00					
	1	.00	.00					
	0	99.551						
	1	2.00	2.00					
	1	10.00	10.00					
	1	18.00	18.00					
	1	9800.00	9800.00					
	1	19.00	19.00					
	1001	40.00	40.00					
	1	380.00	380.00					
	1	.00	.00					
	0	0.04 -5.0	515.00					
	0	72x 1.55	245.04					
	1	10.00	10.00					
	1	40.00	40.00					
	0.0	05. **						

Table 1.--Statistical summary of data for each station--Continued

Station

No. (fig. 1): 6 No. (USGS): 06295250

Station

name: Rosebud Creek near Colstrip, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	45	9.60	63.73	310.00	65.81
Specific conductance (\u00fcm)	45	310.00	1192.44	1750.00	253.73
pH (units)	45	7.50	8.25	8.90	.27
Temperature (°C)	45	.00	8.61	23.00	8.28
Turbidity (JTU)	45	5.00	83.73	600.00	133.49
Oxygen, dissolved (mg/L)	44	6.20	9.90	13.80	1.99
Oxygen, dissolved (percent)	44	69.00	92.35	110.00	9.03
Biochemical oxygen demand (mg/L)	44	.30	2.17	16.40	2.56
Calcium, dissolved (mg/L)	45	29.00	76.02	100.00	13.42
Magnesium, dissolved (mg/L)	45	19.00	87.62	110.00	15.48
Sodium, dissolved (mg/L)	45	13.00	66.04	100.00	15.75
Sodium (percent)	45	15.00	20.11	25.00	2.38
Sodium-adsorption ratio	45	.50	1.22	1.70	.23
Potassium, dissolved (mg/L)	45	7.10	9.47	12.00	1.24
Bicarbonate (mg/L)	45	132.00	470.60	606.00	85.86
Carbonate (mg/L)	45	.00	2.56	34.00	6.26
Sulfate, dissolved (mg/L)	45	54.00	285.42	420.00	61.62
Chloride, dissolved (mg/L)	45	1.10	6.41	70.00	9.75
Fluoride, dissolved (mg/L)	45	.20	.57	.70	.09
Silica, dissolved (mg/L)	45	7.10	15.31	22.00	3.45
Dissolved solids, calculated (mg/L)	45	198.00	781.69	1000.00	134.06
Nitrogen, NO2+NO3 total (mg/L as N)	45	.00	.13	.42	.13
Nitrogen, ammonia total (mg/L as N)	45	.00	.07	.74	.14
Nitrogen, organic total (mg/L as N)	45	.06	.67	2.00	. 45
Nitrogen, total (mg/L as N)	45	.09	.87	2.30	.54
Phosphorus, total (mg/L as P)	45	.00	.14	1.30	.21
Sediment, suspended (mg/L)	45	19.00	206.67	1040.00	250.52

	DISSOLVED						
Variable	Sample size	Minimum value	Maximum value				
Aluminum (µg/L)	12	0.00	30.00				
Arsenic (µg/L)	12	1.00	4.00				
Beryllium (µg/L)	12	.00	10.00				
Boron (µg/L)	45	100.00	240.00				
Cadmium (µg/L)	12	.00	4.00				
Chromium (µg/L)	12	.00	20.00				
Copper (µg/L)	12	.00	4.00				
Iron (µg/L)	45	.00	260.00				
Lead (µg/L)	12	.00	14.00				
Lithium (µg/L)	12	40.00	60.00				
Manganese (µg/L)	12	.00	50.00				
Mercury (µg/L)	12	.00	.30				
Molybdenum (µg/L)	12	.00	3.00				
Nickel (µg/L)	12	1.00	7.00				
Selenium (µg/L)	11	.00	5.00				
Zinc (µg/L)	12	.00	20.00				
Vanadium (µg/L)	12	.20	15.00				

	REGRESSION SUMMARY							
SIMPLE REGRESSION			MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial re		Coeffi- cient of deter-	Standard error of
stant1	cient	2	estimate	constant	Q	K	mination ²	estimate
75						(#\E12) +HO	ana Trucheni	o market
1310 Q Q	-1.79	.216*	.225 .255	00.7/	*	(45/04 <u>(4)</u>)	.111	.253
								THE PARTY
349 K	222	.178*	122	229	.579	153	.242*	119
5.76 K	.0034	.197*	1.79	6.52	0037	.0030*	.209*	1.8
94.9 Q	0410	.0915*	8.61				.0926	8.71
9.93 K	0065	.424*	1.96	8.08	.0088	0054*	.465*	1.92
32.5 K	.0365	.477*	9.73	18.1	.0693*	.0449*	.567*	8.96
26.9 K	.0509	.694*	8.62	37.6	0515*	.0448*	.731*	8.17
8.12 K	0479	.599*	10.0	24.6	0763*	.0388*	.678*	9.05
21.5 Q	0227	.398*	1.84	18.8	0190*	.0021	.436*	1.80
.487 K	.0006	.449*	.172	.796	0015*	.0004*	.591*	.150
6.51 K	.0025	.260*	1.07	7.75	0059*	.0018*	.339*	1.02
175 K	.248	.537*	59.1	242	323*	.209*	.586*	56.6
Q	10.00	.0469	6.18				.0575	6.22
71.8 K	.179	.545*	41.7	105	159	.160*	.567*	41.1
1.57 Q	.0763	.265*	8.36	-26.8	.115*	.0217*	.515*	6.87
.622 Q	0009	.376*	.0735	.451	0006*	0001*	.476*	.0678
5.90 K	.0079	.337*	2.81	8.53	0127	.0064*	.384*	2.74
239 K	.455	.742*	68.9	303	307	.418*	.760*	67.2
0	.433	.0737	.131	200			.0740	.132
O		.0331	.135				.0345	.136
1.97 K	00110	.376*	.362	1.40	00279*	00076*	.505*	.326
.548 Q	.00500	.369*	.436	1.56	.00362*	00078*	.472*	.404
.0573 Q	.00123	.150*	.195	.211	.00102*	00012	.166*	.195
79.1 Q	2.00		216	448	1.50*	283*	.341*	208
	2.00	.276*	210	440	1 . 2 0 X	55 K	x	200

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Sample size	Minimum value	Maximum value	#3d615W
9	180.00	8800.00	(Light) min
13	.00	9.00	
13	.00	10.00	
0	0.00,00	3.	
13	.00	10.00	
13	.00	20.00	
13	.00	310.00	
13	310.00	16000.00	
13	4.00	100.00	
13	40.00	60.00	
13	20.00	600.00	
13	.00	.30	
12	1.00	6.00	
13	.00	65.00	
13	.00	2.00	
9	10.00	130.00	

Table 1.--Statistical summary of data for each station--Continued

Station No. (USGS): 06295350

Station

name: Greenleaf Creek near Colstrip, MT

DESCRIPTIVE STATISTICS

	ALTERIA	200205		Japio nol	Standard
Variable	Sample	Minimum value	Mean	Maximum value	deviation
Discharge, instantaneous (ft ³ /s)	5	4.90	9.95	15.00	7.14
Specific conductance (µmho/cm)	- 2	85.00	107.50	130.00	31.82
pH (units)	2	7.40	7.70	8.00	.42
Temperature (°C)	- 5	.00	.25	.50	.35
Turbidity (JTU)	5	40.00	50.00	60.00	14.14
Oxygen, dissolved (mg/L)	2	10.60	10.70	10.80	.14
Oxygen, dissolved (percent)	2	81.00	81.50	00.58	.71
Biochemical oxygen demand (mg/L)	5	9.50	10.25	11.00	1.06
Calcium, dissolved (mg/L)	2	13.00	15.00	17.00	2.83
Magnesium, dissolved (mg/L)	2	2.90	3.85	4.80	1.54
Sodium, dissolved (mg/L)	5	1:00	1.50	2.00	.71
Sodium (percent)	2	4.00	5.00	6.00	1.41
Sodium-adsorption ratio	2	.10	.10	.10	.00
Potassium, dissolved (mg/L)	5	5.60	6.55	7.50	1.34
Bicarbonate (mg/L)	2	48.00	57.50	67.00	13.44
Carbonate (mg/L)	2	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	5	6.30	12.65	19.00	8.98
Chloride, dissolved (mg/L)	2	1.30	1.65	2.00	.49
Fluoride, dissolved (mg/L)	2	.00	.05	.10	.07
Silica, dissolved (mg/L)	2	6.30	7.00	7.70	.99
Dissolved solids, calculated (mg/L)	2	60.00	77.00	94.00	24.04
Nitrogen, NO2+NO3 total (mg/L as N)	2	.08	.08	80.	.00
Vitrogen, ammonia total (mg/L as N)	. 2	.16	.26	.35	.13
Vitrogen, organic total (mg/L as N)	2	1.60	1.65	1.70	.07
Nitrogen, total (mg/L as N)	2	1.90	2.00	2.10	.14
Phosphorus, total (mg/L as P)	5	.24	.34	.43	13
Sediment, suspended (mg/L)	5	78.00	82.00	85.00	5.66

tadicine dischire allique sommismi E indicates confilm activitation independent variable

Autorist democra that correlation coefficient, which is the square-tree of the coefficient of determination, is significant at a = 0.05 Autorist that parties represented coefficient is significant at a = 0.05

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	Sec. 1.	0.00	0.00			
Arsenic (µg/L)	1	2.00	2.00			
Beryllium (µg/L)	1	.00	.00			
Boron (µg/L)	5	80.00	130.00			
Cadmium (µg/L)	1	1.00	1.00			
Chromium (µg/L)	1	.00	.00			
Copper (µg/L)	- 1	19.00	19.00			
Iron (µg/L)	5	40.00	300.00			
Lead (µg/L)	1	6.00	6.00			
Lithium (µg/L)	0		100			
Manganese (µg/L)	1	.00	.00			
Mercury (µg/L)	1	.30	.30			
Molybdenum (µg/L)	0		515.43			
Nickel (µg/L)	1	.00	.00			
Selenium (µg/L)	0	0.0	120.00			
Zinc (µg/L)	1	10.00	10.00			
Vanadium (µg/L)	0	72.00	7. 17			

	SIMPLE RE	GRESSION		MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	coeffic	Partial regression coefficient		Standard error of	
stant	cient	mination	estimate	constant	Q	K	mination	estimate	
Allega of	des	85	- To 35 w	41.47	56 V. 1	alian sina	malouffiel.	s water	
THE OWN	0023	091795955	FIRESPELL	AD BOLL	15	Name You (See	some Lordwice	State Line	
	0.807.40	249239 35	A 2317	de la constante	11		1237	as being ale	
	.015.2	9	18	40	1000		ABAN 2.	DOWN THE WAR	
		25 12500			VIE		4000	THE PARTY	
		1-1700			10000		m) hardinasi	D. HIS	
		14 20244 VI		P. C.		A STORE	m) The war	h hadeurd	
						Alberta	0 00000	er ingride de	
	-			20 100			1.00	0.000	
	1770	120		-			bay in diam	THE PARTY N	
							d) 1985	t brile	
	7.000				-			(I) SS 22-2	
	11000000						07 201 ha		
				1119			Date Con Line		
	10077	10			-		1.13 20		
	30-1								
		50					0.00		
						100 mm	00/12/12/0		
							E)		
		211				- Date	77		
						(a) 1/16() 45()	01 10 10		
	- 00000					Or of Philips		1000	
						THE PERSON NAMED IN	4. Sept.		
			* ***				1,000	1 1000	
105-							and the same of		
							0.00000 77.0	THE PARTY AND IN	

lnsufficient samples to develop regressions.

Sample	Minimum	Maximum
size	value	value
0	99.450.40	
1	3.00	3.00
1	10.00	10.00
0	0.0-00-	85
1	10.00	10.00
1	10.00	10.00
1	50.00	50.00
1	2300.00	2300.00
1	100.00	100.00
1	10.00	10.00
1	70.00	70.00
1	.20	.20
1	.00	.00
1	50.00	50.00
1	.00	.00
0	0.0	
	DV	

Table 1.--Statistical summary of data for each station--Continued

Station No. (USGS): 06295400 Station Rosebud Creek above Pony Creek, near Colstrip, MT

Variable	Sample	Minimum value	Mean	Maximum value	Standar deviation
Discharge, instantaneous (ft ³ /s)	37	6.40	55.05	258.00	56.04
Specific conductance (µmho/cm)	37	400.00	1281.62	1900.00	296.49
H (units)	37	7.40	8.26	8.80	.32
Cemperature (°C)	37	.00	8.84	23.50	8.58
Surbidity (JTU)	36	7.00	71.56	550.00	108.07
vygen dissolved (mg/L)	36	6.50	9.69	13.80	1.99
wygen dissolved (percent)	36	53.40	90.46	118.00	11.26
iochemical oxygen demand (mg/L)	35	.00	1.64	3.20	.91
ralcium dissolved (mg/L)	37	28.00	75.57	94.00	13.45
garnesium, dissolved (mg/L)	37	19.00	90.86	120.00	17.17
Sodium, dissolved (mg/L)	37	15.00	76.08	120.00	20.55
Sodium (percent)	37	16.00	21.97	27.00	2.74
odium-adsorption ratio	37	:50	1.38	2.00	.30
otassium, dissolved (mg/L)	37	1.10	9.64	13.00	2.01
cicarbonate (mg/L)	37	140.00	468.35	617.00	82.36
Carbonate (mg/L)	37	.00	4.24	39.00	9.12
ulfate, dissolved (mg/L)	37	62.00	324.38	560.00	84.01
hloride, dissolved (mg/L)	- 37	3.10	5.33	13.00	1.62
Tuoride, dissolved (mg/L)	37	.20	.57	.70	.10
ilica dissolved (mg/L)	37	7.30	15.01	55.00	3.49
issolved solids, calculated (mg/L)	37	214.00	832.68	1150.00	163.97
itrogen NO2+NO2 total (mg/L as N)	37	.00	.12	.37	.12
itrogen, ammonia total (mg/L as N)	37	.00	.05	.25	
itrogen, organic total (mg/L as N)	37	.02	.79	3.80	.07
litrogen, total (mg/L as N)	37	.19	.95	3.80	.66
phosphorus, total (mg/L as P)	37	.00	.10	.45	.67
Sediment, suspended (mg/L)	36	12.00	180.17	822.00	196.34

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	8	0.00	20.00			
Arsenic (µg/L)	9	1.00	28.00			
Beryllium (µg/L)	8	.00	10.00			
Boron (µg/L)	36	100.00	250.00			
Cadmium (µg/L)	8	.00	1.00			
Chromium (µg/L)	8	.00	10.00			
Copper (µg/L)	8	1.00	- 5.00			
Iron (µg/L)	37	.00	190.00			
Lead (µg/L)	8	.00	2.00			
Lithium (µg/L)	- 8	40.00	60.00			
Manganese (µg/L)	8	.00	30.00			
Mercury (µg/L)	8	.00	.10			
Molybdenum (µg/L)	8	1.00	3.00			
Nickel (µg/L)	8	1.00	7.00			
Selenium (µg/L)	7	.00	1.00			
Zinc (µg/L)	8	.00	30.00			
Vanadium (µg/L)	8	.40	14.00			

		TUTITACE :	With the said	REGRESS	ON SUMMARY	La company			
	SIMPLE RE	GRESSION	تنسينيد	MULTIPLE REGRESSION					
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant	Partial coeff	regression ficient ³	Coeffi- cient of deter- mination ²	Standard error of estimate	
			THE STATE OF	00425		ra travella	Anna Carlotta -		
Q		.0840	.319	90.00 m	-	(100 Lumbrid)	.0212	.323	
"	100	.185*	99.0	198	.573	101			
270 K	155	.296*	1.69	5.62	00439	124*	.267*	95.3	
5.07 K	.00360	.0594	11.1	3.02	00439	.00336*	.311*	1.70	
Q Q	00173	.247*	.805	3.40	.00664*	00161	.0806	11.1	
3.89 K		.627*	8.33	29.7	00159	00161*	.386*	.739	
29.5 K	.0359	.548*	11.7	53.9	144*	.0358*	.627*	8.45	
35.9 K	.0512	.546*	14.0	29.0	148*	.0350*	.750*	8.83	
10.4 K		.316*	2.30	18.2	0215*	.0431*	.695*	11.7	
23.5 Q	0275	.492*	.218	.746	00220*	.00390* .00059*	.479*	2.04	
.470 K	.00071		1.65	8.44	0186*		.646*	.185	
10.8 Q	0212	.349*	50.0	226	340*	.00173	.408*	1.59	
183 K	.222	.641*	8.84	220	340*	.204*	.690*	47.2	
70 5 8	.197	.481*	61.4	138	521*	.168*	.0884	8.96	
72.5 K	.197	.139	1.53	130	521%		.592*	55.2	
601 K	00105	.335*	.0842	.493	00090*	.00010*	.146	1.54	
.631 Q	.00432		3.29	10.9	0112	.00371		.0802	
9.47 K		.135*	97.3	391	-1.06*	.390*	.164*	3.29	
258 K	. 448	.657*	.118	391	-1.00*	.390*	.778*	79.5	
Q		.899	.0716				.0921	.119	
9	00000	.0528		1.52	.00334	00072*	.0764	.0717	
1.94 K	00090	.162*	.616	1.69	.00418*	00072* 00076*	.235*	.597	
.656 Q	.00534	.198*	.612		.00071*		.300*	.580	
0525 Q	.00089	.239*	.0901	.211	.936	00012*	.343*	.0849	
578 K	311	.227*	175	461	.930	261*	.293*	170	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

	Maximum	Minimum	Sample
	4600.00	200.00	8
	18.00	.00	12
00	10.00	.00	12
00	20.00	:00	12
	20.00	.00	11
	50.00	10.00	12
	8200.00	420.00	12
	100.00	100.00	12
00	60.00	40.00	12
00	310.00	20.00	12
	.40	.00	12
	4.00	1.00	12
	50.00	.00	12
	2.00	.00	12
00	40.00	.00	8

Table 1.--Statistical summary of data for each station--Continued

Station

Station
No. (USGS): 06295420 Station
name: Snider Creek near Brandenberg, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	2	10.00	31.00	52.00	29.70
Specific conductance (\u00fcm)	- 5	65.00	70.00	75.00	7.07
pH (units)	5	7.40	7.55	7.70	.21
Temperature (°C)	5	1.00	5.00	3.00	1.41
Turbidity (JTU)	5	120.00	135.00	150.00	21.21
Oxygen, dissolved (mg/L)	5	10.70	10.75	10.80	.07
Oxygen, dissolved (percent)	5	84.00	86.00	88.00	2.83
Biochemical oxygen demand (mg/L)	5	4.80	5.05	5.30	.35
Calcium, dissolved (mg/L)	5	6.70	7.20	7.70	.71
Magnesium, dissolved (mg/L)	5	1.90	2.00	2.10	.14
Sodium, dissolved (mg/L)	5	3.00	3.10	3.20	-14
Sodium (percent)	5	10.00	17.50	19.00	2.12
Sodium-adsorption ratio	5	.20	.25	.30	.07
Potassium, dissolved (mg/L)	5	3.60	4.00	4.40	.57
Bicarbonate (mg/L)	2	28.00	35.00	42.00	9.90
Carbonate (mg/L)	2	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	5	3.30	4.20	5.10	1.27
Chloride, dissolved (mg/L)	5	.90	.90	90	.00
Fluoride, dissolved (mg/L)	2	.00	.00	.00	.00
Silica, dissolved (mg/L)	5	4.60	4.65	4.70	.07
Dissolved solids, calculated (mg/L)	2	38.00	43.50	49.00	7.78
Nitrogen, NO2+NO3 total (mg/L as N)	2	.14	.15	.15	.01
Nitrogen, ammonia total (mg/L as N)	2	.25	.28	.31	.04
Witrogen, organic total (mg/L as N)	5	.18	.57	.95	.54
Nitrogen, total (mg/L as N)	5	.64	.97	1.30	.47
Phosphorus, total (mg/L as P)	2	.30	.33	.35	.04
Sediment, suspended (mg/L)	2	128.00	137.50	147.00	13.44

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum yalue			
Aluminum (µg/L)	1	130.00	130.00			
Arsenic (µg/L)	1	1.00	1.00			
Beryllium (µg/L)	1	.00	.00			
Boron (µg/L)	2	50.00	60.00			
Cadmium (µg/L)	1	3.00	3.00			
Chromium (µg/L)	1	20.00	20.00			
Copper (µg/L)	1	9.00	9.00			
Iron (µg/L)	5	40.00	200.00			
Lead (µg/L)	1	10.00	10.00			
Lithium (µg/L)	1	1.00	1.00			
Manganese (µg/L)	1	10.00	10.00			
Mercury (µg/L)	1	.00	.00			
Molybdenum (µg/L)	1	1.00	1.00			
Nickel (µg/L)	1	4.00	4.00			
Selenium (µg/L)	1	.00	.00			
Zinc (µg/L)	1	20.00	20.00			
Vanadium (µg/L)	- 1	2.00	2.00			

RECRES	CTOM	CITMM	DVI

	SIMPLE RE	GRESSION		MULTIPLE REGRESSION						
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial r		Coeffi- cient of deter-	Standard error of		
stant	cient	mination	estimate	constant	Q	K	mination	estimate		
77.44			05.6	00,63	17	(a) (39)	0/10/10/4 2-10/1	OBTRIBAL		
		187 558	2.1351255	00.020-		Contract -	Non-See			
	055			00.1	9.0			Carlotte P		
77.	1000			60	52			CUDBY		
455 Fet		61		08.6377	53.000			validaen.		
	.00064	77		39.0			set bertere	TS COMMON		
75				00-10	580	Commo	so) bates	rb lines		
	-00000			05.0.55	980-	(J\no)Simes	ob masses.	no house /www.l		
			7.15	00.2555	56.44		ar) has			
77.84	0000	44	5.88 7.75	00.8155		(3000)	Toutbone b.	70/2		
77			2.28 1374	00.03500			and better			
77				00 Ti 10	58			00 0000		
					680		ton pole-			
	0000			51 1 77		(1)				
7.4				00 100						
					55			****		
				0.00			and districting			
				0.5 5 77	30175) bardenic			
) boyles !!			
				04.0.00						
			E. 1748 1744	28.6375	56.00	100	100 10 mm 100	oly Clee		
				66	T		102 PERMIT			
77.0	555	0.00		10	55 (3)	AL 37 312 1	300 Dile-114			
				61.1.75	100 (0)	SE A SECTION	101 11 7	Comment?		
				61.1.55			(1)			
	100000			10-1455	55057	(3)	ger La week	recorded a		
				10,4644	7.7		01000-			

¹Insufficient samples to develop regression.

	Maximum value	Minimum	Sample
(J\ge) avail	1900.00	1900.00	
	2.00	2.00	1
	2.00	2.00	1
	3300.00	30.00	0
	:00	:00	0
	.00	50.00	1 1
	23.00	23.00	1 1
	40.00	40.00	1

Table 1.--Statistical summary of data for each station--Continued

Station No. (USGS): 06295500

Station name: Rosebud Creek near Rosebud, MT

	and the same						
Variable	Sample size	Minimum value		Mean	Maximum value	Standard deviation	
Discharge, instantaneous (ft ³ /s)	32	10.00	70	65.68	312.00	66.13	
Specific conductance (µmho/cm)	32	350.00		1257.50	1870.00	325.04	
pH (units)	32	7.50		8.20	8.60	.27	
Temperature (°C)	32	.00		7.45	23.00	8.16	
Turbidity (JTU)	32	5.00		123.44	480.00	141.62	
Oxygen, dissolved (mg/L)	32	5.90		10.09	12.70	2.05	
Oxygen, dissolved (percent)	32	67.00		89.64	103.00	7.91	
Biochemical oxygen demand (mg/L)	32	.20		2.04	8.50	1.76	
Calcium, dissolved (mg/L)	32 .	26.00		73.94	98.00	16.19	
Magnesium, dissolved (mg/L)	32	18.00		88.03	120.00	23.00	
Sodium, dissolved (mg/L)	32	21.00		83.56	130.00	25.07	
Sodium (percent)	32	17.00		24.50	32.00	3.34	
Sodium-adsorption ratio	32	.80		1.53	2.30	.34	
Potassium, dissolved (mg/L)	32	7.30		9.63	12.00	1.42	
Bicarbonate (mg/L)	32	139.00		447.81	616.00	105.96	
Carbonate (mg/L)	32	.00		3.56	30.00	7.73	
Sulfate, dissolved (mg/L)	32	62.00		344.44	600.00	105.17	
Chloride, dissolved (mg/L)	32	2.70		5.34	7.50	1.19	
Fluoride, dissolved (mg/L)	32	.20		.54	.70	.12	
Silica, dissolved (mg/L)	32	5.90		14.56	22.00	3.73	
Dissolved solids, calculated (mg/L)	32	215.00		844.34	1190.00	206.70	
Nitrogen, NO2+NO3 total (mg/L as N)	32	.00	-	.12	.37	.12	
Nitrogen, ammonia total (mg/L as N)	32	.00		.04	.22	.05	
Nitrogen, organic total (mg/L as N)	32	.13		.83	1.70	.42	
Nitrogen, total (mg/L as N)	32	.13		.99	1.90	.50	
Phosphorus, total (mg/L as P)	32	.01		.13	.46	.14	
Sediment, suspended (mg/L)	32	18.00		349.78	945.00	272.75	

	DISSOLVED				
Variable	Sample size	Minimum value	Maximum value		
Aluminum (µg/L)	7	0.00	30.00		
	7	1.00	3.00		
Beryllium (µg/L)	7	.00 -	10.00		
Boron (µg/L)	32	90.00	260.00		
	7	.00	3.00		
	7	.00	10.00		
Copper (µg/L)	. 7	1.00	6.00		
	32	.00	160.00		
Lead (µg/L)	7	.00	10.00		
Lithium (µg/L)	7	10.00	60.00		
Manganese (µg/L)	0.007	.00	130.00		
	7	.00	.10		
	7	.00	3.00		
Nickel (µg/L)	7	1.00	9.00		
Selenium (µg/L)	5	1.00	1.00		
Zinc (µg/L)	7	10.00	30.00		
Vanadium (µg/L)	7	.40	16.00		

	SIMPLE RE	EGRESSION			MULT	IPLE REGRESSI	ON	
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-		regression icient ³	Coeffi- cient of deter-	Standard error of
stant	cient	mination ²	estimate	constant	int Q K		mination ²	estimate
				15.4	(I)	101010) major	and the last	mmai = 218
1460 Q Q	-3.04	.383*	259 •270	11.154-			.0382	.274
418 K 6.80 K	.00261	.289* .172*	121	372	.205	208*	.295* .173	1.93
K		.101	7.62		00005	22222	.107	7.73
6.97 K	00392	.527*	1.23	6.89	.00035	00388*	.527*	1.25
18.5 K	.0441	.784*	7.66	1.85	.0743*	.0534*	.840*	6.69
4.34 K	.0666	.884*	7.95	8.93	0205	.0640*	.887*	8.01
1.07 K	.0656	.723*	13.4	-3.28	.0194	.0680*	.725*	13.6
K		.00784	3.38	600	00000	00070	.00909	3.44
.630 K	.00072	.469*	.253	.623	.00003	.00072*	.469*	.257
6.27 K	.00267	.372*	1.14	7.11	00373	.00220*	.391*	1.15
88.2 K	.286	.770*	51.7	39.9	.215	.313*	.781*	51.3
, , , Q	0.70	.0496	7.66	7 05	0000	0.00	.0575	7.76
1.45 K	.273	.711*	57.5	7.85	0286	.269*	.711*	58.5
2.02 K	.00264	.517*	.842	1.65	.00163	.00284*	.522*	.852
.180 K	.00029	.589*	.079	.278	00044	.00023*	.624*	.077
7.13 K	.00590	.264*	3.26	7.57	00194	.00566*	.265*	3.31
86.9 K	.602	.897*	67.4	62.5	.109	.616*	.898*	68.3
K	, nader l	.0881	.119				.1000	.121
Q		.0431	.054		00151	22222	.0508	.054
2.08 K	00099	.574*	.282	1.74	.00151	00080*	.608*	.275
2.33 K	00107	.487×	.364	1.89	.00200	00082*	.530*	.354
.485 K	00028	.406*	.112	.401	.00037	00023*	.425*	.112
235 Q	1.74	.178*	251	518	1.15	194	.211*	250

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Sample	Minimum value	Maximum value				
8	450.00	7300.00				
12	.00	9.00				
12	.00	10.00				
0						
12	.00	10.00				
12	.00	35.00				
12	10.00	30.00				
12	680.00	11,000.00				
12	100.00	100.00				
12	20.00	60.00				
12	40.00	420.00				
12	.00	1.20				
12	.00	3.00				
12	.00	50.00				
12	.00	1.00				
-8	50.00	60.00				

Table 1.--Statistical summary of data for each station--Continued

Station Station No. (fig. 1): 11 No. (USGS): 06296003 Station name: Rosebud Creek at Mouth, near Rosebud, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard
Discharge, instantaneous (ft ³ /s)	49	5.80	86.67	916.00	163.15
Specific conductance (µmho/cm)	49	257.00	1305.55	2060.00	352.09
pH (units)	48	6.90	8.21	8.80	.36
Temperature (°C)	49	.0.0	9.20	25.00	8.78
Turbidity (JTU)	44	5.00	268.34	2500.00	551.18
Oxygen, dissolved (mg/L)	47	6.20	10.24	13.20	1.84
Oxygen, dissolved (percent)	46	67.00	94.80	117.00	9.97
Biochemical oxygen demand (mg/L)	46	.20	2.18	8.80	1.76
Calcium, dissolved (mg/L)	47	12.00	72.47	110.00	19.30
Magnesium, dissolved (mg/L)	47	6.90	85.70	130.00	28.24
Sodium, dissolved (mg/L)	47	24.00	101.87	190.00	32.53
Sodium (percent)	47	19.00	29.74	63.00	8.63
Sodium-adsorption ratio	47	.90	1.98	3.80	.64
Potassium, dissolved (mg/L)	47	4.30	9.79	13.00	1.78
Bicarbonate (mg/L)	46	110.00	446.02	636.00	115.50
Carbonate (mg/L)	45	.00	3.46	21.00	6.17
Sulfate, dissolved (mg/L)	47	39.00	364.19	620.00	114.98
Chloride, dissolved (mg/L)	47	2.20	5.60	9.20	1.39
Fluoride, dissolved (mg/L)	47	.20	.58	1.10	.15
Silica, dissolved (mg/L)	47	.30	13.12	22.00	4.25
Dissolved solids, calculated (mg/L)	46	150.00	876.35	1270.00	235.48
Nitrogen, NO2+NO3 total (mg/L as N)	47	.00	.15	1.10	.19
Nitrogen, ammonia total (mg/L as N)	47	.00	.04	.38	.07
Witrogen, organic total (mg/L as N)	47	.13	1.10	6.10	1.20
Nitrogen, total (mg/L as N)	47	.17	1.29	6.80	1.30
Phosphorus, total (mg/L as P)	47	.00	.27	2.30	.48
Sediment, suspended (mg/L)	46	35.00	5/2.37	7239.99	1240.58

	3143	DISSOLVED					
Variable	Sample size	Minimum value		Maximum			
Aluminum (µg/L)	10	0.00		210.00			
Arsenic (µg/L)	11	.00		4.00			
Beryllium (µg/L)	10	.00		10.00			
Boron (µg/L)	47	100.00		310.00			
Cadmium (µg/L)	10	.00		3.00			
Chromium (µg/L)	10	.00		30.00			
Copper (µg/L)	10	.00		9.00			
Iron (µg/L)	47	.00		420.00			
Lead (µg/L)	10	.00		17.00			
Lithium (µg/L)	10	7.00		60.00			
Manganese (µg/L)	10	10.00		40.00			
Mercury (µg/L)	10	.00		.90			
Molybdenum (µg/L)	10	1.00	-	4.00			
Nickel (µg/L)	10	.00		10.00			
Selenium (µg/L)	8	.00		2.00			
Zinc (µg/L)	10	.00		40.00			
Vanadium (µg/L)	10	.40		15.00			

RECRESSION	CITABLATIST

	SIMPLE RE	GRESSION			MULTI	PLE REGRESSI	ON	
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial r		Coeffi- cient of deter-	Standard error of
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
1420 Q Q	-1.31	.368*	.355	12,013		(-1007)	.0381	.357
18.7 Q K	2.69	.695* .0700	308 1.78 9.70	194	2.52*	125	.699* .0715	310 1.79 9.76
5.95 K 12.6 K -8.22 K	00289 .0457 .0731	.356* .643* .806*	1.43 11.8 12.4	5.33 15.4 2.87	.00135 00598 0236	00252* .0439* .0661*	.366* .645* .817*	1.43 11.9 12.2
11.2 K 27.1 Q K	.0700	.567* .322*	21.2 7.04 .623	-1.59 24.0 .666	.0271 .0323* .00175*	.0780* .00221 .00089*	.578* .327* .166*	21.1 7.09 .587
4.81 K 75.1 K	.00389	.575* .773*	1.16 55.0 6.18	6.25 113	00306* .0807	.00298* .263*	.624* .781*	1.10 54.6 6.24
27.6 K 2.02 K .196 K	.304 .00281 .00029	.847* .482* .487*	44.8 1.01 .104	-14.3 2.46 .243	0283 00095 00010	.295* .00253* .00026*	.848* .489* .495*	45.1 1.01 .105
14.3 Q 39.8 K .424 K	0131 .648 00022	.258* .939* .148*	3.65 57.9 .178	11.5 83.6 .435	0104* 0930 00002	.00201 .620*	.275* .941* .149*	3.65 57.2 .180
.0258 Q .521 Q .666 Q	.00019 .00641 .00690	.220* .790* .766*	.058 .545 .628	.0978 1.45 1.99	.00012 .00555* .00567*	00005 00066* 00094*	.262* .812* .804*	.057 .520
.049 Q -23.2 Q	.00250	.733* .783*	.249 585	.284 -242	.00228* 6.75*	00016	.742* .784*	.247 590

Q indicates discharge as independent variable; K indicates specific conductance as independent variable

Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at $\alpha = 0.05$ 3Asterisk denotes that partial regression coefficient is significant at $\alpha = 0.05$

_	Т	-		
	Sample size	Minimum value	Maximum value	aldaras
	8	710.00	4800.00	(J/arl sen
	13	.00	10.00	
	12	.00	20.00	
		.00	100.00	
	12	10.00	71000.00	
	12	100.00	100.00	
	13	30.00	1400.00	
	13	.00	1.20	
		.00	4.00	
	12	.00	100.00	
	13	10.00	290.00	

Table 1.--Statistical summary of data for each station--Continued

No. (fig. 1): 12

Station No. (USGS): 06306100

Station

name: Squirrel Creek near Decker, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-		F 67	50.00	10.97
Discharge, instantaneous (ft ³ /s) Specific conductance (µmho/cm)	33	0.26	5.97	1710.00	245.56
	33	630.00	1144.97	8.60	.23
pH (units)	32	7.70	8.23	21.00	7.55
Temperature (°C)	33	.00	8.61	500.00	98.93
Turbidity (JTU)	33	1.00	50.00		
Oxygen, dissolved (mg/L)	33	7.40	9.70	11.80	1.41
Oxygen, dissolved (percent)	33	76.00	93.49	114.00	9.38
Biochemical oxygen demand (mg/L)	33	.20	1.38	5.80	1.14
Calcium, dissolved (mg/L)	33	58.00	82.88	100.00	12.36
Magnesium, dissolved (mg/L)	33	41.00	89.52	120.00	20.29
Sodium, dissolved (mg/L)	-33	13.00	38.91	65.00	13.50
Sodium (percent)	33	7.00	12.39	17.00	2.30
Sodium-adsorption ratio	33	.30	.69	1.10	.20
Potassium, dissolved (mg/L)	33	4.30	6.97	11.00	1.56
Bicarbonate (mg/L)	33	240.00	447.88	508.00	91.23
Carbonate (mg/L)	32	.00	1.31	13.00	3.32
Sulfate, dissolved (mg/L)	33	130.00	279.09	370.00	61.56
Chloride, dissolved (mg/L)	33	1.60	3.47	7.60	1.37
Fluoride, dissolved (mg/L)	33	.20	.38	.50	.09
Silica, dissolved (mg/L)	33	5.30	11.63	16.00	2.66
Dissolved solids, calculated (mg/L)	33	377.00	735.15	956.00	148.80
Nitrogen, NO2+NO3 total (mg/L as N)	33	.00	.14	.57	.15
Nitrogen, ammonia total (mg/L as N)	33		.02	.09	.02
Nitrogen, organic total (mg/L as N)	33	.00	.52	2.30	.43
Witrogen, total (mg/L as N)	33	.09		2.90	
Phosphorus, total (mg/L as P)	33	.23	.69		.54
Sediment, suspended (mg/L)	33	5.00	118.97	970.00	180.98

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	.07411	0.00	30.00			
Arsenic (µg/L)	11	.00	4.00			
Beryllium (µg/L)	11	.00	10.00			
Boron (µg/L)	33	50.00	200.00			
Cadmium (µg/L)	11	.00	2.00			
Chromium (µg/L)	11	.00	20.00			
Copper (µg/L)	11	.00	13.00			
Iron (µg/L)	33	10.00	400.00			
Lead (µg/L)	11	0.00	14.00			
Lithium (µg/L)	11	30.00	80.00			
Manganese (µg/L)	11	20.00	130.00			
Mercury (µg/L)	- 11	.00	.00			
Molybdenum (µg/L)	11	.00	5.00			
Nickel (µg/L)	11	.00	7.00			
Selenium (µg/L)	11	.00	7.00			
Zinc (µg/L)	11	.00	20.00			
Vanadium (µg/L)	11	.40	5.50			

	- 2	DITESTATE R	VI 1911/19830	REGRESSI	ON SUMMARY		1	-		
SIMPLE REGRESSION				MULTIPLE REGRESSION						
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial r	egression cient3	Coeffi- cient of deter-	Standard error of		
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate		
4552	0/75			15.0	01	/45E13E1	nendani -			
1240 Q K	-15.8	.0644	.220	55.578 UL	81 -	(the Verbourn	.0699	.223		
1574	0025			102	0.7		V.018-			
8.89 Q	6.77	.585*	64.7	123	5.33*	0921	.611*	63.7		
Q	99.3	.0160	1.43	U.L. 0	0.1		.112	1.38		
115 K	0185	.236*	8.21	128	314	0286*	.305*	7.95		
1.09 Q	.0458		1.05	1.88	.0359	00064	.209*	1.07		
39.3 K	.0382	.569*	8.22	37.4	.0434	.0396*	.569*	8.34		
1.21 K	.0773	.861*	7.67	22.8	499*	.0612*	.897*	6.70		
-19.1 K	.0507	.845*	5.37	-11.8	168	.0453*	.854×	5.29		
3.68 K	.00762	.659*	1.36	6.41	0633*	.00557*	.704*	1.28		
113 K	.00070	.790*	.0898	.0622	00407*	.00057*	.816*	.0853		
2.07 K	.00428	.456*	1.16	2.76	0160	.00376*	.463*	1.17		
67.4 K	.332	.800*	41.4	140	-1.68	.278*	.821*	39.9		
Q		.0155	3.34			0.000	.0373	3.36		
9.64 K	.236	.865*	23.1	62.0	-1.21*	.197*	.888*	21.4		
3.77 Q	0474	.148*	1.27	65.00		Allegan	.166	1.28		
.166 K	.00019	.264*	.0767	.227	00142	.00014	.280*	.0771		
3.25 K	.00733	.460*	1.96	2.48	.0178	.00791*	.463*	1.99		
71.5 K	.581	.900*	48.0	190	-2.75*	.492*	.920*	43.5		
.547 K	00035	.340*	.122	.667	00277	00044*	.361*	.122		
K		.0342	.0236			rs (Aucholas	.0348	.0240		
.351 Q	.0276	.503*	.308	1.20	.0168*	00068*	.576*	.289		
2.52 K	00161	.541*	.366	1.92	.0139	00116*	.582*	.355		
.411 K	00029	.381*	.0919	.279	.00305	00019*	.423*	.0901		
51.3 Q	11.1	.474*	133	371	7.11*	257	.534*	128		

 $^{^{1}}$ Q indicates discharge as independent variable; K indicates specific conductance as independent variable 2 Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 3 Asterisk denotes that partial regression coefficient is significant at α = 0.05

	TOTAL RECOVERABLE						
Veglable	Maximum value	Minimum value	Sample size				
Gilgal weath	3600.00	20.00	7				
	4.00	.00	8				
	10.00	.00	8 8 0				
		ooraid.					
	10.00	.00	8 8				
	66.00	.00					
	23.00	.00	8				
	18000.00	330.00	8				
	100.00	17.00	8				
	70.00	30.00	8				
	650.00	60.00	8				
	.20	.00	8				
	2.00	1.00	7				
	50.00	18.00	8				
	5.00	.00	В				
	80.00	.00	8				

Table 1. -- Statistical summary of data for each station -- Continued

Station

Station

No. (fig. 1): 13 No. (USGS): 06306800

Station

name: Deer Creek near Decker, MT

DESCRIPTIVE STATISTICS

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	10	0.06	2.56	9.10	3.66
Specific conductance (µmho/cm)	10	450.00	4040.50	6250.00	2251.95
pH (units)	10	7.40	8.06	8.40	. 51
Temperature (°C)	10	.00	7.20	14.00	6.07
Turbidity (JTU)	10	2.00	61.70	400.00	123.49
Oxygen, dissolved (mg/L)	10	6.30	9.73	12.00	1.85
Oxygen, dissolved (percent)	10	49.00	91.70	129.00	20.86
Biochemical oxygen demand (mg/L)	10	.60	4.80	20.40	6.14
Calcium, dissolved (mg/L)	10	32.00	219.40	320.00	113.77
Magnesium, dissolved (mg/L)	10	14.00	205.60	340.00	121.90
Sodium, dissolved (mg/L)	10	30.00	511.60	800.00	305.14
Sodium (percent)	10	31.00	41.60	48.00	5.44
Sodium-adsorption ratio	10	1.10	5.49	7.70	2.56
Potassium, dissolved (mg/L)	10	7.90	13.00	17.00	3.62
Bicarbonate (mg/L)	10	86.00	470.10	660.00	232.30
Carbonate (mg/L)	10	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	10	130.00	2010.00	3200.00	1193.89
Chloride, dissolved (mg/L)	10	4.20	14.28	27.00	7.11
Fluoride, dissolved (mg/L)	10	.10	.32	.50	.11
Silica, dissolved (mg/L)	10	4.00	6.79	11.00	2.28
Dissolved solids, calculated (mg/L)	10	268.00	3213.80	4950.00	1851.70
Nitrogen, NO2+NO3 total (mg/L as N)	10	.00	.12	.57	.18
Nitrogen, ammonia total (mg/L as N)	10	.00	.11	.52	.16
Nitrogen, organic total (mg/L as N)	10	.23	1.19	2.70	.80
Nitrogen, total (mg/L as N)	10	.30	1.43	3.80	1.11
Phosphorus, total (mg/L as P)	10	.00	.09	.34	.11
Sediment, suspended (mg/L)	9	13.00	109.11	411.00	123.23

indicates discharge as independent variable. A indicates apartity conductors as independent variable.

	1,137	DISSOLVED	
Variable	Sample	Minimum value	Maximum value
Aluminum (µg/L)	0.06391	0.00	0.00
	1	1.00	1.00
Beryllium (µg/L)	1	10.00	10.00
Boron (µg/L)	10	100.00	180.00
Cadmium (µg/L)	1	1.00	1.00
Chromium (µg/L)	1	10.00	10.00
Copper (µg/L)	1	.00	.00
Iron (µg/L)	10	10.00	290.00
	1	3.00	3.00
	1	210.00	210.00
Manganese (µg/L)	1	570.00	570.00
Mercury (µg/L)	1	.00	.00
Molybdenum (µg/L)	1	2.00	2.00
Nickel (µg/L)	1	10.00	10.00
Selenium (µg/L)	1	.00	.00
Zinc (µg/L)	1	20.00	20.00
Vanadium (µg/L)	1	.20	.20

	SIMPLE RE	GRESSION			MULTI	PLE REGRESSI	REGRESSION				
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres- sion	Partial regression coefficient ³				cient of deter-		
stant	cient	mination ²	estimate	constant	Q	K	mination ²	estimate			
24.57	02.			10.F.			halfiles				
5560 Q K	-596	.938*	595 •310		-	lactice.	.360	.278			
				100							
218 K	0387	.327	1.61				.521 .549	96.9			
K		.0560	21.5				.374	18.7			
1.59 Q	1.26		4.30	10/	0.76	0017	.563	4.60			
17.0 K	.0501	.983*	15.8	104	-9.76	.0347*	.989*	13.5			
-9.10 K	.0531	.964*	24.7	-18.1 60.4	1.01	.0547*	.964*	26.4			
-31.3 K	.134		41.8	42.9	-1.11	.118*		43.4			
45.0 Q	-1.33		.587	3.14	240	.00038	.807*	2.71			
.996 K	.00111	.953*	3.37	3.14	240	.00073	.961*	.576			
630 Q	60 7	.230 .975*	38.6	365	-34.2*	.0478*	.232 .989*	3.60			
630 Q	-62.7		30.0	303	-34.2%	.04/0%	.909*	27.9			
-120 K	.527			164	-31.9	.477*	.989*	142			
3.70 K	.00262			-5.82	1.07	.00430	.706*	4.37			
.381 Q	0234		.0763	.513	0381	00002	.612*	.0802			
K	0254	.251	2.09		.0001	•00002	.353	2.08			
-91.3 K	.818			504	-66.8	.713*		202			
.0303 0	.0367	.558*		111			.559	.135			
.0270 Q	.0329	.571*	.111	100	.0464	.00002	.577*	.118			
2.19 K	00025		.599				.501	.637			
2.85 K	00035		.821			1	.512	.878			
.0181 Q	.0281	.835*	.0485	.09460	.0199	00001	.840*	.0511			
K	700	.269	113				.379	112			

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

nple ize	Minimum value	Maximum
3	60.00	140.00
4	.00	5.00
4	10.00	10.00
0	1111111	
4	10.00	30.00
4	.00	60.00
4	10.00	70.00
4	550.00	5000.00
4	100.00	500.00
4	20.00	550.00
4	140.00	850.00
4	.00	.20
4	.00	5.00
4	50.00	200.00
4	.00	.00
3	30.00	50.00

Table 1. -- Statistical summary of data for each station -- Continued

Station
No. (USGS): 06306900 Station
name: Spring Creek near Decker, MT

Variable	Sample	Minimum value	Mean	Maximum value	Standard
Vallable	5120	varac	rican	Value	deviación
Discharge, instantaneous (ft ³ /s)	2	1.00	9.50	18.00	12.02
Specific conductance (\mumho/cm)	5	149.00	879.50	1610.00	1033.08
pH (units)	5	8.00	8.25	8.50	.35
Temperature (°C)	5	.00	4.50	9.00	6.36
Turbidity (JTU)	2	35.00	267.50	500.00	328.80
Oxygen, dissolved (mg/L)	5	10.00	10.50	11.00	.71
Oxygen, dissolved (percent)	5	84.00	91.50	99.00	10.61
Biochemical oxygen demand (mg/L)	5	1.70	7.35	13.00	7.99
Calcium, dissolved (mg/L)	2	24.00	67.00	110.00	60.81
Magnesium, dissolved (mg/L)	5	5.30	62.65	120.00	81.11
Sodium, dissolved (mg/L)	5	4.40	50.20	95.00	64.77
Sodium (percent)	5	19.00	15.50	21.00	7.78
Sodium-adsorption ratio	5	.20	.85	1.50	.92
Potassium, dissolved (mg/L)	2	4.10	6.30	8.50	3.11
Bicarbonate (mg/L)	5	100.00	260.00	420.00	226.27
Carbonate (mg/L)	2	.00	4.00	8.00	5.66
Sulfate, dissolved (mg/L)	5	18.00	314.00	610.00	418.61
Chloride, dissolved (mg/L)	5	.30	1.35	2.40	1.48
Fluoride, dissolved (mg/L)	5	.10	.25	.40	.21
Silica, dissolved (mg/L)	5	2.70	4.70	6.70	2.83
Dissolved solids, calculated (mg/L)	5	111.00	640.50	1170.00	748.83
Nitrogen, NO2+NO3 total (mg/L as N)	5	.01	.15	.29	.20
Nitrogen, ammonia total (mg/L as N)	2	.01	.15	.29	.20
Nitrogen, organic total (mg/L as N)	5 5	.57	1.09	1.60	.73
Nitrogen, total (mg/L as N)	5	.59	1.40	2.20	1.14
Phosphorus, total (mg/L as P)	2	.05	.68	1.30	.88
Sediment, suspended (mg/L)	2	92.00	656.00	1220.00	797.62

	1.0	DISSOLVED	07
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	1	60.00	60.00
Arsenic (µg/L)	1	2.00	5.00
Beryllium (µg/L)	1	.00	.00
Boron (µg/L)	5	70.00	100.00
Cadmium (µg/L)	1	2.00	2.00
Chromium (µg/L)	1	10.00	10.00
Copper (µg/L)	1	4.00	4.00
Iron (µg/L)	5	20.00	140.00
Lead (µg/L)	1	8.00	8.00
Lithium (µg/L)	1	7.00	7.00
Manganese (µg/L)	1	20.00	20.00
Mercury (µg/L)	1	.00	.00
Molybdenum (µg/L)	1	1.00	1.00
Nickel (µg/L)	1	2.00	2.00
Selenium (µg/L)	1	.00	.00
Zinc (µg/L)	1	10.00	10.00
Vanadium (µg/L)	1	3.00	3.00

Regres- sion sion cient of coefficient of coefficie			SIMPLE REGRESSION				TDIE DECDECC	MON	
sion coefficient of deter- error of estimate constant of the deter- error of estimate constant of the deter- error error error of the deter- error err		021112	GRESSION			HOLI	TILE REGRESS	LON	
	sion	sion	cient of	error of	sion	coeff	icient	cient of deter-	Standard error of
	stant	cient	mination	estimate	constant	Q	K	mination	estimate
	1			314	138	·	-(11-871)	riktro-regi.	easindel-20
								A sind Shirker	
									P 1 101-4
								Y094-	*********
						8630		1000	C751
						ALC: 10 HE		m) boules	
					DE . CO	11	(3000	d) berilies	
		0044			VI	. 30	(dins) Boses	Series decree-1	
		. 17/2/0			10.100) bacibes !	
					Day 6, 13 44	-443		bevione-	
				.02 3.9-	14 1 1	- EE 10		c) borde-	di milas
					00.05.45	ALC: UNIT			of) mulas
						-3830 GOH-		AT DOCHES	the midwe
						- ACO 6 14-	(base I base -	dolasse-1
					00.0001	107-		(J. 100-4-0)	Apportage -
	0.77	00				02			strander C
	7-				20	4 KELLS 75 F		2 herrides	
					01.1.2	80000		Day Loome b	
		0000-				4500		baw (nowe b	
		0.75	D. D. Hee		0004			ST) KENTER	
	77.0			38 2 5 HH	00 ST. DAY	-	tion) bacaime.	do this	
	7-	507-	- Secret				The Plant	DI ACCOUNTS	
10-11 10-11		107-	750				483 J/382 443	C	1000144
		0077					the state of the	07 0000000	THE PERSON
the same to the same of the sa		0.00							
The state of the s					96		10.55	(1) - CONTENT	U

 $¹_{\hbox{Insufficient samples to develop regressions.}}$

	TOTAL RECOVERABLE						
	Maximum value	Minimum value	Sample size				
(d\gs) muelm	56,25.42	tood on	0				
	5.00	5.00	1				
	.00	.00	i				
		01,04	*** 0				
	1.00	1.00	1				
	50.00	50.00	1				
	32.00	32.00	1				
	25000.00	25000.00	1				
	5.00	5.00					
	10.00	10.00	1				
		660.00	1				
	4.00	4.00	1				
	5.00	5.00	1				
(a) ((a) 4 a) 4 a) 4 a)	59.00	59.00	1				
	2.00	2.00	1				
	90.00	90.00	1				

Table 1.--Statistical summary of data for each station--Continued

Station Station Station Station Tongue River at Tongue River No. (fig. 1): 15 No. (USGS): 06307500 name: Dam, near Decker, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	- 35	3.10	529.52	4140.00	772.77
Specific conductance (µmho/cm)	35	278.00	687.49	945.00	206.65
pH (units)	35	7.80	8.25	8.80	.23
Temperature (°C)	55	2.00	10.73	22.50	7.52
Turbidity (JTU)	33	1.00	5.97	30.00	6.23
Oxygen, dissolved (mg/L)	34	6.00	10.43	13.20	1.89
Oxygen, dissolved (percent)	34	85.00	102.56	141.00	8.91
Biochemical oxygen demand (mg/L)	33	.10	1.34	3.90	.76
Calcium, dissolved (mg/L)	35	29.00	59.86	81.90	16.47
Magnesium, dissolved (mg/L)	35	14.00	39.80	53.00	13.90
Sodium, dissolved (mg/L)	35	9.80	30.71	46.00	10.83
Sodium (percent)	34	13.00	17.24	24.00	2.00
Sodium-adsorption ratio	35	.40	.75	1.10	.18
Potassium, dissolved (mg/L)	34	1.50	3.53	5.30	1.04
Bicarbonate (mg/L)	35	110.00	243.89	332.00	69.47
Carbonate (mg/L)	34	.00	.71	7.00	1.80
Sulfate, dissolved (mg/L)	34	54.00	170.21	260.00	61.30
Chloride, dissolved (mg/L)	34	1.10	3.11	4.60	1.08
Fluoride, dissolved (mg/L)	35	.10	.27	.60	.09
Silica, dissolved (mg/L)	35	1.00	5.55	12.00	2.43
Dissolved solids, calculated (mg/L)	34	173.00	436.47	617.00	135.17
Nitrogen, NO2+NO3 total (mg/L as N)	35	.00	.10	.42	.11
Nitrogen, ammonia total (mg/L as N)	35	.00	.06	.31	.07
Nitrogen, organic total (mg/L as N)	35	.09	.53	3.50	.57
Nitrogen, total (mg/L as N)	35	.27	.69	3.80	.58
Phosphorus, total (mg/L as P)	35	.00	.04	.10	.02
Sediment, suspended (mg/L)	33	4.00	16.91	50.00	10.69

	3.10	DISSOLVED				
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	12	0.00	30.00			
Arsenic (µg/L)	12	.00	5.00			
Beryllium (µg/L)	12	.00	10.00			
Boron (µg/L)	35	40.00	150.00			
0 1 1 1 1 1 1	12	.00	5.00			
Chromium (µg/L)	12	.00	20.00			
_	12	.00	10.00			
	35	.00	980.00			
	12	.00	49.00			
	12	7.00	30.00			
	12	.00	80.00			
	12	.00	.10			
	12	.00	2.00			
	12	.00	10.00			
	12	.00	1.00			
	12	.00	20.00			
	12	.00	3.00			

		THE HATE A	VIEW DISEASE	REGRESSIO	ON SUMMARY		- 4		
SIMPLE REGRESSION				MULTIPLE REGRESSION					
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant	Partial re coeffic		Coeffi- cient of deter- mination ²	Standard error of estimate	
377				11.0		475-22 33	44.104.1344	1 7 5 5 4 7	
771 Q	156		162	70.4		(83)0000-			
7.89 K	.00053	.198*	.216	7.91	00001	.00051*	.198*	.220	
2.61 Q 5.15 K Q K	.00616	.616* .685* .0248	3.92 1.08 8.94 .779	7.55 4.34	.00516*	00637 .00852*	.645* .701* .0249	3.83 1.07 9.08	
3.24 K	.0799		9.73	2.70	.00025	.0805*	.734*	9.87	
-4.22 K	.0639		515	811	00162	.0602*	.868*	5.13	
-3.72 K	.0501	.870*	3.91	326	00161	.0464*	.879*	3.84	
14.4 K	.00421	.183*	1.83	15.8	00068	.00266	.227*	1.81	
.252 K	.00073	.680*	.101	.359	00005	.00061*	.711*	.0976	
.606 K	.00423		.568	1.02	00020	.00377*	.714*	.562	
15.7 K	.331	.927* .0666	18.7	32.3	00793	.313*	.933* .0671	18.3	
-33.5 K	.293	.920*	17.3	-23.6	00450	.282*	.922*	17.4	
.134 K	.00430	.633*	.658	.201	00003	.00423*	.633*	.668	
•301 Q	00007	.318*	.0749	.185	00004*	.00015	.390*	2.38	
23.3 K	.658		27.3	2.37	0116	.630*	.962* .0734	26.7	
K		.0504	.0643				.0564	.0651	
K		.0368	.572				.0673	.572	
14.0 Q	.00601	.207*	9.60	15.3	.00573*	00179	.208*	9.76	

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

independent variable Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 Asterisk denotes that partial regression coefficient is significant at α = 0.05

	LE	TAL RECOVERAB	TO
21/04/90	Maximum value	Minimum value	Sample size
	600.00	60.00	8
	10.00	.00	8
		40.011	0
	10.00	.00	8
	10.00	.00	8
	850.00	60.00	8
	100.00	28.00	8
	40.00	7.00	8
	90.00	30.00	8
	.10	.00	8
	10.00	.00	7
	50.00	3.00	8
	1.00	.00	8
	50.00	.00	0

Table 1. -- Statistical summary of data for each station -- Continued

Station

name: Fourmile Creek near Birney, MT

io rorre , -relub	Sample	Minimum	TOUTS3	Maximum	Standard
Variable Mariable	size	value	Mean	value	deviation
Discharge, instantaneous (ft ³ /s)	5	0.71	0.77	0.84	0.09
Specific conductance (wmho/cm)	5	245.00	387.50	530.00	201.53
oH (units)	5	7.70	7.95	3.20	.35
Temperature (°C)	5	.00	.00	.00	.00
Turbidity (JTU)	5	40.00	40.00	40.00	.00
Oxygen, dissolved (mg/L)	2	11.20	11.60	12.00	.57
Oxygen, dissolved (percent)	5	86.00	89.00	92.00	4.24
Biochemical oxygen demand (mg/L)	5	7.60	9.80	12.00	3.11
Calcium, dissolved (mg/L)	5	23.00	31.50	40.00	12.02
Magnesium, dissolved (mg/L)	5	9.20	20.60	32.00	16.12
Sodium, dissolved (mg/L)	5	0.50	25.25	44.00	26.52
Sodium (percent)	5	12.00	20.00	28.00	11.31
Sodium-adsorption ratio	5	.30	.80	1.30	.71
Potassium, dissolved (mg/L)	5	7.60	9.30	11.00	2.40
Bicarbonate (mg/L)	5	86.00	99.00	112.00	18.38
Carbonate (mg/L)	5	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	5	44.00	122.00	200.00	110.31
Chloride, dissolved (mg/L)	5	2.50	4.05	5.60	2.19
Fluoride, dissolved (mg/L)	5	.10	.15	.20	.07
Silica, dissolved (mg/L)	5	5.60	6.35	7.10	1.06
Dissolved solids, calculated (mg/L)	5	143.00	268.50	394.00	177.48
Nitrogen, NO2+NO3 total (mg/L as N)	5	.12	.16	.19	.05
Nitrogen, ammonia total (mg/L as N)	5	.03	.05	.00	.02
Nitrogen, organic total (mg/L as N)	5	1.20	1.25	1.30	.07
Nitrogen, total (mg/L as N)	5	1.40	1.45	1.50	.07
Phosphorus, total (mg/L as P)	5	.13	.18	.22	.06
Sediment, suspended (mg/L)	5	39.00	70.50	102.00	44.55

	DISSOLVED				
Variable	Sample	Minimum value	Maximum value		
Aluminum (µg/L)	0.86.1	60.00	60.00		
Arsenic (µg/L)	1	4.00	4.00		
Beryllium (µg/L)	1	.00	.00		
Boron (µg/L)	5	110.00	190.00		
Cadmium (µg/L)	0.01 1	1.00	1.00		
Chromium (µg/L)	1	.00	.00		
Copper (µg/L)	n be 1 -	9.00	9.00		
Iron (µg/L)	2	90.00	110.00		
Lead (µg/L)	1	4.00	4.00		
Lithium (µg/L)	0	obsts.			
Manganese (µg/L)	1	20.00	20.00		
Mercury (µg/L)	1	.10	.10		
Molybdenum (µg/L)	0	0.00	STATE OF THE STATE OF		
Nickel (µg/L)	1	2.00	2.00		
Selenium (µg/L)	0	00.54	No. of the last		
Zinc (µg/L)	1	60.00	60.00		
Vanadium (µg/L)	0				

	SIMPLE RE	EGRESSION	-	MULTIPLE REGRESSION						
sion	Regres- sion coeffi-	sion cient of		Standard error of	Standard error of	Regres-	Partial reg	gression	Coeffi- cient of deter-	Standard error of
stant	cient	mination	estimate	constant	Q	K	mination	estimate		
22.0	0.0-	6	F. 2	12 co		15.33	engyaky-ida	Marsania - 10		
	84-6	15:11	0.0511	00,0544		Oils \ adee \	9 54TR 10 ##/16			
	02-1			05.0.				Cartering - The		
	52.1			00.01			/OP4-10			
			1,23	00.05			744	100 Park - 100		
							with the second			
						700	and Lawerter			
				Chil		(Value) been	di massimenti			
	00-1			09.20.		/	ni habiten			
	02.5		F157	00.115		(1)	have Inca . the			
	00.			29,55			ek) bevies	b		
	92.			00,01			(3***)3	(d) m/***		
			Lat	011			102 mal - 10	the moved		
	102.1		9-01	90.01.		(31.00)	May Joaken	sart de - + 15		
	922		9-00/	00.005			Carrier a	100hod		
			A					arancewa!		
			0.070	TATAL CAR			s) I-ry (west			
	02.			Sec		12 (1)	Sevio-eth	ablan-ii		
	02-			264		6.7440	havio-eth	Ablance		
				V 5 - 5			series (No	D		
		91	8 - ET	DATEST	(2)	n) busain	100 - 1040	Bour See 15		
	12.			0 m	(8) 8		101 200 + CO			
	-		Star	104		1 (set) -+ 8	to? I'll ••to.			
	022			0.6	(1)		001 17 TO	Hasc-ell		
	- 22			50			11 mm			
	- PD			90,		12.00-49		agreed		
12.100	0.02	1577	F- 25F	06.57			101010-008			

¹ Insufficient samples to develop regressions.

TO	TAL RECOVERAB	LE
Sample size	Minimum value	Maximum value
0	66.203	7.
1	4.00	4.00
1	10.00	10.00
0	007.05	
1	20.00	20.00
1	10.00	10.00
1	70.00	70.00
1	2700.00	2700.00
1	100.00	100.00
95.1	10.00	10.00
1	70.00	70.00
1	.10	.10
1	1.00	1.00
1	50.00	50.00
1	.00	.00
0	0.0 . 0.1	

Table 1. -- Statistical summary of data for each station -- Continued

Station Station Station No. (fig. 1): 17 No. (USGS): 06307528 Name: Prairie Dog Creek near Birney, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	4	0.53	5.76	15.00	6.35
Specific conductance (µmho/cm)	1	1120.00	1120.00	1120.00	4017270-
pH (units)	1	8.30	8.30	8.30	13900
Temperature (°C)	3	10.00	13.67	17.50	5.75
Turbidity (JTU)	1	25.00	25.00	25.00	-17.
Oxygen, dissolved (mg/L)	0	43-14 Y	- 11:25	12,000	
Oxygen, dissolved (percent)	0		- 13 - 12 mm	47.00	5 / S & 4 =
Biochemical oxygen demand (mg/L)	1	1.70	1.70	1.70	1412-
Calcium, dissolved (mg/L)	1	69.00	69.00	69.00	he the are
Magnesium, dissolved (mg/L)	1	92.00	92.00	92.00	10010
Sodium, dissolved (mg/L)	1	59.00	59.00	59.00	20,000
Sodium (percent)	1	19.00	19.00	19.00	11.37
Sodium-adsorption ratio	1	1.10	1.10	1.10	4.7
Potassium, dissolved (mg/L)	1	10.00	10.00	10.00	E-970
Bicarbonate (mg/L)	1	360.00	360.00	360.00	145 1000
Carbonate (mg/L)	1	.00	.00	.00	49.00
Sulfate, dissolved (mg/L)	1	370.00	370.00	370.00	116. JANA
Chloride, dissolved (mg/L)	1	6.40	6.40	6.40	7.104-
Thuoride, dissolved (mg/L)	1	.30	.30	.30	
Silica, dissolved (mg/L)	1	8.90	8.90	8.90	1.75
Dissolved solids, calculated (mg/L)	1	743.00	793.00	793.00	177,450
Mitrogen, NO2+NO3 total (mg/L as N)	1	.01	.01	.01	
litrogen, ammonia total (mg/L as N)	1	.01	.01	.01	.02
litrogen, organic total (mg/L as N)	1	.60	.60	.60	03.44
Witrogen, total (mg/L as N)	1	.62	.62	.62	-17
Phosphorus, total (mg/L as P)	1	.04	.04	.04	
Sediment, suspended (mg/L)	4	72.00	425.00	1420.00	663.57

	2.60	DISSOLVED	
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	211	10.00	10.00
Arsenic (µg/L)	0 1	1.00	1.00
Beryllium (µg/L)	10.02	.00	.00
Boron (µg/L)	1	90.00	90.00
Cadmium (µg/L)	1	.00	.00
Chromium (µg/L)	0.0.1	.00	.00
Copper (µg/L)	0.074	3.00	3.00
Iron (µg/L)	1	30.00	30.00
Lead (µg/L)	0.001	.00	.00
Lithium (µg/L)	1	70.00	70.00
Manganese (µg/L)	1	20.00	20.00
Mercury (µg/L)	1	.20	.20
Molybdenum (µg/L)	1 1	2.00	2.00
Nickel (µg/L)	0.021	.00	.00
Selenium (µg/L)	0.01	1.00	1.00
Zinc (µg/L)	1	10.00	10.00
Vanadium (µg/L)	1	.40	.40

	SIMPLE RE	GRESSION		MULTIPLE REGRESSION						
sion	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	coeffici	Partial regression coefficient		Standard error of		
stant	cient	mination	estimate	constant	Q	K	mination	estimate		
P1-25	10120	_U_	48	krayb	8 2 (6	Contractor	mada tanén.	Pincherge.		
300002	67.22	100	254	194 - 474		Tors to drawn	a cytiky nichody.	Specific		
11 Mary 1	04.75	- 129		198 Tr. 200	100		311	estau) Bg		
0.0	610	207		6.0			(00h) se	Toposte tui		
	90 10			04 - 05 TO-			(0.579	Factor danger		
	05.44		444	- 00 - 00		1.1	or payloss.	Or Los Tables		
	00.00		- TO	50 Ft		(10992)	d) paylons	b , maggac		
192	01.30				3 22 60	(Sat) 2000	D. GDRENETS	todytayra c. 191		
2	00.20		707	54751		1125) howledest	1 . No ra- <u>18</u> 0		
CONTS I	98.20		- 45			(4/827	bevingsib-	an spangeli		
1 25.20	90.0		145	06-1		1973	al heviosal	Sed van Tags		
0	56 TF			401-71			(300000	ig) autge		
	94			100		227	PA HOREGIA	March 1515		
	66.70	11				(1) FREET.	bsv.loasie .	Mary and the Party		
362-567	777.4	10	A C	40.44			(4) Sug- 41	Bulloyda's		
				-			10/201	all wood and		
100 miles	00.0	-2		Dark Hill		(1) (1) (1) (1)) pakadasa	S-fracety trans		
1966				44.44		1-1-1	baylosado.	(ST 10 10 10 10 10 10 10 10 10 10 10 10 10		
	100					14 (20)	Pak 1-00 5-50	/ BOXXOPIN		
4	200					641	m) bayler.	B . MONTES		
501423				10 Table		politica.	ED PSDITES	Javinia is		
0					49 10	A) 800) 122	en registration	rester Tim		
	20.00				THE RESERVE	1/200	and a state of the co	18850235E		
	91				-100	17397 354	es olusion	1000000000		
	01.2		44	**		TAN ASSESS	Charles (1977)	alegorates		
					**	45 AM 228	m) Lagoran	Haras Cabilla		
0	00.22			40.00		(4/20)	Ne briefings.	Lead Impac		

¹ Insufficient samples to develop regressions.

Sample	Minimum value	Maximum value	
0		0.	
0	1.50	- A 100	
0	1.00		
0	08.095	The 1871 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0	90.00	6 53:30	
0	10.00		
0			
0	- 100 dt . 100	20 to 4 to 100	
0	400,00	P-12 (11) (16)	
0		4.30	
0	2.00	19 60 D	
0		7	
0	Electrical Section 1	W . 100 CA	
0	5.000	20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	
0			

Table 1.--Statistical summary of data for each station--Continued

Station No. (USGS): 06307530

Station

name: Bull Creek near Birney, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	2	2.00	8.00	14.00	8.49
Specific conductance (umho/cm)	5	170.00	425.00	680.00	360.62
pH (units)	2	7.50	7.95	8.40	.64
Temperature (°C)	5	.00	.00	.00	.00
Turbidity (JTU)	5	30.00	35.00	40.00	7.07
Oxygen, dissolved (mg/L)	5	10.60	11.40	12.20	1.13
Oxygen, dissolved (percent)	5	82.00	88.00	94.00	8.49
Biochemical oxygen demand (mg/L)	5	5.60	6.95	8.30	1.91
Calcium, dissolved (mg/L)	5	13.00	30.50	48.00	24.75
Magnesium, dissolved (mg/L)	5	6.70	25.85	45.00	27.08
Sodium, dissolved (mg/L)	5	7.50	39.65	72.00	45.75
Sodium (percent)	5	19.00	26.00	33.00	9.90
Sodium-adsorption ratio	5	.40	1.10	1.80	.99
Potassium, dissolved (mg/L)	2	7.40	8.65	9.90	1.77
Bicarbonate (mg/L)	2	71.00	145.50	00.05	105.36
Carbonate (mg/L)	2	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	5	26.00	128.00	230.00	144.25
Chloride, dissolved (mg/L)	5	1.70	3.40	5.10	2.40
Fluoride, dissolved (mg/L)	2	.10	.20	.30	.14
Silica, dissolved (mg/L)	2	4.70	6.60	8.50	2.69
Dissolved solids, calculated (mg/L)	5	102.00	315.00	528.00	301.23
Nitrogen, NO2+NO3 total (mg/L as N)	2	.10	.23	.36	.18
Nitrogen, ammonia total (mg/L as N)	5	.04	.06	.07	.02
Nitrogen, organic total (mg/L as N)	5	.95	1.03	1.10	.11
Nitrogen, total (mg/L as N)	2	1.30	1.35	1.40	.07
Phosphorus, total (mg/L as P)	2	.07	.16	.24	.12
Sediment, suspended (mg/L)	2	28.00	39.00	50.00	15.56

	116	DISSOLVED	
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	0	The second	0 0 10 00
Arsenic (µg/L)	0	11.00	
Beryllium (µg/L)	0		
Boron (µg/L)	2	100.00	190.00
Cadmium (µg/L)	0	- to 1	10.00
Chromium (µg/L)	0		T
Copper (µg/L)	0		B 13.550
Iron (µg/L)	5	90.00	90.00
Lead (ug/L)	0		4
Lithium (µg/L)	0		0 20.00
Manganese (µg/L)	0	- 1773 MID	2 25.00
Mercury (µg/L)	0		1000
Molybdenum (µg/L)	0	1 1.18	0
Nickel (µg/L)	0		4 .
Selenium (µg/L)	0		
Zinc (µg/L)	0		2. LG • 100
Vanadium (µg/L)	0	** **	

		DATE TATE	ESCRIPTIVE	REGRESSIO	ON SUMMARY1					
	SIMPLE RE	GRESSION		MULTIPLE REGRESSION						
Regres- sion con- stant	Regres- sion coeffi- cient	Coeffi- cient of deter- mination	Standard error of estimate	Regres- sion constant	Partial reg	ression ent K	Coeffi- cient of deter- mination	Standard error of estimate		
48711	0.075	-	-0 X	81.0		(2,3)	na kon tao	No radio M		
1000015	20.55	HILL STATE	PROFIE .	88. PISH-		(as \animat	epark and the			
1.77	00.55	7 7		00.8		France Theorems 1	-			
0.0275	20.75		GE	00	79 · · · · · · · · · · · · · · · · · · ·		f (1998) - 1 00			
TROPEST :	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	994	-46	0.00		007.00	-90 40			
1.4755	0.5-77	79.0-0		00.25		(.75)	as, he wilden	h manager		
1.8775	200.75	3.40	. 52 00	0.6.70%	- 6	Chronic Co.	of Next See	-		
78.55	X 02.75	200		9841	4 31	atin I forest to	100 miles 100 mi	alescotta.		
20. 1. 1. 100	01.70	5. 10-50	12 1 10 1 Av	411.48		1.177	have (all) is			
The state of the s	- 400		Staff	The Marie Am	Total Control	1.3 Visite 1	eavious da			
150 CT 154	00.00		900 3	In all the		7	A Transference	N mark to		
1000	0.000		SEE TO SEE	91.40 Mm	The State of the s		Calculation of	Settledes (e		
W#55	- C			Bar Eller			in autologic	Same and the same		
10 mm	1 200 mm t		43 31 75	100 a Constitution	4.00	4.3 Sept. 1	av I or to A	archael Tra		
D	10000	W. Company	ERE 35 10	OF THE PARTY			7.11.000	San		
35-	20.00			004			135	Jacobilles)		
(1) · (1) · (1)	000 mm o	Di HAI	1811 DUM	90,00000	To State of the	40 Tho)	Law Colonia	- 6.7 x 10.74		
1000	100000	7 750	H. Cross	47.64		- (1) (7)	hers de mar	eb Property		
100	02.5-	120 746		E		(11)	be tree really	Abulable T		
2772	0.0.70	1275		De		1.7	bey Swell	- ABATTA		
36 4 T	00.00	er of the		LO 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3025 (2011)	Superior a	5 . 5527 Ta. 1	Part of the		
1000		- 1 A-0		110 - 33 4-	3 11 50 1 62	1 (0) (0)	- Geserotes	mana katang		
	51	1 3 May 1		10		J. sept. Treasur	r Shrisina	035353474		
200	- 10 mm			oli.	Variable day.	Name atto	The state of the state of	arrago do tas		
	490			48 - 17 (17 1) -	1000	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	end distributed	res provided in		
	C. 70	-23 TELA	333	50-0000	1000 to 1000 t	Pro- California and	Android tran	TOTAL STREET		
			190 400							

¹ Insufficient samples to develop regressions.

	101	TAL RECOVERA	IDLE	
Sample size		Minimum value	Maximum value	
0		Attellion	\$740.00	
1		3.00	3.00	
1		10.00	10.00	
0		00-08/20		
1		50.00	20.00	
1		10.00	10.00	
1		70.00	70.00	
1		1600.00	1600.00	
. 1		100.00	100.00	
1		.00	.00	
1		60.00	60.00	
1		.00	.00	
1		.00	.00	
1		50.00	50.00	
1		.00	.00	
0		0.0 4.0 5 0 5	E 110.07	
		00		

Table 1.--Statistical summary of data for each station--Continued

Station Station No. (USGS): 06307560 name: East Trail Creek near Otter, MT

Variable	Sample size	Minimum	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	9	0.10	6.15	36.00	11.63
Specific conductance (µmho/cm)	8.	1219.00	3459.25	7119.99	2105.97
pH (units)	8	8.00	8.20	8.50	.17
Temperature (°C)	9	- 00	5.94	18.00	7.50
Turbidity (JTU)	7	3.00	56.71	310.00	112.96
Oxygen, dissolved (mg/L)	6	3.40	6.93	10.20	2.78
Oxygen, dissolved (percent)	6	30.00	58.67	86.00	21.87
Biochemical oxygen demand (mg/L)	4	1.40	3.22	5.30	2.13
Calcium, dissolved (mg/L)	7	50.00	133.43	550.00	58.21
Magnesium, dissolved (mg/L)	7	57.00	212.43	450.00	146.33
Sodium, dissolved (mg/L)	7	120.00	460.00	990.00	321.87
Sodium (percent)	7	36.00	43.29	50.00	4.35
Sodium-adsorption ratio	7	2.60	5.30	9.20	2.42
Potassium, dissolved (mg/L)	7	7.50	10.51	16.00	3.22
Bicarbonate (mg/L)	7	140.00	398.29	660.00	199.64
Carbonate (mg/L)	7	.00	.14	1.00	.38
Sulfate, dissolved (mg/L)	7	480.00	1787.14	3400.00	1146.37
Chloride, dissolved (mg/L)	7	3.90	11.66	21.00	6.95
Fluoride, dissolved (mg/L)	7	.10	.21	.30	.07
Silica, dissolved (mg/L)	7	.80	4.89	8.40	2.89
Dissolved solids, calculated (mg/	I.) 7	793.00	2817.57	5330.00	1758.89
Nitrogen, NO2+NO3 total (mg/L as		.01	.66	4.00	1.48
Nitrogen, ammonia total (mg/L as	N) 7	.01	.06	.12	.04
Nitrogen, organic total (mg/L as		.46	.81	1.40	.33
Nitrogen, total (mg/L as N)	7	.54	1.53	5.50	1.77
Phosphorus, total (mg/L as P)	7	.02	.11	.28	.08
Sediment, suspended (mg/L)	9	3.00	91.11	454.00	138.96

	DISSOLVED							
Variable	Sample size	Minimum value	Maximum value					
Aluminum (µg/L)	3	20.00	20.00					
Arsenic (µg/L)	3	1.00	1.00					
Beryllium (µg/L)	3	.00	.00					
Boron (µg/L)	7	90.00	220.00					
Cadmium (µg/L)	3	.00	2.00					
Chromium (µg/L)	3	.00	20.00					
Copper (µg/L)	3	.00	6.00					
Iron (µg/L)	7	40.00	240.00					
Lead (µg/L)	3	.00	5.00					
	3	40.00	190.00					
	3	100.00	650.00					
Mercury (µg/L)	3 3	.00	.00					
Molybdenum (µg/L)		1.00	3.00					
Nickel (µg/L)	3	.00	10.00					
Selenium (µg/L)	3	1.00	2.00					
Zinc (µg/L)	3	20.00	30.00					
Vanadium (µg/L)	3	.00	.00					

	35	IL STAITSTIM	ATT IN SOME	REGRESSIO	ON SUMMARY				
SIMPLE REGRESSION				MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-		Regres-	Partial re		Coeffi- cient of deter-	Standard error o	
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimat	
0 O	100			do. u	2			Marine Filo	
Q K		.277	1930 .153			September 1	.301	.167	
							1895557		
-2.24 Q	8.70	.980*	17.5	-8.43	8.84*	.00148	.981* .466	19.2	
K		.310	20.3				.431	21.3	
K		.205	2.33				.236	3.23	
1/ 5 K	0610	.445	47.5	15.7	0.000		.485	51.2	
-14.5 K	.0640	.975*	25.1	-15.7	.0669	.0642*	.975*	28.1	
-34.9 K	.140	.958*	71.9	-10.6	-1.39	.135*	.961*	78.3	
45.1 Q	273	.653*	2.80	41.1	183	.00097	.834*	2.17	
1.72 K	.00102	.917*			0303	.00093*	·936*	.748	
5.63 K 94.5 K	.00138	.933* .939*	.910 54.2	5.22	.0231 -2.46	.00145*	.940*	.970	
K K	.0000	.207	.369	137	-2.40	.0781*	.957*	51.0	
38.6 K	.493	.943*	300	155	-6.63	.473*	.244	.402 324	
1.01 K	.00300	.952*	1.67	.453	.0317	.00310*	.947* .954*	1.82	
Q	.00300	.0628	.0732	.433	.0317	.00310%	.0643	.0818	
Q		.263	2.71				.274	3.01	
124 K	.759	.950*	429	298	-9.95	.729*	.954*	461	
111 0	.114	.978*	.238	338	.119*	.00005	.983*	.234	
Q		.420	.0353			.00005	.446	.0386	
Õ		.562	.240		*		.730	.211	
.611 Q	.135	.960*	.390	.0860	.147*	.00013	.978*	.323	
.0643 Q	.00632	.915*	.0271	.0536	.00656*	.00000	.918*	.0298	
15.7 Q	12.0	.933*	41.2	8.00	12.2*	.00190	.934*	44.9	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

0 1	***	M 1
Sample	Minimum value	Maximum value
1	1700.00	1700.00
1	2.00	2.00
1	.00	.00
0	27.25.	
1	1.00	1.00
1	10.00	10.00
1	3.00	3.00
1	790.00	790.00
1	6.00	6.00
1	40.00	40.00
1	130.00	130.00
1	.00	.00
1	6.00	6.00
1	3.00	3.00
1	11.00	11.00
1	20.00	20.00
	004	

Table 1. -- Statistical summary of data for each station -- Continued

Station

No. (fig. 1): 20 No. (USGS): 06307570

Station Hanging Woman Creek below name: Horse Creek near Birney, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	9	0.06	14.44	94.00	31.42
Specific conductance (umho/cm)	9	1830.00	4178.89		1577.21
pH (units)	9	7.70	8.08	3.40	.23
Temperature (°C)	9	1.00	9.22	18.00	6.72
Turbidity (JTU)	9	3.00	38.67	550.00	69.90
Oxygen, dissolved (mg/L)	9	7.00	9.27	11.80	1.76
Oxygen, dissolved (percent)	9	79.00	90.11	117.00	11.54
Biochemical oxygen demand (mg/L)	9	1.10	2.42	6.40	1.65
Calcium, dissolved (mg/L)	9	75.00	150.67	550.00	41.54
Magnesium, dissolved (mg/L)	9	70.00	211.33	320.00	82.26
Sodium, dissolved (mg/L)	9	250.00	573.33	900.00	221.19
Sodium (percent)	9	46.00	49.33	53.00	2.60
Sodium-adsorption ratio	9	4.80	6.94	9.50	1.62
Potassium, dissolved (mg/L)	9	9.90	13.32	16.00	1.76
Bicarbonate (mg/L)	9	180.00	478.89	640.00	155.92
Carbonate (mg/L)	9	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	9	850.00	1961.11	3100.00	773.70
Chloride, dissolved (mg/L)	9	5.50	15.58	27.00	7.16
Fluoride, dissolved (mg/L)	9	.10	.59	.80	.27
Silica, dissolved (mg/L)	9	5.10	9.43	16.00	3.51
Dissolved solids, calculated (mg/L)	9	1360.00	3172.22	4750.00	1162.01
Nitrogen, NO2+NO3 total (mg/L as N)		.00	.08	. 33	.11
Nitrogen, ammonia total (mg/L as N)		.01	.09	.30	.11
Nitrogen, organic total (mg/L as N)		.21	.74	1.50	.41
Nitrogen, total (mg/L as N)	9	.45	.91	2.10	.51
Phosphorus, total (mg/L as P)	9	.02	.11	.60	.19
Sediment, suspended (mg/L)	8	5.00	121.25	609.00	202.81

	ZJ8A	DISSOLVED	144
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	5	0.00	50.00
Arsenic (µg/L)	5	1.00	4.00
Beryllium (µg/L)	5	.00	10.00
Boron (µg/L)	9	80.00	400.00
Cadmium (µg/L)	5	1.00	5.00
Chromium (µg/L)	5	.00	10.00
Copper (µg/L)	5	.00	4.00
Iron (µg/L)	9	10.00	120.00
Lead (µg/L)	5	2.00	38.00
Lithium (µg/L)	5	50.00	190.00
Manganese (µg/L)	5	50.00	320.00
Mercury (µg/L)	5	.00	.00
Molybdenum (µg/L)	5	2.00	6.00
Nickel (µg/L)	5	1.00	6.00
0 1 1 1 1 1 1 1	5	.00	2.00
Zinc (µg/L)	5	.00	30.00
Vanadium (µg/L)	5	.00	.50

		DELITAIS	ATTULIBLE	REGRESSI	ON SUMMARY				
1	SIMPLE RE	EGRESSION		MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial re		Coeffi- cient of deter-	Standard error of	
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate	
4670 Q Q	-34.2	.463* .282	1240	10-145	1300	Facul prior)	.284	.228	
7.05 Q K	2.19	.968* .272 .00747	13.4 1.61 12.3	-36.7	2.51*	.00936*	.992* .282 .0138	7.28 1.72 13.2	
1.74 Q 165 Q	.0482	.849* .557*	.726 29.6	.296	.589*	.00031	.897* .595	.659	
.0877 K 590 K	.0506	.939* .959* .249	21.7 47.9 2.41	37.5 14.8 40.6	526 217 .0744*	.0434* .134* .00183*	.961* .960*	18.7	
2.78 K 14.0 Q	.00100	.942* .661*	1.09	2.45 12.1	.00453	.00106*	.684* .946* .730*	1.69 .436 1.05	
541 0	-4.33	.762*	81.4	592	-4.70×	0109	.768*	86.7	
	1000								
-53.3 K 1.98 K	.482	.966* .514*	153 5.33	-55.6	.0317	.482*	.966* .576	166 5.38	
.694 Q	00729	.713* .254	.155 3.24	.710	00741*	.00000	.714* .261	.168 3.49	
171 K .0395 Q	.718	.950* .564*	.0805 .0994	453	-3.96	.665*	.957* .568	.0866 .104	
.594 Q .690 Q	.01011	.588* .860*	.284	232 .0590	.0161*	.00018*	.832* .955*	.196	
.0271 Q 28.2 K	.00581 5.77	.963* .889*	.0382 73.1	0729 -253	.00654* 7.72*	.00002	.981* .978*	.0298	

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable independent variable Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 Asterisk denotes that partial regression coefficient is significant at α = 0.05

Comple	Minimum	Maximum
Sample	value	value
1	2000.00	2000.00
1	9.00	9.00
. 1	.00	.00
0		
1	2.00	5.00
1	10.00	10.00
1	16.00	16.00
1	13000.00	13000.00
1	26.00	26.00
1	50.00	50.00
1	600.00	600.00
1	.00	.00
0		
1	32.00	32.00
1	4.00	4.00
1	70.00	70.00

Table 1. -- Statistical summary of data for each station -- Continued

No. (fig. 1): 21 No. (USGS): 06307600

Station

name: Hanging Woman Creek near Birney, MT

Variable	Sample	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	48	0.56	19.16	359.00	57.75
Specific conductance (µmho/cm)	47	240.00	2378.19	4220.00	745.40
pH (units)	47	7.40	8.12	8.50	.21
Temperature (°C)	48	.00	8.95	25.00	8.33
Turbidity (JTU)	46	5.00	47.04	400.00	86.77
Oxygen, dissolved (mg/L)	47	5.10	9.37	13.20	2.23
Oxygen, dissolved (percent)	47	60.90	87.84	120.00	11.99
Biochemical oxygen demand (mg/L)	46	.00	2.37	10.30	2.27
Calcium, dissolved (mg/L)	46	27.00	100.50	150.00	26.13
Magnesium, dissolved (mg/L)	47	11.00	111.81	210.00	37.76
Sodium, dissolved (mg/L)	46	17.00	299.76	580.00	108.96
Sodium (percent)	46	23.00	46.22	58.00	4.95
Sodium-adsorption ratio	46	.70	4.77	7.20	1.26
Potassium, dissolved (mg/L)	46	7.50	13.96	19.00	2.52
Bicarbonate (mg/L)	47	89.00	536.02	669.00	154.79
Carbonate (mg/L)	47	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	47	57.00	876.53	1900.00	340.84
Chloride, dissolved (mg/L)	47	2.50	10.92	19.00	3.71
Fluoride, dissolved (mg/L)	47	.10	.89	1.30	.32
Silica, dissolved (mg/L)	46	6.70	14.98	23.00	4.77
Dissolved solids, calculated (mg/L)	46	176.00	1696.41	3160.00	567.71
Nitrogen, NO2+NO3 total (mg/L as N)	47	.00	.12	.74	.14
Nitrogen, ammonia total (mg/L as N)	47	.00	.05	.49	.08
Nitrogen, organic total (mg/L as N)	47	.14	.75	3.70	.70
Nitrogen, total (mg/L as N)	47	.18	.92	3.70	.77
Phosphorus, total (mg/L as P)	46	.00	.10	.78	.15
Sediment, suspended (mg/L)	47	9.00	91.72	566.00	114.15

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	11	0.00	40.00			
Arsenic (µg/L)	11	.00	2.00			
Beryllium (µg/L)	11	.00	10.00			
Boron (µg/L)	47	110.00	820.00			
Cadmium (µg/L)	11	.00	35.00			
Chromium (µg/L)	11	.00	20.00			
Copper (µg/L)	11	.00	4.00			
Iron (µg/L)	46	.00	1500.00			
Lead (µg/L)	11	.00	10.00			
Lithium (µg/L)	11	50.00	120.00			
Manganese (µg/L)	11	10.00	160.00			
Mercury (µg/L)	11	.00	.10			
Molybdenum (µg/L)	11	2.00	5.00			
Nickel (µg/L)	11	.00	8.00			
Selenium (µg/L)	10	.00	1.00			
Zinc (µg/L)	11	.00	20.00			
Vanadium (µg/L)	11	.00	5.00			

RECRESSION	CIMMADV

SIMPLE REGRESSION				MULTIF	LE REGRESSI	ON		
Regres- sion con-		Coeffi- cient of deter- mination ²	error of	Regres- sion constant	coeffic	egression cient ³	Coeffi- cient of deter- mination ²	Standard error of estimate
stant	cient	mination-	estimate	constant	Q	K	minacion	estimate
		157. VIII						
2480 Q 7.82 K	-5.88 .00012	.198* .195*	.191	7.83	00008	.00012*	.196*	.193
29.3 Q K	1.03	.455* .0434 .0668	64.8 2.20 11.7	98.8	.863*	0281*	.503* .0916	62.6 2.17 11.8
1.76 Q 22.8 K -1.64 K	.0643 .0327 .0477	.464* .890* .887*	1.70 8.76 12.8	4.84 17.7 -2.17	.0403* .0521* .00545	00119* .0345* .0479*	.548* .900* .887*	1.58 8.44 13.0
-35.7 K 35.4 K 1.04 K 8.03 K	.141 .00457 .00157 .00250	.954* .483* .883*	23.7 3.60 .434 1.70	-28.6 37.9 1.33 8.66	0732 0265* 00294* 00657	.139* .00368* .00147* .00278*	.955* .558* .898*	23.6 3.37 .412 1.68
158 K	.159	.587*	101	255	-1.01*	.125*	.696*	87.3
-154 K 1.94 K .937 Q 15.6 Q -64.4 K .0899 Q .159 K 1.55 K .821 Q .0732 Q	.433 .00378 -00271 0360 .741 .00160 00004 00034 .00578 .00146	 	110 2.44 .280 4.35 103 .113 .0779 .658 .710	-232 2.51 .693 15.7 -85.7 .0463 .171 1.31 1.56 .207 -5.30	.00593 00593 00213* 0362* .219 .00170* 00013 .00244 .00402 .00114* 1.59*	.460* .0358* .0001000005 .749* .0000200005*000260003000005 .0292	.912* .582* .277* .185* .968* .401* .162* .161* .244* .343*	103 2.45 .275 4.40 103 .114 .0786 .654 .689

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Maximum value	Minimum value	Sample
2100.00	90.00	. 8
4.00	.00	13
10.00	.00	12
/-		0
20.00	10.00	13
14.00	.00	13
20.00	.00	13
5700.00	350.00	13
100.00	100.00	13
120.00	20.00	13
390.00	40.00	13
.40	.00	13
4.00	1.00	13
50.00	.00	13
2.00	.00	13
60.00	10.00	8

Table 1. -- Statistical summary of data for each station -- Continued

Station No. (USGS): 06307610

Station name:

Tongue River below Hanging Woman Creek, near Birney, MT

Variable Market	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	48	46.00	626.73	4150.00	834.86
Specific conductance (wmho/cm)	48	280.00	728.52	1310.00	232.73
pH (units)	48	7.70	8.29	8.70	.24
Temperature (°C)	48	.00	9.35	22.50	8.36
Turbidity (JTU)	41	1.00	13.88	85.00	19.39
Oxygen, dissolved (mg/L)	48	7.00	9.99	12.80	1.88
Oxygen, dissolved (percent)	48	69.00	94.43	107.00	7.06
Biochemical oxygen demand (mg/L)	36	.10	1.71	8.00	1.37
Calcium, dissolved (mg/L)	45	30.00	58.89	86.00	10.88
Magnesium, dissolved (mg/L)	48	13.00	40.87	73.00	14.58
Sodium, dissolved (mg/L)	45	13.00	38.69	110.00	17.48
Sodium (percent)	45	16.00	20.36	32.00	2.85
Sodium-adsorption ratio	45	.50	.92	2.20	.30
Potassium, dissolved (mg/L)	45	1.60	4.10	7.30	1.32
Bicarbonate (mg/L)	47	120.00	246.98	376.00	72.65
Carbonate (mg/L)	44	.00	1.11	10.00	2.53
Sulfate, dissolved (mg/L)	46	47.00	185.70	420.00	76.60
Chloride, dissolved (mg/L)	46	1.20	3.43	7.20	1.24
Fluoride, dissolved (mg/L)	46	.10	.28	.50	.09
Silica, dissolved (mg/L)	44	.50	4.85	9.30	1.99
Dissolved solids, calculated (mg/L)	44	176.00	456.68	896.00	163.24
Nitrogen, NO2+NO3 total (mg/L as N)		.00	.09	.75	.13
Nitrogen, ammonia total (mg/L as N)		.00	.03	.26	.04
Nitrogen, organic total (mg/L as N)		.15	.48	2.40	.38
Nitrogen, total (mg/L as N)	45	.23	.60	3.30	.48
Phosphorus, total (mg/L as P)	45	.00	.05	.38	.07
Sediment, suspended (mg/L)	41	2.00	47.32	292.00	64.06

	DISSOLVED					
Variable	Sample size		Maximum value			
Aluminum (µg/L)	13	0.00	120.00			
Arsenic (µg/L)	13	.00	2.00			
Beryllium (µg/L)	13	.00	10.00			
Boron (µg/L)	44	10.00	150.00			
Cadmium (µg/L)	13	.00	2.00			
Chromium (µg/L)	13	.00	10.00			
Copper (µg/L)	14	1.00	4.00			
Iron (µg/L)	47	.00	260.00			
Lead (µg/L)	14	.00	20.00			
Lithium (µg/L)	11	7.00	30.00			
Manganese (µg/L)	18	.00	120.00			
Mercury (µg/L)	12	.00	.10			
Molybdenum (µg/L)	11	.00	2.00			
Nickel (µg/L)	13	.00	9.00			
Selenium (µg/L)	14	.00	2.00			
Zinc (µg/L)	14	.00	1900.00			
Vanadium (µg/L)	13	.50	9.00			

		SURE LYAIR	12179.4066	REGRESSI	ON SUMMARY				
	SIMPLE RE	GRESSION		MULTIPLE REGRESSION					
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant	Partial r coeffi		Coeffi- cient of deter- mination ²	Standard error of estimate	
						A.V			
831 Q 8.34 Q	167 00009	.370* .108*	185	977313	*	Core (a.e.	.114	.230	
. 77		16 .55.4	1.1	14. 70	12.55			1078157	
3.03 Q 5.43 K	.0164	.586* .594*	12.6 1.20 6.92	4.65 5.19	.0161*	00196 .00647*	.586* .595*	12.8 1.21 6.91	
K		.0995	1.30				.0995	1.32	
10.6 K	.0668	.867*		12.5	00083	.0650*	.868*	6.22	
-3.89 K	.0613	.954*		-3.11	00035	.0605*	.955*	3.14	
-10.9 K	.0687	.859*	6.57	-12.3	.00064	.0701*	.860*	6.63	
15.0 K	.00741	.377*	2.25	15.4	00015	.00707*	.378*	2.27	
.121 K	.00111	.770*	.143	.116	.00000	.00111*	.770×	.145	
1.29 K	.00391	.488*		1.47	00008	.00373*	.490*	.953	
27.5 K	.302	.942*	17.5	35.3	00350	.295*	.943*	17.5	
-1.28 K	.00333	.0995*	2.43	99.	36		.101	2.45	
-45.3 K	.317	.950*	17.2	-47.6	.00100	.320*	.950*	17.4	
.233 K	.00441	.702*	.678	209	.00020	.00485*	.714×	.671	
.0648 K	.00030	.620*	.0556	.0996	00002	.00027*	.634*	.0552	
4.12 Q	.00103	.188*	1.86	4.41	.00097*	00036	.189*	1.88	
-30.4 K	.676	.971*	27.4	-29.8	00027	.675*	.971*	27.7	
Q		.00337	.134				.00354	.135	
X K		.00157	.0468				.00166	.0474	
.386 Q	.00015	.118*	.357			No. 1/sept-fa	.127	.359	
.0282 Q	00001	.0839	.465	.0968	.00002	00000	.0896	.468	
.0282 Q	.00004	.210*	.0630 47.9	7.48	.0494*	00008	.259*	.0617	
15.8 Q	.0478	.454*	47.9	7.40	·0494*	.0100	.455*	48.5	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the $^{2}\text{Coefficient}$ of determination, is significant at =0.05 $^{2}\text{Asterisk}$ denotes that partial regression coefficient is significant at =0.05

	TAL RECOVERAB	
Sample size	Minimum value	Maximum value
14	30.00	600.00
11	.00	2.00
11	.00	10.00
3	140.00	200.00
11	4.00	10.00
11	.00	20.00
14	.00	20.00
11	50.00	3900.00
14	30.00	100.00
11	9.00	40.00
11	10.00	110.00
14	.00	.30
11	.00	6.00
11	6.00	50.00
14	.00	4.00
14	10.00	280.00

Table 1. -- Statistical summary of data for each station -- Continued

Station Station Station No. (fig. 1): 23 No. (USGS): 06307615 Station name: Cook Creek near Birney, MT

	Sample size	Minimum value	Mean	Maximum value	Standard deviation	
Discharge, instantaneous (ft ³ /s)	34	0.10	2.66	43.00	7.74	
Specific conductance (µmho/cm)	34	270.00	1761.76	2250.00	360.95	
oH (units)	34	7.70	8.13	8.60	.25	
Temperature (°C)	34	.00	7.76	21.00	7.50	
Turbidity (JTU)	34	.00	78.56	2400.00	410.38	
Oxygen, dissolved (mg/L)	34	5.10	10.15	13.80	2.32	
Oxygen, dissolved (percent)	34	54.00	92.28	117.00	12.82	
Biochemical oxygen demand (mg/L)	34	.20	1.63	7.40	1.55	
Calcium, dissolved (mg/L)	33	19.00	78.58	97.00	13.87	
Magnesium, dissolved (mg/L)	34	11.00	106.15	130.00	23.06	
Sodium, dissolved (mg/L)	33	16.00	173.39	210.00	39.15	
Sodium (percent)	33	26.00	36.39	40.00	2.89	
Sodium-adsorption ratio	33	.70	2.96	3.50	.53	
Potassium, dissolved (mg/L)	33	6.60	12.99	16.00	1.74	
Bicarbonate (mg/L)	34	92.00	615.12	720.00	129.82	
Carbonate (mg/L)	34	.00	1.65	30.00	6.39	
Sulfate, dissolved (mg/L)	34	46.00	490.47	670.00	105.96	
Chloride, dissolved (mg/L)	34	2.30	6.62	11.00	1.84	
Pluoride, dissolved (mg/L)	34	.10	1.10	1.40	.23	
Silica, dissolved (mg/L)	33	5.60	21.16	53.00	7.58	
Dissolved solids, calculated (mg/L)	33	152.00	1195.70	1470.00	245.82	
Nitrogen, NO2+NO3 total (mg/L as N)	34	.00	.46	1.70	.48	
Nitrogen, ammonia total (mg/L as N)	34	.00	.03	.19	.03	
Nitrogen, organic total (mg/L as N)	34	.02	.59	3.60	.63	
Nitrogen, total (mg/L as N)	34	.13	1.08	3.80	.75	
Phosphorus, total (mg/L as P)	34	.00	.08	1.50	.25	
Sediment, suspended (mg/L)	34	5.00	135.56	3469.99	589.88	

	DISSOLVED					
Variable	Sample	Minimum value	Maximum value			
Aluminum (µg/L)	7	0.00	40.00			
Arsenic (µg/L)	7	1.00	3.00			
Beryllium (µg/L)	7	.00	10.00			
Boron (µg/L)	34	100.00	250.00			
Cadmium (µg/L)	7	.00	30.00			
Chromium (µg/L)	7	.00	20.00			
Copper (µg/L)	7	.00	3.00			
Iron (µg/L)	33	.00	290.00			
Lead (µg/L)	7	.00	9.00			
Lithium (µg/L)	7	80.00	120.00			
Manganese (µg/L)	7	40.00	160.00			
Mercury (µg/L)	7	.00	.10			
Molybdenum (µg/L)	7	2.00	4.00			
Nickel (µg/L)	7	2.00	7.00			
Selenium (µg/L)	6	.00	4.00			
Zinc (µg/L)	7	4.00	10.00			
Vanadium (µg/L)	7	.00	4.00			

	100	A PARTIES	PARTIES.	REGRESSI	ON SUMMARY			
	SIMPLE RE	GRESSION		MULTIPLE REGRESSION				
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial re		Coeffi- cient of deter-	Standard error of
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
1850 Q	-32.3	.481*	264					
7.47 K	.00038	.293*	.214	7.53	00226	.00034*	.296*	.217
-51.8 Q	49.1	.858*	157	-852	63.1*	.433*	.933*	110
Q		.0251	2.33				.0270	2.36
K		.0146	12.9				.0147	13.1
1.20 Q	.162	.654*	.926	4.27	.108*	00166*	.732*	.829
15.1 K	.0362	.892*	4.63	15.9	0272	.0358*	.892*	4.71
1.45 K	.0594	.866*	8.58	18.3	583*	.0508*	.886*	8.05
7.36 K	.0948	.766*	19.2	49.4	-1.44*	.0730*	.809×	17.7
37.0 Q	212	.332*	2.40	32.8	140	.00227	.374*	2.37
.878 K	.00119	.657*	.316	1.44	0191	.00090*	.698*	.301
7.53 K	.00312	.419*	1.35	7.66	00435	.00305*	.419*	1.37
44.7 K	.324	.811*	57.4	218	-6.01*	.234*	.877×	46.9
0		.00433	6.47				.00989	6.56
20.2 K	.267	.827×	44.8	31.0	373	.261*	.827*	45.5
2.31 K	.00245	.231*	1.63	2.26	.00197	.00248*	.231*	1.66
.170 K	.00053	.696*	.128	.336	00575	.00044*	.716*	.126
4.64 K	.00943	.202*	6.88	10.1	185	.00663	.221*	6.91
67.3 K	.644	.898*	79.9	222	-5.31*	.564*	.912*	75.1
K	.044	.111	.455		3.31%	* 704%	.133	.457
K		.00582	.0350				.0120	
.403 Q	.0696	.723*	.338	.308	.0713*	.00005		.0354
.919 O	.0611	.398*	.591	301	.0825*		.724×	.343
00050 Q	.0313	.906*	.0792	325	.0370*	.00066	.451*	.573
-51.2 Q			231	-1200	90.5*	.00018*	.938*	.0651
Q	70.3	.851*	231	-1200	90.3%	.623×	.927*	165

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the $^{2}\text{Coefficient}$ of determination, is significant at α = 0.05 $^{2}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

TOTAL RECOVERABLE							
Sample size	Minimum value	Maximum value					
7	50.00	230.00					
12	.00	3.00					
12	.00	10.00					
0							
12	.00	30.00					
12	.00	28.00					
12	.00	110.00					
12	170.00	2500.00					
12	100.00	100.00					
12	10.00	150.00					
12	30.00	140.00					
12	.00	.20					
12	.00	4.00					
12	.00	50.00					
12	.00	3.00					
7	.00	70.00					
	55. **						

Table 1. -- Statistical summary of data for each station -- Continued

Station
No. (USGS): 06307665

Station
name: Otter Creek near Otter, MT

	Cample	Minimum		Manimum	Chandand
Variable	Sample	value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	9	0.01	0.36	1.60	0.53
Specific conductance (µmho/cm)	9	2070.00	5543.33	6650.00	1436.24
oH (units)	9	7.80	8.09	8.60	.25
Temperature (°C)	9	.00	11.22	26.50	8.76
Turbidity (JTU)	9	1.00	26.11	220.00	72.72
Oxygen, dissolved (mg/L)	4	5.60	10.21	17.00	2.62
Oxygen, dissolved (percent)	9	51.00	108.00	193.00	40.35
Biochemical oxygen demand (mg/L)	9	.70	1.39	3.40	.86
Calcium, dissolved (mg/L)	9	79.00	176.56	230.00	49.99
Magnesium, dissolved (mg/L)	9	120.00	366.67	470.00	105.95
Sodium, dissolved (mg/L)	9	250.00	717.78	990.00	218.45
Sodium (percent)	-9	37.00	44.00	48.00	3.32
Sodium-adsorption ratio	9	4.10	6.98	8.90	1.48
Potassium, dissolved (mg/L)	9	10.00	19.22	25.00	5.38
Bicarbonate (mg/L)	9	270.00	604.44	760.00	141.70
Carbonate (mg/L)	9	.00	2.00	18.00	6.00
Sulfate, dissolved (mg/L)	9	920.00	2857.78	3800.00	842.94
Chloride, dissolved (mg/L)	9	5.80	20.53	27.00	6.62
Fluoride, dissolved (mg/L)	9	.30	.52	.60	.11
Silica, dissolved (mg/L)	9	4.20	9.68	17.00	4.08
Dissolved solids, calculated (mg/L)	9	1530.00	4470.00	5800.00	1252.71
Nitrogen, NO2+NO3 total (mg/L as N)	9	.00	.03	.08	.03
Nitrogen, ammonia total (mg/L as N)	9	.00	.02	.07	.02
Nitrogen, organic total (mg/L as N)	9	.06	.72	1.40	.37
Witrogen, total (mg/L as N)	9	.17	.76	1.50	. 57
Phosphorus, total (mg/L as P)	9	.00	.06	.25-	.08
Sediment, suspended (mg/L)	9	14.00	48.00	201.00	60.13

	DISSOLVED				
Variable	Sample size	Minimum value	Maximum value		
Aluminum (µg/L)	3	0.00	10.00		
Arsenic (µg/L)	3	1.00	2.00		
Beryllium (µg/L)	3	.00	10.00		
Boron (µg/L)	9	270.00	780.00		
Cadmium (µg/L)	3	2.00	3.00		
Chromium (µg/L)	3	.00	20.00		
Copper (µg/L)	3	.00	2.00		
Iron (µg/L)	9	20.00	80.00		
Lead (µg/L)	3	3.00	11.00		
Lithium (µg/L)	3	260.00	340.00		
Manganese (µg/L)	3	8.00	40.00		
Mercury (µg/L)	3	.00	.00		
Molybdenum (µg/L)	3	2.00	3.00		
Nickel (µg/L)	3	.00	3.00		
Selenium (µg/L)	3	.00	3.00		
Zinc (µg/L)	3	10.00	30.00		
Vanadium (µg/L)	3	.00	.40		

	SIMPLE RE	GRESSION		MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial regression coefficient3		Coeffi- cient of deter-	Standard error of	
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate	
Q K		.181	1440			.00008	.223	.275	
							/		
288 K K	0478	.834* .0245	33.9 3.21 43.7	299	22.1	0514* .00053 .00948	.856* .0731 .109	34.6	
4.04 K	00051	.723* .383	.499 45.0	.436	.628	00061* 0251	.856* .412	47.9 .394 48.1	
20.3 K -20.9 K	.0617	.743* .864* .313	57.7 82.1 2.83	-27.6 -62.7	-94.3* -82.5	.0770* .144*	.952* .906*	27.4 74.9	
2.04 K	.000869	.860* .448	.558	2.00	0774	.00017 .00088* .00278	.318 .861* .462	3.09 .609 4.89	
171 K	.0783	.605*	101 6.65	13000		.0869*	.638	106	
-128 K -2.32 K K	.00435	.912* .912* .348	262 6.80 .0982 3.81	-313 -3.66	-364* -2.65	.590* .00478* .00005	.964* .953* .363	184 1.73 .106 3.76	
27.2 K Q Q	.791	.899* .187 .0391 .499	.0271 .0271 .0271	-274	-594*	.887* 00001 00000	.469 .960* .364 .0888	289 .0262 .0289	
.570 Q .334 K 246 K	00005 0357	.548* .689* .727*	.287 .0535 33.6	•363 253	.0559 15.7	00007 .00006* 0380*	.602 .793* .743*	.295 .0478 35.2	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Maximum value	Minimum value	Sample size
	F-1.	0
0 0 0		0
	05.01 .	0
	11.	0
		0
	1 40.00	0
	**************************************	0
	Action that the	0
7 6 112		0
2 4 112.00		0
		0
F 15 14		0
		0
		0
1.		0

Table 1.--Statistical summary of data for each station--Continued

No. (fig. 1): 25 No. (USGS): 06307670

name: Bear Creek at Otter, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	5	0.01	15.16	53.10	22.11
Specific conductance (µmho/cm)	5	225.00	1070.00	3000.00	1111.04
pH (units)	5	7.000	7.86	8.40	.57
Temperature (°C)	5	.00	3.20	14.00	6.10
Turbidity (JTU)	5	3.00	24.60	50.00	17.20
Oxygen, dissolved (mg/L)	5	6.30	9.38	11.80	2.61
Oxygen, dissolved (percent)	5	59.00	78.62	91.00	14.18
Biochemical oxygen demand (mg/L)	4	2.40	8.92	14.00	4.43
Calcium, dissolved (mg/L)	5	21.00	55.60	160.00	58.73
Magnesium, dissolved (mg/L)	5	9.00	48.80	150.00	57.55
Sodium, dissolved (mg/L)	5	14.00	124.20	390.00	153.57
Sodium (percent)	5	24.00	38.20	49.00	9.63
Sodium-adsorption ratio	5	.60	2.48	5.30	1.05
Potassium, dissolved (mg/L)	5	5.80	10.98	18.00	4.62
Bicarbonate (mg/L)	5	69.00	554.60	584.00	208.71
Carbonate (mg/L)	5	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	5	47.00	401.40	1300.00	510.98
Chloride, dissolved (mg/L)	5	2.60	6.10	13.00	4.10
Fluoride, dissolved (mg/L)	5	.10	.30	.60	.21
Silica, dissolved (mg/L)	5	6.10	8.62	14.00	3.15
Dissolved solids, calculated (mg/L)	5	140.00	767.20	2330.00	892.18
Nitrogen, NO2+NO3 total (mg/L as N)	5	.01	.08	.16	.07
Nitrogen, ammonia total (mg/L as N)	5	.03	.06	.11	.03
Nitrogen, organic total (mg/L as N)	5	.57	1.00	1.40	.40
Nitrogen, total (mg/L as N)	5	.62	1.13	1.60	.44
Phosphorus, total (mg/L as P)	5	.05	.18	.27	.10
Sediment, suspended (mg/L)	5	27.00	61.00	92.00	25.33

	DISSOLVED						
Variable	Sample size	Minimum value	Maximum value				
Aluminum (µg/L)	0						
Arsenic (µg/L)	0						
Beryllium (µg/L)	0						
Boron (µg/L)	5	70.00	330.00				
Cadmium (µg/L)	0						
Chromium (µg/L)	0						
Copper (µg/L)	0						
Iron (µg/L)	5	80.00	160.00				
Lead (µg/L)	0						
Lithium (µg/L)	0						
Manganese (µg/L)	0						
Mercury (µg/L)	0						
Molybdenum (µg/L)	0						
Nickel (µg/L)	0						
Selenium (µg/L)	0						
Zinc (µg/L)	0						
Vanadium (µg/L)	0						

		DEPENDENCES	GISTS DED	REGRESSIC	ON SUMMARY				
	SIMPLE RE	GRESSION		MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant	Partial re		Coeffi- cient of deter- mination ²	Standar error of estimate	
stant	cient	mination-	estimate	constant	Q	K	mination-	estimati	
		.75							
8.22 Q	0238	.313 .842*	1060 .263	14.884		77.	.894	.263	
			40.0						
K K Q		.513 .642 .488	13.9 1.80 11.7				.514 .747 .527	17.0 1.86 13.8	
18.2 K	0159	.970* .983*	1.05	22.7	0754	.0210*	.999*	.247	
-6.51 K	.0517	.996* .997*	4.17	-11.0 -26.8	.164	.0565* .0535* .139*	.996* .999* .998*	5.10 2.83 10.8	
44.3 Q .784 K	402	.852* .903*	4.28	1.40	0229	1000	.863	5.05	
6.93 K	.00378	.827*	2.22			.00133*	.954* .917	.559 1.88	
26.1 K	.187	.995*	17.8	29.4	120	.186*	.995*	21.5	
-89.9 K 2.35 K .117 K 5.69 K	.459 .00350 .00017	.997* .902* .803*	33.6 1.49 .109	-125	1.30	4.74*	.999* .902 .830	23.7 1.82 .124	
-91.4 K K K	.802	.999* .280 .132	39.9 .0673 .0352	-140	1.79*	.822*	.936 .999* .341 .348	1.12 15.0 .0788 .0374	
.275 K	00009	.621 .908*	.313		A STATE OF THE REAL PROPERTY.		.659 .662 .911	.333 .362 .0426	
K		.0361	28.7				.0444	35.0	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

	Maximum value	Minimum value	Sample
(al time) mant	2.00	2.00	0
	10.00	10.00	i
	10.00	10.00	0
	10.00	10.00	1
	90.00	90.00	1
	1600.00	1600.00	1
	20.00	20.00	i
	110.00	110.00	1
	1.00	1.00	1
	50.00	50.00	1
	.00	.00	1
	10.00	10.00	0

Table 1. -- Statistical summary of data for each station -- Continued

Station Otter Creek below

No. (USGS): 06307717 name: Fifteenmile Creek near Otter, MT

Variable	Sample	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	9	0.05	13.68	76.00	24.21
Specific conductance (µmho/cm)	9	580.00	2992.22	4200.00	1023.33
pH (units)	9	7.90	8.20	8.50	.23
Temperature (°C)	9	.00	9.94	24.50	9.06
Turbidity (JTU)	9	2.00	13.56	80.00	25.29
Oxygen, dissolved (mg/L)	9	5.30	8.40	11.20	1.95
Oxygen, dissolved (percent)	9	49.00	83.11	116.00	23.59
Biochemical oxygen demand (mg/L)	9	.60	2.26	6.60	1.90
Calcium, dissolved (mg/L)	9	32.00	96.89	150.00	35.33
Magnesium, dissolved (mg/L)	9	33.00	190.33	280.00	70.75
Sodium, dissolved (mg/L)	9	60.00	366.67	580.00	145.95
Sodium (percent)	9	37.00	42.33	50.00	3.39
Sodium-adsorption ratio	9	1.80	4.84	7.20	1.42
Potassium, dissolved (mg/L)	9	9.00	17.78	26.00	5.19
Bicarbonate (mg/L)	9	140.00	561.11	720.00	181.00
Carbonate (mg/L)	9	.00	2.56	15.00	5.36
Sulfate, dissolved (mg/L)	9	230.00	1270.00	1900.00	476.55
Chloride, dissolved (mg/L)	9	3.10	14.67	27.00	7.89
fluoride, dissolved (mg/L)	9	.50	.56	.70	.21
Silica, dissolved (mg/L)	9	2.50	8.48	19.00	6.06
Dissolved solids, calculated (mg/L)	9	444.00	2246.00	3130.00	799.72
Nitrogen, NO2+NO3 total (mg/L as N)	9	.01	.11	.61	.20
Vitrogen, ammonia total (mg/L as N)	9	.00	.10	.63	.20
Mitrogen, organic total (mg/L as N)	9	.46	.81	1.40	.29
Nitrogen, total (mg/L as N)	9	.62	1.01	2.20	.48
Phosphorus, total (mg/L as P)	9	.00	.07	.32	.10
Sediment, suspended (mg/L)	9	5.00	41.44	117.00	35.77

	DISSOLVED						
Variable	Sample size	Minimum value	Maximum				
Aluminum (µg/L)	5	0.00	20.00				
Arsenic (µg/L)	5	1.00	3.00				
Beryllium (µg/L)	5 9	.00	20.00				
Boron (µg/L)		120.00	640.00				
Cadmium (µg/L)	5	1.00	4.00				
Chromium (µg/L)	5	.00	10.00				
Copper (µg/L)	5	1.00	3.00				
Iron (µg/L)	9	10.00	100.00				
Lead (µg/L)	5	2.00	28.00				
Lithium (µg/L)		30.00	160.00				
Manganese (µg/L)	5	30.00	100.00				
Mercury (µg/L)	5	.00	.10				
Molybdenum (µg/L)	5	2.00	10.00				
Nickel (µg/L)	5	.00	2.00				
Selenium (µg/L)	5	.00	1.00				
Zinc (µg/L)	5 5 5 5	.00	30.00				
Vanadium (µg/L)	5	.00	2.00				

	2	SITTE PARE TO	PETER CHORSE	REGRESSIO	N SUMMARY				
	SIMPLE RE	GRESSION		MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of			Standard Regres- Partial regression cient		Coeffi- cient of deter-	Standard error of
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate	
.07701	0.55		0	Inch		CALEFOR A	16.70k31077	an-adotti	
3640 Q K	-39.2	.854* .321	.196	V0. V095	1	(8) (400	.515	.181	
	90.77			00			100-		
.0835 Q Q Q	1.00	.909* .244 .0210	8.67 1.65 23.5	-17.3	1.19*	.00478	.915* .247	9.20	
1.44 Q	.0620	.621 _*	1.33	540	.136*	.00188	.102 .771* .416	1.13	
-12.0 K	.0680	.982*	10.7	16.5	350	.0603*	.984*	34.0	
-53.1 K	.141	.982*	22.0	-158	1.29	.169*	.989*	19.0	
34.3 K	.00265	.623*	2.40	00 Page		*107*	.665	2.48	
.741 K	.00136	.945* .360	.383	150	.0109	.00160*	.950* 3.60	.401	
682 Q K	-7.28	.954*	43.8	730	-7.79*	0131	.955* .0542	47.5	
-130 K	.466	.988*	59.8	-369	2.94	.530*	.991*	56.1	
391 K	.00541	.685*	4.27			7,73,020	.685	4.68	
Q		.315	6.45				.540 .511	.177 5.11	
-94.0 K	.781	.995*	6.28	34.3	-1.58	.747*	.996* .429	66.4	
.0127 Q	.00798	.889*	.0772	.138	.00636	00004	.896*	.0821	
.695 Q	.00908	.594*	.206	840	.0256*	.000422*	.932*	.0921	
.806 Q	.0171	.783*	. 247	.654	.0187	.00004	.784*	.270	
.0195 Q	.00372	.835*	.0453	133	.00537*	.00004	.863*	.0452	
24.0 Q	1.28	.747*	19.2	27.4	1.24	00098	.748*	20.7	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

-	LE	TAL RECOVERAB	TO
	Maximum value	Minimum value	Sample size
	200.00 3.00 5.00	200.00 3.00 5.00	1 1 1
	1.00	1.00	1 0 1
	19.00 310.00 5.00	19.00 310.00 5.00	1 1
	.00	150.00 30.00 .00	1 1
	8.00 5.00	8.00 5.00	1 1 1
	30.00	30.00	1

Table 1.--Statistical summary of data for each station--Continued

No. (fig. 1): 27

Station

No. (USGS): 06307730

Station

name: Threemile Creek near Ashland, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	2	1.81	11.90	22.00	14.28
Specific conductance (µmho/cm)	2	200.00	307.50	355.00	67.18
pH (units)	5	7.50	7.55	7.60	.07
Temperature (°C)	5	.00	1.75	3.50	2.47
Turbidity (JTU)	5	20.00	60.00	100.00	56.57
Oxygen, dissolved (mg/L)	5	10.60	10.90	11.20	.42
Oxygen, dissolved (percent)	5	86.00	87.50	89.00	2.12
Biochemical oxygen demand (mg/L)	5	10.10	10.20	10.30	.14
Calcium, dissolved (mg/L)	5	17.00	19.50	55.00	3.54
Magnesium, dissolved (mg/L)	5	8.20	9.10	10.00	1.27
Sodium, dissolved (mg/L)	2	18.00	19.00	20.00	1.41
Sodium (percent)	2	29.00	30.00	31.00	1.41
Sodium-adsorption ratio	2	.90	.90	.90	.00
Potassium, dissolved (mg/L)	. 5	7.00	7.70	8.40	.99
Bicarbonate (mg/L)	2	80.00	67.50	95.00	10.61
Carbonate (mg/L)	5	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	5	49.00	58.00	67.00	12.73
Chloride, dissolved (mg/L)	2	2.00	2.00	2.00	.00
Fluoride, dissolved (mg/L)	2	.10	.25	.40	.21
Silica, dissolved (mg/L)	5	5.10	5.65	6.20	.78
Dissolved solids, calculated (mg/L)	5	149.00	165.00	181.00	22.63
Nitrogen, NO2+NO3 total (mg/L as N)	2	.04	.05	.06	.01
Nitrogen, ammonia total (mg/L as N)	5	.01	.05	.09	.06
Nitrogen, organic total (mg/L as N)	2	1.00	1.15	1.30	.21
Nitrogen, total (mg/L as N)	2	1.20	1.25	1.30	.07
Phosphorus, total (mg/L as P)	2	.16	.26	.36	.14
Sediment, suspended (mg/L)	5	24.00	118.00	212.00	132.94

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	1	0.00	0.00			
Arsenic (µg/L)	1	4.00	4.00			
Beryllium (µg/L)	1	.00	.00			
Boron (µg/L)	5	110.00	110.00			
Cadmium (µg/L)	1	.00	.00			
Chromium (µg/L)	1	.00	.00			
Copper (µg/L)	1	8.00	8.00			
Iron (µg/L)	2	60.00	190.00			
Lead (µg/L)	1	6.00	6.00			
Lithium (µg/L)	0		1000			
Manganese (µg/L)	1	20.00	20.00			
Mercury (µg/L)	1	.00	.00			
Molybdenum (µg/L)	0	30.00	1 11.00			
Nickel (µg/L)	1	2.00	5.00			
Selenium (µg/L)	0		4 13			
Zinc (µg/L)	1	20.00	20.00			
Vanadium (µg/L)	0		2.00			

		OLIGITATE - F	PERSONALITAN	REGRESSIC	ON SUMMARY1			100		
SIMPLE REGRESSION				MULTIPLE REGRESSION						
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial reg	gression	Coeffi- cient of deter-	Standard error of		
stant	cient	mination	estimate	constant	Q	K	mination	estimat		
50.00	00225	440		10.0	81 (8)	Data ages	Tretantes	ntadacu		
30407 95		50 .5988	Sept Son	80,900.	01	Estormer.	1 2 15 13 2 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2171022		
	. 04	.1220	8.1 .125	7.69	61			3 3007		
02.45	00.00	100	41 20	00.	01 22 0		27007			
40.000.00	-00.3	E - 1920a	45 45.93	00,39.00	e113.1e	×00003	(996)	TETRICE STA		
and K	20.01	205209	8 1.22	00.2	11	737.00		CALL PROPERTY.		
14-16	90.25	1 ,000188	58- 22.4	00,55		Типова		10-300		
56464-15		19724	5 1.28	00. 1. Va	dr - 122 = (34			Transfer.		
162205	40.22	T-1 200234	CP 16.1	50,05,06	77	Server Billion	THE YOU ATE:	Limentage 1		
202218	400.220	1000	at 1 a 18	49.48	the state of the s	- 136.30	L baylonero	1 mt 25*1940		
250.00	Day on ser	9201	E84 23.0	00.08181	01-000	(*1.4.8)m/s	191/1 0 (0)(0)(0)	ans e assistant.		
119	100.00	7580a	6e 2.00.	00.39	01	7.4.8	Dinchasta	A CONTRACTOR		
70434 1	000	1000	3 457	04-2			A Catherine) , , , , , , , ,		
7.12.1	100	11111	64 4-37	02.0	The Land	047	T TO C THE DEL	4-1402		
284 2246		di - 1,9500	277 39.3	GD TWANTED	493.32	(1/8m)	SEVIORE IN	UAR SEPTEMBER		
				00.			749-7780-3-3-3-3	000 36		
92.30 50			1.0001338	00.000.00	201	100	(1/ %) 0	JTEOG **		
1,30. 8		100	11 2.26	00183	28377	AND TO	bov lowers	3357		
			V07.03	05-07-0		Deliver.	past de la	Distriction of the second		
		CONTRACTOR IN	41 A 10				Bakrosse.	AUT TOWN		
		10000	482563.0	60.09733			0 1000	1 - 1 - 1		
THE SEC.		11			40, 100, 100	00101000		001		
544			347.07			Digital Paris	1 40 12 -			
						150		1		
344	90				47 M 28	(78a) ++10	1	The Section of		
155	70.4		0.150	100		(2) (A. a.)	307 14 440 /			
		1000	7 27 2		**	**	TATOM SE	10-110-11		
							200000	11105		

¹ Insufficient samples to develop regressions.

T	OTAL RECOVERAB	LE	
Sample size	Minimum value	Maximum value	
.05 0	10.0		(digo mon
. 1	3.00	3.00	
1	10.00	10.00	
0	- 66*501	200	
1	50.00	20.00	
1	10.00	10.00	
1	50.00	50.00	
1	1500.00	1500.00	
1	100.00	100.00	
1	10.00	10.00	
sevil 1	60.00	60.00	
1	.00	.00	
1	.00	.00	
1	50.00	50.00	
1	3.00	3.00	
0	00 × 55 × 00	32.00	
**	021		

Table 1. -- Statistical summary of data for each station -- Continued

Station Station Station
No. (fig. 1): 28 No. (USGS): 06307735 name: Home Creek near Ashland, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
75.31	1.6	0.01		21.00	
Discharge, instantaneous (ft ³ /s)	16	1060.00	1.55	23.00	5.72
Specific conductance (µmho/cm)	16		3409.37	4200.00	823.13
pH (units)	16	7.80	8.07	8.30	.18
Temperature (°C)		.00	11.63	24.50	7.80
Turbidity (JTU)		2.00	24.63	300.00	73.58
Oxygen, dissolved (mg/L)	15	5.80	8.17	10.90	1.76
Oxygen, dissolved (percent)	15	47.00	82.53	120.00	22.17
Biochemical oxygen demand (mg/L)		.60	2.26	6.80	1.83
Calcium, dissolved (mg/L)		46.00	92.75	120.00	24.63
Magnesium, dissolved (mg/L)	16	41.00	186.25	240.00	51.30
Sodium, dissolved (mg/L)	16	130.00	483.13	610.00	123.27
Sodium (percent)	16	48.00	50.63	54.00	1.93
Sodium-adsorption ratio	10	3.40	6.58	7.50	1.09
Potassium, dissolved (mg/L)	16	4.30	18.96	26.00	5.15
Bicarbonate (mg/L)	10	200.00	775.00	900.00	195.75
Carbonate (mg/L)	16	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	16	380.00	1338.75	1700.00	348.14
Chloride, dissolved (mg/L)	16	2.90	11.74	18.00	4.37
Fluoride, dissolved (mg/L)	16	.20	.99	1.20	.27
Silica, dissolved (mg/L)	16	6.70	13.12	21.00	4.64
Dissolved solids, calculated (mg/L)	15	719.00	2529.31	3160.00	641.87
Nitrogen, NO2+NO3 total (mg/L as N)	16	.00	.17	.46	.12
Nitrogen, ammonia total (mg/L as N)	16	.00	.10	.47	.12
Nitrogen, organic total (mg/L as N)	16	.04		1.50	.37
Nitrogen, total (mg/L as N)	16	.26	.99	1.90	.38
Phosphorus, total (mg/L as P)	16	50.	.09	.30	.08
Sediment, suspended (mg/L)	16	6.00	53.00	356.00	85.07

2 11	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	6	0.00	20.00			
Arsenic (µg/L)	6	1.00	6.00			
Beryllium (µg/L)	6	.00	10.00			
Boron (µg/L)	16	160.00	800.00			
Cadmium (µg/L)	6	1.00	4.00			
Chromium (µg/L)	6	.00	10.00			
Copper (µg/L)	6	.00	5.00			
Iron (µg/L)	16	30.00	710.00			
Lead (µg/L)	6	1.00	25.00			
Lithium (µg/L)	6	40.00	170.00			
Manganese (µg/L)	6	50.00	1000.00			
Mercury (µg/L)	6	.00	.10			
Molybdenum (µg/L)	6	.00	4.00			
	6	.00	4.00			
Selenium (µg/L)	6	.00	1.00			
Zinc (µg/L)	6	20.00	70.00			
Vanadium (µg/L)	6	.00	1.00			

	20	STRIPAGE BY	ITHIS WAY	REGRESSIO	ON SUMMARY				
	SIMPLE RE	GRESSION		MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	ent of Standard Regres- Partial regression cient of		Standard Regres- Partial regression c	Coeffi- cient of deter-	Standard error of		
stant	cient	mination ²	estimate	constant	Q	K	mination ²	estimate	
			451	ev	70 4- 1				
3560 Q K	-112	.593* .133	.174	05.77.77	- (E) (E)	(daladada)	.133	.194	
				1111	15. 77				
4.96 Q K K	13.1	.996* .0533 .0311	4.93 1.77 22.4	3.00	13.1*	.00055	.996* .0876 .0588	5.12 1.81 23.1	
5.44 K 12.8 K	00103	.371* .615* .978*	1.18 16.1 8.18	9.77 -7.06 -23.9	222* 1.02 0360	00221* .0287* .0619*	.702* .638* .978*	.842 16.3 8.51	
-24.6 K -21.3 K	.149	.970* .970*	23.0	-5.61	804	.144*	.970* .0589	23.8	
2.43 K 7.52 K	.00122	.840* .286*	4.57	10.1	2 17	016	.857 .286	4.76	
-20.2 K	.233	.964*	39.5	42.1	-3.17	.216*		39.1	
-92.2 K	.420	.982*	50.1	-154	3.16	.437*	.983*	50.6	
-1.31 K	.00400	.688* .927*	2.36 .0793 4.79	-1.32 0148	.00024 00454	.00400* .00030*	.688* .930*	2.46 .0805 4.97	
-123 K	.779	.991* .0419	63.9	-157	1.77	.788*		66.1	
Q K		.182	.119	.754	00221*	00018*		.0873	
Q K .391 K	00009	.125	.379	.385	.00029	00009*	.148	.390	
31.1 Q	14.1	.900*	27.9	8.51	14.8*	.00632	.901*	28.7	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at = 0.05

Т	OTAL RECOVERAL	BLE
Sample	Minimum value	Maximum value
0	with a	Urban Jen
1	3.00	3.00
1	5.00	5.00
0	THE PARTY	
1	2.00	2.00
1	40.00	40.00
1	24.00	24.00
1	15000.00	15000.00
1	16.00	16.00
1	40.00	40.00
1	260.00	260.00
1	.10	.10
1	3.00	3.00
1	15.00	15.00
1	1.00	1.00
1	50.00	50.00

Table 1.--Statistical summary of data for each station--Continued

Station

No. (fig. 1): 29 No. (USGS): 06307740 name: Otter Creek at Ashland, MT

Variable Variable	Sample	Minimum value	Mean	Maximum value	Standard
Discharge, instantaneous (ft ³ /s)	46	0.06	26.95	390.00	76.65
Specific conductance (µmho/cm)	46	370.00	2693.37	3900.00	747.71
pH (units)	45	7.20	8.21	8.60	.29
Temperature (°C)	46	.00	9.10	26.50	9.02
Turbidity (JTU)	46	1.00	29.15	270.00	46.16
Oxygen, dissolved (mg/L)	45	3.00	9.34	13.40	2.48
Oxygen, dissolved (percent)	45	37.00	86.01	112.00	14.35
Biochemical oxygen demand (mg/L)	46	.00	2.24	10.20	1.40
Calcium, dissolved (mg/L)	46	23:00	79.28	120.00	24.84
Magnesium, dissolved (mg/L)	46	15.00	149.11	210.00	44.82
Sodium, dissolved (mg/L)	45	25.00	353.54	470.00	108.68
Sodium (percent)	46	29.00	47.04	54.00	4.54
Sodium-adsorption ratio	46	1.00	5.29	6.70	1.32
Potassium, dissolved (mg/L)	46	8.10	18.76	37.00	4.90
Bicarbonate (mg/L)	46	110.00	584.98	810.00	164.25
Carbonate (mg/L)	45	.00	6.60	58.00	13.49
Sulfate, dissolved (mg/L)	46	80.00	1061.52	1500.00	329.05
Chloride, dissolved (mg/L)	45	1.30	12.64	29.00	4.97
Fluoride, dissolved (mg/L)	46	.10	.72	1.00	.20
Silica, dissolved (mg/L)	46	1.20	8.94	20.00	4.75
Dissolved solids, calculated (mg/L)	45	228.00	1987.47	2690.00	578.18
Nitrogen, NO2+NO3 total (mg/L as N)	46	.00	.22	.81	.24
Nitrogen, ammonia total (mg/L as N)	45	.00	.09	.74	.12
Nitrogen, organic total (mg/L as N)	45	.19	.99	3.90	.70
Nitrogen, total (mg/L as N)	45	.55	1.29	3.90	.73
Phosphorus, total (mg/L as P)	46	.00	.09	.68	.13
Sediment, suspended (mg/L)	45	10.00	87.38	536.00	99.08

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	10	0.00	30.00			
Arsenic (µg/L)	10	.00	5.00			
Beryllium (µg/L)	10	.00	20.00			
Boron (µg/L)	46	100.00	650.00			
Cadmium (µg/L)	10	.00	50.00			
Chromium (µg/L)	10	.00	20.00			
Copper (µg/L)	10	.00	10.00			
Iron (µg/L)	46	10.00	490.00			
Lead (µg/L)	10	1.00	18.00			
Lithium (µg/L)	10	100.00	150.00			
Manganese (µg/L)	10	4.00	140.00			
Mercury (µg/L)	10	.00	.10			
Molybdenum (µg/L)	10	2.00	6.00			
Nickel (µg/L)	10	.00	14.00			
Selenium (µg/L)	9	.00	2.00			
Zinc (µg/L)	10	.00	110.00			
Vanadium (µg/L)	10	.00	10.00			

		MITSITATE	39779352	REGRESSIO	ON SUMMARY				
	SIMPLE RE	GRESSION		MULTIPLE REGRESSION					
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant	Partial re		Coeffi- cient of deter- mination ²	Standard error of estimate	
		.77	4.51 .77						
2850 Q	-4.12	.348*	604						
7.72 K	.00018	.229*	.255	7.77	00021	.00017*	.233*	.257	
7.7	7.7	77							
146 K	0434	.493*	33.2	121	.0944	0354*	.524*	32.6	
Q		.00237	2.48				.00326	2.51	
K		.02585	14.2	10-20-5-			.0263	14.3	
7.78 K	00204	.649*	1.14	7.67	.00048	00200*	.649*	1.16	
17.0 K	.0231	.485*	17.8	11.6	.0204	.0249*	.490*	18.0	
-6.23 K	.0577	.926*	12.2	-3.21	0113	.0567*	.926*	12.3	
-23.0 K	.140	.925*	29.7	-4.97	0678	.134*	.928*	29.5	
34.4 K	.00469	.524*	3.34	36.0	00597	.00418*	.535*	3.34	
1.00 K	.00159	.811*	.575	1.29	00110	.00150*	.816*	.574	
9.77 K	.00334	.259*	4.22	10.9	00406	.00300*	.265*	4.26	
50.1 K	.199	.817*	71.0	125	281×	.175*	.839*	67.4	
Q		.0281	13.5				.0338	13.6	
-79.1 K	.424	.926*	87.9	-118	.145	.436*	.927*	90.0	
1.72 K	.00396	.327*	4.25	.572	.00431	.00433*	.332*	4.28	
.106 K	.00023	.690*	.113	.187	00030	.00020*	.707*	.111	
K		.00880	4.74				.0108	4.78	
-48.4 K	.753	.961*	114	-29.8	0701	.747*	.961*	115	
0		.00520	.241				.00560	.243	
.313 K	00008	.267*	.106	.291	.00008	00008*	.270*	.107	
K	.00000	.0665	.682			* 30000 X	.0670	.689	
2.10 K	00031	.0997*	.699				.100	.707	
.443 K	00013	.601*	.0807	.391	.00020	00012*	.619*	.0797	
287 K	0741	.319*	82.7	209	.291*	0496*		79.5	
201 K	0741	.317%	02.7	203	. 271%	0490*	• 202*	19.5	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

TOTAL RECOVERABLE								
Sample size	Minimum value	Maximum value						
7	160.00	780.00						
12	.00	4.00						
11	.00	10.00						
0								
12	10.00	10.00						
12	.00	90.00						
12	.00	110.00						
12	280.00	2900.00						
12	100.00	100.00						
12	20.00	150.00						
12	40.00	360.00						
12	.00	.80						
12	1.00	9.00						
12	.00	50.00						
12	.00	3.00						
7	.00	40.00						

Table 1.--Statistical summary of data for each station--Continued

Station Station No. (fig. 1): 30 No. (USGS): 06307810

Station

name: Beaver Creek near Ashland, MT

Variable	Sample	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	9	0.58	12.72	42.30	17.62
Specific conductance (µmho/cm)	9	400.00	2784.44	4080.00	1647.93
pH (units)	9	7.70	8.01	8.30	.18
Temperature (°C)	9	.00	7.28	15.50	5.49
Turbidity (JTU)	9	1.00	10.56	40.00	14.16
Oxygen, dissolved (mg/L)	9	5.00	9.01	11.60	1.95
Oxygen, dissolved (percent)	9	63.00	81.33	103.00	13.47
Biochemical oxygen demand (mg/L)	8	1.1.0	4.34	11.30	4.26
Calcium, dissolved (mg/L)	4	20.00	113.67	170.00	62.95
Magnesium, dissolved (mg/L)	9	15.00	160.00	200.00	99.63
Sodium, dissolved (mg/L)	9	30.00	344.44	560.00	223.59
Sodium (percent)	9	33.00	41.22	47.00	5.12
Sodium-adsorption ratio	9	1.20	4.46	6.40	5.50
Potassium, dissolved (mg/L)	9	9.40	17.53	25.00	5.80
Bicarbonate (mg/L)	9	94.00	521.11	755.00	285.30
Carbonate (mg/L)	9	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	9	100.00	1237.78	2000.00	807.06
Chloride, dissolved (mg/L)	9	1.20	6.98	11.00	3.89
Fluoride, dissolved (mg/L)	9	.10	.40	.50	.17
Silica, dissolved (mg/L)	9	5.60	10.86	15.00	3.36
Dissolved solids, calculated (mg/L)	9	230.00	2150.44	3400.00	1337.61
Nitrogen, NO2+NO3 total (mg/L as N)	9	.01	.04	.15	.05
Nitrogen, ammonia total (mg/L as N)	9	.00	.06	.34	.11
Nitrogen, organic total (mg/L as N)	9	.55	1.09	2.40	.63
Nitrogen, total (mg/L as N)	9	.23	1.18	2.40	.67
Phosphorus, total (mg/L as P)	9	.01	.08	.19	.06
Sediment, suspended (mg/L)	9	6.00	28.89	73.00	25.95

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	0	14.54.29	- (4)			
Arsenic (µg/L)	0					
Beryllium (µg/L)	0	Date &				
Boron (µg/L)	9	140.00	940.00			
Cadmium (µg/L)	0					
Chromium (µg/L)	0					
Copper (µg/L)	0					
Iron (µg/L)	9	10.00	180.00			
Lead (µg/L)	0					
Lithium (µg/L)	0					
Manganese (µg/L)	0		11.			
Mercury (µg/L)	0					
Molybdenum (µg/L)	0					
Nickel (µg/L)	0					
Selenium (µg/L)	0					
Zinc (µg/L)	0					
Vanadium (µg/L)	0					

SIMPLE REGRESSION						MULTIPLE REGRESSION					
Regres sion con-		Regres- sion coeffi-	cier	Coeffi- cient of Stan deter- erro		Regres-	res- Partial regression cient on coefficient ³ det		coefficient3 deter-		
stant	1	cient	mina	ation2	estimate	constant	Q	K	mination2	estimate	
	211					16.0-	10	Attorner.			
3960	Q Q	-92.7		.983* .0860	.187	49414-		(any hostern)	.0886	.202	
2											
3.44		.560		.485* .449*					.486	11.7	
	K	.00077		.0323	14.2				.0324	15.3	
1.11	0	.228		.953*		-8.39	.450*	.00242	.968*	.905	
8.58	K	.0377		.976*		81.5	-1.73	.0194	.980*	10.3	
-7.03		.0600		.985*		-27.9	.493	.0652*		14.2	
-24.9		.133		.956*		53.0	-1.84	.113	.956*	54.0	
44.6	Q	263		.822*	2.31	41.7	195	.00073	.823*	2.49	
6.01	Q	122		.949*	.534	3.88	0721	.00054	.951*	.562	
8.05	K	.00341		.938*		0972	.193	.00545	.944*	1.59	
43.4	K	.172		.982*	41.0	217	-4.11	.128	.983*	43.0	
-118	K	.487		.989*		-582	11.0	.603*	.990*	94.0	
	Q			.413	3.18				.451	3.33	
		00917		.870*		.973	0198	00012	.891*	.0661	
	Q	163		.729*		24.9	444	00303	.767*	1.88	
-103		.809		.994*		-339	5.59	.869*		119	
00948	Q	.00231		.726*		368	.0111*	.00010*		.0166	
	K			.408	.0878				.518	.0854	
	Q			.0233	.662				.0602	.701	
100	Q	00001		.100	.674	120	00100		.121	.720	
.186	K K	00004		.921*	.0190	.130	.00132	00002	.923*	.0202	
	V			.216	21.7				.223	23.3	

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

independent variable 2Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 Asterisk denotes that partial regression coefficient is significant at α = 0.05

Sample	Minimum value	Maximum value						
2	70.00	100.00						
3 3	2.00	10.00						
3	.00	10.00						
0		100						
3	10.00	20.00						
3	.00	10.00						
3	10.00	50.00						
3	280.00	1600.00						
3	100.00	100.00						
3	50.00	140.00						
3	50.00	140.00						
3	.00	.00						
3	.00	3.00						
	50.00	50.00						
3	.00	.00						
5	30.00	50.00						

Table 1.--Statistical summary of data for each station--Continued

Station Station Tongue River below
No. (USGS): 06307830 name: Brandenberg Bridge, near Ashland, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	47	83.00	699.42	3960.00	795.72
Specific conductance (µmho/cm)	46	350.00	774.26	1300.00	242.10
pH (units)	45	7.30	8.17	8.70	.28
Temperature (°C)	47	.00	9.87	25.00	8.68
Turbidity (JTU)	45	1.00	31.87	200.00	47.67
Oxygen, dissolved (mg/L)	46	6.80	9.89	13.10	1.81
Oxygen, dissolved (percent)	46	61.00	94.24	111.00	9.45
Biochemical oxygen demand (mg/L)	44	.40	1.85	7.80	1.64
Calcium, dissolved (mg/L)	45	27.00	59.71	86.00	15.74
Magnesium, dissolved (mg/L)	45	15.00	41.49	62.00	14.15
Sodium, dissolved (mg/L)	45	17.00	47.49	110.00	20.18
Sodium (percent)	45	17.00	23.36	33.00	3.16
Sodium-adsorption ratio	45	.60	1.13	2.20	.34
Potassium, dissolved (mg/L)	45	2.00	4.51	8.30	1.37
Bicarbonate (mg/L)	45	85.00	254.40	397.00	75.99
Carbonate (mg/L)	44	.00	.64	10.00	1.91
Sulfate, dissolved (mg/L)	44	63.00	206.68	390.00	78.78
Chloride, dissolved (mg/L)	44	1.40	3.91	6.10	1.16
Fluoride, dissolved (mg/L)	45	.10	.30	.40	.08
Silica, dissolved (mg/L)	45	. 50	5.33	9.30	1.89
Dissolved solids, calculated (mg/L)	44	203.00	497.14	868.00	164.36
Nitrogen, NO2+NO3 total (mg/L as N)	45	.00	.05	.22	.06
Vitrogen, ammonia total (mg/L as N)	44	.00	.03	.20	.04
Vitrogen, organic total (mg/L as N)	43	.05	.60	2.10	. 45
Witrogen, total (mg/L as N)	44	.10	.60	2.10	.47
Phosphorus, total (mg/L as N)	45	.00	.07	.30	.08
Sediment, suspended (mg/L)	13	8.00	172.38	1000.00	295.51

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	12	0.00	30.00			
Arsenic (µg/L)	12	.00	3.00			
Beryllium (µg/L)	12	.00	10.00			
Boron (µg/L)	45	20.00	170.00			
Cadmium (µg/L)	12	.00	6.00			
Chromium (µg/L)	12	.00	10.00			
Copper (µg/L)	12	.00	5.00			
Iron (µg/L)	45	.00	190.00			
Lead (µg/L)	12	1.00	21.00			
Lithium (µg/L)	12	10.00	40.00			
Manganese (µg/L)	12	.00	20.00			
Mercury (µg/L)	12	.00	.10			
Molybdenum (µg/L)	12	.00	3.00			
Nickel (µg/L)	12	1.00	8.00			
Selenium (µg/L)	11	.00	2.00			
Zinc (µg/L)	12	.00	90.00			
Vanadium (µg/L)	12	.50	5.90			

	SIMPLE RE	GRESSION		MULTIPLE REGRESSION				
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant3		regression cient ⁴	Coeffi- cient of deter- mination ²	Standard error of estimate
				17:00 an				
907 Q	193	.413*	184	0.00.00.22		THIS AND MADE	STREET, SAL	alinces
907 Q	193	.0562	.277	14-7		(E) (ones)	.0625	.279
	-	.0302		10			.0023	
1.52 Q	.0445	.570*	31.6	37.9	.0366*	.0401	.595*	31.1
6.07 K	.00490	.426*	4.31	5.91	.00007	.00501	.426*	1.38
K	.00490	.0452	9.29	3.91	.00007	.00501		9.24
1.42 0	.00062	.0984*	1.56				.0743	1.57
11.7 K	.0621	.932*	4.10	13.0	00055	.0609*	.933*	4.13
-1.85 K	.0561	.939*	3.48	915	00040	.0552*		3.52
-12.3 K	.0772	.876*	7.10	-15.6	.00143	.0802*	.940* .878*	7.13
16.6 K	.00869	.455*	2.33	16.1	.00023	.00919*	.457*	2.35
.161 K	.00125	.789*	.159	.106	.00002	.00130*	.790*	.160
1.96 K	.00328	.343*	1.11	2.03	00003	.00322*	.344*	1.12
28.7 K	.292	.884*	26.2	41.9	00566	.280*	.886*	26.3
K K	. 272	.0348	1.89	41.0	00500	.200%	.0421	1.91
-34.9 K	.310	.933*	20.3	-44.6	.00402	.319*	.934*	20.4
.908 K	.00387	.669*	.668	1.34	00018	.00347*	.678*	.666
.102 K	.00025	.634*	.0465	.151	00002	.00021*	.662*	.0452
Q	.00023	.0607	1.85		00002	.00021%	.0721	
-14.6 K	.657	.962*	32.1	-19.4	.00198	.662*	.962*	1.86
	.037	.0784	.0528	-17.4	.00190	.002*	.0784	32.4
Q K		.0750	.0425				.0785	.0534
.460 Q	.00020	.133*	.415	.527	.00018	00007	.134*	.0430
.504 Q	.00020	.162*	.428	.502	.00018	.00000		.420
	.00023	.507*	.0552	.0884	.00023*	00007	.162*	.433
0191 Q 2.14 K	.174	.601*	94.6	-238	.327*	.211*	.539* .780*	.0539

TO	TAL RECOVERA	BLE	
Sample size	Minimum value	Maximum value	93467169
9	40.00	6000.00	
12	.00	10.00	
0	.00	10.00	
12	.00	50.00	
12	90.00	13000.00	
12	100.00	30.00	
11	10.00	300.00	
12	.00	3.00	
12	.00	1.00	
9	.00	80.00	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Regression}$ for sediment calculated from 1096 observations $^{4}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Table 1.--Statistical summary of data for each station--Continued

Station

name: Liscom Creek near Ashland, MT

	Sample	Minimum		Maximum	Standard
Variable	size	value	Mean	value	deviation
Discharge, instantaneous (ft ³ /s)	3	0.30	9.47	18.20	8.96
Specific conductance (µmho/cm)	3	120.00	141.67	170.00	25.66
pH (units)	3	7.70	8.10	8.40	.36
Temperature (°C)	3	.00	.17	.50	.29
Turbidity (JTU)	3	40.00	46.67	50.00	5.77
Oxygen, dissolved (mg/L)	3	10.60	11.47	12.00	.76
Oxygen, dissolved (percent)	3	82.00	87.33	91.00	4.73
Biochemical oxygen demand (mg/L)	5	6.30	7.55	8.30	1.06
Calcium, dissolved (mg/L)	3	13.00	16.33	19.00	3.06
	3	3.90	5.43	6.90	1.50
Sodium, dissolved (mg/L)	3	3.70	15.10	37.00	18.97
	3	11.00	25.33	53.00	23.97
	3	.20	.83	2.10	1.10
Potassium, dissolved (mg/L)	3	5.40	6.50	8.20	1.49
	3	55.00	61.33	69.00	7.09
Carbonate (mg/L)	3	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	3	15.00	33.67	59.00	22.74
Chloride, dissolved (mg/L)	3	1.60	13.53	37.00	20.32
Fluoride, dissolved (mg/L)	3	.00	.07	.10	.06
Silica, dissolved (mg/L)	3	3.80	5.40	7.00	1.60
Dissolved solids, calculated (mg/L)	3	84.00	120.67	193.00	58.23
Nitrogen, NO2+NO3 total (mg/L as N)	3	.01	.10	.16	.08
Nitrogen, ammonia total (mg/L as N)	3	.02	.05	.10	.04
Nitrogen, organic total (mg/L as N)	3	1.40	1.53	1.80	.23
Nitrogen, total (mg/L as N)	3	1.40	1.67	2.00	.31
Phosphorus, total (mg/L as P)	3	.19	.25	.31	.06
Sediment, suspended (mg/L)	3	60.00	115.33	223.00	93.25

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum			
Aluminum (µg/L)	0	1,02	Tour .			
Arsenic (µg/L)	0					
Beryllium (µg/L)	0	0.5				
Boron (µg/L)	3	90.00	240.00			
Cadmium (µg/L)	0	A450.				
Chromium (µg/L)	0		17.0			
Copper (µg/L)	0	10 / ·				
Iron (µg/L)	3	70.00	170.00			
Lead (µg/L)	0	4 7 4	441 .			
Lithium (µg/L)	0					
Manganese (µg/L)	0	44.0				
Mercury (µg/L)	0	45.00				
Molybdenum (µg/L)	0					
Nickel (µg/L)	0					
Selenium (µg/L)	0					
Zinc (µg/L)	0					
Vanadium (µg/L)	0		227			

		01/3/2019	STEPLED AND	REGRESSIC	N SUMMARY			1	
SIMPLE REGRESSION				MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	coeff	regression	Coeffi- cient of deter-	Standard error of	
stant	cient	mination	estimate	constant	Q	K	mination	estimate	
1		10	2.55		9	(a) (a)	sheller	warning in	
		LD28	S. 1885	00.094	11	(matories)	bana toward	n blileen	
			V. 1	- 95 - 7				(a) 100 9-16	
		95	d		11		(302.)	THE PROPERTY.	
			F. 195	10.1	F		(220)	VIII HELD	
			St. F	115 27	11	441	and boydean	ib . nower	
		0.0	5.281	98.55-00		. (drew)	an) between	Jon . Comercia	
			W. A 225	00,500	11	(Dom) lees	ab normer I	to northern	
		601	5.00	00-02-1			E) bay lees!	b milies at	
		201	F. 50	44.5			Shevios425	distincted of	
** E 62.0		90.91	F-110	0.0			(m) byveen	ito malen	
		G0 3	2.30	10.76-			(144)	pq) mmeleo	
		41	Cys	012122	0.5.5.		day noleer	Alre-mulant	
		4-	D. S	00-0-2		()	bay loses	mr leber of	
		000	F. 885	00.722			(1) 1544	Second Section	
				00,				STREET, STREET	
		9005	C. C. C. C.	00.00-			(c) (c) (b 100-200	
			Market	00.0			y bevices 12	300114415	
							DBV		
			S. C	B. C			web border,	de modele	
1123		1 sat	V. 55 P. I	100 - 1		Part leader	day yelleres	Pay Diago	
			2		2 0	1 - 1 - 1 - 1 - 4 s	des govern	.nesdeed	
			P	007		THE TYPE TO	100 3 10	Jangowe 3	
			10.		25 6	S. S.R. J'(30)	TOT blowed	mago	
						(1)	Albert Labor	000000	
				-0		(2.00-4)	and he land and	BUILDING-DI	
		4524 1	P1111	0.000		(1000004400	Jacobile	

 $^{^{1} \}mbox{Insufficient samples to develop regressions.}$

T	OTAL RECOVERAB	LE	
Sample size	Minimum value	Maximum value	
0	100/2002	2.00	
1	2.00	2.00	
1	10.00		
0			
1	10.00	10.00	
1	.00	.00	
1	10.00	10.00	
1	1700.00	1700.00	
1	100.00	100.00	
i	10.00	10.00	
1000	30.00	30.00	
100	.00	.00	
900 1 to	.00	.00	
4600	50.00	50.00	
1	.00	.00	
0	0.640.5	5.78.39	
000-1-00	01.1		

Table 1.--Statistical summary of data for each station--Continued

Station Station Station No. (fig. 1): 33 No. (USGS): 06307890 name: Foster Creek near Volborg, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation	
Discharge, instantaneous (ft ³ /s)	14	0.01	28.58	300.00	79.35	
	14	170.00	2661.29	6300.00	1796.03	
	14	7.20	7.99	8.40	.34	
Temperature (°C)	14	.00	7.82	22.50	0.39	
Turbidity (JTU)	14	7.00	207.93	2200.00	575.82	
Oxygen, dissolved (mg/L)	14	7.20	9.26	12.40	1.79	
Oxygen, dissolved (percent)	14	63.00	83.29	94.00	8.96	
	14	2.00	4.87	13.40	5.03	
Calcium, dissolved (mg/L)	14	15.00	65.86	140.00	42.05	
Magnesium, dissolved (mg/L)	14	5.90	62.42	160.00	47.90	
Sodium, dissolved (mg/L)	14	20.00	477.43	1200.00	343.56	
Sodium (percent)	14	39.00	68.43	80.00	9.26	
Sodium-adsorption ratio	14	1.10	9.35	16.00	4.19	
Potassium, dissolved (mg/L)	14	5.00	8.80	13.00	2.56	
Bicarbonate (mg/L)	14	69.00	349.43	630.00	197.10	
Carbonate (mg/L)	13	.00	1.46	11.00	3.62	
Sulfate, dissolved (mg/L)	14	45.00	1115.36	2800.00	814.84	
Chloride, dissolved (mg/L)	14	2.60	11.15	26.00	6.90	
Fluoride, dissolved (mg/L)	14	.10	.33	.50	.14	
Silica, dissolved (mg/L)	14	4.10	6.87	9.70	1.94	
Dissolved solids, calculated (mg/L)	14	133.00	1922.07	4660.00	1351.17	
Nitrogen, NO2 NO3 total (mg/L as N)	14	.00	.05	.32	.09	
Nitrogen, ammonia total (mg/L as N)	14	.00	.09	.33	.10	
Nitrogen, organic total (mg/L as N)	14	.30	1.08	2.10	.49	
Nitrogen, total (mg/L as N)	14	.66	1.22	2.40	. 49	
Phosphorus, total (mg/L as P)	14	.04	.20	.90	.24	
Sediment, suspended (mg/L)	14	4.00	421.43	4259.99	1110.99	

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	2	10.00	300.00			
Arsenic (µg/L)	5	1.00	3.00			
Beryllium (µg/L)	2	.00	.00			
Boron (µg/L)	14	.00	670.00			
	5	1.00	7.00			
	5	10.00	20.00			
	2	2.00	13.00			
	14	30.00	600.00			
	2	4.00	7.00			
	2	10.00	50.00			
	5	40.00	60.00			
	2	.00	.00			
	2	.00	1.00			
	2	4.00	9.00			
	5	.00	.00			
Zinc (µg/L)	2	20.00	60.00			
Vanadium (µg/L)	2	1.30	3.60			

		LITELINE E	7.179.002831	REGRESSIC	N SUMMARY				
	SIMPLE REC	GRESSION		MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial re		Coeffi- cient of deter-	Standard error of	
stant	cient	mination ²	estimate	constant	Q	K	mination ²	estimate	
10012				10.8	15 1				
Q		.159	1710 •320	11.110	15		.183	.333	
K		.0297	590 1.60				.0542	1.63	
Q		.0206	9.23	7 00		- (() () ()	.0248	9.62	
8.09 K	00121	.513*		7.90	.00252	00116*		2.29	
4.96 K	.0229	.955*		3.30	.0220	.0203*		9.51	
-7.70 K -29.2 K	.0263	.976*		-35.8	.0445	.0271*		7.31	
71.5 Q	106	.824*		70.6	103*	.00028	.991* .826*	36.0	
3.54 K	.00218	.877*		4.44	0119*	.00197*		1.29	
5.57 K	.00121	.722*		5.65	00108	.0019/*		1.47	
65.8 K	.107	.943*		68.1	0306	.106*		51.0	
K	,	.179	3.42			* 100%	.180	3.59	
-89.1 K	.453		59.6	-108	.245	.457*		59.2	
1.24 K	.00372	.938*	1.78	.980	.00348	.00378*		1.84	
.181 K	.00006	.516*		.213	00041	.00005*	.563*	.0994	
5.20 K	.00063	.336*		91.00			.376	1.67	
-74.8 K	.750			-103	.374	.757*	.995*	102	
K		.174	.0880		15 (11 %		.175	.0918	
Q		.176	.0923				.192	.0955	
K		.260	.440				.290	.450	
1.65 K	00016	.347*					.402	.413	
K		.200	1140				.267	.224	
K		.0230	1140				.0457	1180	

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

independent variable Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 Asterisk denotes that partial regression coefficient is significant at α = 0.05

ample Minimum size value		Maximum value
4	1900.00	11000.00
6	1.00	6.00
6	.00	10.00
0	110,000	
6	10.00	10.00
6	.00	50.00
6	10.00	20.00
6	680.00	10000.00
6	100.00	100.00
6	10.00	30.00
5	60.00	170.00
6	.00	.20
6	.00	1.00
6	50.00	50.00
6	.00	1.00
4	50.00	70.00

Table 1.--Statistical summary of data for each station--Continued

Station
No. (USGS): 06308160 Station
name: Pumpkin Creek near Loesch, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	21	0.01	7.45	146.00	31.76
Specific conductance (\u00fcmho/cm)	21	819.00	5190.43	10000.00	1797.79
pH (units)	21	7.20	7.90	8.30	.28
Temperature (°C)	21	.00	10.26	26.00	9.36
Turbidity (JTU)	21	1.00	15.48	80.00	22.88
Oxygen, dissolved (mg/L)	21	.00	7.08	14.40	3.78
Oxygen, dissolved (percent)	21	.00	75.43	178.00	48.51
Biochemical oxygen demand (mg/L)	21	.40	1.80	5.50	1.35
Calcium, dissolved (mg/L)	21	43.00	194.43	310.00	58.65
Magnesium, dissolved (mg/L)	21	32.00	264.86	380.00	88.31
Sodium, dissolved (mg/L)	21	76.00	705.05	1100.00	237.80
Sodium (percent)	21	40.00	48.33	53.00	2.74
Sodium-adsorption ratio	21	2.10	7.57	9.90	1.78
Potassium, dissolved (mg/L)	21	8.20	20.91	30.00	4.66
Bicarbonate (mg/L)	21	110.00	654.24	1110.00	214.89
Carbonate (mg/L)	21	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	21	300.00	2504.76	4000.00	854.09
Chloride, dissolved (mg/L)	21	3.00	15.41	26.00	5.33
Fluoride, dissolved (mg/L)	21	.10	.51	.80	.17
Silica, dissolved (mg/L)	21	5.70	12.50	24.00	4.53
Dissolved solids, calculated (mg/L)	51	523.00	4043.00	6430.00	1330.14
Nitrogen, NO2+NO3 total (mg/L as N)	21	.00	.04	.26	.06
Nitrogen, ammonia total (mg/L as N)	21	.00	.12	1.10	.28
Nitrogen, organic total (mg/L as N)	21	.58	.96	1.50	.27
Nitrogen, total (mg/L as N)	21	.59	1.11	2.20	.38
Phosphorus, total (mg/L as P)	21	.01	.13	.75	.18
Sediment, suspended (mg/L)	21	4.00	125.05	605.00	136.41

Variable	DISSOLVED		
	Sample size	Minimum value	Maximum
Aluminum (µg/L)	4	0.00	30.00
Arsenic (µg/L)	4	.00	10.00
Beryllium (µg/L)	4	.00	10.00
Boron (µg/L)	21	200.00	1800.00
Cadmium (µg/L)	4	1.00	5.00
Chromium (µg/L)	4	.00	20.00
Copper (µg/L)	4	.00	6.00
Iron (µg/L)	21	.00	13000.00
Lead (µg/L)	4	3.00	35.00
Lithium (µg/L)	4	20.00	190.00
Manganese (µg/L)	4 .	50.00	8500.00
Mercury (µg/L)	4	.00	.00
Molybdenum (µg/L)	4	2.00	5.00
	4	.00	7.00
	4	.00	.00
Zinc (µg/L)	4	20.00	30.00
Vanadium (µg/L)	- 4	.00	2.00

	2000	STEETING S	VETELLORE	REGRESSIO	ON SUMMARY	-		
SIMPLE REGRESSION				MULTIPLE REGRESSION				
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant	Partial recoeffice		Coeffi- cient of deter- mination ²	Standard error of estimate
			-					
077	9177			1900		(41,533) 0000	perturbed.	to an order
Q		.117	1730	CO. W. Che.		Into What	STREET, SHEET	111111
K		.156	.267				.157	.275
107709	12.77	77						DISTRICT T
12.5 Q	.393	.302*	19.6	-10.7	.477*	.00436	.406*	18.6
12.1 K	00096	.211*	3.44			*	.218	3.52
K		.0785	47.8				.0794	49.1
K		.0602	1.37				.0623	1.41
65.0 K	.0249		38.8	72.1	183	.0238*	.593*	39.4
39.6 K	.0434	.780*	42.5	48.6	229	.0420*	:786*	43.0
80.8 K	.120		102	89.8	233	.119*	.828*	104
43.7 K		.349*	2.27	42.5	.0308	.00109*	.463*	2.12
3.13 K	.00085	.747*	.918	3.03	.00258	.00087*	.749*	.940
11.0 K	.00191	.541*	3.24	11.1	00215	.00189*	.541*	3.33
104 K	.106	.787*	102	127	582	.102*	.793*	103
				000	4			
236 K	.437	.847*	343	276	-1.02	.431*	.848*	351
258 K	.00247	.695*	3.02	3.37	0203	.00235*	.709*	3.03
.141 K	.00007	.591*	.110	.185	00111	.00007*	.631×	.108
6.05 K	.00124	.243*	4.05			*	.243	4.16
484 K	.686	.859*	513	560	-1.95	.674*	.861*	523
.129 K	00002	.255*	.0534			*	.260	.0547
256 K	.00007	.211*	.259			*	.229	.263
Q	95.1	.0387	.269			*	.0715	.272
K		.107	.372				.197	.362
119 K	.00005	.210*	.168			*	.236	.170
			107	-173	1.13			104
-129 K	.0489	.416*	107	-173	1.13	.0558*	.477*	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Maximum	Minimum	Sample
value	value	size
340.00	60.00	3
18.00	.00	3
10.00	.00	3
	10.400	0
10.00	10.00	3
10.00	.00	3
20.00	10.00	3
1200.00	550.00	3
100.00	100.00	3 3
160.00	20.00	3
4500.00	180.00	3
.00	.00	3 3
4.00	2.00	3
100.00	50.00	3
.00	.00	3
30.00	.00	3

Table 1.--Statistical summary of data for each station--Continued

Station Station No. (fig. 1): 35 No. (USGS): 06308170

Station Little Pumpkin name: Creek near Volborg, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	6	0.01	0.37	1.10	0.40
Specific conductance (µmho/cm)	6	1830.00	3940.00	7850.00	2035.35
pH (units)	6	7.30	7.85	8.10	.30
Temperature (°C)	6	.50	5.75	25.00	10.10
Turbidity (JTU)	6	1.00	3.00	4.00	1.10
Oxygen, dissolved (mg/L)	6	5.10	7.87	9.80	1.79
Oxygen, dissolved (percent)	6	40.00	72.50	129.00	32.02
Biochemical oxygen demand (mg/L)	6	.80	2.67	7.90	2.70
Calcium, dissolved (mg/L)	6	74.00	127.33	180.00	34.91
Magnesium, dissolved (mg/L)	6	110.00	213.33	290.00	60.88
Sodium, dissolved (mg/L)	6	190.00	410.00	560.00	127.75
Sodium (percent)	6	38.00	41.83	44.00	2.14
Sodium-adsorption ratio	6	3.30	5.10	6.00	.98
Potassium, dissolved (mg/L)	b	2.10	21.18	30.00	10.23
Bicarbonate (mg/L)	6	239.00	568.17	746.00	199.13
Carbonate (mg/L)	6	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	6	830.00	1621.67	2300.00	477.51
Chloride, dissolved (mg/L)	6	8.40	10.82	13.00	1.78
Fluoride, dissolved (mg/L)	6	.20	.47	.60	.14
Silica, dissolved (mg/L)	6	7.80	10.73	14.00	2.13
Dissolved solids, calculated (mg/L)	6	1360.00	2696.67	3760.00	798.77
Nitrogen, NO2+NO3 total (mg/L as N)	6	.00	.05	.23	.09
Nitrogen, ammonia total (mg/L as N)	6	.00	.02	.09	.04
Nitrogen, organic total (mg/L as N)	6	.67	.98	1.20	.23
Nitrogen, total (mg/L as N)	6	.69	1.04	1.30	.26
Phosphorus, total (mg/L as P)	6	.04	.10	.26	.08
Sediment, suspended (mg/L)	6	4.00	34.00	91.00	33.15

7	301	DISSOLVED	
Variable	Sample	Minimum value	Maximum value
Aluminum (µg/L)	2	20.00	30.00
Arsenic (µg/L)	2	7.00	3.00
Beryllium (µg/L)	5	.00	.00
Boron (µg/L)	6	350.00	900.00
Cadmium (µg/L)	5	2.00	5.00
Chromium (µg/L)	5	.00	.00
Copper (µg/L)	5	2.00	9.00
Iron (µg/L)	6	50.00	350.00
Lead (µg/L)	5	8.00	17.00
Lithium (µg/L)	5	60.00	110.00
Manganese (µg/L)	5	60.00	190.00
Mercury (µg/L)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.00	.00
Molybdenum (µg/L)	5	.00	5.00
Nickel (µg/L)	5	4.00	8.00
Selenium (µg/L)	5	1.00	1.00
Zinc (µg/L)		10.00	10.00
Vanadium (µg/L)	5	.60	1.60

SIMPLE REGRESSION				MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial r	egression cient ³	Coeffi- cient of deter-	Standard error of	
stant	cient	mination ²	estimate	constant	Q K r		mination ²	estimate	
15-4	101.2.			5856 7.					
Q		.169	2070	24-11000522		11 124 125	STATE OF THE PARTY OF	27 1012 172	
K		.585	.217			18211277	.635	.235	
				194			.033	.233	
K		.0149	1.22				.0295	1.39	
K		.190	1.80				.231	2.03	
K		.0709	34.5				.0859	39.5	
K		.359	2.41				.589	2.23	
65.4 K	.0157	.839*	15.7					18.1	
114 K	.0252	.708*	36.8				.839		
209 K	.0510	.660*	83.2				.708	42.4	
K	.0510	.118	2.24				.660	96.1	
K		.518	.761				.214	2.45	
30.2 Q	-24.4	.890*		28.8	00 7	00001	.525	.872	
30.2 Q	-24.4	.484	160	20.0	-23.7*	.00031	.893*	4.31	
-							.518	178	
700 1	011	005	226						
792 K	.211		236			*	.810	269	
K		.635	1.20				.676	1.31	
K	100	.174	.139				.295	.148	
7.07 K	.00093	.789*	1.09			*	.807	1.21	
1350 K	.341	.753*	444		10.0		.753	512	
K		.318	.0824				.458	.0849	
Q		.146	.0374				.238	.0407	
Q		.424	.192				.568	.192	
Q		.409	.226				.723	.179	
K		.244	.0803				.447	.0793	
K		.655	21.8				.773	20.4	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

	724	TAL RECOVERA	
sidelsev	Maximum value	Minimum value	Sample
	2000	22,50 00	0
	1 1	90.	0
	1	10.	0
			0
	10.00	95,19.14	0
	10.00	10711	0
			0
	01.3307.74		0
	146.00	49.5 (0.0) 20	0
	1 1 1 1 1 1	10111	0
	157,00	UCINC.00	0
		77	0
	0.0000	000 000	0
	1		0
		40.	0
		WW. W	0

Table 1.--Statistical summary of data for each station--Continued

Station Station Station No. (fig. 1): 36 No. (USGS): 06308190 Name: Pumpkin Creek near Volborg, MT

	ample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	9	50.0	1.76	4.60	1.60
Specific conductance (µmho/cm)	9	3880.00	5027.78	7000.00	995.26
pH (units)	9	7.10	8.04	8.40	.38
Temperature (°C)	9	.00	9.61	27.00	9.97
Turbidity (JTU)	9	5.00	5.00	10.00	2.83
Oxygen, dissolved (mg/L)	9	7.20	6.71	12.40	1.66
Oxygen, dissolved (mg/L)	9	55.00	84.56	115.00	20.10
Biochemical oxygen demand (mg/L)	9	.50	1.62	2.60	.60
Calcium, dissolved (mg/L)	9	90.00	153.33	230.00	38.73
Magnesium, dissolved (mg/L)	9	140.00	210.00	280.00	49.75
Sodium, dissolved (mg/L)	9	520.00	776.67	1300.00	243.67
	9	52.00	56.67	62.00	2.92
Sodium (percent) Sodium-adsorption ratio	9	7.20	9.51	14.00	2.08
	9	13.00	17.78	21.00	2.73
rotassium, dissolved (mg/L)	9	433.00	608.44	961.00	162.86
Bicarbonate (mg/L)	9	.00	.00	.00	.00
Carbonate (mg/L)	9	1700.00	2433.33	3600.00	672.68
Sulfate, dissolved (mg/L)	9	12.00	16.56	26.00	4.77
Chloride, dissolved (mg/L)	9	.20	.42		.12
Fluoride, dissolved (mg/L)	9	.50	6.89		4.06
Silica, dissolved (mg/L)	9	2750.00	3916.67	5950.00	1044.05
Dissolved solids, calculated (mg/L)	9	.00	.04		.06
Nitrogen, NO2+NO3 total (mg/L as N)	9	.00	.04	.14	.04
Nitrogen, ammonia total (mg/L as N)	9	.68	1.01	1.20	.17
Nitrogen, organic total (mg/L as N)	9	.71	1.07		.20
Nitrogen, total (mg/L as N)	9	.02	.05		.04
Phosphorus, total (mg/L as P) Sediment, suspended (mg/L)	9	9.00	48.56		54.09

	BIEN	DISSOLVED	
Variable	Sample size	Minimum value	Maximum
Aluminum (µg/L)	1	20.00	20.00
Arsenic (µg/L)	1	.00	.00
Beryllium (µg/L)	1	.00	.00
Boron (µg/L)	9	450.00	960.00
Cadmium (µg/L)	1	1.00	1.00
Chromium (µg/L)	1	.00	.00
Copper (µg/L)	1	2.00	2.00
Iron (µg/L)	9	10.00	350.00
Lead (µg/L)	1	5.00	5.00
Lithium (µg/L)	1	60.00	60.00
Manganese (µg/L)	1	50.00	50.00
Mercury (µg/L)	1	.00	.00
Molybdenum (µg/L)	1	.00	.00
Nickel (µg/L)	1	3.00	3.00
Selenium (µg/L)	1	.00	.00
Zinc (µg/L)	1	20.00	20.00
Vanadium (µg/L)	1	.40	.40

		STRINGTE A	VII STEEDESS	REGRESSIO	ON SUMMARY				
SIMPLE REGRESSION				MULTIPLE REGRESSION					
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant	coeff	regression icient3	Coeffi- cient of deter-	Standard error of	
stant1	cient	mination-	estimate	constant	Q	K	mination ²	estimate	
			111	1000					
Q		.438	.401	Mark Street	15 72	Con Vincent	.207	.395	
K Q	10000 10.00 11.01	.00937	3.01 1.33 21.1	101 TO	15	Gita	.0192	3.23	
4.46 K	00056	.0341 .888* .387	.213	5.11	0913	00066*	.0342 .922* .529	22.8 .192 30.7	
-11.0 K -395 K	.0440	.774*	25.3 79.8	-37.5 -615	3.72 30.8	.0479* .266*	.782* .929*	26.8 74.8	
45.1 K 268 K 7.28 K	.00230 .00195 .00209	.618* .862* .580*	1.93 .827 1.89	-1.71	.202	.00216*	.625 .876* .610	2.29 .848 1.97	
-25.4 K	.126	.593*	111	-402	52.8	.182*	.746*	94.9	
-739 K	.631	.871* .250	258 4.42	-791	7.26	.639*	.872*	278	
K		.423	.0976	343	.0520	.00013*	.299 .693* .0104	4.61 .0769 4.67	
-1110 K	.999	.908* .264 .0168	339 .0594 .0437	-1680	.79.9	1.08*	.916* .295	349 .0628 .0457	
K Q K		.0338 .0635 .0706	.182 .207 .0393				.0339 .0667 .0837	.196 .223	
Q		.0822	55.4				.0866	59.7	

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

LE	TAL RECOVERABL	TO	_
Maximum value	Minimum value	Sample size	ir a
50.00	50.00	1	
.00	1.00	1	
10.00	10.00	0	
10.00	10.00	1	
380.00	10.00	1	
100.00	100.00	1	
150.00	150.00	1	
4.00	4.00	1	
50.00	50.00	1	
.00	.00	i	

Table 1.--Statistical summary of data for each station--Continued

Station Station Station No. (fig. 1): 37 No. (USGS): 06308400 Name: Pumpkin Creek near Miles City, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	24	0.01	117.26	1730.00	359.65
Specific conductance (µmho/cm)	24	195.00	1857.75	4120.00	1234.14
pH (units)	24	7.70	8.26	8.70	.27
Temperature (°C)	24	.00	11.02	24.50	10.49
Turbidity (JTU)	55	7.00	1045.91	11000.00	2589.12
Oxygen, dissolved (mg/L)	23	4.80	9.61	12.40	1.94
Oxygen, dissolved (percent)	23	56.00	92.35	119.00	16.24
Biochemical oxygen demand (mg/L)	23	.60	3.97	11.00	2.74
Calcium, dissolved (mg/L)	55	1.50	52.65	130.00	33.19
Magnesium, dissolved (mg/L)	55	3.00	41.77	120.00	32.50
Sodium, dissolved (mg/L)	55	26.00	339.64	830.00	236.90
Sodium (percent)	55	54.00	69.73	79.00	6.83
Sodium-adsorption ratio	55	1.90	8.11	15.00	3.72
otassium, dissolved (mg/L)	55	3.40	9.67	18.00	4.08
Bicarbonate (mg/L)	23	67.00	340.39	876.00	196.63
Carbonate (mg/L)	- 55	.00	4.50	28.00	7.78
Sulfate, dissolved (mg/L)	55	34.00	729.18	1700.00	520.14
Chloride, dissolved (mg/L)	55	1.80	6.60	13.00	3.28
Thoride, dissolved (mg/L)	55	.10	0.37	.60	.13
ilica, dissolved (mg/L)	55	1.10	6.17	11.00	2.73
dissolved solids, calculated (mg/L)	55	120.00	1359.95	3190.00	917.35
Vitrogen, NO2+NO3 total (mg/L)	23	.00	.28	1.50	.36
litrogen, ammonia total (mg/L as N)	23	.00	.13	1.30	.28
litrogen, organic total (mg/L as N)	23	.00	2.37	16.00	3.68
itrogen, total (mg/L as N)	23	.65	2.80	18.00	4.09
	23	.00	.61	5.80	1.35
Phosphorus, total (mg/L as P) Sediment, suspended (mg/L)	23	21.00	2090.39	23400.00	5279.28

	3.HA	DISSOLVED	
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	6	10.00	200.00
Arsenic (µg/L)	6	.00	4.00
Beryllium (µg/L)	6	.00	10.00
Boron (µg/L)	55	120.00	500.00
Cadmium (µg/L)	6	.00	3.00
Chromium (µg/L)	6	.00	10.00
Copper (µg/L)	6	8.00	18.00
Iron (µg/L)	55	.00	200.00
Lead (µg/L)	6	.00	17.00
Lithium (µg/L)	6	2.00	30.00
Manganese (µg/L)	6	.00	90.00
Mercury (µg/L)	6	.00	.20
Molybdenum (µg/L)	6	.00	2.00
Nickel (µg/L)	6	6.00	14.00
Selenium (µg/L)	6	.00	4.00
Zinc (µg/L)	6	10.00	60.00
Vanadium (µg/L)	6	.00	8.50

		IN COLUMN 2	AND PERSONS	REGRESSIO	ON SUMMARY	-		
SIMPLE REGRESSION					MULTI	PLE REGRESSI	ON	
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial r		Coeffi- cient of deter-	Standard error of
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
-5° v3×		407	. no. 1 . 45	20.00 ·	4-2	talken	anathwitze!	Aven See
Q		.150	1120	De liete	65	(400) (400)	and a transfer	
8.09 K	.00010	.200*	.249			*	.202	.254
				50	11		//	
K		.113	2500				.116	2560
K		.00996	1.93				.0115	1.97
Q		.0999	15.5				.109	15.8
6.29 K	00127	.330*	2.35	5.60	.00197	00103*	.390*	2.30
7.42 K	.0233	.787*	15.1	8.55	00331	.0229*	.788*	15.4
-3.04 K	.0227	.767*	15.6	-3.17	.00039	.0228*	.767*	16.0
-12.7 K	.183	.965*	43.5	-15.1	.00697	.184*	.965*	44.4
0	***	.0208	6.80			* PL + P + M S	.0246	6.95
3.21 K	.00262	.804*	1.62	3.49	00082	.00252*	.810*	1.63
4.50 K	.00270	.709*	2.15	4.67	00050	.00264*	.711*	2.20
67.0 K	.146	.865*	72.2	70.7	0110	.145*	.866*	73.8
-1.10 K	.00290	.223*	6.86			*	.223	7.03
-65.3 K	.409	.987*	57.8	-69.7	0126	.411*	.987*	59.0
1.73 K	.00250	.924*	.893	1.47	.00077	.00259*	.931*	.873
.285 K	.00005	.189*	.117	A 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1762710		.219	.117
0		.0247	2.63				.0417	2.67
-30.6 K	.719	.985*	110	-34.3	.0110	.720*	.985*	113
K	• • • • •	.133	.335			•/20x	.113	.342
.289 K	00009	.169*	.250				.215	.249
.209 K	.0000)	.0872	3.46				.0938	3.53
K		.109	3.81				.112	3.89
K		.137	1.24				.190	1.23
K		.118	5180				.119	5230
		.110	3100				.119	3230

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

² Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at = 0.05

3 Asterisk denotes that partial regression coefficient is significant at = 0.05

		W
Sample	Minimum value	Maximum value
4.096	160.00	4500.00
6	1.00	35.00
6	.00	10.00
0	- 11 - 243	
6	.00	20.00
6	.00	180.00
6	10.00	320.00
6	150.00	160000.00
6	100.00	200.00
6	30.00	130.00
6	40.00	2800.00
6	.00	.50
6	1.00	20.00
6	19.00	100.00
6	.00	6.00
6	.00	930.00
	0.0 244	

Table 1.--Statistical summary of data for each station--Continued

Station No. (fig. 1): 38

Station No. (USGS): 06308500

Station

name: Tongue River at Miles City, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	50	90.00	780.88	5020.00	1157.72
Specific conductance (\u00fcmho/cm)	73	368.00	759.45	1320.00	214.02
pH (units)	73	7.70	8.28	8.60	.20
Temperature (°C)	73	.00	13.54	27.00	9.33
Turbidity (JTU)	45	1.00	130.44	1200.00	275.68
Oxygen, dissolved (mg/L)	73	6.50	9.76	15.00	2.14
Oxygen, dissolved (percent)	73	79.00	98.14	116.00	6.61
Biochemical oxygen demand (mg/L)	7	.80	5.26	5.50	1.66
Calcium, dissolved (mg/L)	50	27.00	59.98	84.00	15.30
Magnesium, dissolved (mg/L)	- 50	14.00	42.14	63.00	14.23
Sodium, dissolved (mg/L)	50	13.00	63.82	130.00	24.32
Sodium (percent)	50	18.00	29.48	54.00	7.02
Sodium-adsorption ratio	50	.60	1.56	3.00	.53
Potassium, dissolved (mg/L)	50	2.30	4.79	7.30	1.05
Bicarbonate (mg/L)	45	120.00	277.64	390.00	68.46
Carbonate (mg/L)	43	.00	.81	8.00	1.94
Sulfate, dissolved (mg/L)	50	76.00	231.06	440.00	83.66
Chloride, dissolved (mg/L)	50	1.60	4.13	8.70	1.42
Fluoride, dissolved (mg/L)	50	.10	.30	.50	.08
Silica, dissolved (mg/L)	50	.40	5.74	9.00	1.96
Dissolved solids, calculated (mg/L)	50	234.00	548.04	912.00	167.73
Nitrogen, NO2+NO3 total (mg/L as N)	50	.00	.10	.45	.10
Nitrogen, ammonia total (mg/L as N)	14	.00	.03	.25	.06
Nitrogen, organic total (mg/L as N)	9	.18	1.59	4.20	1.28
Nitrogen, total (mg/L as N)	45	.12	.94	4.30	.94
Phosphorus, total (mg/L as P)	50	.00	.20	1.90	.36
Sediment, suspended (mg/L)	36	5.00	427.89	4359.99	883.51

	DISSOLVED					
Variable	Sample	Minimum	Maximum			
Aluminum (µg/L)	1	20.00	20.00			
Arsenic (µg/L)	18	.00	3.00			
Beryllium (µg/L)	00.01	10.00	10.00			
Boron (µg/L)	1	180.00	180.00			
Cadmium (µg/L)	18	.00	6.00			
Chromium (µg/L)	18	.00	20.00			
Copper (µg/L)	18	.00	8.00			
Iron (µg/L)	18	.00	150.00			
Lead (µg/L)	18	.00	41.00			
Lithium (µg/L)	00.0.1	30.00	30.00			
Manganese (µg/L)	18	.00	20.00			
Mercury (µg/L)	18	.00	.20			
Molybdenum (µg/L)	1	.00	.00			
Nickel (µg/L)	1	1.00	1.00			
Selenium (µg/L)	18	.00	- 1.00			
Zinc (µg/L)	18	.00	70.00			
Vanadium (µg/L)	1	.50	.50			

-178 Q

			REGRESSION SUMMARY								
SIMPLE REGRESSION					MULTIP	LE REGRESSI	ON				
Regres- sion con-	sion	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial re		Coeffi- cient of deter-	Standard error of		
stant1	cien	1	mination ²	estimate	ate constant	Q	K	mination ²	estimate		
	10 6			45	20		(=(5-1) 220	emermed gra			
907 Q		105	.271	* 199			(ma) (may)	SOUTH			
8.32 Q	00	006	.0829	* .212		*		.105	.211		
								(922			
-31.7 Q		259	.778		-32.8	.260*	.00121	.778*	133		
5.13 K			. 498		4.57	.00019	.00702*	.506*	1.53		
99.5 Q	00	186	.0823					.0828	7.24		
K			.122	1.63	200			.141	1.76		
11.6 K		588	.804		17.0	00189	.0539*		6.57		
-3.80 K		557	.843		-1.80	00069	.0539*		5.61		
-5.46 K	.0	338	.656		-17.0	.00401*	.0941*		13.7		
Q			.0636	6.73	20.5	.00242*	.00854	.123*	6.58		
.642 K	.00		.239		. 251	.00014*	.00145*		.443		
2.12 K			.519		1.13	.00034*	.00411*		.647		
47.5 K		273	.868		74.1	0102*	.249*		23.9		
VE OF		205	.0368	1.93	77 0	0444		.046	1.95		
-45.2 K		335			-77.2	.0111*	.363*		27.0		
0377 K	.00		.704		199	.00006	.00521*		.771		
.125 K	.00	121	.428	.0576	.153	.00001	.00019*		.0574		
-15 2 K			.00215		-71.2	0100	700	.00270	1.99		
-15.3 K		582	.912			.0193*	.732*		46.1		
.0595 Q	.00		. 273		0538	.00005*	.00013*		.0826		
.00605 Q 3.61 K	00		.407		.0043	.00002	00006	.462*	.0468		
.498 Q					.271	.00063*	00005	-407	1.05		
.0210 Q	.000		.542		.115	.00003*	00010	.454*	.695		
-178 Q		.07			-570	1.14*	00010	.546* .762*	.243		

TO	TAL RECOVERAL	BLE	
Sample	Minimum value	Maximum value	
1 18 1	350.00 .00 10.00	350.00 26.00 10.00	
18 18 18	.00 .00 10.00	20.00 80.00 170.00	
18 18 1	190.00	74000.00 100.00 20.00	
17 17 1	10.00 .00 3.00	1000.00 .30 3.00 50.00	
1 18 18	.00 10.00	2.00	

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable independent variable 2Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 3Asterisk denotes that partial regression coefficient is significant at α = 0.05

Table 1.--Statistical summary of data for each station--Continued

Station Station No. (fig. 1): 39 No. (USGS): 06324500

Station

name: Powder River at Moorhead, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	60	20.00	997.51	12049.97	2101.10
Specific conductance (µmho/cm)	55	730.00	2023.00	3490.00	553.91
pH (units)	54	7.50	8.14	8.60	.31
Temperature (°C)	65	.00	9.36	25.50	8.49
Turbidity (JTU)	52	7.00	1344.08	33000.00	4612.91
Oxygen, dissolved (mg/L)	54	4:60	9.29	12.80	2.01
Oxygen, dissolved (percent)	48	35.00	89.03	108.00	14.68
Biochemical oxygen demand (mg/L)	43	.40	2.33	6.20	1.27
Calcium, dissolved (mg/L)	54	50.00	132.00	00.055	32.48
Magnesium, dissolved (mg/L)	54	16.00	59.19	110.00	17.57
Sodium, dissolved (mg/L)	54	74.00	245.83	490.00	84.46
Sodium (percent)	54	29.00	47.24	56.00	5.59
Sodium-adsorption ratio	54	1.80	4.42	7.00	1.14
Potassium, dissolved (mg/L)	54	3.10	0.75	17.00	2.30
Bicarbonate (mg/L)	54	140.00	271.37	432.00	72.27
Carbonate (mg/L)	49	.00	.06	2.00	.32
Sulfate, dissolved (mg/L)	53	290.00	668.11	1300.00	205.73
Chloride, dissolved (mg/L)	54	.10	143.26	320.00	64.24
Fluoride, dissolved (mg/L)	52	.20	.46	.80	.13
Silica, dissolved (mg/L)	54	2.90	7.67	13.00	2.32
Dissolved solids, calculated (mg/L)	53	625.00	1406.51	2510.00	376.83
Nitrogen, NO2+NO3 total (mg/L as N)	55	.00	.33	1.40	.26
Nitrogen, ammonia total (mg/L as N)	55	.00	.08	.28	.07
Nitrogen, organic total (mg/L as N)	54	- 11	3.24	52.00	7.47
Nitrogen, total (mg/L as N)	54	.14	3.64	53.00	7.59
Phosphorus, total (mg/L as P)	55	.00	.72	9.50	1.38
Sediment, suspended (mg/L)	11	234.00	11690.34	49699.90	15383.33

	DISSOLVED					
Variable	Sample size	Minimum value	Maximum value			
Aluminum (µg/L)	11	0.00	60.00			
Arsenic (µg/L)	9	.00	1.00			
Beryllium (µg/L)	9	.00	20.00			
Boron (µg/L)	51	70.00	890.00			
Cadmium (µg/L)	9	.00	5.00			
Chromium (µg/L)	9	.00	10.00			
Copper (µg/L)	11	.00	10.00			
Iron (µg/L)	49	.00	250.00			
Lead (µg/L)	11	1.00	10.00			
Lithium (µg/L)	9	30.00	120.00			
Manganese (µg/L)	9	.00	30.00			
	11	.00	4.00			
Mercury (µg/L)	9	.00	4.00			
Molybdenum (µg/L)	9	2.00	7.00			
Nickel (µg/L)	10	.00	3.00			
Selenium (µg/L)	11	.00	180.00			
Zinc (µg/L) Vanadium (µg/L)	9	.00	6.00			

		tte torre in	Later	REGRESSIO	N SUMMARY		<u> </u>	
SIMPLE REGRESSION					MULTIP	LE REGRESSIO	ON	
Regres- sion con- stant1	Regres- sion coeffi- cient	Coeffi- cient of deter- mination ²	Standard error of estimate	Regres- sion constant3	Partial recoeffic		Coeffi- cient of deter- mination ²	Standard error of estimate
				1				
2090 Q	121	.144*	528					
8.22 Q	00007	.155*		7.91	00005*	.00015*	.221*	.273
						.00013%	*221X	•2/3
0		.0165	4760				.0481	4730
Õ		.0559	1.92				.0725	1.92
Õ		.0186	14.6				.0236	14.7
2.04 0	.00041	.391*		2.31	.00040*	00013	.394*	1.05
34.8 K	.0480		18.6	31.9	.00094	.0491*	.686*	18.7
7.83 K	.0255			9.24	00045	.0249*	.677*	10.2
-26.1 K	.133		41.7	-7.72	00587	.126*	.782*	40.1
48.0 Q	00153		5.36	41.0	00113*	.00332*	.292*	5.11
1.10 K	.00162		.741	1.50	00013*	.00147*	.640*	.718
1.64 K	.00257	.404*	1.79	1.70	00002	.00255*	.404*	1.80
280 Q	0178		61.4	209	0137*	.0342*	.284*	59.3
0	0170	.00497	.656	207	013/%	•0342*	.00704	.662
9.03 K	.322		116	-10.1	.00593	.329*	.700*	
-38.3 K	.0888		42.2	-24.6	00436	.0836*		117
.244 K	.00011	.202*	.127	.234	.00000	.00012*	.603*	42.0
0	.00011	.00521	2.31	*254	.00000	.00012*	.204*	.128
89.8 K	.640		166	125	0110	607	.00848	2.33
09.0 R	.040	.0908	.262	123	0110	.627*	.819*	167
Q		.0464	.0745		*		.107	.262
Q		.0403	7.44				.0668	.0744
Q		.0444	7.55				.0618	7.43
		.0299	1.38				.0657	7.54
822 Q	4.88		4560	-3030	4.53*	1 00	.0353	1.39
022 Q	4.88	.3/4*	4500	-3030	4.33*	1.96	.524*	5870

TOTAL RECOVERABLE							
Sample size	Minimum value	Maximum value					
11	1300.00	270000.00					
12	.00	350.00					
12	.00	20.00					
5	410.00	410.00					
12	.00	50.00					
12	.00	500.00					
14	10.00	900.00					
12	560.00	600000.00					
14	100.00	800.00					
12	50.00	450.00					
11	20.00	9700.00					
12	.00	1.10					
12	.00	5.00					
12	50.00	650.00					
14	.00	8.00					
11	30.00	2700.00					

 $^{^{1}\}text{Q}$ indicates discharge as independent variable; K indicates specific conductance as independent variable $^{2}\text{Asterisk}$ denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at α = 0.05 $^{3}\text{Regression}$ for sediment calculated from 1096 observations $^{4}\text{Asterisk}$ denotes that partial regression coefficient is significant at α = 0.05

Table 1.--Statistical summary of data for each station--Continued

Station

name: Mizpah Creek at Olive, MT

Variable	Sample	Minimum value	Mean	Maximum value	Standard
Discharge, instantaneous (ft ³ /s)	19	0.01	0.37	1.60	0.40
Specific conductance (µmho/cm)	19	2580.00	4526.32	5810.00	1027.33
pH (units)	19	7.10	7.81	8.10	.31
Temperature (°C)	19	.00	10.55	22.50	8.91
Turbidity (JTU)	18	1.00	2.72	7.00	1.64
Oxygen, dissolved (mg/L)	18	.00	6.77	14.40	4.81
Oxygen, dissolved (percent)	18	.00	71.78	164.00	51.61
Biochemical oxygen demand (mg/L)	18	.60	2.76	14.00	3.14
Calcium, dissolved (mg/L)	19	170.00	271.05	380.00	73.85
Magnesium, dissolved (mg/L)	19	150.00	296.84	390.00	74.69
Sodium, dissolved (mg/L)	19	550.00	471.58	660.00	142.33
Sodium (percent)	19	29.00	34.42	41.00	3.24
Sodium-adsorption ratio	19	2.90	4.66	6.40	1.02
Potassium, dissolved (mg/L)	19	8.10	16.52	24.00	4.82
Bicarbonate (mg/L)	19	287.00	503.47	1010.00	180.45
Carbonate (mg/L)	19	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	19	1300.00	2436.84	3300.00	646.54
Chloride, dissolved (mg/L)	19	3.80	23.52	61.00	11.04
Fluoride, dissolved (mg/L)	19	.50	.25	.40	.07
Silica, dissolved (mg/L)	19	.40	12.99	39.00	8.93
Dissolved solids, calculated (mg/L)	19	2050.00	3778.42	5050.00	938.01
Nitrogen, NO2+NO3 total (mg/L as N)	19	.00	.02	.05	.02
Nitrogen, ammonia total (mg/L as N)	19	.00	.20	1.50	.42
Nitrogen, organic total (mg/L as N)	19	. 47	1.11	1.80	. 36
Nitrogen, total (mg/L as N)	19	.53	1.32	3.00	.57
Phosphorus, total (mg/L as P)	19	.03	.13	.33	.11
Sediment, suspended (mg/L)	18	6.00	153.39	733.00	215.86

	DISSOLVED					
Variable	Sample	Minimum value	Maximum value			
Aluminum (µg/L)	5	0.00	30.00			
Arsenic (µg/L)	5	.00	10.00			
Beryllium (µg/L)	5	.00	10.00			
Boron (µg/L)	19	.00	530.00			
Cadmium (µg/L)	5	.00	4.00			
Chromium (µg/L)	5	.00	20.00			
Copper (µg/L)	5	.00	1.00			
Iron (µg/L)	19	30.00	540.00			
Lead (µg/L)	5	1.00	30.00			
Lithium (µg/L)	5	50.00	110.00			
Manganese (µg/L)	5	90.00	6600.00			
Mercury (µg/L)	5	.00	.00			
Molybdenum (µg/L)	5	.00	5.00			
Nickel (µg/L)	5 5 5	1.00	7.00			
Selenium (µg/L)	5	.00	1.00			
Zinc (µg/L)	5	10.00	40.00			
Vanadium (µg/L)	5	.00	.40			

REGRESSION	SUMMARY

	SIMPLE RE	GRESSION			MULT	IPLE REGRESSI	ON	
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-		regression icient ³	Coeffi- cient of deter-	Standard error of
stant1	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
				10.0 -2		(a)Essi emas	OM LOW LAND	es vades.
Q Q		.0222	1020 •293	00.0127	41.75	(militarine)	.192	.288
Q	157	.0558	1.64	00. 12.93	1 4-m	107.00	.0872	1.67
18.9 K 208 K Q	00271 0304	.345* .375*	4.02 42.0 3.22	18.9 207	1.77 22.4	00286* 0322*	.373* .414* .152	4.06 42.1 3.18
65.6 K -8.50 K -60.8 K	.0451 .0680 .118	.395* .838* .712*	57.5 30.8 77.5 2.97	63.5 -10.0 -63.7	29.0 21.0 40.5	.0432* .0666* .116*	.426* .853* .728*	57.6 30.2 77.5 3.06
1.28 K -2.64 K 14.7 K	.00075 .00431 .106	.556* .730* .364*	.692 2.70 145	1.27 -2.56 19.7	.159 -1.13 -68.6	.00074* .00438* .111*	.561* .739* .393*	.708 2.73 146
28.7 K .940 K	.537 .00498	.695* .216*	367 9.78 .0688	14.5	198	.524*	.713* .231	366 9.97 .0708
-6.40 K 20.7 K K	.00423	.236* .812* .113	7.84 414 .0147 .409	-5.92 3.13	-6.74 245	.00467* .819*	.350* .826* .125	7.44 410 .0150
.325 K	.00018	.246*	.317	.344	268	.00019*	.0530 .355* .269	.419 .302 .504
131 K 227 Q	.00006 -193	.281* .131*	.0956 207	127 199	0568 -197	.00006*	.332* .132*	.0948

 $^{^{1}}$ Q indicates discharge as independent variable; K indicates specific conductance as independent variable 2 Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at $\alpha = 0.05$

,	Asterisk	denotes	that	partial	regression	coefficient	is	significant	at	α =	0.0	5
		00110000		P	0			0	-	11		

TO	OTAL RECOVERAB	LE	
Sample size	Minimum value	Maximum value	
4 4 4	20.00	100.00 2.00 10.00	
0 3 4 3	10.00	10.00	
4 3 4	180.00 100.00 50.00	940.00 100.00 120.00	
4 4	.00	7100.00	
4 4	50.00	1.00 40.00	

Table 1.--Statistical summary of data for each station--Continued

Station No. (fig. 1): 41 Station

No. (USGS): 06326200

Station

name: Mizpah Creek near Volborg, MT

	day #5	-0.03a98 br		annily next	0.0011
/ariable	Sample	Minimum value	Mean	Maximum value	Standard
Discharge, instantaneous (ft ³ /s)	18	0.01	1.01	8.90	2.25
Specific conductance (wmho/cm)	18	1370.00	2978.89	3900.00	612.25
oH (units)	18	7.50	7.89	8.30	.25
Cemperature (°C)	18	.00	10.97	29.50	10.38
Curbidity (JTU)	17	1.00	8.24	30.00	7.18
oxygen, dissolved (mg/L)	17	3.00	7.72	11.10	30.5
Oxygen, dissolved (percent)	17	23.00	79.71	131.00	31.76
Biochemical oxygen demand (mg/L)	17	.40	1.67	6.70	1.51
Calcium, dissolved (mg/L)	18	45.00	123.78	170.00	31.41
Magnesium, dissolved (mg/L)	18	31.00	77.22	95.00	14.71
Sodium, dissolved (mg/L)	18	200.00	450.00	550.00	84.51
Sodium (percent)	18	57.00	60.56	67.00	2.97
Sodium-adsorption ratio	18	5.60	7.82	9.70	1.04
Potassium, dissolved (mg/L)	18	8.00	9.74	12.00	1.08
Bicarbonate (mg/L)	18	244.00	572.56	729.00	119.32
Carbonate (mg/L)	18	.00	.00	.00	.00
Sulfate, dissolved (mg/L)	18	470.00	1093.89	1300.00	205.03
Chloride, dissolved (mg/L)	18	5.80	8.83	12.00	1.39
Fluoride, dissolved (mg/L)	18	.20	.34	.40	.06
Silica, dissolved (mg/L)	18	4.70	12.37	18.00	4.27
Dissolved solids, calculated (mg/L)	18	00.68E	2059.33	2470.00	367.45
Nitrogen, NO2+NO3 total (mg/L as N)	18	.00	.02	.03	.01
Nitrogen, ammonia total (mg/L as N)		.00	.02	.21	.05
Nitrogen, organic total (mg/L as N)		.05	.57	1.70	.48
Nitrogen, total (mg/L as N)	17	.13	.61	1.70	.47
Phosphorus, total (mg/L as P)	18	.00	.04	.16	.04
Sediment, suspended (mg/L)	17	12.00	82.06	385.00	86.50

	3,167	DISSOLVED	
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	5	0.00	40.00
Arsenic (µg/L)	5	.00	1.00
Beryllium (µg/L)	5	.00	10.00
Boron (µg/L)	18	240.00	420.00
Cadmium (µg/L)	5	1.00	2.00
Chromium (µg/L)	5	.00	20.00
Copper (µg/L)	5	.00	2.00
Iron (µg/L)	18	10.00	320.00
Lead (µg/L)	5	2.00	7.00
Lithium (µg/L)	5	40.00	40.00
Manganese (µg/L)	5	270.00	1800.00
Mercury (µg/L)	5	.00	.20
Molybdenum (µg/L)	5	.00	1.00
Nickel (µg/L)	5	3.00	8.00
Selenium (µg/L)	5	.00	.00
Zinc (µg/L)	5 5 5 5	.00	20.00
Vanadium (µg/L)	5	.00	.70

		Delight of a	Va. Druit-yest	REGRESSIO	N SUMMARY		Marie Marie	
	SIMPLE REC	GRESSION			MULTIPI	LE REGRESSIO	ON	
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial reg	ient ³	Coeffi- cient of deter-	Standard error of
stant	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
	-			A Section		-12-13	contractor and an	at resignati
Q		.090	584	for sole		Commission and Commission of C		
Q K		.145	.240			*	.293	.225
			101	100		"		
5.40 Q	2.66			2.93	2.73*	.00080	.735*	3.95
Q		.0253	2.12	. 06 . 4			.0515	2.17
Q		.00064	32.8				.00069	34.0
5.80 K	00138	.332	1.28	4.74	.240	00111*		1.20
5.74 K	.0394	4 .583	20.4	32.5	-6.26*	.0324		15.8
17.6 K	.0203	.666	8.80	17.8	0488	.0202*		9.07
108 K	.115		47.2	81.3	6.25	.122*		46.7
59.7 Q	.924	4 .492	2.12	59.6	.926*	.00003	.492*	2.19
4.96 K	.00097	7 .320,	.862	4.06	.212*	.00120*		.754
Q		.0150	1.19	9.22		.00120%	.0235	1.23
83.8 K	.164	4 .710-	k 64.3	154	-16.4*	.146		55.3
						.140%	.//0*	33.3
276 K	.276	.671	118	210	15.4	.293*		117
4.12 K	.00162	2 .451,	. 1.10	3.98	.0311	.00166		1.10
.106 K	.00008	.603	.0394	.0779	.00657	.00009		.0378
13.5 Q	-1.25	.438	3.20	6.06	-1.05*	.00245	.550*	2.95
565 K	.538			441	5.74	.544		172
K		.00966	.0110		3.74	• 544%	.00966	.0113
0		.00650	.0494				.00710	.0510
1.88 K	00044			1.53	.0787	00035		.369
1.89 K	00043			1.55	.0763	00034		.351
.0241 Q	.0138			.0970	.0119*	000344		.0264
-175 K	.0860			-179	1.01			72.1
-175 10			09.7	-1/9	1.01	.0872	.393*	12.1

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable ²Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at $\alpha = 0.05$ ³Asterisk denotes that partial regression coefficient is significant at $\alpha = 0.05$

Sample	Minimum	Maximum
size	value	value
5	50.00	350.00
5	.00	3.00
5	.00	10.00
0		
5	10.00	50.00
5	.00	45.00
5	10.00	10.00
5	280.00	990.00
5	100.00	100.00
5	30.00	40.00
5	150.00	1700.00
5	1.00	.10
- 5	.00	5.00
5	50.00	200.00
5	.00	1.00
5	.00	30.00

Table 1.--Statistical summary of data for each station--Continued

Station No. (fig. 1): 42

Station No. (USGS): 06326300

Station

name: Mizpah Creek near Mizpah, MT

Variable	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	25	0.04	62.08	1270.00	252.26
Specific conductance (µmho/cm)	25	270.00	1950.56	4100.00	1104.95
pH (units)	25	7.50	8.28	8.80	.33
Temperature (°C)	25	.00	10.50	27.50	10.37
Turbidity (JTU)	23	5.00	1199.13	9500.00	2346.97
Oxygen, dissolved (mg/L)	24	5.20	9.81	13.20	2.16
Oxygen, dissolved (percent)	24	61.00	92.71	128.00	16.52
Biochemical oxygen demand (mg/L)	24	.60	3.99	11.20	2.69
Calcium, dissolved (mg/L)	55	4.00	46.50	84.00	24.21
Magnesium, dissolved (mg/L)	55	1.90	32.26	81.00	22.06
Sodium, dissolved (mg/L)	55	37.00	376.36	720.00	225.53
Sodium (percent)	55	56.00	74.55	93.00	9.96
Sodium-adsorption ratio	55	2.40	10.51	18.00	4.72
Potassium, dissolved (mg/L)	55	3.70	8.07	13.00	2.42
Bicarbonate (mg/L)	24	86.00	387.12	788.00	204.68
Carbonate (mg/L)	24	.00	5.75	28.00	8.60
Sulfate, dissolved (mg/L)	24	48.00	676.71	1300.00	426.69
Chloride, dissolved (mg/L)	24	2.90	7.30	15.00	3.38
Fluoride, dissolved (mg/L)	24	.10	.42	0.70	.16
Silica, dissolved (mg/L)	24	1.10	6.35	13.00	2.89
Dissolved solids, calculated (mg/L)	55	168.00	1390.59	2550.00	789.81
Nitrogen, NO2+NO3 total (mg/L as N)	24	.00	.45	2.20	.61
Nitrogen, ammonia total (mg/L as N)	23	.01	.19	1.00	.31
Nitrogen, organic total (mg/L as N)	23	.19	3.16	14.00	4.29
Nitrogen, total (mg/L as N)	23	.49	3.82	17.00	4.89
Phosphorus, total (mg/L as P)	24	.02	1.00	6.60	1.93
Sediment, suspended (mg/L)	24	23.00	3181.79	18400.00	5510.39

	3.00	DISSOLVED	
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	В	0.00	600.00
Arsenic (µg/L)	8	.00	18.00
Beryllium (µg/L)	8	.00	10.00
Boron (µg/L)	23	80.00	550.00
Cadmium (µg/L)	8	.00	5.00
Chromium (µg/L)	8	.00	10.00
Copper (µg/L)	8	2.00	28.00
Iron (µg/L)	55	.00	1100.00
Lead (µg/L)	8	1.00	19.00
Lithium (µg/L)	8	10.00	120.00
Manganese (µg/L)	8	.00	120.00
Mercury (µg/L)	8	.00	.10
Molybdenum (µg/L)	8	.00	5.00
Nickel (µg/L)	8	2.00	14.00
Selenium (µg/L)	8	.00	5.00
Zinc (µg/L)	8	.00	100.00
Vanadium (µg/L)	8	.00	10.00

and the second	SIMPLE RE	GRESSION			MULTI	PLE REGRESSI	ON	
Regres- sion con-	Regres- sion coeffi-	Coeffi- cient of deter-	Standard error of	Regres-	Partial r	cient3	Coeffi- cient of deter-	Standard error of
stant	cient	mination ²	estimate	constant	Q	K	mination ²	estimate
			tives	A 6-02	0 12	Andrew -		
Q		.126	1020					
7.93 K	.00019	.381*	.268	7.91	.00010	.00020*	.386*	.272
				00				
2850 K	880	.176*	2180			*	.194	2210
K		.0789	2.07				.146	2.04
K		.0403	16.2				.0428	16.6
7.43 K	00182	.543*	1.87	6.92	.00212	00163*	.580*	1.84
14.5 K	.0158	.550*	15.9	16.1	00642	.0152*	.555*	16.2
1.62 K	.0148	.572*	14.3	1.78	00066	.0147*	.572*	14.6
-17.0 K	.196	.973*	36.5	-16.6	00155	.196*	.973*	37.3
76.0 Q	0159	.181*	8.92			2.00	.208	8.98
4.16 K	.00321	.594*	2.96	4.84	00278	.00296*	.615*	2.95
5.89 K	.00110	.269*	2.02	4.78	.00449*	.00151*	.482*	1.74
63.2 K	.168	.851*	79.3	68.4	0237	.166*	.852*	80.9
3.14 K	.00471	.370*	6.92	-3.53	.00179	.00485*	.373*	7.06
47.7 K	.374	.970*	72.2	-46.7	00506	.374*	.970*	73.7
2.75 K	.00237	.618*	2.06	1.87	.00409*	.00271*	.702*	1.86
.444 Q	00029	.218*	.139	The state of the s			.223	.141
K		.0649	2.74				.0978	2.75
.121 K	.690	.983*	102	5.22	0216	.688*	.983*	105
.925 K	.00026	.221*	.535	.993	00031	00028*	.236*	.542
.380 K	00011	.161*	.277			*	.201	.276
6.40 K	00176	.219*	3.73	7.04	00296	00200*	.248*	3.75
7.75 K	00213	.248*	4.18	8.50	00351	00241*	.278*	4.19
2.58 K	00082	.228*	1.67	2.86	00129	00241*	.254*	1.61
7760 K	-2.41	.232*	4940	8500	-3.31	-2.68*	.253*	4990

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

²Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at $\alpha = 0.05$ ³Asterisk denotes that partial regression coefficient is significant at $\alpha = 0.05$

Sample	Minimum	Maximum
size	value	value
7	380.00	54000.00
0	1.00	30.00
6	.00	20.00
1	660.00	660.00
7	4.00	20.00
7	.00	130.00
7	10.00	120.00
7	380.00	74000.00
7	52.00	200.00
7	20.00	60.00
7	40.00	1200.00
6	.00	.30
6	.00	5.00
7	.00	200.00
6	.00	5.00
6	10.00	430.00

Table 1.--Statistical summary of data for each station--Continued

No. (fig. 1): 43

Station

No. (USGS): 06326500

name: Powder River near Locate, MT

Variable Samuel	Sample size	Minimum value	Mean	Maximum value	Standard deviation
Discharge, instantaneous (ft ³ /s)	55	24.00	1531.45	23999.95	3969.90
Specific conductance (µmho/cm)	72	615.00	2073.12	2900.00	482.00
pH (units)	72	7.50	8.20	8.50	.22
Temperature (°C)	78	.00	13.28	25.50	8.64
Turbidity (JTU)	45	4.00	972.07	5800.00	1298.09
Oxygen, dissolved (mg/L)	72	2.70	8.91	15.70	2.01
Oxygen, dissolved (percent)	72	20.00	90.40	118.00	14.77
Biochemical oxygen demand (mg/L)	5	.90	2.04	3.60	1.00
Calcium, dissolved (mg/L)	49	44.00	123.65	200.00	35.90
Magnesium, dissolved (mg/L)	49	14.00	54.65	100.00	18.53
Sodium, dissolved (mg/L)	49	61.00	253.69	420.00	81.21
Sodium (percent)	49	37.00	50.24	69.00	5.57
Sodium-adsorption ratio	49	2.00	4.76	6.90	1.11
Potassium, dissolved (mg/L)	49	4.30	7.37	12.00	1.80
Bicarbonate (mg/L)	45	87.00	281.93	480.00	83.58
Carbonate (mg/L)	42	.00	.14	2.00	.52
Sulfate, dissolved (mg/L)	49	220.00	690.61	1200.00	226.34
Chloride, dissolved (mg/L)	49	13.00	106.39	00.05	48.21
Fluoride, dissolved (mg/L)	49	.20	.45	.70	.10
Silica, dissolved (mg/L)	49	4.90	8.94	13.00	2.24
Dissolved solids, calculated (mg/L)	49	408.00	1382.31	2130.00	403.45
Nitrogen, NO2+NO3 total (mg/L as N)	49	.00	.39	1.20	.27
Nitrogen, ammonia total (mg/L as N)	14	.01	.06	.19	.05
Nitrogen, organic total (mg/L as N)	8	.47	3.88	9.60	3.67
Nitrogen, total (mg/L as N)	43	.47	2.82	10.00	2.68
Phosphorus, total (mg/L as P)	49	.01	.85	3.20	. 96
Sediment, suspended (mg/L)	41	31.00	4733.04	34499.93	7126.72

	27 3.00	DISSOLVED	
Variable	Sample size	Minimum value	Maximum value
Aluminum (µg/L)	0	Transaction	- make it
Arsenic (µg/L)	17	0.00	10.00
Beryllium (µg/L)	0	0.00	10.00
Boron (µg/L)	0		Sans, Inc.
Cadmium (µg/L)	17	.00	4.00
Chromium (µg/L)	17	.00	10.00
Copper (µg/L)	17	2.00	8.00
Iron (µg/L)	17	.00	150.00
Lead (ug/L)	17	.00	19.00
Lithium (µg/L)	0	•••	17.00
Manganese (µg/L)	17	.00	10.00
Mercury (µg/L)	17	.00	.30
Molybdenum (µg/L)	0	.00	
Nickel (µg/L)	ŏ	75 100 65 - 7	2 11 19
Selenium (µg/L)	17	.00	7.00
Zinc (µg/L)	17	.00	40.00
Vanadium (µg/L)	ō	.00	

REGRESSION SUMMARY								
SIMPLE REGRESSION			MULTIPLE REGRESSION					
01011	Standard error of	Regres-	Partial regression coefficient4		Coeffi- cient of deter-	Standard error of		
stant1	cient	mination ²	estimate	timate constant3	Q	K	mination ²	estimate
H C st	W. V. J. C. D. C.	ME 19 11 NO	A S OF THE PARTY.	OF THE	Contract Contract	Harry Control		DV -
2040 Q	0483	.120*	521	UE) 134	April 42 au	Moral wallet	4	
8.24 Q	00003	.191*	.218	8.14	00002*	.00005	.201*	.219
				41 47				
2410 K	729	.0990*	1250				.101	1260
Q		.00739	2.29				.00869	2.31
K		.00807	17.0				.0115	17.2
1.45 Q	.00052	.840*	.464				.885	.482
14.3 K	.0559	.732*	18.8	1.04	.00211*	.0611*	.780*	17.2
-6.06 K	.0310	.846*	7.34	-10.3	.00068*	.0327*	.865*	6.96
-18.7 K	.139	.886*	27.7	-9.78	00143	.136*	.890*	27.5
51.1 Q	00059	.180*	5.04	50.9	00059*	.00011	.180*	5.10
1.84 K	.00149	.548*	.752	2.26	00007*	.00133*	.596*	.718
2.87 K	.00229	.493*	1.29	1.82	.00017*	.00271*	.611*	1.14
88.8 K	.0980	.431*	63.8	122	00576	.0841*	.448*	63.5
K		.0272	.521			*0041%	.0322	.526
-28.1 K	.367	.798*	103	-99.5	.0114*	.395*	.832*	94.5
-27.5 K	.0690	.578*	32.7	-13.0	00230	.0633*	.607*	31.9
K		.0739	.101		.00230	•0033×	.0794	.101
5.18 K	.00190	.223*	1.97	6.03	00014	.00157*	.274*	1.93
14.3 K	.713	.942*	98.5	-62.5	.00766*	.732*	.947*	95.2
.351 Q	.00003	.160*	.246	.394	.00003*	00002*	.161*	.248
.148 K	00004	.346*	.0390	THE PERSON NAMED IN	.00003%	00002*	.353	.0403
K		.334	3.03			A STATE OF THE PARTY OF THE PAR	.549	2.69
7.76 K	00258	.278*	2.28	8.18	00007	00276*	.281*	2.30
2.75 K	00097	.313*	.799	2.22	.00008*			
900 Q	4.71	.331*	5280	3990	2.14*	00076*	.421*	2000
, , ,				3770	2.14*	-1.40	.568*	2000

¹Q indicates discharge as independent variable; K indicates specific conductance as independent variable

4Asterisk denotes that partial regression coefficient is significant at α = 0.05

- 1	Minimum	Maximum		
Sample	value	value		
7 2 9	9. 1 1. 14.	P. 249		
0		Transfer Transfer		
17	0.00	92.00		
0				
0	111-01-05	out hours of the		
17	.00	20.00		
17	.00	240.00		
17	8.00	390.00		
17	920.00	300000.00		
17	12.00	400.00		
0				
17	30.00	6300.00		
16	.00	.50		
0	date by consisted			
0				
17	.00	17.00		
17	50.00	1600.00		
(E.	14 hr 8.0	, bank 1 V3		

in the strong winding . . The strong of the

²Asterisk denotes that correlation coefficient, which is the square root of the coefficient of determination, is significant at $\alpha = 0.05$ ³Regression for sediment calculated from 1096 observations

Table 4. -- Station descriptions

[Number to left of station name is the same as shown on fig. 1; number to right is formal USGS station number. Station descriptions are in downstream order]

Station 1 SARPY CREEK NEAR HYSHAM, MT (06294940)

LOCATION.--Lat 46°14'12", long 107°08'03", in SE1/4 SE1/4 sec. 30, T. 6 N., R. 37 E., Treasure County, 100 ft (30 m) upstream from bridge on FAS Route 415, 0.8 mi (1.3 km) upstream from Hysham Canal, and 5.5 mi (8.8 km) southeast of Hysham.

Station 2 EAST FORK ARMELLS CREEK NEAR COLSTRIP, MT (06294980)

LOCATION.--Lat 45°58'42", long 106°38'38", in SE1/4 SW1/4 SW1/4 sec. 28, T. 3 N., R. 41 E., Rosebud County, on private road bridge, 0.9 mi (1.4 km) down-stream from Corral Creek, and 6.7 mi (10.8 km) north of Colstrip.

Station 3 WEST FORK ARMELLS CREEK NEAR FORSYTH, MT (06294991)

LOCATION.--Lat 46°05'10", long 106°46'09", in SW1/4 SW1/4 NW1/4 sec. 21, T. 4 N., R. 40 E., Rosebud County, 0.7 mi (1.1 km) upstream from mouth, and 13.5 mi (21.7 km) southwest of Forsyth.

Station 4 ARMELLS CREEK NEAR FORSYTH, MT (06294995)

LOCATION.--Lat 46°14'59", long 106°48'22", in SE1/4 NW1/4 NE1/4 sec. 26, T. 6 N., R. 39 E., Rosebud County, 300 ft (90 m) upstream from bridge on Interstate Highway I-94, 2 mi (3 km) upstream from mouth, and 6 mi (10 km) southwest of Forsyth.

Station 5 ROSEBUD CREEK AT KIRBY, MT (06295110)

LOCATION.--Lat 45°19'59", long 106°59'10", in SW1/4 SE1/4 NW1/4 sec. 8, T. 6 S., R. 39 E., Bighorn County, at private bridge at Kirby, 50 ft (15 m) downstream from Cache Creek.

Station 6 ROSEBUD CREEK NEAR COLSTRIP, MT (06295250)

LOCATION.--Lat 45°46'03", long 106°34'10", in SE1/4 SW1/4 NE1/4 sec. 8, T. 1 S., R. 42 E., Rosebud County, 10 ft (3 m) downstream from bridge on FAS Route 315, 1.5 mi (2.4 km) downstream from Lee Coulee, and 8.4 mi (13.5 km) southeast of Colstrip.

Station 7 GREENLEAF CREEK NEAR COLSTRIP, MT (06295350)

LOCATION.--Lat 45°48'57", long 106°25'08", in NW1/4 NW1/4 NW1/4 sec. 29, T. 1 N., R. 43 E., Rosebud County, on county road, 0.8 mi (1.3 km) upstream from mouth, and 11.0 mi (17.7 km) southeast of Colstrip.

- Station 8 ROSEBUD CREEK ABOVE PONY CREEK, NEAR COLSTRIP, MT (06295400)
- LOCATION.--Lat 45°53'33", long 106°24'03", in NE1/4 SE1/4 SE1/4 sec. 29, T. 2 N., R. 43 E., Rosebud County, on private road bridge, 0.3 mi (0.5 km) upstream from Pony Creek and 11.6 mi (18.7 km) northeast of Colstrip.

Station 9 SNIDER CREEK NEAR BRANDENBERG, MT (06295420)

LOCATION.--Lat 45°55'39", long 106°23'02", in S1/2 NE1/4 sec. 16, T. 2 N., R. 43 E., Rosebud County, at county road crossing, 0.3 mi (0.5 km) upstream from mouth, and 7.8 mi (12.6 km) northwest of Brandenberg.

Station 10 ROSEBUD CREEK NEAR ROSEBUD, MT (06295500)

LOCATION.--Lat 46°06'46", long 106°27'08", in SW1/4 NE1/4 SW1/4 sec. 12, T. 4 N., R. 42 E., Rosebud County, on private road bridge, 1.0 mi (1.6 km) downstream from Cottonwood Creek, and 12 mi (19 km) south of Rosebud.

Station 11 ROSEBUD CREEK AT MOUTH, NEAR ROSEBUD, MT (06296003)

LOCATION.--Lat 46°15'53", long 106°28'30", in SW1/4 NW1/4 NE1/4 sec. 21, T. 6 N., R. 42 E., Rosebud County, 0.4 mi (0.6 km) upstream from bridge on Interstate Highway I-94, 0.8 mi (1.3 km) upstream from mouth, and 1.6 mi (2.6 km) southwest of Rosebud.

Station 12 SQUIRREL CREEK NEAR DECKER, MT (06306100)

LOCATION.--Lat 45°03'05", long 106°55'36", in NW1/4 NW1/4 sec. 14, T. 9 S., R. 39 E., Big Horn County, 0.4 mi (0.6 km) upstream from Powers Cormack ditch, 0.5 mi (0.8 km) northwest of C X Ranch, 4 mi (6 km) northwest of Decker, and 7 mi (11 km) upstream from mouth.

Station 13 DEER CREEK NEAR DECKER, MT (06306800)

LOCATION.--Lat 45°03'19", long 106°42'09", in NW1/4 SW1/4 SW1/4 sec. 10, T. 9 S., R. 41 E., Big Horn County, at county road bridge, 6.1 mi (9.8 km) upstream from mouth, and 8.5 mi (13.7 km) northeast of Decker.

Station 14 SPRING CREEK NEAR DECKER, MT (06306900)

LOCATION.--Lat 45°05'09", long 106°50'12", in SW1/4 NW1/4 SE1/4 sec. 33, T. 8 S., R.40 E., Bighorn County, on county road bridge, 0.2 mi (0.3 km) downstream from South Fork, 1.2 mi (1.9 km) upstream from Tongue River Reservoir, and 5.3 mi (8.5 km) northeast of Decker.

Station 15 TONGUE RIVER AT TONGUE RIVER DAM, NEAR DECKER, MT (06307500)

LOCATION.--Lat 45°08'29", long 106°46'15", SW1/4 SE1/4 SE1/4 sec. 12, T. 8 S., R. 40 E., Big Horn County, 0.5 mi (0.8 km) downstream from Tongue River Dam, 4 mi (6 km) upstream from Post Creek, 8 mi (13 km) northeast of Decker, 16 mi (26 km) southeast of Kirby, and at mile 162.3 (261.1 km).

Station 16 FOURMILE CREEK NEAR BIRNEY, MT (06307510)

LOCATION.--Lat 45°12'28", long 106°42'52", in NE1/4 NW1/4 NE1/4 sec. 28, T. 7 S., R. 41 E., Rosebud County, on dirt road, 0.9 mi (1.4 km) upstream from mouth, and 12.5 mi (20.1 km) southwest of Birney.

Station 17 PRAIRIE DOG CREEK NEAR BIRNEY, MT (06307528)

LOCATION.--Lat 45°17'28", long 106°40'56", in SE1/4 NW1/4 NW1/4 sec. 26, T. 6 S., R. 41 E., Rosebud County, about 3.3 mi (5.2 km) upstream from mouth, and 7 mi (11.0 km) southwest of Birney.

Station 18 BULL CREEK NEAR BIRNEY, MT (06307530)

LOCATION.--Lat 45°17'17", long 106°35'55", in NE1/4 SW1/4 NW1/4 sec. 28, T. 6 S., R. 42 E., Rosebud County, 0.4 mi (0.6 km) upstream from mouth, and 4.8 mi (7.7 km) southwest of Birney.

Station 19 EAST TRAIL CREEK NEAR OTTER, MT (06307560)

- LOCATION.--Lat 45°04'25", long 106°24'11", in NW1/4 SE1/4 NE1/4 sec. 12, T. 9 S., R. 43 E., Bighorn County, 1.1 mi (1.8 km) upstream from mouth, and 14 mi (23 km) southwest of Otter.
- Station 20 HANGING WOMAN CREEK BELOW HORSE CREEK NEAR BIRNEY, MT (06307570)
- LOCATION.--Lat 45°04'09", long 106°24'35", in SE1/4 SE1/4 NW1/4 sec. 12, T. 9 S., R. 43 E., Bighorn County, 0.8 mi (1.3 km) downstream from flume No. 2, 1.1 mi (1.8 km) upstream from mouth, and 14 mi (23 km) southwest of Otter.

Station 21 HANGING WOMAN CREEK NEAR BIRNEY, MT (06307600)

LOCATION.--Lat 45°17'57", long 106°30'28", in N1/2 NW1/4 SE1/4 sec. 19, T. 6 S., R. 43 E., Rosebud County, 0.5 mi (0.8 km) downstream from bridge on Birney-Otter Road, 1.6 mi (2.6 km) downstream from East Fork, 1.6 mi (2.6 km) south of Birney, and 3.3 mi (5.3 km) upstream from mouth.

- Station 22 TONGUE RIVER BELOW HANGING WOMAN CREEK, NEAR BIRNEY, MT (06307610)
- LOCATION.--Lat 45°20'19", long 106°31'28", in SW1/4 SE1/4 SE1/4 sec. 1, T. 6 S., R. 42 E., Rosebud County, at bridge on county road, 1.2 mi (1.9 km) northwest of Birney, 2.5 mi (4.0 km) downstream from Hanging Woman Creek, and at mile 148.8 (239.4 km).

Station 23 COOK CREEK NEAR BIRNEY, MT (06307615)

LOCATION.--Lat 45°22'39", long 106°29'45", in SW1/4 NE1/4 NW1/4 sec. 25, T. 5 S., R. 42 E., Rosebud County, on dirt road 0.1 mi (0.2 km) upstream from mouth, and 3.8 mi (6.1 km) north of Birney.

Station 24 OTTER CREEK NEAR OTTER, MT (06307665)

LOCATION.--Lat 45°08'15", 106°07'22", in NE1/4 NE1/4 SE1/4 sec. 18, T. 8 S., R. 46 E., Powder River County, 0.2 mi (0.3 km) downstream from Pasture Creek, 5.5 mi (8.8 km) upstream from Bradshaw Creek, and 6.2 mi (10.0 km) southeast of Decker.

Station 25 BEAR CREEK AT OTTER, MT (06307670)

- LOCATION.--Lat 45°12'20", long 106°12'15", in NW1/4 NE1/4 sec. 27, T. 7 S., R. 45 E., Powder River County, 500 ft (150 m) west of Otter Post Office, and 2.6 mi (4.2 km) upstream from mouth.
 - Station 26 OTTER CREEK BELOW FIFTEENMILE CREEK NEAR OTTER, MT (06307717)
- LOCATION.--Lat 45°23'29", long 106°08'37", in N1/2 sec. 23, T. 5 S., R. 45 E., Powder River County, on county road bridge, 1.0 mi (1.6 km) downstream from Fifteenmile Creek, and 13.1 mi (21.1 km) northeast of Otter.

Station 27 THREEMILE CREEK NEAR ASHLAND, MT (06307730)

LOCATION. -- Lat 45°30'46", long 106°09'25", in NW1/4 SE1/4 SE1/4 sec. 3, T. 4 S., R. 45 E., Rosebud County, on dirt road, 1.5 mi (2.4 km) upstream from mouth, and 7.6 mi (12.2 km) southeast of Ashland.

Station 28 HOME CREEK NEAR ASHLAND, MT (06307735)

LOCATION.--Lat 45°32'35", long 106°11'39", in SE1/4 NE1/4 SE1/4 sec. 29, T. 3 S., R. 45 E., Powder River County, 150 ft (45.7 m) west of Otter Creek road culvert, 1.0 mi (1.6 km) upstream from mouth, about 2.0 mi (3.2 km) south of Highway 212, and 5.1 mi (8.2 km) southeast of Ashland.

Station 29 OTTER CREEK AT ASHLAND, MT (06307740)

LOCATION.--Lat 45°35'18", long 106°15'17", in NE1/4 NE1/4 SE1/4 sec. 11, T. 3 S., R. 44 E., Rosebud County, 200 ft (60 m) downstream from bridge on U.S. Highway 212, 2.5 mi (4.0 km) upstream from mouth, and 0.3 mi (0.5 km) southeast of Ashland.

Station 30 BEAVER CREEK NEAR ASHLAND, MT (06307810)

LOCATION. --45°47'52", long 106°14'17", in NW1/4 SE1/4 NE1/4 sec. 34, T. 1 N., R. 44 E., Rosebud County, at county road bridge, 0.8 mi (1.3 km) upstream from mouth, and 14.7 mi (23.7 km) north of Ashland.

Station 31 TONGUE RIVER BELOW BRANDENBERG BRIDGE, NEAR ASHLAND, MT (06307830)

LOCATION.--Lat 45°52'18", long 106°11'7", in NE1/4 SW1/4 NW1/4 sec. 6, T. 1 N., R. 45 E., Custer County, 3.1 mi (5.0 km) downstream from Goodale Creek, 6.5 mi (10.5 km) downstream from Brandenberg Bridge, and 21 mi (34 km) north of Ashland.

Station 32 LISCOM CREEK NEAR ASHLAND, MT (06307840)

LOCATION. -- Lat 45°54'09", long 106°09'51", in SE1/4 NW1/4 NW1/4 sec. 27, T. 2 N., R. 45 E., Custer County, at county road bridge, 0.8 mi (1.3 km) upstream from mouth, and 21 mi (34 km) northeast of Ashland.

Station 33 FOSTER CREEK NEAR VOLBORG, MT (06307890)

LOCATION.--Lat 46°01'53", long 105°57'07", in NE1/4 SE1/4 NW1/4 sec. 12, T. 3 N., R. 46 E., Custer County, 0.6 mi (1.0 km) upstream from mouth, and 18.5 mi (29.8 km) northwest of Volborg.

Station 34 PUMPKIN CREEK NEAR LOESCH, MT (06308160)

LOCATION. -- Lat 45°42'40", long 105°43'40", in NW1/4 sec. 31, T. 1 S., R. 49 E., Powder River County, at bridge on county road, 0.9 mi (1.4 km) northeast of Loesch, and 9.0 mi (14.5 km) upstream from Little Pumpkin Creek.

Station 35 LITTLE PUMPKIN CREEK NEAR VOLBORG, MT (06308170)

LOCATION.--Lat 45°46'00", long 105°46'42", in NE1/4 SE1/4 NE1/4 sec. 10, T. 1 S., R. 48 E., Powder River County, at county bridge 1.1 mi (1.8 km) upstream from Horkan Creek, 6.9 mi (11.1 km) southwest of Volborg, and 7.7 mi (12.4 km) upstream from mouth.

Station 36 PUMPKIN CREEK NEAR VOLBORG, MT (06308190)

LOCATION.--Lat 45°51'50", long 105°40'10", in W1/2 sec. 5, T. 1 N., R. 49 E., Custer County, at bridge on U.S. Highway 212, 1.5 mi (2.4 km) upstream from Basin Creek, and 1.6 mi (2.6 km) northeast of Volborg.

Station 37 PUMPKIN CREEK NEAR MILES CITY, MT (06308400)

LOCATION.--Lat 46°13'42", long 105°41'24", in SE1/4 NW1/4 SW1/4 sec. 35, T. 6 N., R. 48 E., Custer County, 30 ft (9 m) upstream from bridge on U.S. Highway 312, 7.5 mi (12.1 km) upstream from mouth, and 16 mi (26 km) southeast of Miles City.

Station 38 TONGUE RIVER AT MILES CITY, MT (06308500)

LOCATION.--Lat 46°21'30", long 105°48'24", in SE1/4 sec. 23, T. 7 N., R. 47 E., Custer County, 4 mi (6 km) south of Miles City, and 8 mi (13 km) upstream from mouth.

Station 39 POWDER RIVER AT MOORHEAD, MT (06324500)

LOCATION.--Lat 45°04'04", long 105°52'10", in NW1/4 SE1/4 NW1/4 sec. 8, T. 9 S., R. 48 E., Powder River County, at bridge on county road, 1.1 mi (1.8 km) upstream from discontinued post office at Moorhead, 1.2 mi (1.9 km) upstream from present gage, and 4.0 mi (6.4 km) north of Wyoming-Montana State line.

Station 40 MIZPAH CREEK AT OLIVE, MT (06326050)

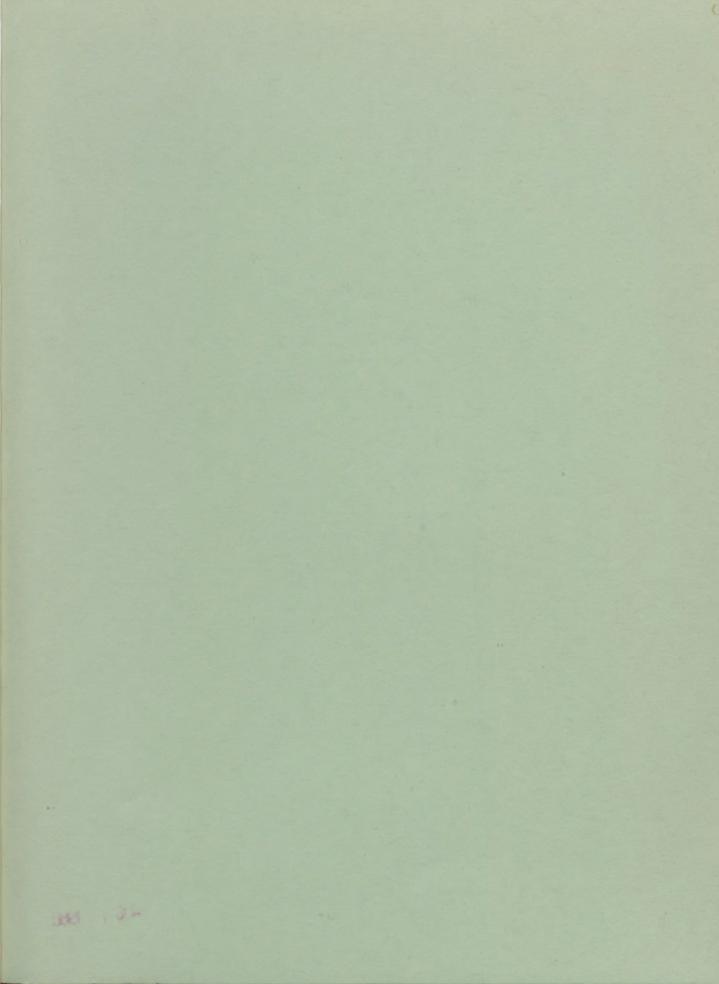
LOCATION.--Lat 45°32'30", long 105°31'40", in SW1/4 sec. 26, T. 3 S., R. 50 E., Powder River County, at bridge on U.S. Highway 212 at Olive, approximately 1.0 mi (1.6 km) downstream from YT Creek.

Station 41 MIZPAH CREEK NEAR VOLBORG, MT (06326200)

LOCATION.--Lat 45°56'00", long 105°23'40", in SW1/4 sec. 9, T. 2 N., R. 51 E., Custer County, at bridge on county road, approximately 2.0 mi (3.2 km) downstream from Spring Creek, and 15.1 mi (24.3 km) northeast of Volborg.

Station 42 MIZPAH CREEK NEAR MIZPAH, MT (06326300)

LOCATION.--Lat 46°15'39", long 105°17'34", in NW1/4 NE1/4 SW1/4 sec. 24, T. 6 N., R. 51 E., Custer County, 10 ft (3 m) upstream from county bridge, 1.0 mi (1.6 km) upstream from mouth, and 1.6 mi (2.6 km) northwest of Mizpah.


Station 43 POWDER RIVER NEAR LOCATE, MT (06326500)

LOCATION.-- Lat 46°26'56", long 105°18'44", in NW1/4 SW1/4 sec. 14, T. 8 N., R. 51 E., Custer County, 1.5 mi (2.4 km) downstream from bridge on U.S. Highway 12 at present site of Locate (5 mi, 8 km, west of former site of Locate), 1.5 mi (2.4 km) upstream from Locate Creek, and 25 mi (40 km) east of Miles City.

CONTROL OF LICE AND AN AND A STREET AND ADDRESS OF A STREET AND ADDRESS AND AD

☆ U.S. GOVERNMENT PRINTING OFFICE: 1980—698-844

THE REPORT OF THE COMMENT OF THE PROPERTY OF T

