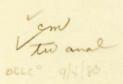
(200) WRi no.80-45

cilaenton.


AN ANALYSIS OF THE MAGNITUDE AND FREQUENCY OF FLOODS ON OAHU, HAWAII

U.S. GEOLOGICAL SURVEY

WATER-RESOURCES INVESTIGATIONS 80-45

Prepared in cooperation with the
CITY AND COUNTY OF HONOLULU
DEPARTMENT OF PUBLIC WORKS
Honolulu, Hawaii

BIBLIOGRAPHIC DATA	1. Report No.	2.	3. Recipient's Accession No.
4. Title and Subtitle AN ANALYSIS OF THOO OAHU, HAWAII	HE MAGNITUDE AND FREQUENCY OF	FLOODS ON	5. Report Date June 1980
7. Author(s) Richard H	. Nakahara		8. Performing Organization Rept. No. WRI 80-45
9. Performing Organization !	Name and Address		10. Project/Task/Work Unit No.
U.S. Geological S 300 Ala Moana Bly Honolulu, Hawaii	vd., Rm. 6110		11. Contract/Grant No.
12. Sponsoring Organization	Name and Address		13. Type of Report & Period Covered
U.S. Geological S			Final
300 Ala Moana Bly Honolulu, Hawaii			14.
	Prepared in cooperation with t City and County of Honolulu	he Department of	Public Works,
using multiple regumatic characteristic groupings of static size of drainage and division produced square miles. Equations relawere developed for the magnitude and currence interval for various recurrence flood magnitudes by data	is of available peak-flow data ression techniques which relatics for 74 gaging stations on ons were investigated, including the best results. Drainage batting flood magnitudes of selecting the three divisions of Oahu. Frequency of floods for any siften 2 to 100 years. Data on ence intervals from individually use of the regression equation. Analysis. 170. Descriptors and analysis.	ed flood-frequen Oahu. In the an ng divisions by of two leeward dasins ranged in a ected frequencies. These equations te gaged or ungabasin characteristation-frequen	cy data to basin and cli- alysis, several different geographic location and ivisions and one windward rea from 0.03 to 45.7 to basin characteristics can be used to estimate ged for any desired re- stics, flood magnitudes cy curves, and computed
17b. Identifiers/Open-Ended	d Terms		
*Oahu, *Flood fro	equency		
17c. COSATI Field/Group	Ø2E		
18. Availability Statement		19. Security (Report)	
No restriction of	n distribution	20. Security Cl Page	
FORM NTIS-35 (REV. 10-73)	ENIXORSED BY ANSI AND UNESCO.	THIS FORM MAY BE REP	SSIFIED USCOMM-DC 8265-P74

AN ANALYSIS OF THE MAGNITUDE AND FREQUENCY OF FLOODS ON OAHU, HAWAII

By Richard H. Nakahara

U.S. GEOLOGICAL SURVEY

WATER-RESOURCES INVESTIGATIONS 80-45

Prepared in cooperation with the
CITY AND COUNTY OF HONOLULU
DEPARTMENT OF PUBLIC WORKS
Honolulu, Hawaii
June 1980

UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Jr., Director

For additional information write to:

U.S. Geological Survey Room 6110,

300 Ala Moana Blvd.

Honolulu, Hawaii 96813

CONTENTS

	Page
Glossary	٧
Conversion table	vi
Abstract	1
Purpose and scope	2
Magnitude and frequency of floodflows	2
Basin and climatic characteristics	4
Regional analysis	11
Multiple regression analysis	11
Standard error of estimate	12
Grouping of stations	13
Regression equations	14
Examples	17
Recommendations	19
Summary	19
References	20

ILLUSTRATIONS

Figur	e	Page
1.	Map of Oahu showing location and grouping	
	(A, B, C) of stations	3
	TABLES	
Table		
1-3.	Peak discharges, in cubic feet per second, for selected	
	recurrence intervals for gaging stations in following	
	Groups:	
1.	Group A	5
2.	Group B	6
3.	Group C	7
4-6.	Basin and climatic characteristics, maximum observed	
	floods in following Groups:	
4.	Group A	8
5.	Group B	9
6.	Group C	10
7-9.	Regression constants and coefficients for following	
	Groups:	
7.	Group A	14
8.	Group B	15
9.	Group C	16

GLOSSARY

- 1. Annual peak discharge The highest peak discharge in a water year (October 1 to September 30).
- 2. Cubic foot per second (ft^3/s) The rate of discharge representing a volume of 1 cubic foot of water passing a given point during 1 second.
- 3. Dependent variable The variable that is estimated or predicted from given values of the independent variables.
- Drainage area An area from which surface runoff is carried away by a single drainage system.
- 5. Gaging station A particular site on a stream where systematic observations of gage heights and discharge are obtained.
- 6. Independent variable One from which another variable is to be estimated or predicted.
- 7. Isohyet (isohyetal line) A line drawn on a map or chart joining points that receive the same amount of precipitation.
- 8. Recurrence interval The average interval of time within which a given flood will be exceeded once.
- Regression equation An equation derived by methods of regression. A mathematical relation between a dependent variable and one or more independent variables.
- 10. Observed values values of discharge derived from individual station-frequency curves.
- 11. Computed values values of discharge derived from the use of the regression equations.
- 12. Residuals the difference between the observed and computed values.

CONVERSION TABLE

Inch-pound units have been used throughout this report. The following table converts measurements in the inch-pound system to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
inches (in.)	25.4	millimeters (mm)
feet (ft)	0.305	meters (m)
miles (mi)	1.61	kilometers (km)
feet per mile (ft/mi)	0.189	meters per kilometer (m/km)
square miles (mi ²)	2.59	square kilometers (km ²)
cubic feet per second (ft ³ /s)	0.028	cubic meters per second (m^3s)

AN ANALYSIS OF THE MAGNITUDE AND FREQUENCY OF FLOODS ON OAHU, HAWAII

By Richard H. Nakahara

ABSTRACT

An analysis of available peak-flow data for the island of Oahu was made by using multiple regression techniques that related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles.

Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. The significant variables are drainage area or, drainage area in combination with either the 24-hour rainfall intensity having a recurrence interval of 2 years or the percentage of vegetative cover. These equations can be used to estimate the magnitude and frequency of floods on Oahu for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data.

PURPOSE AND SCOPE

The purpose of this study was to analyze all available peak-flow data on Oahu, including those collected under the cooperative program between the City and County of Honolulu and the U.S. Geological Survey. Results from this study can be used to estimate the frequency and magnitude of floods that may occur. These estimates are useful in the planning, designing, and locating of structures, such as dams, bridges, culverts, highways, and buildings, in order to minimize flood damage.

The program, which was begun in 1959, supplemented data being obtained at regular gaging stations that were funded under other ongoing programs, and it consisted primarily of collecting peak-flow data from a network of crest-stage gages installed at sites where data were not otherwise available.

This report describes the methods used in the analysis, the results of the study, and recommendations for the crest-stage program arising from the evaluation of the results.

MAGNITUDE AND FREQUENCY OF FLOODFLOWS

Annual peak discharge data from 74 gaging stations, all of which are located on natural streams, were used in this report. See figure 1 for location of gaging stations. Length of record for individual stations ranged from 10 to 60 years.

Flood-frequency curves were developed for each station by using the log Pearson Type III distribution (U.S. Water Resources Council, 1977).

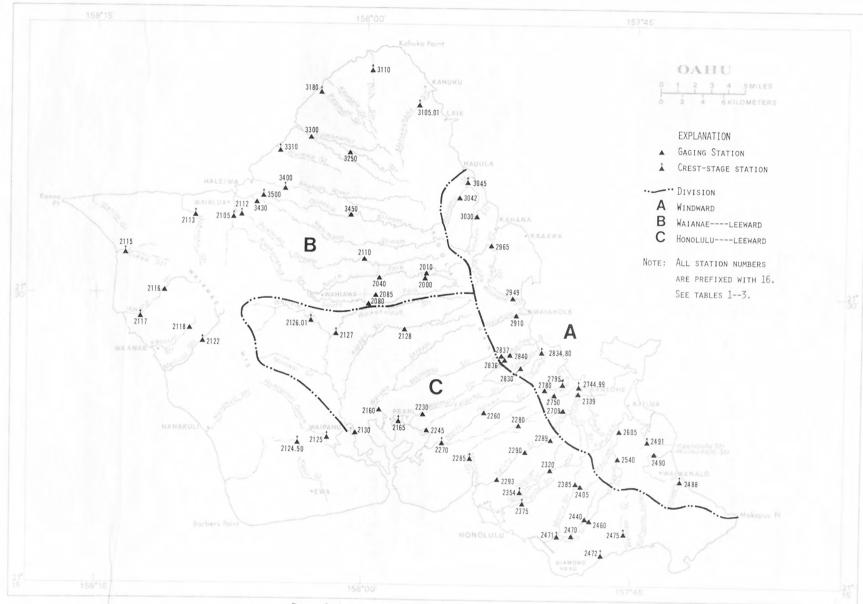


FIGURE 1. LOCATION AND GROUPING (A,B,C) OF STATIONS ON OAHU.

From the frequency curves, values of flood discharges were obtained at the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals. The values are listed in tables 1-3 as the first row for each station. For example:

At station 16284000, \mathbf{Q}_{50} and \mathbf{Q}_{100} obtained from the frequency curve are:

- Q_{50} = 2,520 ft³/s; a flood of this magnitude will be exceeded once in 50 years (on the average), or the probability of a flood this size to occur in any 1 year is 1/50 or 2 percent.
- $Q_{100} = 3,200 \, \mathrm{ft}^3/\mathrm{s}$; a flood of this size will be exceeded once in 100 years (on the average), or the probability of a flood of this magnitude to occur in any 1 year is 1/100 or 1 percent.

BASIN AND CLIMATIC CHARACTERISTICS

Topographic and climatic characteristics of the drainage basins, listed in tables 4, 5, and 6, were derived as follows:

- DA, Drainage area -- Area of drainage basin, in square miles, as planimetered from 1:24,000 topographic maps.
- CS, Channel slope -- The difference in elevation at points 10 percent and 85 percent of the channel length (CL) divided by the distance between the two points.
- CL, Channel length -- Distance along a stream, in miles, from the gaging station to the basin divide.
- P, Mean annual precipitation -- Rainfall, in inches, determined by placing a grid over an isohyetal map of Oahu (Board of Water Supply, City and County of Honolulu) and locating 20-25 random points within the basin boundary and computing the arithmetic average of these points.
- FC, Vegetative cover -- The ratio of the drainage area covered by the forests and/or vegetation, as shown in green on 1:24,000 topographic maps, to the total drainage area.

Table 1. Peak discharges, in cubic feet per second, for selected recurrence intervals at gaging stations in Group A The upper row of Q_t values are from individual frequency curves, where t = 2, 5, 10, 25, 50, 100 The lower row of Q_t values were computed by using regression equations. (Abbreviations: Discharge, Disch; Stream, Str; near, nr; altitude, alt; feet, ft)

Station			ength Drainage							Maximu	m flood
No. (16-)	Station name	of record	area (mi ²)	Q ₂	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Year	Disch ft ³ /s
248800	Inoaole Str at Waimanalo	19	1.21	473 715	798 1,510	1,050 2,230	1,390 3,360	1,670 4,360	1,970 5,520	1967	1,420
49000	Waimanalo Str at Waimanalo	12	2.16	1,400 1,110	3,160 2,330	4,810 3,410	7,510 5,110	10,000 6,610	12,900 8,340	1963	4,560
49100	Kaelepulu Str tributary at Kailua	15	0.16	133 154	304 331	467 505	735 776	983 1,020	1,270 1,310	1970	41
54000	Makawao Str nr Kailua	20	2.04	790 1,060	2,060 2,230	3,380 3,270	5,710 4,900	7,990 6,350	10,800 8,010	1965	6,00
60500	Maunawili Str at Highway 61, nr Kailua	20	5.34	1,650 2,210	3,220 4,560	4,540 6,630	6,540 9,830	8,260 12,700	10,200 15,900	1965	9,69
70900	Luluku Str at alt 220 ft, nr Kaneohe	11	0.44	149 332	426 714	733 1,060	1,300 1,610	1,880 2,110	2,610 2,690	1970	65
73900	Kamooalii at Kaneohe	20	4.38	2,000	4,610 3,930	7,090 5,730	11,200 8,520	15,000 11,000	19,500 13,800	1969	12,00
74499	Keaahala Str at Kamehameha Highway, at Kaneohe	19	0.62	448 430	1,250 921	2,130 1,370	3,730 2,070	5,360 2,700	7,400 3,430	1965	2,75
75000	Haiku Str nr Heeia	43	0.97	737 605	1,780 1,280	2,760 1,900	4,330 2,860	5,760 3,720	7,400 4,720	1965	5,74
78000	Iolekaa Str mauka nr Heeia	26	0.29	45 241	116 523	189 782	316 1,190	441 1,570	594 2,000	1965	79
79500	Heeia Str at Kaneohe	11	1.80	1,380 967	3,880 2,030	6,630 2,980	11,700 4,480	16,800 5,800	23,200 7,320	1965	5,60
83000	Kahaluu Str nr Heeia	34	0.28	139 235	268 510	381 762	556 1,160	710 1,530	887 1,950	1965	1,7
83480	Ahuimanu Str nr Kahaluu	15	2.31	1,530 1,170	3,830 2,450	6,150 3,580	10,200 5,360	14,000 6,940	18,700 8,750	1969	7,30
83600	South Fork Waihee Str nr Heeia	15	0.03	92 43	177 97	249 148	356 231	447 308	550 398	1965	2
83700	North Fork Waihee Str nr Heeia	15	0.03	89 43	186 97	271 148	405 231	524 308	660 398	1965	37
84000	Waihee Str nr Heeia	39	0.93	421 586	876 1,240	1,290 1,840	1,940 2,770	2,520 3,610	3,200 4,580	1965	5,1
91000	Waiahole Str at alt 250 ft, nr Waiahole	13	0.99	615 614	1,170 1,300	1,630 1,920	2,310 2,900	2,890 3,780	3,540 4,790	1963	2,2
94900	Waikane Str at alt 75 ft, at Waikane	18	2.22	1,890 1,130	4,060 2,370	6,040 3,480	9,200 5,210	12,000 6,740	15,300 8,500	1965	8,80
96500	Kahana Str at alt 30 ft, nr Kahana	18	3.74	3,040 1,690	4,310 3,500	5,170 5,100	6,260 7,600	7,080 9,800	7,900 12,300	1963	5,4
03000	Punaluu Str nr Punaluu	24	2.78	1,700 1,350	2,840 2,810	3,710 4,100	4,910 6,130	5,880 7,920	6,910 9,980	1974	5,7
04200	Kaluanui Str nr Punaluu	10	1.11	867 670	1,480 1,420	1,960 2,090	2,630 3,150	3,170 4,100	3,760 5,190	1969	2,0
804500	Kaluanui Str at Hauula	20	2.12	1,420 1,100	2,410 2,290	3,180 3,360	4,250 5,040	5,130 6,520	6,060 8,230	1974	3,3

Table 2. Peak discharges, in cubic feet per second, for selected recurrence intervals at gaging stations in Group B The upper row of $\mathbf{Q}_{\mathbf{t}}$ values are from individual frequency curves, where t = 2, 5, 10, 25, 50, 100

The lower row of $\mathbf{Q}_{\mathbf{t}}$ values were computed by using regression equations

(Abbreviations: Discharge, Disch; Stream, Str; near, nr; Road, Rd; altitude, alt; feet, ft)

Station			Drainage	0	0	0	0	0	0	Maximu	m flood Disch
No. (16-)	Station name	of record	area (mi ²)	Q ₂	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Year	ft ³ /s
200000	North Fork Kaukonahua Str above Right Branch, nr Wahiawa	54	1.38	2,550 1,380	3,790 2,220	4,600 2,840	5,590 3,680	6,290 4,330	6,980 5,020	1933	5,490
201000	Poamoho Str nr Wahiawa	28	1.20	1,050 1,270	1,500 2,030	1,810 2,580	2,210 3,330	2,500 3,920	2,800 4,520	1940	2,320
204000	North Fork Kaukonahua Str nr Wahiawa	22	4.86	2,520 1,920	3,180 3,590	3,580 4,960	4,060 6,980	4,410 8,680	4,740 10,500	1963	4,660
208000	South Fork Kaukonahua Str at East Pump Reservoir, nr Wahiawa	20	4.04	1,840 1,540	3,110 2,920	4,080 4,070	5,440 5,770	6,540 7,220	7,710 8,810	1963	5,460
208500	Right Branch of South Fork Kaukonahua Str nr Wahiawa	15	0.86	510 652	1,470 1,140	2,550 1,510	4,550 2,050	6,600 2,480	9,210 2,950	1968	3,160
210500	Kaukonahua Str at Waialua	11	38.70	2,160 3,260	7,090 7,830	13,100 12,300	25,100 19,900	38,100 27,100	55,300 35,700	1963	15,600
211000	Poamoho Str nr Wahiawa	16	1.79	1,770 1,580	2,960 2,580	3,850 3,330	5,100 4,350	6,100 5,150	7,170 6,000	1968	3,630
211200	Poamoho Str at Waialua	11	10.90	1,790 1,760	4,340 3,860	6,850 5,800	11,100 8,910	15,200 11,800	20,000 15,100	1974	7,340
211300	Makaleha Str nr Waialua	20	4.15	507 430	1,120 1,080	1,700 1,750	2,620 2,900	3,470 4,010	4,460 5,370	1964	2,580
211500	Makua Str at Makua	19	4.13	232 358	841 936	1,640 1,540	3,320 2,600	5,220 3,650	7,820 4,940	1976	3,220
211600	Makaha Str nr Makaha	18	2.31	375 280	746 697	1,060 1,120	1,550 1,840	1,970 2,530	2,450 3,380	1962	1,170
211700	Makaha Str at Makaha	12	5.25	710 305	1,530 859	2,280 1,470	3,470 2,600	4,550 3,750	5,790 5,200	1976	4,310
211800	Kaupuni Str at alt 374 ft, nr Waianae	17	3.58	281 368	883 932	1,600 1,510	2,980 2,510	4,460 3,480	6,390 4,660	1976	1,730
212200	Mailiilii Str nr Waianae	20	1.51	497 240	981 574	1,390 901	2,020 1,450	2,570 1,970	3,180 2,580	1966	2,200
212450	Kaloi Gulch tributary nr Honouliuli	10	1.70	252 141	540 386	800 650	1,210 1,130	1,580 1,610	2,010 2,210	1969	645
212500	Honouliuli Str nr Waipahu	18	11.00	716 621	1,570 1,710	2,360 2,890	3,620 5,040	4,770 7,210	6,100 9,930	1969	2,470
310501	Malaekahana Str at alt 30 ft, nr Kahuku	19	4.05	1,050 1,540	2,870 2,920	4,840 4,070	8,400 5,780	12,000 7,230	16,400 8,830	1963	4,640
311000	Oio Str nr Kahuku	20	2.13	366 470	844 1,030	1,300 1,550	2,060 2,380	2,760 3,130	3,590 4,000	1965	1,390
318000	Paumalu Gulch at Sunset Beach	10	2.59	159 369	556 882	1,070 1,390	2,120 2,230	3,290	4,880 3,990	1974	982
325000	Kamananui Str at Pupukea Military Rd, nr Maunawai	14	3.13	1,340 1,020	1,850 2,020	2,180 2,880	2,600 4,190	2,910 5,320	3,220 6,590	1975	3,390
330000	Kamananui Str at Maunawai	20	9.79	2,530 2,040	4,060 4,260	5,170 6,240	6,690 9,320	7,890 12,100	9,150 15,200	1974	5,610
331000	Waimea Gulch nr Kawailoa Camp	10	2.23	66 386	235 891	451 1,370	901 2,170	1,400 2,910	2,090 3,780	1974	621
340000	Anahulu River nr Haleiwa	20	13.50	3,040 3,380	5,550 6,690	7,560 9,520	10,500 13,800	13,000 17,600	15,700 21,700	1974	15,900
343000	Helemano Str at Haleiwa	10	14.20	3,680 2,480	9,850 5,290	16,400 7,830	28,100 11,900	39,600 15,500	54,000 19,700	1974	18,200
345000	Opaeula Str nr Wahiawa	18	2.98	2,050 1,790	2,960 3,120	3,580 4,160	4,370 5,620	4,970 6,820	5,570 8,090	1974	5,540
350000	Opaeula Str nr Haleiwa	22	5.96	1,660 1,820	3,160 3,570	4,410 5,050	6,290 7,290	7,890 9,230	9,670 11,400	1974	7,600

Table 3. Peak discharges, in cubic feet per second, for selected recurrence intervals at gaging stations in Group C The upper row of Q_t values are from individual frequency curves, where t = 2, 5, 10, 25, 50, 100 The lower row of Q_t values were computed by using regression equations (Abbreviations: Discharge, Disch; Stream, Str; near, nr; Road, Rd; altitude, alt; feet, ft)

Station			Drainage	0	0	0	0	0	0	Maximu	m flood Disch
No. (16-)	Station name	of record	area (mi ²)	Q ₂	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Year	ft ³ /s
212601	Waikele Str at Wheeler Field	19	6.35	610 771	1,100 1,560	1,490 2,250	2,050 3,210	2,520 4,250	3,030 5,310	1958	1,810
212700	Waikakalaua Str nr Wahiawa	20	6.96	765 620	1,730 1,280	2,650 1,870	4,140 2,790	5,520 3,610	7,140 4,550	1963	4,820
212800	Kipapa Str nr Wahiawa	21	4.29	1,910 1,770	2,880 3,290	3,560 4,520	4,460 6,330	5,150 7,840	5,860 9,490	1963	5,680
213000	Waikele Str at Waipahu	26	45.70	3,230 4,040	6,950 7,830	10,300	15,700 15,800	20,600	26,200 24,500	1954	13,600
216000	Waiawa Str nr Pearl City	25	26.40	7,770 6,190	14,900 11,300	20,800	29,700 21,300	37,400 26,300	45,800 31,600	1968	23,400
216500	Waimano flood channel at Pearl City	15	2.63	267 351	578 726	863 1,060	1,320 1,580	1,730 2,050	2,210 2,580	1954	2,810
223000	Waimalu Str nr Aiea	22	6.07	2,120 2,180	4,220	6,030 5,560	8,800 7,780	11,200 9,640	13,900	1968	8,020
224500	Kalauao Str at Moanalua Rd, at Aiea	24	2.59	779 1,030	1,420 1,960	1,950 2,730	2,710	3,350 4,830	4,050 5,890	1963	2,580
226000	North Halawa Str nr Aiea	28	3.45	1,520 1,550	2,990 2,890	4,250 3,970	6,140 5,560	7,780 6,890	9,610 8,340	1932	6,650
227000	Halawa Str at Aiea	18	8.78	2,020 2,670	3,510 4,970	4,670 6,830	6,320 9,560	7,670 11,800	9,130 14,300	1966	6,570
228000	Moanalua Str nr Honolulu	51	2.73	1,130 1,250	2,080 2,350	2,800	3,790 4,550	4,560 5,660	5,350 6,870	1931	4,580
228500	Moanalua Str at alt 100 ft, nr Honolulu		4.16	1,880 1,790	3,530 3,330	4,900 4,580	6,930 6,390	8,650 7,910	10,600	1967	3,79
228900	Kalihi Str nr Kaneohe	10	0.60	466 323	1,120 631	1,760 891	2,850 1,280	3,880 1,620	5,120 1,990	1969	1,510
229000	Kalihi Str nr Honolulu		2.61	1,550 1,190	3,310 2,230	4,830	7,120 4,340	9,080 5,400	11,200 6,560	1930	12,40
229300	Kalihi Str at Kalihi	17	5.18	3,490 1,590	5,420 3,010	6,810 4,180	8,670 5,910	10,100 7,370	11,600 8,980	1974	7,11
232000	Nuuanu Str below reservoir 2 wasteway, nr Honolulu		3.35	697 1,430	1,650 2,680	2,540	3,990 5,190	5,310 6,440	6,830 7,810	1921	6,99
235400	Waolani Str at Honolulu	19	1.28	799 472	1,350	1,770 1,310	2,360 1,890	2,840 2,390	3,340	1963	2,50
237500	Pauoa Str at Honolulu	20	1.43	422 439	761 869	1,030	1,430 1,800	1,750 2,280	2,110 2,830	1963	2,20
238500	Waihi Str at Honolulu		1.14	668 576	1,320 1,100	1,880 1,550	2,720 2,200	3,450 2,760	4,270 3,380	1921	3,25
240500	Waiakeakua Str at Honolulu		1.06	525 557	948 1,070	1,310 1,490	1,860 2,120	2,350 2,660	2,920	1921	3,09
244000	Pukele Str nr Honolulu		1.18	423 503	841 977	1,200 1,380	1,740 1,970	2,220 2,490	2,750 3,060	1930	2,60
246000	Waiomao Str nr Honolulu		1.04	377 510	737 984	1,030 1,380	1,460 1,970	1,820	2,210	1930	1,55
247000	Palolo Str nr Honolulu		3.63	1,280 1,190	2,130 2,270	2,780	3,670 4,500	4,400 5,630	5,160 6,880	1967	4,27
247100	Manoa-Palolo Drainage Canal at Moiliili		9.35	3,220 2,060	6,040	8,360 5,470	11,800 7,760	14,700 9,710	17,900 11,900	1967	10,10
247200	Waialaenui Gulch at Honolulu		1.75	814 739	1,530	2,130	3,010	3,760 3,530	4,590 4,330	1958	2,01
247500	Wailupe Gulch at Aina Haina	00	2.35	636	1,270	1,820	2,670	3,400 4,960	4,230 6,040	1967	3,600

Table 4. Basin and climatic characteristics and maximum observed floods in Group A

Station	Length								Maxim	um flood
No. (16-)	of record	DA mi ²	CS ft/mi	CL mi	P in.	FC percent	E ft	P ₂₋₂₄ in.	Year	Discharge ft ³ /s
248800	19	1.21	462	1.78	42	8	590	6.20	1967	1,420
249000	12	2.16	343	2.41	72	85	760	7.39	1963	4,560
249100	15	0.16	420	0.83	55	100	580	5.10	1970	418
254000	20	2.04	333	2.04	87	75	700	5.80	1965	6,000
260500	20	5.34	209	3.20	95	60	770	6.40	1965	9,690
270900	11	0.44	2,147	0.96	105	93	1,220	7.63	1970	651
273900	20	4.38	212	3.65	86	40	560	6.20	1969	12,000
274499	19	0.62	212	1.95	70	26	270	5.30	1965	2,750
275000	43	0.97	116	1.04	100	96	1,150	6.30	1965	5,740
278000	26	0.29	2,060	0.68	98	100	1,440	6.00	1965	797
279500	11	1.80	386	2.07	98	97	1,110	7.25	1965	5,600
283000	34	0.28	755	0.55	150	100	1,470	7.40	1965	1,730
283480	15	2.31	466	2.42	82	71	560	5.80	1969	7,300
283600	15	0.03	3,200	0.35	150	100	1,400	8.00	1965	279
283700	15	0.03	4,640	0.35	150	100	1,500	8.10	1965	376
284000	39	0.93	1,250	1.04	140	100	1,210	7.20	1965	5,110
291000	13	0.99	2,120	1.02	140	100	1,350	7.80	1963	2,230
294900	18	2.22	1,210	2.70	128	100	1,000	6.00	1965	8,800
296500	18	3.74	180	4.30	187	100	1,030	8.20	1963	5,430
303000	24	2.78	493	3.02	222	100	1,230	7.40	1974	5,700
304200	10	1.11	1,037	3.10	199	97	1,650	7.82	1969	2,010
304500	20	2.12	82	3.73	157	99	1,650	7.00	1974	3,350

Table 5. Basin and climatic characteristics and maximum observed floods in Group B

Station	Length								Maxim	num flood
No. (16-)	of record	DA mi ²	CS ft/mi	CL mi	P in.	FC percent	E ft	P ₂₋₂₄ in.	Year	Discharge ft ³ /s
200000	54	1.38	155	4.65	241	100	1,750	10.00	1933	5,490
201000	28	1.20	223	4.50	241	100	1,700	10.00	1940	2,320
204000	22	4.86	92	9.80	198	100	1,550	8.60	1963	4,660
208000	20	4.04	302	5.75	167	95	1,380	8.30	1963	5,460
208500	15	0.86	155	2.45	180	91	1,280	8.60	1968	3,160
210500	11	38.70	59	23.41	87	70	1,250	6.68	1963	15,600
211000	16	1.79	170	6.10	185	100	1,660	9.90	1968	3,630
211200	11	10.90	93	18.70	89	51	1,070	7.07	1974	7,340
211300	20	4.15	570	3.08	70	99	1,570	5.40	1964	2,580
211500	19	4.13	420	2.41	48	95	1,120	5.10	1976	3,220
211600	18	2.31	886	2.45	74	90	2,160	5.30	1962	1,170
211700	12	5.25	845	4.60	57	82	1,630	4.60	1976	4,310
211800	17	3.58	740	1.95	61	66	800	5.30	1976	1,730
212200	20	1.51	540	2.10	42	86	1,010	5.50	1966	2,200
212450	10	1.70	578	3.28	32	74	980	4.50	1969	645
212500	18	11.00	174	7.35	38	46	1,120	5.00	1969	2,470
310501	19	4.05	362	4.96	91	90	480	8.30	1963	4,640
311000	20	2.13	290	3.69	60	75	770	6.40	1965	1,390
318000	10	2.59	271	3.80	69	53	690	5.67	1974	982
325000	14	3.13	292	7.60	151	100	1,380	7.63	1975	3,390
330000	20	9.79	154	11.61	106	98	1,170	7.60	1974	5,610
331000	10	2.23	191	5.39	63	39	770	5.94	1974	621
340000	20	13.50	136	13.50	112	96	1,250	8.40	1974	15,900
343000	10	14.20	93	19.31	116	75	1,170	7.50	1974	18,200
345000	18	2.98	112	11.40	185	100	1,800	9.30	1974	5,540
350000	22	5.96	102	15.00	108	87	1,300	8.10	1974	7,600

Table 6. Basin and climatic characteristics and maximum observed floods in Group C

Station	Length					4.			Maximum flood		
No. (16-)	of record	DA mi ²	CS ft/mi	CL mi	P in.	FC percent	E ft	P ₂₋₂₄ in.	Year	Discharge ft ³ /s	
212600	19	6.35	106	6.50	51	41	1,350	5.70	1958	1,810	
212700	20	6.96	96	13.20	93	33	1,030	7.80	1963	4,820	
212800	21	4.29	140	8.51	174	96	1,620	8.50	1963	5,680	
213000	26	45.70	84	20.40	72	40	920	6.10	1954	13,600	
216000	25	26.40	130	10.70	97	77	990	6.50	1968	23,400	
216500	15	2.63	152	4.66	61	40	590	4.90	1954	2,810	
223000	22	6.07	149	9.57	110	90	1,000	6.70	1968	8,020	
224500	24	2.59	226	7.95	95	89	1,020	7.30	1963	2,580	
226000	28	3.45	284	4.82	111	100	1,140	7.70	1932	6,650	
227000	18	8.78	160	7.80	94	83	1,040	7.30	1966	6,570	
228000	51	2.73	264	4.20	121	98	1,160	7.40	1931	4,580	
228500	13	4.16	160	6.40	103	99	890	7.20	1967	3,790	
228900	10	0.60	853	1.07	110	95	1,510	8.00	1969	1,510	
229000	61	2.61	268	2.65	122	98	1,180	7.00	1930	12,400	
229300	17	5.18	189	5.37	104	79	980	7.50	1974	7,110	
232000	60	3.35	200	2.72	124	96	1,370	7.70	1921	6,990	
235400	19	1.28	460	2.14	98	78	770	8.00	1963	2,500	
237500	20	1.43	492	3.06	88	69	950	7.60	1963	2,200	
238500	57	1.14	1,210	2.05	150	97	1,300	8.00	1921	3,250	
240500	59	1.06	1,230	1.61	145	99	1,160	8.00	1921	3,090	
244000	51	1.18	364	2.35	120	86	1,170	7.80	1930	2,600	
246000	45	1.04	650	2.41	110	86	1,170	7.80	1930	1,550	
247000	25	3.63	233	5.00	97	80	930	7.70	1967	4,270	
247100	10	9.35	312	5.48	90	66	760	5.66	1967	10,100	
247200	11	1.75	394	4.11	63	89	1,040	7.40	1958	2,010	
247500	20	2.35	682	2.45	65	98	1,410	6.90	1967	3,600	

- E, Mean basin elevation -- Elevation, in feet above mean sea level, measured on 1:24,000 topographic maps by laying a grid over the map, determining the elevation at each grid intersection, and averaging these elevations. The grid spacing was selected to give at least 25 intersections within the basin.
- P₂₋₂₄, Rainfall -- 24-hour rainfall intensity, in inches, having a recurrence interval of 2 years, determined by placing a grid over a 2-year 24-hour isohyetal map of Oahu (U.S. Weather Bureau, Technical Paper No. 43, 1962) and calculating the average intensity within the basin boundaries.

REGIONAL ANALYSIS

Although many streams are gaged on Oahu, information for ungaged sites is often requested. Flow characteristics at ungaged sites are estimated by using data or information obtained at gaged sites. One of the methods used in transferring data is to regionalize the data by the use of multiple-regression techniques. In this study a regional analysis was made by using these techniques to relate floodflows to basin and climatic characteristics.

Multiple-Regression Analysis

In the step-backward method used in this study, discharges for a certain recurrence interval (as taken from the frequency curves that were developed for individual stations) are the dependent variables that are related initially to all seven basin and climatic characteristics (CL, CS, DA, P, E, P_{2-24} , FC), which are the independent variables. The least significant variable is then dropped and the regression process is repeated, resulting in a new equation. The above process is repeated until an equation is finally derived that relates discharge to the one most significant independent variable. All the regression equations for this particular recurrence interval are then

analyzed and the best equation is selected on the basis of a combination of the least standard error of estimate and the minimum number of independent variables involved. For convenience and practicality, the equation chosen was one with no more than two independent variables.

Standard Error of Estimate

The standard error of estimate, expressed as a percentage, is an approximate measure of the reliability of the regression equation. It is the standard deviation of the difference between observed and computed values (residuals). If the assumptions of the regression analysis are valid, the standard error means that two out of three estimates used to develop the regression equation will be within plus (+) or minus (-) one standard error, and 19 out of 20 estimates will be within plus (+) or minus (-) two standard errors.

The smaller the standard error of estimate, the better the reliability of the regression equation and, conversely, the larger the standard error of estimate, the poorer the regression equation.

The resulting equation has the form,

$$Q_+ = aX^bY^c$$

where

 Q_{+} is a flood of t(years) recurrence interval,

X, Y are basin and/or climatic characteristics,

a is the regression constant, and

b, c are the regression coefficients or exponents of the basin and/or climatic characteristics.

Following the selection of the regression equation for a given recurrence interval, the entire computation process is repeated, using the peaks of another recurrence interval with the same set of seven basin and climatic characteristics. For each grouping of stations, regression equations were computed for recurrence intervals of 2, 5, 10, 25, 50, and 100 years.

Correlations between pairs of independent variables are computed in the regression analysis. Because high correlation between two independent variables tends to reduce the statistical significance of each variable involved, only the variable that was considered to be the most significant, as well as the most reliable, was retained.

Grouping of Stations

In the course of this study, many different groupings of stations were tried. The following were some of these.

- 1. The whole island was taken as a region.
- 2. The island was divided into leeward and windward areas.
- 3. The island was divided, as in No. 2 above, but the leeward area was further subdivided on the basis of drainage area.
- 4. The island was divided into three areas: the windward (Waimanalo to Kaluanui), the Waianae-leeward (Waianae to Hauula), and the Honolulu-leeward (Waipahu to Kalama Valley).
- 5. The stations were divided into three groups by drainage-area size.
- 6. The stations were divided into five groups by drainage-area size.
- 7. The island was divided into two groups by drainage-area size. Various combinations of drainage-area sizes were tried.

The fourth alternative gave the best regression equations with two or less variables in combination with the smallest standard error of estimate. See figure 1 and tabulation below.

Group	No. of Stations
А	22
В	26
С	26

Regression Equations

The regression constants and coefficients for the three groupings are given in tables 7, 8, and 9.

Table 7. Regression constants and coefficients for Group A, Windward (Waimanalo to Kaluanui)

Equation: $Q_t = a(DA)^b$

t-years (recurrence interval)	Regression constant a	Regression coefficient b	Standard error of estimate (percent)
2	620	0.76	59.5
5	1,310	0.74	53.7
10	1,940	0.73	56.8
25	2,920	0.72	60.3
50	3,800	0.72	63.5
100	4,820	0.71	67.0

Table 8. Regression constants and coefficients for Group B, Waianae-leeward (Waianae to Hauula)

Equation: $Q_t = a(DA)^b (P_{2-24})^c$

t-years (recurrence interval)	Regression constant a	Regression coefficients b c		Standard error of estimate (percent)
2	1.08	0.62	3.02	58.1
5	7.73	0.66	2.37	41.3
10	21.5	0.68	2.02	39.1
25	63.2	0.71	1.66	42.8
50	127	0.72	1.43	48.1
100	238	0.74	1.22	54.1

Table 9. Regression constants and coefficients for Group C, Honolulu-leeward (Waipahu to Kalama Valley) Equation: $Q_t = a(DA)^b(FC)^C$

t-years (recurrence interval)	Regression constant a	Regression coefficients b c		Standard error of estimate (percent)
2	0.98	0.86	1.37	35.0
5	3.11	0.83	1.26	32.8
10	5.75	0.82	1.20	33.5
25	11.1	0.81	1.13	35.2
50	17.1	0.80	1.09	36.9
100	25.4	0.79	1.05	38.6

EXAMPLES

Example 1.

It is desired to estimate the 50-year flood of Kalihi Stream near Kaneohe (station 16228900).

First, determine which group (A, B, or C) the station belongs. Next, select basin and climatic characteristics as needed from table 4, 5, or 6 depending on the group. See below.

Group	Basin and climatic characteristics (Required)		
А	DA		
В	DA, P ₂₂₄		
С	DA, FC.		

In this example, the station belongs in Group ${\tt C.}$

Basin and climatic characteristics are tabulated in table 6.

The regression equation for \mathbf{Q}_{50} is

$$Q_{50} = a(DA)^b(FC)^c$$

where, from table 9,

a = 17.1,

b = 0.80,

c = 1.09.

From table 6,

DA = 0.60,

FC = 95.

Substituting the respective values in the regression equation

 $Q_{50} = 17.1 (0.60)^{0.80} (95)^{1.09},$

 $Q_{50} = 17.1 (0.6645)(143),$

 $Q_{50} = 1,625 = 1,620.$

Example 2.

Estimate the 100-year flood for Nanakuli Stream at Nanakuli.

First, determine which group the station is in. It belongs to $\operatorname{Group}\ B$.

Next, find the basin and climatic characteristics that are required.

For Group B, the regression equation for \mathbf{Q}_{100} is

$$Q_{100} = a(DA)^b (P_{2-24})^c$$

where

a = 238,

b = 0.74

c = 1.22.

The basin and climatic characteristics were found to be

DA = 3.98,

 $P_{2-24} = 4.50.$

Substituting the respective values in the regression equation

 $Q_{100} = 238(3.98)^{0.74}(4.50)^{1.22},$

= 238(2.779)(6.265),

 $Q_{100} = 4,143 = 4,140.$

RECOMMENDATIONS

On the basis of the results of this study, the relatively small sample of gaging stations in each group, and the short length of record at about 20 percent of the sites, the following recommendations are made for the future of the program.

- Continue the crest-stage gage program and reanalyze the flood data every 5 years as the basis for a regional analysis of flood frequencies.
 - 2. Convert continuous-record stations on natural, unregulated streams to crest-stage gages when they are discontinued if additional peak-flow data would be of significant value.
 - 3. Determine a regionalized skew coefficient for Oahu and compare the results with the regionalized skew coefficient for Hawaii determined by the U.S. Water Resources Council (1977).
 - 4. Incorporate rain gages in the data collection program to obtain rainfall-runoff relations for Oahu streams for use in the design of drainage facilities. (City and County of Honolulu, 1969.)
 - 5. Study the effects of urbanization on floodflow by installing rainfall-runoff gages upstream and downstream from urbanized areas.

SUMMARY

Regression equations provide a means for estimating peak flows at selected recurrence intervals. The equations were derived by relating peak flows to basin and climatic characterisitics. The characteristics used in this study are not the only ones that affect peak flows; however, within a reasonable standard error of estimate, they represent an effective combination to estimate floodflows.

The relations derived should not be applied to streams affected by regulation and urbanization.

Continued collection of peak-flow data is desirable in order to obtain better estimates of floodflows.

REFERENCES

- City and County of Honolulu, 1969, Storm drainage standards: Department of Public Works, p. 4.
- Davis, L. G., 1974, Floods in Indiana, Technical manual for estimating their magnitude and frequency: U.S. Geological Survey Circular 710, 40 p.
- Ezekiel, Mordecai, and Fox, K. A., 1959, Methods of correlation and regression analysis, linear and curvilinear: New York, John Wiley and Sons, Inc., 3d ed., 548 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions <u>in</u> Manual of Hydrology: Part 1. General surface-water techniques: U.S. Geological Survey Water-Supply Paper 1541-A, p. 1-29.
- Riggs, H. C., 1968, Some statistical tools in hydrology: U.S. Geological Survey Techniques of Water Resources Investigations, book 4, chapter A1, 39 p.
- _____1968, Frequency curves: U.S. Geological Survey Techniques of Water Resources Investigations, book 4, chapter A2, 15 p.
- Searcy, J. K., 1960, Graphical correlation of gaging-station records <u>in</u>
 Manual of Hydrology, Part 1. General surface-water techniques:
 U.S. Geological Survey Water-Supply Paper 1541-C, p. 67-100.
- U.S. Water Resources Council, 1977, Guidelines for determining flood flow frequency: U.S. Water Resources Council Bulletin #17A, Washington, D. C., 26 p., App. 1-14.
- U.S. Weather Bureau, 1962, Rainfall-frequency atlas of the Hawaiian Islands: Technical Paper No. 43, 60 p.

3 1818 00100922 2