Dissolved-Solids Concentrations and Loads in Return Flows to the Colorado River from Agricultural Land in Southern California

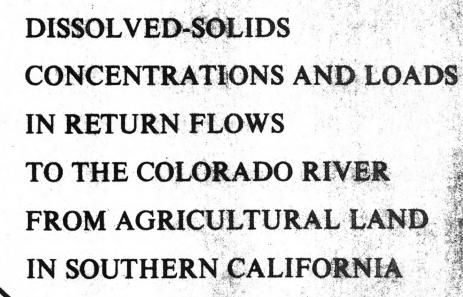
(U.S.) Geological Survey Menlo Park, CA

Jul 80

QE 75 .U58w no.80-52 1980

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

LIBRARY


MAK _ U 1982AFT

1 CONTRACTOR

Bureau of Reclamation Deriver, Colorado

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations 80-52

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161

Prepared in cooperation with the CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD COLORADO RIVER BASIN REGION

0272 -101		
The state of the s	3.	Recipient's Accession No. OBOI- 105 652
4. Title and Subtitle	1 5.	Report Date
3 DISSOLVED-SOLIDS CONCENTRATIONS AND LOADS IN RETURN		July 1980
COLORADO RIVER FROM AGRICULTURAL LAND IN SOUTHERN CA	ALIFORNIA 6.	
7. Author(s)	8.	Performing Organization Rept. No.
Klein, J. M. and Bradford, W. L.		USGS/WRI 80-52
3. Performing Organization Name and Address	10	0. Project/Task/Work Unit No.
U.S. Geological Survey, Water Resources Division	W.V.V	100 -10 Brown 100 -1 - 50 -1
California District Office	11	1. Contract(C) or Grant(G) No.
345 Middlefield Road Menlo Park, California 94025	(0)
Menio Tark, Gairlothia 74025	(0	3)
12. Sponsoring Organization Name and Address	1	3. Type of Report & Period Covered
U.S. Geological Survey, Water Resources Division		
California District Office		Final
345 Middlefield Road	1	4.
Menlo Park, California 94025		
The dissolved-solids concentration less than 50 mg/L (milligrams per liter) at the California border and to about 900 mg/L at the United Latter increase is due to depletion by agricultural unleached from soils under cultivation. Forty sites in Bard Valley, and Palo Verde Valley-were sampled to decions in return flows. Emphasis was on Palo Verde Valissolved-solids concentration of Colorado River water concentration in water at the tile-drain convergence closed sump that presently receives all irrigation rel,760 mg/L. In Bard Valley, water diverted from the solids concentration of about 835 mg/L. During the strains carrying irrigation return water ranged from 9 allo Verde Valley were sampled several times to determine subareas within the valley. Loads determined in this carlier study. In agreement with the earlier study, three subareas in the southern half of the valley and subareas in the northern half. Smaller loads were for	river's origin to States-Mexico be se and irrigation three agriculturescribe the dissolveraged about 2 turn, concentrativer had an annotativer dissolved-se study were compeloads were found comparatively se	o about 700 mg/L at the oundary. Much of the n return water with salts ral areas—Fort Mojave, olved—solids concentra—rt Mojave area, the mg/L, while the ,500 mg/L. In the ions ranged from 812 to ual mean dissolved—ions in the two main. Selected drains in olids loads from ared with those of an to be largest from mall from the four
nowever. The differences are thought to be due to get in drains during this study. 7. Document Analysis a Descriptors	nerally lower wa	ter discharge observed
Dissolved Solids, *Salinity, Return Flow, Chemical A	nalysis, Specifi	c Conductivity,
lalifornia		
b. Identifiers/Open-Ended Terms Colorado River, Palo Verde Valley, Fort Mojave Area,	Bard Valley	
c. COSATI Field/Group		4 % .
3. Availability Statement To restriction on distribution	19. Security Class (This R UNCLASSIFIED	eport) 21. No. of Pages

repared for NTIS by U.S. Geological Survey, WRD

22. Price

20. Security Class (This Page) UNCLASSIFIED

DISSOLVED-SOLIDS CONCENTRATIONS AND LOADS IN RETURN FLOWS

TO THE COLORADO RIVER FROM AGRICULTURAL LAND

IN SOUTHERN CALIFORNIA

By John M. Klein and Wesley L. Bradford

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 80-52

Prepared in cooperation with the

California Regional Water Quality Control Board

Colorado River Basin Region

7415-25

July 1980

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, SECRETARY

GEOLOGICAL SURVEY

H. William Menard, Director

For additional information write to:

District Chief
Water Resources Division
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

CONTENTS

			Page
Conversion fac	tors		IV
Abstract			1
Introduction			2
Statement	of the problem	0	2
Objective	s of the study-		4
Previous	investigations-		4
Acknowled	gments		4
Description of	the study area	35	5
Geohydrol	.02V		5
			7
		cd Valley	7
Palo Verd	e Vallev		8
Methods of dat	a collection		8
			9
Fort Moia	ve area		9
Bard Vall	ev		11
Palo Verd	le Vallev		11
Summary and co	nclusions		23
Selected refer			25
		analyses of water samples from the	
		lley, and Bard Valley areas	27
		asurements of specific conductance	53
ouppremental a	aca. IIcia mea	statements of specific conductance	33
		ILLUSTRATIONS	
	4		
			Page
Figures 1-5.	Maps showing:		
	1. Locati	ion of Colorado River drainage	3
	2. Locati	ion of study areas	6
		ion of sampling sites, Fort Mojave Main	
		al, and sump in the Fort Mojave study area	10
		ion of drain-sampling sites and Morelos Dam,	
		d Valley	12
		ion of drain-sampling sites and hydrologic	
		areas in Palo Verde Valley	13
6.		comparison of dissolved solids, in tons	
		erted from the Colorado River at the	
		iversion Dam and returned to the Colorado	
		Palo Verde Outfall Drain for 1973-77	14

		Page
Figures 7	7-11. Graphs showing variations in dissolved-solids concentration and load with time at the indicated sampling	
	sites on drains or canals in Palo Verde valley:	
	7. East Side subarea	17
	8. West Side and Central subareas	18
	9. Rannells subarea	19
	10. Lower Borrow Pit and South End subareas	20
	11. Palo Verde subarea	21
	TABLES	
	TADING	
		Page
Toble 1	Danking of subspace by despecting specific of discolard	Lage
lable 1.	Ranking of subareas by decreasing quantities of dissolved	0.1
	solids discharged per acre	2:
2.	Average annual discharge, dissolved-solids load, and	
	dissolved-solids load per acre from each subarea	2
3.	Comparison of concentrations of dissolved solids calculated	
* * * * * * * * * * * * * * * * * * *	by two studies	2:

CONVERSION FACTORS

The inch-pound system is used in this report. For readers who prefer metric units rather than inch-pound units, the conversion factors for the terms used in this report are listed below:

Multiply inch-pound unit	Ву	To obtain metric unit
acre	0.4047	hm ² (square hectometer)
acre-ft (acre-foot)	1,233	m ³ (cubic meter)
ft (foot)	0.3048	m (meter)
ft/mi (foot per mile)	0.189	m/km (meter per kilometer)
ft ³ /s (cubic foot per second)	0.02832	m ³ /s (cubic meter per second)
inch	25.4	mm (millimeter)
mi (mile)	1.609	km (kilometer)
ton (short)	0.9072	Mg (megagram)
ton/acre	2.2417	Mg/hm ² (megagram per square hectometer)
ton/acre-ft (ton per acre-foot)	0.0007	Mg/m ³ (megagram per cubic meter)
ton/d (ton per day)	0.9072	Mg/d (megagram per day)
ton/yr (ton per year)	0.9072	Mg/yr (megagram per year)
(ton/yr)/acre (ton per year per acre)	2.2417	(Mg/yr)/hm ² (megagram per year per square hectometer)
Abbreviations used: mg/L (milligrams per lite µmho (micromhos per centi		

DISSOLVED-SOLIDS CONCENTRATIONS AND LOADS IN RETURN FLOWS

TO THE COLORADO RIVER FROM AGRICULTURAL LAND

IN SOUTHERN CALIFORNIA

By John M. Klein and Wesley L. Bradford

ABSTRACT

The dissolved-solids concentration in Colorado River water increases from less than 50 mg/L (milligrams per liter) at the river's origin to about 700 mg/L at the California border and to about 900 mg/L at the United States-Mexico boundary. Much of the latter increase is due to depletion by agricultural use and irrigation return water with salts leached from soils under cultivation.

Forty sites in three agricultural areas--Fort Mojave, Bard Valley, and Palo Verde Valley--were sampled to describe the dissolved-solids concentrations in return flows. Emphasis was on Palo Verde Valley.

In the Fort Mojave area, the dissolved-solids concentration of Colorado River water was about 700 mg/L, while the concentration in water at the tile-drain convergence averaged about 2,500 mg/L. In the closed sump that presently receives all irrigation return, concentrations ranged from 812 to 1,760 mg/L.

In Bard Valley, water diverted from the river had an annual mean dissolved-solids concentration of about 835 mg/L. During the study, concentrations in the two main drains carrying irrigation return water ranged from 953 to 1,290 mg/L.

Selected drains in Palo Verde Valley were sampled several times to determine dissolved-solids loads from subareas within the valley. Loads determined in this study were compared with those of an earlier study. In agreement with the earlier study, loads were found to be largest from three subareas in the southern half of the valley and comparatively small from the four subareas in the northern half. Smaller loads were found in this study from all subareas, however. The differences are thought to be due to generally lower water discharge observed in drains during this study.

INTRODUCTION

Statement of the Problem

The concentration of dissolved solids in Colorado River water increases from less than 50 mg/L at the river's origin in Colorado (fig. 1) to an average of 900 mg/L at the United States-Mexico boundary. Every use or depletion of water by man's activities contributes to the increase in dissolved solids. The main depletion of Colorado River water is by agricultural use (U.S. Bureau of Reclamation, 1977b, p. 21).

Two procedures used in southern California to develop agricultural lands adjacent to the Colorado River add to the amount of dissolved solids in the river. First, the land adjacent to the river is leached to reduce salt concentration. Second, after crops are planted and irrigated, drain systems carry excess irrigation water back to the river to prevent waterlogging and salt accumulation on the land. Both practices, while essential to agriculture, contribute dissolved solids to the river.

The increasing amount of dissolved solids (also called salinity) in the river adversely affects about 10 million people and 1 million acres of fertile, irrigated farmland. In late 1973, the Colorado River Basin States created the Colorado River Basin Salinity Control Forum to establish numeric salinity criteria and a plan of implementation for salinity control in the Colorado River. The Forum's recommended standards were adopted by the States and approved by the U.S. Environmental Protection Agency in 1976.

In California the local regulatory agency responsible for implementing the plan is the California Regional Water Quality Control Board, Colorado River Basin Region. In addition, the Colorado River Board, a State agency established to exercise continuous comprehensive jurisdiction over the Colorado River in California, has been pursuing responsible planning in the management of the Colorado River.

The California Regional Water Quality Control Board, Colorado River Basin Region (hereafter referred to as the Regional Board), pursuant to the objectives of Public Law 92-500, requested the U.S. Geological Survey to participate in a cooperatively funded study to monitor water quality of return flows to the Colorado River from agricultural areas in California.

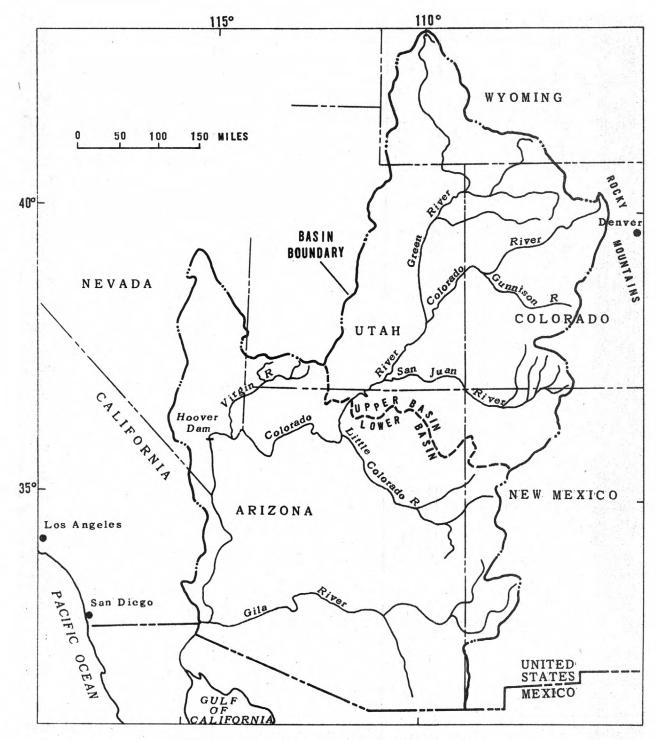


FIGURE 1 .-- Location of Colorado River drainage.

Objectives of the Study

The overall purpose of the study was to provide the Regional Board with data on the salinity of return flows to the Colorado River. The more specific objectives were:

- 1. To describe concentrations of the major dissolved inorganic chemical constituents in surface-water discharges for three agricultural areas of California: the Fort Mojave area, the Palo Verde Valley, and the Bard Valley north of Yuma, Ariz. (fig. 2). In this study, because of limited funds, data were collected predominantly in the Palo Verde Valley where agriculture is most developed. If there are subsequent studies, data collection will be concentrated in the Fort Mojave and Bard Valley areas.
- 2. To describe the areal distribution of dissolved-solids concentrations in the surface-water irrigation drains of the three study areas. For this objective also, emphasis was on Palo Verde Valley.

Previous Investigations

Previous investigations of most importance to this study are the detailed geologic and hydrologic descriptions of the area by Metzger, Loeltz, and Irelan (1973); Olmsted, Loeltz, and Irelan (1973); and Metzger and Loeltz (1973). Adequate references to other investigations are presented in those publications. The U.S. Bureau of Reclamation has collected hydrologic data in recent years and has appraised irrigation practices. Water-quality and streamflow data are published annually by the U.S. Geological Survey. Bookman-Edmonston Engineering, Inc. (1976) analyzed dissolved-solids discharges from the Palo Verde Irrigation District, outlined specific areas of dissolved-solids loads in irrigation return drains, and discussed alternative salinity management procedures. Other reports dealing specifically with salt and salinity management are listed in the "Selected References" section of this report.

Acknowledgments

The Fort Mojave Tribal Council allowed access to sampling sites on Indian Reservation land. Russel Bros. Ranches, Inc., contractors farming the Fort Mojave area, were helpful in the collection of water samples in their area. Palo Verde Irrigation District personnel also supplied data collected as part of their irrigation management practices.

DESCRIPTION OF THE STUDY AREAS

The study areas (fig. 2) are adjacent to the lower reaches of the Colorado River in California in San Bernardino, Riverside, and Imperial Counties. They extend from the California-Nevada State line on the north to the United States-Mexico boundary on the south. The eastern boundary of the study areas is the Colorado River, and the western perimeter is defined by the western extent of the Colorado River flood-plain valley fill deposits and an escarpment of older terrace deposits and resistant rock types of significant relief.

Rainfall in this area of the California-Arizona desert averages about 4 inches per year and is highly variable. Agriculture is supported by extensive irrigation with Colorado River water.

Geohydrology

The rugged mountains forming the western perimeters of the study areas are composed of consolidated igneous and metamorphic rocks that form the basement complex beneath the partly unconsolidated and unconsolidated alluvial deposits of the separate basins. Fractures may be present in these basement deposits allowing transmission of minor quantities of ground water.

Both younger and older alluvium of varying degrees of consolidation were deposited throughout the study areas by the meandering of the Colorado River and by flooding prior to control of the river by upstream dams. These deposits, well-suited for agricultural development, are highly permeable and, where saturated, will yield water readily to wells.

In the irrigated valleys, depth to ground water ranges from about 7 ft in Palo Verde Valley to about 100 ft in Bard Valley. The slope of the shallow ground-water surface, where it exists, is away from the river in some areas and toward the river in others, suggesting that the river may recharge the shallow aquifer in some areas and receive seepage from it in others. Dissolved-solids concentrations in ground water are generally high, ranging from 600 to 6,000 mg/L in Palo Verde Valley and up to 1,500 mg/L in Bard Valley. The predominant constituents generally are sodium and chloride.

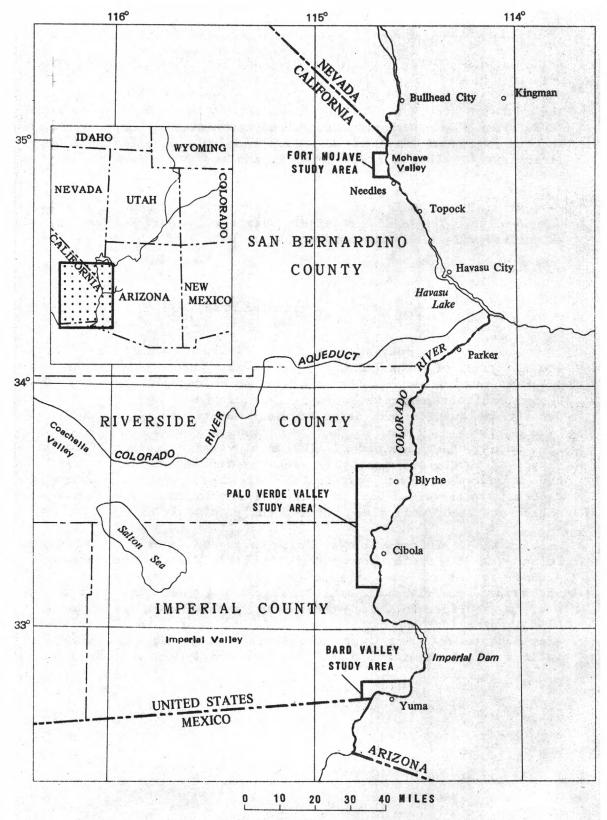


FIGURE 2. -- Location of study areas.

Soils

Of the three study areas, soils of only the Palo Verde Valley have been studied in detail (U.S. Soil Conservation Service, 1974). Coarse-textured soils predominate adjacent to the river, grading to fine-textured soils adjacent to the mesas and escarpments on the perimeter. Prior to agricultural development and regulated flow in the river, evaporation, in conjunction with transpiration by phreatophytes in marshes and bogs, increased salt concentration in soils. With time, high concentrations developed in the soil horizons. M. P. Einert (written commun., 1978) found that soluble salts ranged from 0.02 percent in sandy, well-drained soils to over 2 percent in tight, clayey soils.

Development of the flood-plain soils for economic crop production requires leaching and flushing most of the soluble salts from the soil with large volumes of Colorado River water. Generally, repeated flushings for 1 year will leach well-drained soils sufficiently to plant salt-tolerant crops, and irrigation will continue the leaching process. Fine-textured soils must first be broken up at depth to facilitate leaching and drainage.

Fort Mojave Area and Bard Valley

In the northern part of the Fort Mojave area (figs. 2 and 3), irrigation is with ground water. Acreage in the southern part of the area is irrigated with Colorado River water. The few tile drains available empty into a closed sump along the west perimeter of the area. By directing the used irrigation water away from the Colorado River, direct degradation of the river is avoided.

The flat part of the Colorado River flood plain, downstream from Laguna Dam, north and west of the Colorado River, and south of the All American Canal is informally designated as Bard Valley (fig. 4). The Colorado River is diverted above Imperial Dam to supply the All American Canal, the source of irrigation water in Bard Valley. Several major canals divert the water to laterals and to the point of crop application. A series of drains has been constructed to prevent waterlogging in the irrigated area by intercepting percolating irrigation return. The drain water is then returned to the Colorado River.

Palo Verde Valley

Palo Verde Valley (figs. 2 and 5) includes about 92,000 acres of irrigated land within the boundaries of the Palo Verde Irrigation District. Irrigation water is supplied from the Colorado River through a complex distribution system consisting of 295 mi of laterals and canals. Excess water in the canals can be returned to the river at several spill locations throughout the eastern part of the valley.

To prevent the buildup of a high ground-water table, about 150 mi of open ditches drain the surface runoff and ground-water seepage to the Palo Verde Outfall Drain (fig. 5), which trends southward through the central part of the valley. This major drain enters the Colorado River about 10 mi south of Palo Verde Valley.

METHODS OF DATA COLLECTION

Forty sampling sites (figs. 3, 4, and 5) were selected to provide water-quality data for initial interpretation and assessment of dissolved solids in discharge. At 19 sites in Palo Verde Valley, 4 sites in the Fort Mojave area, and 2 sites in Bard Valley, samples were collected for analysis of the major inorganic chemical constituents listed in the supplemental data. At the remaining sites (14 in Palo Verde Valley and 1 in Bard Valley) only field measurements of temperature, specific conductance, and pH were made. Water samples were collected in November 1977 and January, March, and September 1978 and analyzed by the National Water Quality Laboratory in Arvada, Colo.

A relation between specific conductance and dissolved-solids concentration (residue on evaporation at 180°C) was determined from available data to calculate concentrations of dissolved solids at sites where only field measurements of specific conductance were taken. The data fit the linear regression equation:

Dissolved solids $(mg/L) = 0.544 \times \text{specific conductance } (\mu \text{mho}) + 267.$

The fit was excellent with $r^2 = 0.96$. The fit is poor when specific-conductance values are below 1,400. The equation is not used below that value.

RESULTS AND DISCUSSION

Each of the study areas is discussed separately. However, only limited discussion is presented for the Fort Mojave area and Bard Valley because of limited information available. The approach used is to describe dissolved-solids concentration changes in water as it moves through the irrigation cycle from its diversion into the area to its termination point.

Fort Mojave Area

Water is diverted from the Colorado River with a series of lift pumps at sample site 1 (fig. 3) and transmitted via the Fort Mojave Main Canal to the points of application. Samples were collected at the diversion point (site 1) to determine the quality of the river water before it was used for irrigation (see supplemental data). The concentration of dissolved solids (sum of constituents) was about 700 mg/L. The major dissolved constituents were sodium, calcium, and sulfate. The concentrations of individual constituents relative to the sums of constituents were consistent among the samples and are considered to be representative of surface water applied to the crops in the area.

Substantial chemical changes occur in the water from its point of diversion at the Colorado River to the tile-drain convergence point (site 2) where it was sampled. In the November sample, the dissolved-solids concentration was 2,590 mg/L. The predominant ions were sodium and sulfate with a noticeable increase in the chloride percentage over that of the diversion water. The passage of the water through the irrigation cycle apparently results in concentration and composition changes due to leaching of soluble minerals and evaporation.

The sump along the south and west perimeters of the flood-plain deposits (fig. 3) receives irrigation tailwater, return flow from the tile-drain collection system, and natural runoff from the hills to the west. Samples from different parts of the sump taken at different times attest to this variability of sources.

At sample site 3 (fig. 3), water is pumped from the sump back into the irrigation cycle for reuse on some fields. A sample of this water obtained November 15, 1977, contained 875 mg/L of dissolved solids, mainly calcium, sodium, and sulfate. The sump pump was not operating during the January 1978 visit; thus, a sample was collected from the sump itself (site 4, fig. 3). The water contained 812 mg/L of dissolved solids, mainly sodium, sulfate, and chloride. During the March 1978 visit, the sump was again sampled at site 4 (fig. 3). The water contained 1,760 mg/L dissolved solids, predominantly sodium and sulfate. Water-quality fluctuations of this magnitude in the sump may be caused either by variations in the pattern of water usage or by natural processes, such as increases in concentration by evaporation, precipitation of minerals from solution, or by the flushing of surface evaporite salts during runoff from the hills to the west.

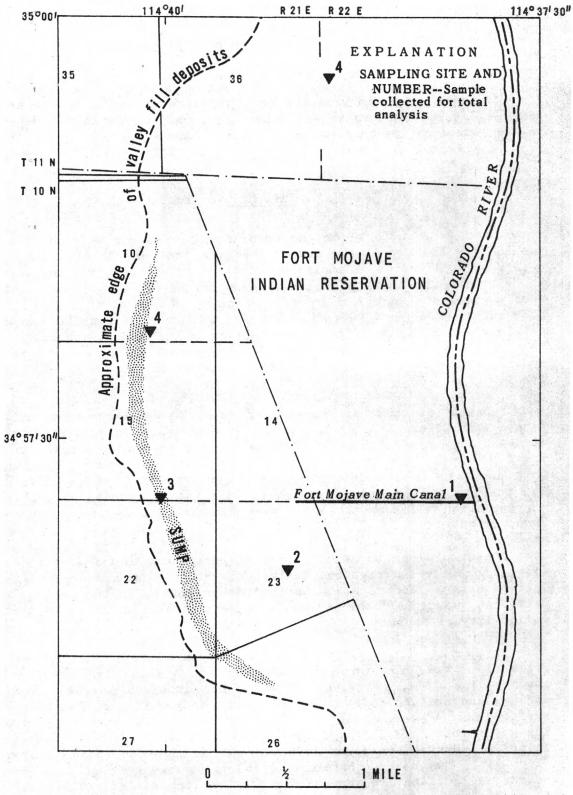


FIGURE 3.--Location of sampling sites, Fort Mojave Main Canal, and sump in the Fort Mojave area.

Bard Valley

According to U.S. Geological Survey records at station 09429490 (fig. 4), the dissolved-solids concentration of the Colorado River above Imperial Dam fluctuates considerably and so must, therefore, the dissolved solids of the water diverted into Bard Valley. The annual mean concentrations of dissolved solids have, however, remained nearly constant, ranging only from 832 to 837 mg/L for the last 3 years.

Two primary drains direct irrigation return flow away from Bard Valley to the Colorado River. The Araz Drain drains the western half of the valley, and the Reservation Main Drain drains the eastern half.

Water samples from Araz Drain (site 1, fig. 4) contained dissolved solids (sum of constituents) in amounts ranging from 953 to 1,040 mg/L, mainly sodium and sulfate. The various samples taken were consistent in composition and concentration. Because discharges in the drain were small (1 to 2.3 ft 3 /s) at the time of sampling, loads of dissolved solids were also small compared to the load already present in the river. However, larger discharges probably occur at other times of the year depending upon irrigation practices, particularly during the summer when irrigation water use is normally highest.

Water samples taken from the Reservation Main Drain (site 2, fig. 4) contained dissolved solids in amounts ranging from 1,250 to 1,290 mg/L. The samples maintained a consistent composition, predominated by sodium, calcium, and sulfate. Discharges during sampling were generally about 25 ft³/s.

One specific-conductance measurement at the Reservation Main Drain (site 3) in September indicated a dissolved-solids concentration (residue on evaporation at 180°C) of about 1,060 mg/L.

Palo Verde Valley

Mean monthly surface-water discharge and chemical-quality data were used to estimate monthly dissolved-solids loads (residue on evaporation at 180°C) entering and leaving Palo Verde Valley in irrigation water during 1973-77 (fig. 6). Inflow data were for the diversions at the Palo Verde diversion dam (fig. 5). Outflow data were for the Palo Verde Outflow Drain (fig. 5).

A large amount of dissolved solids is diverted to the valley from the Colorado River during the peak summer irrigation season when more dissolved solids enter the valley than leave it (fig. 6). In contrast, during the autumn and winter when irrigation is at a minimum, more dissolved solids leave the valley than enter it (fig. 6). Salt-budget conditions were unfavorable during the spring and summer of 1977 when, after an exceptionally dry winter, higher dissolved-solids loads were diverted into the valley than in previous years.

Data collected during this study were used to describe the chemical quality of water draining the valley and to determine specific areas contributing proportionally larger dissolved-solids loads. Seasonal variations of dissolved-solids concentrations were determined for seven subareas (figs. 7-11) as defined by Bookman-Edmonston Engineering, Inc. (1976). In most of the valley these variations are small. However, at site 1 in the East 3ide subarea (fig. 7) and at sites 25, 26, and 27 (fig. 11) seasonal variations in dissolved-solids concentrations were large. Variations of up to a factor of 2.5 were seen at site 25.

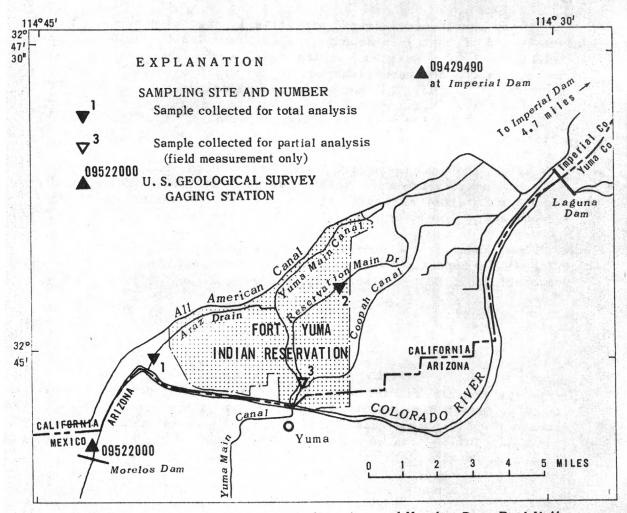


FIGURE 4 .-- Location of drain-sampling sites and Morelos Dam, Bard Valley.

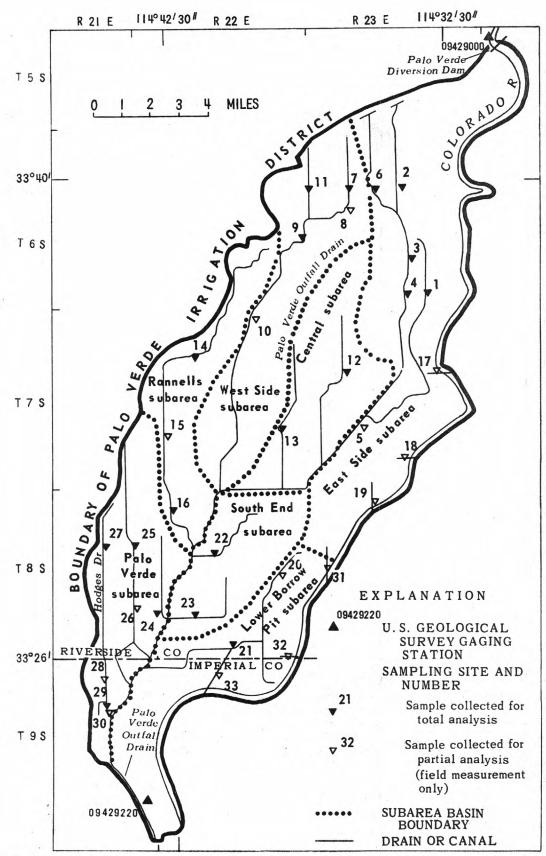


FIGURE 5.-Location of sampling sites and hydrologic subareas in Palo Verde Valley. Subareas defined by Bookman-Edmonston Engineering, Inc. (1976).

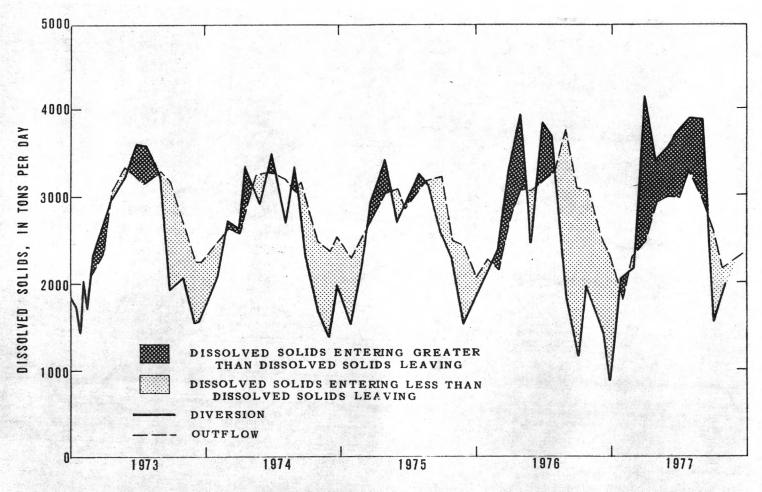


FIGURE 6.-- Comparison of dissolved solids in tons per day diverted from the Colorado River at the Palo Verde Diversion Dam and returned to the Colorado River at the Palo Verde Outfall Drain for 1973-77.

The highest concentrations of dissolved solids and the greatest variation in concentrations occur in the southern half of the valley. For example, site 28 (fig. 11) samples ranged from about 2,220 to 3,530 mg/L in dissolved-solids concentration while at site 12 (fig. 8) in the northern half, by contrast, samples ranged from 1,300 to 1,330 mg/L.

The following discussions compare the drainage from the various subareas. Numbers used in the comparisons are from field and laboratory data.

The East Side subarea (fig. 7) is drained by the Upper Borrow Pit Drain (site 1), the East Side Drain (sites 2, 3, 4, and 5), and the North End Drain (site 6). The most variable dissolved-solids concentrations were observed at site 1. A substantial increase in discharge from 0.14 to 11 ft³/s between January and March did not dilute the drain water but seems rather to have contributed water of higher dissolved solids. Concentrations increased from 2.71 ton/acre-ft in January to 2.83 ton/acre-ft in March. Concentrations at sites 2, 4, 5, and 6 were all nearly constant with time.

The West Side subarea (fig. 8) is drained by the West Side Drain (sites 7, 8, 9, and 10) and the Upper West Side Drain (site 11). Sites 7 and 11 represent drainage water from areas of similar size and agricultural use, but the water at site 11 is more consistent in composition and higher in concentration than the water at site 7. This may indicate more soluble material in the soil or new land being put into production upstream of site 11. Substantial drainage enters the West Side Drain between site 9 and sites 7 and 11, as evidenced by discharges of 18 to 31 ft³/s at site 9 and concurrent discharges of 4 to 9 ft³/s at sites 7 and 11. The higher dissolved-solids concentration in water coming from the Upper West Side Drain causes the increase in dissolved solids between sites 8 and 10.

Dissolved-solids concentrations at both monitoring sites in the Central subarea drainage (sites 12 and 13, fig. 8) were similar. However, the discharges at site 12 were higher (10, 9.1, 11, and 11 $\rm ft^3/s$) than those at site 13 (4.4, --, 6.5, and 12 $\rm ft^3/s$) and hence, the loads at site 12 were higher.

The dissolved-solids concentrations varied greatly at sites 14, 15, and 16 in the Rannells subarea drainage (fig. 9). Discharges at site 16 were 3 to 3.8 times greater than at site 14, indicating substantial drainage inflow between the two stations. Maximum dissolved-solids concentrations at sites 15 (1,900 mg/L) and 16 (1,920 mg/L) compared to site 14 (1,620 mg/L) indicate that concentrations increase southward in the subarea.

Variability and lack of seasonal trend characterize the data collected at sites 20 and 21 (fig. 10), respectively, in the Lower Borrow Pit subarea. The November, March, and September samples indicate higher dissolved-solids concentrations at site 20 than downstream at site 21; however, the reverse was true in January. Inflow from an unsampled drain to the south may affect the observations at site 21. The dissolved-solids concentrations in the Lower Borrow Pit subarea are lower than in the Rannells subarea and are comparable to subareas to the north.

The dissolved-solids concentrations are similar as are the discharges at the two sites (22 and 23, fig. 10) monitored in the South End subarea.

The Palo Verde subarea is drained by three major drains and several minor ones (fig. 11). The major drains and their monitoring stations are the Estes Drain, site 24; the Palo Verde Drain, sites 25 and 26; and the Hodges Drain, sites 27, 28, and 29. Considerable variation in the dissolved-solids concentrations was observed. The data from sites 25 and 26 indicate that dissolvedsolids concentrations decreased from January to March, with higher concentrations at site 26. Although discharge data were not collected at site 26, increases in dissolved-solids concentration suggest that there was inflow Data at sites 27 and 28 also indicate decreases in between the sites. dissolved-solids concentration from January to March. The highest dissolvedsolids concentrations in Palo Verde Valley were seen at sites 27, 28, and 29; the highest dissolved-solids concentration observed in the entire study, 3,530 mg/L, occurred at site 28 in January. The January high concentration at site 27 indicates that the factors affecting the drainage at sites 27 and 28 are similar. The tendency for concentrations to decrease from site 28 to 29, the site farthest south on Hodges Drain, may be due to dilution by inflow from South Hodges Drain.

Excess water in the canal system returns to the Colorado River at sites 17, 18, 19, 31, 32, and 33 (fig. 5). The specific conductance of water at those sites ranged from 1,050 to 1,250 µmho, much like that of diverted Colorado River water which ranged from 1,080 to 1,210 µmho during 1978 (U.S. Geological Survey records at 09429000, Palo Verde Canal near Blythe, Calif.). These data indicate that there is little change in the dissolved-solids concentration from the point of diversion to the point of application to crops in any subarea, substantiating the assumption of Bookman-Edmonston Engineering, Inc. (1976) that this was the case.

Tables 1, 2, and 3 compare the results of this investigation with those of Bookman-Edmonston Engineering, Inc. (1976). The dissolved-solids loads in tons per year and tons per year per acre were calculated in this study from instantaneous measurements of discharge and dissolved solids (or dissolved solids calculated from specific conductance). Bookman-Edmonston averaged available discharge data. The variation in calculation methods may be the major source of differences in computed dissolved-solids loads between the two studies, but cropping patterns, changes in irrigation practices, or changes in soil salinity since that study could also be important.

Results of both investigations show that the Palo Verde, Rannells, and West Side subareas are the top three contributors of dissolved solids to the Palo Verde Outfall Drain (table 2). The dissolved-solids loads obtained from this study are all lower than those from the earlier investigation.

Table 3 compares the four values of dissolved-solids concentrations obtained in this study with the single value obtained in the earlier study. Concentrations observed in this study were generally lower in the Central, Lower Barrow Pit, Palo Verde, South End, and West Side subareas, and higher in the East Side and Rannells subareas than found in the Bookman-Edmonston (1976) study. Lower dissolved-solids concentrations can account for some of the differences in annual load figures between the two studies shown in table 2, but most of the differences are probably due to lower discharge occurring during the 1977-78 study period than occurred during the Bookman-Edmonston (1976) study.

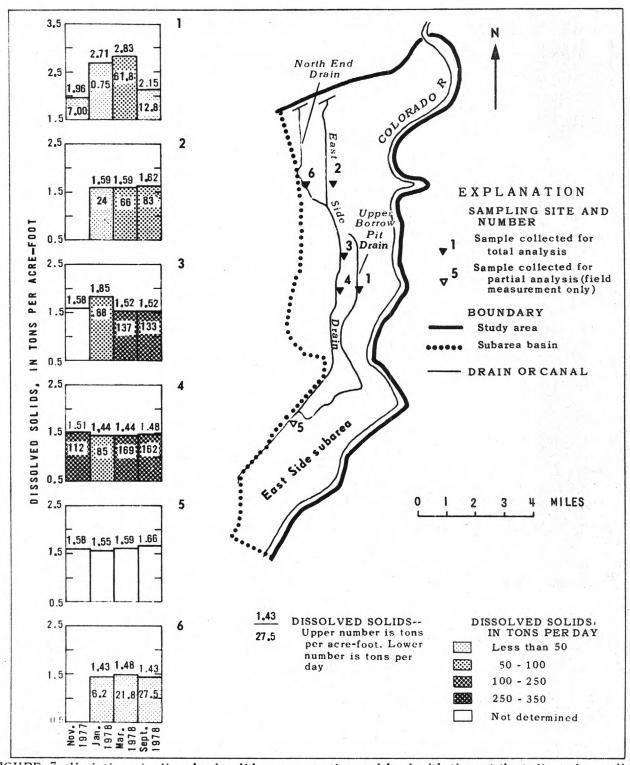


FIGURE 7.--Variations in dissolved-solids concentration and load with time at the indicated sampling sites on drains or canals in the East Side subarea, Palo Verde Valley.

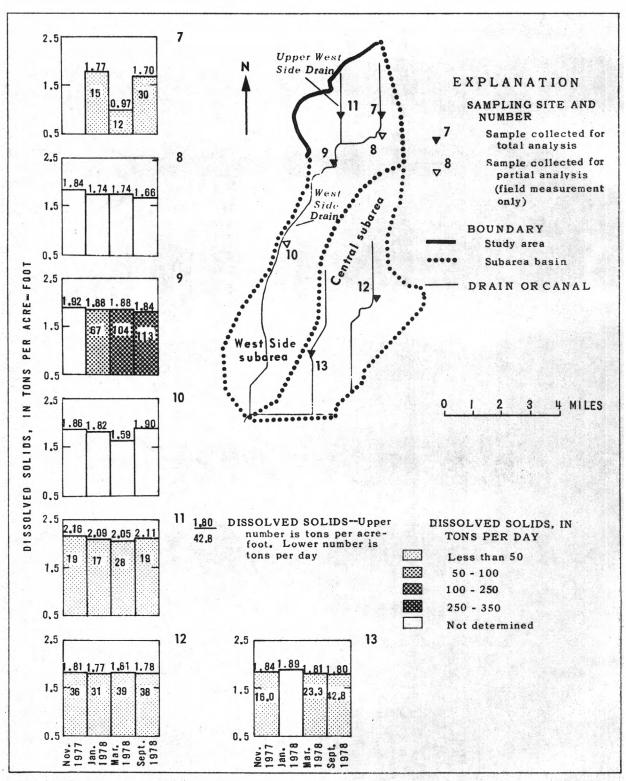


FIGURE 8.--Variations in dissolved-solids concentration and load with time at the indicated sampling sites on drains or canals in the West Side and Central subareas, Palo Verde Valley.

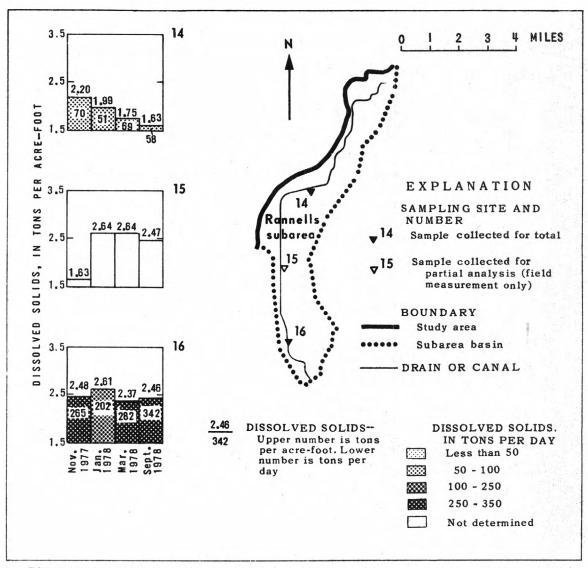


FIGURE 9. -- Variations in dissolved-solids concentration and load with time at the indicated sampling sites on drains or canals in the Rannells subarea, Palo Verde Valley.

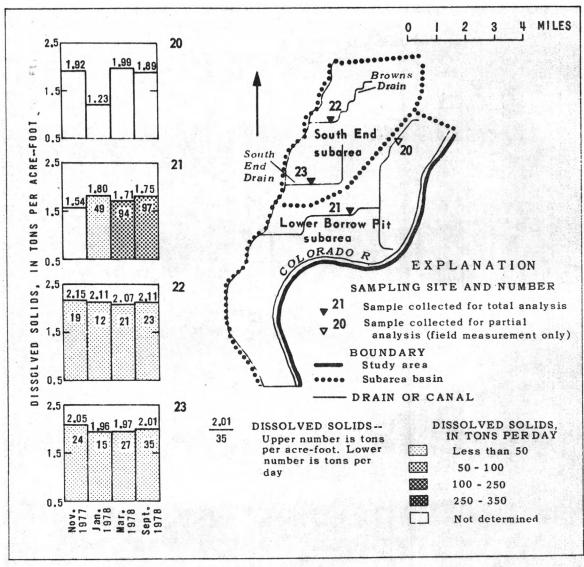


FIGURE 10.--Variations in dissolved-solids concentration and load with time at the indicated sampling sites on drains or canals in the Lower Borrow Pit and South End subareas, Palo Verde Valley.

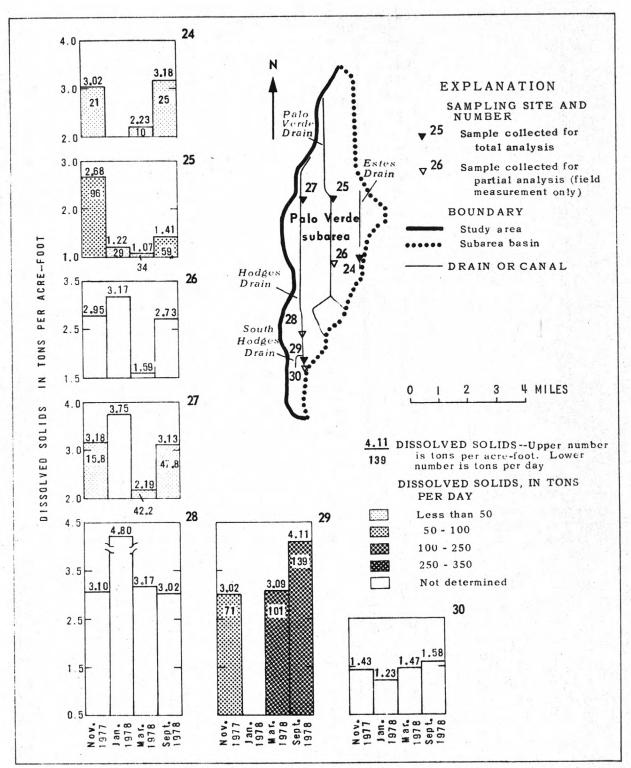


FIGURE 11.--Variations in dissolved-solids concentration and load with time at the indicated sampling sites on drains or canals in the Palo Verde subarea, Palo Verde Valley.

TABLE 1. - Ranking of subareas by decreasing quantities of dissolved solids discharged per acre

Bookman-Edmonston Engineering, Inc.	U.S. Geological Survey
Palo Verde	Rannells
Rannells	West Side
West Side	Palo Verde
Lower Borrow Pit	East Side
South End	Lower Borrow Pit
Central	South End
East Side	Central

TABLE 2. - Average annual discharge, dissolved-solids load, and dissolved-solids load per acre from each subarea--comparison of results of two studies

[Dissolved solids, residue on evaporation at 180°C]

Subarea	Site	Average annual drainage discharge (thousands of acre-ft)		Dissolved- solids load (thousands of ton/yr)		Dissolved- solids load [(ton/yr)/acre ¹]	
		B-E ¹	USGS ²	B-E3	USGS4	B-E ⁵	USGS ⁵
East Side	5	77	62	115	98	3.5	2.9
Central	12,13	30	10	54	22	4.2	1.7
Lower Borrow Pit	21	32	17	65	28	4.2	1.8
Palo Verde	24,26,29	43	31	158	94	12.6	7.5
Rannells	16	51	37	125	100	12.4	9.9
South End	22,23	15	7.4	47	16	5.2	1.8
West Side	10	71	71	145	128	8.4	7.3

¹B-E (Bookman-Edmonston Engineering, Inc.), 1976 data compilation and summary. Figures are derived from hydrosalinity balance sheets, figures 7-13, and accompanying data appendix A; hydrologic data and discharge data obtained from an average of Palo Verde Irrigation District measurements January 1970-74.

²Calculated from field measurements and estimates, and discharge data from Palo Verde Irrigation District. No original data at site 10 (West Side), so B-E value used.

 $^{^3\}mbox{Values}$ calculated from hydrosalinity balance sheets, figures 7-13 in B-E study.

⁴Averages of all estimates of instantaneous loads made at sites listed expressed as thousands of ton/year.

⁵Acreage for each subarea obtained from Palo Verde Irrigation District, and are actual irrigated acres, not the entire acreage of the subunit.

TABLE 3. - Comparison of concentrations of dissolved solids (residue on evaporation at 180°C) calculated by two studies

Subarea	Canal and site No.	Dissolved solids in return flow (ton/acre-ft)			
		B-E ¹	USG	S ²	
East Side	East Side (5)	1.49	1.58, 1.55,	1.59,	1.66
Central	Central (13)	1.89	1.84, 1.89,	1.81,	1.80
	Lovekin (12)	1.76	1.81, 1.77,	1.81,	1.78
Lower Borrow Pit	Lower Borrow Pit (21)	2.03	1.54, 1.80,	1.71,	1.75
Palo Verde	Estes (24)	4.80	3.02,	2.23,	3.18
	Palo Verde (26)	3.27	2.95, 3.17,	1.59,	2.73
	Hodges (29)	4.08	3.02,		
Rannells	Rannells (16)	2.45	2.48, 2.61,	2.37,	2.46
South End	South End (23)	3.00	2.05, 1.96,	1.97,	2.01
	Browns (22)	2.22	2.15, 2.11,		
West Side	West Side (10)	2.04	1.86, 1.82,	1.59,	1.90

¹B-E (Bookman-Edmonston Engineering, Inc., 1976).

SUMMARY AND CONCLUSIONS

Forty sampling sites on irrigation-water drains in agricultural lands of southern California adjacent to the Colorado River were selected to describe dissolved-solids concentrations in return flows to the river. Three areasthe Fort Mojave area, Palo Verde Valley, and Bard Valley-were investigated, and changes in the quality of Colorado River water were evaluated. The greatest emphasis was on Palo Verde Valley.

The Fort Mojave area is in various stages of land and water management. Surface water is applied to crops only in the southern part of the area. Drainage water intercepted from tile-drain systems and field tailwater are diverted to a closed sump along the western perimeter of the valley.

²USGS (U.S. Geological Survey). The four values are for November 1977, January, March, and September 1978.

Substantial chemical changes occur in the irrigation water in the Fort Mojave area from its point of diversion at the Colorado River to the point sampled at the tile-drain convergence points. The dissolved-solids concentration (sum of constituents) in the water diverted from the Colorado River averaged about 700 mg/L during the study period. The dissolved-solids concentration averaged about 2,500 mg/L at the tile-drain convergence point.

Two primary drains direct irrigation return flows away from Bard Valley to the Colorado River. During the study period dissolved-solids concentrations in the water in the two drains ranged from 953 to 1,290 mg/L. The annual mean concentrations in Colorado River water diverted into the valley ranged from 832 to 837 mg/L for the previous 3 years.

Palo Verde Valley contains about 92,000 acres of land used year round for crop production. A complex system of 295 mi of laterals and canals transmits the river water to its point of crop application, and 150 mi of drains intercept and return the spent irrigation water to the Colorado River. In general, leaching of soluble minerals from the soils occurs throughout the valley as shown by greater dissolved-solids (residue on evaporation at 180°C) loads being carried out of the valley in irrigation return than are diverted in from the river. Dissolved-solids returns to the Colorado River are usually greatest in the autumn and winter months.

Selected drains in Palo Verde Valley were sampled several times during the study period to determine dissolved-solids loads from specific areas. Variations were greatest, dissolved-solids concentrations were highest, and loads were largest in drainage water in the southern half of Palo Verde Valley. Water from many of the northern sampling sites was of relatively constant concentration and composition. Load variations were mostly attributable to discharge variations. The sampling sites on the Hodges Drain discharged the largest tonnage of dissolved solids from Palo Verde subarea. Larger volumes of return flows from the Rannells subarea, however, resulted in larger dissolved-solids loads (9.1 ton/acre) than from the more saline drainage in the Palo Verde subarea (6.5 ton/acre).

Data from both this study and a previous study by Bookman-Edmonston Engineering, Inc. (1976) indicate that the Palo Verde, Rannells, and West Side subareas are the top three contributors of dissolved solids, although the ranking differs between the two studies. Dissolved-solids loads from the subareas calculated in this study are generally lower than those calculated by the previous study. Differences may be due largely to differences in discharge of the sampled drains and differences in the method of computation between the two studies.

SELECTED REFERENCES

- Blackman, W. C., Wills, C. G., and Celnicker, A. C., 1977, Public Law 92-500, Pollution by irrigation return flow: Proceedings of the American Society of Civil Engineers, Journal of the Irrigation and Drainage, v. 103, no. 122, June 1977, p. 207-220.
- Bookman-Edmonston Engineering, Inc., 1976, Reduction of salt loading to the Colorado River from Palo Verde Irrigation District: Glendale, Calif., 75 p.
- California [University] Water Resources Center, California [University] Cooperative Extension Service, California Department of Water Resources, and U.S. Salinity Laboratory, 1976, Proceedings of the conference on salt and salinity management, Santa Barbara, Calif., September 23-24, 1976: California Water Resources Center Report No. 38, 166 p.
- Colorado River Basin Salinity Control Forum, 1978, Water quality standards for salinity including numeric criteria and plan of implementation for salinity control--Colorado River system: 127 p.
- Hely, A. G., 1969, Lower Colorado River water supply--Its magnitude and distribution: U.S. Geological Survey Professional Paper 486-D, 54 p.
- Iorns, W. V., Hembree, C. H., and Oakland, G. L., 1965, Water resources of the Upper Colorado River Basin--Technical report: U.S. Geological Survey Professional Paper 441, 370 p.
- Metzger, D. G., Loeltz, O. J., and Irelan, Burdge, 1973, Geohydrology of the Parker-Blythe-Cibola area, Arizona and California: U.S. Geological Survey Professional Paper 486-G, 130 p.
- Metzger, D. G., and Loeltz, O. J., 1973, Geohydrology of the Needles area, Arizona, California, and Nevada: U.S. Geological Survey Professional Paper 486-J, 54 p.
- Moyle, W. R., Jr., and Mermod, M. J., 1978, Water wells and springs in Palo Verde Valley, Riverside and Imperial Counties, California: California Department of Water Resources Bulletin 91-23, 261 p.
- Olmsted, F. H., Loeltz, O. J., and Irelan, Burdge, 1973, Geohydrology of the Yuma area, Arizona and California: U.S. Geological Survey Professional Paper 486-H, 227 p.
- U.S. Bureau of Reclamation, 1974, Colorado River water quality improvement program: Status report, 211 p.
- _____1977a, Colorado River Basin salinity control project, Title 1 Division,
 Desalting complex unit, Arizona: Status report, 215 p.
- _____1977b, Annual report, Operation of the Colorado River Basin 1976, Projected operations 1977: 32 p.
- U.S. Geological Survey, 1971-74, Water resources data for California, Part 1, Surface-water records, Volume 1, Colorado River basin, southern Great Basin, and Pacific slope basins excluding Central Valley: U.S. Geological Survey annual report.
- 1971-74, Water resources data for California, Part 2, Water-quality records: U.S. Geological Survey annual open-file report.
- ______1971-76, Water resources data for Arizona, Parts 1 and 2: U.S. Geological Survey annual report.
- 1975-76, Water resources data for California, Volume 1, Colorado River basin, southern Great Basin from Mexican Border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River: U.S. Geological Survey Water-Data Reports CA-75-1, 548 p., and CA-76-1, 632 p.
- U.S. Soil Conservation Service, 1974, Soil survey of Palo Verde area, California: 38 p.

SUPPLEMENTAL DATA

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

FORT MOJAVE AREA SITE 1, STATION IDENTIFICATION 345712114381001, FORT MOJAVE MAIN CANAL

1978 WATER YEAR

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS: NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	
NOV • 1	1500						222	83	
JAN , 1		12	1080	7.6	17.0	330	200	03	
26	1030		1100	8.2	10.0				
MAR			1100	0.2	1000				
23 SEP	0715	12	1050	7.6	15.0	340	210	84	
11	1630	35	1090	7.8	19.5	310	180	75	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLU0-
	SIUM,	SODIUM,		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE,
	SOLVED	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	(MG/L	SOLVED	SODIUM	RATIO	SOL VED	(MG/L	SOLVED (MG/L	SOLVED	SOLVED (MG/L
DATE	AS MG)	AS NA)	PERCENT	RAITU	AS K)	CACO3)	AS SO4)	(MG/L AS CL)	AS F)
04.6	A3 1107	AS NAT	PERCENT		AS IV	CACOST	дэ эсч,	AS CL,	
NOV . 1	977								
14	30	100	39	2.4	7.2	130	300	92	.3
JAN . 1	978								
26 MAR							••		
23	31	100	39	2.4	5.4	130	290	90	.3
SEP	٠.	100	37		3,4	130	270	70	
11	29	110	43	2.7	5.2	130	290	90	.3
		SOLIDS.	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
	nIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS,	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PFR	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
NOV . 1	977								
14	2.9	738	695	1.00	24.5	.14	160	40	
JAN . 1	978								
26									
MAR			4 1						
23	7.9	692	711	.94	22.0	5.3	140	70	
SEP 11	8.7	715	690	.94	69.1	.26	170	•-	
	0.1	113	040	. 74	07.1	• 20	1,0		

SUPPLEMENTAL DATA

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

FORT MOJAVE AREA SITE 2, STATION IDENTIFICATION 345645114391101, FORT MOJAVE TILE DRAIN

1978 WATER YEAR

			SPE-						
			CIFIC				HARD-		
		STREAM-	CON-			HARD-	NFSS.	CALCIUM	
		FLOW.	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
DAIL		(Cr3)	M11037	(014113)	TIPES C7	CACOST	CACOSI	AJ CAT	
NOV .	1077								
14	1600	.80	3800		21.2	1200	800	290	
MAR .		• 00	3600	7.1	21.2	1200	000	270	
			2500			1200	010	290	
23	0830		3500	7.2	20.0	1200	810	290	
	MAGNE								
	MAGNE-			SODIUM	POTAS-			CHLO-	FLUO-
	SIUM.	SODIUM.		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV .		72.0			100				
14		450	45	5.7	7.2	380	1000	500	.2
MAR .									
23	110	370	40	4.7	6.9	370	950	390	.4
		SOLIDS.	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS,	SOLIDS.	GEN.			
	DI5-	AT 180	CONSTI-	DIS-	DIS-	K0N+20N	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PFR	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
								140 E 2 C 7 C	
NOV .	1977								
14	4.8	2790	2590	3.79	6.03	.01	180	4100	
MAR .	1978	-			V 3500				
23	17		2360	3.21		.04	230	1700	

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

FORT MOJAVE AREA SITE 3, STATION IDENTIFICATION 345813114401801, FORT MOJAVE SUMP PUMP 1978 WATER YEAR

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)		
			10.11.37	1020 07	0.0037	04000,	40 01.		
NOV . 19									
15	0800	1750	7.6	13.0	430	280	110		
MAR . 19									
23	0740	1800	7.2	18.0	490	300	130		
	MAGNE-			SODIUM	POTAS-			CHLO-	FLU0-
	SIUM.	SONIUM.		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
		** *				(MG/L	SOLVED	SOLVED	SOLVED
	SOLVED	SOLVED		TION	SOLVED	AS	(MG/L	(MG/L	(MG/L
The second second	(MG/L	(MG/L	SODIUM	RATIO	(MG/L		AS 504)	AS CL)	AS F)
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	A5 504)	AS CL7	A3 F
NOV . 19	77								
15	38	120	37	2.5	12	160	370	130	.2
MAR . 19									
23	39	210	48	4.2	13	180	380	270	.3
23	37	210	40	4.2			330		
		SOLIDS.			NITRO-				
	SILICA.	RESIDUE		SOLIDS,	GEN.		IRON.		
	DIS-	AT 180			N05+N03				
	SOLVED	DEG. C	TUENTS.		DIS-	nIS-	DIS-		
	(MG/L	DIS-	DIS-		SOLVED				
	AS	SOLVED			(MG/L	(UG/L	(UG/L		
DATE	S102)	(MG/L)	(MG/L)	AC-FT)	AS N)	AS B)	AS FE)		
NOV , 19	77								
15	.8	891	875	1.21	.01	190	70		
MAR , 1		0.1	913	1.51	•01				
23	1.9	1150	1160	1.56	.66	200	410		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

FORT MOJAVE AREA SITE 4, STATION IDENTIFICATION 345712114400801, FORT MOJAVE SUMP, 1 MILE SOUTH OF PUMP

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)		
JAN . 19	78								
26 MAR	1200	1250	7.4	8.0	350	200	100		
23	0810	2890	7.2	17.0	820	570	200		
DATE	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)	SONIUM. DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE: DIS- SOLVED. (MG/L AS F)
JAN , 19	79								
26	25	130	43	3.0	15	160	280	16	•3
23	77	300	44	4.6	11	250	660	350	•4
	SILICA. DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUFNTS, OIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN. NO2+NO3 DIS- SOLVED (MG/L AS N)	BORON. DIS- SOLVED (UG/L AS B)	IRON. DIS- SOLVED (UG/L AS FE)		
DATE	51021	(MG/L)	(MG/L)	AC-FT)	AS N)	AS 67	AS PE		
JAN , 19	2.1	813	812	1.11	1.3	210	20		
MAR 23	6.8	1730	1760	2.35	.36	190	320		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

BARD VALLEY SITE 1, STATION IDENTIFICATION 324444114414001, ARAZ DRAIN NEAR ARAZ, CALIF.

			SPE- CIFIC				HARD-		
		STREAM-	DUCT-	2	T	HARD- NESS	NESS.	DIS-	
	TIME	INSTAN- TANEOUS	ANCE (MICRO-	РН	TEMPER-	(MG/L	BONATE (MG/L	SOLVED (MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV . 1	977								
09	1100	1.0	1400	8.1	16.0	390	220	100	
JAN . 1									
30 MAR	1510	2.3	1550	7.7	18.5	410	230	100	
14···	1420	1.0	1620	8.5	28.0	440	260	110	
15	1620		1400	7.8	35.5	360	200	87	
	MAGNE-	The state of the		SODIUM	POTAS-			CHLO-	FLU0-
	SIUM,	SODIUM.		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE .
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	nis-
	SOLVED	SOLVED	12.12	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV . 1									
JAN , 1	978	170	48	3.7	4.7	170	380	150	• 2
30 MAR	38	190	50	4.1	4.9	170	410	170	.3
14 SEP	40	190	48	3.9	5.5	180	410	160	.4
15	34	210	56	4.8	4.8	160	390	160	.4
		SOLIDS,	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS,	SOLIDS.	GEN.			
	nis-	AT 180	CONSTI-	DIS-	DIS-	N05+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS 8)	AS FE)	
NOV . 1									
09	9.8	1010	953	1.37	2.73	.01	180	40	
JAN . 1									
30 MAR	22	1060	1040	1.44	6.58	.19	200	30	
SEP	50	1040	1040	1.41	2.81	.16	550	20	
15	23	1040	1010	1.37	•	.16	260	••	

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

BARD VALLEY SITE 2, STATION IDENTIFICATION 324656114360401, RESERVATION MAIN DRAIN AT ROSS AVE. NEAR WINTERHAVEN, CALIF.

				SPE-						
				CIFIC				HARD-		
			STREAM-	CON-			HARD-	NESS.	CALCIUM	
			FLOW.	DUCT-			NESS	NONCAR-	DIS-	
			INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
		TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
	DATE	ITIME	(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
	DATE		(CFS)	MHUSI	(00113)	(DEG C)	CACOSI	CACOSI	AS CAT	
. 1	NOV . 1	977								1
	09	1300	25	2000	8.1	19.5	600	370	160	
	JAN . 1	978								
	30	1405	28	1900	7.4	20.5	540	320	140	
. 1	MAR	•	-							
	14	1340	25	1900	7.4	26.0	580	350	150	
	SEP	1340		1,00		2.000	300		• • • • • • • • • • • • • • • • • • • •	
	15	1545	30	1800	7.5	33.0	530	380	140	
						3000			7, 17, 1	
		MAGNE-		-	SODIUM	POTAS-			CHLO-	FLU0-
		SIUM.	SODIUM.		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE.
					SORP-					DIS-
		DIS-	DIS-			DIS-	LINITY	DIS-	DIS-	
		SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
		(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
	DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
	NOV , 1	977								
	09	48	200	42	3.6	5.9	230	470	220	.2
	JAN , 1		200	72	3.0	3.,	230			
			210	46	3.9	6.0	220	470	220	.4
	30	46	210	40	3.9	0.0	220	410	220	
	MAR	4.0	220	4.5	4.0		220	490	220	.5
	14	49	220	45	4.0	6.6	220	490	220	• 3
	SEP								200	
	15	44	200	45	3.8	5.5	150	480	550	.3
				501						
			SOLIDS.	SOLIDS.			NITRO-			
		SILICA.	RESIDUE	SUM OF	SOLIDS,	SOLIDS.	GEN.		The second second	
		DIS-	AT 180	CONSTI-	DIS-	DIS-	N05+N03	BORON.	IRON.	
		SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	*	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
		AS	SOLVED	SOLVED	PER	PFR	(MG/L	(UG/L	(UG/L	
	DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY	AS N)	AS B)	AS FE)	
	NOV . 1	077								
	7						0.00			
	09	8.8	1320	1250	1.80	89.1	.04	250	90	
	JAN . 1						6	*L		
	30	21	1560	1250	2.12	119	•25	250	10	
	MAR		4 3	1						
	14	20	1310	1290	1.78	88.4	.24	260	20	
	SEP									
	15	16		1200			. 34	270		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 1, STATION IDENTIFICATION 333625114330301, BORROW PIT DRAIN AT HIGHWAY 10 NEAR BLYTHE, CALIF.

	DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS. NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	
NI.	04									
	0V , 1	1200	1.8	2200	7.3	17.0	650	370	170	
	AN , 1		1.0	22.00		11.00	0.50			
	24 AR	1110	.14	3000	7.4	12.0	840	550	550	
	21	1440	11	3400	7.2	22.0	850	590	230	100
	EP									
	13	0852	3.0	2300	7.2	21.5	700	410	190	
		MAGNE- SIUM, DIS-	SODIUM, DIS-		SODIUM AD- SORP-	POTAS- SIUM, DIS-	ALKA- LINITY	SULFATE DIS-	CHLO- RIDE. DIS-	FLUO- RIDE: DIS- SOLVED
		SOLVED	SOLVED	CORTIN	TION	SOLVED	(MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L
	DATE	(MG/L AS MG)	(MG/L AS NA)	PERCENT	RATIO	(MG/L	CACO3)	AS 504)	AS CL)	AS F)
		40 1107	A5	. L.NOLINI						
N	ov , 1									
	16	55	230	43	3.9	6.3	280	430	290	•1
	AN . 1		250	47	5.3	7.6	290	580	500	.4
	24	71	350	47	3.3	7.0	270	300	300	
	21 EP	68	380	49	5.7	8.7	560	580	660	.4
	13	55	240	42	3.9	5.6	290	510	310	•3
		STLICA: DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS-	SOLIDS. SUM OF CONSTI- TUENTS. DIS-	SOLIDS. DIS- SOLVED (TONS	SOLIDS, DIS- SOLVED (TONS	NITRO- GEN: NO2+NO3 DIS- SOLVED (MG/L	BORON. DIS- SOLVED (UG/L	IRON. DIS- SOLVED (UG/L	
	DATE	AS S102)	SOLVED	SOLVED (MG/L)	PER AC-FT)	PER DAY)	AS N)	ĀS B)	AS FE)	
	DATE	51021	(MG/L)	(MG/L)	AC-PI)	UATI	AS N	A3 67	M3 LEI	
N	10V . 1	977								
	16	5.0	1440	1350	1.96	7.00	.02	230	50	
J	JAN , 1			A. T.				210		
м	24	18	1990	1920	2.71	.75	.18	310	10	
	21 EP	19	2080	2100	2.83	61.8	.08	370	50	
•	13	21	1580	1486	2.15	12.8	.86	250		

HEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 2, STATION IDENTIFICATION 333942114334401, EAST SIDE DRAIN AT 6TH AVE. NEAR BLYTHE, CALIF.

1			SPE-						
			CIFIC				HARD-		
		STREAM-	CON-			HARD-	NFSS.	CALCIUM	
		FLOW.	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	10.0
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
JAN . 1	978								
24	0745	7.6	1575	7.3	14.5	560	310	150	
MAR 22	0955	21	1725	7.7	19.5	590	340	150	
SEP	• 755		1,,25						100
12	1440	26	1700	7.6	25.0	500	250	130	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLU0-
	SIUM.	SOD IUM.		AD-	STUM.	ALKA-	SULFATE	RIDE.	RIDE.
								DIS-	DIS-
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-		
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
JAN , 1									
24	46	170	39	3.1	5.7	250	450	170	.3
MAR						1 11 12 2	3.1		The second second
22	52	180	40	3.2	6.5	250	440	150	.4
SEP									
12	43	190	45	3.7	5.5	250	450	160	.3
						1.0			
	1	SOLIDS,	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS,	SOLIDS.	GEN.			
	DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	A Property
	SOLVED	DEG. C	TUENTS,	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	1. 1. 1. 1. S. L.
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	8
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY	AS N)	AS B)	AS FE)	
JAN . 1	978								
24	18	1170	1170	1.59	24.2	.43	190	20	
MAR								7.5	
22	15	1170	1230	1.59	66.3	19	200	1000	
SEP						12,41			
12	19	1190	1129	1.62	83.5	•54	220		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 3, STATION IDENTIFICATION 333754114332701, EAST SIDE DRAIN AT 10TH AVE. NEAR BLYTHE, CALIF.

4		STREAM- FLOW+	SPE- CIFIC CON- DUCT-			HARD- NESS	HARD- NESS+ NONCAR-	CALCIUM DIS-	
	TIME	INSTAN-	ANCE (MICRO-	PH	TEMPER-	(MG/L	BONATE (MG/L	SOLVED (MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV . 1	977								
16 JAN • 1	0900		1700	7.3	16.5	560	310	150	
24 MAR	0925	24	1500	7.6	7.0	650	340	170	
SEP 21	1515	45	1650	7.5	23.0	530	290	140	
13	0815	44	1600	7.1	23.0	490	260	130	
	MAGNE-	SOD TUM		SODIUM	POTAS-	A1 VA-	CIN EATE	CHLO- RIDE.	FLU0-
	SIUM. DIS-	SODIUM.		SORP-	SIUM, DIS-	ALKA- LINITY	SULFATE DIS-	DIS-	DIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV . 1	977								
16 JAN , 1		160	38	3.0	5.9	250	420	150	,3
24 MAR	55	210	41	3.6	13	310	470	200	•4
SEP SEP	43	170	41	3.2	6.0	240	420	150	.4
13	40	180	44	3.5	5.3	230	440	150	.3
		SOLIDS,	SOLIDS,			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS,	SOLIDS.	GEN.			
	SOLVED	DEG. C	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	(MG/L	DIS-	DIS-	(TONS	SOLVED	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS NI	AS B)	AS FE)	
NOV . 1	977								
16	9.1	1160	1090	1.58		.16	210	50	
JAN • 1	15	1360	1320	1.85	88.1	.07	270	120	
MAR		1300	1320	1.05	00.1	.07	210	120	
SEP	15	1120	1090	1.52	137	.66	200	30	
13	19	1120	1084	1.52	133	.63	200		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 4, STATION IDENTIFICATION 333625114334501, EAST SIDE DRAIN AT HIGHWAY 10 NEAR BLYTHE, CALIF.

			SPE- CIFIC				HARD-		
		STREAM-	CON- DUCT-			HARD- NESS	NESS+	DIS-	
	TIME	INSTAN- TANEOUS	ANCE (MICRO-	PH	TEMPER-	(MG/L	BONATE (MG/L	SOLVED (MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV . 1									
16 JAN , 1	1115	37	1600	7.4	19.0	520	280	140	
24	1120	30	1625	7.5	15.0	510	280	140	
MAR 21	1450	59	1590	7.4	24.5	520	280	130	
SEP 13	0835	55	1600	7.3	23.0	460	290	120	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLUO-
	SIUM. DIS-	SODIUM.		AD- SORP-	SIUM.	ALKA- LINITY	SULFATE DIS-	RIDE.	RIDE+
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV . 1									
16 JAN , 1	978	160	40	3.1	6.0	240	390	150	•5
24 MAR	39	150	39	2.9	5.2	230	390	160	.4
21 SEP	47	160	40	3.1	5.6	240	390	150	.3
13	39	170	44	3.4	5.2	170	400	150	.3
		SOLIDS.	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
	DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	\$102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
NOV . 1		0000					223	100	
16 JAN • 1	978	1110	1040	1.51	112	.06	200	30	
24	19	1060	1040	1.44	85.9	.53	190	0	
21 SEP	16	1060	1040	1.44	169	.16	190	0	
13	19	1090	1023	1.48	162	.50	210		

HEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 6, STATION IDENTIFICATION 333942114344701, NORTH END DRAIN AT 6TH AVE. NEAR BLYTHE, CALIF.

			SPE-						
			CIFIC				HARD-		
100		STREAM-	CON-			HARD-	NESS.	CALCIUM	
		FLOW.	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
JAN . 1	978								
24	0912	2.2	1180	7.5	13.0	500	280	130	
MAR									
22	0940	7.4	1600	7.3	21.0	550	320	140	Althorage Comment
SEP									
12	1500	9.7	1530	7.5	26.0	490	280	130	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLU0-
		SODIUM.		AD-		41 14-	CIH FATE	RIDE.	RIDE.
	SIUM, DIS-	DIS-		SORP-	SIUM.	LINITY	SULFATE DIS-	DIS-	DIS-
trendition to	SOLVED	SOLVED			DIS-	(MG/L	SOLVED	SOLVED	SOLVED
			CORTIN	TION			(MG/L	(MG/L	(MG/L
DATE	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	AS 504)	AS CL)	AS F)
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 304)	AS CLI	A5 F1
JAN , 1		1 420 1	40						
24	42	150	39	2.9	5.7	210	410	140	•3
MAR	and the state of	and the second	A LONG		4.0				
22	49	160	38	3.0	6.3	230	410	140	.5
SEP					100				
12	40	150	40	3.0	6.0	210	520	130	.3
		SOLIDS,	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
	DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PFR	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY	AS N)	AS B)	AS FE)	
JAN . 1	978		48						
24	13	1050	1020	1.43	6.24	.13	190	20	
MAR	•	.030				450			
22	15	1090	1110	1.48	21.8	12	190	530	
SEP									
12	16	1050	1103	1.43	27.5	.32	210		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 7, STATION IDENTIFICATION 333942114353601, WEST SIDE DRAIN AT 6TH AVE. NEAR BLYTHE, CALIF.

			cDe						
			SPE- CIFIC						
		STREAM-	CON-			HARD-	HARD-	CALCIUM	
		FLOW,	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
	TIME	TANEOUS	(MICRO-	rn.	ATURE	AS	(MG/L	(MG/L	
DATE	1.1.1	(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
DATE		(Cr3/	1411037	(01113)	TOEG CI	CACOST	CACOSI	AS CAT	
JAN . 1	978								
24	0930	4.3	1850	7.6	16.0	570	310	140	
MAR									
22	0920	6.4	1200	7.8	18.5	350	220	88	
SEP									
12	1530	9.0	1800	7.6	28.0	500	260	120	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLUO-
	SIUM.	SODIUM.		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
	070								
JAN . 1								100	-
24	53	210	44	3.8	4.8	260	500	180	.3
MAR	22	110		2 .			200	00	
22	32	110	40	2.6	5.5	130	290	89	•4
SEP									
12	49	220	49	4.3	4.8	240	480	170	.3
				4					
		COL *DS	SOLIDS.			NITRO-			
	C+1 *C+	SOLIDS,		COL TOC	501 *05				
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS,	GEN.		IRON.	
	DIS-	AT 180	CONSTI-	DIS-	DIS-	KON+20N	HORON.		
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
JAN . 1	978								
24	18	1300	1260	1.77	15.1	.08	250	10	
MAR	•								
22	8.0	714	808	.97	12.3	24	140	240	
SEP				•		-		- 17	
12	23	1250	1188	1.70	30.4	.26	260		
	7.7								

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 9, STATION IDENTIFICATION 333755114372301, WEST SIDE DRAIN AT 10TH AND DEFRAIN AVE., BLYTHE, CALIF.

		STREAM-	SPE- CIFIC CON-			HARD-	HARD- NESS+	CALCIUM	
		FLOW.	DUCT-	Рн	TEMPER-	NESS	NONCAR-	DIS-	
	TIME	TANEOUS	(MICRO-	rn .	ATURE	(MG/L	BONATE (MG/L	SOLVED (MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV , 1	977								
16	0945		2000	7.3	18.0	630	360	160	
JAN . 1	7		2000		10.0	030	300	100	
24 MAR	1040	18	1975	7.6	15.0	640	370	160	
22	0720	28	2000	7.3	20.3	640	360	150	
13	0715	31	1950	7.1	23.0	580	320	150	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLU0-
	SIUM.	SODIUM,		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV . 1									
16 JAN , 1	978	220	43	3.8	5.9	270	530	190	.,
24 MAR	58	210	41	3.6	5.1	270	540	200	.4
22	65	210	41	3.6	5.8	280	530	190	.3
13	51	210	44	3.8	5.2	260	530	180	.3
		co: -==	501 *05			W-700			
		SOLIDS.			501 -05	NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.		700N	
	DIS-	DEG. C	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	(MG/L	DIS-	DIS-		SOLVED	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	(TONS PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
NOV . 1	977								
16	8.8	1410	1330	1.92		.03	260	30	
JAN . 1	978								
24	21	1380	1360	1.88	67.1	.29	250	0	
MAR									
SEP.	18	1380	1340	1.88	104	.39		30	
13	20	1350	1163	1.84	113	.30	290		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 11, STATION IDENTIFICATION 333940114370801, UPPER WEST SIDE DRAIN AT 6TH AVE. NEAR BLYTHE, CALIF.

			SPE-						
			CIFIC		No.		HARD-		
		STREAM-	CON-			HARD-	NESS.	CALCIUM	
E 10		FLOW.	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
DATE	11.15	(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
DATE		(Cr3)	MINUSI	TONITION	TOES CI	CACOST	CACOS	AS CAT	
NOV , 1	977								
16	0800	4.5	2150	7.1	17.5	730	410	180	
JAN . 1									
24	0945	4.3	2100	7.6	15.0	700	380	170	
MAR					.,,,,				
22	0905	7.0	2050	7.3	21.0	730	410	170	
SEP	• • • •		20.70						
12	1600	4.7	2200	7.4	28.0	680	380	170	
			2200		2000				
	2002	-							
	MAGNE-	2000		SODIUM	POTAS-		12.00	CHLO-	FLU0-
	SIUM,	SODIUM,		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS SO4)	AS CL)	AS F)
NOV , 1	077			19					
16	68	230	40	3.7	6.9	320	590	190	.2
JAN ,]		230	40	3.1	0.9	320	370	190	• -
		230	4.3	3.8	5.9	320	590	210	.5
24 MAR	67	230	41	3.8	5.9	320	590	510	• 5
	70	220		2 -		210	610	200	.5
22	73	230	41	3.7	6.4	310	610	200	.5
SEP		224	4.5	2.0		200	590	200	.4
12	62	230	42	3.A	6.0	300	240	200	
		SOLIDS,	SOLIDS,			NITRO-			4.5.00
	SILICA.	RESIDUE	SUM OF	SOLIDS,	SOLIDS.	GEN.			
	DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY	AS N)	AS B)	AS FE)	
NOV .	1077								
				2 1 -			201		
16	11	1590	1470	2.16	19.5	.17	290	100	
JAN .				_					
24	23	1540	1490	2.09	17.9	.43	290	50	
MAR									
22	19	1510	1550	2.05	28.5	13	290	800	
SEP							25-		
12	23	1550	1439	2.11	19.7	• 29	320		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 12, STATION IDENTIFICATION 333426114355801, LOVEKIN DRAIN AT 18TH NEAR BLYTHE, CALIF.

			STREAM- FLOW: INSTAN-	SPE- CIFIC CON- DUCT- ANCE	PH	TEMPER-	HARD- NESS (MG/L	HARD- NESS. NONCAR- BONATE	CALCIUM DIS- SOLVED	
	DATE	TIME	(CFS)	(MICRO- MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
	DAIL		(Cr3)	1411037	(014113)	1026 67	CACOST	сдось.	no on,	
	NOV . 1	977								
	16	1445	10	2000	7.2	25.5	540	240	140	
	JAN , 1						510	200	140	
	24 MAR	1250	9.1	2000	7.5	55.0	510	200	140	
	21	1405	11	2100	7.5	28.0	560	240	140	
	SEP	1403		2100		20.0	500	40.00		
	13	0945	11	2000	7.3	24.0	520	270	140	
		MAGNE-			SODIUM	POTAS-		4	CHLO-	FLU0-
		SIUM,	SOD IUM.		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE.
		DIS-	DIS-		SORP-	nts-	LINITY	DIS-	DIS-	nis-
		SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
1		(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
1	DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
	NOV .	077								
	NOV , 1	45	250	50	4.7	7.0	300	410	240	.2
	JAN , 1		230	30	7.	7.0	300			
	24	40	240	50	4.6	7.0	310	360	270	.5
	MAR									
	21	51	250	49	4.6	6.8	320	440	240	.4
	SEP			- 14	300					
	13	41	230	49	4.4	5.6	250	410	240	•3
			SOLIDS.	SOLIDS.			NITRO-			
		SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
		DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON,	
		SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
		(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
		AS			PER	PER	(MG/L	(UG/L	(UG/L	
	DATE	5102)	SOLVED (MG/L)	SOLVED (MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
	DATE	51027	(MG/L)	(MG/L/	AC-P 17	UATT	M3 IV	AS DI	M3 LET	
	NOV . 1	977								
	16	11	1330	1280	1.81	36.6	.03	320	70	
	JAN . 1							18		
	24	26	1300	1270	1.77	31.9	.23	350	10	
	MAR							334		
	SEP SEP	20	1330	1340	1.81	39.5	.29	330	30	
	13	22	1310	1242	1.78	38.9	1.5	310		
	13	26	1310	1242	1.70	30.7		310		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 13, STATION IDENTIFICATION 333241114381901, CENTRAL DRAIN AT 22ND AVE. NEAR RIPLEY, CALIF.

			SPE-						
			CIFIC				HARD-		
		STREAM-	CON-			HARD-	NESS.	CALCIUM	
		FLOW.	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
			78.75						
NOV .	1977								
16	. 1550	4.4	1900	7.4	20.0	610	340	160	
JAN .	1978								
24	. 1415		1980	7.9	11.0	610	360	160	
MAR									
21	. 1210	6.5	2000	8.1	23.0	610	340	160	
SEP									
13	. 1015	12	1900	7.1	23.0	600	330	160	
	MACHE			CODILIN	00746			CHIO	E: 110-
	MAGNE-	CODTIN		SODIUM	POTAS-		CIN 547-	CHLO-	FLU0-
	SIUM,	SODIUM.		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	nis-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
10022	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV .	1077								
16		200	41	3.5	6.2	270	480	180	.2
	1978	200	41	3.7	0.2	210	400	100	••
24		220	43	3.9	7.9	250	530	210	.5
MAR	• 32	220	73	3.9	1.07	230	330	-10	• •
21	. 52	210	42	3.7	8.5	270	500	180	.4
SEP	• 32	210	72	3.,	0.3	2.0	300		3.5
13	. 48	190	41	3.4	5.9	270	500	180	.3
	+					- 7 ·			
		SOLIDS.	SOLIDS,			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS,	GEN.			
	nIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY	AS N)	AS B)	AS FE)	
NOV	1077								
	1977	1250	1050				244		
16	197A 5.7	1350	1250	1.84	16.0	.18	260	60	
24	• 15	1200	1250	1 00			274		
MAR	. 13	1390	1350	1.89	••	.17	270	10	
21	. 18	1330	1200	1 01	22.2		254		
SEP	• 10	1330	1290	1.81	23.3	•55	250	50	
13	. 20	1320	1248	1.80	42.8	1.6	260		
	- 20	1320	15-0	1.50	45.0	1.0	200		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 14, STATION IDENTIFICATION 333443114412601, RANNELLS DRAIN AT KEIM NEAR BLYTHE, CALIF.

		STREAM- FLOW+ INSTAN-	SPE- CIFIC CON- DUCT- ANCE	РН	TEMPER-	HARD- NESS (MG/L	HARD- NESS. NONCAR- BONATE	CALCIUM DIS- SOLVED	
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV . 1	977								
16	1340	16	2350	7.4	23.0	570	340	150	
JAN , 1					20.0				
24	1225	13	2100	7.9	18.5	420	170	100	
MAR									
21	1245	20	5000	7.6	26.0	440	210	100	
13	1115	18	1800	7.2	25.0	390	180	93	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLU0-
	SIUM.	SODIUM,		AD-	SIUM.	ALKA-	SULFATE	RIDE,	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV . 1	977								
16	48	320	54	5.A	10	230	640	240	.4
JAN .]						9.E.T.			
24 MAR	42	340	63	7.2	6.0	250	540	280	1.4
21 SEP	46	270	57	5.6	6.9	230	470	210	1.1
13	39	260	59	5.7	5.8	210	450	190	.8
		SOLIDS,	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
	DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	DIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PFR	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY	AS N)	AS B)	AS FE)	
NOV . 1	977								
16	4.6	1620	1550	2.20	70.4	.12	490	40	
JAN , 1									
24	21	1460	1490	1.99	51.2	.49	450	10	
MAR									
SEP SEP	16	1290	1260	1.75	69.7	.19	380	60	
13	16	1200	1165	1.63	58.3	.17	340		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 16, STATION IDENTIFICATION 333025114421401, RANNELLS DRAIN AT 28TH AVE. NEAR RIPLEY, CALIF.

					1978 WA	TER YEAR				
			STREAM- FLOW+	SPE- CIFIC CON- DUCT-			HARD-	HARD- NESS+ NONCAR-	CALCIUM DIS-	
	DATE	TIME	INSTAN- TANEOUS (CFS)	ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	(MG/L AS CACO3)	BONATE (MG/L CACO3)	SOLVED (MG/L AS CA)	
	ov , 1							244	120	
J	17 AN , 1		54	2800	7.3	19.0	440	200	120	
	24 AR	1445	39	3000	7.7	20.0	360	130	95	
	21 EP	1035	60	2700	8.1	24.0	410	180	110	
	13	1050	70	2800	7.4	24.5	410	170	110	
		MACNE			CODIUM	00745			CHI C	L EL 110-
		MAGNE-	CODTIN		SODIUM	POTAS-	A1 1/A	CIN FATE	CHLO-	FLU0-
		SIUM,	SODIUM.		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.
		DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
		SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	DATE	(MG/L AS MG)	(MG/L AS NA)	SOD IUM PERCENT	RATIO	(MG/L AS K)	CACO3)	(MG/L AS SO4)	AS CL)	(MG/L AS F)
N	10V , 1	977								
	17	978	470	69	9.8	8.5	240	620	370	1.0
M	24	31	510	75	12	8.5	240	660	410	2.3
	21 EP	32	450	70	9.7	8.5	230	600	370	2.1
	13	33	460	70	9.9	7.6	240	650	380	2.1
			501 105	SOLIDS.			NITTOO			
		SILICA.	SOLIDS. RESIDUE	SUM OF	COL 105	501 *05	NITRO-			
					SOLIDS,	SOLIDS.	GEN.		-004	
		DIS-	AT 180	CONSTI-	DIS-	DIS-	NOS+NO3	BORON,	IRON.	
		-	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
		(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	DATE	SI02)	SOLVED (MG/L)	SOLVED (MG/L)	PER AC-FT)	PER DAY)	(MG/L AS N)	(UG/L	(UG/L AS FE)	
٨	10V • 1	977								
	17 JAN , 1	978	1820	1780	2.48	265	.15	800	50	
	24	26	1920	1890	2.61	202	.66	920	0	
	21	19	1740	1730	2.37	282	.55	780	40	
	13	22	1810	1787	2.46	342	.65	830		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 21, STATION IDENTIFICATION 332620114395001, LOWER BORROW PIT DRAIN AT C CANAL, PALO VERDE, CALIF.

			SPE-						
			CIFIC				HARD-		
		STREAM-	CON-			HARD-	NESS.	CALCIUM	
	1.00	FLOW.	DUCT-			NESS	NONCAR-	DIS-	
	TIME	INSTAN-	ANCE (MICRO-	PH	TEMPER-	(MG/L	BONATE (MG/L	SOLVED	
DATE	11116	(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV 1									
NOV • 1	1030		1650	7.2	18.0	540	310	140	
JAN , 1			1630	1.5	10.0	340	310	140	
25	0830	14	1925	7.5	15.0	630	350	170	
MAR									
21	0750	27	1880	7.5	20.5	600	330	160	
SEP 14	1045	28	1900	7.3	24.0	550	320	140	
	10.3		1,00	7.5	24.0	550	Jeu	140	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLU0-
	SIUM,	SODIUM.		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS- SOLVED		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	(MG/L	(MG/L	SODIUM	RATIO	SOL VED	(MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT	RAILU	AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV . 1		100							
18 JAN , 1	978 46	180	42	3.4	6.6	230	400	160	•2
25	51	190	39	3.3	5.2	290	450	230	.2
MAR									
SEP SEP	48	190	41	3.4	5.8	270	440	190	.3
14	48	210	45	3.9	5.0	230	450	200	.2
		SOLIDS.	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
	DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOL VED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOL VED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS NI	AS B)	AS FE)	
NOV , 1	977								
18	5.4	1130	1080	1.54		.08	190	100	
JAN . 1	97A					42.4			
25 MAR	21	1320	1290	1.80	49.9	•41	500	10	
21	17	1260	1210	1.71	94.9	.15	200	50	
SEP	# 1 A								
14	21	1290	1192	1.75	97.5	.42	220		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 22, STATION IDENTIFICATION 332906114402101, BROWNS DRAIN AT STEPHENSON AVE., PALO VERDE, CALIF.

			SPE-						
		STREAM-	CIFIC CON-			HARD-	HARD-	CALCIUM	
		FLOW.	DUCT-	РН	TEMPER-	NESS (MG/L	NONCAR- BONATE	DIS- SOLVED	
DATE	TIME	TANEOUS (CFS)	(MICRO- MHOS)	(UNITS)	(DEG C)	CACO3)	(MG/L CACO3)	(MG/L AS CA)	
UAIL		10131	MNOST	(ONITS)	TOEG C7	CACOST	CACOSI	AS CAT	
NOV . 1									
17 JAN • 1	1130 978	4.6	2250	7.2	19.5	610	320	150	
24 MAR	1540	3.0	2140	7.6	18.5	610	320	150	
SEP SEP	1100	5.2	2390	7.8	23.0	640	350	150	
13	1345	5.7	2250	7.3	26.0	610	330	150	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLUO-
	SIUM,	SODIUM.		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	nIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
NOV . 1									
17 JAN • 1	58 978	300	51	5.3	5.9	300	550	260	.1
24 MAR	58	290	50	5.1	5.6	300	540	270	•4
SEP SEP	65	300	50	5.2	5.9	300	600	250	•4
13	56	290	51	5.1	4.8	280	570	260	.4
		SOLINS.	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS,	SOLIDS,	GEN,			
	DIS-	AT 180	CONSTI-		DIS-	N02+N03	BORON.	IRON,	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	ITONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
NOV . 1	977								
17 JAN •]	978	1580	1510	2.15	19.6	.03	320	40	
24 MAR	23	1550	1520	2.11	12.6	.28	310	50	
SEP SEP	19	1520	1570	2.07	21.3	.19	310	30	
13	55	1550	1499	2.11	23.9	.30	300		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 23, STATION IDENTIFICATION 33270114411501, SOUTH END DRAIN AT KEIM BLVD. NEAR PALO VERDE, CALIF.

	TIME	STREAM- FLOW+ INSTAN- TANFOUS	SPE- CIFIC CON- DUCT- ANCE (MICRO-	РН	TEMPER-	HARD- NESS (MG/L AS	HARD- NESS+ NONCAR- BONATE (MG/L	CALCIUM DIS- SOLVED (MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV . 1	977								
17	1500	5.9	2200	7.3	20.0	560	260	140	
JAN . 1									
25	0935	4.0	2650	7.2	16.5	560	260	140	
MAR			No. Service						
21	0810	7.0	2225	8.0	21.0	590	290	140	
SEP	1015						070		
14	1015	8.9	5500	7.3	24.0	560	270	140	
	MAGNE-	500 1114		SODIUM	POTAS-		CIU 5.7-	CHLO-	FLU0-
	STUM.	SODIUM.		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE.
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED	CO0 *1114	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
DATE	(MG/L AS MG)	(MG/L AS NA)	SODIUM	RATIO	(MG/L AS K)	AS	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)
DATE	AS MG)	IAN CA	PERCENT		AS NI	CACO3)	A3 3041	AS CLI	AS F/
NOV . 1	977								
17	50	280	52	5.2	5.2	300	510	240	.2
JAN . 1									
25	50	290	53	5.4	4.8	300	500	250	.4
MAR									
21	58	290	51	5.2	5.3	300	530	240	.4
SEP									
14.00	50	300	54	5.5	4.2	290	540	260	.4
	9.00	SOLIDS.	SOLIDS.	10000		NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
	DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
MA THE	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY	AS N)	AS B)	AS FE)	
NOV . 1				2 0-		10	222		
17 JAN , 1	9.5	1510	1410	2.05	24.1	.11	320	50	
25	25	1440	1440	1.96	15.6	4.7	310	10	
MAR		1440	1440	1.70	1,2.0	•47	310	10	
21	18	1450	1460	1.97	27.4	.10	310	40	
SEP		1430	1400	1.71	61.4	•10	310	70	
14	21	1480	1469	2.01	35.6	.62	310		
				1	2240				

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 24, STATION IDENTIFICATION 332734114422801, ESTES DRAIN AT C 03 10 4 CANAL NEAR PALO VERDE, CALIF.

			SPE-						
			CIFIC		***		HARD-		
		STREAM-	CON-			HARD-	NFSS.	CALCIUM	The state of
		FLOW.	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
	TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV . 1	977								
17	1530	3.5	3400	7.9	18.5	330	0	83	
MAR . 1									
21		2.3	2550	7.9	18.0	390	120	100	
SEP									
13	1445	4.0	3600	7.8	26.0	320	0	82	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLUO-
	SIUM,	SODIUM,		AD-	SIUM.	ALKA-	SULFATE	RIDE.	RIDE .
	DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
	SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
	(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(14G/L
DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS S04)	AS CL)	AS F)
NOV . 1									
17	29	630	80	15	6.9	340	820	380	2.0
MAR . 1	978								
21	35	410	69	9.0	9.4	270	660	220	3.6
SEP									
13	28	680	82	17	6.7	340	860	430	6.0
			20000000						
		SOLIDS,	SOLIDS.			NITRO-			
	SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.	2.50	4	
	nIS-	AT 180	CONSTI-	DIS-	DIS-	N05+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	\$102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
NOV . 1									
17 MAR , 1	978	5550	2170	3.02	21.0	.20	1100	120	
21 SEP	14	1640	1620	2.23	10.2	2.0	760	90	
13	21	2340	2297	3.18	25.3	.53	1300		

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 25, STATION IDENTIFICATION 332935114433701,
PALO VERDE DRAIN AT 30TH AVE., PALO VERDE, CALIF.

ж. у.		TALO V	DADD DAGI		AVE., FA	DO VERDE,	O.D		
				1978 WA	TER YEAR				
SX.		STREAM-	SPE- CIFIC CON- DUCT-			HARD- NESS	HARD- NESS+ NONCAR-	CALCIUM DIS-	
DATE	TIME	INSTAN- TANEOUS (CFS)	ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	(MG/L AS CACO3)	BONATE (MG/L CACO3)	SOLVED (MG/L AS CA)	
				(011210)	1020 07	CACOST	Cacosi	AS CA7	
NOV . 1	The state of the s							AMERICAN III	
17 JAN , 1		18	3100	7.4	20.0	400	160	120	
24 MAR	1515	12	1340	7.9	13.5	360	210	91	
SEP SEP	1020	16	1225	8.1	20.0	330	190	80	
13	1300	21	1600	7.8	26.0	350	200	92	
	MAGNE- SIUM, DIS-	SONIUM.		SODIUM AD- SORP-	POTAS- SIUM, DIS-	ALKA- LINITY	SULFATE DIS-	CHLO- RIDE, DIS-	FLUO- RIDE, DIS-
DATE	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	SODIUM PERCENT	RATIO	SOLVED (MG/L AS K)	(MG/L AS CACO3)	SOLVED (MG/L AS SO4)	SOLVED (MG/L AS CL)	SOLVED (MG/L AS F)
NOV . 1	977								
17 JAN , 1	978 978	530	74	12	8.9	240	660	450	1.6
24 MAR	32	150	47	3.4	5.5	150	350	140	•7
SEP SEP	31	130	46	3.1	5.6	140	320	110	•7
13	29	550	57	5.1	5.3	150	400	190	1.3
		SOLIDS.	SOLIDS,			NITRO-			
	SILICA. DIS- SOLVED	AT 180 DEG. C	SUM OF CONSTI- TUENTS.	DIS-	SOLIDS, DIS- SOLVED	GEN+ NO2+NO3 DIS-	BORON+	IRON. DIS-	
DATE	(MG/L AS SIO2)	SOLVED	DIS- SOLVED (MG/L)	PER	PER	SOL VED	SOLVED (UG/L	SOLVED (UG/L	
		(MG/L)	("0/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
NOV . 1									
17 JAN • 1	978	1970	1950	2.68	96.8	.13	930	90	
24 MAR	9.7	894	869	1.22	29.0	.20	550	0	
21 SEP	8.8	790	771	1.07	34.1	.16	190	30	
13	13	1040	1028	1.41	59.0	.27	340		

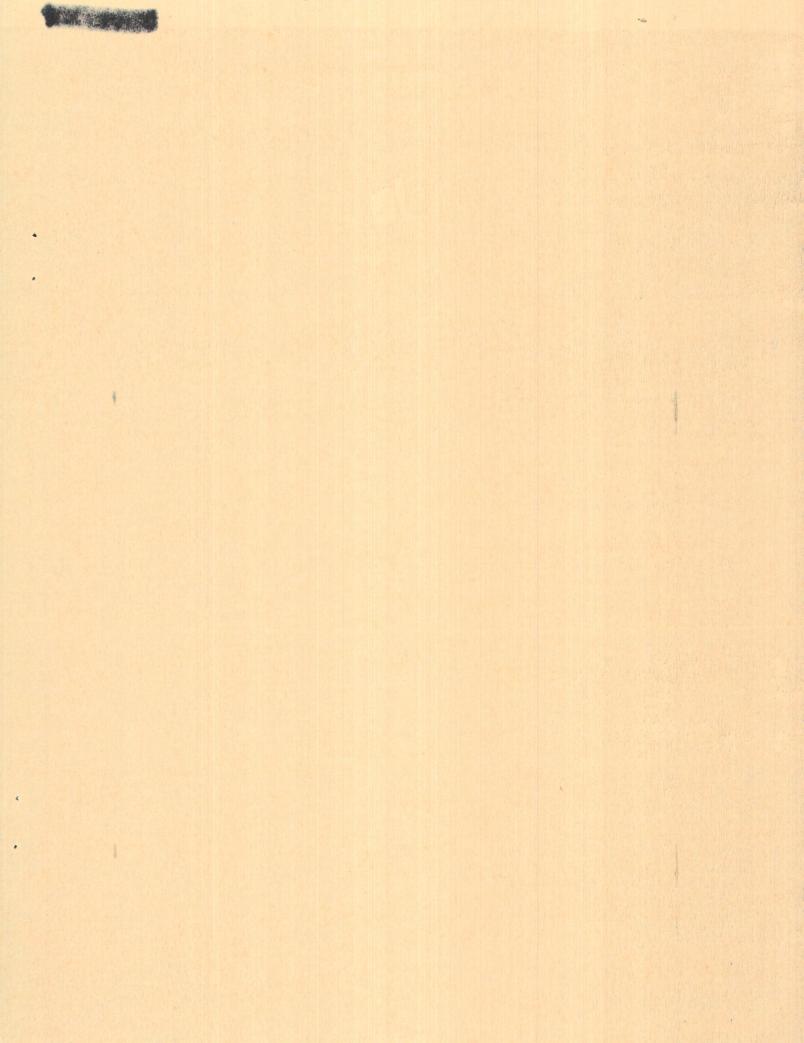
CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 27, STATION IDENTIFICATION 332928114443101, HODGES DRAIN AT 30TH AVE. NEAR PALO VERDE, CALIF.

				SPE-						
				CIFIC				HARD-		
			STREAM-	CON-			HARD-	NESS.	CALCIUM	
			FLOW.	DUCT-			NESS	NONCAR-	DIS-	
			INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
		TIME	TANEOUS	(MICRO-		ATURE	AS	(MG/L	(MG/L	
	DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
	NOV , 1	077								
		0940	2 5	2700	7.0	21.0	450	260	120	
	17		2.5	3700	7.2	21.0	450	260	130	
	JAN . 1							200		
	24 MAR	1500		5000	7.4	18.5	470	290	140	
	21	0905	9.7	2600	7.7	23.0	390	220	110	
	SEP	0703	701	2000		23.0	370	220	110	
	13	1315	7.7	4000	7.5	27.0	440	280	130	
		MAGNE-			SODIUM	POTAS-		47.0	CHLO-	FLU0-
		SIUM,	SODIUM.		AD-	SIUM,	ALKA-	SULFATE	RIDE.	RIDE .
		DIS-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	DIS-
		SOLVED	SOLVED		TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
		(MG/L	(MG/L	SODIUM	RATIO	(MG/L	AS	(MG/L	(MG/L	(MG/L
	DATE	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)	AS F)
	NOV . 1	977								
	17	30	650	75	13	11	190	590	720	1.4
	JAN , 1		0.50	13	13	11	190	250	120	1.7
	24	29	810	79	16	11	180	650	990	4.1
	MAR	24	010	19	10	11	100	650	770	7.1
	21	29	420	69	9.2	8.4	170	510	440	2.3
	SEP									
	13	28	660	76	14	10	160	590	810	4.7
			SOLIDS.	SOLIDS.			NITRO-			
		SILICA.	RESIDUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
								DOBON.	IRON,	
		DIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.		
		SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
		(MG/L	nis-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	2.5	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
	DATE	5102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
	NOV . 1	977								
	17	8.8	2340	2260	3.18	15.8	.30	1200	100	
	JAN .]		2.340	2200	3.10	1300	•30	12.00	100	
	24	30	2760	2780	3.75		.53	1500	0	
	MAR	30	2100	2100	3,15		• 33	.500	U	
	21	17	1610	1640	2.19	42.2	.82	720	40	
-	SEP	1,	1010	1040	2019	46.02	• 65%	,,,	7.0	
	13	26	2300	2329	3,13	47.8	.63	1300		
	10.00									

CHEMICAL ANALYSES OF WATER SAMPLES FROM THE FORT MOJAVE, PALO VERDE VALLEY, AND BARD VALLEY AREAS

PALO VERDE VALLEY SITE 29, STATION IDENTIFICATION 332436114481801, HODGES DRAIN BELOW SOUTH HODGES DRAIN, PALO VERDE, CALIF.


î			SPE-						
			CIFIC				HARD-		
		STREAM-	CON-			HARD-	NESS.	CALCIUM	
- 0		FLOW.	DUCT-			NESS	NONCAR-	DIS-	
		INSTAN-	ANCE	PH	TEMPER-	(MG/L	BONATE	SOLVED	
	TIME	TANEOUS	(MICRO-		ATURE	AS	MG/L	(MG/L	
DATE		(CFS)	MHOS)	(UNITS)	(DEG C)	CACO3)	CACO3)	AS CA)	
NOV , 19	977								
17	1345	12	3500	7.4	19.0	470	280	130	
MAR . 1	978								
SEP SEP	1620	16	3800	8.0	23.0	440	240	120	
14	0855	17	4900	7.4	24.0	490	260	140	
	MAGNE-			SODIUM	POTAS-			CHLO-	FLUO-
	SIUM.	SON TUM.		AD-	SIUM.	ALKA-	SULFATE	RIDE,	RIDE.
	015-	DIS-		SORP-	DIS-	LINITY	DIS-	DIS-	nIS-
	SOLVED	SOLVED	COSTUM	TION	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED
DATE	(MG/L	(MG/L AS NA)	SODIUM	RATIO	(MG/L	CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L
UATE	AS MG)	AS NAI	PERCENT		AS K)	CACOST	A5 504)	AS CLI	A5 F1
NOV . 1									
17	36	560	72	11	10	200	660	610	2.0
MAR . 1			1 1 1 1 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>						
20	35	660	76	14	10	210	730	700	3.0
SEP	200			all the same					
14	35	850	78	17	12	230	790	980	5.0
		SOLIDS.	SOLIDS.			NITRO-			
	SILICA.	RESTOUE	SUM OF	SOLIDS.	SOLIDS.	GEN.			
	nIS-	AT 180	CONSTI-	DIS-	DIS-	N02+N03	BORON.	IRON.	
	SOLVED	DEG. C	TUENTS.	SOLVED	SOLVED	DIS-	nIS-	DIS-	
	(MG/L	DIS-	DIS-	(TONS	(TONS	SOLVED	SOLVED	SOLVED	
	AS	SOLVED	SOLVED	PER	PER	(MG/L	(UG/L	(UG/L	
DATE	\$102)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS B)	AS FE)	
NOV . 1									
17	15	5550	2150	3.02	71.9	.63	1200	30	
MAR . 1									
20	18	2270	2400	3.09	101	.51	1300	30	
SEP									
14	26	3020	2951	4.11	139	.75	1900	••	COLUMN 14

SUPPLEMENTAL DATA
FIELD MEASUREMENTS OF SPECIFIC CONDUCTANCE

Site	Date	Specific conductance (micromhos)
Palo Verde Valley site 5	11-16-77	1,680
East Side at 22nd St.	1-24-78	1,650
	3-21-78	1,700
	9-13-78	1,800
Palo Verde Valley site 8	11-16-77	2,000
West Side at 8th St.	1-24-78	1,880
	3-22-78	1,880
	9-12-78	1,800
Palo Verde Valley site 10	11-16-77	2,050
West Side at 14th St.	1-24-78	2,000
	3-21-78	1,700
	9-13-78	2,100
Palo Verde Valley site 15	11-17-77	1,750
Rannells at 22nd St.	1-24-78	3,000
	3-21-78	3,000
	9-13-78	2,800
Palo Verde Valley site 17	11-18-77	1,100
F Spill	1-24-78	1,100
	3-21-78	1,050
	9-14-78	1,100
Palo Verde Valley site 18	11-18-77	1,100
D-10-11-2 Spill	1-25-78	1,150
	3-21-78	1,150
	9-14-78	1,100
Palo Verde Valley site 19	11-18-77	1,120
D-10-11-5 Spill	1-25-78	1,200
	3-21-78	1,180
	9-14-78	1,100
Palo Verde Valley site 20	11-17-77	2,100
Lower Borrow Pit at	1-25-78	1,250
Arrowhead	3-21-78	2,190
	9-13-78	2,080
Palo Verde Valley site 26	11-17-77	3,500
Palo Verde at 35th St.	1-25-78	3,800
	3-21-78	1,700
	9-14-78	3,200

SUPPLEMENTAL DATA
FIELD MEASUREMENTS OF SPECIFIC CONDUCTANCE

Site	Date	Specific conductance (micromhos)
Palo Verde Valley site 28	11-17-77	3,700
	1-25-78	6,000
	3-20-78	3,800
	9-14-78	3,600
Palo Verde Valley site 30	11-17-77	1,500
CO-3 at Palo Verde	1-25-78	1,250
Irrigation District gage	3-20-78	1,550
	9-14-78	1,700
Palo Verde Valley site 31	11-18-77	1,150
D-23-1 Spill	1-25-78	1,250
	3-21-78	1,200
	9-14-78	1,100
Palo Verde Valley site 32	11-18-77	1,100
D-23-1 at Taylor's ferry	1-25-78	1,125
	3-21-78	1,080
	9-14-78	1,100
Palo Verde Valley site 33	11-18-77	1,100
C Spill near county line	1-25-78	1,125
	3-21-78	1,090
	9-14-78	1,100
Bard Valley site 3		
Reservation Main Drain		Totalis III
at Avenue A		++
	9-15-78	1,450

