

c. COSATI Field/Group

18. Availability Statement

No restriction on distribution

19. Security Class (This Report)

UNCLASSIFIED

20. Security Class (This Page)
UNCLASSIFIED

21. No. of Pages

22. Price

DELINEATION AND HYDROLOGIC EFFECTS OF A GASOLINE LEAK AT
STOVEPIPE WELLS HOTEL, DEATH VALLEY NATIONAL MONUMENT,
CALIFORNIA

By ANTHONY BUONO and ELAINE M. PACKARD

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 82-45

Prepared in cooperation with the
NATIONAL PARK SERVICE

2870 Cottage Way, Rood W-2235 Satramento, Calif. 95825

7218-21

Baseline layer, based on test drilling, May 1980------

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

bordion At the one of the secoling layer was medicularized by excelled 22 2847 daughtern

adultive 150 feet regranient, and 250 read distant from the source perpendicular to the

derpositionis to the Hipedison of ground-water sevenges and the primary difference of ground-water sevenges and the primary defeat on parameterizes I alies demarks out from

A Piltratica, Movement, Principalion

District Chief U.S. Geological Survey 2800 Cottage Way, Room W-2235 Sacramento, Calif. 95825

CONTENTS

1. : - 1. : 1. : 1. : 1. : 1. : 1. : 1.	Dago						
Abstract	Page 1						
Introduction	2						
Geography and climate	2						
Purpose and scope							
Approach	2 5						
Previous investigations	5						
Well-numbering system	5						
Acknowledgments	5						
Ground-water hydrology	6						
Determining the extent of gasoline contamination	12						
Movement of a gasoline leak in a porous medium	12						
Locating exploratory drilling sites	14						
Gasoline losses from service station records							
Exploratory drilling and subsurface soil sampling	17						
Hydrologic effects of the gasoline leak	20						
Summary and conclusions	22 23						
Tank (Aposes and and Allerine the Position is a line west to the							
creating the SANALLS (San Poster of the 1705 of the respondenting) #1/(al							
(19190 Teu broose FIGURES (3903 190 918							
You the spinder illished a secretary by desiring the his							
	Sig) Shi						
Province 1 2 20 Lat. or aug. 1 and 1 and 2 and 2 and 2 and 3	Page						
Figures 1-3. Maps showing:							
1. Location of study area in Death Valley National	3						
Monument, Calif	4						
3. Water-table configurations, April 1977 and							
June 1980	9						
4. Hydrographs of selected wells in the Stovepipe Wells Hotel							
area, 1968, 1973-80	10						
5. Map showing the estimated horizontal extent of the	58013						
gasoline layer, based on test drilling, May 1980	16						
6. Diagrammatic cross section of trace A-A' through							
the gasoline contaminated area	21						
States and Genada, formerly called mean sea level. NGVD of 1925 in	bette						
생길 마셨다면 살아가 있는 것이 하는 것이 되었다면 그렇게 되는 것이 되었다면 살아 있다.							
TABLES							
	Dane						
m.11. 1 11 1 1 1 11 1 1 11 1	Page						
Table 1. Water-level data, well data, and dissolved-solids							
concentrations in the Stovepipe Wells Hotel area							
2. Gasoline concentrations in soil and water samples,	- 18						
Stovepipe Wells Hotel area	10						
현장 중인 경기 가는 사람들이 되지 않아야 하면 사람들이 되었다.							

CONVERSION FACTORS

For those readers who may prefer metric (SI) units rather than inch-pound units, the conversion factors for the terms used in this report are listed below:

Multiply	Ву	To obtain
acres	0.4047	ha (hectares)
ft (feet)	0.3048	m (meters)
ft ² /d (feet squared per day)	0.0929	m ² /d (meters squared per day)
ft3 (cubic feet)	0.0283	m ^{3*} (cubic meters)
gal (gallons)	3.785	L (liters)
gal/d (gallons per day)	3.785	L/d (liters per day)
gal/min (gallons per minute)	0.06309	L/s (liters per second)
'(gal/min)/ft (gallons per minute per foot)	0.2070	(L/s)/m (liters per second per meter)
inches	25.4	mm (millimeters)
mi (miles)	1.609	km (kilometers)
mi ² (square miles)	2.590	km² (square kilometers)

Degrees Fahrenheit are converted to degrees Celsius by using the formula: Temp °C = (temp °F - 32)/1.8

Additional abbreviations used: " The base of the second of

1sd - land surface datum

mg/L - milligrams per liter at allew besteles to adjactorized.

µg/L - micrograms per liter

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in this report.

Table I. Mater-Level data, well data, and dissolved-golids

Map showing the estimated horizontal extent of the

DELINEATION AND HYDROLOGIC EFFECTS OF A GASOLINE LEAK AT STOVEPIPE WELLS HOTEL, DEATH VALLEY NATIONAL MONUMENT, CALIFORNIA

By Anthony Buono and Elaine M. Packard vigous rates view a month of the contract of the vigous and business of the contract of the co

ABSTRACT

gasoline toward those seliminal reoperates the area's only water supply.

Ground water is the only local source of water available to the Stovepipe Wells Hotel facilities of the Death Valley National Monument, California. A leak in a service station storage tank, probably totaling more than 19,000 gallons, caused the formation of a gasoline layer overlying the water table, creating the potential for contamination of the water supply.

For the purpose of site selection for exploratory drilling, the horizontal extent of the gasoline layer was mathematically estimated to be 1,300 feet downgradient from the leaky gasoline tank. Exploratory drilling detected the gasoline layer extending between 900 and 1,400 feet downgradient and 50 and 150 feet upgradient from the source. Traces of the soluble components of gasoline were also found in the aquifer 150 feet upgradient and 250 feet distant from the source perpendicular to the direction of ground-water movement.

The gasoline leak is not likely to have an effect on the supply wells located 0.4 mile south of the leak source, which is nearly perpendicular to the direction of ground-water movement and the primary direction of gasoline movement in the area. No effect on phreatophytes 2 miles downgradient from the layer is likely, but the potential effects of gasoline vapors within the unsaturated zone on local xerophytes are not known.

on the potential effects empered number and be delegated what measures as be needed to insuit continues will not be needed to insuit continues will not object ground select measures

Stovepipe Wells Hotel is a National Park Service facility on State Highway 190 in the western part of Death Valley about 200 miles northeast of Los Angeles in southern California (fig. 1). In May 1979 the odor of gasoline was detected in unused well 15S/44E-36Kl (fig. 2) near the Stovepipe Wells Hotel gasoline station. Analysis of a sample collected from the well indicated that a layer of gasoline had accumulated above the water table. The gasoline had leaked from one of the station's two 8,000-gallon storage tanks located about 75 feet south of the well (fig. 2).

The National Park Service requested the U.S. Geological Survey to assess the spreading and the hydrologic effects of the gasoline leak on the ground water and vegetation of the area. Of primary concern were the hotel's supply wells 15S/44E-36Q2 and 16S/44E-1Cl about 0.4 mile south (fig. 2) of the contamination source. A map of the water-table configuration in August 1977 (Lamb and Downing, 1979, p. 7) indicated that a local pumping depression might surround the supply wells. The depression could cause the movement of gasoline toward those wells and jeopardize the area's only water supply.

Geography and Climate

Death Valley is a 140-mile-long northwestward-trending desert basin in the southwestern part of the Great Basin. The valley, bounded on the east by the Amargosa Range and on the west by the Panamint Range, is famous as the site of the lowest point in the United States at 282 feet below sea level (fig. 1).

The climate in Death Valley is arid, with an average annual rainfall of less than 2 inches and an average monthly temperature ranging from 52°F in January to 102°F in July. Measurements have been recorded since 1913 at the National Weather Service Station at Death Valley, Calif., altitude 194 feet below sea level, about 18 miles southeast of the study area (fig. 1). The highest temperature recorded at this station was 134°F on July 10, 1913.

Purpose and Scope To Holder Dearth Watering of Purpose and Scope

The purposes of the investigation were to delineate the horizontal extent of the gasoline layer overlying the water table, to assess the effects of the gasoline layer on the ground water and vegetation of the area, with emphasis on the potential effects on water supply, and to determine what measures may be needed to insure continued safe use of local ground water.

The area of investigation was less than 1 mi² surrounding the Stovepipe Wells Hotel. The study involved the evaluation of ground-water levels and water-quality information, and exploratory drilling for the collection and analysis of soil samples for gasoline content above and below the water table in the vicinity of the gasoline leak.

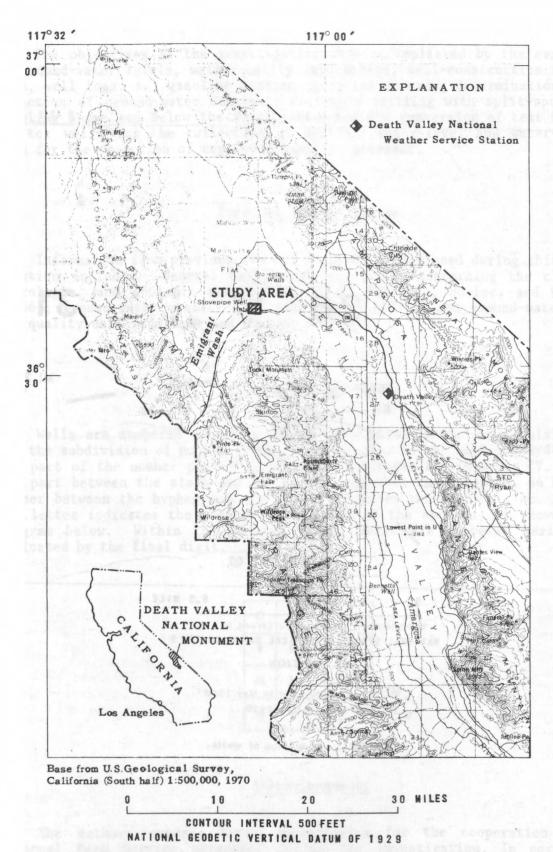


FIGURE 1 .-- Location of study area in Death Valley National Monument, California.

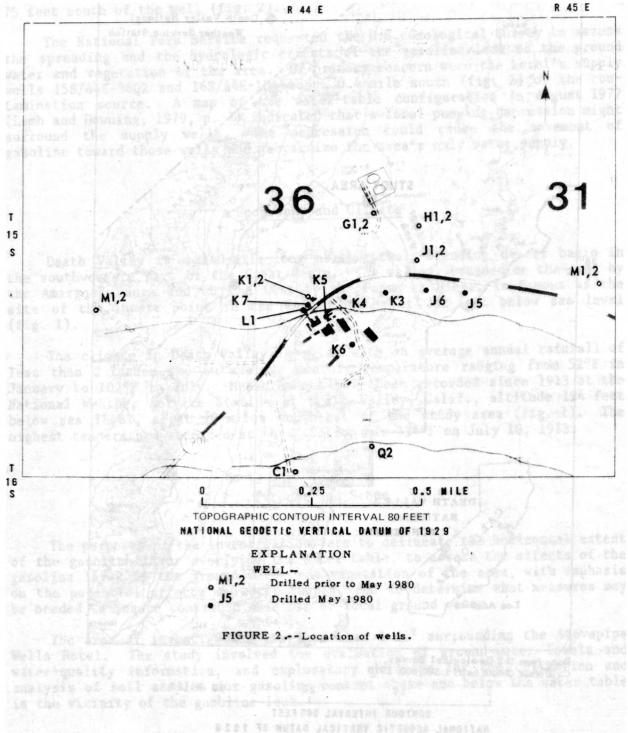


FIGURE 1 .- - Location of Stady area to Death Valley National Moscowat,

Introduction

Approach

The objectives of the investigation were accomplished by the evaluation of ground-water levels, water-quality information, well-construction information, well logs, and gasoline station operation records; determination of the direction of ground-water movement; test-hole drilling with split-spoon soil sampling above and below the water table; and the conversion of test holes to monitor wells for the collection of periodic water-level and water-quality data for the detection of continued gasoline movement.

Previous Investigations

Information from previous studies in Death Valley used during this investigation included: General background information concerning the climatic, hydrologic, and geologic setting from Hunt, Robinson, Bowles, and Washburn (1966); ground-water quality data from Miller (1977); and ground-water level and quality data from Lamb and Downing (1979).

Well-Numbering System

Wells are numbered according to their location in the rectangular system for the subdivision of public lands. For example, in the number 15S/44E-36Kl, the part of the number preceding the slash indicates the township (T. 15 S.), the part between the slash and the hyphen indicates the range (R. 44 E.), the number between the hyphen and the letter indicates the section (sec. 36), and the letter indicates the 40-acre subdivision of the section, as shown in the diagram below. Within the 40-acre tract, wells are numbered serially as indicated by the final digit.

indicated by the westward shift of contough, and no change in the direction

AA\261 Line of smil 155/44	0	•	DANS	1 20	
Apply wells, which s graphs indicate that, seasonal fluctuatio		ya F s	G	н	1997 3.6 west) -2.5 wiles united in water lev
d 1977 ond 1980, an	M	211	K	J	
inticeable effect	N	P	Q	R	ronal deckiněr Together. Milasal from the supply w

Acknowledgments

The authors express their appreciation for the cooperation of the National Park Service personnel during the investigation, in particular, Gerard S. Witucki of the Western Regional office; and George Von der Lippe, Bob Quesenberry, and Richard S. Rayner of Death Valley National Monument.

The local water supply is obtained from two wells, 15S/44E-36Q2 and 16S/44E-1Cl (fig. 2), that penetrate the unconfined aquifer composed of unconsolidated gravelly sandy silt. Aquifer transmissivity was estimated to be 3,400 ft²/d based on the Jacob and Lohman straight line solution for well recovery data (Lohman, 1972, p. 26-27) from a specific capacity test run by the Park Service on well 1Cl in 1973. The specific capacity of the well is about 7 (gal/min)/ft of drawdown in the well.

Each supply well produces about 25,000 gal/d during peak seasonal use at a pumping rate of 65 gal/min in well 15S/44E-36Q2 and 23 gal/min in well 16S/44E-1Cl. Well 36Q2 supplies most of the area's nonpotable uses, and well 1Cl supplies all potable and some nonpotable uses after reverse-osmosis treatment at the well site. The wells penetrate deeper in the aquifer than other local wells and produce the best quality water in the area, although the dissolved-solids concentration of about 3,000 mg/L (table 1) is six times the recommended limit for drinking water (U.S. Environmental Protection Agency, 1976, p. 205-206). Table 1 shows water-level, well-construction, and dissolved-solids information for all local wells.

According to a 1977 water-table map (Lamb and Downing, 1979, p. 7) the direction of ground-water movement in the study area was southward toward the local supply wells. This direction of ground-water movement was the cause of great concern over the possible impact of the gasoline leak on the supply wells 0.4 mile to the south. During the present investigation, altitudes of well-measuring points were more accurately determined by use of a surveyor's leveling instrument. Using this information, new water-table maps were drawn, and a better understanding of the direction of local ground-water movement was obtained.

Figure 3 shows a comparison of the water-table configurations for April 1977 and June 1980. The map indicates that ground-water movement is eastward, nearly perpendicular to the alinement of the leak site and the supply wells. The figure also shows a general decline in water levels of about 0.25 foot, indicated by the westward shift of contours, and no change in the direction and pattern of ground-water movement. Hydrographs of several wells (fig. 4) show a declining trend over the period of record along with seasonal fluctuations in water levels. Included is a hydrograph of well 15S/44E-34D1 (off fig. 2 to west), 2.5 miles northwest of the supply wells, which also shows a declining trend in water levels. The hydrographs indicate that part of the decline observed in figure 3 resulted from seasonal fluctuations, because measurements were made in different months in 1977 and 1980, and part from regional decline. Together these data indicate that the present rate of withdrawal from the supply wells has had no noticeable effect on water levels or patterns of ground-water movement in the area.

The authors express their appreciation for the croperation of the

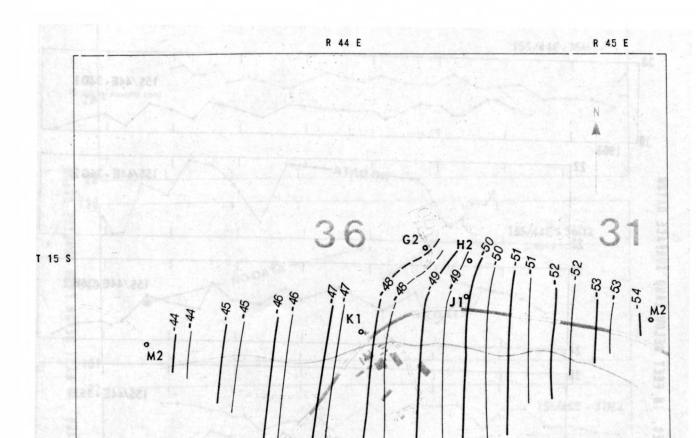
Gerard S. Witurki of the Western Regional office; and George Von der Lippe

TABLE 1. - Water-level data, well data, and dissolved-solids concentrations in the Stovepipe Wells Hotel area

[Analyses by the U.S. Geological Survey Central Laboratory, Arvada, Colo., unless otherwise noted]

		D+1		D 1	D.
	Altitude	Depth	Donfounted	Depth	Dis-
1014-	of 1sd	to	Perforated	of	solved
Site	(feet above	water	interval	well	solids,
Date	or below (-)	(feet	(feet below	(feet	calcu-
	sea level)	below	lsd)	below	lated
	1.11	lsd)		lsd)	sum
	10.00		20100		(mg/L)
15S/44E-34D1	- 0.40	196-10-11	82.53.	N. E-	08-11-4
3-26-681	15.41	38.17	51.0-53.0	53	3,290
15S/44E-36G1			18.00		08-11-0
6-17-80	-25.21	22.78	44.9-46.9	46.9	BB 6-2-
15S/44E-36G2	1-68	STALL STALL	1.42 F	A land	
6-17-80	-25.31	22.46	24.7-27.7	27.7	8,080
15S/44E-36H1			188,127,10, 8	4-1-11	0,000
11-03-73	-26.20	22.25	49.2-51.2	51.2	5,430
6-17-80	20.20	23.53	45.2 51.2	51.2	5,580
15S/44E-36H2		23.33			3,300
6-17-80	-26.10	23.80	25.2-28.2	28.2	102482.3
15S/44E-36J1	-20.10	25.00	23.2 20.2	20.2	0496433333
6-17-80	-22.76	27.22	48.2-50.2	50.2	6 / 10
	-22.10	21.22	48.2-30.2	30.2	6,410
15S/44E-36J5	15 20	36.26	22 6-11 2	110	0.060
6-17-80	-15.30	30.20	32.6-44.3	44.3	8,260
15S/44E-36J6	10 (1	07 /0	06 0 46 0	11.0	C. J. A. S. C. A. S.
6-17-80	-12.64	37.42	36.0-46.0	46.0	5,390
15S/44E-36K1	lege .				
3-21-67	-9.84		37(?)-65(?)	65	9,170
2-14-74		37.57	20 000		\$1-0 mm
2-27-75		37.67	10 m		161-0
6-23-76		37.66			08-8
4-05-77	T to	37.61			55,44,55-31(6.5
5-10-78		37.57	The second of the second of the		11,200
5-09-791		37.55	to or responsible to the op-		10,000
6-18-80		37.86			8,790
15S/44E-36K2					and ford for face
2-14-74	-9.98	37.37	Unknown	50	Waster Colon
2-27-75		37.53	The state of the s		al parent at the
6-23-76		37.49	100000000000000000000000000000000000000		\$8 1458-3392
4-06-771	1.37	37.51	- 221 33		3,270
5-10-78	30.00	37.53			3,570
5-09-79	294	37.60	19 145.4	.70	
15S/44E-36K3	THE PICE NO.	37.00	THE RESIDENCE AND ADDRESS.	Z ASA First 15	3,770
	-0 66	20 /2	27 /- /.5 /.	/.E /	E 050
6-17-80	-9.66	39.42	37.4-45.4	45.4	5,250
15S/44E-36K4	7.00	10 50	00 0 /7 0	/7 0	61-07-0
6-17-80	-7.98	40.53	38.0-47.0	47.0	5,570
15S/44E-36K5		10.01	10 0 50 0	THE DY WALLS	SATRUAT
6-18-80	.73	49.06	49.8-59.8	59.8	6,400

See footnotes at end of table.


TABLE 1. - Water-level data, well data, and dissolved-solids concentrations in the Stovepipe Wells Hotel area--Continued

		The Horst	the Stovepipe We	TI.	
Inc local	water supply	Depth	ment tron two we	Depth	Dis-
	Altitude	to	Perforated	of	solved
Site	of 1sd	water	interval	well	solida,
Date	(feet above	(feet	(feet below	(feet	calcu
2004 5 200 100 Ed	or below (-)	below	lsd)	below	lated
	sea level)	lsd)	and the second	1sd)	sum
to - sales		(feet be	ve water 119w	(feet abo	(mg/L)
15S/44E-36K6	Maraupzoduce	n is wel	155/466,8662 (4	ayal kas lia	in in well
6-18-80	14.46	63.62	62.0-71.7	71.7	6,790
15S/44E-36K7					
6-17-80	-5.23	42.53	37.0-54.0	54.0	7,650
15S/44E-36L1			must be a seration of the	the series is	
6-17-80	-1.85	45.07	44.3-54.4	54.4	6,370
15S/44E-36M1	S CHREENWARD	AL OF THE OWNER	SH 1: Marsharkines	and Brothert	国际工业公司
11-03-73	-15.22	28.1	43.7-45.7	45.7	6,610
2-26-76	(96) - The Table	A TON TO SAIL			6,490
4-06-771	a retellmention;	27.88	CHT. MCWESTZ	-25,31	6,620
5-10-78		27.84			6,570
9-21-78	F9-40 TR/1 AT	28.04	and creditions as	32, 32	6,230
5-09-791	rounid-water mor	28.01	THE RUN WATER OF THE	KO POST TOWN	6,580
6-18-80	ills This di	28.20	ground-satisfy an	SCHOOL AND P	6,220
15S/44E-36M2		20.20	a of OSAEZSand r		0,220
11-03-73	-15.33	18.46	30.4-33.4	33.4	7,260
15S/44E-36Q2	-13.33	10.40	30.4-33.4	33.4	1,200
5-08-671	01 05		stion, bew water	>200	2 000
9-09-732	81.05	100.05	Unknown	>300	2,980
		130.25			700
6-19-75	0.04	36.0-46	32, 42	42 01-	2,780
2-26-76	chows a comper	100.00	a water-thile in	efigir az tob	2,840
4-06-771	980 (8) m(8)	129.98	that graund-wate	Language	2,910
5-10-78	culting to the	130.02	of thes said as to	Lied the su	2,720
5-10-791	African a second	130.23	se invaster deve	la of thest	2,920
6-18-80	No Trestained el	130.25	ntourna sad no c	lange to th	2,730
$15S/45E-31M1^3$					
2-26-76	-26.50	27.57	35.7-37.7	37.7	2,990
4-06-771	70% al 2007 7 mm	27.25	hvdraorini of	Se 11 255744	5,540
5-10-78	7.	27.29	A SIA SEPTEMBER	lle delch a	9,260
9-21-78		27.45	doubles a solice ind	i race that	8,340
5-10-79 ¹	02.	27.42	A Comment of the Comment	of last not	8,830
6-18-80	THE TEN STRUCK	27.67	and the street of the street o	1044	8,180
15S/45E-31M24	ene maun in e	122.672706 6		age a series of the series	2221275
6-17-80	-26.64	27.59	28.3-30.3	30.3	AV-8. L.A. 1.
16S/44E-1C1	STREET STREET IN	ELSO COS		33.3	
9-09-73	97.19	145.4	264-294	294	2-10-78
4-06-771		144.84	2012274		2,870
5-10-78	A 24 1	144.67			2,960
5-10-791	100	144.90	39.44	9.8	2,890
A77 X		144.30		Marie Marie A	2,090

Analysis by California Department of Water Resources.

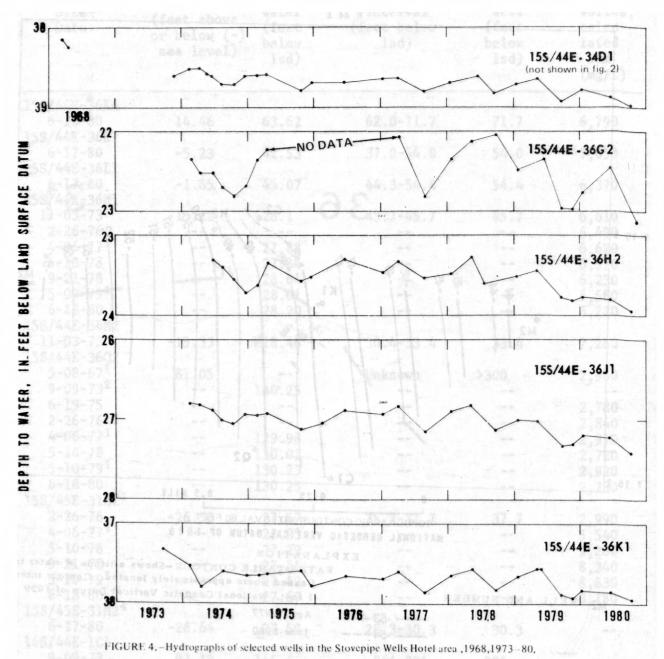
²Analysis by National Park Service.

³Formerly 15S/44E-36J3. ⁴Formerly 15S/44E-36J4.

TOPOGRAPHIC CONTOUR INTERVAL 80 FEET
NATIONAL GEODETIC VERTICAL DATUM OF 1929

0.25

CIO


T 16 S

M2 WELL AND NUMBER

EXPLANATION

0.5 MILE

FIGURE 3 .-- Water -table configurations, April 1977 and June 1980.

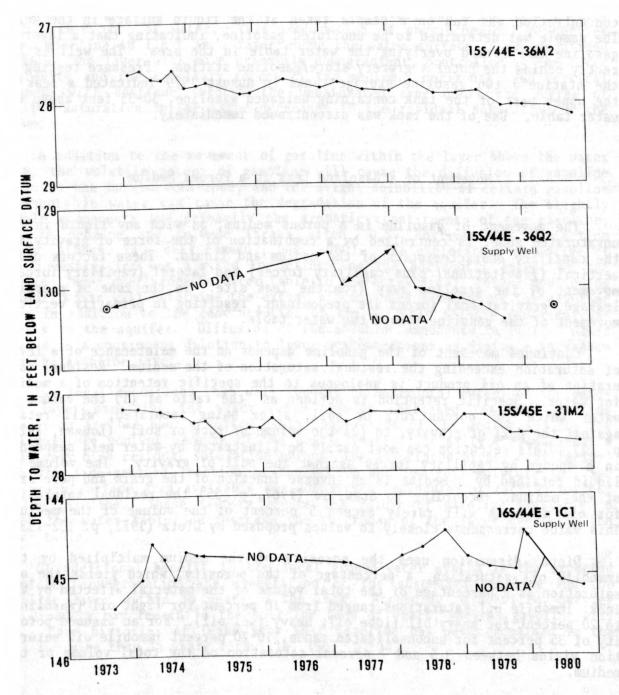


FIGURE 4 .- Continued.

After the detection of a gasoline odor in well 15S/44E-36Kl (fig. 2) in May 1979, a gas chromatograph mass spectrometry analysis for hydrocarbon concentration was run on a sample taken at the liquid surface in the well. The sample was determined to be undiluted gasoline, indicating that a layer of gasoline had formed overlying the water table in the area. The well is directly behind the hotel's grocery store/gasoline station. Pressure testing of the station's two gasoline storage tanks in August 1979 indicated a leak in the upper part of the tank containing unleaded gasoline, 30-35 feet above the water table. Use of the tank was discontinued immediately.

Movement of a Gasoline Leak in a Porous Medium

The movement of gasoline in a porous medium, as with any liquid in the unsaturated zone, is controlled by a combination of the force of gravity and the capillary characteristics of the medium and liquid. These factors cause vertical (gravitational plus capillary forces) and lateral (capillary forces) movement of the gasoline away from the leak site. In the zone of gasoline leakage, gravitational forces are predominant, resulting in primarily vertical movement of the gasoline toward the water table.

Continued movement of the gasoline depends on the maintenance of a level of saturation exceeding the residual saturation of the medium. Residual saturation of an oil product is analogous to the specific retention of a medium for water. Specific retention is defined as "the ratio of (1) the volume of water which the porous rock or soil, after being saturated, will retain against the pull of gravity, to (2) the volume of rock or soil" (Lohman, 1972, p. 12). This retention can most easily be illustrated by water held suspended in a sponge by capillary forces against the pull of gravity. The volume of liquid retained by a medium is an inverse function of the grain and pore size of the medium. According to Schwille (1967, p. 35) the residual saturation for oil products will rarely exceed 5 percent of the volume of the medium. This value corresponds closely to values proposed by Dietz (1971, p. 132-133)

Dietz' discussion uses the porosity of the medium multiplied by the immobile oil saturation, a percentage of the porosity, which yields the oil saturation as a percentage of the total volume of the material affected by the leak. Immobile oil saturations ranged from 10 percent for light oil (gasoline) to 20 percent for heavy oil (lube oil, heavy fuel oil). For an assumed porosity of 35 percent for unconsolidated sands, 10-20 percent immobile oil saturation yields between 3.5 and 7 percent saturation of the total volume of the medium.

When a leak is sufficiently large to sustain the movement of gasoline to the water table, a layer will form overlying the water table. Gasoline, generally considered insoluble and immiscible in water even though certain components of gasoline are slightly soluble in water, has a specific gravity of 0.7 times that of water. This combination of physiochemical properties causes gasoline to float as a layer above the water surface in an unconfined aquifer. The layer will move primarily downgradient, controlled by the force of gravity and the capillary forces of the medium. Horizontal and vertical movement will continue through the unsaturated zone until the degree of gasoline saturation in the layer decreases to the residual saturation of the medium.

In addition to the movement of gasoline within the layer above the water table, the volatile nature of gasoline will cause the diffusion of gasoline vapors in the unsaturated zone, and the slight solubility of certain gasoline components in water can cause the degradation of the aquifer. The slightly soluble components are primarily the aromatic constituents of the gasoline, such as benzene and toluene (Frank Allen, U.S. Environmental Protection Agency, Athens, Ga., oral commun., Dec. 1980). The exploratory objective of this investigation was limited to delineating the horizontal extent of the gasoline layer overlying the water table in the hotel area. Future monitoring of local wells will determine the extent of continued movement of the gasoline layer in addition to the concentration of the slightly soluble gasoline components in the aquifer. Diffusion of the soluble components in aquifer water results in a continuous dilution to lower concentrations as distance increases from the gasoline layer.

Two local conditions that will reduce the horizontal extent of the gasoline layer overlying the water table through increased residual gasoline saturation are the poorly sorted silty composition of the medium and the low soil-moisture content because of the arid climate. The silty medium causes a relatively high residual saturation through the associated higher capillarity. Both the fine-grained fraction of the medium and low soil moisture increase the grain surface area available for adsorption (molecular attraction forces) of the gasoline. These factors reduce the volume of gasoline available to reach the water table and increase the thickness of the layer overlying the water table.

Of additional benefit to the local ground-water system is the expected complete biodegradation and evaporation of the suspended gasoline and the gasoline layer within 15 years of the leak. According to Schwille, heavier oil products may remain in the soil for tens of years, whereas gasoline will not. Case histories of leaks show that gasoline has never remained in the soil for more than 15 years (Schwille, 1967, p. 38).

THE SECOND PROPERTY OF THE PRO

standing to rest to mit, of the variables of indention and the said without the

the big and recombine result of the deliver the west too it was a retire traite.

In November 1979, after a leveling survey determined precise altitudes of well measuring points, water levels were measured, and a generalized map of the configuration of the water table (similar to fig. 3) was drawn for field use. Based on the water-table map and an understanding of how gasoline spreads in the subsurface (Freeze and Cherry, 1979; Fried and others, 1979; Holzer, 1976; McKee and others, 1972; Dietz, 1971; Schwille, 1967; Van Dam, 1967; and Williams and Wilder, 1971), the extent of the spread of the gasoline was estimated to help in selecting sites for exploratory drilling. The estimate was based on assumptions concerning the volume of gasoline leakage, residual saturation of the alluvial material above the water table, and thickness of the gasoline layer above the water table. Gasoline leakage was assumed to be 5,000 gallons, the volume of the storage tank first reported by station operators. The residual saturation for the alluvium was assumed to be 0.05, based on geologists' and drillers' logs reporting poorly sorted gravelly silty sand. Finally, the thickness of the gasoline layer was assumed to be 0.117 inch (3 mm). Case histories of oil product leaks (Schwille, 1967, p. 36-37) indicate that where leaks have reached the final stages of spreading or have ceased spreading, layer thicknesses have never been less than 3-5 mm and are more likely to be several tens of millimeters. Using the thinnest layer thickness from case histories produced a maximizing of the spreading estimate used for locating exploratory drilling sites.

A basic estimate was made, using the stated values in the following equation, which assumes an even radius of spreading about the source of the gasoline:

$$r_s = \sqrt{\frac{V}{S_r L_t \pi}} = \sqrt{\frac{668}{(0.05)(0.01) \pi}} = 650 \text{ feet},$$

where

r_s = radius of spread, in feet,

V = volume of gasoline loss, in cubic feet, 668 ft³ (5,000 gal),

 S_r = residual saturation of the alluvium, 0.05, and

 L_{t}^{r} = gasoline layer thickness, in feet, 0.01 foot (3 mm).

The radius of spread calculated was about 650 feet. It was realized, however, that much of the gasoline would be trapped by capillary and molecular forces in the unsaturated zone between the tank and the water table. Disregarding this fact, and therefore assuming that all gasoline reached the water table, would cause a further maximization of the value of r. It was also known that the gasoline that reached the water table would move primarily down the ground-water gradient. The r value was therefore doubled to 1,300 feet and considered a very rough estimate, leaving the option to relocate test-hole sites as exploratory drilling proceeded. This maximizing approach allowed for large error in making the estimate. For example, if 50,000 gallons of gasoline were actually lost and the layer thickness was actually 1.4 inches (36 mm), the spread should still be restricted within the 1,300-foot downgradient estimate. Layer thicknesses in a silty alluvium, according to a rough guide offered by Dietz (1971, p. 132), will be much thicker than the 1.4 inches used in the above example. Dietz' guide is as follows:

Sand	in mil	grain size, llimeters nches)	Thickness of layer, in centimeters (inches)		
Extremely coarse to very coarse		co 0.5 co 0.02)	1.8 t (0.71 t		
Very coarse to moderately coarse		co 0.2 co .008)	9.0 t (3.54 t	o 22.4 o 8.82)	
Moderately coarse to moderately fine		co 0.05 co 0.002)		20 28.1	
Moderately fine to very fine		0.015 0.0006)	28.1 t (11.06 t	o 45.0 o 17.72)	

Eight exploratory sites were selected in three directions from the gasoline source, including sites extending as far down ground-water gradient as well 15S/44E-36K3 (fig. 5), 900 feet to the east. Site locations were selected subject to change as exploratory drilling proceeded. Each site was surveyed for altitude and plotted on the field water-table contour map to obtain an estimated depth to the water table. These estimates of depth insured sampling of the soil immediately above the water table, and therefore detection of the gasoline layer if present.

Gasoline Losses From Service Station Records

In December 1979, service station operation records of purchases and sales of unleaded gasoline were obtained from Fred Harvey, Inc., concessionaire for Stovepipe Wells Hotel. Records indicate that leakage during the period October 7, 1978, to September 4, 1979, may have been as much as 19,000 gallons. Prior to October 1978 the hotel was privately owned and records were not made available to the authors; therefore, an accurate estimate of the total volume of gasoline leakage was not possible. The losses from October 7, 1978, to November 2, 1978, averaged about 74 gal/d; the losses from October 7, 1978, to September 4, 1979, averaged about 57 gal/d. Because the average losses for the first 27 days of record were more than the average losses for the entire period of record, the indication is that leakage began prior to October 7, 1978.

With the additional information concerning the volume of gasoline losses, it was realized that the original estimate of downgradient spreading of the gasoline layer was based on too small a volume. No modification of the exploratory sites staked in November was assumed necessary at that time, however, because the option to relocate exploratory wells could be exercised in the field as new data were obtained from drilling results.

16

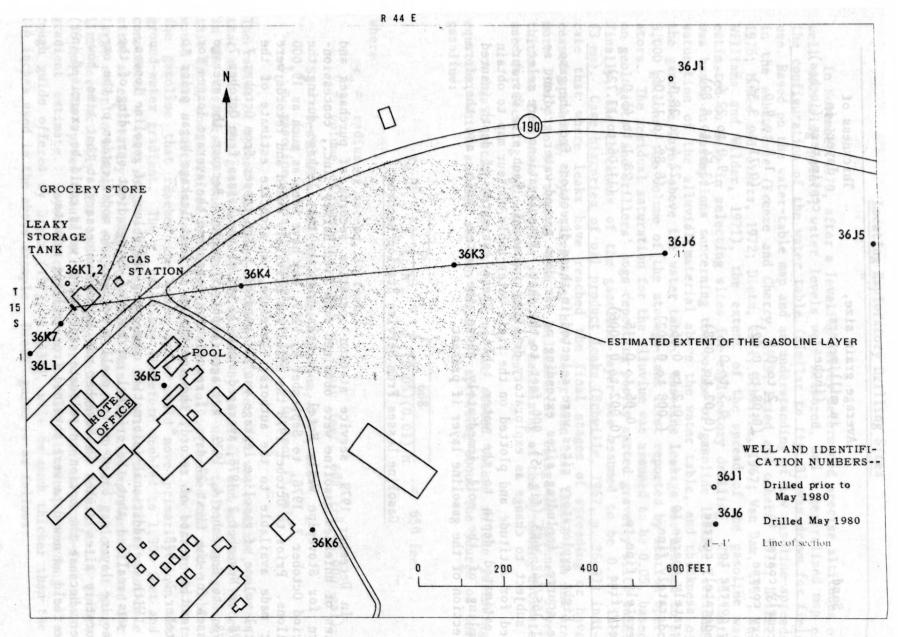


FIGURE 5.- Estimated horizontal extent of the gasoline layer, based on test drilling. May 1980.

Exploratory Drilling and Subsurface Soil Sampling

Exploratory drilling was done using an 8-inch hollow-stem auger and a split spoon soil sampler. Each hole was drilled to a depth of 2 to 3 feet above the estimated water table at seven sites and to 11 feet above at site 15S/44E-36K7 (fig. 5), the closest well to the gasoline source. A step-bystep drilling and soil-sampling operation was then begun in 1-foot increments to a maximum depth of 3.5 feet below the estimated water table. The procedure used was to collect I foot of soil from below the auger bit, drill to the bottom of the sample interval, and then collect another sample below the bit. This was repeated until the final sampling depth was reached. Soil samples were collected in metal sleeve inserts to the sampler. This technique minimized evaporation of the gasoline from the soil following collection and during shipment to the laboratory, and minimized contamination from previous samples. The test holes were then drilled to completion between 6 and 11 feet below the water table and converted to monitor wells. Two-inch PVC blank and slotted casings were installed to the well's final depth, and the perforated sections were enveloped in a clean sand pack and set to intersect above and below the water table. This setting of the perforations insured that any gasoline above the water table would flow into the well.

Table 2 shows the details of all soil samples collected, concentrations of gasoline in the sample, and descriptions of gasoline presence. A strong gasoline odor was detected in soil samples collected from the first test hole, 15S/44E-36K4 (fig. 5), located about 400 feet east and down ground-water gradient from the gasoline source. The second hole, site 36K3, 900 feet east of the source, had a layer of gasoline possibly more than 1 foot in thickness, according to two consecutive 1-foot thick gasoline-saturated samples. Gasoline was poured from the top of the sampler into glass bottles and allowed to settle for several hours with no observable separation of gasoline and water. The layer thickness prompted the selection of a new site for the third test hole, site 36J5, about 1,900 feet east of the source. No field-detectable gasoline was discovered at the site. Site 36J6, 1,400 feet east of the source, was drilled next, but no gasoline was detected there. The downgradient extent of the gasoline layer was then judged to be between 900 and 1,400 feet from the source. Test holes 36K6 and 36K5, 750 feet and 250 feet southeast of the source, respectively, were drilled next but showed no field detection of gasoline. The last two test holes, 36K7 and 36L1, were drilled 50 feet and 150 feet southwest of the source, respectively. Undiluted gasoline was found in 36K7, but no field-detectable gasoline was found in 36L1.

68-3616 5-14-30 63.62 61.5-62.6 62.6-62.5 63.68-62.6 62.6-62.5 63.68-62.6 63.

TABLE 2. - Gasoline concentrations in soil and water samples,
Stovepipe Wells Hotel area

[Description of gasoline presence: CGI, concentrated gasoline, ignitable; GW, gasoline and water; SGO, strong gas odor; FGO, faint gas odor; and NGO, no gas odor]

State well No. (fig. 5)	Date	Water level (feet below lsd)	Sample depth (feet below 1sd)	Gasoline concen- tration (µg/L)	Description of gasoline presence
Stil samples baique minit	reached. S This ted	Soil	samples	sted until	ds was repe
15S/44E-36J5	5-13-80	36.26	33.0-35.5	di lo noi:	NGO
		l to completion	35.5-36.0 36.0-38.0	29 (¹) 29 1	NGO NGO
15S/44E-36J6	5-14-80	37.90	36.0-37.4	s were ins	NGO
vos tady ba	man! maid	erninae ude	37.4-37.9	(¹)	NGO
			38.0-38.5	the Valler	NGO
15S/44E-36K3	5-13-80	39.42	37.0-38.0		NGO
			38.1-38.5	(¹)	NGO
			38.5-39.0	$\binom{1}{1}$	NGO
ground-water			39.0-40.0		CGI
			40.0-41.0	- 1 A 5 2 5 5 5 4 4	CGI
		is ston vides	41.0-42.0	4.0000	GW
wples. Gaso-			42.0-43.0	two-copsec	SGO
15S/44E-36K4	5-13-80	40.53	35.0-36.0	ed from the	NGO
Jest builds or			37.0-37.5	7.29×10^5	NGO
ldelegetable			37.5-38.0	177772 21.4	NGO
f the source,			39.0-39.5	ALCOHOL: NO	NGO
adient extent		erted there.	39.5-40.0		SGO
mort Jest 004		deewise ad o	40.0-40.5	7007777	SGO
theast of the			41.1-41.6	A PAN A SHA	NGO
detection of			42.3-42.8	eccively,	NGO
15S/44E-36K5	5-14-80	49.06	46.0-49.3	de last tw	NGO
			49.3-49.8	$.12 \times 10^4$	NGO
			50.0-50.5		NGO
			50.5-51.0	$.57 \times 10^4$	NGO
			51.0-52.0		NGO
5S/44E-36K6	5-14-80	63.62	61.0-61.5	/	NGO
			61.5-62.0	(¹)	NGO
			62.0-62.5		NGO
			62.5-63.0	(1)	NGO
			63.0-65.0		NGO

TABLE 2. - Gasoline concentrations in soil and water samples, Stovepipe Wells Hotel area--continued

State well No. (fig. 5)	Date	Water level (feet below lsd)	Sample depth (feet below lsd)	Gasoline concen- tration (µg/L)	Description of gasoline presence
benisimen' cted at the	ing season Les colles	Soil	samples	il on sinds	test sites × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1
.5S/44E-36K7	5-18-80	42.53	30.0-36.5	he consector	NGO
Larmosined	basamisee	sufficient seems	36.5-37.0	(1)	NGO
			37.0-37.5		NGO
section of			37.5-38.0	(1)	NGO
rifqang os s		sague addies	38.0-38.4		NGO
			38.4-38.9	(¹)	NGO
		Restod michig	39.0-39.4	the water add	NGO
			39.4-39.9	(1)	NGO
			40.0-40.3		FGO
			40.3-40.8	(¹)	FGO
			41.0-41.4	3.65×10^{5}	FGO
			41.4-41.9		FGO
			42.0-42.5		SGO
			42.5-43.0	2.71×10^{6}	SGO
			43.0-44.0		CGI
				od z – od – t ligo	FGO
15S/44E-36L1	5-15-80	45.07	42.0-44.5	jo respective	NGO
and page 1			44.5-45.0	1.7×10^4	NGO
			45.0-45.5	9JEW (1)	NGO
thre (11sw	viggue a	Lacks o -sersys	45.5-47.0	Lisa deligios	NGO
ovenent of		Wat	ter sample	arciine lezh	g pal 18 ty
15S/44E-36K1	5-30-79	37.56	37.56-38.56	undiluted	gasoline ²

Soil sample analyzed for hydrocarbons. No gasoline detected. Limit of detection is about $3 \times 10^3 \, \mu g/L$. ²Undiluted gasoline equals 6.72 × 10⁸ µg/L.

besining a catter rapidly it is required to the contract of the pencil of the absorber

redient, whose his daily continuent of the lead. Downgiadient the nearest "ous of to spin with the self to the total of the self-

he gasoline layer its not expected to extend that fax. Hougtoring of while salidate, and lotte to be a contained to the contained and the contained the contained

Selected soil samples, primarily from zones where no field-detectable gasoline was found, were sent to the U.S. Geological Survey's Central Laboratory for analysis for hydrocarbon concentration. The samples, having been collected in metal sleeve inserts to the split-spoon sampler, were sealed with aluminum foil and tape, placed in sealable plastic bags, and refrigerated for shipment to the laboratory. A vial of gasoline was collected from test hole 15S/44E-36K3 for use as a laboratory standard. Hydrocarbons were extracted into acetone-hexane and then analyzed by gas chromatograph/mass spectrometry. Table 2 includes analyzed concentrations of gasoline found in the soil samples. Laboratory analyses detected gasoline in very low concentrations at two test sites where no field detection was made. Test holes 36K5 contained 1.12×10^4 µg/L and 36Ll contained 1.7×10^4 µg/L in samples collected at the water table. The concentrations are less than 0.002 percent hydrocarbons in water, and probably represent the diffusion of water-soluble components of gasoline into the aquifer, not the gasoline layer. The estimated horizontal spread of the gasoline layer was mapped (fig. 5) on the basis of field detection and sample analyses. Figure 6 shows a diagrammatic cross section of trace A-A' shown in figure 5. The purpose for the cross section is to graphically demonstrate how the subsurface zones are affected by the leaky gasoline storage tank. The size and boundaries of affected areas are not representative of the actual contamination at Stovepipe Wells Hotel but were meant for schematic purposes only.

Hydrologic Effects of the Gasoline Leak

155/440005K3 . 5 201-80 cd. £ 39.44.14-0.1437.0-38-0

No major impact on the area's water supply is expected from the gasoline leak unless a significant change occurs in the direction of ground-water movement. The direction of ground-water movement is the primary factor controlling the direction of movement of both the gasoline layer and the gasoline solutes in the aquifer water. Ground-water movement in the area is eastward (fig. 2); and supply wells 16S/44E-1C1 (reverse-osmosis supply well) and 15S/44E-36Q2 are about 0.4 mile south 5° west and south 23° east, respectively, of the gasoline leak site, not within the expected path of movement of the gasoline. The low hydrocarbon concentrations found in soil samples from test well 15S/44E-36K5 (table 2) indicate that the soluble gasoline components have migrated farther toward the supply wells than the gasoline layer has. Future monitoring of wells 15S/44E-36K5 and 15S/44E-36K6 will determine if either the gasoline layer or the solutes migrate farther toward those wells. In the unlikely event that low concentrations of gasoline solutes should reach the supply wells, their effects, such as disagreeable taste and odor, could be eliminated by a combination of aeration and activated charcoal filtration (Williams and Wilder, 1971, p. 51, 56).

Effects on phreatophytic plants would be of major concern if they were present in the area of the gasoline layer. The roots of these plants, in obtaining a water supply from below the water table, would penetrate through the gasoline layer. Fortunately, the nearest phreatophytes are located upgradient, about 0.3 mile northwest of the leak. Downgradient the nearest phreatophytes are located about 2 miles east of the leading edge of the gasoline layer as estimated in May 1980 (off fig. 5 to east). Future movement of the gasoline layer is not expected to extend that far. Monitoring of wells 15S/44E-36J5 and 36J6 would reveal any continued migration of the gasoline layer to the east. If gasoline extends past these wells, additional wells installed farther east would be required to continue the monitoring.

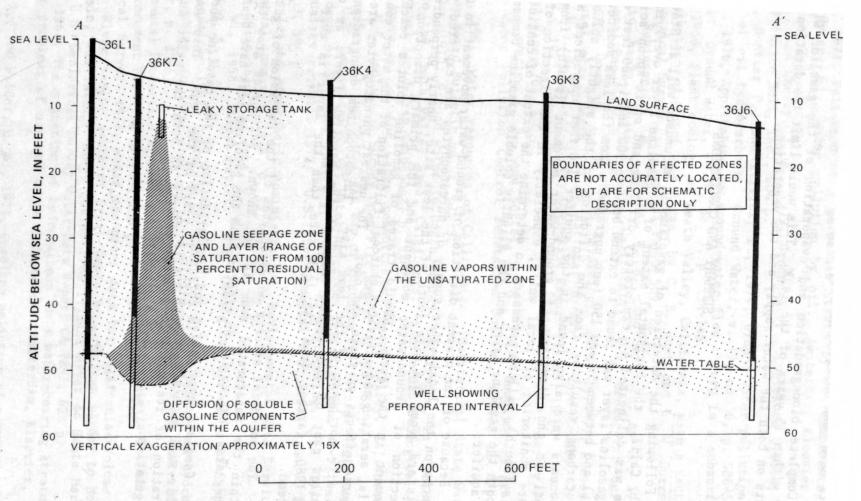


FIGURE 6.-Diagrammatic cross section of trace A-A ' (fig.5) through the gasoline contaminated area,

Xerophytic plants throughout the study area obtain water from soil moisture above the water table and will therefore not come in contact with the gasoline layer. What effect the gasoline vapors will have on these plants as the vapors continue to diffuse through the unsaturated zone is not known. No effects have been observed so far.

Complete biodegradation and evaporation of the gasoline will probably occur within 15 years of the leak. This would limit the duration of possible effects on both the water supply and the vegetation.

two test sites where no field detection was wall. Test holes 3685 codi code SUMMARY AND CONCLUSIONS . water, and probably depresent the diffugige of water soluble compare

teres to the target of the concess of tone to

Following the detection of gasoline in an unused well at Stovepipe Wells Hotel, Calif., the horizontal extent of a gasoline layer overlying the water table was delineated by exploratory drilling and split-spoon soil sampling. The gasoline layer was found to extend between 900 and 1,400 feet downgradient (east) and between 50 and 150 feet upgradient from the leak source. Traces of hydrocarbons resulting from the diffusion of the slightly soluble gasoline components were also found in the aquifer 150 feet upgradient and 250 feet normal to the direction of ground-water movement (south) from the leak. Future monitoring of local wells, especially in the direction of the supply wells (south), will be necessary to determine the extent of continued movement of both the gasoline layer and the slightly soluble gasoline components within the aquifer.

Because of the present direction of ground-water movement in the area, no effects on the local water supply or phreatophytes are expected. The supply wells are about 0.4 mile south of the leak site, nearly perpendicular to the direction of ground-water movement and the primary direction of gasoline movement in the area. Should traces of gasoline solutes reach the supply wells, aeration and activated charcoal filtration of the water could alleviate adverse effects on taste and odor. The nearest phreatophytes are upgradient, 0.3 mile northwest of the leak site. Phreatophytes downgradient are about 2 miles east of the leading edge of the gasoline layer, as estimated in May 1980, farther from the leak site than the layer is ever expected to extend.

The potential effects on xerophytes of the diffusion of gasoline vapors within the unsaturated zone is not known. Xerophytes grow throughout the study area, but so far no effects from the gasoline leak have been noticed.

Complete evaporation and biodegradation of the gasoline above the water table will probably occur within 15 years of the leak. This would limit the duration of its possible adverse effects on both the water supply and the vegetation.

9/44E-36J5 and 36JOFFASTAGE SEVEN/SEWIFE/CONTROLOGY migration Sof the gasoline -

- Dietz, D. N., 1971, Pollution of a permeable strata by oil components, in Hepple, Peter, ed., Water pollution by oil: Amsterdam, Elsevier, p. 128-142.
- Freeze, R. A., and Cherry, J. A., 1979, Groundwater: Englewood Cliffs, New Jersey, Prentice Hall, Inc., 604 p.
- Fried, J. J., Muntzer P., and Zilliox, L., 1979, Ground-water pollution by transfer of oil hydrocarbons: Ground Water, v. 17, no. 6, p. 586-594. Holzer, T. L., 1976, Application of ground-water flow theory to a subsurface
- oil spill: Ground Water, v. 14, no. 3, p. 138-145.
- Hunt, C. B., 1966, Plant ecology of Death Valley, California, with a section on Distribution of fungi and algae, by C. B. Hunt and L. W. Durrell: U.S. Geological Survey Professional Paper 509, 68 p.
- Hunt, C. B., Robinson, T. W., Bowles, W. A., and Washburn, A. L., 1966, Hydrologic basin, Death Valley, California: U.S. Geological Survey Professional Paper 494-B, 138 p.
- Lamb, C. E., and Downing, D. J., 1979, Hydrologic data, 1974-77, Stovepipe Wells Hotel area, Death Valley National Monument, Inyo County, California: U.S. Geological Survey Open-File Report 79-203, 19 p.
- Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 69 p.
- McKee, J. E., Laverty, F. B., and Hertel, R. M., 1972, Gasoline in ground water: Water Pollution Control Federation Journal, v. 44, no. 2, p. 293-302.
- Meyer, C. B., 1951, Water resources of California: [California] State Water Resources Board Bulletin no. 1, pl. 3.
- Miller, G. A., 1970, Ground water in Death Valley, California, in Geologic guide to the Death Valley area, California: Sacramento Geological Society Annual Field Trip Guidebook, p. 33-39.
 - 1977, Appraisal of the water resources of Death Valley, California-Nevada: U.S. Geological Survey Open-File Report 77-728, 68 p.
- Moyle, W. R., Jr., 1974, Geohydrologic map of southern California: Menlo Park, Calif., U.S. Geological Survey Water-Resources Investigations 48-73, map.
- National Academy of Sciences, National Academy of Engineering, 1973 [1974], Water quality criteria 1972: U.S. Environmental Protection Agency, EPA R3 73 033, 594 p.
- National Oceanic and Atmospheric Administration, Environmental Data Service, 1978, Annual summary: 1978, v. 82, no. 13, 27 p.
- 1969-78, Climatological data, v. 73-82. Robinson, T. W., 1958, Phreatophytes: U.S. Geological Survey Water-Supply Paper 1423, 84 p.
- Schwille, Friedrich, 1967, Petroleum contamination of the subsoil--A hydrological problem, in Joint problems of oil and water industries: Amsterdam, Elsevier, p. 23-53.
- U.S. Environmental Protection Agency, 1976 [1978], Quality criteria for water: U.S. Government Printing office, 256 p.
- U.S. Geological Survey, 1978, Water resources data for California--Volume 1, Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River: U.S. Geological Survey Water-Data Report CA 78-1, 628 p.
- Van Dam, J., 1967, The migration of hydrocarbons in a water-bearing stratum, in Joint problems of oil and water industries: Amsterdam, Elsevier, p. 55-96.
- Williams, D. E., and Wilder, D. G., 1971, Gasoline pollution of a ground-water reservoir -- A case history: Ground Water, v. 9, no. 6, p. 50-56.

usgs library - reston
3 1818 00099167 7