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CONVERSION FACTORS
Inch-pound units of measurement used in this report may be converted

to International System of Units (SI) using the following factors:

Multiply inch-pound unit By To obtain SI unit

inch (in) 25.4 millimeter (mm)

foot (ft) 0.3048 meter (m)

mile (mi) 1.609 kilometer (km)

square mile (mi?) 2.590 square kilometer (km2)

inch per square mile (in/mi2) 9.807 millimeter per square
kilometer (mm/kmZ)

cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)

ton (2,000 pounds) 0.9072 megagram (Mg)

ton per day (ton/d) 0.9072 megagram per day (Mg/d)

ton per square mile (ton/mi?) 2.350 megagram per square (Mg/km?)
kilometer

ton per square mile 2.350 megagram per square

per year [(ton/mi2)/yr] kilometer per year

. [(Mg/km2)/yr]

micromhos per centimeter (umhos/cm) 1.00 microsiemens per centimeter
(uS/cm)



WATER-QUALITY AND FLUVIAL-SEDIMENT CHARACTERISTICS OF
SELECTED STREAMS IN NORTHEAST KANSAS

by Hugh E. Bevans

ABSTRACT

The U.S. Geological Survey, in cooperation with the U.S. Soil
Conservation Service, investigated the water-quality and fluvial-sedi-
ment characteristics of selected streams in northeast Kansas for which
the construction of floodwater-retarding and grade-stabilization struc-
tures to control soil erosion is being considered.

The predominant chemical type of water in streams draining the study
area is calcium bicarbonate. During low streamflow, ground-water inflow
to Pony and Walnut Creeks introduces high concentrations of sulfate ion
that change the water type to calcium bicarbonate sulfate. In-stream
concentrations of chemical constituents generally decrease with increasing
streamflow. Exceptions to this are nitrate and phosphorus, which enter
the streams as components of surface runoff. Computed mean annual dis-
charges of dissolved solids ranged from 512 tons for Pony Creek at Sabetha,
Kansas, to 23,900 tons for the Wolf River near Sparks, Kansas.

Sediment yields in the study area, predominantly silt and clay, are
among the largest in the State. Drainage basins in the northern part of
the study area yielded the most suspended sediment, with Pony Creek at
Sabetha and near Reserve, Kansas, yielding 5,100 tons per square mile per
year. Drainage basins in the southern parts of the study area yielded
less suspended sediment, with Little Grasshopper Creek near Effingham,
Kansas, yielding 493 tons per square mile per year and the Little Delaware
River near Horton, Kansas, yielding 557 tons per square mile per year.



INTRODUCTION

The U.S. Soil Conservation Service is currently (1982) constructing
floodwater-retarding and grade-stabilization structures in selected water-
sheds of northeast Kansas. Information concerning water-quality and
fluvial-sediment characteristics of streams that may be affected by these
erosion-control structures is necessary to document current conditions,
predict future impacts, and quantify changes.

Purpose and Scope

The U.S. Geological Survey, in cooperation with the U.S. Soil Con-
servation Service, investigated the water-quality and fluvial-sediment
characteristics of selected streams in northeast Kansas for the period
July 1976 through September 1980. The purposes of this investigation
were to: (1) establish a data base for water-quality and fluvial-sediment
characteristics of selected streams that will serve as a basis for docu-
menting current (1982) conditions, (2) develop relationships between
streamflow or specific conductance and water-quality characteristics
that can be used to describe water-quality characteristics and determine
discharges of dissolved solids, and (3) develop relationships between
streamflow and suspended sediment that can be used to determine suspended-
sediment discharges of streams in the study area.

Study Area

The study area, shown in figure 1, is located in northeast Kansas
and includes parts of Atchison, Brown, Doniphan, Jefferson, Nemaha,
Osage, Shawnee, and Wabaunsee Counties. This area is included in the
Dissected Till Plains physiographic province (Fenneman, 1931). The
influence of glaciation is predominant over other geomorphic processes.
Post-glacial history has been characterized by dissection of till, deep-
ening of valleys, deposition of alluvium in stream valleys, and the deposi-
tion of Toess over extensive areas of upland and high terrace surfaces
(Frye and Leonard, 1952). Upland areas between major streams generally
are smooth, broad, and well rounded. Near major streams the topography
is more dissected with gentle slopes and wide valleys. Adjacent to
major streams the topography is extensively dissected into rough hills.
Most bluffs are very steep with outcrops of Tlimestone and shale.

The mean annual precipitation for the study area is about 36 in.
This value was determined from. an unpublished map distributed by the
Kansas Agricultural Experimental Station, which is based on U.S. Weather
Bureau data for 1941-70, Most of the precipitation occurs as rain during
the growing season, which averages 6 months, May through October.
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Figure 1.--Location of study area and project stations.



The favorable combination of fertile soil, adequate precipita-
tion, and a long growing season makes the study area an excellent crop-
producing region. Land use for Brown County, the principal county in
the study area, includes 62 percent cropland (U.S. Department of Agri-
culture, 1960). The large percentage of land being cultivated during
the part of the year when most of the precipitation falls, in combination
with massive loess deposits providing fine-grained soil particles for
erosion, results in high in-stream concentrations and large discharges
of suspended sediment in the study area.

Previous studies have shown that the largest annual discharges of
sediment in Kansas occur in the northeast. An early study (Collins and
Culbertson, 1965) indicated that mean annual discharges of sediment
range from 750 ton/miz- in the southwest part of the study area to
greater than 5,000 ton/miZ in the northeast part. Data from a more
recent study (Osterkamp, Curtis, and Crowther, 1982) indicated mean
annual discharges of sediment to be about 500 ton/mi2 in the Wakarusa
River basin and about 2,000 ton/mi2 in the Delaware River, Little
Grasshopper Creek, and Coal Creek basins,

Sample Collection and Analyses

Sample-collection activities for this study were initiated in July
1976 and continued through September 1980. Twenty-one project stations,
described in table 1 and shown in figure 1, were established for stream-
flow measurement and the collection of water samples for suspended-sedi-
ment analyses. Water samples for chemical analyses were collected at
some of these stations.

Streamflow measurements (Buchanan and Somers, 1976) were used to
develop stage-discharge relations for each station. Crest-stage gages,
which record the peak stage that occurs at a station during the time
period between inspections of the gage, were installed at selected
stations. Additional stage data were obtained from wire-weight or staff-
‘gage readings made by local observers.

Fluvial-sediment samples were collected according to procedures des-
cribed by Guy and Norman (1976), and the analyses were made in Lawrence,
Kans., according to procedures described by Guy (1969). The concen-
trations of suspended sediment presented in this report do not include
the bedload.

Water samples for chemical analyses were collected and analyzed
according to procedures described by Skougstad and others (1979) and
Goerlitz and Brown (1972). Physical measurements of pH, temperature,
specific conductance, and dissolved oxygen were made at the time of
sample collection. Chemical analyses were made by the U.S. Geological
Survey in Arvada, Colo. Data for this study have been published (U.S.
Geological Survey, 1977-81).



Table 1.--Description of project stations
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1 Pony Creek at Sabetha, Kans. 10/1/79 -~ 9/30/80 2.86 X X X
2 Pony Creek near Sabetha, Kans. 10/1/79 - 9/30/80 6.55 X X X
3 Pony Creek near Morrill, Kans. 10/1/79 - 9/30/80 25.1 X X X
4  Pony Creek near Reserve, Kans. 10/1/79 - 9/30/80 53.0 X X X
5 Walnut Creek near Fairview, 10/1/76 - 9/30/79 27.0 X X --
Kans.
6 Walnut Creek near Hamlin, 10/1/76 - 9/30/79 57.0 X X --
Kans.
7 Walnut Creek at Reserve, Kans. 10/1/76 - 9/30/79 111 X X X
8 Wolf River 3 miles southwest 10/1/77 - 9/30/80 11.9 X X X
of Hiawatha, Kans.
9 Wolf River near Hiawatha, 10/1/76 - 9/30/80 29.0 X X X
Kans.
10 Buttermilk Creek near Willis, 10/1/76 - 9/30/80 3.74 X X  --
Kans.
11  Wolf River at Leona, Kans. 10/1/76 - 9/30/80 160 X X --
12  Wolf River near Sparks, Kans. 10/1/76 - 9/30/80 220 X X X
13 Little Delaware River near 10/1/76 - 9/30/78 19.0 X X X
Horton, Kans.
14 Little Grasshopper Creek near 10/1/76 - 9/30/78 22.0 X X --
Effingham, Kans.
15 Little Grasshopper Creek at 10/1/77 - 9/30/78 52.0 X X X
Muscotah, Kans.
16 Coal Creek near Arrington, 10/1/77 - 9/30/78 5.00 X X --
Kans.
17 Coal Creek near Halfmound, 10/1/77 - 9/30/78 27.0 X X --
Kans.
18 Sixmile Creek tributary 5 10/1/79 - 9/30/80 1.67 X X --
miles northeast of Auburn,
Kans.
19 Sixmile Creek tributary 4 10/1/79 - 9/30/80 2.34 X X -
miles northeast of Auburn,
Kans.
20  Wakarusa River 5 miles west 10/1/79 - 9/30/80 7.10 X X -
of Auburn, Kans.
21  Wakarusa River 4 miles west 10/1/79 - 9/30/80 10.7 X X --

of Auburn, Kans.

10




Methods of Investigation

Streamflow measurements made concurrently with the collection of
water samples for water-quality and suspended-sediment analyses were
used to develop stage-discharge relations and relations between water-
quality and fluvial-sediment characteristics and streamflow for project
stations. However, these streamflow data were not adequate for computing
flow-duration curves.

Flow-duration curves computed for nearby continuous-record stream-
flow-gaging stations were used to develop regional, nondimensional,
flow-duration curves for three ranges of drainage-area size. These
regional curves were used in conjunction with estimated values of mean
streamflow and the 10-year flood peak to produce synthetic flow-duration
curves for project stations, except stations in the Walnut Creek basin
where streamflow is regulated by erosion-control structures.

Correlation and regression analyses were used to develop and inter-
pret relationships between water-quality characteristics and streamflow
and specific conductance, except for Wakarusa River basin stations
where no water samples for chemical analyses were collected. Analysis-of-
covariance tests indicated that regional regression equations relating
concentrations of dissolved calcium, magnesium, and bicarbonate (in milli-
grams per liter) to specific conductance (in micromhos per centimeter at
25°C) and relating the discharge of dissolved solids( in tons per day)
to streamflow (in cubic feet per second) were valid at the 0.01 probabil-
ity level.

Synthetic flow-duration curves and regression equations relating the
discharge of dissolved solids to streamflow were used to compute mean
discharges of dissolved solids at project stations, except those in the
Walnut Creek and Wakarusa River basins.

Correlation and regression analyses were used to develop and inter-
pret relationships between concentrations (in milligrams per liter) and
discharges (in tons per day) of suspended sediment and streamflow (in
cubic feet per second) for each project station. An analysis-of-covari-
ance test indicated that a regional regression equation relating the
discharge of suspended sediment to streamflow was not valid at the 0.01
probability level. However, the regression equations for individual
project stations relating the discharge of suspended sediment to stream-
flow are valid and were used with the synthetic flow-duration curves to
compute mean discharges of suspended sediment for project stations,
except those in the Walnut Creek basin.

Statistical summaries of suspended-sediment and bed-material data
were compiled.
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STREAMFLOW ANALYSIS
Development of Regional, Nondimensional, Flow-Duration Curves

The collection of streamflow data for this study was limited to
streamflow measurements made concurrently with the collection of water
samples for water-quality or fluvial-sediment analyses. These stream-
flow data were used to develop stage-discharge relations at project
stations, but the data were inadequate for developing flow-duration
curves.

The development of flow-duration curves requires long-term contin-
uous streamflow records. Because none of the stations in this study were
equipped with continuously recording streamflow gages, the data were not
available for direct development of flow-duration curves.

A method of computing synthetic flow-duration curves for ungaged
streams in Kansas was developed by Furness (1959). He developed regional,
nondimensional, flow-duration curves for drainage areas ranging from 100
to 3,000 miZ. Because the present study involves some drainage areas
of less than 100 mi2, the Furness method was modified to develop regional,
nondimensional, flow-duration curves for stations in the study area from
flow-duration curves determined at nearby continuous-record streamflow
stations with similarly sized drainage basins.

Continuous-record streamflow stations used for determining regional
flow-duration curves, listed in table 2, were selected by using the follow-
ing criteria:

(1) Location--The stations needed to be in close geographic prox-
imity to the study area so that the physiography (topography,
history of glaciation, and soil types) and climate (precipi-
tation amounts and types) are relatively uniform.

(2) Drainage area--The drainage areas needed to include the range of
drainage-area sizes sampled in the study area.

(3) Unregulated flow--The streamflow needed to be virtually unregu-
lated. Numerous or large reservoirs should not be present in
the drainage basin.

(4) Period of record--The period of continuous-record streamflow
measurements needed to exceed 10 years.

Regional, nondimensional, flow-duration curves for the study area,
shown in figure 2, were developed by the following procedure:

(1) Flow-duration curves for each of the continuous-record stream-
flow stations were nondimensionalized by dividing the stream-
flow values on the curve by the mean streamflow for the period
of record used in developing the curve.
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(2) The resulting nondimensional, flow-duration curves were then
plotted, Similarities between the curves and drainage-area
distribution were noted, and the curves were grouped into three
ranges of drainage areas--less than 15 mi2, 15 to 100 mi¢, and
100 to 300 mi2,

(3) For each range of drainage areas, the individual nondimen-
sional, flow-duration curves were averaged and smoothed to
produce a single regional, nondimensional, flow-duration curve.
The average error in the regional, nondimensional, flow-duration
curve was estimated to be 0.1075 1log-to-the-base-10 wunits
(t25 percent) by comparing them with the dimensionless, flow-
duration curves computed for the stations listed in table 2.

Table 2.--Periods of record and drainage areas of continuous-record
streamflow stations used to develop regional, nondimensional, flow-
duration curves

Period Drainage area

Station name of record (square miles)
Soldier Creek near Goff, Kans, 1964-79 2.10
Soldier Creek near Bancroft, Kans. 1964-79 10.5
Soldier Creek near Soldier, Kans. 1964-79 16.9
Soldier Creek near Circleville, Kans. 1964-79 49,3
Soldier Creek near St. Clere, Kans. 1964-79 80.0
East Fork 102 River near Beford, Iowa 1959-79 92.1
Soldier Creek near Delia, Kans. 1958-79 157
Soldier Creek near Topeka, Kans. 1935-79 290
Turkey Creek near Seneca, Kans. 1948-79 276
Little Platte River at Smithville, Mo, 1965-79 234

Computation of Synthetic Flow-Duration Curves

The computation of a synthetic flow-duration curve from a regional,
nondimensional, flow-duration curve requires estimates of streamflow that
would be equaled or exceeded zero percent of the time and mean streamflow
(table 3). The 10-year flood peak, the instantaneous streamflow (in
cubic feet per second) that would have a 10-percent chance of being equaled
in any 1 year, was computed (Jordan and Irza, 1975) and used as an esti-
mate of the streamflow that would be equaled or exceeded zero percent of
the time, These computed 10-year flood peaks have a standard error of
estimate of about 143 percent.

13
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Table 3.--Estimated mean streamflows and 10-year flood peaks for
project stations

Station Mean stream- 10- year
index flow (cubic flood peak
number feet per (cubic feet
(figure 1) Station name second) per second)

1 Pony Creek at Sabetha, Kans. 1.33 1,240

2 Pony Creek near Sabetha, Kans. 3.04 1,920

3 Pony Creek near Morrill, Kans. 11.7 3,920

4 Pony Creek near Reserve, Kans. 24.5 5,870

8 Wolf River 3 miles southwest of

Hiawatha, Kans. 5.50 2,740
9 Wolf River near Hiawatha, Kans. 13.5 4,370
10 Buttermilk Creek near Willis, Kans. 1.73 1,490
11 Wolf River at Leona, Kans., 75.5 10,700
12 Wolf River near Sparks, Kans. 106 12,700
13 Little Delaware River near Horton, 8.60 3,540
Kans.
14 Little Grasshopper Creek near 10.3 3,860
Effingham, Kans.
15 Little Grasshopper Creek at Muscotah, 24.1 6,130
Kans.
16 Coal Creek near Arrington, Kans. 2.41 1,830
17 Coal Creek near Halfmound, Kans, 13.4 4,530
18 Sixmile Creek tributary 5 miles north-
east of Auburn, Kans. .84 1,230
19 Sixmile Creek tributary 4 miles north-
east of Auburn, Kans. 1.18 1,470
20 Wakarusa River 5 miles west of Auburn, 3.56 2,630
Kans,
21 Wakarusa River 4 miles west of Auburn, 5.36 3,260
Kans.

1/Mean streamflows and 10-year flood peaks were not computed for stations
in the Walnut Creek basin because streamflow is regulated by erosion-
control structures.

Mean streamflow, 1in cubic feet per second, was converted from a
map of Kansas showing lines of equal mean runoff, in inches per year
(Carswell, 1982). This map was determined with continuous-record stream-
flow data from unregulated streams. The average error for determining
mean streamflow from this map was about 119 percent.

The synthetic flow-duration curve is derived by using the 10-year
flood peak as an estimate of the streamflow that would be equaled or
exceeded zero percent of the time and multiplying the nondimensional,
streamflow-conversion factors (streamflows divided by mean streamflow
for the period of record) obtained from the ordinate of the appropriate
regional, nondimensional, flow-duration curve (fig. 2) by the estimated
mean streamflow to compute the rest of the synthetic flow-duration
curve.
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The error estimated in the computation of a synthetic flow-duration
curve was about 0.1709 log-to-the-base-10 units (*40 percent). This
error was computed by taking the average of the errors involved in comput-
ing the 10-year flood peak and the mean streamflow (0.1325 log-to-the-
base-10 units) and combining it with the error involved in computing the
regional, nondimensional, flow-duration curve (0.1075 log-to-the-base-10
units) by taking the square root of the sum of the squared errors,

Streamflows at all stations in the study area, with the exception
of the Walnut Creek stations, are virtually unregulated. Streamflow in
the Walnut Creek basin is regulated by erosion-control structures con-
structed by the U.S. Soil Conservation Service. Twenty-one floodwater-
retarding structures, regulating 52,18 mi2, and 23 grade-stabilization
structures, regulating 14.20 mi4, have been constructed in the Walnut
Creek drainage basin. About 60 percent of the drainage area of Walnut
Creek at Reserve, Kans., is regulated by these structures. Because of
the regulating effect of the erosion-control structures, mean stream-
flows, 10-year flood peaks, and synthetic flow-duration curves were
not computed for the Walnut Creek stations.

WATER-QUALITY CHARACTERISTICS

Relations of Water-Quality Characteristics to Streamflow

The chemical and physical characteristics of streamflow in the study
area are dependent on the sources of that streamflow. Chemical consti-
tuents and water-quality parameters discussed in this section are listed
in table 10 at the back of the report. During periods of sparse precipi-
tation, winter and midsummer, most of the streamflow is provided by
ground-water discharge. Streamflow from ground-water discharge, termed
base flow, is much more mineralized than surface runoff. The types and
concentrations of dissolved chemical constituents in the base flow depend
on the mineral composition of the aquifer and the length of time the
ground water is in contact with it. During periods of excessive precipi-
tation, when streamflow increases due to surface runoff, the in-stream
concentrations of dissolved chemical constituents generally decrease.
However, surface runoff can come into contact with and transport consti-
tuents that are not available to ground water.
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Relationships between water-quality characteristics and streamflow
can be interpreted by examining results of correlation and regression
analyses presented in table 11 at the back of the report.

The regression equations are of the form:

Y = bQm (1)
where

Y is the predicted concentration of the constituent, in milli-
grams per liter, or discharge, in tons per day, computed by
the regression equation;

b is a constant computed by the regression analysis that is the
antilog of the Y intercept;

Q is measured, instantaneous streamflow, in cubic feet per sec-
ond; and

m is a constant computed by the regression analysis that is
the slope of the regression line.

The relative strengths of the relationships are indicated by the
correlation coefficients and standard error of estimates associated
with the regression equations. The stronger relationships have corre-
lation coefficients approaching *1.0, with positive values indicating
direct relationships and negative values indicating inverse relationships.
Squaring the correlation coefficient computes the coefficient of deter-
mination or the proportion of the variance in the value of the chemical
constituent that results from the variance of streamflow. The remaining
variance is not explained by the regression equations and results from
measurement errors and undetermined factors. The standard error of
estimate is an indicator of the accuracy of the regression equation; the
smaller the standard error of estimate, the more accurate the regression
equation.

Concentrations of dissolved chemical constituents that generally are
inversely related to streamflow are calcium, magnesium, sodium, bicarbon-
ate, sulfate, and chloride. The concentration of dissolved solids (the
sum of these dissolved constituents plus silica, potassium, fluoride,
and nitrate) and specific conductance (a physical property that measures
the ability of water to conduct an electrical current) also are inversely
related to streamflow. Dissolved constituents that are major components
in the base flow exhibit relations of this type.
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Concentrations of chemical constituents that are directly related to
streamflow are total organic carbon, a measure of the organic material,
and the nutrients nitrate and phosphorus, which are carried into the
streams by surface runoff. Discharges of dissolved solids are directly
related to streamflow, primarily because streamflow is used in the com-
putation of the discharge of dissolved solids. Turbidity, a physical
property that is inversely related to light penetration, generally in-
creases with streamflow as a result of increased concentrations of sus-
pended sediment.

The dominant ions in the stream water of the study area are calcium,
magnesium, bicarbonate, and sulfate. The principal chemical type of
water in the study area is calcium bicarbonate at all stages of streamflow.
Analyses of chemical data for Pony Creek and Walnut Creek indicate that
during low stages of streamflow, concentrations of dissolved sulfate are
high enough that the chemical type of the water becomes calcium bicarbon-
ate sulfate. These high concentrations of sulfate are provided by base
flow to reaches of these streams that traverse outcrops of limestone
and shale in northwest Brown County that are known to contain water with
high concentrations of sulfate (Bayne and Schoewe, 1967).

Relations of Water-Quality Characteristics to Specific Conductance

Specific conductance is directly related to the concentration of
dissolved constituents in the stream water. Concentrations of individual
dissolved constituents are directly related to specific conductance only
if they are major components of the total. Examination of results of
correlation and regression analyses presented in table 12 at the back of
the report shows that concentrations of dissolved solids, calcium, magne-
sium, sodium, bicarbonate, alkalinity, sulfate, and, in some instances,
chioride are directly related to specific conductance in the study
area. These regression equations are arithmetic linear equations of the
form:

Y = m(SPCOND) + b (2)
where

Y is the predicted concentration of the constituent, in milligrams
per liter, computed by the regression equation;

m is a constant computed by the regression analysis that is the
slope of the regression line;

SPCOND is the measured specific conductance, in micromhos per cen-
timeter at 25° C; and

b is a constant computed by the regression analysis that is the
Y-intercept value, in milligrams per liter.
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Regional Water-Quality Relations

Regression equations developed for the individual stations are useful
for predicting concentrations or discharges of chemical constituents at
these stations during periods when no chemical samples are collected.
However, these equations are not applicable to unsampled streams in the
study area or outside of the range of sampled values shown in tables
11 and 12 at the back of the report.

Analysis of covariance was utilized to determine if regional regres-
sion equations relating concentrations of dissolved solids, calcium,
magnesium, bicarbonate, and sulfate to specific conductance and relating
discharges of dissolved solids to streamflow could be developed for the
study area. The analysis of covariance was conducted in two parts. The
first part tested for parallel slopes of corresponding individual station
regression equations. This part of the test was conducted at the 0.001
probability level in order to minimize the possibility of rejecting the
hypothesis that the slopes are parallel. The second part of the test
was used to determine if a regression equation computed from correspond-
ing data combined from all stations was adequate. This part of the test
was conducted at the 0.01 probability level to increase the possibility
of rejecting the hypothesis that one regression equation adequately fits
all the data.

The analysis-of-covariance summaries, presented in table 4, indicate
that regional regression equations relating concentrations of dissolved
calcium, magnesium, and bicarbonate to specific conductance and relating
discharges of dissolved solids to streamflow are valid at the 0.01 prob-
ability level. These regression equations are presented in table 5.
Regional regression equations relating concentrations of dissolved solids
and sulfate to specific conductance are not valid at the 0.01 probability
level. The high concentrations of sulfate that occur in Pony and Walnut
Creeks during lTow stages of flow cause the relationships between concen-
trations of dissolved solids or sulfate and specific conductance to
shift due to the relatively low ionic activity of the sulfate ion as
compared to the bicarbonate ion (Hem, 1975).

The regional equations were not applied to the Wakarusa River basin
because water samples for chemical analyses were not collected in this
basin and it is located too far away from the rest of the study area to
assume similarity.

Discharge of Dissolved Solids
Mean annual discharges of dissolved solids for stations in the study
area, excluding stations in the Walnut Creek and Wakarusa River basins,

were computed by utilizing the regional regression equation from table 5
and individual station regression equations from table 11 (which relate
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Table 4.--Summaries of analysis of covariance

F statistic computed F statistic tabular

Regression
Independent Dependent Slope Regression STope equation
variable variable equation (0.001 pro- (0.01 prob-
bability) ability
1sPCOND 3ca 1.24 1.75 4.20 2.52
SPCOND AmG 1.40 1.38 4,21 2.54
SPCOND 2HC03 0.91 2.82 5.80 3.09
SPCOND SO, 5.75 8.67 4,17 3.38
SPCOND ps 3.87 3.94 4.20 2.52
2qQ 8psD 3.15 1.98 4.20 2.52
1 SPCOND = specific conductance, in micromhos per centimeter at 25° C.
2 Q = instantaneous streamflow, in cubic feet per second.
3 CcA = dissolved calcium, in milligrams per liter.
4 MG = dissolved magnesium, in milligrams per liter.
2 HCO3 = bicarbonate, in milligrams per liter.
S0, = dissolved sulfate, in milligrams per liter.
7 DSC = concentration of dissolved solids, in milligrams per liter.
8 DSD = discharge of dissolved solids, in tons per day.

streamflow, in cubic feet per second, to the discharge of dissolved
solids, in tons per day) in conjunction with synthetic flow-duration
curves that were described in the foregoing streamflow section. This
method produced acceptable results when used to compute mean annual
discharge of suspended sediment in previous studies (Kister and Mundorff,
1963; Jordan, Jones, and Petri, 1964) and was used in this study to com-
pute mean annual discharge of dissolved solids in the following manner:

(1) The regression equations were used to compute discharges of dis-
solved solids for streamflows that were equaled or exceeded for selected
percentages of time on the synthetic flow-duration curve.

(2) The discharges of dissolved solids were summed for the beginning
and end of each time interval and divided by two to compute the mean.

(3) The mean discharge of dissolved solids for each time interval
was multiplied by the interval between succeeding percentages of time, ex-
pressed as a decimal, to compute the discharge of dissolved solids.

(4) Discharges of dissolved solids in all time intervals were summed
to compute the mean discharge of dissolved solids, in tons per day. Mean
discharge of dissolved solids, in tons per day, was multiplied by 365
to compute the mean discharge of dissolved solids, in tons per year. An
example of this computation is given in table 6.
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The computed mean annual discharges of dissolved solids, presented
in table 7, have errors estimated to be 0.2223 log-to-the-base-10 units
(¥53.5 percent). This estimated error was computed by taking the square
root of the sum of the squared errors, in log-to-the-base-10 units,
involved in computing the synthetic flow-duration curves (0.1709 log
units) and associated with the regional regression equation for predict-
ing the discharge of dissolved solids from table 5 (0.1422 log units).

Table 7.--Mean annual discharges of dissolved solids computed for project
stations!

Mean annual discharge of dissolved
solids (tons)

Computed with in- Computed with
Station dividual station regional re-
index regression equations, gression equa-
number from table 11, and tion, from
(fig- synthetic flow- table 5, and
ure 1) Station name duration curves synthetic flow-
duration curves

1 Pony Creek at Sabetha, Kans. 604 512
2 Pony Creek near Sabetha, Kans. 1,180 1,020
3  Pony Creek near Morrill, Kans. 3,770 3,340
4  Pony Creek near Reserve, Kans. 7,060 6,460
8 Wolf River 3 miles southwest of

Hiawatha, Kans. 2,320 1,690
9 Wolf River near Hiawatha, Kans. 4,050 3,800
10 Buttermilk Creek near Willis, Kans. -- 637
11  Wolf River at Leona, Kans. -- 17,500
12 Wolf River near Sparks, Kans. 25,000 23,900
13 Little Delaware River near Horton, 1,780 2,560

Kans.
14 Little Grasshopper Creek near Effing-

ham, Kans. - 3,000
15 Little Grasshopper Creek at Muscotah,

Kans. 5,620 6,390
16 Coal Creek near Arrington, Kans. -- 852
17  Coal Creek near Halfmound, Kans. - 3,680

1 water samples for chemical analyses were not collected from the Wakarusa
River basin stations. Streamflows in the Walnut Creek basin are regula-
ted, and synthetic flow-duration curves could not be developed for use
in computing discharges of dissolved solids.
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FLUVIAL-SEDIMENT CHARACTERISTICS
Relations of Suspended Sediment to Streamflow

Concentrations, in milligrams per 1liter, and discharges, in tons
per day, of suspended sediment in the study area generally are related
directly to streamflow, in cubic feet per second. Fluvial-sediment
parameters discussed in this section are listed in table 13 at the back
of the report. The direct relations of concentrations and discharges of
suspended sediment to streamflow are indicated by the positive corre-
lation coefficients and slopes for regression equations presented in
table 14 at the back of the report. These regression equations are of
the same form as equation 1. The only station that did not show a direct
relationship between the concentration of suspended sediment and stream-
flow was Little Grasshopper Creek at Muscotah, Kans. This station is
located within 0.5 mi of the confluence of Little Grasshopper Creek and
the Delaware River. Backwater effects of the Delaware River during high
stages of flow resulted in decreased streamflow velocities and, conse-
quently, decreased concentrations of suspended sediment during high stages
of flow for Little Grasshopper Creek at Muscotah. Regression equations
relating the discharge of suspended.sediment to streamflow have positive
slopes and correlation coefficients for all stations in the study area,
primarily because streamflow is used to compute the discharge of suspended
sediment,

An attempt to produce a regional regression equation for the study
area relating suspended-sediment discharge to streamflow was unsuccessful.
An analysis-of-covariance test computed F statistics of 1.78 for equiva-
lent slopes and 3.67 for a common regression equation. Comparing the com-
puted 7 statistics to tabular £ statistics of 2.41 for equivalent slopes
at the 0.001 probability Tevel and 1.65 for a common regression equation
at the 0.01 probability level indicates that the slopes of the individual
station regression equations are statistically equivalent, but a common
regression line will not represent the entire study area.

Discharge of Suspended Sediment

Synthetic flow-duration curves developed for each station in the
study area, except those in the Walnut Creek basin where streamflow is
requlated, were used in conjunction with regression equations, from
table 14, relating the discharge of suspended sediment and streamflow to
compute mean discharges of suspended sediment. The same procedure used
to compute discharges of dissolved solids in the preceding section was
applied. An example computation is presented in table 8. Computed
discharges of suspended sediment for all project stations, except those
in the Walnut Creek basin, are presented in table 9. The discharges of
suspended sediment range from 493 (ton/mi2)/yr for Little Grasshopper
Creek near Effingham, in the southern part of the study area, to 5,100
(ton/miz)/yr for Pony Creek at Sabetha and near Reserve, in the northern
part of the study area.
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Table 8.--Computation of mean discharge of suspended sediment for Pony Creek
near Reserve, Kans.

Percen- Streamflow Discharge Interval be- Mean dis-
tage of equaled or of sus- tween succeed- charge of Discharge of
time exceeded pended sedi- ing percentage suspended suspended
(cubic feet ment (tons of time (ex- sediment for sediment in
Eer second) ger day) pressed as a time interval time interval
1/ 2/ decimal) (tons per day) (tons per day)
0.0 35,870 999,000 0.001 526,000 526
.1 1,400 52,500 .001 42,200 42.2
.2 1,100 32,000 .001 27,600 27.6
.3 940 23,200 .002 18,800 37.6
.5 745 14,400 .002 12,100 24.2
.7 620 9,850 .003 7,960 23.9
1.0 490 6,070 .004 4,840 19.4
1.4 380 3,600 .006 2,690 16.1
2 270 1,780 .01 1,210 12.1
3 164 640 .02 386 7.72
5 76.0 132 .02 92.8 1.86
7 49.0 53.5 .03 36.5 1.10
10 30.0 19.5 .05 13.3 0.665
15 18.4 7.15 .05 5.19 .260
20 12.5 . 3.23 .1 2.16 .216
30 7.40 1.10 .1 0.76 .076
40 4.60 0.41 .1 .31 .031
50 3.20 .20 .1 .14 .014
60 2.20 .09 .1 .06 .006
70 1.53 .04 .1 .03 .003
80 1.05 .02 .1 .01 .001
90 0.60 .01 .1 .00 .000
100 0.00 0.00 -- -- --
Total = 741 tons
Mean discharge of suspended sediment: per day

Tons per day = 741
Tons per year = 741 X 365 = 270,000
Tons per square mile per year = 270,000/53.0 = 5,100

1 From synthetic flow-duration curve.
2 Computed with regression equation from table 14.
3 Estimated 10-year flood peak from table 3.
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Table 9.--Mean discharges of suspended sediment computed for project stationsl

Station
index Mean discharge of suspended sediment
number Tons Tons Tons per
(figure per day per year square mile
1) Station per year
1 Pony Creek at Sabetha, Kans. 39.7 14,500 5,100
2 Pony Creek near Sabetha, Kans. 36.4 13,300 2,030
3 Pony Creek near Morrill, Kans. 129 47,300 1,880
4 Pony Creek near Reserve, Kans. 741 270,000 5,100
8 Wolf River 3 miles southwest of
Hiawatha, Kans. 81.6 29,800 2,500
9 Wolf River near Hiawatha, Kans. 177 64,800 2,230
10 Buttermilk Creek near Willis,
Kans. 20.4 7,430 1,990
11 Wolf River at Leona, Kans. 1,110 406,000 2,540
12 Wolf River near Sparks, Kans. 1,640 600,000 2,730
13 Little Delaware River near Horton, 29.1 10,600 559
Kans.
14 Little Grasshopper Creek near
Effingham, Kans. 29.7 10,900 493
15 Little Grasshopper Creek at Mus- 131 47,700 917
cotah, Kans.
16 Coal Creek near Arrington, Kans. 37.4 13,700 2,730
17 Coal Creek near Halfmound, Kans. 142 51,800 1,920
18 Sixmile Creek tributary 5 miles
northeast of Auburn, Kans. 3.54 1,290 775
19 Sixmile Creek tributary 4 miles
northeast of Auburn, Kans. 18.0 6,580 2,810
20 Wakarusa River 5 miles west of
Auburn, Kans. 17.3 6,320 890
21 Wakarusa River 4 miles west of
Auburn, Kans. 22.3 8,150 762

1 Streamflow in the Walnut Creek basin is regulated, and synthetic flow-duration
curves could not be developed for computing the discharge of suspended sediment.
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The error expected in computing the discharge of suspended sediment
is estimated to range from 0.2580 log-to-the-base-10 units (+81 percent
and -45 percent) to 0.6176 log-to-the-base-10 units (+310 percent and -76
percent). This range of errors was computed by taking the square root
of the sum of the squared errors, in log-to-the-base-10 units, involved
in computing the synthetic flow-duration curves (0.1709 log units) and
associated with the regression equations used to predict the discharge of
suspended sediment from table 14 (ranging from 0.1933 to 0.5935 log units).

Statistical Summaries of Fluvial-Sediment Data

Statistical summaries of fluvial-sediment data are presented in
table 15 at the back of the report. Measured concentrations of suspended
sediment in the study area ranged from 3 to 61,700 mg/L (milligrams per
liter) for the Wolf River near Sparks, Kans. Measured discharges of
suspended sediment ranged from 0.03 to 556,000 ton/d for the Wolf River
near Sparks, Kans.

Suspended-sediment particle-size data (table 15) show that the
largest particles determined were in the coarse-sand range (0.5 to 1.0
mm). Particle sizes in the clay-silt range (less than 0.062 mm) provided
from 61 to 100 percent of the suspended sediments. It should be noted
that suspended-sediment samples analyzed for particle-size distribution
were collected during periods of runoff when suspended-sediment concen-
trations were very high and streamflow velocities were adequate for
transporting large-size particles. Therefore, the minimum of 61 percent
silt-clay collected from the Wolf River at high streamflow probably is
about the minimum for the study area. The other project stations, ex-
cluding the Wolf River, have 80 to 100 percent of their suspended sedi-
ments in the clay-silt particle sizes.

Bed-material particle-size data are sparse for the study area.
Data presented in table 15 at the back of the report show bed-material
particle sizes ranging from coarse clay to coarse gravel (less than
0.004 to 32.0 mm). Only three stations had bed-material particle
analyses, and each had only one analysis. The Little Delaware River near
Horton, Kans., had the greatest percentage, 22 percent, of its bed
material in the medium-gravel range (8.0 to 16.0 mm); Little Grasshopper
Creek at Muscotah, Kans., had the greatest percentage, 33 percent, of
its bed material in the coarse-sand range (0.5 to 1.0 mm); and the Wolf
River near Hiawatha, Kans., had the greatest percentage, 30 percent, of
its bed material in the coarse-sand range.
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SUMMARY

Regional, nondimensional, flow-duration curves were developed for
northeast Kansas. These curves were used to compute synthetic flow-
duration curves for project stations, except those in the Walnut Creek
basin where streamflow 1is regulated by erosion-control structures.

The predominant chemical type of water in streams draining the study
area is calcium bicarbonate. During Tlow streamflow, base flow to
Pony and Walnut Creeks adds high concentrations of sulfate ion that change
the water type to calcium bicarbonate sulfate. In-stream concentrations
of chemical constituents generally decrease with increasing streamflow.
Exceptions to this are nitrate and phosphorus, which enter the streams
as components of surface runoff,

Regression equations relating concentrations of chemical constituents
to streamflow were developed for selected project stations, A regional
regression equation relating the discharge of dissolved solids to stream-
flow was developed for the study area. Regression equations relating
concentrations of dissolved chemical constituents to specific conduc-
tance were developed for selected project stations. Regional regression
equations relating concentrations of dissolved calcium, magnesium, and
bicarbonate to specific conductance were developed. Because no water
samples for chemical analyses were collected in the Wakarusa River basin,
none of the equations are applicable to that basin,

Synthetic flow-duration curves were used in conjunction with the re-
gional regression equation relating the discharge of dissolved solids
and streamflow to compute mean annual discharges of dissolved solids
for all project stations except those in the Walnut Creek and Wakarusa
River basins. Computed mean annual discharges of dissolved solids ranged
from 512 tons for Pony Creek at Sabetha, Kans., to 23,900 tons for the
Wolf River near Sparks, Kans.

Sediment yields in the study area, predominantly silt and clay
(particle size less than 0.062 mm), are among the largest in the State.
Regression equations relating concentrations and discharges of suspended
sediment to streamflow were developed for each station. Results of an
analysis-of-covariance test indicated that a regional regression equation
relating the discharge of suspended sediment to streamflow could not be
developed at the 0.01 probability level. Synthetic flow-duration curves
were used in conjunction with individual station regression equations
relating discharges of suspended sediment and streamflow to compute mean
discharges of suspended sediment for each station, except those in the
Walnut Creek basin. Drainage basins in the northern part of the study
area yielded the most suspended sediment. Pony Creek at Sabetha and near
Reserve, Kans., yielded 5,100 (ton/miz)/yr. Basins in the southern part
of the study area yielded less suspended sediment. Little Grasshopper
Creek near Effingham, Kans., yielded 493 (ton/mi2)/yr, and the Little
Delaware River near Horton, Kans., yielded 559 (ton/miZ)/yr.
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Bed materials in the study area ranged from coarse clay to coarse
gravel. The greatest percentages of bed material were in the coarse-sand
to medium-gravel ranges.

Conclusions reached in this report concerning discharges of dis-
solved solids and suspended sediment depend on the accuracy of the synthe-
tic flow-duration curves. Extension of the periods of record used to
develop the synthetic flow-duration curves may affect these conclusions.
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Table 11.--Results of correlation and regression analyses relating
chemical constituents and water-quality parameters to streamflow for
selected stations

Standard error of estimate

(Percentage of predicted

Regression equation value)
(presented only if (Log-to- Above Below
it is significant Number  Corre- the-base- regres-  regres-
at the 0.05 level of coef- 10 units) sion sion

of significance samples ficient line line

Pony Creek, Kans.l (stations 1, 2, 3 and 4; figure 1)
(Valid for Q between 0.14 and 176 cubic feet per second)

SPCOND = 768 Q-0.1162 11 20,79 0.0961 24,8 19.8
TURBN = 4 .84 -- -- --
CA = 102 9-0.1050 1 2. .75 .0980 25.3 20.2
MG = 28,3 @-0.1424 13 2. .83 .1000 25.9 20.6
NA = 11 - .58 - - --
HCO; = 334 Q70-1023 13 2. .90 .0517 12.6 11.2
S04~ = 12 - .52 - -- --
cL =17.3 Q-0.1563 17 2_ .61 .2137 63.6 38.9
DSC = 482 @-0.1076 1 2_ .73 .1057 27.6 21.6
3psp =1.34 Q0~g8§9 1 2,99 .1020 26.5 20.9
No; = 19.8 @0-9872 2 L1 .0316 7.5 7.0
P = 10 .36 - -- --
Walnut Creek at Reserve, Kans.(station 7, figure 1)
(Valid for Q between 1.7 and 145 cubic feet per second)

SPCOND = 10 -0.62 - -- --
TURBN = 0.087 Ql.4818 5 2 .95 0.2461 76.2 43,2
CA = 133 Q-0.1669 10 2. .68 .1148 30.2 23.2
MG = 9 - .55 -- -- --
NA = 27.7 9-0.1698 ¢ 2. .70 .1108 29.1 22.5
HCO3 = 8 - .43 - - -
S0, = -0.3985 g 2. .90 1277 34.2 25.5
cL = 23.3 9-0.2126 g 2. .81 .1004 26.0 20.6
DSC = 636 Q-0.1932 g 2. .76 .1070 27.9 21.8
3psp = 1.69 Q0.8279 19 2 .98 .1070 27.9 21.8
NO3 = 10 .57 - - -
P = 0.039 0.4740 10 2 .67 .3423 20.0 54,5
TOC = 8 .67 - -- -
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Table 11.--Results of correlation and regression analyses relating chemical
constituents and water-quality parameters to streamflow for selected
stations--Continued

Standard error of estimate
(Percentage of predicted

Regression equation value)
(presented only if Number  Corre- (Log-to- Above Below
it is significant of Tation the-base- regres-  regres-
at the 0.05 level samples coef- 10 units) sion sion

of significance) ficient line 1ine

Wolf River 3 miles southwest of Hiawatha, Kans. (station 8, figure 1)
(valid for Q between 0.55 and 6.6 cubic feet per second)

SPCOND = 4 0.14 -- -- --
TURBN = 4 .61 -- -- --
CA = 4 .55 -- -- --
MG = 4 - .28 -- -- --
NA. = 4 - .79 - -- -
HCO3 = 4 .25 -- -- -
S04 = 4 .38 -- -- --
cL = 4 - .93 -- -- --
DSC = 4 .21 -- -- --

3psp = 0.798 @1.0391 4 .99 0.1035 26.9 21.2
N0z = 4 .60 -- -- --
P = 0.072 Q0.4978 4 2,99 .0435 10.5 9.5
ToC = 4 .60 - - -

Wolf River near Hiawatha, Kans. (station 9, figure 1).

(Valid for Q between 0.78 and 19.6 cubic feet per second)
SPCOND = 6 0.00 -- -- --
TURBN = 3,37 0.8332 ¢ 2,90 0.2266 68.5 40.6
CA = 6 .32 -- - --
MG = 6 -1 -- -- --
NA = 6 - .73 -- -- --
HCO3 = 6 - .05 - -- --
S0 = 6 .62 -- -- --
cL = 6 - .37 -- -- --
DSC = 6 .03 -- -- --

3psb = 0.820 Q0.9953 ¢ 2 .99 .0669 16.6 14.3
NO3 = 6 .76 -- -- -
p = 0.034 0.6700 ¢ 2,90 .2020 59,2 37.2
TOC = 6 .27 -- -- --
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Table 11.--Results of correlation and regression analyses relating chemical
constituents and water-quality parameters to streamflow for selected
stations--Continued

Regression equation
(presented only if
it is significant
at the 0.05 level
of significance)

Number

of

samples

Corre-
lation
coef-
ficient

Standard error of estimate

(Percentage of predicted

(Log-to-
the-base-
10 units)

value)
Above
regres-
sion
line

Below
regres-
sion
line

SPCOND
TURBN
CA

SPCOND

TURBN

CA

MG

NA

HCO3

S0q

CL

DSC
3psp

NO3

P

TOC

Wolf River near Sparks, Kans. (station 12, figure 1)

12.5 Q-O.0978

0.706 Q0.9918

2.52 Q0.1927

Little Delaware River near
(valid for Q between 0.

0.787 0.8986
0.119 QO.3443

10

5
10
10
10
10
10
10
10
10
10
10
10

NNNdOA NN OO O

2

.14
.73
.01
.99
.37
.48
.78

0.0664
.1219

.1218

(valid for Q between 1.0 and 167 cubic feet per second)

16.5
32.4

32.4

14.2

24.5

24.4

Horton, Kans. (station 13, figure 1)

08 and 23

.49
.67
.19
.15
.09
.63
.33
.61
.20
.99
.38
.88
.72
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.1897

40.9

54.8

cubic feet per second)
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Table 11.--Results of correlation and regression analyses relating chemi-
cal constituents and water-quality parameters to streamflow for selected
stations--Continued

Standard error of estimate
(Percentage of predicted

Regression equation value)
(presented only if Number  Corre- (Log-to- Above Below
it is significant of lation the-base- regres-  regres-
at the 0.05 level samples coef- 10 units) sion sion

of significance) ficient line line

Little Grasshopper Creek at Muscotah, Kans. (station 15, figure 1)
(valid for Q between 0.14 and 81 cubic feet per second)

SPCOND = 7 -0.21 -- - -
TURBN = 4 .83 - -- -
CA = 7 - .25 - - -
MG = 7 - .28 - -- --
NA = 7 - .35 - - -
HCO3 = 7 - .34 - - -
S04 = 7 - .27 -- -

cL = 7 - .14 - - -
DSC = 7 - .29 - - -
3pso = 0.762 0.9549 7 2,99 0.1542 42.6 29.9
Ny = 7.24 QU-2372 5 2 .87 .1343 36.2 26.6
P = 7 .58 -- - -
T0C = 7 .66 -- - -

1 Due to the Timited chemical data collected in the Pony Creek basin, all
data from the four stations located on Pony Creek were combined to com-
pute the regression equations.

2 The correlation coefficient is significant at the 0.05 level of
significance.

3 psp (discharge of dissolved solids, in tons per day) is computed by mul-
tiplying Q (streamflow, in cubic feet per second) by DSC (concentration
of dissolved solids, in milligrams per liter) and by 0.027 to convert
to tons per day. The increase in the correlation coefficient relating
DSD and Q over the correlation coefficient relating DSC and Q is a
result of Q being used to compute DSD.
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Table 12.--Results of correlation and regression analyses relating concen-
trations of chemical constituents and water-quality parameters
to specific conductance for selected stations

Standard error

Regression equation (presented  Number Corre- of estimate
only if it is significant at of lation co- (milligrams per
the 0.05 level of significance) samples efficient liter)

Pony Creek, Kans.l (stations 1, 2, 3, and 4; figure 1)
(Valid for SPCOND between 329 and 865 micromhos per centimeter at 25°C)

CA = 0.1263 SPCOND +5.22 12 20,96 7.9
MG = 0.0401 SPCOND -2.65 12 2 .97 2.1
NA = 0.0289 SPCOND -0.310 12 2 .81 4.3
ALK = 0.2496 SPCOND +66.5 12 2 .88 27
S04 = 0.2482 SPCOND -56.8 12 2 84 34
CL = 0.0327 SPCOND -6.42 12 2 .80 5.0
DSC = 0.6503 SPCOND -12.7 12 2 .99 21

Walnut Creek at Reserve, Kans. (station 7, figure 1)
(valid for SPCOND between 358 and 758 micromhos per centimeter at 25°C)

CA = 0.1557 SPCOND -11.7 10 20,94 8.9
MG = 0.0478 SPCOND -9.34 9 2 .93 3.0
NA = 0.0309 SPCOND -1.69 10 2 .95 1.7
HCO3= 0.3703 SPCOND +16.0 8 2 .94 23
ALK = 0.3089 SPCOND +9.81 10 2 .95 17
S04 = 0.2709 SPCOND -65.0 10 2 .77 36
CL = 0.0202 SPCOND +0.343 10 2 .72 3.1
DSC = 0.7096 SPCOND -65.6 10 2,94 41

Wolf River 3 miles southwest of Hiawatha, Kans. (station 8, figure 1)
(Valid for SPCOND between 415 and 713 micromhos per centimeter at 25°C)

CA = 4 0.91 --
MG = 4 .91 -
NA = 4 .53 -
HCO3= 0.5219 SPCOND +0.92 4 21,0 8.1
ALK = 0.4003 SPCOND +16.6 4 21.0 3.8
S0q = 4 .87 --
CL = 4 - .36 --
DSC = 0.4569 SPCOND +63.8 4 21.0 6.4

Wolf River near Hiawatha, Kans. (station 9, figure 1)
(Valid for SPCOND between 440 and 733 micromhos per centimeter at 25°C)

CA = 0.0977 SPCOND +9.50 6 20.88 6.4
MG = 0.0205 SPCOND +5.59 6 2.9 0.9
NA = 6 .54 --
HCO4= 0.4093 SPCOND +48.8 6 2,98 14
ALK™= 0.3317 SPCOND +46.4 6 2 .97 11
S04 = 6 .74 --
L = 6 -.04 --
DSC = 0.3683 SPCOND +98.2 6 2 .98 8.9

w
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Table 12.--Results of correlation and regression analyses relating concen-
trations of chemical constituents and water-quality parameters
to specific conductance for selected stations--Continued

Standard error

Regression equation (presented Number Corre- of estimate
only if it is significant at of lation co- (mi1ligrams per
the 0.05 level of significance) samples efficient liter)

Wolf River near Sparks, Kans. (station 12, figure 1)
(valid for SPCOND between 275 and 512 micromhos per centimeter at 25°C)

CA = 0.1764 SPCOND -23.5 10 20,95 6.8
MG = 0.0335 SPCOND -0.808 10 2 .82 2.7
NA = 10 .35 --
HCO3 = 0.5186 SPCOND -21.6 8 2,95 22
ALK~ = 0.4337 SPCOND -24.3 10 2 95 17
S0, = 0.0465 SPCOND +11.8 10 2 .83 3.6
cL = 10 .30 -
DSC = 0.5755 SPCOND -10.4 10 2,96 19

Little Delaware River near Horton, Kans. (station 13, figure 1)
(Valid for SPCOND between 214 and 828 micromhos per centimeter at 25°C)

CA = 0.1084 SPCOND +6.93 6 20.97 4.8
MG = 0.0305 SPCOND +1.03 6 2 97 1.3
NA = 6 73 -
HCO3 = 0.3352 SPCOND +74.0 7 2 .84 43
ALK~ = 0.2799 SPCOND +58.6 7 2 .86 34
S0q = 7 .12 --
L = 7 .59 -
DSC = 0.3255 SPCOND +121 6 2,95 17

Little Grasshopper Creek at Muscotah, Kans. (station 15, figure 1)
(valid for SPCOND between 242 and 760 micromhos per centimeter at 25°C)

CA = 0.1340 SPCOND -1.42 7 20,99 3.6
MG = 0.0372 SPCOND -3.80 7 2 .98 1.2
NA = 0.0303 SPCOND +1.22 7 2 .98 1.0
HCO5 = 0.4049 SPCOND +37.0 7 2,97 18
ALK~ = 0.3358 SPCOND +28.5 7 2 .97 15
S0, = 0.0612 SPCOND +2.34 7 2 94 3.7
CL™ = 0.0718 SPCOND +0.758 7 2 .85 1.9
DSC = 0.4860 SPCOND +33.5 7 2 .99 14

1 pue to the limited data collected in the Pony Creek basin, all data
from the four stations located on Pony Creek were combined to compute
the regression equations.

2 The correlation coefficient is significant at the 0.05 level of
significance.
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