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CONVERSION TABLE

Multiply given units

cubic feet per second (ft3/s)
cubic feet per second (ft3/s)
feet per second (ft/s)

foot (ft)

gallon (gal)

inch (in.)

inch (in.)

mile (mi)

million gallons per day (Mgal/d)
pound (1b)

square foot (ft2)

square mile (mi2)

By

0.6463
0.02832
0.6818
0.3048
3.785
2.54

25.4

1.609
0.04381
0.454
0.0929
2.590

To obtain desired units

million gallons per day (Mgal/d)
cubic meters per second (m>/s)
miles per hour (mi/h)

meter (m)

liter (L)

centimeter (cm)

millimeter (mm)

kilometer (km)

cubic meters per second (m3/s)
kilogram (kg)

square meter (m?2)

square kilometer (km2)

discharge (ft3/s) x concentration (mg/L) x 5.3896 = total load of constituent (1b/d)

° Fahrenheit = 9/5(° C)+32

vi

° Celsius = 5/9(° F-32)



WATER-QUALITY ASSESSMENT OF WHITE RIVER BETWEEN LAKE SEQUOYAH AND

BEAVER RESERVOIR, WASHINGTON COUNTY, ARKANSAS

By J. E. Terry, E. E. Morris, and C. T. Bryant

ABSTRACT

A study was made of the White River between Lake Sequoyah and Beaver
Lake to determine the quality of the river under existing conditions and how
the effluent from the Fayetteville municipal wastewater—treatment plant, the
only point source discharger of waste effluent to the river, affects this
quality. A steady-state digital model was calibrated and used as a tool
for simulating changes in nutrient loading. Under relatively low-flow
conditions the White River downstream from the Fayetteville wastewater—
treatment plant is dominated by the waste discharge. Because the treat-~
ment plant discharge is unsteady, a composite of two independent, synoptic
data sets was used to calibrate the model in an effort to simulate "average”
steady-state conditions.

Data collected during synoptic surveys downstream from the wastewater-—
treatment plant indicate that temperature, dissolved oxygen, dissolved
solids, un~ionized ammonia, total phosphorus, and floating solids and
depositable materials did not meet Arkansas stream standards.

Nutrient loadings downstream from the treatment plant result in dis-
solved—-oxygen concentrations as low as 0.0 milligrams per liter. Biological
surveys found low macroinvertebrate organism diversity and numerous dead
fish.

Computed dissolved—oxygen deficits indicate that benthic demands are
the most significant oxygen sinks in the river downstream from the waste-
water—-treatment plant. Benthic oxygen demands range from 2.8 to 11.0
grams per square meter per day.

Model projections indicate that for 7-day 10-year low—flow conditions
and water temperatures of 29° Celsius, daily average dissolved-oxygen con-
centrations of 6.0 milligrams per liter can be maintained downstream from
the wastewater—~treatment plant if effluent concentrations of ultimate
carbonaceous biochemical oxygen demand and. ammonia nitrogen are 7.5 (5.0
S-day demand) and 2 milligrams per liter respectively. Model sensitivity
analyses indicate that dissolved-oxygen concentrations were most sensitive
to changes in stream temperature.



INTRODUCTION

Purpose and Scope

The upper White River, the receiving stream for Fayetteville's waste-
water-treatment plant (WWTP) effluent, was selected by the Arkansas Depart-
ment of Pollution Control and Ecology for an intensive water—quality study
to determine the assimilative capacity of the river. This choice was based
on Environmental Protection Agency Program Requirements Memorandum (PRM)
79-7 which sets forth policy and procedures for review of wastewater-
treatment projects that involve advanced secondary treatment (AST) or
advanced waste treatment (AWT). Environmental Protection Agency Region 6
guidelines indicate that a steady-state digital water quality model must
be used to determine the assimilative capacity of a perennial stream into
which an effluent greater than 3 cubic feet per second (ft3/s) is discharged.

The study was conducted to assess the current effects of the Fay-
etteville WWTP upon the dissolved oxygen (DO) regime and biological com-
munity in the river. In addition, digital modeling techniques were to be
used to determine the maximum effluent loadings to the river that would
not reduce daily average river DO concentrations below the Arkansas
standard (Arkansas Department of Pollution Control and Ecology, 1975)
of 6 milligrams per liter (mg/L). The study was to be completed within
a 9-month period.

Study-Area Description

The upper White River, at river mile 673.8, drains a 560 square-
mile (mi2) area (Sullavan, 1974) in northwest Arkansas (fig. 1) and flows
generally northward into Beaver Reservoir. Annual precipitation is approx-
imately 50 inches, and the average annual runoff for streams in the area is
l.1 cubic feet per square mile (Lamonds, 1972). The area is underlain by
limestone, chert, and some beds of shale and sandstone (Lamonds, 1972).

The segment of river chosen for this study originates downstream from
Lake Sequoyah (river-mile 684.8) and terminates at Beaver Reservoir (river-
mile 673.8). Lake Sequoyah is a former water supply lake for the city of
Fayetteville with a drainage area of 275 mi2 (Sullavan, 1974). Principal
tributaries in this segment are West Fork White River, drainage area 125
mi2, and Richland Creek, drainage area 143 mi2 (Sullavan, 1974).

The study area has moderate topographic relief characterized by gently
rolling hills and stream valleys. The river has a gradient ranging from
4.2 feet per mile downstream from Lake Sequoyah to 6.9 feet per mile near
Beaver Reservoir. It is characterized by numerous large pools separated
by short, shallow riffles.

The area has a mixture of suburban-type residences and small farms.
Agriculture in the area ranges from single family gardens to the commercial
raising of cattle, hogs, chickens, soybeans, and feed grains. The river
is a source of irrigation water for soybeans and feed grains.
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DATA COLLECTION

Two synoptic water samplings of White River were conducted in 1980.
One sampling was made during September 24-25, 1980, the other during Octo-
ber 7-8, 1980. During each period of sampling, two grab water samples were
collected at each of 13 sites (fig. 1). Each sampling site is located by an
alphanumeric identifier. Sites designated with a WR-# are located on the
main stem of the White River; those designated WRT-# are tributary sites;
and the single site designated WIP-1 is the discharge pipe for the Fayetteville
WWTP. Numbers following the dashes are consecutive for each type of site
and are incremented in a downstream direction. Water temperature, DO concen-
tration, pH, and specific conductance measurements were made each time water
samples were collected. Additional temperature and DO measurements were
obtained at night and near sunrise, both by individual measurements and by
use of a continuous monitor. The water samples at 12 of the sampling sites
were analyzed for fecal-coliform populations, nutrients, ultimate carbonaceous
biochemical oxygen demand (CBODU), chlorophyll and content in phytoplank~-
ton, and suspended solids. Bed-material samples were collected at the 12 sites
for determination of streambed oxygen demand. Samples from the Fayetteville
WWTP were not analyzed for phytoplankton chlorophyll and or streambed
oxygen demand. All samples were analyzed by the U.S. Geological Survey.
Procedures described by Jennings and Bauer (1976), Greeson and others (1977),
Skougstad and others (1979), Erdman, and Duncan (1979), Nolan and Jolnson
(1979), and Pickering (written commun., 1980) were used. A water—discharge
measurement was made at each sampling site following the procedures of
Buchanan and Somers (1969).

A comparative biological survey was conducted at two sites, one above
and one below the Fayetteville WWTP, on October 7-8, 1980. Samples were
collected to determine phytoplankton, benthic invertebrate, and fish popula-
tion densities and taxonomic identification (Greeson and others, 1977).

In addition to the numerous cross-sectional areas determined during
discharge measurements, the entire river segment was either waded or floated
by boat to measure river widths and depths and pool-to-riffle ratios. The
discharge measurements were used, along with releases of rhodamine WT dye,
to determine time of travel and mean velocity on three river reaches, using
methods described by Wilson (1968), Kilpatrick (1970), Yotsukura and Cobb
(1972), and Bauer, Rathbun, and Lowham (1979). Effluent discharges during
the sampling periods were determined by use of continuous flow charts provided
by the Fayetteville WWTP.

SURFACE~-WATER HYDROLOGY

The White River between river-mile 684.8, just downstream from Lake
Sequoyah, to river-mile 673.8, near the headwaters of Beaver Reservoir, is a
pool-and-riffle stream with channel slopes ranging from 6.9 to 4.2 to 6.9
feet per mile in a downstream direction. Under low-flow conditions the
river is characterized by short riffles of varying width and long, deep
pools.

During the sampling period September 24-25, 1989{ discharges in the
main stem of the White River increased from 0.91 ft°/s at WR-1 to 22.4
ft3/s at WR-10. During the October 7-8 sampling period discharge increased
from 0.73 £t3/s at WR-1 to 17 £t3/s at WR-10 (table1). For both periods,
mean river depths varied from 1.3 to 4.8 feet through the reach of interest.



Under low-flow conditions, the flow characteristics of the White River
downstream from the Fayetteville WWTP are dominated by the discharge from
the treatment plant. For the two sampling periods, discharges at statioms
WR-3 and WTP-1 (table 2) indicate that, using daily averages, 65 to 90 percent
of the river discharge downstream from the treatment plant is waste effluent.

The quantity of water discharged from the Fayetteville WWIP is not
steady (fig. 2). Flows vary as much as 100 percent in a 24~hour period.
Significant differences in discharges measured on the same day at river-
sampling sites downstream from the treatment plant (table 2) are a reflection
of changes in effluent flow from the plant.

Mean velocities for selected reaches of the river were estimated using
dye tracers during both the September and October sampling periods. Travel
times and mean velocities for these reaches are given in table 1. The meas-
ured velocities are small, ranging from 0.031 to 0.097 foot per second,

The 7-day 10-year low flows (Q7/10) (modified from Hines, 1975) at
stations 07048500, West Fork White River near Fayetteville; 07048600, White
River near Fayetteville; and 07048800, Richland Creek at Goshen (fig. 1) are
0.3, 1.6, and 0.1 ft3/s, respectively. Observed discharges in West Fork
and the main stem of the White River upstream from the Fayetteville WWIP
during the October sampling period (table 2) were less than the Q7/10.
Estimates of low-flow frequency for the White River are questionable because
of the control of Lake Sequoyah and the continuous discharge from the Fayette-
ville WWTP.
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Table 1.--Measured traveltime and mean velocity for selected reaches of

White River
Begin- Mean “Travel
ning Ending Discharge velocity time
mile mile (£t3/s) (ft/s) (h)
September 1980
684 .80 684,00 5.4 0.031 37.6
682.91 681.78 15.6 .073 22,5
681.78 679.89 13.6 .087 32.3
678.83 677 .86 13.1 .097 14.6
October 1980
681.78 679.96 10.4 0.073 36.6
679.96 678.86 11.1 .051 31.4




WATER QUALITY

Water—quality data collected in the study area during September 24-25
and October 7-8, 1980, are presented in table 2. Data collected at some
sampling sites both upstream and downstream from the Fayetteville WWTP
indicate that Arkansas water quality standards, (Arkansas Department of
Pollution Control and Ecology, 1975) are not being met for the following
constituents: temperature, DO, dissolved solids, total phosphorus, and the
combined standard of solids, floating material, and deposits. In additionm,
the U.S. Environmental Protection Agency's criterion (1976) limits un-ion-
ized ammonia (NH3) to a maximum of 0.02 milligram per liter (mg/L) to
prevent toxicity to freshwater aquatic life. This criterion was exceeded at
all sampling sites downstream from the Fayetteville WWIP except site WR-7.
The highest calculated unionized ammonia concentration was 0.095 mg/L as
NH3 (table 3, USEPA, 1976), at site WR-5.

Physical Characteristics

Physical water—quality characteristics measured during the study were
suspended solids, water temperature, and specific conductance, along with
visual observations of solids, floating material, and deposits.

Suspended Solids

Suspended solids generally can be related to stream turbidity. There
are several sources of suspended solids in streams. 1) sediment washed off
the watershed, 2) sediment scoured from the streambed, 3) particulate matter
discharged by a WWTP, 4) and algal growth derived from dissolved nutrients
in the water. Concentrations of suspended solids in a stream vary as new
gources are added, as particles are deposited or resuspended, and as organic
matter is produced and consumed. Turbidity, or light penetration, depends
upon these concentrations and the type of suspended material. Suspended-
solids concentrations on the river ranged from 1 mg/L at station WR-2 to 58
mg/L at station WR-4. Concentrations in the Fayetteville WWIP effluent
ranged from 18 to 120 mg/L suspended solids. The State permit for the
Fayetteville WWTP effluent states that suspended solids shall not exceed 30
mg/L as a maximum monthly average.

Water Temperature

Typically, surface-water temperature varies continually in response
to changes in solar radiation and changing seasons. Temperature is highest
in the late afternoon and lowest in the early morning. Seasonal temperature
is highest in July, August, and September and lowest in December and January.
High water temperatures lower the solubility of oxygen, increase the rates
of oxygen—consuming reactions, and increase photosynthetic-oxygen production.
Water temperature in the main stem of White River during the study period
ranged from 13.5 to 26.0° C (table 3). Historical records show a maximum
value of 30.5° C during July 1978 for site WR-2.
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Table 3.--Dissolved-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent

Dissolved

oxygen

Dissolved (percent

Time of Temperature oxygen satura-

Site Date collection (° o (mg/L) tion)

(1980) (hour) (00010) (00300) (00301)
WR-1 Sept. 24 0940 21.0 3.2 36
Sept. 24 1620 23.5 4.5 52
Oct. 2 1135 21.0 3.9 43
QOct. 2 1650 21.0 5.2 58
Oct. 2 1900 20.0 5.2 57
Oct. 2 2250 21.0 5.8 64
Oct. 3 0540 18.0 1.6 17
Oct. 3 0710 17.0 1.4 14
Oct. 3 1030 18.0 7.3 77
Oct. 7 0730 17.5 3.7 39
Oct. 7 1145 20.0 5.3 58
Oct. 7 1740 23.0 7.8 90
Oct. 7 1930 21.0 6.2 69
Oct. 8 0640 18.0 3.9 41
Oct. 8 0740 18.0 4.0 42
Oct. 10 1400 23.0 4.9 56
Oct. 11 1140 19.0 4.8 52
WRT-1 Sept. 24 1010 21.0 4,7 52
Sept. 24 1650 23.0 6.4 74
Oct. 2 1155 20.0 8.0 87
Oct. 2 1710 21.0 8.6 96
Oct. 2 1915 20.0 7.9 86
Oct. 2 2310 19.5 7.9 85
Oct. 3 0600 15.0 7.0 69
Oct. 3 0725 15.5 6.0 60
Oct. 3 1050 16.5 8.6 88
Oct. 7 0750 16.0 8.5 86
Oct. 7 1200 17.5 8.1 84
Oct. 7 1720 20.5 9.3 102
Oct. 7 2000 20.5 9.3 102
Oct. 8 0650 17.0 8.6 89
Oct. 8 0750 17.0 8.2 85
Oct. 10 1345 21.5 6.7 75
Oct. 11 1115 17.0 4.7 48
WR-2 Sept. 24 1045 21.5 4.9 55
Sept. 24 1730 23.0 5.6 64
Oct. 2 1210 20.5 5.8 64
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Table 3.--Dissolved-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent--Continued

Dissolved

oxygen

Dissolved (percent

Time of Temperature oXygen satura=-

Site Date collection (° ¢) (mg/L) tion)
(1980) (hour) (00010) (00300) (00301)

WR-2 Oct. 2 1755 18.5 6.2 66
Oct. 2 1925 18.0 6.0 63
Oct. 2 2325 18.5 5.6 60
Oct. 3 0610 15.0 5.7 56
Oct. 3 0635 15.0 4.9 48
Oct. 3 1100 17.0 7.3 75
. Oct. 7 0810 14.5 6.1 59
Oct. 7 1540 23.5 7.0 81
Oct. 7 1850 19.0 6.4 69
Oct. 8 0640 16.0 6.0 61
Oct. 8 0800 16.0 6.1 62
Oct. 9 0810 14.5 6.1 59
Oct. 9 1850 19.0 6.4 69
Oct. 10 1355 23.5 7.2 84
Oct. 11 1100 13.5 7.0 67
WR-3 Sept. 24 1100 22.0 5.8 66
Sept. 24 1755 23.5 7.4 86
Oct. 2 1255 20.0 6.6 72
Oct. 2 1725 19.5 8.0 86
Oct. 2 1940 18.0 8.2 86
Oct. 2 2400 18.0 8.1 85
Oct. 3 0640 17.0 7.2 74
Oct. 3 0745 17.0 5.6 58
Oct. 3 1040 17.0 7.6 78
Oct. 7 0830 15.5 8.5 85
Oct. 7 1215 18.5 9.5 101
Oct. 7 1600 25.0 10.4 124
Oct. 7 1800 20.5 10.2 112
Oct. 7 2000 19.0 10.2 110
Oct. 7 2200 18.0 9.9 104
Oct. 7 2400 18.5 9.6 102
Oct. 8 0200 18.0 9.4 99
Oct. 8 0400 17.5 9.0 94
Oct. 8 0600 17.5 8.8 92
Oct. 8 0800 17.0 8.7 90
Oct. 8 1000 16.5 8.9 91
Oct. 8 1200 19.5 9.1 98
Oct. 8 1400 23.0 9.1 105
Oct. 8 1600 21.0 10.4 116
Oct. 10 1315 20.0 8.6 93
Oct. 11 7.4 77

1230 17.5
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Table 3.--Dissolved-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent--Continued

Dissolved

oxygen

Dissolved (percent

Time of Temperature oxygen satura-

Site Date collection (° ¢ (mg/L) tion)
(1980) (hour) (00010) (00300) (00301)

WIP-1 Sept. 24 1137 25.5 8.4 101
Sept. 24 1830 27.0 8.3 102
Oct. 2 1235 25.5 8.1 98
Oct. 2 1735 25,0 9.2 110
Oct. 2 1945 25.0 9.6 114
Oct. 3 0010 24,5 9.2 109
Oct. 3 0630 24,0 8.3 98
Oct. 3 0755 24,5 9.2 109
Oct. 3 1055 24,0 8.5 100
Oct. 7 0840 24,0 9.1 107
Oct. 7 1224 25.0 8.6 102
Oct. 7 1655 25.5 8.2 99
Oct. 7 2020 25.0 9.5 113
Oct. 8 0750 24.0 9.4 111
Oct. 8 0810 24,0 9.0 106
Oct. 10 1240 24,5 8.6 102
Oct. 10 1310 26.0 8.1 99
WR-4 Sept. 24 1120 25.0 5.9 70
Sept. 24 1810 26.0 4,5 55
Oct. 2 1245 25.0 2.6 31
Oct. 2 1740 24,5 1.3 15
Oct. 2 1950 22.5 2.3 26
Oct. 3 0020 22,5 5.2 59
Oct. 3 0645 21.0 3.1 34
Oct. 3 0800 20.5 2.4 26
Oct. 3 1100 22.5 4.8 55
Oct. 7 0913 22,0 4.9 56
Oct. 7 1219 25.0 6.0 71
Oct. 7 1700 23.5 3.9 45
Oct. 10 1300 26.5 3.5 43
Oct. 10 1500 26.0 3.6 44
Oct. 10 1700 25.0 4,3 51
Oct. 10 1900 25.0 2.0 24
Oct. 10 2100 24.0 4,8 56
Oct. 10 2300 24,0 5.5 65
Oct, 11 0100 24,0 5.6 66
Oct. 11 0300 23.0 5.4 62
Oct., 11 0500 22.5 5.4 62
Oct. 11 0700 22.0 5.7 65
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Table 3.--Dissolved-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent--Continued

Dissolved

oxygen

Dissolved (percent

Time of Temperature oxygen satura-

Site Date collection (° C) - (mg/L) tion)

(1980) (hour) (00010) (00300) (00301)
WR-4 Oct. 11 0900 22.0 5.7 65
Oct. 11 1100 23.0 5.3 61
Oct. 11 1240 25.0 5.7 68
Oct. 11 1300 25.0 5.5 65
WR-5 Sept. 24 1130 23.0 2,5 29
Sept. 24 1845 24.5 2.0 24
Oct. 2 1415 22.0 0.2 2
Oct. 2 1720 22.0 0.2 2
Oct. 2 1750 21.5 0.0 0
Oct. 3 0830 18.5 0.1 1
Oct. 7 0945 18.5 0.2 2
Oct. 7 1150 19.5 0.2 2
Oct. 7 1530 22.0 0.1 1
Oct. 7 1835 22.5 0.0 0
Oct. 8 0815 19.0 0.1 1
Oct. 10 1440 24.5 0.1 1
Oct. 11 1040 13.0 0.1 1
WR-6 Sept. 24 1100 22.5 3.4 39
Sept. 24 1745 23.5 5.3 62
Sept. 24 1915 23.0 4.7 54
Sept. 24 2325 22.5 3.4 39
Sept. 25 0615 22.0 3.2 36
Sept. 25 0800 22.5 3.2 37
Oct. 2 1400 22.0 3.2 36
Oct. 2 1740 21.0 3.1 34
Oct. 2 1905 21.0 3.2 36
Oct. 2 2300 19.5 2.7 29
Oct. 3 0610 18.5 2.3 24
Oct. 3 0815 18.5 2.3 24
Oct. 3 1130 18.0 2.7 28
Oct. 7 0925 17.0 1.0 10
Oct. 7 1130 18.0 1.7 18
Qct., 7 1515 21.0 1.7 19
Oct. 7 1815 20.5 1.7 19
Oct. 7 1950 19.5 0.9 10
Oct. 8 0700 18.0 0.1 1
Oct. 8 0830 18.0 0.2 2
Oct. 10 1500 23.0 1.3 15
Oct. 11 1030 18.0 0.2 2
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Table 3.--Dissolved-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent-—Continued

Dissolved

oxygen

Dissolved (percent

Time of Temperature oxygen satura-

_Site Date collection (° © (mg/L) tion)

(1980) (hour) (00010) (00300) (00301)
WR-7 Sept. 24 1030 22.0 2.9 33
Sept. 24 1715 23.5 7.4 86
Oct. 6 1430 19.0 2.4 26
Oct. 6 1630 19.5 2.6 28
Oct. 6 1830 19.0 2.7 29
Oct. 6 2030 18.5 2.5 27
Oct. 6 2230 18.5 2.4 26
Oct. 7 0030 18.5 2.3 24
Oct. 7 0230 18.5 2.2 23
Oct. 7 0430 18.0 2.2 23
Oct. 7 0630 18.0 2.1 22
Oct. 7 0830 17.5 2.2 23
Oct. 7 0900 17.0 2.0 21
Oct. 7 1000 21.0 6.4 71
Oct. 7 1030 17.5 2.6 27
Oct. 7 1230 18.5 3.1 33
Oct. 7 1430 19.5 3.9 42
Oct. 10 1515 22.0 1.8 20
Oct. 11 1000 18.0 1.0 11
Oct. 14 1500 17.5 3.7 39
WR-8 Sept. 22 1450 25.5 6.5 78
Sept. 22 1632 26.0 6.8 83
Sept. 24 0930 21.5 4.7 53
Sept. 24 1615 23.5 7.4 86
Sept. 24 2000 22.5 7.1 81
Sept. 25 0015 22.5 5.4 62
Sept. 26 0650 21.5 5.3 60
Oct. 2 1335 19.5 3.2 35
Qct. 2 1820 20.0 4,7 51
Oct. 2 1950 20.0 5.0 54
Oct. 2 2345 19.0 4.4 47
Oct. 3 0655 18.5 3.5 ' 37
QOct. 3 0755 18.0 3.6 38
Oct. 3 1215 18.0 4.1 43
Oct. 7 0820 17.0 1.2 12
Oct. 7 1112 17.0 2.0 21
Oct. 7 1425 19.5 3.8 41
Oct. 7 1820 20.0 6.3 68
Oct. 7 1950 19.0 4.5 48
Oct. 8 0640 18.0 3.0 32
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Table 3.--Dissolved-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent-—Continued

Dissolved

oxygen

Time of Dissolved (percent

Time of Temperature oxygen satura-

Site Date collection (° ¢ (mg/L) tion)

(1980) (hour) (00010). (00300) (00301)
WR-8 Oct. 8 0815 18.0 3.0 32
Oct. 10 1530 23.5 8.4 98
Oct. 11 0900 18.0 3.9 41
Oct. 14 1400 18.0 4.6 48
Oct. 15 0900 17.0 3.4 35
Oct. 15 1015 17.0 3.2 33
WRT-2 Sept. 22 1420 27.0 11.2 138
Sept. 22 1630 27.0 10.2 126
Sept. 24 0945 20.0 7.3 79
Sept. 24 1620 23.0 9.9 114
Sept. 24 1945 23.5 9.4 109
Sept. 24 2350 22.0 7.9 90
Sept. 25 0630 20.5 7.8 86
Oct. 2 1320 20.0 11.0 120
Oct. 2 1800 21.0 11.1 123
Oct. 2 1930 20.5 10.8 119
Oct. 2 2320 18.5 8.4 89
Oct. 3 0630 16.0 8.2 83
Oct. 3 0750 16.0 8.5 86
Oct. 3 1145 16.5 10.7 109
Oct. 7 0750 16.0 8.8 89
Oct. 7 1050 16.0 9.8 99
Oct. 7 1400 19.0 12.0 129
Oct. 7 1750 20.0 11.8 128
Oct. 7 1945 20.0 10.7 116
Oct. 8 0635 17.0 8.3 86
Oct. 8 0810 16.5 8.4 86
Oct. 10 1535 21.5 11.2 126
Oct. 11 0840 _15.0 8.2 80
Oct. 14 1430 18.0 10.6 112
Oct. 15 0925 16.0 8.0 81
WR-9 Sept. 22 1507 26.0 8.5 104
Sept. 22 1700 26.0 9.5 116
Sept. 24 0950 21.5 4,7 53
Sept. 24 1630 23.0 7.4 85
Sept. 24 1950 23.0 7.6 87
Sept. 24 2400 22.0 6.4 73
Sept. 25 0640 . 21.0 6.0 67
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Table 3.--Dissolved—-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent-—-Continued

Dissolved

oxygen

Dissolved (percent

Time of Temperature oxygen satura-

Site Date collection (° c (mg/L) tion)
(1980) (hour) (00010) (00300) (00301)

WR-9 Oct. 2 1325 20.0 7.3 79
Oct. 2 1810 20.0 7.2 78
Oct. 2 1940 20.0 6.6 72
Oct. 2 2330 19.0 6.0 64
Oct. 3 0640 17.0 5.6 58
Oct. 3 0740 17.0 5.9 61
Oct. 3 1150 18.0 8.5 89
Oct. 7 0800 16.5 3.5 36
Oct. 7 1055 17.5 4.7 49
Oct. 7 1410 19.5 5.7 62
Oct. 7 1800 20.0 6.7 73
Oct. 7 1940 19.5 6.4 69
Oct. 8 0630 18.0 4.7 49
Oct. 8 0800 17.5 4,3 45
Oct. 10 1540 22.0 8.6 98
Oct. 11 0830 17.0 5.5 57
Oct. 14 1435 18.0 6.1 64
Oct. 15 0930 16.5 4.8 49
WR-10 Sept. 22 1530 26.5 7.6 93
Sept. 24 0900 22.0 4.7 53
Sept. 24 1600 23.0 6.8 78
Sept. 24 2015 23.0 6.6 76
Sept. 25 0030 22.5 6.2 71
Sept. 25 0700 21.0 6.2 69
Oct. 2 1300 20.5 6.4 70
Oct. 2 1500 21.0 6.7 74
Oct. 2 1700 22.0 7.2 82
Oct. 2 1900 21.0 7.0 78
Oct. 2 2100 21.0 6.9 77
Oct. 2 2300 20.0 6.3 68
Oct. 3 0100 19.0 6.2 67
Oct. 3 0300 18.0 6.1 64
Oct. 3 0500 18.0 6.1 64
Oct. 3 0700 17.0 6.1 63
Oct. 3 0900 17.0 6.5 67
Oct. 3 1100 18.0 7.3 77
Oct. 3 1230 18.0 7.6 80
Oct. 3 1300 18.0 8.0 84
Oct. 7 0730 17.5 5.2 54
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Table 3.~-Dissolved—-oxygen and temperature data, White River, tributaries,
and Fayetteville waste effluent--Continued

Dissolved

oxygen

Dissolved (percent

Time of Temperature oxygen satura-

Site Date collection (°c) (mg/L) tion)

(1980) (hour) (00010) (00300) (00301)
WR-10 Oct. 7 1040 17.5 5.8 60
Oct. 7 1350 21.0 6.8 76
Oct. 8 0655 18.5 5.6 60
Oct. 8 0830 18.0 5.3 56
Oct. 10 0730 17.5 5.2 54
Oct. 10 1600 22.5 7.4 85

Oct. 10 1840 20.0 8.9 97
Oct. 10 2005 20.0 8.5 92
Oct. 11 0810 18.0 6.7 71
Oct. 14 1530 19.5 9.2 99
Oct. 15 0815 17.5 6.1 64
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Arkansas Water Quality Standards (Arkansas Department of Pollution Con-
trol and Ecology, 1975) state that “"during any month of the year, heat shall
not be added to any stream in excess of the amount that will elevate the
temperature of the water more than 5° F (2.8° C)". Using this standard and
the mean water temperature for site WR-3 (upstream from the Fayetteville
WWTP) of 19.0° C (66.2° F) and the mean water temperature of 23.5° C (74.7° F)
for site WR-4 (downstream from Fayetteville WWIP), it appears that the
State temperature standard was not being met during the period of this study.

Specific Conductance and Dissolved Solids

Specific conductance is a measure of a water's ability to conduct
an electric current and is, therefore, an indication, within wide 1limits,
of the dissolved-solids concentration of the solution (Hem, 1970, p. 99).
Measurements of specific conductance are expressed as micromhos per centimeter
at 25° C. Hem (1970, p. 99) used a dissolved-solids-to-specific-conductance
ratio of 0.54 as the lowest value present in natural water. Using the conser-
vative 0.54 ratio at site WR-3, upstream from the WWIP, with a mean specific
conductance of 102 micromhos per centimeter, ylelds a mean value of 55 mg/L
for dissolved solids. Using the same ratio, site WR-5, with a mean specific
conductance of 545 micromhos per centimeter, ylelds a mean value of 294
mg/L for dissolved solids. These calculations indicate that it is unlikely
that total dissolved solids in the upper White River (Missouri state line to
headwaters, including Beaver Reservoir), meet the Arkansas standard of
160 mg/L maximum concentration (Arkansas Department of Pollution Control
and Ecology 1975). Specific conductance during the study ranged from 90
micromhos per centimeter at site WR-3 to 560 micromhos per centimeter
at sites WR~4 and WR-5 (table 2).

Chemical Characteristics

Chemical water—quality characteristics measured during the study were
pH, DO, CBODU, streambed oxygen demand, net photosynthetic dissolved-oxygen
production, and nutrients.

pH

The pH of a solution refers to its hydrogen—ion activity and can range
from 0 to 14 units. Water with pH values less than 7 units is acidic; water
with pH values more than 7 units is alkaline. The pH of most natural water
ranges from 6.0 to 8.5 units (Hem, 1970, p. 93). Where photosynthesis by
aquatic organisms takes up dissolved carbon dioxide during the daylight
hours, pH may fluctuate, and the maximum pH value may sometimes reach as
high as 9.0 units (Hem, 1970, p. 93). The pH of the main stem of White
River during the study ranged from 7.0 to 7.7 units (table 2). The pH of
the Fayetteville WWTP effluent ranged from 7.0 to 7.3 units (table 2).
Arkansas water—-quality standards state that "the pH of water in the stream or
lake must not fluctuate in excess of 1.0 pH unit, within the range of 6.0
to 9.0, over a period of 24 hours. The pH shall not be below 6.0 or above
9.0 due to wastes discharged to the receiving waters” (Arkansas Department
of Pollution Control and Ecology, 1975).
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Dissolved Oxygen

Dissolved oxygen is the most biologically important parameter in natural
waters; it is essential to all biota that respire aerobically. Fish and
other desirable clean-water organisms require sufficient DO concentrations to
survive and propagate. Arkansas water—-quality standards (Arkansas Department
of Pollution Control and Ecology, 1975) require a minimum of 6.0 mg/L for
the segment of White River in this study. This standard was established to
insure conditions for the maintenance of a smallmouth-bass fishery.

The DO concentration of flowing water is highly variable. Oxygen in
rivers is consumed by bacterial decomposition of suspended, dissolved, and
deposited organic matter, oxidation of ammonia by nitrifying bacteria (nitri-
fication), and the respiration of aquatic organisms. Oxygen is replenished
in natural water primarily by reaeration, the diffusion of oxygen into the
water from the atmosphere, and by photosynthesis.

Reaeration will not result in DO concentrations greater than saturation
(the concentration of oxygen in the water that is in equilibrium with the
oxygen concentration in the atmosphere). At sea level and a temperature of
10° C, water is saturated with oxygen when it contains about 11.3 mg/L. At
30° C, water is saturated with oxygen when it contains only about 7.7 mg/L.

During daylight hours, algae are both producers and consumer of oxygen.
In some favorable river environments algal photosynthesis can raise DO
concentrations much higher than the saturation value. Likely places for
this condition are slow-moving rivers that have large pools and an abundant
nutrient supply during summer. During such periods, algae can become a more
important contributor of oxygen to the river than reaeration. At night, in the
absence of sunlight, algae are only oxygen consumers. Where algal photosyn-
thesis has resulted in supersaturated-~oxygen concentrations, oxygen diffuses
from the water, tending toward equilibrium. Because of the net oxygen produc-
tion during the day, and losses to respiration and diffusion at night, the
diel pattern is high DO concentrations during the day and low concentrations
during the night. This diel pattern is characteristic of water with high algal
productivity. .

During summer months, when streamflow is low and water temperature is
high, the DO concentration of a stream can be depleted by high organic loading.
Such loading is common downstream from a WWIP with secondary or less treatment.
A fish kill in the White River downstream from the Fayetteville WWIP was
observed during the period of this study. A DO concentration of 0.0 mg/L
was measured at site WR-5 on October 2 and 7, 1980 (table 3).

Dissolved-oxygen concentration of the White River was measured approxi-
mately four times during each 24-hour-sampling period; once during each
collection of water-quality samples, once after darkness, and once near
sunrise. In addition, a continuous temperature and DO concentration monitor
was used at selected sampling sites while numerous additional temperature
and DO measurements were being made at other sites. Dissolved-oxygen concen-
trations in the river ranged from a minimum of 0.0 mg/L (0 percent saturation)
at site WR-5 on October 2 and 7, 1980, to a maximum of 10.4 mg/L (124 percent
saturation) at site WR-3 at 1600 hours on October 7, 1980 (table 3). Mean
daily DO profiles are shown in figure 3.

The DO concentration generally was lowest in the early morning hours
at all of the White River sampling sites. This condition is due to cumulative
nighttime respiration and the absence of production. Differences between
nighttime and midday DO concentrations at several sites indicate that photo-
synthetic activity was significant during the study.
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MEAN DISSOLVED-OXYGEN CONCENTRATION, IN MILLIGRAMS PER LITER
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Figure 3.- Mean daily dissolved-oxygen profiles for sampling—-sites on the White

River between Lake Sequoyah and Beaver Resevoir.

28



Carbonaceous Biochemical Oxygen Demand

Carbonaceous biochemical oxygen demand (CBOD) is a single stage reaction
defining the quantity of oxygen used by organisms in the water column as
they consume organic material. Demands can be defined for any period of
time. The maximum quantity of DO required for the complete assimilation of
carbonaceous material in a given parcel of water is defined as the "ultimate
carbonaceous biochemical oxygen demand” (CBODU).

Water collected at each station during the September and October sam-
pling periods was analyzed for CBOD according to methods described by Pickering
(written commun., 1980). 2-chloro-6'(trichloromethyl) pyridine was introduced
into each sample to inhibit nitrification. The observed decline in DO
concentration in each sample was then assumed to be only due to the respiration
of those organisms that consume carbonaceous material. Dissolved-oxygen
concentrations in each sample were recorded initially and on day one of the
test; thereafter concentrations were recorded every other day for a period
of 20 days.

The single-stage decay of carbonaceous material can be defined by the
first order kinetics model expressed in the following equation:

Lt = Loe'kt,
where
t = time (in days),
e = base of natural logarithms,
Lt = concentration of CBOD remaining after t days, (mg/L),
Ly, = initial concentration of CBOD at time 0, CBODU, (mg/L),
k = first-order CBOD decay rate, base ¢, (day~l).

L, and X are determined by defining a best-fit curve for the time-series
DO data recorded during the laboratory CBODU tests. This fitting is accom
plished using a computer program described by Jennings and Bauer (1976).

The fitting methods available in the program are:

1) the Thomas method (Thomas, 1950),

2) the least-squares method (Reed and Theriault, 1931), and

3) the nonlinear least-squares method (J. P. Bennett, written commm.,

1974). :
The nonlinear least-squares method requires that initial values of k and Lo
be supplied by the user or by a presolution using the Thomas method or the
least—-squares method.

For each time~series data set analyzed, the fitting program was run
twice; once utilizing the Thomas method followed by the nonlinear least-
squares method, and once with the least—-squares method followed by the non-
linear least-squares method, resulting in four attempts at fitting each data
set. Estimates of Ly and X produced by the fitting procedure with the small-
est computed root mean-square error were considered most accurate.

Values of Ly, or CBODU, at each sampling station are given in table 2.
The reaction coefficients, i, determined in this manner represent deoxygena-
tion rates, because deposition 1s not accounted for in the "bottle-time"” tests.
The deoxygenation rates determined for samples taken at each station are given
in table 2. The present 5-day biochemical oxygen demand limit for the Fayette-
ville WWTP is 30 mg/L. Using a conversion factor of 1.5 (Velz, 1970, p. 145)
glves an CBODU limit of 45 mg/L for the plant. CBODU concentrations for the
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Fayetteville WWTP (site WTP-1) ranged from 72 mg/L on September 24, 1980, to
190 mg/L on October 7, 1980 (table2). CBODU concentrations in White River
ranged from 4.6 mg/L at site WR-10 to 120 mg/L at site WR-4, just downstream
from the Fayetteville WWTP outfall,

Streambed Oxygen Demand

The streambed oxygen demand is a measure of the quantity of oxygen
removed from overlying waters by processes occurring through a unit area
of streambed in unit time. The demand from the streambed for oxygen 1is
primarily due to the decay of natural organic detritus such as leaves and
to the decay of settleable organics contributed by man from both point and
nonpoint-sources.

"Streambed oxygen demand,” as used in this report, does not include

- the respiration of periphyton nor does it include the respiration of benthic
invertebrates and bacteria attached to non-collectable substrates.
These noncollectable substrates include submerged trees, aquatic macrophytes,
bedrock outcrops, large gravel, and boulders. The term "benthic oxygen
demand” (benthal demand) as used in this report, has a broader meaning than
streambed oxygen demand and includes the bacterial and invertebrate oxygen
demands from non—-collectable substrates. Benthic demand is discussed fur-
ther under the digital model calibration section.

Representative bed-material samples are collected by use of grab samplers
or by use of a shovel, Approximately 20 pounds of the top 2 to 3 inches
(50-80 millimeters) of bed material are collected in a large pan. The surface
of the material is covered with plastic wrap. The sample is then chilled
and transported to the laboratory for analysis. Analysis 1is begun within
24 hours of collection.

A respirometer, adapted from Nolan and Johnson (1979), 1is used in
the determination of streambed oxygen demand in the laboratory. The res-
pirometer (fig. 4) consists of a cylinder (1 foot in diameter) constructed
from clear acrylic pipe with acrylic end plates, a dissolved—oxygen probe
and container, a continuous recorder, a peristaltic pump, and polyethylene
tubing.

The bed-material sample is placed on the bottom of the respirometer
to a depth of 1 inch (25 millimeters). The surface area of the sample
is 0.743 square foot (0.069 square meter). The inlet port is 1.18 inches
(30 millimeters) above the sample surface, and the exit port is 3.54 ‘inches
(90 millimeters) below the 1id of the respirometer., After a sample has been
placed in the respirometer and the dissolved-oxygen probe has been cali-
brated, the respirometer is filled with 2,25 gallons (8.53 1liters) of
aerated, demineralized water, the peristaltic pump started, and the 1id
is placed on the respirometer forming an airtight container. The system
is operated at room temperature (21° C * 1° C) for 4-8 hours.

The first step in calculating the oxygen demand of the sample is to
examine the DO versus time plot obtained from the continuocus recorder.
Initial DO (0j) and £inal DO (0f) (fig. 4) are determined from that part
of the plot where oxygen consumption versus time is constant (fig.5). DO
concentrations less than 2 mg/L are not used in rate determinations because
of changing rates of oxygen demand by aquatic organisms during low DO periods.
As a control, the analysis 1s also done without streambed material, using
demineralized water, and the appropriate blank correction is made in the
final calculation, shown in figure 4.
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SOD = Streambed oxygen demand (grams per square meter per day),
0; = DO initial (milligrams per liter),
Of = DO final (milligrams per liter),

By = blank DO initial (milligrams per liter),
Bf = blank DO final (milligrams per liter),

V = volume confined water (cubic meters)

SA = sample in area (square meters), and
At = ty - tg, change in time (days).

Figure 4.--Respirometer and calculations used for measuring streambed oxygen
demand.
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Three replicate samples were analyzed when possible, and the mean value
obtained is reported in table 2, Streambed oxygen demand values differ
considerably between streams. Butts and Evans (1978) found that for several
streams in Illinois, values ranged from 0.27 (g/mz)/d for a clean stream
to 9.3 (g/m2)/d for a very polluted stream. Values for White River ranged
ranged from 1.2 (g/m2)/d for site WR-10 to 6.0 (g/m2)/d at site WR-5.

Net Photosynthetic Dissolved-Oxygen Production

Net photosynthetic dissolved-oxygen production, defined as the difference
between gross photosynthesis and algal respiration, is an integral component
in the community metabolism of most streams. In this study the net DO
production component was determined from an analysis of a diel series
.of DO and temperature measurements and chlorophyl a measurements made at
each sampling site (table 3). A typical set of curves for such diel data is
shown in figure 6. An approach developed by Odum (1956) was used to solve
the oxygen-balance equation for each set of diel data collected. This anal-
ysis yields net daytime productivity, total nighttime respiration, and total
24-hour community metabolism.

The 0Odum methodology has been coded into a digital program and documented
by Stephens and Jennings (1976). The program solves the oxygen-balance equa-
tion at a single station or as the difference between upstream and downstream
stations. In this study, the single-station analysis was used. Problem
solution 1s for the following oxygen balance equation:

X=P-R=+D+{,

where

rate of change of dissolved oxygen per unit area,

rate of photosynthetic production per unit area,

rate of community respiration per unit area,

rate of gain or loss of oxygen through diffusion, and
rate of accrual of oxygenated water.

AR IR i VR

In addition to the diel DO and temperature data, values for some additional

parameters must be supplied to the program to solve the preceding equation.

For these analyses, the additional parameters necessary are as follows:
1) oxygen diffusion coefficient

DIFC = kgx9.07/(BP/29.92),

where

DIFC = diffusion coefficient, (g/m3)/h
k2 = reaeration coefficient, hour‘l, computed with the
Velz predictive equation (Attachment A-2), and
dissolved-oxygen saturation, mg/L, at 20° C, and
barometric pressure, inches of mercury.
2) Dbarometric pressure, inches of mercury,
3) stream depth, m, and
4) time of sunrise and sumset.

3.

%S
([

An example of printed results from the program is shown in figure 7. For
further details concerning the derivation of net photosynthetic DO production,
to this stage, the reader is referred to Stephens and Jennings (1976).
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Using, as an example, the results of the Odum analysis (fig. 7) and
observed chlorophyll g concentrations (table 2) for station WR-7, the fol-
lowing procedure was used to derive values for net photosynthetic DO produc-
tion at each station.

Equalities:

1) Net daytime oxygen production = gross photosynthesis + [daytime
benthal demand + daytime BOD +
daytime respiration of periphyton
+ daytime respiration of phyto-
planktonl.

2) Night respiration = nighttime benthal demand + nighttime BOD +

nighttime respiration of periphyton + night-
time respiration of phytoplankton.

3) 24-hour community metabolism = net daytime production + nighttime
respiration.

4) Algal respiration = -0.025 (chlorophyll a concentration),

(Shindala, 1972).
Assumptions: .

1) Daytime benthal demand and BOD = nighttime benthal demand and BOD.

2) Daytime algal respiration = nighttime algal respiration.

3) Periphyton respiration = phytoplankton respiration; in the absence

’ of good periphyton data.

Computations:
Chlorophyll a = 7.61 ug/L, therefore, by equality 4 phytoplankton
respiration = -0.025 (7.61 ug/L) = -0.190 (g/m3)/d of oxygen.
By assumption 3, then periphyton respiration = -0.190 (g/md)/d.

By equality 2, nighttime benthal demand + nighttime BOD = night respi-
ration - nighttime respiration of periphyton - nighttime respiration
of phytoplankton
-7.566-(-0.190/2)-(-0.190/2)
-7.376 (g/m3)/d.
Define: "Net DO production" = gross photosynthesis + daytime
respiration of periphyton + daytime
respiration of phytoplankton +
nighttime respiration of periphyton +
nighttime respiration of phytoplankton.

By equality 1, net DO production = net daytime production - [daytime
benthal demand + daytime BOD] +
nighttime respiration of periphyton
+ nighttime respiration of phyto-
plankton.

" Therefore, using assumptions 1 and 2,
net DO production = -3.893-(-7.376) + (-0.190/2) + (-0.190/2)
= 3.29 (g/m3)/d, and
= 3.29 (mg/L)/d.
The results of the preceding derivation for each station where sufficient
data were collected are given in table 4.

Nutrients

Plants, including algae, require carbon, nitrogen, phosphorus, and
potassium, as well as trace amounts of other elements to grow (Hynes, 1970).
Potassium, a common constituent in river water, seldom limits plant growth.
Forms of nitrogen dissolved in water include bound organic, ionized ammonia
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Table 4.--Net photosynthetic dissolved—oxygen production derived from
community-metabolism analysis of instream—-diel dissolved-oxygen and
temperature measurements

[Temperature measurements are shown in table 3]

Net photo-
synthetic

Sampling Date dissolved-
station (1980) oxygen

- production
(mg/L)
WR-]. Octo 7, 8 7.4
WR-Z Octc 7, 8 0.0
WR-3 Oct. 7, 8 2.0
WR=-5 Oct. 7, 8 N 4
WR-6 Oct. 7, 8 4.0
WR=7 Oct. 6, 7 3.3
WR-B Oct. 7, 8 7.4
WR-9 - Oct. 7, 8 4,1
WR-10 Oct. 10, 11 1.8
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(NH4+), un-ionized ammonia (NH3), nitrite, and nitrate. Of these forms,
nitrate is the most readily available for plant growth and is the predom
inant form present in streams, except, when there is a man-made source of
ammonia present or under reducing conditions when denitrification occurs.
Forms of phosphorus in water include orthophosphate and the bound phosphate
in soluble or particulate form. Dissolved forms of nitrate and phosphate
are rapidly taken up by plants. Consequently, their concentrations in
natural water are usually low.

Nutrient enrichment may encourage blooms of nuisance algae. Such
blooms are common in lakes (Wetzel, 1975, p. 659) but are seldom seen in
rivers. A principal reason for the absence of blooms in rivers is an
unfavorable environment for planktonic algae because of river currents.
Many algae present in rivers are not truly planktonic but are members of
the periphyton (attached) commumity that have become dislodged because of
river currents or overgrowth. The following genera of algae classed as
truly planktonic by Hynes (1970, p.99) were present in significant numbers
in the White River: pennate diatom, Fragilaria; centric diatoms, Melosira
and Cyclotella; green algae, Scenedesmus and Ankistrodesmus; blue-green al-
gae, Anacystis; flagellates, Euglena and Trachelomomas. An algal bloom
was observed in the river on several days in late September and early
October, 1980. A phytoplankton sample taken during a bloom on October 8,
1980, at site WR-5 had a cell density of 1,400,000 cells per milliliter;
Oscillatoria, a filamentous blue-green alga, was the dominant genus.

These blooms, along with the presence of several truly planktonic algae,
indicate that the river reach of the study biologically behaves more 1like
a lake than a river.

The wain source of nitrogen and phosphorus in the White River study
segment is the Fayetteville WWTP (site WTP-1). For the four samples taken
at site WIP-1 during this study, water discharge was 286 percent greater
than the flow of the receiving stream (White River at site WR-3). The
four effluent samples had the following average concentrations: total
organic nitrogen as nitrogen (organic-N), 14.6 mg/L; total ammonia as nitro-
gen (ammonia-N), 4.8 mg/L; total nitrite as nitrogen (NO2-N), 0.13 mg/L;
total nitrate as nitrogen (NO3-N), 2.6 mg/L; and total orthophosphate as
phosphorus (P04-P), 8.1 mg/L.

Nutrient concentrations in the river varied widely during the study
(table 2). The concentration of organic-N in the river ranged from 0.41 mg/L
at site WR-2 upstream from the Fayetteville WWTP to 37 mg/L at site WR-4,
immediately downstream from the treatment-plant outfall. Ammonia-N concen-
trations ranged from 0.01 mg/L at site WR-3 to 6.8 mg/L at site WR-5.
NO9-N concentrations ranged from 0.00 mg/L at site WRT-1 to 0.48 mg/L at
site WR-5. NO3-N concentrations ranged from 0.00 mg/L at site WR~1 (down-
stream from Lake Sequoyah) and site WRT-1 (West Fork White River) to 2.9
mg/L at site WR-4. PO4~P was not detected in at least one sample for each
of the four stations upstream from the Fayetteville WWTP. The highest con-
centration present downstream was 9.1 mg/L at site WR-4.

The concentration of all nutrients except nitrate showed a general de-
cline downstream. This trend 1s caused by several factors working simul-
taneously in the stream. Organic-N is decomposed by bacterial action and
hydrolysis to form ammonia=~N. Ammonia-N is oxidized to NOp-N mainly
through the action of bacteria belonging to the genus Nitrosomonas. The
resulting NOo-N is quickly oxidized to NO3~N by bacteria of the genus Nitro-
bacter. The resulting NO3-N is the form of nitrogen most used by algae and
higher plants. NO3~N production was proceeding in the rivr at a higher rate
than plant uptake, resulting in increasing NO3-N concentrations downstream.
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Lesser reactions in the nitrogen cycle of a river include microbial fixation
of molecular nitrogen in water and bottom sediments and microbial reduction
of NO3-N and NO9-N to ammonia-N, and to the gaseous products nitrous oxide
and molecular nitrogen.

PO4~P concentrations showed a typical decline downstream from the
Fayetteville WWIP. Several factors affect instream concentrations of PO4;-P.
Algae and, to a lesser extent, bacteria (Hynes, 1970, p. 46) and aquatic
macrophytes (Wetzel, 1975, p. 227) remove PO4-P from solution for growth.
Bacterial action on organically-bound phosphorus releases PO4~P to the
stream. Phosphorus is continually removed from and added to the streambed
by a series of complex processes, generally with a net loss to the streambed.
During a storm, however, high river velocities may scour the riverbed and
resuspend a large amount of phosphorus and carry it downstream,

Biological Characteristics

The stream biological community was selectively sampled for phytoplank-
ton, benthic invertebrates, fish, and fecal coliform bacteria. To document
changes in the biological community of White River resulting from the effluent
discharge from the Fayetteville WWTP, particular attention was given to site
WR-3 (upstream from the Fayetteville WWIP) and site WR-5 (downstream from
the Fayetteville WWTP).

Phytoplankton

Phytoplankton are an assemblage of microscopic plants that drift pas-
sively with the currents of rivers and lakes. The species composition and
abundance of phytoplankton are significantly affected by water quality. As
a result, for water-quality assessments, phytoplankton are good indicators
of general water quality.

Phytoplankton populations can directly affect the pH, DO concentration,
concentrations of certain inorganic comstituents (particularly nutrients),
turbidity, and color of surface water. Phytoplankton cause problems in
domestic water supplies when their concentrations reach nuisance levels.
Some of the problems caused by nuisance organisms are blooms, taste, odor,
clogging of sand filters, and toxicity (Palmer, 1959).

There are no applicable water—quality standards for phytoplankton in
water used for recreation. However, esthetic considerations by users may limit
recreational use when algal blooms are present. In addition to imparting tur-
bidity and color, algal blooms have been known to impart grassy, moldy, or
fishy odors to water and produce substances toxic to livestock and man
(Palmer, 1959).

Seven genera of algae known to produce objectionable odors (Palmer, 1959)
were identified from samples taken from sites WR-3 and WR-5, table 5; the
genera Scenedesmus, Chlamydomonas, Cyclotella, Fragilaria, and Anacystis (the
latter also capable of toxin production) from site WR-3 and the genera Chlamy-
domonasg, Fragilaria, Anacystis, Oscillatoria, and Fuglena from site WR-5,

Nine genera of algae commonly present in organically enriched areas were
present in samples from sites WR~3 and WR-5 (Palmer, 1959, 1968), table 5.
Site WR~3 included the genera Ankistrodesmus, Scenedesmus, Chlamydomonas,
Melosira, Nitazchia, and Anacystis. Site WR-5 included the genera Chlamydo-
monas, Melosira, Gomphonema, Nitzschia, Anacystis, Oscillatoria, and Euglena.
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Table 5.--Phytoplankton genera and densities of White River upstream and

downstream from Fayetteville wastewater—treatment plant

[Phytoplankton density in cells per milliliter]

Scientific name

Common name

Station WR-3,
White River
upstream from

treatment plant,

October 7, 1980
(RM 683.5)

Station WR-5,
White River
downtream from
treatment plant,
October 8, 1980

(RM 681.8)

CHLOROPHYTA
- CHLOROPHYCEAE
. +CHLOROCOCCALES

+» + JOOCYSTACEAE
o+« JANKISTRODESMUS

o v« o TETRAEDRON
oo+ oWESTELLA

» » « SCENEDESMACEAE
oo+ +SCENEDESMUS

o o+ oTETRASTRUM
« VOLVOCALES

» » » CHLAMYDOMONADACEAE

o+« «CHLAMYDOMONAS

CRYSOPHYTA
+BACILLARIOPHYCEAE
» «CENTRALES

+ ++COSCINODISCACEAE
e oo oCYCLOTELLA

o+ «MELOSIRA

. +PENNALES

« « JACHNANTHACEAE
oo« JACHNANTHES

+ + +FRAGILARIACEAE
oos o FRAGILARTA

« » « GOMPHONEMATACEAE
oo« JGOMPHONEMA

« « «NITZSCHIACEAE
oo JNITZSCHIA
CYANOPHYTA
.CYANOPHYCEAE

» +CHROOCOCCALES

« « « CHROOCOCCACEAE
v oo JAGMENELLUM

oo o ANACYSTIS
. .HORMOGONALES
++ +OSCILLATORIACEAE

Green algae

Diatoms
Centric

Pennate

Blue-green algae

Coccoid

Filamentous

160
160
660

3,800

660

330

5,400

15,000

160

160

490

40

1,500

590
880

290

4,700
590



Table 5.--Phytoplankton genera and densities of White River upstream and

downstream from Fayetteville wastewater-treatment plant--Continued

Scientific name

Station WR-3,
White River
Common name upstream from
treatment plant,
October 7, 1980
(RM 683.5)

Station WR-5,
White River
downtream from
treatment plant,
October 8, 1980

(RM 681.8)

e e+ «OSCILLATORIA
+ « {NOSTOCACEAE

« o+ +ANABAENOPSIS
EUGLENOPHYTA
.EUGLENOPHYCEAE

. .EUGLENALES

+» « .EUGLENACEAE
o« +EUGLENA

o o« « TRACHELOMONAS

Euglenoids

Total 71,610

1,400,000

10,000

1,418,840
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Palmer's (1968) algal-pollution index was calculated using the preceding
genera from each site. This index was developed for use in rating water
samples for organic pollution. A score of 20 or more for a sample is
taken as evidence of high organic pollution, whereas a score of 15 to 19
is taken as probable evidence of high organic pollution. Site WR-3 had a
score of 16, and site WR-5 had a score of 24.

Possible sources of the waste at site WR-3 are pastureland, feedlots, and
disposal of sludge from the Fayetteville WWIP. The principal source of
organic wastes at site WR-5 is the Fayetteville WWIP.

In summary, phytoplankton species and densities at sites upstream and
downstream from the Fayetteville WWIP are indicative of organically enriched
streams. However, the high phytoplankton density (1,400,000 cells per
milliliter) at site WR-5 as compared with site WR-3 (72,000 cells per
milliliter) and the high numbers of Oscillatoria and Euglena at site WR-5
indicate much higher enrichment at station WR-5. Furthermore, the calculation
of Shannon's diversity index (Shannon and Weaver, 1949) for phytoplankton
genera at the two sites results in an index of 1.9 for site WR-3 and an index
of 0.1 for site WR-5. Diversity indices less than 1 indicate large concen-
trations of only a few species and usually are indicative of organic pollution.

Benthic Invertebrates

The benthic invertebrate classification includes those invertebrates
that live on, in, or near the substratum of rivers, streams, or lakes during
some period of their life cycle. Much work has been done using benthic
invertebrates to assess water quality.

Because chemical studies give information on physical-chemical conditions
only at the time of sampling, and because pollution surveys frequently cannot
be made during the period of the most critical conditions, additional methods
are needed that can be used throughout the year for determining the extent
and severity of brief critical or limiting, environmental factors. The
qualitative and quantitative composition of an aquatic population 1is deter-
mined by recurring critical conditions, even though of short duration, as
well as the more stable or long-term environmental factors. Therefore, the
complex of organisms that develops in a given area is, in turn, indicative
of environmental conditions that have occurred during its development (Gaufin,
1976). Possible exceptions to this rule are some of the adult forms of the
orders Coleoptera and Hemiptera. These organisms are atmospheric-air breath-
ers; they may enter or leave the water at will and are generally not good
indicators of water quality.

Benthic-invertebrate samples were collected from the biological-assess-
ment stations (sites WR-3 and WR-5) by use of a hand net for a period of 15
minutes. Each site was sampled throughout 225 feet of river length. Both
sites were large pools approximately 75 feet in width and 3.5 feet in depth.
Site WR-3 had 10 feet of riffle, whereas site WR-5 had no riffles in the
sampled reach. The organisms identified and the numbers found at each site
are given in table 6.

A comparison of site WR-3 (upstream from the Fayetteville WWTP) with
site WR-5 (downstream from the Fayetteville WWTIP) reveals both similarities
and differences between the benthic-invertebrate populations. Shannon's
diversity index, an often used comparative tool, was 2.3 at the genus level
for all organisms for site WR-3, whereas site WR-5 had a value of 2.6.
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Table 6.—-—-Benthic invertebrate identification, to genera, upstream and down-

stream from Fayetteville wastewater-treatment plant

[15-minute search by hand net; organisms per sample]

Scientific name

Common name

Station WR-3,
White River
upstream from
treatment plant,
October 7, 1980
(RM 683.5)

Station WR-5,
White River
downstream from
treatment plant,
October 8, 1980

(RM 681.8)

ANNELIDA
+HIRUDINEA

+ +RHYNCHOBDELLIDA
++» +GLOSSIPHONIIDAE
« «« UNKNOWN GENUS
+«OLIGOCHAETA

. PLESIOPORA

++ +TUBIFICIDAE

s+ e +BRANCHIURA
ARTHROPODA
.CRUSTACEA

. +AMPHIPODA

« « sTALITRIDAE
vseHYALLELA

. .DECAPODA

+ + ASTACIDAE

» + » UNKNOWN GENUS
.INSECTA

. .COLEOPTERA

+ « «GYRINIDAE

oo o oGYRINUS

+ « JHALTIPLIDAE
s+« PELTODYTES

+ « sHYDROPHILIDAE
+ « « « BEROSUS
. DIPTERA

« » CHIRONOMIDAE
oo+ JCHIRONOMUS

o+« oGLYPTOTENDIPES
««+ POLYPEDILUM

. . EPHEMEROPTERA

+ « «BAETIDAE

oo+ oBAETIS

« » »SIPHLONURIDAE
oss oISONYCHIA

. .HEMIPTERA

» « «CORIXIDAE

oo+ JTRICHOCORIXA

o « « UNKNOWN

Leeches
Aquatic earthworms
Arthropods

Scuds

Decapods
Crayfish

Beetles
Whirligig beetles
Crawling water beetle

Water—-scavenger

Midges

Mayflies

True bugs
Water boatmen
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Table 6.--Benthic invertebrate identification, to genera, upstream and
downstream from Fayetteville wastewater-treatment plant--Continued

Station WR-3, Station WR-5,
White River White River
Scientific name Common name upstream from downstream from

treatment plant, treatment plant,
October 7, 1980 October 8, 1980
(RM 683.5) (RM 681.8)

» « « s UNKNOWN GENUS - 1
. .MEGALOPTERA Megalopterans

«« «CORYDALIDAE

e« « oCORYDALUS Dobsonflies 2 -
- «ODONATA Dragonflies

« « JAESHNIDAE

e e oo BASTAESCHN A ) - 2
. « +AGRIIDAE (Calopterygidae)

e oo oHETAERINA 2 -
« « « COENAGRIIDAE

eeo o ENALLAGMA - 3
«+ LIBELLULIDAE

e oo eMICRATHYRIA - 5
e oo o PERITHEMIS - 7
e oo o PLATHEMIS - 1
« .TRICHOPTERA Caddis flies

«+ s HYDROPSYCHIDAE

e e o CHEUMATOPSYCHE

e« « HYDROPSYCHE (Split genus 1979)
MOLLUSCA Molluscs
.GASTROPODA Snails

. «.BASOMMATOPHORA

« « s PHYSIDAE Pond snails

ees o PHYSA - 5

-
|
1
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Using the index for genera of the class Insecta gives a value of 2.1 for
the upstream station and 2.3 for the downstream station. Accepted without
further analysis, this index shows the downstream station to be more diverse
and, presumably, cleaner than the upstream station. In reality, however,
the three dominant genera at site WR-3 (Baetis, Cheumatopsyche, and Polype-
dilum) are all listed by Hart and Fuller (1974) as being tolerant of
biochemical oxygen demand greater than 5.9 mg/L but not tolerant of DO
concentrations less than 4 mg/L. Of the three dominant genera at site
WR-5 (Chironomus, Glyptotendipes, and Trichocoriza), the first two are of
the family Chironomidae that has representatives tolerant of many chemical
extremes including high biochemical oxygen demand and low DO concentrations.
The Chironomids possess a hemoglobinlike blood pigment which aids in
oxygen uptake under stressful conditions. The third dominant genera at
site WR-5 are the Trichocoriza (water boatmen) which are atmospheric-~air
breathers and are therefore not affected by low DO concentrations in the
stream.

A comparison of the dominant genera present at WR-3 and WR-5 indicates
that, in contradiction to Shannons diversity index, site WR-3 is indeed
cleaner than WR-5. Although several organisms at site WR-3 were tolerant
of organic enrichment, they were not tolerant of low DO concentrations,
This intolerance of low DO concentrations was especially true of the may-
flies, caddis flies, and dobsonflies present at the site. Site WR-5
contained numerous organisms tolerant of organic enrichment, but a better
indicator of overall water quality at the site was the presence of numerous
organisms that were atmospheric—air breathers or had otherwise adapted to
a low DO environment. Among these organisms were members of the following
familjes: Tubificidae, Astacidae, Gyrinidae, Haliplidae, Hydrophilidae,
" Chironomidae, Corixidae, and Physidae. The presence of the order Odonata
at site WR-5 during periods of apparent zero DO should be noted. These
organisms were all taken very near the stream edge in a dense growth of
aquatic macrophytes. These areas tend to isolate themselves from the main
riverflow and may produce enough oxygen to prevent the death of river
fauna during periods of low DO (Whitton, 1975). In summary, the benthic
community indicates a degradation in water quality downstream from the
effluent of the Fayetteville WWTP.

Fish

Fish were collected at the two biological-assessment sites (sites WR-3
and WR-5) on October 7-8, 1980. Fish genera and densities are given in table
7. The fish were collected by setting block nets at both ends of a 225-foot
river reach and then seining toward the block nets. The seining was carried
out for a 45-minute period. The fish were then collected, counted, identi~
fied, and an estimate was made of the weight of each fish. Because fish have
the ability to swim away from unfavorable river conditionms and then return
upon subsequent river recovery, they are probably poor indicators of water
quality. However, the contrast of the 43 live fish collected at site WR-3
with the 3 live and 16 dead fish collected at site WR-5 is sufficient
evidence of a degradation of water quality downstream from the Fayetteville
WWTP.
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Table 7.--Fish genera and densities upstream and downstream from Fayetteville

wastewater—tre

atment plant

[225 feet of river length sampled for each station by use of block nets and

seine for a 45-

minute period]

Station WR-3,
White River
upstream from
treatment plant,
October 7, 1980

Station WR-5,
White River
downstream from
treatment plant,
October 8, 1980

Scientific name Common name (RM 683.5) (RM 681.8)
Number Weight Number Weight
of per of per
individ- individ- individ- individ-
uals ual uals ual
(1b) (1b)
CHORDATA
.OSTEICHTHYES
. «CLUPEIFORMES
.+« .CLUPEIDAE
««« DOROSOMA CEPEDIANUM Gizzard shad 10 0.06  ————- ———
« . CYPRINIFORMES
+ « «CYPRINIDAE
e+« CYPRINUS CARPIO Carp 1 3.00 ———— e
e« CYPRINUS CARPIO do. 2 2.00 -——— @ -
o+« .UNKNOWN GENUS Minnow 22 .03 2 0.03
« « «CATOSTOMIDAE
.+« UNKNOWN GENUS Sucker 2 3.00 ———— ———
. .PERCIFORMES
« + «CENTRARCHIDAE
e oo o LEPOMIS MEGALOTIS Longear sunfish 2 .20 1(struggling) .20
e oo LEPOMIS MEGALOTIS do. 15(dead) .20
s« e MICROPTERUS SALMOIDES Largemouth bass 1 .50 — -————
. -.SEMIONOTIFORMES
« « . LEPISOSTEIDAE
««+.LEPISOSTEUS OSSEUS Longnose gar 1 6.00  ————- ————
e e+ LEPISOSTEUS OSSEUS do. 2 2.00 ——— ————
+ .SILURIFORMES
+ « « ICTALURIDAE
e oo o ICTALURUS PUNCTATUS Channel catfish 1(dead) 1.00

4
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Fecal Coliform

The coliform bacteria are normal inhabitants of the large intestine of
man and animals and have been used in water-quality assessments as indica-
tors of fecal wastes. Recently, because some coliform bacteria can origi-
nate from nonfecal sources, an elevated temperature test was standardized
(Greeson and others, 1977) to distinguish fecal coliform bacteria from those
of other environmental sources.

Arkansas water—quality standards for a class A water (Arkansas Depart-
ment of Pollution Control and Ecology, 1975), such as White River, for use
as a source for public water supply or body contact recreation state that
"based on a minimum of not less than five samples taken throughout not more
than a 30-day period, the fecal coliform content shall not exceed a log mean
of 200 per 100 milliters, nor shall more than 10 percent of samples during
any 30-day period exceed 400 per 100 milliliters”.

Four samples were collected at each of 13 sites during September and
October 1980. Results are presented in table 2. Because of an equipment
mal function at the Fayetteville WWTP during part of this period, a large
variation in colony counts was observed in the river downstream from the
WWTP effluent. The lowest observed count was one colony per 100 milli-
liters at site WR-4 immediately downstream from the Fayetteville WWIP,
when the plant chlorinators were operating. The highest count was an
estimated 9,200,000 colonies per 100 milliliters at site WR-5. Upstream
from the WWIP, an increase in fecal coliform density was observed between
site WR-2 and WR-3. Several cattle were observed watering in this reach
and are a possible source of the increased counts. The large variations
in fecal-coliform densities made it impossible to model the bacteria.

DIGITAL MODEL

To adequately appraise the "quality” of any environmental system
for a given set of conditions and for a specific period of time, the
investigator must know the criteria by which the "quality" of that system
is judged. He must then, during this specific period of time, be able to
collect sufficient quantities of appropriate data to evaluate the quality
of that system according to the given criteria. This task can be time
consuming and laborious, depending upon the size and complexity of the
system being investigated. However, once the "quality" criteria for the
system have been established for a given set of conditions, the course of
action generally is clear and the task can be completed efficiently and
accurately. In addition to defining the "quality” of the system, the
investigator can probably identify the impacting processes.

In many instances, however, the primary need is to predict the effect
of changing process impacts upon the quality of the system. This prediction
is a much more complex task. The investigator must not only adequately
appraise the existing quality of the system, he must also simulate the
kinetics of the impacting processes. It is imperative to know:

1) The rates at which system processes change in form or magnitude;

2) the extent and nature of the coupling of these processes; and

3) how these changing processes affect the magnitude of those

parameters by which the quality of the system is judged.
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The most practical way to simulate such a system 1s with a mathematical
model in which the most important processes of the system are represented
numerically. This representation includes a description of system parameters,
process reaction kinetics, and the coupling of related processes. Except
for those systems that are very simple and uncomplicated, the only way to
efficiently manage such a model is with a digital computer. The digital
model has therefore become a very common tool in the environmental science
field, as well as other scientific fields in which it is necessary to simu-
late complex, dynamic systems.

According to existing water—quality standards, the key criterion for de-
termining the "quality"” of a stream system i1s the instream concentration of
DO. Various physical and biochemical components simultaneously impact the
DO profile in a stream, resulting in both diel and spatial wvariatiomns in DO
concentration. Some of the components help replenish the DO, whereas others
are consumers, Determining the assimilative capacity of a stream entails
defining how large the oxygen—-demanding processes can be before DO concentra-
tions fall below standard.

Digital models are quite commonly used in assessing the capacity of
streams to assimilate municipal and/or industrial wasteloads. Guidelines
were released in March, 1980 by the Environmental Protection Agency, Region
6, for justifylng advanced secondary treatment or advanced waste treatment
of municipal sewage. Any perennial stream into which an effluent greater
than 3 ft?/s is to be discharged must be analyzed for assimilative capacity
by using a calibrated and verified, steady-state digital water-quality
model of the Streeter and Phelps (1925) variety. The White River, which
receives an average discharge of 11.2 ft3/s from the Fayetteville WWTP,
falls within this criterion.,

Description

A modified version of a one-dimensional, steady-state stream water-
quality model, described by Bauer and others (1979), was used in this study.
The model requires that flow rates and assoclated inflow constituents from
all tributaries and waste discharges be constant. The model is based primarily
on the Streeter-Phelps (1925) oxygen-sag equation.

Problem solution 1s achieved by dividing each reach of a modeled stream
system into a number of subreaches. These subreaches generally are defined
by the locations of waste or tributary inflow points. In addition to the
inflow of waste or tributary sources at the head of each subreach, linear
runoff (nonpoint flow) may be specified along any subreach. All constituents
being modeled are assumed to be instantaneously and completely mixed within
any stream cross section. The model can be used to simulate and predict con-
centrations of DO, CBOD, nitrogen forms, total and fecal coliform bacteria,
PO4~P and various conservative substances. Output from the model includes
tabulations of those concentrations at user—defined fixed-distance intervals
and profile plots of concentration versus river mile.
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The basic model was modified by the authors of this report to correct
some problems in the code and to provide the capability of simulating a
more varied set of conditions for any given receiving stream. The primary
modifications include the following:

1) The addition of a new subroutine to compute reaeration coefficients
for each subreach by any one of eight predictive equations.,

2) The addition of a temperature-correction factor for net photosynthe-
tic DO production (gross photosynthesis minus algal respiration), as
described by Krenkel and Novotny (1980, p. 397).

3) The imposition of an upper limit of saturation upon projected DO
concentrations when projecting the assimilative capacity of a poten-
tial receiving stream, the "“dependable” DO concentration in the
stream should not be greater than saturation. When such conditions
occur it is because of the projected effects of net photosynthetic
production., Modifications have been made in the model so that,
under such circumstances, only that part of photosynthetically
produced DO needed to maintain saturation is retained in the water
colum; the “excess™ 1is assumed lost to the atmosphere. However,
if additional or larger demands are placed upon instream DO causing
increased deficits, then what had been "excess photosynthesis” 1is
available to maintain saturation until it is depleted.

4) The  correction of DO mass-balance computations at point-source
inflow locations. The problem that existed caused significant
errors in DO concentrations at the beginning of a subreach where
the point-source discharge was a significant part of the down-
stream flow and where the temperature of the point-source dis-
charge was significantly different from the water temperature in
the subreach. Further discussion of this problem may be found in
attachment A, section IV.

To further increase the efficiency and utility of the model, several other
minor modifications were made, including some changes in card input and printed
output. A complete discussion of significant model modifications is included
in Appendix A. '
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Calibration

The values of some of the components needed to describe the quality of
a stream system numerically and the rates at which these components change
in the system can be determined directly; the values of others must be deter-
mined by trial and error. Model calibration is the process by which these
trial-and-error determinations are made. Calibration is considered success-
ful when plausible values have been determined for all components and-rate
coefficients, and a sufficient similarity had been achieved between model
results and observed data.

In this study, the variable constituents that are predictable include
the following:

1) dissolved oxygen,

2) carbonaceous biochemical oxygen demand

3) nitrogen forms (organic—N, ammonia-N, NO2-N NO3-N), and

4) orthophosphate-P.

Those constituents and processes that directly impact the quality of
the system, as defined by the instream concentration of DO, are:

1) carbonaceous biochemical oxygen demand,

2) mnitrogen transformations,

3) benthic oxygen demand,

4) net photosynthesis, and

5) reaeration.
The values of the benthic oxygen demand and of the following rate coeffi-
cients are determined in the calibration process:

KR = Average CBOD decay rate for a subreach, day'l ( base € ).
Expressed as an average subreach instream rate coefficient.

KD = Average CBOD deoxygenation rate for a subreach, day~! ( base ¢ ).
Expressed as an average subreach instream rate coefficient.

KJRG = Average organic-N forward-reaction coefficient for subreach,
day~l ( base ¢ ). Expressed as an average subreach instream rate
coefficient.

KNH3 = Average ammonia-N forward-reaction coefficient for a subreach,
day"l ( base € ). Expressed as an average subreach instream rate
coefficient.

KNJ2 = Average NOo-N forward-reaction coefficient for a subreach,
day'l. Expressed as an average subreach instream rfte coefficient.

KNJ3 = Average NO3-N decay rate for a subreach, day - ( base € ).
Expressed as an average subreach instream rate coefficient.

SKORG = Average organic—N decay rate for a subreach, day"l ( base ¢ ).
Expressed as an average subreach instream rate coefficient.

SKNH3 = Average ammonia-N decay rate for a subreach, day~! ( base e ).
Expressed as an average subreach instream rate coefficient.

SKNJ2 = Average NO,-N decay rate for a subreach, day"1 ( base ¢ ).
Expressed as an average subreach instream rate coefficient.

KPJ4l = Coefficient for stream bottom—deposit uptake rate in
orthophosphate-P equation, day'l. Expressed an an average sub-
reach instream rate coefficient.

Some explanation of the dual-decay rates for CBOD, organic-N, ammonia-N, and
NOp-N 1is necessary.
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CBOD is removed from the water column at a rate defined by KR. Part
of this removal is due to decay and part may be the result of deposition.
Actual decay of the material proceeds at a rate defined by XD such that
KD < KR, If all removal is due to decay, then XD = KR, The nitrogen-
cycle transformation is a coupled biologically mediated-sequential reaction
involving the decay of organic-N to ammonia-N through NO2-N to NO3-N.
The forward reaction of each nitrogen form to the next sequential nitrogen
form and the associated concentration coupling is determined by the forward-
reaction coefficient. These forward reactions—-the transformation of one
nitrogen form to another--generally are the most significant reactions.
However, there are other possible reactions. These include the deposi-
tion of organic-N, plant utilization of ammonia-N, reduction of NO3-N
and NO3-N to ammonia-N, and the escape as gas of unionized ammonia-N and
molecular nitrogen. The rates at which these reactions occur are
included in the decay-rate coefficients.

The decay rates describe the total rate of removal of the nitrogen forms
from the water; whereas, the forward-reaction coefficients describe the rate
at which one form of nitrogen decays sequentially forward to the next form.
Therefore, each decay rate should always be greater than, or equal to, its
associated forward-reaction coefficient. The rate at which nitrate is
utilized is described by the nitrate-N-decay rate, which includes reduction
of nitrate-N to ammonia-N and, primarily, plant utilization of nitrate-N.

Two independent synoptic data sets were collected; one set in September
and one in October 1980, as discussed in the data-collection section. It
was intended that these two data sets be used to calibrate and verify the
White River model. During both synoptic-~sampling periods, morning and after-—
noon samples were collected and analyzed. The average of these two analyses
was considered most representative of average conditions the day of collec-
tion. In the following discussions, "October data set"” will mean the
average of data collected on October 7, 1980, and "September data set”
will mean the average of data collected on September 24, 1980.

The river reach to be modeled was divided into 10 subreaches, as shown
in figure 1. The beginning of each subreach is based upon a point-source
inflow or a distinct change in channel geometry.

Attempted Simulation

After all the data were analyzed and compiled, efforts were begun to
calibrate the model using the October data set. Discrepancies in discharge
mass balances could not be explained by natural gains and losses along the
channel. There were also abrupt changes in the slope of observed constituent
profiles at points where they could not be reasonably explained by either
point- or nonpoint-source inflow. These conditions were exhibited in a
reach of the river downstream from the Fayetteville WWIP. There seemed to
be a real possibility that in these reaches both discharge and constituent
transport were unsteady.
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During the October sampling period, flows in the White River upstream from
the Fayetteville WWIP were less than the estimated 7-day 10-year low flow
and were steady. Downstream from the plant, as much as 90 percent of the
flow in the river is waste discharge (table 2). Therefore, the most logical
explanation for the apparent unsteady flow and constituent transport condi-
tions in the reaches downstream from the plant seemed to be variable flows
and constituent concentrations being discharged from the plant. The synop—
tic data collected for the effluent (table 2) indicates some variation
between morning and afternoon samplings and between sampling periods. Addi-
tional discharge data obtained from the Fayetteville WWIP (fig. 2) indicate
more than a 100 percent variation in flow during some 24-hour periods. Addi-
tional continuous data on effluent constituent concentrations were not avail-
able.

The concept of "steady-state"” conditions in a stream implies that, the
discharge and water quality measured at a particular point along the stream
would not vary significantly with time. When this basic assumption is
violated, “"real"” steady-state conditions do not exist. When standard steady-
state data—-collection techniques are used under such circumstances, many
varying "parcels” of water may be sampled. These "parcels” cannot be properly
simulated with a steady-state model.

Under present conditions, the White River downstream from the Fayette-
ville WWTP probably never experiences steady-state conditions, especially
during low-flow periods. For all of the preceding reasons, it was impossible
to calibrate a steady-state model of the White River using the October data
set and verify it with the September data set or vice versa.

The upper White River is a very unusual and complex system. The best way
to model the system would be to collect enough continuous data to calibrate
and verify an unsteady-flow and constituent-transport model. However, this
was not feasible, because of a shortage of both time and funds. The next
best course of action would be to have enough synoptic data to define "“average"
conditions throughout the complete range in flow and constituent concentra-
tions for the Fayetteville WWTP effluent and then use these data to calibrate
a steady-state model for "average" conditions. Unfortumnately, there are not
enough synoptic data available to cover the entire range of effluent consti-
tuent concentrations and flows. However, the data that were collected during
the September and October, 1980 sampling periods reflect some variation in
both quantity and quality of the effluent. It was therefore decided that
these data would be averaged and used to calibrate a steady-state model.
This procedure was considered by the authors to be the best analysis possible
within the given time-frame.
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Alternate Simulation

Averaging the September and October data sets seemed to "smooth out” many
of the discrepancies that existed in each one. Model calibration for condi-
tions described by this "average" data set was successful. The results are
contained in Attachment B.

Velocities computed using measured discharges and observed "“average"
channel geometry did not agree with velocities determined from time-of-
travel data. This discrepancy indicated that the observed "average" sub-
reach channel geometry was not representative of the subreach in which it
was observed. Significant errors in channel geometry can cause substantial
errors in computed reaeration coefficients and the model application of
benthic oxygen demands.

The average ' of time-of-travel data collected during the September and
October sampling periods (tablel’) was used to "fit" subreach channel geometry
s0 that computed and observed mean velocities would be equal. Computed mean
velocities are given in table 8. In the fitting process, average cross-sec—
tional areas were modified to adjust computed velocities. Observed width-to-
depth ratios were maintained as follows:

WoPo = Aos
Do = AoV,
AW, = Af/W};
Wf = AfWo/Ao, and
Df = &g/Wf,

where,
Wos Wf = observed and fitted mean channel width,
Dy, Df = observed and fitted mean channel depth, and
Ao, Af = observed and fitted mean cross—-sectional area.

Attachment B-6 shows the mean channel geometry for each subreach derived
in this manner.

Reaeration coefficients for each subreach were computed by a predictive
equation developed by Hirsch (1980), from previous work by Velz (1970).
This equation 1s described in Attachment A. Mean velocities in the White
River were very slow (table 1). Under such conditions, most reaeration
equations that are dependent upon mean velocity tend to under predict the
reaeration coefficient, For this reason, the Velz equation, which uses only
channel depth as an independent variable, was chosen. The computed reaeration
coefficients are shown in Attachment B-7.

Values for net photosynthetic dissolved-oxygen production were derived
for each sampling station where diel-D0O and temperature measurements were
made (table 4). Values for each subreach were then computed by interpolation
using a distance-weighting procedure. These interpolated values, temperature
corrected to 20° C, are shown in Attachment B-6.
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Table 8.-—-Traveltime and mean velocity as simulated during model

calibration for "average” conditions

Sub- Begin—- Mean Travel

reach ning Ending Discharge velocity time
no. mile mile (££3/s) (£t/s) (h)
1 684.7 684.0 3.1 0.023 44.6
2 684.0 682.9 3.9 .020 79.9
3 682.9 682.3 13.2 .080 11.0
4 682.3 680.9 12.1 .081 25.2
5 680.9 679.4 12.0 .076 29.0
6 679.4 677.8 12.4 .087 26.9
7 677.8 677 .4 12.4 111 5.28
8 677.4 677.2 12.6 .020 14.9
9 677.2 677.1 18.7 204 .72
10 677.1 673.8 17.9 .050 96.72
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Values for benthic demand in each subreach were determined by cali-
bration. These benthic demands, at 20° C, are shown in Attachment B-6. Cali-
brated benthic demands are not comparable to the measured streambed oxygen
demands (table 2). The calibrated benthic demands represent the respiration
of organisms living in and attached to the streambed sediments, as well as
those that are attached to any other substrate in the stream. Other substrates
may include bedrock outcrops, aquatic macrophytes, logs and trees, and large
rocks and boulders. Respiration of fish is also "lumped” into this component.
The measured streambed oxygen demand is then, by definition, only a part of
the total benthic demand. Even in a stream where the only substrate from
which a demand is being exerted is the bottom sediments, the benthic demand and
the measured streambed oxygen demand may not be comparable because of the spa-
cial variability; the first represents a "subreach average”, the latter is
the result of a "point sample.”

Attachment B-7 shows final values for all rate coefficients. 1In several
subreaches, the removal rates are higher than deoxygenation rates for carbo-
naceous material and decay rates for nitrogenous substances are higher than
the forward-reaction coefficients. These relationships indicate that under
existing conditions there is significant stream-bottom uptake and deposition
of nutrients occurring, which contributes to the high benthic demands
observed.

The "goodness of fit" reached for the predicted variable components
during calibration is illustrated by plots of computed and observed data
versus stream distance (Attachments B-11 through B-17). A reasonable simi-
larity between computed- and observed-concentration profiles was attained
for each component.

Table 9 shows the average DO deficits caused in each subreach. Under
existing conditions, the most significant DO sink in each subreach is the
benthic demand. It also seems apparent that net photosynthetic production
in each subreach is an important source of DO.

Projections

Simulations were made for the following projected effluent concentrations
from the Fayetteville WWTP:

1) CBOD5 = 30 mg/L, DO = saturatiom.

2) CBOD5 = 20 mg/L, ORG-N = 0.0 mg/L, NH3-N = 10 mg/L, DO = saturation.
3) CBOD5 = 10 mg/L, ORG-N = 0.0 mg/L, NH3-N = 10 mg/L, DO = saturation.
4) CBOD5 = 10 mg/L, ORG-N = 0.0 mg/L, NH3-N = 5 mg/L, DO = saturation.
5) CBOD5 = 10 mg/L, ORG-N = 0.0 mg/L, NH3-N = 3 mg/L, DO = saturation.
6) CBOD5 = 5 mg/L, ORG-N = 0.0 mg/L, NH3-N = 2 mg/L, DO = saturation.
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Table 9.--Average dissolved-oxygen deficits, by subreach, for existing con-
ditions as simulated in model calibration

[In milligrams per liter]

Net photo-
Subreach synthetic Benthal CBOD Ammonia Nitrite
no. deficit deficit deficit deficit deficit
1 -0.647 2.073 0.065 0.014 0.004
2 -.168 .224 .070 .007 .001
3 -.075 1.616 772 .022 .002
4 ~-.104 1.038 .526 .049 .016
5 -.216 1.065 .éaz .068 .025
6 -.315 1.393 .100 044 016
7 -.360 <469 .070 044 .010
‘8 -1.848 1.428 .360 .183 .060
9 -.110 .365 .040 .008 .001
10 ~.342 .305 .130 .055 .016
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All of the preceding projections are the result of secondary or further
sewage effluent treatment. Under such conditions, the instream CBOD removal
rate is equal to the instream deoxygenation rate. It is necessary, however,
to redefine the instream deoxygenation rates in terms of the projected changes
in CBOD loading to the river. Because the Fayetteville WWIP is the primary
source of CBOD loading in the White River downstream from its point of entry,
it is assumed that any changg in the instream deoxygenation rates in these
reaches 1is related to the projected deoxygenation rate for the WWTP effluent,

When the treatment of sewage wastes is secondary or better, the ratio
of CBODU/CBOD5 in the effluent is assumed to be 1.5 (Velz, 1970, p. 145).
Given the value of CBOD5, the value of CBODU can be readily computed by:

CBODU = 1.5(CBODS),

then substituting these values into the following equation

CBOD5 = CBODU(1-e~Xt),

where,

t = 5 days,

yields a new value for the CBOD rate, K, in the treatment-plant effluent.
CBOD5 = 1.5(CBOD5) - 1.5(CBODS)(e=5K)
1=1.5-1.5(e"5k)
0.33 = e~5k
-1.11 = -5k
k = 0,22 day-1

Because of the assumption that CBODU = 1.,5(CBOD5), this coefficient would
be applicable to all of the effluent projections.

The carbonaceous deoxygenation coefficient for the WWTP effluent under
existing conditions is 0.1l day~! (table 2). In their discussion of carbona-
ceous deoxygenation coefficients, O'Connor and Mueller (1980) state that;
"In general, the coefficient of the river water is usually less than the
coefficient of an undiluted sample. The coefficient depends on the nature
of wastewater and river water, the age of the sample and the dilution =+ =+ -
Furthermore, the coefficient tends to decrease 1in downstream direction
indicating the more readily oxidizable substances, the availability of foods
and the progressive resistance to oxidation of the more stable end products.”
Model calibration indicates that for existing conditions a part of this
premise is violated in the White River under conditions of low river-flow
and minimal dilution. Deoxygenation coefficients for the river are signifi-
cantly higher than for the Fayetteville WWTP effluent (table 2). However,
the river coefficients generally decrease downstream after peaking approxi-
mately 2.0 miles downstream from the WWIP. This condition indicates that
only after reaching subreach 4 has the effluent oxidized sufficiently to
meet the condition CBODU = 1.5(CBODS).
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The ratio of new rate coefficient to old rate coefficient for the
treatment plant, 0.22/0.11 in this case, is often used as a multiplier to
obtain new projected CBOD instream decay rate coefficients. However, to
do this would perpetuate the condition of higher rate coefficients in the
river than in the effluent. Velz and Gannon (1962) define a coefficient B
which describes a boundary effect of absorption by biological slimes attached
to a solid bottom. A factor, m , was defined as the reciprocal of the ratio
0.22/0.11 plus B such that;

m=(1/2.0) + B

where,
B = 0.08

The factor m was then used as a multiplier, such that;
new instream rate coefficient = m x (old instream rate coefficient),

to obtain projected instream CBOD decay rate coefficients for each subreach
downstream from the WWIP, Such a procedure for reducing instream rate coeffi-
cients 1s somewhat arbitrary. However, after treatment, the deoxygenation
rate coefficient should decrease with decreasing CBOD concentration. Such
relationships have been noted by other investigators such as Kittrell and
Kochtitzky (1947) on the Holston River in Wisconsin.

With the advanced treatment process, it is assumed that no deposition of
carbonaceous material would occur and XD = XR. The product of the observed
instream deoxygenation rates ( XD in Attachment B-7 ) and m yields projected
instream CBOD decay rates for the effluent projections analyzed. Table 10
contains the CBOD decay rates that were wused in all the projections,

There are no projected organic—N concentrations in the WWIP discharge
for effluent projections 2, 3, 4, 5, and 6. Therefore, the observed
forward—-reaction coefficient and decay rate in subreach 3 are assumed
valid in all downstream subreaches. Table 10 contains all the organic-N
forward-reaction coefficients and decay rates used in the simulations for
effluent projections 2, 3, 4, 5, and 6. Because there was no reduction in
organic-N in effluent projection 1, the simulation for this condition uses
organic—N forward-reaction coefficients and decay rates equal to those
derived in calibration (Attachment B-7).

Because little or no deposition of organic matter would occur with any of
the proposed effluent projections, benthic demands would become smaller
and smaller and eventually stabilize at lower levels than those observed.
There is not a direct relation for determining the magnitude of these reduc-
tions. It was assumed that for existing conditions the benthic demand deter-
mined through calibration for subreach 2 is representative of background
conditions upstream from the WWIP and that the calibrated benthic demand in
. subreach 10 is representative of "recovered” conditions downstream from the
WWIP. Therefore, an average of these two values was used for benthic demand
in each subreach downstream from the WWIP for every simulated projection
made. These values are shown in table 10.
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Table 10.--Modified components and rate coefficients for simulated effluent

projections
CBOD ORG-N
Sub- Benthic
reach . KD KR KORG SKORG demand
no. (day™l)  (day™1) (day™l)  (day™D) (g/m?)/d
1 0.03 0.03 0.02 0.20 6.3
2 .03 .03 .02 .15 .7
3 .08 .08 .02 .02 1.75
4 .13 .13 .02 .02 1.75
5 .12 .12 .02 .02 1.75
6 .11 .11 .02 .02 1.75
7 .10 .10 .02 .02 1.75
8 .10 .10 .02 .02 1.75
9 .12 .12 .02 .02 1.75
10 .10 .10 .02 .02 1.75
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Simulations for effluent projections 1 through 6 were made for 7-day
10-year low-flow conditions with water temperatures of 29° C to reflect sum-
mer time low~flow conditions and with water temperatures of 19° C to reflect
fall low-flow conditions. The results of these simulations are shown in
table 11. Average DO deficits caused by oxygen sinks in each subreach are
shown in table 12, Deficits resulting from the benthic demands are the
most significant. At water temperatures of 29° C, the only simulation in
which DO concentration downstream from the WWIP does not fall below 6.0
mg/L is for effluent projection number 6. At water temperatures of 19° C,
for effluent projections 2, 3, 4, 5, and 6, downstream DO concentrations
are 6.0 mg/L or greater.

Ten additional simulations were made reflecting either a modification
in the quantity of flow from the Fayetteville WWIP or initial river-flow
augmentation from Lake Sequoyah. Each of these simulations was made for
water temperatures of 29° C,

Using the effluent concentrations of projection 6, an additional simu-
lation was run in which a 50-percent reduction in flow from the Fayetteville
WWTP was assumed. Although this procedure caused a reduced wasteload, it
also reduced velocities and increased instream-reaction times. Consequently,
the minimum DO concentration in the downstream—profile was unchanged (table
11). However, because of the increased reaction times, all nutrient concen-
trations and loadings to Beaver Reservoir were reduced (table 11). Table 13
gives the average DO deficits caused in each subreach for these additional
simulations. Differences between deficits for effluent projection 6 at
water temperatures of 29° C in table 12 and those in table 13 are because of
instream constituent-loading differences and changes in reaction times.

Assuming the same treatment level at the Fayetteville WWIP as reflected
in effluent projection 6, an augmentation of 4 ft3/s was imposed at the
effluent discharge point. Constituent concentrations reflect a discharge-
welghted average of those concentrations in effluent projection 6 and those
observed in the Lake Sequoyah discharge. DO was assumed saturated. There
was no perceptible change in the minimum downstream DO concentration.
Because of increased velocities and decreased reaction times, all nutrient
concentrations and loadings to Beaver Reservoir increased (table 11).

Initial river-flow augmentations of 1 ft/s and 4 ft3/s from Lake
Sequoyah were simulated. Initial DO concentrations in the river were
simulated as saturated and as containing the same percent saturation as
was observed. Effluent projections 3 and 6 were simulated under these
conditions. The minimum downstream DO concentrations were not significantly
different from those simulated for the basic effluent projections 3 and 6.
However, because of increased velocities and decreased reaction times, all
nutrient concentrations and loadings to Beaver Lake increased (table 11).

Concentrations of 8.1 mg/L orthophosphate-P were observed in the Fayet-
teville WWTP effluent. Simulations indicated that reducing this concentra-
tion to 1.0 mg/L would reduce the orthophosphate-P loading to Beaver Lake
from 43 pounds per day to 5.3 pounds per day (table 11).
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Sensitivity Analysis

The "worst natural conditions” simulated in this study are 7-day 10-year
low flows at water temperatures of 29° C. Under these conditions, only the
simulation for effluent projection 6 (CBOD5=5.0 mg/L, Organic-N mg/L, ammo-
nia-N mg/L, DO=saturation) produced minimum DO concentrations downstream
from the Fayetteville WWTP greater than 6.0 mg/L. Sensitivity analyses were
made for this simulation to evaluate the effect upon the DO concentration
profile of controlled changes in various impacting components and rate coeffi-
clents. The types of changes imposed include a plus or minus 20-percent
change in the following:

1) mean river depths,

2) mean river velocities,

3) reaeration rate coefficients

4) benthic demands,

5) net photosynthetic production,

6) instream CBOD deoxygenation rate and removal rate coefficients,
7) organic-N forward-reaction rate and decay rate coefficients,
8) ammonia-N forward-reaction rate coefficient,

9) ammonia-N decay rate coefficient,
10) NO2-N forward-reaction rate and decay rate coefficients,

Fayetteville wastewater—treatment plant;

11) DO concentrationm,
12) CBOD concentration,
13) ammonia-N concentration,

and a plus or minus 2.0° C change in:
14) stream—water temperature.

The effect of each of these changes was determined independently with a sepa-
rate model run, making a total of 30 sensitivity runs. The resulting DO
profiles for each plus and minus change have been plotted and define a DO
sensitivity band for each component or rate coefficient (figs. 8 through 21).

According to 1980 Environmental Protection Agency criteria for justifying
AST/AWT effluent limits, the value of any component or rate coefficient may
need further evaluation if its DO sensitivity-band width is greater than 1.0
mg/L. Of all the components and rate coefficients evaluated, DO concentra-
tions were most sensitive to changes in water temperature (fig. 21). The
maximum band width for DO is 0.63 mg/L and 1is not considered significant.
No reevaluation of any components or rate coefficients was done as a result
of these sensitivity analyses.
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CONCLUSIONS

Under existing conditions, the White River does not meet Arkansas water-—
quality standards (Arkansas Department of Pollution Control and Ecology, 1975)
for several parameters: water temperature, DO, dissolved solids, un-ionized
ammonia, total phosphorus, and floating solids and depositable material.
Conditions are at their worst during periods of high water temperature and
low river flows. Under these conditions, as much as 90 percent of the flow
in the river downstream from the Fayetteville WWTP is effluent discharge.
High temperatures and high concentrations of nutrients in the effluent cause
a sag in the DO profile downstream. At times, minimum DO concentrations reach
zero at sampling station WR-5, 1.l miles downstream from the Fayetteville WWTP.

The largest DO sink in the White River between Lake Sequoyah and Beaver
Reservoir is the benthic demand. This demand seems to be supported largely by
deposited organic material from the Fayetteville WWTP effluent. Observed
CBODU concentrations in the WWTP effluent were as high as 190 mg/L.

High nitrogen and phosphorus loads discharged by the treatment plant
stimulate the growth of phytoplankton blooms which increase river turbidity
and also contribute to the benthic demand. However, net photosynthetic
production by the algae is also a significant source of DO.

Under low-flow conditions, reaeration in the river is slow. Instream
reaeration coefficients range from 0. 40 day~l to 4.24 day-l. Mean veloci-
ties are so slow that turbulence becouwes relatively insignificant in defining
the reaeration coefficients.

According to digital-model projections, the assimilative capacity of
the White River is such that daily—-average DO concentrations will not remain
at or above the Arkansas standard (Arkansas Department of Pollution Control
and Ecology, 1975) of 6.0 mg/L unless concentrations of CBOD5, organic-N,
and ammonia-N are reduced to 5.0, 0.0, and 2.0 mg/L, respectively. This is
also assuming that the effluent will be saturated with DO and that downstream
benthic demands in the river will be reduced significantly because of the
decreased organic loading from the plant. No flow augmentation or effluent
retention combinations were found that will offer any relief to the Fayette-
ville WWTP from these treatment levels.: The lack of assimilative capacity
and of effective alternative solutions is due in part to the high effluent
to receiving stream discharge ratio and in part to the downstream river
geometry.

Unsteady conditions prevailed on the river due to variations in discharge
and effluent quality from the Fayetteville WWTP during the collection of
data used to calibrate the model. For this reason, the accuracy of these
projections is less than ideal. The collection of supportive data for model
verification or calibration of an unsteady model would be advantageous.
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MODEL MODIFICATIONS

Several modifications have been made to the original one-dimensional,
steady—-state stream water—quality model as described by Bauer, Jennings,
and Miller (1979). Most of the changes have been noted in the digital
model description section. The discussions presented here clarify some
of the reasons for the modifications and provide some of the necessary
details about them:

I.

A new subroutine, K2, which computes reaeration coefficients by

the user's choice of any one of eight predictive equations has been
added to the model. Lawrence H. Smith, U.S. Geological Survey,
Nevada District, has done some similar work (oral commum., 1980).
The following equaitons are included:

1.

2.

3.

S.

6.

Bennett and Rathbun (1972)
kg = 8.76u0-697p~1:689 (2 303)(1.0241)T-29,

Velz "Rational method,”™ Hirsch (1980)

~inl[1-2((m x1.42x1.17-20/60) /n (30.48xh)2) +5Ix 1440
kg = m

2.279 + 0.721xh, 1f h < 2.26

Langbein and Durum (1967)
ky = 7.6uxh~1+33(1,0241)7-20

Padden and Gloyna (1971)
ko = 6.86u0+708y71.054 (7 0941)T-20

Bansal (1973)
ky = 4.6796n~1-4(1,0241)7-20

Parkhurst and Pomeroy (1972)

0. 17xu?
kg = ¢8.36(1 + gxh )(uxa)*379n1(1.0241)7-20

Tsivoglou and Wallace (1972)
kg = 4133(u)(8)(1.0241)T-20

0'Connor and Dobbins (1958)
ky = (127(difxu)*5/mt+5)(2.303)(1.0241)7-20

A-2



II.

III.

where for each of the above equations

h = mean stream depth,
u = mean stream velocity,
8 = gtream slope,

dif = diffusion coefficient,
m = mixing interval, and
T = gtream temperature.

Each equation yields a valid estimate of reaeration coefficient for
a particular type stream, depending upon its hydraulic and geometric
properties. Choice of the "best" equation for a particular stream can
be made during calibration of the model. A thorough knowledge of
stream geometry and velocities is needed.
Most of the reactions in a stream system that affect the oxygen

balance are temperature dependent. The relationships are expressed
in the following form:

kp = kyp R (T-20),

where
kp = reaction rate at temperature T,
kgp = reaction rate at temperature 20° C, and
R = thermal factor.

With the exception of "net photosynthetic DO production” (photosyn-
thesis minus respiration), and the optional user supplied reaeration
coefficient all the reactions that affect the oxygen balance are temper-
ature corrected in the model as described by Bauer and others (1979),

A modification has been made so that net-photosynthetic-production
values entered to the model are standardized to 20° C. The values are
then converted to stream temperature using the above relationship and a
R factor of 1.08 (Krenkel and Novotny, 1980). This modification is
especially helpful when making projections for various water tempera-
tures.

When water temperature increases, all reactions that affect the
oxygen balance in a stream increase, including the net quantity of
oxygen produced by photosynthesis. At the same time, the capacity of
the water to retain DO, or the saturation level of the water, decreases.
Under such conditions, much of the oxygen produced by photosynthesis
may not be retained in the water columm. When saturation levels are
reached, "excess"” oxygen produced begins to be lost to the atmosphere.

The model, as described by Bauer and others (1979) allows computed
DO concentrations to increase above saturation, which is a natural
occurrance due to net photosynthetic DO production. Computed saturation
levels under such conditions have been observed to be 150-200 percent.
Modifications have been made to the model so that DO concentrations do
not exceed saturation. That part of photosynthetically produced DO
that would cause supersaturation is treated as "excess" and is assumed
lost to the atmosphere. This procedure makes it possible to maintain
"reasonable” computed DO concentrations without reducing valid net
photosynthetic production values.



Iv.

In the model, mass—~balance computations are made for each constit-—
utent at all locations of point—source inflow. In the version described
by Bauer and others (1979) the concentrations used in the mass~balance
computation for DO were derived from computed deficits and saturation
concentrations. The saturation concentrations for the point source
were determined using the water temperature for the mainstem subreach
rather than for the point source. This error caused significant errors
in the resulting mass balance when the point-source discharge was a
significant part of the downstream flow and where the temperature of
the point-source discharge was significantly different from the water
temperature in the subreach. Modifications have been made so that DO
mass balances are computed using actual concentrations, negating the
necessity of a computation based upon temperature-dependent saturation
values.,

Some of the required card input to the model, as described by Bauer
and others (1979), was for "printout purposes only” and was not necessary
for program execution. The printed data tables resulting from this card
input were not complete and only of marginal value to the user. All the
data contained in these tables are available elsewhere in the model
printout. In order to avoid umnecessary input preparation and to delete
the printing of incomplete, duplicate information, modifications were
made so that card input types 7, K, and 8 are no longer necessary.

Modifications I, IV, and V have been reviewed and accepted by
the Deterministic Models Group at the U.S. Geological Survey Gulf
Coast Hydroscience Center in Bay St. Louis, Mississippi. These modi-
fications have now been made to the official version of the model which
they support (Marshall E. Jennings, oral commun,, 1981). Recent modifi-
cations II and III have not yet been reviewed by the Group (1981),



ATTACHMENT B

WHITE RIVER MODEL CALIBRATION
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WHITE RIVER CALIBRATION (COMBINED DATA SETS)

PARAMETERS

INPUT

CONCENTRATIONS (MG/L) OF =~

FEC.COLIF.

NO3=-N DISSOLVED OXYGEN PO4 TOT.COLIF,

CARR ROD ORG=-N NH3-N NO2-N

SURREACH

o.o
0.0

e o
oC

8.20
0.0

0.03
0.0

0.10
0.0

1.40
0

- N

0.0
0.0
0.0
0.0

0.0
0.0

8.10
0.0
0.0
0.0

8.90
0.0
0.0
0.0
0.0
0.0

2.60
0.0
0.0

0,13
0.0
0.0
0.0

4.80
0.0
0.0

15.00
0.0

130.00
0

0.0
0.0
0.0

0.0
0.0
o.o

0.0

0.0
0.0

0.0

0.0 0.0

0.0

0.0
0.0

0.0
0.0

0.06
0.0

9.90
0.0

0.05 0.02 0.99
0.0 0.0 0.0

0.80
0

13.00
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DIRECT DISCHARGES(LRB/DAY) OF ==

BOD ORGANIC NITROGEN AMMONIA NITROGEN NITRITE NITROGEN NITRATE NITROGEN PHOSPHATE

SUBRREACH CARBONACEOUS ULT.
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