
UNITED STATES
DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

A DATA-MANAGEMENT SYSTEM FOR AREAL INTERPRETIVE DATA FOR THE HIGH PLAINS

IN PARTS OF COLORADO, KANSAS, NEBRASKA, NEW MEXICO, OKLAHOMA, SOUTH DAKOTA,

TEXAS, AND WYOMING

By Richard R. Luckey and Carmelo F. Ferrigno

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 82-4072

December 1982

P.

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write:

Project Chief, High Plains RASA
U.S. Geological Survey
Water Resources Division
Mail Stop 412, Box 25046
Denver Federal Center
Denver, Colorado 80225

For purchase write to:

Open-File Services Section
Western Distribution Branch
U.S. Geological Survey
Box 25425
Denver Federal Center
Denver, Colorado 80225
(303) 234-5888

CONTENTS

Page

£\D 5 L XT3.O L^^^^ ""*^^^^^^^^^^^^^^^^"^ ̂ ^^^^^^^^^^^^^^^« ^^^^^ ^^^^^^^^^^^^^^^^^^^^^ j_

Introduction 1
Purpose and scope 5
Structure of the data-management system 5

Data-base structure 6
Data-storage levels 6
Statistics 10
Proposals 11
System portability 11

Types of data stored 11
Data generation 15

Automated procedure 15
Manual procedure 17
Data editing 17

Data loading 18
Data updating 18

Proposals 18
Move of proposals 19

Data retrieval 20
Application programs 21

Data manipulation 21
Data transformation 22
Graphics 23

Summary 23
References 25
Supplement I: Data-base dictionary 27
Supplement II: Program-user documentation 33

The digitizer data-conversion program 33
Mathematics 33
Input 35
Output 36
Sample procedure 36

The first data-gridding program 37
Input 38
Output 38
Sample procedure 39

The second data-gridding program 40
Input 40
Output 41
Sample procedure 41

The boundary-matrix generation program 43
Input 43
Output 44
Sample procedure 44

IV

CONTENTS Cont inued

	Page

The excess-data elimination program 45
Input 46
Sample procedure 47

The edit program 48
Input 49
Output 51
Sample procedure 51

The load program 54
Input 55
Output ' 60
Sample procedure 60

The retrieval program - 61
Input 62
Output 64
Sample procedure 64

The instant-update program 66
Input 67
Output 71
Sample procedure 73

The move program 77
Input 78
Output 79
Sample procedure - 79

The statistics program 80
Input 81
Output 81
Sample procedure 82

The data-transformation program 83
Criteria for retrieving from data base 83
Model-core determination 84
Interpolation techniques 85
Program flow 87
Special considerations 89
Input and output 89
Sample procedure 91

The data-manipulation program 93
Input 94
Output 95
Sample procedure 96

The graphics program 97
Input^- 98
Output 100
Sample procedure 100

CONTENTS Cont inued

Page

Supplement III: Program-maintenance manual 105
T? ft ~\ t" T^T* l"\ O" T" £1 TT1 ****************** MB > .M ._....--- , mum ^.H.- ̂ ̂ ^ ̂ -^^w. , ... ^ 1 ft ^
I_J vA *J- L- r O *-*^*1 J- Vy -J

T O .P H TMTtOY'^lT'n- - -- »- - « « .«. _ _ .«. 1 OftJjv-'CHJ. f-L^-L dill _- »...«. ,..«. ^«. ..w.^..-* «.«.«.«.-* .«.........-<. J_\./O

Instant-update program 110
A^/^TT/^ f\ -y f~\ fV -y QTV|^^____^ - - -.. ̂ . . .« i^> . « «. . .^w. .__ ̂ .^ ̂ ^ .^ . ̂ ~.^ _.. _.._.._.. -_ I 1 fl
J- AvJ V C L* i. W c^ X. d ill """ -I- J- W

Data-manipulation program 111
Data-transformation program 112

ILLUSTRATIONS

Figure 1. Map showing Eigh Plains study area with 3-degree data blocks 3
2. Flowchart of data-management system 4
3. Structure of the data base for the four possible densities 7
4. Geographic area of the data-base levels 8
5. Flowchart illustrating steps in data-generation procedure 16
6. Hypothetical-model grid overlaid on the data-base grid 24
7. Arrangement of 1-minute block schema items in a 10-minute

_____________________________________ 32" " " " " ^f i~

TABLES

Table 1. Parameters in the High Plains data base 13
2. Data-base dictionary 28

VI

CONVERSION FACTORS

For those readers who prefer to use metric units rather than inch-
pound units, the conversion factors for the terms used in this report are
listed below:

Multiply inch-pound units

acre
feet Cft)
feet per day (ft/d)
inch (in.)
mile (mi) »
square mile (mi)
mile per inch (mi/in.)

By.

4047
0.3048
0.3048
25.40
1.609
2.590

6.334 x 10
-2

To obtain SI units

square meters
meter
meters/day
millimeter
kilometer
square kilometer
kilometer per millimeter

vii

A DATA-MANAGEMENT SYSTEM FOR AREAL INTERPRETIVE DATA FOR THE

HIGH PLAINS IN PARTS OF COLORADO, KANSAS, NEBRASKA, NEW MEXICO,

OKLAHOMA, SOUTH DAKOTA, TEXAS, AND WYOMING

By Richard R, Luckey and Carmelo F. Ferrigno

ABSTRACT

The High Plains Regional Aquifer System Analysis study has developed a
regional water-resources (and related) data storage and retrieval system to
organize and preserve areal interpretive data. The system is general and can
easily be adapted for other studies. This report documents the High Plains
data base as well as the general system that is independent of the High Plains
area.

The system is built around a hierarchically structured data base con­
sisting of related latitude-longitude blocks. Various parameters in the data
base are stored at different degrees of detail, with the finest detail being
a block of 1 minute of latitude by 1 minute of longitude (approximately 1
square mile).

Five general classes of data have been stored in the High Plains data
base: (1) Aquifer-geometry data; (2) aquifer and water characteristics;
(3) water levels; (4) climatological data; and (5) land- and water-use data.
These data were compiled from maps, using both automated and manual data-
generation procedures. The data-compilation procedures and computer programs
are documented in this report, including information on 44 parameters that
have been stored in the data base, which represent more than 10.9 million
characters of information. Supplemental sections of the report contain user
documentation of the data-system software and the changes that would need to
be made to use this system for other studies.

INTRODUCTION

The U.S. Geological Survey began a series of hydrologic investigations
in 1978, the Regional Aquifer System Analysis (RASA) programs, to provide
water-management information on a regional scale. This program represents a
systematic effort to study regional ground-water systems throughout much of
the country and represent a significant part of the national water supply.
The objective of the program is to assemble hydrologic information to create
predictive capabilities for effective management of the Nation's ground water.

The general purpose of the 5-year High Plains RASA study that began in
1978 is to provide: (1) Hydrologic information needed to evaluate the effects

of continued ground-water development; and (2) computer models to predict
aquifer response to changes in ground-water development (Weeks, 1978). To
meet these objectives, a regional water-resources Cand related) data storage
and retrieval system was developed. The purpose of this Data-Management
System (DMS) is to organize the large volumes of data needed to develop both
a regional finite-difference model of ground-water flow, and local models in
selected areas. It is intended that the system and the data be maintained
beyond the duration of the High Plains RASA for future water-resources
management.

While only data for the High Plains aquifer (fig. 1) have been stored in
the data base, the DMS, including the structure of the data base and the
computer programs for data generation, data storage and retrieval, and data
manipulation, can be used for any study where there is a need to store areal
interpretive data that generally is presented in map form.

Records in the data base represent information about a block of latitude
and longitude. These records are then related or grouped in a heirarchical,
or inverted tree, structure. A hierarchical data-base structure means that
all data blocks are related to one and only one block at each higher level,
and there is one specially designed block, called the entry block or root,
that is at the highest level of the structure (Martin, 1977).

A schematic representation of the DMS is given in figure 2. Computer
programs for data storage and retrieval interact with the hierarchical data
base and a Data-Base Management System (DBMS). A DBMS is a group of computer
programs for processing organized collections of data. A number of DBMS's
for heirarchical data bases are available. When a DBMS is applied to a
specific data base, a DMS is the result. The DMS consists of data-
preparation programs, programs that interact with the data base and the DBMS,
and data-application programs. A hierarchical-data structure is maintained
in the data-preparation and data-application programs even though these
programs use sequential card-image files for input and output. In fact, the
data-preparation and data-application programs are designed so the programs
that interact with the data base and the DBMS could be bypassed if necessary.

Hence, in the early stages of a study, data preparation and data
application can be performed without actually establishing a data base. The
data-preparation programs can then be used to bring all the available data
into a common format and the data-application programs can be used to check
the consistency of the data. Data prepared by various independent studies
are not always consistent with each other, and the DMS can be used to identify
the areas of inconsistency. Even various maps within a single study may have
points of inconsistency: for example, maps may indicate a water level below
the base of the aquifer. The system easily can be used to check for these
kinds of inconsistencies.

The major use of the DMS is to provide data for use in ground-water flow
models; by properly using the system, the data for the models will be much

96!

1Q6° 105° 104° 103° 1021 r i
WYOMING '

43

42

41°

40

39

| NEBRASKA_L_L_

. 4 \

3_:_J-

zii i

I TEXAS i

BOUNDARY OF
HIGH PLAINS AQUIFER

__ BOUNDARY OF 3-DEGREE
DATA BLOCKS

Figure 1. High Plains study area with 3-degree data blocks.

DATA-

GENERATION
PROCEDURE

EDIT
PROGRAM

LOAD
PROGRAM

STATISTICS
PROGRAM

MOVE
PROGRAM

DATA-BASE
MANAGEMENT SYSTEM

AND
DATA BASE

INSTANT-
UPDATE

PROGRAM

RETRIEVAL

PROGRAM

DATA-

MANIPULATION
PROGRAM

DATA-
TRANSFORMATION

PROGRAM

GROUND-WATER
FLOW

MODEL

Figure 2. Flowchart of data-management system,

more consistent. If the data in the data base does need revision, the DMS
can be used to temporarily update the data and check the validity of the
update before a permanent revision is made.

The DMS has been linked to two computer programs produced by Calcomp
Computer Products, Inc. 1 The computer programs can be used to generate
contour maps and three-dimensional views using data retrieved from the data
base. The DMS also could be linked to other machine-graphics systems.

PURPOSE AND SCOPE

The purpose of this report is to provide a description of the complete
DMS and the data that has been stored in the High Plains RASA data base. The
report gives users who have access to the U.S. Geological Survey computer
system and the High Plains RASA data base enough information to retrieve and
use the data, and, if authorized, update the data base. In addition, the
report outlines the data-base structure and all major computer programs of
the complete DMS. This information is needed by persons who will adapt this
system for use by other studies that need to store areal map information.

The report is in two parts: a main body and a supplemental section.
The main body gives a general description of the complete DMS; the supple­
mental sections give all of the details needed to use the DMS or adapt it to
another study. While the main body of the report needs to be read by all
potential users of the system, some users may skip parts of the supplemental
section. The supplemental section is designed to give users of the existing
DMS complete information needed to use it. In addition, that section will
aid system analysts and programmers who need to adapt part or all of the DMS
to another study and other computer systems.

STRUCTURE OF THE DATA-MANAGEMENT SYSTEM

A complete DMS consists of a data base, procedures for generating,
loading, updating, and retrieving from the data base, and computer programs
to use the retrieved data to accomplish specific tasks. The system described
in this report is used to manage diverse geographic information for a multi-
state area and provide data for regional ground-water models. The geographic
information starts out in map form and is converted to (latitude-longitude-
value) triplets before being stored in the data base. Such geographic
information can be organized easily within a hierarchically structured data
base.

 ' The use of brand names in this report is for identification purposes
only and does not constitute endorsement by the U.S. Geological Survey.

Data-Base Structure

In order to store data within a hierarchical structure, elements are
needed that uniquely identify the data stored below the root level. Because
the data are needed for a 1-minute by 1-minute block of latitude and
longitude, the root-level record could consist of components describing
the latitude, longitude, and aquifer of the node. Such a structure would
need 27 million characters of storage for 44 parameters. An alternative
data-base structure would require less storage. The alternative structure
consists of root-level records that contain the aquifer and parameter names.
Using this structure, the data for each parameter would be stored at the
levels below the root level. Each tree or logical data set would then
consist of the data for one parameter and one aquifer. With this structure
the size of the data base is greatly decreased and for the High Plains study,
the data-base size is approximately 10.9 million characters of information
for 44 parameters.

One factor contributing to the decreased size of the data base is that
the latitude and longitude is not stored for each 1-minute block. Only one
coordinate for each 10-minute block is stored and from this coordinate,
the latitude and longitude of each 1-minute block easily can be determined.

Data-Storage Levels

Combining a hierarchically-structured data base with the variable-density
concept leads to flexibility in storing data. For the High Plains study,
four degrees of detail were chosen to store the required data. In all
instances, the root level of data (level 0) contains, at a minimum, the
parameter and aquifer names. These two names uniquely define a logical data
set. This root-level record also contains other general information about
the parameter. For example, this record contains components that describe
the units of measurement for the stored data and statistical information.
The number of levels below level 0 is determined by the data density. The
data densities are numbered 1 through 4, with density 4 having the greatest
detail. A schematic representation of the data-base structure for each
density is shown in figure 3; the corresponding geographical areas that the
data represent are shown in figure 4.

If only one data value is needed for each 3-degree by 3-degree block
(latitude-longitude extent) within the aquifer, then the data can be stored
at a density of 1. Density-1 data are referred to as 3-degree data. A
density-1 parameter consists of one record at level 0, and a series of
level-1 records describing the 3-degree blocks within the aquifer. The
3-degree records contain the parameter value and the latitude and longitude
of the southeast corner of the 3-degree block. The records also contain
four statistical components: the minimum, the maximum, the number of
values, and the standard deviation. For 3-degree data, these statistics
reflect the data used to compute the single data value for the entire 3-
degree block. These same statistical components can be found at the lower
levels of the data structure.

DENSITY 1
OR

3-DEGREE DATA

DENSITY 2
OR

1-DEGREE DATA

DENSITY 3
OR

10-MINUTE DATA

DENSITY 4
OR

1-MINUTE DATA

100

Figure 3. Structure of the data base for the four possible densities.

37°29'-101°27'

LEVEL 3
(10-MINUTE BLOCK)

LEVEL 2
(1-DEGREE BLOCK)

LEVEL 1
(3-DEGREE BLOCK)

LEVEL 0
(AQUIFER)

43°

42°

BOUNDARY OF
STUDY AREA

41°

40°

105° 104° 103" 102° 101° 100° 99° 98° 97° 96°

Figure 4. Geographic area of the data-base levels.

A density-2 parameter has one data value for each 1-degree by 1-degree
block within the aquifer. Density-2 data are called 1-degree data. The
records for each 1-degree block are stored at level 2 of the data-base
structure. The 1-degree blocks are logically connected to the appropriate
3-degree block record, which is at level 1. Level 1 contains a record for
each 3-degree block within the aquifer. The 1-degree records contain the
latitude and longitude of the southeast corner of the block, the data value,
and the four statistical components. The four statistical components
summarize the data used to compute the single data value for the 1-degree
block.

A density-3 parameter has one data value for each 10-minute by 10-
minute block within the aquifer. Density-3 data are called 10-minute data.
The 10-minute records are placed at level 3 of the data-base structure. The
10-minute records are logically connected to the appropriate 1-degree record
at level 2, which, in turn, is logically connected to the appropriate 3-degree
record at level 1. The 10-minute record contains the latitude and longitude
of the southeast corner of the block, the data value, and the same four
statistical components. Again, these statistics are determined from the data
used to compute the single data value.

A density-4 parameter has one data value for each 1-minute by 1-minute
block within the aquifer. Density-4 data are referred to as 1-minute data.
The 1-minute blocks are grouped with the appropriate 10-minute block. A
record for each of the 10-minute blocks is stored at level 3 of the data­
base structure. This record contains the latitude and longitude of the
southeast corner of the block, and the 100 data values for the corresponding
1-minute blocks. The record also contains five statistical components, which,
in this case, are determined from the 100 data values.

Logically, the 1-minute data values are at a level below the 10-minute
data, because they are of greater detail. However, the 1-minute blocks are
physically stored at level 3 for two reasons: (1) To simplify the program­
ming, especially those programs that load and retrieve the data; and (2) to
decrease the number of logical pointers needed to connect related data. If
there were an actual level 4 in the structure, logical pointers would be
needed to connect data at levels 3 and 4.

As discussed previously, the data base has a hierarchical structure of
four levels with the root level containing information that uniquely identifies
a particular parameter with an aquifer. The lowest level or base level at
which a parameter's data resides depends on the density; the actual data
values will be found only at this base level. The higher levels contain
statistical information that reflect the data at the lowest level. These
statistics are described later.

Several factors control the density at which a parameter is stored.
One factor is the geographical extent of the data blocks. A large block is
useful for storing data that does not vary greatly; a small block is more
useful for a parameter that varies within a short distance. The 3-degree by

3-degree block is approximately 36,000 mi2 at 32 degrees latitude, and
approximately 31,400 mi2 at 42 degrees latitude. A 1-degree block is
approximately 4,000 mi2 at 32 degrees latitude, and 3,500 mi2 at 42 degrees
latitude. A 10-minute block is approximately 111 mi2 at 32 degrees latitude,
and 97 mi2 at 42 degrees latitude. Finally, a 1-minute block is approximately
1.1 mi2 at 32 degrees latitude, and 1.0 mi2 at 42 degrees latitude.

Three other major controlling factors for determining data density are:
(1) The detail of the data needed for modeling; (2) the detail of the source
material (usually a map); and (3) the distribution of variance of the data
over the map. In the case of water-level data, maximum detail is needed for
modeling and the source maps are very detailed. Hence, the water levels were
stored as 1-minute data. Land-use and water-use data are required in as much
detail as possible. For the High Plains study, detailed data were not
available; in most instances, data were only available for counties. Using
this data and other source material, the data were extrapolated and stored
as 10-minute data. The only exceptions were the 1978 and 1980 land-use data
that were available in detail; data for these years were stored as 1-minute
data. Although detailed climatic data are available, they were not required.
These data were stored as 1-degree data.

Statistics

Actual data values are found at the base level of the data-base
structure at which a parameter is stored. Statistical components also can be
found at this level. These statistics (minimum, maximum, number of values,
and standard deviation) are determined from the data used to compute the
single data value for the block. At levels above the base level, the same
statistical components plus the mean value will be found. Statistics at the
higher levels are computed and stored in the data base. For example, a 10-
minute parameter has its actual data value stored at level 3 with the four
statistical components. At levels 0 through 2, five statistical components
(minimum, maximum, mean, number of values, and standard deviation) can be
found. The 1-degree statistics (level 2) are computed by using the parameter
values for all of the 10-minute blocks within the 1-degree block. The 3-
degree level statistics (level 1) are computed by using parameter values for
all of the 10-minute blocks within the 3-degree block. Finally, a set of
statistics are stored at level 0, that are a reflection of all of the 10-
minute blocks within the aquifer. Therefore, the value component can have two
meanings: (1) At the base level of a parameter, the value component is the
actual data value for that block; and (2) at higher levels within the
structure, the value component is the mean of the data values at the base
level within the block.

The main purpose of the statistical information is to have data avail­
able for a particular parameter at more than one level of detail. This
provides the user of the data with several views of the same information.

10

Proposals

An important aspect of a DMS is to provide a method of updating. The
method chosen for the High Plains study is called the proposal concept. A
proposal is a separate record that can be added to the data structure for
a parameter. It consists primarily of a proposed data value and the
latitude and longitude of the data block. This proposed parameter value is
for a block at the base level at which a parameter is stored. For example,
a proposed value for a 10-minute parameter would correspond to a 10-minute
block. A user can propose a new value for any valid block within the aquifer

Proposals reside in a temporary area of the data base; actual data
resides in the permanent area of the data base. When a user proposes a new
value, it does not directly replace the permanent value. General users of
the DMS are not given update authority to the permanent data; replacement
of permanent data is a function of the Data Base Administrator (DBA). This
updating process is a compromise between allowing only the DBA to update
the data and allowing the general users to update as desired. The DBA
periodically updates the permanent data by moving selected proposals to
the permanent area of the data base.

System Portability

The DMS consists of data-preparation programs, programs that interact
with the data base and the DBMS, and data-application programs. The data-
preparation programs and the data-application programs all use the same fixed
format for input and output. This adds to the portability of the DMS,
because, regardless of the DBMS selected, the data-generation and data-
application programs are directly usable. Only the programs that interact
with the data base and the DBMS would have to be changed if the DBMS were
changed. The program changes should be accomplished easily if a DBMS based
on a heirarchical data structure were selected. If another type of DBMS were
selected, these program changes would most likely be very extensive.

TYPES OF DATA STORED

The general philosophy of the High Plains RASA is to store only primary
data in the data base and use computer programs to calculate secondary data.
Examples of primary data are water-level altitudes and base-of-aquifer alti­
tudes; secondary data would be saturated thickness. By not storing secondary
data, it is easier to keep the data base internally consistent. For example,
if saturated thickness was stored and then modified, that modification would
require a modification to either the water-level or base of aquifer altitude.
If other secondary data, such as water-level changes and transmissivity were
also stored, the results of the modification becomes even more complex.

Five general classes of data are stored in the High Plains RASA data base:
(1) Aquifer geometry; (2) aquifer and water characteristics; (3) water levels;

11

(4) climatic data; and (5) land- and water-use information. All data stored
in the data base is listed in table 1, with a brief description of the source
of the data. In December 1982, the data base contained 44 parameters and
more than 10.9 million characters of information.

The general data class of aquifer geometry consists of data on altitude
and geology of the base of the aquifer (Weeks and Gutentag, 1981), altitude
of land surface, and boundary of the aquifer. Altitude of land surface comes
from 1:250,000 scale, U.S. Geological Survey topographic maps. All other
data was generated by the High Plains RASA project, using all available data
sources.

Aquifer characteristics include hydraulic conductivity and specific
yield of the High Plains aquifer. These characteristics were mapped by the
High Plains RASA project by analyzing lithologic logs from numerous wells.
Water characteristics include dissolved-solids and sodium concentrations
(Krothe and others, 1982).

Water level information for various years is stored in the data base
(Gutentag and Weeks, 1980). Water-level maps were generated by the High
Plains RASA project at 5-year intervals for 1960 through 1980. A map showing
water levels prior to any extensive development of the aquifer also was
prepared. Water levels are used directly in the modeling, and also are
combined with each other and with other data to generate saturated-thickness
maps, transmissivity maps, and water-level change maps (Luckey and others,
1981).

Generalized climatological information stored in the data base includes
annual lake evaporation and annual normal precipitation. These were obtained
from small-scale National Weather Service maps (U.S. Department of Commerce,
1977); they are stored because they are related in a general way to the
recharge to the aquifer.

The general class of land- and water-use information contains a number
of varied parameters. Crop requirements, by crop type, were calculated by
the High Plains RASA project for normal precipitation and temperature condi­
tions. A composite irrigation demand for various years was then calculated,
using the mix of crops reported by the U.S. Bureau of Census. Census data
also were used to define irrigated acreage for various years (Heimes and
Luckey, 1982). By combining composite irrigation demand and irrigated
acreage, and assuming an irrigation efficiency, ground-water pumpage can
be estimated. Much more detailed information on irrigated land, as well
as range land and dryland, was obtained from Landsat-satellite imagery
(Donovan and others, 1982). These data can be used to generate pumpage
data and to help estimate location of recharge from precipitation. Data on
soil type, obtained from State soil maps, also are stored in the data base
and could be used to estimate recharge.

12

Ta
bl
e

1.

Pa

ra
me

te
rs

in

th
e

Hi
gh

Pl
ai
ns

da

ta

ba

se

[i
n,

in

ch
;

ft
,

fo
ot

;
ft

/d
,

fe
et

pe
r

da
y;

pe
t,

pe

rc
en

t;

mg

/L
,

mi
ll
ig
ra
ms

pe
r

li
te

r]

Pa
ra

me
te

r
na
me

A
N
N
U
A
L

L
A
K
E

E
V
A
P
O
R
A
T
I
O
N

A
N
N
U
A
L

N
O
R
M
A
L

P
R
E
C
I
P
I
T
A
T
I
O
N

B
A
S
E

O
F

A
Q
U
I
F
E
R

-
A
L
T
I
T
U
D
E

B
A
S
E

O
F

A
Q
U
I
F
E
R

-

G
E
O
L
O
G
Y

B
O
U
N
D
A
R
Y

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-
A
L
F
A
L
F
A

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-

C
O
R
N

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-

C
O
T
T
O
N

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-

D
R
Y

BE
AN
S

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-

S
O
R
G
H
U
M

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-

S
O
Y
B
E
A
N
S

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-

S
U
G
A
R

BE
ET
S

CR
OP

R
E
Q
U
I
R
E
M
E
N
T

-
W
H
E
A
T

D
I
S
S
O
L
V
E
D

SO
LI
DS

D
R
Y
L
A
N
D

-

19
78

-

L
A
N
D
S
 A
T

H
Y
D
R
A
U
L
I
C

C
O
N
D
U
C
T
I
V
I
T
Y

I
R
R
I
G
A
T
E
D

L
A
N
D

-

19
49

-

C
E
N
S
U
S

I
R
R
I
G
A
T
E
D

L
A
N
D

-

19
54

-

C
E
N
S
U
S

I
R
R
I
G
A
T
E
D

L
A
N
D

-

19
59

-

C
E
N
S
U
S

I
R
R
I
G
A
T
E
D

L
A
N
D

-

19
64

-

C
E
N
S
U
S

I
R
R
I
G
A
T
E
D

L
A
N
D

-

1
9
6
9

-

CE
NS

US
I
R
R
I
G
A
T
E
D

L
A
N
D

-

19
74

-

C
E
N
S
U
S

I
R
R
I
G
A
T
E
D

L
A
N
D

-

19
78

-
C
E
N
S
U
S

I
R
R
I
G
A
T
E
D

L
A
N
D

-

1
9
7
8

-
L
A
N
D
S
A
T

I
R
R
I
G
A
T
E
D

L
A
N
D

-

1
9
8
0

-
L
A
N
D
S
A
T

I
R
R
I
G
A
T
I
O
N

D
E
M
A
N
D

-

19
49

I
R
R
I
G
A
T
I
O
N

D
E
M
A
N
D

-

19
54

I
R
R
I
G
A
T
I
O
N

D
E
M
A
N
D

-

19
59

I
R
R
I
G
A
T
I
O
N

D
E
M
A
N
D

-

19
64

Me
an

va
lu
e

54
.5

in

19
.1

in

2,
93
3

ft
2.
1

2.
1

24
.5

in

15
.5

in

9.
4

in
13

.8

in

12
.0

in

9.
5

in
20

.7

in

8.
1

in
42
6
mg

/L
26

.1
1

pe
t

55
.6

8
ft

/d
1,
16
3

ac
re

s
2,

21
7

ac
re
s

3,
53

0
ac
re
s

3,
92

3
ac

re
s

5,
01
9

ac
re

s
5,

91
8

ac
re

s
7,

26
2

ac
re

s
13

.1
5

pe
t

13
.0

7
pe
t

16
.5

in

16
.4

in

15
.0

in

14
.7

in

De
ns
it
y-

1-

1° 1° V 10
' V 1° 1° 1° 1° 1° 1° 1° 1°

10
' I
1

10
'

10
'

10
'

10
'

10
'

10
'

10
'

10
' V V 10
'

10
'

10
'

10
'

Nu
mb
er

of

po
in
ts

77 77
16
6,
63
9

2,
00

1
51

8,
40

0 77 77 77 77 77 77 77 77
2,

00
1

17
4,

87
1

1,
78

1
1,

78
1

1,
78

1
1,

78
1

1,
78
1

1,
78
1

1,
78
1

1,
78
1

17
4,

87
1

16
8,
61
9

1,
78
1

1,
78
1

1,
78
1

1,
78
1

So
ur
ce

Na
ti
on
al

We

at
he

r
Se
rv
ic
e

ma
ps
.

Do
.

Hi
gh

Pl
ai
ns

RA

SA
 p

ro
je
ct
.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

La
nd
sa
t

sa
te
ll
it
e.

H
i
g
h

Pl
ai
ns

RA

SA

pr
oj
ec
t.

U.
S.

Ce

ns
us

of

Ag
ri
cu
lt
ur
e.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

La
nd
sa
t

sa
te

ll
it

e.
Do

.
Hi

gh

Pl
ai
ns

RA

SA

pr
oj
ec
t.

Do
.

Do
.

Do
.

Ta
bl
e
1
.

Pa

ra
me

te
rs

-i
n

th
e

Hi
gh

 P
la

in
s

da
ta

b
a
s
e

Co
nt
in
ue
d

P
a
r
a
m
e
t
e
r

n
a
m
e

I
R
R
I
G
A
T
I
O
N

D
E
M
A
N
D

-

1
9
6
9

I
R
R
I
G
A
T
I
O
N

D
E
M
A
N
D

-

1
9
7
4

L
A
N
D

S
U
R
F
A
C
E

R
A
N
G
E
L
A
N
D

-

1
9
7
8

-
L
A
N
D
S
 A
T

S
O
D
I
U
M

C
O
N
C
E
N
T
R
A
T
I
O
N

S
O
I
L

T
Y
P
E

S
P
E
C
I
F
I
C

Y
I
E
L
D

S.
W.

IR
R.

L
A
N
D

-

1
9
5
9

-

C
E
N
S
U
S

W
A
T
E
R

T
A
B
L
E

-

P
R
E
D

W
A
T
E
R

T
A
B
L
E

-

1
9
6
0

W
A
T
E
R

T
A
B
L
E

-

1
9
6
5

W
A
T
E
R

T
A
B
L
E

-

1
9
7
0

W
A
T
E
R

T
A
B
L
E

-

1
9
7
5

W
A
T
E
R

T
A
B
L
E

-

1
9
7
8

W
A
T
E
R

T
A
B
L
E

-

1
9
8
0

M
e
a
n

v
a
l
u
e

14
.7

in

1
4
.
6

in

3,
24

4
ft

60
.0

5
pe
t

34

mg
/L

2.
1

14
.1

4
pe
t

38
3

ac
re

s
3,

13
5

ft
3,

13
9

ft
3,

13
4

ft
3,

13
2

ft
3,

13
1

ft
3,
12
6

ft
3,

12
7

ft

De
ns

it
y-

1-

10
'

10
'

10
' 1'

10
'

10
'

10
'

10
' 1' 1' 1' 1' 1'

10
' 1'

Nu
mb
er

of

po
in

ts

1,
78
1

1,
78

1
1,

78
1

17
4,

87
1

2,
00

1
1,
78
1

1,
78
1

1,
78
1

16
6,
63
9

16
6,
63
9

16
6,
63
9

16
6,

63
9

16
6,
63
9

1,
78
1

16
6,
63
9

Hi
gh

U.
S.

S
o
u
r
c
e

P
l
a
i
n
s

R
A
S
A

p
r
o
j
e
c
t
.

Do
.

G.
S.

t
o
p
o
g
r
a
p
h
i
c

m
a
p
s
.

L
a
n
d
s
a
t

s
a
t
e
l
l
i
t
e
.

H
i
g
h

U.
S.

H
i
g
h

P
l
a
i
n
s

R
A
S
A

p
r
o
j
e
c
t
.

Do
.

Do
.

C
e
n
s
u
s

of

A
g
r
i
c
u
l
t
u
r
e
.

P
l
a
i
n
s

R
A
S
A

p
r
o
j
e
c
t
.

Do
.

Do
.

Do
.

Do
.

Do
.

Do
.

-L

O
n
e

v
a
l
u
e

p
e
r

b
l
o
c
k

o
f

i
n
d
i
c
a
t
e
d

si

ze
.

9
/

 ^-

I
t
e
m

a
s
s
i
g
n
e
d

a
r
b
i
t
r
a
r
y

c
o
d
e

v
a
l
u
e

so

m
e
a
n

v
a
l
u
e

is

m
e
a
n
i
n
g
l
e
s
s
.

DATA GENERATION

Most of the data stored in the High Plains RASA data base originated as
data portrayed on some type of map. These maps are prepared at various scales
and at various degrees of detail. The scale of the original maps ranged
from 1:250,000 (about 4 mi/in.) to about 1:19,000,000 (about 300 mi/in.).
While no control is possible over the degree of detail of maps from published
sources, the maps prepared for the High Plains RASA were made at the degree
of detail needed for both regional and local ground-water management models.
After maps were obtained or constructed, average values for data-base blocks
were obtained by using either automated or manual procedures.

Automated Procedure

The automated procedure is used when 10- or 1-minute data are required,
and original data are in the form of a contour map. If less detail is
required, a manual procedure is more efficient. The automated procedure
consists of four steps: (1) The contours are digitized to (X, Y, Z) triplets;
(2) the (X, Y, Z) triplets are converted to (longitude, latitude, Z) triplets;
(3) the (longitude, latitude, Z) triplets are converted to one value for each
10-minute or 1-minute block; and (4) all blocks outside the limit of the
aquifer are eliminated (fig. 5) .

The first step in the automated procedure is to digitize the contours.
This is done using a Numonics 1224 digitizer operating in a mapping incremental
mode and linked to a Datapoint 5500 minicomputer. Generally, a 1-degree by
1-degree or 2-degree by 2-degree block is digitized at one time.

The second step of the procedure is to convert the (X, Y, Z) triplet from
the first step to a (longitude, latitude, Z) triplet. The coordinates are
adjusted for map translation, map rotation, and convergence of longitude
lines. The coordinates are not corrected for the curvature of the latitude
lines; however, this curvature is insignificant for small blocks.

The third step of the procedure is to convert the (longitude, latitude,
Z) triplets into average values for the 10-minute or 1-minute block. First,
the data are gridded in either the north-south direction or the east-west
direction; that selection is governed by the general trend of the contour
lines. For gridding in a north-south direction for 10-minute blocks, the
(longitude, latitude, Z) triplets are scanned to find successive triplets
that span a 5-minute, 15-minute, 25-minute, 35-minute, 45-minute, or 55-
minute latitude line. A linear interpolation is then done on the longitude,
and a new triplet is generated with the latitude of the desired line. After
this is done for all possible latitude lines of interest, and the new triplets
are sorted, a data set is generated that defines the position and value of
all contours that cross the latitude line. An identical procedure is followed
for gridding in the east-west direction with the longitude value fixed, and
the interpolation done on the latitude line. If data are desired for 1-minute
blocks, the data are gridded at the 0.5-minute lines rather than the 5-minute

15

MAP
OF

PARAMETER

\ r

DIGITIZE MAP

INTO (X, Y. Z)

TRIPLETS

Q
LU
CJ

g

\ r

CONVERT (X,Y,Z)
TO

(LONGITUDE,
LATITUDES)

O_

Q
LU \t- 1

S

y
3

r

GRID DATA
USING

SPLINE FUNCTION

\ f

ELIMINATE EXCESS
DATA USING
BOUNDARY

MATRIX

]

 _« ___ _«.__^^

r

DRAW GRID
ON

MAP

LU
CC

R
LU
CJ

g
0.

^

1 r

PICK MEAN
VALUE FOR

EACH BLOCK

 p

 F r

KEYPUNCH AND
PROOFREAD

DATA

1

 ̂

i _ _ _ _ _ j

EDIT
DATA

<

CORRECT
i DATA

v^" X. YES ^
^ FRRDRS ? ^S .

LOAD
DATA

Figure 5. Flowchart illustrating steps in data-generation procedure,

16

lines. The data are then gridded along each latitude (or longitude) line by
first fitting a cubic-spline function through all the (longitude, Z) values
along each line. A cubic-spline function is the smoothest interpolation
function that fits all of the contour crossing points exactly. The cubic-
spline function is used to generate Z values at 5-minute or 0.5-minute
longitude (or latitude) intervals. At this point, a data value has been
generated for the center of each 10-minute or 1-minute block.

The final step is to trim the data back to the boundary of the aquifer.
Prior to digitizing, the original contours are extended beyond the boundary
of the aquifer to increase accuracy of the interpolation process in the
vicinity of the boundary. This results in data being generated beyond the
limits of the aquifer. These generated data are compared to a control data
set that defines the limits of the aquifer, and all generated points outside
of the area are eliminated.

Manual Procedure

A manual procedure is used for some 10-minute data and for all 1-degree
data. This procedure is preferable when the number of points to be generated
is small or the mapped surface is highly irregular.

A template showing the 10-minute blocks within a 1-degree block, or the
1-degree blocks within a 3-degree block, is constructed. A separate template
is needed for each range of latitude, because width of the blocks decreases
to the north. The template is placed over the map and an average value for
each block is picked. Average values are placed on a coding sheet that
already has the latitude and longitude of the block coded. The data are then
ready for keypunching and editing.

Data Editing

Data editing starts before beginning the data generation process and
ends just before the data are loaded into the data base. The importance of
data editing cannot be overemphasized, because the DMS cannot be properly
used without careful selection of the data that are entered into the data
base. Prior to the start of the data-generation process, the source data are
visually examined to determine their accuracy. During the automated data-
generation process, computer programs check correctness of the generated data
against the original contour maps to insure that the generated data are
consistent with the source material. The data are then again carefully
machine-edited prior to loading them into the data base.

There are two main reasons for carefully editing generated data:

1. Data should be accurate. To insure accuracy, a manual-editing
procedure is used. The data is scanned and checked against source material.
In some instances generated data are contoured and then overlaid on the source
map.

17

2. Data needs to be edited to be sure that they can be loaded properly
into the data base. The Edit Program is used to prepare generated data for
loading. There are four main categories of checks performed by the Edit
Program: (1) Syntax checks; (2) logical-order checks; (3) duplication checks;
and (4) latitude and longitude checks. The syntax checks determine if data
records follow standard formats for use in the data-base Loading Program.
Logical order checks insure that records are in the proper sequence. Duplica­
tion checks determine if the data had been previously loaded into the data
base.

Latitude and longitude checks take several forms. Latitude and longitude
are checked to see if they are within the study area. Geographic coordinates
are examined to determine if the assigned values are appropriate for the record
type. For example, the minutes and seconds must be zero if the record
describes a 3-degree or 1-degree block. Finally, the coordinates are examined
to determine if proper 1-degree records are grouped with the appropriate 3-
degree record, and that 10-minute records are grouped with the appropriate
1-degree record.

The end result of the editing process is a set of data that is ready to
be loaded into the data base. The editing process insures that the data
represent the original map and can be loaded without problem.

DATA LOADING

The data are loaded into a hierarchical data base for storage, update,
and retrieval. The loading procedure is dependent on the DBMS. The DBMS
stores the data and creates appropriate indices to the data. These indices
are useful for updating or retrieving the data.

DATA UPDATING

Updating the data base is a two-step process. In the first step,
accomplished through the use of the Instant-Update Program, users propose
changes to data values. In the second step, the DBA replaces the appropriate
permanent-data values with the acceptable proposed values using the Move
Program. The following describes these two steps in detail.

Proposals

There are three types of proposals that can exist in the data base for
each parameter. When a user initially proposes a change to permanent data,
a record, called a test proposal, is loaded into the data base. The record
indicates that it is a test value. There are three possible actions that the
user can perform upon the test proposal. First, the proposal can be left in
its present state; in this instance, the test proposal would be removed auto­
matically from the data base after a predetermined time. Second, the user

18

may decide that the test value is not acceptable as a replacement for the
present permanent value. The user may then request, through the Instant-
Update Program, that the test proposal be rejected. Once rejected, the
proposal appears to the user as no longer existing within the data base.
The Instant-Update Program does not actually remove the rejected proposal;
this function is performed by the Move Program. The third alternative is to
accept the test proposal as the replacement for the current permanent value.
The Instant-Update Program indicates the test proposal is acceptable, and it
becomes an accepted proposal. The Instant-Update Program does not actually
replace the permanent value; this task is performed by the Move Program.

A typical application of this update process is using proposals in con­
junction with modeling. As a result of modeling, a user may determine that
a group of permanent values is unacceptable. By using the Instant-Update
Program, the modeler can propose test values for the unacceptable data. Then,
a set of data can be retrieved from the data base for the model area. In the
retrieval, the user can request that test proposals be included in the
retrieved data. For each block retrieved that has a corresponding test
proposal, the test value will replace the permanent value. This data can
then be used for modeling. While modeling, the user can use the Instant-
Update Program to mark the test proposals as accepted or rejected, and
possibly add new test proposals.

Thus, through the Instant-Update Program, the user can manipulate test
proposals. These proposals can be added to the data base, or their status
can be changed to rejected or accepted. Using this method, the general user
does not alter the permanent data; hence the integrity of the data base is
maintained. Actual changes to the permanent data are performed by the DBA
in the second step of the update process.

Move of Proposals

The second step is accomplished by the DBA using the Move Program. For
each parameter, the program performs three functions. First, the program
locates all the rejected proposals and removes them from the data base.
Second, the program locates all the accepted proposals. For each accepted
proposal, the program finds the corresponding permanent data and replaces the
present permanent value with the new accepted value. The accepted proposal
then is removed from the data base. After all the accepted proposals have
been processed, statistics are recomputed for the entire parameter. Third,
the program locates all test proposals. Any proposals that have existed for
longer than a predetermined time are removed from the data base.

The frequency with which the Move Program is used is dependent on update
activity. The DBA is able to monitor this activity through the use of DBA
information file that is produced by the Instant-Update Program. This move
process can be done for all parameters or for selected parameters, within the
data base in one program execution.

19

DATA RETRIEVAL

The retrieval procedure is used to extract a set of data from the data
base for use in an application program. There are four specifications required
to describe the data to be retrieved. The first two are the parameter and
aquifer names. With these two names, the Retrieval Program can pinpoint the
location in the data base where the retrieval of data will begin. The third
specification is the level of the retrieval. This value determines the lowest
level in the data-base structure from which data are to be obtained. Usually
this level is the base level at which a parameter resides. For example, the
base level for 10-minute data is level 3. Hence, if the actual data values
are required for a 10-minute parameter, a level 3 retrieval needs to be
specified. In some instances, a user may desire only the statistical data
for a particular parameter. This can be done by specifying any level above
the base level. For example, a user may retrieve the 1-degree statistics for
a 10-minute parameter by specifying a level 2 retrieval. The fourth specifi­
cation is the area for which data are needed. This area is described as a
rectangle where the limits of the rectangle are given as minimum and maximum
latitudes and longitudes. This area can be part or all of the study area.
Because geographic coordinates are specified as whole degrees, it is likely
that the retrieved data will be for an area larger than needed. Available
application programs trim the data to the actual area where data are needed.

The Retrieval Program has one major option: the user may request that
test proposals be included in the retrieved data. This option only can be
used when retrieving data from the base level. With this option, the program
searches for test-proposals. Prior to outputting a record the program
determines if there is a test proposal present that corresponds to the data
block. If a test proposal is found, its value replaces the permanent data
value in the retrieved data. If, for a particular data block, more than one
test proposal exists, the most recent test proposal is used.

The format of the retrieved data is identical to the format used to
initially load the data into the data base. A discussion of this point can
be found in the section on system portability.

The Retrieval Program is used to produce data for use in available
application programs. It is a very simple retrieval process, in that its
only purpose is to extract data that are to be manipulated by another program.
This procedure does not have any options to perform complex retrievals. An
example of a complex retrieval would be to request retrieval of some water-
level data, where the water level is greater than a certain value. The DBMS
that manages the data base has facilities for performing complex retrievals,
but the format of a DBMS retrieval is not compatable with the application
programs.

20

APPLICATION PROGRAMS

There are several application programs available that use data retrieved
from the data base. The first program produces mathematical combinations of
data. Its primary purpose is to generate secondary data. The second program
is the interface between the data base and the model. This program transforms
data-base data into a format for model programs. The third program produces
data plots, contour maps, and three-dimensional views of the data.

Data Manipulation

The Data-Manipulation Program is provided to mathematically manipulate
data from the data base, using five available functions. The first function
takes the logarithm of a data value in the form:

A*log(X) + C

where A and C are constants, and X is the data value. The second function
performs an antilogarithm calculation in the form:

A*antilog(X) + C

where A and C are constants, and X is the data value. The third function
performs a linear combination in the form:

A*X1 + B*X2 + C

where A, B, and C are constants, and XI and X2 are data values for different
parameters. The fourth and fifth functions perform multiplication and division
in the forms:

A*X1*X2 + C

A* (XI/X2) + C

where A and C are constants and XI and X2 are data values.

The main entry data to this program is a set of data in standard retrieval
format; manipulated data also are in that format. The entry data can be data
retrieved from the data base. It also can be an intermediate result from one
of the steps in the process of calculating secondary data.

The major use of this program is to generate secondary data. Secondary
data are data that are produced from parameters already stored in the data
base. These stored data are called primary data.

Examples of secondary data are saturated thickness, water-level changes,
and transmissivity. To illustrate use of the program, the steps to generate

21

transmissivity will be discussed. Transmissivity is the product of saturated
thickness and hydraulic conductivity. The required steps are:

1. Subtract altitude of base of aquifer from the water level
(saturated thickness); and

2. Multiply saturated thickness by hydraulic conductivity.

These two steps result in secondary data, called transmissivity, in standard
entry format. In fact, the transmissivity data could be loaded into the data
base at this point.

The secondary data could have been stored directly in the data base.
However, this could result in data-management problems. A parameter, such as
transmissivity, is dependent on several primary parameters for its values.
Hence, if one or more of the primary data values are changed, then changes in
the secondary data also would occur. This would result in additional updating
of the data base, which would require more effort and time than recalculating
the secondary data with the Data Manipulation Program. Also, the size of the
data base is maintained at a minimum by not storing secondary data.

Another use of the program is to check consistency of primary data.
For example, by calculating secondary data, depth to water, the relationship
between water level and land surface can be examined.

Data Transformation

The Data-Transformation Program is the interface between the data base
and the model. This program produces a model matrix for the finite-difference
model used for aquifer simulation. The program processes data retrieved from
the data base. It will process 1-degree, 10-minute, and 1-minute data.

The program is divided into two major steps. In step 1, data values and
their corresponding geographic coordinates are extracted from retrieved data.
The longitude and latitude are converted to X and Y values. These cartesian
coordinates are then rotated by an angle specified by the program user. The
result of this step is a group of (X, Y, Z) triplets that are in the
coordinate system of the model grid. In step 2, values are calculated for
each of the nodes of the model. There are three techniques that can be used
to produce these values. The user can choose between an average, a weighted-
average, or a trend-surface technique. For average and weighted-average
techniques, converted data are trimmed to fit the model area. For each
(X, Y, Z) triplet, the block in which the point is located is determined.
Then, for each model block, a value is calculated by using the data that are
located within the block. It is quite possible that some of the model blocks
cannot be assigned a value, because of a lack of data. In the instance of the
trend-surface technique, all converted data are used to calculate the node
values and all blocks are assigned a value. For all three techniques, the
model matrix is produced in one of two user-selectable formats.

22

The most important aspect of the Data-Transformation Program is that the
model grid is completely independent of the data-base grid. An example of
a hypothetical model grid is given in figure 6. There are no restrictions
on the model grid pattern. The model blocks can be of any desired size, and
the grid does not have to be uniform. In addition, the model grid can be
oriented at any angle to the data-base grid. This gives the user flexibility
in choosing the model grid.

Graphics

The Graphics Program generates contour maps and three-dimensional views
of the data. The program is based on computer programs developed by California
Computer Products, Inc. (Calcomp). The contour maps and three-dimensional
views can be reproduced on Calcomp and Calcomp-compatible flat-bed and drum
plotters. The Graphics Program can be used without knowing how the Calcomp
computer programs actually function.

To generate contour maps, the user needs to specify: (1) Title of map;
(2) rotation angle of map on plotter; (3) width of plotter; and (4) interval
between index contours. The Graphics Program then generates the data and
commands needed by the Calcomp computer programs to produce the plotter
commands.

To generate three-dimensional views, the user specifies the following:
(1) Title of plot; (2) position of observer; (3) distance of observer from
surface; (4) smoothness of plot; and (5) exaggeration of plot in the Z-
direction. The Graphics Program then generates the data and commands needed
by the Calcomp computer programs to produce the plotter commands. The user
has the option of generating multiple views of the same surface in one
operation of the program.

The data base was initially linked to the Calcomp system because the
computer programs were available and usable. The data base can be linked to
other available commercial graphics program packages as needed.

SUMMARY

The High Plains RASA study, which began in 1978, has developed a
regional water-resources (and related) data storage, retrieval, and update
system to organize and manipulate areal interpretive data needed to develop
regional and local ground-water flow models. The data storage and retrieval
system is general and can easily be adapted for other studies.

The system is built around a hierarchically structured data base consist­
ing of related latitude-longitude blocks. Various parameters in the data base
are stored at different degrees of detail, with the finest detail being a
block of 1 minute of latitude by 1 minute of longitude (approximately 1 mi2).

23

35°

/BOUNDARY OF STUDY AREA

104 103' 102°

POSITION OF PRINCIPAL NODE: ROW 6. COLUMN 8
LATITUDE OF PRINCIPAL NODE: 34°00'00"
LONGITUDE OF PRINCIPAL NODE: 102°30'00"
ROTATION ANGLE: 30°

101°

EXPLANATION

-4- DATA-BASE GRID

MODEL GRID

Figure 6. Hypothetical-model grid overlaid on the data-base grid.

24

Statistics about the parameter are stored at all higher levels in the data
base, including 10-minute blocks, 1-degree blocks, and 3-degree blocks, so
the parameter is available at all levels above the base level. The system
allows immediate updates to the data base that are virtually transient in
nature. The method of updating the data provides immediate updates, while
preserving the integrity of the permanent part of the data base.

Five general classes of data have been stored in the data base: (1)
Aquifer-geometry data; (2) aquifer and water characteristics; (3) water levels;
(4) climatological data; and (5) land- and water-use data. These data were
compiled from maps, using both automated and manual data-generation procedures.

Data can be retrieved from the data base, combined with other data in
the same format, and automatically regridded into any finite-difference,
flow-model grid. The system thus accomplishes the objective of organizing
data for use in the flow models.

REFERENCES

Davis, John C., 1973, Statistics and data analysis in geology: New York,
John Wiley, 550 p.

Donovan, W., Koch, C., Morse, A., Jones, H., and Heimes, F., 1982, One
billion pixels; analysis and reduction of Landsat data for the High
Plains hydrological model (abs.): American Society of Photogrammetry,
Proceedings, 48th Annual Meeting, Denver, Colorado, March, 1982, p. 562.

Gutentag, E. D., and Weeks, J. B., 1980, Water table in the High Plains
aquifer in 1978 in parts of Colorado, Kansas, Nebraska, New Mexico,
Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey
Hydrologic Investigations Atlas HA-642.

Heimes, F. J., and Luckey, R. R., 1982, Method for estimating historical
irrigation requirements from ground water in the High Plains in parts
of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota,
Texas, and Wyoming: U.S. Geological Survey Water-Resources
Investigations 82-40, 64 p.

Krothe, N. C., Oliver, J. W., and Weeks, J. B., 1982, Dissolved solids and
sodium in water from the High Plains aquifer in parts of Colorado,
Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and
Wyoming: U.S. Geological Survey Hydrologic Investigations Atlas HA-658.

Luckey, R. R., Gutentag, E. D., and Weeks, J. B., 1981, Water-level and
saturated-thickness changes, predevelopment to 1980, in the High Plains
aquifer, in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma,
South Dakota, Texas, and Wyoming: U.S. Geological Survey Hydrologic
Investigations Atlas HA-652.

Martin, James, 1977, Computer data-base organization: Englewood Cliffs,
N.J., Prentice-Hall, 713 p.

Trescott, P. C., Pinder, G. F., and Larson, S. P., 1976, Finite-difference
model for aquifer simulation in two dimensions with results of numerical
experiments: U.S. Geological Survey Techniques of Water Resources
Investigations, Book 7, Chapter Cl, 115 p.

25

U.S. Department of Commerce, 1977, Climatic atlas of the United States:
Environmental Sciences Services Administration, Environmental Data
Service, 80 p.

Weeks, J. B., 1978, Plan of study for the High Plains regional aquifer-
system analysis in parts of Colorado, Kansas, Nebraska, New Mexico,
Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey
Water-Resources Investigations 78-70, 28 p.

Weeks, J. B., and Gutentag, E. D., 1981, Bedrock geology, altitude of base,
and 1980 saturated thickness of the High Plains aquifer in parts of
Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas,
and Wyoming: U.S. Geological Survey Hydrologic Investigations Atlas
HA-648.

26

SUPPLEMENT I: DATA-BASE DICTIONARY

Within the data base, the data are arranged in a hierarchical structure.
At the top of this structure, which is referred to as the root level or level
0, is a group of data items that uniquely define the data stored at the lower
levels of the structure. The aquifer unit and parameter name are part of the
entry record. At level 1, data for a 3-degree block are stored. At level 2,
data for a 1-degree block are stored. At level 3, data for 10-minute blocks
are stored. Logically, 1-minute data should be found at level 4, but these
data actually are stored at level 3. Proposal and remarks data are maintained
at level 1.

Data at each level are stored in groups called schema records. A schema
record consists of a group of logically related data items; these data items
are referred to as schema or component items. Each schema record is assigned
a name, and each schema item has a unique component name and component number.

Schema records and the corresponding schema items associated with the
data base are listed in table 2. For each schema item, the table indicates
the data type. For this data base, five data types are used: integer,
decimal, text, character, and date. Both text and character data types are
used to store alphanumeric data. When a character item is stored in the
data base, the leading, trailing, and extraneous imbedded blanks are removed;
for text items, all blanks are retained when the items are stored.

The schema records named LEV3 and PROP contain 100 schema items that
correspond to the 100 1-minute data blocks for 1-minute data within a
10-minute block. All these schema items are not listed, because the items
are identically formatted. Arrangement of the 1-minute schema items
within the 10-minute block is shown in figure 7.

27

T
ab

le

2.

D
a

ta
-b

a
se

d

io
ti

,o
n

a
T

y

N
3

00

Sc
he
ma

or

Nu
mb
er

co
mp
on
en
t

Na
me

Fo
rm
at

Ty
pe

Le
ng
th

Re
ma
rk
s

LE
VE
L

0
-

EN
TR

Y
RE
CO
RD

0 1 2 3 4 5 6 8 9
10 11 12 13 14 15 17 21 22 23 30

EN
TR
Y

A
Q
P
A
R
M

UN
IT

PN
AM
E

ST
UD

Y
DE
NS
E

SC
AL

E
FL
AG

LA
ST
D

LA
ST
T

MN
O

MX
O

AV
GO

NU
MO

SD
VO

UN
TD
SC

R
E
S
A

RE
SB

RE
SC

MV
I

_
Ch
ar
ac
te
r

Ch
ar
ac
te
r

Ch
ar

ac
te

r
Ch
ar
ac
te
r

In
te
ge
r

In
te

ge
r

In
te

ge
r

Da
te

In
te
ge
r

In
te
ge
r

In
te

ge
r

In
te
ge
r

In
te
ge
r

De
ci
ma
l

Te
xt

In
te

ge
r

De
ci
ma
l

Te
xt

In
te
ge
r

_ 38
8 30 30
2 3 1 7 6 5 5 5 7 7

10 9 10 10
5

Le
ve
l

0
sc

he
ma

re
co
rd

Co
nc

at
en

at
io

n
of

aq
ui
fe
r

un
it

an
d

pa
ra

me
te

r
na

me
Aq

ui
fe

r
un

it
Pa

ra
me

te
r

na
me

Pr
oj

ec
t

na
me

Da
ta

de
ns
it
y

gc
AL

E
Ch

ar
ac

te
ri

st
ic

of

pa
ra
me
te
r

va
lu
e

(v
al
ue

x

10

)
In
di
ca
te
s

ty
pe

s
of

ex

is
ti

ng

pr

op
os

al
s

fo
r

pa
ra

me
te

r
Da

te

of

la

st

up
da
te

(Y

YY
MM

DD
)

Ti
me

of

la

st

up
da
te

(H

HM
MS

S)
M
i
n
i
m
u
m

pa

ra
me

te
r

va
lu
e

M
a
x
i
m
u
m

pa

ra
me

te
r

va
lu
e

Av
er
ag
e

pa
ra

me
te

r
va
lu
e

Nu
mb
er

of

da

ta

va
lu
es

us

ed

to

co
mp
ut
e

st
at
is
ti
cs

St
an

da
rd

de

vi
at

io
n

-
2
de

ci
ma

l
pl

ac
es

De
sc
ri
pt
io
n

of

un
it

of

me
as

ur
em
en
t

Re
se

rv
ed

fi
el
d

Re
se

rv
ed

fi

el
d

-
3
de

ci
ma

l
pl

ac
es

Re
se
rv
ed

fi

el
d

Mi
ss
in
g

va
lu
e

in
di
ca
to
r

LE
VE
L

1
-
RE
MA
RK
S

RE
CO
RD

50 51 52 53 54 55 56 57

RE
MA

RK

RM
DA
TE

RE
MS
EQ

RE
M1

RE
M2

RE
M3

RE
M4

RE
M5

-

Da
te

In
te

ge
r

Te
xt

Te
xt

Te
xt

Te
xt

Te
xt

- 7 3 50 50 50 50 50

Le
ve
l

1
sc

he
ma

re

co
rd

-

ge
ne

ra
l

pa
ra

me
te

r
in

fo
rm

at
io

n
-

ch
il
d

of

en
tr
y

re
co
rd

Da
te

re
ma
rk
 w

as

fo

rm
ul

at
ed

(Y

YY
MM

DD
)

Re
ma

rk

se

qu
en

ce

nu
mb
er

Fi
rs
t

li
ne

of

re
ma
rk

Se
co

nd

li

ne

of

re

ma
rk

Th
ir
d

li
ne

of

re

ma
rk

Fo
ur

th

li

ne

of

re
ma
rk

Fi
ft
h

li
ne

of

re
ma
rk

Ta
bl

e
2
.

Da
ta
-b
as
e
d
i
c
t
i
o
n
a
r
y

Co

nt
in

ue
d

Sc
he
ma

or

Nu
mb
er

co
mp
on
en
t

Na
me

Fo
rm

at

Ty
pe

Le
ng
th

Re
ma
rk
s

LE
VE
L

1
-

3-
DE

GR
EE

D
A
T
A

RE

CO
RD

10
0

10
1

10
2

10
3

10
4

11
1

11
2

11
3

11
4

11
5

LE
V1

LA
T1

LO
NG

1
LA
T1
D

LO
NG

1D
MN

1
MX
1

AV
G1

NU
M1

SD
V1

In

te
ge

r
In
te
ge
r

De
ci
ma
l

De
ci
ma
l

In
te
ge
r

In
te
ge
r

In
te
ge
r

In
te

ge
r

De
ci
ma
l

 6 7 7 8 5 5 5 5 7

Le
ve
l

1
sc

he
ma

re
co
rd

-

ch
il
d

of

en
tr
y

re
co
rd

La
ti
tu
de

of

so
ut
he
as
t

co
rn

er

of

3-

de
gr

ee

bl
oc
k

(D
DM

MS
S)

Lo
ng
it
ud
e

of

so
ut
he
as
t

co
rn

er

of

3-
de
gr
ee

bl
oc
k

(D
DD

MM
SS

)
De
ci
ma
l

eq
ui

va
le

nt

of

la
ti
tu
de
,

in

de
gr
ee
s

-
5

de
ci
ma
l

pl
ac
es

De
ci
ma
l

eq
ui

va
le

nt

of

lo

ng
it

ud
e,

in

de
gr
ee
s

-
5
de

ci
ma

l
pl

ac
es

M
i
n
i
m
u
m

pa

ra
me

te
r

va
lu
e

Ma
xi
mu
m

pa
ra
me
te
r

va
lu
e

Av
er
ag
e

pa
ra

me
te

r
va
lu
e

Nu
mb
er

of

da
ta

va
lu
es

us

ed

to

co
mp
ut
e

st
at

is
ti

cs
St
an
da
rd

de
vi
at
io
n

-
2
de
ci
ma
l

pl
ac
es

LE
VE
L

2
-

1-
DE

GR
EE

D
A
T
A

RE
CO
RD

20
0

20
1

20
2

20
3

20
4

21
1

21
2

21
3

21
4

21
5

LE
V2

LA
T2

LO
NG

2
LA

T2
D

LO
NG
2D

MN
2

MX
2

AV
G2

NU
M2

SD
V2

_
In
te
ge
r

In
te
ge
r

De
ci
ma
l

De
ci
ma
l

In
te
ge
r

In
te

ge
r

In
te
ge
r

In
te
ge
r

De
ci

ma
l

 6 7 7 8 5 5 5 5 7

Le
ve
l

2
sc

he
ma

re
co
rd

-

ch
il
d

of

3-

de
gr

ee

da

ta

re
co
rd

La
ti
tu
de

of

so

ut
he

as
t

co
rn

er

of

1-

de
gr

ee

bl
oc
k

(D
DM

MS
S)

Lo
ng
it
ud
e

of

so
ut
he
as
t

co
rn

er

of

1-
de
gr
ee

bl
oc
k

(D
DD

MM
SS

)
De

ci
ma

l
eq

ui
va

le
nt

of

la
ti
tu
de
,

in

de

gr
ee

s
-

5
de
ci
ma
l

pl
ac
es

De
ci

ma
l

eq
ui

va
le

nt

of

lo
ng
it
ud

e,

in

de

gr
ee

s
-

5
de
ci
ma
l

pl
ac
es

Mi
ni
mu
m

pa
ra
me
te
r

va
lu
e

M
a
x
i
m
u
m

pa

ra
me

te
r

va
lu
e

Av
er
ag
e

pa
ra

me
te

r
va
lu
e

Nu
mb
er

of

da

ta

va

lu
es

us

ed

to

co

mp
ut

e
st

at
is

ti
cs

St
an

da
rd

de
vi
at
io
n

-
2
de

ci
ma

l
pl
ac
es

Ta
bl

e
2
.

Da

ta
-b

as
e
d
i
o
t
i
o
n
a
r
y

Co
nt
in
ue
d

Sc
he

ma

or

Nu
mb
er

co
mp
on
en
t

N
a
m
e

Fo
rm

at

Ty
pe

Le
ng
th

Re
ma
rk
s

LE
VE
L

3
-

10
-M
IN
UT
E

DA
TA

RE
CO
RD

35
0

35
1

35
2

35
3

35
4

36
1

36
2

36
3

36
4

36
5

LE
V3
B

LA
T3

B
LO
NG
3B

LA
T3

BD
LO

NG
3B

D
MN
3B

MX
3B

AV
G3
B

NU
M3
B

SD
V3

B

- In
te
ge
r

In
te

ge
r

De
ci

ma
l

De
ci
ma
l

In
te
ge
r

In
te
ge
r

In
te
ge
r

In
te
ge
r

De
ci
ma

l

 6 7 7 8 5 5 5 5 7

Le
ve
l

3
sc

he
ma

re

co
rd

-

ch
il

d
of

1-

de
gr

ee

da
ta

re

co
rd

La
ti
tu
de

of

so
ut
he
as
t

co
rn

er

of

10
-m
in
ut
e

bl
oc
k

(D
DM

MS
S)

Lo
ng
it
ud
e

of

so
ut
he
as
t

co
rn

er

of

10

-m
in

ut
e

bl
oc
k

(D
DD

MM
SS

)
De

ci
ma

l
eq

ui
va

le
nt

of

la

ti
tu

de
,

in

de

gr
ee

s
-

5
de
ci
ma
l

pl
ac
es

De
ci

ma
l

eq
ui

va
le

nt

of

lo

ng
it

ud
e,

in

de
gr
ee
s

-
5
de
ci
ma
l

pl
ac
es

Mi
ni
mu
m

pa
ra

me
te

r
va
lu
e

M
a
x
i
m
u
m

pa
ra
me
te
r

va
lu
e

Av
er
ag
e

pa
ra

me
te

r
va
lu
e

Nu
mb
er

of

da
ta

va
lu
es

us
ed

to

co
mp
ut
e

st
at
is
ti
cs

St
an
da
rd

de

vi
at

io
n

-
2
de
ci
ma
l

pl
ac
es

LE
VE
L

3
-

1-
MI
NU
TE

DA
TA

RE
CO
RD

30
0

30
1

30
2

30
3

30
4

31
1

31
2

31
3

31
4

31
5

40
1-

50
0

LE
V3

LA
T3

LO
NG

3
LA

T3
D

LO
NG
3D

MN
3

MX
3

AV
G3

NU
M3

SD
V3

AA
-

JJ

_
In

te
ge

r
In

te
ge
r

De
ci
ma
l

De
ci
ma
l

In
te

ge
r

In
te
ge
r

In
te
ge
r

In
te

ge
r

De
ci

ma
l

In
te

ge
r

_ 6 7 7 8 5 5 5 5 7 5

Le
ve
l

3
sc

he
ma

re

co
rd

-

ch
il
d

of

1-

de
gr

ee

da

ta

re

co
rd

La
ti
tu
de

of

so

ut
he

as
t

co
rn

er

of

10

-m
in

ut
e

bl
oc
k

(D
DM

MS
S)

Lo
ng
it
ud
e

of

so

ut
he

as
t

co
rn
er

of

10

-m
in

ut
e

bl
oc
k

(D
DD
MM
SS
)

De
ci
ma
l

eq
ui

va
le

nt

of

la

ti
tu

de
,

in

de
gr
ee
s

-
5
de
ci
ma
l

pl
ac
es

De
ci

ma
l

eq
ui

va
le

nt

of

lo
ng
it
ud

e,

in

de
gr
ee
s

-
5

de
ci

ma
l

pl
ac
es

M
i
n
i
m
u
m

pa
ra
me
te
r

va
lu
e

M
a
x
i
m
u
m

pa
ra
me
te
r

va
lu
e

Av
er
ag
e

pa
ra

me
te

r
va
lu
e

Nu
mb
er

of

da
ta

va
lu
es

us

ed

to

co
mp
ut
e

st
at

is
ti

cs
St

an
da

rd

de

vi
at

io
n

-
2
de
ci
ma
l

pl
ac

es
1-
mi
nu
te

pa

ra
me

te
r

ma
tr

ix

-

10

ro
ws

by

10

co
lu
mn
s

-
se
e

fi
gu

re

7

fo
r

ar
ra
ng
em
en
t

Ta
bl

e
2
.

Da

ta
-b

as
e

d'
Lo

t'
io

na
z'

y
Co
nt
in
ue
d

Sc
he
ma

or

co

mp
on

en
t

Fo
rm

at

Nu
mb
er

Na
me

Ty
pe

Le
ng

th
Re

ma
rk

s

LE
VE
L

1
-
MU

LT
I-

VA
LU

E
PR
OP
OS
AL

RE

CO
RD

59
9

60
1

60
2

60
3

60
4

60
5

60
6

60
7

60
8

70
1-

80
0

PR
OP

LA
TP

LO
NG
P

LA
TP
D

LO
NG

PD
PE

RS
ON

PR
DA

TE
PR
TI
ME

P
R
F
L
A
G

PA
A-

PJ
J

In
te
ge
r

In
te

ge
r

De
ci
ma
l

De
ci

ma
l

Ch
ar
ac
te
r

Da
te

In
te

ge
r

In
te
ge

r
In

te
ge
r

_ 6 7 7 8
25
7 6 1 5

Le
ve
l

1
sc

he
ma

re
co
rd

-
us

ed

to

pr

op
os

e
ch
an
ge
s

to

pa

ra
me

te
r

va
lu
es

fo
r

1-
mi
nu
te

da
ta

-

ch
il

d
of

en
tr
y

re
co
rd

La
ti

tu
de

of

so

ut
he

as
t

co
rn

er

of

10
-m
in
ut
e
b
l
o
c
k

(D

DM
MS

S)
Lo
ng
it
ud
e

of

so

ut
he

as
t

co
rn

er

of

10
-m
in
ut
e

b
l
o
c
k

(D

DD
MM

SS
)

De
ci

ma
l

eq
ui

va
le

nt

of

la
ti
tu
de
,

in

de
gr
ee
s

-
5
de
ci
ma
l

pl
ac

es
De
ci
ma
l

eq
ui

va
le

nt

of

lo
ng
it

ud
e,

in

de
gr
ee
s

-
5

de
ci
ma
l

pl
ac

es
La

st

na

me

of

pe
rs
on

su
bm
it
ti
ng

pr

op
os

al
s

Da
te

pr
op
os
al

lo

ad
ed

in

to

th

e
da

ta

ba
se

(Y
YY
MM
DD
)

Ti
me

pr

op
os

al

lo

ad
ed

in

to

th

e
da

ta

ba

se

(H

HM
MS

S)
Fl

ag

in

di
ca

ti
ng

th
e

st
at

us

of

th
e

pr
op
os
al

1-
mi
nu
te

pa
ra
me
te
r

pr
op
os
al

m
a
t
r
i
x

-

10

ro

ws

by

10

co

lu
mn

s
-

se
e

fi
gu

re

7

fo
r

ar
ra
ng
em
en
t

LE
VE
L

1
-

SI
NG
LE
-V
AL
UE

PR
OP
OS
AL

RE
CO
RD

89
9

90
1

90
2

90
3

90
4

90
5

90
6

90
7

90
8

91
1

91
2

91
3

91
4

91
5

PR
OP

2

LA
TP

2
LO

NG
P2

LA
TP
D
2

LN
GP
D2

PE
RS
N2

PR
DA
T2

PR
TI
M2

PR
FL
G2

MN
9

MX
9

AV
G9

NU
M9

SD
V9

In
te
ge
r

In
te
ge
r

De
ci
ma
l

De
ci

ma
l

Ch
ar

ac
te

r
Da

te
In
te
ge
r

In
te
ge
r

In
te
ge
r

In
te
ge
r

In
te
ge
r

In
te
ge
r

De
ci
ma
l

_ 6 7 7 8 25
7 6 1 5 5 5 3 7

Le
ve
l

1
sc

he
ma

re

co
rd

-
us

ed

to

pr
op
os
e

ch
an
ge
s

to

pa
ra
me
te
r

va
lu
es

fo
r

3-
de

gr
ee

da

ta
,

1-
de
gr
ee

da
ta

an

d
10
-m
in
ut
e

da
ta
-

ch
il

d
of

en
tr
y

re
co
rd

La
ti

tu
de

of

so
ut
he
as
t

co
rn

er

of

da

ta

b
l
o
c
k

(D
DM
MS
S)

Lo
ng
it
ud
e

of

so
ut
he
as
t

co
rn

er

of

da
ta

b
l
o
c
k

(D

DD
MM

SS
)

De
ci
ma
l

eq
ui

va
le

nt

of

la

ti
tu

de
,

in

de
gr
ee
s

-
5

de
ci

ma
l

pl
ac

es
De
ci
ma
l

eq
ui

va
le

nt

of

lo
ng
it
ud
e,

in

de
gr
ee
s

-
5
de
ci
ma
l

pl
ac
es

La
st

na

me

of

pe
rs
on

su

bm
it

ti
ng

pr
op
os
al
s

Da
te

pr

op
os

al

lo

ad
ed

in

to

th

e
da

ta

ba
se

(Y
YY
MM
DD
)

Ti
me

pr

op
os

al

lo

ad
ed

in

to

th
e

da
ta

ba
se

(H
HM
MS
S)

Fl
ag

in
di
ca
ti
ng

th

e
st
at
us

of

th

e
pr
op
os
al

M
i
n
i
m
u
m

pa
ra
me
te
r

va
lu
e

M
a
x
i
m
u
m
 p
ar

am
et

er

va
lu
e

Av
er

ag
e

pa
ra

me
te

r
va
lu
e

Nu
mb

er

of

da

ta

va

lu
es

us
ed

to

co

mp
ut

e
st

at
is

ti
cs

St
an

da
rd

de
vi
at
io
n

-
2
de
ci
ma
l

pl
ac
es

H
-

QT
Q I >

O
4

H

(-
>

H

O

P
o

3

7?

 O
Q

O

(D

h^

£3 rt

rt &

O

(D

H
i

<

3
U

>
H

-
3

Pi

C

3

rt

TJ

a
4

?3

M
O

O

T
)

O

CO O

CO

P
"

O

(D

^

|

|

i-< fD

H
-

O

rt

O

fD
i-<

3

C
L

CO

CO .

|-
l'

3

P
i H
-

3

C

rt a>

A
)

LE
V3

 S
ch

em
a

Re
co

rd

A
A

40
1

B
A

41
1

C
A

42
1

D
A

43
1

E
A

44
1 FA 45
1

G
A

46
1

H
A

47
1

IA 48
1

JA 49
1

A
B

40
2

BB 41
2

C
B

42
2

D
B

43
2

EB 44
2

FB 45
2

G
B

46
2

H
B

47
2

IB 48
2

JB 49
2

A
C

40
3

B
C

41
3

C
C

42
3

D
C

43
3

E
C

44
3

FC 45
3

G
C

46
3

H
C

47
3

1C 48
3

JC 49
3

A
D

40
4

B
D

41
4

C
D

42
4

D
D

43
4

E
D

44
4

FD 45
4

G
D

46
4

H
D

47
4

ID 48
4

JD 49
4

A
E

40
5

BE
3

41
5

C
E

42
5

D
E

43
5

EE 44
5

FE 45
5

G
E

3

46
5

H
E

47
5

IE 48
5

JE 49
5

A
F

3

40
6

BF 41
6

C
F

42
6

D
F

43
6

EF 44
6

FF 45
6

G
F

46
6

H
F

47
6 IF 48
6

JF 49
6

A
G

40
7

B
G

41
7

C
G

42
7

D
G

43
7

EG 44
7

FG 45
7

G
G

46
7

H
G

47
7 IG 48
7

JG 49
7

A
H

40
8

BH 41
8

C
H

42
8

D
H

43
8

EH 44
8

FH 45
8

G
H

46
8

H
H

47
8

IH 48
8

JH 49
8

A
l

40
9

B
l

41
9

C
l

42
9

D
l

43
9

E
l

44
9

Fl 45
9

G
l

46
9

H
I

47
9 II 48
9

J
l

49
9

A
J

41
0

B
J

42
0

C
J

43
0

D
J

44
0

EJ 45
0

FJ 46
0

G
J

47
0

H
J

48
0 IJ 49
0

JJ 50
0

P
A

A

70
1

P
B

A

71
1

P
C

A

72
1

P
D

A

73
1

P
E

A

74
1

P
FA 75
1

P
G

A

76
1

P
H

A

77
1

P
IA

78
1

P
JA

79
1

P
A

B

70
2

PB
B

71
2

P
C

B

72
2

P
D

B

73
2

PE
B

74
2

PF
B

75
2

P
G

B

76
2

P
H

B

77
2

P
IB

78
2

P
JB

79
2

P
A

C

70
3

P
B

C

71
3

P
C

C

72
3

P
D

C

73
3

P
E

C

74
3

P
FC 75

3

P
G

C

76
3

P
H

C

77
3

P
IC 78
3

P
JC 79

3

P
A

D

70
4

P
B

D

71
4

P
C

D

72
4

P
D

D

73
4

P
E

D

74
4

P
FD 75

4

P
G

D

76
4

P
H

D

77
4

P
ID

78
4

P
JD 79

4

P
A

E

70
5

PB
E

71
5

PC
E

72
5

P
D

E

73
5

PE
E

74
5

PF
E

75
5

PG
E

76
5

PH
E

77
5

P
IE 78

5

P
JE

79
5

P
A

F

70
6

PB
F

71
6

P
C

F

72
6

P
D

F

73
6

PE
F

74
6

PF
F

75
6

P
G

F

76
6

P
H

F

77
6

P
IF

78
6

P
JF

79
6

P
A

G

70
7

PB
G

71
7

P
C

G

72
7

P
D

G

73
7

PE
G

74
7

P
FG 75

7

P
G

G

76
7

P
H

G

77
7

P
IG 78
7

P
JG 79

7

P
A

H

70
8

PB
H

71
8

P
C

H

72
8

P
D

H

73
8

PE
H

74
8

P
FH 75
8

P
G

H

76
8

P
H

H

77
8

P
IH

78
8

P
JH 79

8

P
A

I

70
9

PB
I

71
9

P
C

I

72
9

P
D

I

73
9

PE
I

74
9

P
FI

75
9

P
G

I

76
9

P
H

I

77
9

P
ll

78
9

P
JI

79
9

P
A

J

71
0

P
B

J

72
0

P
C

J

73
0

P
D

J

74
0

P
E

J

75
0

P
FJ

76
0

P
G

J

77
0

P
H

J

78
0

P
IJ

79

0

P
JJ 80
0

B)
 P

RO
P

Sc
he

m
a

Re
co

rd

E
X

P
LA

N
A

TI
O

N

-
C
O
M
P
O
N
E
N
T
 N
A
M
E

C
O
M
P
O
N
E
N
T
 N
U
M
B
E
R

SUPPLEMENT II: PROGRAM-USER DOCUMENTATION

This supplement contains documentation for the major computer programs
used for the High Plains RASA DMS. The purpose of the documentation is to
describe procedures for using the programs; the documentation is not intended
to be used as a program-maintenance manual. However, in some instances,
information is present that may be useful in the process of software mainten­
ance. To aid the programmer, the programs are internally documented. In
addition, supplement III provides information to help a programmer adapt the
software for use by another study.

There are 14 sets of documentation contained within this supplement. The
first five sets of documentation are for data-generation programs. The next
six sets of documentation are for programs that interact with data base and
the DBMS. The final three sets of documentation are for application programs
that use data retrieved from the data base.

The Digitizer Data-Conversion Program

This program converts digitizer-data output in an X-Y coordinate system
to the latitude-longitude coordinate system. The program accounts for trans­
lation of the origin, skew of the coordinate system, and convergence of the
longitude lines. It does not account for curvature of the latitude lines
that occurs with some map projections. The program requires that north on
the map be at the top of the sheet on the digitizer, but it allows as much
as a 90-degree rotation.

The primary input file consists of four control points, a check point,
and the digitizer input. The four control points are tne lower-left corner,
the lower-right corner, the upper-right corner, and the upper-left corner of
the area being digitized. These points need to be entered in this order.
The check point is the same as the first control point, and the X-Y coordinates
of these two points need to match within 2 percent. The digitizer coordinates
need to be reset to CO,01 before entering the first control point.

An output record consists of the input X-Y coordinates, corrected X-Y
coordinates, and latitude-longitude coordinates. A number of error and
informational messages may be produced; these should all be self-explanatory.

Mathematics

The program first does a rotation of the coordinate system using the
formulas

X = X' cos 9 + Y f sin 9

Y = Y 1 cos 9 - X 1 sin 9

33

where
Y f

2 sin 6 =

(X2 f) 2 + (Y2 f

x2
cos 6 =

where X f and Y ! denote the coordinate system prior to rotation; X and Y
denote the coordinate system after rotation; and the subscript denotes the
control-point number.

The points are scaled using the scale factors

longitude,.
Scale(X) =

X3

latitude
Scale(Y) = - -

3

with the same notation as above.

Correction for convergence of the longitude lines is accomplished using the
formula

CORRECTED ' x + tftVx)/!5}y (Y/VX4

The Y coordinate of the point does not need to be corrected for convergence.

The translation is accomplished by

longitude = longitude.. - Y Scale(Y)

latitude = Iatitude1 + XCORRECTED Scale(X)

These final values are converted to degrees-minutes-seconds notation prior
to output.

34

Input

One parameter card, read on logical unit 5, is required,
the card is:

The format of

Col 1-10

Col 11-20

Logical-unit number for input
(right justified)

Logical-unit number for output
(right justified)

The primary input file consists of four control points, a check point,
and any number of digitizer data points. This file generally is a tape or
disk file and is read from the logical unit defined on the parameter card.
The control points occupy the first four records (cards) under the following
format:

Col 1-8
Col 9-18
Col 19-20
Col 21-23
Col 24-25
Col 26-27
Col 28-29
Col 30-32
Col 33-34
Col 35-36

X - coordinate
Y - coordinate
Blank
Control-point
Control-point
Control-point
Blank
Control-point
Control-point
Control-point

(decimal)
(decimal)

latitude (degrees)
latitude (minutes)
latitude (seconds)

longitude (degrees)
longitude (minutes)
longitude (seconds)

The check point occupies the fifth record (card) and the digitizer data
points occupy from the sixth and subsequent records of the file. All are
under the following format:

Col 1-8
Col 9-18
Col 19-20
Col 21-27

X - coordinate (decimal)
Y - coordinate (decimal)
Blank
Z - coordinate (character)

35

Output

The output from the program, generally a tape or disk file, consists of
one record for each digitizer data point under the following format:

Col 1-4 Blank
Col 5-12 Input X-coordinate
Col 13-20 Input Y-coordinate
Col 21-28 X-coordinate; rotated, corrected, and

scaled
Col 29-36 Y-coordinate; rotated, corrected, and

scaled
Col 37-40 Blank
Col 41-47 Latitude, in degrees, minutes, and

seconds
Col 48-51 Blank
Col 52-58 Longitude, in degrees, minutes, and

seconds
Col 59-60 Blank
Col 61-68 Input Z-coordinate

The output file is written to the logical unit defined on the parameter
card.

Sample Procedure

A procedure can be used to execute the program with the procedure name
DIGLL. To execute the procedure, using disk input and disk output, the
following Job Control Language (JCL) could be used:

// ... JOB ...
//PROCLIB DD Deprocedure, library,DISP=Sm
II EXEC DIGLL,NAMEl =input,mME2=output
//SYSIN DD *

parameter card
//

where input is the data-set name of the primary input file and output
is the data-set name of the output file. The procedure DIGLL could appear
as follows:

36

//DIGLL PROC UNIT! = '3330-1 ' ,VOLl=?m/w£,NAMEl=NULLFILE,UNIT2= '3330-1 ' ,
// VOL2=ro/t;^NAME2=NULLFILE

//*DIGLL -- A PROCEDURE TO RUN PROGRAM DIGLL
//*
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES)
//*
//* UNIT! INPUT POINT DATA DEVICE (3330-1)
//* VOL1 INPUT POINT DATA VOLUME (myvol}
II* NAME! INPUT POINT DATA DSNAME (NULLFILE)
//* UNIT2 CONVERTED DATA OUTPUT DEVICE (3330-1)
//* VOL2 CONVERTED DATA OUTPUT VOLUME (myvol)
//* NAME2 CONVERTED DATA OUTPUT DSNAME (NULLFILE)

7/****************************** ******
//DIGLL EXEC PGM=DIGLL,TIME=2,REGION=52K
//* LIBRARY IDENTIFICATION
//STEPLIB DD UNIT=3330-1 ,VOL=SER=?7zz/yo£,DISP=SHR,

//* CARD READER IS LOGICAL UNIT 5
//FT05F001 DD DDNAME=SYSIN
//* PRINTER IS LOGICAL UNIT 6
//FT06F001 DD SYSOUT=A
//* PUNCH IS LOGICAL UNIT 7
//FT07F001 DD SYSOUT=B
//* INPUT UNIT FOR POINT DATA LOGICAL UNIT 10 ASSUMED
//FT10F001 DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=SHR,DSNAME=&NAME1
//* OUTPUT UNIT FOR CONVERTED DATA LOGICAL UNIT 11 ASSUMED
//FT11F001 DD UNIT-&UNIT2,VOL=SER=&VOL2,DISP=(NEW, KEEP, DELETE),
// DCB=(RECFM=FB,LRECL=68,BLKSIZE=6800),SPACE=(TRK,(5,5),RLSE),
// DSNAME=&NAME2
//* END OF PROCEDURE

The First Data-Gridding Program

Data gridding is a two-step process with the data gridded in only one
direction in the first step. This program takes corrected digitizer data
that defines a curved line and replaces the data in one direction, so that
one coordinate falls along each 30-second (5'30", 6'30", and so forth) line
of either latitude or longitude. This respacing is done by using linear
interpolation between input data points. The user specifies gridding in
the latitude or the longitude direction.

Input from this program is compatible with output from the Digitizer
Data-Conversion Program, and output from this program is compatible with
the Second Data-Gridding Program. A method of obtaining data-base input
from a contour map of a parameter would be:

37

Digitize the map of the parameter, using a digitizer operating
in an incremented-mapping mode.

Process the data from step 1 with the Digitizer Data-Conversion
Program to convert X-Y coordinates to latitude-longitude
coordinates.

Process the output from step 2 with this program to aline the
data along 30-second latitude lines.

Sort the output from this program and process with the Second
Data-Gridding Program to produce data-base input cards.

Input

Parameter card (read from logical unit 5):

Col 1-10 Logical-unit number for input
data (right justified)

Col 11-20 Logical-unit number for output
data (right justified)

Col 21-26 Blank
Col 27-30 Grid-direction indicator: LAT

(even spacing in the latitude
direction) or LONG (even
spacing in the longitude
direction). This parameter
needs to be left justified.

Input data (read from the logical unit defined on the parameter card):

Col 1-40 Blank
Col 41-47 Latitude, in degrees, minutes,

and seconds (right justified)
Col 48-51 Blank
Col 52-58 Longitude, in degrees, minutes,

and seconds (right justified)
Col 59-60 Blank
Col 61-68 Z-coordinate (alphanumeric)

Output

Output data (written to unit defined on the parameter card):

Col 1-7 Latitude, in degrees, minutes, and
seconds

Col 8-11 Blank
Col 12-18 Longitude, in degrees, minutes, and

seconds
Col 19-20 Blank
Col 21-28 Z-coordinate (alphanumeric)

38

Sample Procedure

A procedure can be used to execute this program with the procedure
name LINDATl. To execute the procedure, the following JCL would be used

// ... JOB ...
//PROCLIB DD Deprocedure. library DISP=SHR
// EXEC LINDAT
//SYSIN DD *

parameter card

where input is the data-set name of the input-data file; output is the data-
set name of the output-data file; and the procedure LINDATl would appear as
follows:

//LINDATl PROC UNIT1 = '3330-T ,VOLl=^uoZ,NAMEl=NULLFILE,
// VOL2=w/z;oZ,NAME2=NULLFILE,UNIT2= 1 3330-r

//*LINDAT1 -- A PROCEDURE TO RUN THE FIRST DATA GRIDDING PROGRAM
//*
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES):
//*
//* UNIT1 INPUT POINT DATA DEVICE (3330-1)
//* VOL1 INPUT POINT DATA VOLUME (myvol)
//* NAME1 INPUT POINT DATA DSNAME (NULLFILE)
//* UNIT2 CONVERTED DATA OUTPUT DEVICE (3330-1)
//* VOL2 CONVERTED DATA OUTPUT VOLUME (myvol)
//* NAME2 CONVERTED DATA OUTPUT DSNAME (NULLFILE)
//*
//***
//* THE REGION PARAMETER MAY NOT INCLUDE ENOUGH I/O BUFFERS
//LINDATl EXEC PGM=LINDAT1 ,TIME=2,REGION=52K
//* LIBRARY IDENTIFICATION
//STEPLIB DD UNIT=3330-1 ,VOL=SER=TO/z;oZ,DISP=SHR,

//* CARD READER IS LOGICAL UNIT 5
//FT05F001 DD DDNAME=SYSIN
//* PRINTER IS LOGICAL UNIT 6
//FT06F001 DD SYSOUT=A
//* PUNCH IS LOGICAL UNIT 7
//FT07F001 DD SYSOUT=B
//* INPUT UNIT FOR POINT DATA LOGICAL UNIT 10 ASSUMED
//FT! OF001 DD UNIT=&UNIT1 ,VOL=SER=&VOL1 ,DISP=SHR,DSNAME=&NAME1
//* OUTPUT UNIT FOR CONVERTED DATA -- LOGICAL UNIT 11 ASSUMED
//FT11F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(NEW, KEEP, DELETE),
// DCB=(RECFM=FB,LRECL=28,BLKSIZE=2800),SPACE=(TRK,(5,5),RLSE),
// DSNAME=&NAME2
//* END OF PROCEDURE

39

The Second Data-Gridding Program

This program processes data produced by the First Data-Gridding Program
by gridding the data in the second direction and producing card images
compatible with the Load Program. This interpolation is done by fitting a
cubic-spline function to each 30-second line of data produced by the First
Data Gridding Program. A spline function is a mathematical analogy to the
draftsman's mechanical spline. This function fits all the original data
exactly, has continuous first and second derivatives, and is the smoothest
function that interpolates the data. This technique works best when the
30-second lines are approximately perpendicular to the general trend of the
original contours. Hence, the First Data-Gridding Program should grid the
data in the direction approximately parallel to the contours; this program
will complete the process by gridding the data in. the direction perpendicular
to the contours.

Input

Parameter card (.read from logical unit 5) :

Col 1-10 Logical-unit number for data-base
format cards

Col 11-20 Logical-unit number for data
produced by the First Data-
Gridding Program and sub­
sequently sorted

Col 21-30 Logical-unit number for messages
Col 31-40 Logical-unit number for card-

image output compatible with
the Load Program

Data-base input cards (read from logical unit defined on parameter
card): The format of these cards is described in detail in the Load Program
section. Those formats need to be followed exactly.

The first three cards in this input set need to be a 001* card, a 002*
card, and a 003* card. These may be followed- optionally by as many sets of
050* cards as desired. The last 050* card or the 003* card needs to be
followed by a 100* card. This first 100* card defines a strip that is 3-
degrees high and as wide as the study area. All subsequent processing needs
to use only this 3-degree strip.

The 100* card is followed by several 200* cards that define 1-degree
blocks for which data are to be produced. Each 200* card is in turn
followed by a series of 300* cards that define 10-minute blocks for which
data are to be produced. For each 300* card, a set of 401*-410* cards are
produced that define the 1-minute values. This entire sequence may then be
followed by a 100* card, and the process begins again. A 999* card is the
last set in the series. A 999* card terminates the series of data-base
input. A similar program is used to generate 10-minute values. The input
to this program is identical, except that 300* cards are not placed in the
input file.

40

Half-gridded data input (read from logical unit defined above): These
data are in the output format of the First Data-Gridding Program. This data
set needs to be sorted in order by latitude and longitude.

Output

Data base output (placed on the logical unit specified on parameter
card): This file consists of a copy of the data base input cards with the
401*-410* cards inserted in the proper place. This file should then be ready
to pass to the Edit Program and the Load Program. If the version of the
program used to generate 10-minute data is used, the 350* cards are inserted.

The message file output (placed on logical unit defined on parameter
card): This file consists of a listing of the parameter cards plus any
diagnostic or informative messages. All these messages should be self-
explanatory.

Contour violation file (placed on logical unit 9): This program checks
generated values against adjacent contour values. If the generated values
violate these contours, a diagnostic message is generated. A dump of
pertinent auxiliary information also is generated at the end of the run.
On a slope, a 5-foot violation is allowed without any diagnostic messages.
On hills and in valleys, no such allowance is made. For hills and valleys,
the contour interval for this checking is estimated from a nearby slope.

Return codes: The program will generate a non-zero completion code
if an abnormal termination occurs. These are listed below:

Completion code Meaning

1900 Error on I/O units card
1905 Empty parameter file
1910 Illegal data-base card
1915 Missing 100* card
1920 Illegal density value on 002* card
1940 Missing 200* card
1950 No 300* card after a 200* card
1999 Tried to enter part of code not written

Sample Procedure

A procedure can be used to execute this program with the procedure name
SPLINT. To execute the procedure, the following JCL would be used:

// ... JOB ...
//PROCLIB DD QSH=pro<sedure. library ,DlS?=$m
// EXEC SPLINT, NAMEl=inpMt f NAME2=oMtpMt s NAME3=date s

//SYSIN DD *
parameter card

41

where input is the data-set name of the disk file containing data-base input
cards; output is the data-set name of the data-base output cards disk file;
data is the data-set name of the sorted digitizer data-disk file; and dump is
the data-set name of contour-violation disk file. The procedure SPLINT could
appear as follows:

//SPLINT PROC UNIT1 = '3330-1 ' ,VOLl=77n/wZ,NAMEl=NULLFILE,UNIT2=' 3330-1 ' ,
// VOL2=ra/wZ,NAME2=NULLFILE,UNIT3=' 3330-1 ' ,
// NAME3=NULLFILE,NAME4=NULLFILE

//*SPLINT -- A PROCEDURE TO RUN THE SECOND DATA GRIDDING PROGRAM
//*
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES):
//*
//* UNIT1 DATA BASE INPUT CARDS DEVICE (3330-1)
//* VOL1 DATA BASE INPUT CARDS VOLUME (myvol)
//* NAME1 DATA BASE INPUT CARDS DSNAME (NULLFILE)
//* UNIT2 DATA BASE OUTPUT CARDS DEVICE (3330-1)
//* VOL2 DATA BASE OUTPUT CARDS VOLUME (myvol)
//* NAME2 DATA BASE OUTPUT CARDS DSNAME (NULLFILE)
//* UNIT3 ORDERED DIGITIZER DATA INPUT FILE UNIT (3330-1)
//* VOL3 ORDERED DIGITIZER DATA INPUT FILE VOLUME (myvol}
//* NAME3 ORDERED DIGITIZER DATA INPUT FILE DSNAME (NULLFILE)
//* NAME4 INTERPOLATION ERROR DUMP FILE DSNAME (NULLFILE)

7/************ **
//* THE REGION PARAMETER MAY NOT INCLUDE ENOUGH I/O BUFFERS
// EXEC PGM=SPLINT,TIME=1 ,REGION=430K
//* LIBRARY IDENTIFICATION
//STEPLIB DD UNIT=3330-1 ,VOL=SER=w2/wZ,DISP=SHR,

//* CARD READER IS LOGICAL UNIT 5
//FT05F001 DD DDNAME=SYSIN
//* PRINTER IS LOGICAL UNIT 6
//FT06F001 DD SYSOUT=A
//* PUNCH IS LOGICAL UNIT 7
//FT07F001 DD SYSOUT=B
//* DUMP FILE FOR INTERPOLATION ERRORS IS ON LOGICAL UNIT 9
//* PUT ON A TEMPORARY DISK FILE
//FT09F001 DD UNIT=SYSDK,DISP=(NEW,PASS) ,SPACE=(CYL,(5,5) ,RLSE) ,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),DSNAME=&NAME4
//* INPUT UNIT FOR DATA BASE CARDS LOGICAL UNIT 10 ASSUMED
//FT10F001 DD UNIT=&UNIT1 ,VOL=SER=&VOL1 ,DISP=SHR,DSNAME=&NAME1
//* OUTPUT UNIT FOR DATA BASE CARDS - LOGICAL UNIT 11 ASSUMED
//FT11F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(NEW, KEEP, DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400) ,SPACE=(TRK,(5,5) ,RLSE) ,
// DSNAME=&NAME2
//* INPUT UNIT FOR ORDERED DIGITIZER DATA LOGICAL UNIT 12 ASSUMED
//FT12F001 DD UNIT=&UNIT3,VOL=SER=&VOL3,DISP=SHR,DSNAME=&NAME3
//* END OF PROCEDURE

42

The Boundary-Matrix Generation Program

This program is a special purpose program that generates a data-base
parameter that defines the extent of the study area. This parameter is
required by the Excess-Data Elimination Program. This data-base parameter
is given the value 0 if the grid point is outside the boundary; it is given
the value 1 if the grid point is inside the boundary.

This program will operate on a band of latitude that is 3 degrees high,
and a band of longitude that is as much as 12 degrees wide. The program
assumes that input data are alined along 30-second lines of latitude and are
sorted in ascending order by latitude and longitude. The program further
assumes that the east and west limits of the area of consideration are not
in the study area, and issues a warning if the boundary does not cross each
30-second line an even number of times. The program processes the data from
east to west, and keeps track of the number of times the 30-second line
crosses the boundary. If at any point, the boundary has been crossed an
odd number of times, the point is inside the study area.

Input

Parameter card (read on logical unit 5):

Col 1-10

Col 11-20

Col 21-30

Col 31-40

Latitude-longitude limit card
and sequence-number card
logical unit (right jusitified)

Output-messages logical unit
(right justified)

Input-data logical unit (right
justified)

Output-data logical unit (right
justified)

Latitude-longitude limit card (read on the logical unit defined on the
parameter card):

Col 1-10

Col 11-20

Col 21-30

Col 31-40

Minimum latitude
degrees only (r

Minimum longitude
degrees only (r

Maximum latitude
degrees only (r

Maximum longitude
degrees only (r

to be considered -
ight justified)
to be considered

ight justified)
to be considered -
ight justified)
to be considered

ight justified)

Sequence-number card (read on the logical unit defined on the parameter card)

Col 1-2
Col 3-10

Blank
Last sequence number used

43

Input data set (read on the logical unit defined on the parameter card):
This data set would be produced by digitizing the boundary for the strip of
interest, processing the data through the Digitizer Data-Conversion Program
and the First Data-Gridding Program (operating in the latitude direction)
and sorting the resulting data set by latitude and longitude using any
available sorting program. The final data set describes the location of the
boundary at 30-second intervals of latitude under the format:

Col 1-7 Latitude, in degrees, minutes, and
seconds

Col 8-11 Blank
Col 12-18 Longitude, in degrees, minutes,

and seconds

Output

A number of informative messages are produced on the logical unit defined
on the parameter card. These messages, which need to be examined carefully,
are fully self-explanatory.

The output data set, which is produced on the logical unit defined on
the parameter card, consists of 100*, 200*, 300*, and 401*-410* cards. The
format of these cards is defined in the documentation of the Load Program.
The data values on the 401*-410* cards are set to 1 if the 1-minute block is
in the aquifer; it is set to 0 if the block is outside of the aquifer.

Sample Procedure

A procedure can be used to execute this program with the procedure name
BNDGEN. To execute the procedure, the following JCL would be used:

// ... JOB ...
//PROCLIB DD Deprocedure, library,DlSP=Sm
II EXEC BNDGEN,NAME!=inpwt,NAME2=owtpwt
//SYSIN DD *

parameter card
//

where input is the data-set name of the input disk file; and output is the
data-set name of the output disk file. The procedure BNDGEN could appear as
follows:

44

//BNDGEN PROC UNIT1 = '3330-1 ' ,VOL1=^0Z,NAME1=NULLFILE,UNIT2=' 3330-1 ' ,
// VOL2=ffn/y0l,NAME2=NULLFILE
/ /************iHir****************************^

//*BNDGEN A PROCEDURE TO RUN THE BOUNDARY MATRIX GENERATION PROGRAM
//*
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES):
//*
//* UNIT1 BOUNDARY INPUT DATA DEVICE (3330-1)
//* VOL1 BOUNDARY INPUT DATA VOLUME Imyvol)
//* NAME1 BOUNDARY INPUT DATA DSNAME (NULLFILE)
//* UNIT2 BOUNDARY OUTPUT DATA DEVICE (3330-1)
//* VOL2 BOUNDARY OUTPUT DATA VOLUME (myvol)
//* NAME2 BOUNDARY OUTPUT DATA DSNAME (NULLFILE)
//*
/ /**^
//* THE REGION PARAMETER MAY NOT INCLUDE ENOUGH I/O BUFFERS
//BNDGEN EXEC PGM=BNDGEN,TIME=1 ,REGION=300K
//* LIBRARY IDENTIFICATION
//STEPLIB DD UNIT1 =3330-1, VOL=SER=ro/yoZ,DISP=SHR,

//* CARD READER IS LOGICAL UNIT 5
//FT05F001 DD DDNAME=SYSIN
//* PRINTER IS LOGICAL UNIT 6
//FT06F001 DD SYSOUT=A
//* PUNCH IS LOGICAL UNIT 7
//FT07F001 DD SYSOUT=B
//* INPUT UNIT LOGICAL UNIT 10 ASSUMED
//FT10F001 DD UNIT=&UNIT1 ,VOL=SER=&VOL1 ,DISP=SHR,DSNAME=&NAME1
//* OUTPUT UNIT LOGICAL UNIT 11 ASSUMED
//FT11F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(NEW, KEEP, DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),SPACE=(CYL,(5,5),RLSE),
// DSNAME=&NAME2
//* END OF PROCEDURE

The Excess-Data Elimination Program

The purpose of this program is to insert the missing-value indicator
(MVI) at all points in a 1-minute, data deck, where the study area is
absent. The MVI is an arbitrary value used to indicate that no value is
available for this point. The input to this program is a 1-minute data
deck, and the output is an identical data deck, except the MVI is inserted
where appropriate.

There are three ways in which this program can be run. The first type
of run, called a BULD, reads the boundary matrix for a 3-degree strip of
the data base, and produces three logical matrices for subsequent runs.
These matrices are stored on the disk file. In a BULD, the location of the

45

study area also is plotted by 1-degree blocks on logical unit 20. For this
reason, unit 20 needs to be specified as an 8-lines-per-inch print file,
and the job card needs to be altered to allow 84 lines per page.

The second type of run is a FIX. This type of run is used to fix a
boundary matrix that may have one or more errors in it. In this type of
run, the location of the start of a fix is given, and the value of the
boundary matrix is switched, starting at that point to the end of the row in
which that point is located. This type of run will fix errors produced
either by digitizing or problems in the Boundary-Matrix Generation Program.
In a FIX, multiple fixes can be specified, and the fixes are cumulative in
nature. Hence, a second fix in a row defines the end of the first fix, and
the third fix in a row would define the beginning of a new fix.

The third type of run, called a RUN, takes the matrices prepared in a
BULD, reads the input matrix, and inserts the MVI at appropriate places.
The result of this type of run is an altered 1-minute data set that is
ready for the Edit or Load Program.

The usual manner of using this program would be to first do a BULD
and examine the output. If the plot of the boundary matrix looks correct,
a RUN would be made. If the boundary has errors, then a FIX would be made.
The boundary matrix is also plotted during a FIX, and a FIX can be repeated
until the boundary matrix is acceptable.

This program will operate on a band of latitude that is as much as 3
degrees high and a band of longitude as much as 12 degrees wide. This
restriction is necessary, because all boundary data are kept in memory, and
handling a 3-degree by 12-degree area requires more than 500K bytes of
storage.

Input

Parameter Card (read from logical unit 5):

Col 1-10 Input file logical-unit number
(right justified)

Col 11-20 Output file logical-unit number
(right justified)

Col 21-30 Control file logical-unit number
(right justified)

Col 31-40 Plot file logical-unit number
(right justified)

Col 41-50 MVI; Integer of five or less digits
(right justified)

Col 51-56 Blank
Col 57-60 Type of Run (left justified):

BULD, RUN, or FIX are the only
acceptable values.

46

For a BULD, the boundary matrix is read on the input file and a control
file is produced. For a RUN, the input file consists of data-base input cards
(described in the Load Program documentation), and the output file consists of
data-base input cards with a MVI inserted on the 401*-410* cards. For a FIX,
the original boundary matrix is read on the input file, and the corrected
boundary matrix is written to the output file. For a FIX, the control file
contains the fix cards. The fix cards, which describe the starting (or ending)
point of a fix, have the latitude and longitude of the fix in the same places
as the 300* card, and the rest of the card is blank.

Sample Procedure

A procedure can be used to execute this program with the procedure name
ELIM1. To execute the procedure, the following JCL would be used:

// ... JOB ...
//PROCLIB DD QSN=proeedure.library, DISP=SHR
// EXEC ELIMl > NAMEl=input > NAME2=outpM
//SYSIN DD *

parameter card
//

where input is the data-set name of the input disk file; output is the data
set name of the output disk file; and entl is the data-set name of the
control disk file. The procedure ELIM1 could appear as follows:

//ELIM1 PROC UNIT1='3330-1',VOL1=,NAME1=NULLFILE,UNIT2='3330-1',
// VOL2=7m/wZ,NAME2=NULLFILE,UNIT3='3330-1 ' ,VOL3=?m,wl,
// NAME3=NULLFILE

//*ELIM1 -- A PROCEDURE TO RUN THE EXCESS DATA ELIMINATION PROGRAM
//*
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES):
//*
//* UNIT1 DATA BASE INPUT CARDS DEVICE (3330-1)
//* VOL1 DATA BASE INPUT CARDS VOLUME (myvol)
//* NAME1 DATA BASE INPUT CARDS DSNAME (NULLFILE)
//* UNIT2 DATA BASE OUTPUT CARDS DEVICE (3330-1)
//* VOL2 DATA BASE OUTPUT CARDS VOLUME (myvol)
//* NAME2 DATA BASE OUTPUT CARDS DSNAME (NULLFILE)
//* UNIT3 CONTROL DATA INPUT FILE UNIT (3330-1)
//* VOL3 CONTROL DATA INPUT FILE VOLUME (myvol)
//* NAME3 CONTROL DATA INPUT FILE DSNAME (NULLFILE)
//*
//***^

47

//* THE REGION PARAMETER MAY NOT INCLUDE ENOUGH I/O BUFFERS
//ELIM1 EXEC PGM=ELIM1,TIME=1,REGION*430K
//* LIBRARY IDENTIFICATION
//STEPLIB DD UNIT=3330-1 ,
// DSNAME^Ufc
//* CARD READER IS LOGICAL UNIT 5
//FT05F001 DD DDNAME=SYSIN
//* PRINTER IS LOGICAL UNIT 6
//FT06F001 DD SYSOUT=A
//* PUNCH IS LOGICAL UNIT 7
//FT07F001 DD SYSOUT=B
//* INPUT UNIT -- LOGICAL UNIT 10 ASSUMED
//FT10F001 DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=SHR,DSNAME=&NAME1
//* OUTPUT UNIT -- LOGICAL UNIT 11 ASSUMED
//FT11F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(NEW,KEEP,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),SPACE=(TRK,(5,5),RLSE),
// DSNAME=&NAME2
//* CONTROL UNIT LOGICAL UNIT 12 ASSUMED
//FT12F001 DD UNIT=&UNIT3,VOL=SER=&VOL3,DISP=SHR,DSNAME=&NAME3
//* END OF PROCEDURE

The Edit Program

The Edit Program checks the correctness of the input records for other
programs in the DMS. These other programs are called the destination
programs. The principal destination programs are:

1. The Load Program;
2. The Retrieval Program; and
3. The Instant-Update Program.

The main function of the program is to check the syntax of input records for
these programs. The program also can perform other types of checks. These
additional edits are either automatically or optionally performed by the
program. The nature of these additional checks depends upon the types of
records that are being edited.

For Load Program input, the Edit Program automatically checks the syntax
of each record. For record types 100*, 200*, 350*, and 300*, geographic
coordinates are checked. The program determines if the latitude and
longitude values are within the study area. Latitude and longitude also are
checked to determine if their values are proper for the record type. Geo­
graphic coordinates are used to determine that the 1-degree blocks are
grouped with the correct 3-degree block, and that the 10-minute blocks are
grouped with the correct 1-degree block. The program determines if the
statistical components are only given values on the records corresponding
to the lowest level at which the data are stored. The program can option-
tally check for possible duplication of data within the data base. This
check is useful if the parameter is to be loaded in more than one execution

48

of the Load Program. The program determines which 3-degree blocks, if any,
have already been loaded into the data base for the parameter. Then, while
editing a 100* record (which corresponds to a 3-degree block), the program
determines if that block of data has previously been stored in the data base,
If the 3-degree block is already loaded into the data base, the program
prints a message and aborts the program execution.

For Retrieval Program input, syntax checks automatically are performed.
The program also determines if the parameter name on the 005* record is
valid by matching the name against a list of valid data-base parameters. If
the parameter name is valid, the program then determines if the parameter is
actually stored within the data base. For the 006* record, the program
verifies that the retrieval area, as described by the latitude and longitude
extremes, is within the study area.

For Instant-Update Program input, the program automatically checks
syntax of the input records. The parameter name, on the 002* record, is
checked against a valid list of parameter names. The person 1 s name, on
the 599* record, is checked against a list of valid users. The remaining
checks depend upon the action requested on the 599* record. For example,
if a request is made to delete a proposal or to accept a proposal, the
program determines if that proposal exists or not. On the 600* record,
geographic coordinates are checked to see that the values are within the
study area.

This synopsis does not include all checks performed by the Edit
Program. In general, checks performed by the program follow guidelines
stated in the user documentation for each of the destination programs;
however, no attempt was made to perform every conceivable check that
could be made for these input records. The checks that are made are more
than sufficient to allow proper execution of the Load, Retrieval, and
Instant-Update Programs.

Input

The main input to the program is the data set that is to be edited.
Description of the records in the data set can be found in the appropriate
des t inat ion-program documentat ion.

The only other input record is called the parameter card. Information
on this card guides execution of the Edit Program. The parameter card
supplies information that is needed to access the data base, including data­
base name, data-base password, and the study unit. The parameter card also
contains the input-unit device number for the records to be edited. If the
number of input records is small, the input records can be placed directly
within the input stream. In this case, the input records are placed behind
the parameter card, and the input-unit device number is set to 5. Large
volumes of input data normally will be stored in a disk file. The input-
unit device number of this disk file would then be given on the parameter
card. The parameter card also contains the output-unit device number
(which will be described in the section on output).

49

The parameter card also contains an execution-options array. Option 1
is used when editing Load Program input; if set to 0, the program performs
only syntax checking; if set to 1, duplication checking also is performed.
Option 2 is used when any type of input data is edited. If set to 1, the
edited records are printed within the standard print file. Option 3 is not
used and needs to be set to 0. Option 4 identifies the destination program
for which the records are to be edited. Options 5-10 are not used. The
format of the parameter card is:

Columns Variable Format Content

01-30
31-32
33-34
35-36
37-38

39-40
41-50

51-52
53-60

61-68
69-72
73-76
77-79

80

TITLE

INFIL

OUTFIL

OPT

AQNAME

DBNAME
PASSWD

USERID

LODE

7A4,A2
2X
12
2X
12

2X
1011

2X
2A4

2A4
A4
4X
A3

Al

Element

5
6
7
8
9

10

Title of this run of program
Blank
Input-record logical-unit number
Blank
Logical-unit number onto which edited

records are to be written
Blank
Options Array:

Explanation
Check syntax
Check duplication
Print diagnostics only
Print all input records
Unused
Destination-program

identification:
0 Records for Load Program
1 Records for Load Program
3 Records for Retrieval

Program
4 Records for Instant-Update

Program
5 Records for Move Program
6 Records for Edit Program

Unused
Unused
Unused
Unused
Unused
Unused

Blank
Study unit for this data set

[HIPLAINS for High Plains RASA
(HPRASA)]

Data-base name (AQUIFER for HPRASA)
Data-base password
Blank
Users initials; printed on report;

needs to be non-blank
P

50

Output

The printed output contains summary information, including: (1) Number
of records edited; (2) number of non-fatal errors detected; and (3) number of
fatal errors detected. A fatal error is one that would cause the destination
program to execute improperly. For example, if the parameter name is invalid
on the 005* record (retrieval-request record), then the Retrieval Program
would not be able to retrieve data from the data base. This error would be
considered a fatal error. A record containing a fatal error would have to
be corrected and the program rerun.

The printed output contains a separate section for error messages. The
error messages consist of: (1) An error number; (2) a copy of the record in
error; and (3) the error message. The error number is an eight-digit number.
If the first digit is 1, the error resulted from an incorrect input record.
This type of error is correctable by the program user. In this instance,
digits 7 and 8 of the error code is the column where the error was detected.
If the first digit is a 2, the error resulted from System 2000 (the DBMS)
processing. If one of these errors occurs, the Edit Program is immediately
aborted. This type of error only could occur if the data base is severely
damaged. If an error message starting with a 2 is found in the printout,
and the error resulted in the run being aborted, the computer staff
responsible for the program needs to be contacted. If the error message
begins with a 9, the error probably resulted from a change in the normal
flow of the program because of a previously detected error. For example,
if the latitude or longitude on a 100* record (3-degree load record) is
incorrect, it would not be possible to determine if the subsequent 200*
records (_1-degree load record) actually represent 1-degree blocks within the
3-degree block. In all instances, digits 2-4 of the error code represent
the error number. If the fifth digit is 0, the error was considered minor.
If the digit is 1, the error will cause the Edit Program to immediately abort,

The edited records are output to the unit defined on the parameter card.
This device usually is a disk file. Output of the edited data is discussed
further in the section describing the procedure. Only records without fatal
errors are output; if a record contains a fatal error, it is not written to
the output device.

Sample Procedure

The Edit Program may be executed by itself or in conjunction with the
Load, Retrieval, or Instant-Update Programs. It is usually executed by
itself when the accuracy of the input records is in doubt. In this instance,
the output file is not necessary, but it may be useful to list the correct
records. The Edit procedure is set up so the output can be written to a disk
file, but this can be changed when the program is executed. The procedure
also allows the input to originate from a disk file, but a small input data
set could be part of the input stream. This is done by specifying the input
unit as logical unit 5. To run the Edit Program with both input and output
disk files, the following JCL would be used:

51

// ... JOB ...
//PROCLIB DD DSN=procedure. Z#?rori/,DISP=SHR
//STEPNAME EXEC EDIT,NAMEl=inpwt,NAME2=^tpwt
//GOED.SYSIN DD *

parameter card

When executing the Edit Program in conjunction with a destination
program, the output file from the Edit Program is defined as a temporary
system file that is passed to the destination program. The following example
shows the Edit Program executed in conjunction with the Retrieval Program.
The input file is small and consequently it is read instream.

// ... JOB ...
//PROCLIB DD DSN=prooedure. library ,DISP=SHR
//STEP! EXEC EDIT
//GOED.FT10F001 DD *

retrieval request records for Retrieval Program
//GOED. FT1 1 F001 DD DSN=&&EDOUT,UNIT=SYSDK,DISP=(,PASS) ,VOL= ,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),SPACE=(TRK,(6,6),RLSE)
//GOED.SYSIN DD *

parameter card for Edit Program
//STEP2 EXEC RETREV f NAMEl = r<?wtpwt'
//GORT.FT10F001 DD DSN=&&EDOUT,DISP=(OLD, DELETE)
//GORT.SYSIN DD *

parameter card for Retrieval Program

In this example it is assumed that the parameter card for the Retrieval
Program specified unit 10 for the retrieval request records. The procedure
used to execute the Edit Program could be as follows:

//EDIT PROC TIMEG=2,REG=290K,UNIT1 = '3330-1 ' ,VOLl=ra^Z,NAMEl=NULLFILE,
// UNIT2='3330-1 ' ,VOL2=ra^Z,NAME2=NULLFILE,SPl=l ,SP2=10,
// PROG=EDITHX

//* EDIT: A PROCEDURE TO RUN THE HPRASA DATA BASE EDIT PROGRAM
//* WRITTEN BY CARMELO F. FERRIGNO NOVEMBER, 1980
//*
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES)
//*
//* TIMEG TOTAL RUN TIME (2)
//* REG REGION SIZE (290K)
//* UNIT! EDIT PROGRAM INPUT CARDS DEVICE (3330-1)
//* VOL1 EDIT PROGRAM INPUT CARDS VOLUME (myvol)
II* NAME1 EDIT PROGRAM INPUT CARDS DSNAME (NULLFILE)
//* UNIT2 EDIT PROGRAM OUTPUT CARDS DEVICE (3330-1)
//* VOL2 EDIT PROGRAM OUTPUT CARDS VOLUME (myvol)

52

//*
//*
//*

NAME2 EDIT PROGRAM OUTPUT CARDS DSNAME (NULLFILE)
PROG NAME OF LOAD MODULE TO BE EXECUTED (EDITHX)

DEFINE THE STANDARD I/O DEVICES

DD
DD
DD

DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

LOGICAL UNIT 20 USED FOR ERROR CODES AND MESSAGES FILE
LOGICAL UNIT 21 USED FOR OUTPUT OF ERROR MESSAGES TO USER

//GOED EXEC PGM=&PROG,TIME=&TIMEG,REGION=®
//STEPLIB DD DSN=^Zifc,DISP=SHR,VOL=SER=^wZ,UNIT=3330-l
// DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.FORTG.LINKLIBX,DISP=SHR
//*
//*
//*
//FT05F001
//FT06F001
//FT07F001
//*
//* LOGICAL UNIT 10 (DEFAULT) USED TO INPUT DATA TO EDIT PROGRAM
//* LOGICAL UNIT 11 (DEFAULT) USED FOR OUTPUT OF DATA THAT PASSES EDIT
//*
//FT10F001 DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=SHR,DSNAME=&NAME1
//FT11F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(NEW,KEEP,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),
// SPACE=(TRK,(6,6),RLSE),DSNAME=&NAME2
//*
//*
//*
//*
//FT20F001
//FT21F001
//*
//* DEFINE FILES CONTAINING USERS' AND PARAMETER NAMES
//*
//FT22F001 DD DSN=wser/iZe,DISP=SHR
//FT23F001 DD DSN=parrcs/£Ze,DISP=SHR
//*
//* DEFINE FILES USED BY SYSTEM 2000
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//S2KPARMS DD DSN=s2kpamsfiZ^DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE01 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE02 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))

DD
DD SYSOUT=A

53

//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT:
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=
//AQUIFER1 DD QSfcdatabaeefilel ,DISP=SHR
//AQUIFER2 DD DSN=datafczee/«e2,DISP=SHR
//AQUIFERS DD VSN=databasefile3,QISP=Sm
//AQUIFER4 DD DSN=databasefile4,QlS>P=Sm
//AQUIFERS DD DSN=<&ta&aee/«e5,DISP=SHR
//AQUIFER6 DD DSN=databasefile6,DlSP=Sm

:(SYSDK,SEP=
: (SYSDK,SEP=
'(SYSDK,SEP=
'(SYSDK,SEP=
: (SYSDK,SEP=
! (SYSDK,SEP=

(S2KSYS03))
'(SF01))
(S2KSYS03))

! (SF01))
(S2KSYS03))
(SF01))

The Load Program

The Load Program is used to load large volumes of data into the data
base. The program uses the System 2000 (the DBMS) optimized-loading
procedure. One parameter normally is loaded per program execution, but 1-
minute data may be loaded in several executions, because of the large
quantity of data involved. If a parameter is loaded into the data base in
more than one execution of the program, whole 3-degree blocks of data must
be loaded in a single operation. This restriction is placed in the program
to make it easy to account for what data has been loaded. This restriction
also simplifies the editing procedure used to check the data prior to loading,

The System 2000 optimized-load procedure, which is designed to load
large aggregates of data, stores the data into contiguous locations within
the data base. This ensures that the number of accesses to the data base
are minimized when the data are retrieved. If a parameter is loaded in
several executions of the program, the executions need to be done consecu­
tively, in order to have all data for the parameter in one area of the data
base.

The data needs to be thoroughly edited prior to loading by using the
Edit Program. If the data successfully passes the Edit Program, there
should be no difficulty in properly loading the data. The Load Program
performs some minor data checks, but these are not sufficient to ensure
the correctness of the data. The Edit Program needs to be used, because
certain types of errors in the input data can cause System 2000 processing
to fail at a time when the data base is being updated; this would likely
damage the data base. For this reason, the first step in the loading
procedure is to save the data base on magnetic tape; then, if necessary,
the data base can be restored to its former condition, prior to the aborted
attempt to load data.

54

Input

The first input record is the parameter card. The format of this card
is found in the documentation for the Edit Program. The only fields on
this card that are directly used by the Load Program are the data base pass­
word and the code found in column 80. The remaining fields are for use by
the Edit Program. The password on the parameter card must be the master
password for the data base.

The data to be loaded are input in standard record formats; specifica­
tions of these records are found following this discussion. The Load Program
can process all densities of data. The input begins with the master records
001*, 002*, and 003*. These records contain general information pertaining
to the parameter, and contribute the data that comprises the root-level
record for the parameter. Optionally, the next records in the input data set
are remarks data. These records are used for a short narrative description
of the parameter, and may include information on the origin of the data.
The sequence of records following the master and remarks data depend upon
the data density.

A parameter stored in the data base at a 3-degree density has one value
for each 3-degree block that is partially or completely within the study
area. A 3-degree block is identified by the record type 100*. The 100*
record contains the latitude and longitude of the southeast corner of the
3-degree block, as well as the value (average). The record also contains
statistical components that may be optionally valued. These statistics are
the minimum, the maximum, the number of values, and the standard deviation.
These statistics are a reflection of the data used to compute the single value
for the entire 3-degree block. The number of 100* records is equivalent to
the number of 3-degree blocks partially or completely within the study area.

A parameter stored in the data base at a 1-degree density has one value
for each 1-degree block within the study area. A 1-degree block is identified
by the record type 200*. The 200* record contains the latitude and longitude
of the southeast corner of the 1-degree block as well as the value. The
record may also optionally contain the minimum, the maximum, the number of
values, and the standard deviation. In the input data set, 1-degree blocks
are grouped within 3-degree blocks. The 3-degree block is represented by
a 100* record; however, in this case, all five of the statistical components
must be blank. Values for these statistical components are computed after
the data have been loaded into the data base.

A parameter stored in the data base at a 10-minute density has one
value for each 10-minute block within the study area. The 10-minute block
is identified by the record type 350*. This record contains the latitude and
longitude of the southeast corner of the block, as well as the same five
statistical components found on the 100* and 200* records. Because the
10-minute block represents the base level for the parameter, all statistical
components on the 350* card can be valued, but only the value component is
required. The 10-minute blocks are grouped within 1-degree blocks, which
in turn, are grouped within 3-degree blocks. All statistical components
must be blank on the 100* and 200* records. These statistics are computed
after the data are loaded.

55

A parameter stored in the data base at a 1-minute density has one value
for each 1-minute block within the study area. The format of this data is
slightly different from the preceding data. A 10-minute block is represented
by a 300* record that contains the latitude and longitude of the southeast
corner of the block. The 300* record is followed by ten records, types 401*
through 410*, that contain values for the 100 1-minute blocks within the 10-
minute block. These ten records may be considered a ten-by-ten matrix
covering the 10-minute block. The 401* record contains ten values for the
northern-most row of 1-minute blocks. Within a row, values are placed from
west to east. If a 10-minute block is located along the boundary of the study
area, some of the 1-minute cells may be outside the area. These cells are not
given a valid value, but instead are given a value called the MVI. This value,
which is found on the 003* record, indicates that a particular point has no
valid value. Only 1-minute blocks that have valid values are used in comput­
ing statistics. As with 10-minute data, the 10-minute blocks are grouped
under the corresponding 1-degree blocks, which in turn, are grouped with
the proper 3-degree blocks. Statistical components on the 100*, 200*, and
300* records are all blank.

001*: First master record for the Load Program

Columns

01-04
05-10
11-40
41-49
50-60
61-70
71-72
73-80

Component
or variable

TYPE
-

C4
C21
C22
C23

-
INSEQ

Key or
non-key

_

NK
K
K
K
-
-

Format

A4
6X
7A4,A2
19
F11.3
2A4,A2
2X
18

Content

001*
Blank
Project Name
Reserved Value A
Reserved Value B
Reserved Value C
Blank
Sequence Number, non-

decreasing

002*: Second master record for the Load Program

01-04
05-10
11-18
19-48
49

50-52
53-62

63-72
73-80

TYPE

C2
C3
C5

C6
C17

INSEQ

K
K
NK

NK
NK

A4
6X
2A4
7A4,A2
II

13
2A4,A2

10X
18

002*
Blank
Study unit
Parameter Name
Density (l=3-degree, 2=l-degree,

3=10-minute, 4=l-minute)
Scale factor (value x 10)
Units of measurement -

description
Blank
Sequence Number, non-
decreasing

56

003*; Third master record for the Load Program

Columns Component
or variable

01-04
05-10
11-25
26-30
31-35
36-40
41-47
48-55
56-62
63-67
68-72
73-80

050* : Remarks

01-04
05-10
11-16

17-18
19-21
22

23-72
73-80

TYPE
-
-

Cll
C12
C13
C14
C15

-
C30

-
INSEQ

records

TYPE
-

C51

-
C52
ITEM

TEXT
INSEQ

Key or
non-key

_
-
-

NK
NK
NK
NK
NK
-

NK
-
-

_
-

NK

-

NK
-

NK
-

Format

A4
6X
15X
15
15
15
17
F8.2
7X
15
5X
18

A4
6X
A4,A2

2X
13
11

12A4,A2
18

Content

003*
Blank
Blank
Minimum
Maximum
Average
Number of Values
Standard Deviation
Blank
Missing-Value Indicator
Blank
Sequence Number, non-
decreasing

050*
Blank
Remark date to store in
base (MMDDYY)

Blank
Remark sequence number
Remark card number

1 = First card of
2 = Second card of
3 = Third card of
4 = Fourth card of
5 = Fifth card of

Text of remark
Sequence Number, non-
decreasing

(MVI)

data

set
set

set
set

set

Note: The 050* Records must come in sets of five.

57

100*; Three-degree block record

Columns

01-04
05-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

Component
or variable

TYPE
-

C101
-

C102
-

cm
C112
C113
C114
C115

-
INSEQ

200*: One-degree block

01-04
05-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

TYPE
-

C201
-

C202
-

C211
C212
C213
C214
C215

-
INSEQ

350*: Ten-minute block

01-04
05-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

TYPE

C351

C352
-

C361
C362
C363
C364
C365

-
INSEQ

Key or
non-key

_
-
K
-
K
-

NK
NK
NK
NK
NK
-
-

record

_
-
K
-
K
-

NK
NK
NK
NK
NK
-
-

Format

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

Content

100*
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
Average (Value)
Number of values
Standard Deviation
Blank
Sequence Number, non-
decreasing

200*
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
Average (Value)
Number of values
Standard Deviation
Blank
Sequence Number, non-

decreasing

record 10-minute data

_
-

NK
-
NK
-
NK
NK
NK
NK
NK
-
-

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

350*
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
Average (Value)
Number of values
Standard Deviation
Blank
Sequence Number, non-
decreasing

58

300*: Ten-minute block record 1-minute data

Columns

01-04
05-10
11-16
17
18-24
25
26-30
31-35
36-40
41-45
46-53
54-72
73-80

Component
or variable

TYPE
-

C301

C302

C311
C312
C313
C314
C315

-
INSEQ

Key or
non-key

_
-
NK

NK

NK
NK
NK
NK
NK
-

Format

A4
6X
16
IX
17
IX
15
15
15
15
F8.2
19X
18

Content

300*
Blank
Latitude (DDMMSS)
Blank
Longitude (DDDMMSS)
Blank
Minimum
Maximum
Average (Value)
Number of values
Standard Deviation
Blank
Sequence Number, non-
decreasing

Note: This record must be followed by exactly ten 4xx* records.

401*-410*: One-minute block records

01-04
05-10
11-60

61-72
73-80

TYPE

C401-
C500

INSEQ

NK

A4
6X
1015

12X
18

4xx*; xx=(01,02,...,10)
Blank
See note below

Blank
Sequence Number, non-
decreasing

Note: The components, C401-C500, are entered at ten components per record such
that the records simulate a ten-by-ten matrix geographically overlaying
the 10-minute square:

Record

401*
402*
403*
404*
405*
406*
407*
408*
409*
410*

Components

C401-
C411-
C421-
C431-
C441-
C451-
C461-
C471-
C481-
C491-

 C410
 C420
 C430
 C440
 C450
 C460
 C470
 C480
 C490
 C500

59

Output

Output from the Load Program consists of a short, printed report
providing basic information pertaining to the loaded data. The report
includes a list of the 3-degree blocks that were loaded into the data base
and a graphic picture that indicates location of the 1-degree blocks within
the study area.

Sample Procedure

To execute the Load Program, a procedure like the sample below could
be used. A data set called DATAIN contains the input data. This data set
consists of the parameter card, followed by the proper combination of the
001*, 002*, 003*, and so forth, records. The Load Program should be
executed in conjunction with the Edit Program. Hence, the first step would
be to execute the Edit Program, which produces a file containing input to
the Load Program. The parameter card and the other records would be input
to the Edit Program in the manner described in that documentation. The
file containing the edited data would be passed to the Load Program, which
would load the data into the data base. To execute the Load Program, the
following JCL should be used:

// ... JOB ...
/*SETUP tapenum/m
//PROCLIB DD QSN=proeedure. library ,DISP=SHR
//STEPNAME EXEC DBLOAD
//GO. DATAIN DD *

parameter card and data records

The second card describes the magnetic tape used to save the data base prior
to loading any new data. The procedure DBLOAD could appear as follows:

//DBLOAD PROC REG=780K,TIMEG=2,SP1=1 ,SP2=10
//* * * EXECUTE 'DBLOAD 1 PROGRAM * * *
//* PROCEDURE DEVELOPED BY RICHARD T. BLACKBURN, USGS, RASA, JULY 1980,
//* FOR PL/I EXECUTION OF THE PL/I OPTIMIZER COMPILED AND LINK EDITED
//* PROGRAM 'DBLOAD 1 - INVOKE THE PROCEDURE WITH
//* THE FOLLOWING: MY COMMENTS: (DO NOT CODE THESE)
//* //WHATEVER JOB (ACCT.,ETC.) -YOUR JOB & ACCOUNT INFORMATION.
//* //PROCLIB DD DSN=procedure.Ziferar2/ f DISP=SHR -IDENTIFIES PROC LIB
//* //STEP! EXEC DBLOAD -THE PROC WILL RUN PGM DBLOAD.
//* //GO. DATAIN DD *
//* YOUR 'EDIT' VERIFIED DATA GOES HERE, OR USE
//* //GO. DATAIN DD DSN=?????? TO IDENTIFY DATA SET CONTAINING DATA.
//* /* -END OF DATA INPUT.
//* //
//* * * * * *

60

EXEC PGM=DBLOAD,REGION=®,TIME=&TIMEG,COND=C12,LE),
PARM='ISA(16K)'

SYSTEM 2000 LIBRARIES

PRINTED OUTPUT

//GO

//STEPLIB DD DSN=772z/Z^,VOL=SER=772z/^Z,UNIT=3330-l ,DISP=SHR
// DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
//SYSLIB DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.PLIBASE,DISP=SHR
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//ERRMSG DD DSN=epzw/ae,DISP=SHR
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//S2KPARMS DD DSN=s2kpca>msfUe,DlS?=St\R
//S2KSNAP DD SYSOUT=A,DCB=BLKSIZE=882
//S2KCOMD DD DUMMY
//S2KUDUMP DD SYSOUT=A
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1 ,1)) LOCATE FILE,
//LOCATE01 DD UNIT=SYSDK,SPACE=(CYL,(1 ,1)) LOCATE FILE,
//LOCATE02 DD UNIT=SYSDK,SPACE=(CYL,(1 ,1)) LOCATE FILE,
//*** S2K WORK FILES:
//S2KSYS01 DD SPACE=(CYL,(&SP1 ,&SP2}) ,UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1
//S2KSYS04 DD SPACE=(CYL,(&SP1
//S2KSYS05 DD SPACE=(CYL,(&SP1
//S2KSYS06 DD SPACE=(CYL,(&SP1

IF NEEDED
IF NEEDED
IF NEEDED

&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS03))

//S2KSYS07 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS03))
&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
&SP2)),UNIT=(SYSDK,SEP=(SF01))

UNIT=(SYSDK,SEP=(S2KSYS03))
UNIT=(SYSDK,SEP=(SF01

//SF01
//SF02
//SF03
//SF04
//SF05
//SF06

&SP2))
&SP2))
&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
&SP2)),UNIT=(SYSDK,SEP=(SF01))

DD SPACE=(CYL,(&SP1
DD SPACE=(CYL,(&SP1
DD SPACE=(CYL,(&SP1
DD SPACE=CCYL,(&SP1
DD SPACE=(CYL,(&SP1
DD SPACE=(CYL,(&SP1

//*** DATA BASE FILES:
//AQUIFER1 DD VSN=databasefUel,VlS?=$m
//AQUIFER2 DD DSN=databasefUe2,DlSP=SHR
//AQUIFER3 DD DSN=databasefUe3,VlS?=Sm
//AQUIFER4 DD QSN=databasefUe4 9 DlS?=SHR
//AQUIFERS DD DSN=databasefile5 ,DISP=SHR
//AQUIFER6 DD DSN=databasefile6,DIS?=SHR

THE FOLLOWING FILE IS FOR 'SAVE AQUIFER 1 COMMAND
DD DSN=DBBACKUP,UNIT=(TAPE62,,DEFER),
VOL=(PRIVATE,RETAIN,SER=tapenwm),DISP=(OLD,PASS)

//***
//TAPES2K
//

//KEEPFILE DD DUMMY

The Retrieval Program

The Retrieval Program retrieves data from the data base. There are four
specifications required to identify the data to be retrieved: (1) The aquifer
unit; (2) the parameter name; (3) the description of a rectangular area in

61

which data are to be retrieved; and (4) the lowest level within the data-base
structure where data are to be extracted. Using these four specifications,
the Retrieval Program produces a set of data in the same format that is used
to initially load the data in the data base.

By using the level specification, the user has the capability to retrieve
statistical records for a parameter. For example, a 10-minute parameter has
its primary data stored at level 3 of the data-base structure. In order to
retrieve the 1-degree block statistics, the retrieval level should be set to 2,
Retrieved data would then consist of 100* and 200* records, where the 200*
records (.1-degree records) contain the statistics computed from values for the
10-minute blocks that are within the 1-degree block.

The user can optionally request the inclusion of test proposals in the
retrieved data. This is done through use of tne variable, called K599, that
can be found on the 006* retrieval request record. If K599 is set to 1,
the output will include test proposals.

When the user requests the test proposals, the test value will replace
the currently accepted value in the output. If a 1-minute parameter is
being retrieved, then for each 10-minute block (which represents 100 1-minute
blocks), the currently accepted 1-minute values are replaced only if the 1-
minute block has a corresponding test proposal. If more than one test
proposal is located for a block, the latest test proposal is output. For
1-minute data, the test proposals are merged into a single proposal, beginning
with the oldest test proposal and proceeding to the newest test proposal.

Input

The input to the program is as follows:

Card (1) - Parameter Record - Read from unit 5

Col 1-30
Col 31-32
Col 33-34
Col 35-36
Col 37-38
Col 39-40
Col 41-50

Col 51-52
Col 53-60
Col 61-68
Col 69-72
Col 73-76
Col 77-79
Col 80

TITLE

INFIL

OUTFIL

OPT

AQNAME
DBNAME
PASSWD

USERID
KODE

7A4,A2
2X
12
2X
12
2X
1011
Element

Title of Run
Blank
Input record device
Blank
Retrieved data output device
Blank
Option Array

Value Content

2-10
2X
2A4
2A4
A4
4X
A3
Al

0 Print diagnostics only
1 Print retrieved records
0 Unused

Blank
Study unit (HIPLAINS for HPRASA)
Data-base name (AQUIFER for HPRASA)
Data-base password
Blank
User initials
P

62

Card (2) - 005* - Read from user selected unit

Col 1-4 TYPE A4 005*
Col 5-10 - 6X Blank
Col 11-18 AQNAME 2A4 Study unit (HIPLAINS for HPRASA)
Col 19-48 PNAME 7A4,A2 Parameter name (left-justified)
Col 49 - IX Blank
Col 50 LEVEL II Level of retrieval
Col 51-72 - 22X Blank
Col 73-80 INSEQ 18 Sequence number

Card (3) - 006* - Read from same unit as Card (2)

Col 1-4
Col 5-10
Col 11-16

Col 17
Col 18-24

Col 25
Col 26-31

Col 32
Col 33-39

Col 40-42
Col 43
Col 44-72
Col 73-80

TYPE

INLT1

INLN1

INLT2

INLN2

K599

INSEQ

A4 006*
6X Blank
16 Minimum latitude, DDMMSS

(whole degrees)
IX Blank
17 Minimum longitude, DDDMMSS

(whole degrees)
IX Blank
16 Maximum latitude, DDMMSS

(whole degrees)
IX Blank
17 Maximum longitude, DDDMMSS

(whole degrees)
3X Blank
II Temporary inclusions flag
29X Blank
18 Sequence number

Card (4) - 999* - Read from same unit as Card (2)

Col 1-4 TYPE
Col 5-72
Col 73-80 INSEQ

A4 999*
68X Blank
18 Sequence number

There are several restrictions on the order of these records. Each 005*
card must be followed by at least one 006* card. If this does not occur, the
program will be aborted. An 006* card cannot exist without a corresponding
0.05* card. Retrieval requests can contain more than one 005* card, providing
each 005* card is followed by one or more 006* cards. This implies that any
retrieval run can retrieve data for more than one parameter. (Note: If the
Retrieval Program obtains input to the Data-Transformation Program, only
retrieve one parameter at a time.) One 999* card is required; this should
be the last record.

63

Output

The output consists of:

(1) Messages - written to unit 6 (standard printer output file);
C2) Retrieved data - written to unit defined on parameter record

(usually a disk file);
(3) Error messages - written to unit 21 (auxiliary printer output

file).

In many cases, when an error occurs in the execution of this program, the
program will print an error message following the standard messages. The error
message will consist of an error code, a copy of the record being processed,
and the error message. The error code consists of 8 digits. The first digit
identifies the type of error. If set to 1, the error resulted from incorrect
input. This type of mistake can be corrected by the user. If set to 2, the
error resulted from an attempt to execute a System 2000 (the DBMS) command.
For this type of error, the user should contact the computer staff responsible
for the program. If the first digit is 9, the error resulted from a logic
fault within the program. When this occurs, the computer staff should be
contacted. The second through fourth digits of the code identify the specific
error. If the fifth digit is set to 0, the error was not severe enough to
cause the run to be aborted. If set to 1, the run is aborted. If the first
digit of the error code is 1, the sixth through eighth digits identify the
column where the input error is located. If the first digit is 2, the sixth
through eighth digits indicate the System 2000 completion code resulting from
the execution of a System 2000 command. This completion code needs to be
given to the computer staff when they are contacted about the error.

Sample Procedure

To run the program, the following JCL could be used:

// ... JOB ... -Job card
//PROCLIB DD DSN=procedure.library,DIS?=SHR -Procedure Library
// EXEC RETREV,NAMEl=< tput -Step Card
//GORT.SYSIN DO *

parameter card
retrieval request records

//

The procedure RETREV could appear as follows:

64

//RETREV PROC TIMEG=2,REG=740K,VOLl=^/wZ,NAMEl=NULLFILE,
// SP1=1,SP2=10,PROG=RETREV,UNIT1='3330-1'
//************************************
//* RETREV: A PROCEDURE TO RUN THE HPRASA DATA BASE RETRIEVAL PROGRAM
//* WRITTEN BY CARMELO E. FERRIGNO, MARCH, 1980
//*
//*
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESES)
//*
//* TIMEG TOTAL RUN TIME (2)
//* REG REGION SIZE (740K)
//* UNIT! RETRIEVAL PROGRAM OUTPUT DEVICE (3330-1)
//* VOL1 RETRIEVAL PROGRAM OUTPUT VOLUME (myvol)
II* NAME! RETRIEVAL PROGRAM OUTPUT DSNAME (NULLFILE)
//* PROG NAME OF LOAD MODULE TO BE EXECUTED (RETREV)
//*
//***************************************^
//GORT EXEC PGM=&PROG,TIME=&TIMEG,REGION=®
//STEPLIB DD DSN=m#UZ?,DISP=SHR,VOL=SER=tf22/wlJ,UNIT=3330-l
// DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.FORTG.LINKLIBX,DISP=SHR
//*
//* DEFINE THE STANDARD I/O DEVICES
//*
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=B
//*
//* LOGICAL UNIT 11 (DEFAULT) USED FOR OUTPUT OF RETRIEVED DATA
//*
//FT11F001 DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=(NEW,KEEP,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),
// SPACE=(TRK,(6,6),RLSE),DSNAME=&NAME1
//*
//* LOGICAL UNIT 20 USED FOR ERROR CODES AND MESSAGES FILE
//* LOGICAL UNIT 21 USED FOR OUTPUT OF ERROR MESSAGES TO USER
//*
//FT20F001 DD DSN=error/t:Ze,DISP=SHR
//FT21F001 DD SYSOUT=A
//*
//* DEFINE FILES USED BY SYSTEM 2000
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//S2KPARMS DD DSN=82fcparn?8/£Ze,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=CCYL,(1,1))
//LOCATE01 DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//LOCATE02 DD UNIT=SYSDK,SPACE=(CYL,(1,1))

65

//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS02 DD SPACE=CCYL,(&SP1,&SP2l),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2l),UNIT=tSYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE<CYL,(&SP1 ,&SP2}) ,UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=CSYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=CCYL,(&SP1,&SP2)),UNIT=CSYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,C&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=CCYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(.&SP1,&SP2)),UNIT=CSYSDK,SEP=CS2KSYS03))
//SF06 DD SPACE=CCYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//AQUIFER1 DD DSN=database file 1 ,DISP'=SHR
//AQUIFER2 DD DSN=databasefUe2,DIS?=SHR
//AOUIFER3 DD DSN=databasefUe3,DlS?=Sm
//AQUIFER4 DD DSN=databasefUe4,DISP=Sm
//AQUIFERS DD DSN=databasefile5,DlS?=Sm
//AOUIFER6 DD DSN=databasefile6,DlSP=SHR

The Instant-Update Program

The Instant-Update Program allows users to propose changes to data
within the data base; these proposed changes are called test proposals. When
a request is made to add a test proposal for a particular block and parameter,
test data are loaded in the data base as part of the data belonging to the
parameter, b'ut the test data are kept separate from the other data. This
separate area is temporary in nature; the accepted data for a particular
parameter reside in the permanent area of the data base. The Retrieval
Program may optionally retrieve the test proposals.

An example of the use of a test proposal would be in modeling. After test
proposals are added to the data base, the data would be retrieved with the
request that test proposals be included within the output. Then, for any block
within the retrieved area that has a corresponding test proposal, the test
proposal would replace the currently accepted value in the retrieval output.
After the retrieval, the data would be reformatted into model input data using
the Data-Transformation Program. During the modeling, the user may decide
that some of the test proposals are better than currently accepted values.
The user may then want the test proposals to replace corresponding accepted
values. This is also done using the Instant-Update Program. When a test
proposal is marked as an accepted proposal, it effectively becomes part of
the permanent data for that parameter. Conversely, if the user determines
that some of the test proposals are not satisfactory, the test proposal may
be marked as rejected. This is the third function of the Instant-Update
Program. Once rejected, the proposal effectively is no longer a part of the
temporary data for that parameter.

66

Each test proposal is loaded into the data base as a separate record within
the temporary area of that parameter. The test proposal is identified by its
latitude, longitude, date and time added, and a flag. The flag indicates that
it is a test proposal, an accepted value, or a rejected value. Only one test
proposal should be added per block per program execution. If more than one
test proposal is added for a particular block in the same execution, the date
and time of the proposal would be the same, and a later program execution
would not be able to distinguish among the test proposals. After test
proposals have been added, these proposals can be marked as rejected or
accepted in subsequent executions of the program. A typical program execution
may consist of a mixture of the three functions: adding test proposals,
rejecting test proposals, and marking test proposals as accepted.

The Instant-Update Program updates one parameter per run. If more than
one of the three program functions are to be performed by a particular run,
the order must be:

1. Reject proposals
2. Accept proposals
3. Add test proposals

Only test proposals can be marked as rejected or accepted. A rejected
proposal cannot be changed to test or accepted, because, logically it no
longer exists. An accepted proposal cannot be changed, because logically it
is part of the permanent data.

The program limits the number of test proposals per block to five. If
five test proposals already exist, the user will not be allowed to add
another. A message to this effect is printed and a listing of the five test
proposals is provided. To add another test proposal, at least one of the
existing test proposals should be rejected. If the value stored in the
permanent data area for the block is the MVI, a proposal is not allowed.
Also, the test proposal cannot be the MVI. Only the DBA can change the MVI
to a valid value, or a valid value to the MVI. A proposal can only be added
for a block that already exists in the permanent area of the data base.

Card 1: This is the 002* card
updated.

Col 1-4
Col 5-10
Col 11-18
Col 19-48
Col 49-72
Col 73-80

Record Type

Unit Name
Parameter

Sequence

Input

It describes the parameter that is to be

A4 002*
6X Blank
2A4 Study unit (HIPLAINS for HPRASA)
7A4,A2 Parameter to be updated
24X Blank
18 Non-decreasing sequence number

67

Card 2: This is the 599* record. It contains the name of the person submit­
ting the proposal changes. The person must be an authorized user of
the program. The card also contains the action code: 1 indicates
that a test proposal is to be marked rejected; 2 indicates that a
test proposal is to be marked accepted; and 3 indicates that a test
proposal is to be added. If the action code is 1 or 2, the 599* card
also contains the date and time when the proposal was added to the
data base. This date and time can be found as part of the output of
a previous Instant-Update Program execution. If the action code is
3, the date and time fields should be blank.

Col 1-4 Record Type A4 599*
Col 5-10 - 6X Blank
Col 11-35 Person 6A4,A1 Person submitting changes

	(last name)
Col 36 - IX Blank
Col 37 Action II Action code
Col 38 - IX Blank
Col 39-44 Date A4,A2 Date proposal added (MMDDYY)
Col 45-47 - 3X Blank
Col 48-53 Time 16 Time proposal added (HHMMSS)
Col 54-72 - 19X Blank
Col 73-80 Sequence 18 Non-decreasing number

Card 3: This is the 600* record. This card can take several forms depending
on the preceding 599* card. If the parameter being updated is 1-
degree, 10-minute, or 1-minute data and the preceding 599* card
contained an action code 1 or 2, the 600* card contains only the
latitude and longitude of the data block where a test proposal exists,
The card will appear as follows:

Version 1: 1-degree, 10-minute, or 1-minute data - Action code 1 or 2

Record TypeCol 1-4
Col 5-10
Col 11-16
Col 17
Col 18-24
Col 25-72
Col 73-80

Lat

Lon

Sequence

A4
6X
16
IX
17
48X
18

600*
Blank
Latitude of proposal CDDMMSS)
Blank
Longitude of proposal (DDDMMSS)
Blank
Non-decreasing sequence number

If the action code is 3 and the data are stored as 1-degree or 10-minute
data, then the 600* card contains not only the latitude and longitude of the
block but also the test proposal. In addition, the user may supply statistics
that were used to compute the test proposal. These statistics are not
required, but the test proposal must be present. The statistics are:
minimum, maximum, number of values, and the standard deviation.

68

Version 2: 1-degree or 10-minute data - Action code 3

Col 1-4
Col 5-10
Col 11-16
Col 17
Col 18-24
Col 25
Col 26-30
Col 31-35
Col 36-40
Col 41-42
Col 43-45
Col 46-53
Col 54-72
Col 73-80

Record Type

Lat

Lon

Min
Max
Value

Numpts
Stndev

Sequence

A4 600*
6X Blank
16 Latitude of proposal (DDMMSS)
IX Blank
17 Longitude of proposal (DDDMMSS)
IX Blank
15 Minimum
15 Maximum
15 Test proposal
2X Blank
13 Number of values
F8.2 Standard deviation
19X Blank
18 Non-decreasing sequence number

If the action code is 3 and the data are 1-minute data, the 600* card contains
only the latitude and longitude of the 10-minute block. It is identical in
format to version 1 of the 600* card. The 600* card is then followed by a
group of cards that contain proposed values for some or all of the 100 1-
minute points contained within the 10-minute block whose latitude and longi­
tude is defined on the 600* card. These records are type 701* through 710*.
The 10-minute block can be thought of as a 10 X 10 matrix of 1-minute values.
The 701* card represents the first (north) row of the 10 X 10 matrix; the
704* card corresponds to the fourth row of the matrix; and so forth. Not all
ten rows are required to have test proposals, nor are all 10 points within a
row required. Hence, if the only rows that are to have values proposed are
5, 6, 7, and 8, then the 600* card should be followed by 705*, 706*, 707*,
and 708* records. Within these rows, only place values in the columns where
a test proposal is to be inserted. If the points 2, 3, 4, and 5 within a row
are to have test proposals, then positions 1, 6, 7, 8, 9, and 10 should be
blank. The formats of records 701* through 710* are identical:

Card 4: 1-minute data - Action code 3

Col 1-4
Col 5-10
Col 11-60
Col 61-72
Col 73-80

Record Type

Values

Sequence

A4 701* through 710*
6X Blank
1015 Test proposals
12X Blank
18 Non-decreasing sequence number

The series 600*, 701*-710* are repeated as many times as necessary.
Last card: The last card in the deck must be a 999*

Col 1-4
Col 5-72
Col 73-80

Record Type

Sequence

A4 999*
68X Blank
18 Non-decreasing sequence number

69

The following examples are given to make description of input more
easily understood:

Example 1: Adding test proposals for parameters stored as 1-degree or 10-
minute data.

002* HIPLAINSANNUAL LAKE EVAPORATION 1
599* LUCKEY 3 2
600* 330000 1030000 720 3
600* 330000 1040000 730 4
600* 340000 1040000 740 5
999* 6

Each of the 600* records represents a 1-degree block within the 1-degree
parameter ANNUAL LAKE EVAPORATION. If the parameter was stored as
10-minute data, each 600* record would represent a 10-minute block.

Example 2: Adding test proposals for a parameter stored as 1-minute data.

002* HIPLAINSWATER TABLE - 1960 1
599* LUCKEY 3 2
600* 315000 1013000 3
701* 2520 2530 2549 2550 4
702* 2510 2515 2520 2560 5
703* 2570 2580 2590 6
600* 315000 1020000 7
703* 2770 2761 2752 2743 8
704* 2766 2757 2748 2739 2730 9
705* 2770 2761 2753 2745 2736 10
600* 320000 1013000 11
707* 2505 2495 2415 2477 2468 12
708* 2510 2500 2490 2480 13
709* 2517 2506 2495 14
710* 2520 2509 15
999* 16

Each 600* record represents a 10-minute data block; each value on the
701*-710* records is a test proposal for a 1-minute point within the
10-minute block. The position of the 1-minute block is determined by
the record type and the position on the record. For example, a value
in row 6 is placed in record type 706*, and the value found in columns
11-15 is the first value in that row.

70

Example 3: Mixture of actions.

002* HIPLAINSANNUAL LAKE EVAPORATION 1
599* LUCKEY 1 083181 124536 2
600* 330000 1030000 3
599* LUCKEY 2 091581 073126 4
600* 330000 1040000 5
599* LUCKEY 3 6
600* 330000 1050000 650 7
999* 8

The first 599* card indicates that a test proposal that was added on
the date 8/31/81 and time 12:45:36 is to be marked as rejected. The
following 600* record gives the latitude and longitude of the test
proposal that is to be rejected. If test proposals for other data
blocks had been added in the same run as this one, other 600* records
could follow. The second 599* card indicates that a test proposal
added at the given date and time is to be marked as accepted. The
following 600* record gives its position. Other proposals added on
that date and time could also be marked accepted with other 600*
records. The third 599* record indicates that a test proposal is
to be added. The position and test value is given on the following
600* record.

Output

The output consists of three information print files. The first informa­
tion file is the standard print file. It contains information such as: person
submitting proposal changes; parameter being updated; number of proposals
rejected, accepted, or added; and a listing of the input request records.

The second information file is called the activity report. It contains
specific information on each proposal that is rejected, accepted, or added.
For parameters stored as 1-degree or 10-minute data, this report gives:

A. For a rejected proposal:
1. Latitude of rejected proposal
2. Longitude of rejected proposal
3. Date proposal was added to data base
4. Time proposal was added to data base
5. Rejected parameter value
6. Currently accepted parameter value

B. For an accepted proposal:
1. Latitude of accepted proposal
2. Longitude of accepted proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. Previously accepted parameter value
6. Newly accepted parameter value

71

C. For a test proposal:
1. Latitude of test proposal
2. Longitude of test proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. Proposed parameter value
6. Currently accepted parameter value

For parameters stored as 1-minute data, the information supplied in the
activity report is more extensive. The report gives:

A. For a rejected proposal:
1. Latitude of rejected proposal
2. Longitude of rejected proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. A 10 X 10 matrix of the 100 parameter values within the 10-minute

block. The rejected values are highlighted with asterisks. The
remaining values represent the currently accepted values for those
1-minute blocks.

B. For an accepted proposal:
1. Latitude of accepted proposal
2. Longitude of accepted proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. A 10 X 10 matrix of the 100 parameter values within the 10-minute

block. The newly accepted values are highlighted with asterisks.
The remaining values represent the currently accepted values for
those blocks.

C. For a test proposal:
1. Latitude of test proposal
2. Longitude of test proposal
3. Date proposal added to data base
4. Time proposal added to data base
5. A 10 X 10 matrix of the 100 parameter values within the 10-minute

block. The new test values are highlighted with asterisks. The
remaining values represent the currently accepted values for those
points.

The activity report also contains information on update requests that
could not be accomplished. For example, if a test proposal has a value
equal to the MVI, the proposal would not be added, and the activity report
would contain a message to this effect. If the proposal was for a 1-minute
parameter, the message contains the position in the 100 1-minute blocks where
the problem occurred. This location is a number between 1 and 100, where
positions 1 to 10 describe the first row of data, positions 11-20, the second
row of data, and so forth. Note that even if one of the proposed 1-minute
test proposals is not allowable, the test proposal for the entire block will
not be added.

72

The third information file is for error messages. In the vast majority
of cases, possible errors within the program are related to System 2000 (the
DBMS) processing. These errors should not occur frequently; but, if an error
does occur, a message is printed in the error file and the run is aborted.
The DBA should be contacted, because some of these errors could result in the
data base being damaged. When the data base is damaged, the Instant-Update
Program cannot be run properly. If a severe error does occur, a warning is
given in the standard print file that directs the user to look at the error
message file.

Sample Procedure

The procedure used to execute the Instant-Update Program is called EDITIU.
This procedure is a two-step process. The first step executes the Edit Program,
The input to the Edit Program is a parameter card plus the update request
records (that is, 002*, 599*, 600*, and so forth) for the Instant-Update
Program. The Edit Program checks the syntax of these cards as well as other
types of checks. If a record is determined to be correct, the Edit Program
writes this record to a file. This file is passed to the second step of the
procedure, the execution of the Instant-Update Program.

Certain errors, such as incorrect person's name or parameter name, are
considered to be fatal errors. If fatal errors are detected by the Edit
Program, the second step of the procedure is not executed. Other errors may
be severe enough to cause a particular group of records to be rejected, but
not severe enough to prevent the second step from being executed. If, for
instance, the rejected record is type 599*, then its corresponding 600*
(and possibly 701* through 710*) records are also rejected, whether they
are correct or incorrect. It is quite possible that only part of the
update request records are passed to the second step of the procedure.

As part of its output, the Edit Program has a separate section of the
printout, where error messages are listed. These error messages are explained
in the section on the Edit Program. The Edit Program output also contains the
number of input records read, the number of errors detected, and the number
of fatal errors. Fatal errors are errors that prohibit the second step from
being executed.

To execute the EDITIU procedure, the following JCL could be used:

// . . . JOB . . . -Job card
//PROCLIB DD DSfcproeedure.library 9 DlSP=StiR -Procedure library
// EXEC EDITIU,V(BHBEto*COCF266A -Step card
//GOED.SYSIN DD * -Card input

Parameter card
Update request records

73

On the EXEC statement (third card), the parameter MEMBER must be defined.
This parameter is the name to be given to a member of a data set that will
contain information about a particular execution of the Instant-Update Program.
This information is used by the DBA to monitor the activity of the program.
This parameter consists of 8 alphanumeric characters. Characters 1 and 2 are
the State name abbreviation. Characters 3 and 4 are the user's initials.
Characters 5 through 7 are the Julian day. Character 8 is a letter from A to
Z to be used to differentiate among executions on the same day.

In the card input, the Instant-Update Program request records are preceded
by the Edit Program parameter card. This card contains information necessary
to the proper execution of the Edit Program. The card is as follows:

Col 1-30
Col 31-32
Col 33-34
Col 35-36
Col 37-38

Col 39-40
Col 41-50

Title

Input file

Output file

Options

7A4,A2
2X
12
2X
12

2X
1011

Element
1
2

3
4
5-10

Col 51-52
Col 53-60
Col 61-68
Col 69-72
Col 73-76
Col 77-79
Col 80

Study unit
Data base
Password

Userid
Kode

2X
2A4
2A4
A4
4X
A3
Al

Title of run
Blank
Should be set to 5
Blank
Device where edited records are

written, set to 11
Blank
Execution options:

Value
0
0-print diagnostics
1-print all input records
0
4
0 or blank

Blank
Study unit (HIPLAINS for HPRASA)
Data base name (AQUIFER for HPRASA)
Password with update authority
Blank
User initials
Set to P

The procedure EDITIU could appear as follows:

//EDITIU PROC TIME1=1,TIME2=1,REG1=760K,REG2=770K,PROG1=EDITHX,

If
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

PROG2=IUPDTE,MEMBER=,SP1=1,SP2=10
:********************************* :

EDITIU: A PROCEDURE TO RUN THE HPRASA INSTANT UPDATE PROGRAM
IN CONJUNCTION WITH THE AQUIFER DATA BASE EDIT PROGRAM.
STEP 1 TAKES THE INPUT TO THE INSTANT UPDATE PROGRAM AND
CHECKS THE CORRECTNESS OF THE DATA USING THE EDIT PROGRAM.
IF THE EDIT IS SUCCESSFUL, STEP 2 IS EXECUTED. THIS IS
THE INSTANT UPDATE STEP.

WRITTEN BY CARMELO F. FERRIGNO SEPTEMBER,1981

USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)

74

TIM!
TIM2
REG!
REG2
PROG1
PROG2
MEMBER

TOTAL RUN TIME EDIT STEP (1)
TOTAL RUN TIME INSTANT UPDATE STEP (1)
REGION SIZE EDIT STEP (760K)
REGION SIZE INSTANT UPDATE STEP (770K)
LOAD MODULE NAME EDIT STEP (EDITHX)
LOAD MODULE NAME INSTANT UPDATE STEP (IUPDTE)
NAME OF PDS MEMBER FOR DBA INFORMATION FILE

STEP 1: EDIT

DEFINE STANDARD I/O DEVICES

DD
DD
DD

DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

//*
//*
//*
//*
//*
//*
//*
//*
//*

//*
//*
//*
//GOED EXEC PGM=&PROG1,TIME=&TIM1,REGION=®1
//STEPLIB DD DSN= /H£,UNIT=3330-1 ,VOL=SER=ro/wl,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
// DD DSN=SYS1.FORTG.LINKLIBX,DISP=SHR
//*
//*
//*
//FT05F001
//FT06F001
//FT07F001
//*
//* DEFINE OUTPUT FILE
//*
//FT11F001 DD DSN=&&EDOUT,UNIT=SYSDK,DISP=(,PASS),VOL=,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),SPACE=(TRK,(3,3),RLSE)
//*
//*
//*
//*
//FT20F001
//FT21F001
//*
//* DEFINE FILES CONTAINING USERS' AND PARAMETER NAMES
//*
//FT22F001 DD
//FT23F001 DD
//*
//* DEFINE FILES USED BY SYSTEM 2000
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)

DD DSN=s2kpa*ros/£Ze,DISP=SHR
DD DUMMY
DD DUMMY
DD DUMMY
DD UNIT=SYSDK,SPACE=(CYL,(1,1))
DD UNIT=SYSDK,SPACE=(CYL,(1,1)

LOGICAL UNIT 20 USED FOR ERROR CODES AND MESSAGES FILE
LOGICAL UNIT 21 USED FOR OUTPUT OF ERROR MESSAGES TO USER

DD
DD SYSOUT=A

DD UNIT=SYSDK,SPACE=(CYL,(1,1))

75

DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
DD SPACE=(CYL 9 (&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS01))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
DD DUMMY
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
DD DSH=databasefilel,VISP=Sl\R
DD
DD DSH=database file3,
DD
DD
DD

//S2KSYS01
//S2KSYS02
//S2KSYS03
//S2KSYS04
//S2KSYS05
//S2KSYS06
//S2KSYS07
//SF01
//SF02
//SF03
//SF04
//SF05
//SF06
//AQUIFER1
//AQUIFER2
//AQUIFER3
//AQUIFER4
//AQUIFERS
//AQUIFERS
//*
//*
//IU EXEC PGM=&PROG2,TIME=&TIM2,REGION=®2,PARM='ISA(23K)
// COND=(13,LT,GOED)
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR

DD DSN=SYS1.S2K,DISP=SHR

DEFINE STANDARD I/O DATA SETS

//
//*
//*
//*
//DATAIN DD DSN=&&EDOUT,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE REPORT AND ERROR FILES
//*
//REPORT DD SYSOUT=A
//REPORT2 DD SYSOUT=A
//ERRFIL DD SYSOUT=A
//*
//* DEFINE DBA INFORMATION FILE
//*
//DBAINFO DD DSN=^a£nfofi£e(&MEMBER) ,UNIT=3330-1 ,
// VOL=SER=?^i;oJ > DISP=(OLD > KEEP)
//*
//* DEFINE SYSTEM 2000 FILES
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//S2KPARMS DD DSN=s2kparms/ae,DISP=SHR
//S2KSNAP DD DUMMY

76

//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1,&SP2}),UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP
//S2KSYS04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP
//S2KSYS05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP
//S2KSYS06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP
//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=
//AQUIFER1 DD VSN=databasefilel ,DISP=SHR
//AQUIFER2 DD DSN=database/iZe2,DISP=SHR
//AQUIFER3 DD DSN=dato&z*e/«e3,DISP=SHR
//AQUIFER4 DD VSN=databasefile4,VlS?=Sm
//AQUIFERS DD DSN=database/iZe5,DISP=SHR
//AQUIFERS DD DSN=data£ase/ae£,DISP=SHR

=(S2KSYS01))
=(S2KSYS01))
=(S2KSYS01))
=(S2KSYS03))

(S2KSYS03))
(SF01))
(S2KSYS03))
(SF01))
(S2KSYS03))
(SF01))

The Move Program

The Instant-Update Program gives users of the DMS an opportunity to
propose changes to data values within the data base. Details of that process
can be found in the documentation for the Instant-Update Program. With that
program, the user can perform three tasks:

1. Add test proposals;
2. Accept test proposals; and
3. Reject test proposals.

When a test proposal is added to the data base, it is stored separately from
the permanent data. A flag is set in the test proposal record to indicate
that this is a test proposal. At some point, the user may want to mark a
test proposal as rejected, and have it removed from the data base. In this
case, the Instant-Update Program changes the flag to indicate that the proposal
is rejected; the program does not physically remove the proposal record from
the data base. Alternatively, the user may want to mark a test proposal as
the accepted value; the Instant-Update Program changes the flag to indicate
that the proposal contains the accepted value to replace the current perman­
ent value. The program does not perform the replacement operation; the
process of removing a rejected proposal from the data base and replacing a
permanent value is a function of the Move Program. In all, the Move Program
performs four tasks for each parameter:

77

1. Rejected proposals are removed from the data structure using the
System 2000 (the DBMS) REMOVE TREE command.

2. Accepted proposals are located and the accepted values replace the
present permanent values, using the System 2000 MODIFY command.

3. The existing test proposals are examined, and if any proposals
have existed longer than a set duration, they are removed.

4. If permanent values are changed, the parameter statistics are
recomputed.

The Move Program has two modes of operation. The above tasks can be
performed for all parameters in the data base or for selected parameters.
The second mode of operation will usually be used because, at any one time,
proposals likely will not exist for all the parameters in the data base. A
guide to which parameters have proposals is found in the DBA information file
produced by each execution of the Instant-Update Program.

The first step in processing a parameter is to retrieve information
stored in the root-level record, including a flag that indicates whether
proposals exist for the parameter. This flag is set by the Instant-Update
Program and indicates precisely what types of proposals currently are within
the data base. If the flag indicates that rejected proposals exist, then the
program locates the rejected proposals and removes them from the data base.
If the flag indicates that accepted proposals exist, then the program locates
the accepted proposals and corresponding permanent data. Then all five
statistical components (minimum, maximum, value, number of values, and
standard deviation) are replaced in the permanent data record and the accepted
proposal is removed from the data base. If the flag indicates that test
proposals exist, they are examined, and if any of these proposals have existed
longer than a set duration, they are removed from the data base.

Input

The first card image contains a password having the proper update
authority, the aquifer unit, and a code indicating the mode of operation. If
the code is 1, all the data-base parameters are processed and this card is
the only input card. If the code is 2, only selected parameters are processed
and the parameter names are input. The format of card 1 is as follows:

Col 1-4 Data-base password, left-justified
Col 5-12 Study unit, left-justified (HIPLAINS for HPRASA)
Col 13 Operation code

If the code is 2, then the parameter names are input, one per card, as follows

Col 1-30 Parameter name, left-justified

If the code is 1, the parameter names are obtained from a file called FARMS,
which contains the names of all parameters stored in the data base.

78

Output

The output consists of a printed report containing the data-base cycle
information at the point when the data base is opened and at the point when
all move operations have been performed. For each parameter processed, the
report contains the following:

1. Name of parameter;
2. Root-level record statistics prior to the move operations;
3. Geographic coordinates of the blocks with new permanent values;
4. Root-level record statistics after the move operations; these are

	listed only if the statistics are recomputed;
5. Number of rejected proposals removed;
6. Number of test proposals removed;
7. Number of accepted proposals moved to permanent part of the data base,

At the end of the report is a message that indicates whether the program
terminated normally or abnormally. Abnormal termination would usually be the
result of a failure in System 2000 processing. If this message is printed,
the computer staff responsible for the program should be contacted.

Sample Procedure

A procedure called DBMOVE is used to execute the Move Program. To
execute the program, the following JCL could be used:

// ... JOB ...
//PROCLIB DD VSN=procedur
//STEPNAME EXEC DBMOVE
//MOVE. DATA IN DD *

input records

The procedure DBMOVE could appear as follows:

//DBMOVE PROC TIM=2,REG=840K,PROG=DBMOVE,SP1=1 ,SP2=10

//* DBMOVE: A PROCEDURE TO RUN THE HPRASA DATA BASE MOVE PROGRAM
//* WRITTEN BY CARMELO F. FERRIGNO OCTOBER, 1981
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIM TOTAL RUN TIME (2)
//* REG REGION SIZE (840K)
//* PROG LOAD MODULE NAME (DBMOVE)
//*
//******************************** *****^
//MOVE EXEC PGM=&PROG,TIME=&TIM,REGION=®,PARM='ISA(20K)'
//STEPLIB DD DSN=SYS1 .PLIX.TRANSLIB,DISP=SHR

79

DD
DD DSN=SYS1.S2K,DISP=SHR

DEFINE STANDARD I/O DATA SETS

//
//
//*
//*
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE FILE CONTAINING PARAMETER NAMES
//*
//PARMS DD DSN=parws/iZ2,DISP=SHR
//*
//* DEFINE SYSTEM 2000 FILES
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//S2KPARMS DD DSN=s2kparmsfUe 9 QISP=Sm
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1 ,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS03))
//S2KSYS07 DD DUMMY
//SF01
//SF02

DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))

//SF03
//SF04
//SF05
//SF06
//AQUIFER1 DD DSN=databasefilel,DIS?=SHR
//AQUIFER2 DD DSN=datafcase/iZe2,DISP=SHR
//AQUIFER3 DD DSN=databasefile3,QISP=Sm
//AQUIFER4 DD DSN=databasefile4,niS?=Sm
//AQUIFERS DD DSN=data£ase/iZe5,DISP=SHR
//AQUIFERS DD

DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
DD SPACE=tCYL,(&SPl,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))

The Statistics Program

When a parameter is initially loaded into the data base, the statistical
components (minimum, maximum, average, number of values, and standard
deviation) are assigned values only at the lowest level of the data structure.
Of the statistical components, the average is the only component that must be
assigned a value. Calculating all the statistical components at the levels
above the base level of the data-base structure is the function of the
Statistics Program. This program is run after the Load Program and is usually
run after the Move Program.

80

The Statistics Program calculates statistics for one parameter per
program execution. The process by which these statistics are computed is
basically the same for each data density except for a slight variation for 1-
minute data. Using the values at the base level, statistics are computed at
each higher level. For example, to calculate statistics at the 1-degree level
for a 10-minute parameter, all values for the 10-minute blocks within a 1-­
degree block are used. From these values, the minimum, maximum, average,
number of values, and standard deviation are computed for the 1-degree block.
These five statistics are then placed in the data base in the record represent­
ing the 1-degree block. Similarly, values for all of the 10-minute blocks
within a 3-degree block are used to calculate the same five statistics at the
3-degree level. This process continues and a set of five statistics that
reflect all the 10-minute blocks for a parameter are stored in the root level.

There is a slight variation in the procedure for 1-minute data; because,
when a 1-minute parameter is loaded, statistics at the 10-minute level are
calculated by the Load Program. The Statistics Program takes advantage of
this fact when statistics are computed at higher levels of the data structure.
For example, the sum of the 1-minute values can be calculated by multiplying
the number of values by the 10-minute average. This sum can be used to
calculate the overall average for the 1-degree and 3-degree blocks. Hence,
the 1-degree and 3-degree statistics can be determined without actually
retrieving values stored at the 1-minute level. This procedure saves a great
deal of processing. As with the other densities, the end result is statistics
that reflect all the 1-minute points within the study area for that parameter.
These final statistics are stored in the root level.

Input

The input is one card containing the following:

Col 1-4 Data-base password with the proper update authority
Col 5-12 Study unit (HIPLAINS for HPRASA)
Col 13-42 Parameter name

Output

The output consists of a 1-page printed report providing basic informa­
tion about the calculated statistics. The output includes the study unit
and parameter name for which the statistics are being computed. In addition,
data-base cycle information is provided for the points at which the data base
is opened and at which the data base is closed after the statistics are
successfully computed. Finally, the computed root-level statistics are
printed.

81

Sample Procedure

A procedure can be used to execute the Statistics Program. To execute
the procedure, the following JCL would be used:

// ... JOB ...
//PROCLIB DD DSN=proeedure. library ,DISP=SHR
//STEPNAME EXEC DBSTAT
//STAT.DATAIN DD *

single input record

The procedure DBSTAT could appear as follows:

//DBSTAT PROC TIM=2,REG=670K,PROG=DBSTAT,SP1=1 ,SP2=10

//* DBSTAT: A PROCEDURE TO RUN THE HPRASA DATA BASE STATISTICS
//* PROGRAM
//* WRITTEN BY CARMELO F. FERRIGNO SEPTEMBER, 1981
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*
//* TIM TOTAL RUN TIME (2)
//* REG REGION SIZE (670K)
//* PROG LOAD MODULE NAME (DBSTAT)

/7**************************^
//STAT EXEC PGM=&PROG,TIME=&TIM,REGION=®,PARM='ISA(5K)'
//STEPLIB DD DSN=SYS1 .PLIX.TRANSLIB.DISP=SHR
// DD DSN= /H2>,UNIT=3330-1 ,VOL=SER=^wZ,DISP=SHR
// DD DSN=SYS1.S2K,DISP=SHR
//*
//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE SYSTEM 2000 FILES
//*
//S2KMSG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//S2KPARMS DD DSN=82fcpairo8/£Ze,DISP=SHR
//S2KSNAP DD DUMMY
//S2KCOMD DD DUMMY
//S2KUDUMP DD DUMMY
//LOCATEOO DD UNIT=SYSDK,SPACE=(CYL,(1 ,1))
//S2KSYS01 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=SYSDK
//S2KSYS02 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=SYSDK
//S2KSYS03 DD SPACE=(CYL,(_&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS04 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS05 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS01))
//S2KSYS06 DD SPACE=(CYL,(&SP1 ,&SP2)) ,UNIT=(SYSDK,SEP=(S2KSYS03))

82

//S2KSYS07 DD DUMMY
//SF01 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF02 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF03 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF04 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//SF05 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(S2KSYS03))
//SF06 DD SPACE=(CYL,(&SP1,&SP2)),UNIT=(SYSDK,SEP=(SF01))
//AQUIFER! DD VSN=databasefUel 9 DIS?=Sm
//AQUIFER2 DD VSN=databasefile2 9 [)IS?=Sm
//AQUIFER3 DD VSN=databasefileZ ,DISP=SHR
//AQUIFER4 DD VSN=databasefile4,ms?=Sm
//AQUIFERS DD VSN=databasefile5 ,DISP=SHR
//AQUIFER6 DD DSN=databasefile6 9 VIS?=Sm

The Data-Transformation Program

The Data-Transformation Program prepares the input for the finite-
difference ground-water flow model (Trescott and others). The program is
divided into two phases. The first phase converts data retrieved from the
data base into (X, y, Z) triplets. The second phase uses the (X, Y, Z)
triplets to calculate a value for each block within a model.

In the first phase, latitude and longitude are converted to plane
coordinates X and Y by Lambert's Conformal Projection, with standard parallels
at 33 and 45 degrees, and with the central meridian at 96 degrees west of
Greenwich. These results are then rotated by an angle specified by the user.

The second phase looks at each (X, Y, Z) triplet that was determined in
phase 1 and locates the model block which contains the point. After all the
points have been properly located within the model, an interpolation is
performed to determine a value for each block. This interpolation may take
the form of an average, weighted average, or trend surface analysis.

Prior to executing this program, the user must first retrieve data for
the parameter from the data base. Details of this retrieval can be found in
the documentation for the Retrieval Program.

Criteria for Retrieving from Data Base

The amount of data retrieved depends on which of the interpolation
techniques has been requested. The average or weighted-average interpolation
techniques will use only data that fall within the model to compute values for
the model matrix. However, the program does detect if the data retrieved fall
outside the model, and the program will eliminate these data from any further
use. This is done because it is not likely that the user can retrieve only
the data that fall within the model.

83

For trend-surface analysis, all retrieved data are used unless the
analysis is done with 1-minute data. If the user wants results in the model
matrix to reflect the "local anomalies" within the model, then the retrieval
should be limited to the area covered by the model. If the user is more
interested in "regional trends," the retrieval can cover a larger area. The
area retrieved to accomplish regional trends can be as large as the entire
study area. However, if the retrieved data cover an area larger than the
model, the resultant model matrix may not reflect the values within the
model as they are stored in the data base. This is because the model matrix
was determined using values outside the model area.

For 1-minute data, the program limits the trend-surface analysis to data
that falls within the model. There are two reasons for this limitation.
First, in many cases, the trend-surface technique is not the best choice for
use with 1-minute data. There may be a sufficient number of 1-minute values
within the model to use another interpolation technique. Second, if all the
retrieved 1-minute data were used to compute the trend surface and the model
matrix, the computer costs could possibly get very large, because of the
extensive amount of processing performed by the program. Because of this,
prior to doing an extensive amount of processing, the program makes an estimate
of the number of 1-minute values within the model. If this estimate is greater
than 1600 points, the run is aborted, and the user is asked to re-run the job
using a different interpolation technique.

When using average or weighted-average interpolation, the user has three
additional options for 1-minute data. First, only 1-minute values can be used
to determine the model matrix. Second, only 10-minute values can be used to
determine the model matrix. Third, a mixture of 1-minute and 10-minute values
can be used. For the first and third option, 1-minute data are retrieved
from the data base; for the second option, 10-minute values are retrieved.
This option is explained in the documentation for the Retrieval Program.
For trend-surface analysis, the program does not allow a mixture of 1-minute
and 10-minute values.

Model-Core Determination

Model-core determination is a process that is used with 1-minute data.
The process divides the model into two regions. The first region is called
the model core and is the area where 1-minute values will be used to compute
the model matrix. The second region, that portion of the model that borders
the core, is the area where 10-minute values will be used to compute the
model matrix.

The model core is used because of the possibility that, using 1-minute
data, the model could contain a very large amount of data. With that large
amount of data, computer processing time and costs could become excessive.
By using 10-minute values in the outer rows and columns of the model,
processing time and cost is greatly reduced.

84

The first step in automatic determination of the model core is to
calculate the area of a 10-minute block at the latitude and longitude of the
principal node. This area, the standard comparison area, contains exactly
one 10-minute value. Then, starting at the block that contains the principal
node and proceeding outward along the column that contains the principal
node, areas of the blocks are calculated. The ratio of the area of the
block to the standard comparison area yields an estimate of the number of
10-minute values within that block. If that number is less than a pre­
determined number, usually five, then that block is considered to be within
the model core. This process continues along the column of the principal
node (in both directions), until the model core extent is determined. The
first block at which the estimate of the number of 10-minute values equals
or exceeds five is considered to be the first block outside the model core.
This procedure is repeated in both directions along the row that contains
the principal node. The end result of this process is the row and column
extremes of the model core. The number five was chosen as the comparison
value, because, with this number of 10-minute values within a block, a
reasonable result can be computed for the model matrix by using an average
or weighted-average interpolation.

This procedure does have limitations. For many model configurations,
this process will not be able to determine a model core. This can occur, if
the blocks are very small in the central region of the model. This could lead
to small blocks being found in the peripheral areas of the model. Under these
circumstances, the outer blocks along the column and row of the principal node
could easily contain less than five 10-minute values. To alleviate this
problem, the program allows the user to optionally input the row and column
extremes of the model core. In this case, the program calculates the model
core, as requested by the user. In addition, if the user wants the program
to compute the model core, the comparison number of points can be changed.
By changing this value, it is possible that the program could successfully
compute the model core.

Interpolation Techniques

There are three interpolation techniques available for determining the
model matrix: average, weighted-average, and trend-surface analysis (Davis,
1973). Use of each of these techniques depends on several factors. In
general, average and weighted-average techniques are useful when the density
of data within the model is large, while the trend-surface analysis is useful
when the data are sparse.

There are two factors that will greatly effect the density of data
within a model: (1) Density of the data as it is stored within the data
base; and (2) distance between the nodes of the model. A general guideline
for determining which technique to use is: if the distance between nodes in
the model is less than the distance between data in the data base, then the
trend-surface analysis would be the appropriate choice. In this case, it is
likely that only one or possibly no data points fall within a model node, and
an average or weighted-average interpolation may not be appropriate.

85

With these facts in mind, we recommend the following. With 1-degree data,
use trend-surface analysis. With 10-minute data, generally use the trend-
surface technique. However, with a very coarse model grid it will be possible
to get relevant results by using an average or weighted-average interpolation.
With 1-minute data, generally use an average or weighted-average interpolation,
unless the model grid is very fine.

The program allows the user to do a trend-surface analysis with 1-minute
data. However, if the program estimates that there are more than 1600 1-
minute values within the model, the run will abort and a message will be
printed suggesting the user re-submit the job with a request for a different
interpolation technique. This is done, because, with more than 1600 values
in the model, one will most likely obtain better results with an average or
weighted-average interpolation.

Average

For each (X, Y, Z) triplet, the averaging routine determines which
model block contains the point. For each block within the model, a sum of the
values within the block is calculated. After all the points have been located
within the model, the sum of the values is divided by the number of points
within the block, and this result is assigned to that block. These results
are output as the model matrix.

Weighted Average

The weighted-average routine is very similar to the average routine.
The difference occurs after a point is located within the model. The
distance between the point and the center of the block which contains the
point is calculated. The value of the point divided by the square of the
distance and the reciprocal of the square of the distance are then calculated;
sums of each of these results are kept for each block. After all the points
have been properly located, these quantities are divided and the result is
assigned as the value for that block. The calculation for each block is as
follows:

Value = E (value/D2) / £ (1/D2)

where D2 = square of the distance and the sums are over all the points in the
model block.

For both of the above techniques, it is possible that some of the model
blocks will not have any available data for computing a value. If the output
format is F10.4, the block will be assigned a -999999999. If the format is
F4.0, the block will be assigned a -999.

If a point is located on the line between two columns of the model,
the point is used to determine the value for both blocks. The same thing
is done if the point falls on the line between two rows of the model.

86

Trend Surface

This interpolation routine works quite differently from the others. The
user must input the order of the polynomial that is to be determined by the
program. If the order is one, the data will be fitted to a plane surface.
Orders of two, three, and four fit the data to more complicated surfaces.
A limitation of four has been placed on the order of the polynomial. If a
number larger than four is input, the program will abort.

With the order of the polynomial, the number of coefficients to be
determined and the number of points required are:

Number of
Order Coefficients points required

13 3
26 4
3 10 5
4 15 6

The trend-surface technique uses all of the data to determine the
polynomial. Values for each model block are obtained by solving the
polynomial, using the X and Y of the center of the block. This value is
then placed in the model matrix. All blocks within the model are assigned
a value.

As the trend-surface routine is determining the polynomial, it keeps
count of the number of points being used. If this number is larger than 500,
the program prints a message indicating the number of points used. This is
done, because, with more than 500 points within the model, it is possible
that the average or weighted average will give better results. The routine
does not abort, and it will use all the points to compute the polynomial.

General Information

All three interpolation programs allow two different output formats for
the model matrix, 8F10.4 and 20F4.0. The first output format poses no problem,
in that all significant digits of the result can fit within that format. The
second output format poses a problem in that many of the parameter values have
more than four significant digits. The program outputs the four most signi­
ficant digits. A message is printed indicating the factor by which each value
was multiplied to output these four most significant digits.

Program Flow

Flow of the program depends on the density of the data retrieved from
the data base:

87

1. One-Degree Data: With 1-degree data, the model grid may be regular
or irregular. Because the amount of data-base input is small, no model core
determination is necessary nor is it an allowable option. If the user requests
average or weighted-average interpolation, the program will eliminate any data
that do not fall into the model area. If trend-surface analysis is requested,
all the data are used for determining the model matrix.

2. Ten-Minute Data: With 10-minute data, the model grid may be regular
or irregular. Because the amount of data-base input is small, no model core
determination is necessary nor is it an allowable option. If the user requests
average or weighted-average interpolation, the program will eliminate any data
that do not fall within the model area. If trend-surface interpolation is
requested, all the data are used.

3. One-Minute Data: With 1-minute data, the model grid may be regular
or irregular. The program flow depends on the value of the second execution
option.

If this option is set to 0, then the 10-minute values are to be used
to determine the model matrix. The user must have retrieved 10-minute
values from the data base. If this option is chosen and the retrieved data
contain the 1-minute records, the run will abort. If the user requests
average or weighted-average interpolation, the program will eliminate any
data outside the model area. For trend-surface analysis, all the data are
used to compute the model matrix.

If the option is set to 1, then only the 1-minute values will be used.
If average or weighted-average interpolation is requested, the program will
eliminate any data outside the model. If trend-surface analysis is chosen,
the program first makes an estimate of the number of 1-minute values within
the model. If this estimate exceeds 1600, the run is aborted, with the
suggestion that the run be resubmitted for a different interpolation
technique. If the estimate is less than 1600 values, the program will
continue processing, but will use only the data that fall within the model
to compute the model matrix.

If the option is set to 2, then a mixture of 1-minute values and 10-
minute values will be used. With this option,0 a model core is determined.
This can be done in two ways. The user can request that the program compute
the model core, or the user can input the row and column extremes of the
model core. If average or weighted-average interpolation is requested,
then the program eliminates data that fall outside the model area. For a
mixture of 1-minute and 10-minute values, trend-surface analysis is not
allowed.

88

Special Considerations

This program is divided into two steps. To prevent the second step from
being run if the first step is aborted, certain condition codes are set if a
severe error occurs during execution. The condition code is composed of four
digits. The leftmost digit is reserved for system use. The two steps set
the other three digits to 777 or 888 if an error occurs and the run is to be
aborted.

A condition code of 888 implies that one or more of the card input values
was incorrect. This condition code is also set if the user requests something
that the program cannot perform. For example, if the user requests trend-
surface analysis with 1-minute data and the program estimates more than 1600
values within the model, the run will be aborted and a condition code of 888
is set. With a condition code of 888, the program can be re-run after the
card input is corrected.

A condition code of 777 indicates an error beyond the control of the user,
It usually indicates a logic fault or a system problem has occurred. If this
condition code is raised, the user should contact the computer staff respon­
sible for the program.

Input and Output

The input and output is divided between two steps.

Step 1

Card Input: Read from data set DATAIN

Card (1) - Execution Options

Col 1

Col 2

Col 3

Col 4

Col 5

0 Regular Grid Pattern
1 Irregular Grid Pattern
blank If the parameter is stored as 10-minute or

	1-degree data
0 10-minute values used
1 1-minute values used
2 Mixture of 1-minute and 10-minute values
blank Model core determination not selected
0 Program will generate model core
1 User inputting model core
0 Model-matrix output format of 8F10.4
1 Model-matrix output format of 20F4.0
1 Average Interpolation
2 Weighted-Average Interpolation
3 Trend-Surface Analysis

89

Card (2) - Description of principal node. The principal node is any
arbitrary node in the model, generally near the center.

Col 1-6 Latitude of principal node (DDMMSS)
Col 7-13 Longitude of principal node (DDDMMSS)
Col 14-16 Row of model for principal node (13)
Col 17-19 Column of model for principal node (13)
Col 20-26 Rotation angle of the model columns from

north in decimal degrees, positive for
counterclockwise rotation (F7.4)

Card (3) - Number of rows and columns in grid

Col 1-3 Number of rows in grid (13)
Col 4-6 Number of columns in grid (13)

The fourth input card depends on the value of the first execution
option. If regular grid option set:

Card (4) - Row and column spacings

Col 1-10 Column spacing value in feet (F10.0)
Col 11-20 Row spacing value in feet (F10.0)

If irregular grid option set:

Card (4) - Row and column spacings

Col 1-80 Column spacing values in feet (8F10.0)
Col 1-80 Row spacing values in feet (8F10.0)

The fifth card is used if a mixture of 1-minute values and 10-minute
values are used to compute the model matrix. If the program determines
the model core, the user must input the number of 10-minute values needed
in a model block to use the 10-minute values to compute a value for a
block.

Card (5) - Comparison number of ten-minute values

Col 1-2 Number of 10-minute values (12)
usually set to 5

If the user is inputting the model core description, the card is as
follows:

Card (5) - Description of model core

Col 1-3 Top row of model core (13)
Col 4-6 Bottom row of model core (13)
Col 7-9 Right column of model core (13)
Col 10-12 Left column of model core (13)

Data Base Input: read from data set DBINPT

90

Step 2

Card Input: Read from data set DATAIN

Card Cl) - Same as Card (3) of step 1
Card (2) - Same as Card (4) of step 1

If trend surface analysis is requested a third card is added containing
the order of the polynomial.

Card (3) - Order of Polynomial

Col 1 Order of polynomial (II)

Transformed Data-Base Data (output from step 1):

If execution option two is not set to 2, read from data set DBINPT
If execution option two is set to 2, then 10-minute data read from
DBINPT and 1-minute data read from DBINPT2

Output:

Messages - written to SYSPRINT
Model Matrix - written to MODDATA

Sample Procedure

To run the program the following JCL could be used:

// ... JOB ... -Job Card
//PROCLIB DD DSN=proeedure.library, DISP=SHR -Procedure Library
// EXEC DTIP,NAMEl=inpwt -Step Card
//DTP.DATAIN DD *

input for first step
//INTERP.DATAIN DD *

input for second step
//

The procedure DTIP could appear as follows:

//DTIP PROC TIME1=2,TIME2=1,REG1=430K,REG2=190K,PROG1=DTP,
// PROG2=INTERP,UNITl = l 3330-r,VOLl=7m/^,NAMEl=NULLFlLE,
// UNIT2=SYSDK,VOL2=,NAME2=,UNIT3=SYSDK,VOL3=,NAME3=
//**^
//* DTIP: A PROCEDURE TO RUN THE HPRASA DATA TRANSFORMATION PROGRAM
//* PROCEDURE DIVIDED INTO TWO STEPS
//* STEP 1 TRANSFORMS DATA BASE INPUT TO MODEL COORDINATES.
//* STEP 1 CALLED DTP
//* STEP 2 USES AN INTERPOLATION TECHNIQUE TO COMPUTE THE MODEL

91

//*
//*
//*
//* USER
//*
//* TIME1
//* TIME2

REG1
REG2
PROG1
PROG2
UNIT1
VOL1
NAME1
UNIT2
UNIT2
VOL2
VOL2
NAME2

MATRIX. STEP 2 CALLED INTERP.
WRITTEN BY CARMELO F. FERRIGNO APRIL,1981

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//* NAME2
//* UNIT3
//* UNIT3
//* VOL3
//* VOL3
//* NAME3
//* NAME3
//*

MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)

TOTAL RUN TIME FOR DTP STEP (2)
TOTAL RUN TIME FOR INTERP STEP (1)
REGION SIZE FOR DTP STEP (430K)
REGION SIZE FOR INTERP STEP (190K)
LOAD MODULE FOR DTP STEP (DTP)
LOAD MODULE FOR INTERP STEP (INTERP)
RETRIEVED DATA BASE DATA DEVICE (3330-1)
RETRIEVED DATA BASE DATA VOLUME (myvol)
RETRIEVED DATA BASE DATA DSNAME (NULLFILE)
DTP STEP FIRST OUTPUT FILE DEVICE (SYSDK)
INTERP STEP FIRST INPUT FILE DEVICE (SYSDK)
DTP STEP FIRST OUTPUT FILE VOLUME (NONE)
INTERP STEP FIRST INPUT FILE VOLUME (NONE)
DTP STEP FIRST OUTPUT FILE DSNAME (NONE)
INTERP STEP FIRST INPUT FILE DSNAME (NONE)
DTP STEP SECOND OUTPUT FILE DEVICE (SYSDK)
INTERP STEP SECOND INPUT FILE DEVICE (SYSDK)
DTP STEP SECOND OUTPUT FILE VOLUME (NONE)
INTERP STEP SECOND INPUT FILE VOLUME (NONE)
DTP STEP SECOND OUTPUT FILE DSNAME (NONE)
INTERP STEP SECOND INPUT FILE DSNAME (NONE)

//DTP EXEC PGM=&PROG1,TIME=&TIME1,REGION=®1,PARM='ISA(192K)
//*
//* STEP 1: DATA TRANSFORMATION
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR

//*
//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//FT06F001 DD SYSOUT=A
//*
//* DEFINE DATA BASE INPUT DATA SET
//*
//DBINPT DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=SHR,DSNAME=&NAME1
//*
//* DEFINE OUTPUT DATA SETS FOR TRANSFORMED DATA
//*
//DBOTPT DD UNIT=&UNIT2,VOL=SER=&VOL2,DSNAME=&NAME2,
// DISP=(NEW,PASS,DELETE),

92

// DCB=(RECFM=FB,LRECL=12,BLKSIZE=6444),
// SPACE=(TRK,(5,5))
//DBOTPT2 DD UNIT=&UNIT3,VOL=SER=&VOL3,DSNAME=&NAME3,
// DISP=(NEW,PASS,DELETE),
// DCB=(RECFM=FB,LRECL=12,BLKSIZE=6444),
// SPACE=(TRK,(5,5))
//INTERP EXEC PGM=&PROG2,TIME=&TIME2,REGION=®2,PARM='ISA(52K)',
// COND=(8,LT,DTP)
//*
//* STEP 2: INTERPOLATION
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN= /H£,UNIT=3330-l,VOL=SER=7m/wZ s DISP=SHR
//*

//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE INPUT DATA SETS FOR TRANSFORMED DATA
//*
//DBINPT DD UNIT=&UNIT2,VOL=SER=&VOL2,DSNAME=*.DTP.DBOTPT,
// DISP=(OLD,PASS)
//DBINPT2 DD UNIT=&UNIT3,VOL=SER=&VOL3,DSNAME=*.DTP.DBOTPT2,
// DISP=(OLD,PASS)
//*
//* DEFINE OUTPUT DATA SET FOR MODEL MATRIX
//*
//MODDATA DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)

The Data-Manipulation Program

The Data-Manipulation Program mathematically manipulates data. There are
two main uses for the program: (1) It can be used to manipulate one or two
existing parameters for use in other application programs; and (2) it can be
used to create new parameters for input into the data base. The program
provides five mathematical functions: (1) Linear combinations; (2) multipli­
cation; (3) division; (4) logarithm; and (5) antilogarithm of data sets that
are in the data base structure and format. The functions take the following
forms:

LINEAR Function: A*X1 + B*X2 + C
MULTIPLICATION Function: A*X1*X2 + C
DIVISION Function: A*(X1/X2) + C
LOGARITHM Function: A*LOG(Xl) + C
ANTILOGARITHM Function: A*ANTILOG(X1) + C

where XI and X2 represent data base format data, and A, B, and C are
constants.

93

With the five available functions, many different algebraic combinations
of two data sets can be performed. An example would be to divide two data
sets and raise the result to a power N:

Y = (X1/X2) N .

The result for this algebraic combination is computed in 4 steps:

1. Divide XI by X2;
2. Compute the logarithm of the results of step 1;
3. Multiply the results of step 2 by N;
4. Compute the antilogarithm of the results of step 3.

An alternative would be to express the above equation as:

LOG(Y) = N*LOG(X1) - N*LOG(X2) .

The result for this algebraic combination is also computed in 4 steps:

1. Compute the logarithm of XI and multiply result by N;
2. Compute the logarithm of X2 and multiply result by N;
3. Subtract the results of step 2 from step 1;
4. Compute the antilogarithm of the result of step 3.

Each of the above 4 steps is a separate execution of the Data-Manipulation
Program.

Input

The mathematical function to be executed and all other parameters will
be described on the input record. There are a maximum of five fields on this
record. One field describes the function to be performed. This is the
FNCTION field and can take one of five values:

LINEAR (A*X1 + B*X2 + C)
MULTIPLY (A*X1*X2 + C)
DIVIDE (A*(X1/X2) + C)
LOG (A*LOG(X1) + C)
ANTILOG (A*ANTILOG(X1) + C)

If the FNCTION field does not contain one of the above values, the run is
aborted. The next three fields contain the values of the constants A, B,
and C. There are no default values for these constants. For each function,
the required constants must be assigned values in the input records. For
the functions MULTIPLY, DIVIDE, LOG, and ANTILOG, the constants A and C must
tie defined. For the function LINEAR, A, B, and C must be defined. Failure
to define one or more of the required constants will cause the run to abort.
The last field is called FARM. This is a field of up to 30 alphanumeric
characters that define the parameter name for the output of the program.

94

These five fields are input in a free-field format. They can be placed
on one or more cards. The fields are separated by one or more blanks or by
commas. The last field must be followed by a semicolon. There is no specific
order in which the fields must be defined. Examples are as follows:

FNCTION='LINEAR' A=l B=l C=0 PARM='WATER TABLE-1960';
FNCTION='LOG',PARM= T SPECIFIC YIELD',C=0,A=-10;
PARM='CROP REQUIREMENTS' FNCTION='ANTILOG' A=l C=0;

The other major input to the Data-Manipulation Program is the data file
upon which the mathematical manipulations are to be performed. These data
must be in the standard data base format, which means that the file must
begin with the 001*, 002*, and 003* records. These records are then followed
by the proper combination of 100*, 200*, 350*, 300*, 401*-410* records,
depending on the density of the data. These data may be derived in three
ways. The data can be retrieved from the data base, and by using this method,
the data are automatically in the proper format. The input data could also
be the output from a previous run of the Data-Manipulation Program. In this
case, the data are also in the proper format. Finally, the user can create
the data set. If this method is used, the data should be edited prior to
input into the Data-Manipulation Program, using the Edit Program.

For the functions LOG and ANTILOG, only one data set is input. The
program extracts the parameter name, data density, scale factor, and the MVI
from the 001*, 002*, and 003* records. By using the value of the data density,
the program determines which of the records contains the data values that are
to be used in computing the log or antilog.

For the LINEAR, MULTIPLY, and DIVIDE functions, two distinct data sets
are input. These data sets need not exactly match; one of the sets can
contain more or less data than the other. The program only performs the data
manipulations for the data points that are common to both sets.

Output

The output is in two forms. The first is the standard print output
that contains information such as the selected function, the values of A, B,
and C, and the names of the parameter or parameters being processed. The new
scale factor and the new MVI associated with the output data are also shown.

The second output is a data set that is usually written to disk, and
contains the results of applying the requested function to the input data.
The format of the output is the same as for the input. For the LOG and
ANTILOG functions, if the parameter value is equal to the MVI, the log or
antilog is not applied to that value. The value is output as the new MVI.
For the MULTIPLY, DIVIDE, or LINEAR function, when a match of data blocks is
found, both of the values must not be equal to the MVI before the operation
is performed. If one or both of the values are equal to the MVI, then no

95

output record is generated for that block. This output can be used in three
different ways. First, it can be the input to another Data-Manipulation
Program run. Second, it can be a new parameter that is to be loaded into the
data base. Third, the output can be the input to another application program.

Sample Procedure

The program is run by executing a procedure called DBMATH. If the LOG
or ANTILOG function is selected, only one data-base data input file is used
and this file is defined by the parameter NAMEl. If the MULTIPLY, DIVIDE, or
LINEAR function is selected, two data-base data input files are used and the
file names are defined using the parameters NAMEl and NAME2. The output file
is defined by the parameter NAMES. To execute the program the following JCL
could be used:

// ... JOB ... -Job Card
//PROCLIB DD DSN=pr^e^e.Zi£i>o^,DISP=SHR -Procedure Library
// EXEC DBMATH, NAMEl =inputl^f^E2=input2 , NAME3=c?utput
//LC.CMDIN DD * -Function Input

one or more cards

The procedure DBMATH could appear as follows:

//DBMATH PROC TIM=2,REG=455K,PROG=DBMATH,UNIT1=' 3330-1 ' 9 WL}=myvol,
II NAME1=NULLFILE,UNIT2='3330-1 ' ,VOL2=m^Z,NAME2=NULLFILE,
// UNIT3=' 3330-1 ' ,VOL3=m^Z,NAME3=NULLFILE
/ /***************************************^
//* DBMATH. A PROCEDURE TO RUN THE HPRASA DATA MANIPULATION PROGRAM

WRITTEN BY CARMELO F. FERRIGNO JUNE, 1981

USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)

TOTAL RUN TIME (2)
REGION SIZE (455K)
LOAD MODULE NAME (DBMATH)
FIRST DATA BASE INPUT FILE DEVICE (3330-1)
FIRST DATA BASE INPUT FILE VOLUME (myvol)
FIRST DATA BASE INPUT FILE DSNAME (NULLFILE)
SECOND DATA BASE INPUT FILE DEVICE (3330-1)
SECOND DATA BASE INPUT FILE VOLUME (myvol)
SECOND DATA BASE INPUT FILE DSNAME (NULLFILE)
OUTPUT FILE DEVICE (3330-1)
OUTPUT FILE VOLUME (myvol)
OUTPUT FILE DSNAME (NULLFILE)

//**
//*
//LC EXEC PGM=&PROG,TIME=&TIM,REGION=®,PARM=' ISA(260K) '

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

USER 1

TIM
REG
PROG
UNIT1
VOL1
NAMEl
UNIT2
VOL2
NAME2
UNIT3
VOL3
NAME3

96

//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN= /HZ?,UNIT=3330-1 f VOL=SER=mz/i>0Z > DISP=SHR
//*

//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE DATA BASE INPUT DATA SETS
//*
//DATAX1 DD UNIT=&UNIT1,VOL=SER=&VOL1,DSNAME=&NAME1,DISP=SHR
//DATAX2 DD UNIT=&UNIT2,VOL=SER=&VOL2,DSNAME=&NAME2,DISP=SHR
//*
//* DEFINE OUTPUT DATA SET
//*
//DATAOUT DD UNIT=&UNIT3,VOL=SER=&VOL3,DSNAME=&NAME3,
// DISP=(NEW,KEEP,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),
// SPACE=(TRK,(5,5))
//*
//* DEFINE TEMPORARY FILES
//*
//TEMPIO DD DSN=&&TEMP,UNIT=SYSDK,
// DCB=(RECFM=FB,LRECL=29,BLKSIZE=6438),SPACE=(TRK,(5,5))
//TEMPI02 DD DSN=&&TEMP2,UNIT=SYSDK,
// DCB=(RECFM=FB,LRECL=52,BLKSIZE=6396),SPACE=(TRK,(5,5))

The Graphics Program

The Graphics Program produces contour maps and three-dimensional
perspective drawings (3-D plots) of data. The program will process data
of densities 2 through 4. The data is obtained using the Retrieval Program;
the details of the retrieval can be found in the documentation for the
Retrieval Program.

The contour maps are generated using Calcomp's General Purpose Contouring
Program (GPCP) Version I. The program can plot data only, contours only, or
both. The input includes map and plotter specifications and the interval
between bold contours. The user specifies a title for the plot. Only one
contour map can be generated per program execution. The map consists of data
points and (or) contours. The bold contours are labelled and the plot is
surrounded by a border. The title is located outside the plot area along
the positive Y axis.

The 3-D plots are generated using Calcomp's THREE-D Program Version 2.
The user selects the size of the plot, the smoothness of the plot, the
relative vertical exaggeration, and the position of the observer. The user
can produce from one to nine plots of the same data from different locations.
The position of the observer is specified by an azimuth angle, an elevation
angle, and a zoom factor. The zoom factor controls the distance between the
observer and the surface. The plot is oriented so that the title is along
the top.

97

The Graphics Program automatically saves the data that is needed to
produce the contour maps and the 3-D plots. Hence, in subsequent executions
of the program, the user can use the saved data to produce additional plots
without going through the process of re-producing the data required for
producing the plots. Even with this feature, the program can be very costly
to use because of the extensive processing. The computer processing time
increases as the number of data values increase and doubling the number of
data values more than doubles the processing time.

Input

Card Input: Read from data set DATAIN. The first set of cards are always
required.

Card (1) - Execution Options

Col 1 blank No map projection selected
(using previously prepared data)

1 Lambert map projection selected
2 Albers map projection selected
3 Polyconic map projection selected

Col 2 1 Produce a contour map or a data
point plot

2 Produce 3-D plot(s)
3 Produce both a contour map and

3-D plot(s)
Col 3 1 Generate data and plot(s)

2 Generate plot(s) using previously
generated data

The second card depends on the value placed in column 3 of Card 1. If
generating data and plot(s):

Card (2) - Definition of plotting area in geographic coordinates

Col 1-6 Minimum latitude of plotting area (DDMMSS)
Col 7-12 Maximum latitude of plotting area (DDMMSS)
Col 13-19 Minimum longitude of plotting area (DDDMMSS)
Col 20-26 Maximum longitude of plotting area (DDDMMSS)
Col 27-32 Size of buffer area around plot (DDMMSS). Useful

for proper overlapping of contour maps.

If generating plots using previously generated data:

Card (.2) - Definition of plotting area in cartesian coordinates

Col 1-10 Minimum X coordinate of plotting area (F10.4)
Col 11-20 Maximum X coordinate of plotting area (F10.4)
Col 21-30 Minimum Y coordinate of plotting area (F10.4)
Col 31-40 Maximum Y coordinate of plotting area (F10.4)
Col 41-52 Minimum Z value (E12.6)
Col 53-64 Maximum Z value (E12.6)

Note: Values for the above 6 quantities can be found as part of the print­
out of a previous execution of the Graphics Program.

98

If generating data and plot(s), a third card is used:

Card (3) - Scale of map

Col 1-9 Denominator of map scale (e.g. 250,000 for
1:250,000 map) (19)

The second set of cards are required only for contour plots.

Card (1) - Plot options and title

Col 1 1 Plot data points only
2 Plot contours only
3 Plot data points and contours

Col 2 Blank
Col 3-77 Title of plot (left-justified)

Card (2) - Plot specifications

Col 1-5 Rotation angle (decimal degrees). Measured
counterclockwise from east. One decimal
digit of precision allowed (F5.0)

Col 6-7 Blank
Col 8-10 Width of plot, in inches (13)
Col 11-13 Blank
Col 14-25 Interval between bold contours (E12.6)

The third set of cards is required only for 3-D plots.

Card (1) - 3-D program execution options

Col 1 1 Coarse gridding (no smoothing)
2 Medium gridding (.some smoothing)
3 Fine gridding (most smoothing)

Col 2 1 Normal vertical exaggeration
2 Less than normal vertical exaggeration
3 Minimum vertical exaggeration
4 More than normal vertical exaggeration
5 Maximum vertical exaggeration

Col 3 1-9 Number of 3-D plots

Card (2) - Plot specifications Cone for each 3-D plot)

Col 1-5 Azimuth angle of observer (decimal degrees),
measured counterclockwise from east. A
value of 0 indicates viewing from due
east, a value of 90 indicates viewing
from due north, and so forth. One decimal
digit of precision allowed (F5.0)

Col 6-10 Elevation angle of observer (decimal degrees),
measured counterclockwise from directly
above the plot. A value of 0 indicates
viewing from directly above the plot and
a value of 90 indicates viewing from the
same level as the plot. One decimal digit
of precision allowed (F5.0)

99

Col 11-13 Blank
Col 14-15 Zoom factor (12). Varies from 0 to 10

with 0 placing the observer at the plot
and 10 placing the observer very far
from the plot.

Col 16 Blank
Col 17-20 Length of side of plotting area, in inches.

One decimal digit of precision allowed (F4.0)
Col 21-70 Title of plot (left-justified)

Output

The first output is a standard print file containing basic information
about the execution of the Graphics Program. This file contains: (1) Selected
execution options; (2) basic information on data-base parameter being plotted;
(3) if generating data, the calculated minimum and maximum X, Y, and Z values;
(4) if producing a contour map, the contour plot specifications, the contour
interval, and the value of the first contour plotted; and (5) if producing
3-D plots, the specifications for each requested plot. If any errors occur,
the error messages can be found in this file.

The second output is a punch file containing the Calcomp plotter commands.
Additional output is generated by Calcomp f s GPCP and THREE-D programs. GPCP
prints one line for each data value showing the data value and its correspond­
ing plotter coordinates. The THREE-D program prints the Z matrix. The output
generated by these two programs can be extensive. There is no practical way
to eliminate this information.

Sample Procedure

To run the program, several variations of JCL could be used. If generat­
ing data and plotting contour maps and (or) 3-D plots, the following JCL could
be used:

//. .. JOB ...
//PROCLIB DD QSN=procedure.library ,DISP'=SHR
// EXEC DBGRAPH,NAMEl =databasedata,
H HW\E2=data,HW\E3=savefilel,HWE4=savefUe2
//GRAPH.DATAIN DD *

input records
//

If generating contour maps using previously generated data:

//. . .JOB . . .
//PROCLIB DD VS\\=procedw>e. library ,DISP'=SHR
// EXEC DBGRAPH,NAME2=data,DSP2=OLD,
// NW\E3=savefilel ,DSP3=OLD
//GRAPH.DATAIN DD *

input records
//

100

If generating 3-D plots using previously generated data:

//. .. JOB ...
//PROCLIB DD \m-prooedupe. library ,DISP=SHR
// EXEC DBGRAPH, NAME4=saye/ae2,DSP4=OLD
//GRAPH. DATAIN DD *

input records

If generating both contour map and 3-D plots using previously generated data;

//. .. JOB ...
//PROCLIB DD DSN=procedure. K£rar^,DISP=SHR
// EXEC DBGRAPH, NAME2=data,DSP2=OLD,

// DSP4=OLD
//GRAPH. DATAIN DD

input records

In the above examples, databasedata is the data-set name of the file contain­
ing the retrieved data, data is the data-set name of the file containing the
transformed data-base data, savef-itel is the data-set name of the file where
the data needed to produce contour maps is saved, and savefi,te2 is the data
set name of the file where the data needed to produce 3-D plots is saved.

The procedure DBGRAPH could appear as follows :

//DBGRAPH PROC PROGl=DBGRAPH,PROG2=#pep#ricZ,PROG3=MDFILE,
// PROG4=t7zreeStf£,TIMEl=l ,TIME2=1 ,TIME3=1 ,TIME4=1 ,
// REG1=275K,REG2=450K,REG3=110K,REG4=250K,

// NAME2=NULLFILE,UNIT2= '3330-1 ' ,
// DSP2='(NEW, KEEP, DELETE) ' ,NAME3=NULLFILE,UNIT3=' 3330-1
// VOL3=m^Z,DSP3=' (NEW, KEEP, DELETE) ' ,NAME4=NULLFILE,
// UNIT4='3330-1 ' ,VOL4=m^Z,DSP4=' (NEW, KEEP, DELETE) '
// * ***** **** * *
//*
//* DBGRAPH: A PROCEDURE TO RUN THE HPRASA GRAPHICS PROGRAM
//* PROCEDURE DIVIDED INTO FOUR STEPS
//* STEP 1 (GRAPH): TRANSFORMS DATA BASE INPUT TO (X,Y,Z)
//* AND GENERATES CONTROL CARDS FOR CALCOMP'S GPCP AND
//* THREE-D PROGRAMS.
//* STEP 2 (GPCP) EXECUTES CALCOMP'S GPCP PROGRAM
//* STEP 3 (MDFILE) MODIFIES FILE CONTAINING GRIDDED DATA,
//* THAT WAS PRODUCED BY GPCP USING THE 'PNCH' COMMAND,
//* FOR INPUT TO THE THREE-D PROGRAM.
//* STEP 4 (THREED) EXECUTES CALCOMP'S THREE-D PROGRAM
//*
//* USER MAY SUPPLY THE FOLLOWING PARAMETERS (DEFAULTS IN PARENTHESIS)
//*

101

//* PROG!
//* PROG2
//*
//*
//* PROG3
//* PROG4
//*
//*
//* TIME1
//* TIME2
//* TIME3
//* TIME4
//* REG1
//* REG2
//* REG3
//* REG4
//* NAME1
//* UNIT!
//* VOL1
//* NAME2
//* UNIT2
//* VOL2
//* DSP2
//*
//* NAME3
//* UNIT3
//* VOL3
//* DSP3
//* NAME4
//* UNIT4
//* VOL4
//* DSP4
//*

//*
//GRAPH EXEC PGM=&PROG1,TIME=&TIME1,REGION=®1,PARM='ISA(11 K)'
//*
//* STEP 1: DATA TRANSFORMATION AND CONTROL CARD GENERATION
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=ro/UZ?,DISP=SHR
//*

//* DEFINE STANDARD I/O DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//FT06F001 DD SYSOUT=A
//*
//* DEFINE DATA BASE DATA INPUT FILE
//*
//DBINPT DD UNIT=&UNIT1,VOL=SER=&VOL1,DISP=SHR,DSNAME=&NAME1

LOAD MODULE NAME FOR STEP 1 (DBGRAPH)
LOAD MODULE NAME FOR STEP 2 (gpcpgrid)
DEFAULT MODULE PRODUCES CONTOUR PLOTS FOR CALCOMP
PLOTTERS WITH 906 TYPE CONTROLLERS
LOAD MODULE NAME FOR STEP 3 (MDFILE)
LOAD MODULE NAME FOR STEP 4 (tfoee906)
DEFAULT MODULE PRODUCES 3-D PLOTS FOR CALCOMP
PLOTTERS WITH 906 TYPE CONTROLLERS

TOTAL RUN TIME FOR STEP 1 (1)
TOTAL RUN TIME FOR STEP 2 (1)
TOTAL RUN TIME FOR STEP 3 (1)
TOTAL RUN TIME FOR STEP 4 (1)
REGION SIZE FOR STEP 1 (275K)
REGION SIZE FOR STEP 2 (450K)
REGION SIZE FOR STEP 3 (11 OK)
REGION SIZE FOR STEP 4 (250K)
DATA BASE DATA INPUT FILE DSNAME (NULLFILE)
DATA BASE DATA INPUT FILE UNIT (3330-1)
DATA BASE DATA INPUT FILE VOLUME (myvol)
CONTROL POINT DATA FILE DSNAME (NULLFILE)
CONTROL POINT DATA FILE UNIT (3330-1)
CONTROL POINT DATA FILE VOLUME (myvol)
CONTROL POINT DATA FILE DISPOSITION
((NEW,KEEP,DELETE))
GPCP SAVE FILE DSNAME (NULLFILE)
GPCP SAVE FILE UNIT (3330-1)
GPCP SAVE FILE VOLUME (myvol)
GPCP SAVE FILE DISPOSITION ((NEW,KEEP,DELETE))
GPCP PNCH FILE DSNAME (NULLFILE)
GPCP PNCH FILE UNIT (3330-1)
GPCP PNCH FILE VOLUME (myvol)
GPCP PNCH FILE DISPOSITION ((NEW,KEEP,DELETE))

102

//*
//* DEFINE DATA SET FOR TRANSFORMED DATA (CONTROL POINT FILE)
//*
//DBOTPT DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=&DSP2,DSN=&NAME2,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6400),SPACE=(TRK,(5,2))
//*
//* DEFINE TEMPORARY FILES FOR CONTROL CARDS
//*
//CNTCRD1 DD UNIT=SYSDK,VOL=,DISP=(NEW,PASS),DSN=&&CARD1,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600),SPACE=(TRK,(1,1),RLSE)
//CNTCRD2 DD UNIT=SYSDK,VOL=,DISP=(NEW,PASS) S DSN=&&CARD2,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600),SPACE=(TRK,(1,1),RLSE)
//*
//*
//GPCP EXEC PGM=&PROG2,TIME=&TIME2,REGION=®2,
// COND=((333,EQ,GRAPH),(776,LT,GRAPH))
//*
//* STEP 2: CALCOMP'S GPCP PROGRAM - VERSION 1
//*
//STEPLIB DD DSN=plotter.library,VIS?=SttR
//* DEFINE TEMPORARY WORK FILE
//FT01F001 DD UNIT=SYSDK,VOL=,DISP=NEW,DSN=&&TEMP1,DCB=BLKSIZE=9444,
// SPACE=(TRK S (5,2),RLSE)
//*
//* DEFINE CONTROL POINT FILE- TRANSFORMED DATA FILE FROM STEP 1
//*
//FT03F001 DD UNIT=&UNIT2,VOL=SER=&VOL2,DISP=(OLD,KEEP),DSN=&NAME2
//*
//* DEFINE SAVE FILE
//*
//FT04F001 DD UNIT=&UNIT3,VOL=SER=&VOL3 S DISP=&DSP3,DSN=&NAME3,
// DCB=(RECFM=VBS,BLKSIZE=6447),SPACE=(TRK,(5,2))
//* DEFINE CONTROL CARD FILE - SAME AS FILE CNTCRD1 FORM STEP 1
//FT05F001 DD UNIT=SYSDK,VOL=,DISP=(OLD,DELETE),DSN=&&CARD1
//* DEFINE STANDARD PRINT FILE
//FT06F001 DD SYSOUT-A
//*
//* DEFINE PNCH FILE
//*
//FT07F001 DD UNIT=&UNIT4,VOL=SER=&VOL4,DISP=&DSP4,DSNAME=&NAME4,
// DCB=(RECFM=FB S LRECL=80,BLKSIZE=6400),SPACE=(TRK,(5 S 5))
//*
//* DEFINE PLOTTER COMMAND FILE
//*
//FT09F001 DD SYSOUT=B
//*
//*
//MDFILE EXEC PGM=&PROG3,TIME=&TIME3,REGION=®3,PARM='ISA(4K)',
// COND=((111,EQ,GRAPH),(776,LT,GRAPH))
//*

103

//* STEP 3: MODIFICATION OF PNCH FILE, PRODUCED BY STEP 2, FOR USE
//* BY STEP 4
//*
//STEPLIB DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
// DD DSN=7772/£ifc,DISP=SHR
//*

//* DEFINE STANDARD DATA SETS
//*
//SYSPRINT DD SYSOUT=A
//PLIDUMP DD DUMMY
//*
//* DEFINE INPUT FILE - PNCH FILE FROM STEP 2
//*
//DATAIN DD UNIT=&UNIT4,VOL=SER=&VOL4,DISP=(OLD,KEEP),DSNAME=&NAME4
//* DEFINE A TEMPORARY DATA SET
//TEMP DD UNIT=SYSDK,VOL=,DISP=(NEW,PASS),DSN=&&TEMP,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=9440),SPACE=(TRK,(5,2),RLSE)
//*
//*
//THREED EXEC PGM=&PROG4,TIME=&TIME4,REGION=®4,
// COND=((111,EQ,GRAPH),(776,LT,GRAPH))
//*
//* STEP 4: CALCOMP'S THREE-D PROGRAM
//*
//STEPLIB DD DSN=plotter. library,DlS?=Sm
//* DEFINE TEMPORARY WORK FILES
//FT01F001 DD UNIT=SYSDK,VOL=,DISP=NEW,DSN=&&TEMP1,
// DCB=BLKSIZE=9444,SPACE=(TRK,(5,2),RLSE)
//FT04F001 DD UNIT=SYSDK,VOL=,DISP=NEW,DSN=&&TEMP2.
// DCB=BLKSIZE=9444,SPACE=(TRK,(5,21,RLSE)
//*
//* DEFINE GRIDDED DATA INPUT FILE - TEMP FILE FROM STEP 3
//*
//FT03F001 DD UNIT=SYSDK,VOL=,DISP=(OLD,DELETE),DSN=&&TEMP
//*
//* DEFINE CONTROL CARD FILE - FILE CNTCRD2 FROM STEP 1
//*
//FT05F001 DD UNIT=SYSDK,VOL=,DISP=(OLD,DELETE),DSN=&&CARD2
//* DEFINE STANDARD OUTPUT FILES
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=B
//* DEFINE PLOTTER COMMAND FILE
//FT09F001 DD SYSOUT=B

104

SUPPLEMENT III: PROGRAM-MAINTENANCE MANUAL

The purpose of this section is to highlight the changes needed to imple­
ment the DMS for another study. It is not a complete reference for debugging
any possible future problems with the DMS. The information provided is based
upon several assumptions concerning the environment in which the DMS is to be
implemented. The assumptions are:

1. Software is implemented by using an IBM or IBM-compatible mainframe.
2. Software is implemented by using the System 2000 DBMS and the same

date-base definition.
3. The computer system has the Fortran IV and PL/I programming languages

These criteria narrow the type of implementation for which information is
provided. It would not be practical to give information pertaining to the
implementation of this system using a different DBMS. There are several
available packages that could provide the resources of System 2000. However,
regardless of DBMS and programming languages chosen, the logic behind the
present software would still be useful. If the system is used in a different
environment, it is advisable to retain the same input and output formats.
This would ease the implementation of the data-generation and the application
programs.

A section is provided for each program. Each section begins with an
introduction and then lists changes required for each subroutine in the pro­
gram. A listing is provided only for the routines requiring changes. In most
instances, needed changes are to the initial values of variables and to array
dimensions. For example, some initialized variables reflect the location of
the High Plains aquifer. These need to be changed to reflect the location of
the area to be studied. Changes in the program logic are not likely to be
necessary. Major coding changes are required only for the Edit and Retrieval
Programs. These changes will be discussed in the section for each of these
programs.

Edit Program

The Edit Program provides a means of checking correctness of the input to
other programs in the DMS. Because of this extensive purpose for the program,
the Edit Program has become a very large and somewhat unmanageable program.
This program will require more implementation changes than any other program
in the system. In its present state, the program performs the necessary tasks;
hence, no major effort has been made to revise the program.

The Edit Program checks the input to the Load, Retrieval, and Instant-
Update Programs. The first change to the Edit Program should be to break it
into three separate programs; then, each of the three editing programs would
check the input to only one other program, which would make the editing
programs more manageable,

105

Because the program is written in IBM Fortran which does not provide a
means of encoding and decoding data, an unsupported and undocumented sub­
routine, called CORE, is used to provide this function. It is thus advisable
to rewrite the code that performs the decoding and encoding. This can be
easily done if the available version of Fortran has an encode/decode feature.
If not, the Edit Program would have to be rewritten in a language that provides
this feature; the use of CORE is very prevalent within this program.

The program also contains some subroutines that were not implemented,
because of changes in the programs for which these subroutines were originally
written. The subroutine called CHK004 was to be used to check the input to
the Move Program. Because of design changes in the Move Program, this sub­
routine is no longer needed and could be deleted. The subroutines CHK007,
CHK008, and CHK009 were intended to check input to a general updating program,
which was not written because this type of program was not needed. CHK301
and CHK302 were to be used to edit data that were to be stored in the data
base in 30-minute and 15-minute blocks. No data at these levels of detail are
needed for the High Plains study. These subroutines would be needed if data
were stored at these levels of detail. The subroutine BOUNDS was to be used
to check whether or not data to be loaded fell within the boundary of the
study area. This was never fully implemented, because boundary checking is
now performed in the data-generation step. In general, these subroutines
could be eliminated, and the Edit Program would still perform its assigned
task. If this is done, references to these subroutines must be deleted from
the calling routines.

Although information is provided to implement the program in its present
state, it is suggested that the major design changes be made. The program
does work, but it is by no means an efficient program in its present condition.
The following subroutines within the Edit Program need to be changed.

BOAT

This is a block data subroutine used to set up common areas and initialize
variables. The dimensions of several of the arrays could be changed. The BND
and LEVEL1 arrays are used for boundary and duplication checking. They cover
the entire United States by 1-degree blocks. These dimensions could be
changed to cover a different sized area, such as part of the United States.
If the area covered by these arrays is changed, initial values of the variables
LTBASE and LNBASE would need to be changed. These variables are the base
values for latitude and longitude, and they are used to compute positions
within the BND and LEVEL1 arrays. The VALNAM array is used to store the names
of authorized users of the Instant-Update Program; this array will presently
store 20 names. This may need to be changed, depending on the number of valid
users.

INIT

Two system subroutines are used to determine the date and time of the run.
These routines may be different on another system. No other changes are
required.

106

CHK100

The variables LATMIN, LATMAX, LONMIN, and LONMAX are used to describe
the extent of the study area in terms of latitude and longitude. These
variables are initialized to appropriate values for the High Plains aquifer.
These values would have to be changed for another study. A check is made to
assure that the latitude, on a 100* record, is divisible by three. A
similar check is made for the longitude. These checks are valid for the
High Plains aquifer, because the chosen 3-degree blocks fulfill these
criteria. This does not imply that the 3-degree blocks chosen for another
study must fulfill this criteria. These checks can be eliminated if
necessary.

NAMECK

This subroutine uses the VALNAM array to store the names of authorized
users of the Instant-Update Program; the dimension may be changed to
accommodate more names.

LTCHK

This subroutine determines if the latitude on a 600* record falls
within the study area. The constants defining the latitude extremes are
now set to values that are appropriate for the High Plains aquifer. These
values need to be changed to reflect the area under study.

LNCHK

This subroutine determines if the longitude on a 600* record falls
within the study area. The constants defining the longitude extremes are
now set to values that are appropriate for the High Plains aquifer. These
values need to be changed to reflect the area being studied.

LTCHK2

This subroutine checks to see if the latitude on a 006* record falls
within the study area. The latitude extremes are now set to values
appropriate to the High Plains aquifer. These values need to be changed
to reflect the area under study.

LNCHK2

This subroutine checks to see if the longitude on a 006* record falls
within the study area. The longitude extremes are now set to values
appropriate to the High Plains aquifer. These values need to be changed
to reflect the area under study.

107

STK

This is the only subroutine within the Edit Program that accesses the
data base. Hence, it is the only routine that contains System 2000 FLEX
commands. The data-base name used in some of the PLEX statements must be
changed. This routine uses the arrays END and LEVEL1 for boundary and
duplication checking. It may be desirable to change the dimension of these
arrays. Constants used to compute positions in these arrays will also need
to be changed.

This subroutine contains some code pertaining to boundary checking.
It is only the initial code required to fully implement boundary checking.
Its purpose is to retrieve some of the boundary data from the data base.
The full implementation of boundary checking would require the development
of the subroutine called BOUNDS.

DUPL

This subroutine also uses the END and LEVELl arrays. This routine is
mainly used for duplication checking of data prior to loading into the data
base. It also contains some code for boundary checking. If boundary check­
ing is to be implemented through the BOUNDS subroutine, this code should be
extracted from this routine.

Load Program

The Load Program consists of a main procedure containing internal sub­
routines and three external subroutines. The program loads parameters of
densities 1 through 4. Because of its modular design, it can be easily
expanded to accommodate other densities. One of the only limitations on the
program is that it expects to load entire 3-degree blocks of data at one
time. The main program and its internal subroutines will be discussed as
one unit under the heading of DBLOAD; the external subroutines will be
discussed separately.

DBLOAD

The main portion of the program should work essentially unchanged.
There are two incomplete internal subroutines within the main program.
These routines, called LOAD_30_MIN and LOAD_15_MIN, can be used to load
data at 30-minute and 15-minute levels of detail. If data of these
densities are required for another study, these routines can be expanded.
The data-base name used in the System 2000 PLEX commands should be changed.

An array, called GRAPH, is declared in the main program. It is used
to produce graphics output for the Load Program report that is produced by
each execution of the program. It is dimensioned to reflect the latitude
and longitude extremes of the High Plains aquifer. It has a position for
each 1-degree block within and on the boundary of the aquifer. As a 1-
degree block is loaded in the data base, an asterisk is placed in the GRAPH

108

array position corresponding to the 1-degree block. Dimensions of this array
would have to be changed for another study.

INITGR

This routine initializes positions within the GRAPH array that corres­
pond to the boundary of the High Plains aquifer. The positions are set to
the letter f O f . This routine would have to be completely changed for a
different study.

REPORT

This routine outputs several lines of print that use the name of the
study unit. This would have to be changed for another study. The main output
are two figures which resemble the shape of the High Plains aquifer. The
first figure is produced using an array called EX_GRAPH. It is dimensioned
exactly like GRAPH. It is initialized with the letters 'O f , 'P', and 'C f .
The 'O f means that the 1-degree block corresponding to that position is out­
side of the study area. The 'P f means that the block is partially within the
study area, and the 'C 1 means that the 1-degree block is completely within
the study area. The second figure is produced with the GRAPH array. Each
figure is surrounded by geographic coordinates that will have to be changed
for another study.

Statistics Program

This program computes statistics for parameters stored at densities 2
through 4. Because of its modular design, the program can be easily expanded
to compute statistics for other data densities. The data-base name used in
the System 2000 PLEX commands must be changed. No other modifications are
required.

Retrieval Program

The Retrieval Program is written in IBM Fortran. As with the Edit
Program, the Retrieval Program requires a method of encoding and decoding
data. Because IBM Fortran does not have this feature, a routine called CORE
is used to provide this function. The sections of the code that use the CORE
subroutine should be changed. The program can remain written in Fortran, if
the available version has an encode/decode feature. If this feature is not
available, the program should be rewritten in a language that can provide the
feature. The program retrieves data of densities 1 through 4. It can be
expanded for other densities if desired.

MAIN

A password is required to open the data base. The password is initialized
within the program. This password should be changed and read from the input.

109

The data-base name used in some of the System 2000 PLEX commands must be
changed. The routine uses system subroutines to compute date and time of the
run. These routines may be different on another system. An array, called
DENTAB, relates the data density to the base level of the data. It also
relates the data density to the output record types associated with the base
level. This array would have to be modified if more data densities are built
into the data-base structure.

Instant-Update Program

The Instant-Update Program consists of a main program and two external
subroutines. The program processes proposal data for data densities 2 through
4. Because of its modular design, it can be easily expanded for more
densities. The program should work with little or no modification.

There are several rules about adding test proposals that are incorporated
into the subprograms UPDATEl and UPDATE2. First, a test proposal cannot be
added for any block that already has five existing test proposals; this
number can be changed. Second, a test proposal cannot be added for a block
in which the permanently stored value is the MVI. Conversely, the MVI cannot
be proposed as a test value. These rules were adapted for the High Plains
study; they are subject to change and the subprograms easily can be modified
to incorporate any changes to these rules.

INSUPDT

A password is required to open the data base. This password is presently
initialized and should be changed. The data-base name used in some of the
System 2000 PLEX commands must be changed.

UPDATEl

The data-base name used in some of the System 2000 PLEX commands must
be changed.

UPDATE2

The data-base name used in some of the System 2000 PLEX commands must
be changed.

Move Program

The Move Program consists of a main procedure and six external sub­
programs. It manipulates the proposal records for parameters stored at
densities 2 through 4. Because of its modular design, it easily can be
expanded if more densities are required. In the three subprograms that
actually process the proposals (MOVE2, MOVE3, and MOVE4), a rule is imple­
mented that states that any test proposal over 2 months old is removed from

110

the data base. This value of 2 months can be changed. The data-base name
used in some of the System 2000 PLEX commands must be changed.

Data-Manipulation Program

This program performs mathematical manipulations on data for densities
2 through 4. There are five functions available for manipulating the data.
Because of its modular design, the program can be modified to manipulate
data stored at other densities and to provide other functions. The program
consists of one main program, called DBMATH, and nine subprograms.

DBMATH

The variables LATMIN3, LATMAX3, LONMIN3, LONMAX3, LATMIN1, LATMAX1,
LONMIN1, LONMAX1, DD3, and DDD3 are used in conjunction with the subprograms
that perform the multiplication, division, and linear functions. These
variables are initialized in this program to values that reflect latitude
and longitude extremes of the High Plains aquifer. Variables that end in
the number '3' refer to the minimum and maximum latitudes and longitudes
of the 3-degree blocks. Variables that end in the number 'I 1 refer to the
minimum and maximum latitudes and longitudes for the 1-degree blocks.
These initial values would have to be changed for another study.

LINEAR2

The arrays EXISTl, EXIST2, and INTSECT are dimensioned to have one
position for each 3-degree block within the High Plains aquifer. The arrays
VALUES1 and VALUES2 are dimensioned to contain one position for each 1-
degree block within the aquifer. These array dimensions would have to be
changed for another study.

LINEAR3

The arrays EXISTl, EXIST2, and INTSECT3 are dimensioned to have one
position for each 3-degree block. The arrays EXIST11, EXIST12, and INTSECT1
are dimensioned to contain one position for each 1-degree block. The arrays
VALUES1 and VALUES2 are dimensioned to have one" position for each 10-minute
block. All of these dimensions would need to be changed for another study.

LINEAR4

The array EXIST3 is dimensioned to have one position for each 3-degree
block within the High Plains aquifer. These dimensions would need to be
changed for another study.

Ill

Data-Transformation Program

The Data-Transformation Program is two separate computer programs; the
first program is called DTP and the second is called INTERP.

DTP

The DTP program consists of a main procedure, called DTP, and 18 sub­
programs. The function of this program is to transform data from the data
base, which is in the form of (longitude, latitude, value) triplets into
(X, Y, value) triplets. The program transforms data of densities 2 through
4. The program can be expanded to accommodate other data densities. Two
subprograms within the DTP program require changes.

PREP4

The array LONDIS is used to estimate the number of 1-minute values within
a model area. This array is dimensioned to reflect latitude extremes of the
High Plains aquifer. The array contains the distance (±n. miles) between
degrees of longitude as a function of latitude. This array will have to be
changed for a different study area. The variable MAXPOINTS is initialized
to 1600, and it represents the maximum number of 1-minute values within a
model area for which trend-surface analysis is a useful technique for
determining the model matrix. The initial value of this variable can be
changed.

CORE

The array LONDIS is used in this subprogram. It is the same array as
used by the PREP4 subprogram. The same comments apply to LONDIS as discussed
for PREP4.

INTERP

The INTERP program consists of a main routine and 5 subprograms. This
program takes the transformed data from the first step and generates the
model matrix. There are three techniques available to generate the matrix.
Because of its modular design, more techniques can be added if desired. Only
one of the subprograms may require changes.

TREND

The order of the polynomial used to compute the trend surface cannot
exceed 4. This subprogram would have to be rewritten to allow larger order
polynomials.

112
* U.S. Government Printing Office 1983 - 677-355/89 Reg. 8

