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APPLICATION OF THE CONJUGATE-GRADIENT METHOD 

TO GROUND-WATER MODELS

By 

T. A. Manteuffel, D. B. Grove, and L. F. Konikow

ABSTRACT

The conjugate-gradient method can solve efficiently and accurately 

finite-difference approximations to the ground-water flow equation. An 

aquifer-simulation model using the conjugate-gradient method was applied to 

a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain 

Arsenal, Denver, Colorado. For this application, the accuracy and efficiency 

of the conjugate-gradient method compared favorably with other available 

methods for steady-state flow. However, its efficiency relative to other 

available methods depends on the nature of the specific problem. The main 

advantage of the conjugate-gradient method is that it does not require the use 

of iteration parameters, thereby eliminating this partly subjective procedure.



INTRODUCTION

Aquifer-simulation models commonly use finite-difference methods to 

solve the partial differential equation that describes ground-water flow. 

Several numerical procedures are available and commonly used to solve the 

system of finite-difference equations generated by approximating the flow 

equation. Trescott and others (1976) include the option of using LSOR (line 

successive overrelaxation), ADIP (alternating direction implicit procedure), 

or SIP (strongly implicit procedure) in their well-documented program for 

aquifer simulation. However, the efficiency of these numerical methods is 

sensitive to the choice of the iteration (or acceleration) parameters. The 

optimum values for these parameters depend on the problem and are not 

estimated easily. The method of conjugate gradients offers an alternative 

procedure for solving iteratively large systems of simultaneous linear 

equations (Beckman, 1960). This method requires no iteration parameters, and 

it is relatively easy to implement.

The purposes of this report are to: (1) Describe the derivation and 

application of the method, including the use of matrix scaling to increase 

the efficiency of the solution; (2) demonstrate the application of the method 

to a complex field problem; and (3) compare the results with other available 

methods.

GROUND-WATER FLOW EQUATION

The partial differential equation describing ground-water flow in a 

confined aquifer in two dimensions may be written as:

_JL CT QL\ + -A CT QL\ = G QL
3x CTxx 8x} + 8y C yy 8y} b 3t 

where

x and y = the coordinate axes, L;
2

T and T = the components of transmissivity tensor, L /T; 
xx 77

h = the hydraulic head, L;

s = the storage coefficient (dimensionless);

t = the time, T; and

W(x,y,t) « the volume flux per unit area (positive for outflow 
and negative for inflow), L/T.



Equation 1 assumes that the prinicipal components of the transmissivity 

tensor are alined with the coordinate axes x and y.

A standard approach to solving equation 1 is to approximate h at a 

discrete set of points arranged in a rectangular grid. The continuous 

derivatives then are replaced by finite-difference approximations.

Suppose we approximate h at N evenly spaced points (or nodes)

where N=WT?. The grid spacing is given by

Ax = v -vt-*A A * A   i

Ay = y .-y . -
J J ft J si \

(2a) 

(2b)

ordered from left to right and bottom to top. Letting h..(t) = h(x.,y.,t),'

we can replace equation 1 by

Ax xx

-
- T

Ax

h. .., - h. .

XX

i-l,J ]

yyAy

for each  £=!,...,n; j=l,...,m.

Ay yy

Ax

hi' ~ \ '.
Ay*~

(3)

If the transmissivity midway between nodes is computed to be the harmonic 

mean of the transmissivities at the adjacent nodes, we can write equation 3 

as:

(4)



where

and

yy(i.J-D

Txx(ij)

for each £=!,..., n; j=l...,m. The use of the harmonic mean makes the 

appropriate coefficients equal to zero at no-flow boundaries.

If we discretize the time derivative by letting

at At
where fc is the index of the time discrete, and let

d . . = (b . . + c . . + c . ,- . + b2-J t-J ^J

then equation 4 can be written:

S. ."Z- "7

. , . ) ,

(5)

for i=l...,n; j=l,...,m. Equation 5 is an implicit equation with respect to 

the time discretization; that is, the hydraulic-head values on the left-hand 

side are at the new time step.

If we arrange the above equations in the same order as the finite- 

difference grid (left to right and bottom to top), the N equations 

represented by equation 5 can be conveniently written in matrix form. Let



and

w - '

tmk/ Nxl

'S . nl
S12

* S 
ran / NxN

where the flux boundry conditions are incorporated in W,. Let

m _

B 3 C 3 '

B
777

B C
777 777 / NxN

where the B's and C's are nxn blocks

C    
V

nxn



and

b .no f nxn

Now we can write the equations represented by equation 5 as:

(T + sp hk = S fehfe_1 - W^ (6)

where a bar over a symbol indicates a vector.

Computing the hydraulic head at the new time step is equivalent to solving 

a linear system of equations. The steady-state solution is found by either 

solving the system (equation 6) repeatedly or by setting

and solving the system. It is clear by its construction that T is a symmetric

matrix. It can be shown easily that if S. . ^ 0 for all ij 9 then the matrix"

is positive definite; that is, it has positive real eigenvalues (Varga, 1962; 

Forsythe and Wasow, 1960) .

METHOD OF CONJUGATE GRADIENTS

Basis for Application 

Suppose we wish to solve the linear system

Ah = b" (7)

where A is a positive definite matrix of dimension N, and h and b are vectors 

of length N. Suppose we have an initial guess (h ) for the solution so that

e = h - h 
o o

is the initial error. Suppose, further, that we have a set of mutually



A-orthogonal vectors, <? > _-. » such that e is a linear combination of the
I IS I U'~J.yTl O

p's; that is, suppose

<Ap.,?.> = 0 i ± 3 (8)*" J

where <x, y> denotes the inner product between the vectors x and y, and

e = a-p_ + a_ p_ + . . . + a p o 1*1 2 F 2 rfn

therefore,
h = h + a-p- + . . . + a p" . (10) o 1*1 nvn

Because we have the set < . > . _ all we need are the constants\*i} i-l,n

Ja.l . - in order to construct the solution h. If we multiply both sides| ^{ ^=l,n J

of equation 10 by A, we have

Ah = Ah + a Ap- + . . . + a A? (11)
O J_ J- il * I

Because the p f s are A-orthogonal, if we take the inner product of both sides 

of equation 11 with the vector p.. , we have

<Ah, p-> = <Ah , ^> + a- <Ap"1 , p^-> . (12)

By letting

and using equation 7, we have

= b - Ah o o

(13)

The property that A is positive definite guarantees that <Ay, y> >0 for any 

vector y ^ 0 (Varga, 1962) so we can write

"V V

By defining

we have from equation 10

hl = ho

= \



By repeating the above process, where

r.. = b  

we obtain  
<rl' ]

a2     
<Ap2 , P 2 >

Then, we let _ _ _
h2 = hl + a2P2

and so forth. In this manner, we construct the solution h in n steps. The 

task that remains is to construct a complete set of A-orthogonal vectors.

In the algorithm outlined below, the vectors \ p. [ . n are constructed6 ' ] ^) ̂ =I,n
recursively from the sequence of residuals

7. = b - Ah. (14)
^ ^

The derivation may be found in Hestenes and Stiefel (1952).

Development of Algorithm

Given the system _ _
Ah = b

and the initial guess h , let _ _ _
° r = b - Ah , 

o o

with general step

pl = ro

<r. , p.> 
a, = * * . (15.)

(15b) 

(15c)

<r.,Ap.>
, (15d)

. + 6.?. . (15e)
1, 1, 1:



In place of the expressions in equations 15a and 15b for a. and $ , we
Is IS

may use

and _ _

% = *' J'   . (16b)

These expressions for a. and 3. are equivalent because of the relations that
is Is

hold among the various vectors:

<r., r .> = 0 i 1 j' ,^ j

<Ap., p  > = 0 i ± j ,

<p., r .> = 0 i < j-1 ,

<r~£, Ap^.> = 0 i ^ j , j-1 .

The equations 16a and 16b for a. and 3  require fewer calculations than
^* ^*

do equations 15a and 15d (Hestenes and Stiefel, 1952). It can be shown that 

the sequence ] h. t generated in this manner will converge to the solution 

h in fewer or equal to N steps (Hestenes and Stiefel, 1952). In fact, it can 

be shown that this method is theoretically faster than any polynomial-based 

method (Schwarz and others, 1973). However, in practice orthogonality 

deteriorates due to round-off errors, and the theoretical rate of convergence 

seldom is realized.

Scaling of the System

The presence of non-zero elements in the matrix A that vary significantly 

in magnitude can cause orthogonality to break down quickly. Therefore, it may 

be necessary that the system be scaled whenever the conjugate-gradient method 

is used.

Scaling is accomplished by pre- and post-multiplication of the matrix A 

by diagonal matrices. Suppose P and Q are diagonal matrices, then the system



Ah = b (17) 

can be written

P A Q Q"1 h = Pb" . (18) 

If we let

S = P A Q , (19a)

y - Q'1^ , (I9b)

I   Pb" , (19c) 

then we can write

S y - I . (20)

The solution to the original system (equation 17) can be found from the 

solution of the scaled system (equation 20) as

h = Qy . (21)

The scaled system may be much easier to solve than the original system. 

The rate of convergence of most iterative methods is affected by the condition 

number of the matrix; that is, the ratio of the largest eigenvalue to the 

smallest eigenvalue. ' With the conjugate-gradient method, the condition number 

directly affects the breakdown in orthogonality (Hestenes and Stiefel, 1952). 

Scaling may be used to decrease the condition number. The condition number 

of the matrix S of equation 20 may be much smaller than the condition number 

of the matrix A of equation 17.

If the matrix A is a symmetric five-point difference matrix, as is the 

matrix of equation 6, then the smallest condition number is achieved by using

the scaling where
P = Q = D (22) 

and

D - - (23)

/a
nn

10



(Forsythe and Strauss, 1955). (Here a., are the diagonal elements of A.)
Is Is

Equation 19a becomes

S = D A D , (24) 

where

8^     = ;=!,..., N; 
/a . .a . .
^ JJ 7=1 NI/ J-, . . . , IN ,

and equation 19c becomes

I = Db (25)

where
b.

/a.. 

The solution of equation 17 can be found from the solution of equation 20 as

h = Dy (26) 

or

=  "~~~~ ^=1»     . , N .

It follows from equation 24 that all the diagonal elements of the scaled 

matrix S will equal 1. This will decrease the number of multiplications 

required to perform matrix multiplications.

APPLICATION TO FIELD PROBLEM 

Selection of Study Area

The applicability of the conjugate-gradient method to ground-water 

problems can be demonstrated through the solution of a complex field problem. 

The study area selected for this demonstration is located in and adjacent to 

the Rocky Mountain Arsenal near Denver, Colorado (fig. 1). This area was 

selected for an evaluation of the numerical model because: (1) Detailed 

hydrogeologic data were available from a previous study (Konikow, 1974), 

(2) a flow model that uses an alternative but well-documented numerical method

11



I   
JDENVER 106°

! COLORADO I j

   40°

10 MILES

0 5 10 KILOMETERS

Figure 1. Location of study area,
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had been calibrated previously for this flow system (Konikow, 1976), and 

(3) the flow system is typical of many field problems but sufficiently complex 

to offer a rigorous test of the general applicability of the model to field 

problems.

Description of Study Area

Shallow alluvium forms the primary aquifer in this area. The 

hydrogeologic characteristics of the alluvium indicate that this aquifer is 

sloping, discontinuous, heterogeneous, and nonuniform in thickness (Konikow, 

1974).

The major hydrologic features in the study area are shown in figure 2. 

Much of the area north of the arsenal is irrigated, both with surface water 

diverted from one of the irrigation canals, which are unlined, and with ground 

water pumped from irrigation wells. Infiltration from irrigated fields is the 

main source of recharge to the alluvial aquifer. However, leakage (or seepage 

losses) from the unlined irrigation canals, unlined disposal ponds, and 

freshwater reservoirs also are significant. Most ground-water outflow occurs 

as seepage into the South Platte River, withdrawals by irrigation wells, and 

underflow through the aquifer out of the study area.

A map showing the general water-table configuration for 1943-56 is 

presented in figure 3. The assumptions and limitations of figure 3 are 

discussed in detail by Konikow (1974). Note that approximately 20 percent of 

the study area is underlain by areas in which the alluvium either is absent or 

unsaturated most of the time. These areas form internal barriers that 

significantly affect ground-water flow patterns within the aquifer.

Calibration of Model

The limits of the modeled area were selected to coincide as closely as 

possible with natural boundaries and divides in the ground-water flow system. 

The modeled area was subdivided into a finite-difference grid of uniformly 

spaced squares having 305 meters between nodes.

13
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Figure 2. Major hydrologic features.
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Datum is sea level.

Figure 3. General water-table configuration in the alluvial aquifer 
in and adjacent to the Rocky Mountain Arsenal, 1943-56.
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All aquifer properties and stresses were defined at each node of the 

grid. The boundaries were represented as either no-flow or constant-head 

conditions, as appropriate. The values specified for aquifer properties and 

stresses were the same as those specified for the previously calibrated model 

(Konikow, 1976).

Insufficient field data were available to calibrate accurately the 

transient-flow model. Hence, a steady-state model was calibrated to minimize 

the differences between the measured and computed water-table altitudes.

Implementation

The conjugate-gradient method described here was used in conjunction 

with the aquifer-simulation model documented by Trescott and others (1976). 

The algorithm for the numerical solution using the conjugate-gradient method 

was programmed into several subroutines and substituted for solution 

subroutines contained in the Trescott model.

The symmetric matrix A, requiring (N,3) words of storage, and the target 

vector b, requiring N words of storage, were constructed from vectors obtained 

from the Trescott model. As described earlier, scaling of the system was 

accomplished, and the diagonal scaling matrix D was stored in the diagonal of 

the scaled matrix A, which was known to have a value of 1.0.

The subroutine CG, which appears in the Supplemental Information section 

of this report, was used to make the conjugate-gradient iteration. This 

subroutine is self-contained and only requires a matrix-vector multiplication 

subroutine, MATMUL, which is specific to the storage scheme of the matrix. The 

subroutine in this implementation, which also appears in the Supplemental 

Information section, used the fact that the diagonal of the scaled system had 

a value of 1.0.

16



Results

The solution computed by the model using the conjugate-gradient method 

was very accurate numerically. The numerical error was measured in terms of

the residual, r.,

^ = b - Ah,. , (27)

and of the £_-norm (or Euclidean norm)

£2-norm = JvJ*" , (28)

for the scaled and the unsealed system. The max-norm also was computed and 

differed uniformly from the £2~norm by a factor of less than 10. The computed 

errors in the mass balance using tolerance criteria of a scaled system for the

residual error are shown in table 1. These results indicate that a tolerance
 6 

of 10 is acceptable as a bound on the £«-norm residual of the scaled system.

Decreasing the tolerance on the fl^-norm of the residual to decrease the 

mass-balance error increases the number of iterations required to converge to 

a solution. This relationship of the scaled system, for the steady-state 

problem described in this report, is shown in figure 4. Each iteration 

requires 7(w-l)(n-l) multiplications and an equal number of additions. For 

the steady-state flow problem at the Rocky Mountain Arsenal, the conjugate- 

gradient method required 35 iterations to assure an acceptable mass-balance 

error. A comparison, with available codes using ADIP and SIP to solve the 

equations resulting from the finite-difference approximation, was feasible 

only for unsealed systems. Although written by different people, this 

probably is reasonable, providing that a similar basis of comparison is 

available. In this instance, we have compared the &«-norm for an unsealed 

system versus the work measured in number of conjugate-gradient iterations. 

The latter also could be expressed in terms of CPU time. These data are 

plotted in figure 4. Data points for the CG and SIP algorithms are joined 

by lines indicating a steady decrease in error with additional expended work. 

Data points for ADIP do not necessarily show this trend for a short work 

cycle. However, for a longer cycle, a similar downward trend in error with 

expended work is evident. This cyclic nature of the alternating-direction

17



Table 1. Mass-balance CTTOT in steady-state solution 

using conjugate-gradient method

J^-norm of
Mass-balance error 

residual error
(percent) 

for scaled system

10~5 0.143

10~6 -.29 x 10~2

10~8 -.164 x 10~3

10~12 .119 x 10~4

method is considered normal. For this particular problem, the SIP is shown to 

be clearly superior with CG, and ADIP is quite similar depending on the error 

criteria chosen.

The model computed a steady-state water-table configuration that was 

acceptably similar to the configuration based on water-level measurements. 

However, with respect to an evaluation of the numerical method, it is more 

significant that the solution using the conjugate-gradient method was identical 

(to at least five significant figures) with the solution obtained using ADIP 

and SIP.

SUMMARY AND CONCLUSION

The conjugate-gradient method can solve efficiently and accurately the 

ground-water flow equation for steady-state problems. When applied to a 

typical problem of ground-water flow in an alluvial aquifer, the method 

compared favorably with the alternating direction implicit procedure and less 

satisfactorily with the strongly implicit procedure. The main advantage of

18
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the conjugate-gradient method is that it does not require the use of iteration 

parameters, therby eliminating this partly subjective procedure. The authors 

are aware that there have been recent theoretical advances in the use of this 

method that are not commented upon in this paper (Manteuffel, 1980). However, 

the use of concepts presented herein can be used to help explain conjugate- 

gradient application and to stimulate further study by interested readers.
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LISTING OF FORTRAN SUBROUTINES FOR CONJUGATE-GRADIENT PROCEDURE

SUBROUTINE CG

SUBROUTINE CG(A,X,R,P,AP,NX,NY,ITMAX,ERBND> 
C****************************************************************

C PROGRAMMED BY TOM MANTEUFFEL *
C THIS SUBROUTINE SOLVES THE SYSTEM: A*X = P, RETURNING THE *
C SOLUTION IN X. THE TARGET VECTOR P IS DESTROYED DURING *
C THE COMPUTATION. *

DIMENSION A(NX,NY,3),X(1),R(1),P(1),AP(1) 
DOUBLE PRECISION SUM 

C
C SET DIMENSION 

N = NX*NY 
C INITIALIZE ISTEP

ISTEP = 0
C COMPUTE THE FIRST RESIDUAL AND RESIDUAL ERROR 

CALL MATMUL(A,X,R,NX,NY) 
SUM = 0.0 
DO 10 1 = 1, N

R( I)=P(I)-R(I) 
SUM = SUM+R(I)*R(I> 

10 CONTINUE
RSD2 = SUM 
RSD=SQRT(RSD2) 
WRITE(6,300> ISTEP, RSD 

C INITIALIZE P
DO 15 1 = 1, N

PC I)=R(I) 
15 CONTINUE 

C MAIN LOOP 
C UPDATE ISTEP

20 ISTEP=ISTEP+1 
C COMPUTE NEW X

CALL MATMUL(A,P,AP,NX,NY) 
SUM * OiO 
DO 25 1=1, N

SUM = SUM+P(J)*AP(I> 
25 CONTINUE 

PAP = SUM 
ALPHA=RSD2/PAP 
DO 30 1=1, N

X(I)=X(I) -«-ALPHA*P(I) 
30 CONTINUE

22



LISTING OF FORTRAN SUBROUTINES FOR CONJUGATE-GRADIENT PROCEDURE Continued

SUBROUTINE CG Continued

C COMPUTE NEW RESIDUAL AND RESIDUAL ERROR
SUM = 0.0 
DO 35 1=1,N

R(I)=R (I)-ALPj$A*AP< I) 
SUM = SUM+R(I)*R<I) 

35 CONTINUE
ORSD2=RSD2 
RSD2 = SUM 
RSD=SQRT(RSD2) 

WRITE(6,300) ISTEP,RSD 
C TEST TO HALT

IF(RSD.LT.ERBND) GO TO 55 
IF (ISTEP.GT.ITMAX) GO TO 40

GO TO 45
C THEN PRINT WARNING 

40 WRITE(6,200)
GO TO 55

C ELSE CONTINUE 
C COMPUTE NEW P

45 BETA=RSD2/ORSD2 
DO 50 1=1,N

P(I)=R(I)+BETA*P(I) 
50 CONTINUE 

C REPEAT LOOP
GO TO 20

C END OF LOOP 
C 
C OUTPUT FINAL RESIDUAL ERROR

55 WRITE(6,100) ISTEP,RSD 
C

100 FORMAT(3X,'AFTER 1 , 15,' ITERATIONS THE RESIDUAL ERROR IS
1 E12.5)

200 FORMATC 1 WARNING: ITMAX EXCEEDED. 1 ) 
300 FORMAT(3X, I ISTEP= I ,I3,3X, I RSD= I ,E12.5) 

C
RETURN 
END
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LISTING OF FORTRAN SUBROUTINES FOR CONJUGATE-GRADIENT PROCEDURE  Continued

SUBROUTINE MATMUL

SUBROUTINE MATMUL ( A,X ,Y xNXxNY )

C THIS SUBROUTINE DOES THE MATRIX VECTOR MULTIPLICATION': *
C A*X = Y, WHERE A IS A FIVE POINT DIFFERENCE MATRIX, WITH *
C DIAGONAL ELEMENTS EQUAL TO 1.0. *

DIMENSION A(NX,NY,3),X(NX,NY),Y(NXxNY> 
C
C SET DIMENSION PARAMETERS 

NXM1 = NX - 1 
NYM1 = NY - 1

1 = 1
Y(IsJ)=X(IsJ)+A(IsJ*2)*XCI + 1sJ ) 

1 + A(IsJ*3)*X-< IsJ+1 ) 
DO 10 I=1,NXM1

Y(IsJ)sX(IsJ)+ACIsJ*2)*X(I+1sJ>
1 +A(IsJs3)*XCIsJ+1)+A(I-1/j;2)*X(I-1sJ) 

10 CONTINUE 
I = NX

DO 30 J=2*NYM1 
1 = 1

DO 20 I=2,NXM1

2
20 CONTINUE 

I=NX

30 CONTINUE

J=NY
1 = 1

1 +A(I,J-1,3)*X(I,J-1) 
DO 40 I=2,NXM1

40 CONTINUE 
I = NX

1 +A(I,J-1,3)*X(I,J-1) 
C

RETURN 
END

24
GPO 839- 068


