A SUMMARY OF GROUND-WATER PUMPAGE IN THE CENTRAL VALLEY,

CALIFORNIA, 1961-77

By Jonathan Diamond and Alex K. Williamson

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 83-4037

6001-12

Sacramento, California
October 1983



UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, SECRETARY

GEOLOGICAL szvev

Dallas L. Peck, Director

For additional information opies of this report

write to: an be purchased from:
pen-File Services Section

District Chief Western Distribution Branch

U.S. Geological Survey u.s. Geological Survey

Federal Building, Room wW-2235 Box 25424, Federal Center

2800 Cottage Way enver, CO 80225

Sacramento, CA 95825 Telephone: [303] 234-5888)

|



CONTENTS

Abstract =-=-=--mmmm e e e e e e e e — e e e
Introduction ====-=====---mee e e e e s s me e s m e m e
Description of the area--------=--=~--c-coccmmccmccmncccnem e
Purpose and scope ===~-====--c--ceemomcmm e e e m e e mmme e
Acknowledgments =~==~-=--cccmmommm e e
Methods of computing ground-water pumpage in the Central Valley-----
Comparison of methods -==-=====---==--ceemeoee e o m e e
Methods used in previous reports ==-----=---=e---ceccocecomooooon=
Agricultural pumpage=-=-==========-=-c---s--esco-oeocooomoooo--
Municipal pumpage =-===--====--==-=-eeeme e eceeaceem—m e
Summary of results---===-=-s---esmmceame e m e
Accuracy of estimates of computed pumpage =----=-==-===-=--=--------
Estimation of pumpage by regression model -~--=--=====ce=necemoom-
Agricultural pumpage-===-=~======-=--c-e-ec-eceocosoosonooneon-
Municipal pumpage -======~====-=es---eecoeoeee—eo—meee o
Summary of results-----==-=----ccc-ccecmmccemeocen e
Determination of the source of ground-water pumpage ----=---=====-=---
Drillers' logs ============c-mcomccom oo m e e e m e m e
Construction information ======~-==--c-eecccceome e e e m e
Temperature data ~---=--====-s----e--cmem e e e
SUMM Ay ===~ === e e e e e e e e e e e e e e e e eemsessescesa--
Selected references--------=----m-csceomcmmcm e e e e
Appendix A. Agricultural ground-water pumpage computed from power
for townships in the Central Valley-==-=-==-=-=-ccmmcccmmacccanao
Appendix B. Municipal ground-water pumpage for townships in the
Central Valley, estimated by population or reported by municipal

water agenCy —==~-- - -ms s e e e e o esssssea———e—=
Appendix C. Agricultural ground-water pumpage synthesized from
regression for townships in the Central Valley------<~--cc-concnnnn

Appendix D. Municipal ground-water pumpage synthesized from
regression for townships in the Central Valley-------~--=~co-ceue-

'o
o
wonuio s =G

WWMNNNNHNON ===
SO WWRRERANROE = =

w
w

49
52

68



1
1

ILLUSTRATI#NS

[Plate is in pocket]

Plate 1. Maps of the Central Valley of California showing percentage
of pumpage coming from, and dedth to, deeper model zone.

Figures 1-4. Maps showing:

1. Subregions and landforms of the California
Region ~======<==--~ e

2. Township and range system in California ------

3. Subareas used for regressions=-----=-=----=c=---

4. Ground-water pumpage computed from power
for (a) 1962, (b) 1966, (c) 1967, (d) 1975 ~--

5-10. Graphs showing:

5. Annual pumpage in fgur subareas =------====-«--
6. Annual pumpage for subarea 44 ---------------
7. Annual streamflow in the Kaweah River ---=-----
8. Relation of pumpage in subarea 44 to
streamfilow in the Kaweah River, 1961-77 ----
9. Relation of pumpage in subarea 44 to
streamflow in the Kaweah River after log,,
transformation ----- L L PR
10. Predicted and original annual pumpage in
subarea 44 ---~-~-~ e e L L LD L L e L el

11. Map showing ground-water pumpage synthesized from
regression for: (a) 1962, (b) 1966, (c) 1967,
(d) 1975 ~===-vmcmmmcccccan- L e e L E L

Table 1. Agricultural ground-water pumpage by subarea computed
from power consumption =--==--==cccccccccruorrnrrcann
2. Agricultural ground-water pumpage by subarea synthesized
from regression ~~-----ces-srscsmemccemccoe oo

14
20
21
21

23

23

24

26

Page

13



CONVERSION FACTORS

For those readers who may prefer metric (S1) units rather than inch-
pound units, the conversion factors for the terms used in this report are
listed below:

Multiply By To obtain
acres 0.004047 km2 (square kilometers)
acre-ft (acre-feet) 0.001233 hm3 (cubic hectometers)
acre-ft/yr (acre-feet 0.001233 hm3/a (cubic hectometers
per year) per annum)
ft (feet) 0.3048 m (meters)
gal (gallons) 0.003785 m3 (cubic meters)
hph (horsepowerhours) 2,684,000 J (joules)
in (inches) 2.540 cm (centimeters)
kwh (kilowatthours) 3,600,000 J (joules)
mi (miles) 1.609 km (kilometers)
Ib (pounds) 0.45 kg (kilograms)
mi2 (square miles) 2.590 km2 (square kilometers)

Degree Fahrenheit is converted to degree Celsius by using the formula:
Temp °C = (temp °F-32)/1.8

ALTITUDE DATUM

National Geodetic Vertical Datum (NGVD) of 1929: A geodetic datum derived
from a general adjustment of the first-order level nets of both the United
States and Canada, formerly called mean sea level. NGVD of 1929 is referred
to as sea level in this report.




A SUMMARY OF GROUND-WATER PUMPAGE IN THE CENTRAL VALLEY,

CALIFORNIA, 1961-77

By Jonathan Diamond and Alex K. Williamson

ABSTRACT

In the Central Valley of California, a large agricultural economy has been
developed in a semiarid environment. This economy is supported by 6 to 15
million acre-feet per year of surface water and 9 to 15 million acre-feet per
year of ground water. Estimates of ground-water pumpage computed from
power consumption have been compiled and summarized. Under ideal condi-
tions, the accuracy of the methods used is about 3 percent. This level of
accuracy is not sustained over the entire study area. When pumpage for the
entire area is mapped, the estimates are consistent areally and through time.

A multiple linear-regression model was used to synthesize data for the
years 1961 through 1977, when power data were not available. The model used
a relation between ground-water pumpage and climatic indexes to develop a full
suite of pumpage data to be used as input to a digital ground-water model,
one of the products of the Central Valley Aquifer Project.

Statistica! analysis of well-perforation data from drillers' logs and water-
temperature data was used to determine the percentage of pumpage that was
withdrawn from each of two depth zones.



INTRODUCTION

Many areas of the United States are dependent on ground water either as
a large part of, or as their total water supply. National recognition of the
importance of ground water to the economy of the United States was height-
ened by the energy crisis, when it was discovered that the principal untapped
source of water that could be used for expanded development of the vast coal
reserves of the Northern Great Plains was a little-studied limestone aquifer in
the Madison Limestone of Mississippian age known as the Madison aquifer. In
1975, the U.S. Geological Survey began a study of the Madison aquifer as part
of its activites in support of the national energy program. In 1976 and 1977,
the western part of the United States experienced a major drought, and again
the importance of ground water reached the |national limelight. So important
were the concerns over this national resource, the U.S. House of Representa-
tives issued Committee Report Number 95-392| on June 6, 1977. This report
introduced a national program for the analysis of regional aquifer systems and
stated that "The Committee expects the Survey to press this program
vigorously."

The Central Valley Aquifer Project is a part of the National Regional
Aquifer Systems Analysis Program. Although the Central Valley lies entirely
within the State of California, its long history of ground-water development
and the complexity and immensity of the economic ties related to ground-water
development make the valley among the first areas in the United States consid-
ered for study. This document is one of a series of reports produced by the
Central Valley Aquifer Project. ‘

Description of the Area

The Central Valley of California is one| of the more notable structural
depressions in the world. Surrounded by maduntains and filled with alluvium
derived from the mountains, the valley extends about 400 miles from north to
south. It ranges in width from about 30| to 70 miles and covers about
20,000 mi2. For study purposes, the Central Valley is referred to in four
hydrologi¢ subregions--Sacramento Basin, Delta, San Joaquin Basin, and
Tulare Basin (fig. 1) (California Region Framework Study Committee, 1968).
Most of the valley lies close to sea level in elevation, but along its margins it
is higher. Maximum elevation in the valley is about 1,700 feet near the apexes
of some alluvial fans in the southern part of the Tulare Basin. Most of the
valley boundary along the eastern edge is abgut 500 feet above sea level and
most of the western boundary ranges from 50 to 350 feet above sea level.

Climate in the Central Valley is arid to semiarid with average annual
precipitation ranging from 14 to 20 inches in the Sacramento Basin and Delta,
and from 5 to 14 inches in the San Joaquin and Tulare Basins (Rantz, 1969).
Soils are deep and fertile and the growing season is long, allowing much of the
valley to be double or triple cropped.










The CVAP ground-water model of the Central Valley has an upper and a
lower zone. The percentage of pumpage coming from the lower zone was
determined by a statistical analysis of drillers' logs, water-temperature data,
and other well-construction information.
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METHODS OF COMPUTING GROUND-WATER PUMPAGE
IN THE CENTRAL VALLEY

Comparison of Methods

Discharge from agricultural wells is rarely metered in the Central Valley.
Ground-water pumpage must be estimated by indirect means. The two most
common methods are: estimation by consumptive use of water and estimation
by power consumption.

Consumptive use of water in this context refers to all evaporation and
transpiration by a particular crop type. |If this quantity is known, ground-
water pumpage may be estimated by taking into account surface-water supply,
irrigation efficiency, and effective precipitation. Effective precipitation is
precipitation that meets the demands of consumptive use--the fraction of annual
precipitation that is available for use by crops during the growing season.
Irrigation efficiency is the percentage of water delivered to the farm that is
available for consumptive use. An estimate of pumpage may be obtained by
the following formula:



Irrigation requirement = SW + TW = S:—-g-ﬁ{—E—E
so:
= CY - EP |
GwW = R sSw

where

GW = ground-water pumpage,

IR = irrigation efficiency,

Ccu = consumptive use, ‘

SW = surface-water supply, f

EP = effective precipitation, arLd

CU - EP = evapotranspiration of applﬁed water.

In some areas, tables are available which list irrigation efficiency and the
consumptive use of water for various crops Where these are not available,
consumptive use must be estimated from climatic data. Irrigation efficiency
must be assigned on the basis of judgment and experience. Surface water
released to irrigation districts in California can be determined from published
data; estimates must be made for smaller ari\s within a district. Accuracy of
the estimate of ground-water withdrawal depends on accuracy of the above
estimates. A disadvantage of this method is that it has no direct connection
with the quantity of pumpage; instead, it relies on estimates of factors which
affect ground-water pumpage. 1

The power-consumption method involves estimating pumpage from the
amount of power consumed bv well pump motors. This information is obtained
from utility company records. Data for relating power consumption (kilowatt-
hours) to ground-water pumpage (acre-foot) may be obtained from plant-
efficiency tests run by the utility companies at the customer's request.

Electric-power consumption can be related to the voilume of ground-water
pumpage by: :

325,850 gal x 8.34 Ib/gal x 1 foot
2,717,589 Ib x 1 foot
2,717,589 ft/lb

1 acre-ft of water lifted 1 foot

2,655,240 ft/lb

1 kilowatthour

The power required to lift 1 acre-ft of water 1 foot at 100 percent
efficiency Is, therefore i

K - 2,717,589
2,655,240
|
x 1.02 |
where: |
K = (kWh/acre-ft)/ft of lift



The average efficiency of a pumping plant determined from a sample of
about 4,000 plant-efficiency tests in the San Joaquin Valley is about 54 percent.

Efficiency may be expressed as:

E = 2 x 100,
where
E = efficiency, in percent
o] = output,
| = input.

Solving for |, the equation becomes:

= 2
| = Ex‘lOO.

Output may be replaced by the amount of power required to Ilift an
acre-foot of water 1 foot which gives:
100

l=1.02x—E—

where | is in units of kilowatthours per acre-foot per foot of lift.

wWhere pumps are powered by internal combustion engines, a similar
equation may be derived using brake horsepowerhours instead of kilowatt-
hours.

H

1 brake horsepowerhour 1,980,000 ft-Ib

_ 2,717,589 100

Va = 7g80,000 X VhPh x ¢,
= 1.37 x Vhph x 1%9,
where
Vvq = wvolume of fuel required to lift 1 acre-ft of water about 1 foot, and

Vhph = wvolume of fuel required to produce 1 brake horsepowerhour.

There are two basic approaches to computing ground-water pumpage from
power consumption. One is the efficiency-lift method which requires total
power consumption, average pumping-plant efficiency, and average pumping
lift. The other approach is the unit power-consumption method. Unit power
consumption is the number of Kkilowatthours required to pump an acre-foot of
water during a plant-efficiency test. Data required for this method are total
power consumption and an average of unit power consumption.



In a pilot study designed to explore costs and procedures for calculating
ground-water pumpage, Ogilbee (1966, p. 17-31) compared six variations of
the two basic approaches described above and three trials of the consumptive-
use method using different assumed values| for irrigation efficiency. The
variations in the power-consumption methods were the timespan of the tests
used to calculate an average efficiency, methods used to determine total lift,
and whether or not the mean efficiency or unit power consumption was weight-
ed by the discharge of the pump. Pumpage dalculated by the consumptive-use
method varied directly with the irrigation efficiency used.

Because ground-water pumpage was not metered, there can be no direct
determination of the accuracy of the different methods of estimation. The
estimates of pumpage are all reasonably similar.

The variance of efficiency is smaller than that of unit power consumption,
hence, the mean value of efficiency can be estimated more accurately than a
mean value of unit power consumption. The primary factor in the variation of
efficiency is the variation of pumping lift. This implies that the most accurate
method of estimating pumpage would be to use the efficiency-lift method incor-
porating as many measurements as possible of pumping lift. In many areas,
however, there are fewer regularly monitored water-level observation wells
than efficiency tests and these recorded water levels show only the static
component of pumping lift, not including drawdown or discharge head. The
calculation of unit power consumption integrates plant efficiency and total
pumping lift and has the additional advantage of being measured throughout
the pumping season. |

Ogilbee (1966) concluded that the most %onvenient and reliable technique
is to use total power consumption and annuall mean unit power consumption to
compute estimates of pumpage.

1

Methods Used in Previous Reports

Estimates of pumpage compiled in this report are classified by usage into
two types, agricultural and municipal. Methods of computing estimates for the
two types differ and are described below. !

Agricultural PumLaage

Agricultural pumpage in the Central Valley is computed from power
consumption (Appendix A). Although most of the pumps in the area are
powered by electricity, pumpage from wells using internal combustion engines
may be computed by methods similar to those used for electric power.

Data for computing pumpage estimates are obtained from public utility
companies under an agreement of confidentiality. Raw data are classified as
confidential and data from individual accounts may not be identified. Estimates
of pumpage may be released to the public for areas no smaller than 36 mi2.
Estimates of pumpage are not traceable to individual accounts because raw data
are summed and averaged as described below."




Agricultural ground-water pumpage is computed for each year for each
unit area. The optimum size for the unit area is the smallest size that has a
sufficient amount of data available. The unit area used in the Central Valley
is the quarter-township (fig. 2). For public release, estimates of pumpage
from the unit areas are summed. The method for computing pumpage from
electric power consumption may be divided into two parts, computation of unit
area totals and estimation of the mean unit power consumption.

FIGURE 2. — Township and range system in California.

9
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Computation of unit area totals.--Compuﬁation of total power consumption
for each unit area would be straightforward were it not for one major flaw in
the power-consumption data. There is no diiect way to distinguish a well pump
power-consumption record from one that indicates electrical power consumption
by another type of pump or agricultural 1mpIEment Indirect methods that have
been tried include: comparison of seasonal power consumption totals; identifi-
cation of wells through fieldwork; and comparison of frequency distributions of
motor horsepower with pumping lift. |

Estimation of mean unit power consumpti&:n.--Plant-efﬁciency tests for each
unit area are edited to delete tests on ditch pumps and booster pumps. Mul-
tiple tests on the same well are also deleted to avoid biasing the mean unit
power consumption by the efficiency of one well.

Several methods have been used to estuhate the mean unit power consump-
tion. The preferred method is to take the mean value of the edited unit power
consumption figures for each year in each unit area. Previous work on error
analysis (Allison, 1967, p. 47-52) has indicated that reasonable estimates of the
average unit power consumption may be obtained by taking the mean of as few
as four values of unit power consumption from the plant-efficiency tests. For
areas where less than four tests were available or due to other constraints,
three alternative methods have been used: (1) The mean of unit-power
consumption values from tests conducted over several years may be used; (2)
values for mean unit power consumption in unit areas that have a sufficient
supply of data may be mapped and contoured. Missing values may then be
interpolated from the map; (3) a least-squares linear regression may be
computed between total lift and unit power consumption from all available plant-
efficiency tests in a larger area. An average total lift for each unit area in
this larger area may be determined from water-level maps, average pumping
drawdown, and average head due to use of sprinklers. An estimated value for
average unit power consumption for each umtj area may then be determined from
the least-squares relation. ‘

In areas where natural gas is inexpénsive, pumps may be driven by
internal combustion engines using natural gas as fuel. Data on natural gas
consumption were available for 1965-68. Pumpage was estimated by calculating
the number of brake horsepowerhours needed to lift 1 acre-ft of water 1 foot
and then estimating the volume of fuel required to produce 1 brake horsepower-
hour and dividing by an assumed efficiency of 60 percent. The resulting
figure is the volume of natural gas required| to lift 1 acre-ft of water 1 foot at
60 percent efficiency. This figure is then multiplied by the average pumping
lift for each unit area. Pumpage is computed by dividing total fuel consumption
per unit area by the volume of gas required to pump 1 acre-ft.

During drought conditions in 1977, ew wells were drilled and many
previously abandoned wells were reactivated to augment diminished surface-
water supplies. Many of these wells were powered by internal combustion
engines. Pumpage from these wells was prorated from data associated with
nearby electrically operated wells (Mitten, 1971‘8).

10



Municipal Pumpage

Data on water pumped for municipal use in the Sacramento Valley were
obtained by contacting the municipal water agencies, most of whose wells are
metered.

In the San Joaquin Valley, municipal pumpage was estimated on the basis
of per capita use. Data on ground-water pumpage were obtained from 27
communities ranging in population from about 1,000 to 145,000. The reported
volume of water used by each community was divided by its population to
determine & per capita use factor. Average per capita use factors (acre-foot
per year per person) obtained were: 0.25 for communities of less than 3,000;
0.30 for communities with populations of 3,000-10,000; and 0.38 for communities
with populations greater than 10,000. Population data were obtained from the
1960 census and from estimates made by the Population Research Section,
California Department of Finance (Ogilbee and Rose, 1969a, p. 2).

Annual municipal ground-water pumpage estimates for townships in the
Central Valley, calculated by the methods described above, have been compiled
and are included in this report as Appendix B.

Summary of Results

The study area was divided into 29 subareas (fig. 3) to aid in analysis of
the pumpage data as described later in this report. Annual township agri-
cultural pumpage summed over these areas is shown in table 1. Maps of
agricultural and municipal pumpage data are shown in four maps (fig. 4).

The maps reflect the distribution and quantity of ground-water pumpage
and the availability or nonavailability of the data. The map for 1962 (fig. 4a)
shows the distribution and magnitude of ground-water pumpage data at the
beginning of the study period for a year in which the climate was relatively
normal. Agricultural pumpage data were not available for the Sacramento
Valley in 1962. Isolated symbols in the Sacramento Valley indicate pumpage for
municipal use.

Figures 4b and 4c show the contrast between a year with below normal
rainfall (1966) and a year with above normal rainfall (I1967). The blank area in
the middle of the valley is the Delta subregion. Power data for this sub-
region were inadequate to compute reliable estimates of pumpage.

The year 1975 was selected as one of relative climatic normalcy at the end
of the study period. The map for that year (fig. 4d) shows the absence of
data for the Sacramento Basin and Delta subregions and also for an area in the
southeastern part of the San Joaquin Valley. The discernible reduction in the
amount of pumpage on the west side of the San Joaquin Valley was due to the
increased importation of surface water by the California Aqueduct for irrigation
in that area.

"
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Accuracy of Estimates of Computed Pumpage

The only method for making an absolute determination of the accuracy of
pumpage estimates computed by the methods shown would be to accurately meter
the discharge of all wells in a selected area and compare the total annual
discharge to the computed estimate.

A comparison of metered and estimated pumpage for two townships in Santa
Clara County was described in a progress report for the pilot pumpage study
referred to earlier (Ogilbee and Mitten, 1970,  p. 19). Ground-water pumpage
from about 200 wells was metered. The water meters were new and factory
calibrated to a maximum error of 2 percent. LCaIculated pumpage using annual
mean unit power consumption differed from metered pumpage by a maximum of
2.7 percent. This represents the expected error under close to ideal
conditions.

The following are some assumptions which may cause systematic errors in
the calculation of estimates of pumpage.

1. Annual total power consumption represents only power used by well
pump motors.

2. The sample mean unit power consumption accurately estimates the
true mean number of kilowatthours used to pump 1 acre-ft of water
in a particular unit area.

|
Because ground-water pumpage is total power divided by average unit
power consumption, pumpage will vary directly with total kilowatthours. Any
power consumption included in this total that is not used for pumping will
result in overestimating ground-water pumpage. Despite the techniques
described in the previous section to edit out power accounts that do not repre-
sent wells, it is inevitable that some power nsumption for other purposes is
erroneously added to the total. Errors of this type may be detected by com-
parison. An annual value for a township may be compared to totals for years
before and after to determine if the value makes sense in terms of the general
trend. A unit area may also be compared with surrounding areas if the land
use is comparable. Finally, pumpage estimated from power consumption could
be checked against pumpage computed by another method such as the

consumptive-use method. ‘

A plant-efficiency test measures the unit power consumption of a particular
well for the duration of the test. Thus, an |individual test is a sample in time
from a population comprising all values of unit power consumption for a partic-
ular well. Unit power-consumption values from tests of several different wells
in a unit area represent a sample taken from|the population of all the wells in
that area.

The standard error of a sample mean uhit power consumption was calcu-
lated by Allison (1967, p. 52-53) for one sample township in the San Joaquin
Valley as part of an analysis of error in ground-water modeling. He showed
the relation of the number of tests to the standard error of pumped with-
drawals. In the township sampled, the errar expected for about two-thirds of
the cases ranged from about 12 percent with a sample of 4 to about 4 percent
with a sample of 49.
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One way to test the accuracy of average unit power-consumption data
would be to compare it to water-level data to see if the resulting efficiency
values were reasonable.

A regression using about 350 mean values of unit power consumption and
pumping water levels estimated from independent measurements produced an
average kilowatthour per acre-foot value of 1.78 and a coefficient of determi-
nation (R2) of 0.88. When plugged into the equation derived on page 7,

100
1 = 1.02 x “E
this value is equivalent to an efficiency of about 57 percent which coincides
well with the average efficiencies reported by other authors (Ogilbee, 1966,
p. 15; Allison, 1967, p. 53).

Another aspect of the accuracy of the average unit power consumption is
the possibility of bias in the wells selected for plant-efficiency tests. Three
different possibilities for bias can be identified: (1) Plants selected for testing
may be consistently more or less efficient than the population mean; (2) plants
selected for testing may be clustered in one part of a unit area; (3)
plant-efficiency tests may tend to be conducted during a particular time of the
year. This is of particular concern if seasonal regional drawdown is significant
and most tests occur after the water levels have recovered. A 10-foot decline
in water level will require approximately 18 additional kilowatthours per
acre-foot for a plant operating at 55 percent efficiency.

Bias in the plant-efficiency test data may be detectible by comparison
with contiguous areas. A more reasonable value may be calculated or
interpolated from adjoining areas.

Compilation of all the previously segmented pumpage data into tables
(Appendixes A and C) permitted several indirect analyses of its accuracy.
One of these was simply that when the data were arranged in tabular form
some discrepancies that had previously gone unnoticed became evident. When
the source of these could be traced they were corrected; otherwise, they were
left as the best available data.

To identify areas of anomalously high pumpage, pumpage estimated from
power was compared to a maximum value of water use derived by the
consumptive-use method. Assumed values of irrigation efficiency (55 percent),
evapotranspiration of applied water (2.5 acre-ft/acre), and 95 percent irrigated
land per unit area were used as follows:

2.5 acre-ft/acre
0.55 irrigation efficiency

x 0.95 = 4.3 acre-ft/acre

4.3 acre-ft/acre x 5,760 acre/unit area = 25,000 acre-ft/unit area.
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Frequency distributions of estimated pumpage in the areas where anoma-
lously high pumpages occurred show a secondary grouping of unit areas with
high pumpages. This suggests a systematic effect acting to produce high
estimates of pumpage. A map analysis of the same areas shows that unit areas
with high pumpage tend to be clustered in a few geographical areas.
Investigation of these areas, consisting of a telephone survey of irrigation
district personnel, turned up several possible explanations for this effect:

I. Over application of irrigation water by farmers.

2. Export of water from well fields. !

3. Autumn and winter application of water to prevent frost.

4. In one area on the southeast side of the San Joaquin Valley, it
appeared that a systematic error may have been caused by
inclusion of power from electric wind machines used for frost
prevention.

Estimation of Pumpage by RLgression Model

A complete record of ground-water pumpage for the period 1961 through
1977 was required as input to the Central Valley Aquifer Project transient-
state digital ground-water model. Because power-consumption data were not
available for the entire period, agricultural pumpage could not be computed
by the methods described. There were also many years for which estimates
of municipal pumpage had not been computed. Regression models were used
to predict pumpage data for the missing years

Agricultural PumFage

The most common role of ground water used for irrigation in the Central
Valley is to supply the difference between  the available supply of surface
water and the total demand. In most areas of the valley, the demand always
exceeds the available surface-water supply. The quantity of ground water
pumped is highly dependent on the quantity of surface water available in a
particular year.

At the scale of the quarter-township unit area or the 36 mi2 nodal area
used in the model, the effects of surface-water availability on pumpage were
obscured by variations in land use. To avoid this problem, pumpage was
summed over larger areas. The areas used were modified from ground-water
basins that were identified by the California Department of Water Resources
(1980) on the basis of hydrologic and political boundaries. The areas were
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further subdivided according to the source of the power data originally used
to estimate pumpage. The resulting 29 subareas (fig. 3) represent homoge-
neous populations of pumpage data. In three western subareas in the San
Joaquin Valley (40, 41, 46), the introduction of water from the California
Aqueduct in 1968 caused a marked reduction in ground-water pumpage. Two
regressions were done for each of these subareas, one for the period 1961-67
using annual streamfilow in a major associated river as an index of surface-water

supply and a second for the period 1968-77 using deliveries in the California
Aqueduct.

The regression model was designed to simulate three effects on ground-
water pumpage.

1. The inverse relation of ground-water pumpage to surface-water
supply was simulated by an independent variable used as an index of surface-
water supply. Precipitation data for each subarea, either from a single station
or an areally weighted average of several stations, were reduced to a percent-
age of the mean of the 17-year period from 1961 through 1977. Annual stream-
flow from a major river associated with each subarea was treated in a similar
fashion. The choice between the two was made on the basis of which produced
the best regression results.

2. The availability for irrigation of surface water stored during the
previous year by various Federal, State, and local water projects serving the
Central Valley was simulated by using the previous year's value of the surface-
water index as a second independent variable. There should be an inverse
relation between this variable and ground-water pumpage.

3. Long-term average increase or decrease in ground-water pumpage due
to changes in farming practices or land use was simulated by including a third
independent variable that had a value of the last two digits of the calendar
year, that is, 61 through 77. The relation between this and the dependent
variable may be either direct or inverse, depending on the area.

The dependent variable in the regression model was the annual total
pumpage for a subarea. This was expressed as a percentage of the mean
subarea pumpage over the period of record available.

The relation of dependent to independent variables was first investigated
graphically. In all subareas, pumpage was plotted against the year to examine
the average trend. Graphs for representative subareas are shown in figure 5.
When the percentage of average pumpage was plotted against the vyear, a
biannual fluctuation during the period 1962-70 was immediately noticeable. An
example is shown for subarea 44 in figure 6. This correlates very well with a
biannual fluctuation in rainfall (and streamflow). The most significant
independent variable for subarea 44, annual streamflow in the Kaweah River,
is shown as an example in figure 7.
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When percentage of average pumpage was graphed against the surface-
water index and enough data points were available, the relation appeared to be
curvilinear (fig. 8). Accordingly, the regression model used the log;, of the
pumpage ratio and log;, of the surface-water index which transformed the
relation to a linear one (fig. 9). The basic form of the regression model is:

Y = a+ biX; + byX, + byX,
where
Y = log,;o pumpage ratio, ‘
X1 = logyo of surface-water index,
X, = log;o of previous year's surface-water index,
X5 = year (61-77),
a = regression constant, and
by, by, by = regression coefficients.

This mode! was used for subareas where there were 12 or more years of
pumpage data available.

The regression equations thus generated were used to predict the per-
centage of average pumpage. These predicted percentages seemed to follow
the original percentages fairly closely (fig. 10). A complete set of pumpage
data was created for each quarter-township by multiplying the percentage of
average pumpage by the mean of the annual pumpage for that quarter-township
The resulting figures (Appendix C) represent a smoothed curve fit to the
original data by the simulated effects described above.

In subareas where pumpage data were available only prior to 1972, the
biannual fluctuation of precipitation resuited |in a positive relation between
pumpage and the previous year's surface-water index (X,) because this vari-
able was above average for the previous wet year when pumpage was above

normal for the current dry year. It is not reasonable to assume that above-
normal precipitation in a previous year would cause increased pumpage in the
current year. In subareas where more data were available, the sign of the

coefficient of X, was negative. For subareas where no data were available
after 1972, the regression model was modified by removing the X, variable.

|
|

Municipal Pumpage

Municipal pumpage usually is a small percentage of the annual total esti-
mated pumpage per township. Data compiled from previous work done by the
pumpage project were extended using a simple linear regression of pumpage
against year to predict pumpage for years 1961 through 1977 (Appendix D).
The implied assumption of a linear increase |or decrease was deemed to be
adequate for municipal pumpage.
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Summary of Results
|

The data are summarized in table 2,

which shows annual agricultural

pumpage in each subarea. These totals are higher than those of the computed

pumpage data (table 1) owing to the addition

Maps of the magnitude and distribution

of the predicted pumpage data.

of the synthesized pumpage data

(fig. 11) are included for comparison with maps prepared using power con-

sumption of the computed pumpage data (tabl
be synthesized for the Delta subregion becau
able. Pumpage data required as input for ti
estimated in this area by a water-budget meth

e 1 and fig. 4). Data could not
se pumpage data were not avail-
ne CVAP ground-water model are
od.
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DETERMINATION OF THE SOURCE OF GROUND-WATER PUMPAGE

In order to adequately model the stresses on the ground-water system
caused by pumpage, the proportion of pumpage coming from the deeper zone
of the aquifer was needed (pl. 1). The division between the shallow and the
deep zones was determined on the basis of the following criteria:

I. In areas where a large amount of well-construction data existed, the
division between the shallow and the deep zones was based on the vertical
zonation of perforation intervals. A depth at which most wells in the vicinity
had no perforation was chosen as the boundary between the two zones.

2. In most of the area where the Corcoran Clay Member of the Tulare
Formation of Pliocene and Pleistocene age has been mapped, more than half
of the San Joaquin Valley (R. W. Page, .S. Geological Survey, written
commun., 1982), the division was made above iand beiow the clay.

3. In the remaining areas, the division was interpolated and extrap-
olated from adjacent areas.

Several methods were used to estimate the proportion of pumpage from
the deeper zone. A discussion of each of these follows.

Drillers' Lo

An initial determination of the proportion of pumpage from the deep zone
was done for the part of the San Joaguin Valley underiain by the Corcoran
Clay Member of the Tulare Formation.

A sample of driflers' logs was randomly selected for every township under-
lain by the clay. Well-construction information from the logs indicated the
perforated interval of the well. The sample of wells from each township was
tabulated in three categories: wells perforated only above the clay, wells
perforated only below the clay, and composite wells perforated both above and
below the clay. An initial assumption was made that composite wells draw
50 percent of their water from each zone. 1

This tabulation shows that most of the wells in the area underlain by the
clay are composite. Therefore, the area meah proportion of pumpage is highly
related to the assumed proportion of pumpabe drawn from each zone by the
composite wells. Because the reliability of the 50-percent assumption was in
doubt, more detailed methods were investigat#d.

|
|
|
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Construction Information

Construction information on perforated interval and depth for 7,339 wells
in the Central Valley is available in the Geological Survey Ground Water Site
Inventory (GWSI) file. Of these, 3,307 are irrigation or public supply wells
analyzed by computer to calculate the proportion of perforated interval of each
well in the deeper zone. The proportion of perforated interval in each zone
was assumed to equal the proportion of pumpage from that zone.

The proportions for individual wells were averaged for each nodal area
and the resulting mean values seemed reasonable in comparison with all known
information. However, only 320 of the 529 nodes in the model contained wells,
and only 160 of those nodes represented means from seven or more wells per
node. With a sample size of 7, the level of confidence of computing a mean
proportion within 0.07 of the true mean is 62 percent.

Temperature Data

There is a high correlation between water temperature and depth in .the
Central Valley owing to the natural geothermal gradient. This water temper-
ature gradient was found to be consistent (141, 168, and 176 ft/°C) in three
test wells drilled for the Central Valley Aquifer Project in the Sacramento
Valley. These gradients intercept land surface at temperatures near the mean
annual air temperature of 17°C.

Discharge water-temperature measurements were available from 35,000
PG&E pumping-plant efficiency tests representing about 13,000 wells. Water
temperatures were also available from 3,000 chemical analyses from wells with
construction information. Linear least-squares regressions were computed
with the top and bottom of the perforated intervals (in feet) related to water
temperature (in°C) as follows:

Number of
Dependent variable R2 Slope Intercept wells
Depth to top of perforations 0.64 43.4 -712 2,179
Depth to bottom of perforations .67 125 -2,229 2,957

These relations were used to predict perforated intervals from the average
water temperature for each well with at least one efficiency test. The propor-
tion of perforated interval in the deeper zone was calculated and averaged for
all the wells in each node. This resulted in proportions for 328 nodes of
which 164 had more than 16 wells each.
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The correlation coefficient (R) for 25 nodes which had more than 15 wells
with construction information and more than 30 wells with water temperatures,
was 0.87, showing high consistency between the two methods. There was no
significant systematic difference between the two methods.

The confidence level of computing a mean proportion within 0.07 of the
true mean was determined for both methods an the basis of the sample size in
each node. The confidence levels of proportions from temperature data were
corrected by a factor of 0.75 to account for] the uncertainty in predicting a
perforation zone from discharge temperature These confidence levels were
used as weighting factors for a mean of the proportions for nodes which had
values from both methods. Final proportions were adjusted in nodes where the
confidence level was low and assigned where no values existed by interpo-
lating from adjacent areas. The resulting !values were contoured and are
shown on plate 1. “

SUMMARY |

Estimates of agricultural and municipal pumpage presented in Appendix A
and B comprise all the available pumpage data for the study area for the
period 1961 through 1977. The estimates were computed for unit areas using
total power consumption (kWh/yr) and coefficient of power consumption
(kWh/acre-ft). It is difficult to determine [the accuracy of these figures.
Prevjous studies indicate that under close to ideal conditions, the accuracy of
the methods described in this report is about 3 percent. The quality and
quantity of data used to compute pumpage have made it impossible to maintain
this level of accuracy for the entire Centnal Valley. Estimates of annual
pumpage exceeding 100,000 acre-ft per township are probably overestimated.
However, these make up less than 1 percent of the number of annual township
pumpages reported. When pumpage for the entire valley is mapped, the data
seem to be consistent both areally and over time.

A complete record of pumpage for the period 1961 through 1977 is
required as input for the transient-state digital ground-water model. A mul-
tiple linear regression was used to predict pumpage for years in which power
data were not available. The regression model| simulates the inverse relation of
ground-water pumpage to surface-water availability and also the average trend
of pumpage through time. Therefore, predicted pumpage (Appendixes C and
D) is based on the amount of variability | in the computed data that is
accounted for by the variability in surface-water supply and the average
increase or decrease of pumpage through time.

Additionally, adequate modeling of the ground-water system required
knowledge about the proportion of pumpage coming from deeper zones in the
aquifer. Initial determinations of the proportions for part of the San Joaquin
Valley were developed from construction infornmation from drillers' logs. More
detailed information for the whole valley was jﬁeveloped from statistical analysis
of the relation of water temperature to average depth of well perforations.
The resulting proportions were contoured and seem to be consistent with

known information on water use and water quality in the Central Valley.
i
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