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CONVERSION FACTORS

!

Selected conversion factors for terms in this report are listed below:

Multiply By To obtain
cubic foot per second (ft3/ s) 0.6463 million gallons per day (Mgal/d)
cubic foot per second (ft3/ s) 0.02832 cubic meter per second (m3/ s)
foot per second (ft/s) 0.6818 mile per hour (‘mi/ h) '
foot (ft) 0.3048 meter (m)
gallon (gal) 3.785 liter (L)
inch (in) 2.54 centimeter (cm)
inch (in) 25.4 millimeter (mm)
mile (mi) 1.609 kilometer (km)
milligram per liter (mg/L) 62.44 x 10 pound per cubic foot (1b/ ft3)
microgram per liter (ug/L) 62.44 x 107° pound per cubic foot (1b/ ft3)
million gallons per day (Mgal/d) 0.04381 cubic meter per second (m3/ s)
pound (Ib) 0.454 kilogram (kg)
square foot (ft?) 0.0929 square meter (m?)
square mile (miz) 2.590 square kilometer (km2)

Discharge (ft3/s) x concentration (mg/L) x 5.3896 = total load of constituent (1b/d)
°Fahrenheit = 9/5(°C) + 32

°Celsius = 5/9(°F - 32)



WATER-QUALITY ASSESSMENT OF THE
ILLINOIS RIVER BASIN, ARKANSAS

By JE. Terry, E.E. Morris, J.C. Petersen and M.E. Darling

ABSTRACT

A water-quality assessment was made of the
Illinois River, Muddy Fork, Spring Creek, and
Osage Creek in northwest Arkansas. The assess-
ment involved collecting data to define present
conditions and to calibrate and verify a steady-state
digital, stream, water-quality model. The model was
then used to simulate changes in instream water
quality resulting from changes in nutrient loading.
The primary index to stream water quality used was
the diel-minimum dissolved-oxygen concentration.

The city of Fayetteville has proposed to divert a
part (9.2 cubic feet per second) of its projected
wastewater-treatment plant discharge to the Illinois
River. Muddy Fork, Spring Creek, and Osage
Creek currently receive waste effluent from the
cities of Prairie Grove, Springdale, and Rogers,
respectively. The diel-minimum dissolved-oxygen
standard for each ol these streams is 4.0 mg/L
(milligrams per liter) under projected loading condi-
tions.

Data collected during synoptic surveys indicate
that none of the four streams meet Arkansas state
standards for diel-minimum dissolved oxygen, total
phosphorus, and fecal coliform bacteria. In addi-
tion, the increase in water temperature in Spring
Creek and Osage Creek downstream from the
Springdale and Rogers wastewater-treatment plant,
respectively, exceeds Arkansas standards.

Computed dissolved-oxygen deficits indicate
that bhenthal demand is the most significant dis-

solved-oxygen sink in each of the four streams.
Steady-state model simulations and analyses of
stormwater runoff samples indicate that dissolved-
oxygen deficits due to benthal demands are the
result of both point and non-point sources. Ulti-
mate carbonaceous biochemical oxygen demand
and nitrification also create significant dissolved-
oxygen deficits, especially in Spring Creek.

Model simulations indicate that Muddy Fork
and Illinois River will not meet the Arkansas state
standard of 4.0 mg/L diel-minimum dissolved oxy-
gen for any projected effluent limits used for the
Prairie Grove and Fayetteville wastewater-treat-
ment plants, respectively. Spring Creek can meet
the 4.0 mg/L standard if the Springdale wastewa-
ter-treatment plant effluent concentrations of ulti-
mate carbonaceous biochemical oxygen demand
and ammonia as nitrogen are less than or equal 7.5
and 2.0 mg/L, respectively, and the effluent is
saturated with dissolved oxygen. Osage Creek will
meet dissolved-oxygen standards if the effluent
concentrations of ultimate carbonaceous biochemi-
cal oxygen demand and ammonia as nitrogen from
the Rogers wastewater-treatment plant are less than
or equal to 15.0 and 5.0 mg/L, respectively, and if
the effluent is saturated with dissolved oxygen. If
the Rogers effluent contains only 5.0 mg/L of
dissolved oxygen, ultimate carbonaceous biochemi-
cal oxygen demand and ammonia as nitrogen con-
centrations in the effluent must be less than or equal
to 7.5 and 2.0 mg/L, respectively, or Osage Creek
dissolved-oxygen concentrations will not meet
standards.



INTRODUCTION

Purpose and Scope

The Hlinois River basin in northwest Arkansas
was identified by the Arkansas Department of Pol-
lution Control and Ecology as an area of intensive
study under Section 208 of Public Law 92-500
(amended). This basin was identified because of the
influence on water quality of municipal wastes
discharged to streams in the study area. The U.S.
Geological Survey in cooperation with the Arkansas
Department of Pollution Control and Ecology as-
sessed the quality of water in the Illinois River and
its tributaries that receive municipal wastes in order
to simulate the effects of projected changes in waste
loading. This report gives the results of modeling
the Illinois River, Muddy Fork, Spring Creek, and
Osage Creek. Results include model projections of
stream DO (see inside front cover for list of all
abbreviations found in this report) under varying
treatment levels of municipal-waste discharges.

Report Format

The first seven sections in this report present
general information, types of data collected, and
tools used in the water-quality assessment of Muddy
Fork, Spring Creek, Osage Creek, and Illinois Riv-
er. The study area is described, and data interpreta-
tion criteria and techniques are defined.

The next four sections specifically address the
water-quality assessments of Muddy Fork, Spring
Creek, Osage Creek, and Illinpis River, respective-
ly. Stream hydrology is described in each of these
sections; data collected on each stream is discussed
with respect to established criteria; and, the results
of model calibration, verification, projections, and
sensitivity analyses are presented. Each of these
four sections conclude with a water-quality assess-
ment of the subject stream for observed conditions
and for projected changes in point-source waste-
loading under Q, , , conditions.

The last two sections in the report are a general

summary and selected reference list, respectively.
The five attachments are included to document
modeling techniques not discussed in previous re-
ports and to substantiate calibration and verifica-
tion of the four stream models.

Study Area Description

The Illinois River basin is in the Ozark Plateaus
province in northwest Arkansas and northeast Ok-
lahoma. The study area comprises 635 miZ, 575 mi?
of which are in Arkansas (fig. 1). Principal tribu-
taries to the Illinois River in Arkansas include
Muddy Fork, Clear Creek, and Osage Creek. Osage
Creek has two large tributaries that have perennial
flow--Little Osage Creek and Spring Creek--and
several small perennial tributaries. Lake Frances, a
reservoir formed by a dam on the Illinois River, is
used as a water supply for Siloam Springs.

The basin can be divided into two somewhat
different geologic and topographic areas by a line
extending from about the northwest corner of
Washington County bordering Oklahoma to a mid-
point between Fayetteville and Springdale. North
of this line, the basin is underlain mostly by lime-
stone; south of this line, the basin is underlain by
alternating beds of limestone, shale, and sandstone.
The area north of the line has greater topographic
relief; the streams have steep gradients (as much as
50 ft/mi for the upper Osage Creek and for Spring
Creek) and are more deeply incised in the bedrock.
In contrast, topographic relief in the area south of
the line is less, and maximum stream gradients are
much less steep (about 4.1 ft/mi for Muddy Fork,
7.0 ft/mi for Illinois River and 7.7 ft/mi for lower
Osage Creek).

The contribution of the ground-water discharge
to the streamflow in the basin is directly related to
the permeability of the geologic units along the
reaches of the streams. Geologic units throughout
the Illinois River basin generally have low primary
permeability. However, higher secondary permea-
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bility is afforded by joints and fractures in weath-
ered zones of the rocks. In the northern part of the
basin, the secondary permeability is further en-
hanced by the dissolution of the limestone.

Sediments, varying in size from clays to large
boulders, are present in the streams. Exposed bed-
rock and the larger sediments provide excellent
habitat for attached algae which are quite prevalent
in the streams. Fine sediments and organic matter
are present in pools and in Lake Frances.

Previous Investigations

A report by Heiple and Jeffus (1970) includes
data showing a significant increase in orthophos-
phate and nitrate and a reduction in DO to less than
6.0 mg/L in the Hlinois River, Osage Creek, and
Spring Creek during the summertime low-flow peri-
od. Lamonds (1972) showed the similarity of sur-
face-water quality and ground-water quality at low
flow with reference to dissolved solids and hard-
ness. Reed (1973), showed that BOD concentra-
tions from municipal WWTP’s in the Illinois River
basin exceeded the low-flow assimilative capacity of



receiving streams. Mitchell (1974) recommended

that all municipal wastes in the Illinois River basin
be discharged to the Illinois River via two regional

WWTP’s, one in the eastern part of the basin and
the other in the western part. A study by Kittle,
Short, and Rice (1974) concluded that regional
WWTP’s on the Illinois River would be detrimental
to water quality and might greatly exceed the
waste-assimilative capacity of the river. Noland
(1976) found that fecal coliform bacteria concentra-
tions sometimes exceeded State water-quality stand-
ards. Environmental Engineers, Inc. (1976) deter-
mined that Spring Creek could probably assimilate
a 5-day BOD of 15 mg/L from the Springdale
WWTP under Q,,,, low-flow conditions. Bowen
(1978) found that nonpoint sources contribute sig-
nificant nutrient concentrations to streams in the
Illinois River basin.

POLLUTION SOURCES
Nonpoint Sources

Washoff from streets of several population
centers in the study area carries pollutants to
streams. The largest population centers, based on
the 1976 census (Bureau of Census, 1979), are:
Fayetteville (population 33,946), Springdale (popu-
lation 20,647), Rogers (population 14,982), and
Bentonville (population 6,779). Because these cities
are located on the perimeter of the basin some of the
washoff from these population centers flows into
other drainage basins.

Other towns in the basin have populations
smaller than 2,000. These include: Prairie Grove,
Lincoln, Farmington, Lowell, Elm Springs, Cave
Springs, Tontitown, and Bethel Heights. The com-
bined population of these towns is 7,400.

Most of the land in the basin is used for cattle
farming. In many places cattle have access to the
streams for drinking. Consequently, wastes con-
taining organic carbon, nitrogen and phosphorus
from cattle-farming operations enter the streams
with ease.

.Extensive poultry farming contributes some
wastes to the streams. It is common practice to use
the waste litter from poultry houses to fertilize
pastureland in the basin. This litter is a source of
high concentrations of nitrogen and phosphorus.

The Ozark National Forest covers a large part
of the west-central part of the basin. Some organic
detritus is contributed to streams from these wood-
ed areas.

Point Sources

Three municipal waste-treatment plants dis-
charge to streams in the Illinois River basin. These
are Prairie Grove, discharging to Muddy Fork,
Springdale, discharging to Spring Creek, and Ro-
gers, discharging to Osage Creek. Wastes from
these treatment plants are discharged near the head-
waters of the streams, where natural flows generally
are very low during the summer and fall.

WATER QUALITY DATA-COLLECTION
AND INTERPRETATION CRITERIA

During the periods September 5-9, November
27-30, 1978, July 23-27, 1979, and August 24 -
September 5, 1981, when flows were relatively
steady, synoptic water sampling for physical,
chemical, and biological parameters was conducted
on streams throughout the Illinois River basin.
Additional stormwater runoff samples were collect-
ed during April, May and August of 1981.

Water samples were collected and analyzed
according to methods described by Guy and Nor-
man (1970), Greeson and others (1977), Fishman
and Brown (1976), Goerlitz and Brown (1972),
Stevens and others (1975), Guy (1969), American
Public Health Association and others (1975), the
U.S. Geological Survey National Handbook (1977),
and Skougstad and others (1979).

Representative bed-material samples were col-
lected by shovel, refrigerated, and analyzed for
streambed oxygen demand by a procedure modified
from Nolan and Johnson (1979).

Physical Characteristics

Physical water-quality characteristics measured
during the study were suspended solids, water tem-
perature, and total dissolved solids.



Suspended Solids

Suspended solids generally can be related to
stream turbidity. There are several sources of sus-
pended solids in streams: 1) Sediment washed off
the watershed, 2) sediments scoured from the
streambed, 3) particulate matter discharged by a
WWTP, 4) and algal growth derived from dissolved
nutrients in the water. Concentrations of suspended
solids in a stream vary as new sources are added, as
particles are deposited or resuspended and as organ-
ic matter is produced and consumed. Turbidity,
and consequently light penetration, depends upon
these concentrations and the type of suspended
material. The state of Arkansas uses suspended
solids as one criterion for “permitting” point-source
discharges.

Water Temperature

Typically, surface-water temperature varies
continually in response to changes in solar radiation
and changing seasons. Temperature is highest in the
late afternoon and lowest in the early morning.
Seasonal temperature is highest in July, August,
and September and lowest in December and Janu-
ary.

High water temperatures lower the solubility of
oxygen and increase the rates of oxygen-consuming
reactions, reaeration rates, and photosynthetic-
oxygen production. In the Arkansas water-quality
standards (Arkansas Department of Pollution Con-
trol and Ecology, 1981) it is stated that "during any
month of the year, heat shall not be added to any
stream in excess of the amount that will elevate the
temperature of the water more than 5°F [2.8°C]".

Dissolved Solids

Dissolved-solids values represent the total con-
centration of dissolved material in water. Dis-
solved-solids values are widely used in evaluating
water quality and are a convenient means of com-
paring waters with one another. When dissolved
solids are not measured directly an estimated value
may be obtained from specific conductance meas-
urements by use of an appropriate multiplication
factor. Hem (1970, p. 99) defines the dissolved-
solids to specific-conductance ratio expected in
natural waters to range from 0.54 to 0.96. Using the

lower value of 0.54 as a multiplication factor one
can estimate minimal dissolved-solids concentra-
tions from measured specific conductance values.
Dissolved solids can be treated as a conservative
constituent. The Arkansas standard (Arkansas
Department of Pollution Control and Ecology,
1981), for total dissolved solids is 300 mg/L in the
Illinois River Basin.

Chemical and Biochemical Characteristics

Selected chemical and biochemical water-qual-
ity characteristics measured during the study were
chloride, sulfate, pH, DO, CBODU, streambed
oxygen demand, net photosynthetic DO produc-
tion, and nutrients.

Chloride and Sulfate

The Arkansas standard (Arkansas Department
of Pollution Control and Ecology, 1981) for both
chloride and sulfate is 20 mg/L in the Illinois River -
Basin. These standards apply to the mainstem of
the Illinois and all tributaries considered in this
study. Both point and nonpoint waste sources are
possible contributors of these constituents to a
stream.

pH

The pH of a solution refers to its hydrogen-ion
activity and can range from 0 to 14. Water with pH
values less than 7 is acidic; water with pH values
more than 7 is alkaline. The pH of most natural

water ranges from 6 to 8.5 (Hem, 1970, p. 93).
Where aquatic photosynthesis takes up and releases
dissolved carbon dioxide, pH may fluctuate dielly
and the maximum pH value may sometimes reach as
high as 9.0 (Hem, 1970, p. 93). Arkansas standards
(Arkansas Department of Pollution Control and
Ecology, 1981) state, "The pH of water in the
stream or lake must not fluctuate in excess of 1.0
pH unit, within the range of 6.0 to 9.0, over a
period of 24 hours. The pH shall not be below 6.0
or above 9.0 due to wastes discharged to the receiv-
ing waters.”



Dissolved Oxygen

Dissolved oxygen is a very important parameter
in natural waters; it is essential to all biota which
respire aerobically. Fish and other desirable clean-
water organisms require sufficient DO concentra-
tions to survive and propagate. Arkansas water-
quality standards (Arkansas Department of Pollu-
tion Control and Ecology, 1981) define streams in
the Illinois River basin as smallmouth bass fisheries.
These same standards require that 24-hour (diel)
minimum instantaneous DO concentrations be
greater than or equal to 6.0 mg/L. The only excep-
tion to this standard can be those streams whose
flow at Q, ,, is at least 50 percent treated effluent
immediately downstream from the effluent outfall.
Under these exceptional conditions the diel mini-
mum DO concentration must be greater than or
equal to4.0mg/L.

The DO concentration of flowing water can be
effected by several processes and is therefore highly
variable. Oxygen in rivers is consumed by bacterial
decomposition of suspended, dissolved, and depos-
ited organic matter, oxidation of ammonia and
nitrite by nitrifying bacteria (nitrification), and the
respiration of aquatic organisms. Oxygen is replen-
ished in natural water primarily by the diffusion of
oxygen into the water from the atmosphere
(reaeration) and by photosynthesis.

Reaeration will not result in DO concentrations
greater than saturation (the concentration of oxygen
in the water that is in equilibrium with the oxygen
concentration in the atmosphere). At a barometric
pressure of 760 mm mercury (sea level) and a
temperature of 10°C, water is saturated with oxygen
when it contains about 11.3 mg/L. At 29°C, water
is saturated with oxygen when it contains about 7.7
mg/L.

During daylight hours, algae are both producers
and consumers of oxygen. In some favorable river
environments algal photosynthesis can raise DO
concentrations much higher than saturation. Suita-
ble environments include slow-moving rivers that
have large pools where phytoplankton can fluorish
and shallow streams that have a stable substrate for
periphyton. Under such conditions, if light penetra-
tion and nutrient supplies are sufficient, algae can
become a larger contributor of oxygen to the river
than reaeration. At night, in the absence of sun-
light, algae are oxygen consumers. Where algal

photosynthesis has resulted in supersaturated-
oxygen concentrations, oxygen diffuses from the
water, tending toward equilbrium. Because of the
net oxygen production during the day and losses to
respiration and diffusion at night, the diel pattern is
higher DO concentration during the day and lower
concentrations during the night. This diel pattern is
characteristic of water with significant algal com-
munities.

During summer months, when streamflow is
low and water temperature is high, the DO concen-
tration of a stream can be depleted by high organic
loading. Such loading is common downstream
from a WWTP with secondary or less treatment.

Dissolved-oxygen concentration was measured
approximately three times during each 24-hour-
sampling period; once during collection of water-
quality samples, once after darkness, and once near
sunrise. In addition, a continuous temperature and
DO concentration monitor was used at selected
sampling sites and numerous additional tempera-
ture and DO measurements were being made at
other sites.

The DO concentration generally was lowest in
the early morning hours at all of the Illinois River
basin sampling sites. This condition is due to
cumulative nighttime respiration and the absence of
DO production. Differences between nighttime and
midday DO concentrations at several sites indicate
that photosynthetic activity was significant during
the study.

Carbonaceous Biochemical Oxygen Demand

Carbonaceous biochemical oxygen demand
(CBOD) is a single stage reaction defining the
quantity of oxygen used by organisms in the water
column as they consume organic material. De-
mands can be defined for any period of time, but
are typically defined for periods of 5 days or until
complete assimilation of CBOD occurs. The max-
imum quantity of DO required for the complete
assimilation of carbonaceous material in a given
parcel of water is defined as the "ultimate CBOD”
(CBODU).

Water collected during each sampling period
was analyzed for CBOD according to methods
described by Pickering (written commun., 1980). To
inhibit nitrification, 2-chloro-6 (trichloromethyl)



pyridine was introduced into each sample. The
observed decline in DO concentration in each sam-
ple was then assumed to be only due to the respira-
tion of those organisms that consume carbonaceous
material. DO concentrations in each sample were
recorded initially and on day 1 of the test; there-
after, concentrations were recorded every other day
for a period of 20 days.

The single-stage decay of carbonaceous materi-
al can be defined by the first order kinetics model
expressed in the following equation:

L ,=L¢e" (1
where

t = time (in days),

e = base of natural logarithms,

L = concentration of CBOD remaining after ¢
days, (milligrams per liter),

L, = initial concentration of CBOD at time
zero, CBODU, (milligrams per liter), and

k = first-order CBOD decay rate, base e, (per
day)

L, and k are determined by defining a best-fit curve
for the time-series DO data recorded during the
laboratory CBODU tests. This fitting is accom-
plished using a computer program described by
Jennings and Bauer (1976).

The fitting methods available in the program
are:

1) the Thomas method (Thomas, 1950),

2) the least-squares method (Reed and
Theriault, 1931), and

3) the nonlinear least-squares method (Barn-
well, 1980).

Estimates of L o, and k produced by the fitting
procedure with the smallest computed root mean-
square error are considered most accurate. The
reaction coefficients, k, determined in this manner
represent deoxygenation rates, because deposition is
not accounted for in the "bottle-time” tests.

The Arkansas Department of Pollution Control
and Ecology sets WWTP effluent limits based on a
5-day BOD. To obtain a 5-day BOD from an
ultimate demand, a conversion factor of 0.67 is used
(Velz, 1970, p. 145).

Streambed Oxygen Demand

The streambed oxygen demand is a measure of
the quantity of oxygen removed from overlying
waters by processes occurring through a unit area of
streambed in unit time. The demand from the
streambed for oxygen is primarily due to the decay
of natural organic detritus such as leaves and to the
decay of settleable organics contributed by man
from both point and nonpoint sources.

"Streambed oxygen demand,” as used in this
report, does not include the respiration of periphy-
ton nor does it include the respiration of benthic
invertebrates and bacteria attached to noncollecta-
ble substrates. These noncollectable substrates in-
clude submerged trees, aquatic macrophytes, be-
drock outcrops, large gravel, and boulders. The
term "benthic oxygen demand” (benthal demand) as
used in this report, has a broader meaning than
streambed oxygen demand and includes the bacteri-
al and invertebrate oxygen demands from non-col-
lectable substrates.

Representative bed-material samples are collect-
ed by use of grab samplers or a shovel. Approxi-
mately 20 pounds of the top 2 to 3 inches (50 to 80
millimeters) of bed material are collected in a large
pan. The surface of the material is covered with
plastic wrap. The sample is then chilled and tran-
sported to the laboratory for analysis. Analysis is
begun within 24 hours of collection.

A respirometer, adapted from Nolan and John-
son (1979), is used in the determination of
streambed oxygen demand in the laboratory test.
The respirometer (fig. 2) consists of a cylinder 1
foot in diameter (.305 meters) constructed from
clear acrylic pipe with acrylic end plates, a DO
probe and container, a continuous recorder, a peris-
taltic pump, and polyethylene tubing.

The bed-material sample is placed on the bot-
tom of the respirometer to a depth of 1 inch (25
millimeters). The surface area of the sample is
0.743 square foot (0.069 square meter). The inlet
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Figure 2.-—Respirometer used for measuring streambed oxygen demand.

port is 1.18 inches (30 millimeters) above the sample
surface, and the exit port is 3.54 inches (90
millimeters) below the lid of the respirometer. After
a sample has been placed in the respirometer and the
DO probe has been calibrated, the respirometer is
filled with 2.25 gallons (8.53 liters) of aerated,
demineralized water, the peristaltic pump is started,
and the lid is placed on the respirometer forming an
airtight container. The system is operated at room
temperature (21°C + 1°C) for 4 to 8 hours.

The first step in calculating the oxygen demand
of the sample is to examine the DO versus time plot
obtained from the continuous recorder. Initial DO
(0)) and final DO (Of) are determined from that
portion of the plot where oxygen consumption
versus time is constant (fig. 3). DO concentrations
less than 2 mg/L are not used in rate determinations
because of changing rates of oxygen demand by
aquatic organisms during low DO periods. As a
control, the analysis is also done without streambed
material using demineralized water, and the appro-
priate blank correction is made in the final calcula-
tion as follows:

SOD = [[(O;- O - (B;- B)IV/SA] + At )

where

SOD = Streambed oxygen demand, (grams per
square meter per day),

O;= DO initial, (milligrams per liter),

Of = DO final, (milligrams per liter),

B; = blank DO initial, (milligrams per liter),

Bf = blank DO final, (milligrams per liter),

V = volume confined water, (cubic meters),

SA = sample surface area, (square meters), and
At =t¢;- tf, change in time, (days).

Streambed oxygen demand values differ consid-
erably between streams. Butts and Evans (1978)
found that for several streams in the state of II-
linois, values ranged from 0.27 (g/ mz)/d for a clean
stream to 9.3 (g/ mz)/ d for a very polluted stream.

Net Photosynthetic Dissolved-Oxygen Production

Net photosynthetic DO production, defined as
the difference between gross photosynthesis and
algal respiration, is an integral component in the
community metabolism of most streams. Hereafter
in this report net photosynthetic DO production will
be referred to as "net DO production”. In this study
net DO production was determined from an analysis
of a diel series of DO and temperature measure-
ments and chlorophyll ¢ measurements made at
selected sampling sites. A typical set of curves for
such diel data is shown in figure 4. An approach
developed by Odum (1956) was used to solve the
oxygen-balance equation for each set of diel data
collected. This analysis yields net daytime produc-
tivity, total nighttime respiration, and total 24-hour
community metabolism.



DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER

DISSOLVED OXYGEN CONCENTRATION,
IN MILLIGRAMS PER LITER

1200
9.0

9.0 T T T T T
EXPLANATION

® FIRST ANALYSIS
SECOND ANALYSIS
B THIRD ANALYSIS
INITIAL DO } Values used in

8.0

calculation of
70 ¢ FINAL DO

streambed oxygen
CHANGE IN TIME | demand, convert

At (hours) to At(days)

6.0 O;

50
40 -
At
30 ] 1 1 i 1
0 | 2 3 4 5

ELAPSED TIME, IN HOURS

Figure 3.——Dissolved oxygen curves resulting from
three respirometer analyses of a Muddy Fork bed-

material sample collected on September 4, 1981.

CLOCK TIME

1400 1600 1800 2000 2200 2400 0200 0400 0600

0800

1000

80

70

60 —

50—

T T T T T T T T T

DISSOLVED OXYGEN

_

TEMPERATURE

-

4.0
0

ELAPSED TIME, IN HOURS

Figure 4.--Diel dissolved oxygen and temperature

curves for lllinois River at Savoy, site no. 19,
station no. 07194800, September 5-6 1979.

24

1200
25

L 24

23

22

TEMPERATURE, IN DEGREES CELSIUS



The Odum methodology has been coded into a
digital program and documented by Stephens and
Jennings (1976). The program solves the oxygen-
balance equation at a single station or as the differ-
ence between upstream and downstream stations.
In this study, the single-station analysis was used.
Problem solution is for the following oxygen bal-
ance equation:

X=P-RxD+ 9o 3)

where

X = rate of change of dissolved oxygen per unit
area,

P = rate of photosynthetic production per unit
area,

R = rate of community respiration per unit
area,
D = rate of gain or loss of oxygen through

diffusion (reaeration), and

® = rate of accrual of oxygenated water.
In addition to the diel DO and temperature data,
values for some additional parameters must be
supplied to the program to solve the preceding
equation. For these analyses, the additional param-
eters necessary are as follows:

1. oxygen diffusion coefficient,

DIFC = kz X 9.07/(BP/29.92)
where

DIFC = diffusion coefficient, (grams per cubic
meters per hour

k, = reaeration coefficient, (per hour),

9.07 = DO saturation, (milligrams per liter at
20°C), and

BP = barometric pressure, (inches of mercury),
2. barometric pressure, (inches of mercury),
3. stream depth, (meters), and

4. time of sunrise and sunset.
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An example of printed results from the program is
shown in figure §.

Using, as an example, the results of the Odum
analysis (fig. 5) and observed chlorophyll @ concen-
trations of 1.04 ug/L for phytoplankton and 8.31
ug/L for periphyton, the following procedure was
used to derive values for net photosynthetic DO
production at each station.

Equalities:

1) Net daytime oxygen production = gross
Dphotosynthesis + [daytime benthal demand + day-
time BOD + daytime respiration of periphyton +
daytime respiration phytoplankton].

2) Nighttime respiration = nighttime benthal
demand + nighttime BOD + respiration of peri-
phyton + nightrespiration of phytoplankton.

3) 24-hour community metabolism =
time oxygen production + respiration.

net day-

4) Algal respiration = -0.025 (chlorophyll a
concentration), Shindala, 1972).
Assumptions:

1. Daytime benthal demand and BOD = night-
time benthal demand and BOD.

2. Daytime algal respiration =
respiration,

nighttime algal

3. Periphyton respiration = phytoplankton
respiration;, in the absence good periphyton data.

Computations:

Phytoplankton chlorophyll a = 1.04 ug/L,
therefore, by equality 4 phytoplankton respiration
= -0.025(1.04 ug/L) = -0.026 (g/m3)/d of oxygen.

Periphyton chlorophyll a = 8.31 pg/L,
therefore, by equality 4 periphyton respiration =
-0.025 (8.315 pug/L) = 0.208 (g/m>)/d of oxygen.

By equality 2, nighttime benthal demand +
nighttime BOD = nighttime respiration - nighttime
respiration of periphyton - nighttime respiration of
Dphytoplankton
= -4.931-(-0.026/2) - (-0.208/2)

= -4.814 (g/m’)/d.



OXYGEN METABOLISM

STATION NUMBER Ol: SR2I:5T05:08/25-08/26:PC~CLR

NET DAYTIME PROD. 1.939 GM 02/M3/DAY

NIGHT RESPIRATION -4.931 GM 02/M3/DAY

*PRODUCTION DURING TIME PERIOD 0630 TO 1945 HRS
P/R RATIO

24 HOUR COMMUNITY METABOLISM=

0.605 GM C /M3/DAY
-1.538 GM C /M3/DAY

-2.005 GM 02/M2/DAY

0.405 GM C /M2/DAY
-1.031 GM C /M2/DAY

1.299 GM 02/M2/DAY
~3.304 GM 02/M2/DAY

0.3931

(DIFFERENCE BETWEEN NET DAILY PRODUCTION AND NIGHT RESPIRATION)

Figure 5.-——Example printout of results of Odum single station method

for determining community metabolism at site 5, lllinois River.

Define:

Net DO production = gross photosynthesis +
daytime respiration of periphyton + daytime respi-
ration of phytoplankton + nighttime respiration of
periphyton + nighttime  respiration  of
phytoplankton.

By equality 1, net DO production = net day-
time production - [daytime benthal demand +
daytime BOD] + nighttime respiration of periphy-
ton + nighttime respiration of phytoplankton.

Therefore, using assumptions 1 and 2,

net DO production = 1.939 - (-4.814) + (-.208/2)
+ (-.026/2)

= 6.64 (g/m’)/d, and

= 6.64 (mg/L)/d.

Nutrients

Plants, including algae, require carbon, nitro-
gen, phosphorus, and potassium, as well as trace
amounts of other elements to grow (Hynes, 1970).
Potassium, a common constituent in river water,
seldom limits plant growth. Forms of nitrogen
dissolved in water include organic, ionized am-
monia (NH, *), un-ionized ammonia (NH,,), nitrite,
and nitrate. Of these forms, nitrate is the most
readily available for plant growth and is the
predominant form present in streams, except, when
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there is a man-made source of ammonia present or
under reducing conditions when denitrification oc-
curs. Forms of phosphorus in water include ortho-
phosphate and the bound phosphate in soluble or
particulate form. Dissolved forms of nitrate and
phosphate are rapidly taken up by plants. Conse-
quently, their concentrations in natural water are
usually low.

Nutrient enrichment may encourage blooms of
nuisance algae. Such blooms are common in lakes
(Wetzel, 1975, p. 659) but are seldom seen in rivers.
A principal reason for the absence of blooms in
rivers is an unfavorable environment for planktonic
algae because of river currents. Many algae present
in rivers are not truly planktonic but are members of
the periphyton (attached) community that have
become dislodged because of river currents or over-
growth.

The concentration of all nutrients showed a
decline downstream in the Illinois River basin. This
trend is caused by several factors working simul-
taneously in the stream. Organic-N is decomposed
by bacterial action and hydrolysis to form am-
monia-N. Ammonia-N is oxidized to NO,-N main-
ly through the action of bacteria belonging to the
genus Nitrosomonas. The resulting N02-N is quick-
ly oxidized to NO3-N by bacteria of the genus
Nitrobacter. The resulting NO,-N is assimilated by
algae and higher plants. Lesser reactions in the
nitrogen cycle of a river include microbial fixation
of molecular nitrogen in water and bottom sedi-




ments and microbial reduction of NO,-N and
NO,-N to ammonia-N, and to the gaseous products
nitrous oxide and molecular nitrogen.

PO,-P concentrations typically show a decline
downstream. Several factors affect instream con-
centrations of PO,-P. Algae and, to a lesser extent,
bacteria (Hynes, 1970, p. 46) and aquatic macro-
phytes (Wetzel, 1975, p. 227) remove PO,-P from
solution for growth. Bacterial action on organical-
ly-bound phosphorus releases PO,-P to the stream.
Phosphorus is continually removed from and added
to the streambed by a series of complex processes,
generally with a net loss to the streambed. During a
storm, however, fast river velocities may scour the
riverbed and resuspend' a large amount of phos-
phorus and carry it downstream.

Arkansas standards (Arkansas Department of
Pollution Control and Ecology, 1981) state that
"Materials stimulating algal growth shall not be
present in concentrations sufficient to cause objec-
tionable algal densities or other nuisance aquatic
vegetation. As a guideline, total phosphorus shall
not exceed 100 ug/L in streams or 50 ug/L in lakes
and reservoirs except in waters highly laden with
natural silts or color which reduce the penetration
of sunlight needed for plant photosynthesis, or in
other waters where it can be demonstrated that algal
production will not interfere with or adversely af-
fect beneficial uses and/or fish and wildlife propa-
gation. The Commission may establish alternative
nutrient limitations for lakes, reservoirs and
streams, and shall incorporate such limitations into
appropriate water quality management plans.”

Biological Characteristics

The stream biological community was selective-
ly sampled for phytoplankton, periphyton, and
coliform bacteria. These organisms can be useful
indicators of overall river water quality.

Phytoplankton

Phytoplankton are an assemblage of micro-
scopic plants that drift passively with the currents of
rivers and lakes. In its broadest sense, the term
phytoplankton includes algae, fungi, and bacteria.
However, only the algae were considered in this
study. Although large phytoplankton communities
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generally are found in lakes, some slow moving
streams may contain significant populations, par-
ticularly in sidearms or among rooted aquatic plants
(Greeson, 1982).

Phytoplankton populations can directly affect
the pH, DO concentration, concentrations of cer-
tain inorganic constituents (particularly nutrients),
turbidity, and color of surface water. Phytoplank-
ton cause problems in domestic water supplies when
their concentrations reach ”nuisance” levels. Some
of the problems caused by "nuisance” organisms are
blooms, taste, odor, clogging of sand filters, and
toxicity (Palmer, 1959).

During biomass production by the process of
photosynthesis, phytoplankton can be an important
source of DO during daylight hours. However,
plants also respire, a process which requires oxygen.
Given the right conditions--warm water (high rate
of respiration) low light levels, and little or no wind
(low rate of oxygen transfer from atmosphere to
water)--phytoplankton may cause oxygen depletions
in a body of water, resulting in fishkills or in severe
mortality of certain insects (Greeson, 1982). Cellu-
lar chlorophyll @ content was used in this report to
estimate biomass production and respiration on a
proportional basis.

There are no applicable water-quality standards
for phytoplankton in water used for recreation.
However, esthetic considerations by users may limit
recreational use when algal blooms are present. In
addition to imparting turbidity and color, algal
blooms have been known to impart grassy, moldy,
or fishy odors to water and produce substances
toxic to livestock and man (Palmer, 1959).

Periphyton

Periphyton are the assemblage of algae, fungi,
and bacteria which are attached to or live on sub-
merged objects in streams and lakes. In the stream
environment they are the most important biomass
producers.

Factors that influence periphyton growth in-
clude current velocity, stream temperature, light
intensity, and stream depth. Another factor, and
probably the most important, is the nature of the
substrate, its texture, stability, and porosity affects
the composition of the periphyton community.



Water quality has an important influence on the
periphyton community; conversely, the periphyton
is an important influence on water quality. Below
many sewage outfalls nitrogen and phosphorus
concentrations decrease downstream partly as a
result of periphyton uptake. .

Periphyton communities were measured in this
study by means of artificial substrates. These sub-
strates consisted of plastic strips which were placed
in a stream according to mean stream depth and
amount of shading found at the sampling point.
After appropriate exposure time (15 to 30 days)
analyses of these substrate samples were used to
compare community structure. They also were used
to measure rate of colonization, or the amount of
biomass accumulated in a given unit of time in a
given area; this information yields a relative meas-
ure of the productivity of a stream.

Another useful measurement on periphyton
samples is the autotrophic index. Autotrophic re-
fers to organisms in which organic matter is synthe-
sized from inorganic substances (photosynthesis) as
compared to heterotrophic organisms, which re-
quire organic material as a source of nutrition.

The autotrophic index is the ratio of biomass to
chlorophyll @. A high value for this index indicates
a community with a large number of heterotrophic
organisms (bacteria and fungi). A low value indi-
cates a community with predominately autotrophic
organisms (Greeson, 1979). Ratios of 50 to 100
have been found in organically unpolluted waters
(Weber, 1973). Ratios greater than 100 may indicate
organic pollution (Weber and McFarland, 1969 in
Greeson, 1979; Weber, 1973). The chlorophyll a
content may also be used to estimate periphyton
production and respiration.

Total Coliform Bacteria

The coliform group, by definition, is the aero-
bic and facultative anaerobic, gram-negative, non-
spore forming, rod-shaped bacteria which ferment
lactose with gas formation within 48 hours at 35°C.
For the method used in this report, the coliform
group is defined as all the organisms which produce
colonies with a golden-green metallic sheen within
24 hours when incubated at 35°C on M-Endo medi-
um. The test does not differentiate between coli-
forms of fecal and non-fecal origin; therefore soil
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bacteria normally account for a large percentage of
organisms identified (Greeson, 1981).

The Arkansas State Board of Health has the
responsibility of approving or disapproving surface
waters for swimming and for drinking water supply,
and it has issued rules and regulations pertaining to
such uses. It is stated in these regulations that the
coliform group shall not exceed 1,000 colonies per
100 milliliters as a monthly average value (either
most probable number or membrane filter count)
for waters substantially used for body contact
aquatic sports; nor exceed this number in more than
twenty percent of the samples examined during any
one month; nor exceed 2,400 colonies per 100
milliliters on any day except during periods of
stormwater runoff; provided, however, that no
fecal contamination is known to be present. In
other waters, the coliform bacteria group shall not
exceed 5,000 colonies per 100 milliliters as a month-
ly average value (either most probable number or
membrane filter count); nor exceed this number in
more than twenty percent of the samples examined
during any month; nor exceed 20,000 colonies per
100 milliliters in more than 5 percent of such sam-
ples. Arithmetic averages will be used. The Arkan-
sas Department of Pollution Control and Ecology
has no criterion for total coliforms.

Fecal Coliform Bacteria

Fecal coliform are that part of the coliform
group that are present in the intestines and feces of
warmblooded animals. They are capable of produc-
ing gas from lactose in a suitable culture medium at
44.5°C. For purposes of this study, the fecal coli-
form group is defined as all organisms which
produce blue colonies within 24 hours when in-
cubated at 44.5°C + 0.2°C on m-FC medium.

The Arkansas Department of Pollution Control
and Ecology has established fecal coliform criteria
for all surface waters except those used for public
water supply or as a specifically delineated outdoor
bathing place (Arkansas Department of Pollution
Control and Ecology, 1981). For a class A water,
such as the Illinois River and its tributaries, between
April 1 and Septebmer 30, the fecal coliform con-
tent shall not exceed a geometric mean of 200
colonies per 100 mL nor shall more than 10 percent
of the total samples during any 30-day period ex-
ceed 400 colonies per 100 mL. The remainder of the



calendar year, class A waters shall have the same
protection as class B waters. For class B waters the
fecal coliform content shall not exceed 2000 colo-
nies per 100 mL in more than 10 percent of the
samples taken in any 30-day period.

INSTREAM REAERATION COEFFICIENT

Reaeration is the single most important source
of dependable oxygenation in a stream. This proc-
ess goes on at a rate that is proportional to the
existing DO deficit. The deficit is defined as the
difference between the existing DO concentration in
a stream and the possible saturation concentration
at the existing water temperature.

The following equation is often used to express
the rate of absorption of oxygen per unit time (rate
of reaeration);

de/dt = k,(C,-C) @)
where,

de/dr = reaeration rate, (milligrams per liter
per day),

k, = reaeration coefficient, (per day),

C, = DO saturation concentration at a given
temperature, (milligrams per liter), and

C = existing DO concentration, (milligrams per
liter).

The above units are used for convenience in this
study; other consistent units may be used. The most
difficult variable to define in this equation is ,.
However, in order to adequately simulate DO dy-
namics in a stream it is essential.

The reaeration coefficient expresses the effect
of stream hydraulic properties upon the rate of
reaeration. Available data indicate that there is a
functional relationship between &, and mean veloci-
ty, mean depth, and/or channel slope. This rela-
tionship has been defined differently by various
investigators and a number of predictive equations
are available.

An oxygen balance is often attained in stream
water-quality simulations by using one of the availa-
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ble predictive equations to estimate k,. Some simu-
lations are also attempted in which the reaeration -
coefficient is treated as the only unknown in the
oxygen balance equation and values of k, are ad-
justed until computed DO concentrations match
those that have been observed reasonably well.
There are significant problems associated with each
of these techniques for defining k,, especially the
latter. A more viable method for defining k,is a
field measurement of the coefficient for the particu-
lar stream and flow conditions being studied.

Measurement Technique

Reaeration coefficients were measured for
selected reaches of Spring Creek, Osage Creek, and
Illinois River. The measurement technique involves
the use of low molecular-weight hydrocarbon gas
and rhodamine WT dye as “tracers”. This particu-
lar technique was first described by Rathbun and
others (1975).

The hydrocarbon gas tracer technique is based
on the observation that the rate coefficient for the
tracer gas desorbing from water and the rate coeffi-
cient for oxygen being absorbed by the same water
are related by a proportionality constant such that,

ks

where,

k, = ©)

k

, = reaeration coefficient, (per day),

ky = desorption coefficient for the hydrocar-
bon gas, (per day), and

0=
constant.

experimentally determined proportionality

Values of © for ethylene and propane were deter-
mined from a series of mixing-tank experiments in
which &, and k. were measured simultaneously
(Rathbun and others, 1978). These values are 1.15
and 1.39 for ethylene and propane, respectively.

The rhodamine WT dye is used as a dispersion-
dilution tracer. However, it is recognized that the
dye is not completely conservative and provisions
are built into the computation procedure to correct
for dye losses.



The low molecular-weight hydrocarbon gas and
rhodamine WT dye solution are injected into the
stream as a short continuous injection. A contin-
uous injection is necessary because the solubilities
of ethylene and propane are so small that an instan-
taneous point-source injection would require a
quantity of tracer solution too large to handle easily
for most streams. The injection is continued only
long enough to get sufficient tracer gas into the
stream to obtain measurable concentrations down-
stream. Although plateau concentrations may be
obtained at the first sampling site, only peak con-
centrations are usually obtained at sites farther
downstream. Complete dye concentration-versus-
time curves should be obtained and discharge meas-
urements made in case dye loss corrections are
necessary.

The gas and dye concentration-versus-time
curves obtained at the beginning and end of a
stream reach are used to define the gas desorption
rate coefficient for that reach. Examples of the
curves that can be obtained are shown in figures 6
and 7.

Details of the field procedures for measuring
reaeration coefficient have been described by Rath-
bun and others (1975), Shultz and others (1976),
Rathbun (1977), and Rathbun and others (1978).
These publications are recommended to the interest-
ed reader.

Data Interpretation

There are two computational procedures for
determining a gas desorption coefficient from gas
and dye data collected at two or more sampling sites
within a stream reach of interest. One is based on
the peak gas concentration observed at each site and
the other is based on the areas under the gas concen-
tration-versus-time curves at each site.

The basic equation for determining the gas
desorption coefficient using the peak method is:

kp = [1/(t 2 )]In [(C;/Cp) /(C1/Cp) ] ©)

where,

k, = desorption coefficient for the hydrocar-
bon gas, (per day),
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t = time of arrival of peak gas concentration,

C; = peak concentration of gas, (micrograms
per liter), and

Cp, = peak concentration of dispersion-dilution
tracer, (micrograms per liter).

Subscripts d and « indicate downstream and up-
stream, respectively.

An assumption is made in equation 6 that the
dispersion-dilution tracer is conservative. Under
many stream conditions, rhodamine WT dye is not
completely conservative. In such cases the follow-
ing procedure can be used to account for possible
dye losses:

Q,A, = Q433 = QA J,

where,

Q)

Q = discharge, (cubic feet per second),

A = area under the dye concentration-versus-
time curve, and

J = correction factor used to maintain equality.

The subscripts 2, 3, and 4 indicate sampling sites in
a downstream direction. Complete mixing is re-
quired for this correction to be valid. Equation 6
then takes the following form between hypothetical
sampling sites 3 and 4:

kp = [t A)IInl(Cy/C T)/(C /Cp T )] ®)
where all variables are as previously defined.

The area method can be used if mixing is
complete at each sampling site. This computation
has the advantage that dye concentrations are not
needed. The basic form of the equation is as fol-
lows:

kp=[1/(t71)]In(A, Ay ©)

where,

A = area under the gas concentration-versus-
time curve, and
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1 = time of arrival of the centroid of the gas
tracer mass.

The subscripts «# and d indicate upstream and down-
stream, respectively.

For best results in defining k,, the percent
difference in peak gas concentrations from the
upstream to the downstream sampling sites should
be at least 20 percent greater than the percent
difference in peak dye concentrations. If the per-
cent difference in peak gas concentrations is signifi-
cantly less than 20 percent greater than the percent
difference in peak dye concentrations, then kT will
be biased by dispersion and may not reflect a true
desorption coefficient.

After application of equations 6, 8, and/or 9,
k, can be determined by substituting the resulting
k - value and the appropriate value of © into equa-
tion 5. These values of k, are representative of the
flow conditions and water temperature during the
gas and dye injection and sampling period.

Details on the derivation and application of
equations 6-9 are given by Rathbun and others
(1975) and Rathbun and Grant (1978). The interest-
ed reader should refer to these publications for
further explanation.

Computations of Kk, using equation 6 are the
most representative for Spring Creek, Osage Creek,
and Illinois River. Possible incomplete mixing and
problems in defining complete dye concentration-
versus-time curves made dye loss corrections to the
peak method and/or area method computations
questionable. Only ethylene was used as a gas tracer
in these studies. The value of © in all of the &,
computations is therefore 1.15.

TIME OF TRAVEL

Time of travel refers to the movement of water
or waterborne materials from point to point in a
stream for steady or gradually varied flow condi-
tions (Hubbard and others, 1982). The most accu-
rate method for determining times of travel is by
observing the movement of a conservative tracer
that behaves in the same manner as the water
particles in the stream. Flourescent dyes, although
not completely conservative, and established dye
tracing techniques are often used. A measure of
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instream dye movement is therefore a measure of
water particle movement and can be translated into
mean velocities for steady and gradually varied
flows.

Measurement Technique

The appropriate data needed for measuring
time of travel can be obtained by ”slug injecting” a
fluorescent dye into a stream at a given location and
tracing (or measuring) the resulting dye cloud at
other downstream locations. The degree of fluores-
cence can be determined by use of a fluorometer.
Dye concentration is proportional to fluorescence.
The dye cloud passage at each sampling site is
defined by a plot of dye concentration versus time
(fig. 8). The time required for the movement of the
dye cloud between sampling sites is the time of
travel. Knowing the time of travel and distance
between sampling sites, mean velocities can be
computed. Mean velocities are usually best reflected
by the traveltime of the peak concentrations in the
dye cloud between sampling sites. For the most
reliable results the dye should be well mixed at each
sampling site.

Velocity Interpretation

Stream velocity, and consequently time of trav-
el, varies with discharge. For purposes of steady-
state stream water-quality modeling it is ideal to
have mean stream velocities defined by travel times
measured for the discharge of interest. However,
this may not always be possible. If only one time-
of-travel data set can be collected, it should be done
at a steady discharge within a range for which
channel geometry (mean cross sectional area, mean
width, and mean depth) would remain unchanged.
Adequate mean channel width can be computed
from field measurements made at frequent distance
intervals. Mean cross sectional area can then be
"fit” on the basis of measured mean velocities and
associated discharges. The following relation is
used,

A=0Q/V, (10)

where,

A = mean cross sectional area, (square feet),



Site n Site n+l
°© T,
T
~ Pn Pn+|
Z t
0 p
-
q
x
g
L an
0
5 c
Pn+|
0
TIME >~
s
8 T= Total elapsed time since slug injection
<
;; t = Peak concentration traveltime
e Cp= Peak dye concentration
E

Figure 8.—Definition of the concentration versus time curves resulting from
an instantaneous dye injection, (modified from Hubbard and others, 1982).

Q, = discharge measured during time of travel
data collection, (cubic feet per second), and

V, = mean velocity derived from the time of
travel data, (feet per second).

Mean channel depth can then be derived as the
ratio of mean cross-sectional area to mean channel
width.

Mean velocities for the discharge of interest can
then be simulated as follows,
V, = Q,/A (1

where,
A = mean cross sectional area, (square feet),

Q, = the discharge of interest, (cubic feet per
second), and
v

V, = computed velocity of interest, (feet per
second).

This procedure was used to simulate mean
velocities and consequently times of travel in the
stream models for Muddy Fork, Spring Creek,
Osage Creek and Illinois River.
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WATER-QUALITY MODEL

According to existing water-quality standards,
(Arkansas Department of Pollution Control and
Ecology, 1981) a key criterion for determining the
"quality” of a stream system is the instream concen-
tration of DO. Various physical and biochemical
components simultaneously impact DO in a stream,
resulting in both diel and spatial variations in DO
concentration. Some of the components help re-
plenish the DO, whereas others consume DO. To
determine the assimilative capacity of a stream,
existing stream water-quality conditions must first
be defined. Projections can then be made to esti-
mate how much additional waste can be discharged
to the stream, or how much existing waste dis-
charges must be reduced in order to meet existing
water-quality standards.

Digital models are quite commonly used in
assessing the capacity of streams to assimilate mu-
nicipal and/or industrial wasteloads. Guidelines
were released in March 1980 by the U.S. Environ-
mental Protection Agency, Region 6, for justifying
advanced secondary treatment or advanced waste
treatment of municipal sewage (written commun.,
U.S. Environmental Protection Agency, 1980).
These guidelines indicate that any perennial stream
into which an effluent greater than 3 ft3/s is to be



discharged must be analyzed for assimilative capaci-
ty by using a calibrated and verified, steady-state
digital water-quality model based on the Streeter
and Phelps (1925) oxygen-sag equation.

Digital Model Description

A modified version of a one-dimensional,
steady-state stream water-quality model, described
by Bauer and others (1979), was used in this study.
The model requires that flow rates and associated
inflow constituents from all tributaries and waste
discharges be constant. The model is based primari-
ly on the Streeter-Phelps (1925) oxygen-sag equa-
tion.

Problem solution is achieved by dividing each
reach of a modeled stream system into a number of
subreaches. These subreaches generally are defined
by the locations of waste and tributary inflow points
or significant changes in stream characteristics. In
addition to the inflow of waste or tributary sources
at the head of each subreach, linear runoff (non-
point flow) may be specified along any subreach.
All constituents being modeled are assumed to be
instantaneously and completely mixed within any
stream cross section. The model can be used to
simulate and predict concentrations of DO, CBOD,
nitrogen forms, total and fecal coliform bacteria,
PO,-P and conservative substances. Output from
the model includes tabulations of those concentra-
tions at selected fixed distance intervals and profile
plots of concentration versus river mile.

The basic model was modified by the authors of
this report to correct some problems in the program
and to provide the capability of simulating a more
varied set of conditions for any given receiving
stream. The primary modifications include the
following:

1. The addition of a new subroutine to compute
reaeration coefficients for each subreach by any one
of eight predictive equations.

2. The addition of a temperature-correction
factor for net photosynthetic DO production (algal
photosynthesis minus algal respiration), as de-
scribed by Krenkel and Novotny (1980, p. 397).

3. The imposition of an upper limit of satura-
tion upon projected DO concentrations when

19

projecting the assimilative capacity of a potential
receiving stream; the "dependable” DO concentra-
tion in the stream should not be greater than satura-
tion. When such conditions occur it is because of
the projected effects of net photosynthetic produc-
tion. Modifications have been made in the model so
that, under such circumstances, only that part of
photosynthetically produced DO needed to main-
tain saturation is retained in the water column; the
"excess” is assumed lost to the atmosphere. Howev-
er, if additional or larger demands are placed upon
instream DO causing increased deficits, then what
had been “excess photosynthesis” is available to
maintain saturation until it is depleted.

4. The correction of DO mass-balance compu-
tations at point-source inflow locations. Significant
errors in DO concentrations at the beginning of a
subreach resulted when the point-source discharge
was a significant part of the downstream flow and
when the temperature of the point-source discharge
was significantly different from the water tempera-
ture in the subreach.

5. The addition of a technique for simulating
the minimum DO profile in a diel cycle. This
technique is based on the assumption that the diel
fluctuation in DO at any given location along the
DO profile is primarily the result of algal DO
production and respiration.

To further increase the efficiency and utility of
the model, several other minor modifications were
made, including some changes in card input and
printed output. The modifications described in
items 1 through 4 are discussed in detail in an earlier
report (Attachment A, in Terry and others, 1982).
The simulation technique and associated model
modifications mentioned in item 5 above are de-
scribed in Attachment A of this report.

Calibration and Verification Procedure

The values of some of the components needed
to describe the quality of a stream system numeri-
cally and the rates at which these components
change in the system can be determined directly; the
values of others must be determined by trial and
error. Model calibration is the process by which
these trial-and-error determinations are made. Cali-
bration is considered successful when plausible val-
ues have been determined for all components and
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rate coefficients, and a sufficient similarity had
been achieved between model results and observed
data. If the calibrated model can then be used to
adequately forecast data observed in one or more
independently collected data sets, then model verifi-
cation is considered successful. Inherent errors in
defining unknown rate coefficients and parameters
can be minimized by ”fine-tuning” them during the
calibration-verification process. Figure 9 illustrates
the general modeling procedure which is dependent
upon the ”“fine-tuning” achieved during calibra-
tion-verification.

In this study, the variable constituents that are
predictable include the following:

1. dissolved oxygen,
2. carbonaceous biochemical oxygen demand,

3. nitrogen forms (organic-N, ammonia-N,
NO,-N, NO,;-N),

4. orthophosphate-P, and
5. fecal and total coliform bacteria.

Those constituents and processes that directly
impact the quality of the system, as defined by the
instream concentration of DO, are:

1. carbonaceous biochemical oxygen demand,
2. nitrogen transformations,

3. benthic oxygen demand,

4. net DO production, and

5. reaeration.

The values of the "average” benthic oxygen de-
mands and of the following rate coefficients are
determined, by subreach, in the calibration and
verification process:

KR (k) = Average CBOD decay rate coeffi-
cient for a subreach, day‘l (base e).

KD (k, = Average CBOD deoxygenation rate
coefficient for a subreach, day!(base e).

KORG = Average organic-N forward-reaction
coefficient for subreach, day!(base e). Expressed
as an average subreach instream rate coefficient.

KNH3 = Average ammonia-N forward-reac-
tion coefficient for a subreach, day'l(base e). Ex-
pressed as an average subreach instream rate coeffi-
cient.

KNO2 = Average NO,-N forward-reaction
coefficient for a subreach, day!(base e). Expressed
as an average subreach instream rate coefficient.

KNO3 = Average NO;-N decay rate for a
subreach, day!(base e). Expressed as an average
subreach instream rate coefficient.

SKORG = Average organic-N decay rate for a
subreach, day‘l(base e). Expressed as an average
subreach instream rate coefficient.

SKNH3 = Average ammonia-N decay rate for
a subreach, day'l(base e). Expressed as an average
subreach instr¢gam raté coefficient.



SKNO2 = Average NO,-N decay rate for a
subreach, day!(base e). Expressed as an average
subreach instream rate coefficient.

KPO41 = Coefficient for stream bottom-
deposit uptake rate in orthophosphate-P equation,
day'l(base e). Expressed as an average subreach
instream rate coefficient.

KCOLF = Average fecal-coliform die-off rate
for a subreach, day! (base e). Expressed as an
average subreach instream rate coefficient.

KCOLT = Average total-coliform die-off rate
for a subreach, day! (base e). Expressed as an
average subreach instream rate coefficient.

Some explanation of the dual-decay rates for
CBOD, organic-N, ammonia-N, and NOZ-N is
necessary. CBOD is removed from the water col-
umn at a rate defined by &,. Part of this removal is
due to decay and part may be the result of deposi-
tion. Actual decay of the material proceeds at a rate
defined by k ; such that k;<k . If all removal is due
to decay, then & = kr. The nitrogen-cycle transfor-
mation is a Dbiologically-coupled sequentially-
mediated reaction involving the decay of organic-N
to ammonia-N through NO,-N to NO;-N. The
forward reaction of each nitrogen form to the next
nitrogen form and the associated concentration
coupling is determined by the forward-reaction co-
efficient. These forward reactions--the transforma-
tion of one nitrogen form to another--generally are
the most significant reactions. However, there are
other possible reactions. These include the deposi-
tion of organic-N, plant utilization of ammonia-N,
reduction of NO;-N to ammonia-N, and the escape
as gas of un-ionized ammonia-N and molecular
nitrogen. The rates at which these reactions occur
are included in the decay-rate coefficients.

The decay rates describe the total rate of remov-
al of the nitrogen forms from the water; whereas,
the forward-reaction coefficients describe the rate at
which one form of nitrogen decays sequentially
forward to the next form. Therefore, each decay
rate should always be greater than, or equal to, its
associated forward-reaction coefficient. The rate at
which nitrate is utilized is described by the NO4-N
decay rate, which includes reduction of NO,-N to
ammonia-N and, primarily, plant utilization of
NO;-N.
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Simulation Techniques
Consistent criteria must be used when:

1. preparing calibration and verification data
for input to model,

2. establishing "observed conditions” to which
model derived output will be compared,

3. establishing initial values and ”adjustment
criteria” for model derived rate coefficients and
spatially-averaged benthic demands, and

4, preparing data for model simulated projec-
tions.

The following discussions are brief summaries
of how the preceeding items were addressed in the
Muddy Fork, Spring Creek, Osage Creek, and
1llinois River models. The methods discussed were
used consistently in all four of the stream models.

Calibration-Verification

Following the “fitting” of average subreach
channel geometry, as described in the "Time of
Travel” section, reaeration coefficients were defined
for each subreach to be modeled. For Spring Creek,
Osage Creek, and Illinois River, where reaeration
coefficients had been measured in selected reaches,
each of the eight reaeration coefficient predictive
equations available in the digital model were tested
to see which one could most accurately predict the
measured coefficient, given observed stream geo-
metry and flow conditions. The equation that could
successfully reproduce the measured value was then
assumed valid for computing reaeration coefficients
for the entire length of stream to be modeled and
for reasonably similar flow conditions. This as-
sumption could be violated if stream channel
characteristics changed significantly or if flow con-
ditions were simulated in which velocities were so
slow that a chosen velocity-dependent equation
would under predict the reaeration coefficient.
When such conditions prevail the Velz (1970) ap-
proach, as defined in a predictive equation by
Hirsch, R. M., U.S. Geological Survey, written
commun. 1980), is used to simulate values for £,.
The Velz-Hirsch equation is not dependent upon
velocity and is assumed to define the lower bound-
ary of possible values for reaeration coefficient due
to changing flow conditions in a given stream seg-
ment.



Net DO production was computed for each site
where sufficient data were available. The method-
ology of these computations is described in the
previous section, "Net Photosynthetic Dissolved
Oxygen Production.” Model structure requires that
net DO production be input by subreach.
Therefore, values computed at each site on a stream
must be distributed and averaged by subreach so
that net DO production values are representative for
the reaches to which they are applied. Net DO
production values are computed for subreach end
points by linearly distributing the net DO produc-
tion values determined at nearby stream sites. The
values at subreach end points were then averaged to
obtain a subreach-average value for net DO produc-
tion. The distribution and averaging was done as
follows:

Pp = [P,-Pp/D]d, + Pp (12)
or
Pp =P -[(P,-Pg)/Djd, 13)
where,
P = net production at subreach end point £

downstream from site A and upstream from site B,
(milligrams per liter per day),

P ,Pg = net DO production computed at sites
A and B, respectively, (milli_grams per liter per day),

D = distance from site A4 to site B, (miles),

d, = distance from site A to subreach end point
E, (miles),

d, = distance from subreach end point £ to site
B, (miles), and
P, =(Pg +Pg)/2, (14)

P, = average net DO production for a sub-
reach, (milligrams per liter per day).

Subscripts 1 and 2 designate the two end points
of a subreach.

All of the independent calibration (1981 data
set) and verification (1979 data set) data input to the
models were averaged over a diel period. Model-
derived constituent profiles for the previously de-
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fined ”predictable variables” are therefore diel-
average profiles.

Values for k were determined by fitting the
computed-average CBODU profile, based upon all
sources defined, to the observed average profile.
Values for the instream deoxygenation coefficient,
k,, were determined from k; values and a stream-
characteristic correction factor defined by Bosko
(1966). Values of k,; (day'l) are deoxygenation rate
coefficients determined from CBODU analyses.
They are based on time series data collected during
the standard BOD bottle-time test (see page 13).
Values of k ; were then averaged, by subreach, and
the following equation applied:

k,=k, + n(V/D) (15)
where,

k q= instream deoxygenation rate coefficient,
(per day),

k, = mean "bottle-time” deoxygenation rate
coefficient, (per day),

V = mean stream velocity, (feet per second),
D = mean stream depth, (feet), and
n = coefficient of bed activity.

The dimensionless coefficient n is determined by
channel slope in feet per mile. Values of n are
obtained as a step function of slope and are given by
Tierney and Young (1974) and Zison and others
(1978). The second term on the right in equation 135
reflects the importance of organisms in the
streambed that utilize CBOD. The & d values were
not adjusted during calibration-verification unless
observed data indicated that, in a particular sub-
reach, & , was less than the computed & 4 In such a
case kK ; was set equal to the smaller k..

The following rationale was established for the
definition of all of the nitrogen decay rate and
forward reaction rate coefficients. Values for
SKORG were defined by the observed change in
organic-N concentration with distance. Based upon
past experience and comparable literature values
KORG was set equal to 0.05 day‘l. The decay rate
coefficient and forward reaction rate coefficient
were set equal for ammonia-N and also for NO,-N.



Profiles for nitrogen forms were "fit” sequentially
from organic-N through NO,-N. The values of the
reaction coefficient pairs for ammonia-N and
NO,-N and for the NO,-N decay rate coefficient are
functions of the observed loss in that constituent
down the river and the source contributions from
the preceeding reaction. The equality of the reac-
tion coefficient pairs for ammonia-N and for
NO,-N and the organic-N forward reaction coeffi-
cient of 0.05 day™! at 20°C were maintained unless
the calibration-verification process dictated that a
deviation for a particulaf subreach was necessary.

Values for KP041, KCOLF, and KCOLT were
determined by the observed change in PO 4P, fecal
coliform, and total coliform concentrations, respec-
tively, with distance. These coefficients have no
direct effect upon the model-derived DO profile.
They do, however, make it possible to simulate
changes in the instream concentrations of PO,-P,
fecal coliforms, and total coliforms resulting from
changes in point and nonpoint source loadings.

When the model could adequately simulate
observed CBODU and nitrogen form profiles, the
only component impacting the DO profile that
lacked definition was the spatially-averaged sub-
reach benthic demand. Net algal DO production
and reaeration coefficients were defined as in-
dependent components. Initial estimates for sub-
reach-average benthic demands, obtained from res-
pirometer analyses of "point” bed material samples,
were then adjusted, by subreach, until the computed
and observed mean DO profile matched reasonably
well. These adjusted values are more representative
of spatial subreach averages.

After defining the subreach average benthic
demands, the model was calibrated and verified for
diel minimum DO profile simulation. Observed
mean DO data were removed from the calibration
and verification data sets and replaced with diel
minimums. The effect of daily net DO production
was then adjusted, by subreach, until a match was
obtained between model derived and observed mini-
mum DO profiles. This rationale is based upon the
fact that, with the exception of minimal impacts due
to temperature changes in reaction coefficients, diel
fluctuations in the DO profile are primarily the
result of algal DO production and respiration.
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Projections

After successful calibration and verification,
representative input data must be prepared in order
to make meaningful simulations for projected
changes in constituent loading. Tributary water-
quality data used in model calibration and verifica-
tion should be considered. Flow distributions must
also be determined for the stream discharge that is
to be simulated.

The discharge simulated for projections on
Muddy Fork, Spring Creek, Osage Creek, and
Hllinois River was the Q4. Channel geometry was
assumed unchanged from calibration and verifica-
tion conditions. The flow distribution was made for
each stream on the basis of known Q7 /10 values,
Hines (1975) and Hunrichs (1983), and linear dis-
charge balance computations.

Constituent loadings for initial upstream flows
and point sources were obtained by averaging con-
centrations observed in the calibration and verifica-
tion data séts. DO concentrations were not aver-
aged directly; percent saturations were averaged and
that average related to saturation at the projected
stream temperature.

Reaeration coefficients for the Q,,, projec-
tions were computed by the predictive equation
chosen for calibration-verification except when
velocities were so slow that the Velz equation pro-
duced higher values. In such cases the Velz equa-
tion was activated in the model to predict k, values
under Q, ,,, conditions.

Values of &, for projections on Muddy Fork,
Spring Creek, and Osage Creek were determined by
applying the Bosko correction (equation 15), result-
ing from Q, 10 flow velocities, to the subreach
average k, values determined from the calibration-
verification data sets. Because all projections were
for secondary treatment or better, projected &,
values were set equal to ;. This is based upon the
assumption that all particulate CBOD would be
removed prior to discharge of the effluent.

Under existing conditions, there are no direct
point-source waste discharges on the main stem of



Illinois River. Values of k, determined from the
analyses of samples taken during collection of the
calibration and verification data sets were not con-
sidered valid to use in computing values of k; for
simulations that included the projected discharge of
the Fayetteville WWTP. Values of k; determined
for nearby Osage Creek under loaded conditions
were considered more valid. Consequently, all &,
values determined for Osage Creek downstream
from the Rogers WWTP were averaged. The appro-
priate Bosko correction (equation 15) reflecting
llinois River Q, /10 flow conditions was applied, by
subreach, to this average k, value. The resulting
values of k, were used for all 1llinois River simula-
tions that include the proposed Fayetteville WWTP
effluent inflow.

Deposition of particulate matter discharged
from a WWTP is assumed to be a significant
contributor to the benthic demand. For all of the
projected loading scenarios simulated, particulate
matter should be removed prior to effluent dis-
charge. The primary constituent present in WWTP
effluent that contributes to benthic demands is the
carbonaceous material. As discussed earlier, the
projected reduction in carbonaceous particulate
matter was the basis for reductions in k, values for
Muddy Fork, Spring Creek, and Osage Creek pro-
jections. Benthic demands used in Muddy Fork,
Spring Creek, and Osage Creek projections were
determined as follows:

B =(K /K

B .
"new T exis/ exist

(16)
where,

B = benthic demand (grams per square meter
per day),

k, = CBOD removal rate coefficient, (per day),
and

new and exist = values used in projections and
calibration-verification, respectively.

Because benthic demands defined during calibra-
tion-verification on the Illinois River do not reflect
contributions of particulate CBOD from an existing
WWTP, no changes in benthic demands were
deemed necessary in the Illinois River projections.
The same values defined during calibration-verifica-
tion were used in the projections.
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Model Sensitivity

The "worst” natural conditions simulated in
this study are Q,,, low flows at representative
summertime high water-temperatures of 29°C.
Each stream model was tested for sensitivity under
these conditions. One simulation, with projected
WWTP effluent limits imposed, was used for the
sensitivity testing for each stream model. The
criteria used in choosing the appropriate simulation
were that:

1. the instream minimum DO concentrations
resulting from the WWTP inflow either meets, or
comes closest to meeting the Arkansas standard,
(Arkansas Department of Pollution Control and
Ecology, 1981)

2. if minimum DO concentrations resulting
from WWTP inflow meet standards in more than

one simulation, use the simulation in which the

projected WWTP effluent limits require the least
amount of waste treatment, and

3. if in the simulation chosen, minimum DO
concentrations meet standards with DO concentra-
tions in the WWTP effluent set at both 5.0 mg/L
and saturation, use the one with 5.0 mg/L DO
concentration in the WWTP effluent.

Sensitivity testing was done to evaluate the effects
upon the DO concentration profile of controlled
changes in various impacting components and rate
coefficients in all subreaches. The types of changes
imposed include a plus or minus 20-percent change
in the following:

1. mean river depths,

2. mean river velocities,

3. reaeration rate coefficients,

4. benthic demands,

5. net photosynthetic production,

6. instream CBOD deoxygenation rate and
removal rate coefficients,

7. ORG-N forward-reaction rate and decay rate
coefficients,



8. NH3-N forward-reaction rate and decay rate
coefficients,

9. NO2-N forward-reaction rate and decay rate
coefficients,

10. WWTP dissolved-oxygen concentration,
11. WWTP CBOD concentration,

12. WWTP NH3-N concentration, and a plus
or minus 2.0°C change in

13. stream-water temperature.

The effect of each of these changes was determined
independently with a separate model run, making a
total of 26 sensitivity runs for each of the four
stream models. The resulting DO profile for each
plus and minus change was plotted and define a
dissolved-oxygen sensitivity band for each of the
thirteen components and rate coefficients.

According to 1980 U.S. Environmental Protec-
tion Agency criteria for justifying advanced second-
ary treatment/advanced waste treatment effluent
limits, (U.S. Environmental Protection Agency,
written commun., 1980) the value of any compo-
nent or rate coefficient may need further evaluation
if its DO-sensitivity-band width is greater than 1.0
mg/L. However, a sensitivity band width of 1.0
mg/L or greater does not necessarily imply an error
in the value definition for the parameter or coeffi-
cient analyzed. Because of stream-system dynam-
ics, an instream DO profile may be particularly
sensitive to a given parameter. Desensitizing one
parameter at the expense of unrealistically
reevaluating others may lead to a poorer definition
of instream water-quality dynamics.

MUDDY FORK ASSESSMENT

Muddy Fork Illinois River (fig. 1) flows gener-
ally south to north, through small farms and forest
lands, into the main stem of the Illinois River at
mile 135.6. It has a total drainage area of 73.6 mi?
at its mouth (Sullavan and Terry, 1970). The Prai-
rie Grove WWTP is the only point-source waste
effluent that discharges into Muddy Fork. The
effluent enters the stream at mile 8.3. The reach of
Muddy Fork modeled is from mile 8.6 to its mouth
(fig. 10). A location index for sites where data were
collected for the Muddy Fork assessment is given in
table 1.
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Figure 10.--Schematic of Muddy
Fork showing sampling-site and
model-subreach locations.

Surface-Water Hydrology

Muddy Fork is primarily a canopied, pool and
riffle type of stream with long pools dominating.
Channel slopes range from 4.1 ft/mi to 2.9 ft/mi in
a downstream direction.

Cumulative flows in Muddy Fork during collec-
tion of the calibration data set (Aug. 24-Sept.S,
1981) ranged from 0.54 £t3/s at mile 8.6 to 3.5 ft3/s
at the mouth (Attachment B-2, B-3, B-6, and B-21).
Cumulative flows during collection of the verifica-
tion data set (July 23-27, 1979) ranged from 1.0
ft3/s at mile 8.6 to 4.63 ft3/s at the mouth (Attach-
ment B-23, B-24, B-27, B-41). In the 1981 data set,



26 percent of the total stream flow immediately
downstream from the Prairie Grove WWTP was
effluent discharge. In the 1979 data set the effluent
discharge amounted to 14 percent of the total
streamflow immediately downstream from its point
of entry.

An existing Q, ,,, low flow distribution (fig. 11)
was defined on the basis of data presented by Hines,
(1975) and Hunrichs (1983). This distribution was
established by mass-balancing total discharge at site
16 (table 1). The difference between the sum of
initial and point-source Q,,,, discharges and the
established Q, ,, discharge at site 16 was distributed
linearly as flow loss between stream mile 8.3 and the
mouth, on the basis of percent of total point-source
flow contributed (fig. 11).

Water Quality

Physical Characteristics

Suspended solids.-- During the collection of
"steady-state” data in 1978, 1979, and 1981 sus-
pended-solids concentrations in Muddy Fork
ranged from 4 to 10 mg/L at site 7 upstream from
the Prairie Grove WWTP and from 5 to 13 mg/L at
sites downstream of the WWTP (table 2). Concen-
trations in the Prairie Grove WWTP effluent
ranged from 25 to 35 mg/L. Tributary inflow
concentrations in other tributaries ranged from 6 to
43 mg/L. Concentrations of suspended-solids dur-
ing stormwater runoff periods were generally at
least three times greater than during periods of low

0.0 ft¥s

PRAIRIE
WA:'rEOxETER existing mean =0.16 13/
TREATMENT | Proiected mean=043 #¥s
PLANT

Y
-0.09 1% — x
0
w
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3
2
t

0.3 t1% MOORES CREEK

CHECK POINT (existing= 0.2 f1%s,
projected=0.47 1% )
NEAR MOUTH OF
MUDDY FORK SITE 16

ILLINOIS RIVER
(NOT TO SCALE)

Figure 11.--7-day, 10-year low flow distribution for Muddy Fork.
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flow; Mainstem and tributary concentrations
ranged from 20 to 81 mg/L (table 3). Sources of
suspended solids during higher-flow periods are
from resuspension of deposited material and from
overland flow of stormwater runoff. Because sus-
pended solids transport attached nutrients and bac-
teria, nutrients and bacteria may be added to
streams by runoff.

Water temperature.-- Although water tempera-
tures of the Prairie Grove WWTP effluent were
generally warmer than temperatures upstream from
the WWTP effluent (table 4), it appears that the
effluent complies with the Arkansas water-quality
standard (Arkansas Depattment of Pollution Con-
trol and Ecology, 1981).

Dissolved Solids.-- Dissolved-solids concentra-
tions for the 1978 "steady-state” sampling periods
ranged from 169 to 279 mg/L in Muddy Fork, from
386 to 561 mg/L in the Prairie Grove WWTP
effluent, and from 128 to 252 mg/L in the tribu-
taries sampled (table 2). These data indicate that
Arkansas stream water quality standards (Arkansas
Department of Pollution Control and Ecology,
1981) for total dissolved solids were not being vi-
olated. Using a dissolved solids to specific conduc-
tance ratio of 0.54 (see page 5 ), minimal dis-
solved-solids estimates for 1979 and 1981 “steady-
state” conditions ranged from 168 to 247 mg/L in
the main stem of Muddy Fork.

Minimal dissolved-solids concentrations in
stormwater-runoff samples estimated from mea-
sured specific conductance values (table 3). Main-
stem and tributary concentrations ranged from 76
to 103 mg/L.

Chemical and Biochemical Characteristics

Chloride.-- Chloride concentrations for the
1978 "steady-state” sampling periods ranged from
10 to 17 mg/L in Muddy Fork, from 36 to 44 mg/L
in the Prairie Grove WWTP effluent and from 7.5
to 10 mg/L in sampled tributaries (table 2). These
data indicate that Arkansas stream water quality
standards (Arkansas Department of Pollution Con-
trol and Ecology, 1981) for Muddy Fork were not
violated.

Sulfate.-- Sulfate concentrations for the 1978
"steady-state” sampling periods ranged from 2.0 to
49 mg/L in Muddy Fork, from 79 to 80 mg/L in the
Prairie Grove WWTP effluent and from 1.0 to 22
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mg/L in sampled tributaries (table 2). The data
indicate that Arkansas water quality standards (Ar-
kansas Department of Pollution Control and Ecolo-
gy, 1981) were violated at five sites.

pH.-- Values of pH in the Muddy Fork ranged
from 7.4 to 8.2, from 7.1 to 7.3 in the WWTP
effluent, and from 7.2 to 7.9 in tributary inflows
(table 2).

Dissolved oxygen.-- The DO concentration
ranged from 2.6 to 17.0 mg/L, in Muddy Fork, and
from 0.5 to 6.9 mg/L in the Prairie Grove WWTP
effluent. Tributary inflow concentrations ranged
from 2.6 to 9.3 mg/L (table 4). According to
Arkansas water-quality standards an instantaneous
minimum DO concentration in Muddy Fork shall be
greater than or equal to 4.0 mg/L. DO concentra-
tions of less than 4.0 mg/L were observed down-
stream from the WWTP,

Ultimate carbonaceous biochemical oxygen
demand.-- During “steady-state” conditions
CBODU ranged from 2.0 to 5.7 mg/L at site 7
upstream from the Prairie Grove WWTP outfall
and from 2.2 to 34 mg/L downstream from the
outfall (table 2). CBODU concentrations of the
effluent ranged from 36 to 92 mg/L. CBODU
concentrations in tributaries ranged from 2.6 to 13
mg/L. CBODU concentrations of storm water-
runoff samples (mainstem and tributary) ranged
from 6.1 to greater than 26 mg/L (table 3).

Streambed oxygen demand.-- A “streambed
oxygen demand” of 3.20 (g/m?)/d was measured
for a sample collected at site 7 upstream from the
WWTP. "“Streambed oxygen demands” down-
stream from the WWTP were lower and ranged
from 0.70 to 1.85 (g/m?)/d (table 5).

Net photosynthetic dissolved-oxygen produc-
tion. --"Net DO production” was calculated as
discussed previously in the general ”"Net Photosyn-
thetic Dissolved-Oxygen Production” section, and
ranged from 0.2 to 1.9 (mg/L)/d (table 6). Chloro-
phyll a concentrations used in calculations were
distance-weighted estimates based on actual chloro-
phyll @ concentrations at sites 7, 9, and 15. For
modeling purposes net DO production was calculat-
ed for each subreach (see "Simulation Techniques”
section and Attachments B-6 and B-27).
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Table 6.--Net photosynthetic dissolved-oxygen production

at selected sites on Muddy Fork

Net photosynthetic
dissolved oxygen

Site River Date production
Number Mile (1981) [(mg/L)/d at 20°C]
7 8.6 September 3-4 1.9
9 8.2 September 3-4 1.1
15 1.1 September 4-5 0.2

Nutrients.-- Analyses indicate nutrient enrich-
ment of Muddy Fork (and its tributaries). Analyses
of stormwater-runoff samples (table 3) indicate that
the Prairie Grove WWTP is not necessarily the sole
cause of the nutrient enrichment. Nutrient concen-
trations, particularly organic nitrogen and total
phosphorus, generally were greater during runoff
conditions than during ”steady-state” conditions.
This suggests that nutrients deposited on the
streambed were resuspended as velocities increased
and/or that overland runoff of stormwater tran-
sported nutrients into the streams.

During “steady-state” conditions organic-N
concentrations (table 2) ranged from 0.18 to 0.73
mg/L at site 7 upstream from the Prairie Grove
WWTP effluent and from 0.03 to 1.9 mg/L down-
stream from the WWTP effluent. Concentrations
in the effluent ranged from 3.0 to 5.8 mg/L.
Tributary inflow concentrations ranged from 0.11
to 2.7 mg/L. Concentrations of organic-N in
stormwater-runoff  samples (mainstem and
tributary) ranged from 0.80 to 2.1 mg/L and were
generally one-and-a-half to two times greater than
mean "steady-state” concentrations (table 3).

During “steady-state” conditions, ammonia-N
concentrations (table 2) ranged from 0.05 to 0.11
mg/L at site 7 and from 0.03 to 3.3 mg/L at sites
downstream of the WWTP effluent. Concentra-
tions in the WWTP effluent ranged from 0.54t0 9.2
mg/L. Tributary inflow concentrations ranged
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from 0.01 to 1.2 mg/L. Ammonia-N concentra-
tions in stormwater-runoff samples (mainstem and
tributary) ranged from 0.07 to 0.30 mg/L (table 3).

Concentrations of NO,-N (table 2) in "steady-
state” condition samples ranged from 0.01 to 0.31
mg/L at site 7 and from 0.01 to 0.31 mg/L at sites
downstream of the WWTP effluent. Concentra-
tions of NO,-N in the effluent ranged from 0.22 to
0.61 mg/L and in tributary inflows ranged from
0.01 to 0.29 mg/L. Concentrations in runoff sam-
ples (mainstem and tributary) ranged from 0.02 to
0.07 mg/L (table 3). ’

During “steady-state” conditions, NO,-N con-
centrations (table 2) ranged from 1.4 to 2.3 mg/L at
site 7 and from 0.17 to 4.3 mg/L at sites down-
stream from the WWTP effluent. NO,-N concen-
trations in the WWTP effluent ranged from 6.3 to
14 mg/L and ranged from 0.64 to 4.7 mg/L in
tributary inflows. Concentrations in runoff sam-
ples (mainstem and tributary) ranged from 0.98 to
1.7 mg/L (table 3).

During the “steady-state” conditions, PO,-P
and phosphorus-P concentrations generally de-
creased downstream from the WWTP effluent (ta-
ble 2 and Attachment B-12 and B-33). PO,-P
concentrations ranged from 0.01 to 0.18 mg/L at
site 7 and from 0.04 to 4.0 mg/L downstream from
the WWTP effluent. PO,-P concentrations ranged
from 0.84 to 13 mg/L in the WWTP effluent.



Inflow concentrations ranged from 0.07 to 0.16
mg/L in other tributaries. PO,-P concentrations in
runoff samples (mainstem and tributary) ranged
from 0.07 to 0.44 mg/L (table 3).

Phosphorus-P concentrations (table 2) during
"steady-state” conditions ranged from 0.01 to 0.20
mg/L at site 7 and from 0.10 to 5.1 mg/L down-
stream from the Prairie Grove WWTP effluent.
Phosphorus-P concentrations in the WWTP efflu-
ent ranged from 12 to 21 mg/L and ranged from
0.03 to 0.26 mg/L in tributary inflows. Arkansas
water-quality standards (Arkansas Department of
Pollution Control and Ecology, 1981) suggest as a
"guideline” that phosphorus-P concentrations not
exceed 0.100 mg/L in streams. This guideline con-
centration was exceeded in 79 percent of the
"steady-state” samples collected in the Muddy Fork
basin during this study. Phosphorus-P concentra-
tions in runoff samples ranged from 0.23 to 0.50
mg/L (table 3).

Biological Characteristics

Phytoplankton.-- Phytoplankton densities were
3100 cells/mL at site 9 and 720 cells/mL at site 11
(table 7). Neither density indicates an algal bloom.
The most dominant genera of phytoplankton were
Nitzschia, Navicula, and Cryptomonas (table 7).
Nitzschia and Navicula are among the most com-
monly occurring and most dominant genera of
phytoplankton of the United States (Greeson,
1982). Phytoplankton chlorophyll @ concentrations
(table 8) were also higher at site 9 (11.5 ug/L) than
at site 11 (8.52 pg/L).

Periphyton.-- Periphyton organic weights
ranged from 3.6 to 7.2 g/m? (table 8). The domi-
nant genera were Coleochaete and Cocconeis (table
9). Chlorophyll a concentrations ranged from 41.0
t0 72.5 mg/m? (table 8).

Total and fecal coliform bacteria.-- Total coli-
form bacteria ranged from 180 to 37,000 colonies
per 100 mL in the Muddy Fork and its tributaries
(table 2). Fecal coliform bacteria (table 2) ranged
from 230 to 1300 colonies per 100 mL at site 7 and
from 64 to 20,000 colonies per 100 mL downstream
from the Prairie Grove WWTP effluent. Fecal
coliform bacteria ranged from less than 50 to
2,600,000 colonies per 100 mL in the WWTP effiu-
ent. In tributaries, concentrations near the mouth

ranged from 60 to 2900 colonies per 100 mL. Most
observed fecal coliform bacteria concentrations in
Muddy Fork, and several in Muddy Fork tribu-
taries, were greater than the Arkansas water-quality
standard for April 1 to September 30 (Arkansas
Department of Pollution Control and Ecology,
1981) of 200 colonies per 100 mL (geometric mean).
Fecal coliform bacteria concentrations in runoff
samples exceeded 1000 colonies per 100 mL (table
3).

Reaeration Coefficient

Measurement of reaeration coefficients by the
gas injection method should be done at or near the
flow of interest, especially if the coefficients can be
measured for only one flow condition. However,
for medium or low-flow conditions in Muddy Fork,
mean velocities are very slow and prohibit the use of
the gas injection measurement procedure. During
collection of the 1981 data set mean velocities
ranged form 0.01 ft/s to a maximum of 0.05 ft/s.

When very slow velocities prevail, most predic-
tive equations that are velocity dependent under-
predict the reaeration coefficient. Under such con-
ditions the Velz (1970) approach, as defined in a
predictive equation by Hirsch (Hirsch, R. M., U.S.
Geological Survey, written commun., 1980) is well
suited. The equation, which is not velocity depend-
ent, takes the following form;

71-20

kz = [In[l-2((m x 1.42 x 1.1"77/60)/n(30.48 x h)z)’jl X 1440] +m (17)

m=2279+0.721 x h, ifh < 2.26
= 13.94 x In(h)- 7.45, ifh = 2.26

where,
m = mixing interval,
h = mean stream depth, and
T = stream temperature.

This equation is available in the digital model (At-
tachment A, Terry and others, 1982) and was used
to compute k, in the Muddy Fork calibration,
verification, and projections. Values of k,, by
subreach, computed during calibration and verifica-
tion are shown on Attachment B-7 and B-28 under
the column heading KA. Values of k,, by subreach,
computed for Q.10 low-flow projections are given
in table 10.



Table 7.--Phytoplankton taxonomy and densities, for Muddy Fork

cells/milliliter

Scientific name Common name Site 9 Site 11

Chlorophyta Green algae

.Chlorophyceae

..Chlorococcales

.esMicractiniaceae

e oo Micractinium 120 -
.+ 00cystaceae

o+« JAnkistrodesmus -_— 14
...Scenedesmaceae

« s s sSCenedesmus 120 86
..Volvocales

«+.Chlamydomonadaceae

v+« Chlamydomonas 58 100
Chrysophpyta Yellow-green algae

.Bacillariophyceae Diatoms

..Centrales Centric diatoms

. «+sCoscinodiscaceae

«eesCyclotella 200 14
. .Pennales . Pennate diatoms

...Fragilariaceae

«eooFragilaria 29 -
« v e Synedra 120 -
« « sGomphonemataceae

«+ » LGOmphonema 58 14
.+ .Naviculaceae Naviculoids

«o o Navieula ! 1,200 14
...Nitzschiaceae

«eooNitzschia | 1,100 -
Cryptophyta

,Cryptophyceae

..Cryptomonadales

.. «Cryptomonadaceae

<+« .Chroomonas 1 -— 360
Euglenophyta Euglenoids

.Euglenophyceae

..Euglenales

.. .Euglenaceae

«eoEuglena - 43
« o« o Trachelomonas 120 72

Ipominant organism, cell counts greater than or equal to 15 percent>of
total count for the station.
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Table 9.--Periphyton taxa at Site 16, Muddy Fork

[Periphyton strips placed in creek on 7-15-81, removed 8-12-81]

Scientific name Common name
Chlorophyta Green algae
.Chlorophyceae

. .Oedogoniales

.+ +0edogoniaceae
.+« 0edogonium
..Ulotrichales
.+sColeochaetaceae
....Coleochaete 1
..Zygnematales

+..Desmidiaceae Placoderm desmids
«e ol losterium

Chrysophyta Yellow—green algae
.Bacillariophyceae Diatoms
..Centrales Centric diatoms

++».Coscinodiscaceae

. oesMelosira

. .Pennales Pennate diatoms
.. Achnanthaceae

v .. JAChnanthes

....Cocconetis

+..Cymbellaceae

« . s Amphora

.. .Gomphonemataceae

.« « JGOmphonema

...Naviculaceae Naviculoids
... Frustulia

o« Gyrosigma

.o« Navicula

e e Pinnularia

.+ sNitzschiaceae

....Nitaschia

.ssSurirellaceae

«soSurirella

Cyanophyta Blue—-green algae
.Cyanophyceae
. .Hormogonales Filamentous blue-—greens

.+ s0scillatoriaceae
o oo Lyngbya
«...08c¢illatoria

1pominant organism, estimated to be greater than 15 percent of total algal
cells on sampling strip.
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Table 10.--Model-derived velocities and reaeration coefficients for

Muddy Fork low-flow projections

[Stream temperature = 29°C; discharge from Prairie Grove

wastewater—-treatment plant =

0.43 ft3/s]

Subreach Mean Mean

Begin’ End Discharge Velocity ko
Mile Mile (£t3/s) (ft/s) (day~1)
8.3 8.2 0.430 0.006 2.63
8.2 6.5 410 .006 2.63
6.5 4.7 .370 .005 2.63
4.7 4.0 345 .005 2.63
4.0 3.9 .640 .011 3.09
3.9 3.0 .620 .010 3.09
3.0 1.4 .565 .008 3.28
1.4 0.0 .500 .007 1.20

Mean Velocity Interpretation

Time-of-travel data were collected on Muddy
Fork for discharges ranging from 2.0 to 5.5 ft3/s
(fig. 12). The discharges observed during the collec-
tion of the calibration and verification data sets
ranged from 0.54 ft3/s at mile 8.6 to 3.50 ft3/s at the
mouth and from 1.0 ft3/s at mile 8.6 to 4.63 ft3/s at
the mouth, respectively.

Mean cross-sectional areas were computed for
Muddy Fork, by subreach, using techniques de-
scribed in the earlier "Time of Travel” section.
Many channel-width measurements and observa-
tions were made during the collection of the 1979
and 1981 data sets. The ratio of the "subreach
average” cross-sectional areas to "subreach
average” channel widths were used to define "sub-
reach average” depths. This data is shown in At-
tachment B-6 and B-25 for the calibration and
verification data sets, respectively.
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The mean velocities for the calibration and
verification data sets are shown in table 11. These
velocities are the result of the "fitted” channel
geometry, based upon the measured times of travel
(fig. 12) and the flow distributions for each data set.
The velocities computed for the Q,,, low-flow
projections with the projected Prairie Grove
WWTP flow imposed are shown in table 10.

Stream Model

Calibration and Verification

Attachment B contains the results of model
calibration and verification. Model calibration out-
put is on Attachments B-2 through B-22; verifica-
tion output is on Attachments B-23 through B-42.
The Muddy Fork model was calibrated and verified
using data collected in 1981 and 1979, respectively.
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Figure 12.--Traveltime of peak dye concentration in Muddy Fork,
for discharges noted at each site (modified from Lamb, 1983).

The success of the model calibration-verifica-
tion procedure is illustrated by the "goodness-of-
fit” between the model-derived and observed con-
centration profiles for the predictable variables.
These profiles are shown on Attachments B-11
through B-20 and B-32 through B-40. The values of
those coefficients and parameters defined during
the calibration-verification process (as discussed in
the "Calibration and Verification Procedure”
section) are included on Attachment B-6 and B-7
and again on Attachment B-27 and B-28.

Values of &, obtained by application of the
Bosko equation (equation 15) to subreach average
k, values are shown on Attachments B-7 and B-28.
Velocities were so slow in Muddy Fork (table 11)
that the Bosko correction (equation 15) is ineffec-
tive. Values of & 4are equal to the subreach average
k, values.

Two DO profiles were "fitted” for the calibra-
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tion data set, the diel mean profile and the diel-
minimum profile (Attachment B-19 and B-20).
Subreach average benthic demands, directly result-
ing from the "fitting” of the mean DO profile, are
shown on Attachment B-6 and B-27. The adjust-
ment factors used in fitting the model-derived,
diel-minimum DO profile to the observed minimum
profile (as discussed in the "Simulation Techniques”
section) are shown on Attachment B-6 and B-27.
Verification of the "fitting” of the diel-minimum
DO profile is shown on Attachment B-40.

Projections

Muddy Fork simulations were made for
projected Prairie Grove WWTP effluent limits.
The limits for CBODU, TSS, ammonia-N, and
PO,-P respectively, in mg/L, are:

1) 45,30, 15, 10



Table 11.--Mean velocities, by subreacﬁ, ‘for the 1979 and 1981

data sets collected on Muddy Fork

Subreach
Begin End
Mile Mile

8.6 8.3
8.3 8.2
8.2 6.5
6.5 4.7
4,7 4.0
4.0 3.9
3.9 3.0
3.0 1.4
1.4 0.0

Velocities
1979 1981
0.016 0.009
.013 .011
.014 .011
014 .011
014 .011
.028 .028
.030 .028
.029 .025
.057 .049

2) 30, 20, 10, 10
3) 15,15, 10, 10
4) 15,15,5,5
5)7.5,5,2,1

Each of these projections was simulated twice; once
using an effluent DO concentration at saturation
and once using a DO concentration of 5.0 mg/L.
All projections were made using a Prairie Grove
WWTP discharge of 0.43 ft3/s, Q, ,,, stream condi-
tions, and water temperatures reflecting summer-
time highs (29°C).

In addition, for comparative purposes, a simu-
lation was made at Q7 Nno low-flow conditions and
water temperatures of 29°C using “as surveyed”
effluent concentrations and discharge. This simula-
tion reflects water quality conditions at Q, flows
in Muddy Fork with existing waste loading.

Because of the very slow velocities that are
characteristic in Muddy Fork under Q,,,, condi-
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tions, the ineffectiveness of the Bosko correction
(equation 15) is even more pronounced. Therefore
k, values remained unchanged from calibration-
verification to projections. For the preceding rea-
sons and the availability of natural carbonaceous
material in particulate form, no change was made in
k, values determined during calibration-verifica-
tion. Consequently, no adjustments were made in
subreach average benthic demands defined during
the calibration process.

The results of the Muddy Fork projection simu-
lations are shown in table 12. Average DO deficits
are shown in table 13. When the net photosynthetic
DO deficit is negative, net photosynthetic DO pro-
duction is an oxygen source. Deficits resulting from
the benthic demands are the most significant. Mud-
dy Fork will not meet the Arkansas diel-minimum
DO standard (Arkansas Department of Pollution
Control and Ecology, 1981) of 4.0 mg/L with any
of the projected Prairie Grove WWTP effluent
limits imposed. Simulations for projected effluent
limit number 5 indicate instream minimum DO
concentrations only slightly higher than the "as
surveyed” simulation (table 12).
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Table 13.--Average dissolved oxygen deficits in Muddy Fork, by sub-
reach, for simulations that include projected changes in ultimate
carbonaceous biochemical oxygen demand and ammonia-nitrogen concen-—
trations from the Prairie Grove wastewater—treatment plant

[Deficits in milligrams per liter]

Stream discharge = 7-day, 10-year low flow, Temperature = 29°C

Subreach Net
Be- photo-
gin- End- syn-
ning ing CBOD Benthal thetic Ammonia-N Nitrite-N
mile mile deficit deficit deficit deficit deficit

CBODU = 45 mg/L, Ammonia-N = 15 mg/L

8.3 8.2 2.94 3.508 -0.788 5.433 1.131
8.2 6.5 .28 5.315 - .365 .666 .284
6.5 4.7 .03 4,507 - .573 .001 .000
4.7 4.0 .03 4.780 1.362 .000 .000
4.0 3.9 .12 4.072 1.031 .099 012
3.9 3.0 .09 3.186 .262 .007 .001
3.0 1.4 .03 3.085 - .202 .001 .000
1.4 0.0 .02 2.578 - .240 .000 .000
CBODU = 30 mg/L, Ammonia-N = 10 mg/L
8.3 8.2 1.96 3.508 -0.788 3.622 0.754
8.2 6.5 .19 5.315 - .365 Jab4 .189
6.5 4.7 .02 4,507 - .573 .000 .000
4.7 4,0 .02 4,780 1.362 .000 .000
4,0 3.9 .12 4.072 1.031 .099 .012
3.9 3.0 .09 3.186 .262 .007 .001
3.0 1.4 .03 3.085 - .202 .001 .000
1.4 0.0 .02 2.578 - 240 .000 .000
CBODU = 15 mg/L, Ammonia-N = 10 mg/L
8.3 8.2 0.98 3.508 -0.788 3.622 0.754
8.2 6.5 .09 5.315 - .365 YA .189
6.5 4.7 .01 4,507 - .573 .000 .000
4.7 4,0 .01 4,780 1.362 .000 .000
4.0 3.9 .12 4.072 1.031 .099 .012
3.9 3.0 .09 3.186 .262 .007 .001
3.0 1.4 .03 3.085 - .202 .001 .000
1.4 0.0 .02 2.578 - .240 .000 .000
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Table 13.-<~Average dissolved oxygen deficits in Muddy Fork, by sub=
reach, for simulations that include projected changes in ultimate
carbonaceous biochemical oxygen demand and ammonia=nitrogen concen<
trations from the Prairie Grove wastewater=treatment plant-=Continued

[Deficits in milligrams per liter]

Stream discharge = 7-day, 10=yeaf low flow, Temperature = 29°C

Subreach Net
Be= photo=
gin= End-= syn=
ning ing CBOD Benthal thetic Ammonia=N Nitrite=N
mile mile deficit deficit deficit deficit deficit

CBODU = 15 mg/L, Ammonia<N = 5 mg/L

8.3 8.2 0.98 3.508 -0.788 1.811 0.377
8.2 6.5 .98 5.315 - .365 $222 .095
6.5 4,7 .01 4,507 - .573 .000 .000
4.7 4.0 .01 4,780 1.362 .000 .000
4,0 3.9 .12 4,072 1.031 .099 .012
3.9 3.0 .09 3.186 +262 .007 .001
3.0 1.4 .03 3.085 = .202 .001 .000
1.4 0.0 .02 2.578 -~ .240 .000 .000
CBODU = 7.5 mg/L, Ammonia=N = 2 mg/L
8.3 8.2 0.49 3.508 <0.788 0.724 0.151
8.2 6.5 .05 5.315 - .365 .089 .038
6.5 4,7 .00 4,507 - .573 .000 .000
4,7 4,0 .00 4,780 1.362 .000 .000
4.0 3.9 .12 4,072 1.031 .099 012
3.9 3.0 .09 3.186 .262 . 007 .001
3.0 1.4 .03 3.085 = ,202 .001 .000
1.4 0.0 .02 2.578 = .240 .000 .000
Existing Conditions (see table 12)
8.3 8.2 0.98 3.785 -0.851 0.880 0.359
8.2 6.5 .03 5.680 - .390 .066 .026
6.5 4.7 .00 4,735 - .602 .001 .000
4,7 4.0 .00 4,972 1.417 .000 .000
4.0 3.9 .23 4,675 1.184 .066 .009
3.9 3.0 14 3.644 .299 .001 .000
3.0 1.4 .03 3.327 - .218 .000 .000
1.4 0.0 .00 3.564 - .332 .000 .000
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Sensitivity Testing

The highest simulated minimum instream DO
concentration resulting from the imposition of a
projected effluent limit at Prairie Grove WWTP
was 1.69 mg/L (table 12). The effluent limit im-
posed was number 5 (CBODU = 7.5 mg/L and
Ammonia-N = 2.0 mg/L), with the effluent DO
concentration set at saturation (7.7 mg/L). Model
sensitivity analyses were run using this simulation.

The criteria used, and the components and rate
coefficients tested for sensitivity, are listed in the
"Model Sensitivity” section. Figures 13 through 25
show the resulting sensitivity bands.

For the flow conditions in the simulation tested,
the DO profile is more sensitive to changes in
reaeration coefficient, subreach average benthic
demands, and mean stream depths than any other
parameters tested. The sensitivity bands for these
parameters are shown in figures 17, 18, and 23. The
sensitivity of the DO profile to these parameters is
not surprising considering the extremely slow veloci-
ties simulated (table 10).

Muddy Fork Conclusions

Under existing conditions, Muddy Fork does
not meet Arkansas standards for the following
parameters: diel-minimum DO, phosphorus-P, and
fecal coliform bacteria. Stormwater runoff sam-
pling indicates that significant nutrient loads may be
contributed to the stream during runoff periods.
Nutrient loads contribute to benthic demands at low
flow and may be resuspended in the water column
when velocities increase, or when the streambed is
disturbed for any reason.

Both measured and simulated times of travel on
Muddy Fork are very slow for medium (4.8 ft3/s) to
low (0.2 ft3/s) flows near the mouth. Consequently,
mean velocities are very slow and reaction times for
all non-conservative, reacting parameters are very
long.

Model simulations indicate that benthic de-
mands result in the most significant oxygen deficits
and are the main reason that Muddy Fork will not
meet DO standards. Nonpoint sources are probably
the primary contributors to these projected benthic
demands.
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Diel-minimum DO concentrations in Muddy
Fork resulting in part from the instream waste
concentrations discharged by the Prairie Grove
WWTP, will not meet the diel-minimum DO con-
centration standard of 4.0 mg/L (Arkansas Depart-
ment of Pollution Control and Ecology, 1981) for
any of the projected effluent limits simulated. The
highest minimum DO concentration simulated (1.69
mg/L) resulted from the imposition of projected
effluent limit number 5 (CBODU = 7.5 mg/L and
NH,;-N = 2.0 mg/L) with effluent DO concentra-
tions set at saturation (7.7 mg/L). However, this
minimum of 1.69 mg/L is only slightly higher than
the minimum of 1.65 mg/L created by the "as
surveyed” low-flow simulation. The difference of
0.04 mg/L is not significant. Simulations indicate
that none of the projected effluent limits for the
Prairie Grove WWTP result in an improvement in
Muddy Fork DO concentrations.

Sensitivity testing indicates that the DO profile
is most sensitive to stream depths, reaeration coeffi-
cients, and benthic demands. This is not surprising
considering the extremely slow velocities simulated
(maximum of 0.011 ft/s, table 10).
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Figure 13.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the dissolved-oxygen concen-
trations of the effluent from the Prairie Grove wastewater-treatment plant; water
temperature is 29°C, river discharge is equal to the 7-day, 10-year low flow, and
the wasteload projection for the wastewater-treatment plant is 7.g mg/L ultimate
biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure l4.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the ammonia forwater reac-
tion and decay rates; water temperature is 29°C, river discharge is equal to
the 7-day, 10-year low flow, and the wasteload projection for the Prairie Grove
wastewater-treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0
mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure 15.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the organic nitrogen forward
reaction and decay rates; water temperature is 29°C, river discharge is equal to
the 7-day, l10-year low flow, and the wasteload projection for the Prairie Grove
wastewater-treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0
mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure 16.---Band reflecting the sensitivity of Muddy Fork dissolved-oxygen comn-
centrations to a plus or minus 20-percent change in the ammonia concentration of
the effluent from the Prairie Grove wastewater-treatment plant; water temperature
is 29°C, river discharge is equal to the 7-day, 10-year low flow, and the waste-
load projection for the wastewater-treatment plant is 7.5 mg/L ultimate biochem-
ical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure 17.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the reaeration coefficients;
water temperature is 29°C, river discharge is equal to the 7-day, 10-year low
flow, and the wasteload projection for the Prairie Grove wastewater-treatment
plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/l ammonia, and 7.7
mg/L dissolved oxygen.
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Figure 18.~-Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the benthic demands; water
temperature is 29°C, river discharge is equal to the 7-day, 10-year low flow,

and the wasteload projection for Prairie Grove wastewater-treatment plant is 7.5
mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved
oxygen.
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Figure 19.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the carbonaceous biochemical
oxygen demand of the effluent from the Prairie Grove wastewater-treatment plant;
water temperature is 29°C, the wasteload projection for Prairie Grove wastewater—
treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia,
and 7.7 mg/L dissolved oxygen.
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Figure 20.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the nitrite forward reaction
and decay rates; water temperature is 29°C, river discharge is equal to the 7-
day, 10-year low flow, and the wasteload projection for Prairie Grove wastewater-
treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia,
and 7.7 mg/L dissolved oxygen.
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Figure 21.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the deoxygenation and re-
moval rates for carbonaceous material; water temperature is 29°C, river discharge
is equal to the 7-day, 10-year low flow, and the wasteload projection for the
Prairie Grove wastewater-treatment plant is 7.5 mg/L ultimate biochemical oxygen
demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure 22.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen comn-
centrations to a plus or minus 20-percent change in the net photosynthetic pro-
duction; water temperature is 29°C, river discharge is equal to the 7-day, 10-
year low flow, and the wasteload projection for the Prairie Grove wastewater-
treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L am-
monia, and 7.7 mg/L dissolved oxygen.
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Figure 23.~-Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in mean river depths; water
temperature is 29°C, river discharge is equal to the 7-day, 10-year low flow,
and the wasteload projection for the Prairie Grove wastewater—treatment plant
is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L
dissolved oxygen.
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Figure 24.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 20-percent change in mean river velocities; water
temperature is 299C, river discharge is equal to the 7-day, 10-year low flow,
and the wastelocad projection for the Prairie Grove wastewater—-treatment plant is
7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dis-
solved oxygen.
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Figure 25.--Band reflecting the sensitivity of Muddy Fork dissolved-oxygen con-
centrations to a plus or minus 2.0-degree celsius change in water temperature;
water temperature is 29°C, river discharge is equal to the 7-day, lO-year low
flow, and the wasteload projection for the Prairie Grove wastewater-treatment
plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7

mg/L dissolved oxygen.

SPRING CREEK ASSESSMENT

Spring Creek (fig. 1) flows generally east to west
through primarily pasture lands, into Osage Creek
at mile 17.1. It has a total drainage area of 36.8 mi?
(Sullavan and Terry, 1970). The drainage area of
Osage Creek upstream from Spring Creek is.42.5
miZ (Sullavan and Terry, 1970). The Springdale
WWTP is the only point-source waste effluent that
discharges into Spring Creek. The effluent enters
the stream at mile 6.1. The reach of Spring Creek
modeled is from mile 6.2 to its mouth (fig. 26). A
location index for sites where data were collected
for the Spring Creek assessment is given in table 14.

Surface Water Hydrology

Spring Creek is primarily a pool and riffle type
of stream. Channel slopes range from 50 ft/mi to
13.6 ft/mi in a downstream direction.

Cumulative flows in Spring Creek during collec-
tion of the calibration data set (Aug. 24-Sept. 5,
1981) ranged from 8.7 ft3/s at mile 6.2 to 29.7 ft3/s
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at the mouth (Attachment C-2, C-3, C-6, and C-21).
Cumulative flows during collection of the verifica-
tion data set (July 23-27, 1979) ranged from 5.9
ft3/s at mile 6.2 to 27.1 ft3/s at the mouth (Attach-
ment C-23, C-24, C-27, C-42). In the 1981 data set,
58 percent of the total streamflow immediately
downstream from the Springdale WWTP was efflu-
ent discharge. In the 1979 data set the effluent
discharge amounted to 72 percent of the total
streamflow immediately downstream from its point
of entry. These percentages are based on 24-hour
average discharges from the Springdale WWTP.

Continuous hourly discharge data obtained
from the Springdale WWTP for selected days indi-
cate substantial variation over a 24-hour period (fig:
27.) This variation in WWTP discharge causes an
unsteady-flow condition in Spring Creek. Averag-
ing the WWTP discharge over a 24 hour period
results in a quasi-steady inflow to Spring Creek and
helps stabilize flow balances downstream. Howev-
er, there are still some inherent problems in defining
"good” times of travel and steady constituent tran-
sport. Similar problems occur when analyses are
required on any stream for a "naturally occurring”
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Figure 26.-—Schematic of Spring
Creek showing sampling-site
and model-subreach locations.

steadyflow condition that is masked by a’'manmade
unsteady inflow.

An existing Q, ,,, low-flow distribution (fig. 28)
was defined on the basis of data presented by Hines
(1975), and Hunrichs (1983). This distribiition was
established by mass-balancing total discharge at the
mouth of Spring Creek, using Hunrichs’ estimate of
Q, /100 The difference between the sum of initial
and point-source Q,, ., discharges and the estab-
lished Q, ,,, discharge at the mouth was distributed
linearly as flow loss between stream mile 6.2 and the
mouth (fig. 28).

70

Water Quality

Physical Characteristics

Suspended solids.-- During the collection of
"steady-state” data in 1978, 1979 and 1981, sus-
pended-solids concentrations in Spring Creek were 8
mg/L at site 40 upstream from the Springdale
WWTP and ranged from 6 to 17 mg/L downstream
of the WWTP (table 15). Concentrations in the
Springdale WWTP effluent ranged from 9 to 20
mg/L. Concentrations near the mouth of tribu-
taries ranged from 1 to 7 mg/L. In tributaries,
concentrations of suspended-solids during stormwa-
ter-runoff periods were 4 to 330 times greater than
during periods of lower flow.  Concentrations
ranged from 28 to 663 mg/L (table 16). Sources of
suspended solids during higher-flow periods are
resuspension of deposited material and overland
flow of stormwater-runoff. Because suspended sol-
ids transport attached nutrients and bacteria, nutri-
ents and bacteria may be added to streams by
runoff.

Water temperature.-- Water temperatures of
the Springdale WWTP effluent were generally 6°C
to 9°C warmer than temperatures upstream of the
WWTP effluent (table 17). Temperatures at sites
41a, 42 and 43 were generally 4°C to 9°C warmer
than at site 40 and indicate that the WWTP may
increase water temperature in Spring Creek more
than the 2.8°C allowed by the Arkansas water-
quality standard (Arkansas Department of Pollu-
tion Control and Ecology, 1981).

Dissolved solids.-- Dissolved-solids concentra-
tions for the 1978 “steady-state” sampling periods
ranged from 154 to 393 mg/L in Spring Creek, from
298 to 351 mg/L in the Springdale WWTP effluent,
and from 203 to 221 mg/L in the only tributary
sampled (table 15). These data indicate that Arkan-
sas stream water quality standards (Arkansas
Department of Pollution Control and Ecology,
1981) for total dissolved solids were being violated
at one site. V

Minimal dissolved-solids concentrations in
stormwater-runoff samples of tributaries (table 16)
estimated from measured specific conductance val-
ues ranged from 76 to 246 mg/L.
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Chemical and Biochemical Characteristics

Chloride.-- Chloride concentrations for the
1978 "steady-state” sampling periods ranged from
8.5to S1 mg/L in Spring Creek, from 33 to 51 mg/L
in the Springdale WWTP and from 8.5 to 10 in the
only tributary sampled (table 15). The data indicate
that Arkansas water quality standards (Arkansas
Department of Pollution Control and Ecology,
1981) for chloride were violated at four sites.

Sulfate.-- Sulfate concentrations for the 1978
"steady-state” sampling periods ranged from 5.0 to
44 mg/L in Spring Creek, from 36 to 44 mg/L in the
Springdale WWTP effluent and from 1.0 to 5.0
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mg/L in the only tributary sampled (table 15). The
data indicate that Arkansas water quality standards
(Arkansas Department of Pollution Control and
Ecology, 1981) for sulfate were violated at four
sites.

pH.-- Values of pH ranged from 7.1 to 7.9 in
Spring Creek, from 7.1 to 7.5 in the WWTP efflu-
ent, and from 7.4 to 7.8 in tributary inflows (table
15).

Dissolved oxygen.-- The DO concentration in
Spring Creek ranged from 7.0 to 10.9 mg/L at site
40 upstream from the Springdale WWTP outfall
and from 3.5 to 9.3 mg/L downstream of the



WWTP (table 17). Concentrations in the WWTP
effluent ranged from 7.0 to 8.0 mg/L and tributary
inflow concentrations ranged from 4.9 to 10.1 mg/
L. According to the Arkansas water-quality stand-
ards (Arkansas Department of Pollution Control
and Ecology, 1981) an instantaneous minimum DO
concentration in Spring Creek shall be greater than
orequalto 4.0 mg/L.

Ultimate carbonaceous biochemical oxygen
demand.-- During “steady-state” conditions
CBODU concentrations ranged from 2.0 to 5.4
mg/L at site 40 upstream from the Springdale
WWTP outfall and from 4.5 to 49 mg/L down-
stream from the effluent (table 15). CBODU con-
centrations of the effluent exceeded 10 mg/L. The
CBODU concentrations of tributary inflows ranged
from 1.8 to 6.3 mg/L. The CBODU concentrations
of stormwater-runoff samples ranged from 14 to 23
mg/L (table 16).

Streambed oxygen demand.-- A "streambed
oxygen demand” of 0.66 (g/mz)/d was measured
for a sample collected at site 40 upstream from the
WWTP outfall. "Streambed oxygen demands”
downstream from the WWTP outfall were slightly
higher and ranged from 0.81 to 1.58 (g/m?)/d (table
18).

Net photosynthetic dissolved-oxygen produc-
tion. --"Net DO production” was calculated as
discussed previously in the general "Net Photosyn-
thetic Dissolved-Oxygen Production” section. It
ranged from 2.8 to 17.0 -(mg/L)/d (table 19).
Chlorophyll @ concentrations used in calculations
were distance weighted estimates based on actual
chlorophyll @ concentrations at sites 42, 45, and 47.
For modeling purposes net DO production was
calculated for each subreach (see ”Simulation
Techniques” section and Attachment C-6 and C-
27).

Nutrients.-- Analyses indicate nutrient enrich-
ment of Spring Creek and its tributaries. Analyses
of stormwater-runoff samples (table 16) indicate
that the Springdale WWTP is not the sole cause of
the nutrient enrichment. Nutrient concentrations,
particularly organic-N and total phosphorus, gener-
ally were greater during stormwater-runoff condi-
tions than during ”"steady-state” conditions (table
15). This suggests that nutrients deposited on the
streambed were resuspended as velocities increased
and/or that overland runoff of stormwater tran-
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sported nutrients into the streams.

During "steady-state” conditions organic-N
concentrations (table 15) ranged from 0.20 to 0.43
mg/L at site 40 upstream from the Springdale
WWTP effluent and from 0.95 to 3.2 mg/L down-
stream from the WWTP effluent. Concentrations
in the effluent ranged from 1.9 to 4.2 mg/L and in
tributary inflows ranged from 0.38 to 1.8 mg/L. In
tributaries, concentrations of organic-N in storm-
water-runoff samples ranged from 1.5 to 2.9 mg/L
and were approximately one-and-a-half to five
times greater than mean “steady-state” concentra-
tions (table 16).

During ”steady-state” conditions, ammonia-N
concentrations (table 15) ranged from 0.05 to 0.39
mg/L at site 40 and from 0.06 to 3.5 mg/L at sites
downstream from the WWTP effluent. Concentra-
tions in the WWTP effluent ranged from 1.8 to 5.4
mg/L and tributary inflow concentrations ranged
from 0.07 to 0.13 mg/L. In tributaries, ammonia-N
concentrations in stormwater-runoff ranged from
0.17 to 0.53 mg/L (table 16).

The NO,-N concentrations (table 15) in
"steady-state” condition samples ranged from 0.01
to 0.03 mg/L at site 40 and from 0.03 to 3.6 mg/L
at sites downstream from the WWTP effluent. The
NO,-N concentrations in the effluent ranged from
0.33 to 1.1 mg/L and in tributary inflows ranged
from 0.00 to 0.09 mg/L. In tributaries, concentra-
tions in runoff samples ranged from 0.05 to 0.09
mg/L (table 16).

During ”"steady-state” conditions, NO,-N con-
centrations (table 15) ranged from 2:8 to 3.5 mg/L
at site 40 and from 5.5 to 15 mg/L at sites down-
stream from the WWTP effluent. The NO,-N
concentrations in the WWTP effluent ranged from
5.5to 13 mg/L and ranged from 1.4 to 4.2 mg/L in
tributary inflows. In triBtutaries, concentrations in
runoff samples ranged from 1.1 to 4.0 mg/L (table
16).

During the “steady-state” conditions, PO,-P
and phosphorus-P concentrations generally de-
creased downstream from the WWTP effluent (ta-
ble 15 and Attachment C-12 and C-33). PO,-P
concentrations ranged from 0.03 to 0.20 mg/L at
site 40 and from 1.2 to 5.2 mg/L downstream from
the WWTP effluent. PO,-P concentrations ranged
from 3.8 t0 6.9 mg/L in the WWTP effluent. Other



tributary inflow concentrations ranged from 0.03 to
0.29 mg/L. In tributaries, PO,-P concentrations in
runoff samples ranged from 0.31 to 0.91 mg/L
(table 16).

Phosphorus-P concentrations (table 15) during
"steady-state” conditions ranged from 0.05 to 0.65
mg/L at site 40 and from 1.2 to 7.0 mg/L down-
stream from the Springdale WWTP effluent. Phos-
phorus-P concentrations in the WWTP effluent
ranged from 4.4 to 9.3 mg/L and ranged from 0.06
to 0.33 mg/L in tributary inflows. Arkansas water-
quality standards (Arkansas Department of Pollu-
tion Control and Ecology, 1981) suggest as a
"guideline” that total phosphorus-P concentrations
not exceed 0.100 mg/L in streams. This guideline
concentration was exceeded in 86 percent of the
"steady-state” samples collected in the Spring Creek
basin during this study. Phosphorus-P concentra-
tions in runoff samples ranged from 0.71 to 1.5
mg/L (table 16).

Biological Characteristics

Phytoplankton.-- Observed phytoplankton den-
sities were 4900 cells/mL at site 42 and 920 cells/mL
at site 47 (table 20). Neither density indicates an
algal bloom. At both sites the most dominant genus
of phytoplankton was Oscillatoria (table 20).
Phytoplankton chlorophyll a concentrations (table
21) were also higher at site 42 (7.09 ug/L) than at
site 47 (2.35 ug/L).

Periphyton.-- Periphyton organic weights
ranged from 1.03 to 1.41 g/m2 (table 21). The
dominant genera were Navicula and Oscillatoria
(table 22). Periphyton chlorophyll @ concentrations
ranged from 7.73 to 18.5 g/m2 (table 21).

Total and fecal coliform bacteria.-- Total coli-
form bacteria ranged from <1 to 25,000 cologies
per 100 mL in Spring Creek and its tributaries (table
15). Fecal coliform bacteria (table 15) ranged from
420 to 740 colonies per 100 mL at site 40 and from
<1 to 2100 colonies per 100 mL downstream from
the Springdale WWTP outfall. Fecal coliform bac-
teria ranged from <3 to 400 colonies per 100 mL in
the WWTP effluent. Tributary inflow concentra-
tions ranged from 33 to 15,000 colonies per 100 mL.
Most observed fecal coliform bacteria concentra-
tions in Spring Creek, and several in Spring Creek
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tributaries, were greater than the Arkansas water-
quality standard for April 1 to September 30 (Ar-
kansas Department of Pollution Control and Ecolo-
gy, 1981) of 200 colonies per 100 mL (geometric
mean). Fecal coliform bacteria concentrations in
runoff samples ranged from 96,000 to 670,000
colonies per 100 mL.

Reaeration Coefficient

Reaeration coefficients were measured in three
reaches of Spring Creek using the hydrocarbon gas
injection technique described in the “Instream Rea-
eration Coefficient” section. The stream reaches
for which the measurements were made are up-
stream from Puppy Creek between miles 5.4 and 4.2
(fig. 26).

Ethylene gas and rhodamine WT dye were
injected at mile 5.5. Samples were collected at miles
5.4, 4.9, and 4.2. Table 23 contains the resulting
calculated values for krand k,. As discussed in the
"Instream Reaeration Coefficient” section, equa-
tions 6 and 5, were used to define kT and ks,
respectively.

The Bennett-Rathbun reaeration coefficient
predictive equation, which is available in the digital
model used, reproduced the measured k, values
reasonably well. The equation takes the following
form,

k, = 8.76u%507p°1:585(2.303)(1.0241)T-% (18)

where,

k, is as previously defined,

u = mean stream velocity, (feet per second),

= mean stream depth, (feet), and

T = water temperature, °C.
Between stream miles 5.5 and 4.2 a mean cross-
sectional area and depth of 24 ft> and 1.1 ft,
respectively, were determined from observed data.
Using the discharge of 22.7 ft3/s and water tempera-
ture of 24.5°C measured during the gas injection

experiment, and applying equation 18 yields a kz
value of 18 day™!. This is approximately 30 percent



different than the measured values. Because of
possible errors in geometry determination and in
measurement of &, and discharge, this difference
was considered acceptable. Therefore, the Bennett-
Rathbun equation was used to simulate &, values
for Spring Creek. Values of k,, by subreach, com-
puted during calibration-verification are shown on
Attachment C-7 and C-28 under the column head-
ing KA. Values of k,, by subreach, computed for
Q, ;o low-flow projections are given in table 24.

Mean Velocity Interpretation

Time-of-travel data were collected on Spring
Creek for a discharge of 23.8 ft3/s at site 48 (figure
29). The discharges observed during the collection
of the calibration and verification data sets ranged
from 8.7 ft3/s at mile 6.2 to 29.7 ft3/s at the mouth
and from 5.9 ft3/s at miles 6.2 to 27.1 ft3/s at the
mouth, respectively.

Mean cross-sectional areas were computed for
Spring Creek, by subreach, using techniques de-
scribed in the earlier "Time of Travel” section.
Many channel width measurements and observa-
tions were made during the collection of the 1979
and 1981 data sets. The ratio of the "subreach
average” cross-sectional areas to “subreach
average” channel widths were used to define "sub-
reach average” depths. This data is shown in At-
tachment C-6 and C-27 for the calibration and
verification data sets, respectively.

The mean velocities for the calibration and
verification data sets are shown in table 25. These
velocities are the result of the ”fitted” channel
geometry, based upon the measured times of travel
(fig. 29) and the flow distributions for each data set.
Mean velocities computed for the Q,,,, low-flow
projections with the projected Springdale WWTP
flow imposed are given in table 24.
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Figure 29.--Traveltime of peak dye concentration in
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per second at site 48 (modified from Lamb, 1983).
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Table 19.--Net photosynthetic dissolved-oxygen production

at selected sites on Spring Creek

Net photosynthetic
dissolved oxygen

Site River Date production
number mile (1981) [(mg/L)/d at 20°C]
40 6.2 August 30-31 8.4
42 5.5 August 31 - September 1 2.8
43 4,3, August 31 - September 1 8.8
47 1.6 September 1-2 17.0
48 0.5 September 1-2 24,1
Stream Model profile and the diel-minimum profile (Attachments

Calibration and Verification

Attachment C contains the results of model
calibration and verification. Model calibration out-
put is on Attachments C-2 through C-22; verifica-
tion output is on Attachments C-23 through C-43.
The Spring Creek model was calibrated and verified
using data collected in 1981 and 1979, respectively.

The success of the model calibration-verifica-
tion procedure is illustrated by the “goodness-of-
fit” between the model-derived and observed con-
centration profiles for the predictable variables.
These profiles are shown on Attachments C-11
through C-20 and C-32 through C-41. The values of
these coefficients and parameters defined during the
calibration-verification process (as discussed in the
"Calibration and Verification Procedure” section)
are included on attachments C-6 and C-7 and again
on Attachments C-27 and C-28. Values of &, result-
ing from application of the Bosko equation (equa-
tion 15) to subreach average k, values are shown in
Attachment C-7 and C-28.

Two DO profiles were "fitted” for both the
calibration and verification data sets, the diel-mean
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C-19 and C-20 and Attachments C-40 and C-41).
Subreach-average benthic demands, directly result-
ing from the "fitting” of the mean DO profile, are
shown on Attachments C-6 and C-27. The adjust-
ment factors used in fitting the model-derived diel-
minimum DO profile to the observed minimum
profile (as discussed in the ”Simulation Techniques”
section) are shown on Attachments C-6 and C-27.
Verification of the “fitting” of the diel-minimum
DO profile is shown on Attachment C-41.

Projections

Spring Creek simulations were made for
projected Springdale WWTP effluent limits. The
limits for CBODU, TSS, ammonia-N, and PO,-P,
respectively, in mg/L are:

1) 45,30, 15,10

2) 30, 20, 10, 10

3) 15, 15,10, 10

4) 15,15,5,5

5) 15,10,3,5



Table 20.--Phytoplankton taxonomy and densities for Spring Creek

cells/milliliter

Scientific name Common name Site 45 Site 47

Chlorophyta Green algae

.Chlorophyceae

..Chlorococcales

.. .Scenedesmaceae

.+« .Scenedesmus 57 ——
Chrysophyta Yellow-green algae

.Bacillariophyceae Diatoms

..Centrales Centric diatoms

...Coscinodiscaceae

«essCyclotella 140 14
. .Pennales Pennate diatoms

.« sAchnanthaceae

. .. CocCCOMeELs -— 29
...Fragilariaceae

.« oo o Synedra 29 -—
. . .Gomphonemataceae

.« « LGOmphonema 14 -
.« .Naviculaceae Naviculoids

e oo Navicula 100 43
...Nitzschiaceae

«...Nitzschia 57 72
Cyanophyta Blue-green algae

. .Hormogonales Filamentous blue-greens
«..0scillatoriaceae

....08cillatoria 1 620 750
Euglenophyta Euglenoids

.Euglenophyceae

..Euglenales

.. Euglenaceae

.« s «Trachelomonas 100 14

1pominant organism, cell counts greater than or equal to 15 percent
of total count for the station.
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Table 22.--Periphyton taxa at Site 45, Spring Creek

[Periphyton strips placed in creek on 8-12-81, removed 9-01-81]

Scientific name

Chlorophyta
.Chlorophyceae

. .Oedogoniales

.« .0edogoniaceae
.« « Oedogonium
Chrysophyta
.Bacillariophyceae
..Centrales
...Coscinodiscaceae
«eesCyclotella

. .Pennales

.+« Achnanthaceae

. .2 CocCCONELS
...Cymbellaceae
«eeCymbella
...Gomphonemataceae
« « « JGOmphonema
...Naviculaceae
«ooNavieula 1

e oo Pinnularia
...Nitzschiaceae
eeeNitzschia
Cyanophyta
.Cyanophyceae

. .Hormogonales
.«.0Oscillatoriaceae
«...0s8cillatoria 1
Euglenophyta
.Euglenophyceae
..Euglenales
...Euglenaceae
«eeEuglena

lpominant organism, estimated to be greater than 15 percent of total algal

cells on sampling strip.

Common name

Green algae

Yellow-green algae
Diatoms
Centric diatoms

Pennate diatoms
Yellow-green algae

Centric diatoms

Naviculoids

Blue-green algae

Filamentous blue-greens

Euglenoids
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Table 23.--Ethylene desorption rate and reaeration rate coefficients

for selected reaches of Spring Creek

[Discharge = 22.7 ft3/s]

Stream Reach Stream
Begin End kp ko percent temperature
mile mile (day~1) (day~1) difference (°C)

5.5 4.9 12.6 14.4 27 24.5
4.9 4,2 12.2 14.1 37 24.5
5.5 4.2 12.3 14.2 53 24.5

2 pifference between percent change in gas concentration and
percent change in dye concentration

6) 7.5,5,3,2
7) 7.5,5,2,1

Each of these projections was simulated twice; once
using an effluent DO concentration of 5.0 mg/L
and once using a DO concentration at saturation.
All projections were made using a Springdale
WWTP discharge of 19.9 ft3/s, Qo stream condi-
tions, and water temperatures reflecting summer-
time highs (29°C).

In addition, for comparative purposes, a simu-
lation was made at Q7 N low-flow conditions and
water temperatures of 29°C using "as surveyed”
effluent concentrations and discharge. This simula-
tion reflects water quality conditions at Q, ,,, flows
in Spring Creek with existing waste loading.

Values of k, resulting from a Bosko correction
(equation 15) of subreach average k, values for
Q, /1o low-flow velocities are shown in table 26. For
reasons discussed in the ”Simulation Techniques”
section k, was set equal to k, in each subreach and
benthic demands were modified, by subreach, using
equation 16 (table 26).

The results of the Spring Creek projection
simulations are shown in table 27. Average DO
deficits are shown in table 28. When the net photo-
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synthetic DO deficit is negative, net photosynthetic
DO production is an oxygen source. The am-
monia-N deficits tend to be the most significant
except between river miles 2.3 and 0.0 where benthal
deficits dominate. When projected ammonia-N con-
centrations in the WWTP effluent are less than 10
mg/L, benthal deficits dominate between miles 4.2
and 0.0. CBOD deficits are more significant than
benthal DO deficits between miles 6.2 and 2.3 when
the projected CBODU concentration from the
WWTP is greater than or equal to 22.5 mg/L.
Spring Creek will meet the Arkansas diel-minimum
DO standard (Arkansas Department of Pollution
Control and Ecology, 1981) of 4.0 mg/L with
projected Springdale WWTP effluent limit 7
(CBODU = 7.5 mg/L, ammonia-N = 2.0 mg/L)
imposed and effluent DO-concentrations set at satu-
ration (7.7 mg/L). The simulation for "as
surveyed” effluent conditions under Q, 1o low-flow
conditions results in an instream diel-minimum DO
concentration of 0.0 mg/L (table 27).

Sensitivity Testing

The Spring Creek simulation with the projected
Springdale effluent limit number 7 imposed and
effluent DO concentration set to saturation (7.7
mg/L) was used for sensitivity testing. The criteria



Table 24.==Model=derived velocities and reaeration rate coefficients

for Spring Creek low=flow projections

[Stream temperature

Springdale wastewater=treatment plant =

= 29°C; discharge from

19.9 £t3/s]

Subreach Mean Mean

Begin End Discharge Velocity ko
Mile Mile (££3/s) (ft/s) (day=l)
6.2 6.1 1.14 0.114 10.03
6.1 6.0 20.9 .870 27.46
6.0 5.9 20.8 .866 27.36
5.9 5.5 20.5 .854 30.47
5.5 4.9 19.8 .825 18.96
4.9 4,2 19.0 .792 18.48
4,2 2.3 18.9 .555 12.39
2.3 1.4 18.7 .550 18.05
1.4 0.0 17.3 .468 20.85

used, and the parameters and coefficients tested for
sensitivity, are listed in the "Model Sensitivity”
section. Figures 30 through 42 show the resulting
sensitivity bands.

For the flow conditions in the simulation tested,
the DO profile is more sensitive to changes in
reaeration coefficients and mean stream depths than
any other parameter tested. The DO sensitivity
bands for these parameters are shown in figures 34
and 40. The sensitivity of these parameters is not
surprising considering the relatively fast velocities
simulated (table 24) These two parameters are sensi-
tive to velocity, especially if it is relatively fast,
because k, is directly proportional to velocity and
inversely proportional to depth as defined by Ben-
nett-Rathbun in equation 18.
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Spring Creek Conclusions

Under existing conditions, Spring Creek does
not meet Arkansas standards (Arkansas Depart-
ment of Pollution Control and Ecology, 1981) for
the following parameters: diel-minimum DO, total
phosphorus-P, water temperature, and fecal coli-
form bacteria. Stormwater-runoff sampling indi-
cates that significant nutrient loads may be con-
tributed to the stream during runoff periods. Nutri-
ent loads contribute to benthic demands at lowflow
and may be resuspended in the water column when
velocities increase, or when the streambed is dis-
turbed for any reason.

Both measured and simulated times of travel on
Spring Creek are relatively fast for medium (29.7
ft3/s) to low (10 ft3/s) flows near the mouth.



Table 25.--Mean velocities, by subreach, for the 1979

and 1981 data sets collected on Spring Creek

Subreach
Begin End Velocities
Mile Mile 1979 1981
6.2 6.1 0.590 0.870
6.1 6.0 .812 .834
6.0 5.9 .752 .800
5.9 5.5 754 .854
5.5 4,9 744 .918
4.9 4.2 .723 .936
4.2 2.3 +559 .735
2.3 1.4 .657 .761
1.4 0.0 .705 .755

Consequently, mean velocities are relatively fast
and reaction times for all nonconservative, reacting
parameters are short. Simulations indicate that the
most significant DO deficits are the ammonia defi-
cit, benthal deficit, and the CBODU deficit. The
ammonia-N deficits tend to be the largest except in
subreaches 8 and 9 where benthal deficits dominate.
When projected ammonia-N concentrations in the
WWTP effluent are less than 10 mg/L, benthal
deficits also dominate in subreach 7. CBODU
deficits are more significant than benthal deficits in
subreaches 1 through 7 when the projected CBODU
concentration from the WWTP is greater than or
equal to 22.5 mg/L.

Diel-minimum DO concentrations in Spring
Creek resulting in part from the instream waste
concentrations discharged by the Springdale
WWTP will meet the diel-minimum DO concentra-
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tion standard (Arkansas Department of Pollution
Control and Ecology, 1981) of 4.0 mg/L with
projected effluent limit number 7 (CBODU = 7.5
mg/L and ammonia-N = 2.0 mg/L) imposed and
effluent DO concentration set at saturation (7.7
mg/L). The other projected effluent limits tested
result in instream diel-minimum DO concentrations
less than 4.0 mg/L. The simulated instream diel-
minimum DO concentration of 4.26 mg/L (table 27)
resulting from projected effluent limit number 7 is
significantly higher than the diel minimum of 0.0
mg/L simulated for the "as surveyed” effluent
conditions under Q, 4 streamflow conditions.

Sensitivity testing indicates that the DO profile
1S most sensitive to stream depths and reaeration
coefficients. This is not surprising considering the
relatively fast velocities simulated (maximum of
0.916 ft/s, table 24).



Table 26.--Modified components and rate coefficients for Spring
Creek simulations that include projected effluent
.limits for the Springdale wastewater—treatment plant

Benthic
Subreach oxygen
Begin End kq kp demand

mile mile (day’l) (day~1) [(g/mz)/d]
6.2 6.1 0.28 0.28 0.33
6.1 6.0 .49 .49 1.19
6.0 5.9 .48 .48 1.06
5.9 5.5 .45 .45 2.00
5.5 4.9 .35 .35 2.14
4.9 4.2 .34 .34 2.27
4.2 2.3 .23 .23 2.05
2.3 1.4 .26 .26 4.05
1.4 0.0 .23 .23 4.61
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Table 28.=<Average dissolved oxygen deficits in Spring Creek,

by subreach, for simulations that include projected changes in
ultimate carbonaceous biochemical oxygen demand and ammonia=
nitrogen concentrations from the Springdale wastewater=treatment

plant

Stream discharge = 7-=day, 10-year low flow, Temperature = 29°C

Subreach Net
Be- photo=
gin=  End- syn=
ning ing CBOD Benthal thetic  Ammonia=N  Nitrite=N
mile mile deficit deficit deficit deficit deficit

CBODU = 45 mg/L, Ammonia=N = 15 mg/L

6.2 6.1 0.05 0.100 <0.452 0.166 0.002
6.1 6.0 .20 .049 - 046 3.264 .003
6.0 5.9 .20 044 ~ .033 3.040 .007
5.9 5.5 .18 .089 .170 4,357 .299
5.5 4,9 .15 .078 .138 1.534 « 365
4.9 4,2 .15 .086 .101 .846 . 380
4,2 2.3 .13 .099 .000 217 . 388
2.3 1.4 .13 . 240 .028 017 .082
1.4 0.0 .12 . 357 - ,118 034 .024
CBODU = 30 mg/L, Ammonia-=N = 10 mg/L
6.2 6.1 0.05 0.100 <0.452 0.166 0.007
6.1 6.0 .14 .049 - 046 2.176 .002
6.0 5.9 .13 044 - 044 2,027 .005
5.9 5.5 .12 .089 .170 2.905 .199
5.5 4.9 .10 .078 .138 1.022 .243
4.9 4,2 .10 .086 .101 .564 234
4,2 2.3 .09 .099 .000 . 145 .258
2.3 1.4 .09 .240 .028 .048 .054
1.4 0.0 .08 « 357 - 118 .022 .016
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Table 28.-<Average dissolved oxygen deficits in Spring Creek,

by subreach, for simulations that include projected changes in
ultimate carbonaceous biochemical oxygen demand and ammonia=
nitrogen concentrations from the Springdale wastewater=treatment
plant==Continued

Stream discharge = 7=day, 10-year low flow, Temperature = 29°C

Subreach Net
Be= photo=
gin= End= syn=
ning ing CBOD Benthal thetic  Ammonia=N  Nitrite=~N
mile mile deficit deficit deficit deficit deficit

CBODU = 22.5 mg/L, Ammonia=N = 5 mg/L

6.2 6.1 0.05 0.100 =0.452 0.166 0.002
6.1 6.0 .10 .049 = .456 1.089 .001
6.0 5.9 .10 .044 = .033 1.454 .002
5.9 5.5 .09 .089 .170 1.454 .100
5.5 4.9 .08 .078 .138 .511 .122
4.9 4.2 .07 .086 .101 .282 .127
4,2 2.3 .07 .099 .000 .073 .130
2.3 1.4 .07 .240 .028 .024 .028
1.4 0.0 .06 . 357 = .118 .012 .008

CBODU = 15 mg/L, Ammonia~N = 10 mg/L

6.2 6.1 0.05 0.100 =0.452 0.166 0.002
6.1 6.0 .07 .049 = .046 2.176 .002
6.0 5.9 .07 .044 = .033 2.027 .005
5.9 5.5 .06 .089 .170 2.905 .199
5.5 4.9 .05 .078 .138 1.022 .243
4.9 4.2 .05 .086 .101 .564 «254
4.2 2.3 .04 .099 .000 <145 .259
2.3 1.4 .04 .240 .028 .048 .054
1.4 0.0 .04 . 357 = .118 .023 .016
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Table 28.~~Average dissolved oxygen deficits in Spring Creek,

by subreach, for simulations that include projected changes in
ultimate carbonaceous biochemical oxygen demand and ammonia=
nitrogen concentrations from the Springdale wastewater~treatment
plant==<Continued

Stream discharge = 7-day, 10-year low flow, Temperature = 29°C

Subreach Net
Be= photo=
gin= End- syn=
ning ing CBOD Benthal thetic  Ammonia=N Nitrite=N
mile mile deficit deficit deficit deficit deficit

CBODU = 15 mg/L, Ammonia~=N = 5 mg/L

6.2 6.1 0.05 0.100 <0.452 0.166 0.002
6.1 6.0 .07 . 049 - 046 1.089 .001
6.0 5.9 .07 044 - .033 1.014 .002
5.9 5.5 .06 .089 .170 1.454 .100
5.5 4.9 .05 .078 .138 «511 122
4.9 4.2 .05 .086 .101 .282 .127
4,2 2.3 .04 .099 .000 .073 .130
2.3 1.4 .04 « 240 .028 024 .028
1.4 0.0 .04 « 357 - .118 012 .008
CBODU = 7.5 mg/L, Ammonia=N = 3 mg/L
6.2 6.1 0.05 0.100 <0.452 0.166 0.002
6.1 6.0 .03 .049 = .046 .654 .001
6.0 5.9 .03 044 - ,033 .609 .002
5.9 5.5 .03 .089 .170 .872 .060
5.5 4.9 .03 .078 .138 . 307 .073
4.9 4.2 .03 .086 .101 .170 .076
4.2 2.3 .02 .099 .000 .044 .072
2.3 1.4 .02 . 240 .028 .015 .017
1.4 0.0 .02 . 357 - .118 .007 .005
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Table 28,~<Average dissolved oxygen deficits in Spring Creek, by
subreach, for simulations that include projected changes in ulti-
mate carbonaceous biochemical oxygen demand and ammonia-=nitrogen
concentrations from the Springdale wastewater-treatment plant-—Continued

Stream discharge = 7=day, l0~year low flow, Temperature = 29°C

Subreach Net
Be- photo=
gin= End-= syn=
ning ing CBOD Benthal thetic  Ammonia=N Nitrite-=N
mile mile deficit deficit deficit deficit deficit

CBODU = 7.5 mg/L, Ammonia=N = 2 mg/L

6.2 6.1 0.05 0.100 -0.452 0.166 0.002
6.1 6.0 .03 .049 - .046 436 .000
6.0 5.9 .03 044 = .033 406 .001
5.9 5.5 .03 .089 .170 .582 .040
5.5 4.9 .03 .078 .138 .205 .049
4,9 4,2 .03 .086 .101 .113 .051
4,2 2.3 .02 .099 .000 .030 .052
2.3 1.4 .02 « 240 .028 .010 .011
1.4 0.0 .02 « 357 - .118 .005 .003
Existing Conditions (see table 27)
6.2 6.1 0.04 0.302 -0.452 0.166 0.002
6.1 6.0 .17 .116 = .065 1.554 .007
6.0 5.9 .13 117 - 047 1.404 .010
5.9 5.5 .11 +253 «243 1.762 «235
5.5 4,9 .09 .291 .201 484 +220
4,9 4,2 .08 . 337 149 .206 .186
4,2 2.3 .06 .572 .000 .039 .069
2.3 1.4 .05 1.235 . 042 .013 .010
1.4 0.0 .04 2,152 - ,183 .008 004
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Figure 30.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen
concentrations to a plus or minus 20-percent change in the dissolved oxygen
concentration of the effluent from the Springdale wastewater—treatment plant;
water temperature is 29°C, river discharge is equal to the 7-day, 10-year low
flow, and the wasteload projection for the wastewater-treatment plant is 7.5

mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved
oxygen.
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Figure 31.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the ammonia forward reaction
and decay rates; water temperature is 29°C, river discharge is equal to the 7-day,
10-year low flow, and the wasteload projection for the Springdale wastewater-
treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia,
and 7.7 mg/L dissolved oxygen.
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Figure 32.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the organic nitrogen forward
reaction and decay rates; water temperature is 29°C, river discharge is equal to
the 7-day, 10-year low flow, and the wasteload projection for the Springdale waste-
water-treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L
ammonia, and 7.7 mg/L idssolved oxygen.
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Figure 33.--Band reflecting the sensitivity of Spring -Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the ammonia concentration of
the effluent from the Springdale wastewater-treatment plant; water temperature
is 29°C, river discharge is equal to the 7-day, 10-year low flow, and the waste-
load projection for the wastewater-treatment plant is 7.5 mg/L ultimate biochemical
oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure 34.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the reaeration coefficients;
water temperature is 29°C, river discharge is equal to the 7-day, 10-year low
flow, and the wasteload projection for the Springdale wastewater-treatment plant
is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L
dissolved oxygen.
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Figure 35.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the benthic demands; water
temperature is 29°C, river discharge is equal to the 7-day, 10-year low flow,

and the wasteload projection for the Springdale wastewater-treatment plant is

7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L
dissolved oxygen.
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Figure 36.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the ultimate carbonaceous
biochemical oxygen demand of the effluent from the Springdale wastewater-treatment
plant; water temperature is 29°C, river discharge is equal to the 7-day, lO-year
low flow, and the wasteload projection for the wastewater-treatment plant is 7.5
mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved
oxygen.
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Figure 37.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the nitrite forward reaction
and decay rates; water temperature is 29°C, river discharge is equal to the 7-
day, l10~-year low flow, and the wasteload projection for the Springdale wastewater-—
treatment plant is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia,
and 7.7 mg/L dissolved oxygen.
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Figure 38.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-—
centrations to a plus or minus 20-percent change in the deoxygenation and removal
rates for carbonaceous material; water temperature is 29°C, river discharge is
equal to the 7-day, 10-year low flow, and the wasteload projection for the Spring-
dale wastewater—-treatment plant is 7.5 mg/L ultimate biochemical oxygen demand,
2.0 mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure 39.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in the net photosynthetic pro-
duction; water temperature is 29°C, river discharge is equal to the 7-day, 10-

year low flow, and the wasteload projection for the Springdale wastewater—treatment
plant is 7.5 mg/L ultimate biochemical oxygen demand; 2.0 mg/L ammonia, and 7.7
mg/L dissolved oxygen.
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Figure 40.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in mean river depths; water tem-
perature is 29°C, river discharge is equal to the 7-day, 10-year low flow, and

the wasteload projection for the Springdale wastewater-treatment plant is 7.5 mg/L
ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved
oxygen.
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Figure 41.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 20-percent change in mean river velocities; water
temperature 1is 29°¢, river discharge is equal to the 7-day, 10-year low flow, and
the wasteload projection for the Springdale wastewater-treatment plant is 7.5 mg/L
ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L dissolved oxygen.
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Figure 42.--Band reflecting the sensitivity of Spring Creek dissolved-oxygen con-
centrations to a plus or minus 2.0-degree celsius change in water temperature;
water temperature is 29°C, river discharge is equal to the 7-day, 10-year low
flow, and the wasteload projection for the Springdale wastewater-treatment plant
is 7.5 mg/L ultimate biochemical oxygen demand, 2.0 mg/L ammonia, and 7.7 mg/L

dissolved oxygen.

OSAGE CREEK ASSESSMENT
Osage Creek (fig. 1) flows generally from north-
east to southwest through pasture lands, small
farms, and forested land into the Illinois River at
mile 123.7. It has a total drainage area of 206 mi? at
its mouth (Sullavan and Terry, 1970). The Rogers
WWTP is the only point-source that discharges
waste effluent directly into Osage Creek. The efflu-
ent currently enters the stream at mile 21.0. A
proposed inflow point for the Rogers WWTP is at
mile 20.0. The reach of Osage Creek modeled is
from mile 21.1 to its mouth (fig. 43). A location
index for sites where data were collected for the

Osage Creek assessment is given in table 29.

Surface-Water Hydrology

Osage Creek is a partially canopied pool and
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riffle stream with some large pools. Channel slopes
range from 50 ft/mi to 7.71 ft/mi in a downstream
direction.

Cumulative flows in Osage Creek during collec-
tion of the calibration data set (Aug. 24-Sept. S,
1981) ranged from 9.9 ft3/s at mile 21.1 to 84.2 ft3/s
at the mouth (Attachment D-2, D-3, D-6, and D-
21). Cumulative flows during collection of the
verification data set (July 23-27, 1979) ranged from
6.5 ft3/s at mile 21.1 to 90.3 ft3/s at the mouth
(Attachment D-23, D-24, D-27, D-42). In the 1981
data set, 39 percent of the total streamflow immedi-
ately downstream from the Rogers WWTP was
effluent discharge. In the 1979 data set, the effluent
discharge amounted to 40 percent of the total
streamflow immediately downstream from its point
of entry. These percentages are based on 24-hour
average discharges from the Rogers WWTP.
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Figure 43.--Schematic of Osage Creek showing
sampling-site and model-subreach locations.

Continuous hourly discharge data obtained
from the Rogers WWTP for selected days indicate
substantial variation over a 24-hour period (fig. 44).
This variation in WWTP discharge causes an
unsteady-flow condition in Osage Creek. Averag-
ing the WWTP discharge over a 24-hour period
simulates a quasi-steady inflow to Osage Creek and
helps balance total flow downstream. However,
there are still some inherent problems in defining
times of travel and steady constituent transport.
Similar problems occur when analyses are required
on any stream for a “naturally occurring” steady
flow condition that is masked by a manmade
unsteady inflow. Discharges in Osage Creek are
also affected by the Springdale WWTP downstream
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from the mouth of Spring Creek.

An existing Q, ,,, low-flow distribution (fig. 45)
was defined on the basis of data presented by Hines
(1975), and Hunrichs (1983). This distribution was
established by mass-balancing total discharge at site
51 (table 29). The difference between the sum of
initial and point-source Q,,,, discharges and the
established Q, /10 discharge at site 51 was distributed
linearly as flow loss between stream miles 21.1 and
10.0 (site 51) (fig. 45). From mile 10.0 to the
mouth, tributary inflow was defined by Hunrichs
(1983). No flow loss was assumed downstream
from mile 10.0.
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DISCHARGE, IN CUBIC FEET PER SECOND
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Figure 44.--Rogers wastewater—-treatment plant

discharge for selected days.
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Figure 45.--7-day, 10~-year low flow distribution for Osage Creek.

Water Quality

Physical Characteristics

Suspended solids.-- During the collection of
"steady-state” data in 1978, 1979, and 1981, sus-
pended-solids concentrations in Osage Creek ranged
from 5 to 7 mg/L at site 32 upstream from the
Rogers WWTP and from 4 to 19 mg/L downstream
(table 30). Concentrations in the Rogers WWTP
effluent ranged from 18 to 25 mg/L. Tributary
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inflow concentrations ranged from 1 to 39 mg/L.
The concentration of suspended solids at site 35a
during stormwater-runoff was more than 40 times
greater than in nearby tributaries during periods of
lower flow (table 31). Because site 35a was not
sampled during “steady-state” conditions, table 31
compares site 35a with sites on two nearby tribu-
taries. Sources of suspended solids during higher
flow periods are resuspension of deposited material
and overland flow of stormwater runoff. Nutrients
and bacteria attached to suspended solids may be
transported into streams by stormwater runoff.



Water temperature.-- Temperatures of the Ro-
gers WWTP effluent were generally 3 to 5°C warm-
er than temperatures of Osage Creek upstream of
the WWTP effluent (table 32). Temperatures at
sites 34 and 35 were generally 3 to 4°C warmer than
at site 32 and indicate that the WWTP effluent may
increase water temperatures in Osage Creek more
than the 2.8°C allowed by the Arkansas water-
quality standard (Arkansas Department of Pollu-
tion Control and Ecology, 1981).

Dissolved solids.-- Dissolved-solids concentra-
tions for the 1978 "steady-state” sampling periods
ranged from 157 to 262 mg/L in Osage Creek, from
280 to 320 mg/L in the Rogers WWTP effluent, and
from 142 to 262 mg/L in tributaries sampled (table
30). The data indicate that Arkansas stream water
quality standards (Arkansas Department of Pollu-
tion Control and Ecology, 1981) for total dissolved
solids were being violated at one site.

The minimal dissolved-solids concentrations in
the stormwater-runoff sample at site 35a (table 31)
estimated from the measured specific conductance
value was 184 mg/L.

Chemical and Biochemical Characteristics

Chloride.-- Chloride concentrations for the
1978 "steady-state” sampling periods ranged from
6.0 to 24 mg/L in Osage Creek, from 36 to 52 mg/L
in the Rogers WWTP effluent and from 7.5 to 28
mg/L in sampled tributaries (table 30). The data
indicate that Arkansas stream water quality stand-
ards (Arkansas Department of Pollution Control
and Ecology, 1981) for chloride were violated at
four sites.

Sulfate.-- Sulfate concentrations for the 1978
"steady-state” sampling periods ranged from 6.0 to
17 mg/L in Osage Creek, from 34 to 40 mg/L in the
Rogers WWTP effluent and from 2 to 22 mg/L in
sampled tributaries (table 30). The data indicate
that Arkansas stream water quality standards (Ar-
kansas Department of Pollution Control and Ecolo-
gy, 1981) for sulfate were violated at one site.

pH.-- Values of pH in Osage Creek, ranged
from 7.0 to 8.1, were 7.3 in the WWTP effluent,
and ranged from 7.2 to 8.4 in tributary inflows
(table 30).
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Dissolved oxygen.-- DO concentrations in Os-
age Creek ranged from 5.9 to greater than 10 mg/L
at site 32 upstream from the Rogers WWTP outfall
and from 2.2 to 10.5 mg/L downstream from the
WWTP outfall (table 32). Concentrations in the
WWTP effluent ranged from 4.5 to 6.3 mg/L and
tributary inflow concentrations ranged from 4.4 to
15.3 mg/L. Accoring to Arkansas water-quality
standards (Arkansas Department of Pollution Con-
trol and Ecology, 1981) an instantaneous minimum
DO concentration in Osage Creek shall be greater
than or equal to 4.0 mg/L.

Ultimate carbonaceous biochemical oxygen
demand.-- During “steady-state” conditions
CBODU ranged from 2.1 to 3.2 mg/L at site 32
upstream from the Rogers WWTP outfall and from
2.6 to 28 mg/L downstream from the outfall (table
30). CBODU concentrations in the effluent ranged
from 25 to 66 mg/L. Tributary inflow concentra-
tions ranged from 1.6 to 7.5 mg/L. The CBODU
concentration in the stormwater-runoff sample was
greater than 50 mg/L (table 31).

Streambed oxygen demand.-- A ”"streambed
oxygen demand” of 0.65 (g/m?)/d was measured
for a sample collected at site 32 upstream of the
Rogers WWTP outfall. “Streambed oxygen
demands” downstream from the WWTP ranged
from 0.55 to 0.94 (g/m?)/d (table 33).

Net photosynthetic dissolved-oxygen produc-
tion. --"Net DO production” was calculated as
discussed previously in the general “Net Photosyn-
thetic Dissolved-Oxygen Production” section. It
ranged from 1.4 to 8.8 (mg/L)/d (table 34).
Chlorophyll @ concentrations used in calculations
were distance-weighted estimates based on actual
chlorophyll @ concentrations at sites 35, 39, 51, and
58. For modeling purposes net DO production was
calculated for each subreach (see ”“Simulation
Techniques” section and Attachment D-6 and D-
27).

Nutrients.-- Analyses indicate nutrient enrich-
ment of Osage Creek and its tributaries (table 30).
Analyses of one stormwater-runoff sample (table
31) at site 35a indicate that the Rogers WWTP is not
the sole cause of the nutrient enrichment. Nutrient
concentrations were much greater in the single
runoff sample than during ”steady-state” conditions
at the two nearby tributaries. This suggests that



nutrients deposited on the streambed were resus-
pended as velocities increased and/or that overland
runoff of stormwater transported nutrients into the
stream.

During "steady-state” conditions organic-N
concentrations (table 30) ranged from 0.28 to 1.5
mg/L at site 32 upstream from the Rogers WWTP
effluent and from 0.22 to 1.8 mg/L downstream
from the WWTP effluent. Concentrations in the
effluent ranged from 2.2 to 5.2 mg/L and in tribu-
tary inflows ranged from 0.20 to 1.5 mg/L. The
concentration of organic-N in the stormwater-
runoff sample was 8.2 mg/L and was more than
eight times greater than mean ”steady-state” con-
centrations for nearby tributaries (table 31).

During "steady-state” conditions, ammonia-N
concentrations (table 30) ranged from 0.08 to 0.15
mg/L at site 32 and from 0.01 to 1.9 mg/L at sites
downstream from the WWTP effluent. Concentra-
tions in the WWTP effluent ranged from 1.0 to 3.0
mg/L. Tributary inflow concentrations ranged
from 0.02 to 0.19 mg/L.. Ammonia-N concentra-
tion in the stormwater-runoff sample was 3.8 mg/L
(table 31).

The NO,-N concentrations (table 30) in
"steady-state” condition samples ranged from 0.01
to 0.04 mg/L at site 32 and from 0.01 to 0.81 mg/L
at sites downstream from the WWTP effluent. The
NO,-N concentrations in the effluent ranged from
0.04 to 0.77 mg/L and in tributary inflows ranged
from 0.01 to 0.23 mg/L. The concentration in the
runoff sample was 0.10 mg/L (table 31).

During “steady-state” conditions, NO,;-N con-
centrations (table 30) ranged from 2.6 to 4.6 mg/L
at site 32 and from 0.52 to 8.3 mg/L at sites
downstream from the WWTP effluent. The N03—N
concentrations in the WWTP effluent ranged from
6.0to 8.1 mg/L and ranged from 1.1 to 7.6 mg/L in
tributary inflows. The concentration in the storm-
water-runoff sample was 0.87 mg/L (table 31).

During the ”steady-state” conditions, PO,-P
and phosphorus-P concentrations generally de-
creased downstream from the WWTP effluent (ta-
ble 30 and Attachment D-12 and D-33). PO,-P
concentrations ranged from 0.03 to 0.09 mg/L at
site 32 and from 0.44 to 5.9 mg/L downstream from
the WWTP effluent. PO,-P concentrations ranged
from 3.8 to 11 mg/L in the WWTP effluent.
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Tributary inflow concentrations ranged from 0.01
to 2.4 mg/L. The PO,-P concentration in the storm-
water-runoff sample was 0.93 mg/L (table 31).

Phosphorus-P concentrations (table 30) during
"steady-state” conditions ranged from 0.05 to 0.11
mg/L at site 32 and from 0.44 to 7.3 mg/L down-
stream from the Rogers WWTP effluent. Phos-
phorus-P concentrations in the WWTP effluent
ranged from 4.2 to 14 mg/L and ranged from 0.02
to 2.8 mg/L in tributary inflows. Arkansas water-
quality standards (Arkansas Department of Pollu-
tion Control and Ecology, 1981) suggest as a
"guideline” that total phosphorus-P concentrations
not exceed 0.100 mg/L in streams. This guideline
was exceeded in 83 percent of the ”steady-state”
samples collected in the Osage Creek basin (exclud-
ing Spring Creek and its tributaries) during this
study. The phosphorus-P concentration in the
stormwater runoff sample was 3.0 mg/L (table 31).

Biological Characteristics

Phytoplankton.-- Phytoplankton densities
ranged from 380 to 1,200 cells/mL (table 35). These
densities do not indicate an algal bloom. The most
dominant genera of phytoplankton were Anacystis,
Coelastrum and Anabaena (table 35). These genera
are typically found in eutrophic waters; Anacystis
and Anabaena are common genera associated with
algal blooms (Greeson, 1982). Phytoplankton
chlorophyll @ concentrations ranged from 1.59 to
2.76 ug/L (table 36).

Periphyton.-- Periphyton  organic-weights
ranged from 1.03 to 4.6 g/m? (table 36). The
dominant genera were Coleochaete, Lyngbya and
Oscillatoria (table 37). Lyngbya is commonly found
in eutrophic waters (Greeson, 1982). Periphyton
chlorophyll @ concentrations ranged from 7.73 to
73.5 mg/m? (table 36).

Total and fecal coliform bacteria.-- Total coli-
form bacteria ranged from 12 to 18,000 colonies per
100 mL in Osage Creek and its tributaries (table 30).
Fecal coliform bacteria (table 30) ranged from 330
to 2,100 per 100 mL at site 32 and from 3 to 5,400
colonies per 100 mL downstream from the Rogers
WWTP outfall. Fecal coliform bacteria ranged
from less than 50 to greater than 170 per 100 mL in
the WWTP effluent. Tributary inflow concentra-
tions ranged from 70 to 5,400 per 100 mL. Most



observed fecal coliform bacteria concentrations in
Osage Creek, and several in Osage Creek tribu-
taries, were greater than the Arkansas water-quality
standard for April 1 to September 30 (Arkansas
Department of Pollution Control and Ecology,
1981) of 200 colonié¢s per 100 mL (geometric mean).
The fecal coliform bacteria concentration in the
runoff sample was 143,000 colonies per 100 mL.

Reaeration Coefficient

Reaeration coefficients were measured in three
reaches of Osage Creek using the hydrocarbon gas
injection technique described in the "Instream Rea-
eration Coefficient” section. The stream reaches
for which the measurements were made are down-
stream from Brush Creek between miles 6.1 and 4.2
(fig. 43).

Ethylene gas and rhodamine WT dye were
injected at mile 6.5. Samples were collected at miles
6.1, 5.4, and 4.2. Table 38 contains the resulting
calculated values for k-and k, . As discussed in the
“Instream Reaeration Coefficient” section, equa-
tions 6 and 5 were used to define kr and k,,
respectively.

The Bennett-Rathbun reaeration coefficient
predictive equation, which is available in the digital
model used, can reproduce the measured &, values
reasonably well. The expression, which was num-
bered as equation 18 in an earlier section of this
report, takes the following form,

k, = 8.76u%507p1-685(2 303)(1.0241)T-%°
where,

k, s as previously defined,

u = mean stream velocity, (feet per second),

h = mean stream depth, (feet), and

T = water temperature, °C.
Between stream miles 6.1 and 5.4 a mean cross-
sectional area and depth of 58 ft* and 1.6 ft,
respectively, were observed during the gas and dye
sampling period. Using the discharge of 51.4 ft3/s

and water temperature of 21°C measured during the
gas injection experiment, and applying equation 18
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yields a k, value of 8.4 day”!. A mean cross-section-
al area and depth of 80 ftZ and 1.2 ft, respectively,
were observed between miles 5.4 and 4.2. Insefting
these values, along with the discharge and tempera-
ture data, into equation 14 yields a k, value of 11.3
day!. These computed values of k, compare very
well to those measured (table 38). Therefore, the
Bennett-Rathbun equation was used to simulate k‘2
values for Osage Creek. Values of k,, by subreach,
computed during calibration-verification are shown
on Attachment D-7 and D-28 under the column
heading "KA”. Values of k,, by subreach, comput-
ed for Q,, 10 low-flow projections are given in table
39.

Mean Velocity Interpretation

Time of travel data were collected on Osage
Creek for an average discharge of 56 ft3/s at site 51.
The reaches studied are from mile 21.1 to the mouth
(fig 46). The discharges observed during the collec-
tion of the calibration and verification data sets
ranged from 9.9 ft3/s at mile 21.1 to 84.2 ft3/s at the
mouth and from 6.5 ft3/s at mile 21.1 to 90.3 ft3/s
at the mouth, respectively.

Mean cross-sectional areas were computed for
Osage Creek, by subreach, using techniques de-
scribed in the earlier "Time of Travel” section.
Many channel-width measurements and observa-
tions were made during the collection of the 1979
and 1981 data sets. The ratio of the ”subreach-
average” cross-sectional areas to “subreach-
average” channel-widths were used to define "sub-
reach average” depths. This data is shown in At-
tachment D-6 and D-27 for the calibration and
verification data sets, respectively.

The mean velocities for the calibration and
verification data sets are shown in table 40. These
velocities are the result of the “fitted” channel
geometry, based upon the measured times of travel
(fig. 46) and the flow distributions for each data set.
Mean velocities computed for the Q,,,, low-flow
projections with the projected Rogers WWTP flow
imposed are given in table 34.
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Stream Model

Calibration and Verification

Attachment D contains the results of model
calibration and verification. Model calibration out-
put is on Attachment D-2 through D-22; verifica-
tion output is on Attachment D-23 through D-43.
The Osage Creek model was calibrated and verified
using data collected in 1981 and 1979, respectively.

The success of the model calibration-verifica-
tion procedure is illustrated by the "goodness-of-
fit” between the model-derived and observed con-
centration profiles for the predictable variables.
Those profiles are shown on Attachments D-11
through D-20 and D-32 through D-41. The values
of these coefficients and parameters defined during
the calibration-verification process (as discussed in
the ”Calibration and Verification Procedure”
section) are included on Attachment D-6 and D-7
and again on Attachments D-27 and D-28. Values
of k, resulting from application of the Bosko equa-
tion (equation 15) to subreach average &, values are
shown in Attachment D-7 and D-28.
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Two DO profiles were “fitted” for both the
calibration and verification data sets, the diel-mean
profile and the diel-minimum profile (Attachments
D-19 and D-20 and Attachment D-40 and D-41).
Subreach-average benthic demands, directly result-
ing from the "fitting” of the mean DO profile, are
shown on Attachment D-6 and D-27. The adjust-
ment factors used in fitting the model-derived diel-
minimum DO profile to the observed diel-minimum
profile (as discussed in the "Simulation Techniques”
section) are shown on Attachment D-6 and D-27.
Verification of the “fitting” of the diel-minimum
DO profile is shown on Attachment C-41.

Prqjections
Osage Creek simulations were made for project-
ed Rogers WWTP effluent limits. CBODU, TSS,
ammonia-N, and PO,-P, respectively, in mg/L, are:
1. 45,30, 15,10

2. 30, 20, 10, 10

3. 15,15,10, 10



4. 15,15,5,5
5.75,5,3,2
6. 7.5,5,2,1

Each of these projections was simulated twice; once
using an effluent DO concentration of 5.0 mg/L
and once using a DO concentration at saturation.
All projections were made using a Rogers WWTP
discharge of 9.75 ft3/s, Q,,/,o stream conditions,
and water temperatures reflecting summertime
highs (29°C). The WWTP effluent was input at the
projected location at mile 20.0, 1 mile downstream
from the existing point of entry.

For comparative purposes, two additional
simulations were made at Q,,,,, low-flow condi-
tions and water teniperatures of 29°C using ”as
surveyed” effluent concentrations and discharge;
one with the effluent inflow located at the existing
entry point, the other with the entry point at the
proposed location. The former simulation reflects
water quality conditions at Q,,,, flows in Osage
Creek with existing waste loading as compared to
the latter which reflects the effects of ”as surveyed”
effluent loading at the proposed new location.

Values of k, resulting from a Bosko correction
(equation 15) of subreach-average k ; Vvalues for
Q,,10 low-flow velocities are shown in table 41. For
reasons discussed in the ”Simulation Techniques”
section, k, was set equal to k; in each subreach and
benthic demands were modified, by subreach, using

equation 16 (table 41).

The results of the Osage Creek projection simu-
lations are shown in table 42. Average DO deficits
caused by oxygen sinks are shown in table 43. When
the net photosynthetic DO deficit is negative, net
photosynthetic DO production is an oxygen source.
The ammonia deficits are the most significant be-
tween river miles 20.0 and 19.6 when projected
ammonia concentrations equal or exceed 10 mg/L.
When projected CBODU concentrations in the
WWTP effluent equal or exceed 30 mg/L, CBOD
deficits dominate between river miles 19.6 and 14.5.
Except for these two conditions, DO deficits created
by benthal demands are the most significant in each
subreach for all projections simulated. Osage Creek
will meet the Arkansas diel-minimum DO standard
of 4.0 mg/L (Arkansas Department of Pollution
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Control and Ecology, 1981) with projected Rogers
WWTP effluent limits 3, 4, 5, or 6 imposed and
effluent DO concentrations set at saturation (7.7
mg/L). The standard of 4.0 mg/L can also be met
with effluent limit 6 imposed and the effluent DO
concentration set at 5.0 mg/L. Both the simulation
for "as surveyed” effluent loading at the existing
inflow point and the simulation for "as surveyed”
effluent loading at the proposed new location result
in instream diel-minimum DO concentrations of 0.0
mg/L (table 42).
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Table 34.--Net photosynthetic dissolved-oxygen production
at selected sites on 0Osage Creek

Net photosynthetic
dissolved oxygen

Site River Date production
number mile (1981) [(mg/L)/d at 20°C]
32 21.1 August 27-28 6.6

34 20.9 August 29-30 1.4

35 19.6 August 28-29 5.2

38 16.1 August 30-31 1.8

39 15.2 August 29-30 4.1

49 12.6 September 5-6 8.8

51 10.0 September 2-3 4.6

55 5.4 September 5-6 2.7

58 1.6 September 5-6 3.0

60 0.3 September 2-3 2.6
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Table 35.--Phytoplankton taxonomy and densities for Osage Creek

cells/milliliter

Scientific name Common name Site 35 Site 39 Site 51 Site 58

Chlorophyta Green algae

.Chlorophyceae

..Chlorococcales

. +.Chlorococcaceae

« s osPlanktosphaeria — -—- - 110
...Coelastraceae

vvesCoelastrum 1 _— _— 170 390
...0ocystaceae

o oo Ankistrodesmus 14 28 -— 14
... .00cystis 1 -_— 83 - 14
.+ s Scenedesmaceae

....Scenedesmus 1 -— 110 28 110
..Volvocales

+ »»Chlamydomonadaceae

«eslarteri — —_— — 28
s+ o Chlamydomonas 14 - 14 -—
Chrysophyta Yellow—green algae

.Bacillariophyceae Diatoms

..Centrales Centric diatoms

. +sCoscinodiscaceae

«eseCyclotella -— -—- 56 -
. «Pennales Pennate diatoms

.+ Achnanthaceae

« oo sAChnanthes 29 - —-—— -
«esoCocCCONELS -— 28 - -—
++.Cymbellaceae

o oo sCymbella -— - 14 14
+soFragilariaceae

..+ .Fragilaria -—- -— -—- 28
« o+ sSynedra -— - - 14
.« sGomphonemataceae

«« s JGomphonema 1 72 14 ——— 28
...Naviculaceae Naviculoids

eoeNavicula - 56 14 —
.. .Nitzschiaceae

. oo Nitaschia 1 100 28 170 14

l pominant organism, cell counts greater than or equal to 15 percent of
total count for the station,
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Table 35.--Phytoplankton taxonomy and densities for Osage Creek--Continued

cells/milliliter

Site 39 Site 51 Site 58

Scientific name Common name Site 35
Cyanophyta Blue-green algae
.Cyanophyceae

. .Chroococcales
.+ .Chroococcaceae Coccoid blue-greens
... Anacystis 1 -
. .Hormogonales Filamentous

blue-greens
+s+.Nostocaceae
v...Anabaena 1 220
...0scillatoriaceae
oo Lyngbya -—
Euglenophyta Euglenoids
.Euglenophyceae
. .Euglenales
.».Euglenaceae
.++.Euglena -—

lpominant organism, cell counts greater than
count for the station.
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Table 37.--Periphyton taxa present in samples from QOsage Creek

[Periphyton strips placed in creek on 8-12-81, removed 9-01-81]

Scientific name

Chlorophyta
.Chlorophyceae
..Chlorococcales
.+.Scenedesmaceae
e oo Scenedesmus
..Ulotrichales
.+.Coleochaetaceae
«se.Coleochaete
Chrysophyta
.Bacillariophyceae
..Pennales
.«+Achnanthaceae
.« o JAChnanthes
«eeCoOCCONELS

« «+ «Rhotcosphenia
++.Cymbellaceae
«eesCymbella

.+ .Eunotraceae
«veBunotia
...Fragilariaceae
«+.Fragilaria

.+ sGamphonemataceae
« s« JGomphonema
««.Naviculaceae
eeeNavicula

s .Nitzschiaceae
«eeNitzschia
.s.Surirellaceae
eseSurirella
Cyanophyta
.Cyanophyceae

. Chroococcales
.+.Chroococccaceae
« oo Anacystis

. .Hormogonales
.+.0scillatoriaceae
oo Lyngbya
«ve08cillatoria

Common name

Green algae

Yellow—-green algae
Diatoms
Pennate diatoms

Naviculoids

Blue~green algae

Coccoid blue-greens

Filamentous blue-greens

X Indicates organism present
* Indicates a dominant organism, estimated to be
of total algal cells on sampling strip
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Station 39 Station 51
X - ——
X *

— X
X X

-—- X
X

X X

- X
X X

X X

X X

X X

X - ———

X ————

* X

X *

greater than 15 percent



Table 38.--Ethylene desorption rate and reaeration rate coefficients for
selected reaches of Osage Creek

[Discharge = 51.4 ft3/s]

Stream Reach Stream
Begin End kp ks Percent temperature
mile mile (day~ 1) (day™l) differenced (°c)

6.1 5.4 7.26 8.35 18 21.0

5.4 4.2 9.85 11.33 35 21.0

6.1 4,2 9.16 10.53 30 21.0

4 pifference between percent change in gas concentration and percent
change in dye concentration

Table 39.~-<Model=derived velocities and reaeration rate coefficients
for Osage Creek low=flow projections

[Stream temperature = 29°C; Discharge from
Rogers wastewater~treatment plant = 9,75 £t3/s]

Subreach Mean Mean
Begin End discharge velocity ko
mile mile (£f£3/s) (ft/s) (day‘l)
20.0 19.6 10.0 0.173 1.33
19.6 17.1 9.18 .158 1.33
17,1 14,5 8.22 .175 3.48
14,5 13.1 7.08 .151 3.48
13.1 10.5 13.4 145 3.28
10.5 6.2 17 .4 . 164 3.28
6.2 4.9 18.3 .155 2.19
4.9 2,0 19,2 142 2,19
2,0 1.2 19,2 141 3.71
1.2 0.0 20.1 .143 3.48
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Table 40.--Mean velocities, by subreach, for the 1979
and 1981 data sets collected on Osage Creek

Subreach ‘
Begin End Velocities
mile mile 1979 1981
21.1 21.0 0.224 0.341
21.0 19.6 .232 .313
19.6 17.1 .276 .313
17.1 14.5 .389 .386
14,5 13.1 .388 467
13.1 10.5 421 «537
10.5 6.2 +559 .580
6.2 4.9 «593 .590
4,9 2.0 .580 .570
2.0 1.2 .628 .567
1.2 0.0 645 .571
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Table 41.,--Modified components and rate coefficients for Osage
Creek simulations that include projected effluent
limits for the Rogers wastewater-treatment plant

Benthic
Subreach oxygen
Begin End kg ky demand

mile mile (day~1) (day~1) [(g/w?)/d]
20.0 19.6 0.17 0.17 3.11
19.6 17.1 o15 15 1.55
17.1 14.5 .18 .18 1.40
14.5 13.1 .15 15 1.35
13.1 10.5 14 14 4.36
10.5 6.2 .16 .16 5.11
6.2 4.9 .15 J15 1.55
4.9 2,0 14 14 1.77
2.0 1.2 14 14 2.35
1.2 0.0 .15 .15 2.44
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Table 43.--Average dissolved oxygen deficits in Osage Creek, by sub-
reach, for simulations that include projected changes in
ultimate carbonaceous biochemical oxygen demand and ammonia-
nitrogen concentrations from the Rogers wastewater—treatment

plant

[Deficits in milligrams per liter]

Stream discharge = 7-day, 10-year low flow, Temperature = 29°C

Subreach Net
Be- photo-
gin- End- syn—
ning ing CBOD Benthal thetic Ammonia-N  Nitrite-N
mile mile deficit deficit deficit deficit deficit

CBODU = 45 mg/L, Ammonia-N = 15 mg/L

20.0 19.6 0.37 0.195 0.048 0.556 0.042
19.6 17.1 .33 .106 - .174 .102 .052
17.1 14.5 .25 .141 .026 .005 .005
14.5 13.1 .20 .156 .100 .004 .002
13.1 10.5 .10 .509 - 311 .002 .001
10.5 6.2 .04 .519 - .152 .004 .001
6.2 4.9 .04 .136 - .201 .002 .001
4.9 2.0 .03 .168 - .029 .001 .001
2.0 1.2 .02 .302 - .043 .001 .000
1.2 0.0 .02 .294 - .205 .002 .001

CBODU = 30 mg/L, Ammonia-N = 10 mg/L

20.0 19.6 0.25 0.195 0.048 0.371 0.025
19.6 17.1 .22 .106 - .174 .068 .035
17.1 14.5 .17 141 .026 .003 .003
14.5 13.1 .14 .156 .100 .003 .001
13.1 10.5 .07 .509 - .311 .001 .001
10.5 6.2 .03 .519 - .152 .004 .001
6.2 4.9 .03 .136 - .201 .002 .001
4.9 2.0 .02 .168 - .029 .001 .001
2.0 1.2 .02 .302 - 043 .001 .000
1.2 0.0 .02 .294 - .205 .002 .001
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Table 43.--Average dissolved oxygen deficits in Osage Creek, by sub-
reach, for simulations that include projected changes in
ultimate carbonaceous biochemical oxygen demand and ammonia-
nitrogen concentrations from the Rogers wastewater—-treatment
plant--Continued

Stream discharge = 7-day, 10-year low flow, Temperature = 29°C

Subreach Net
Be- photo-
gin- End- syn-
ning ing CBOD Benthal thetic Ammonia-N  Nitrite-N
mile mile deficit deficit deficit deficit deficit

CBODU = 15 mg/L, Ammonia-N = 10 mg/L

20.0 19.6 0.12 0.195 0.046 0.371 0.028
19.6 17.1 .11 .106 - 174 .068 .035
17.1 14.5 .09 141 .026 .003 .003
14.5 13.1 .07 .156 .100 .003 .001
13.1 10.5 .05 .509 - W311 .001 .001
10.5 6.2 .03 519 - 152 .004 .001
6.2 4.9 .02 .136 - .201 .002 .001
4.9 2.0 .02 .168 - .029 .001 .001
2.0 1.2 .02 .302 - 043 .001 .000
1.2 0.0 .02 294 - 205 .002 .001

CBODU = 15 mg/L, Ammonia-N = 5 mg/L

20.0 19.6 0.12 0.195 0.048 0.186 0.014
19.6 17.1 .11 .106 - .174 .034 .018
17.1 14.5 .09 141 .026 .002 .002
14.5 13.1 .07 .156 .100 .001 .001
13.1 10.5 .05 .509 - .311 .001 .000
10.5 6.2 .03 519 = .152 .004 .001
6.2 4.9 .02 .136 - .201 .002 .001
4.9 2.0 .02 .168 - .029 .001 .001
2.0 1.2 .02 «302 - 043 .001 .000
1.2 0.0 .02 +294 - .205 .002 .001
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Table 43.--Average dissolved oxygen deficits in Osage Creek, by sub-
reach, for simulations that include projected changes in
ultimate carbonaceous biochemical oxygen demand and ammonia-
nitrogen concentrations from the Rogers wastewater—treatment
plant--Continued

Stream discharge = 7-day, 10-year low flow, Temperature = 29°C

Subreach Net
Be- photo-
gin- End- syn-
ning ing CBOD Benthal thetic Ammonia-N  Nitrite-N
mile mile deficit deficit deficit deficit deficit

CBODU = 7.5 mg/L, Ammonia-N = 3 mg/L

20.0 19.6 0.06 0.195 0.048 0.111 0.008
19.6 17.1 .06 .106 - 174 .021 .010
17.1 14.5 04 J141 .026 .001 .001
14.5 13.1 04 .156 .100 .001 .000
13.1 10.5 .04 +509 - .31 .001 .000
10.5 6.2 .02 519 - 152 .004 .001
6.2 4.9 .02 .136 - .201 .002 .001
4.9 2.0 .02 .168 - .029 .001 .001
2.0 1.2 .01 .302 - .043 .001 .000.
1.2 0.0 .01 .294 - .205 .002 .001

CBODU = 7.5 mg/L, Ammonia-N = 2 mg/L

20.0 19.6 0.06 0.195 0.048 0.074 0.006
19.6 17.1 .06 .106 - 174 014 .007
17.1 14.5 .04 141 .026 .001 .001
14.5 13.1 .04 .156 .100 .001 .000
13.1 10.5 .04 .509 - 311 .001 .000
10.5 6.2 .02 .519 - .152 .004 .001
6.2 4.9 .02 .136 - .201 .002 .001
4.9 2.0 .02 .168 - .029 .001 .001
2.0 1.2 .01 .302 - 043 .001 .000
1.2 0.0 .01 <294 - .205 .002 .001
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Table 43,~<Average dissolved oxygen deficits in Osage Creek, by sub=
reach, for simulations that include projected changes in
ultimate carbonaceous biochemical oxygen demand and ammonia=
nitrogen concentrations from the Rogers wastewater=treatment
plant==Continued

Stream discharge = 7=day, 10-year low flow, Temperature = 29°C

Subreach Net
Be- photo=
gin= End= syn—=
ning ing CBOD Benthal thetic Ammonia-N  Nitrite-=N
mile mile deficit deficit deficit deficit deficit

Observed Loading at New Discharge Point (see table 37)

20.0 19.6 0.57 1.529 0.084 0.093 0.101
19.6 17.1 o 24 .960 - .326 .010 .017
17.1 14.5 .03 .810 .052 .002 .001
14.5 13.1 .01 1.227 .236 .001 .001
13.1 10.5 .04 1.030 - .458 .001 .000
10.5 6.5 .03 .863 = .098 .005 .002
6.2 4.9 .01 453 = .261 .002 .001
4.9 2.0 .01 .606 - .037 .002 .001
2.0 1.2 .00 .814 = .055 .001 .000
1.2 0.0 .01 .755 = .755 = .257 .001

Existing Conditions (see table 42)

20.0 19.6 0.37 1.504 0.082 0.038 0.044
19.6 17.1 .11 .989 «335 .002 .003
17.1 14.5 .02 .812 .050 .001 .000
14.5 13.1 .00 1.230 .237 .001 .000
13.1 10.5 .04 1.031 - .458 .001 .000
10.5 6.5 .02 .864 = .198 .005 .002
6.2 4.9 .01 <454 = .261 .002 .001
4.9 2.0 .01 .607 = .037 .002 .001
2.0 1.2 .00 .814 = .055 .001 .000
1.2 0.0 .01 «755 = .257 .003 .001
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Sensitivity Testing

The Osage Creek simulation with the projected
Rogers effluent limit number 3 imposed and efflu-
ent DO concentration set to saturation (7.7 mg/L)
was used for sensitivity testing. The criteria used,
and the parameters and coefficients tested for sen-
sitivity, are listed in the "Model Sensitivity” section.
Figures 47 through 59 show the resulting sensitivity
bands.

For the flow conditions in the simulation tested,
the DO profile is more sensitive to changes in
reaeration coefficients, net subreach average benth-
ic demands, and DO production than any other
parameter tested. The DO sensitivity bands for
these parameters are shown in figures 51, 52, and
56. Each of the processes defined by these parame-
ters seem to have equal impact upon the Osage
Creek DO profile. Like changes in either,
therefore, precipitate similar changes in the result-
ing DO profile.

Osage Creek Conclusions

Under existing conditions, Osage Creek does
not meet standards (Arkansas Department of Pollu-
tion Control and Ecology, 1981) for the following
parameters: diel-minimum DO, total phosphorus,
water temperature, and fecal coliform bacteria.
Stormwater-runoff sampling indicates that signifi-
cant nutrient loads may be contributed to the stream
during runoff periods. The nutrients contribute to
benthic demands at low flow and may be resuspend-
ed in the water column when velocities increase, or
when the streambed is disturbed for any reason.

Simulations indicate that generally, the largest
DO deficits result from benthic demands (table 43).
Exceptions to this are in subreach 1, when effluent
ammonia-N concentrations equal or exceed 10
mg/L and, i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>