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METRIC CONVERSION FACTORS

The International System of Units (SI) used in this report may be
converted to inch-pound units by the following conversion factors:

Multiply By To obtain
centimeter (cm) .03281 foot
centimeter (cm) .3937 inch
gram (gm) .002205 pound
kilopascal (kPa) .01450 pound per square inch
meter (m) 3.281 foot
millimeter (mm) .03937 inch

To convert degree Celsius (°C) to degree Fahrenheit (°F), use the
following formula: (°Cx9/5)+32=°F. To convert Kelvin (K) to degree
Rankin (°R), use the following formula: Kx1.8=°R.

ix



DOCUMENTATION OF COMPUTER PROGRAM VS2D TO SOLVE THE EQUATIONS

OF FLUID FLOW IN VARIABLY SATURATED POROUS MEDIA

By E. G. Lappala, R. W. Healy, and E. P. Weeks

ABSTRACT

This report documents a computer code for solving problems of variably
saturated, single-phase flow in porous media. The mathematical model of this
physical process is developed by combining the law of conservation of fluid
mass with a nonlinear form of Darcy's law. The resultant mathematical model,
or flow equation, is written with total hydraulic potential as the dependent
variable. This allows straightforward treatment of both saturated and
unsaturated conditions. The spatial derivatives in the flow equation are
approximated by central differences written about grid-block boundaries. Time
derivatives are approximated by a fully implicit backward scheme. Nonlinear
storage terms are linearized by an implicit Newton-Raphson method. Nonlinear
conductance terms, boundary conditions, and sink terms are linearized
implicitly. Relative hydraulic conductivity is evaluated at cell boundaries
by using full upstream weighting, the arithmetic mean, or the geometric mean
of values from adjacent cells. Saturated hydraulic conductivities are
evaluated at cell boundaries by using distance-weighted harmonic means. The
linearized matrix equations are solved using the strongly implicit procedure.

Nonlinear conductance and storage coefficients are assumed to be
represented by one of three closed-form algebraic equations. Alternatively,
these values may be interpolated from tabulated data. Nonlinear boundary
conditions treated by the code include infiltration, evaporation, and seepage
faces. Extraction by plant roots is included as a nonlinear sink term.

The code is written in standard ANSI Fortran. Extensive use of
subroutines and function subprograms provides a modular code that is easily
modified. A complete listing of data-input requirements and input and output
for a one-dimensional infiltration problem and for a two-dimensional problem
involving infiltration, evaporation, and evapotranspiration (plant-root
extraction) are included.



INTRODUCTION

This report documents VS2D, a computer program for simulating
isothermal, two-dimensional movement of liquid water in variably saturated
porous media. Understanding the occurrence and movement of water in variably
saturated systems is important for developing predictive tools for managing
both quantity and quality of ground water within ground-water flow systems.
Recharge to aquifer systems generally occurs through overlying materials that
are variably saturated. Land-use activities may alter both quantity and
quality of recharge. Prediction of the fate of pollutants applied to the
land surface or buried above the zone of permanent saturation requires
estimates of the rate of moisture movement. VS2D provides a user-oriented
tool for examining such problems. Although an attempt has been made to make
the model general enough to handle many field situations, its use should be
accompanied by a thorough understanding of the theoretical and practical
limitations described herein. Field applications exist for which the model
is not appropriate; an example would be evapotranspiration in which
significant anisothermal movement of water vapor as well as liquid water
occurs. However, such problems can be analyzed by modifying the basic
isothermal model. This model does not include solution of the equations for
movement of solutes.

The code has been verified for two one-dimensional transient linear
problems and one one-dimensional steady-state nonlinear problem for which
analytical solutions exist, and against two nonlinear problems for which
experimental data exist.

An extensive review (Lappala, 1981) of the literature on numerical
modeling of variably saturated flow was conducted during the development of
this program. Based on this review, the model was developed to include the
following features:

1. Capability to handle problems in which part of the mathematical
solution domain is saturated and part is unsaturated.

2. Capability to handle ""difficult" nonlinear problems, such as those
caused by infiltration into dry soils and by discontinuities in perme-
abilities and porosities. This capability is best met by using finite
differences to discretize the spatial and temporal domains. Adequate
solutions of nonlinear equations using finite-element discretization in
space require such numerical tricks as lumping the capacity (storage)
term over each element. The upstream weighting of relative hydraulic
conductivities that may be required to prevent numerical oscillations is
more difficult with finite elements than with finite differences.
Finally, the algebraic equations resulting from a finite-element spatial-
discretization scheme generally require more computer core storage and
time to solve than those resulting from a finite-difference scheme
(Lappala, 1981).

3. Capability to analyze problems in one and two dimensions with planar
or cylindrical geometries.

4. A modular structure to simplify program modification.

These features are described more completely below.



THEORETICAL DEVELOPMENT

The equation that describes the movement of liquid water under
isothermal and isohaline conditions is developed by combining the equation
for conservation of mass for water with auxiliary equations for fluid flux
and storage.

Conservation of Mass

Given a volume of porous medium, v, bounded by a surface s as shown in
figure 1, conservation of mass for liquid water requires that the following
equation be satisfied:

> -
8(pst) 4, + puds - pqdv = 0 , (1
ot _ n
s v
v
where: p = liquid demsity, ML3;
s = liquid saturation, L°;
¢ = porosity, L°;
t = time, T;
>
u, = liquid flux per unit area in the direction n, which is normal
to s, LT"!; and

q = volumetric source-sink term accounting for liquid added to

(+q) or taken away from (-q) the volume v, per unit volume
per unit time, T71!.

Equation 1 states that the rate of change of mass stored in v must be
balanced by the sum of liquid flux across the surface boundary of v and of
liquid added by sources or removed at sinks.

It is assumed that the volume v is small enough that within v, the
liquid density (p), saturation (s), and porosity (¢) can be considered
constant "representative" values, so that the first term of equation 1 can be
expressed as:

.//. @iﬂiﬁl dv = v QLEEQl
ot ot ’
v

and the third term as:

pgqdv = pqv .
v
Equation 1 becomes:
v 9(psd) p 2 ds - pqv =0 . (2)
ot n
s



Figure 1.--General volume element, v, used for developing a fluid mass
balance. (u is liquid flux normal to face.)

Fluid-Flux Equation

The fluid flux normal to the surface s bounding v is described by
Darcy's law extended to variably saturated conditions:

KK (h)pg SH

>
e W TR (3)



where: K = intrinsic permeability of the medium, LZ2;

K (h) = relative hydraulic conductivity to liquid as a function of
pressure head, L°;

= pressure head, L;
= gravitational acceleration, LT™2;

= dynamic viscosity of the liquid, ML™!T™!; and

- T e =
|

= total potential of the liquid, expressed as the height of
a column of the liquid, L.

The saturated hydraulic conductivity, K, commonly used as a lumped term
in hydrology is

K =5ﬁ—3, LTt

Because density and viscosity are assumed to be constant in the program,
saturated hydraulic conductivity is used as a medium property in the
remainder of this report, rather than intrinsic permeability. However,
dynamic viscosity, M, for water is strongly temperature dependent, changing
by about 3 percent per °C in the common ambient temperature range. The
program user should take this temperature dependence into account when
formulating his simulation problem.

The effective hydraulic conductivity defined as KK _(h),LT"!, is
sometimes used as the lumped conductivity term; howeverf in this program K
is determined by a function call, so the two terms (K and K ) are maintained
as separate entities. r

Under variably saturated conditions, total hydraulic potential, H, is
comprised of two components:

H=h+h |, (4)
where: hZ = elevation potential, L.

Below the water table, the pressure potential is proportional to the
weight of the overlying water and increases with depth. Above the water
table, water is held in porous media by adsorptive and capillary forces.

Flow under unsaturated conditions generally occurs only when water is held by
capillary forces, which can be illustrated by the capillary-rise equation
(Stallman, 1964):

2 ocosd
= £ 22287 5
T _pe (5)



where: o = surface tension of water against the gas phase, MT 2;

a = contact angle between liquid and solid measured through
the liquid (taken to be 0 degrees for water in contact
with most media); and

r. = radius of the capillary, L.

The capillary-rise principle embodied in equation 5 adequately describes
the occurrence and movement of water in relatively coarse-grained materials,
such as silt, sand, and gravel. However, if the media contain a large
fraction of clay-size material, adsorption forces may be dominant in
controlling the occurrence and movement of water.

Pressure head below the water table is often measured in piezometers or
wells. Above the water table, small negative pressure heads (less than about
100 kPa) can be measured by using tensiometers, which couple the measuring
fluid in a manometer, vacuum gage, or pressure transducer to water in the
partially saturated medium through a porous membrane. The operation of
tensiometers is described in various soil physics texts, including Hillel
(1971), Baver and others (1972), and Kirkham and Powers (1972).

The pressure status of water held under large negative pressure (greater
than 100 kPa) may be measured using thermocouple psychrometers (Wiebe and
others, 1971), which measure the relative humidity of the gas phase within
the medium. Determination of pressure head from a thermocouple psychrometer
measurement is made using the thermodynamic relation, commonly called the
Kelvin equation, developed by Edelfson and Anderson (1943, p. 145):

h = ﬁEI 2n ?— =
wg P

2n (h) (6)

where: R = ideal gas constant, ML2T 2°K~1 Mol~1;
T = absolute temperature, °K;
Mw = mass of water, M Mol™!;
P = water-vapor pressure in the soil atmosphere, ML™1T"2;
Po = vapor pressure over a flat surface of pure water; and
h = relative humidity, L°.

Other symbols were defined previously.

Thermocouple psychrometers measure the combined hydraulic and osmotic
potential (described hereafter), and thus may result in measured potentials
at variance with those measured by tensiometers..

Elevation potential, h_, is a measure of the gravitational potential
resulting from position relative to a selected reference datum. The conven-
tion used in this report is taken as z being positive upward, with the datum
at or above the land surface; thus, elevation potential is always negative.



The model solves for the total hydraulic potential, H, as the principal
dependent variable. As such, the individual components of H are not solved
for explicitly. However, model applications to field situations should be
made using equations 4 through 7 to gain an adequate understanding of the
relation between field measurements of components of H and the simulated
values. ’

If osmotic membranes and chemical gradients are present, water may move
in response to osmotic potential, as well as to hydraulic potential. The
magnitude of the osmotic potential across a perfect membrane is given by the
Van't Hoff law (Campbell, 1977, p. 26):

- CRT
h) = g 2
where: ho = osmotic potential, L; and
C = molal solute concentration, Mol M™1,

Osmotic potential affects movement in the liquid phase only when an
osmotic membrane is present. However, the liquid-water surface acts as such
a membrane to the vapor phase, and relative humidity will be affected by the
concentration of solutes in the liquid phase. Modeling of water movement due
to osmotic-potential gradients would require the inclusion of solute concentra-
tions within the liquid, membrane properties of the medium, and possibly
movement in the vapor phase. Although this program does not include provision
for such modeling, the effects of osmotic potential on water movement in the
prototype system should be considered when formulating the simulation model.

Total hydraulic potential, H, was chosen as the principal independent
variable because it allows a simple unified treatment of both saturated and
unsaturated conditions. Interfaces between saturated and unsaturated regions
are surfaces where the pressure potential is equal to the atmospheric
pressure potential, or zero. Along these interfaces, the total potential
equals the elevation potential (fig. 2).

When equation 3 is substituted into equation 2, the following results:

v?%‘&-/pmrm)g—ﬁd;-pqwo, (8)
:

where all terms are reducible to units of mass per unit time (MT™1).

If all the quantities under the surface integral can be considered
constant over each of m faces of a general curvilinear polygonal volume, v,
such as a cube or cylinder, equation 8 can be approximated by:

A

m
V@_Qgﬂl_ > pKK_(h)A a—H--pqv=0, 9
t =1 r k Bnk

where A, is the area of the kth face to which n

& g is orthogonal.
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Figure 2.--Relations among capillary, elevation, and total potentials for
downward flux through layered media with a perched water table and a
deep water table.



Storage Term

Liquid water held in storage is expressed by the first term in equation 8
and can be expanded as follows using the product rule:

vﬂg%@l'zv [p¢ (g—i) + ps (g%) + s6 (g-g)] (10)

The three terms in parentheses on the right-hand side of equation 10 account
for changes in liquid stored in v owing to: (1) Changes in liquid
saturation, (2) compression or expansion of pore space of the porous medium;
and (3) compression or expansion of the liquid.

Because the principal dependent variable used in the model is total
hydraulic potential, H, the storage terms are written in terms of H by using
the chain rule of calculus to yield:

v Qigégl = v [p¢ (g%) + ps (g%) + s¢ (g%)] g% . (11)

The functional dependence of s, ¢, and p on H is taken to be independent
of all components of H except the pressure potential, h. The following
expressions can be defined:

Cn = g% = specific moisture capacity, which is the slope
of the moisture retention curve, L71;
o = é? = matrix compressibility, M™1LTZ2,
¢ 3P where P = average pressure, ML™IT72;
B = 19p = fluid compressibility, M~ 1LT2;
c -
poP
and SS = pg(q)BC + uc) = specific storage, L71. (12)

Substituting equations 11 and 12 into equation 9 yields the following
equation, which is written for each volume subdivision within the solution
domain:

A

3H o
v {plc +s8 ]} s--p I A

oH
KK (W)~ - pqv = 0 . (13)
5t ey Kk ren

This is the form of the nonlinear flow equation that is solved by the computer
code.



Initial Conditions

The solution to equation 13 requires that initial values of H be speci-
fied everywhere in the solution domain. These initial conditions usually
represent some type of steady state or equilibrium. If initial conditions are
used that do not represent steady state, any simulation results will include
transient effects from the difference between specified initial conditions and
equilibrium conditions. Since equation 13 is nonlinear, it is not permissible
to use the principle of superposition to subtract out the effects of transient
initial conditions, as is often done in simulating fully saturated ground-water
systems, in which the aquifer properties are not a function of total potential.

Boundary Conditions

Solutions to equation 13 require boundary conditions that specify either
the flux of liquid across the boundary, the total potential along the
boundary, or some combination of specified head and specified flux. The
specified flux boundary can be expressed as:

>
pu

k = fl(X,t,VH,h)k ’ (14)

where

f, (x,t,VH,h), = a general function that depends upon position, time,
the gradient in total hydraulic potential across the

face, and the pressure head at the face.

k

Boundary conditions that specify only the total potential are defined as:

Hk = fg(X,t,VH,h)k ’ (15)

where f, is a general time-dependent function.

Four phenomena can occur in flow through variably saturated media that
may make a priori specification of the boundary condition type impossible:
infiltration, evaporation, plant-root extraction, and discharge through
seepage faces. These processes are described immediately below, and their
implementation into the computer code is described later.

Infiltration and Ponding

Infiltration of water into a thick uniform medium from rainfall or
sprinkler irrigation is a two-stage process. During the first stage, water
enters the system at the applied rate as long as the conductive and sorptive
capacities of the medium are not exceeded. If these capacities are exceeded,
water ponds on the surface and infiltration decreases asymptotically to a
rate equal to the saturated hydraulic conductivity of the medium.

Rubin and Steinhardt (1964), Rubin (1966), and Smith (1972) present
extensive discussions of the ponding process. This is an important concept
in rainfall-runoff analysis, because surface runoff cannot occur until
ponding has begun. The ponding process is illustrated in figure 3 and is
summarized as follows for a uniform medium with a deep water table. At land
surface, two boundary conditions are possible:

10



1. Vertical flux of liquid specified by equation 14, equal to the
application rate prior to the time ponding occurs, tpond; and

2. Specified pressure potential (eq. 15) equal to the maximum height of
ponding after ponding occurs.

The point in time that the boundary type changes, t ond’ must, therefore, be
determined during simulation. P

+W

RAIN

{ INFILTRATION

] TIME .
W=0 T . >
POND
EVAPORATION
fe—— STAGE 1 STAGE 2 ——— ———
PEV
-w

Y EXPLANATION

W  GENERAL SURFACE FLUX RATE, LT

RAIN  RAINFALL RATE, LT-!

TeoND TIME AT WHICH PONDING OCCURES, T

PEV  POTENTIAL SURFACE EVAPORATION RATE, LT
K HYDRAULIC CONDUCTIVITY, LT

Figure 3.--Infiltration and evaporation as two-stage processes.
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Infiltration into a layered medium is a more complicated process. If a
thin surface layer of fine-grained materials overlies a coarser layer, infil-
trated water will initially be retained above the interface between the
layers. This phenomenon occurs because the water at the wetting front is
under too low a pressure head to enter the larger openings constituting the
pore space of the coarse layer, resulting in a head and saturation buildup
above the interface before breakthrough occurs. As head builds up at the
interface, the potential gradient may become too small to maintain infil-
tration at the applied rate, and ponding may occur. Once flow commences into
the coarse layer, however, the pressure head above the interface declines,
and the infiltration rate again increases. Thus, the ponding process is
still governed by either a specified flux or a specified pressure potential,
but it is possible for the specified pressure-potential boundary condition to
revert to one of specified flux.

Evaporation

The applicable boundary condition at land surface where evaporation can
occur is determined by both the potential evaporative demand of the
atmosphere and the ability of the porous medium to conduct water to the
surface. Thus, it is a two-stage process analogous to infiltration (Hillel,
1971, p. 191). During the first stage of evaporation, occurring when the
soil surface is wet, liquid leaves the system at a rate equal to the
evaporative demand of the atmosphere, referred to here as potential
evaporation rate (PEV). This rate will continue as long as the medium can
conduct water to the surface at a rate equal to this demand. In the absence
of sources of liquid in the system, such as a shallow water table, this
conductive capability will be reduced by drying of the surface layer, and the
rate of discharge by evaporation will be reduced. This process is
illustrated in figure 3.

The two-stage evaporation process thus is expressed by two possible
boundary conditions at land surface:

1. Specified liquid flux equal to the potential evaporative demand,
until liquid cannot be conducted fast enough to meet this demand.

2. Specified flux driven by the gradient in pressure potential between
the soil and the atmosphere.

The point in time that the boundary condition type changes must be
determined during simulation; details of the numerical implementation of this
determination are given later in this report.

Caution should be exercised in using VS2D to simulate bare-soil
evaporation. The potential evaporation rate depends on a number of factors,
including the energy and radiation balance, air temperature and humidity,
soil-surface temperature, aerodynamic roughness, pressure potential, wind
speed, and atmospheric stability. Most of these factors show great diurnal
variation and would require a sophisticated simulation, such as that used by
Bristow (1983) to be accurately simulated. Instead, potential evaporation is
treated simplistically in VS2D as an empirically determined value that is
allowed to vary in time in a user-defined manner. This degree of detail
probably is all that is warranted in an isothermal model. Nonetheless, the
user should be well aware that much empiricism is involved in the repre-
sentation of potential evaporation in VS2D.

12



Evapotranspiration

Evapotranspiration occurs when the soil surface supports vegetative
cover, and is similar to evaporation except that soil moisture can be removed
by plant-root extraction throughout the depth of rooting. As with evapo-
ration, evapotranspiration is a two-step process. The rate at which water is
extracted from a soil column containing roots is limited by the amount of
available energy to the potential evapotranspiration rate, PET. However, the
rate of extraction is also limited by the rate at which the soil can transmit
water to the roots and may, therefore, be less than PET.

Plant-root extraction is apportioned among the cells in a vertical
column containing roots through the use of a gepth- and time-dependent root
activity function (Molz, 1981), defined as the length of roots per unit
volume of soil. Examples of root-activity functions are shown in figure 4.
The root-activity function r(z,t) is used to compute the bulk resistance to
flow in the root system, and using a development similar to Hillel (1971),
root extraction is expressed as the quotient of the pressure-potential
difference divided by the combined resistance to flow imposed by the soil and
the roots:

p(h -h )
root m .
= >
(qu)m VR TR , if hm hroot and
m root
m
= < :
(vpa) =0, hS<h . ; ~(16)
where hm = pressure potential in the soil in volume m, L;
root - pressure potential in the plant roots, L;
m = resistance to flow in the soil towards the roots, in
volume m, TL; and
Rroot = resistance to flow in the roots occurring in volume m, TL;
m
The resistance term, (Rm + R ) is expressed as 1/[KKr(h)r(z,t)] in

root
the program. m

Transpiration from the soil column is the sum of the fluxes computed by
equation 16 over all cells containing roots in that column:

m
Q =p 2z (va), (17)
=1
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Figure 4.--Examples of root-~activity functions.

where m is the number of volume subdivisions in the column. If 0/ (pxA),

where A is the top surface area of cells in the column, is greater in magni-
tude than PET, q, for each node is reduced by a uniform factor so that the two
terms are equal. If the magnitude of Q/(pxA) is less than PET, 9, remains as

originally computed. Finally, if hm becomes less than h 9, is set to O.

root’
In each case, q, becomes a specified flux for that node, dependent on the

above conditions. Because 9, is dependent on pressure potential in the soil

and on Kr(h)’ its value must be evaluated iteratively.

Further details of the numerical implementation of this procedure are given in
following sections of this report.

As with potential evaporation, potential evapotranspiration is dependent
on many variables, except that additional variables related to the plant
cover, including vertical and horizontal density of leaf cover, canopy
height, leaf cover per unit surface area, plant-water potential, resistance
and plant phenology of leaf stomata to vapor transport are involved (Sudar
and others, 1981; Norman and Campbell, 1983).
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When experimental data cannot be fit adequately by analytical expressions
such as those that follow, tabulations of the dependence of saturation and
relative hydraulic conductivity on pressure potential can be used. Use of
these tabulations is described more fully in the section on numerical imple-
mentation.

The functional relations between volumetric moisture content or relative
hydraulic conductivity versus pressure potential demonstrate hysteresis; that
is, different functions apply during drainage than during uptake. This
hysteretic relation is quite complicated and consists of main wetting and
drying curves and a family of scanning curves that represent the functional
relation when a partially drained medium is rewetted, or when drainage
follows incomplete wetting. The phenomenon is described in various soil
physics texts (Hillel, 1971; Kirkham and Powers, 1972; Baver and others,
1972). The program does not treat hysteresis among the head-related
functional parameters and must be modified by the user if such considerations
are significant to the problem being analyzed.

Liquid Saturation

For partly saturated media, liquid saturation decreases as pressure
potential becomes increasingly negative. The curve relating the saturation
of a given soil to pressure potential is commonly termed the moisture-
characteristic curve, and generally is empirically determined (Hillel,

1971, p. 61). Examples of moisture-characteristic curves for a sand and a
light clay are shown by the symbols in figure 6. The slope of the moisture-
characteristic curve defines the specific moisture capacity and the curve can
be integrated to define the relation between relative hydraulic conductivity
and pressure potential. Hence, it is desirable, if possible, to fit the
moisture-characteristic curve by an algebraic expression.

Three different algebraic equations to represent the moisture-
characteristic curve are available for use in program VS2D, including one by

Brooks and Corey (1964), one by Gardner (1958), as used by Haverkamp and
others (1977), and one by van Genuchten (1980).

The Brooks and Corey (1964) equation is:

6-6 hb A
-— r -— —— .
s = _<h) , h <h (18)

]
{]
pd
(=]
-
v

where: Sg = effective saturation, L°;
©® = volumetric moisture content, L°;
Gr = residual moisture content, L°;
¢ = porosity, L°;
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bubbling or air-entry pressure potential, equal to the
pressure potential required to desaturate the largest
pores in the medium, L (actually this is a curve-
fitting parameter that may not equal the actual
bubbling pressure, but must be less than 0); and

UF

>
1]

a pore size distribution index that is a function of soil
texture, L°.

Parameters for the Brooks-Corey equation may be determined from the
best~fit straight line through the data points on a log-log plot of pressure
potential versus effective saturation, as shown in figure 7 for a sand and a
light clay. The slope of the straight line represents A, and its intercept

at full saturation represents h, . The residual moisture content may be
varied to improve the straight Iine fit, as described by Brooks and Corey
(1964, p. 24). Alternatively, the three parameters (A, , and ©_) may be

identified by a computer-aided search procedure. Mualem (1976) tabulates the
results of fitting the Brooks-Corey equation to experimentally determined
moisture-characteristic curves for 46 soils. Brooks-Corey parameters for

11 soils are listed in table 1. These parameters were determined by the
authors using a search procedure that minimized the least-squares residual
between the equation and all the experimental data. However, the residual
moisture content was not allowed to have a negative value.

op T T* T T 3
u N
. o _
(72
@ - () -
w
'_
w
s
z 1 o _E
o - .
< —
g C
I - -
w
[« - -
2
7] L -
ﬁ O L]
@
o
5 - © SAND =
e C ®  YOLO LIGHT CLAY .
z B ~——e EQUATION g
- p |
0.01 1 ! | |
0 0.1 0.2 0.3 0.4 0.5

MOISTURE CONTENT, DIMENSIONLESS

Figure 6.--Comparison of Haverkamp equation fit to experimental data of
moisture content versus pressure head for a sand and for a light clay.
Equation parameters are listed for soils 4 and 11 in table 1 (modi-
fied from Haverkamp and others, 1977).
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Figure 7.--Comparison of Brooks and Corey equation fit to experimental data
of moisture content versus pressure head for a sand and for a light clay.
Equation parameters are listed for soils 4 and 11 in table 1.

When the wet end of the plot shows too much curvature to be adequately
fit by two straight-line segments on the log-log plot, a function of the type
used by Haverkamp and others (1977) may fit the data reasonably well:

1
§ = ———— (19)
e hB ’
1+(0)
where ® = pressure potential at which 5o = 0.5, L; and
B = slope of the log-log plot of (l/se-l) versus h, L°.

As with the Brooks-Corey equation, use of the Haverkamp function
requires the identification of three fitting parameters (assuming porosity is
known from other data): ©_, a, and B, as may be seen from the above
definitions; a and B may bé determined graphically if ©_ is known or can be
estimated. Alternatively, all three parameters may be determined using a
computer-aided search procedure. The best-fit Haverkamp equation parameters
for 11 soils are listed in table 1, and the fit of the Haverkamp equation to
data for a sand and a light clay (soils 4 and 11 in table 1) are shown in
figure 6.
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The Haverkamp functions relating effective saturation to pressure poten-
ial cannot be directly integrated using Mualem's (1976) procedure to provide a
functional relation between K_ and pressure potential. To overcome this
problem, van Genuchten (1980)rhas cast equation 18 in slightly different form:

o 1 Y
“e [1+(37)3] , (20)

where a' = a/[VY - Y, L
B' = exponent, L°; and
Y = exponent, = 1-1/B', L°.

Note that a' is the negative of the reciprocal of a defined by van Genuchten
(1980). It is defined in this form here to enhance the concept that the
parameter represents a characteristic length for the porous medium.

Van Genuchten describes a graphical technique to determine y if O_ is
known. The value of y may be used with that for the pressure potentiaf at
which s, = 0.5 (Haverkamp's a) to find a', and B' is found from the formula:

B = 1/(1 - y) . (21)

Alternatively, the three parameters can be determined by a search procedure.
Van Genuchten equation parameters for 11 soils are listed in table 1. Note
that, for soils for which B' is large, the results are nearly identical to
those for the Haverkamp equation, but the deviations become substantial as B'
becomes small. Also, the van Genuchten fit to most sets of data is almost
indistinguishable from the best Haverkamp fit. Consequently, no separate fit
of the van Genuchten equation is shown here.

Specific Moisture Capacity

Specific moisture capacity, defined as the slope of the moisture-
characteristic curve, describes the change in saturation due to a change in
pressure potential under partly saturated conditions. Hence, the term
represents the dominant component of the storage coefficient under such
conditions. Specific moisture capacity is given by the equation:

_ a5 - (20
where cm(h) = specific moisture capacity, L71.

If the Brooks-Corey equation is used to represent the moisture-characteristic
curve, specific moisture capacity is defined as follows:

_(A+1)

cy(8) = = (¢ - 8 )(A/h,) (b/hy)

0, h > h
b

h £ hb (23)

and cm(h)
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where all terms are as defined above. Examples of curves of specific moisture
capacity versus negative pressure head, as computed from equation 23 for a
sand and for Yolo light clay (entries 4 and 11, table 1) are shown in

figure 8A. Note that the specific moisture capacity is discontinuous at ,
and that it is extremely nonlinear with respect to the negative pressure head
at smaller values.

If the moisture-characteristic curve is represented by the Haverkamp
equation, specific moisture capacity is defined by the equation

-1
c (h) = - (¢ - 0 )(B/@)(b/a)P /11 + (n/e)P)2 (26)

for pressure head less than 0. Specific moisture capacity as a function of
pressure potential computed from the Haverkamp functions for the same sand
and light clay as for figure 8A are shown in figure 8B. Note that the
Haverkamp specific moisture-capacity function differs substantially from the
Brooks-Corey function, particularly for pressure heads near the bubbling
pressure head.

For moisture-characteristic curves represented by the van Genuchten
equation:

n Pl
- -YB' (-0 ) (57) (25)
c = ; 0
i a1+ EnPYH
c,(h) =0, h>0.

The specific moisture capacity curves for the van Genuchten formulation are
essentially undistinguishable from those for the Haverkamp formulation and
are not shown separately.

When tabular data are used to describe the moisture-characteristic
curve, specific moisture capacity can be determined by taking the slope of
the line segment between data points adjacent to the h value of interest.

Relative Hydraulic Conductivity

Relative hydraulic conductivity, defined as the ratio of unsaturated to
saturated hydraulic conductivity also decreases with increasingly negative
pressure potential. Relative hydraulic conductivity may be determined
experimentally or may be estimated by numerically or analytically integrating
the moisture characteristic curve.

Experimentally determined data frequently may be fit to a Haverkamp and

others (1977) type equation:

1
k= —L (26)
- DL
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Figure 8.--Specific moisture capacity as a function of pressure head for
a sand and a light clay:
A. As computed using the Brooks-Corey formulation.
B. As computed using the Haverkamp formulation.
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where A’
Bl

pressure potential at which Kr = 0.5, L; and

dimensionless constant, equal to the slope of the log-log
plot of (l/Kr - 1) versus the pressure potential.

The best-fit Haverkamp function to experimentally determined values of
relative hydraulic conductivity versus pressure head are shown in figure 9A
for a sand, and for light clay by solid lines in figure 9B.

If the moisture-characteristic curve is represented by the Brooks-Corey
equation, Brooks and Corey (1964) show that the relative hydraulic
conductivity commonly is well represented by the equations:

-2-3
k= (B2

. Hg ) h <h, (27)

and Kr =1.0, h 2 hb . (28)
Relative hydraulic conductivities computed using equations 26 and 27 are
compared to measured data for sand in figure 94 and for light clay in

figure 9B. The Brooks-Corey equations fit the data for sand very well, but
poorly represent the data for the clay. This phenomenon has been frequently
observed, suggesting that care should be exercised using the Brooks-Corey
equations to represent the relative hydraulic conductivity of clays.

For the van Genuchten (1980) equation, relative hydraulic conductivity
is given by the equation:

ﬁl_l ﬁl -Y 2
e e

T eGPy

. (29)

Relative hydraulic conductivities computed using equation 29 are also
compared to measured data in figure 9. The fit of the equation to data for
sand (figure 9A4) is, as with the Brooks-Corey equation, quite good. Also
similarly to the Brooks-Corey equation, the fit to the data for clay

(fig. 9B) is poor.

If the moisture-characteristic curve cannot be adequately fit by an
integrable algebraic function, relative hydraulic conductivity can be esti-
mated by dividing the curve into segments of equal A® or As and integrating
numerically, using the method of Marshall (1958) or Millington and Quirk
(1961). The data thus generated can then be used in tabular form in the
program.
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NUMERICAL SOLUTION

Equation 13, subject to the boundary conditions described by equations
14 and 15, is a nonlinear partial differential equation that has no general
closed-form or analytic solution. Consequently, numerical approximations to
the spatial and temporal derivatives in equations 13, 14, and 15 must be
made. These approximations result in a set of simultaneous nonlinear alge-
braic equations that must be first linearized, then solved.

Spatial Discretization

The spatial derivatives in equation 13 are approximated by a block-
centered regular finite-difference scheme. This scheme is illustrated in
figure 10 for a rectangular (x,z) and a cylindrical (r,z) grid. The nodes in
each volume subdivision or grid block are located at the center of each block.

For a two-dimensional rectangular grid, the number of faces (m in
equation 13) of the volume subdivision is 6. However, two of the faces are
not explicitly included, because the assumption used for two-dimensional
problems to be simulated with this model is that no liquid flow can occur
across them. When vertical section problems are analyzed, these no-flow
faces are on the front and back of each grid block.

By retaining the volume and area terms in equation 13, it is a simple
matter to use either rectangular or cylindrical coordinate systems. The
computer program calculates the proper areas and volumes using the equations
given in figure 10.

The spatial derivatives of total potential in equation 13 are
approximated at the block boundaries, using the following space-centered
finite-difference scheme:

H - H
| oW - Lj mj
Left side = (ax)n-I/Z,j - Axn-l/?- ’
. H } H
| _ om _ n,j-1_ 'mn,j .
Top side - (az)n,j'l/z - AZJ'I/Z ’
o e o . Manit My (30)
g i Tohax‘nt1/2,j AXn+1/2 ’
H . ,.-H
' _ 9H - _n,j*1 n,j .
Bottom side = (3z)n,j+1/2 - Azj+1/2 ’

where Axn—l/z

825 172

horizontal distance between nodes n-1,j and n,j

vertical distance between nodes n,j-1 and n,j.
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n=2 n=3 n=5
RECTANGULAR COORDINATES I

An.y, = 2mAZjlry ~Arn/2)

Ap, j- %= 2mrplr,

V=2mr,ArnAZ;

EXPLANATION
An.%,j  SURFACE AREA BETWEEN CELLSn-1,j AND n, |
Ap,j-%  SURFACE AREA BETWEEN CELLS n,j~ 1 ANDn, j
v VOLUME.OF CELL n, j

Figure 10.--Rectangular and cylindrical coordinates and grid-block systems.
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The sign convention used is such that flow out of each cell is positive.
Equation 30 is defined for a rectangular grid; however, equations for a
cylindrical grid are analogous with r replacing x as the horizontal co-
ordinate. For simplicity, x will be used for the horizontal coordinate for
the remainder of this report. Taylor series expansion about the points n-1/2,
j;y n, j-1/2; n+1/2, j; and n, j+1/2 shows equation 30 to be second-order
correct in approximating the spatial derivatives (von Rosenberg, 1969, p. 5).

Substituting equation 30 into equation 13 gives the difference form of
the balance equation for each grid block:

oH
vp(cm+sSs)5E
- C . (H . .-H )-C_ . H .. -H .
n-1/2,j Pa-1,5 7,30 7 Cnjgor2 By T Hy )
(31)
T Cariya,y Goen,y T M) 7 Cogerse (g gey By ) mpav =0
Where the conductances, C, are defined as
A - (P KK A .
“a-1/2, ( = ) ’
n-1/2,j
A - (P KK A .
“a,j-1/2 ( = ) ’
n,3-1/2 (32)
A - (P KKA .
Cat1/2, ] ‘( o ) ’
n+1/2,j
A - (P KK A
Ca,j+1/2 ( Azr )
n,j+1/2

where A represents block face area.

Intercell Averaging of Conductance Terms

When block-centered finite-difference discretization schemes are used,
as in this program, it is necessary to average the conductance terms for
adjacent blocks to develop intercell conductances. Several authors have
evaluated methods for determining these intercell-conductance terms. Appel
(1976) compared the accuracy of arithmetic and harmonic means for saturated
systems (K _=1.0). He concluded that the actual functional variation in space
of the conductance should be incorporated into a scheme for determining the
interblock values. For a constant grid spacing with linear spatial variation
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in conductance, an arithmetic mean gives the most accurate estimate

(fig. 11). When smooth changes in conductance are present, the geometric
mean should be used, owing to the observed log-normal distribution of this
parameter (Freeze, 1975). For the case where conductance varies as a step
function, as for layered soil, the harmonic mean gives the exact value of the
interblock conductance (Appel, 1976). Haverkamp and Vauclin (1979) analyzed
unsaturated conductances (K _<1.0) and concluded that the geometric mean
provided the most accurate representation of interblock conductances

(fig. 12), although they did not evaluate the accuracy of separate methods
of averaging each parameter composing conductances. Separate methods are
used in this report and are described hereafter for the parameters K and Kr'

Saturated Hydraulic Conductivity

Saturated hydraulic conductivity, K, is used to represent the conductance
of the medium in this program. The distance-weighted harmonic mean of the
saturated hydraulic conductivity of the adjacent cells is computed within the
program to represent the intercell hydraulic conductivity. Appel (1976) shows
that this method accurately represents interblock hydraulic conductivity when
that parameter changes abruptly at node boundaries, and thus is best suited
for layered systems. To simulate flow through a medium in which hydraulic
conductivity varies gradually, node spacing should be adjusted such that the
saturated hydraulic conductivity between adjacent blocks varies no more than
50 percent, based on figure 11.

Anisotropy in the saturated hydraulic conductivity is included in the
model to reflect directional orientation in the resistance to liquid movement.
It is assumed that coordinate axes used for a given problem are collinear with
the principal directions of the intrinsic permeability tensor. This is a
reasonable assumption for many vertical cross-section problems; however,
steeply dipping beds cannot be adequately simulated with this code.

The distance-weighted, harmonic-mean saturated hydraulic conductivities
accounting for anisotropy are given by the following equations. Since the
left face of one block is the right face of the block on its left, and
similarly for top and bottom faces, only two equations are needed for each
block. The convention used in this report is to use the left and top sides.

2 K K

. K n-1,j n,j
Left side: () = 2 2
Ax n-1/2,j Kn-l,j Axn+Kn,j Axn-l
(33)
2K . K . (K _/K_ )
Lo K - n,j-1 'n,j 2z' XX
Top side: (3=) = Az +K Az

. K . ) .
n,j-1/2 n,j-1 7j mn,j j-1

where:
K . =K__ = saturated hydraulic conductivity in horizontal direction,
n,J XX -1.
LT™*; and
KZZ = saturated hydraulic conductivity in vertical direction,
LT 1.
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Figure 11.--Accuracy of arithmetic and harmonic means in estimating saturated
intercell hydraulic conductivities for a linear spatial variation of con-
ductivity and constant grid spacing (after Appel, 1976).
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