INTRODUCTION

This report on ground-water units and withdrawal in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.
In the Basin and Range province, ground water occurs in basin-fill deposits and consolidated rocks. The basin fill consists mostly of unconsolidated to semi-indurated sedimentary deposits. The material ranges from poorly sorted to moderately sorted mixtures of gravel, sand, silt, and clay that were derived from the consolidated rocks in the nearby mountains. Evaporite deposits, limestone, conglomerate, and volcanic rocks are present in places in the unit. Some of the basins may contain as much as 9,000 feet of basin fill, but the most permeable rocks and most of the recoverable ground water is in the upper 1,000 feet of the unit.

The consolidated rocks consist mostly of sedimentary and volcanic rocks, with lesser amounts of metamorphic and intrusive rocks. The consolidated rocks make up the mountain ranges that border the basins and are the principal source of sedimentary material to the basin fill.

Few wells exist in the consolidated rocks compared to the greater number of wells in the basin fill. The yield of wells tapping many consolidated rock units is due to interception of water in fracture zones. In some areas in the Basin and Range, carbonate rock is extensive in the subsurface and provides interconnection between alluvial basins through fractures and solution channels. Although the consolidated rock commonly has very low permeability, and very low rates of ground-water flow, the entire ground-water system, basin fill and bedrock, must be treated as one integral system.
GROUND-WATER UNITS

This map shows boundaries of ground-water units, generalized directions of ground-water flow at the water table, areas of natural discharge to streams and lakes, areas of natural discharge by evapotranspiration in areas underlain by ground water at shallow depths, areas of discharge by wells where large withdrawals have caused depressions in the water table, and the distribution of consolidated rock outcrops and areas underlain by basin fill.

Ground-water unit boundaries are based primarily on ground-water divides or surface streams. The ground-water table is used to delineate ground-water units in a manner analogous to the way land-surface topography is used to delineate drainage areas. Where information is available, water-level contour maps were used to define the boundaries. Where water levels were lacking, ground-water unit boundaries were drawn on topographic drainage divides that were assumed to overlie water-table divides.

Ground-water units shown on the map may contain one or more areas of natural recharge and natural discharge or ground-water withdrawal by wells. Some ground-water units comprise closed flow systems at the water table; that is, no ground-water flow occurs across the ground-water unit boundaries. However, between other units, ground-water flow may occur across some unit boundaries in basin-fill or consolidated-rock aquifers.

GROUND-WATER WITHDRAWAL

Ground-water withdrawal has been estimated in previous areal ground-water studies in Texas. Estimates of withdrawal for varying periods are shown on the accompanying map.
SELECTED REFERENCES


Davis, M. E., 1961, Ground-water reconnaissance of the Marfa area, Presidio County, Texas: Texas Board of Water Engineers Bulletin 6110, 44 p.


DeCook, K. J., 1961, Reconnaissance of the ground water resources of the Marathon area, Brewster County, Texas: Texas Department of Water Resources Bulletin 6111, 48 p.


1954c, Records of water level measurements in Reeves County, Texas: Texas Department of Water Resources Bulletin 5414, 30 p.


Henry, C. D., 1979a, Crustal structure deduced from geothermal studies, Trans-Pecos, Texas, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: Austin, University of Texas, Bureau of Economic Geology Guidebook 19, p. 39-47.

____1979b, Geologic setting and geochemistry of thermal water and geothermal assessment, Trans-Pecos Texas and adjacent New Mexico, with tectonic map of the Rio Grande area: Austin University of Texas Bureau of Economic Geology Report of Investigation no. 96, 48 p.


