REGIONAL GEOHYDROLOGY OF THE NORTHERN LOUISIANA SALT-DOME BASIN, PART II, GEOHYDROLOGIC MAPS OF THE TERTIARY AQUIFERS AND RELATED CONFINING LAYERS

By Gary N. Ryals

Water-Resources Investigations Report 83-4135

Prepared in cooperation with the
U.S. DEPARTMENT OF ENERGY

Baton Rouge, Louisiana

1984
CONTENTS

Abstract--- 1
Introduction--- 1
Brief description of the Tertiary aquifers and related confining layers--- 2
Selected references--- 4

ILLUSTRATIONS

[Plates are at back]

Plate 1. Map showing geologic sections, northern Louisiana.
2. Map showing the altitude of the base and the thickness
and limit of freshwater, Wilcox-Carrizo aquifer, northern Louisiana and southern Arkansas.
3. Map showing the altitude of the base and the thickness
and limit of freshwater, Sparta aquifer, northern Louisiana and southern Arkansas.
4. Map showing the altitude of the base and the thickness
and limit of freshwater, Cockfield aquifer, northern Louisiana and southern Arkansas.
5. Map showing the altitude of the base and thickness of the confining layer composed of the Midway Group,
Arkadelphia Marl, and upper part of the Nacatoch Sand, northern Louisiana and southern Arkansas.
6. Map showing the altitude of the base and thickness of the Cane River Formation, northern Louisiana and southern Arkansas.
7. Map showing the altitude of the base and thickness of the Cook Mountain Formation, northern Louisiana and southern Arkansas.

Figure 1. Map showing location of northern Louisiana salt-dome basin--- 3

TABLE

Table 1. Petroleum-industry wells and test wells used for geologic control on plate 1--- 6

III
ABSTRACT

This report is the second in a series of reports describing the regional geohydrology of the northern Louisiana salt-dome basin. Regional geohydrologic maps in this report show the altitude of the base, the thickness, and limit of freshwater of the aquifers of Tertiary age and related confining layers in the northern Louisiana salt-dome basin, an area of about 3,000 square miles. Four geologic units of Tertiary age contain regional aquifers. From oldest (deepest) to youngest, the aquifers are in the Wilcox Group, Carrizo Sand, Sparta Sand, and Cockfield Formation. As the Wilcox is hydraulically interconnected with the overlying Carrizo, they are treated as one hydrologic unit, the Wilcox-Carrizo aquifer. The aquifers are separated by confining layers that retard water movement. In the northwestern part of the area, the Wilcox-Carrizo aquifer is separated from the underlying sand facies of the Nacatoch Sand (Cretaceous age) by a confining layer composed of the Midway Group (Tertiary age), the Arkadelphia Marl, and an upper clay and marl facies of the Nacatoch Sand (both of Cretaceous age). In the remainder of the area, the Wilcox-Carrizo aquifer is separated from an underlying Cretaceous aquifer comprised of the Tokio Formation and Brownstown Marl by the Midway Group and several underlying Cretaceous units, which (in order of increasing age) are the Arkadelphia Marl, Nacatoch Sand, Saratoga Chalk, Marlbrook Marl, and Annona Chalk. The Wilcox-Carrizo aquifer is separated from the Sparta aquifer by the Cane River Formation. The Sparta aquifer is separated from the Cockfield aquifer by the overlying Cook Mountain Formation.

INTRODUCTION

In 1976 the U.S. Department of Energy (DOE), formerly the Energy Research and Development Administration, began an expanded waste-management program for both defense and commercially produced radioactive waste. The National Waste Terminal Storage (NWTS) program is an effort by DOE to locate and develop sites in various parts of the United States for disposal of commercially produced radionuclides in deeply buried geologic formations. As part of the program, the Vacherie salt dome in the northern Louisiana salt-dome basin (fig. 1) is being studied to determine its suitability as a repository. In Louisiana, a major part of the U.S. Geological Survey's participation in the NWTS program, in
cooperation with DOE, has been to describe the regional geohydrology of
the northern Louisiana salt-dome basin. A series of four reports has
been prepared by the Geological Survey; each report focuses on a specific
aspect of the regional geohydrology. The first report presented a
conceptual ground-water flow model of the basin. This report is the
second in the series and presents geohydrologic maps of the northern
Louisiana salt-dome basin and vicinity.

The northern Louisiana salt-dome basin has an area of about 3,000
square miles (7,800 square kilometers) and includes all or parts of 11
parishes in north-central and northwestern Louisiana. The area of
interest for this report (fig. 1) is considerably larger than the northern
Louisiana salt-dome basin, extending into southern Arkansas, because most
of the aquifers have regional extent, and ground-water flow within the
basin follows regional patterns.

BRIEF DESCRIPTION OF THE TERTIARY AQUIFERS AND RELATED CONFINING LAYERS

Tertiary units of the northern Louisiana salt-dome basin and vicinity
consist of alternating marine clays and nonmarine sands that generally dip
and thicken to the southeast (pl. 1). In parts of the area, the Tertiary
units are overlain by clay, sand, and gravel of Quaternary age that were
deposited on an irregular, eroded Tertiary surface. In the salt-dome
basin, four geologic units of Tertiary age contain regional aquifers.
From oldest (deepest) to youngest, the aquifers are in the Wilcox Group,
Carrizo Sand, Sparta Sand, and Cockfield Formation (pl. 1). The Wilcox
is hydraulically interconnected with the overlying Carrizo; therefore,
the Carrizo and the Wilcox are treated as one hydrologic unit, the Wilcox-
Carrizo aquifer. The altitude of the base and the thickness of the
aquifers are shown on plates 2-4.

The aquifers are separated by confining layers that retard water
movement. In the northwestern part of the area the Wilcox-Carrizo aquifer
is separated from the underlying sand facies of the Nacatoch Sand
(Cretaceous age) by a confining layer composed of the Midway Group
(Tertiary age), the Arkadelphia Marl (Cretaceous age), and an upper clay
and marl facies of the Nacatoch Sand (pl. 1). The altitude of the base
and thickness of the confining layer is shown on plate 5. In the
remainder of the area the Wilcox-Carrizo aquifer is separated from the
underlying Cretaceous aquifer composed of the Tokio Formation and
Brownstown Marl (Austin aquifer in the part I report of the series,
Ryals, 1982) by the Midway Group and several Cretaceous units, which (in
order of increasing age) are the Arkadelphia Marl, Nacatoch Sand,
Saratoga Chalk, Marlbrook Marl, and Annona Chalk (pl. 1). The
Wilcox-Carrizo aquifer is separated from the overlying Sparta aquifer by
the Cane River Formation (pl. 6). The Sparta is separated from the
Cockfield aquifer by the overlying Cook Mountain Formation (pl. 7).

A more detailed description of the regional geohydrologic framework
of the northern Louisiana salt-dome basin and vicinity (including
descriptions and hydrologic characteristics of the geohydrologic units)
was presented in Ryals (1982) and Hosman (1978).
Figure 1.—Location of northern Louisiana salt-dome basin.
SELECTED REFERENCES

----- 1982a, Gulf coast salt domes, geologic area characterization report, introduction, volume 1: ONWI 117, Battelle Memorial Institute, Columbus, Ohio, 256 p.

----- 1982b, Gulf coast salt domes, geologic area characterization report, north Louisiana study area, volume IV: ONWI 119, Battelle Memorial Institute, Columbus, Ohio, 396 p.

Table 1.--Petroleum-industry wells and test wells used for geologic control on plate 1

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Location</th>
<th>Well identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 22 N. 13 W.</td>
<td>George Belchic, Jr., et al., No. 1 Blanton.</td>
</tr>
<tr>
<td>2</td>
<td>10 22 N. 11 W.</td>
<td>W. C. Fazell, Carter No. 1.</td>
</tr>
<tr>
<td>3</td>
<td>12 22 N. 9 W.</td>
<td>Magnolia Petroleum Co., No. 1 W. B. Warren.</td>
</tr>
<tr>
<td>4</td>
<td>3 22 N. 7 W.</td>
<td>Ohio Oil Co., O. L. Martin, et al., No. 1.</td>
</tr>
<tr>
<td>5</td>
<td>5 22 N. 5 W.</td>
<td>Stanolind Oil & Gas Co., Unit Bell No. 1.</td>
</tr>
<tr>
<td>7</td>
<td>4 22 N. 1 W.</td>
<td>Sharp & Kemp, I. Thomas No. 1.</td>
</tr>
<tr>
<td>11</td>
<td>4 16 N. 13 W.</td>
<td>Plymouth Oil Co., Webb No. 1.</td>
</tr>
<tr>
<td>12</td>
<td>1 16 N. 11 W.</td>
<td>M. A. Halsey, Thigpen Herold No. 1.</td>
</tr>
<tr>
<td>14</td>
<td>6 16 N. 7 W.</td>
<td>Ohio Oil Co., L. L. Brinkly No. 1.</td>
</tr>
<tr>
<td>16</td>
<td>26 16 N. 3 W.</td>
<td>Delta Drilling Co., Davis Brothers No. 1.</td>
</tr>
<tr>
<td>17</td>
<td>6 16 N. 1 W.</td>
<td>The Texas Co., Tremont Lumber Co. No. 1.</td>
</tr>
<tr>
<td>18</td>
<td>12 16 N. 2 E.</td>
<td>Southwest Gas Producing Co., Inc., et al., Olin Mathieson Chemical Corp. No. 1.</td>
</tr>
<tr>
<td>19</td>
<td>2 16 N. 4 E.</td>
<td>Durr & Bolin, Telano No. 1.</td>
</tr>
<tr>
<td>21</td>
<td>4 21 N. 12 W.</td>
<td>M. L. Williams, No. 1 Henderson.</td>
</tr>
<tr>
<td>22</td>
<td>32 21 N. 11 W.</td>
<td>Carter Oil Co., No. 1 Crystal Whittington.</td>
</tr>
<tr>
<td>23</td>
<td>25 20 N. 11 W.</td>
<td>Dr. R. S. Cherry, Cherry-Lodwick No. 1.</td>
</tr>
<tr>
<td>24</td>
<td>12 19 N. 10 W.</td>
<td>James Muslow, Drake No. 1.</td>
</tr>
<tr>
<td>25</td>
<td>20 18 N. 8 W.</td>
<td>Harry W. Bass, No. 1 Rickerson Gas Unit.</td>
</tr>
<tr>
<td>26</td>
<td>24 17 N. 7 W.</td>
<td>Bomar, Inc., No. 1 E. W. Merritt.</td>
</tr>
<tr>
<td>27</td>
<td>5 15 N. 5 W.</td>
<td>Union Producing Co., Allison No. 1.</td>
</tr>
<tr>
<td>29</td>
<td>26 13 N. 3 W.</td>
<td>Sells Petroleum Co., No. 1 D. M. Feazell.</td>
</tr>
<tr>
<td>30</td>
<td>30 12 N. 1 W.</td>
<td>Stanolind Oil & Gas Co., No. A-1 Tremont.</td>
</tr>
<tr>
<td>32</td>
<td>31 10 N. 3 E.</td>
<td>Placid Oil Co., No. 151 Louisiana Central.</td>
</tr>
<tr>
<td>34</td>
<td>19 7 N. 7 E.</td>
<td>Barnett Serio Drilling Co., F. D. Brown No. 1.</td>
</tr>
</tbody>
</table>