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FACTORS FOR CONVERTING INCH-POUND UNITS TO
INTERNATIONAL SYSTEM OF UNITS (SI)

For the convenience of readers who may want to use
International System of Units (SI), the data may be converted
by using the following factors:

Multiply inch-pound units
inch (in.)

inch per hour (in/h)

foot (ft)

foot per mile (ft/m)

mile (mi)

square mile (mi?)

gallon per minute (gal/min)

million gallons per day
(ngal/d)

cubic foot per second (ft3/s)

cubic foot per second
per square mile

[(£t%/5)/mi’]

ton per square mile per
year [(tons/mi?)/yr]

micromho per centimeter
at 25¢ Celsius (umho/cm)

degree Fahrenheit (°F)

National Geodetic Vertical Datum of 1929 (NGVD of 1929):

0.3048
0.1894
1.609
2,590
0.06309
0.04381
3,785
0.02832

0.01093

0.3503

1,000

oC = 5/9 (°F-32)

To obtain SI units
millimeter (mm)

millimeter per hour (mm/h)
centimeter per hour (cm/h)

meter (m)

meter per kilometer (m/km)
kilometer (km)

square kilometer (km?)

liter per second (L/s)

cubic meter per second (m¥/s)
cubic meter per day (m3/s)
cubic meter per second (m3/s)

cubic meter per second
per square kilometer

[(n*/s)/kn?)

metric ton per square kilo-
meter per year [(t/km?)/yr)

microsiemen per centimeter at
25¢ Celsius (uS/m at 25° C)

degree Celsius (°C)

A geodetic datum

derived from a general adjustment of the first-order level nets of both the

United states and Canada, formerly called mean sea level,

referred to as sea level in this report.
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NOMENCLATURE
coefficient (0 or 1) concerned with convective
acceleration term in motion eqn.
wave amplitudes from study by Perroud (1957).
a coefficient in Mass and Vastano (1978).

coefficient (0 or 1) concerned with primary
Boussinesq term,

coefficient (0 or 1) concerned with secondary Boussinesq
term

coefficient (0 or 1) concerned with slope Boussinesq
term,

a coefficient; the key coefficient in Venezian (1976).
the celerity of shallow-water wave propagation,

the celerity of full Boussinesq equations.

the celerity of linearized Boussinesq equations.,
coefficient (0 or 1) concerned with time derivative in
continunity.

coefficient (0 or 1) concerned with hu term in continuity
equation (prism-storage term).

coefficient (0 or 1) concerned with uh term in continuity
equation (wedge-storage term),

the local still water depth above channel bottom,

the local still water depth above reference datum; also
the density (mass, momentum, energy, vorticity) per unit
width,

the exponential,

a dummy variable, higher order terms of f.

value of f on free water surface,

the flux (mass, momentum, energy, vorticity) per unit
width,

the Froude number; uniform flow Froude number,

ix



g,9%

h,h* or h

h :h
o

e

t:at

the acceleration of gravity; dimensionless.
the water depth; dimensionless water depth.
uniform water depth; water depth fluctuation.
the total wave height.

imaginary number index.

the unit normal vector in the x-direction,

coefficients in derivation by Mass and Vastano (1978).

grid index in x-direction; final grid value.
the unit normal vector in the y-direction,

an index counter (0,1,2,3,...); also the coefficient

(0 or 1) associated with the friction-bed slope term in

the motion equation,

the wave number, 2n/L.

the unit normal vector in the z-direction,
the diffusion or dispersion codfficient,

the coefficient (0 or 1) concerned with the local
acceleration term in the motion equation,

the wave length; the Lagrangian,
conservation of mass in Lagrangian multiplier method.
the time index; the final index value,

pressure; also the coefficient (0 or 1) concerned with
pressure gradient term in motion equation,

pressure on water surface.

the Peclet number.

volumetric flowrate per unit width,
a coefficient.

uniform flow bed slope.

time; time increment.

the
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U
v
w,W_,w,,w,,etc,
W

]

X3 AX

e

Greek symbols

[+ 4

Y0174
7+ (71)
7- (7,)

kinetic energy per unit mass and depth integrated; also
the wave period.

the x-direction velocity, dimensionless water velocity.
uniform flow velocity or depth averaged velocity;
velocity flucuation,

the time mean water velocity.

the Ursell parameter.

the potential energy per unit mass and depth integrated.
the vertical velocity and higher order terms of w.

the integration constant.

space coordinate direction; increment in x,

the Lagrange celerity u : v/gd.

space coordinate direction.

vertical space coordinate direction,

the dimensionless wave number, e(or Ax); also used by
Haugel(1980) to represent the total (substantive) second
derivative of h.

the dimensionless wave number, h,.

the local bottom slope; also used by Haugel (1980) to
represent the total second derivative of ¢ and; a
dimensionless term in perturbation analysis,

the Courant number (i.e. the dimensionless wave
celerity),

ratios (dimensionless) used in perturbation study,
positive direction, dimensionless wave celerity.
negative direction, dimensionless wave celerity.

dimensionless wave celerity for full Boussinesq
equations,

xi
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Kav

PDE

SWL

T.E.

dimensionless wave celerity for linearized Boussinesq
equations,

a dimensionless diffusion (dispersion) coefficient,

the ratio of wave amplitude to water depth; also the
continuum space increment,

the maximum ratio,

the water depth fluctuation about the still water level,
the maximum value of n,

dimensionless, complex radian wave frequency.

real part of 6.

the Langrangian multiplier.

the height of the channel bottom above datum.

3.14159

the fluid mass density.

the ratio of water depth to wave length,

the continuum time increment; also the wall shear stress

the uniform flow wall shear stress; fluctuation of T.

the vorticity; also the dimensionless radian wave
frequency (2nt)/T.

higher order terms

Korteweqg - de Vries equations
partial differential equations
still water level

truncation errors

Sub- and superscripts
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uniform flow
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COMPUTATION OF RAPIDLY VARIED,
UNSTEADY, FREE-SURFACE FLOW

By David R, Basco

ABSTRACT

The correct physical simulation of unsteady, free surface flows with
large surface gradients remains an important research area of computational
hydraulics, Examples are spiked river hydrographs in shallow streams from
natural runoff and solitary wave type disturbances from rapid reservoir
releases, dam breaks and mud slides into rivers due to volcanic eruption, For
these flows, the long wave equations of motion (St. Venant) which assume a
hydrostatic pressure distribution over the depth are no longer valid, The
purpose of this report is to present an introductory review of both the
Boussinesqg-type, differential equations to describe these flows and the
methods for their numerical integration,

Three independent methods to derive the appropriate equations were
reviewed. For small amplitude disturbances of a specified scale on horizontal
slopes they all gave identical results. On variable slopes and for larger
scale (finite-amplitude) disturbances, all three methods gave different
results for the additional, higher order terms, Through continuity, they may
still be equivalent to a prescribed order of accuracy but this was not
confirmed in this study. Further research is needed to determine the
importance of these higher-order terms for riverine applications,

A perturbation analysis was made to quantify the significant reduction in
wave celerity due to the added Boussinesq term over that for the non-linear,
long wave equations of St. Venant, It was also determined that for Froude
numbers greater than 0.05 (based upon uniform flow), the full, nonlinear
Boussinesq equations (from the small amplitude theory) are required to compute
wave celerity with 5 percent accuracy.

Great care must be exercised to eliminate truncation errors from
finite-difference schemes of the Boussinesq equations. Truncation errors can
cause numerical frequency dispersion to swamp the true physical dispersion of
the added Boussinesq term(s). The three-level scheme (time) reviewed may not
be the best analog because diverging solutions at alternating time steps
appear.

It is recommended that the next phase in the effort concentrate on firmly
establishing the practical hydraulics cases when the more general Boussinesq
equation must be employed. And, to run some typical numerical examples to
demonstrate the order of differences in solution with those obtained from the
long wave equations of St. Venant,



INTRODUCTION

Many unsteady flows in hydraulics occur with relatively large gradients
in free surface profile. The assumption of a hydrostatic pressure
distribution with depth is no longer valid. These are rapidly-varied unsteady
flows (RVF) of classical hydraulics and also encompass short wave propagation
of coastal hydraulics., Numerical methods are needed to readily calculate
rapidly-varied unsteady flows together with computations of long wave nearly
horizontal, gradually varied flows (GVF). Transition between hydrostatic and
nonhydrostatic flow regimes should be a fundamental part of the equations of
motion employed and automatically a part of the solution algorithms generated.
Artificial separation between RVF and GVF regimes and the piecing together of
solutions is unrealistic for unsteady flow computations. The location of the
RVF region varies continuously and becomes part of the desired solution.

Spiked river hydrographs occurring from natural runoff in steep gorges,
canyons and channels are an example of rapidly-varied unsteady free surface
flows, They also result from rapid reservoir releases, dam breaks and mud
slides into rivers due to volcanic eruptions. Flows over hydraulic structures
such as spillways, chutes, control and measurement devices (weirs, flumes,
gates), enerqgy dissipators, buckets, and near sudden slope changes all create
rapidly-varied flows. 1In these cases the bottom curvature effects are also
important., When the free surface becomes too steep and unstable, roll waves,
hydraulic jumps, bores, breaking waves and other discontinuities propagate in
the flow. Automatic shock propagation is also desirable in the solution,

The purpose of this report is to present an introductory review of the
state of knowledge and numerical computation techniques to solve such flow
problems. First a review of the literature is made and various methods
employed to derive the appropriate equations of motion are presented. These
are then summarized in a table and discussed in detail since the appropriate
equations to use is still a subject of active research, Further insight is
given in the next section where the equations are rederived following the
methods of Venezian (1974)* and a nondimensional analysis of the equations is
displayed. Boundary conditions are also reviewed in this section.
Perturbation analysis efforts are presented in the following section. Such
methods permit determination of the propagation celerity and response matrix
for various cases when certain terms are included or omitted in the equations.
It is then used as a tool to determine the relative importance of these terms
in the equations employed. The hydrodynamic stability of the equations for
roll wave formation can also be ascertained. The section concludes with the
selection of the appropriated equations for numerical integration.
Subsequently, in another section reviews are given for various numerical
integration methods including the finite-difference methods and their
requirements for stability and accuracy when applied to rapidly-varied flows.
Recommendations for appropriate integration schemes are presented. Conclusions
and recommendations are summarized in the last section of this report.

*Complete reference information is found in the References Cited Section at
the end of this report.
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It is hoped that this is the first in many important steps necessary to
simulate rapidly-varied, free-surface flows,



LITERATURE REVIEW

The theory that incorporates vertical accelerations, to a limited extent,
in approximations to the horizontal motion equation is called Boussinesq
theory (Boussinesqg, 1872), Many forms of the equations attributable to
Boussinesq are found in the literature. Variations are due to the order of
accuracy of terms retained and methods of derivation. In fact, the basic form
of the Boussinesq equations found in the recent literature (e.g., Whitham,
1974) never appears in Boussinesq's work (Vastano and Mungall, 1976).
Simplification of the equations by limiting wave propagation to only one
direction (no reflections) gives the equations of Korteweg and de Vries (1895)
or KAV equations, These are of less generality and will be omitted in what
follows, However, exact solutions of the KdV equations are termed first-order
cnoidal waves, The solitary wave is a limiting case of a cnoidal wave. Thus
these classical wave theories have their roots in Boussinesqg theory, or vice
versa.,

The basic Boussinesq equations in one dimension for uniiform
cross-section, on a horizontal bottom neglecting bed and surface stresses can
be written in Eulerian form

Mass h, + (d)u +uh =0 (1)

Motion u +un g =2 (du, (2)

where h = n + d with d the uniform flow or still water depth and n the
instantaneous water surface variation, The velocity u is a depth-averaged
instantaneous value. Subscripts indicate partial differentiation in either
independent variable x- in space or t- in time. The equation of motion is
identical to the long wave equation of Saint-Venant except for the mixed
derivative Boussinesq term on the right-hand side (RHS) of Equation (2). It
is instructive to briefly review various forms which omit certain terms in
Equations (1) and (2).

Waves of Permanent and Nonpermanent Form

If the convective acceleration and Boussinesq termi are neglected, a wave
of permanent form moving with speed (celerity) ¢ = (gd)”? results. Without
only the goussinesq term, each part of the solution travels at a local speed
x= u¥(gh)” so that the high parts tend to overtake the low sections with time,
The wave travels with nonpermanent form, continually steepens and eventually
breaks. This tendency is termed amplitude dispersion. 1If, however, the
convective acceleration term and hx term in the mass equation are omitted, a
linearized version of the Boussinesq equations results. Vertical accelerations
resulting from streamline curvature effects result in the celerity of the form
(See, e.g., Whitham, 1974, p. 462)



cp = (g0)%/11 + (4md?/312)1% (3)

where L is the wave length of any wave component in the solution. Each wave
(Fourier) component of a long wave disturbance now travels at its own speed
depending on its length., This tendency is termed frequency (or wave-length)
dispersion. The full equations with all terms maintain a balance between
amplitude and frequency dispersion only for the limiting case of the solitary
wave, They also simulate a progressive wave of permanent form (first order,
cnoidal) without excessive dispersion if the wave does not propagate
indefinitely (Peregrine, 1972).

Ursell (1953) devised the following criterion, the Ursell number, U, for
applying the Boussinesq equation or special cases with terms omitted.

When
>> 1 Nonlinear, longwave equations
U 0(1) Boussinesq equations (4)
< 1 Linear wave equations
where
U = (wave amplitude/water depth)3/(wave steepness)?
= (Max/3) %/ (M /L)
or
U= (n,,L°)/8 (5)

and the symbol O(1) means the value is on the order of unity. The region
where U is comparable to unity is cited as applicable to cnoidal wave theory
(e.g., Peregrine, 1967) which has been shown to match experimental water
surface and velocity profiles (Wiegel, 1964) for finite amplitude, progressive
waves in shallow water. Therefore, the Boussinesq equations can be considered
the more general set with the Saint Venant equations a special case for long
waves such as tides and sluggish river hydrographs.

For sloping and variable bottom profiles, the equation of motion becomes
much more complicated. For adverse slopes (coastal beaches) no waves of
permanent form can exist. The wave shoals, peaks and eventually breaks when
H/d ¥ 0.8 - 1.0 where H is the trough to peak wave height. The applicability
of the Boussinesq equations up to the breaking limit on beaches is an active
research area. On positive slopes (rivers, estuaries) permanent form waves

are possible but only for short reaches. No known research has been conducted
on this topic.

Modern Derivation Methods

The Boussinesq theory can be considered applicable for finite-amplitude
quasi-long waves propagating in shallow water where the interplay between
nonlinearity (convective acceleration term), dispersiveness (Boussinesq term)



and bottom curvature or slope (additional terms) are critically intertwined,
Early rederivations by Keulegan and Patterson (1940) and Ursell (1953) were
restricted to wave propagation in only one direction which greatly limited
their usefulness. More recently, three different derivational methods have
emerged that do permit arbitrary disturbance propagation.

Asymptotic Expansion Method

Peregrlne (1966, 1967) and Mei and LéMéhaute (1966) were the first to
employ expansion procedures to derlve Boussinesq equations for water of
variable depth. Mei and LéMéHauté used the veloc1ty at the bottonm as
reference and the governing equations were put in characteristic form, making
them less general, Additional work with these equations can be found in Madsen
and Mei (1969), and Madsen, Mei and Savage (1970) for solitary waves and
solitons, respectively.

Peregrine (1967) began with Euler's equations of motion for an inviscid
fluid. Two scaling parameters are then introduced. The importance of the
nonlinear (convection) term in amplitude dispersion is given by e, where

™
[

wave amplitude/water depth

=n__ /4 (6)

The Boussinesq term gives frequency dispersion and is related to the parameter
o?, where o is the relative depth

Q
I

water depth/wave lenth

= d/L (7)

Both ¢ and o? are relatively small, i.e, much less than unity. In terms of
the Ursell number, using equations (6) and (7) in (5) gives

2 (8)

From equation (4) it is apparent that the Boussinesq equations are applicable
when amplitude dispersion given by ¢ and frequency dispersion given by o? are
equally important, i.e.

P 2

o (for Boussinesq equations) (9)
Following Keller (1948), Peregrine expanded all variables as follows. The
dependent variables, n, p, and u were expanded in terms of the nonlinearity
parameter, ¢ as

£=f,+ef, + 3, + ... (10)

with £ a dummy variable standing for n, p, or u. The vertical velocity, w was
expanded in terms of the frequency dispersion parameter, o and also ¢ as



W= oW, toew +oetw, v, . L) (11)

1

The independent variables were scaled by o, for example

9— = oFi-] ; etc, (12)
ox 8x1

Using the still water depth and J’E as reference length and velocity,
respectively, all equations were put in dimensionless form. All expanded
variables and their derivatives were assumed to be of order O(1) so that when
the expansions were made, the order-of-magnltude of each term in the equations
appeared explicitly. The zero-order solution gave the equation of statics and
the first-order equations were the linearized, long wave equations.

Horizontal bottom

The second-order equations have first-order effects which to be included, the
first-order variables incorporating the second-order terms are employed., The
results are normally expressed in terms of the mean Ve1001ty although others
have used the velocity at the bed (Mei and LeMéHaute , 1966; Dressler, 1978),
In dimensionless terms, the Boussinesq equations for horizontal bottom derived
by the expansion method became

Mass: h, + T + eth + O(ed?, €2, . . .) =0 (13)
Motion: U + €U0, + h - =of0_, + O(cc?, ¢? =0 14
otion: U, + €Ul + h 3° u_, (o, €%, « . ) (14)

Note that all terms are dimensionless (g=1; the underbar) the ovérbar
signifies mean veloc1ty, and n could have replaced h since d=1, 4 =0. Clearly,
both the convective acceleration term and Boussinesq term are equally
important when e¢=0?, BAll additional terms of order eo?, €2, etc., are lumped
together because of higher order. Equations (13) and (14) are identical to
equations (1) and (2) when returnlng to dimensional variables. For further
discussion with full derivations see Peregrine (1972) and Whitman (1974).

Study of the derivation shows the additional Bou551nesq term results from both

the horizontal velocity and pressure distribution being influenced by the
vertical velocity.

Equation (13) for mass conservation also reveals the important fact that to
the lowest order accuracy (i.e. linear theory)

==-h, +0 (¢, o) (15)

X
or

U, =-h, +0 (e, 0% (16)
Now as discussed in great detail by Long (1964), one can always substitute the

lowest order approximation into the Bou551nesq term which is the next higher
order, Putting Equation (16) into (14) gives



G, + G0 +h + 40®h,, + O(ed?, %) =0 (17)
which is an equivalent form. It is thus seen that where the free surface
varies most rapidly, the Boussinesq term will have the most influence on the
solution. This is the regime of rapidly-varied unsteady flow.

Variable water depth

Consider the difinition sketch

Datum — x

Figure 1. Generalized diagram showing definition sketch.

of Figure 1 with local bottom slope, B given by
B = tan'l(dg/dx) = tan(g) (18)

and bottom curvature by ¢ . New length scales associated with variations in
water depth must now be considered as discussed by Peregrine (1972). He chose
the local bed slope B as the basic parameter to characterize the variable
depth. For consistent bottom boundary conditions for the vertical velocity w,
Peregrine stated it is necessary to assume that

o3 8 (19)

This means that the local bed slope must always be less than the relative
water depth ratio (d/L). This restriction limits the applicability of the
Boussinesq equations derived by expansion methods to slowly-varying bathy-
metry. Using the mean velocity as reference, Peregrine (1967, 1972) obtained
the following equations for variable depths in two planar dimensions (x,y)

Mass n,+ VvV [(d+ n)u] 0 (20)

Motion u, + (u * V)u + gvn = HA)V[V * (d * u)] - Hd)V(V * v (21)



where the vector operator v = i?Y + jgz + k(0), Considering only
one-dimensional flow and carefully expanding out the RHS of Equation (21)
gives

Mass n,+ (d+nu +uh =0 (22)

Motion u, +uu + gh - gd =% (d)%u_, + (d)u,(d) + 3 (d)u(d,) (23)

For e<<1, d%h and the mass equation reduces to Equation (1). Three additional
terms appear in Equation (23) due to the water depth variations. Besides the
Boussinesq term, the RHS has two extra terms involving bottom slope and
curvature which also create local streamline curvature effects in the x-
momentum equation. For a horizontal bed, Equation (23) reduces to Equation
(2), as expected.

The key aspect of the expansion derivation by Peregrine (1967, 1972) or
Whitham (1974) is the consistency in the order-of-magnitude of terms retained.
All terms of higher order (eo?, €%, o*, etc.) are omitted under the conditions
that

€ ¥ o << 1 (9)

and

o328 (19)

Other expansion derivations of less rigorous nature (Abbott and Rodenhuis,
1972; Liggett, 1975) obtained additional terms that were products of
derivatives and third derivatives in space. Recent applications of the
Boussinesq equations for propagation of short (wind) waves in coastal waters
(Abbott, Petersen and Skovgaard, 1978; Abbott, 1979) make use of Equations
(20) and (21) but in conservation form. Hebenstreit and Reid (1978) use the
Eulerian form for numerical investigations of reflection and refraction of
solitary waves.

Variation Principles

A second approach applies variational principles to derive the equations,
Early efforts were by Reid and Vastano, 1963; Luke, 1967; and Whitham, 1967,
The method essentially proceeds as follows, For the appropriate geometry,
boundary conditions and assumptions involved, the kinetic energy per unit mass
and integrated over depth (here given the symbol, T) is determined. Similarly
V the potential energy per unit mass and depth integrated is also found. This
is usually done for dimensionless terms using a selected set of appropriate
scaling parameters.,

A Lagrangian L of the form
L=T-=-V - (n) (24)

is then introduced where



» = an undetermined Lagrangian multiplier and

m = conservation of mass.
Hence, )(m) acts as a constraint upon the system of equations in the

derivation. The Euler-Lagrange equations are then employed for the three
variables, n, u, and ),

gn  ox \an_ gt Lon

u &, 'aL] ¢ 2 [—ah]=o (26)
au  ax lau) a8t Loy,

\e 3_L+_§'8L]+_a [_aL_]=o
a  ax la) a8t La, (27)

Three equations result from which ) can be eliminated and the resulting two
equations are the conservation of mass and horizontal momentum,

The first assumption is that the horizontal velocity component
(one-dimensional flow) is uniform with depth, then u=u,. From the
incompressible continuity equation

u +tw =0 (28)
this gives
WS- (U,), 2 (29)

where w_ is the integration constant to be evaluated from the boundary
conditions with z as defined in Figure 1. Equation (29) reveals that vertical
velocity is a linear variation in depth, z., It is sometimes argued that

Equation (29) is a separate assumption for the vertical velocity component as
a power series in z,

W=Ww +w z+wz2+otoo
o 1 2

and truncated to only the first two terms. But in reality, the two
assumptions leading to Equation (29) are the uniform horizontal velocity
component and that continuity is satisfied. The hierarchy of wave systems

created by using successively higher powers of z are discussed by Reid and
Vastano (1975).

Local irrotational motion must satisfy the equation

10



and it is clear that the system

u=su; wWEW o= (W) 2 (30)

0!

does not meet this condition. Therefore, the Boussinesq equations have come
to be associated with the velocity system of Equation (30) and satisfy
continuity but are rotational.

Horizontal bottom

Whalin (1976) derived equation systems by variational principles for both
small amplitude and finite amplitude waves in constant depth. The difference
is fundamentally the boundary conditions on the free surface. If {=0 and 2z=0
at the bottom, then Equation (29) becomes simply

w=-(u), 2 (31)

Small amplitude theory.--From the exact conservation of mass equation
(22) with no assumptions

1
_(uo)x = E (ht + uhx) (32)
Small amplitude theory means again assuming ¢ = ("pax / 4)<< 1 which means uh
is relatively small or of higher order. This gives
2
w3Ih o (33)
as the approximate vertical velocity profile consistent with the small

amplitude assumption. From the variational method, Whalin (1976) obtained the
result (dropping the subscript for u )

Mass: h + (uh) =0 (22)
1 1 1
Motion: u + (gh+ Su?+ - n? 3 hh,), =0 (34)
Equation (34) reduces to (d = h when ¢ <<1)
+ +gh =-1 (33)
u, + uu + gh 3 dhxit

when products of derivative terms are neglected. Equation (35) and the
dimensional equivalent of Equation (17) are identical. The celerity is given
by Equation (3) for the linearized forms of Equations (22) and (35)

11



Finite Amplitude Theory.--In shallow water, the wave amplitude is not
small relative to the water depth. Using equation (32) in (31) and retaining
all terms gives

W=%(ht N uhx)z

(36)

as the vertical velocity distribution. Whalin (1976) then obtained the result
by variation principles that

Mass: h +uh +hy =0
L] 2 2 2
Motion: u + ; hxhxg ; hxhu, + ; uthx + 2uhxhxt + uux

2 5 4
+uhh + S ubh o+ uwh? + o ulhh, + gh

X

h
= 2
+ 3 (uh, + 3uh, + 2uh  + 2u’h 2uu h

+4uwuh +uwh_+h, +hh +uh )=0 (37)

The full water depth h now appears in the mass Equation (22) in contrast to
equation (1) where h*d. The motion equation is much more complicated.
However, if all product of derivative terms and third space derivatives terms
are again neglected it reduces to

1 2
u +u +gh = - 3 hh, - 3 uh h _ + H.O.T. (38)
From Equation (22) it can be shown that

1 2 1
-;hhm-s(uh)hxxt=;h2ut-—(uh)ht (39)

so that the right-hand-side of (38) could also be written

1 1
utuw +gh = 3 h?u . - 3 (uh)h .+ H.O.T. (40)

The finite amplitude theory differs from the small amplitude theory in two
ways. The total water depth h must be used in the first or primary Boussinesq
term and a second Boussinesqg term ((-1/3) uhh . ) appears. An important

aspect of this investigation is the 51gn1f1cance of the second Boussinesq term

and all other neglected terms as discussed fully in the section PERTURBATION
ANALYSIS,

12



Variable water depth

Mass and Vastano (1978) were interested in tsunami generation and
employed variational methods where the bottom varied in both space and time.
For purposes of this report, the bottom is assumed fixed in time so that all
{, terms are omitted from their results. Derivations were made for both small
amplitude waves (e<o0?<<l) and for finite amplitude, nonlinear waves in which
no scaling parameters are involved. the nonlinear forms of the Boussinesg-
type equations are summarized here. Again a uniform horizontal velocity and
linear variation of the vertical velocity with depth are assumed. Boundary
conditions on both the bottom and free surface become nonlinear, At the
bottom (z=t)

W= ug, (41a)
and at the surface (z = ¢ + h)

w=mn +un (41Db)
Using Equations (41) in (29) gives

w=2 ; Lo(h +uby) +oug, (42a)
or

W=zt (U, (42b)

as the vertical velocity distribution. The two equations that result upon
elimination of »(m) in the variational method are

Mass: n, + u(n-g), +h(u) =0 (43)

Motion (Momentun) Iu + Ju? + Ku + Mu, + Nuu + P + Qu_

+RuZ +Bu, +Auu_ =0 (44)
2 2
where: I =2nn - 3 EN, t Sntnxx - szxnt + ;hnxxt (a)
4 1 1 1 s, 4L
J = ;nxnxx - 5‘ 8 + E‘ Exxnx - 'g $oxdx 3hnxxx thxxx (b)
1
K=nn, - =¢n+hn, (c)
1 2 1 1
M—;hnxx*'—hixx’f';ﬂi‘*'gﬁxnx*'g{1;“'l (4)
5 1 4 2
=2 2.2 - g2 4 2 ot
N 3" 3§xnx 3zx+3hnxx+3h§xx+l (e)
2 2 1 1
P = 3 MMt '3'"x"tt "% Sl * 3 hn + g, (£)
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1
Q=3 (9)

2 1
R-A-ZB-;hnx+§h§x (h)
The nonlinear, variable depth momentum equation now contains a formidable 38
terms! Many are products of derivatives and third space derivations of higher
order, Nondimensional scaling of equation (44) revealed that terms of order
€2, €3, eo?, and o* are retained, Mass and Vastano (1978) state without proof
that such a system is appropriate to quasi-long waves with amplitudes as large
as one-third the water depth.

A careful reanalysis of these results was made for the further
simplification when all products of derivatives and thrid space derivatives
are neglected except those involving bottom gradients and curvature. The
resulting equation is

1 2
ut + uu + ghx + g;x = - _3hhxtt - g uhhxxt

1 (45)
- (EhUXt + uhu )§,

1
- (5 hu, + 2huu )§{  + H.O.T.

For a horizontal bottom, Equation (45) checks with Equation (38), as expected
for this nonlinear, finite amplitude case. We can also compare Equation (45)
with that derived by Peregrine for small amplitude waves (Equation 23). One
additional term appears in both the gradient and bottom curvature terms.
Their significance will be shown to be of higher order O(e¢o?) in the section
on THEORY, The remalnlng two terms (¥hu, and %hu ) were both found
significant by Peregrine except he did not get the % in the gradient term,

The discrepancy was traced back to Equation (44h) where Mass and Vastano
(1978) reported that

2 1 2
2B=-hn_+ - ht{ =—-hh + h¢
3 x 3 x 3 x x

1 1
Shh, + 2 he (46)

or B

It is not possible to determine which version is correct at this time,

Additional applications and a thorough discussion of variational methods
appear in whitham (1974) and Mass and Vastano (1978).

Conservation Methods

As will become evident in what follows, the third derivational approach
is given the label "conservation methods."

14



Beginning in 1974, applied mathematicians and engineering mechan1c1ans,
knowledgeable of classical, non-linear theories of plates and shells in solid
mechanics, began applying these same ideas to water wave theory (Green, Laws,
and Naghdi, 1974). Their motivation was to avoid the formal expansion method
and establish the required system of equations without approximations. The
direct formulation approach by Cosserat and Cosserat (1909) used in the
development of shell theory was adapted. Consequently, theoretical
derivations for jet-like and sheet-like fluid flows were developed and results
published in a series of papers. The derivation of equations for water wave
propagation in variable depths is presented in Green, Laws, and Naghdi, 1974;
Green and Naghdi, 1976a; 1976b; and summarized by Naghdi (1978). They call it
the method of directed fluid sheets.

The method begins with the known differential equations of continuity and
energy in three-dimensions for a homogeneous, incompressible and inviscid
fluid. Two assumptions are then made. The whole fluid system is required to
be invariant under an assumed rigid-body translation (Galilean invariant).
And, an approximation for the velocity field is made which satisfies the
continuity equation. Using this information, the exact boundary conditions at
the free surface and at the bed, and the energy equation in integral form, the
system of equations for water waves over variable bathymetry is derived,
without making further approximations. Throughout their work the velocity
field is assumed to be uniform with depth in the horizontal directions and the
vertical velocity varies linearly with the vertical, as in all previous
methods discussed above., Thus the flow is rotational in horizontal planes as
normally occurs in shallow water with large wave amplitudes relative to water
depth, Further details of the method of directed fluid sheets are beyond the
scope of this report.

For a horizontal bottom, Naghdi (1978) presents the equations

Mass: n, *(d+nju +un =0 (47)
same as (22)
. 1
Motion: u +uy +gn + -dn“x =R (48a)
1 11
where R=- 3 My = Ehxhtt "3 (h?(2uh,, + ¥ h +

uh +uuh )] =0 (48Db)

For small amplitude waves (e<<l), R is neglected and Equation (48) reduces to
that found by Peregrine (1967) from expansion methods (Equations 14 or 17) and
by Walin (1976) and Mass and Vastano (1978) by variational methods (Equation
35). This is also the original formulation of Bous51nesq (Equatlon 2), It
may be concluded that the small amplitude theory is not invariant under a
constant, superimposed rigid body translation,

With R included the equations are nonlinear and invariant under rigid
body translation, Naghdi (1978) states that within the scope of a nonlinear
theory, the quantity R should not be neglected on either physical or
mathemaical grounds. However, if Equation (48) is carefully expanded out and
all product of derivative terms and third space derivatives are neglected, the

IS



equation of motion is identical to Equation (40) as determined from
variational methods under these assumptions. The central question again
reduces to the size of the two Boussinesq terms in Equation (40) relative to
additional terms resulting from derivative products and third derivatives,

A similar conservation method has been put forth by Venezian (1974,
1975). 1Integral forms of the conservation equations of mass, momentum and
energy are obtained by integrating across the vertical from bottom to free
surface, An assumed velocity field is then substituted into these
conservation equations so that continuity is satisfied but not
irrotationality. Waves are permitted to travel in both directions and are
Galilean invariant. Consequently, the method appears identical to what was
presented by Naghdi (1978) but much easier to follow, For this reason we have
chosen to present a detailed review of this derivational approach in the
section on THEORY,

In Eulerian form on a horizontal bed, Venezian (1974) obtained the usual
mass equation as Equation (22) and for the motion equation

2 - -
u +uu +gh +hh(u-u, -ug,

1
+ ghz(uxuxx -u, -uw_)=0 (49)

The horizontal velocity was again taken as uniform with depth, giving a
linear, vertical velocity distribution for which the full nonlinear free
surface boundary conditions were employed (Equation 36), Surprisingly, if
product of derivative and third space derivative terms are neglected in
Equation (49), the result reduces to the Boussinesq form for small amplitude
theory and not to Equation (40) for finite-amplitude waves. The term
-(4)uhh _, does not appear. Further reasons for this result are explored in
the secf%on on THEORY where the equations in Conservation form are presented
along with those for variable water depths.

Summary of Equations

The basic equations of motion from the three derivational methods are
summarized in Table 1, Conservation of mass is given by Equation (22)., For
small amplitude waves (e¥0’<<l) the equations of motion derived by Peregrine
(1967, 1972) and Whitham (1965, 1974) are identical to O(e?, ¢o?, o*). For
finite amplitude waves, both variational methods (Whalin, 1976; Mass and
Vastano, 1978) and the conservation method of Naghdi (1978) give two identical
Boussinesq terms plus 16 additional terms consisting of products of
derivatives and third space derivatives, It is not known, at this stage, if
the 16 added terms are identical by both derivational methods. The method by
Venezian (1974, 1975) in Eulerian form produced only a single Boussinesq ternm
and five additional higher-order-terms on a horizontal bed. The equation
given by Berlamont (1976) from his work on roll waves is also shown in Table
1. The derivational method is unknown, Three Boussinesq terms are said to be
important.

For variable water depths, the results are limited. Except for the ¥
factor in one term as previously discussed, the results of Peregrine (1967)
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and Mass and Vastano (1978) agree to the order of small amplitude theory. For
finite amplitude theory, an additional 12 gradient and curvative terms
involving derivative product and third space derivatives were obtained by Mass
and Vastano (1978).

Two references with Boussinesq-type equations given in Conservative Form
were studied and are also shown in table 1. They will be discussed further in
the section on THEORY.

Arbitrary Cross Sections

All the equations examined above are for one-dimensional flow in wide,
rectanqular channels where the local water depth and hydraulic radius are
identical. This limitation is expedient for research purposes since the
importance of the higher order terms is still questionable, especially for
variable water depths, For practical future applications, equations must
eventually be derived for arbitrary cross sections, Three approaches are
possible. At one extreme, the three-dimensional, incompressible motion
equations with proper turbulence models can be used for appropriate boundary
conditions., This is the most expensive approach but may be justified for
highly irregular and curved boundaries in important cases.

The two-dimensional Boussinesq equations could also be used for
relatively wide river sections where vertical, depth-averaging is a good
approximation, These equations are presently being used to simulate short
wave phenomena along coasts and within harbors (Abbott, Petersen, and
Skovgaard, 1978; Abbott, 1979). Additional cross momentum Boussinesq terms
appear in each equation,

A third approach is to derive Boussinesg-type equations for a prismatic
channel of arbitrary cross-section, Such an approach was taken by Peregrine
(1968) who again used expansion methods in the derivation. At this level of
approximation, both surface amplitude and horizontal velocity vary over the
cross-section of the channel. The variation of cross-section with surface
elevation must also be included. Application of the method is summarized in
Peregrine (1976) and used by Berlamont (1976). Details are beyond the scope
of this report since the question of appropriate equations for even
rectangular sections remains.

Finally, Dressler (1978) derived generalized, nonlinear, shallow-water
equations which explicitly include bottom curvature effects. The equations
account for bathymetric variations on the pressure distribution, velocities,
and free-surface profile and reduce to the long wave equations of Saint Venant
for constant slopes on horizontal bottoms. But, they do not include wave-like
variations of the free-surface to simulate short waves or rapidly-varied flows
that create frequency dispersive effects like the Boussinesq equations. The
derivation method utilizes curvilinear coordinates and should be extended to
derive equations that reduce to Boussinesqg-type equations on horizontal beds.
The usefulness of the equations by Dressler (1978) is greatly diminished for
lack of appropriate Boussinesq terms.



THEORY

It is instructive to follow the derivation method of Venezian (1974,
1975), but to rederive the Boussinesq equations in Conservation Form.
Venezian's approach is easier to follow than the other methods. Solutions of
Conservation Form equation systems are more general in that both continuous
and discontinuous flows (i.e., shocks such as hydraulic jumps, bores, and
breaking waves) are automatically obtained (Abbott, 1979). It is often near
such discontinuous disturbances that the free surface is most rapidly curved
requiring Boussinesqg-type equations to describe the motion,

Conservation Form Following Venezian

Consider one-dimensional flow in a wide, rectangular channel on a
horizontal bed. The incompressible continuity equation is given by

u tw =0 (28)

and the Euler equations of motion for essentially two-dimensional motion are
-Di i =-1

x-Direction u, +uu + wu, 5 Py (50)

z-Direction W, tuw t+oww = - é P, -9 (51)

where now u, w are the local velocity components, and p, the local pressure,
The fluid is assumed homogeneous of density, p.

For a solution, the following boundary conditions are required. At the
bed

2 =0, so that w=10 (52)

On the free surface, both kinematic and dynamic boundary conditions must be
considered. The surface air pressure is assumed constant and locally
atmospheric so that dynamically

p, =0 (53)
and kinematically

h, + uh =w (54)
must hold from conservation of mass considerations. The subscript s means on
the surface. Equations (52), (53), and (54) are the needed boundary
conditions,

The energy equation corresponding to Equations (50) and (51) with no
momentun diffusing terms present can be obtained by multiplying Equation (50)
by u and Equation (51) by w and adding the results giving

[%(u2+w2)]t +ufdue?)] o+ ow Phu?)] = - L Jup +up,]- gw (55)
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No energy loss terms appear in Equation (55) and all equations are in their
primitive form. For completeness the vorticity, defined as
W=wW -u (56)

X Z

will give after differentiating Equation (50) by z and Equation (51) by x
w, *uw + Wy =0 (57)
Conservation Integrals

The above differential equations for mass, momentum, energy and vorticity
hold locally at any point (x,z,t) in the flow, Venezian (1974) derived
corresponding conservation integrals for these four quantities over the
vertical water column from the bed to the free surface (z=h), Use was made of
the fact that for any function f(x,z,t) the following equality holds based on
Leibnitz’' rule

[oree], + [

where f_ is the value of f at the free surface, Expanding the first term on
the rigﬁt-hand-side of Equation (58), integrating the term Ih (fu )dz by parts
and using the continuity Equation (28) gives 0

= Ih[ft + (fu)x]dz +£ (h +uh) (58)

x 0

I“ fdz] + [Ihfudz] = £ W + Ihwfzdz +£ (b +uh)+ r‘[ft + uf 1dz (59)
0 v 0 x 0 0

But, from the kinematic free surface boundary condition given by Equation
(54), the surface terms cancel leaving

U;Edz]t + [I:fudz] = I:(ft +uE, + wE, )de (60)

X

Equation (60) is the fundamental conservation integral over the water column
for any f(x,2,t). The quantity f is on a unit mass (density) basis,

Continuity integral

When f = 1, Equation (60) becomes the conservation integral for
continuity,

ool + e, =0 1)
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Horizontal momentum integral

Taking £ = u using Equation (50) gives

ISR

h h
[I pdz] =ph + I p, dz
0 x 0

and from Equation (53), p, = 0 gives

[Ihudz]t+ [Ih(uz+p/p)dz]x= 0 (62)

1 h
= - o Iopxdz
but

0 0
Equation (62) is the conservation integral for linear momentum,

Enerqgy integral

The total energy per unit mass is composed of kinetic and potential
energy, hence f = Y%(u?+w?) + gz, Using this for f in Equation (60) plus the
energy (55) and continuity (28) equations and boundary conditions gives

[+ + s+
0

t

[Ih{§(u2 + w2) + gz + p/p}udzl =0 (63)

0
as the conservation integral for energy.

Vorticity integral

Setting £ = w in Equation (60) plus making use of Equation (57) for
vorticity gives

[r'udz]t + [ruudz] =0 (64)
0 0 x

as the conservation integral for vorticity.

In summary, for the four quantities on a per unit mass basis

1 mass
u momentum
f =] 65
1(u? + w?) + gz ener (e2)
] g gy
| W vorticity

2.1



we may write the conservation integral in general as

JhDdz + erz =0 (66)

0 0
t x

where D the "density" per unit width is

r

1 mass
u momentum
P ju? + W) + gz energy (668)
{ W vorticity

and the "flux" per unit width, F is given by

-

u mass
u? + p/p momentum
F=. (66¢)
[%(u2 + w?) + gz + p/p]u energy
wu vorticity

to give conservation of mass, momentum, energy and vorticity. Laws expressed
in the form of Equation (66) [i.e. Equations (61), (62), (63), and (64)] are
said to be in Conservation Form since the quantities mass, momentum, enerqgy
and vorticity are transported in time and space, not pressure (water depth)
and velocity. Whitham (1974) outlines prodedures to construct an infinity of
further conservation forms. We are only interested in the above four since
they have physical significance.

Equations (66) are exact for ideal fluids.

Long Wave Propagation

Integration of Equations (66) requires assumptions for u and p over the water
column. If a hydrostatic pressure distribution is assumed for p and u is
assumed uniform over the water depth, the classic long wave, shallow water
equations of Saint-Venant for mass and momentum are obtained in conservation
form.

Mass h+q =0 (67)
Motion q + [5-3-+ ghz] =0 (68)
t h 2 Jx
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where @ = uh is introduced to distinguish the conservation form. The
dependent variables are now h and g in time and space. Expanding out Equation
(68) gives an alternate form shown in Table 1.

2

q q -
qt 2y gt (oh - —h{]hx =0 (69)
Very long waves exhibit essentially negligible streamline curvature so
that the hydrostatic pressure distribution assumption is valid.
Quasi-Long Wave Propagation

The pressure distribution assumption is now relaxed and omitted in what
follows. The horizontal velocity is again assumed constant in z

u = u(x,t) (70)

which together with the continuity equation results in a vertical velocity
linear with depth

W=-u sz (31)

or

£
[}

%(hﬂ-mk)- 2 (32)

This assumption for u is the only assumption made. Using Equation (70) in the
mass conservation (continuity) integral Equation (61) again gives Equation
(67). Substituting Equation (70) in the momentum integral Equation (62) gives

q?
g+ [ = +B] = 0 (71)
where t [ h ]x

1 h
B=> Lpdy (72)

and B is a third unknown in the problem*, Clearly, a third independent
equation is required.

Venezian (1974) used the energy equation to derive an explicit expression
for B. In a later paper, Venezian (1976) derived the identical expression for
B from the vertical momentum integral equation. The final form of the
resulting expression from the latter method is (Venezian, 1976)

B = “:wzdz]t + U:(ww)z-dz]x - I:wzdz + Jgh? (73)

*B is obviously a different variable than used previously
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Equation (73) was said to be first derived by Starr (1947) and verified by
Longuet-Higgins (1974). Use of the vertical momentum integral equation and
hence Equation (73) to determine B is the more general approach. The energy
integral, equation (63), contains the term

1 h
EI pudz
0

for which u constant in z becomes simply B:u. Use of the energy equation to
find B 1is only feasible for this assumption on u. For higher order

approximations with u variable in z, equation (73) is the only way to find B,
explicitly.

Using Equations (70) and (30) in Equation (73) gives

(v}
I

h h h
U (-z’ux)dz] + U (-zzuux)dz] - I z?u’dz + lgh?
0 ¢ 0 x 70

- )

1
B = jgh? - 3 h3(u,, + uu

1 1 1
- [—h3 uu] - —h%u? + —gh?
A Rt FE R

or
2y -
+2u?) - h?(hu_ + huu) (75)

xXXx

But from continuity, the last term in Equation (75) can be written
=h? (h,u + huu ) = -h?(-hu?)

so that
1.2 _ 15 2
B = —q2 h* - -3—h (u, + uu - u;) (76)

Eulerian form

_ Venezian (1974) expanded Equations (71) using g = uh and continuity to
give
h(u, +uu ) +B =0
which by expanding equation (76), becomes

h(u, + uu ) + ghh + h%h (u - u, -uu )
1 3 =
+ sh (wu, - u_, -u )=0 (77)

Dividing through by the common factor h gives Equation (49). This reduces to
the Boussinesqg equation for small amplitude waves for a horizontal bottom when
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neglectlng derivative products and third space derivatives. The term

-(3)uh h _, found by Mass and Vastano (1978), Whalin (1976), and Naghdi (1978)
does not . appear (Table 1). The reason why is not clear. One possibility is
that the five additional terms in Venezian's derivation are equivalent to the
16 added terms plus this second Boussinesq term in these other derivations.
This question is addressed further in section PERTURBATION ANALYSIS.

Conservation forms

Using u = q/h in Equation (76) gives for the motion equation in
conservation form

AR R (s M5 T MRS G RTINS

Again neglecting derivative products and third space derivatives, this becomes
after expanding

1
@ [ B e e

Equation (79) is identical to that used by Abbott, Petersen and Skovgaard
(1978) if d=h (Table 1) and on a horizontal bed.

Haugel (1980) stated without derivation the following motion equation

ot (3 + {[[g+s]+ ;;]hz] - e, (50)

X

where the terms « and B characterize vertical accelerations due to both wave
steepness and bed slope effects., They were defined as

dat? (2) (81)
= .q_?_}_l b
where the total (substantive) derivative is
d _3d 3 (c)
_—= 4 | =—]—
dt &t [‘; ]ax

After considerable expansion in which all derivative product terms were
neglected, Equation (80) becomes for a horizontal bottom

2 1 2
g +2(3)e * fr - o= S Mg - 1 (e, (82)
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The last term in Equation (82) appears wrong due to the factor of 2, Since
Equation (80) is stated as fact with no derivation presented, it is impossible
to determine why the added factor 2 appears. It is assumed incorrect for this
report,

In all cases however, two additional Boussinesq terms appear in
conservation form. This is because in Equation (78)

<[] 0B

x 3 xxt
_ lys 1 hiq
T 3 h ¢ 3 pz o
1 1
=3 My, = (A, (83)

and all other terms were neglected, When u and h are the dependent variables,
this second Boussinesq term automatically disappears. Consequently, the
appearance of a second Boussinesq term in the Conservation Form equations
should not ke confused with a similar looking term in the Eulerian form
equations derived by variational principles and other methods.

Venezian (1976) obtained an alternate Conservation form in terms of u, h
variables

[u + —hzuxx] [gh + lu2 - —hz[u +2 uu - uf‘]] =90 (84)
X

His results were shown to be an exten51on of the work of Benjamin and
Lighthill (1954) to the time-dependent equations., The resulting equations
permit wave propagation in two directions and are invariant under Galilean
transformation., This latter property is also true for the derivations by
variational principles and Naghdi (1978) by directed fluid sheets. 1In this
theory, continuity is satisfied microscopically but irrotationality is not,
Additional velocity distributions can be used in the conservation integrals to
derive higher order equations but are beyond the scope of this report.

Nondimensional Equations

The equations derived by Venezian (1974, 1976), Equations (47) and (49),
are now made dimensionless to study the relative order-of-magnitude of
individual terms. A set of scaling parameters is employed that were first
introduced by Hammack (1973) and utilized by Mass and Vastano (1978),
Dimensional quantities are here taken as starred quantities (i.e. all terms in
Equations (47) and (49) would appear with star superscripts) and defined as

x* = xL,% (a)
t* = tLx/c* (b)
(85)
uk = yect (c)
h% = hd#* (a)
so that g* = u*h* = (uh)ec*d*, and (e)
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where:

ck = JEE; , the celerity of shallow water disturbance, (f)
€ = n:mx/d*, the relative wave height, and (9)
o = d¥/L*, the relative water depth. (h)

All corresponding nondimensional variables (u,h,x,t) use the same symbol
without asterisk and have magnitudes of the order unity.

Table 2 lists all the derivatives appearing in the continuity and motion
equations discussed above and their dimensionless form. The coefficients then
give a scale to each term,

Mass Conservation
Rewriting Equation (47) as
* k% * Kk _
hY + h¥uf + uthl =0 (86)

and making the appropriate substitutions from Equation (85) and Table 2 gives
after dividing through by co

h, + (e)hu_+ (e)un_ =0 (87)

The time derivative is dominant and both space derivatives are of order (e)
which is not the same result as Equation (13) where the parameter scaling was
part of the derivation.

Table 2 Nondimensional derivative terms in fundamental equations

Velocity, u Water Depth, h

Dimensional Nondimensional Dimensional Nondimensional
u* (ec/L)u n* oh
w¥ (ec/L?)u_ nr (o/L)h_,
W (€6/L% )0 LW (0/L2 B
u¥, (ec? /L2 )u, ), (Co/L)h,
u (ec?/L3)u_, ¥, (co/L})h_,
uf (ec? /L)u, ht (co)h,

hY, (c?o/L) h,,

where both ¢ and L are dimensional quantities but the asterisk is dropped for
convenience,
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Momentum Conservation
Starting with Venezian's results, Equation (49) rewritten here as

k., ok k. kk, o kk kg Kk _ k. k
uf + utug + g™+ n'Rl (uf)? - g - utyg]

+ % n*2 [uwfuf - uf, - ufut ] =0 (88)
the appropriate values are again replaced giving
(ec? /L)y, + (e?c?/L)uy, + g*oh +
(do) (hh,) [(e?c?/LAuZ - (ec?/LP)u,, - (e?c?/Li)uu ]
+ % dzhz[(ezcz/L*’)uxuxx - (ec?/L¥)u_, - (ezcz/L"')uuw‘] =0
Dividing through by ec?/L gives

ot omy + Cn s+ @om, [ - B - B

1
+ 3 a hz[ JF1-_?]1)’;:1’&:: - [i?]uxxt - [Lz uuxxx] =0

or since o = d/L, o® = d%/L? and letting g = g*/(c%/L)

u, + (e)uu, + (g gh, + hh [(eoz)u: - (dh)u, - (eo’)uuxx]

1
t o R (edyuu, - (P)u, - (eo?)uu, ] =0 (89)
Rearranging Equation (89) gives

u, + (e)uu, + (Ygh, = +§ (o*)hu_, + (o®)hhu, + O(eo?) (90)

The dominant pressure term gives rise to local accelerations with the
convective acceleration and Boussinesq term of lower magnitude but equally
important when ewc?. An additional term of O(o¢?) appears that comes from one
derivative product. All other derivative products or third space derivatives
are of O(eo?) and smaller. The result that one derivative product term is of
0(o?) is surprising.

As shown in Table 1 and discussed above, other derivational methods
obtained a second Boussinesq term of the form

- Jluhehg,
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which by the same procedure becomes in dimensionless form

- H(oh) (unh, (s1)

This second Boussinesq term is of the same order-of-magnitude as the primary
term by this scaling procedure. Similarly, the sixteen additional terms found
by Whalin (1976) and given in Equation (37) were analyzed. It was discovered
that two are of 0(o%/¢), seven are of O(o?), and the remaining seven of higher
order O(eoc?). Consequently, it can be concluded from results of the scaling
procedure, that all derivative product terms and third space derivatives are
not of the same order-of-magnitude. And, more importantly, that many are
equally as important as the primary Boussinesq term for finite-amplitude wave
propagation. Obviously, their importance will greatly diminish for small
amplitude waves.

Other scaling variables are possible. Meyer (1967) presents a detailed
mathematical discussion of the relative sizes of various scaling factors.

Bottom Variation Scaling

As discussed earlier, Peregrine (1972) showed that the local bed slope
must always be less than the relative water depth ratio, or o2B.
This restriction was to keep the vertical velocity near the bed consistent in
magnitude with the order of the derivation. The finite-amplitude wave
derivations by variational methods and the directed fluid sheet method relaxed
this restriction.

Bed gradient terms

Table 1 shows three additional bed slope terms from the variational
method of Mass and Vastano (1978). One is due to the fluid weight component,
(9%.), appears in the long wave equations, and will not be discussed further,

If the above procedures are applied to the remaining two terms, the result is,
in nondimensional terms,

*++ =(oB)jhu , - (ceB)uhu (92)
Clearly, the second term in expression (92) is of higher order if we take o2B
and these results then confirm Peregrine’s results (except for the % factor).
Product of derivative terms involving { were all neglected in Table 1.

Bottom curvature terms

The two terms obtained by Mass and Vastano (1978) (Table 1) were put in
nondimensional form with the result

s -(oéx),f,hut - (eon)huux (93)
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The second term is again of higher order and this result also was obtained by
Peregrine (1967, 1972).

Summary, Nondimensional Equations
We may summarize the above nondimensional equations as follows:
Mass: h, + (e)uh + (e)hu =0 (87)
Motion: u, + (e)uw + (Zgh +(B)g =
1
1 2
+ (0?) =h? - (0%)Z (uh)h
(o) 3h u_. 3 xxt (94)
-(oB)hu , - (ch)%hut
+(o0%)(additional terms) + O(eo?, €%, of, etc.)
All terms of order ¢, o?, oB, and oB, and larger are retained., The main point
to emphasize is that by the nondinensional procedure employed, some derivative
product terms are of the same order of magnitude as the Boussinesqg term, Third

space derivatives are of higher order. These results will be explored further
in the next section (PERTURBATION ANALYSIS).

Boundary Conditions

Properly posed PDE problems mean that both equations, initial conditions
and boundary conditions are specified such that only one unique solution
exists. The open literature contains very little information on correct
initial-boundary conditions for PDE's with mixed third-order partial
derivatives, The nonlinear, Boussinesg-type equations are clearly hyperbolic
in that the Boussinesq term(s) only affect the finite celerity of individual
wave components of the solution.

For such hyperbolic systems, the number of boundary conditions should
equal the number of characteristics pointing into the region of interest
(Abbott, 1966). Also, from general mathematical principles for wave type
equations, (Churchill, 1962) or from practical requirements for
finite-differencing the equations, it is seen that the boundary conditions
must be described to an order that is one less than the highest derivative in
the equations. For the long wave equations these two requirements simply mean
specifying either u or h as a function of time at any boundary for subcritical
flow (Froude number, F<1) and both u and h for the "upstrean" boundary in

supercritical flow (F‘>1) The long wave equations only contain first
derivatives,

Boussinesq-type equations contain terms that express the time rate of
change of the curvature, i.e. u_, (or h . ). It would appear reasonable
therefore to also require specifi Ycation™of the normal gradient u (or h) at the
boundary. In reality this simply means specification on physical grounds of
one additional u (or h) value outside the boundary so that the first space
derivative can be formulated at the boundary. Further research and study of
this hypothesis is required. Unless the proper boundary
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conditions are known, it remains unlikely that an accurate numerical solution
will be obtained.

Practical Considerations

The theory discussed above omits practical hydraulics considerations for
turbulent boundary and internal shear stresses, flows in branches and loops,
two-dimensional effects in floodplains and river bends, and others. See
Cunge, Holly and Verwey (1980) for an extensive modern review of these topics
and their influence on numerical methods of solution for the long wave
equations.

The major factor influencing quasi-long wave theory will be the bottom
shear stress approximation. Modification to the Darcy-Weisbach, Manning and
Chezy type formulations (originally for steady, uniform, open channel flows)
have been devised for short wave propagation in shallow, coastal waters
(Kamphuis, 1975; Jonsson, 1966; Bijker, 1966, and others). These are for
oscillatory-type boundary layers and progressive water waves where mean flow
currents (in time) are considered negligible. Much more experimental research
data is needed to determine turbulent closure coefficients for flows with
strong wave-current interactions. This is the region between flows dominated
by unidirectional currents (no waves) and oscillatory water waves (no
currents).

Because rapidly-varied flows in rivers are dominated by mean flow

currents, classic Chezy type boundary resistance formulations will be
incorporated in the momentum balance equations for this report.
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PERTURBATION ANALYSIS

Perturbation analysis methods are useful to study the importance of
various terms in the equations of rapidly-varied flow. The complex wave
propagation factor and wave celerity can be found by this technique and used
to study the significance of the nonlinear, Boussinesq, bed slope and other
terms appearing in the various derivations. Previous efforts in this regard
for the long wave equations by Ponce and Simons (1977), and Basco (1981)
should be reviewed for further details about the method.

The method is also useful to study the unstable modes of the equations
and formation of roll waves. And, the complex wave propagation factor can be
employed to find the response matrix used in the Filter Scheme Method (FSM) of
numerical integration (Basco, 1981).

The Perturbed Equations

The equations of continuity and motion are subjected to small
perturbations of the form u = u +uw ;h=h +h' ;andt =1 + 71’ for the
boundary shear stresses present in real fluid flow. Thus, uniforn flow
conditions (u, h, 7)) are given a small perturbation (u’, h’, 7') and the
resulting dependent variables (u, h, 1) are substituted 1nto the basic
equations, After expanding, all terms containing products of perturbations
are neglected based on the key assumption that these quadratic terms are
relatively small. Consequently, when applied to the Boussinesg-type
equations, truly higher-order terms must also be omitted.

Long Wave Equations

The perturbed long wave equations are a convenient reference point to begin

and can be written

Mass h, +uh +hu =0 (95)

v 1] ) ] u’ h,
Motion u +uu +gh + qso[ T h_] =0 (96)

[¢] o

for a channel of uniform bottom slope, S° and the friction slope, 8, given by
T_/pgh (see Basco, 1981 for further details).

It is convenient to put these equations in nondimensional form. Ponce
and Simons (1977) choose a set of reference dimensions for space and time that
effectively omitted the bottom slope from the results. Basco (1981) extended
these results to more general reference dimensions (¢, the space increment and
7, the time increment) for ease in comparison with numerical methods based on
comparable Ax and At, space and time steps respectively,

The dimensionless equations of Basco (1981) are modified slightly in what
follows by using the shallow water celerity, /gh_ as reference velocity



in place of the uniform flow velocity, u . This gave the nondimensional

equations
_ 8 n* + *= 0o
Mass c,F,a—c C, al
g€
. . 6 B
Motion [+ ip Z% « - kB]h* + [1a7 o« - i — + 2k — ]u* =0
F? ¢ F, F,
where: W /h = h¥*expli(ex® - ot*)],
v //gh = w¥exp(i(ax® - 8t¥)],
n* = the dimensionless water depth,
u* = the dimensionless water velocity,
X* = x/¢, dimensionless distance,
t* = t/r, dimensionless time,
« = (2n/L)e = dimensionless wave number,
8 = dimensionless, complex radian wave frequency,
i.e. the propagation factor,
2 = (2n/T)T = the real part of 6,
F, = the uniform flow Froude number, ub/Jgho,
% = u/(e/T),
2 = Jan, /(e/7),
B = gs T/u

(a)
(k)
(c)
(d)
(e)

(9)
(h)

(1)
(3)
(k)
(1)

(m)

(97)

(98)

(99)

and, where the following additional terms are made unity or zero to either

incorporate or suppress terms in these equations,

Q
[

, = coefficient for hu (prism-storage) and of higher order,

Q
]

, = coefficient for uh (wedge-storage),

c, = coefficient for time derivative (rate of rise),
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in Equation (97), and

2 local acceleration in motion equation (98),

a = advection acceleration,
p = pressure gradient, and
k = friction-bed slope term.!

This change in the system of dimensionless equations over that previously
defined (Basco, 1981) results in a simpler set of dimensionless paremeters
(F,» 7 (or 7,) and B) than previously defined. A thorough analysis and check
was made to confirm that these equations produced identical results to those
presented previously by Ponce and Simons (1977) and Basco (1981). Equations
(97) and (98) are also consistent with the notation introduced by R.O. Reid
(Feb., 1980, personal communication) except that the hydraulic engineer’'s
definition of Froude number [Equation 99(j)] is employed.

Boussinesq-Type Equations

The following equations shall be employed assuming constant bottom slope
and real fluid flow,

Mass h, +uh +hu =0 (101)
Motion u tun +gh +gs =-gS = (102)
i - Huh)h .+ S hu,
—— Y
o, b, b,

The perturbation analysis method is used to study the relative importance of
the primary Boussinesqg term (k) and the two additional terms in Equation
(102). As previously discussed, the second Boussinesq terms (b,) and the
slope term? (b ) were both shown to be important as derived by variational
principles and scaled against the other terms.

All derivative product terms of order O(o?) as determined by the scaling
methods of Section LITERATURE REVIEW are neglected in Equation (102),
Examination of one such term will demonstrate why.

For example, Equation (90) revealed that the term hh u, as derived by
Venezian (1976) is of O(o®?). This term becomes in the perturbed system

'This section uses lower case k for a coefficient (0 or 1) of the friction-bed
slope term and script for the wave number,

The plus sign in this slope term comes from - = S_ for this nomenclature,
and B is now defined from Equation (99 m) and is not the bottom slope.

34



hohu, (103)

or in nondimensional terms

— 2
ih2/gh [e—;‘;] h*u*[exp(i(ax* - ot*))]2 (104)
€

The perturbation analysis method simply becomes too mathematically intractable
to handle h*u®* terms and/or terms involving products of exponentials, Put
another way, Equation (103) derived from the original term hh u  , already
neglects terms of the order h'h 'u , so that inclusion of such terms would be
inconsistent with the perturbed long wave equations,

Substitution of Equation (99) into the last three terms in Equation (102)
gives

u; M uou;( + gh;c + gso(z% - ﬁ:?) = %hzu;(xt - %uohoh;(xt + hosou;(t (105)
as the perturbed Boussinesq equation. The left-hand-side (LHS) is identical
to the long wave Equation (96) and the right-hand-side (RHS) contains the two
Boussinesq terms and a slope term, It is again convenient to put Equation
(105) in nondimensional form. Considering only RHS terms gives

. 2 _ % . 2 % %
o (2} . 42 [

or after multiplying through by T/u_ and simplifying

b 2 s?
=i [30—]9 +b [an—zm]e u* - [i By aze]h* (106)
3 F, = BF? 3
where, in addition,
h
% —ého =« -G_Q- (a)
b, =1 or 0 if primary Boussinesq term is to be included, (b)
(107)
b, =1 or 0 if secondary Boussinesq term is to be included, (c)
b =1 or 0 if slope Boussinesq term is to be included. (d)

Putting Equation (106) together with the nondimensional long wave Equation
(98) and summarizing gives
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Mass [choa - ¢, B—]h* + c,au* =0 (97)
78
. Y/ . b, *
Motion ip 2 a«a+i 3 o8 - kB[h" +
2
F0
2
iay o« - 122 - il—’l-[i‘—‘zn-]e -b [Zzﬁm ]e + zk—ﬁ— =0 (108)
g F, 3 IF, *{ BF? F,

Equations (97) and (108) form the nondimensional, Boussinesq equations to be
employed for all subsequent analysis. They contain eleven terms and ten
separate coefficients which can be either 1 or 0 to study special cases.

Simplified Flow Cases

A check of the simplified cases gives confidence in the complete
equations, Note that the true, physical, dimensionless wave celerity is found
from 6;/« = 7 and is identical to the Courant number.

Pure Advection

In the motion equation, takinga=2=1andp=k=b =Db =b =0
gives simply

= 7, (109)

or in dimensional units, the wave celerity, w/g becomes (110)

w/g =
where w is the radian wave frequency (2m/T) and £ is the wave number (2m/L).

The celerity of disturbance propagation for this case is simply u, for pure
advection,

Lagrange Celerity

More realistically, the celerity of a shallow water, long wave
distrubance (the Lagrange celerlty) can be found when the pressure gradient

term is included. Takinga=2=p=1andk=Db =b, =b =0 and all
continuity terms (¢, =¢c, = = 1) gives, solving (97) and® (108) together,
= 7a 2 —°—7Fa (111)

o
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or in dimensional terms
w/f =1u, +J/gh, , (112)
as expected.
In both of these cases taking k = 0 gave only real roots to 6,
Long Waves With Friction
In this case, all terms are unity except b, = b, = b = 0. This is the

long wave case con51dered in Equations (97) and (98) and *the resulting
expression for 6 becomes

=7, - iB £ /72o® - B2 + 1By« (113)

It was found to reduce to the expression given by Ponce and Simons (1977, Egn.
36, p. 1466) when ¢ = h /s and T = h /(u s ) were used as reference
dimensions. Equation (113) also reduces to that obtalned by Basco (1981) with
€ = h07 T =h /u and using u’ = u* exp [1(ax - ot* )1 as the

nondimensional perturbed ve1001%y

Diffusion and Kinematic Wave Models

In classical hydraulics, when the acceleratlon of long waves (b, = b, =

b, = 0) is considered negligible (2 = a = 0), but friction and pressure
gradlent are in balance (p = k = 1)
then

g = o ‘21(73/‘3]“’ (114)

Taking only the real part of 6 and putting in dimensional units gives
g (115)
which checks with the accepted speed of travel theorized for such waves in the

literature (see, e.g., Stoker, 1957). This special case has come to be called
a diffusion wave model in the literature.

Also taking p = 0 gives the same results because p produced the imaginary
part of Equation (114). This case is called a classic kinematic wave model
since only the friction-slope terms control the motion,
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Linearized Boussinesq Equation

In classical wave theory, linearization of these equatlons means
neglecting the advection term (a = 0) and also the uh term in the continuity
equation (¢, = 0). For a horizontal bottom w1th no frictlon and only

con51der1ng the primary Boussinesq term (k = =b, = 0) leaves (c, = c, = 1;
=p=Db =1). Solving for the characterlstlc equation and then s gives
7.« 1
o~ [ 5] v ig]
F, ) L (14231

or in dimensional terms

YA . Yam

w
£ 7 [1+n2 (1 + %,z ih:;z]ll2

(117)

Equation (117) checks with the literature (Whitham, 1974, Egn. 13.93, p. 462).
Whitham (1974) also shows how this linearized dlsper51on relation for small
(8h )2 agrees with the classic dispersion equation (uw? = gktanhgh ) from small
ampiitude, linear, (Airy) wave theory to the first approximation beyond long
wave theory (i.e. wji= vgh ).

Examination of Equation (117) now reveals how the Boussinesq term causes
frequency dispersion as described in Section 1 and Equation (3) taking
d=h. The (1/3)A%h? term in the denominator increases for shorter wave
lengtﬁs creating slower moving waves than the very long waves (é?h2~0)
Linearization of the equations is equivalent to cases with very small Froude
number flows with small disturbances since ¢ » o? and

= —1 2h2
o? (2n)? £
This shall be verified with some numerical examples later in this section.

(118)

Classic Boussinesq Equation

The advection term and all continuity terms are now retained (c, = ¢, =
c, =1; 2 =a=p=Db = 1) and the case for a horizontal bed with no friction
(i = 0) and no otherlBoussinesq terms (b, = b, = 0) is reexamined. The
expression for & becomes

1/2
(1-F7)
0 =7yafls |1+ ——0l (119)

Sk

For very long waves, o«/3-0 and Equation (119) reduces to Equation (111) for
the Lagrange celerity for all Froude numbers. For linearized conditions,

F 2-0 and Equation (119) reduces to the linearized Boussinesq celerity,
Equation (116), as expected.

38



The celerities given by Equation (119) should be compared with those
given by first order cnoidal wave theory (See e.qg., Svendsen, 1974) since
cnoidal waves are a solution of the Boussinesq (or KdV) equation (Whitham,
1974). This is the first case where the dispersion relation between frequency
w and wave number-ﬁ,lnvolves the wave amplitude which is here associated with
the Froude nunber, F in Equation (119). The influence of F shall be
examined with numerical examples below.

The limit of cnoidal wave theory as the dispersed wave length becomes
infinitely long is the solitary wave theory (i.e. for a single hump of
constant <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>