WATER QUALITY OF A STREAM-AQUIFER SYSTEM, SOUTHERN FRANKLIN COUNTY, OHIO

By Jeffrey T. de Roche and Allan C. Razem

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 84-4238

Prepared in cooperation with the CITY OF COLUMBUS, OHIO

Columbus, Ohio

UNITED STATES DEPARTMENT OF THE INTERIOR

WILLIAM P. CLARK, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief
Water Resources Division
U.S. Geological Survey
975 West Third Avenue
Columbus, Ohio 43212

Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225

ERRATA

- p. 5 -- Figure 2; well FR-115 should have collector designation.
- p. 28 -- last paragraph, fifth line should read
 - " . . . calcite, dolomite, and gypsum were reacted . . . "

CONTENTS

			Page
Abstra	ct		1
Introd	ucti	on	2
		e and scope	2 2 3 3 3
Pro	evio	ous studies	2
		al setting	3
		of investigation	3
Aci	know	ledgments	3
Hydroge	eolo	gic setting	0
Water	ana 1	ity	0
Oh	io d	rinking-water standards	12
Gr	ound	water	14
Su	rfac	e water	17
Geoche	mist	ry and interaction of ground and surface	10
wate	r		19
Ma	ss-b	alance analysis	19
Rea	acti	on model of the stream-aquifer system	23
Summary	v an	d conclusions	27
Refere	nces	cited	29
		ILLUSTRATIONS	
		ILLUSIKATIONS	
Figure	1.	Map showing the location of study area	4
	2.	Map showing the data-collection network and	
		location of geologic section A-A'	5.
	3.	Map showing the potentiometric surface in the	
	•	study area, October 15-17, 1979	9
	4.	Geologic section A-A'	10
	5.	Map showing the chemical-quality sampling	
	٠.	network	11
	6.	Map and Stiff diagrams showing the similarity	
		of dissolved anions and cations in the	
		study area	15
	7.	Water-analysis diagram showing the distribution	
	. •	of constituents in ground water and surface	
		water within the study area	18
	8.	Conceptual diagram showing radial collector and	
	•	mixing of ground water and surface water	25

TABLES

			Page
Table	1.	Records of selected wells, southern Franklin County, Ohio	6
	2.	Chemical analyses of ground water from	U
		sites in southern Franklin County, Ohio	31
	3.	Chemical analyses of water from streams in	
		southern Franklin County, Ohio	42
	4.	Water-quality statistics for ground water in southern Franklin County, Ohio	16
	5.	Saturation indices of various minerals for selected wells and streams in southern	20
	c	Franklin County, Ohio	20
	٥.	Concentrations of chemical species used in reaction model	24
	7.	Results of reaction-model simulations of	
		selected well and stream sites in southern	
		Franklin County, Ohio	26

CONVERSION FACTORS

Multiply inch-pound units	<u>By</u>	To obtain SI units
<pre>inches (in.) feet (ft) miles (mi) cubic feet per second (ft³/s)</pre>	25.40 0.3048 1.609 28.32	millimeters (mm) meters (m) kilometers (km) liters per second (L/s)
million gallons per day (Mgal/d)	43.81	liters per second (L/s)

ABBREVIATIONS AND SYMBOLS

Abbreviation

Description

AC-FT, ac-ft acre-foot

cols./100 ml colonies per 100 milliliters

°C, deg. C degrees Celsius

FET-FLD, fet-fld fixed-endpoint titration,

field determination

FTU formazin turbidity units

K estimated count, based on

non-ideal colony count

KF-AGAR a selective plating medium

for detecting fecal

streptococci

mg/L milligrams per liter

mmol millimole

ND constituent not detected

sq. miles square miles

ug/L micrograms per liter

umho/cm micromhos per centimeter

at 25 degrees Celsius

0.7 UM-MF seven-tenths micron pore size

membrane filter

-- constituent not analyzed for

WATER QUALITY OF A STREAM-AQUIFER SYSTEM, SOUTHERN FRANKLIN COUNTY, OHIO

By Jeffrey T. de Roche and Allan C. Razem

ABSTRACT

The chemical quality of the water resources in the Scioto River valley south of Columbus, Ohio, was evaluated on the basis of data collected from 74 wells and 4 surface-water sites. A very hard calcium bicarbonate water that is high in dissolved solids is characteristic of the aquifer. Mean pH of the ground water is 7.3, and bicarbonate concentrations range from 238 to 530 milligrams per liter. Concentrations of dissolved iron in water samples (0.01 to 3.9 milligrams per liter) frequently exceed the drinking water standard of 0.3 milligrams per liter established by the Ohio Environmental Protection Agency.

The chemical quality of local streams closely resembles the ground-water quality, except for higher concentrations of sodium, chloride, and sulfate in the surface water. Microbiological testing of ground water for fecal bacteria indicated concentrations ranging from 1 to 2,400 colonies per 100 milliliters. The higher concentrations were observed in one well on the Scioto River flood plain after a flood event.

Mass-balance calculations of the chemical data indicate that pH is buffered primarily by the carbonate system. Data for pH, calculated Eh, and concentrations of ferrous iron and reduced sulfur show that areas of different chemical environments exist within the aquifer. A reaction model of an induced-infiltration radial collector system indicates the amount of mass transfer (chemical reactions that occur as ground water and surface water mix) is small, and that the mixing ratio between ground and surface waters is four to one.

INTRODUCTION

The City of Columbus, Ohio, has been developing an inducedinfiltration water supply in the glacial outwash aquifer that
underlies the Scioto River and Big Walnut Creek in southern
Franklin County. The high sustained yields from the glacial
aquifer are a function of the ground-water flow from the aquifer
system and the induced flow of surface water from overlying
streams. In this two-component mixing situation, the chemical
quality of the ground-water and surface-water sources -- and their
interaction -- determine the chemical characteristics of the water
produced by the well field.

Purpose and Scope

This report presents the results of a study conducted by the U.S. Geological Survey in cooperation with the City of Columbus. The purpose of the study was to investigate the chemical quality of ground water and surface water within the recharge area of the glacial aquifer. Specifically, the report defines (1) the general water quality of the area, with particular attention to compositional differences between ground and surface waters, and (2) the chemical relationships between ground water and surface water. The study is based on 62 water-quality analyses -- 54 from wells and 8 from area streams. The samples were collected from 1975 to 1980 and analyzed for common constituents, trace metals, organic carbon, bacteria, and nitrogenous compounds. This report is part of a series of investigations that evaluate the hydrogeology of the glacial aquifer in southern Franklin County and its suitability for an induced-infiltration water supply.

Previous Studies

Several reports on the hydrogeology and water quality of southern Franklin County have been published. A report by Schmidt and Goldthwait (1958) provides information on the geology and ground-water resources of Franklin County. A report by Stowe (1979) includes detailed information on the hydrogeology of the Scioto River valley. Weiss and Razem (1980) describe the construction of a finite difference two-dimensional ground-water flow model for the southeastern Franklin County area, and a report by de Roche and Razem (1981) describes water quality conditions in the vicinity of several landfills located just north of the study area. Razem (1983) modeled transient flow conditions in the glacial outwash aquifer.

Physical Setting

The study area (fig. 1) is located in the southern part of Franklin County, and includes a small section of the city of Columbus. The major streams in the area are Big Walnut Creek, Walnut Creek, and the Scioto River. Topography is generally flat; the land slopes 40 to 70 feet per mile towards the major streams. The primary land use in the area is agriculture, and the major crops are corn and soybeans. The floodplains of the Scioto River and Big Walnut Creek are both used for agriculture.

Methods of Investigation

The data-collection network (fig. 2, table 1) consisted of 74 wells and 4 surface-water sites. Casing diameter of the wells ranges from 2 inches to 240 inches and depths range from 16 feet to 222 feet. The majority of the wells in the network were domestic wells; however, twenty-three 2-inch diameter observation wells were drilled, cased, and screened to provide additional data. The data were collected and analyzed during a 5-year period that began in 1975.

Periodic water-level measurements were made at the observation wells to determine the potentiometric surface and direction of ground-water flow. Ground-water and surface-water quality were compared by means of Stiff diagrams (Stiff, 1951), statistics, and Piper diagrams (Piper, 1944). Water composition was studied using WATEQF (Plummer and others, 1976), a FORTRAN computer program that models the thermodynamic speciation of inorganic aqueous species in natural waters. The chemical reactions between mixing ground water and surface water were investigated using the FORTRAN computer program BALANCE (Parkhurst and others, 1982).

Acknowledgments

The authors express thanks to the City of Columbus, Division of Water, for its assistance, and to the individual well owners who allowed their wells to be measured and sampled.

The well numbers FR-101 and FR-115 each apply to two wells with identical locations -- the original test or "pilot" well (PW) and the subsequently installed collector well (CW). The PW wells were used from 1975 until 1978 when they were replaced by the CW wells.

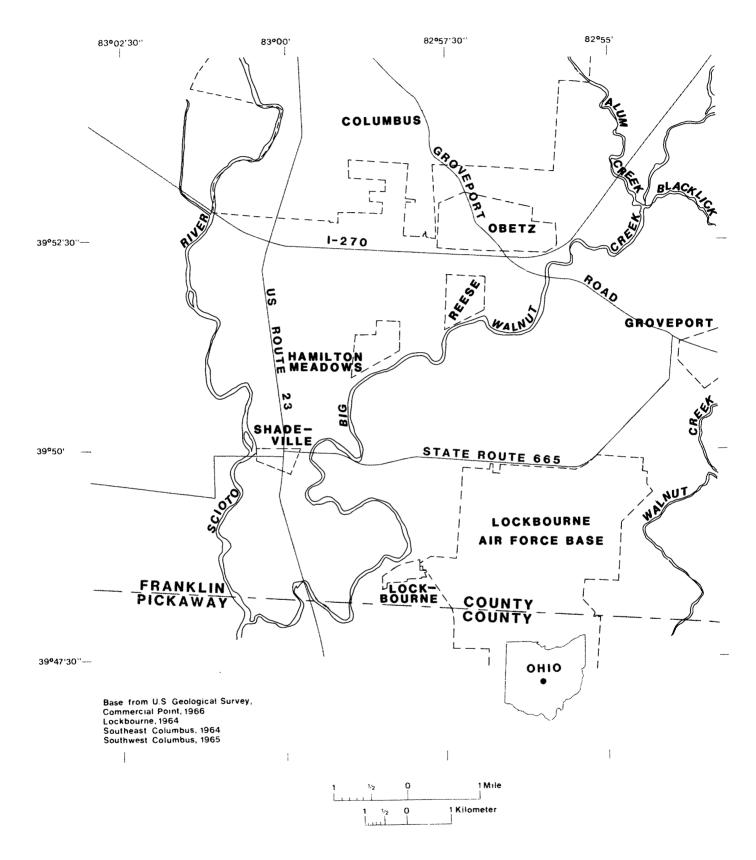
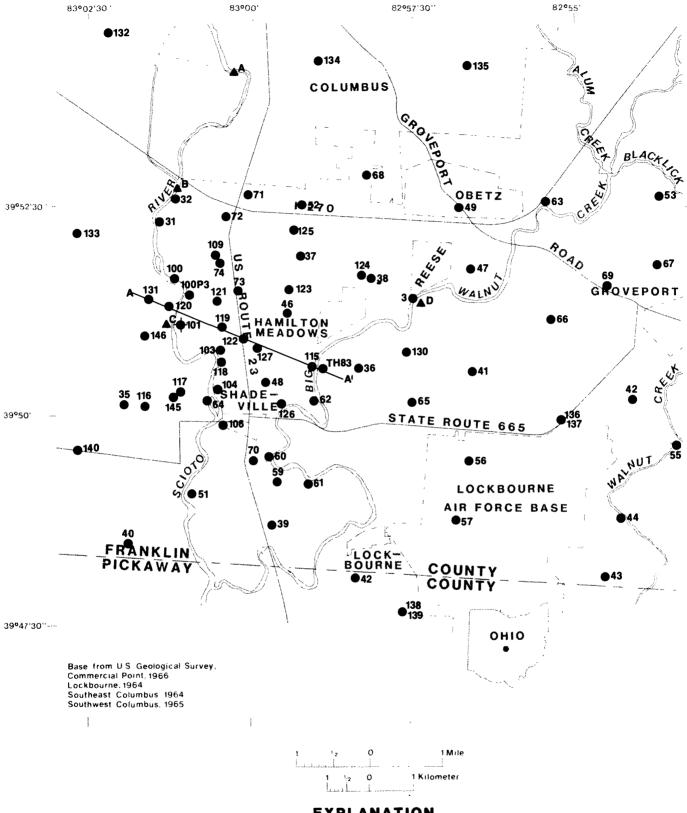



Figure 1.--Location of study area.

EXPLANATION

Observation-well and site number

B Surface water site

101 Radial collector well and site number
Location of cross section

AA Scioto River below sewage treatment plant

AB Scioto River at I-270

AC Scioto River at site 101

AD Big Walnut Creek at Reese

Figure 2.--Data collection network and location of geologic cross section. (The county code prefix, Fr- or Pk-, has been deleted from well numbers.)

Table 1.--Records of selected wells in southern Franklin County, Ohio

[All water-level measurements were made October 15-17, 1979]

Well number	Latitude	Longitude	Year com- pleted	Casing diameter (inches)	Altitude of land surface (feet)	Depth of well (feet)	Altitude of water (feet)
FR-3	39°51'14"	82°57'32"	1946	12	713	60	702.3
FR-31	39°52'15"	83°01'24"	1969	6	680	80	
FR-32	39°52'34"	83°01'13"	1968	6	700	80	660.6
FR-35	39°50'08"	83°01'57"	1940	36	715	24	
FR-36	39°50'37"	82°58'19"	1970	4	720	31	706.4
FR-37	39°51'53"	82°59'16"	1950	4	726	38	712.6
FR-38	39°51'38"	82°58'08"	1950	6	742	23	710.1
FR-39	39°48'44"	82°59'38"	1940	36	690	18	682.6
FR-40	39°48'32"	83°01'55"	1940	4	710	40	704.6
FR-41	39°50'32"	82°56'38"	1965	4	740	45	722.6
FR-42	39°50'09"	82°54'09"	1965	4	733	39	714.0
FR-43	39°48'05"	82°54'37"	1940	36	737		731.8
FR-44	39°48'47"	82°54'20"	1940	30	736	16	
FR-46	39°51'14"	82°59'26"	1960	6	718	38	702.4
FR-47	39°51'43"	82°56'38"	1960	36	731	26	701.6
FR-48 FR-49 FR-51 FR-52 FR-53	39°50'20" 39°52'29" 39°49'09" 39°52'30" 39°52'41"	82°59'47" 82°56'46" 83°00'57" 82°59'13" 82°53'39"	1965 1970 1972 1940 1950	12 4 6 6	732 754 682 735 733	 42 62 84 16	690.9 710.5 711.2
FR-55	39°49'39"	82°53'28"	1965	6	719	188	719.0
FR-56	39°49'30"	82°56'38"	1950	12	745	200	
FR-57	39°48'47"	82°56'53"	1950	8	740		709.9
FR-59	39°49'12"	82°59'37"	1965	4	732	63	690.5
FR-60	39°49'29"	82°59'42"	1972	12	689	100	
FR-61	39°49'11"	82°59'09"	1950	4	735	73	690.1
FR-62	39°50'12"	82°58'57"	1972	12	706		687.3
FR-63	39°52'29"	82°55'25"	1969	12	720	140	710.6
FR-64	39°50'08"	83°00'42"	1969	6	680	94	677.5
FR-65	39°50'08"	82°57'34"	1950	4	742	57	714.3
FR-66 FR-67 FR-68 FR-69 FR-70	39°51'05" 39°51'45" 39°52'52" 39°51'30" 39°49'27"	82°55'22" 82°53'45" 82°58'09" 82°54'33" 82°59'58"	1950 1960 1955 1974 1950	 4 4 4 4	745 743 743 760 705	23 59	729.3 727.3 728.1 689.0
FR-71 FR-72 FR-73 FR-74 FR-100 FR-100 P3	39°52'38" 39°52'17" 39°51'32" 39°51'53" 39°51'34" 39°51'34"	83°00'05" 83°00'23" 83°00'12" 83°00'29" 83°01'02" 83°01'00"	1950 1950 1960 1975 1975	4 4 8 12 6	700 715 735 730 688 686	40 48 80 60 57	688.4 687.8 691.3 682.8

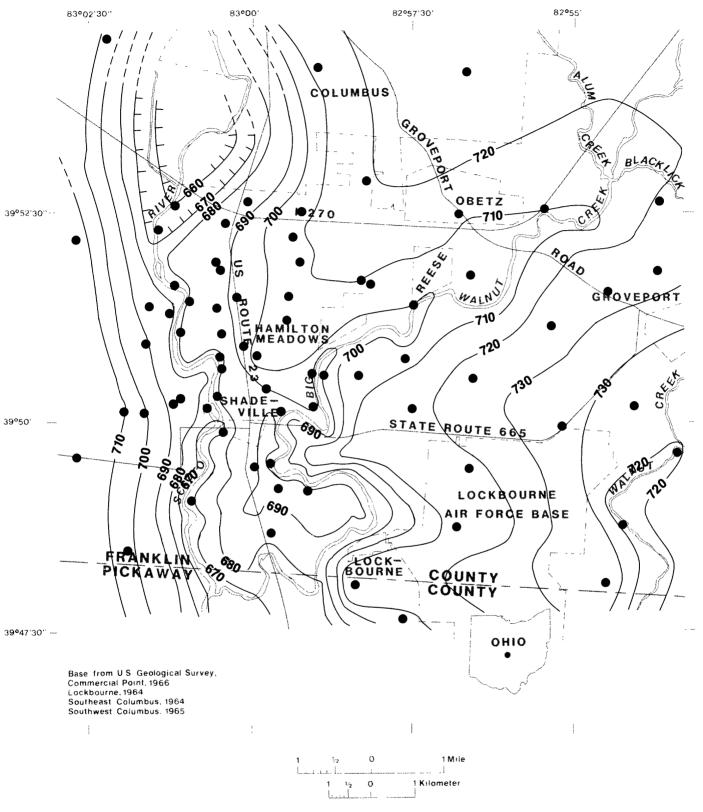
Table 1.--Records of selected wells in southern Franklin County, Ohio--Continued

FR-101 ^a		Longitude	com- pleted	Casing diameter (inches)	of land surface (feet)	of well (feet)	of water (feet)
	39°51'14"	83°01'04"	1975	3.2	688	90	601 E
FR-101b	39°51'14"	83°01'06"		12	685	80	681.5
FR-101	39°50'46"	83°00'31"	1979 1974	240	699	74 101	685.1
FR-103 FR-104		83°00'31"		12			
	39°50'20"		1975	12	691	80	684.6
FR-106	39°49'54"	83°00'28"	1975	12	687	75	676.5
FR-109	39°51'57"	83°00'35"	1975	6	702	92	687.6
FR-115, ^a	39°50'31"	82°59'03"	1975	12	710	68	690.6
FR-115 ^b	39°50'30"	82°59'02"	1979	240	708	68	
FR-116	39°50'06"	83°01'36"	1977	2	725	62	
FR-117	39°50'16"	83°01'03"	1977	2	700	45	685.9
FR-118	39°50'39"	83°00'26"	1977	2	690	98	
FR-119	39°51'11"	83°00'26"	1977	2	700	85	685.2
FR-120	39°51'17"	83°01'16"	1977	2	690	72	682.5
FR-121	39°51'23"	83°00'33"	1977	2	710	45	686.9
FR-121	39°50'59"	83°00'09"	1977	2	730	104	695.5
FR-123	39°51'31"	82°59'24"	1977	2	710	36	703.1
FR-124	39°51'41"	82°58'14"	1977	2	750	44	710.1
FR-125	39°52'13"	82°59'19"	1977	2	720	51	710.3
FR-126	39°50'08"	82°59'31"	1977		700	122	691.5
FR-127	39°50'48"	82°59'54"	1977	2	730	54	701.3
FR-130	39°50'46"	82°57'34"	1977	2	740	48	708.3
FR-131	39°51'26"	83°01'40"	1977	2	727	53	685.9
FR-132	39°54'37"	83°02'13"	1977	2	730	34	
FR-133	39°52'18"	83°02'39"	1977	2	765	82	715.4
FR-134	39°54'21"	82°58'54"	1977	2	728	50	715.7
FR-135	39°54'16"	83°56'43"	1977	2	770	42	713.7
FR-133	33 34 10	03 30 43	1911	2	770	42	
FR-136	39°49'55"	82°55'11"	1977	2	741		734.8
FR-137	39°49'54"	82°55'13"	1977	2	741	176	734.7
FR-140	39°49'35"	83°02'40"	1977	2	745	61	741.4
FR-145	39°50'17"	83°01'07"			720		
FR-146	39°51'53"	83°00'29"	1979	4	720	222	
TH-83	39°50'27"	82°58'56"	1977	8	707	64	691.4
PK-42	39°48'08"	82°58'25"	1940	36	722	18	714.0
PK-138	39°47'39"	82°57'37"	1977	2	715	28	712.8
PK-139	39°47'39"	82°57'37"	1977	2	715	175	701.7

a_{PW} series b_{CW} series

HYDROGEOLOGIC SETTING

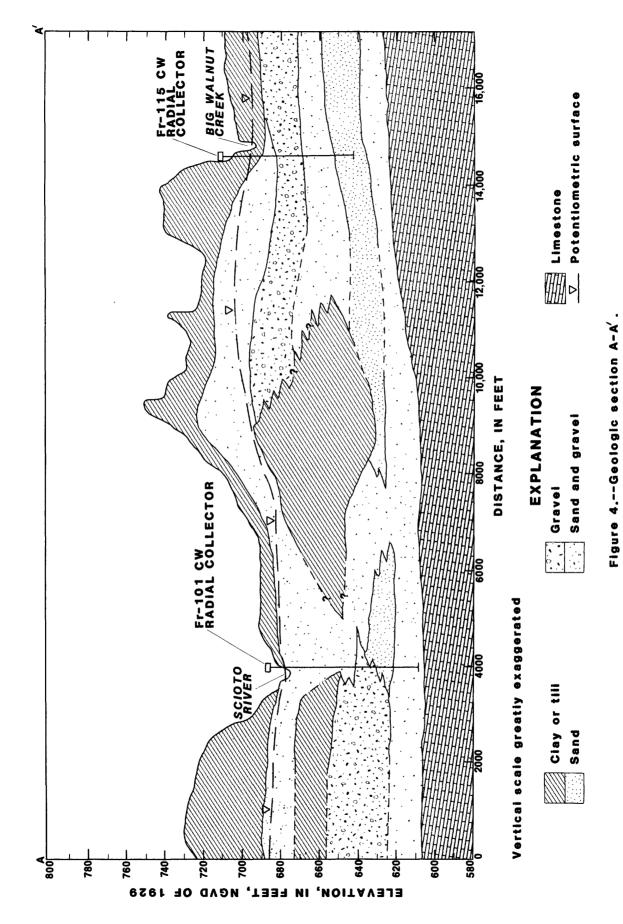
Glacial deposits consisting of sand and gravel interspersed with till are the major source of water in the study area. These deposits are underlain by the Delaware and Columbus Limestones of Devonian age, which contribute water to the overlying glacial aquifer by upward leakage. The glacial deposits range from 10 to 200 feet in thickness, have a high degree of heterogeneity, and are overlain by 10 to 15 feet of Holocene alluvium (Weiss and Razem, 1980).

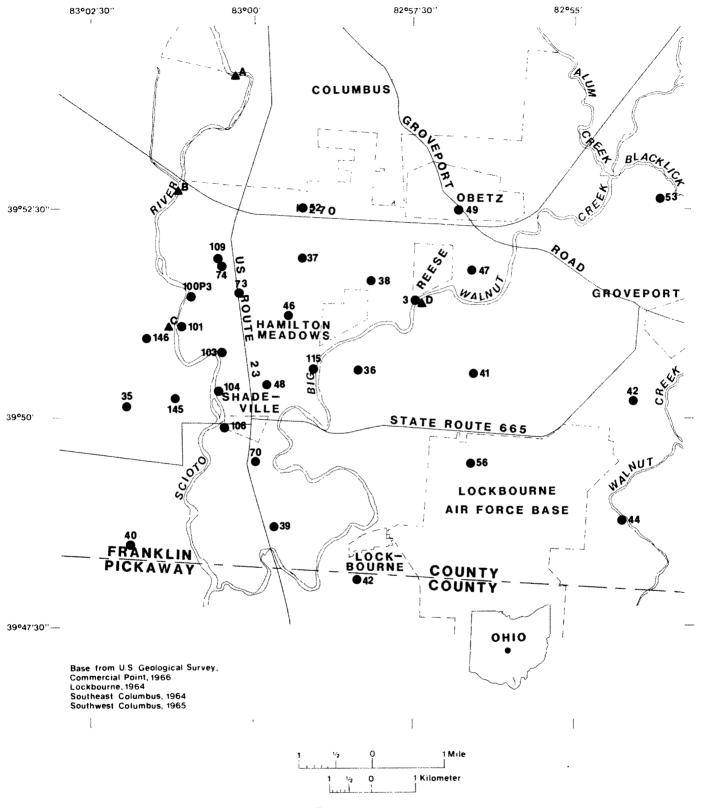

The glacial deposits contain a wide variety of rock types from igneous, metamorphic, and sedimentary environments. Granitic rocks containing sodium and potassium feldspars, mica, quartz, and hornblende are fairly common. Also common are limestone, chert, pyrite, globular marcasite, and silicacemented quartz sandstones. Of the metamorphic rocks, mica schists are predominant, although other types have been noted.

The ground-water potentiometric map shown in figure 3 is based on water-level data obtained in October 1979. The map indicates that most ground water discharges into Big Walnut Creek and the Scioto River. Recharge areas are located to the east and west of the streams and between the two streams. Recharge to the western edge of the study area by ground-water movement has been estimated at 25 Mgal/d (million gallons per day), whereas recharge from precipitation was calculated to be 12 inches per year (Weiss and Razem, 1980).

During periods of low flow in the late summer months, effluent from the Jackson Pike sewage-treatment plant and ground-water discharge to streams accounts for most of the streamflow. The mean low flow for water years 1976-80 for Big Walnut Creek was 47.2 ft³/s (cubic feet per second) or 30.4 Mgal/d, whereas the Scioto River had a mean low flow of 148.4 ft³/s or 95.9 Mgal/d. The geologic section (fig. 4), which was constructed from driller's and geologist's logs of project wells, shows the relationship between the aquifer, the Scioto River, Big Walnut Creek, and the water-supply wells.

WATER QUALITY


The chemical quality of ground water and surface water was investigated by sampling 30 wells and 4 stream sites (fig. 5; tables 2 and 3, at back of report). Between April 10, 1975 and May 29, 1980, a total of 62 chemical-quality samples were taken -- 54 from wells and 8 from local streams. Several of the samples were taken from the collector-type supply wells during aquifer tests.



EXPLANATION

Water-level-measurement site
 —690— Water level contour showing altitude of potentiometric surface, in feet. National Geodetic Vertical Datum of 1929.

Figure 3.--Potentiometric surface in the study area, October 15-17, 1979.

EXPLANATION

63 Ground-water chemical-quality site and number AA Surface-water chemical-quality site

Figure 5,--Water quality sampling network. (The county code prefix, Fr- or or Pk-, has been deleted from well numbers.)

Ohio Drinking-Water Standards

Primary contaminant standards regulate toxic substances in water that singularly or collectively can produce harmful effects on organisms that either live in or use the water. Secondary contaminant standards regulate undesirable substances that are not normally toxic except at high concentrations, but that may restrict the usability of the water or reduce its esthetic quality. The Ohio Environmental Protection Agency (1978, 1980), in chapters 3745-81 and 3745-82 of the Ohio Administrative Code, has established the following standards on selected constituents in water. For public-water supplies, the contaminants in the following tables are not to exceed the specified concentrations at any time:

Primary contaminants	Concentra- tion, in milligrams per liter
Arsenic	0.05
Barium	1
Cadmium	.01
Chromium	.05
Lead	.05
Mercury	.002
Nitrate (as N)	10
Selenium	.01
Silver	.05

The standard for coliform bacteria is one colony per 100 milliliters.

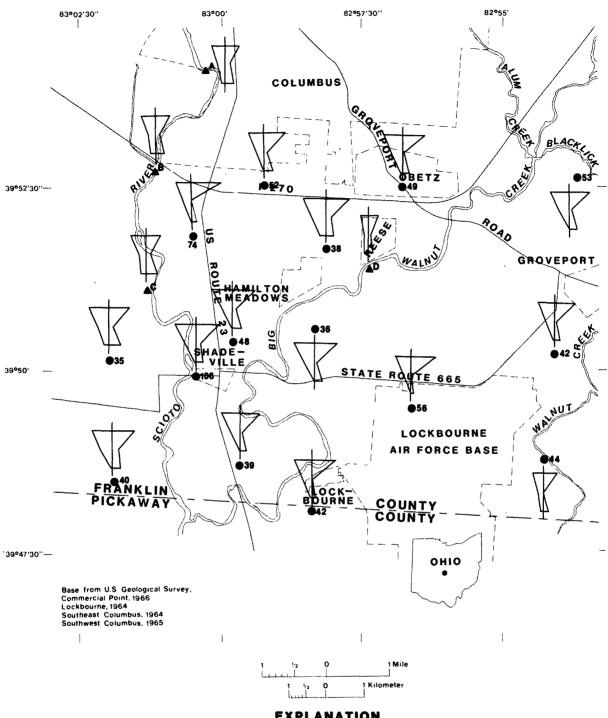
The contaminant levels for fluoride are based upon the annual average of the maximum daily air temperatures for the location in which the community water system is situated. The maximum primary contaminant levels for fluoride are:

Tempe	rature	Concentra- tion, in
Degrees Fahrenheit	Degrees Celsius	milligrams per liter
53.7 and below	12.0 and below	2.4
53.8 to 58.3	12.1 to 14.6	2.2
58.4 to 63.8	14.7 to 17.6 17.7 to 21.4	2.0 1.8
70.7 to 79.2	21.5 to 26.2	1.6
79.3 to 90.5	26.3 to 32.5	1.4

Secondary contaminants	Concentration or value
Chloride Color Copper Corrosivity Foaming agents Iron Manganese Odor pH Sulfate Total dissolved solids Zinc	250 mg/L (milligrams per liter) 15 color units 1 mg/L noncorrosive 0.5 mg/L 0.3 mg/L 0.05 mg/L 3 (threshold odor number) 7.0 - 10.5 250 mg/L 500 mg/L 5 mg/L

Ground Water

A very hard calcium bicarbonate water that is high in dissolved solids is characteristic of the ground-water quality of southern Franklin County. The composition of the water is similar throughout the study area, as illustrated by the Stiff diagrams (Stiff, 1951) in figure 6.


Calcium and magnesium are the most abundant of the major cations; mean concentrations are 100 mg/L (milligrams per liter) for calcium and 33 mg/L for magnesium (table 4). Bicarbonate, the most abundant of the anions, ranges in concentration from 238 to 530 mg/L and has a mean concentration of 389 mg/L.

Mean pH of the ground water is 7.3. Dissolved carbon dioxide has an average concentration of 35.6 mg/L. Both reduced (sulfide) and oxidized (sulfate) sulfur species are present in the study area; concentrations range from 0 to 22 mg/L for hydrogen sulfide and 11 to 240 mg/L for sulfate. Concentrations of dissolved iron range from 0.01 to 3.9 mg/L; 35 of the 54 analyses exceed the Ohio Environmental Protection Agency (OEPA) water-quality standard of 0.3 mg/L for iron. Concentrations of manganese range from 5.0 to 230.0 µg/L, and 27 of the analyses exceed the OEPA standard of 50.0 µg/L for manganese.

Fecal streptococci bacteria are being used increasingly as a microbiological indicator of significant contamination of water because the normal habitat of these organisms is the intestines of humans and animals. The term "fecal streptococci" encompasses several varieties and groups of bacteria, some of which may not be of sanitary significance (Pagel and Hardy, 1980).

Bacteriological analyses were done according to Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1980); KF streptococcus agar was used for the enumeration of fecal streptococci. Brodsky and Schiemann (1976) investigated the recovery of fecal streptococci by KF agar and confirmed that 83 percent of the typical red-to-pink colonies recovered at 35°C were fecal streptococci. A similar study (Pagel and Hardy, 1980) confirmed 81 percent of typical colonies recovered were fecal streptococci, the remaining 19 percent being non-fecal streptococci.

Microbiological testing for fecal coliform and fecal streptococci bacteria was done on water from 15 wells within the study area. Water from 11 of the 15 wells tested (table 2) contained either fecal coliform or fecal streptococci bacteria or both. Concentrations of fecal bacteria ranged from 1 to 2,400 cols./100 ml (colonies per 100 milliliters).

EXPLANATION

AA Surface-water chemical-quality site

35 Ground-water chemical-quality site
and number

Diagram showing concentrations of cations and anions Calcium (Ce) Chioride (Ci) Cations 10 5 0 5 10 Anions milliegulvalents per liter

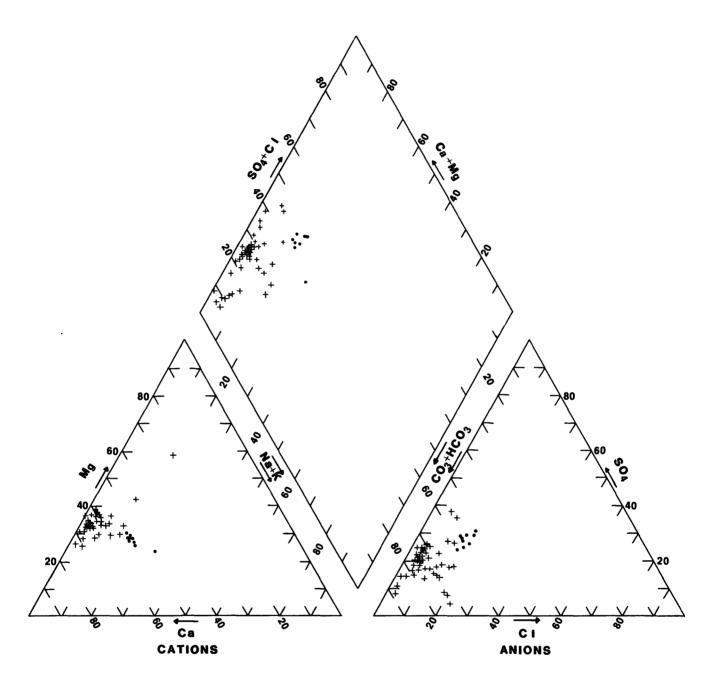
Figure 6.--Stiff diagrams showing the similarity of dissolved anions and cations in the study area. (The county code prefix, Fr- or Pk-, has been deleted from well numbers.)

Table 4.--Water-guality statistics for ground water in southern Franklin County, Obio

Constituent or property	Number of observations	Mean	Median	Minimum value	Maximum value
Turbidity (FTU)	ሪያ የመንያ የተመያ መንያ የመንያ የመንያ የመንያ የመንያ የመንያ የመንያ የመን	13.68 746.9 319.63 319.63 389.66.76 6.76 6.76 1.9 11.9 85.7 85.7 85.7 19.8 11.8 12.5 12.5 44.6 45.6 45.6	10 736 323 324 323 394 .04 .05 .04 .05 .03 100 33 15.5 74 1200 60 458	200 238 238 238 00 200 240 190 190 100 100 240 110 100 297 238	75 1000 8.2 113 435 530 110 7.1 720 580 220 140 140 56 52 20 20 20 230 619

High concentrations of fecal coliform (190 cols./100 ml) and fecal streptococci (2,400 cols./100 ml) in water from well FR-104 might have been the result of flooding of the Scioto River. Subsequent retesting of the well water revealed greatly reduced fecal coliform and fecal streptococci concentrations of 2 and 40 cols./100 ml, respectively.

Surface Water


Water-quality samples were collected from the Scioto River on November 20, 1979, and May 19, 1980 at flows of 788 and 1,240 ft³/s, respectively. Samples were collected from Big Walnut Creek on November 13, 1979, at a flow of 637 ft³/s and on May 20, 1980, at a flow of 1,090 ft³/s. Three sites were sampled on the Scioto River; one site was sampled on Big Walnut Creek (fig. 5).

Water from the two streams, although slightly less mineralized, is very similar to the underlying ground water in chemical quality (fig. 6, table 3). The principal cations in the surface waters are calcium and magnesium, whose concentrations range from 50 to 85 mg/L and 14 to 26 mg/L, respectively. Bicarbonate and sulfate are the most abundant anions, their respective concentrations ranging from 150 to 260 mg/L and 51 to 110 mg/L.

Differences among the composition of the ground water and surface waters are slight, as illustrated by the water-analysis diagram in figure 7 (Piper, 1944). Concentrations of calcium, magnesium, and bicarbonate are higher in ground water, owing in part to long residence time in aquifer materials that contain significant amounts of these ions, and in part to increased solubility of carbonate minerals caused by solution of carbon dioxide from the soil/root zone.

Microbiological samples (table 3) were collected from three sites on the Scioto-River on November 11, 1979 and May 19, 1980. The 1979 samples show relatively small concentrations of fecal coliform and fecal streptococci at all three sites, whereas 1980 samples contained 21,000 cols./100 ml of fecal coliform and 80,000 cols./100 ml of fecal streptococci at one site. Samples collected from Big Walnut Creek on November 13, 1979, and May 20, 1980, show relatively small concentrations of both types of bacteria.

Coliform organisms do not necessarily constitute a threat to water supplies using induced infiltration systems; however, microbial contamination of induced infiltration systems has been known to occur. In 1964, coliform bacteria were shown to have traveled 180 feet from the Susquehanna River through highly permeable coarse sand and gravel to a municipal supply well in Endicott,

EXPLANATION

- + Ground-water analysis
- · Surface-water analysis

Figure 7.--Water -quality diagrams showing the distribution of constituents in ground water and surface water within the study area.

New York (Randall, 1970). Normally, the aquifer would have filtered out bacteria as stream water moved through the base of the river. The influx of bacteria was traced to several excavations in the stream channel that disturbed the natural stratification of the sediments and allowed the bacteria to pass.

The glacial outwash aquifer in southeastern Franklin County is very similar to the aquifer at Endicott. The streambeds of the Scioto River and Big Walnut Creek are composed of gravel and fine-to-medium sand and silt that can provide adequate filtration. Barring disturbance of the bed material, the water-supply wells should be adequately protected from bacterial contamination.

From October 1971 through November 1972, a monthly pesticide sampling program (U.S. Geological Survey, 1973) was conducted by the U.S. Geological Survey on the Scioto River above Big Walnut Creek near Shadeville, Ohio. At this location, just downstream of the water-supply wells, water samples were analyzed for a total of 19 pesticides from organophosphorus, phosphorus, chlorophenoxy, and other groups. None of these 19 pesticides was detected in any of the analyses.

GEOCHEMISTRY AND INTERACTION OF GROUND AND SURFACE WATER

Water-quality samples from 7 wells and 2 surface-water sites were chosen to study the chemical relationships between ground water and surface water. The FORTRAN computer programs WATEQF (Plummer and others, 1976) and BALANCE (Parkhurst and others, 1982) were used to interpret the chemical data. WATEQF models the thermodynamic speciation of inorganic aqueous species in natural waters, and provides information on the processes that control water composition in ground- and surface-water systems. BALANCE calculates the mass transfer that takes place when two "initial" waters combine to form a third, "final" water. BALANCE also calculates the relative contribution, in percent, of each initial water.

Mass-Balance Analysis

The saturation values calculated by WATEQF (table 5) indicate that water from the outwash aquifer is approximately in equilibrium with calcite, dolomite, and silica. The water is supersaturated with respect to pyrite and undersaturated with respect to $Fe(OH)_3$ amorphous. Redox potentials at selected wells were calculated using the concentrations of H_2S and SO_4^{2-} :

FR-101	(August 27, 1975)millivolts	-170
FR-101	(May 6, 1975)dodo	-210
FR-104	(April 2, 1975)dodo	-200
FR-109	(June 13, 1978)do	-210

Table 5.--Saturation indices of various minerals for selected wells and streams in southern Franklin County, Ohio [Calculated from analytical data by WATEQF (Plummer and others, 1976) for wells in Table 2. Saturation index = log (IAP/ $R_{\rm eq}$).]

						Saturat	Saturation index				
Well or stream site	Sampling date (moday-year)	Calcite	Dolomite	Gypsum	Anhydrite	Siderite* Pyrite*	Pyrite*	Hematite*	Hematite* Goethite*	Fe(OH)3*	Silica
FR-36	04-16-75	0.09	-0.21	-1.42	-1.78	ł	ł	}	;	1	0.59
	05-28-80	.207		-1.39	-1.73	1	!	;	ł	1	.47
FR-38	04-16-75	.22		-1.27	-1.63	;	1	;	1	ł	.49
FR-74	05-27-80	.159		-1.99	-2.34	;	;	;	ł	1	.589
FR-100	06-12-75	.363		-1.28	-1.63	!	1	;	ł	<i>!</i>	.49
FR-101	08-27-75	-2.16		-0.906	-1.25	-1.32	13.09	-0.77	-0.154	-6.73	.159
	05-06-75	.25		-1.04	-1.39	. 04	13.14	3.26	1.86	-4.72	.523
	05-28-80	.36	.45	-1.35	-1.63	;	}	;	i	1	.407
FR-104	04-02-75	.278	.229	-1.46	-1.81	.244	10.17	3.73	2.09	-4.49	.557
FR-115		.102	-0.147	-1.33	-1.68	!	;	;	;	1	.589
		.202	.059	-1.39	-1.75	!	!	;	1	1	.522
Scioto River at Site 101	05-19-80	-0.186	-0.694	-1.60	-1.91	l	1	1	1	1	.074
Big Walnut Creek at	ut										
Rees	05-20-80	-0.825	-0.950	-1.81	-2.10	1	1	;	1	ł	.201

Redox potentials calculated on selected samples indicate a reducing environment; however, this chemical state is not representative of the entire aquifer. The presence of dissolved oxygen ranging from 0.2 to 2.1 mg/L in certain areas of the aquifer (U.S. Geological Survey, 1982) indicate an oxidizing environment.

Concentration of bicarbonate and values of pH are fairly constant throughout the study area. The pH is buffered primarily by the dissolution of carbonate rocks:

$$CO_2(aq) + CaCO_3(s) + H_2O(1) = Ca^{2+}(aq) + 2HCO_3^{-}(aq)$$

Carbonate dissolution alone cannot account for the amount of bicarbonate, because the analyzed concentration of calcium is deficient by approximately 1.0 to 1.5 mmol/L (millimoles per liter) (40 to 60 mg/L) in most of the samples.

Removal of calcium by cation-exchange reactions with sodium was considered as a possible cause for the calcium deficit; however, sodium concentrations in the study area's ground water are too low. The balance of the bicarbonate may result from weathering of silicate minerals. The evidence for silicate weathering as a bicarbonate-producing reaction is (1) the abundance of silica-containing rocks in the aquifer, (2) the presence of many silica-cemented rocks, and (3) the approximate equilibrium condition of silica with respect to the system.

Sulfate concentrations differ throughout the aquifer system. The combination of low redox potential, the presence of reduced sulfur species, and relatively low sulfate concentrations indicates sulfate reduction is occurring to some extent in the aquifer.

The ground water also contains fairly large concentrations of dissolved iron. Ferrous iron (Fe^{2+}) and reduced sulfur (H_2S) are rarely found together in natural waters that have attained equilibrium (Hem, 1970). A possible explanation for this unlikely combination of chemical species may be the configuration of the collector-type wells.

A collector-type well system produces water from several levels and directions within the aquifer. Chemical quality of ground water varies with depth and location in an aquifer. The presence of both ${\rm Fe}^{2+}$ and ${\rm H}_2{\rm S}$ probably results from the mixture of two waters from environments that vary in reducing strength. As these two chemically different waters are pumped from the well, there is not sufficient time for them to mix and attain equilibrium; therefore, a nonequilibrium condition is attained in which both ferrous iron and reduced sulfur are present.

In certain areas of the glacial aquifer, oxidation of pyrite and formation of sulfate occurs:

$$FeS_2(s) + 8H_2O(1) \rightleftharpoons Fe^{2+}(aq) + 2SO_4^{2-}(aq) + 2H^+(aq) + 7H_2(g)$$

The high concentrations of sulfate in water from well FR-101 in June (180 mg/L) and August (240 mg/L) 1975 support this equation; however, the concentrations of ferrous iron are less than expected. The equation (Barnes and others, 1964) also indicates oxygen is supplied through the reduction of water, however, there is uncertainty over the fate of the hydrogen that would be generated. The reduction of hematite (Barnes and others, 1964) has been suggested as a sink for the hydrogen through the reaction:

$$Fe_2O_3(s) + H_2(g) + 4H^+(aq) \rightleftharpoons 2Fe^{2+}(aq) + 3H_2O(aq)$$

Analysis of a sample collected from FR-101 on August 27, 1975 (table 5), seems to support this hypothesis. In this sample, which has a redox potential of -170 millivolts, hematite is approximately in equilibrium, whereas the other samples indicate supersaturation with respect to hematite.

In other areas within the reach of the collector system, conditions are favorable for sulfate reduction:

$$SO_4^{2-}(aq) + 2CH_2O(aq) + 2H^+(aq) = 2CO_2(g) + H_2S(aq) + 2H_2O(1)$$

Pyrite oxidation and sulfate reduction occur in different chemical environments; concentrations of various chemical species in this sample (FR-101) represent a composite of different waters and have characteristics of both. Values of pH and Eh, which would aid in identifying these different chemical environments, must be viewed carefully because they represent an unstable non-equilibrium chemical system. Evidence that different chemical environments are present in the aquifer is based on field observation and chemical analyses of multiple samples of the products of these reactions.

Because the equation for sulfate reduction indicates that the process is endothermic, a source of energy (such as hydrocarbons) must be available. Concentrations of total organic carbon (TOC) in the water are much too low in most cases to encourage sulfate reduction. Nevertheless, there are other sources of carbon that were not quantitatively measured. A well located 200 feet east of collector FR-101 produces water from just below the limestone-outwash contact; the water is highly charged with hydrogen sulfide and is black from precipitation of iron sulfide (FeS). In addition, stringers of highly carbonaceous material have been observed in the Columbus Limestone, which underlies the glacial aquifer. The silt and mud bed of the Scioto River adjacent to collector 101 also is a source of carbon and bacteria — a source that might support a reducing environment because of its proximity to the sewage-treatment plant upstream.

Reaction Model of the Stream-Aguifer System

BALANCE is a computer program that models the chemical reactions that take place between minerals and water in a natural system. For the mixing-type simulation, the following information is required: (1) Chemical compositions of three waters, two initial (or end-member) waters, and a third (or final) water that results from mixing of the two end-member waters; and (2) a set of mineral phases for the chemical species that are presumed to react in the system. The reaction models defined by BALANCE are limited only by mass balance between the elements, thus, the model may produce a reaction that is thermodynamically impossible.

The main objectives in modeling the collector system were to determine the interaction of surface water and ground water, and to arrive at a general idea of the chemical reactions that occur. Reaction simulations were limited to the carbonate chemistry, as the carbonate system is the major control on the aquifer. Because of insufficient data, oxidation-reduction reactions were ignored and no attempt was made to define a unique model for the system.

Three chemical analyses (table 6) were chosen to model the mass transfer that takes place when surface water and ground water mix to form the final water that flows from the collector well. Well FR-74 represents water from the recharge area of the glacial aquifer; Scioto River at site 101 represents surface water, and well FR-101 is the collector or final water (fig. 8). Mineral phases (table 7) chosen for the model were based upon the observed mineralogy of the aquifer and saturation data calculated previously.

Results of simulation 1 (table 7) indicate that the final water is composed of 80 percent ground water and 20 percent surface water. The collector sample was taken at a pumping rate of 15.9 ft³/s.

The purpose of simulation (table 7) was to include all mineral phases that might have a significant effect on aquifer chemistry. To achieve the final water in simulation 1, 0.51 mmol/L (millimoles per liter) of calcite was precipitated, 0.67 mmol/L of gypsum was dissolved, and 0.30 mmol/L of carbon dioxide was lost to the atmosphere. None of the other chemical phases included in the simulation contributed significantly to the production of the final water.

As noted earlier in the report, the model confirms that calcium/sodium exchange has very little effect on the aquifer chemistry. The results of simulation 1 (table 7) indicate 0.16 mmol/L (6.4 mg/L) of calcium were removed by the ion exchange reaction. The simulation confirms that removal of

Table 6.--Concentrations of chemical species used in reaction model

[All concentrations in millimoles per kilogram of water]

Element	a _{Initial} water, Fr-7 4	bInitial water, Scioto River at site 101	^C Final water, Fr-101
Calcium Magnesium Sodium Potassium Chloride Sulfur Carbon	2.02	1.45	2.50
	1.11	0.74	1.32
	0.20	.87	0.31
	.02	.07	.03
	.08	.79	.51
	.24	.76	1.01
	8.10	3.40	6.92

a Sampled May 27, 1980 b Sampled May 19, 1980 c Sampled May 28, 1980

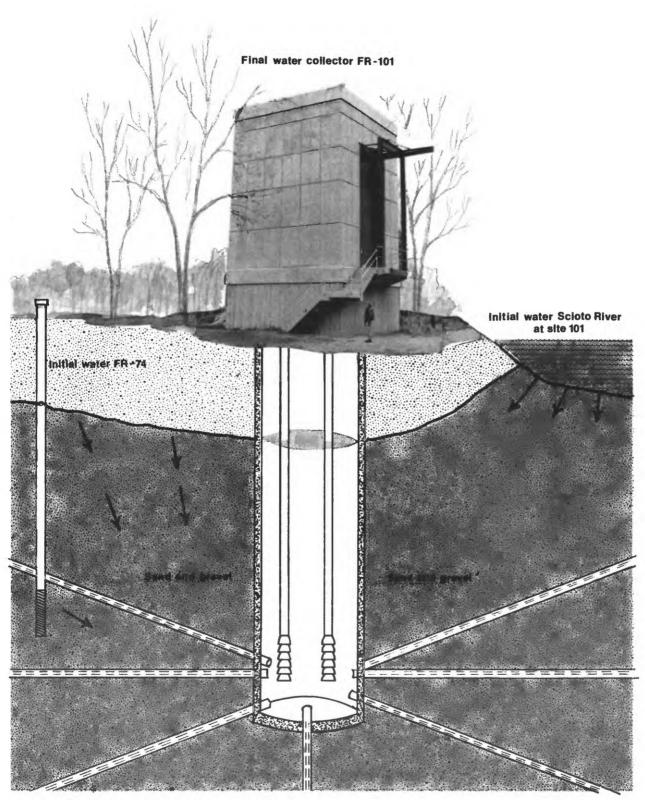


Figure 8.--Conceptual diagram showing radial collector and mixing of ground water and surface water.

Table 7.--Results of reaction modeling simulations of selected well and stream sites in southern Franklin County. Ohio

[All concentrations in millimoles per kilogram of water]

Mineral phases	Simulation 1*		Simulation 2*	
	Dis- solved	Precip- itated	Dis- solved	Precip- itated
Calcite		0.51		0.36
Dolomite	0.28		0.28	
Carbon dioxide		.30		.45
Ion exchange				
(Ca-Na)		.16		
Gypsum	.67		.66	
Halite	.29			

^{*}Contribution of initial waters in both simulations: ground water, 80 percent; surface water, 20 percent.

calcium by ion exchange may occur, however, it does not happen in quantities sufficient to overcome the calcium deficit (40 to 60 mg/L) with respect to production of bicarbonate. Weathering of silicate minerals may indeed account for the balance of bicarbonate in the system.

In simulation 2, the mineral phases (table 7) "ion exchange" (Ca-Na) and "halite" were excluded. Results of simulation 2 (table 7) show that 0.36 mmol of calcite was precipitated and 0.45 mmol of carbon dioxide was lost to the atmosphere. Small amounts of dolomite and gypsum were dissolved. The calcium removed by exchange in simulation 1 is precipitated as calcium carbonate in simulation 2. Either pathway for removal of calcium is equally possible. Exchange reactions may occur on silts and clays as river water is induced to flow downward through the base of the river. Chemical precipitation may occur as the two waters mix before discharging from the well. The small scale of the chemical reactions and the amount of mass transfer indicates the close chemical resemblance between the carbonate chemistry of the ground— and surface—water systems.

The relative percentages of ground-water and surface-water contribution, as calculated by chemical modeling, agree favorably with results obtained by digital ground-water flow modeling. Both reaction-modeling simulations indicate that the final water was composed of 80 percent ground water and 20 percent surface water. Simulation of pumping collectors in a digital ground-water flow model designed for this study area (Razem, 1983) indicates that the water from four collectors pumping at a combined rate of 60 ft³/s is composed of 32 percent surface water and 68 percent ground water.

SUMMARY AND CONCLUSIONS

Topography in the Scioto River valley near Columbus, Ohio, generally is flat and the predominant land use is agriculture. Glacial deposits up to 200 feet thick that consist of sand and gravel interspersed with till are the major source of ground water; however, the Columbus Limestone contributes some water by upward leakage. A potentiometric map indicates that ground-water flow enters the Scioto River and Big Walnut Creek from recharge areas adjacent to and between the two streams. Ground-water recharge to the western edge of the study area has been estimated at 25 Mgal/d.

A very hard calcium bicarbonate ground water high in dissolved solids is characteristic of the area. Mean pH is 7.3 and calcium, magnesium, and bicarbonate are the dominant dissolved ions. Concentrations of dissolved iron and manganese routinely exceed OEPA Public Water Supply criteria for iron and manganese. Thirty-five of 54 water analyses exceeded the OEPA standards for iron, and 27 analyses exceeded the standard for manganese.

Microbiological testing of ground water indicated that 11 of 15 well waters contained fecal coliform or fecal streptococci bacteria. The highest concentration of fecal streptococci (2,400 cols./100 ml) was found in well FR-104, located on the flood plain of the Scioto River. Abandoned and unsealed wells within the flood plain area may allow the river waters to flow directly into the glacial aquifer and thereby lose the beneficial effect of normal infiltration in reducing bacteria concentration. The maximum analyzed concentrations of bacteria in the Scioto River were 24,000 cols./100 ml fecal coliform, and 80,000 cols./100 ml fecal streptococci.

Differences between the chemical composition of the ground water and surface water are slight. Stiff diagrams show that the streams have the same general chemical characteristics as the ground water, but are a more dilute solution.

Saturation indices calculated with the computer program WATEQF indicate that water from the glacial aquifer is approximately in equilibrium with calcite, dolomite, and silica, and supersaturated with respect to pyrite. Buffering of pH is accomplished primarily by the carbonate system; however, weathering of silicate minerals may also influence pH by production of bicarbonate. Sulfur species and their concentrations differ throughout the aquifer, which suggests the existence of different chemical environments.

Redox potentials and the presence of hydrogen sulfide indicate that certain areas of the aquifer are under reducing conditions. Dissolved-oxygen concentrations of 0.2 to 2.1 mg/L indicate other areas of the aquifer that are under oxidizing conditions. The aquifer in the vicinity of the Scioto River is considered to be an unstable, nonequilibrium system. The eventual sustained use of the collector-pumping system will further modify the chemistry of the glacial aquifer and, although change is certain, it is difficult to predict what types of chemical reactions will occur.

Three chemical analyses were chosen to model the mass transfer that takes place when surface water and ground water combine to form the final water that flows from the collector well. The model simulations of the carbonate system show that small amounts of calcite, dolomite, and gypsum were precipitated in achieving the final water, which was composed of 80 percent ground water and 20 percent surface water. The relative contributions from stream and aquifer sources, calculated by chemical mass balance, compare favorably with results calculated by a digital ground-water flow model.

REFERENCES CITED

- American Public Health Association, 1980, Standard methods for the examination of water and wastewater, (15th ed.): New York, American Public Health Association, Inc., 1134 p.
- Barnes, Ivan, Stuart, W. T., Fisher, D. W., 1964, Field investigation of mine waters in the Northern Anthracite Field, Pennsylvania, U.S. Geological Survey Professional Paper 473-B, 8 p.
- Brodsky, M. H., and Schiemann, D. A., 1976, Evaluation of Pfizer selective enterococcus and KF media for recovery of fecal streptococci from water by membrane filtration: Applied and Environmental Microbiology, v. 31, no. 5, p. 695-699.
- de Roche, J. T., and Razem, A. C., 1981, Ground-water quality in the vicinity of landfill sites Southern Franklin County, Ohio: U.S. Geological Survey Water-Resources Investigations Open-File Report 81-919, 19 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 1473, second edition, 363 p.
- Johnson Division, UOP, Inc., 1975, Ground water and wells: 440 p.
- Ohio Environmental Protection Agency, 1978, Rules and regulations, public water systems, primary contaminant control, water quality standards: Chapter 3745.81 of the Ohio Administrative Code.
- ----1980, Rules and Regulations, Public Water Systems: secondary contaminant control, water quality standards: Chapter 3745.82 of the Ohio Administrative Code.
- Pagel, J. E., and Hardy, G. M., 1980, Comparison of selective media for the enumeration and identification of fecal streptococci from natural sources, Canadian Journal of Microbiology, v. 26. p. 1320-1327.
- Parkhurst, D. L., Plummer, L. N., and Thornstenson, D. C., 1982, BALANCE -- A computer program for calculating mass transfer for geochemical reactions in ground water: U.S. Geological Survey Water Resources Investigations Report 82-14, 29 p.
- Piper, A. M., 1944, A graphic procedure in the geochemical interpretation of water analyses: American Geophysical Union Transactions, v. 25, p. 914-923.
- Plummer, L. N., Jones, B. F., and Truesdell, A. H., 1976, WATEQF:
 A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters: U.S. Geological Survey Water-Resources Investigations 76-13, 66 p.

- Randall, A. D., 1970, Movement of bacteria from a river to a municipal well -- a case history: Journal of the American Water Works Association, v. 62, p. 716-720.
- Razem, A. C., 1983, Simulations of flow in a glacial outwash aquifer, southern Franklin County, Ohio: U.S. Geological Survey Water-Resources Investigations Report 83-4022, 17 p.
- Schmidt, J. J., and Goldthwait, R. P., 1958, Ground-water Resources of Franklin County: Ohio Department of Natural Resources Division of Water Bulletin 30, 97 p.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Journal of Petroleum Technology, v. 3, no. 10, p. 15-17.
- Stowe, S. M., 1979, The hydrogeology of the Scioto River valley in south-central Franklin County, Ohio: Ohio State University, Department of Geological Mineralogy, unpublished master's thesis, 104 p.
- U.S. Geological Survey, 1973, Water resources data for Ohio, water year 1972: 489 p.
- ---- 1982, Water Resources Data for Ohio, Water Year 1981: 333 p.
- Weiss, E. J., and Razem, A. C., 1980, A model for flow through a glacial outwash aquifer in southeast Franklin County, Ohio. U.S. Geological Survey Water-Resources Investigations 80-56, 27 p.

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio

Well	Date of		Temper- ature	Temper- ature, air	Tur- bid- ity	Specific con- ductance	Oxygen demand bio- chem- ical, 5 day
number	sample	Time	(deg. C)	(deg. C)	(FTU)	(µmho/cm)	(mg/L)
	04-14-78	1015	12.5			648	
	05-28-80	1240	12.0	27.5	12	660	0.1
	04-22-75 04-16-75	1400 1130	16.0 12.5			917 695	
	11-20-79	1445	12.5	20.0	20	1,000	
	05-28-80	1035	12.0	26.0	2.5	800	.6
FR-37	11-13-79	1130	11.0	5.0	1.0	860	
(05-23-80	0910	13.5	21.0	0.50	880	.4
	05-29-80	1120	12.5	24.0	2.5	540	. 2
	04-24-75	0945	12.5			814	
	04-17-75 04-24-75	1415 1430	10.0 14.0			980 701	
	04-24-75 05-20-80	1210	15.0	22.0		701 720	.1
	04-14-75	1000	10.5			673	
	04-18-75	1030	10.0			463	
	05-20-80	1405	15.0	23.0	.70	930	.1
	04-15-75	1530	11.0			679	
	11-14-79	1300	11.0	4.5	6.0	850	
	05-23-80	1140	15.0	24.5	2.0	780	.6
	04-14-75 04-24-75	1130 0915	11.5 11.0			717 728	
	05-23-80	1400	15.5	27.0	1.3	732	.4
	04-17-75	0930	9.0			615	
	04-28-75	1415	13.0			665	
FR-70	04-10-75	1430	13.0			435	
	05-29-80	0940	12.5	28.0	15	658	.1
	11-21-79	0930	11.5	15.5	30	940	
	05-27-80	1015	11.5	21.0	30	645	.1
	06-04-75 06-12-75	1430 1015	11.0 11.0	26.0 18.0		750 723	
	11-19-79	1230	11.5	10.0	2.0	723 723	
	05-27-80	1305	11.5	22.0	75	745	.1
	05-06-75	1400	11.5			858	
(08-27-75	1200	11.5			975	
	11-15-79	1100	12.0	. -	20	760	
	05-28-80	1405	15.0	27.0	6.2	750	1.0
	12-11-74	1530	10.5	4.0		810	
	12-20-74 04-02-75	1000 140 0	11.0 11.5	4.0 25.5		849 746	
	08-26-75	1230	11.0			714	
	08-29-75	1200	11.5			755	
3	11-19-79	1430	12.0	18.5	.00	696	
(05 -27- 80	1500	1,1.0	25.5	10	500	.6
	02-07-75	1500	11.0	.0		845	
	02-12-75	1400	11.0			804 675	
	08-28-75	1009	11.5 11.5			710	
	06-13-78 07-06-76	1700 1530	11.5	31.5		710	
	07-08-76	1045	11.5	22.5		740	
	11-20-79	1330	12.0	23.5	20	830	
	05-28-80	0855	11.5	22.5	30	750	.0
	05-29-80	1315	12.0	28.0	13	680	•0
	05-29-80	1455	12.5	29.5	15	790	.1
PK-42	04-23-75	1345	9.5			720	

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

		Oxygen	Coli-			
		demand,	form,	Strep-	Hydro-	
		chem-	fecal,	tococci,	gen	Carbon,
		ical,	0.7	fecal,	sulfide,	organic,
	Date	high	UM-MF	KF agar	total	total
Well	of	level	(cols./	(cols./	(mg/L	(mg/L
number	sample	(mg/L)	100 ml)	100 ml)	as H ₂ S)	as C)
FR-3	04-14-78				ND	
	05-28-80	6	K16	<2	ND	2.0
FR-35	04-22-75				ND	4.5
FR-36	04-16-75				ND	4.5
	11-20-79		<1	к3		3.0
	05-28-80	8	K20	K10		2.4
FR-37	11-13-79		<1	<1		1.2
	05-23-80					0.2
FR-38	05-29-80	7	к8	к8		1.4
FR-39	04-24-75				ND	5.0
FR-40	04-17-75				ND	3.1
FR-41	04-24-75				ND	2.5
- IV - I	05-20-80		<2	<2	ND	2.5
FR-42	04-14-75				ND	3.0
FR-44	04-14-75				ND	5.0
FR-46	05-20-80	24	<2	к6	ND	2.3
FR-47	04-15-75	24 			0.2	4.8
FR-48	11-14-79		<1	K1		.6
FK-40	05-23-80					ND
FR-49	04-14-75				.7	6.8
FR-52	04-24-75				ND	3.2
ED 53	05-23-80				ND	ND
FR-53	04-17-75				ND	4.0
FR-56	04-28-75				ND	6.9
FR-70	04-10-75				ND	2.6
FR-73	05-29-80	1	<2	K20	ND	4.9
FR-74	11-21-79	- -	<1	K10		2.8
100D3	05-27-80	7	K20	30		6.6
FR-100P3	06-04-75				ND	11
	06-12-75				ND	11
	11-19-79		К5	к60		720
	05-27-80	23	<2	K4		4.7
FR-101	05-06-75				4.8	4.0
	08-27-75				22	
	11-15-79		К6	15		2.8
	05-28-80	8	K10	<2		2.4
FR-103	12-11-74				2.0	.5
	12-20-74				1.1	.9
FR-104	04-02-75				.1	.8
	08-26-75				ND	1.4
	08-29-75				ND	5.6
	11-19-79		190	K2400		8.6
	05-27-80	12	<2	40	ND	3.7
FR-106	02-07-75				ND	1.5
	02-12-75				ND	•7
FR-109	08-28-75				ND	38
-	06-13-78				ND	
FR-115	07-06-76				ND	1.0
3 	07-08-76				ND	1.7
	11-20-79		<1	K1		2.3
	05-28-80	6	<2	K10		2.4
FR-145	05-29-80	4	< 2	< 2		.7
FR-146	05-29-80	6	< 2	K4		1.2
PK-42	04-23-75				ND	8.1
. N 42	04 LU-13	-	-		MD	0.1

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

Well	Date of	pH	Carbon dioxide, dis- solved (mg/L	Alka- linity (mg/L as	Bicar- bonate (mg/L as
number	sample	(units)	as CO_3)	CaCO3)	нсо ₃)
FR-3	04-14-78	7.4	22	279	340
IK 5	05-28-80	7.5	7.4	290	350
FR-35	04-22-75	7.6	16	328	400
FR-36	04-16-75	7.2	39	315	384
11. 00	11-20-79	7.0	69	353	430
	05-28-80	7.3	32	350	430
FR-37	11-13-79	7.1	48	312	380
	05-23-80	7.2	34	300	370
FR-38	05-29-80	7.5	12	290	350
FR-39	04-24-75	7.4	23	292	356
FR-40	04-17-75	7.4	28	359	438
FR-41	04-24-75	7.4	30	390	476
	05-20-80	7.1	62	400	490
FR-42	04-14-75	7.4	24	312	380
FR-44	04-18-75	7.5	12	195	238
FR-46	05-20-80	7.3	26	330	400
FR-47	04-15-75	7.4	24	315	384
FR-48	11-14-79	6.8	101	328	400
	05-23-80	7.2	41	350	430
FR-49	04-14-75	7.2	40	328	400
FR-52	04-24-75	7.4	24	308	376
	05-23-80	7.4	21	310	380
FR-53	04-17-75	7.4	18	231	282
FR-56 FR-70	04-28-75	7.5 7.8	23 7.1	376 228	458 278
FR-73	04-10-75 05-29-80	7.8 7.4	19	340	410
FR-74	11-21-79	7.0	85	435	530
FK-/4	05-27-80	7.3	25	360	440
FR-100P3	06-04-75	7.2	37	299	364
1K 10014	06-12-75	7.5	18	295	360
	11-19-79	7.1	58	377	460
	05-27-80	7.1	29	310	380
FR-101	05-06-75	7.4	22	287	350
	08-27-75	6.8	113	364	444
	11-15-79	7.8	8.4	271	330
	05-28-80	7.4	17	320	390
FR-103	12-11-74	7.0	71	366	446
	12-20-74	7.2	42	340	414
FR-104	04-02-75	7.4	25	328	400
	08-26-75	7.2	40	328	400
	08-29-75	6.8	97	315	384
	11-19-79	7.6	9.6	197	240
ED 106	05-27-80	8.2	2.1	200	240
FR-106	02-07-75	7.3	31	322	392
FR-109	02-12-75 08-28-75	7.2 6.8	40 106	325	396
IN 109	06-28-75	7.4	106 27	341 349	416
FR-115	07-06-76	7.3	31	349 320	425
	07-08-76	7.3 7.2	39	320	390 390
	11-20-79	7.0	67	344	390 420
	05-28-80	7.3	24	350	430
FR-145	05-29-80	7.5	15	280	340
FR-146	05-29-80	7.4	17	330	400
PK-42	04-23-75	7.4	29	369	450
	. =				130

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

			Nitro-	Nitro-
		Nitro-	gen,	gen,
		gen,	organic,	ammonia,
		dis-	dis-	dis-
	Date	solved	solved	solved
Well	of	(mg/L	(mg/L	(mg/L
number	sample	as N)	as N)	as N)
,	F			
FR-3	04-14-78		0.11	0.020
11. 3	05-28-80	3.9	ND	.010
FR-35	04-22-75			
FR-36	04-16-75			
	11-20-79	0.35	.26	.050
	05-28-80	.07	ND	.040
FR-37	11-13-79	16	.15	.050
	05-23-80	21	.07	.040
FR-38	05-29-80	.04	ND	.020
FR-39	04-24-75			
FR-40	04-17-75			
FR-41	04-24-75			
	05-20-80			
FR-42	04-14-75			
FR-44	04-18-75			
FR-46	05-20-80	.35	ND	.120
FR-47	04-15-75			
FR-48	11-14-79	.12	.07	.030
TD 40	05-23-80	.19	.01	.050
FR-49 FR-52	04-14-75			
F K-52	04-24-75 05-23-80	1.2		.040
FR-53	04-17-75	.12	.06	.040
FR-56	04-17-75			
FR-70	04-10-75			
FR-73	05-29-80	.13	ND	.120
FR-74	11-21-79	.30	.06	.220
	05-27-80	.34	ND	.250
FR-100P3	06-04-75			
	06-12-75			
	11-19-79	.77	.47	.050
	05-27-80	.04	ND	.040
FR-101	05-06-75			
	08-27-75			
	11-15-79	.49	.15	.300
	05-28-80	.21	ND	.090
FR-103	12-11-74			
	12-20-74			
FR-104	04-02-75			
	08-26-75			
	08-29-75		100	7.10
	11-19-79 05-27-80	110	100	7.10
FR-106	02-07-75	•98	ND	1.10
t K-100	02-07-75			
FR-109	08-28-75			
FK-103	06-13-78			
FR-115	07-06-76			
- W-TT33-	07-08-76			
	11-20-79	.13	•05	.030
	05-28-80	.05	ND	.040
FR-145	05-29-80	.01	ND	<.01
FR-146	05-29-80	.07	ND	.060
PK-42	04-23-75			

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

					
		Nitro- gen,	Nitro- gen,	Nitro- gen NO2 + NO3,	Phos-
		nitrite,	nitrate,	dis-	phorus,
	Date	total	total	solved	total
Well	of	(mg/L	(mg/L	(mg/L	(mg/L
number	sample	as N)	as N)	as N)	as P)
FR-3	04-14-78			3.7	
	05-28-80			3.9	0.020
FR-35	04-22-75	0.010	2.0		.080
FR-36	04-16-75	<.010	0.04		.060
	11-20-79			0.04	
FR-37	05-28-80 11-13-79			.03 16	<.01 .010
FK-3/	05-23-80			21	<.010
FR-38	05-29-80			.02	.010
FR-39	04-24-75	.010	16		<.010
FR-40	04-17-75	.010	3.4		.110
FR-41	04-24-75	<.010	.01		.200
	05-20-80		.00		
FR-42	04-14-75	<.010	.09		<.010
FR-44	04-18-75	<.010	.01		.010
FR-46 FR-47	05-20-80 04-15-75	<.010	8.6	.23	.030 .040
FR-48	11-14-79	·.oio		.02	.010
1 K 10	05-23-80			.13	.010
FR-49	04-14-75	.010	.01		.050
FR-52	04-24-75	.010	<.01		<.010
	05-23-80			.02	.010
FR-53	04-17-75	<.010	9.8		.010
FR-56	04-28-75	.020	•23		.010
FR-70 FR-73	04-10-75 05-29-80	.010	.73	 •01	.030
FR-74	11-21-79			.02	.010
IK 74	05-27-80			.09	.010
FR-100P3	06-04-75	.010	.09		.070
	06-12-75	.020	•30		.030
	11-19-79			.25	
	05-27-80			<.01	.170
FR-101	05-26-75	.010	<.01		.010
	08-27-75 11-15-79	<.010 	.01		.010
	05-28-80			.04 .12	.050 .010
FR-103	12-11-74	<.010	.02	•12	.010
	12-20-74	.010	.17		.010
FR-104	04-02-75	.010	<.01		.330
	08-26-75	.010	.04		.030
	08-29-75	.020	.35		.010
	11-19-79			.02	
	05-27-80			.01	.040
FR-106	02-07-75	.030	1.3		.100
TD 100	02-12-75	<.010	.03		.010
FR-109	08-28-75	<.010 	.01		.010
TD_115	06-13-78 07-06-76	.010	.02		<.010 .580
FR-115	07-08-76	.020	.02		.080
	11-20-79			.05	
	05-28-80			.01	.030
FR-145	05-29-80			•00	.010
FR-146	05-29-80			.01	.010
PK-42	04-23-75	.080	2.1	~-	•530

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

Well number	Date of sample	Hard- ness (mg/L as CaCO ₃)	Hard- ness, noncar- bonate (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)
ED 2	04 14 70	240	6.5	00	20	2.0
FR-3	04-14-78 05 -2 8-80	340 380	65 9 4	90 100	29 32	2.0 2.1
FR-35	04-22-75	460	130	120	38	22
FR-36	04-16-75	410	96	110	33	3.7
	11-20-79	440	87	120	34	5.5
	05-28-80	390	60	100	34	4.4
FR-37	11-13-79	420	110	110	36	3.8
	05-23-80	450	170	120	37	5.0
FR-38	05-29-80	300	100	79	26	2.7
FR-39	04-24-75	410	120	110	34	6.6
FR-40	04-17-75	440	76	110	39	52
FR-41	04-24-75	400	8	100	36	5.0
	05-20-80	430	25	110	37	
FR-42	04-14-75	370	62	100	30	3.7
FR-44	04-18-75	230	38	62	19	13
FR-46	05-20-80	470	200	120	41	4.7
FR-47	04-15-75	370 380	50 55	100	28 33	6.8 7.4
FR-48	11-14-79 05-23-80	460	55 130	99 120	33 38	6.9
FR-49	04-14-75	430	99	110	37	4.7
FR-52	04-24-75	420	110	110	35	5.9
110 32	05-23-80	360	88	94	30	5.0
FR-53	04-17-75	280	47	75	22	17
FR-56	04-28-75	370	ND	98	31	8.0
FR-70	04-10-75	250	22	64	22	3.1
FR-73	05-29-80	370	130	95	33	14
FR-74	11-21-79	340	0	88	28	4.8
	05-27-80	310	53	81	27	4.6
FR-100 p3	06-04-75	390	87	110	27	5.4
	06-12-75	380	82	110	2 5	5.9
	11-19-79	350	ND	94	28	5.7
FR-101	05 -27- 80 05 - 06 - 75	360 460	170 180	96 120	30 40	6.1 14
FK-101	08-27-75	580	220	140	56	21
	11-15-79	350	79	97	26	9.4
	05-28-80	380	160	100	32	7.2
FR-103	12-11-74	470	100	120	41	18
	12-20-74	440	100	110	40	10
FR-104	04-02-75	390	66	100	35	10
	08-26-75	400	74	100	37	7.2
	08-29-75	380	68	104	30	6.9
	11-19-79	270	75	56	32	17
	05-27-80	200	34	24	35	19
FR-106	02-07-75	450	130	110	42	5.7
ממד במים	02-12-75	450	130	120	37	6.0
FR-109	08-28-75	380 350	37	92 93	36 30	3.9
FR-115	06-13-78 07-06-76	360	5 36	92 93	30 30	4.1
- X-113	07-08-76	420	100	110	30 36	2.0 1.0
	11-20-79	420	74	110	35	2.5
	05-28-80	380	130	99	33	2.4
FR-145	05-29-80	360	110	91	31	3.4
FR-146	05-29-80	360	140	92	32	14
PK-42	04-23-75	380	12	100	32	3.0

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County,
Ohio--Continued

	Date	Sodium ad- sorp-		Potas- sium, dis- solved	Chlo- ride, dis- solved	Sulfate, dis- solved
Well	of	tion	Percent	(mg/L	(mg/L	(mg/L
number	sample	ratio	sodium	as K)	as Cl)	as SO ₄)
FR-3	04-14-78	.0	1	2.1	8.3	63
	05-28-80	•0	ī	1.7	11	58
FR-35	04-22-75	.4	9	20	42	140
FR-36	04-16-75	.1	2	1.1	12	73
	11-20-79	.1	4	1.4	18	95
	05-28-80	.1	2	1.3	15	88
FR-37	11-13-79	.1	2	1.7	38	66
ED 20	05-23-80	.1	2	1.5	41	62
FR-38 FR-39	05-29-80 04-24-75	.1 .1	2 3	1.2 6.7	5.8 30	49 64
FR-40	04-24-75	1.1	20	4.2	66	97
FR-41	04-24-75	.1	3	0.9	4.7	28
I K. 41	05-20-80	•			4.0	34
FR-42	04-14-75	.1	2	1.2	18	66
FR-44	04-18-75	.4	11	.6	7.6	58
FR-46	05-20-80	.1	2	1.5	50	140
FR-47	04-15-75	.2	4	8 .6	4.9	38
FR-48	11-14-79	. 2	4	1.1	11	92
	05-23-80	.1	3	1.0	11	90
FR-49	04-14-75	.1	2	1.4	11	94
FR-52	04-24-75	.1	3	1.3	13	98
77 F3	05-23-80	•1	3	1.1	10	95 37
FR-53	04-17-75	.4	11 4	16	22 5 . 9	37 21
FR-56 FR-70	04-28-75 04-10-75	.2 .1	3	1.6 3.8	5.1	17
FR-73	05-29-80	.3	3 7	2.7	4.2	56
FR-74	11-21-79	.1	5	1.0	5.2	27
IK 74	05-27-80	.1	3	1.0	3.0	23
FR-100 P3	06-04-75	.1	3	1.1	16	88
	06-12-75	.1	3	1.2	17	99
	11-19-79	.1	5	1.0	17	100
	05-27-80	.1	4	.9	16	100
FR-101	05-06-75	.3	6	1.7	32	180
	08-27-75	.4	7	2.8	27	240
	11-15-79	• 2	5	3.3	17	91
TD 102	05-28-80	•2	4	1.2	18	97
FR-103	12-11-74	• 4	8 5	1.3 1.2	40 25	120 98
FR-104	12-20-74 04-02-75	.2 .2	5	1.4	25 25	72
FK-104	08-26-75	.2	4	1.2	16	63
	08-29-75	.2	4	1.2	19	72
	11-19-79	.4	20	3.4	36	22
	05-27-80	.6	17	1.4	43	11
FR-106	02-07-75	.1	3	1.8	57	81
	02-12-75	.1	3	2.0	40	76
FR-109	08-28-75	.1	2	1.2	2.6	29
	06-13-78	.1	2	1.3	2.4	31
FR-115	07-06-76	•0	1	1.1	8.7	84
	07-08-76	.0	1	1.1	9.1 14	91 8 2
	11-20-79 05-28-80	.1	2 1	.9 .9	13	85
FR-145	05-28-80 05-29-80	.1 .1	2	1.1	13	100
	05-29-80	.3	8	.9	64	33
PK-42	04-23-75	.1	2	12	7.6	34
LV-47	04-23-13	• 1	4	14	, • 0	J- -

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

Well number	Date of sample	Fluo- ride, dis- solved (mg/L as F)	Silica, dis- solved (mg/L as SiO ₂)	Arsenic, dis- solved (µg/L as As)	Arsenic, total (µg/L as As)	Cadmium, dis- solved (µg/L as Cd)
FR-3	04-14-78	0.1	12			
	05-28-80	.2	12			
FR-35	04-22-75	.4	12		1	
FR-36	04-16-75	.3	14		13	
	11-20-79	• 3	14			
	05-28-80	•3	11	14		4
R-37	11-13-79	.2	11			
	05-23-80	. 2	12			
'R-38	05-29-80	. 2	13			
'R-39	04-24-75	.2	11		4	
'R-40	04-17-75	. 4	11		<1	
'R-41	04-24-75	. 4	20		30	
	05-20-80	.4				
'R-42	04-14-75	.1	14		3	
R-44	04-18-75	•1	7.7		1	
'R-46	05-20-80	• 3	12	4		1
'R-47	04-15-75	• 3	10		1	
R-48	11-14-79	.3 .3	12 			
R-49	05-23-80 04-14-75	• 3	12		13	
R-52	04-14-75	.4	13		13	
K-22	05-23-80	.4	13			
R-53	04-17-75	.2	8.6		<1	
R-56	04-28-75	.3	18		21	
R-70	04-10-75	• 2	9.3		3	
R-73	05-29-80	.4	11			
R-74	11-21-79	.4	16			
	05-27-80	.4	14	13		8
R-100 P3	06-04-75	. 2	12		9	
	06-12-75	.2	11		1	
	11-19-79	• 3	11			
	05-27-80	.3	12	4		3
R-101	05-06-75	.6	12			
	08-27-75	1.4	14		<1	
	11-15-79	.3	8.6			
n_103.	05-28-80	• 5	12	5	_	2
R-103	12-11-74 12-20-74	.7 .6	14 14			
R-104	04-02-75	.6	13			
V-104	08-26-75	•5	13		3	
	08-29-75	•5	13		2	
	11-19-79	.3	6.9			
	05-27-80	.3	1.8	3		3
R-106	02-07-75	.2	12			
	02-12-75	.2	12			
R-109	08-28-75	.4	15		6	
	06-13-78	.3	15			
R-115	07-06-76	.4	14		3	
	07-08-76	.3	14		2	
	11-20-79	.3	14			
	05-28-80	.3	12	6		<1
R-145	05-29-80	.2	10	 4		2
				4		,
R-146 K-42	05 -29- 80 04 - 23 - 75	•3 •3	11 8.6		3	

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

		<u></u>	Chro-			
		Chro-	mium,	_	Copper,	_
		mium,	total	Copper,	total	Iron,
	. .	dis-	recov-	dis-	recov-	dis-
	Date	solved	erable	solved	erable	solved
Well	of	(µg/L	(ng/L	(Mg/L	(Mg/L	(µg/L
number	sample	as Cr)	as Cr)	as Cu)	as Cu)	as Fe)
FR-3	04-14-78					170
	05-28-80					430
FR-35	04-22-75		ND		ND	40
FR-36	04-16-75		<20		ND	2,200
	11-20-79					2,900
	05-28-80	<10		ND		2,200
FR-37	11-13-79					20
	05-23-80					80
FR-38	05-29-80					710
FR-39	04-24-75		<20		<20	30
FR-40	04-17-75		<20		<20	20
FR-41	04-24-75		ND		ND	3,200
	05-20-80					
FR-42	04-14-75		ND		ND	230
FR-44	04-18-75		<20		ND	40
FR-46	05-20-80	<10		1		1,600
FR-47	04-15-75		ND		ND	40
FR-48	11-14-79					20
	05-23-80					50
FR-49	04-14-75		ND		ND	2,000
FR-52	04-24-75		<20		ND	2,300
	05-23-80					1,700
FR-53	04-17-75		ND		ND	30
FR-56	04-28-75		ND		<20	1,400
FR-70	04-10-75		ND		ND	<10
FR-73	05-29-80					1,600
FR-74	11-21-79	10				3,800
FR-100P3	05-27-80	10		ND	40	3,900
F.K-100F2	06-04-75		20		40	1,200
	06-12-75		20		30	990
	11-19-79 05-27-80	10		ND.		1,100
FR-101	05-06-75	10		ND		1,600 1,100
FK-101-1-1	08-27-75		<20		<20	160
	11-15-79				\2U	2,500
	05-28-80	10		ND		960
FR-103	12-11-74			ND		240
1K-103	12-20-74					470
FR-104	04-02-75					1,200
FK-104	08-26-75		<20		<20	1,500
	08-29-75		<20		<20	1,300
	11-19-79					710
	05-27-80	10		ND		250
FR-106	02-07-75					2,100
-11 -00	02-12-75					1,400
FR-109	08-28-75		<20		<20	3,400
	06-13-78					<10
FR-115	07-06-76		<20		ND	2,400
	07-08-76		<20		ND	2,500
	11-20-79					3,500
	05-28-80	10		ND		3,400
FR-145	05-29-80					1,500
FR-146	05-29-80	<10		ND		1,600
PK-42	04-23-75		<20		ND	270

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

Well number	Date of sample	Lead, dis- solved (µg/L as Pb)	Lead, total recov- erable (µg/L as Pb)	Manga- nese, dis- solved (µg/L as Mn)	Zinc, dis- solved (µg/L as Zn)	Zinc, total recov- erable (µg/L as Zn)	Sele- nium, dis- solved (µg/L as Se)
FR-3	04-14-78			<10			
IN 3	05-28-80			5			
FR-35	04-22-75		9	30		610	
FR-36	04-16-75		8	50		320	
	11-20-79			80			
	05-28-80	<1		80	580		ND
FR-37	11-13-79			6			
	05-23-80			5			
FR-38	05-29-80			50			
FR-39	04-24-75		3	<10		210	
FR-40	04-17-75		10	<10		960	
FR-41	04-24-75		10	60		290	
	05-20-80						
FR-42	04-14-75		<2	140		250	
FR-44	04-18-75		<2	20		460	
FR-46	05-20-80	<1		230	20		ND
FR-47	04-15-75		9	20		120	
FR-48	11-14-79			50			
	05-23-80			10			
FR-49	04-14-75		28	140		1,900	
FR-52	04-24-75		<2	80		130	
	05-23-80			50			
FR-53	04-17-75		<2	<10		80	
FR-56	04-28-75		<2	150		90	
FR-70	04-10-75		<2	20		130	
FR-73	05-29-80			150			
FR-74	11-21-79			30			
_	05-27-80	<1		30	20		ND
FR-100P3	06-04-75		4	80		60	
	06-12-75		3	. 80		20	
	11-19-79			80			
	05-27-80	<1		70	6		ND
FR-101	05-06-75			60			
	08-27-75		4	30		20	
	11-15-79			190			
	05-28-80	<1		60	10		ND
FR-103	12-11-74			50			
	12-20-74			50			
FR-104	04-02-75			70			
	08-26-75		<2	50		2,200	
	08-29-75		5	50		60	
	11-19-79			170			
	05-27-80	<1		70	ND		ND
FR-106	02-07-75			80			
	02-12-75			80			
FR-109	08-28-75		5	30		20	
	06-13-78			30			
FR-115	07-06-76		<2	60		80	
	07-08-76		2	60		20	
	11-20-79			70			
	05-28-80	<1		70	ND		ND
FR-145	05-29-80			40			
FR-146	05 -29- 80	<1		140	70		ND
PK-42	04-23-75		8	70		140	

Table 2.--Water-quality analyses of ground water from sites in southern Franklin County, Ohio--Continued

Well number	Date of sample	Mercury, dis- solved (µg/L as Hg)	Phenols (µg/L)	Solids, residue at 180 deg. C, dis- solved (mg/L)	Solids, sum of consti- tuents, dis- solved (mg/L)	Solids, dis- solved (tons per ac-ft)
	04.14.70				0.01	
FR-3	04-14-78 05-28-80		<1 1	413	391 407	0.53 .56
FR-35	04-22-75			413	592	.81
FR-36	04-16-75				439	. 6 0
	11-20-79			505	503	.69
	05-28-80	<0.1	1	531	455	.72
FR-37	11-13-79			423	525	.58
	05-23-80			619	540	.84
FR-38	05-29-80		1	375	298	•51
FR-39	04-24-75				438	.6 0
FR-40	04-17-75				596	.81
FR-41	04-24-75				433	•59
	05-20-80					
FR-42	04-14-75				421	.57
FR-44	04-18-75				285	.39
FR-46	05-20-80	<.1	<1	553	535	.75
FR-47	04-15 - 75				386	•53
FR-48	11-14-79			575	453	.78
	05-23-80			458	466	.62
FR-49	04-14-75				470	.64
FR-52	04-24-75				464	.63
	05-23-80			538	413	.73
FR-53	04-17-75				337	.46
FR-56	04-28-75				411	.56
FR-70	04-10-75				262	.36
FR-73	05-29-80		1	469	362	.64
FR-74	11-21-79		- -	370	436	.50
mm 100D2	05-27-80	<.1	1	337	315	.46
FR-100P3	06-04-75				440	.60
	06-12-75	_			448	.60
	11-19-79	.1	1	419	486	•57
FR-101	05-27-80 05-06-75	• 1	 T	513	377 574	.70 .78
F K-101	08-27-75				721	• 78 • 98
	11-15-79			459	418	.62
	05-28-80	.2	1	455	402	.62
FR-103	12-11-74				575	.78
1 K-103	12-20-74				503	.68
FR-104	04-02-75				455	.62
- N - L - L	08-26-75				437	.59
	08-29-75				437	.61
	11-19-79			306	293	.42
	05-27-80	.1	<1	297	238	.40
FR-106	02-07-75				505	.69
	02-12-75				490	.67
FR-109	08-28-75				389	•53
	06-13-78			372	386	.51
FR-115	07-06-76				428	.58
	07-08-76				457	.62
	11-20-79			421	469	•57
	05-28-80	<.1	2	479	399	.65
FR-145	05-29-80		<1	527	403	.72
FR-146	05-29-80	<.1	<1	533	381	.72
PK-42	04-23-75				420	.57

Table 3.--Water-quality analyses of water from streams in southern Franklin County. Ohio

			Scioto River	River				
Constituent	At site 101	near Columbus	At I-270	at Columbus	Below treatme	Below sewage treatment plant	Big Creek a	Big Walnut ek at Reese
property	11/20/19	05/19/80	11/20/19	9 05/19/80	11/20/79	05/19/80	11/13/79	05/20/80
Time	1200	1625	1030	1310	0060	1010	1330	1015
Temperature, water (°C)	12.5	18.5	11.0	18.0	10.0	17.5	7.0	17.5
Temperature, alr (°C) mirhidity (pmm)	22.0	24.0	۲. د. د	22.5	0.81	24.0	4. A	23.0
Specific conductance		•	•		•	9	•	•
(µmho/cm)	895	550	850	550	830	550	470	400
Oxygen demand, blochemical, 5-day (mg/L)	1	9.9	ł	7.9	ł	5.9	;	3.4
Oxygen demand, chemical	!	7.0	;	ć	i	G		7.
Coliform, fecal, 0.7 UM-MF	ł	/7	i	07	i i	V	1 1	#
(cols./100 ml)	K 7	K20000	K10	K21000	K17	K24000	340	3300
KF agar (cols./100 ml)	K7	K8600	83	K80000	K30	K12000	四	2700
Carbon, organic, total (mg/L as C)	6.9	4.6	8,0	4.3	7.8	3.7	6.3	8.1
pH (units)	7.5	8.0	7.4	7.9	7.3	8.0	7.4	7.4
Carbon dioxide, dissolved (mg/L as CO2)	13	7.2.7	16	3.4	22	2.9	10	8.5
Alkalinity (mg/L as CaCO ₃) Bicarbonate, FET-FLD	213	160	205	097	213	160	131	120
(mg/L as HCO ₃)Nitrogen, dissolved	260	190	250	190	260	200	160	150
(mg/L as N)	5.1	4.1	5.1	3.8	4.6	3.2	2.0	6.9
Nitrogen, organic, dissolved (mg/L as N)	.70	0.71	0.80	.64	0.81	48	0.69	0.84
Nitrogen, ammonia, dissolved (mg/L as N)	1.10	.210	1.40	.250	068.		.020	.160
Nitrogen, ammonia + organic, dissolved (mg/L as N)		.92	2.2	68.	1.7	.74	.71	1.0
Nitrogen, ammmonia + organic, suspended total (mg/L as N)	ł	90.	ł	00.	;	.03	00.	.20
Nitrogen, nitrite + nitrate, dissolved (mg/L as N)	3.3	3.2	2.9	2.9	2.9	2.5	1.3	5.9

Table 3. --Water-quality analyses of water from streams in southern Franklin County, Ohio--Continued

			Scioto River	rer				
Constituent	At site 101	near Columbus	At I-270 at	at Columbus	Below sewage treatment plant	sewage t plant	Big Walnut Creek at Rees	Walnut at Reese
property	11/20/79	05/19/80	11/20/19	05/19/80	11/20/79	05/19/80	11/13/79	05/20/80
Phosphorus, dissolved						•	,	
(mg/L as P)Phosphorus, total	0.750	0.220	0.810	0.240	069.0	0.160	090.0	0.100
	1	.320	1	.360	1	.240	.100	.200
	!	86.	1	1.1	1	.74	.31	.61
(mg/L as CaCO ₃)	310	220	320	240	300	230	190	170
	94	79	110	97	87	82	55	63
(mg/L as Ca)	82	58	82	62	79	09	50	46
	25	18	26	20	25	20	15	14
	33	20	33	20	30	19	14	16
ratio	.8 25	.e 16	.8 18	.6	.8	.5	.4	.5
Forassium, dissolved (mg/L as K)	4.5	2.8	4.6	2.7	4.2	2.4	3.3	2.6
(mg/L as Cl)	49	28	48	30	47	28	23	25
Califore, dissolved	100	73	110	80	97	78	20	51
Includ, dissolved (mg/L as F)Silica, dissolved	សំ	m.	9.	е•	r.	e.	.2	.2
	5.6	4.9	5.8	4.0	4.7	5.1	5.3	7.2
(pg/L as As)	1	1	i	4	1	i	1	4
	1	!	1	4	1	1	ł	7
(pg/Las Cr)	1	1	ł	10	ł	ŀ	ł	10
(hg/L as Cu)	;	1	ŀ	9	1	i	ł	S
	30	320	30	210	30	240	20	160
(μg/L as Pb)	1	1	1	7	;	1	1	QN

Table 3.--Water-guality analyses of water from streams in southern Franklin County, Ohio--Continued

			Scioto River	ver				
Constituent	At site 101 r	site 101 near Columbůs	At I-270 a	At I-270 at Columbus	Below sewage treatment plant	sewage t plant	Big Walnut Creek at Reese	Big Walnut eek at Reese
or property	11/20/19	11/20/79 05/19/80	11/20/79 05/19/80	05/19/80	11/20/19	11/20/79 05/19/80	11/13/79 05/20/80	05/20/80
Manganese, dissolved								
(µg/L as Mn)	20	30	30	30	20	70	40	30
Selenium, dissolved	1	!	ł	10	ł	ł	1	10
(pg/L as Se)	!	ł	ł	Ð	ł	1	ł	S S
The result of th	l	-	1	0.1	1	۱،	1	0.1
Solids, residue at 180°C, dissolved (mg/L)	475	374	480	368	454	358	266	ND 284
Solids, sum of constituents, dissolved (mg/L)	444	304	449	316	429	314	246	254
Solids, dissolved (tons per ac-ft)	0.65	0.51	0.65	.50	0.62	0.49	0.36 544	.39