HYDROGEOLOGIC APPRAISAL OF FIVE SELECTED AQUIFERS
IN ERIE COUNTY, NEW YORK

By Todd S. Miller and Ward W. Staubitz

U.S. GEOLOGICAL SURVEY
Water-Resources Investigations Report 84-4334

Prepared in cooperation with
ERIE COUNTY DEPARTMENT OF ENVIRONMENT AND PLANNING

Ithaca, New York
1985
CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Purpose and scope</td>
<td>3</td>
</tr>
<tr>
<td>Previous studies</td>
<td>3</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>3</td>
</tr>
<tr>
<td>Methods of study</td>
<td>3</td>
</tr>
<tr>
<td>Well inventory and test drilling</td>
<td>3</td>
</tr>
<tr>
<td>Water sampling</td>
<td>3</td>
</tr>
<tr>
<td>Aquifers in the Clarence-Lancaster-Newstead area</td>
<td>4</td>
</tr>
<tr>
<td>Population and ground-water use</td>
<td>4</td>
</tr>
<tr>
<td>Hydrogeologic framework</td>
<td>6</td>
</tr>
<tr>
<td>Unconsolidated aquifer</td>
<td>6</td>
</tr>
<tr>
<td>Onondaga limestone</td>
<td>8</td>
</tr>
<tr>
<td>Saturated thickness</td>
<td>9</td>
</tr>
<tr>
<td>Ground-water movement</td>
<td>10</td>
</tr>
<tr>
<td>Recharge</td>
<td>10</td>
</tr>
<tr>
<td>Discharge</td>
<td>11</td>
</tr>
<tr>
<td>Water quality</td>
<td>13</td>
</tr>
<tr>
<td>Unconsolidated aquifer</td>
<td>15</td>
</tr>
<tr>
<td>Onondaga limestone</td>
<td>15</td>
</tr>
<tr>
<td>Effects of landfill near Lancaster</td>
<td>16</td>
</tr>
<tr>
<td>Location and description</td>
<td>16</td>
</tr>
<tr>
<td>Ground-water movement</td>
<td>16</td>
</tr>
<tr>
<td>Ground-water quality</td>
<td>17</td>
</tr>
<tr>
<td>Aquifer in the Sardinia area</td>
<td>17</td>
</tr>
<tr>
<td>Population and ground-water use</td>
<td>18</td>
</tr>
<tr>
<td>Hydrogeologic framework</td>
<td>19</td>
</tr>
<tr>
<td>Saturated thickness</td>
<td>24</td>
</tr>
<tr>
<td>Ground-water movement</td>
<td>25</td>
</tr>
<tr>
<td>Recharge</td>
<td>25</td>
</tr>
<tr>
<td>Discharge</td>
<td>26</td>
</tr>
<tr>
<td>Water quality</td>
<td>26</td>
</tr>
<tr>
<td>Effect of landfill near Chaffee</td>
<td>29</td>
</tr>
<tr>
<td>Location and description</td>
<td>29</td>
</tr>
<tr>
<td>Ground-water movement</td>
<td>29</td>
</tr>
<tr>
<td>Ground-water quality</td>
<td>30</td>
</tr>
<tr>
<td>Aquifer in the Springville area</td>
<td>31</td>
</tr>
<tr>
<td>Population and ground-water use</td>
<td>31</td>
</tr>
<tr>
<td>Hydrogeologic framework</td>
<td>33</td>
</tr>
<tr>
<td>Saturated thickness</td>
<td>37</td>
</tr>
<tr>
<td>Ground-water movement</td>
<td>38</td>
</tr>
<tr>
<td>Recharge</td>
<td>38</td>
</tr>
<tr>
<td>Discharge</td>
<td>39</td>
</tr>
<tr>
<td>Water quality</td>
<td>39</td>
</tr>
<tr>
<td>Aquifer in Alden area</td>
<td>43</td>
</tr>
<tr>
<td>Population and ground-water use</td>
<td>43</td>
</tr>
<tr>
<td>Hydrogeologic framework</td>
<td>44</td>
</tr>
<tr>
<td>Saturated thickness</td>
<td>47</td>
</tr>
</tbody>
</table>
CONTENTS (continued)

Aquifer in Alden area (continued)
 Ground-water movement ... 47
 Recharge .. 47
 Discharge ... 47
 Water quality ... 48
Summary .. 50
Selected references .. 51

ILLUSTRATIONS

Figure 1.--Map showing location of aquifers 2

2.--Map of Clarence-Lancaster-Newstead area showing location of
 wells, landfill, Onondaga escarpment, and geologic sections. 5

3.--Geologic sections through the Clarence-Lancaster-Newstead
 area .. 6
 A-A', north-south through western part
 B-B', through northern part
 C-C', through southern part

4.--Map of Clarence-Lancaster-Newstead area showing altitude
 of top of Onondaga Limestone and location of unconsolidated
 aquifer. ... 8

5.--Map of Clarence-Lancaster-Newstead area showing saturated
 thickness of unconsolidated aquifer. 9

6.--1981-83 hydrographs of wells that tap the unconsolidated
 aquifer in the Clarence-Lancaster-Newstead area 10

7.--Map of Clarence-Lancaster-Newstead area showing 1981 water-
 table altitude and direction of ground-water flow in
 unconsolidated aquifer ... 12

8.--Map of Clarence-Lancaster-Newstead area showing potentiometric
 surface and directions of ground-water flow in upper part
 of Onondaga Limestone. ... 13

9.--Map of Sardinia area showing location of surficial
 outwash aquifer and wells. 18

10.--Map of Sardinia area showing surficial geology and
 location of geologic sections 20
ILLUSTRATIONS (continued)

Figure 11.—Geologic sections through Sardinia area 22

A-A', north-south through area
B-B', east-west through southern part of area
C-C', north-south in landfill vicinity
D-D', along Hand Road

12.—Map of Sardinia area showing saturated thickness and
location of aquifer .. 24

13.—1982-83 hydrographs of wells in Sardinia area 25

14.—Map of Sardinia area showing water-table altitude and
direction of ground-water flow 27

15.—Map of Springville area showing location of surficial
outwash aquifer and wells 32

16.—Map of Springville area showing surficial geology and
location of geologic sections 34

17.—Geologic sections through Springville area 36

A-A', north-south through aquifer area
B-B', east-west through central part of aquifer

18.—Map of Springville area showing aquifer thickness 37

19.—1982-83 hydrographs of selected wells in Springville
aquifer .. 38

20.—Map of Springville area showing potentiometric-surface
altitude and direction of ground-water flow 40

21.—Map of Springville area showing areal distribution of
nitrate concentrations 42

22.—Map of Alden area showing location of aquifer and wells ... 44

23.—Map of Alden area showing surficial geology and lines of
gologic sections ... 45

24.—Geologic section A-A' through Alden area 46

25.—Schematic diagram showing construction of typical wells
in Alden area ... 46

26.—Map of Alden area showing potentiometric surface and
direction of ground-water flow in lower sand and gravel
aquifer ... 48
TABLES

Table 1.--Minimum, maximum, mean, and median values and concentrations of water-quality constituents in samples from unconsolidated and limestone aquifers in the Clarence-Lancaster-Newstead area. .. 14

2.--Estimated pumpage from Sardinia aquifer, 1982 19

3.--Minimum, maximum, mean, and median values and concentrations of water-quality constituents from Sardinia aquifer. 28

4.--Median values of selected constituents of water in Sardinia aquifer near and at distance from Chaffee Landfill. 30

5.--Population and pumpage in Springville area, 1982 33

6.--Minimum, maximum, mean, and median values and concentrations of water-quality constituents from Springville aquifer. 41

7.--Estimated population and pumpage from Alden aquifer, 1982 .. 45

8.--Minimum, maximum, and mean values and concentrations of water-quality constituents from Alden aquifer 49

9.--Records of selected wells in Erie County. 53

10.--Chemical analyses of water samples from selected wells. . 63
 A. Clarence-Lancaster-Newstead area. B. Sardinia aquifer.

CONVERSION FACTORS AND ABBREVIATIONS

Factors for converting the units used in this report to International System (SI) units are shown below.

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>inch (in)</td>
<td>2.54</td>
<td>centimeter (cm)</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>.3048</td>
<td>meter (m)</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer (km)</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>2.59</td>
<td>square kilometer (km²)</td>
</tr>
<tr>
<td>gallon per minute (gal/min)</td>
<td>0.06309</td>
<td>liter per second (L/s)</td>
</tr>
<tr>
<td>million gallons per day (Mgal/d)</td>
<td>43.81</td>
<td>liter per second (L/s)</td>
</tr>
<tr>
<td>feet per mile (ft/mi)</td>
<td>0.1894</td>
<td>meter per kilometer (m/km)</td>
</tr>
<tr>
<td>gallons per day (gal/d)</td>
<td>3.785</td>
<td>liters per day (L/d)</td>
</tr>
<tr>
<td>feet per day (ft/d)</td>
<td>.3048</td>
<td>meters per day (m/d)</td>
</tr>
<tr>
<td>feet squared per day (ft²/d)</td>
<td>.0929</td>
<td>meters squared per day (m²/d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>milligrams per liter (mg/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>micrograms per liter (µg/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>micromhos per centimeter (µmho/cm)</td>
</tr>
</tbody>
</table>
HYDROGEOLOGIC APPRAISAL OF FIVE SELECTED AQUIFERS
IN ERIE COUNTY, NEW YORK

by

Todd S. Miller and Ward W. Staubitz

ABSTRACT

Hydrogeologic conditions and water quality within four unconsolidated glacial aquifers and a bedrock (Onondaga Limestone) aquifer were investigated during 1981-83 by the U.S. Geological Survey, in cooperation with the Erie County Department of Environment and Planning. The aquifers are in suburban areas of Buffalo and in major valleys in Erie County where development is increasing rapidly. The aquifers studied are in the Clarence-Lancaster-Newstead, Sardinia, Springville, and Alden areas.

Aquifers in the Clarence-Lancaster-Newstead area are a complex of morainal, outwash, and beach sand and gravel, as well as the Onondaga Limestone. Most wells tap the more productive limestone aquifer. Water quality in both aquifers is suitable for most uses except where road salt has caused contamination in shallow wells near the New York State Thruway. A landfill along the western part of the aquifer has affected the water quality in some areas along the landfill's perimeter.

Aquifers in the Sardinia and Springville areas consist of 10 to 95 feet of outwash sand and gravel separated from several deeper confined sand and gravel zones by till and lacustrine beds in buried preglacial valleys (400 to 600 feet deep). Water in both aquifers moves predominantly from the north and from the aquifers' edges to the center of the valley and discharges to the main streams in the middle of the valley and to springs along the southern edges of the aquifers. Water quality is generally suitable for most uses, although the Springville aquifer contains relatively high nitrate concentrations in some areas. A landfill adjacent to the Sardinia aquifer apparently has not affected the aquifer significantly.

Aquifers in the Alden area consist of two sand and gravel zones separated by 10 to 20 feet of clay or till. Water from the more productive lower zone is more mineralized than that in the upper zone as a result of ground-water recharge from the underlying shale.

INTRODUCTION

Ground water is a major source of water for the southern and eastern parts of Erie County. An understanding of the hydrogeology, water quality, and effects of landfills overlying or adjacent to important aquifers is needed by county and local planners to properly manage the ground-water resources.
Five aquifers were selected for study (fig. 1). The Alden aquifer and the two aquifers in the Clarence-Lancaster-Newstead area were selected because they are in areas of increased suburban growth, and the Springville and Sardinia aquifers were selected because they extend over large areas. In addition, a landfill overlies part of the Clarence-Lancaster-Newstead aquifer, and another is adjacent to the Sardinia aquifer. Four of these aquifers consist of coarse-grained glacial sediments such as outwash and morainal sand and gravel. The fifth, a 140-ft-thick limestone aquifer (Onondaga Limestone), underlies the unconsolidated deposits in the Clarence-Lancaster-Newstead area.

Figure 1.—Location of aquifers selected for study.
Purpose and Scope

In 1981, the U.S. Geological Survey began a 2-year study in cooperation with the Erie County Department of Environment and Planning to document the hydrogeologic characteristics of the five aquifers. This report describes the hydrologic boundaries, geologic framework, water-table altitude and direction of ground-water movement, locations of recharge and discharge, saturated thickness, water quality, and effects (if any) of landfills on or adjacent to the aquifers. Tables summarize water quality, ground-water use and well data, well locations, geology, aquifer thickness, and ground-water movement.

Previous Studies

Previous work by the U.S. Geological Survey (La Sala, 1968) delineated the four glacial sand and gravel aquifers (Clarence-Lancaster-Newstead, Sardinia, Springville, and Alden areas) and a part of the limestone aquifer (Onondaga Limestone) that underlies the Clarence-Lancaster-Newstead unconsolidated aquifer.

Acknowledgments

The Erie County Department of Environment and Planning staff provided background information, including historic records and published reports by consultants, and aided in sample collection. The Erie County Health Department Laboratory analyzed the water-quality samples. The Frey Well Drilling Company provided information on wells in the Alden area.

METHODS OF STUDY

Well Inventory and Test Drilling

Hydrogeologic information was collected and compiled from published data and fieldwork. A general well inventory was conducted to obtain data on water levels, saturated thickness, depth to bedrock, water use, and to locate wells accessible for sampling. Where information was lacking or more detail was desired, such as near the two landfills, four to eight 2-in-diameter PVC or steel observation wells were installed with a power auger.

At the landfills, observation wells were installed both upgradient and downgradient of the burial area to define the direction of ground-water movement and to determine ground-water quality. Maps of each site were constructed to show surficial geology, well locations, aquifer thickness, water levels, and direction of ground-water movement. Well data collected during this study and summarized in table 9 (at end of report) include owner, date drilled, depth of well, aquifer type, water level, water use, and availability of geologic log.

Water Sampling

Ground-water samples were collected and analyzed from all 2-in-diameter observation wells and selected private and municipal wells to document background water quality and identify areas affected by contamination.
Chemical analyses included specific conductance, pH, common anions and cations, trace metals, several nutrients, alkalinity, hardness, and total organic carbon. These constituents were selected because studies have shown that increased levels of chloride, sodium, sulfate, total hardness, organic carbon, and specific conductance are effective indicators of contamination from municipal landfill leachate (Zanoni, 1972, and Loe, 1970). In the Sardinia and Springville areas, three sets of samples (summer, winter, and spring) were collected by the U.S. Geological Survey and Erie County Department of Environment and Planning and analyzed by the Erie County Health Department Laboratory. Five sets (fall, spring, summer, winter, and spring) were collected and analyzed in the Clarence-Lancaster-Newstead area. No samples were collected in the Alden area because data collected by the Erie County Health Department were sufficient for the purposes of this study.

Nested piezometers were installed at several locations within all aquifers to evaluate water quality in a vertical profile. Chemical analyses were conducted by the Erie County Laboratory, which participated in the U.S. Geological Survey water-quality-assurance program.

Samples were collected at the 2-in-diameter wells by pumping or bailing each well so that at least three volumes of water in the casing were removed to ensure that the water sampled from the aquifer and had not been standing in the casing for an extended period. A peristaltic or bladder pump with silastic tubing or a stainless steel bailer was used to withdraw water. Private domestic wells were sampled at outside taps after the water had been run a few minutes to evacuate water that had been in the pipes.

AQUIFERS IN THE CLARENCE-LANCASTER-NEWSTEAD AREA

These two aquifers underlie parts of the towns of Clarence, Lancaster, Newstead, and Alden in the northeastern part of Erie County (fig. 2). The topography ranges from level to gently sloping except in the northern part, where the resistant Devonian Onondaga Limestone crops out to form a 50-ft escarpment (fig. 2).

Surface drainage flows south to Ellicott Creek and north to Ransom Creek. (Ellicott Creek then flows northwest 12 mi into Tonawanda Creek, and Ransom Creek flows 10 mi northwest, also to Tonawanda Creek.) The aquifer area contains several wetlands.

Land use is predominantly residential with extensive sand and gravel mining. A 0.1-mi² sanitary landfill is in operation north of the New York State Thruway along the western part of the area (fig. 2).

Population and Ground-Water Use

The area underlain by the sand and gravel aquifer has a population of about 1,000. A public water-supply system that withdraws water from the Niagara River, 17 miles west of the aquifer, serves part of the towns of Clarence and Lancaster, but some inhabitants use ground water from the
Onondaga Limestone or the sand and gravel deposits as their primary or secondary source. For example, a nursing home in Clarence uses ground water for air conditioning, and many residents use ground water to water lawns. Ground water is the sole source of water for the Town of Newstead.

Ground-water use is not quantified because the number of residences in Clarence and Lancaster that use ground water is unknown, because withdrawals at several commercial facilities and institutions are unmetered, and because use of wells installed in sand and gravel and the underlying bedrock to supplement the public water-supply system is sometimes unreported.

Figure 2.—Location of wells, landfill, Onondaga Escarpment, and geologic sections in Clarence-Lancaster-Newstead area. (Geologic sections are shown in fig. 3.)
Hydrogeologic Framework

The unconsolidated surficial sand and gravel aquifer underlies parts of the gently westward sloping plain that overlies the Onondaga Limestone, as shown in figure 2. The part of the Onondaga Limestone that was investigated in this study is the part that directly underlies the unconsolidated aquifer.

Unconsolidated Aquifer

Glaciation of the area resulted in the deposition of a variety of sediments on the Onondaga Limestone. In the southwestern and central parts of the area (Muller, 1977), till overlies a poorly defined end moraine (poorly sorted silt, sand, gravel, and boulders that were deposited in front of the glacier) and subglacial or subaqueous outwash (sorted and stratified sand, or sand and gravel deposited by glacial meltwaters at the bottom of grounded ice). Logs of borings along the western side of the aquifer (section A-A', fig. 3) indicate 30 to 45 ft of sand with some gravel between a basal lodgment till 3 to 15 ft thick and an overlying surficial till. Well logs reveal that glacial sediments are thickest (30 to 45 ft) where they fill a buried north-south-trending preglacial valley incised into the Onondaga Limestone. (See section B-B' in fig. 3 and C-C' and the structure-contour map in fig. 4). The extent of the moraine in the center of the area is poorly defined because relatively few borings have been made and because its subdued, low to flat relief makes its extent difficult to trace.

Several borings in the southeastern part of the area reveal 20 to 30 ft of well-sorted stratified outwash sand and gravel underlain by 10 to 15 ft of lacustrine silt and sandy silt that is in turn underlain by 2 to 12 ft of

![Figure 3A](image.png)

Figure 3A.—Geologic section A-A' north-south through Clarence-Lancaster-Newstead area. (Location is shown in fig. 2.)
lodgment till. (See section C-C' in fig. 3 and map in fig. 4.) A gravel pit
in the central area near Jones and Stage Roads exposes morainal deposits of
sand and gravel with large boulders of Onondaga Limestone (sec. B-B' in
fig. 3). The morainal sand and gravel disappears near Stage Road south of
Clarence. A large amount of the outwash and morainal deposits have been
extracted by sand and gravel mining.

Figure 3B.—Geologic section B-B' through northern part of Clarence-
Lancaster-Newstead area. (Location is shown in fig. 2.)

Figure 3C.—Geologic section C-C' through southern part of Clarence-
Lancaster-Newstead area. (Location is shown in fig. 2.)
The Onondaga Limestone is a productive aquifer that extends from Buffalo to Albany as an east-west belt several miles wide. It is a massive cherty and argillaceous limestone approximately 140 ft thick (Buehler, 1966) where it has not been subjected to erosion. Along the escarpment in the Clarence area, it has been eroded to several tens of feet thick.

The Onondaga Limestone contains little primary porosity but does contain significant secondary openings in the form of joints and fractures, widened by solutioning. Where the widening of joints and fractures is significant, the
overlying rock and sediments may collapse, forming sinkholes. Sinkholes were observed both east and west of the landfill area. Wells installed in the limestone typically yield 10 to 300 gal/min (La Sala, 1968). Most wells do not fully penetrate to the bottom of the Onondaga Limestone, so the thickness of this unit could not be determined.

Saturated Thickness

The unconsolidated aquifers lie within relatively thin outwash and morainal deposits that range in thickness from 5 to 55 ft; the saturated thickness is between 10 and 25 ft in most places (fig. 5). The thickest saturated deposits are in the buried preglacial valley. In the eastern part

Figure 5.—Saturated thickness of unconsolidated aquifer in the Clarence-Lancaster-Newstead area.
of the aquifer, where much of the sand and gravel has been mined away, 5 to 14 ft of saturated sand and gravel overlies thin lake and till deposits (fig. 3, section B-B'). In the western part of the aquifer, 5 to 23 ft of saturated sand with some sand and gravel in the deeper zones overlies the buried bedrock valley (fig. 3, section A-A'). Saturated thickness is greatest (25 ft) in the area under the landfill. South of Ellicott Creek, a gravel pit and a log from well LC-2 indicate 5 to 15 ft of saturated morainal sand and sand and gravel.

Ground-Water Movement

Recharge

Unconsolidated aquifer.—Recharge to the unconsolidated aquifer, which contains the water table, is solely from precipitation that infiltrates downward to the water table. Because the unconsolidated aquifer is on a level area on a topographic high, it is not bounded by valley walls that could provide recharge, nor does it have streams to provide seepage from higher areas. Estimated average annual recharge ranges from 0.2 to 0.4 (Mgal/d)/mi² (La Sala, 1968).

The water table rises and falls in response to changes in the rate of recharge and discharge of ground water. Water-level measurements were used to construct hydrographs (fig. 6), which indicate that most recharge occurs from October or November through April, when evapotranspiration is at a minimum,

Figure 6.—1981-83 hydrographs of wells that tap the unconsolidated aquifer in Clarence-Lancaster-Newstead area. (Well locations are shown in fig. 2.)
and that water levels were highest in February. A second peak in May 1983 was due to an unseasonably wet spring. Annual water-level fluctuations ranged from 2 to 8 ft and averaged 4 ft. Water levels at wells LC-52, LC-63, and LC-6, which are near ground-water discharge areas such as ponds, wetlands, and streams, fluctuated less because relatively large amounts of ground water move from the edges of the aquifer toward these discharge areas. Water levels in wells LC-66 and LC-67, which are nearer the ground-water divide and further from discharge areas, fluctuated more because they have smaller catchment areas and receive less ground-water flow.

Onondaga Limestone aquifer.—Recharge to the limestone aquifer occurs (1) by infiltration of precipitation into the joints, fractures, and solution openings where the formation crops out at or near land surface, (2) by downward seepage of water from the overlying unconsolidated deposits and wetlands, (3) by seepage from storm runoff and streams flowing into sinks or swallets on top of the limestone, and (4) possibly by water that has been pumped out of a quarry 6 mi east of the study area and then discharged as surface flow, some of which may infiltrate back into the limestone.

Discharge

Unconsolidated aquifer.—During the late spring, summer, and early fall, when most precipitation is lost through evapotranspiration, the ground-water discharge to springs, streams, wetlands, and underlying bedrock exceeds the recharge, and the water table declines. A map of the water-table altitude with directions of ground-water flow is given in figure 7. The contours are based on water levels measured by the U.S. Geological Survey and the Erie County Department of Environment and Planning on October 15, 1981, in shallow wells and where water was first encountered during the drilling of deeper wells. A ground-water divide trends roughly east-west through the unconsolidated deposits. Ground-water flow south of the divide moves predominantly south and southwestward and discharges into Ellicott Creek, and ground water south of Ellicott Creek moves northwestward into Ellicott Creek. Ground water north of the divide moves northward and discharges to surface-water bodies such as Tillman and Cedar Swamps, and ultimately into Ransom Creek, which flows north over the Onondaga Escarpment.

Deep piezometers in sets of nested piezometers near the landfill had lower potentiometric surfaces than shallow piezometers at the same location (Wehran Engineering and Recra Research, 1980), which indicates a significant downward gradient. Therefore, ground water in the unconsolidated aquifer moves not only laterally but also downward to the underlying limestone.

Onondaga Limestone aquifer.—Ground water leaves the limestone aquifer as pumpage from wells at quarries, private residences, institutions, and commercial facilities; as seepage to the underlying rock formations and to Ellicott Creek, and to streams and springs along the lower part of the face of the escarpment. Water levels measured during late summer and early fall of 1981 were used to compile a potentiometric-surface map of the Onondaga Limestone (fig. 8); the contours indicate a ground-water divide trending east-west approximately 1 mi south of the escarpment. Ground water south of the divide moves west-southwest and discharges into Ellicott Creek and quarries; ground water north of the divide flows north and discharges as springs and headwaters of streams at the base of the escarpment.
Several wetlands in the Clarence-Newstead area and many wells in the Newstead area went dry and had to be deepened during the summers of 1982 and 1983 because of severely declining water levels in the limestone aquifer. The cause of the decline is not known at this time. Water levels in the overlying unconsolidated deposits declined considerably less, probably because of the relatively impermeable lacustrine silt and lodgment till between the two layers, which retards vertical movement of ground water. If the confining unit were absent, ground water would have moved downward to recharge the limestone aquifer, and the water level in the sand and gravel would have declined more.

Figure 7.—Water-table altitude in fall 1981 and direction of ground-water flow in unconsolidated aquifer, Clarence-Lancaster-Newstead area.
Figure 8.—Potentiometric surface in fall 1981 and directions of ground-water flow in upper part of the Onondaga Limestone aquifer in Clarence-Lancaster-Newstead area.

Water Quality

Water samples were collected from 15 wells in the Clarence-Lancaster-Newstead area during September 1981, March and August 1982, and February and June 1983. Chemical analyses for each well are given in table 10A (at end of report); average mean, median, maximum, and minimum values of each constituent from all wells are given in table 1. Seven of the wells tap sand or sand and
Table 1.—Minimum, maximum, mean, and median values and concentrations of water-quality constituents in samples from unconsolidated and limestone aquifers in Clarence, N.Y.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Unconsolidated aquifer</th>
<th>Unononda Limestone aquifer</th>
<th>New York State drinking-water standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of samples</td>
<td>Value or concentration</td>
<td>No. of samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Specific conductance (µmhos/cm)</td>
<td>31</td>
<td>297</td>
<td>2,550</td>
</tr>
<tr>
<td>pH, lab (standard units)</td>
<td>31</td>
<td>6.8</td>
<td>8.3</td>
</tr>
<tr>
<td>Carbon, total organic (mg/L as C)</td>
<td>29</td>
<td>8.5</td>
<td>40</td>
</tr>
<tr>
<td>Hardness (mg/L as CaCO₃)</td>
<td>32</td>
<td>136</td>
<td>763</td>
</tr>
<tr>
<td>Alkalinity, lab (mg/L as CaCO₃)</td>
<td>31</td>
<td>52</td>
<td>415</td>
</tr>
<tr>
<td>Calcium, dissolved (mg/L)</td>
<td>32</td>
<td>1.6</td>
<td>183</td>
</tr>
<tr>
<td>Magnesium, dissolved (mg/L)</td>
<td>32</td>
<td>8.1</td>
<td>84</td>
</tr>
<tr>
<td>Potassium, dissolved (mg/L)</td>
<td>27</td>
<td>1</td>
<td>7.1</td>
</tr>
<tr>
<td>Sodium, dissolved (mg/L)</td>
<td>31</td>
<td>1.3</td>
<td>476</td>
</tr>
<tr>
<td>Chloride, dissolved (mg/L)</td>
<td>31</td>
<td>2.5</td>
<td>675</td>
</tr>
<tr>
<td>Fluoride, dissolved (mg/L)</td>
<td>32</td>
<td><0.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Nitrogen, NO₂+NO₃, dissolved (mg/L as N)</td>
<td>31</td>
<td>0.1</td>
<td>15</td>
</tr>
<tr>
<td>Phosphorus, ortho, dissolved (mg/L as P)</td>
<td>29</td>
<td><0.01</td>
<td>0.4</td>
</tr>
<tr>
<td>Sulfate, dissolved (mg/L as SO₄)</td>
<td>31</td>
<td>6</td>
<td>103</td>
</tr>
<tr>
<td>Arsenic, dissolved (µg/L)</td>
<td>31</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Barium, dissolved (µg/L)</td>
<td>30</td>
<td><200</td>
<td>700</td>
</tr>
<tr>
<td>Cadmium, dissolved (µg/L)</td>
<td>31</td>
<td><1</td>
<td>5</td>
</tr>
<tr>
<td>Chromium, dissolved (µg/L)</td>
<td>31</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper, dissolved (µg/L)</td>
<td>29</td>
<td><20</td>
<td>60</td>
</tr>
<tr>
<td>Iron, dissolved (µg/L)</td>
<td>32</td>
<td>>50</td>
<td>4,700</td>
</tr>
<tr>
<td>Lead, dissolved (µg/L)</td>
<td>30</td>
<td><10</td>
<td>200</td>
</tr>
<tr>
<td>Manganese, dissolved (µg/L)</td>
<td>30</td>
<td><10</td>
<td>1,700</td>
</tr>
<tr>
<td>Mercury, dissolved (µg/L)</td>
<td>30</td>
<td><0.4</td>
<td>4</td>
</tr>
<tr>
<td>Selenium, dissolved (µg/L)</td>
<td>31</td>
<td><1</td>
<td>2</td>
</tr>
<tr>
<td>Silver, dissolved (µg/L)</td>
<td>31</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Zinc, dissolved (µg/L)</td>
<td>30</td>
<td><20</td>
<td>2,100</td>
</tr>
</tbody>
</table>

b) Only nitrate as N
c) If iron and manganese are both present, the total concentration of both substances should not exceed 300 µg/L.
gravel deposits and range in depth from 12 to 58 ft; seven wells tap the limestone aquifer and range in depth from 50 to 100 ft, and one 75-ft well taps shale that overlies the Onondaga Limestone at a depth of 75 ft. Locations of wells sampled are shown in figure 2.

Results of the analyses (tables 1 and 10A) indicate that, although the water quality of the unconsolidated deposits is generally similar to that of the underlying limestone bedrock, it varies areally and is locally of poor quality. The similarity of water in these two aquifers reflects their similar composition—the unconsolidated deposits contain an abundance of limestone clasts derived from the underlying Onondaga formation. Both aquifers have similar mean and median values of alkalinity, hardness, most major ions, and most metals (table 1).

Unconsolidated Aquifer

The variability in the ground-water quality of the unconsolidated deposits probably results from local variations in land use combined with the relatively high permeability of the surface deposits. The New York State drinking-water standards for iron and manganese were exceeded in 12 samples from five wells (table 10A). The standard for chloride was exceeded in eight samples from three wells; the standard for lead was exceeded in four samples from three wells, and the nitrate standard was matched or exceeded in three samples from one well.

The mean and median values of sodium, chloride, and specific conductance are also appreciably greater in the unconsolidated aquifer than in the bedrock aquifer. The elevated sodium and chloride concentrations and the resulting high specific conductance most likely result from the infiltration of road salts used on the New York State Thruway and other major roads in the area. For example, well LC-52, adjacent to the Thruway (fig. 2), had chloride concentrations ranging from 400 to 675 mg/L, and wells LC-8 and LC-6, south (downgradient) of the Thruway, had sodium concentrations ranging from 24 to 136 mg/L and chloride concentrations ranging from 75 to 400 mg/L.

Onondaga Limestone

Water quality in the bedrock aquifer is generally suitable for most uses. The New York State drinking-water standard for iron and manganese was exceeded at only one well and for sulfate at only one well.

The water quality deteriorates with depth. During the summer of 1982, several wells went dry. When they were deepened, the pumped water was more mineralized. For example, well LC-68, near the escarpment, was deepened in July 1982 from 40 ft to 62 ft. Comparison of water samples taken in March 1982 with those taken in February 1983 (table 10A, at end of report) shows that specific conductance increased from 396 to 1,270 mho, hardness increased from 206 to 871 mg/L as CaCO₃, calcium increased from 61 to 258 mg/L, sulfate increased from 49 to 533 mg/L, and alkalinity as CaCO₃ increased from 151 to 229 mg/L. The large increases in the calcium and sulfate concentrations may reflect upward-moving water from underlying gypsum-bearing rock formations such as the Camillus Shale of the Salina Group.
Effects of Landfill Near Lancaster

Location and Description

The landfill near Lancaster (fig. 3, section C-C') is excavated in the permeable silt, sand, and sand and gravel deposits that overlie the Onondaga Limestone. The landfill has been in operation since 1961 for the disposal of mostly residential and commercial refuse, although it may contain some industrial wastes. Local and county concern has prompted several geohydrologic studies in the landfill vicinity to determine whether leachate is moving offsite.

The landfill operation began in abandoned sand and gravel pits. Borings within the landfill revealed 20 to 40 ft of refuse overlying outwash or morainal deposits consisting of fine sand or fine sand and gravel that generally overlie the basal till (Wehran Engineering and Recra Research, 1980).

Borings along the perimeter of the landfill by Wehran Engineering during 1970-80 revealed 3 to 15 ft of till and sand deposits underlain by 20 to 50 ft of outwash and(or) morainal sands and gravelly sand that in turn overlie 0 to 10 ft of basal till. (Some borings did not encounter till.) The basal till is underlain by Onondaga Limestone.

Ground-Water Movement

Ground water is under water-table conditions in the upper sand, silt, and sand and gravel and in the refuse. Nested piezometers installed in the landfill vicinity reveal a significant downward component of ground-water flow into the Onondaga Limestone (Wehran Engineering and Recra Research, 1979, 1980); thus, leachate migration into the underlying sand, silt, and sand and gravel, and eventually into the Onondaga Limestone, is possible. The water-table contours (fig. 7) reveal a ground-water divide extending northeast-southwestward through the deposits; ground water north of the divide flows northeastward toward Tillman Swamp, and ground water south of the divide flows southwestward toward Ellicott Creek.

The discontinuous thin layer of relatively impermeable till that overlies the limestone is an important control on the amount of leachate that can infiltrate from the sand, silt, and sand and gravel into the limestone aquifer. The till is a discontinuous semiconfining layer separating the sand and gravel aquifer from the limestone. Wherever it is present, it would slow the rate of migration of leachate into limestone. The fine-grained portion (clay, silt, and fine sand) of the till would adsorb some of the constituents of the leachate. Where coarser deposits of silt and sand and gravel are in hydraulic contact with the limestone aquifer, leachate would readily infiltrate into the limestone.

Water levels in borings drilled into the Onondaga Limestone decreased progressively as the hole depth increased, indicating a significant downward component of ground-water flow. Water levels measured during the fall of 1981 in wells penetrating the upper 10 to 25 ft of the limestone (fig. 8) reveal that the direction of horizontal ground-water flow is westward. Thus, if leachate were to seep into the limestone beneath the landfill, it would move both vertically downward and westward.
Most private domestic wells in this area are drilled through the relatively thin saturated sand and gravel deposits and installed in the bedrock (Onondaga Limestone) to minimize the chance of drying up during a severe drought.

Ground-Water Quality

The local variability of ground-water quality makes the effects of the landfill difficult to evaluate. Wells LC-8 and LC-6, downgradient (0.5 mi southwest and 0.5 mi south, respectively) of the landfill (fig. 2), exhibited relatively high concentrations of some constituents that are indicators of landfill leachate. Other important indicator constituents were absent, however, and other sources of indicator constituents are in the vicinity. For example, well LC-8, a dug well 20 ft deep along a major highway 1,000 ft south (downgradient) of the New York State Thruway, had specific-conductance values ranging from 920 to 1,200 μmho, nitrate and nitrite concentrations ranging from 5.1 to 15 mg/L as N, hardness values ranging from 343 to 548 mg/L as CaCO₃, sodium concentrations ranging from 70 to 136 mg/L, and chloride concentrations ranging from 175 to 400 mg/L. Most of these concentrations are appreciably greater than the median values reported for wells tapping the unconsolidated deposits (table 1); however, the concentrations of metals and total organic carbon are not. Thus, the elevated specific conductance values and sodium and chloride concentrations are probably due to road salt. The high nitrate concentrations could be due to fertilizers or a septic system. Thus, the relatively poor quality of water from this well is not necessarily derived from the landfill. Water from well LC-39, which taps the limestone about 3,000 ft west (downgradient) of the landfill, yields water within the range of values measured elsewhere in the limestone aquifer.

In conclusion, no significant contamination of wells in the unconsolidated deposits or the upper part of the limestone could be directly attributed to the landfill. Head data from wells drilled in the Onondaga Limestone reveal a significant downward component of flow, which indicates that leachate from the landfill may be moving into deeper zones of the limestone. Only limited data on these deeper zones are available, however.

AQUIFER IN THE SARDINIA AREA

This aquifer, which includes about 9 mi² in the Town of Sardinia in the southeastern corner of Erie County (fig. 9), occupies a broad, flat, southward-draining valley bounded on the east and west by bedrock hills that rise as much as 250 ft above the valley floor, on the south by Cattaraugus Creek, and on the north by many small till hills. The western and central parts of the aquifer are drained by Hosmer Brook; the eastern area is drained by a small unnamed tributary to Cattaraugus Creek.

The hamlets of Sardinia and Chaffee lie on the aquifer, but the predominant land use is agriculture and pastureland. A landfill is excavated in a till hill adjacent to the northern border of the surficial aquifer (fig. 9).
Ground water is the principal source of water for the approximately 900 people living in the area underlain by the aquifer. The Chaffee community well serves 210 people (New York State Department of Health, 1982); the remaining population, institutions, livestock, and commercial facilities obtain water from individual private wells. Table 2 summarizes the estimated pumpage from the aquifer.

Figure 9.--Location of surficial outwash aquifer and wells in Sardinia area.
Table 2.—Estimated pumpage from Sardinia aquifer, 1982

<table>
<thead>
<tr>
<th></th>
<th>Population served</th>
<th>Average pumpage (gal/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaffee municipal supply</td>
<td>210</td>
<td>21,000</td>
</tr>
<tr>
<td>Private water supplies</td>
<td>700*</td>
<td>70,000*</td>
</tr>
<tr>
<td>Commercial (restaurants,</td>
<td>--</td>
<td>40,000*</td>
</tr>
<tr>
<td>motels, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock</td>
<td>--</td>
<td>20,000*</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>151,000</td>
</tr>
</tbody>
</table>

* Estimated

Hydrogeologic Framework

The Sardinia aquifer (fig. 10) occupies a deep north-south-trending glacially scoured valley that is partly filled with glacial sediments up to 600 ft thick (Calkin and others, 1974). The aquifer consists of surficial outwash sand and gravel deposited by glacial meltwater during the Lake Escarpment glaciation approximately 12,000 years ago (Calkin, 1982). The southward sloping pitted outwash plain extends southward from the Lake Escarpment moraine to Cattaraugus Creek. The aquifer is bounded on the west and east by bedrock hills of Devonian shale, siltstone, and sandstone covered with till 5 to 25 ft thick. The outwash (Qog and Qos in fig. 10) reaches a thickness of 95 ft in the northern part of the aquifer in front of the moraine (Oem in fig. 10) and forms a wedge that thins southward (10 to 15 ft thick) to Cattaraugus Creek. The creek has incised through the outwash and partly into underlying till and lacustrine deposits. The incision has left the outwash as bluffs standing 50 ft above the creek. A thin (0 to 20 ft), irregular buried layer of lacustrine fine sand, silt, and clay is present in the sand and gravel deposits in the central and eastern part of the aquifer.

The aquifer is underlain by relatively impermeable clay till and lacustrine deposits that form most of the valley fill. These deposits are as much as 600 ft thick (Calkin and others, 1974) and are interbedded with thin, confined sand and gravel deposits, some of which are significant water-bearing zones under artesian pressure. (See section A-A' in fig. 11.) Near Sardinia, where the surficial outwash is thin, many private wells are installed in these buried sand and gravel deposits at depths ranging from 110 to 344 ft. A protruding bedrock hill in the southern part of the area splits the aquifer into two parts (section B-B' and fig. 11).

The headwaters of Hosmer Brook originate at a former spillway (in the Lake Escarpment moraine) of a proglacial lake that occupied the Cazenovia River valley north of the moraine (fig. 10). Water flowing from the spillway partly eroded a channel in previously deposited outwash (Qog in fig. 10) 3 mi long and 1 mi wide in the middle of the valley. A veneer of later outwash (Qos) was deposited in this eroded area. Sections C-C' and D-D' in figure 11 show in detail the hydrogeologic conditions in the area of the moraine-outwash contact and the landfill, respectively.
Figure 10.—Surficial geology and location of geologic sections in Sardinia area.
EXPLANATION

Boundary of surficial outwash aquifer in Sardinia area

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Glaciation</th>
<th>Moraine or drift sheet</th>
<th>A Location of geologic section</th>
<th>SA-4 Well used in section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene</td>
<td>Quaternary</td>
<td>Pleistocene</td>
<td>Laventery</td>
<td>Qfp Flood plain; gravel, silt alluvium</td>
<td>Qtl Landslides, slumps; developed on exposures of clayey till (Qtc)</td>
</tr>
</tbody>
</table>

The Lake Escarpment moraine, which forms the northern boundary of the surficial outwash aquifer, consists of a clayey-silt till 20 to 63 ft thick with discontinous sand, and sand and gravel stringers. The fine-grained texture of the till and the sparsity of pebbles (typically forming less than 2 percent of the till) suggest that the till was derived from reworked fine-grained lake deposits from the Cazenovia River valley to the north that were transported by the ice during the Lake Escarpment readvance.

Well logs from south of Hand Road reveal an interlayering of till between sand and gravel deposits that suggests that the ice front of the Lake Escarpment readvance oscillated and overrode sand and gravel deposits. A core sample from well site SA-39, along Hand Road, revealed that the readvance incorporated some of the underlying sand and gravel into the bottom of till...
deposits and that incomplete scouring left some of the sand and gravel intact below the till. The altitude of the upper surface of this gravel is generally from 1,443 to 1,448 ft above sea level (fig. 11, section C-C'), but little information is available to determine its lower surface altitude. Well logs suggest that this sand and gravel layer is hydraulically connected to the surficial aquifer (fig. 11, section C-C'). This buried sand and gravel is the source of water for homes along Hand Road (fig. 11, section D-D').

Figure 11.—Geologic sections through Sardinia area; A-A', north-south through Sardinia area and D-D', along Hand road.
Figure 11 (continued).—Geologic sections through Sardinia area; B-B', east-west through southern part of area and C-C', north-south in landfill vicinity.
Saturated Thickness

The estimated saturated thickness of the surficial aquifer ranges from 5 ft to more than 60 ft. The deeper, confined aquifers are not included in these thickness values, nor is the relatively thin (5 to 20 ft), discontinuous lacustrine unit within the eastern part of the aquifer. The aquifer materials range in size from fine sand to coarse cobbles.

Figure 12.—Thickness and location of aquifer in Sardinia area.
The aquifer thickness is greatest (20 ft to as much as 95 ft) in the northern part of the aquifer, just south of the moraine, and saturated thickness exceeds 60 ft (fig. 12). In this area, the relatively impermeable lake deposits within the surficial sand and gravel are thin or absent. Saturated thickness may be thicker in the vicinity of kettleholes, where depressions caused by the melting of buried ice blocks became filled with collapsed outwash sand and gravel.

The saturated thickness thins southward and, at the village of Sardinia, is less than 25 ft (fig. 12). Wells in Sardinia are either shallow (less than 25 ft) or very deep (110 to 344 ft). For example, well SA-13 was drilled 344 ft before a significant buried water-producing zone was encountered. Several private residences along the southern edge of the aquifer obtain water from springs discharging at the contact between sand and gravel and the basal clay till or lacustrine deposits.

Ground-Water Movement

Recharge

The aquifer is recharged by precipitation on the land, by seepage from the tributary streams that drain the till-mantled uplands and flow onto the aquifer, and by subsurface flow from the till and bedrock along the sides of the valley. Hydrographs of water levels from several wells (fig. 13) indicate

Figure 13.--1982-83 hydrographs of wells in Sardinia area.
that most recharge occurs from late fall through early spring (November through April), when evapotranspiration is at a minimum. A significant second peak occurred during April and May 1983, when precipitation was considerably higher than the seasonal norm. During the growing season, evapotranspiration exceeds recharge from precipitation, so that precipitation recharges the water table only during extremely wet periods in summer. Ground-water levels declined from May until October. Wells SA-15 and SA-23, near Hosmer Brook, show annual water-level fluctuations of only 1 to 3 ft; this reflects the movement of ground water from recharge areas to Hosmer Brook. In contrast, wells SA-28 and SA-17, at the north and west edges of aquifer, respectively, are far from streams and show water-level fluctuations of 4 to 5 ft.

Average annual recharge to the sand and gravel aquifer is estimated to be 1 (Mgal/d)/mi2. This estimate is derived as follows: (1) direct infiltration of about 40 in/yr on the surface of the sand and gravel aquifer averages 500,000 (gal/d)/mi2; (2) runoff from till uplands that drains onto and seeps into the aquifer is about 50,000 (gal/d)/mi2; and (3) ground-water recharge to the sand and gravel deposits from adjacent till and bedrock is approximately 400,000 gal/d (La Sala, 1968).

Discharge

Ground water discharges from the aquifer by pumping, by seepage to Hosmer Brook and the tributary on the eastern side of the aquifer (fig. 9), by springs along the southern aquifer boundary, by underflow northward beneath the Lake Escarpment moraine in the northeast part of the aquifer, and by evapotranspiration. Direction of flow is controlled by hydraulic gradients and is shown by arrows on the water-table map (fig. 14).

Ground water in the extreme northeastern part of the aquifer flows northwest and discharges as underflow beneath the moraine. (Little information is available on the northern extent of the buried aquifer beneath the moraine.) Elsewhere, ground water flows predominantly southward and into Hosmer Brook, which then discharges into Cattaraugus Creek.

Water Quality

Water samples were collected from 15 wells in the Sardinia area in August 1982 and January and May 1983 (table 10B). Seven of the wells tap unconfined surficial sand and gravel deposits at depths ranging from 17 to 69 ft; the other eight tap confined sand and gravel deposits at depths of 27 to 344 ft. Three sets of nested piezometers were installed near the Chaffee landfill—SA-25 (01, 02, 03) southeast of the landfill, SA-28 (01, 02) south of the landfill, and SA-39 north of the landfill. (Well locations are shown in fig. 9.) The piezometer at SA-39 was rendered inoperative when a sampler became lodged in the well, and no data were collected from this site. Water samples were also taken from a private well (SA-46) northwest of the landfill along Hand Road and from a private well (SA-34) east of the landfill along route 16.

Chemical analyses indicate that the water quality of the Sardinia aquifer is generally good. This aquifer had the least mineralized water of the five aquifers studied. The water is moderately hard to very hard with values ranging from 92 to 274 mg/L as CaCO$_3$ and a median value of 172 mg/L as CaCO$_3$. 26
Water samples met New York State drinking-water standards for all inorganic constituents except iron and manganese, which were exceeded in 17 samples from nine wells. The concentrations of iron and manganese in these wells do not present a health hazard but could be of concern from an esthetic standpoint. Minimum, maximum, mean, and median values for all inorganic constituents measured are listed in table 3 along with the State drinking-water standards.
Table 3.—Minimum, maximum, mean, and median values and concentrations of water-quality constituents from wells in the Sardinia aquifer.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>No. of samples</th>
<th>Value or concentration</th>
<th>New York State drinking-water standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Specific conductance (μmho/cm)</td>
<td>38</td>
<td>130</td>
<td>680</td>
</tr>
<tr>
<td>pH, lab (standard units)</td>
<td>38</td>
<td>6.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Carbon, total organic (mg/L as C)</td>
<td>37</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>Hardness (mg/L as CaCO₃)</td>
<td>38</td>
<td>54</td>
<td>320</td>
</tr>
<tr>
<td>Alkalinity, lab (mg/L as CaCO₃)</td>
<td>38</td>
<td>43</td>
<td>251</td>
</tr>
<tr>
<td>Calcium, dissolved (mg/L)</td>
<td>38</td>
<td>16</td>
<td>97</td>
</tr>
<tr>
<td>Magnesium, dissolved (mg/L)</td>
<td>38</td>
<td>3.3</td>
<td>19</td>
</tr>
<tr>
<td>Potassium, dissolved (mg/L)</td>
<td>38</td>
<td>.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Sodium, dissolved (mg/L)</td>
<td>38</td>
<td>1.4</td>
<td>37</td>
</tr>
<tr>
<td>Chloride, dissolved (mg/L)</td>
<td>38</td>
<td>.5</td>
<td>35</td>
</tr>
<tr>
<td>Fluoride, dissolved (mg/L)</td>
<td>38</td>
<td><.2</td>
<td>.2</td>
</tr>
<tr>
<td>Nitrogen, NO₂+NO₃, dissolved (mg/L as N)</td>
<td>38</td>
<td>.01</td>
<td>7.1</td>
</tr>
<tr>
<td>Phosphorus, ortho, dissolved (mg/L as P)</td>
<td>37</td>
<td>0</td>
<td>.11</td>
</tr>
<tr>
<td>Sulfate, dissolved (mg/L as SO₄)</td>
<td>38</td>
<td>4.3</td>
<td>51</td>
</tr>
<tr>
<td>Arsenic, dissolved (μg/L)</td>
<td>38</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Barium, dissolved (μg/L)</td>
<td>38</td>
<td><200</td>
<td>700</td>
</tr>
<tr>
<td>Cadmium, dissolved (μg/L)</td>
<td>38</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Chromium, dissolved (μg/L)</td>
<td>38</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper, dissolved (μg/L)</td>
<td>38</td>
<td><10</td>
<td>60</td>
</tr>
<tr>
<td>Iron, dissolved (μg/L)</td>
<td>38</td>
<td>50</td>
<td>3,300</td>
</tr>
<tr>
<td>Lead, dissolved (μg/L)</td>
<td>38</td>
<td><10</td>
<td>20</td>
</tr>
<tr>
<td>Manganese, dissolved (μg/L)</td>
<td>38</td>
<td><10</td>
<td>1,500</td>
</tr>
<tr>
<td>Mercury, dissolved (μg/L)</td>
<td>38</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Selenium, dissolved (μg/L)</td>
<td>37</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Silver, dissolved (μg/L)</td>
<td>37</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Zinc, dissolved (μg/L)</td>
<td>38</td>
<td>4</td>
<td>1,230</td>
</tr>
</tbody>
</table>

b) Only nitrate as N
c) If iron and manganese are both present, the total concentration of both substances should not exceed 300 μg/L.
Because the unconfined sand and gravel aquifer is exposed at land surface, it is potentially susceptible to contamination from surface sources. Several of the shallow wells (SA-15, SA-14, SA-34, and SA-2) that tap the surficial aquifer had elevated levels of \(\text{NO}_2 \) and \(\text{NO}_3 \), \(\text{Cl} \), and total organic carbons, which are characteristically derived from septic tanks, fertilizers, or other surface sources.

Effect of Landfill Near Chaffee

Location and Description

The landfill near Chaffee is on Hand Road north of and adjacent to the surficial sand and gravel aquifer (fig. 9). The potential for leachate migration from the landfill to the surficial and buried aquifers has given rise to local concern. In 1982, the U.S. Geological Survey conducted test drilling, installed nested piezometers at three sites, and sampled ground water at two of the piezometer sites and two private wells to determine whether leachate has migrated offsite.

The landfill is excavated in a morainal hill near the terminus of the Lake Escarpment readvance. Test drilling within and around the landfill showed the underlying material to consist of 30 to 65 ft of silty clay to clayey-silt till with some silt, sand, and sand and gravel stringers. The base of the till lies at altitudes of 1,443 to 1,448 ft. A sand and gravel aquifer of undetermined thickness underlies the till (fig. 11, sections C-C', D-D').

Well logs reveal that the surficial morainal till pinches out south of the landfill, and interlayering of outwash sand and gravel and buried till layers extend at least as far south as well SA-25 (fig. 11, section C-C'). The buried till layers were encountered at the same altitudes in well SA-28. A deep (100- to 200-ft) test boring would be needed in the landfill vicinity to define the deeper subsurface hydrogeology.

A leachate-collection system was installed around the perimeter of the landfill in 1981. A 20-ft-deep trench was dug and the materials and ground-water conditions examined by a consulting geologist, who reported that the trench was installed in predominantly clayey-silt till with discontinuous lenses of fine sand to gravelly sand. Sand lenses were orientated horizontally and vertically. Permeability tests of the till indicated values of \(4 \times 10^{-7} \) cm/s or less (Earth Dimensions, Inc., 1981); permeability tests of the silt and sandy silt lens revealed permeabilities of \(1 \times 10^{-6} \) and \(1 \times 10^{-5} \) cm/s, respectively. Ground water was observed to seep out of some of the sand and gravelly sand lenses. Leachate odor and color were noted in two areas, one of which penetrated refuse (Earth Dimensions, Inc., 1981). The trench was backfilled with clayey silt to seal off horizontal paths of leachate migration through the lens, although little is known of the extent of vertical lenses below the landfill.

Ground-Water Movement

The surficial till contains a water table that probably roughly parallels the surface topography. Well logs indicate that the water level ranges from
6 to 22 ft below land surface. A relatively shallow depth to water also is indicated by seeps encountered during trench construction. The upper zone of the sand and gravel aquifer underlying the till unit contains a thin unsaturated zone, which indicates little or no hydraulic connection with the overlying till. A ground-water divide intersects the buried sand and gravel aquifer in the vicinity of well SA-28. If leachate were to migrate downward through the till, the contaminants would enter the buried sand and gravel aquifer and would move northward. If leachate escaped as springs along the south border of the landfill and flowed southward toward Hosmer Brook as surface runoff, it could move into the surficial outwash sand and gravel.

Ground-Water Quality

Comparison of mean and median values of chemical constituents of water from the wells surrounding the landfill with those from other wells in the Sardinia aquifer reveals that water in the landfill vicinity had higher concentrations of dissolved iron, manganese, zinc, and sulfate (table 4). Elevated concentrations of these constituents have been reported to be characteristic of landfill leachate (Nicholson and others, 1983). However, elevated concentrations of hardness, Ca, Mg, Na, Cl, total organic carbon, K, and heavy metals were also observed.

Table 4.—Median values of selected constituents of water in Sardinia aquifer near and at distance from Chaffee landfill.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Near landfill</th>
<th>Not near landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Specific conductance (μmho/cm)</td>
<td>374</td>
<td>386</td>
</tr>
<tr>
<td>pH, lab (standard units)</td>
<td>7.7</td>
<td>7.8</td>
</tr>
<tr>
<td>Carbon, total organic (mg/L as C)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Hardness (mg/L as CaCO₃)</td>
<td>183</td>
<td>182</td>
</tr>
<tr>
<td>Alkalinity, lab (mg/L as CaCO₃)</td>
<td>149</td>
<td>149</td>
</tr>
<tr>
<td>Calcium, dissolved (mg/L)</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>Magnesium, dissolved (mg/L)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Sodium, dissolved (mg/L)</td>
<td>4.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Chloride, dissolved (mg/L)</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Nitrogen, NO₂+NO₃ dissolved (mg/L as N)</td>
<td>.41</td>
<td>.18</td>
</tr>
<tr>
<td>Phosphorus, ortho dissolved (mg/L as P)</td>
<td>.02</td>
<td>.03</td>
</tr>
<tr>
<td>Sulfate, dissolved (mg/L as SO₄)</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>Iron, dissolved (mg/L)</td>
<td>.49</td>
<td>.22</td>
</tr>
<tr>
<td>Manganese, dissolved (mg/L)</td>
<td>.28</td>
<td>.29</td>
</tr>
<tr>
<td>Zinc, dissolved (mg/L)</td>
<td>.20</td>
<td>.025</td>
</tr>
</tbody>
</table>

30
metals such as Cu, Ni, and Pb, are also characteristic of landfill leachate but were not observed at the wells close to the landfill. In addition, the high mean value of zinc in wells close to the landfill results from the extremely high zinc value from the deep observation well (SA-25-03), which has a galvanized screen that probably contaminated the samples. Deleting the zinc values for well SA-25-03 from the analyses gives a mean and median zinc value similar to background levels. Because elevated concentrations of iron, manganese, and sulfate are not associated with any of the other indicators of landfill leachate, the landfill is probably not the source of these constituents.

The differences between ground-water quality at the landfill and that in surrounding areas are probably due to differences in geology. The wells that the U.S. Geological Survey sampled in the landfill vicinity draw water from the confined sand and gravel deposits beneath the relatively thick till. These confined deposits are likely to have a more reducing environment, in which iron and manganese become more soluble than in the unconfined surficial sand and gravel deposits elsewhere in the Sardinia aquifer. Also, the water quality at well SA-46, downgradient from the landfill, is similar to that of wells upgradient from the landfill and does not have appreciably greater concentrations of constituents that are indicators of landfill leachate.

In summary, results of the water-level measurements and the water-quality sampling together indicate that leachate has not migrated any great distance to the south, east, or northwest of the landfill. Northward migration could not be evaluated because the wells north of the landfill were not operational, and other data on this area are insufficient for interpretation.

AQUIFER IN THE SPRINGVILLE AREA

This sand and gravel aquifer occupies approximately 9.5 mi² of the town of Concord along the southern border of Erie County (fig. 15). The Springville area lies within the glaciated Allegheny Plateau, an area characterized by rounded hills with a network of drift-filled valleys. The aquifer occupies a broad valley-outwash plain bounded on the north by the morainal till of the Lake Escarpment moraine, on the east and west by till-mantled bedrock hills that rise as much as 300 ft above the plain, and to the south by the north slope of the Cattaraugus River valley. The outwash plain is drained by Spring Brook, which flows into Cattaraugus Creek.

Land use in the outlying areas beyond the Village of Springville is predominantly crop and dairy farming; the village contains some commercial establishments and light industry. Small gravel mining operations are scattered throughout the area.

Population and Ground-Water Use

Ground water is the principal source of water for approximately 5,200 people in the area underlain by the aquifer. The aquifer serves the Village of Springville (pop. 4,285, U.S. Bureau of Census, 1980), two trailer parks, several farms, and approximately 700 people in the rural areas. Table 5 lists the 1980 pumpage by various water users.
The single largest user of ground water is the Village of Springville, which pumps an average of 631,000 gal/d, about 35 percent of which is used by several small industries and commercial facilities (Greenly and Hansen, 1970). Several private homes use water from springs at the south edge of the aquifer.

Figure 15.—Location of surficial outwash aquifer and wells in Springville area.
Table 5.--Population and pumpage in Springville area, 1982

<table>
<thead>
<tr>
<th>Source</th>
<th>Population served</th>
<th>Average pumpage (gal/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal community water system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Village of Springville</td>
<td>14,285</td>
<td>2,631,000</td>
</tr>
<tr>
<td>Other community water systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Perkins Trailer Park</td>
<td>375</td>
<td>4,750</td>
</tr>
<tr>
<td>2. Springville Mobile Village</td>
<td>314</td>
<td>4,114</td>
</tr>
<tr>
<td>Private water supplies</td>
<td>5700</td>
<td>4,700,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5,174</td>
<td>719,900</td>
</tr>
</tbody>
</table>

1 U.S. Bureau of Census, 1980
2 Unpublished data from New York State Department of Health
3 New York State Department of Health, 1982
4 Assumed 100 gal/d per person
5 Estimated

Hydrogeologic Framework

The Springville aquifer occupies a deep north-south-trending glacially scoured valley that is partly filled with glacial sediments. Till-mantled bedrock hills border the aquifer on the east and west. Wisconsin glaciation north of Cattaraugus Creek severely altered the preglacial drainage features. The last glacial episode to affect the Springville area occurred during the Lake Escarpment readvance, about 14,000 years ago (Calkin, 1982), which marked an oscillating stand of the ice front in the northern part of the aquifer area. The receding ice deposited small undulating knobs and mounds of morainal till in the northern part of the Springville area, and meltwater deposited a sand and gravel outwash plain with a gently sloping surface from south of the moraine to the present location of Cattaraugus Creek (fig. 16). The outwash deposits form a wedge-shaped aquifer, thickest in front of the moraine and thinning southward, that terminates at the north wall of Cattaraugus Creek Valley, as shown in section A-A' of figure 17.

An exposed cut along the north bank of Cattaraugus Creek shows about 10 ft of outwash overlying clayey till deposited during Lavery glaciation (La Fleur, 1980). The till is highly susceptible to slumping along the steep banks of the creek. Underlying the till are interbedded lacustrine silt/clay and sand and gravel sediments deposited during pro-Lavery, Erie, and Kent stadial and interstadial periods of the Wisconsin glaciation (LaFleur, 1980). Little information on depth to bedrock is available; several borings in the Village of Springville to depths of 260 ft did not encounter bedrock.

Test drilling by Layne, Inc., in 1967, in the Village of Springville, revealed that, in the middle of the valley, an area of surficial outwash deposits 2.5 mi long and 3,000 ft wide had been eroded by glacial meltwater. In this area a veneer of alluvial and outwash silt, sand, and gravel (Qos in
Figure 16.--Surficial geology and location of geologic sections in Springville area.
fig. 16) overlies silty clay till. Because most of the older outwash had been eroded away, the village wells are installed in discontinuous confined sand and gravel layers between depths of 85 and 145 ft (altitude 1,255 and 1,195 ft; see fig. 17, section B-B'). East of the village these buried sand and gravel layers are absent or lie at greater depths.

In the southern and southwestern parts of the area, the surficial outwash and confined aquifers end at the Cattaraugus Creek and Spooner Creek valleys, which are incised 150 to 180 ft into drift and, in one short stream reach, into bedrock.

EXPLANATION

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Glaciation</th>
<th>Moraine or drift sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene</td>
<td>Quaternary</td>
<td></td>
<td>Boundary of surficial outwash aquifer in Sardinia area</td>
</tr>
<tr>
<td>Ojp</td>
<td></td>
<td></td>
<td>A A' Location of geologic section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SP-29 Well used in section</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Glaciation</th>
<th>Moraine or drift sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene</td>
<td>Quaternary</td>
<td></td>
<td>Alluvial silt and gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Landslides, slumps; covering clayey till</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High terraces of silt and gravel</td>
</tr>
<tr>
<td></td>
<td>Pleistocene</td>
<td></td>
<td>End moraine; till with some mixed sand and gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lake outwash incised into earlier outwash; sand and gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outwash; cobble gravel, sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lacustrine sand, silt, and clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ice-contact, kame sand and gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Till, clayey with embedded cobbles with occasional silt, sand, and gravel stringers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ground moraine; till and some stratified drift</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lodgment till overlying bedrock</td>
</tr>
</tbody>
</table>
Figure 17.—Geologic sections through Springville area; A-A', north-south through aquifer area and B-B', east-west through central part of aquifer.
Saturated Thickness

Saturated thickness of the sand and gravel (fig. 18) is greatest (15 to 20 ft) in the northern part of the valley and thins to less than 5 ft to the south and in the central part.

Figure 18.—Aquifer thickness in Springville area.
The deeper confined sand and gravel units, which are discontinuous and lie beneath the upper till and lacustrine deposits (see fig. 17), provide the largest well yields (tens to more than several hundred gal/min). The upper till and lacustrine deposits beneath Springville are 80 to 90 ft thick, and the underlying sand and gravel deposits, mostly 4 to 15 ft thick, lie between depths of 84 and 150 ft below land surface. East of Springville the till and lacustrine deposits thicken (fig. 17, section B-B'), and the depth to buried sand and gravel layers increases. Well SP-35 along the northern edge of the aquifer is 528 ft deep and taps a buried sand and gravel layer (altitude 902 ft) that is probably overlying or near bedrock. The floor of the buried bedrock valley probably lies at an altitude of 900 ft.

Ground-Water Movement

Recharge

Aquifer recharge results from precipitation infiltrating downward through permeable soils to the water table, by seepage from tributary streams that originate in the till-mantled uplands and flow onto the aquifer, and by sub-surface flow from the adjacent till and bedrock on the sides of the valley. Hydrographs of the water levels of several wells (fig. 19) indicate that most recharge occurs from November through April. Although about 40 percent of the average annual precipitation (approximately 42 inches) falls during the growing season—May through September (Dethier, 1966)—nearly all is evaporated or transpired by vegetation so that little water recharges the aquifer during this period. Average annual recharge to the aquifer ranges from 0.4 to 1.0 (Mgal/d)/mi² (La Sala, 1968).

![Hydrographs of wells tapping Springville aquifer, July 1982 through October 1983. (Locations are shown in fig. 15.)](image-url)
Discharge

Ground-water discharge occurs by pumpage, seepage into Spring Brook, spring flow from the base of the aquifer along the valley walls at Spring Brook, Cattaraugus Creek, Spooner Creek, and the edges of the older outwash (Qog in fig. 16) in the middle of the valley, and by evapotranspiration. Great Bear Spring, 1,000 ft north of Middle Road, flows from the edge of the older outwash and was once a water supply for Springville.

The direction of ground-water flow is controlled by hydraulic gradients and is indicated by arrows in figure 20. Ground water in this area generally flows from north to south and from the east, west, and north perimeter of the aquifer toward the center of the valley. A ground-water mound in the south-western part of the aquifer causes ground water there to flow west to Spooner Creek, south to Cattaraugus Creek, and east to Spring Brook.

Water Quality

Ground-water samples were collected during August 1982 and January and May of 1983 (table 10C) from eight wells and two springs in the Springville area. Six of the wells tap the surficial sand and gravel aquifer at depths ranging from 22 to 56 ft; the other two tap deep, confined sand and gravel deposits at depths of 137 and 300 ft. The two springs emanate from the edge of the surficial sand and gravel aquifer. Locations of wells and springs are shown in figure 20.

Chemical analyses indicate the water in the Springville aquifer to be suitable or marginally suitable for most uses (table 6). Hardness values range from 78 to 445 mg/L as CaCO₃ (moderately hard to very hard) with a median value of 238 mg/L as CaCO₃ (very hard). Seven of the ten sampling sites had very hard water, two had hard water, and one had moderately hard water. Iron and manganese exceeded the New York State drinking-water standards in eight samples from four wells.

The New York State drinking-water standard for nitrate (10 mg/L) was matched in the last sample taken from well SP-9, in the southeast part of the aquifer, and the standard was approached in samples from several other wells. The chloride standard (250 mg/L) was nearly exceeded in samples from wells SP-9 and SP-26 along the eastern edge of the aquifer, and, although no drinking-water standard has been established for sodium, the sodium concentration in some of the shallow wells exceeded the recommended concentration of 20 mg/L (U.S. Environmental Protection Agency, 1976) for people on sodium-restricted diets. Minimum, maximum, mean, and median values for all inorganic constituents measured in the Springville aquifer are listed in table 6 along with the New York State drinking-water standards.

Because the unconfined sand and gravel aquifer is exposed at land surface, some recharge occurs directly from the surface, thereby making the aquifer susceptible to contamination from surface sources. Results of the water-quality analyses indicate that soluble material is indeed entering the aquifer from surface sources. For example, the nitrate concentrations were uniformly higher in the Springville aquifer than in the other four aquifers studied.
Figure 20.—Potentiometric-surface altitude and direction of ground-water flow in Springville area.
Table 6.—Minimum, maximum, mean, and median values and concentrations of water-quality constituents from Springville aquifer.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>No. of samples</th>
<th>Value or concentration</th>
<th>New York State drinking-water standard<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Specific conductance (µmho/cm)</td>
<td>28</td>
<td>227</td>
<td>1,360</td>
</tr>
<tr>
<td>pH, lab (standard units)</td>
<td>28</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Carbon, total organic (mg/L as C)</td>
<td>28</td>
<td>1</td>
<td>116</td>
</tr>
<tr>
<td>Hardness (mg/L as CaCO₃)</td>
<td>28</td>
<td>78</td>
<td>445</td>
</tr>
<tr>
<td>Alkalinity, lab (mg/L as CaCO₃)</td>
<td>28</td>
<td>60</td>
<td>--</td>
</tr>
<tr>
<td>Calcium, dissolved (mg/L)</td>
<td>28</td>
<td>23</td>
<td>145</td>
</tr>
<tr>
<td>Magnesium, dissolved (mg/L)</td>
<td>28</td>
<td>5.0</td>
<td>27</td>
</tr>
<tr>
<td>Potassium, dissolved (mg/L)</td>
<td>28</td>
<td>.5</td>
<td>9.6</td>
</tr>
<tr>
<td>Sodium, dissolved (mg/L)</td>
<td>28</td>
<td>3.0</td>
<td>165</td>
</tr>
<tr>
<td>Chloride, dissolved (mg/L)</td>
<td>28</td>
<td>10</td>
<td>225</td>
</tr>
<tr>
<td>Fluoride, dissolved (mg/L)</td>
<td>28</td>
<td><.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Nitrogen, NO₂⁺NO₃, dissolved (mg/L as N)</td>
<td>27</td>
<td>.1</td>
<td>10</td>
</tr>
<tr>
<td>Phosphorus, ortho, dissolved (mg/L as P)</td>
<td>28</td>
<td>.01</td>
<td>.48</td>
</tr>
<tr>
<td>Sulfate, dissolved (mg/L as SO₄⁻)</td>
<td>28</td>
<td>16</td>
<td>139</td>
</tr>
<tr>
<td>Arsenic, dissolved (µg/L)</td>
<td>28</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Barium, dissolved (µg/L)</td>
<td>28</td>
<td><200</td>
<td>500</td>
</tr>
<tr>
<td>Cadmium, dissolved (µg/L)</td>
<td>28</td>
<td><1</td>
<td>9</td>
</tr>
<tr>
<td>Chromium, dissolved (µg/L)</td>
<td>28</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper, dissolved (µg/L)</td>
<td>28</td>
<td><20</td>
<td>50</td>
</tr>
<tr>
<td>Iron, dissolved (µg/L)</td>
<td>28</td>
<td>50</td>
<td>2,900</td>
</tr>
<tr>
<td>Lead, dissolved (µg/L)</td>
<td>28</td>
<td><10</td>
<td>20</td>
</tr>
<tr>
<td>Manganese, dissolved (µg/L)</td>
<td>28</td>
<td><10</td>
<td>8,300</td>
</tr>
<tr>
<td>Mercury, dissolved (µg/L)</td>
<td>28</td>
<td><.4</td>
<td><.4</td>
</tr>
<tr>
<td>Selenium, dissolved (µg/L)</td>
<td>28</td>
<td><1</td>
<td>10</td>
</tr>
<tr>
<td>Silver, dissolved (µg/L)</td>
<td>28</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Zinc, dissolved (µg/L)</td>
<td>28</td>
<td><20</td>
<td>300</td>
</tr>
</tbody>
</table>

b) Only nitrate as N.
c) If iron and manganese are both present, the total concentration of both substances should not exceed 300 µg/L.
Figure 21.—Areal distribution of nitrate concentrations in Springville area.
Nitrate concentrations in the two springs and all shallow wells exceeded 2.6 mg/L and in four wells exceeded 7.5 mg/L. The nitrate concentrations (fig. 21) appear to increase southwestward, following the direction of ground-water flow, which suggests that nitrates accumulate in the ground water as it flows beneath this largely agricultural valley. Alternatively, the high nitrate concentrations may reflect only local influences because shallow wells that had high nitrogen concentrations are in or near fields under agricultural production. However, the relatively high nitrate concentrations measured in water from all wells tapping the surficial aquifer indicate a moderate concentration of nitrate throughout the aquifer. Freeze and Cherry (1979) report that, in areas where nitrate contamination is extensive, fertilizer is generally the primary nitrogen source.

Three shallow wells (SP-9, SP-26, SP-37) contained elevated concentrations of sodium and chloride. These wells show no other pattern, but all are close to major highways, which suggests that the aquifer is influenced by road salt locally but has not been widely affected by sodium and chloride.

The ground water in the deep, confined sand and gravel layers appears to be protected from surface contamination. The two deep wells (SP-15 in Springville and SP-31 north of the aquifer) had low concentrations of nitrate, sodium, and chloride (table 6); the latter well, 300 ft deep, also had the second lowest concentration of dissolved solids (as determined by specific conductance). In contrast, the first well, 137 ft deep, had relatively hard water with high levels of iron, manganese, and sulfate and also contained a high concentration of fluoride (1.1 mg/L in one sample, which is near the drinking-water standard of 1.5 mg/L).

AQUIFER IN THE ALDEN AREA

The Alden sand and gravel aquifer occupies approximately 4.2 mi² of the Town and Village of Alden in east-central part of Erie County and 0.15 mi² of Genesee County (fig. 22). The aquifer is in the glaciated Erie lowlands. The area consists of gently rolling beach ridges, which are bordered on the north by a flat to gently sloping lake plain and on the south by many small hummocky morainal mounds of till. Most of the area is drained by tributaries to Ellicott Creek, which flows westward along the northern perimeter of the aquifer and into the Niagara River. The west and southwest part of the aquifer is drained by tributaries to Cayuga Creek, which flows into Lake Erie.

Land use is predominantly residential and agricultural. Residential areas include the Village of Alden in the center of the aquifer and corridors of suburban residences along state and county roads.

Population and Ground-Water Use

Ground water is the sole source of water for approximately 3,800 people living in the area underlain by the aquifer. Industry and residents of the Village of Alden (population 2,488, U.S. Bureau of Census, 1980) are supplied
by a public water-supply system that uses a well field consisting of three drilled wells and three dug wells installed in sand and gravel deposits. The remainder of the residences, farms, and commercial facilities use individual private wells. Table 7 summarizes the estimated pumpage from the aquifer.

Figure 22.—Location of aquifer and wells in Alden area.

Hydrogeologic Framework

Deglaciation during late Wisconsin time resulted in deposition of morainal till (Marilla moraine) south of the aquifer, the beaches and deltaic sand and gravel that form the aquifer, and extensive lacustrine silt and clay and till deposits northwest of the aquifer (Calkin, 1982). The distribution of surficial deposits is shown in figure 23.

The aquifer was formed when fluvial material, transported by north-flowing Cayuga Creek and other small tributaries that drained the uplands to the south, was deposited into a proglacial lake (Lake Warren) to form a delta. Wave action reworked the deltaic deposits to form long, linear beach ridges.
Table 7.—Estimated population and pumpage from Alden aquifer, 1982

<table>
<thead>
<tr>
<th>Population</th>
<th>Pumpage (gal/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alden municipal supply</td>
<td></td>
</tr>
<tr>
<td>Domestic water consumption</td>
<td>12,500</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>Other (institutions, parks,</td>
<td></td>
</tr>
<tr>
<td>fire fighting, etc.)</td>
<td></td>
</tr>
<tr>
<td>Private water supplies</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
</tr>
<tr>
<td>Stock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,800</td>
</tr>
</tbody>
</table>

* Estimated
1 U.S. Bureau of Census, 1980
2 Unpublished data from New York State Department of Health

Figure 23.—Surficial geology and lines of geologic sections A-A’ in Alden area.
No test holes were drilled by the U.S. Geological Survey during this study, but subsurface information was provided by Harold and Michael Frey of Frey Well Drilling of Alden, and was obtained from Village of Alden well records and from wells inventoried by the Geological Survey. Well logs were unavailable, except those for the village well field; therefore, subsurface information in the Alden area is inferred. The well driller indicated, in general, 10 to 20 ft of sand and gravel overlying 10 to 20 ft of till or sandy clay, which in turn overlies 5 to 15 ft of sand and gravel over shale bedrock. A generalized section is shown in figure 24. Most wells tapping this aquifer are installed in the lower sand and gravel zone, but, because this zone is thin (5 to 15 ft), the wells are commonly extended 6 to 8 ft into the shale to provide a "storage reservoir" as shown schematically in figure 25.

Figure 24.—Geologic section A-A' through the Alden area.

Figure 25.—Construction of typical wells in Alden area.
Saturated Thickness

Aquifer material consists of sediments ranging from fine sand to coarse gravel. Few wells tap the 10- to 20-ft upper sand and gravel zone, which is unsaturated or only thinly saturated (less than 5 ft). Well logs and drillers indicate that the lower sand and gravel zone, generally 5 to 15 ft thick, is confined beneath a relatively impermeable till or sandy clay layer 10 ft thick and overlying shale (fig. 24).

Ground-Water Movement

Recharge

Ground water in the upper sand and gravel zone, where present, is under water-table conditions. Because few parts of the upper zone are saturated, the water-level data were too scant for construction of a water-table map. Recharge to the upper sand and gravel zone occurs solely from precipitation, and the average annual replenishment is estimated to range from 0.2 to 0.4 (Mgal/d)/mi² (La Sala, 1968). A pumping test at the Village of Alden dug wells revealed a "safe" yield of approximately 75 gal/min or 108,000 gal/d.

Recharge to the lower aquifer is more complex. Where the water table in the upper aquifer is above the potentiometric surface of the lower aquifer, some ground water may infiltrate downward through the till or sandy clay confining beds to the lower sand and gravel. Where the water table is below the potentiometric surface, such as where artesian flow occurs, the lower aquifer may discharge to the upper aquifer.

The chemical quality of ground water in the lower aquifer suggests that some of the water may be derived from the underlying shale. Recharge probably also occurs along the southern edge of the aquifer, where bedrock crops out in Spring Brook at State Highway 20. The lower gravel may also crop out in this area and receive recharge from precipitation and seepage from Spring Brook. Peripheral recharge to the lower sand and gravel may also occur from seepage from the till and(or) bedrock in this area, and by infiltration of runoff from the till uplands to the south.

Discharge

Discharge from the upper zone occurs by evapotranspiration, by seepage into streams, and by pumping dug wells in the Village of Alden near Spring Brook. Discharge from the lower aquifer occurs by pumping of village and private drilled wells and by seepage into Ellicott and Cayuga Creeks.

Water levels in some wells tapping the lower sand and gravel zone in the northern part of the aquifer were above the top of that zone (some wells flowed), which indicates confined conditions. A potentiometric-surface map of the lower zone (fig. 26) was drawn from water-level measurements made by the Geological Survey mostly during November 1982 and supplemented by measurements made by Frey Drillers and Village of Alden during 1960-81. Water in the central and eastern parts of the aquifer flows mainly north-northwestward into Ellicott Creek; water in the western part flows westward into Cayuga Creek and tributaries to Cayuga Creek.
Water Quality

Water-quality data from the Alden sand and gravel aquifer were obtained by the Erie County Department of Health in a single sampling of four public water-supply wells (AL-21, AL-8, AL-18, and AL-16) in April 1982 (table 10D). Results of the analyses indicate that the water quality of the sand and gravel aquifer is generally fair to good.

Nitrate and nitrite concentrations were all below 2.3 mg/L as N, and few of the New York State drinking-water standards were exceeded. The poorest water was from wells AL-18 and AL-16 (fig. 22), which exceeded the State drinking-water standards for iron, sulfate, and total dissolved solids. These constituents, which probably originate from natural sources, do not present a health hazard but could be an aesthetic concern. Minimum, maximum, and mean values for all inorganic constituents measured are listed in table 8 along with the New York State drinking-water standards.

The water quality in individual wells varied with the depth of the wells. The higher dissolved-solids concentrations in water from the deeper wells is consistent with the observation that water from the underlying shale bedrock may be discharging upward to the sand and gravel zone that overlies bedrock.
Table 8—Minimum, maximum, and mean values and concentrations of water-quality constituents from Alden aquifer.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>No. of samples</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>New York State drinking-water standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific conductance (μmhos/cm)</td>
<td>4</td>
<td>7.3</td>
<td>7.7</td>
<td>7.6</td>
<td>--</td>
</tr>
<tr>
<td>pH, lab (standard units)</td>
<td>4</td>
<td>4.7</td>
<td>13</td>
<td>9.7</td>
<td>--</td>
</tr>
<tr>
<td>Carbon, total organic (mg/L as C)</td>
<td>4</td>
<td>170</td>
<td>653</td>
<td>387</td>
<td>--</td>
</tr>
<tr>
<td>Hardness (mg/L as CaCO₃)</td>
<td>4</td>
<td>145</td>
<td>283</td>
<td>232</td>
<td>--</td>
</tr>
<tr>
<td>Alkalinity, lab (mg/L as CaCO₃)</td>
<td>4</td>
<td>62</td>
<td>247</td>
<td>149</td>
<td>--</td>
</tr>
<tr>
<td>Calcium, dissolved (mg/L)</td>
<td>4</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Magnesium, dissolved (mg/L)</td>
<td>4</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Phosphorus, ortho, dissolved (mg/L as P)</td>
<td>4</td>
<td>0.1</td>
<td>2.7</td>
<td>0.8</td>
<td>10b</td>
</tr>
<tr>
<td>Sulfate, dissolved (mg/L as SO₄)</td>
<td>4</td>
<td>23</td>
<td>376</td>
<td>156</td>
<td>250</td>
</tr>
<tr>
<td>Arsenic, dissolved (μg/L)</td>
<td>4</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>50</td>
</tr>
<tr>
<td>Barium, dissolved (μg/L)</td>
<td>4</td>
<td><200</td>
<td><400</td>
<td>300</td>
<td>1,000</td>
</tr>
<tr>
<td>Cadmium, dissolved (μg/L)</td>
<td>4</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>10</td>
</tr>
<tr>
<td>Chromium, dissolved (μg/L)</td>
<td>4</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>50</td>
</tr>
<tr>
<td>Copper, dissolved (μg/L)</td>
<td>4</td>
<td><20</td>
<td>40</td>
<td>30</td>
<td>1,000</td>
</tr>
<tr>
<td>Iron, dissolved (μg/L)</td>
<td>4</td>
<td><50</td>
<td>480</td>
<td>250</td>
<td>300c</td>
</tr>
<tr>
<td>Lead, dissolved (μg/L)</td>
<td>4</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>50</td>
</tr>
<tr>
<td>Manganese, dissolved (μg/L)</td>
<td>4</td>
<td><10</td>
<td>120</td>
<td>40</td>
<td>300c</td>
</tr>
<tr>
<td>Mercury, dissolved (μg/L)</td>
<td>4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td>--</td>
</tr>
<tr>
<td>Selenium, dissolved (μg/L)</td>
<td>4</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>--</td>
</tr>
<tr>
<td>Silver, dissolved (μg/L)</td>
<td>4</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>50</td>
</tr>
<tr>
<td>Zinc, dissolved (μg/L)</td>
<td>4</td>
<td><20</td>
<td>40</td>
<td>30</td>
<td>5,000</td>
</tr>
</tbody>
</table>

b) Only nitrate as N.
c) If iron and manganese are both present, the total concentration of both substances should not exceed 300 μg/L.
Site AL-21, in the northern part of town, contains three dug wells, 14 ft deep, that produced water with the lowest measured dissolved-solids concentration. Here, a sandy clay lens separates the lower sand and gravel aquifer from the upper aquifer (fig. 24). The dug wells draw water from the upper till or sandy clay lens and probably from the upper zone of the lower sand and gravel aquifer. Because a second lower sandy clay lens overlies the shale, water from dug wells is probably unaffected by water from the shale, which would explain their relatively low dissolved-solids concentrations.

Wells AL-8 and AL-16, near the center of Alden, tap the lower sand and gravel aquifer that overlies bedrock and are screened from 27 and 45 ft, respectively. Water from these wells contained elevated concentrations of dissolved solids, hardness, calcium, magnesium, iron, manganese, sulfate, sodium, and chloride. Because both wells are in contact with the shale, some of their water is probably derived from the shale. Similarly, well AL-18, in the northern part of Alden, taps the lower sand and gravel aquifer and extends 2 ft into the shale (La Sala, 1968, p. 101) and produces water with the highest concentration of dissolved solids, hardness, calcium, magnesium, iron, manganese, sulfate, sodium, and chloride.

A local driller reported that about 90 percent of wells in the Alden area have iron bacteria encrustation. The encrustation, which can clog screens and reduce water yields, can be removed by adding acid and surging the well.

SUMMARY

Aquifers in the Clarence-Lancaster-Newstead area.—This area contains a discontinuous surficial aquifer of morainal, beach, and outwash sand and gravel overlying the Onondaga Limestone, which generally yields 10 to 100 gal/min; most wells in the area tap this aquifer. Quality of water in the unconsolidated deposits is similar to that of the limestone except that the limestone has a higher concentration of sulfate, which is probably due to solution of gypsum minerals. Quality of water in the shallow wells is variable, especially in those along and downgradient of the New York State Thruway, where sodium and chloride concentrations are elevated. A landfill is excavated in the surficial deposits in the western part of the aquifer, but no significant contamination directly attributable to the landfill in the area was detected in wells (sampled during this study) tapping either the unconsolidated deposits or the upper part of the limestone. Water levels in nested piezometers at the landfill indicated a significant downward component of ground-water flow. Little water-quality data are available to determine the effect of the landfill in deeper water-bearing zones of the limestone, however.

Aquifers in the Sardinia and Springville areas.—The two surficial glacial outwash sand and gravel aquifers in these areas occupy deep, glacially scoured valleys and overlie mostly nonwater-bearing sediments that contain several buried sand and gravel deposits. The best sources of ground water are in the northern parts of the aquifers, where the aquifers are thickest and near recharge areas. A landfill adjacent to the Sardinia aquifer has not significantly
affected the water quality of the surficial aquifer, but more data would be needed to determine the effects on the confined sand and gravel aquifer along the northern perimeter of the landfill.

Aquifer in the Alden area.—This aquifer consists of an upper sand and gravel zone and a more productive lower zone on top of shale bedrock. The two zones are separated by a sandy clay or till layer. Water from the lower zone is more highly mineralized, probably because it is partly derived from the underlying shale.

SELECTED REFERENCES

SELECTED REFERENCES (continued)

Table 9.—Records of selected wells in Erie County, New York

NUMBERING AND ARRANGEMENT OF WELLS

All wells and borings are identified by latitude and longitude to the nearest second, as measured from 7½-minute topographic maps, scale 1:24,000. The location of each well or boring record was plotted on these maps by U.S. Geological Survey staff during a visit to the site or from large-scale engineering drawings.

The location of each well and boring is shown on maps within the text. Data are arranged in 1-minute strips of latitude. Each table begins with the southernmost strip followed by other strips successively farther north.

FOOTNOTES AND ABBREVIATIONS

1. Type of well

<table>
<thead>
<tr>
<th>Type of well</th>
<th>Aquifer type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drl = drilled</td>
<td>Ss = sandstone</td>
</tr>
<tr>
<td>Dug = dug</td>
<td>Sand = sand</td>
</tr>
<tr>
<td>Drv = driven</td>
<td>Sh = shale</td>
</tr>
<tr>
<td></td>
<td>S&G = sand & gravel</td>
</tr>
<tr>
<td></td>
<td>Silt = silt</td>
</tr>
<tr>
<td></td>
<td>Grvl = gravel</td>
</tr>
<tr>
<td></td>
<td>Fill = fill</td>
</tr>
<tr>
<td></td>
<td>Till = till</td>
</tr>
<tr>
<td></td>
<td>LS = Onondaga Limestone</td>
</tr>
<tr>
<td></td>
<td>Clay = clay</td>
</tr>
</tbody>
</table>

2. Aquifer type

3. Land-surface altitude

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Water use</th>
</tr>
</thead>
<tbody>
<tr>
<td>in feet above National Geodetic Vertical Datum of 1929 (NGVD), estimated from topographic maps.</td>
<td>A = abandoned</td>
</tr>
<tr>
<td></td>
<td>C = commercial</td>
</tr>
<tr>
<td></td>
<td>D = domestic</td>
</tr>
<tr>
<td></td>
<td>PS = public supply</td>
</tr>
<tr>
<td></td>
<td>I = industrial</td>
</tr>
<tr>
<td></td>
<td>In = institutional</td>
</tr>
<tr>
<td></td>
<td>O = observation</td>
</tr>
<tr>
<td></td>
<td>U = unused</td>
</tr>
<tr>
<td></td>
<td>F = farm</td>
</tr>
</tbody>
</table>

4. Water use

5. Remarks

Yield (e) = estimated yield

Yield (m) = measured yield during pumping test

Yield (r) = reported yield

F = fine

M = medium

C = coarse
Table 9.--Records of selected wells in Erie County, New York

<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location</th>
<th>Local well no.</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Drl.</th>
<th>Depth to bedrock (ft)</th>
<th>Aquifer surface (ft)</th>
<th>Water-level depth below land surface (ft)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-1</td>
<td>4255 56</td>
<td>7837 26</td>
<td>J. Guenther</td>
<td>1947</td>
<td>Dr1</td>
<td>75</td>
<td>Shale 760</td>
<td>30 * Summer/82</td>
<td>No U</td>
</tr>
<tr>
<td>LC-2</td>
<td>4255 58</td>
<td>7836 34</td>
<td>P. Long</td>
<td>1977</td>
<td>Dr1</td>
<td>57</td>
<td>S&G 755</td>
<td>22.1 9-23-81</td>
<td>No U</td>
</tr>
<tr>
<td>LC-3</td>
<td>4256 05</td>
<td>7835 33</td>
<td>Huber</td>
<td>1964</td>
<td>Dr1</td>
<td>66.5</td>
<td>Sh 770</td>
<td>18.7 7-23-64</td>
<td>No D</td>
</tr>
<tr>
<td>LC-4</td>
<td>4256 28</td>
<td>7837 21</td>
<td>P. Lindhardt</td>
<td>1957</td>
<td>Dr1</td>
<td>39</td>
<td>S&G 744</td>
<td>28.1 8-27-81</td>
<td>No U</td>
</tr>
<tr>
<td>LC-5</td>
<td>4256 38</td>
<td>7839 22</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>22(b)</td>
<td>Tilt 744</td>
<td>--</td>
<td>Yes A</td>
</tr>
<tr>
<td>LC-6</td>
<td>4256 38</td>
<td>7836 55</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>57.5</td>
<td>S&G 775</td>
<td>42.8 9-03-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-7</td>
<td>4256 40</td>
<td>7837 09</td>
<td>Reigle</td>
<td>1959*</td>
<td>Dr1</td>
<td>90*</td>
<td>LS 763</td>
<td>23.8 8-26-81</td>
<td>No U</td>
</tr>
<tr>
<td>LC-8</td>
<td>4256 43</td>
<td>7837 55</td>
<td>T. Martino</td>
<td>-7-1</td>
<td>Dr1</td>
<td>70*</td>
<td>Sand 732</td>
<td>--</td>
<td>No U</td>
</tr>
<tr>
<td>LC-9</td>
<td>4256 46</td>
<td>7836 16</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>57(b)</td>
<td>Silt 767</td>
<td>--</td>
<td>No A</td>
</tr>
<tr>
<td>LC-10</td>
<td>4256 47</td>
<td>7835 04</td>
<td>H. Ringer</td>
<td>1954</td>
<td>Dr1</td>
<td>100</td>
<td>LS 795</td>
<td>--</td>
<td>No D</td>
</tr>
<tr>
<td>LC-11</td>
<td>4256 48</td>
<td>7835 55</td>
<td>C. Suehs</td>
<td>1958</td>
<td>Dr1</td>
<td>59</td>
<td>S&G 759</td>
<td>29.6 8-19-64</td>
<td>No D</td>
</tr>
<tr>
<td>LC-12</td>
<td>4256 48</td>
<td>7836 12</td>
<td>H. Choate</td>
<td>1966*</td>
<td>Dr1</td>
<td>60*</td>
<td>S&G 765</td>
<td>22 8-12-81</td>
<td>No D</td>
</tr>
<tr>
<td>LC-13</td>
<td>4256 49</td>
<td>7836 12</td>
<td>J. Hunt and Kann</td>
<td>1959</td>
<td>Dr1</td>
<td>76</td>
<td>LS 770</td>
<td>--</td>
<td>No D</td>
</tr>
<tr>
<td>LC-14</td>
<td>4256 50</td>
<td>7835 37</td>
<td>Huber</td>
<td>--</td>
<td>Dr1</td>
<td>76</td>
<td>LS 783</td>
<td>40.7 8-27-81</td>
<td>No --</td>
</tr>
<tr>
<td>LC-15</td>
<td>4256 55</td>
<td>7835 38</td>
<td>Kepner</td>
<td>--</td>
<td>Dr1</td>
<td>60*</td>
<td>LS 783</td>
<td>--</td>
<td>No --</td>
</tr>
<tr>
<td>LC-16</td>
<td>4256 56</td>
<td>7835 36</td>
<td>O. G. Gaines</td>
<td>1951*</td>
<td>Dr1</td>
<td>80*</td>
<td>LS 785</td>
<td>35* 1981</td>
<td>No --</td>
</tr>
<tr>
<td>LC-17</td>
<td>4256 58</td>
<td>7837 03</td>
<td>B-23D Pine Hill Conc</td>
<td>1979</td>
<td>Dr1</td>
<td>43</td>
<td>LS 752</td>
<td>32.5 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-18</td>
<td>4256 58</td>
<td>7837 03a</td>
<td>B-23S Pine Hill Conc</td>
<td>1979</td>
<td>Dr1</td>
<td>21</td>
<td>Sand 752</td>
<td>18.2 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-19</td>
<td>4256 58</td>
<td>7837 32</td>
<td>W-8 Lancaster Lndfl</td>
<td>1981</td>
<td>Dr1</td>
<td>68</td>
<td>LS 730</td>
<td>23 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-20</td>
<td>4256 59</td>
<td>7837 25</td>
<td>W-3 Lancaster Lndfl</td>
<td>1981</td>
<td>Dr1</td>
<td>27.3</td>
<td>LS 735</td>
<td>16.8 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-21</td>
<td>4257 00</td>
<td>7836 30</td>
<td>W-7 Lancaster Lndfl</td>
<td>1980</td>
<td>Dr1</td>
<td>64.5</td>
<td>LS 761</td>
<td>51.5 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-22</td>
<td>4257 01</td>
<td>7837 02</td>
<td>B-18 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>44</td>
<td>Sand 760</td>
<td>25.3 9-20-79</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-23</td>
<td>4257 02</td>
<td>7836 40</td>
<td>W-1 Lancaster Lndfl</td>
<td>1978</td>
<td>Dr1</td>
<td>49</td>
<td>Sand 766</td>
<td>33.5 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-24</td>
<td>4257 05</td>
<td>7836 11</td>
<td>B-26S Pine Hill Conc</td>
<td>1979</td>
<td>Dr1</td>
<td>35</td>
<td>Sand 785</td>
<td>11.9 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-25</td>
<td>4257 05</td>
<td>7836 11a</td>
<td>B-26D Pine Hill Conc</td>
<td>1979</td>
<td>Dr1</td>
<td>35</td>
<td>Sand 785</td>
<td>11.9 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-26</td>
<td>4257 05</td>
<td>7836 21</td>
<td>B-17 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>28</td>
<td>Sand 769</td>
<td>10.8 1979</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-27</td>
<td>4257 05</td>
<td>7836 39</td>
<td>B-19 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>50</td>
<td>Sand 774</td>
<td>35.3 9-20-79</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-28</td>
<td>4257 07</td>
<td>7835 38</td>
<td>T. Fiordaliso</td>
<td>1973</td>
<td>Dr1</td>
<td>90</td>
<td>LS 788</td>
<td>47.1 8-26-81</td>
<td>No M</td>
</tr>
<tr>
<td>LC-29</td>
<td>4257 07</td>
<td>7836 17a</td>
<td>B-150 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>69</td>
<td>LS 773</td>
<td>65.9 10-13-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-30</td>
<td>4257 07</td>
<td>7836 17b</td>
<td>B-151 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>43</td>
<td>Sand 773</td>
<td>11.4 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-31</td>
<td>4257 07</td>
<td>7836 17c</td>
<td>B-15a Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>21</td>
<td>Sand 773</td>
<td>10.7 10-15-81</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-32</td>
<td>4257 07</td>
<td>7836 18a</td>
<td>B-16D Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>72</td>
<td>LS 774</td>
<td>45.8 Mar.1979</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-33</td>
<td>4257 07</td>
<td>7836 18b</td>
<td>B-16 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>42</td>
<td>S&G 774</td>
<td>75.0 Mar.1979</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-34</td>
<td>4257 07</td>
<td>7836 18c</td>
<td>B-16 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>22</td>
<td>Sand 774</td>
<td>11.6 Mar.1979</td>
<td>Yes O</td>
</tr>
<tr>
<td>LC-35</td>
<td>4257 07</td>
<td>7836 21</td>
<td>B-13 Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>23</td>
<td>S&G 771</td>
<td>17.7 Mar.1979</td>
<td>Yes O</td>
</tr>
</tbody>
</table>

Notes:
- Depths are in feet below land surface; * = chem. analysis.
- Remarks: "CI gal/min."
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location</th>
<th>Local well No.</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Well depth (ft)</th>
<th>Casing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Depth to bedrock (ft)</th>
<th>Aquifer type</th>
<th>Altitude above land surface (ft)</th>
<th>Water level depth below land surface (ft)</th>
<th>Date measured</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-35 4257 07 7836 45</td>
<td>B-2</td>
<td>Lancaster Lndfl</td>
<td>1972</td>
<td>Dr1</td>
<td>36(b)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Sand</td>
<td>759</td>
<td>9.0</td>
<td>3-16-72</td>
<td>Yes</td>
</tr>
<tr>
<td>LC-38 4257 09 7835 32</td>
<td>B-22</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>65*</td>
<td>40*</td>
<td>6</td>
<td>40*</td>
<td>LS</td>
<td>790</td>
<td>34.9</td>
<td>8-26-81</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>LC-39 4257 12 7838 05</td>
<td>--</td>
<td>Kans Supply</td>
<td>1968</td>
<td>Dr1</td>
<td>30*</td>
<td>--</td>
<td>6</td>
<td>5</td>
<td>LS</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>No</td>
</tr>
<tr>
<td>LC-40 4257 12 7836 19</td>
<td>B-14</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>41</td>
<td>1.25</td>
<td>44</td>
<td>S&G</td>
<td>764</td>
<td>12.6</td>
<td>Spring 79</td>
<td>Yes</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LC-41 4257 13 7835 29</td>
<td>Auction House</td>
<td>--</td>
<td>Dr1</td>
<td>--</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>LS</td>
<td>792</td>
<td>40.2</td>
<td>8-26-81</td>
<td>No</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>LC-42 4257 13 7836 42</td>
<td>B-20</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>47</td>
<td>1.25</td>
<td>--</td>
<td>S&G</td>
<td>779</td>
<td>779</td>
<td>Dry</td>
<td>3-05-81</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-43 4257 15 7837 25</td>
<td>W-4A</td>
<td>Lancaster Lndfl</td>
<td>1981</td>
<td>Dr1</td>
<td>95</td>
<td>20</td>
<td>6</td>
<td>8.2</td>
<td>LS</td>
<td>738</td>
<td>66.8</td>
<td>10-15-81</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-44 4257 17 7837 09</td>
<td>W-21</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>30.5</td>
<td>28</td>
<td>1.25</td>
<td>LS</td>
<td>766</td>
<td>22.7</td>
<td>3-05-81</td>
<td>Yes</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LC-45 4257 19 7836 27</td>
<td>W-6A</td>
<td>Lancaster Lndfl</td>
<td>1981</td>
<td>Dr1</td>
<td>92</td>
<td>42.4</td>
<td>4</td>
<td>32</td>
<td>LS</td>
<td>755</td>
<td>65.6</td>
<td>10-15-81</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-46 4257 20 7837 11</td>
<td>W-2</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Dr1</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>t111?</td>
<td>752</td>
<td>9.01</td>
<td>3-05-81</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-47 4257 23 7837 13</td>
<td>B-12</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Aug</td>
<td>16</td>
<td>15</td>
<td>3</td>
<td>16</td>
<td>Sand</td>
<td>745</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-48 4257 24 7837 09</td>
<td>B-10</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Aug</td>
<td>27</td>
<td>26</td>
<td>3</td>
<td>27</td>
<td>t111?</td>
<td>751</td>
<td>13.5</td>
<td>8-23-79</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-50 4257 27 7836 48</td>
<td>B-8</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Aug</td>
<td>28</td>
<td>28</td>
<td>3</td>
<td>26</td>
<td>Sand</td>
<td>762</td>
<td>16*</td>
<td>2-13-79</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-50 4257 30 7836 09</td>
<td>B-9</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Aug</td>
<td>28</td>
<td>27</td>
<td>3</td>
<td>--</td>
<td>Sand</td>
<td>748</td>
<td>16*</td>
<td>2-14-79</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-51 4257 32 7837 17</td>
<td>B-11</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Aug</td>
<td>21</td>
<td>20</td>
<td>3.1</td>
<td>21</td>
<td>Sand</td>
<td>744</td>
<td>4*</td>
<td>2-15-79</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-52 4257 33 7836 31</td>
<td>B-8</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>42</td>
<td>S&G</td>
<td>798</td>
<td>3.1</td>
<td>10-15-81</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-53 4257 33 7836 49</td>
<td>B-7</td>
<td>Lancaster Lndfl</td>
<td>1979</td>
<td>Aug</td>
<td>28</td>
<td>27</td>
<td>3</td>
<td>--</td>
<td>Sand?</td>
<td>758</td>
<td>17.7</td>
<td>8-23-79</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-54 4257 34 7836 49</td>
<td>W-5</td>
<td>Lancaster Lndfl</td>
<td>1980</td>
<td>Dr1</td>
<td>66</td>
<td>50</td>
<td>4</td>
<td>48</td>
<td>LS</td>
<td>762</td>
<td>37.1</td>
<td>10-15-81</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>LC-55 4257 35 7835 19</td>
<td>81-10b</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>37</td>
<td>6</td>
<td>1</td>
<td>--</td>
<td>t111?</td>
<td>766</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>LC-56 4257 38 7836 14</td>
<td>E. Krueging</td>
<td>1969</td>
<td>Dr1</td>
<td>43</td>
<td>43</td>
<td>6</td>
<td>41.5</td>
<td>LS</td>
<td>760</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-57 4257 38 7836 08</td>
<td>D. Volker</td>
<td>1981</td>
<td>Aug</td>
<td>50</td>
<td>30</td>
<td>6</td>
<td>28.5</td>
<td>LS</td>
<td>763</td>
<td>34.5</td>
<td>9-23-81</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-58 4257 42 7835 38</td>
<td>81-3b</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>35(b)</td>
<td>--</td>
<td>35</td>
<td>--</td>
<td>LS</td>
<td>784</td>
<td>7*</td>
<td>9-04-81</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>LC-59 4257 46 7836 52</td>
<td>C. Wiehecke</td>
<td>1979</td>
<td>Dr1</td>
<td>73</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>LS</td>
<td>792</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-59 4257 46 7836 52</td>
<td>C. Wiehecke</td>
<td>1979</td>
<td>Dr1</td>
<td>73</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>LS</td>
<td>792</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-60 4257 48 7836 52</td>
<td>T. Hoffman</td>
<td>1979</td>
<td>Dr1</td>
<td>70</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>LS</td>
<td>792</td>
<td>48.3</td>
<td>8-06-81</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-61 4257 57 7833 35</td>
<td>Porter</td>
<td>1960</td>
<td>Dr1</td>
<td>72</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>LS</td>
<td>803</td>
<td>49*</td>
<td>8-07-81</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-62 4257 57 7833 17</td>
<td>81-9b</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>20</td>
<td>3</td>
<td>20</td>
<td>--</td>
<td>794</td>
<td>5.5</td>
<td>9-08-81</td>
<td>Yes</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>LC-64 4258 02 7835 65</td>
<td>Brothers of Mercy</td>
<td>1973</td>
<td>Dr1</td>
<td>75</td>
<td>44</td>
<td>12</td>
<td>42</td>
<td>LS</td>
<td>770</td>
<td>28</td>
<td>10-03-73</td>
<td>No</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>LC-65 4258 07 7836 30</td>
<td>Poesy</td>
<td>1954</td>
<td>Dr1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>LS</td>
<td>762</td>
<td>24.2</td>
<td>8-06-81</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-67 4258 18 7835 30</td>
<td>US Geol Survey</td>
<td>1981</td>
<td>Aug</td>
<td>43.5</td>
<td>41.5</td>
<td>2</td>
<td>47</td>
<td>S&G</td>
<td>770</td>
<td>31.1</td>
<td>10-15-81</td>
<td>Yes</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LC-68 4258 34 7835 58</td>
<td>R. Twee</td>
<td>--</td>
<td>Dr1</td>
<td>62</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>LS</td>
<td>720</td>
<td>7.5</td>
<td>1980</td>
<td>July</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>LC-69 4258 34 7836 27</td>
<td>V. Billingsley</td>
<td>1947</td>
<td>Dr1</td>
<td>49*</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>LS</td>
<td>738</td>
<td>14*</td>
<td>8-06-81</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-70 4258 35 7833 12</td>
<td>B. Fields</td>
<td>1960</td>
<td>Dr1</td>
<td>62.6</td>
<td>--</td>
<td>5</td>
<td>13*</td>
<td>LS</td>
<td>775</td>
<td>22.7</td>
<td>8-18-64</td>
<td>No</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>LC-71 4258 39 7836 31</td>
<td>M. Stage</td>
<td>1936</td>
<td>Dr1</td>
<td>46</td>
<td>--</td>
<td>6</td>
<td>1</td>
<td>LS</td>
<td>745</td>
<td>15*</td>
<td>1981</td>
<td>Aug</td>
<td>No</td>
<td>D</td>
</tr>
</tbody>
</table>

1/ Depth from top of casing.
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location</th>
<th>Local Well No.</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Casing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Depth to bedrock (ft)</th>
<th>Aquifer type</th>
<th>Altitude below land surface (ft)</th>
<th>Water-level depth below land surface (ft)</th>
<th>Date measured</th>
<th>Cool. Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-1 4231 36 7831 44</td>
<td>Vesinnek</td>
<td>1955</td>
<td>Drl 110</td>
<td>--</td>
<td>S&G 1,405</td>
<td>35</td>
<td>5-20-82</td>
<td>No</td>
<td>F</td>
<td>A second well 235 ft deep ends in S&G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-2 4231 50 7831 21</td>
<td>Schliener</td>
<td>1962</td>
<td>Drl 22</td>
<td>--</td>
<td>S&G 1,410</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-3 4232 27 7830 40</td>
<td>Domes</td>
<td>--</td>
<td>Drl 18</td>
<td>--</td>
<td>S&G 1,390</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-4 4232 29 7829 42</td>
<td>Kissel</td>
<td>1972</td>
<td>Drl 114</td>
<td>--</td>
<td>S&G 1,420</td>
<td>14.7</td>
<td>7-29-82</td>
<td>Yes</td>
<td>D</td>
<td>S&G 0-25, clay 25-70, coarse gravel 114 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-5 4232 29 7830 32</td>
<td>Bleighley</td>
<td>1980</td>
<td>Drl 12</td>
<td>--</td>
<td>S&G 1,398</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-6 4232 29 7831 11</td>
<td>Loggians</td>
<td>1961</td>
<td>Drl 87</td>
<td>--</td>
<td>S&G 1,435</td>
<td>32</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-7 4232 30 7828 44</td>
<td>Nicholas Brk Motel</td>
<td>--</td>
<td>Drl 43</td>
<td>--</td>
<td>S&G 1,436</td>
<td>--</td>
<td>Yes</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-8 4232 30 7830 05</td>
<td>Rice</td>
<td>1978</td>
<td>Drl 48</td>
<td>--</td>
<td>S&G 1,400</td>
<td>--</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-9 4232 35 7828 48</td>
<td>Diamond Saw</td>
<td>1957</td>
<td>Drl 42</td>
<td>--</td>
<td>S&G 1,435</td>
<td>--</td>
<td>Yes</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-10 4232 41 7830 09</td>
<td>Logan</td>
<td>1963</td>
<td>Drl 175</td>
<td>--</td>
<td>S&G 1,405</td>
<td>11.4</td>
<td>8-11-64</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-11 4232 42 7830 02</td>
<td>Schliener</td>
<td>1962</td>
<td>Drl 28</td>
<td>--</td>
<td>S&G 1,400</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-12 4232 47 7828 41</td>
<td>Wertz</td>
<td>1958</td>
<td>Drl 29</td>
<td>--</td>
<td>Gravel 1,435</td>
<td>18.3</td>
<td>6-25-64</td>
<td>No</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-13 4232 48 7830 19</td>
<td>Meyers</td>
<td>1974</td>
<td>Drl 344</td>
<td>--</td>
<td>S&G 1,410</td>
<td>f</td>
<td>Yes</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-14 4232 58 7828 43 82-4</td>
<td>USGS</td>
<td>1982</td>
<td>Aug 22</td>
<td>17</td>
<td>S&G 1,443</td>
<td>16.4</td>
<td>10-15-82</td>
<td>Yes</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-15 4232 58 7829 56 82-3</td>
<td>USGS</td>
<td>1982</td>
<td>Aug 17</td>
<td>12</td>
<td>S&G 1,399</td>
<td>4.6</td>
<td>10-15-82</td>
<td>Yes</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-16 4233 03 7829 32</td>
<td>Bolt</td>
<td>1967</td>
<td>Drl 47</td>
<td>--</td>
<td>S&G 1,440</td>
<td>23.0</td>
<td>5-20-82</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-17 4233 05 7830 37 82-2</td>
<td>USGS</td>
<td>1982</td>
<td>Aug 46</td>
<td>36</td>
<td>S&G 1,425</td>
<td>23.9</td>
<td>10-19-82</td>
<td>Yes</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-18 4233 12 7828 44</td>
<td>Lynch</td>
<td>1962</td>
<td>Drl 42</td>
<td>--</td>
<td>S&G 1,448</td>
<td>--</td>
<td>Yes</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-19 4233 25 7828 44</td>
<td>Greatwood</td>
<td>1960</td>
<td>Drl 51</td>
<td>--</td>
<td>Sand 1,449</td>
<td>20.0</td>
<td>6-25-84</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-20 4233 27 7828 44</td>
<td>Grace</td>
<td>1960</td>
<td>Drl 51</td>
<td>--</td>
<td>S&G 1,448</td>
<td>19.3</td>
<td>5-20-82</td>
<td>Yes</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SARDINIA AREA (Well locations shown in fig. 2.)

Yield (r) 25 gal/min; S&G 0-20, clay 20-37, gravel 37-62 ft

* in ENB-3

Yield (r) 20 gal/min; S&G 0-43 ft.

Yield (r) 40 gal/min; S&G 0-43 ft. oben sand and S&G 70-114, coarse gravel 114 ft

Yield (r) 50 gal/min; S&G 0-43, S&G 25-35, S&G 35-48 ft.
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location</th>
<th>Local well no.</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Well depth (ft)</th>
<th>Casing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Depth to bedrock (ft)</th>
<th>Aquifer type (ft)</th>
<th>Altitude above land surface (ft)</th>
<th>Water-level depth below land surface (ft)</th>
<th>Date Geol. Water measured below land surface</th>
<th>Geol. Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-21</td>
<td>4233 32</td>
<td>7830 40</td>
<td>Uhteg</td>
<td>--</td>
<td>Drl</td>
<td>41</td>
<td>41</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,450</td>
<td>28.2</td>
<td>5-20-82</td>
<td>No D</td>
<td>S*</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-22</td>
<td>4233 53</td>
<td>7828 42</td>
<td>Lewis</td>
<td>1980</td>
<td>Drl</td>
<td>69</td>
<td>69</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,462</td>
<td>35</td>
<td>9-80</td>
<td>Yes D</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-23</td>
<td>4234 00</td>
<td>7828 55</td>
<td>Chaffee Water Sply 1900</td>
<td>Drl</td>
<td>20</td>
<td>--</td>
<td>8</td>
<td>--</td>
<td>S&G</td>
<td>1,460</td>
<td>13.5</td>
<td>2-11-63</td>
<td>No PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-24</td>
<td>4234 08</td>
<td>7830 26</td>
<td>Iroquois Gas Co 1984</td>
<td>Drl</td>
<td>--</td>
<td>--</td>
<td>12</td>
<td>112</td>
<td>Lockport 1,465</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>No GT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-25</td>
<td>4234 27</td>
<td>7829 38</td>
<td>82-1</td>
<td>USGS 1982</td>
<td>Aug</td>
<td>90</td>
<td>85</td>
<td>2</td>
<td>S&G</td>
<td>1,444</td>
<td>4.5</td>
<td>10-15-82</td>
<td>Yes O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-26</td>
<td>4234 29</td>
<td>7828 43</td>
<td>Phelps</td>
<td>--</td>
<td>Drl</td>
<td>194</td>
<td>194</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,470</td>
<td>--</td>
<td>--</td>
<td>Yes Ir,F</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-27</td>
<td>4234 30</td>
<td>7828 43</td>
<td>Phelps</td>
<td>--</td>
<td>Drl</td>
<td>46</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,480</td>
<td>--</td>
<td>--</td>
<td>No D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-28</td>
<td>4234 38</td>
<td>7829 52</td>
<td>82-10A</td>
<td>USGS 1982</td>
<td>Aug</td>
<td>50</td>
<td>48</td>
<td>1.5</td>
<td>S&G</td>
<td>1,459</td>
<td>15.9</td>
<td>5-12-83</td>
<td>Yes O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-29</td>
<td>4234 50</td>
<td>7828 58</td>
<td>Tavernier</td>
<td>--</td>
<td>Drl</td>
<td>90</td>
<td>6</td>
<td>6</td>
<td>S&G</td>
<td>1,480</td>
<td>34.4</td>
<td>5-20-82</td>
<td>No D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-30</td>
<td>4234 52</td>
<td>7828 45</td>
<td>Wiedemann</td>
<td>1980</td>
<td>Drl</td>
<td>65</td>
<td>65</td>
<td>6</td>
<td>S&G</td>
<td>1,478</td>
<td>--</td>
<td>--</td>
<td>Yes D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-31</td>
<td>4234 53</td>
<td>7829 47</td>
<td>W-1 Chaffee Landfill 1980</td>
<td>Aug</td>
<td>54</td>
<td>52</td>
<td>2</td>
<td>S&G</td>
<td>1,490</td>
<td>52.0</td>
<td>11-30-80</td>
<td>Yes O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-32</td>
<td>4234 53</td>
<td>7829 52</td>
<td>W-3 Chaffee Landfill 1980</td>
<td>Aug</td>
<td>14</td>
<td>12</td>
<td>2</td>
<td>--</td>
<td>Till</td>
<td>1,494</td>
<td>9.8</td>
<td>11-30-80</td>
<td>Yes O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SA-33</td>
<td>4234 53</td>
<td>7829 57</td>
<td>W-4 Chaffee Landfill 1980</td>
<td>Aug</td>
<td>43</td>
<td>41</td>
<td>2</td>
<td>--</td>
<td>Till</td>
<td>1,476</td>
<td>--</td>
<td>--</td>
<td>Yes O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Remarks
- Depths are in feet below land surface;
- * = chem. analysis

Note:
- S&G 0-34, f.sand 34-42, clay 42-58, f.sand 58-67, S&G 67-70 ft; yield (r) 50 gal/min.
- Pumping rate ~ 100 gal/min Yield (r) 0.5-1.0 gal/min; Lockport Dolomite at 2,728'
- Yields: 70-85, S&G 65-93. Two other wells installed at depths of 27 and 60 ft.
- Yield (r) 10 gal/min; S&G 0-60, layers of sand and clay 60-180, S&G 180-194 ft
- Yield (r) 10-22, clayey silt 22-35, till 35-39, S&G and silt 39-70, clay and silt w/tr. pebbles (till) 70-85, S&G 65-93. Two other wells installed at depths of 27 and 60 ft.
- Yield (r) 10 gal/min; S&G 0-65 ft.
- Sand clayey silt w/tr. pebbles (till) 0-10, clayey silt 10-22, clayey silt with tr. pebbles (till) 22-44, S&G 44-47, sandy silt 47-49, S&G 49-53, sandy silt 53-54. Sandy clayey silt w/tr. pebbles (till) 0-14 ft.
<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location</th>
<th>Local well no.</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Well depth (ft)</th>
<th>Casing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Date drilled</th>
<th>Type of bedrock</th>
<th>Aquifer type</th>
<th>Altitude below land surface (ft)</th>
<th>Date measured</th>
<th>Geol. Water log use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARDINIA AREA (continued)</td>
<td></td>
</tr>
<tr>
<td>SA-34 4234 58 7829 17</td>
<td>Chaffee Equipment</td>
<td>--</td>
<td>Drl</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>S&C</td>
<td>1,485</td>
<td>--</td>
<td>--</td>
<td>C</td>
<td>*; S&C and silt and clay 0-12, till 12-18, S&C and sand and clay 18-23, clay w/pebbles (till) 23-28, gravel, sand, silt and clay 28-52 ft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-35 4234 58 7829 47 W-2</td>
<td>Chaffee Landfill</td>
<td>1980 Aug</td>
<td>14</td>
<td>12</td>
<td>2</td>
<td>--</td>
<td>T11</td>
<td>1,486</td>
<td>Dry</td>
<td>Yes</td>
<td>O</td>
<td>Clayey silt w/tr. pebbles (till) 0-14 ft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-36 4235 02 7829 48 W-8</td>
<td>Chaffee Landfill</td>
<td>1981 Aug</td>
<td>58</td>
<td>56</td>
<td>2</td>
<td>--</td>
<td>S&C</td>
<td>1,489</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>O</td>
<td>Clayey silt w/tr. pebbles (till) 0-34, sandy clayey silt w/tr. pebbles (till) 34-54, S&C 54-58 ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-38 4235 04 7829 42</td>
<td>Buncy</td>
<td>1966*</td>
<td>Drl</td>
<td>87</td>
<td>87</td>
<td>6</td>
<td>--</td>
<td>S&C</td>
<td>1,500</td>
<td>69</td>
<td>5-21-82</td>
<td>No</td>
<td>D</td>
<td>Silicy clay w/tr. pebbles (till) 0-63, S&C 63-73 ft.</td>
<td></td>
</tr>
<tr>
<td>SA-39 4235 04 7829 49 82-11A</td>
<td>USGS</td>
<td>1982 Aug</td>
<td>69</td>
<td>67</td>
<td>1.5</td>
<td>--</td>
<td>S&C</td>
<td>1,502</td>
<td>61.3</td>
<td>12-17-82</td>
<td>Yes</td>
<td>O</td>
<td>*; in ENB-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-40 4235 04 7830 30</td>
<td>Mader</td>
<td>1979 Drl</td>
<td>35*</td>
<td>35</td>
<td>6</td>
<td>--</td>
<td>S&C</td>
<td>1,440</td>
<td>10.7</td>
<td>5-12-82</td>
<td>No</td>
<td>D</td>
<td>Yield (r) 20 gal/min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-41 4235 04 7831 14</td>
<td>Raymond</td>
<td>1940 Drl</td>
<td>34</td>
<td>34</td>
<td>6</td>
<td>34</td>
<td>S&C</td>
<td>1,500</td>
<td>10.0</td>
<td>8-12-64</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-42 4235 08 7829 57</td>
<td>Robins</td>
<td>--</td>
<td>Drl</td>
<td>47</td>
<td>43</td>
<td>6</td>
<td>--</td>
<td>S&C</td>
<td>1,470</td>
<td>29.3</td>
<td>5-20-82</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-43 4235 08 7830 27</td>
<td>Petrone</td>
<td>1959 Drl</td>
<td>25</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>S&C</td>
<td>1,440</td>
<td>16.6</td>
<td>8-12-64</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-44 4235 13 7827 51</td>
<td>Mitrowski</td>
<td>--</td>
<td>Drl</td>
<td>70</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>S&C</td>
<td>1,520</td>
<td>38</td>
<td>5-20-82</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-45 4235 16 7830 08</td>
<td>Sheridan</td>
<td>--</td>
<td>Drl</td>
<td>28*</td>
<td>6</td>
<td>--</td>
<td>S&C</td>
<td>1,445</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| SA-46 4235 04 7830 18 | Gook | -- | Drl | 31 | -- | 6 | -- | S&C | 1,453 | 17 | 2-22-83 | No | D | *.

(Depths are in feet below land surface; * = chem. analysis)
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location</th>
<th>Local well no.</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Well depth (ft)</th>
<th>Casing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Aquifer type</th>
<th>Altitude surface (ft)</th>
<th>Water-level depth below land surface (ft)</th>
<th>Date measured</th>
<th>Geol. Water log use</th>
<th>Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-1</td>
<td>4229 37 7842 34</td>
<td>Chandler</td>
<td>--</td>
<td>Spr</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S&G</td>
<td>1,300</td>
<td>--</td>
<td>--</td>
<td>D</td>
<td>*</td>
</tr>
<tr>
<td>SP-2</td>
<td>4229 37 7842 19</td>
<td>Gentner</td>
<td>1959</td>
<td>Drl</td>
<td>325</td>
<td>325</td>
<td>6</td>
<td>--</td>
<td>1,340</td>
<td>Yes</td>
<td>A</td>
<td>10-07-64</td>
<td>Yes</td>
<td>A</td>
<td>No F</td>
</tr>
<tr>
<td>SP-3</td>
<td>4229 53 7841 45</td>
<td>Gentner</td>
<td>--</td>
<td>Dug</td>
<td>16.6</td>
<td>24</td>
<td>--</td>
<td>S&G</td>
<td>1,355</td>
<td>7</td>
<td>7-08-64</td>
<td>No</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-4</td>
<td>4229 59 7841 28</td>
<td>USGS</td>
<td>1982</td>
<td>Aug</td>
<td>25</td>
<td>25</td>
<td>2</td>
<td>S&G</td>
<td>1,367</td>
<td>7</td>
<td>10-15-82</td>
<td>Yes</td>
<td>A</td>
<td>No O</td>
<td></td>
</tr>
<tr>
<td>SP-5</td>
<td>4230 09 7839 25</td>
<td>TH-5</td>
<td>1967</td>
<td>Drl</td>
<td>105</td>
<td>105</td>
<td>6</td>
<td>S&G</td>
<td>1,375</td>
<td>5-11-67</td>
<td>Yes</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-6</td>
<td>4230 22 7840 06</td>
<td>2-T-5</td>
<td>1942</td>
<td>Drl</td>
<td>153</td>
<td>8</td>
<td>--</td>
<td>S&G</td>
<td>1,300</td>
<td>3-14-82</td>
<td>Yes</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-7</td>
<td>4230 22 7840 07</td>
<td>2-T-4</td>
<td>1942</td>
<td>Drl</td>
<td>96</td>
<td>96</td>
<td>4</td>
<td>Sand</td>
<td>1,320</td>
<td>1-08-64</td>
<td>Yes</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-8</td>
<td>4230 22 7840 38</td>
<td>2-T-1</td>
<td>1941</td>
<td>Drl</td>
<td>260</td>
<td>260</td>
<td>5</td>
<td>--</td>
<td>1,330</td>
<td>10-23-41</td>
<td>Yes</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-9</td>
<td>4230 25 7834 29</td>
<td>82-6 USGS</td>
<td>1982</td>
<td>Aug</td>
<td>23</td>
<td>23</td>
<td>2</td>
<td>S&G</td>
<td>1,366</td>
<td>10-15-82</td>
<td>Yes</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-10</td>
<td>4230 34 7841 07</td>
<td>TH-4</td>
<td>1967</td>
<td>Drl</td>
<td>35</td>
<td>35</td>
<td>6</td>
<td>S&G</td>
<td>1,355</td>
<td>5-08-67</td>
<td>Yes</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-11</td>
<td>4230 42 7839 15</td>
<td>2-T-3</td>
<td>1941</td>
<td>Drl</td>
<td>230</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,385</td>
<td>11-27-41</td>
<td>Yes</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-12</td>
<td>4230 45 7838 28</td>
<td>Mooney</td>
<td>1931</td>
<td>Drl</td>
<td>14</td>
<td>14</td>
<td>1.25</td>
<td>S&G</td>
<td>1,370</td>
<td>5-06-66</td>
<td>No</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRINGVILLE AREA (Well locations shown in fig. 2.)

* = chem. analysis
Table 9.—Records of selected wells in Erie County, N.Y. (continued)

<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location Lat-Long</th>
<th>Local well No.</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Depth of well (ft)</th>
<th>Cas­ing depth (ft)</th>
<th>Cas­ing diam (in)</th>
<th>Depth to bed­rock (ft)</th>
<th>Aqui­fer type</th>
<th>Altitude surface (ft)</th>
<th>Water­level depth below land surface (ft)</th>
<th>Date Geol. Water log</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SP-13</td>
<td>4230 46 7839 43</td>
<td>2-T-2</td>
<td></td>
<td>1941</td>
<td>Dr1 97</td>
<td>97</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>1,342 15.5</td>
<td>11-15-41</td>
<td>Yes A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-14</td>
<td>4230 56 7840 02</td>
<td>Vill. of Springville 1944</td>
<td></td>
<td>Dr1 137</td>
<td>122</td>
<td>18,12</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>1,350 27.4</td>
<td>8-05-44</td>
<td>Yes PS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-15</td>
<td>4230 55 7840 12</td>
<td>Vill. of Springville 1942</td>
<td></td>
<td>Dr1 159</td>
<td>144</td>
<td>18,10</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>1,350 37.7</td>
<td>5-16-42</td>
<td>No PS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-16</td>
<td>4230 55 7840 13</td>
<td>2-T-6</td>
<td></td>
<td>1942</td>
<td>Dr1 148</td>
<td>137</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1,350 30</td>
<td>5-25-42</td>
<td>Yes A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-17</td>
<td>4231 01 7840 28</td>
<td>TH-8</td>
<td></td>
<td>1967</td>
<td>Dr1 --</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>1,370 --</td>
<td>--</td>
<td>Yes A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-18</td>
<td>4231 07 7839 20</td>
<td></td>
<td></td>
<td>1970</td>
<td>Aug --</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>1,380 26</td>
<td>2-20-70</td>
<td>Yes A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-19</td>
<td>4231 07 7839 39</td>
<td>TH-1</td>
<td></td>
<td>1967</td>
<td>Dr1 193</td>
<td>193</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1,343 --</td>
<td>--</td>
<td>Yes A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-20</td>
<td>4231 10 7840 02</td>
<td>TH-3</td>
<td></td>
<td>1967</td>
<td>Dr1 143</td>
<td>130</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1,358 --</td>
<td>--</td>
<td>Yes A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-21</td>
<td>4231 33 7839 08</td>
<td>Ploetz</td>
<td></td>
<td>1956</td>
<td>Dr1 29</td>
<td>29</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1,400 18.8</td>
<td>5-06-64</td>
<td>No D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP-22</td>
<td>4231 30 7839 47</td>
<td>Taylor</td>
<td></td>
<td></td>
<td>Drv 12</td>
<td>10</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
<td>1,350 --</td>
<td>--</td>
<td>No D</td>
</tr>
</tbody>
</table>

Remarks:
- Depths are in feet below land surface; * = chem. analysis.
- Remarks include details about the water level, yield, and other geologic features.
- Yield figures are often associated with specific water quality issues or production rates.

For example, SP-13 shows a yield of 62 gal/min, with a 36 ft drawdown, indicating the well is compact and suitable for domestic use.
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

<table>
<thead>
<tr>
<th>Well no.</th>
<th>Location Lat-Long</th>
<th>Well no. Local well</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Casing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Depth to bedrock (ft)</th>
<th>Aquifer type</th>
<th>Altitude surface (ft)</th>
<th>Date measured</th>
<th>Geol. Water log</th>
<th>Water level depth below land surface</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-23 4231 49 7839 28</td>
<td>.</td>
<td>--</td>
<td>Dug</td>
<td>6</td>
<td>--</td>
<td>16</td>
<td>--</td>
<td>S&G</td>
<td>1,355</td>
<td>4</td>
<td>4-15-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>SP-24 4231 50 7838 19</td>
<td>Perkins Trl.Park 1956</td>
<td>Dr1</td>
<td>70</td>
<td>41</td>
<td>6</td>
<td>40</td>
<td>Shale</td>
<td>1,420</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>SP-25 4231 50 7838 20</td>
<td>Perkins Trl.Park 1968</td>
<td>Dr1</td>
<td>99</td>
<td>38</td>
<td>6</td>
<td>38</td>
<td>Shale</td>
<td>1,425</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>SP-26 4231 50 7838 26</td>
<td>USGS 1982</td>
<td>Aug</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>--</td>
<td>S&G</td>
<td>1,402</td>
<td>16</td>
<td>2</td>
<td>10-15-82</td>
<td>Yes</td>
<td>O</td>
</tr>
<tr>
<td>SP-27 4231 57 7839 26</td>
<td>Great Bear Spring</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S&G</td>
<td>1,410</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>U</td>
<td>*</td>
</tr>
<tr>
<td>SP-28 4232 16 7840 32</td>
<td>Fallon 1967</td>
<td>Dr1</td>
<td>29</td>
<td>29</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,430</td>
<td>18</td>
<td>0</td>
<td>4-15-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>SP-30 4232 32 7839 35</td>
<td>Knowlton</td>
<td>--</td>
<td>Dug</td>
<td>21</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>S&G</td>
<td>1,400</td>
<td>17</td>
<td>7</td>
<td>5-07-64</td>
<td>No</td>
</tr>
<tr>
<td>SP-31 4232 23 7839 13</td>
<td>Luno</td>
<td>--</td>
<td>Dr1</td>
<td>300</td>
<td>300</td>
<td>3</td>
<td>--</td>
<td>S&G</td>
<td>1,420</td>
<td>20</td>
<td>1-17-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>SP-32 4232 37 7840 13</td>
<td>--</td>
<td>1957</td>
<td>Dug</td>
<td>20</td>
<td>--</td>
<td>24</td>
<td>--</td>
<td>S&G</td>
<td>1,452</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>SP-33 4232 51 7838 28</td>
<td>Perkins Apts 1974</td>
<td>Dr1</td>
<td>133</td>
<td>85</td>
<td>6</td>
<td>85</td>
<td>Shale</td>
<td>1,445</td>
<td>59</td>
<td>0</td>
<td>4-16-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>SP-34 4232 53 7838 46</td>
<td>Perkins Apts 1979</td>
<td>Dr1</td>
<td>33</td>
<td>33</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,420</td>
<td>15</td>
<td>0</td>
<td>4-16-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>SP-35 4233 08 7839 37</td>
<td>Buzak 1963</td>
<td>Dr1</td>
<td>528</td>
<td>--</td>
<td>7</td>
<td>--</td>
<td>S&G</td>
<td>1,430</td>
<td>200</td>
<td>0</td>
<td>4-03-63</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>SP-36 4233 12 7840 49</td>
<td>Zittel 1960</td>
<td>Dug</td>
<td>18</td>
<td>--</td>
<td>24</td>
<td>--</td>
<td>S&G</td>
<td>1,435</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>F</td>
</tr>
<tr>
<td>SP-37 4233 18 7838 20</td>
<td>Miller 1963</td>
<td>Dr1</td>
<td>56</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>S&G</td>
<td>1,450</td>
<td>29</td>
<td>0</td>
<td>5-07-64</td>
<td>No</td>
<td>F</td>
</tr>
</tbody>
</table>

* = chem. analysis

 Depths are in feet below land surface;
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

<table>
<thead>
<tr>
<th>Well</th>
<th>Location</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Well depth (ft)</th>
<th>Cas- ing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Depth to bedrock (ft)</th>
<th>Aquifer type</th>
<th>Altitude below land surface (ft)</th>
<th>Water level depth below land surface (ft)</th>
<th>Date measured</th>
<th>Geol. Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-1</td>
<td>4252 50 7831 21</td>
<td>G. Schimmel</td>
<td>1980</td>
<td>Drl</td>
<td>72</td>
<td>30</td>
<td>6</td>
<td>30</td>
<td>SAG, Shale</td>
<td>815</td>
<td>20*</td>
<td>2-05-80</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-2</td>
<td>4252 58 7831 27</td>
<td>B. Strunk</td>
<td>1979</td>
<td>Drl</td>
<td>99</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>Shale</td>
<td>815</td>
<td>35</td>
<td>9-01-79</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-3</td>
<td>4253 00 7831 57</td>
<td>T. Schaffer</td>
<td>1979</td>
<td>Drl</td>
<td>108</td>
<td>48</td>
<td>6</td>
<td>48</td>
<td>Shale</td>
<td>820</td>
<td>37.4</td>
<td>11-22-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-4</td>
<td>4253 17 7831 20</td>
<td>Guhl</td>
<td>1977</td>
<td>Drl</td>
<td>45</td>
<td>42</td>
<td>6</td>
<td>42</td>
<td>S&G</td>
<td>842</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-5</td>
<td>4253 22 7831 18</td>
<td>Fisher</td>
<td>1981</td>
<td>Drl</td>
<td>50</td>
<td>45</td>
<td>6</td>
<td>45</td>
<td>S&G</td>
<td>842</td>
<td>6 *</td>
<td>10-05-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-6</td>
<td>4253 38 7831 27</td>
<td>Alden Lanes</td>
<td>1958</td>
<td>Drl</td>
<td>90*</td>
<td>90*</td>
<td>--</td>
<td>90*</td>
<td>S&G</td>
<td>838</td>
<td>8*</td>
<td>11-82</td>
<td>No</td>
<td>C</td>
</tr>
<tr>
<td>AL-7</td>
<td>4253 43 7831 15</td>
<td>G. Eggleston</td>
<td>--</td>
<td>Hrl</td>
<td>45*</td>
<td>40*</td>
<td>6</td>
<td>40*</td>
<td>S&G</td>
<td>831</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>PS</td>
</tr>
<tr>
<td>AL-8</td>
<td>4253 46 7829 56</td>
<td>Vill. of Alden</td>
<td>1961</td>
<td>Drl</td>
<td>27</td>
<td>60,18</td>
<td>27</td>
<td>S&G</td>
<td>840</td>
<td>2</td>
<td>27</td>
<td>4-13-82</td>
<td>Yes</td>
<td>PS</td>
</tr>
</tbody>
</table>

ALDEN AREA (Well locations shown in fig. 2.)

<table>
<thead>
<tr>
<th>Well</th>
<th>Location</th>
<th>Owner</th>
<th>Date drilled</th>
<th>Type of well</th>
<th>Well depth (ft)</th>
<th>Cas- ing depth (ft)</th>
<th>Casing diam (in)</th>
<th>Depth to bedrock (ft)</th>
<th>Aquifer type</th>
<th>Altitude below land surface (ft)</th>
<th>Water level depth below land surface (ft)</th>
<th>Date measured</th>
<th>Geol. Water use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-9</td>
<td>4254 00 7830 33</td>
<td>S. Williams</td>
<td>--</td>
<td>Drl</td>
<td>42*</td>
<td>42*</td>
<td>--</td>
<td>42*</td>
<td>S&G</td>
<td>817</td>
<td>1.5</td>
<td>11-23-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-10</td>
<td>4254 00 7830 52</td>
<td>E. Boldt</td>
<td>1980</td>
<td>Drl</td>
<td>114</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Shale</td>
<td>830</td>
<td>13</td>
<td>6-09-80</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-11</td>
<td>4254 00 7830 36</td>
<td>V. Young</td>
<td>1978</td>
<td>Drl</td>
<td>47</td>
<td>47</td>
<td>8</td>
<td>40*</td>
<td>S&G</td>
<td>811</td>
<td>6*</td>
<td>5-10-78</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-12</td>
<td>4254 02 7830 23</td>
<td>R. Mitchell</td>
<td>1960</td>
<td>Drl</td>
<td>30</td>
<td>29</td>
<td>8</td>
<td>30*</td>
<td>S&G</td>
<td>828</td>
<td>2</td>
<td>11-15-82</td>
<td>No</td>
<td>F</td>
</tr>
<tr>
<td>AL-13</td>
<td>4254 02 7830 24</td>
<td>C. Keller</td>
<td>1960</td>
<td>Drl</td>
<td>28</td>
<td>25*</td>
<td>6</td>
<td>25*</td>
<td>S&G</td>
<td>826</td>
<td>1.6</td>
<td>11-22-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-14</td>
<td>4254 05 7830 24</td>
<td>Lemaster</td>
<td>--</td>
<td>Drl</td>
<td>29</td>
<td>22*</td>
<td>6</td>
<td>22*</td>
<td>S&G</td>
<td>827</td>
<td>3.7</td>
<td>11-22-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-15</td>
<td>4254 08 7831 23</td>
<td>J. Arent</td>
<td>1978</td>
<td>Drl</td>
<td>63</td>
<td>59</td>
<td>6</td>
<td>59</td>
<td>S&G</td>
<td>835</td>
<td>17.2</td>
<td>11-22-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-16</td>
<td>4254 12 7829 53</td>
<td>Vill. of Alden</td>
<td>1964</td>
<td>Drl</td>
<td>45</td>
<td>45</td>
<td>12</td>
<td>45</td>
<td>S&G</td>
<td>848</td>
<td>16</td>
<td>5-10-82</td>
<td>Yes</td>
<td>PS</td>
</tr>
<tr>
<td>AL-17</td>
<td>4254 13 7831 27</td>
<td>C. Schemel</td>
<td>1981</td>
<td>Drl</td>
<td>46</td>
<td>46</td>
<td>6</td>
<td>46*</td>
<td>S&G</td>
<td>834</td>
<td>12</td>
<td>6-24-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-18</td>
<td>4254 24 7829 48</td>
<td>Vill. of Alden</td>
<td>1957</td>
<td>Drl</td>
<td>36</td>
<td>34</td>
<td>6</td>
<td>34</td>
<td>S&G</td>
<td>830</td>
<td>18.6</td>
<td>1-31-58</td>
<td>Yes</td>
<td>PS</td>
</tr>
<tr>
<td>AL-19</td>
<td>4254 55 7831 26</td>
<td>J. Hodde</td>
<td>1978</td>
<td>Drl</td>
<td>54</td>
<td>45</td>
<td>6</td>
<td>45</td>
<td>S&G</td>
<td>826</td>
<td>8.6</td>
<td>11-19-82</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-20</td>
<td>4254 29 7831 56</td>
<td>Neerst</td>
<td>1979</td>
<td>Drl</td>
<td>47</td>
<td>42</td>
<td>6</td>
<td>42</td>
<td>S&G</td>
<td>832</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-21</td>
<td>4254 29 7829 23</td>
<td>Vill. of Alden</td>
<td>1960*</td>
<td>Drp</td>
<td>14</td>
<td>--</td>
<td>140</td>
<td>--</td>
<td>S&G</td>
<td>825</td>
<td>3.0</td>
<td>11-19-82</td>
<td>No</td>
<td>PS</td>
</tr>
<tr>
<td>AL-22</td>
<td>4254 30 7829 27 Test well Vill. of Alden</td>
<td>1979</td>
<td>Drl</td>
<td>42</td>
<td>42</td>
<td>6</td>
<td>42</td>
<td>S&G</td>
<td>824</td>
<td>1.0</td>
<td>1-26-79</td>
<td>Yes</td>
<td>U</td>
<td>Yield (m) 30 gal/min</td>
</tr>
<tr>
<td>AL-23</td>
<td>4254 41 7831 23</td>
<td>K. Margrey</td>
<td>1978</td>
<td>Drl</td>
<td>60</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S&G</td>
<td>829</td>
<td>--</td>
<td>--</td>
<td>No</td>
<td>D</td>
</tr>
<tr>
<td>AL-24</td>
<td>4254 56 7827 52</td>
<td>W. Sarnecki</td>
<td>1972</td>
<td>Drl</td>
<td>40*</td>
<td>--</td>
<td>40*</td>
<td>--</td>
<td>S&G</td>
<td>855</td>
<td>2.0</td>
<td>11-22-82</td>
<td>No</td>
<td>D</td>
</tr>
</tbody>
</table>
Table 10

Chemical Analysis of Water from Selected Wells

<table>
<thead>
<tr>
<th>Area</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarence-Lancaster-Newstead area.</td>
<td>64</td>
</tr>
<tr>
<td>(wells LC-1, LC-2, LC-6, LC-8, LC-10, LC-52, LC-57, LC-61, LC-13, LC-59, LC-63, LC-66, LC-67, LC-68)</td>
<td></td>
</tr>
<tr>
<td>Sardinia aquifer.</td>
<td>77</td>
</tr>
<tr>
<td>Springville aquifer.</td>
<td>84</td>
</tr>
<tr>
<td>(wells SP-1, SP-4, SP-9, SP-14, SP-26, SP-27, SP-28, SP-31, SP-29, SP-37)</td>
<td></td>
</tr>
<tr>
<td>Alden aquifer</td>
<td>89</td>
</tr>
<tr>
<td>(wells AL-21, AL-8,, AL-18, AL-16)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead. (Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Well number and date of sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LC-1 09 24 1981</td>
</tr>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>642</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.8</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>235</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>6.2</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>295</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>39</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>48</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.3</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>19</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>35</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>0.8</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td><0.10</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.035</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>40</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>431</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>8.3</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>240</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>-</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>185</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>18</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (MG/L)</td>
<td>34</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.0</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>29</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>5.0</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>1.0</td>
</tr>
<tr>
<td>NITROGEN,NO2+NO3 DIS. (MG/L AS N)</td>
<td><0.10</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS. (MG/L AS P)</td>
<td>0.04</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>6.0</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>30</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td>2</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead.
(Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.) (continued)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>LC-6 11 19 1981</th>
<th>LC-6 03 24 1982</th>
<th>LC-6 08 04 1982</th>
<th>LC-6 02 15 1983</th>
<th>LC-6 06 13 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>1300</td>
<td>853</td>
<td>1080</td>
<td>1270</td>
<td>1210</td>
</tr>
<tr>
<td>pH LAB (STANDARD UNITS)</td>
<td>7.6</td>
<td>7.6</td>
<td>7.8</td>
<td>7.4</td>
<td>8.0</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>11</td>
<td>16</td>
<td>23</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>11</td>
<td>16</td>
<td>23</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>365</td>
<td>553</td>
<td>441</td>
<td>618</td>
<td>563</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>72</td>
<td>139</td>
<td>127</td>
<td>150</td>
<td>130</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>45</td>
<td>50</td>
<td>30</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>1.4</td>
<td>1.9</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>35</td>
<td>24</td>
<td>31</td>
<td>54</td>
<td>56</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>200</td>
<td>75</td>
<td>175</td>
<td>250</td>
<td>225</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td><0.10</td>
<td><0.10</td>
<td>0.38</td>
<td>0.15</td>
<td><0.10</td>
</tr>
<tr>
<td>PHOSPHORUS, URTIO DIS. (MG/L AS P)</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>89</td>
<td>103</td>
<td>73</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td>300</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>250</td>
<td>120</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td><200</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead.
(Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHO is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.) (continued)

<table>
<thead>
<tr>
<th>Well number and date of sample collection</th>
<th>Constituent</th>
<th>LC-8 02 16 1983</th>
<th>LC-8 06 13 1983</th>
<th>LC-8 09 24 1981</th>
<th>LC-8 03 23 1982</th>
<th>LC-8 08 04 1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>920</td>
<td>1070</td>
<td>1110</td>
<td>1210</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>7.7</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>218</td>
<td>227</td>
<td>214</td>
<td>140</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>17</td>
<td>22</td>
<td>-</td>
<td>8.5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>373</td>
<td>343</td>
<td>425</td>
<td>370</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>128</td>
<td>116</td>
<td>147</td>
<td>125</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>5.4</td>
<td>6.7</td>
<td>-</td>
<td>2.9</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>70</td>
<td>86</td>
<td>-</td>
<td>101</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>175</td>
<td>200</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS.(MG/L AS N)</td>
<td>10</td>
<td>9.8</td>
<td>11</td>
<td>5.1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS.(MG/L AS P)</td>
<td>0.01</td>
<td>0.18</td>
<td>-</td>
<td>0.14</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>39</td>
<td>33</td>
<td>28</td>
<td>32</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td><200</td>
<td>-</td>
<td><200</td>
<td><200</td>
<td></td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td>190</td>
<td>590</td>
<td>70</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td>-</td>
<td>20</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>MANAGAFSE DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td>-</td>
<td><0.4</td>
<td><0.4</td>
<td></td>
</tr>
<tr>
<td>SELFNNIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td>-</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>610</td>
<td>640</td>
<td>-</td>
<td>450</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead. (Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHOS is microhorns; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>LC-10</th>
<th>LC-10</th>
<th>LC-10</th>
<th>LC-10</th>
<th>LC-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03 23 1981</td>
<td>03 23 1982</td>
<td>08 04 1982</td>
<td>03 14 1983</td>
<td>06 13 1983</td>
</tr>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>895</td>
<td>586</td>
<td>779</td>
<td>708</td>
<td>610</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.7</td>
<td>7.7</td>
<td>7.8</td>
<td>7.8</td>
<td>7.7</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>255</td>
<td>225</td>
<td>251</td>
<td>229</td>
<td>225</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>0.77</td>
<td>165</td>
<td>457</td>
<td>326</td>
<td>296</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>2.1</td>
<td>52</td>
<td>102</td>
<td>66</td>
<td>61</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>0.1</td>
<td>8.6</td>
<td>49</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>0.4</td>
<td>1.0</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>430</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>0.50</td>
<td>0.50</td>
<td>0.40</td>
<td>0.50</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>1.7</td>
<td>0.14</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>160</td>
<td>66</td>
<td>215</td>
<td>96</td>
<td>29</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td>140</td>
<td>310</td>
<td>110</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td><10</td>
<td>30</td>
<td>80</td>
<td>60</td>
<td><10</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td>0.8</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>-</td>
<td>220</td>
<td>120</td>
<td>80</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead. (Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.) (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>2030</td>
<td>1560</td>
<td>2550</td>
<td>1560</td>
<td>1900</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.8</td>
<td>7.8</td>
<td>7.9</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>296</td>
<td>240</td>
<td>246</td>
<td>255</td>
<td>210</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>23</td>
<td>15</td>
<td>27</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>214</td>
<td>367</td>
<td>280</td>
<td>136</td>
<td>235</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>56</td>
<td>117</td>
<td>84</td>
<td>41</td>
<td>71</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>8.1</td>
<td>14</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>1.7</td>
<td>2.6</td>
<td>1.0</td>
<td>2.1</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>313</td>
<td>265</td>
<td>476</td>
<td>270</td>
<td>364</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>500</td>
<td>400</td>
<td>675</td>
<td>450</td>
<td>550</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>0.80</td>
<td>0.30</td>
<td>3.4</td>
<td>1.8</td>
<td>0.26</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.01</td>
<td>0.40</td>
<td>0.02</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>57</td>
<td>39</td>
<td>44</td>
<td>89</td>
<td>33</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td>300</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>4700</td>
<td>50</td>
<td>60</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>50</td>
<td>40</td>
<td>60</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>500</td>
<td><10</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td>1.2</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>70</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead.
(Analysis by Erie County Laboratory. Well locations shown in Fig. 2.
UMHOS is microhoms; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>558</td>
<td>595</td>
<td>600</td>
</tr>
<tr>
<td>pH LAB (STANDARD UNITS)</td>
<td>7.7</td>
<td>8.0</td>
<td>7.6</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>220</td>
<td>229</td>
<td>192</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>8.9</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAC03)</td>
<td>300</td>
<td>302</td>
<td>255</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>59</td>
<td>65</td>
<td>79</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>37</td>
<td>34</td>
<td>14</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>0.6</td>
<td>0.6</td>
<td>2.3</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>8.9</td>
<td>4.0</td>
<td>18</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>5.0</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>0.3</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>2.2</td>
<td><0.10</td>
<td>2.6</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.02</td>
<td>0.07</td>
<td>-</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>60</td>
<td>70</td>
<td>56</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>-</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>30</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>-</td>
<td><20</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead.
(Analyses by Erie County Laboratory. Well locations shown in fig. 2.
UMHOS is microhoms; MG/L is milligrams per liter; UG/L is micrograms per liter.)

Well number and date of sample collection

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>769</td>
<td>769</td>
<td>694</td>
<td>930</td>
</tr>
<tr>
<td>pH LAB (STANDARD UNITS)</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L as CACO3)</td>
<td>214</td>
<td>225</td>
<td>214</td>
<td>231</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L as C)</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>HARDNESS (MG/L as CACO3)</td>
<td>464</td>
<td>469</td>
<td>327</td>
<td>284</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>156</td>
<td>143</td>
<td>103</td>
<td>61</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>18</td>
<td>27</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>2.4</td>
<td>2.4</td>
<td>2.9</td>
<td>0.5</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>18</td>
<td>18</td>
<td>23</td>
<td>4.1</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>40</td>
<td>46</td>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DISSOLVED (MG/L as N)</td>
<td>2.7</td>
<td>1.6</td>
<td>1.7</td>
<td><0.10</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DISSOLVED (MG/L as P)</td>
<td></td>
<td></td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L as SO4)</td>
<td>142</td>
<td>112</td>
<td>76</td>
<td>62</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td></td>
<td>300</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><10</td>
<td>30</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td><50</td>
<td>60</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANAGNESE DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>20</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td></td>
<td>60</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead. (Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Well number and date of sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>755</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.5</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>251</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>-</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAC03)</td>
<td>397</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>103</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>34</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>-</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>-</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>40</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>4.9</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>-0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>100</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead.
(Analyses by Erie County Laboratory. Well locations shown in fig. 3.
UMHOS is microhoms; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>LC-63 06 18 1982</th>
<th>LC-63 08 04 1982</th>
<th>LC-63 02 16 1983</th>
<th>LC-63 06 14 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>-</td>
<td>-</td>
<td>1133</td>
<td>1130</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>-</td>
<td>-</td>
<td>7.4</td>
<td>7.6</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>-</td>
<td>-</td>
<td>382</td>
<td>415</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>763</td>
<td>-</td>
<td>403</td>
<td>409</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>167</td>
<td>128</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>84</td>
<td>59</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>4.4</td>
<td>4.0</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>209</td>
<td>191</td>
<td>76</td>
<td>90</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>-</td>
<td>-</td>
<td>175</td>
<td>150</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>-</td>
<td><0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>-</td>
<td>-</td>
<td>2.9</td>
<td>2.3</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>-</td>
<td>-</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS S04)</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>500</td>
<td>300</td>
<td><200</td>
<td>300</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td>2</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td>-</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td><50</td>
<td>140</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>30</td>
<td>50</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>770</td>
<td>460</td>
<td>220</td>
<td>230</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td>4.0</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>30</td>
<td>90</td>
<td>30</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead. (Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHOS is microhoms; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>384</td>
<td>417</td>
<td>297</td>
<td>396</td>
<td>1020</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.9</td>
<td>7.8</td>
<td>7.9</td>
<td>7.8</td>
<td>6.8</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>160</td>
<td>177</td>
<td>173</td>
<td>177</td>
<td>52</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>13</td>
<td>25</td>
<td>17</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>182</td>
<td>199</td>
<td>161</td>
<td>211</td>
<td>465</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>48</td>
<td>38</td>
<td>53</td>
<td>127</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>19</td>
<td>16</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>1.6</td>
<td>1.6</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>9.4</td>
<td>3.0</td>
<td>1.9</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>10</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>2.5</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>NITROGEN,NO2+NO3 DIS.(MG/L AS N)</td>
<td><0.10</td>
<td>1.5</td>
<td>1.5</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS.(MG/L AS P)</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>62</td>
<td>61</td>
<td>14</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td>20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td>700</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td>10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>-</td>
<td><50</td>
<td><50</td>
<td>230</td>
<td>4100</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>60</td>
</tr>
<tr>
<td>MANGANESCE DISSOLVED (UG/L)</td>
<td>-</td>
<td>410</td>
<td>370</td>
<td>320</td>
<td>1740</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td>-</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td>10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>-</td>
<td>50</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead. (Analyses by Erie County Laboratory. Well locations shown in fig. 2. UMHOS is microhomos; MG/L is milligrams per liter; MG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Well number and date of sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11 19</td>
</tr>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>552</td>
</tr>
<tr>
<td>pH LAB (STANDARD UNITS)</td>
<td>7.5</td>
</tr>
<tr>
<td>ALKALINITY (MG/L AS CACO3)</td>
<td>197</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>24</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>165</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>33</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>20</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>-</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>16</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>25</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td>0.3</td>
</tr>
<tr>
<td>NITRATES, NO2+NO3 DISSOLVED (MG/L AS N)</td>
<td>0.40</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DISSOLVED (MG/L AS P)</td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>65</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>RADON DISSOLVED (UG/L)</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>2</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>60</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>4300</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>200</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>330</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td>0.5</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>220</td>
</tr>
</tbody>
</table>
Table 10A. Chemical analysis of water from selected wells in Clarence, Lancaster, and Newstead.
(Analyses by Erie County Laboratory. Well locations shown in Fig. 2.
UMHOS is microhomos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>516</td>
<td>396</td>
<td>779</td>
<td>1274</td>
<td>1270</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.5</td>
<td>7.7</td>
<td>7.6</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>162</td>
<td>151</td>
<td>251</td>
<td>229</td>
<td>229</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>-</td>
<td>10</td>
<td>36</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>198</td>
<td>206</td>
<td>432</td>
<td>871</td>
<td>800</td>
</tr>
<tr>
<td>CALCULUM DISSOLVED (MG/L)</td>
<td>53</td>
<td>61</td>
<td>107</td>
<td>258</td>
<td>228</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>16</td>
<td>13</td>
<td>40</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>1.2</td>
<td>1.1</td>
<td>0.90</td>
<td>1.1</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>7.9</td>
<td>5.8</td>
<td>5.8</td>
<td>6.1</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>45</td>
<td>20</td>
<td>22</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td>0.3</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN.N02+NO3 DIS. (MG/L AS N)</td>
<td>4.2</td>
<td>0.90</td>
<td>0.80</td>
<td><0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>PHOSPHORUS.ORTHO DIS. (MG/L AS P)</td>
<td>-</td>
<td>0.07</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>18</td>
<td>49</td>
<td>186</td>
<td>535</td>
<td>453</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARTRUM DISSOLVED (UG/L)</td>
<td>-</td>
<td>300</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td>50</td>
<td>50</td>
<td>70</td>
<td><50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESNE DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td>-</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td>-</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td>-</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10B. Chemical analyses of water from selected wells in Sardinia.
(Analyses by Erie County Laboratory. Well locations shown in fig. 9.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Well number</th>
<th>Date of sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SA-2</td>
<td>01 05 1983</td>
</tr>
<tr>
<td></td>
<td>SA-2</td>
<td>05 24 1983</td>
</tr>
<tr>
<td></td>
<td>SA-13</td>
<td>08 03 1982</td>
</tr>
<tr>
<td></td>
<td>SA-13</td>
<td>01 05 1983</td>
</tr>
<tr>
<td></td>
<td>SA-13</td>
<td>05 24 1983</td>
</tr>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>354</td>
<td>340</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.0</td>
<td>7.9</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>144</td>
<td>156</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>14</td>
<td>9.2</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>183</td>
<td>159</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>5.3</td>
<td>5.4</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>7.5</td>
<td>10</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN,NO2+NO3 DIS. (MG/L AS N)</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTH DIS. (MG/L AS P)</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td>300</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td>20</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 10B. Chemical analyses of water from selected wells in Sardinia.
(Analyses by Erie County Laboratory. Well locations shown in fig. 9.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Well number and date of sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SA-17 08 02 1982</td>
</tr>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>212</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.9</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>92</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>7.3</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAC03)</td>
<td>108</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>33</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>6.1</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.5</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>4.4</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>7.5</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN,NO2+NO3 DIS.(MG/L AS N)</td>
<td>0.87</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS.(MG/L AS P)</td>
<td>0.03</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>13</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>400</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>130</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10B. Chemical analyses of water from selected wells in Sardinia.
(Analyzes by Erie County Laboratory. Well locations shown in fig. 9.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SA-14 08 02 1982</th>
<th>SA-14 01 05 1983</th>
<th>SA-14 05 24 1983</th>
<th>SA-15 08 02 1982</th>
<th>SA-15 01 05 1983</th>
<th>SA-15 05 24 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>566</td>
<td>680</td>
<td>547</td>
<td>481</td>
<td>566</td>
<td>530</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.9</td>
<td>7.6</td>
<td>7.7</td>
<td>7.8</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>207</td>
<td>251</td>
<td>238</td>
<td>212</td>
<td>227</td>
<td>225</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>20</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAC03)</td>
<td>252</td>
<td>320</td>
<td>265</td>
<td>254</td>
<td>274</td>
<td>269</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>76</td>
<td>97</td>
<td>78</td>
<td>72</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>15</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.9</td>
<td>1.6</td>
<td>1.6</td>
<td>2.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>18</td>
<td>15</td>
<td>14</td>
<td>5.9</td>
<td>5.1</td>
<td>5.4</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>20</td>
<td>35</td>
<td>28</td>
<td>10</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN,N02+NO3 DIS. (MG/L AS N)</td>
<td>7.0</td>
<td>6.0</td>
<td>6.3</td>
<td>1.8</td>
<td>1.9</td>
<td>2.9</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS. (MG/L AS P)</td>
<td>0.01</td>
<td>-</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS S04)</td>
<td>19</td>
<td>22</td>
<td>23</td>
<td>31</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>300</td>
</tr>
<tr>
<td>CADIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>2900</td>
<td>50</td>
<td>130</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><20</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>20</td>
<td><10</td>
<td><10</td>
<td>1500</td>
<td>420</td>
<td>510</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>230</td>
<td>160</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 10B. Chemical analyses of water from selected wells in Sardinia.

(Analyses by Erie County Laboratory. Well locations shown in fig. 9.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Well number and date of sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SA-25-02 08 02 1982</td>
</tr>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>394</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.9</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAO3)</td>
<td>156</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>12</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAO3)</td>
<td>178</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>56</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>9.2</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>0.60</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>9.8</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>14</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>0.01</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.06</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>29</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>220</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>320</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>470</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
</tr>
</tbody>
</table>

Well has galvanized (zinc coated) screen.
Table 10B. Chemical analyses of water from selected wells in Sardinia.
(Analyses by Erie County Laboratory. Well locations shown in fig. 9.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SA-22 08 03 1982</th>
<th>SA-22 01 05 1983</th>
<th>SA-23 05 24 1983</th>
<th>SA-23 08 02 1982</th>
<th>SA-23 01 05 1983</th>
<th>SA-25-01 05 24 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance (UMHOS)</td>
<td>326</td>
<td>340</td>
<td>430</td>
<td>411</td>
<td>425</td>
<td>370</td>
</tr>
<tr>
<td>pH (Standard Units)</td>
<td>7.9</td>
<td>8.1</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Alkalinity (MG/L as CaCO3)</td>
<td>123</td>
<td>126</td>
<td>164</td>
<td>162</td>
<td>161</td>
<td>162</td>
</tr>
<tr>
<td>Carbon Total Organic (MG/L as C)</td>
<td>11</td>
<td>5.3</td>
<td>6.4</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Hardness (MG/L as CaCO3)</td>
<td>169</td>
<td>164</td>
<td>201</td>
<td>167</td>
<td>199</td>
<td>187</td>
</tr>
<tr>
<td>Calcium Dissolved (MG/L)</td>
<td>48</td>
<td>46</td>
<td>59</td>
<td>47</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Magnesium Dissolved (MG/L)</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Potassium Dissolved (MG/L)</td>
<td>0.50</td>
<td>1.0</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Sodium Dissolved (MG/L)</td>
<td>4.1</td>
<td>3.6</td>
<td>5.4</td>
<td>8.3</td>
<td>6.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Chloride Dissolved (MG/L)</td>
<td>7.5</td>
<td>28</td>
<td>15</td>
<td>20</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Fluoride Dissolved (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Nitrogen, NO2+NO3 Diss. (MG/L as N)</td>
<td>0.75</td>
<td>0.10</td>
<td>7.1</td>
<td>0.80</td>
<td>0.60</td>
<td>1.2</td>
</tr>
<tr>
<td>Phosphorus, Ortho Diss. (MG/L as P)</td>
<td>0.02</td>
<td>-</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Sulfate Dissolved (MG/L as SO4)</td>
<td>37</td>
<td>38</td>
<td>18</td>
<td>30</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>Arsenic Dissolved (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Barium Dissolved (UG/L)</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>300</td>
</tr>
<tr>
<td>Cadmium Dissolved (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Chromium Dissolved (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Copper Dissolved (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>40</td>
</tr>
<tr>
<td>Iron Dissolved (UG/L)</td>
<td>50</td>
<td>550</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Lead Dissolved (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Manganese Dissolved (UG/L)</td>
<td>60</td>
<td>50</td>
<td>10</td>
<td>280</td>
<td>140</td>
<td>190</td>
</tr>
<tr>
<td>Mercury Dissolved (UG/L)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Selenium Dissolved (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Silver Dissolved (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Zinc Dissolved (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10B. Chemical analyses of water from selected wells in Sardinia.
(Analyses by Erie County Laboratory. Well locations shown in fig. 9.
UMHOS is microhmhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SA-46 01 06 1983</th>
<th>SA-46 05 23 1983</th>
<th>SA-34 08 03 1982</th>
<th>SA-34 01 05 1983</th>
<th>SA-34 05 24 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>496</td>
<td>490</td>
<td>396</td>
<td>396</td>
<td>390</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.7</td>
<td>7.7</td>
<td>7.8</td>
<td>8.0</td>
<td>7.9</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>235</td>
<td>229</td>
<td>149</td>
<td>146</td>
<td>147</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>12</td>
<td>20</td>
<td>15</td>
<td>2.5</td>
<td>9.8</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAC03)</td>
<td>262</td>
<td>239</td>
<td>207</td>
<td>199</td>
<td>197</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>75</td>
<td>66</td>
<td>58</td>
<td>55</td>
<td>54</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.0</td>
<td>0.90</td>
<td>0.70</td>
<td>1.0</td>
<td>0.50</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>4.1</td>
<td>4.1</td>
<td>2.0</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>12</td>
<td>7.5</td>
<td>18</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>NITROGEN NO2+NO3 DIS. (MG/L AS N)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>PHOSPHORUS ORTHO DIS. (MG/L AS P)</td>
<td>0.01</td>
<td>-</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS S04)</td>
<td>19</td>
<td>18</td>
<td>45</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>300</td>
<td>300</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>440</td>
<td>50</td>
<td>310</td>
<td>270</td>
<td>210</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESSE DISSOLVED (UG/L)</td>
<td>330</td>
<td>310</td>
<td>60</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td>240</td>
<td>140</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10B. Chemical analyses of water from selected wells in Sardinia.
(Analyses by Erie County Laboratory. Well locations shown in fig. 9.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>312</td>
<td>250</td>
<td>297</td>
<td>300</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>8.0</td>
<td>7.5</td>
<td>7.0</td>
<td>7.6</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>102</td>
<td>65</td>
<td>133</td>
<td>127</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>155</td>
<td>112</td>
<td>152</td>
<td>142</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>44</td>
<td>25</td>
<td>51</td>
<td>42</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>11</td>
<td>12</td>
<td>6.1</td>
<td>9.0</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.9</td>
<td>2.0</td>
<td>1.0</td>
<td>0.70</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>3.2</td>
<td>3.5</td>
<td>1.4</td>
<td>2.1</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>10</td>
<td>7.5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>0.20</td>
<td>0.26</td>
<td>0.60</td>
<td>1.1</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>51</td>
<td>40</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td>400</td>
<td><200</td>
<td>300</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td>30</td>
<td><20</td>
<td>30</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>500</td>
<td>20</td>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td>0.4</td>
<td><0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td>260</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 10C. Chemical analyses of water from selected wells in Springville.
(Analyses by Erie County Laboratory. Well locations shown in fig. 15.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SF-1 08 05 1982</th>
<th>SF-1 01 06 1983</th>
<th>SP-1 05 23 1983</th>
<th>SP-1 01 06 1983</th>
<th>SP-4 01 06 1983</th>
<th>SP-4 05 24 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>495</td>
<td>510</td>
<td>485</td>
<td>425</td>
<td>540</td>
<td>540</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>8.0</td>
<td>8.0</td>
<td>7.8</td>
<td>7.0</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>179</td>
<td>185</td>
<td>1168</td>
<td>118</td>
<td>218</td>
<td>218</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>20</td>
<td>4.9</td>
<td>7.1</td>
<td>1.8</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAC03)</td>
<td>252</td>
<td>267</td>
<td>156</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>76</td>
<td>82</td>
<td>68</td>
<td>49</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>8.2</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>2.4</td>
<td>3.1</td>
<td>2.8</td>
<td>2.0</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>3.4</td>
<td>3.9</td>
<td>3.1</td>
<td>16</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>12</td>
<td>18</td>
<td>12</td>
<td>20</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>4.9</td>
<td>4.7</td>
<td>7.8</td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.09</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>48</td>
<td>47</td>
<td>45</td>
<td>27</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>2900</td>
<td>860</td>
<td></td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>4900</td>
<td>8300</td>
<td></td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td>50</td>
<td>90</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 10C. Chemical analyses of water from selected Dells in Springville.
(Analyses by Erie County Laboratory. Well locations shown in fig. 15.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SP-9 08 05 1982</th>
<th>SP-9 01 06 1983</th>
<th>SP-9 05 23 1983</th>
<th>SP-14 08 05 1982</th>
<th>SP-14 01 06 1983</th>
<th>SP-14 05 23 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>849</td>
<td>991</td>
<td>860</td>
<td>694</td>
<td>496</td>
<td>540</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.8</td>
<td>7.6</td>
<td>7.6</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>220</td>
<td>251</td>
<td>244</td>
<td>225</td>
<td>157</td>
<td>168</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>20</td>
<td>9.1</td>
<td>116</td>
<td>24</td>
<td>7.5</td>
<td>7.0</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CAC03)</td>
<td>353</td>
<td>401</td>
<td>366</td>
<td>351</td>
<td>245</td>
<td>225</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>110</td>
<td>126</td>
<td>142</td>
<td>96</td>
<td>70</td>
<td>62</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>27</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>3.9</td>
<td>4.2</td>
<td>4.6</td>
<td>4.4</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>58</td>
<td>59</td>
<td>59</td>
<td>11</td>
<td>9.7</td>
<td>10</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>125</td>
<td>200</td>
<td>150</td>
<td>15</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td>1.10</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN,NO2+NO3 DIS.(MG/L AS N)</td>
<td>9.4</td>
<td>7.2</td>
<td>10</td>
<td>0.90</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS.(MG/L AS P)</td>
<td>0.06</td>
<td>-</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.48</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>43</td>
<td>52</td>
<td>38</td>
<td>139</td>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td><200</td>
<td>400</td>
<td><200</td>
<td><200</td>
<td>300</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td>9</td>
<td>2</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td>50</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td><130</td>
<td>140</td>
<td>1120</td>
<td>170</td>
<td>620</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>2400</td>
<td>260</td>
<td>30</td>
<td>190</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10c. Chemical analyses of water from selected wells in Springville.

(Analyses by Erie County Laboratory. Well locations shown in fig. 15. UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

| Constituent | Specific Conductance (UMHOS) | PH Lab (Standard Units) | Alkalinity Lab (MG/L as CaCO₃) | Total Organic Carbon (MG/L as C) | Hardness (MG/L as CaCO₃) | Calcium Dissolved (MG/L) | Magnesium Dissolved (MG/L) | Potassium Dissolved (MG/L) | Sodium Dissolved (MG/L) | Chloride Dissolved (MG/L) | Fluoride Dissolved (MG/L) | Nitrogen, NO₂+NO₃ Dis. (MG/L as N) | Phosphorus, Ortho Dis. (MG/L as P) | Sulfate Dissolved (MG/L as SO₄) | Arsenic Dissolved (UG/L) | Barium Dissolved (UG/L) | Cadmium Dissolved (UG/L) | Chromium Dissolved (UG/L) | Copper Dissolved (UG/L) | Iron Dissolved (UG/L) | Lead Dissolved (UG/L) | Manganese Dissolved (UG/L) | Mercury Dissolved (UG/L) | Selenium Dissolved (UG/L) | Silver Dissolved (UG/L) | Zinc Dissolved (UG/L) |
|--|-----------------------------|-------------------------|-------------------------------|---------------------------------|---------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------------|----------------------------|--------------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------------|---------------------------|---------------------------|-----------------|---------------------|
| SP-26 08 05 1982 | 1360 | 7.4 | 391 | 56 | 14 | 445 | 20 | 4.0 | 165 | 225 | <0.2 | 4.5 | 0.04 | 31 | <20 | <200 | <10 | <1 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
| SP-26 01 06 1983 | 991 | 7.2 | 307 | 14 | 294 | 98 | 12 | 2.4 | 85 | 125 | <0.2 | 2.4 | 0.01 | 21 | <20 | <200 | <10 | 2 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
| SP-26 05 23 1983 | 718 | 7.6 | 261 | 8.9 | 298 | 96 | 14 | 3.3 | 33 | 55 | <0.2 | 5.2 | 0.04 | 24 | <20 | <200 | <10 | 1 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
| SP-27 08 05 1982 | 396 | 7.0 | 166 | 21 | 215 | 63 | 14 | 1.0 | 37 | 12 | <0.2 | 4.8 | 0.04 | 24 | <20 | <200 | <10 | 0 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
| SP-27 01 06 1983 | 425 | 7.9 | 164 | 1.9 | 211 | 63 | 13 | 1.0 | 3.3 | 12 | <0.2 | 4.3 | 0.02 | 22 | <20 | <200 | <10 | 0 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
| SP-27 05 23 1983 | 410 | 7.9 | 164 | 4.1 | 194 | 56 | 13 | 0.80 | 3.4 | 10 | <0.2 | 4.3 | 0.01 | 22 | <20 | <200 | <10 | 1 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |<96
Table 10C. Chemical analyses of water from selected wells in Springville.
(Analyses by Erie County Laboratory. Well locations shown in fig. 15.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SP-28 06 05 1982</th>
<th>SP-28 05 23 1983</th>
<th>SP-31 08 05 1982</th>
<th>SP-31 01 05 1983</th>
<th>SP-31 05 23 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>227</td>
<td>240</td>
<td>297</td>
<td>312</td>
<td>340</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.8</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CACO3)</td>
<td>130</td>
<td>60</td>
<td>158</td>
<td>116</td>
<td>112</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>7.4</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.7</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>78</td>
<td>86</td>
<td>158</td>
<td>149</td>
<td>150</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>23</td>
<td>26</td>
<td>45</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>5</td>
<td>5.2</td>
<td>11</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>1.4</td>
<td>1.3</td>
<td>0.60</td>
<td>1.0</td>
<td>0.50</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>14</td>
<td>12</td>
<td>3.4</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>30</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN, NO2+NO3 DIS. (MG/L AS N)</td>
<td>1.4</td>
<td>2.6</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>PHOSPHORUS, ORTHO DIS. (MG/L AS P)</td>
<td>0.07</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td>50</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>50</td>
<td>50</td>
<td>200</td>
<td>200</td>
<td>170</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td>20</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td><10</td>
<td>30</td>
<td>60</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>10</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>
Table 10C. Chemical analyses of water from selected wells in Springville.
(Analyses by Erie County Laboratory. Well locations shown in fig. 15.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SP-29 08 05 1982</th>
<th>SP-29 01 06 1983</th>
<th>SP-29 05 23 1983</th>
<th>SP-37 01 05 1982</th>
<th>SP-37 08 05 1982</th>
<th>SP-37 05 23 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>439</td>
<td>467</td>
<td>420</td>
<td>849</td>
<td>680</td>
<td>640</td>
</tr>
<tr>
<td>PH (STANDARD UNITS)</td>
<td>7.9</td>
<td>7.8</td>
<td>7.8</td>
<td>7.3</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>ALKALINITY (MG/L AS CACO3)</td>
<td>177</td>
<td>196</td>
<td>173</td>
<td>329</td>
<td>274</td>
<td>235</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>21</td>
<td>3.0</td>
<td>6.1</td>
<td>27</td>
<td>32</td>
<td>3.5</td>
</tr>
<tr>
<td>HARDNESS (MG/L AS CACO3)</td>
<td>234</td>
<td>242</td>
<td>212</td>
<td>426</td>
<td>363</td>
<td>276</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>49</td>
<td>72</td>
<td>62</td>
<td>136</td>
<td>114</td>
<td>84</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>21</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>0.90</td>
<td>1.0</td>
<td>0.70</td>
<td>9.6</td>
<td>9.0</td>
<td>5.4</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>7.2</td>
<td>9.0</td>
<td>7.6</td>
<td>20</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>22</td>
<td>18</td>
<td>18</td>
<td>52</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN,NO2+NO3 DIS. (MG/L AS N)</td>
<td>4.7</td>
<td>4.4</td>
<td>5.7</td>
<td>8.1</td>
<td>7.3</td>
<td>8.9</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS. (MG/L AS P)</td>
<td>0.07</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>20</td>
<td>21</td>
<td>17</td>
<td>22</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td><200</td>
<td>300</td>
<td><200</td>
<td>500</td>
<td><200</td>
<td>400</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td>30</td>
<td>20</td>
<td><10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>40</td>
</tr>
</tbody>
</table>
Table 10D. Chemical analyses of water from selected wells in Alden.
(Analyses by Erie County Laboratory. Well locations shown in fig. 22.
UMHOS is micromhos; MG/L is milligrams per liter; UG/L is micrograms per liter.)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Well number and date of sample collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td></td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td></td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td></td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td></td>
</tr>
<tr>
<td>HARTHNESS (MG/L AS CAC03)</td>
<td></td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td></td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td></td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td></td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td></td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td></td>
</tr>
<tr>
<td>NITROGEN,N02+N03 DIS.(MG/L AS N)</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS.(MG/L AS P)</td>
<td></td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td></td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td></td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constituent</th>
<th>AL-21 04 19 82</th>
<th>AL-8 04 19 82</th>
<th>AL-18 04 19 82</th>
<th>AL-16 04 19 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC CONDUCTANCE (UMHOS)</td>
<td>7.7</td>
<td>7.5</td>
<td>7.3</td>
<td>7.7</td>
</tr>
<tr>
<td>PH LAB (STANDARD UNITS)</td>
<td>7.7</td>
<td>7.5</td>
<td>7.3</td>
<td>7.7</td>
</tr>
<tr>
<td>ALKALINITY LAB (MG/L AS CAC03)</td>
<td>145</td>
<td>244</td>
<td>283</td>
<td>257</td>
</tr>
<tr>
<td>CARBON TOTAL ORGANIC (MG/L AS C)</td>
<td>4.7</td>
<td>10</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>HARTHNESS (MG/L AS CAC03)</td>
<td>170</td>
<td>297</td>
<td>653</td>
<td>428</td>
</tr>
<tr>
<td>CALCIUM DISSOLVED (MG/L)</td>
<td>62</td>
<td>122</td>
<td>247</td>
<td>164</td>
</tr>
<tr>
<td>MAGNESIUM DISSOLVED (MG/L)</td>
<td>7.2</td>
<td>10</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>POTASSIUM DISSOLVED (MG/L)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SODIUM DISSOLVED (MG/L)</td>
<td>1.9</td>
<td>18</td>
<td>9.2</td>
<td>22</td>
</tr>
<tr>
<td>CHLORIDE DISSOLVED (MG/L)</td>
<td>5.0</td>
<td>40</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>FLUORIDE DISSOLVED (MG/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>NITROGEN,N02+N03 DIS.(MG/L AS N)</td>
<td><0.1</td>
<td>2.7</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>PHOSPHORUS,ORTHO DIS.(MG/L AS P)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SULFATE DISSOLVED (MG/L AS SO4)</td>
<td>23</td>
<td>28</td>
<td>376</td>
<td>195</td>
</tr>
<tr>
<td>ARSENIC DISSOLVED (UG/L)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>BARIUM DISSOLVED (UG/L)</td>
<td>400</td>
<td><200</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>CADMIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CHROMIUM DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>COPPER DISSOLVED (UG/L)</td>
<td>20</td>
<td>40</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>IRON DISSOLVED (UG/L)</td>
<td><50</td>
<td><50</td>
<td>420</td>
<td>480</td>
</tr>
<tr>
<td>LEAD DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>MANGANESE DISSOLVED (UG/L)</td>
<td><10</td>
<td>10</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>MERCURY DISSOLVED (UG/L)</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
</tr>
<tr>
<td>SELENIUM DISSOLVED (UG/L)</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>SILVER DISSOLVED (UG/L)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>ZINC DISSOLVED (UG/L)</td>
<td><20</td>
<td>40</td>
<td>40</td>
<td><20</td>
</tr>
</tbody>
</table>