A FINITE-ELEMENT SIMULATION MODEL FOR SATURATED-
UNSATURATED, FLUID-DENSITY-DEPENDENT GROUND-
WATER FLOW WITH ENERGY TRANSPORT OR CHEMICALLY-
REACTIVE SINGLE-SPECIES SOLUTE TRANSPORT

By Clifford I. Voss

: 3 Prepared in Cooperation with
S / U.S. AIR FORCE ENGINEERING AND SERVICES CENTER
Tyndall A.F.B.. Florida

1984



UNITED STATES DEPARTMENT OF THE INTERIOR
WILLIAM P. CLARK., Secretary

For additional information
Write to:

Chief Hydrologist

U.S. Geological Survey
431 National Center
Reston, Virginia 22092

GEOLOGICAL SURVEY
Dallas L. Peck, Director

Copies of this report can be
purchased from:

U.S. Geological Survey
Open-File Services Section
Western Distribution Branch
Box 25425. Federal Center

- Denver., Colorado 80225



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

—

11. A Finite-Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent
Ground-Water Flow with Energy Transport or Chemically-Reactive Single Species Solute
Transport. (UNCLASSIFIED)

19.

SUTRA flow simulation may be employed for areal and cross-sectional modeling of saturated
ground-water flow systems, and for cross-sectional modeling of unsaturated zone flow.
Solute transport simulation using SUTRA may be employed to model natural or man-induced
chemical species transport including processes of solute sorption, production and decay,
and may be applied to analyze ground-water contaminant transport problems and aquifer
restoration designs. In addition, solute transport simulation with SUTRA may be used for
modeling of variable density leachate movement, and for cross-sectional modeling of salt-
water intrusion in aquifers at near-well or regional scales, with either dispersed or
relatively sharp transition zones between fresh water and salt water. SUTRA energy trans-
port simulation may be employed to model thermal regimes in aquifers, subsurface heat
conduction, aquifer thermal energy storage systems, geothermal reservoirs, thermal
pollution of aquifers, and natural hydrogeological convection systems.

Mesh construction is quite flexible for arbitrary geometries employing quadrilateral
finite elements in Cartesian or radial-cylindrical coordinate systems. The mesh may be
coarsened employing 'pinch nodes' in areas where transport is unimportant. Permeabilities
may be anisotropic and may vary both in direction and magnitude throughout the system as
may most other aquifer and fluid properties. Boundary conditions, sources and sinks may
be time-dependent. A number of input data checks are made in order to verify the input
data set. An option is available for storing the intermediate results and restarting
simulation at the intermediate time. An option to plot results produces output which may
be contoured directly on the printer paper. Options are also available to print fluid
velocities in the system, and to make temporal observations at points in the system.

Both the mathematical basis for SUTRA and the program structure are highly general, and are
modularized to allow for straightforward addition of new methods or processes to the
simulation. The FORTRAN-77 coding stressed clarity and modularity rather than efficiency,
providing easy access for eventual modifications.

18.
DESCRIPTORS: Two Dimensional Flow Decay Adsorption
IDENTIFIERS: Thermal Pollution Water Pollution Leaching

SUTRA (Saturated-Unsaturated Transport)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
Water-Resources Investigations ESL-TR-85-10
Report 84-4369
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
U.S. Geological Survey (If applicable) HQ AFESC/RDVW
6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
431 National Center Tyndall AFB, Florida 32403

Reston, Virginia 22092

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Jointly funded (If applicable)
MIPR~-N-83-18
and sponsored by 6 & 7 above.
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
11. TITLE (Include Security Classification) 63723F 2103 20 25
12. PERSONAL AUTHOR(S) .
Voss, Clifford I.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
Final FRom _ 821229 +to0 850130 841230 409
16. SUPPLEMENTARY NOTATION
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR. Ground Water Transport Energy
08 08 Mathematical Models Flow Fluid Flow
12 01 Computer Programs Solutes Radial Flow

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

SUTRA (Saturated-Unsaturated Transport) is a computer program which simulates fluid
movement and the transport of either energy or dissolved substances in a subsurface
environment. The model employs a two-dimensional hybrid finite-element and integrated-
finite-difference method to approximate the governing equations that describe the two
interdependent processes that are simulated by SUTRA:

1. fluid density-dependent saturated or unsaturated ground-water flow, and either
2a. transport of a solute in the ground water, in which the solute may be subject to:
equilibrium adsorption on the porous matrix, and both first-order and zero-order
production or decay, or,

2b. transport of thermal energy in the ground water and solid matrix of the aquifer.
SUTRA provides, as the primary calculated result, fluid pressures and either solute
concentrations or temperatures, as they vary with time, everywhere in the simulated
subsurface system. SUTRA may also be used to simulate simpler subsets of the above

o
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

uncLassiFiED/UNLIMITED B same as reT. (FoTic users [ UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIDUVAL 22b. TELEPHONE NUMBER 22¢c. OFFICE SYMBOL
(Include Area Code)
1Lt Edward Heyse (904) 283-4628 HQ -AFESC/RDVW

DD FORM 1473' 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
141 SECURITY CLASSIFICATION OF THIS PAGE




PREFACE

This report describes a complex computer model for analysis of fluid flow
and solute or energy transport in subsurface systems. The user is cautioned
that while the model will accurately reproduce the physics of flow and transport
when used with proper discretization, it will give meaningful results only for
well-posed problems based on sufficient supporting data.

The user is requested to kindly notify the originating office of any errors
found in this report or in the computer program. Updates will occasionally be
made to both the report and the computer program to include corrections of
errors, addition of processes which may be simulated, and changes in numerical
algorithms. Users who wish to be added to the mailing list for updates may send

a request to the originating office at the following address:

Chief Hydrologist -~ SUTRA
U.S. Geological Survey
431 National Center
Reston, VA 22092

Copies of the computer program on tape are available at cost of processing
from:

U.S. Geological Survey
WATSTORE Program Office
437 National Center
Reston, VA 22092
Telephone: 703-860-6871

This report has been reviewed by the Public Affairs Office (AFESC/PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS, it

will be available to the general public, including foreign nationals.
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ABSTRACT
SUTRA (Saturated-Unsaturated Transport) is a computer program which
simulates fluid movement and the transport of either energy or dissolved
substances in a subsurface environment. The model employs a two~dimensional
hybrid finite-element and integrated-finite-difference method to approximate
the governing equations that describe the two interdependent processes that

are simulated:

1) fluid density-dependent saturated or unsaturated ground-water flow,

and either

23) transport of a solute in the ground water, in which the solute may
be subject to: equilibrium adsorption on the porous matrix, and
both first-order and zero-order production or decay,

or,

Zb) transport of thermal energy in the ground water and solid matrix of

the aquifer.

SUTRA provides, as the primary calculated result, fluid pressures and either
solute concentrations or temperatures, as they vary with time, everywhere in
the simulated subsurface system. SUTRA may also be used to simulate simpler
subsets of the above process.

SUTRA flow simulation may be employed for areal and cross-sectional
modeling of saturated ground-water flow systems, and for cross-—sectional
modeling of unsaturated zone flow. Solute transport simulation using SUTRA
may be employed to model natural or man-induced chemical species transport in-

cluding processes of solute sorption, production and decay, and may be applied
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to analyze ground-water contaminant transport problems and aquifer restoration
designs. In addition, solute transport simulation with SUTRA may be used for
modeling of variable density leachate movement, and for cross-sectional modeling
of salt-water intrusion in aquifers at near-well or regional scales, with either
dispersed or relatively sharp transition zones between fresh water and salt water.
SUTRA energy transport simulation may be employed to model thermal regimes in
aquifers, subsurface heat conduction, aquifer thermal energy storage systems,
geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic
convection systems.

Mesh construction is quite flexible for arbitréry geometries employing
quadrilateral finite elements in Cartesian or radial-cylindrical coordinate
systems. The mesh may be coarsened employing 'pinch nodes' in areas where
transport is unimportant. Permeabilities may be anisotropic and may vary
both in direction and magnitude throughout the system as may most other
aquifer and fluid properties. Boundary conditions, sources and sinks may be
time-dependent. A number of input data checks are made in order to verify the
input data set. An option is available for storing intermediate results and
restarting simulation at the intermediate time. An option to plot results pro-
duces output which may be contoured directly on the printer paper. Options are
also available to print fluid velocities in the system, to print fluid mass and
solute mass or energy budgets for the system, and to make temporal observations
at points in the system.

Both the mathematical basis for SUTRA and the program structure are highly
general, and are modularized to allow for straightforward addition of new methods
or processes to the simulation. The FORTRAN-77 coding stresses clarity and mod-

ularity rather than efficiency, providing easy access for eventual modifications.
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Chapter 1

Introduction

1.1 Purpose and Scope

SUTRA (Saturated-Unsaturated Transport) is a computer program which
simulates fluid movement and transport of either energy or dissolved substances
in a subsurface environment. The model employs a two-dimensional hybrid finite-
element and integrated-finite-difference method to approximate the governing

equations that describe the two interdependent processes that are simulated:

1) fluid density-dependent saturated or unsaturated ground-water flow,
and either
Za) transport of a solute in the ground water, in which the solute may

be subject to: equilibrium adsorption on the porous matrix, and
both first-order and zero-order production or decay,
or,

Zb) transport of thermal energy in the ground water and solid matrix of

the aquifer.

SUTRA provides, as the primary calculated result, fluid pressures and either
solute concentrations or temperatures, as they vary with time, everywhere in
the simulated subsurface system. SUTRA may also be used to simulate simpler

subsets of the above processes.



This report describes the physical-mathematical basis and the numerical
methodology of the SUTRA computer code. The report may be divided into three
levels which may be read depending on the reader's interest. The overview of
simulation with SUTRA and methods may be obtained from Chapter 1 - Introduction.
The basis, at a fundamental level, for a reader who will carry out simulations
with SUTRA may be obtained by additional reading of: Chapter 2 - Physical-
Mathematical Basis of SUTRA Simulation, which gives a complete and detailed
description of processes which SUTRA simulates and also describes each physical
parameter required by SUTRA input data, Chapter 3 - Fundamentals of Numerical
Algorithms, which gives an introduction to the numerical aspects of simulation
with SUTRA, Chapter 6 - Simulation Examples, and Chapter 7 - Simulation Setup
which includes the SUTRA Input Data List. Finally, for complete details of SUTRA
methodology, the following additional sections may be read: Chapter 4 - Numerical
Methods, and Chapter 5 - Other Methods and Algorithms. Chapter &4 provides the
detail upon which program modifications may be based, while portions of Chapter 5

are valuable background for certain simulation applications.

1.2 The Model

SUTRA is based on a general physical, mathematical and numerical struc-
ture implemented in the computer code in a modular design. This allows straight-
forward modifications and additions to the code. Eventual modifications may be,
for example, the addition of non-equilibrium sorption (such as two-site models),
equilibrium chemical reactions or chemical kinetics, or addition of over~ and

underburden heat loss functions, a well-bore model, or confining bed leakage.




The SUTRA model stresses general applicability, numerical robustness and
accuracy, and clarity in coding. Computational efficiency is somewhat dimin-
ished to preserve these qualities. The modular structure of SUTRA, however
allows implementation of any eventual changes which may improve efficiency.
Such modifications may be in the configuration of the matrix equations, in the
solution procedure for these equations, or in the finite-element integration
routines. Furthermore, the general nature and flexibility of the input data
allows easy adaptability to user-friendly and graphic input-output programming.
The modular structure would also ease major changes such as modifications for
multi-layer (quasi-three-dimensional) simulations, or for simultaneous energy
and solute transport simulations.

SUTRA is primarily intended for two-dimensional simulation of flow, and
either solute or energy transport in saturated variable-density systems. While
unsaturated flow and transport processes are included to allow simulation of
some unsaturated problems, SUTRA numerical algorithms are not specialized for
the non-linearities of unsaturated flow as would be required of a model simu~
lating only unsaturated flow. Lacking these special methods, SUTRA requires
fine spatial and temporal discretization for unsaturated flow, and is therefore
not an economical tool for extensive unsaturated flow modeling. The general
unsaturated capability is implemented in SUTRA because it fits simply in the
structure of other non-linear coefficients involved in density-dependent flow
and tramnsport simulation without requiring special algorithms. The unsaturated
flow capability is thus provided as a convenience to the user for occasional

analyses rather than as the primary application of this tool.



1.3 SUTRA Processes

Simulation using SUTRA is in two space dimensions, although a three-
dimensional quality is provided in that the thickness of the two-dimensional
region in the third direction may vary from point to point. Simulation may be
done in either the areal plane or in a cross-sectional view. The spatial coor-
dinate system may be either Cartesian (x,y) or radial-cylindrical (r,z). Areal
simulation is usually physically unrealistic for variable-density fluid problems.

Ground-water flow is simulated through numerical solution of a fluid mass
balance equation. The ground-water system may be either saturated, or partly or
completely unsaturated. Fluid density may be constant, or vary as a function
of solute concentrations or fluid temperature.

SUTRA tracks the transport of either solute mass or energy in the flowing
ground water through a unified equation which represents the transport of either
solute or energy. Solute transport is simulated through numerical solution of
a solute mass balance equation where solute concentration may affect fluid den-
sity. The single solute species may be transported conservatively, or it may
undergo equilibrium sorption (through linear, Freundlich or Langmuir isotherms).
In addition, the solute may be produced or decay through first- or zero-order
processes.

Energy transport is simulated though numerical solution of an energy bal-
ance equation. The solid grains of the aquifer matrix and fluid are locally
assumed to have equai temperature, and fluid density and viscosity may be

affected by the temperature.




Almost all aquifer material, flow, and transport parameters may vary in
value throughout the simulated region. Sources and boundary conditions of
fluid, solute and energy may be specified to vary with time or may be constant.

SUTRA dispersion processes include diffusion and two types of fluid
velocity-dependent dispersion. The standard dispersion model for isotropic
media assumes direction-independent values of longitudinal and transverse dis-
persivity. A velocity-dependent dispersion process for anisotropic media is
also provided and is introduced in the SUTRA documentation. This process
assumes that longitudinal dispersivity varies depending on the angle between
the flow direction and the principal axis of aquifer permeability when perme-

ability is anisotropic.

1.4 Some SUTRA Applications

SUTRA may be employed in one- or two-dimensional analyses. Flow and
transport simulation may be either steady-state which requires only a single
solution step, or transient which requires a series of time steps in the numer-
ical solution. Single-step steady-state solutions are usually not appropriate
for non-linear problems with variable density, saturation, viscosity and non-
linear sorption.

SUTRA flow simulation may be employed for areal and cross-sectional
modeling of saturated ground-water flow systems, and unsaturated zone flow.
Some aquifer tests may be analyzed with flow simulation. SUTRA solute trans-
port simulation may be employed to model natural or man-induced chemical
species transport including processes of solute sorption, production and decay.
Such simulation may be used to analyze ground-water contaminant transport prob-

lems and aquifer restoration designs. SUTRA solute transport simulation may



also be used for modeling of variable density leachate movement, and for cross-
sectional modeling of salt-water intrusion in aquifers at both near-well or
regional scales with either dispersed or relatively sharp transition zones be-
tween fresh water and salt water. SUTRA energy transport simulation may be
employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer
thermal energy storage systems, geothermal reservoirs, thermal pollution of

aquifers, and natural hydrogeologic convection systems.
1.5 SUTRA Numerical Methods

SUTRA simulation is based on a hybridization of finite-element and inte-
grated-finite-difference methods employed in the framework of a method of
weighted residuals. The method is robust and accurate when employed with
proper spatial and temporal discretization. Standard finite-element approxi-
mations are employed only for terms in the balance equations which describe
fluxes of fluid mass, solute mass and energy. All other non-flux terms are
approximated with a finite-element mesh version of the integrated-finite-
difference methods. The hybrid method is the simplest and most economical
approach which preserves the mathematical elegance and geometric flexibility
of finite-element simulation, while taking advantage of finite-difference
efficiency.

SUTRA employs a new method for calculation of fluid velocities. Fluid
velocities, when calculated with standard finite-element methods for systems
with variable fluid density, may display spurious numerically generated compo-
nents within each element. These errors are due to fundamental numerical

inconsistencies in spatial and temporal approximations for the pressure gradient



and density-gravity terms which are involved in velocity calculation. Spurious
velocities can significantly add to the dispersion of solute or energy. This
false dispersion makes accurate simulation of all but systems with very low
vertical concentration or temperature gradients impossible, even with fine
vertical spatial discretization. Velocities as calculated in SUTRA, however,
are based on a new, consistent, spatial and temporal discretization, as intro-
duced in this report. The consistently-evaluated velocities allow stable and
accurate transport simulation (even at steady state) for systems with large
vertical gradients of concentration or temperature. An example of such a
system that SUTRA successfully simulates is a cross-sectional regional model
of a coastal aquifer wherein the transition zone between horizontally flowing
fresh water and deep stagnant salt water is relatively narrow.

The time discretization used in SUTRA is based on a backwards finite-
difference approximation for the time derivatives in the balance equations.
Some non-linear coefficients are evaluated at the new time level of solution
by projection, while others are evaluated at the previous time level for non-
iterative solutions. All coefficients are evaluated at the new time level for
iterative solutions.

The finite-element method allows the simulation of irregular regions with
irregular internal discretization. This is made possible through use of quad-
rilateral elements with four corner nodes. Coefficients and properties of the
system may vary in value throughout the mesh. Manual construction and data pre-
paration for an irregular mesh requires considerable labor, and it may be worth-
while for the user to develop or obtain interactive software for this purpose

in the event that irregular mesh construction is often required.




'Pinch nodes' may be introduced in the finite-element mesh to allow for
quick changes in mesh size from a fine mesh in the region where transport is of
primary interest, to the external region, where only a coarse mesh is needed to
define the flow system. Pinch nodes, although simplifying mesh design and re-
ducing the number of nodes required in a particular mesh, also increases the
matrix equation band width. Because SUTRA employs a band solver, the increased
band width due to the use of pinch nodes may offset the gain in computational
efficiency due to fewer nodes. Substitution of a non-band-width-dependent
solver would guarantee the advantage that pinch nodes can provide. However,
mesh designs employing pinch nodes may be experimented with, using the present
solver.

SUTRA includes an optional numerical method based on asymmetric finite
element weighting functions which results in 'upstream weighting' of advective
transport and unsaturated fluid flux terms. Although upstream weighting has
typically been employed to achieve stable, non-oscillatory solutions to trans-
port problems and unsaturated flow problems, the method is not recommended for
general use as it merely changes the physical system being simulated by in-
creasing the magnitude of the dispersion process. A practical use of the method
is, however, to provide a simulation of the sharpest concentration or temperature
variations possible with a given mesh. This is obtained by specifying a simula~-
tion with absolutely no physical diffusion or dispersion, and with 50% upstream
weighting. The results may be interpreted as the solution with the minimum
amount of dispersion possible for a stable result in the particular mesh in use.

In general simulation analyses of transport, upstream weighting is dis~

couraged. The non-upstream methods are also provided by SUTRA, and are based
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on symmetric weighting functions. These methods are robust and accurate when
the finite~element mesh is properly designed for a particular simulation, and

are those which should be used for most transport simulations.

1.6 SUTRA as a Tool of Analysis

SUTRA will provide clear, accurate answers only to well-posed, well-
defined, and well-discretized simulation problems. In less-well-defined
systems, SUTRA simulation can help visualize a conceptual model of the flow
and transport regime, and can aid in deciding between various conceptual models.
In such less-well-defined systems, simulation can help answer questions such as:
Is the (inaccessible) aquifer boundary which is (probably) ten kilometers offshore
either leaky or impermeable? How leaky? Does this boundary affect the primary
analysis of onshore water supply?

SUTRA is not useful for making exact predictions of future responses of
the typical hydrologic systems which are not well defined. Rather, SUTIRA is
useful for hypothesis testing and for helping to understand the physics of
such a system. On the other hand, developing an understanding of a system based
on simulation analysis can help make a set of worthwhile predictions which are
predicated on uncertainty of both the physical model design and model parameter
values. In particular, transport simulation which relies on large amounts of
dispersion must be considered an uncertain basis_for prediction, because of the
highly idealized description inherent in the SUTRA dispersion process.

A simulation-based prediction made with certainty is often ingppropriate.
and an "if-then" prediction is more realistic. A reasonable type of result of

SUTRA simulation analysis may thus be: "Based on the uncertainty in location
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and type of boundary condition A, and uncertainty in the distribution of values
for parameters B and C, the following predictions are made. The extreme, but
reasonable combination of A, B, and C results in prediction X; tﬁe opposite
reasonable extreme combination of A, B, and C results in prediction Y; the
combination of best estimates of A, B, and C, results in prediction Z, and is
considered most likely."

In some cases, the available real data on a system may be so poor that a
simulation using SUTRA is so ambiguously defined that no prediction at all can
be made. In this instance, the simulation may be used to point out the need for
particular types of data collection. The model could be used to advantage in
visuvalizing possible regimes of system behavior rather than to determine which

is accurate.
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Chapter 2

Physical-Mathematical Basis of SUTRA Simulation

The physical mechanisms which drive thermal energy transport and solute
transport in the subsurface environment are described by nearly identical mathema~-
tical expressions. SUTRA takes advantage of this similarity, and with a simple
program structure provides for simulation of either energy or solute transport.
In fact, SUTRA simulation combines two physical models, one to simulate the flow
of ground water, and the second to simulate the movement of either thermal energy
or a single solute in the ground water.

The primary variable upon which the flow model is based is fluid pressure,
p{M/(L-sz)] = p(x,y,t). Pressure may vary spatially in the ground-water
system, as well as with time. Pressure is expressed as a combination of fluid
mass units, [M], length units ,[L], and time units in seconds, [s]. Fluid den-
sity may vary depending on the local value of fluid temperature or solute con-
centration. Variation in fluid density, aside from fluid pressure differences,
may itself drive flows. The effects of gravity acting on fluids with different
density must therefore be accounted for in the flow field.

The flow of ground water, in turn, is a fundamental mechanism upon which
the physical models of energy transport and solute transport are based. The
primary variable characterizing the thermal energy distribution in a ground-
water system is fluid temperature, T[°C] = T(x,y,t), in degrees Celciu.s, which
may vary spatially and with time. The primary variable characterizing the state
of solute distribution in a ground-water system is solute mass fraction,

Cc[{Mg/M] = C(x,y,t), which may also vary spatially and with time. The units are

a ratio of solute mass, [Mg] to fluid mass, [M]. The term 'solute mass fraction'
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may be used interchangeably with 'solute concentration', and no difference should
be implied. Note that 'solute volumetric concentration', c[Mg/Lg3], (mass
of solute, Mg, per volume of fluid, Lf3), is not the primary variable
characterizing solute transport referred to either in this report or in output
from the SUTRA model. Note that the measure of solute mass [Mg] may be in
units such as [mg), [kg)}, [moles], or [lbm], and may differ from the measure,
[M], of fluid mass.
SUTRA allows only the transport of either thermal energy or a single
solute to be modeled in a given simulation. Thus, when simulating energy trans-
port, a constant value of solute concentration 1s assumed in the ground water.
When simulating solute transport, a constant ground-water temperature 1s assumed.
SUTRA simulation is carried out in two space dimensions with parameters
varying in these two directions. However, the region of space to be simulated
may be defined as three dimensional, when the assumption is made that all SUTRA
parameters and coefficients have a constant value in the third space direction.
A SUTRA simulation may be carried out over a region defined over two space
coordinates (x,y) in which the thickness of the region measured in the third co-

ordinate direction (z) varies depending on (x,y) position.

2.1 Physical Properties of Solid Matrix and Fluid

Fluid physical properties

The ground-water fluid density and viscosity may vary depending on pressure,
temperature and solute concentration. These fundamental variables are defined

as follows:
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p(x,y.t) [M/(L-s2) | fluid pressure
T(x,y.t) [“cl fluid temperature (degrees Celcius)
Cix,y,t) I Mg/M] fluid solute mass fraction
(or solute concentration) (mass
solute per mass total fluid)

As a point of reference, the 'solute volumetric concentration' is defined in

terms of fluid density, p:

c(x,y,t) IMS/Lgl solute volumetric concentration
{mass solute per volume total fluid)

p(x,y,t) lM/L;I fluid density
c = pC (2.1)
P =py + C (2.2)

Total fluid density is the sum of pure water density, py, and c. Note again
that 'solute concentration' refers to solute mass fraction, C, and not c.
Fluid density, while a weak function of pressure is primarily dependent upon
fluid solute concentration and temperature. The approximate density models
employed by SUTRA are first order Taylor expansions about a base (reference)
density other density models may be substituted through minor modifications to

the program. For energy transport:

= . % (-
0 o(T) = p +ox (T-T) (2.3)
o, iM/Lgl base fluid density at T=T,
To {°cl base fluid temperature

where p, is the base fluid density at a base (reference) temperature of T,,

and 9p/0T is a constant value of density change with temperature. For the
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range 20°C to 60°C, 9p/3T is approximately -.375 [kg/(m3-°C)]; however,
this factor varies and should be carefully chosen for the temperature range
of interest.

For solute transport:

" B (o -
p=p(C)=2p +35(C~C) (2.4)
3 ,
0, [M/Lf] base fluid density at C=C_
Co (MS/M] base fluid solute concentration

where p, is the base fluid density at base concentration, C,. (Usually,
Co= 0, and the base density is that of pure water.) The factor 3p/dC is
a constant value of density change with concentration. For example, for mix-
tures of fresh and sea water at 20°C, when C is the mass fraction of total
dissolved solids, Cy = 0, and py = 998.2 [kg/m3], then the factor, dp/3C,
is approximately 700. [kg/m3].

Fluid viscosity, u [M/Lg-s}, is a weak function of pressure and of con-
centration, (for all except very high concentrations), and depends primarily on
fluid temperature. For energy transport the viscosity of pure water is given

in m-k-s units by:

248.37

(T+133.15

)

7 [kg/(m+s)] (2.5)

w(T) = (239.4 x 107") 10
(The units may be converted to those desired via a scale factor in the program
input data.)

For solute transport, viscosity is taken to be constant. For example, at 20°C

in m~k-s units:

W)y o 1.0 x 107> [kg/(m-s)) (2.6)

20°C
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Properties of fluid within the solid matrix

The total volume of a porous medium is composed of a matrix of solid grains
typically of solid earth materials, and of void space which includes the entire
remaining volume which the solid does not fill. The volume of void space may be
fully or partly filled with gas or liquid, and is commonly referred to as the
pore volume. Porosity is defined as a volume of voids in the soil matrix per

total volume of voids plus matrix:

e(x,y,.t) (1] porosity
(volume of voids per total volume)

where [1] indicates a dimensionless quantity.

It should be noted that SUTRA employs only one type of porosity, €. 1In
some instances there may be need to distinguish between a porosity for pores
which take part in fluid flow, and pores which contain stagnant fluid. (Mod-
ifications may be made by the user to include this process.)

The fraction of total volume filled by the fluid is €Sy where:

Sw(x,y.t) (1] water saturation (saturation)
(volume of water per volume of voids)

When S, = 1, the void space is completely filled with fluid and is said to
be saturated. When S, < 1, the void space is only partly water filled and
is referred to as being unsaturated.

When S, ¢ 1, water adheres to the surface of solid grains by surface ten-
sion effects, and the fluid pressure is less than atmospheric. Fluid pressure,
p, is measured with respect to background or atmospheric pressure. The negative

pressure is defined as capillary pressure, which exists only for p < O:
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pc(x,y,t) [M/(L'sz)] capillary pressure

P, =P when p < O

P, = 0 when p ) 0 (2.7)
In a saturated porous medium, as fluid (gauge) pressure drops below zero, air
may not directly enter the void space, but may enter suddenly when a critical

capillary pressure is reached. This pressure, pcept: 18 the entry pressure

(or bubble pressure):
Pcent [M/(L-s2)] entry capillary pressure

Typical values for p.ept range from about 1. x 103 [kg/(m'sz)] for coarse
sand to approximately 5. x 103 [kg/(m-s2)] for fine silty sand.

The relationship between fluid saturation and capillary pressure in a given
medium is typically determined by laboratory experiment, and except for the
portion near bubble pressure, tends to have an exponential character (Figure 2.1).
Different functional relationships exists for different materials as measured in
the laboratory. Also a number of general functions with parameters to be fitted
to laboratory data are available. Because of the variety of possible functions,
no particular function is set by SUTRA; any desired function may be specified
for simulation of unsaturated flow. For example, a general function with three

fitting parameters is (Van Genuchten, 1980):

(2:_.1.
S =8 + (1-5 )[-————-——1———-—~] n (2.8)
w wres wres

1+ (apc)n
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Figure 2.1

Saturation~capillary pressure relationship (schematic).
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where Sy rog is a residual saturation below which saturation is not expected to
fall (because the fluid becomes immobile), and both a and n are parameters. The
values of these parameters depend upon a number of factors and must be carefully
chosen for a particular material.

The total mass of fluid contained in a total volume, VOL, of solid matrix
plus pore space is (eSyp)VOL. The actual amount of total fluid mass contained
depends solely on fluid pressure, p, and solute concentration, C, or fluid temp-
erature, T. A change in total fluid mass in a volume, assuming VOL is constant,

is expressed as follows:

9(eSwo) 3(eSwp)
vop-d(eswp) = VOL - [——-—5;——— dp + 5 du] (2.9)

where U represents either C or T. Saturation, Sw’ is entirely dependent on

fluid pressure, and porosity, €, does not depend on concentration or temperature:

as

: = voL-[(s 2L&p) v 3p
VOL d(eSwp) VOL [(sw op + €p 5D )dp + €S, 35 du] (2.10)

The factor, asw/ap, is obtained by differentiation of the chosen saturation-
capillary pressure relationship. For the example function given as (2.8),

jiw ) a(n-1) (l-swres) g:TTg(n-l) (2.11)

(1 + (apc)nx n

The factor, 3p/3U, is a constant value defined by the assumed density models,

given by equations (2.3) and (2.4).
Aquifer storativity under fully saturated conditions is related to the

factor, 9(ep)/dp, by definition, as follows (Bear, 1979):
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dp = op (2.12)
where:
1 AVOLw
Sop = VoL ( Ap ) (2.13)
2, ,~1 . ,
Sop(x.y) [M/(L+s®)] specific pressure storativity

The specific pressure storativity, Sopv is the volume of water released from
saturated pore storage due to a unit drop in fluid pressure per total solid ma-
trix plus pore volume. Note that the common specific storativity, S, [L-1],
which when multiplied by confined aquifer thickness gives the well known storage
coefficient, S{1]}, is related to Sop as: Sg = plglSgp, where lgl[L/s2]
is the magnitude of the gravitational acceleration vector. The common specific
storativity, S,, is analagous to specific pressure storativity, Sop’ used in
SUTRA, except that S, expresses the volume of water released from pore storage
due to a unit drop in piezometric head.

SUTRA employs an expanded form of the specific pressure storativity based
on fluid and bulk porous matrix compressibilities. The relationship is

obtained as follows by expanding equation (2.12)

e, . 30
p S p 3p + € (2.14)

g = 21? ap (2.15)

B [M/(L'sz)]‘-1 fluid compressibility
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which allows the last term of (2.14) to be replaced by e€pB. For pure water at
20°C, B~4.47 X 10710 [kg/(m-sz)]'.‘1 As the volume of solid grains VOL_, in a
volume, VOL, of porous solid matrix plus void space is VOLs = (1-€)-VOL, the

factor, d¢/dp, may be expressed as:

3 _ (1-e) _d(voL)
ap VOL dp (2.16)

which assumes that individual solid grains are relatively incompressible.

The total stress at any point in the solid matrix-fluid system is the sum of
effective (intergranular) stress, o' [M/(L-s2)}, and fluid pore pressure, p.

In systems where the total stress remains nearly constant, do' = ~ dp, and

any drop in fluid pressure increases intergranular stress by a like amount.
This consideration allows (2.16) to be expressed in terms of bulk porous matrix

compressibility, as: 3¢/dp = (l~¢)a, where

o & 1 3(VoL) (2.17)

~ VoL o0’
2,4-1 .
o M/ (L-357)] porous matrix compressibility
g’ [M/(L-sz)] intergranular stress

Factor « ranges from o ~ 10~10 [kg/(m'sz)]—l for sound bedrock to about
o~ 10-7 [kg/(m'sz)]—1 for clay. Thus equation (2.14) may be rewritten as
pSop = p(l-e)a + €pB, and, in effect, the specific pressure storativity,

S , 1s expanded as:
op

SOp = (l-e)o + €B (2.18)

A more thorough discussion of storativity is presented by Bear (1979).
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2.2 Description of Saturated-Unsaturated Ground-water Flow

Fluid flow and flow properties

Fluid movement in porous media where fluid density varies spatially may be driven
by either differences in fluid pressure or by unstable variations in fluid den-
sity. Pressure~-driven flows, for example, are directed from regions of higher
than hydrostatic fluid pressure toward regions of lower than hydrostatic pres-
sure. Density~-driven flows occur when gravity forces act on denser regions of
fluid causing them to flow downward relative to fluid regions which are less
dense. A stable density configuration drives no flow, and is one in which
fluid density remains constant or increases with depth.

The mechanisms of pressure and density driving forces for flow are ex-
pressed for SUTRA simulation by a general form of Darcy's law which is commonly

used to describe flow in porous media:

K,
v=- (73 u) * (Yp-pg) (2.19a)
w
where:
v (x,y,t) [L/s] average fluid velocity
k (x,y) [LZ] solid matrix permeability
(2 X 2 tensor of values)
kr(x,y,t) {1] relative permeability to fluid flow
(assumed to be independent of direction.)
£ [L/sz] gravitational acceleration (gravity vector)

(1 x 2 vector of values)
The gravity vector is defined in relation to the direction in which

vertical elevation is measured:
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g ® -|g| V(ELEVATION) (2.19b)

where |g| is the magnitude of the gravitational acceleration vector. For example,
if the y-space-coordinate is oriented directly upwards, then Z(ELEVATION) is a
vector of values (for x and y directions, respectively): (0,1), and g = (0,-{gl).
If for example, ELEVATION increases in the x-y plane at a 60° angle to the
x-axis, then V(ELEVATION) = ((1/2), (3%/2)) and g = (~-(1/2)|gl, *(3%/2)iﬂl)-

The average fluid velocity, v, is the velocity of fluid with respect to the
stationary solid matrix. The so-called Darcy velocity, g, for the sake of ref-
erence, is g = eswz. This value is always less than the true average fluid
velocity, v, and thus, not being a true indicator of the speed of water move-
ment, 'Darcy velocity', g, is not a useful concept in simulation of subsurface
transport. The velocity is referred to as an 'average', because true velocities
in a porous medium vary from point to point due to variations in the permeabil-
ity and porosity of the medium at a spatial scale smaller than that at which
measurements were made.

Fluid velocity, even for a given pressure and density distribution, may take
on different values depending on how mobile the fluid is within the solid matrix.
Fluid mobility depends on the combination of permeability, k, relative perme~
ability, kr’ and viscosity, u, that occurs in equation (2.19a). Permeability is
a measure of the ease of fluid movement through interconnected voids in the solid
matrix when all voids are completely saturated. Relative permeability expresses
what fraction of the total permeability remains when the voids are only partly
fluid-filled and only part of the total interconnected void space is, in fact,
connected by continuous fluid channels. Viscosity directly expresses ease of

fluid flow; a less viscous fluid flows more readily under a driving force.
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As a point of reference, in order to relate the general form of Darcy's
law, (2.19a), back to a better-known form dependent on hydraulic head, the
dependence of flow on density and saturation must be ignored. When the solid
matrix is fully saturated, Sy, = 1, the relative permeability to flow is unity
ky = 1. When, in addition, fluid density is constant, the right side of

(2.19a) expanded by (2.19b) may be multiplied and divided by p|g]:

~kolgl
v (v (_E_olgl) + V (ELEVATION)] (2.20a)

The hydraulic conductivity, K (x,y,t) [L/s], may be identified in this equation
as, K=(kp|gl)/u; pressure head, hp(x,y,t) [L], is hp = p/(plgl). Hydraulic

head, h(x,y,t) [L], is h = hp + ELEVATION. Thus, for constant density,

saturated flow:
V= - (5) - Vh (2.20b)

which is Darcy's law written in terms of the hydraulic head. Even in this

basic form of Darcy's law, flow may depend on solute concentration and temp-
erature. The hydraulic conductivity, through viscosity, is highly dependent

on temperature, and measurably, but considerably less on concentration. In
cases where density or viscosity are not constant, therefore, hydraulic con-
ductivity, K, is not a fundamental parameter describing ease of flow through the
solid matrix. Permeability, k, is in most situations, essentially independent
of pressure, temperature and concentration and therefore is the appropriate

fundamental parameter describing ease of flow in the SUTRA model.
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Permeability, g, describes ease of fluid flow in a saturated solid matrix.
When permeability to flow in a particular small volume of solid matrix differs
depending upon in which direction the flow occurs, the permeability is said to
be anisotropic. Direction-independent permeability is called isotropic. It is
commonly assumed that permeability is the same for flow forward or backward
along a particular line in space. When permeability is anisotropic, there is
always one particular direction, xp, along which permeability has an absolute
%)

maximum value, k L

max . Somewhere in the plane perpendicular to the 'maximum

direction' there is a direction, X in which permeability has the absolute
minimum value, kmin{Lz], which exists for the particular volume of solid matrix.
Thus, in two dimensions, there are two principal orthogonal directions of
anisotropic permeability. Both principal directions, xp and X+ are assumed to
be within the (x,y) plane of the two-dimensional model.

The permeability tensor, k, of Darcy's law, equation (2.19) has four com~
ponents in two dimensions. These tensorial components have values which depend
on effective permeabilities in the x and y coordinate directions which are not
. necessarily exactly aligned with the principal directions of permeability. The
fact that maximum and minimum principal permeability values may change in both
value and direction from place to place in the modeled region makes the calcu~
lation of the permeability tensor, which is aligned in x and y, complex. The
required coordinate rotations are carried out automatically by SUTRA according
to the method described in section 5.1, "Rotation of Permeability Tensor".

An anisotropic permeability field in two dimensions is completely described
by the values kmax and kmin' and the angle orienting the principal directions,
xp and X to the x and y directions through the permeability ellipse shown in

Figure 2.2. The semi-major and semi~minor axes of the ellipse are defined as
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Figure 2.2

Definition of anisotro
permeability, k.

Pic permeability and effective
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ax’ and kiin’ respectively, and the length of any radius is k%, where k is the
effective permeability for flow along that direction. Only, k , k , and
max min

8, the angle between the x-axis and the maximum direction xp need be specified

to define the permeability, k, in any direction, where:

kmax(x.y) [LZ} absolute maximum value of permeability
kmin(x,y) [L2] absolute minimum value of permeability
0(x,y) [°] angle from +x-coordinate axis to di-

rection of maximum permeability, xp

In the case of isotropic permeability, k

max kmin’ and 0 is arbitrary.

The discussion of isotropic and anisotropic permeability, k, applies as
well to flow in an unsaturated solid matrix, Sw < 1, although unsaturated flow
has additional unique properties which require definition. When fluid capillary

pressure, p ., is less than entry capillary pressure, P, , the void space is

ent
saturated Sw = 1, and local porous medium flow properties are not pressure-~
dependent but depend only on void space geometry and connectivity. When

P, > Peent then air or another gas has entered the matrix and the void space

is only partly fluid filled, Sw < 1. 1In this case, the ease with which fluid
can pass through the solid matrix depends on the remaining cross-section of
well-connected fluid channels through the matrix, as well as on surface tension
forces at fluid-gas, and fluid-solid interfaces. When saturation is so small
such that no interconnected fluid channels exist and residual fluid is scattered
about and tightly bound in the smallest void spaces by surface tension, flow

ceases entirely. The relative permeability to flow, kr’ which is a measure

of this behavior, varies from a value of zero or near-zero at the residual fluid
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saturation, Swres’ to a value of one at saturation, Sw = 1. A relative permea-
bility-saturation relationship (Figure 2.3) is typically determined for a par-
ticular solid matrix material in the laboratory as is the relationship, Sw(pc)'
Relative permeability is assumed in SUTRA to be independent of direction in the
porous media.

SUTRA allows any desired function to be specified which gives the relative
permeability in terms of saturation or pressure. A general function, for ex-

ample, based on the saturation-capillary pressure relationship given as an example

in (2.8) is (Van Genuchten, 1980):
*} NS il § 2

k =8 1-[1-5 n-l] n (2.21a)
w w

*
where the a dimensionless saturation, Sw’ is given by:

& . 5 = Sures (2.21b)
w 1 -8 '
wres

Flow in the gaseous phase that fills the remaining void space not con-
taining fluid when Sw ¢ 1 is assumed not to contribute significantly to total
solute or energy transport which is due primarily to fluid flow and other trans-
port processes through both fluid and solid matrix. Furthermore it is assumed
that pressure differences within the gas do not drive significant fluid flow.
These assumptions are justified in most common situations when gas pressure
is approximately constant throughout the solid matrix system. Should gas pres-
sure vary appreciably in a field system, simulation with SUTRA, which is by def-
inition a single phase flow and transport model, must be critically evaluated
against the possible necessity of employing a multiphase fluid flow and trans-

port model.
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Relative permeability-saturation relationship (schematic).
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Fluid mass balance

The "so-called” flow simulation provided by SUTRA is in actua;ity a calcul-
ation of how the amount of fluid mass contained within the void spaces of the
solid matrix changes with time. In a particular volume of solid matrix and void
space, the total fluid mass (sSwp)-VOL, may change with time due to: ambient
ground-water inflows or outflows, injection or withdrawal wells, changes in
fluid density caused by changing temperature or concentration, or changes in
saturation. SUTRA flow simulation is, in fact, a fluid mass balance which keeps
track of the fluid mass contained at every point in the simulated ground-water
system as it changes with time due to flows, wells, and saturation or density
changes.

The fluid mass balance is expressed as the sum of pure water and pure

solute mass balances for a solid matrix in which there is negligible net

movement !
3(€Sw0)
e = - L(eSpy) +Q 4T (2.22)

where:

Q (x,y,t) [M/(L3°8)] fluid mass source (including pure

P water mass plus solute mass dissolved
in source water)
T (x,y,t) [M/(L3's)] solute mass source (e.g., dissolution

of solid matrix or desorption)
The term on the left may be recognized as the total change in fluid mass con-
tained in the void space with time. The term involving V represents contributions
to local fluid mass change due to excess of fluid inflows over outflows at a
point. The fluid mass source term, Qp’ accounts for external additions of fluid
including pure water mass plus the mass of any solute dissolved in the source

fluid. The pure solute mass source term, T, may account for external additions
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of pure solute mass not associated with a fluid source. In most cases, this
contribution to the total mass is small compared to the total pure water mass
contributed by fluid sources, Qp. Pure solute sources, T, are therefore
neglected in the fluid mass balance, but may be readily included in SUTRA for
special situations. Note that solute mass sources are not neglected in the
solute mass balance, which is discussed in section 2.4.

While (2.22) is the most fundamental form of the fluid mass balance, it is
necessary to express each mechanism represented by a term of the equation, in
terms of the primary variables, p, C, and T. As SUTRA allows variation in only
one of C or T at a time, the letter U is employed to represent either of these
quantities. The development from equation (2.9) to (2.18) allows the time der-

ivative in (2.22) to be expanded:

3(eS p) 3s
W - w, 8p ap au
at (Swpsop toep ap) at + (esw 8U) at (2.23)

While the concepts upon which specific pressure storativity, Sop’ is based, do
not exactly hold for unsaturated media, the error introduced by summing the
storativity term with the term involving (BSwlap) is insignificant as
(asw/ap) > Sop'

The exact form of the fluid mass balance as implemented in SUTRA is obtained
from (2.22) by neglecting T, substituting (2.23) and employing Darcy's law,

(2.19), for w:

35w\ 2p 3p\ U k ko
R N s L
:QP
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2.3 Description of Energy Transport in Ground Water

Subsurface energy transport mechanisms

Energy is transported in the water-solid matrix system by flow of ground
water, and by thermal conduction from higher to lower temperatures through both
the fluid and solid. The actual flow velocities of the ground water from point
to point in the three-dimensional space of an aquifer may vary considerably
about an average two-dimensional velocity uniform in the z-direction, v(x,y,t),
calculated from Darcy's law (2.22). As the true, not-average, velocity field is
usually too complex to measure in real systems, an additional transport mechanism
approximating the effects of mixing of different temperature ground waters
moving both faster and slower than average velocity, v, is hypothesized. This
mechanism, called energy dispersion, is employed in SUTRA as the best currently
available, though approximate description, of che mixing process. In the simple
dispersion model employed, dispersion, in effect, adds to the thermal conductivity
value of the fluid-solid medium in particular directions dependent upon the
direction of fluid flow. In other words, mixing due to the existence of non-
uniform, nonaverage velocities in three dimensions about the average-uniform
flow, v, is conceptualized in two dimensions as a diffusion-like process with
anisotropic diffusivities.

The model has, in fact, been shown to describe transport well in purely
homogeneous porous media with uniform one-dimensional flows. In heterogeneous
field situations with non-uniform flow in, for example, irregular bedding or
fractures, the model holds only at the pre-determined scale at which dispersivi-~
ties are calibrated and it must be considered as a currently necessary approxi-

mation, and be carefully applied when extrapolating to other scales of transport.
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Solid matrix-fluid energy balance

The simulation of energy transport provided by SUTRA is actually a calcu-
lation of the time rate of change of the amount of energy stored in the solid
matrix and fluid. In any particular volume of solid matrix plus fluid, the

amount of energy contained is (eSwpew + (l-e)pseS]'VOL, where

e, [E/M] energy per unit mass water
e, [E/MG] energy per unit mass solid matrix
oy [MG/Lé] density of solid grain in solid matrix

and where {E] are energy units [M-Lz/szl.
The stored energy in a volume may change with time due to: ambient water with a
different temperature flowing in, well water of a different temperature injected,
changes in the total mass of water in the block, thermal conduction (energy
diffusion) into or out of the volume, and energy dispersion in or out.

This balance of changes in stored energy with various energy fluxes is

expressed as follows:

B[eSwpew + (l—e)pses]

T = = ¥-(es pe v) + V-(A1-vT1]
+ V-[eS pc D-VT] + Q ¢ T* + €S py” + (l-e)p yS (2.25)
- woowE — p W w'o s'o :
Ax,y,.t) [E/f(s*L-°C)] bulk thermal conductivity of solid
matrix plus fluid
I [1] identity tensor (ones on diagonal,
zeroes elsewhere) (2x2)
cy [E/(M-°C)] specific heat gf water

(cw~4.l82 X 107[J/(kg-°C)] at 20°C)
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Q(X,y,t) [Lzls} dispersion tensor (2 X 2)

* Lo

T (x,y,t) [°c] temperature of source fluid
7:(x,y,t) [E/M 5] energy source in fluid
Yz(x,y,t) [E/MG°s] energy source in solid grains

The time derivative expresses the total change in energy stored in both the solid
matrix and fluid per unit total volume. The term involving v expresses contribu-
tions to locally stored energy from average-uniform flowing fluid (average energy
advection). The term invelving bulk thermal conductivity, A, expresses heat
conduction contributions to local stored energy and the term involving the dis-
persivity tensor, D, approximately expresses the contribution of irregular flows
and mixing which are not accounted for by average energy advection. The term
involvingpQ accounts for the energy added by a fluid source with temperature,
T*. The last terms account for energy production in the fluid and solid, re-
spectively, due to endothermic reactions, for example.

While more complex models are available and may be implemented if desired,

SUTRA employs a volumetric average approximation for bulk thermal conductivity,

A:
A= ESWXW + (1-6)15 (2.26)
kw [E/(s-L-°C)] fluid thermal conductivity
(kw ~ 0.6 [J/(sm+°C)] at 20°C)
A [E/(s-L-°C)] solid thermal conductivity

(A ~ 3.5 [J/(s'm-°C)] at 20°C
fol sandstone)

The specific energy content (per unit mass) of the fluid and the solid

matrix depends on temperature as follows:
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e =¢ T (2.27a)

W w
e, = CsT (2.27b)
c, [E/(MG'°C)} solid grain sgecific heat
(c ~ 8.4 x 10°[J/(kg*°C)]

fof sandstone at 20°¢C)
An expanded form of the solid matrix~-fluid energy balance is obtained by sub-

stitution of (2.27a,b) and (2.26) into (2.25). This yields:
3_ - .
T [eSwpcw + (1 e)pscS]T +V (eSwpcwa)

- V{ls A+ (I-e)A 1 I + €S pc D}-VT] (2.28)

* w s
= Qpch + eSwpyo + (l*e)ps'y°

2.4 Description of Solute Transport in Ground Water

Subsurface solute transport mechanisms

Solute mass is transported through the porous medium by flow of ground
water (solute advection) and by molecular or ionic diffusion, which while small
on a field scale, carries solute mass from areas of high to low concentrations.
The actual flow velocities of the ground water from point to point in three-
dimensional space of an aquifer may vary considerably about an average, uniform
two-dimensional velocity, v, which is calculated from Darcy's law (2.22). As
the true, not-average, velocity field is usually too complex to measure in real
systems, an additional transport mechanism approximating the effects of mixing
of waters with different concentrations moving both faster and slower than the
average velocity, v(x,y,t), is hypothesized. This mechanism, called solute
dispersion, is emploved in SUTRA as the best currently available, though ap-

proximate, description of the mixing process. In the simple dispersion model
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employed, dispersion, in effect, significantly adds to the molecular diffusi-
vity value of the fluid in particular directions dependent upoon the direction
of fluid flow. 1In other words, mixing due to the existence of non-uniform,
non-average velocities in three dimensions about the average flow, v, is
conceptualized in two dimensions, as a diffusion-like process with anisotropic
diffusivities.

The model has, in fact, been shown to describe transport well in purely
homogeneous porous media with uniform one-dimensional flows. 1In heterogeneous
field situations with non-uniform flows in, for example, irregular bedding or
fractures, the model holds only at the pre-determined scale at which dispersivi-
ties are calibrated and it must be considered as a currently necessary approxi-

mation, and be carefully applied when extrapolating to other scales of transport.

Solute and adsorbate mass balances

SUTRA -olute transport simulation accounts for a single species mass stored
in fluid solution as solute and species mass stored as adsorbate on the surfaces
of solid matrix grains. Solute concentration, C, and adsorbate concentration,

Cs(x,y,t) [M/MG], (where [M] denotes units of solute mass, and {M.] denotes

o)
units of solid grain mass), are related through equilibrium adsorption isotherms.
The species mass stored in solution in a particular volume of solid matrix may
change with time due to ambient water with a different concentration flowing in,
well water injected with a different concentration, changes in the total fluid
mass in the block, solute diffusion or dispersion in or out of the volume, trans-

fer of dissolved species to adsorbed species (or reverse), or a chemical or bio-

logical reaction causing solute production or decay. The species mass stored as
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adsorbate on the surface of solid grains in a particular block of solid matrix

may change with time due to a gain of adsorbed species by transfer of solute

from the fluid (or reverse), or a chemical or biological reaction causing adsor-

bate production or decay.

The separate balances for a single species stored in solution (solute) and

on the solid grains (adsorbate), are expressed, respectively, as follows:
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a(espr)
5 = f- V-(es pyC) + g~[sswp(Dm I+ D)Vcl
+ eSprw + QpC
af(1-e)p C_}
™ = +f + (l-e)psl‘s (2.30)
f(x,y,t) [Ms/(La's)] volumetric adsorbate source (gain of
absorbed species by transfer from fluid
per unit total volume)
Dm [L2/s] apparent molecular diffusivity of solute
in solution in a porous medium_§ncl3ding
tortuosity effects, (D ~1.x 10 [m“/s]
for NaCl at 20.°C). "
I (1] identity tensor (ones on diagonal,
zero elsevhere) (2x2)
D(x,y,t) [Lzls] dispersion tensor
Fw(x,y,t) [MS/M-S] solute mass source in fluid (per unit

fluid mass) due to production reactions



*
C (x,y,t) {Ms/M] solute concentration of fluid sources
(mass fraction)

Cs(x,y,t) [Ms/HG] specific concentration of adsorbate on

solid grains (mass adsorbate/(mass solid
grains plus adsorbate))

p [MG/LS] density of solid grains in solid matrix

Fs(x,y,t) [Ms/MG-s] adsorbate mass source (per unit solid
matrix mass) due to production reactions
within adsorbed material itself.

where [LG3] is the volume of solid grains.

Equation (2.29) is the solute mass balance in terms of the dissolved mass
fraction (solute concentration), C. The time derivative expresses the total
changes in solute mass with time in a volume due to the mechanisms represented
by terms. on the right side of the equation. The term involving f(x,y,t) repre-
sents the loss of solute mass from solution which becomes fixed on the solid
grain surfaces as adsorbate. The adsorbate source, f, may, in general, depend
on solute concentration, C, adsorbate concentration, Cs’ and the rate of change
of these concentrations, depending on either an equilibrium adsorption isotherm
or on non-equilibrium adsorption processes. SUTRA algorithms are structured to
directly accept non-equilibrium sorption models as an addition to the code.
However, the current version of SUTRA assumes equilibrium sorption as shown in
the following section, "Adsorption and production/decay processes."”

The term involving fluid velocity, v, represents average advection of sol-
ute mass into or out of the local volume. The term involving molecular diffusi-
vity of solute, Dm’ and dispersivity, D, expresses the contribution of solute
diffusion and dispersion to the local changes in solute mass. The diffusion

contribution is based on a true physical process often negligible at the field
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scale. The dispersion contribution is an approximation of the effect of solute
advection and mixing in irregular flows which are not accounted for by solute
advected by the average velocity. The solute mass source term involving Fw(x,y,t)‘
the solute mass production rate per unit mass of fluid, expresses the contribution
to dissolved species mass of chemical, biological or radioactive reactions in
the fluid. The last term accounts for dissolved species mass added by a fluid
source with concentration, C¥.

Equation (2.30) is the balance of mass which has been adsorbed by solid
grain surfaces in terms of species concentration on the solid (specific adsorbate
concentation), Cs' The change in total adsorbate mass is expressed by the time
derivative term. It may increase due to species leaving solution as expressed by
adsorbate source term, f. The adsorbed mass may also change due to a production of
adsorbate mass (per unit solid matrix mass), FS by radioactive or chemical pro-
cesses within the adsorbate. Note that mass becomes immobile once adsorbed, and
is affected only by possible desorption or chemical and biological processes.

The total mass of a species in a volume is given by the sum of solute mass
and adsorbate mass. A balance of the total mass of a species is obtained by
addition of (2.30) and (2.29). The general form of the total species mass

balance used in SUTRA is this:

3(eS pC) 3[(1-¢e)p C |
w 5 8
ot " ot = - ¥ (eS pv0)

(2.31)
. . r - c*
+ V-[eS p(D I + D)-VC] + €S pT + (1 e)psl's +Q
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Equation (2.31) is the basis for SUTRA solute transport simulation. In cases
of solute transport where adsorption does not occur (Cs = 0), the adsorbate
source term, f, simply has the value zero (f = 0), and the terms that stem from
equation (2.30) are ignored. Further discussion of solute and adsorbate mass

balances may be found in Bear (1979).

Adsorption and production/decay processes

The volumetric adsorbate source, f, of (2.29) and (2.30) may be expressed

in the terms of a specific sorption rate, fs, as:

f= (l-e)osfs (2.32a)

fs(x,y,t) (MSIMG-s] specific solute mass adsorption rate

(per unit mass solid matrix)
A particular non-equilibrium (kinetic) model of sorption is obtained by de-
fining the functional dependence of the sorption rate, fs' on other parameters
of the system. For example, for a linear reversible non-equilibrium sorption

model, the expression is: f8 = ml(C -m Cs), where m, and m, are sorption para-

2 1 2

meters. This particular model and a number of other non-equilibrium seorption

models are accommodated by a general expression for fs, as follows:

fS F 4 KI %% + KZC + r3 (2.32b)
where: e rl(C,Cs), rz = rz(C,Cs), r3 - rS(C,Ca).
rl(C,Cs) M /MG] first general sorption coefficient
rz(C,Cs) (M /MG~s} second general sorption coefficient
K3(C,Cs) [MS/MG-s] third general sorption coefficient
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Through a suitable definition of the general coefficients, ri(C.Cs), a number
of non-equilibrium sorption models may be obtained. For example, the linear
reversible non-equilibrium model mentioned above requires the definitions:
4 : 0, Kz = m . and g S —mlmzcs. The general coefficients Kl’ rz, and r3 are
included in the SUTRA code to provide generality for possible inclusion of such
non-equilibrium (kinetic) sorption models.

The equilibrium sorption models are based on definition of the general

coefficients through the following relation:

oC
s 3C
ol S v (2.33)

Only general sorption coefficient, Ky need be defined based on various equili-
brium sorption isotherms as shown in the following. The other coefficients are
set to zero, K2 = Kg = 0.

The linear equilibrium sorption model is based on the linear sorption

isotherm assuming constant fluid density:

Cs = (leo)c (2.34a)
aC
s aC
v = (4P0%¢ (2.34b)
where:
Xy !L;/MGJ linear distribution coefficient

and oy is the fluid base density

For linear sorption, general coefficient, Kl, takes on the definition:

KL= xR, (2.34¢)
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The Freundlich equilibrium sorption model is based on the following

isotherm which assumes a constant fluid density, LI

()
X
2
Cs - xl(QOC) (2.35a)
1-
s _ (1 c X2 ac (2.35b)
at X po po at

where:

X [L;/MG] a Freundlich distribution coefficient

XZ {1} Freundlich coefficient

when Xy = 1, the Freundlich isotherm is equivalent to the linear isotherm.
For Freundlich sorption, then, the general coefficient, Kl, takes the
definition:

(1 ) (l-xz
X X
o 2 C 2

X
1 7 (;‘2') o (2.35¢)

The Langmuir equilibrium sorption model is based on the following isotherm

which assumes a constant fluid density, po:

xl(pOC)
C = ——— (2.36a)
s 1+ xz(poC)
aC X; P
= = 1 o LI (2.36b)

at (1 + x2p00)2 at
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where:

X1 [LglMG] a Langmuir distribution coefficient

X5 [LS/MS] Langmuir coefficient
For very low solute concentrations, C, Langmuir sorption becomes linear sorp-
tion with linear distribution coefficient Xge For very high solute concentra-
tions, C, the concentration of adsorbate mass, CS, approaches an upper
limit equal to (xl/xz). The general SUTRA coefficient, Kl, is defined for
Langmuir sorption as:

*1°0

. = Lo (2.36¢)
1 (1 + xzooc)2

The production terms for solute, Fw, and adsorbate, Fs, allow for
first-order mass production (or decay) such as linear BOD (biochemical oxygen
demand) or radioactive decay, biological or chemical production, and zero-order

mass production (or decay).

W W
Pw = 71 C + 70 (2.37a)

s s
Fs =7 Cs + v, (2.37b)

where:
7w1 [s-ll first order mass production rate of solute
72 [(MS/M)/s] zero-order solute mass production rate
7? -[s-l] first-order mass production rate of
adsorbate
s [(MSIMG)/S] zero-order adsorbate mass production

o rate
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2.5 Description of Dispersion

Pseudo-transport mechanism

Dispersion is a pseudo-transport process representing mixing of fluids
which actually travel through the solid matrix at velocities different from the
average velocity in two space dimensions, v, calculated from Darcy's law, (2.19).
Dispersion is a pseudo-flux in that it only represents deviations from an
average advective flux of energy or solute mass and as such does not repre-
sent a true mechanism of transport. Should it be possible to represent the
true, complex, non-homogeneous velocity field in, for example, in the lavers of
an irregularly bedded field system, then the dispersion prucess need not be
invoked to describe the transport, as the local variations in advection would
provide the true picture of the transport taking place. However, as available
data almost never allows for such a detailed velocity description, an approximate
description, which helps to account for observed temperatures or concentrations
different from that expected based on the average fluid advection, must be
employed.

Current research trends are to develop dispersion models for various
hydrogeological conditions, and SUTRA may be updated to include these new re-
sults as they become available. Currently, SUTRA dispersion is based on a new
generalization for anisotropic media of the standard description for dispersion
in isotropic homogeneous porous media. The standard description is, in fact,
the only model available today for practical simulation. Because any incon~

sistencies which may arise in applying this dispersion model to particular
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field situation often would not be apparent due to the poor quality or small
amount of measured data, the user is warned to exercise good judgement in
interpreting results when large amounts of so-called dispersion are required

to explain the field measurements.

In any case, the user is advised to consult up~to~date literature on field-scale

dispersion, before employing this transport model.

Isotropic-media dispersion model

The dispersion tensor, D, appearing in both energy and solute balances,
(2.28) and (2.31), is usually expressed for flow in systems with isotropic
permeability and isotropic spatial distribution of inhomogeneities in aquifer

materials as:

D D
XX Xy

[ lw]
]

(2.38)

D D
yx vy

where, D is, in fact, symmetric and the diagonal elements are:

1 2 2
Dyx (VZ) (dLVx * dTvy) (2.39a)

1 2 2
Dyy (vz) (dTvx + dLvy) (2.39b)
and the off-diagonal elements are:
1
Dij (vz) (dL - dT) (vivj) (2.39%)

i#j, i=x,y
i=x,y
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vix,y,t) [L/s] magnitude of velocity v

vx(x,y,t) [L/s] magnitude of x-component of v
vy(x,y,t) [L/s] magnitude of y-comporent of v
dL(x,y,t) [Lz/s} longitudinal dispersion coefficient
dT(x,y,t) [Lz/s} transverse dispersion coefficient

The terms dL and dT [Lz/s] are called longitudinal and transverse
dispersion coefficients, respectively. These terms are analogous to typical
diffusion coefficients. What is special, is that these are directional in
nature. The term, dL, acts as a diffusion coefficient which causes dispersion
forward and backward along the local direction of fluid flow, and is called the

longitudinal dispersion coefficient. The term, d,,, acts as a diffusion coeffi-

T
cient causing dispersion evenly in the directions perpendicular to the local
flow direction, and is called the transverse dispersion coefficient. Thus, if
dL and dT were of equal value, a circular disk of tracer released (in the x-y
plane) in ground water flowing, on the average uniformly and unidirectionally,
would disperse in a perfectly symmetric circular manner as it moved downstream.
However, if dL > dT then the tracer would disperse in an elliptical manner with
the long axis oriented in the flow direction, as it moved downstream.

The size of the dispersion coefficients are, in this model, for dispersion

in isotropic permeability systems, dependent upon the absolute local magnitude

of average velocity in a flowing system (Bear, 1979):

dy = apv (2.40a)
dT = Qv (2.40b)
uL(x,y) [L] longitudinal dispersivity of solid
matrix
aT(x,y) [L) transverse dispersivity of solid
matrix
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When the isotropic-media dispersion model is applied to a particular field situ-
ation where aquifer inhomogeneities are much smaller than the field transport
scale, then dispersivities o and o, may be considered to be fundamental trans-
port properties of the system just as, for example, permeability is a fundamen-
tal property for flow through porous media. In cases where inhomogeneities are
large or scales of transport vary, dispersivities may possibly not be repre~
sentive of a fundamental system property. In this case, dispersion effects

must be interpreted with care, because dispersivity values are the only means

available to represent the dispersive characteristics of a given system to be

simulated.

Anisotropic-media dispersion model

In a system with anisotropic permeability or anisotropic spatial distribu-
tion of inhomogeneities in aquifer materials, dispersivities may not have the
same values for flows in all directions. 1In a case such as a layered aquifer,
longitudinal dispersivity would clearly not have the same value for flows parallel
to layers and perpendicular to layers. The isotropic-media dispersion model,
described in the previous section, does not account for such variability as a
is isotropic (direction-independent). Transverse dispersivity would also tend
to be dependent on the flow-direction, but because it typically is only a small
fraction of longitudinal dispersivity, especially in anisotropic media (Gelhar
and Axness, 1983), its variability is ignored here. This does not imply that
transverse dispersion is an unimportant process, but the approximation is made
because accurate simulation of low transverse dispersion is already limited, due
to the requirement of a fine mesh for accurate representation of the process.

The effect of any direction-dependence of transverse dispersivity would be

obscured by the numerical discretization errors in a typical mesh.
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An ad-hoc model of flow~direction-dependent longitudinal dispersion is
postulated. In this model, longitudinal dispersivity is assumed to have two
principal directions (in two space dimensions) aligned with principal directions
of permeability, xp and X The principal values of longitudinal dispersivity,
are o, and ) in in these principal directions (see Figure 2.4). Note that

the subscripts, Lmax and Lmin, refer only to the maximum and minimum permeability

directions, and are not intended to imply the relation in magnitude of @ nax

and o the principal values of longitudinal dispersivity.

Lmin’
If Fs is the dispersive flux of solute (or energy) along a stream line of

fluid flow, then

U

Fs = - o o (2.41)
where:
aL(x,y,t) {L] longitudinal dispersivity along a

streamline
and U represents either concentration or temperature, and s is distance
measured along a streamline. The dispersive flux components in the principal

permeability directions xp and x ~are:

au .
Fp - aLmax axp = Fs cos ekv (2.42a)
au
Fm = 3xm = Fs sin ekv (2.42b)
where:
@ x(x,y) {L} Longitudinal dispersivity in the maximum
a permeability direction, xp.
a (x,y) {L} Longitudinal dispersivity in the minimum
Lmin
permeability direction, xm.
Okv(x,y,t) [} Angle from maximum permeability direction,

xp, to local flow direction, (v/{v})
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Figure 2.4 '
Definition of flow~direction-dependent longitudinal

dispersivity, ap(6).
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Because U varies with x and y, U = U(x,y,t):

d ax

b

3y _ U _p 9y _m
35 ax_ 35 ' 9x_ 3s (2.43a)
p m
U 1) U
7 - ax ©°% ekv+ x sin ka (2.43b)
P m
and:
au , 3u
FS = - o (cos ekv e + in ek me) (2.443)
2 F 2 F
F = q cos @ g + s8in"@ 2 (2.44b)
s L kv \¢ kv \a
Lmax Lmin
This defines an ellipse as:
2 . 2
cos © sin ™ ©
©) - - =) (2.49
L Lmax Lmin
. . . 1/2 .. , 1/2
with semi-major axis (o ) and semi-minor axis (o ) The length of

Lmax Lmin

a radius is (uL)llz, as shown in Figure 2.4. This ellipse is analagous in
concept to that which gives effective permeability in any direction in an
anisotropic medium.

The value of effective longitudinal dispersivity as dependent on the flow

direction 1is:

o o,
o - Lmax Lmin (2.46)

2 2
(“Lmin cos Oy + Oppax sin 9kv)

which is used by SUTRA to compute o for the anisotropic-media dispersion model.

L

Note that if o then the isotropic dispersion-media model is obtained.

Lmax ® %Lmin’
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This form of longitudinal dispersivity dependence on direction of flow relative
to the principal permeability directions is similar to that obtained for a
transversely isotropic medium in a stochastic analysis of macro-dispersiocn by

Gelhar and Axness (1983).

Guidelines for applying dispersion model

Some informal guidelines may be given concerning values of dispersivities
when other data are not available. Longitudinal dispersivities may be consi-
dered to be on the order of the same size as either the largest hydrogeologic
or flow inhomogeneities along the transport reach or the distance between
inhomogeneities, whichever is the greater value. For transport in pure homo-
geneous sand, longitudinal dispersivity is on the order of grain size. This
is the type of situation where the isotropic-media dispersion model well de-
scribes observed transport behavior. In the case of a sandy aquifer containing
well-distributed inclusions of less-permeable material, the longitudinal dis-
persivity required to correct an average advective transport which has passed
by many of the inclusions would be of the order on the larger of either inclu-
sion size or distance between inclusions.

Should the dispersivity, estimated on the basis of the size in homogenei-
ties or distance between them, be greater than about one tenth of the longest
transport reach, then the meaningful use of a constant-dispersivity dispersion
model must be questioned. In such a case, the ideal action to take would be to
more explicitly define the field distribution of velocity by taking into account
the actual geometry of inhomogeneities. This would correctly account for most

of the transport taking place as advective in nature, with much smaller con-
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tributions of the approximate dispersive process. Given a better-defined
velocity field, and in the absence of other data, dispersivity should then be
chosen based on the largest postulated inhomogeneities met along a given average
stream tube. The size and distribution of inhomogeneities not explicitly taken
into account by the average flow field may be postulated based on the best
available knowledge of local geology.

Transverse dispersivity, ap, is typically even less well known for field
problems than longitudinal dispersivity. Values of o used in simulation are
typically between one tenth and one third of aj. In systems with anisotropic
permeability, ot may be less than one hundredth of ap for flows along the
maximum permeability direction (Gelhar and Axness, 1983). Should simulated
transport in a particular situation be sensitive to the value of transverse
dispersivity, further data collection is necessary and the transport model must
be interpreted with great care.

The ad~hoc model for longitudinal dispersion in anisotropic media presented
in the previous section allows for simulation experiments with two principal
longitudinal dispersivities which may be of special interest in systems with
well-defined anisotropy values. Depending on the particular geometry of layers
or inhomogeneities causing the permeability anisotropy, the longitudinal disper-
sivity in the minimum permeability direction, ojpip. may be either greater or
smaller than that in the maximum permeability direction aqpg,x. However, use
of the anisotropic-media dispersion model is advised only when clearly required
by field data, and the additional longitudinal dispersion parameter is not
intended for general application without evaluation of its applicability in a

particular case.
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2.6 Unified Description of Energy and Solute Transport

Unified energy-solute balance

The saturated-unsaturated ground-water energy balance (2.28) is simply an
accounting of energy fluxes, sources and sinks which keeps track of how the
energy per unit volume of solid matrix plus fluid, [eSypcy + (1-€)pgcglT,
changes with time at each point in space. The saturated-unsaturated ground-
water balance of solute plus adsorbate mass, (2.31), is similarly an accounting
of solute and adsorbate fluxes, sources and sinks, which keeps track of how the
species mass (solute plus adsorbate mass) per unit volume of solid matrix plus
fluid, (eSypC + (1-€)pgCg), changes with time at each point in space. Both
balances, therefore, track a particular quantity per unit volume of solid matrix
plus fluid.

The fluxes of energy and solute mass in solution, moreover, are caused by
similar mechanisms. Both quantities undergo advection based on average flow
velocity, v. Both quantities undergo dispersion. Both quantities undergo
diffusion; the diffusive solute mass flux is caused by molecular or ionic dif-
fusion within the fluid, while the diffusive energy flux occurs by thermal con-
duction through both fluid and solid. Fluid sources and sinks give rise to
similar sources and sinks of energy and solute mass. Energy and species mass
may both be produced by zero-order processes, wherein energy may be produced by
an endothermic reaction and solute may be produced, for example, by a biological
process. The linear adsorption process affecting solutes is similar to the
storage of energy in solid portion of an aquifer. Only the non-linear sorption
processes and first-order production of solute and adsorbate, have no readily

apparent analogy in terms of energy.
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Thus, the balances of energy per unit volume, (2.28), and total species
mass per unit volume, (2.31), may be expressed in a single unified balance in
terms of a variable, U(x,y,t), which may either represent T(x,y,t) or C(x,vy,t),

as follows:

3 3
EZ(eswpch) e [(1~e)pSUs] + 2-(eswpcsz)
- 2~{pcw[ssw(ow; + D) + (1-5)08;]-20}

*
= Qpch + eSprw + (l-s)psl'S (2.47)

where:

for energy transport

* X Xw Xs
UsT, U scT, UsT, o &

¢
w pc » S ec, (2.47a)

w s
l“w ® 7o’ rs * 70

for solute transport

* %
UsC,U==C,U=sC,o0=s5D,0 0, c=1l (2.47b)
S s w m S w

where Cq 1is defined by (2.34a), (2.35a) or (2.36a), depending on the

isotherm.

By simple redefinition according to (2.47a) or (2.47b), equation (2.41) directly
becomes the energy or species mass balance. This redefinition is automatically
carried out by SUTRA as a result of whether the user specifies energy or solute

transport simulation.
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Fluid-mass~-conservative energy-scolute balance

A further consideration is required before obtaining the form of the uni-
fied energy/solute balance as implemented in SUTRA. The amount of energy or
solute per unit combined matrix-fluid volume may change either dve to a change
in the total fluid mass in the volume even when concentration and temperature
remain constant (see relation (2.10)). Such a change in fluid mass may be
caused by changes in fluid saturation, or by pressure changes affecting com-
pressive storage.

The energy and solute balances as well as their unified form, (2.47), track
both types of contributions to changes in total stored energy or solute mass.
However, the fluid saturation and pressure change contribution to energy and
solute balances are already implicitly accounted for by the fluid mass balance.

The fluid mass balance contribution to solute and energy balances is ex-
pressed by the product of the fluid mass balance, equation (2.22) (which tracks
changes in fluid mass per unit volume), with ¢yU (which represents either energy
or solute mass per unit fluid mass). Note that cy®l for solute transport. This
product tracks energy or solute mass changes per unit volume due to fluid mass

changes per unit volume:

a(eS p)

(CwU) at

+ (ch) z'(eSwpg) = (ch)Qp (2.48)

where the solute mass source, T, is neglected. Comparison of (2.48) with (2.47)
will reveal that the terms on the left of (2.48) also appear in the unified

balance equation.
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Before substituting (2.48) for the duplicate terms in (2.47), the search
for redundant terms may be extended to a balance of species mass or energy
stored in the solid matrix rather than in the fluid. A simple mass balance

for the solid matrix is:

qa’sv

" [(l—e)ps] + V-[(l-e)psgs] =0 (2.49)

v [(L/s] net solid matrix velocity

Due to the assumption that the net solid matrix velocity, vg, is negligable,
the associated term of (2.49) is dropped. The contribution of this simple solid
matrix mass balance to the unified solute-energy balance may again be obtained

by taking the product of (2.49) with Ug:
w) Lla-ep |=o0 (2.50)
s’ 9t s )

A comparison reveals that this term also appears in (2.47).
The redundant information in the unified energy-solute balance which keeps
track of both solid matrix and fluid mass balance contributions may be directly

removed from (2.47) by subtracting (2.48) and (2.50). The result is:

U BUS
eSwpcw T + (l—e)ps T + eSwpcwX~ZU

(2.51)
- Z-{pcw[esw(awyg) + (l—e)os;']-vp_}

*
= Qpcw(U =U) + €S ol + (l-e)p T
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where:

for energy transport

* % A, A
UsT,U 8cT U=T, o085 — , 08— (2.51a)
s s w pc 8 pc
w w
. ¥ 8
I‘w =7 l-\s =%
for solute transport
* *
U=sC,UsC,U=2C,o0=D,0c=20 c=1 (2.51b)
s ) w m s w

where Cg is defined by (2.34a), (2.35a) or (2.36a), depending on
isotherm.
It is assumed in equation (2.51) that cy and cg are not time-dependent.

For numerical simulation, this equation may be termed a 'fluid-mass-
conservative' form of the energy or species mass balance. When approximated
numerically, the unified balance in the original form, (2.47), would contain
approximation errors in both the fluid mass balance contributions (based on
pressure and saturation changes) and the temperature or concentration change
contribution. However, in the revised form, equation (2.51), the complete fluid
mass balance contribution has already been analytically accounted for before
any numerical approximation takes place. Thus, the total approximation error
for the unified balance, (2.51), is significantly less as it is due to the temp-
erature or concentration change contribution only.

The unified energy-species mass balance is brought to its final form by
noticing that the form of the term, 9Ug/dt, for energy transport, is the same
as that for solute transport when using the equilibrium sorption relation
(2.33), and that the form of the energy production of terms is similar to that

of relations (2.37a) and (2.37b) for the mass production process:
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les oc + (1-¢) Wy oes vu
le W’ £70s% ] ot EogPy TTX

-V ~50cwl €S (o I + D) 4+ (l-¢g)o IJ . VU}
N | WwoOw = = g= -

~ 4 s W s
= - U 1 - - .
Qpcw(U U) + €S py,U + (1 e)osylvs + €S py  + (1 e)osyo (2.52)
where:
for energy transport
* K Xw Ks W s
g = g — g — = H 2.
VT, UsT, L e I oI M 0 (2.52a)
w W
for solute transport
k%
uU=sC,U=sC,U0=sC,0=D,0220,c=v,,csl (2.52b)
s ] w m s s 1 w

where Cg is defined by (2.34a), 2.35a) or (2.36a), and rj is

defined by (2.34c), (2.35c) or (2.36c), depending on the isotherm.

The fluid-mass~conservative form of the unified energy-species mass

balance, (2.52), is exactly that which is implemented in SUTRA.
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Chapter 3

Fundamentals of Numerical Algorithms

SUTRA methodology is complex because: (1) density-dependent flow and
transport requires two interconnected simulation models, (2) fluid properties
are dependent on local values of temperature or concentration, (3) geometry of
a field area and distributions of hydrogeologic parameters may be complex, and
(4) hydrologic stresses on the system may be distributed in space and change
with time. Furthermore, a tremendous amount of data must be evaluated by SUTIRA
with precision. This requires great computational effort, and considerable
numerical intricacy is required to minimize this effort. The mathematically
elegant finite-element and integrated-finite~difference hybrid method employed
by SUTRA allows great numerical flexibility in describing processes and char-~
acteristics of flow and transport in hydrologic field systems. Unlike simu-
lation models based purely on the method of finite differences, however, the
numerical aspects of which allow straight-forward interpretation at an intuitive
level, some finite~element aspects of SUTRA methodology require interpretation
at a less physical level and from a more mathematical point of view.

The following description of SUTRA numerical methods uses a simplified,
constant-density water-table aquifer case as an illustrative example. While
precise mathematically, this example is not used to demonstrate an actual
application of SUTRA, as SUTRA does not, in fact, simulate a moving water
table. The example is only used as a device through which to explain the
theory and use of the primary numerical methods employed in SUTRA and the
water table is invoked to allow discussion of a simple non-linearity. The

basic methods, which are only demonstrated here, are applied in detail in
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Chapter 4, "Numerical Methods,” to the SUTRA fluid mass balance and unified

energy-species mass balance.

The water-table aquifer fluid mass balance equation is useful for dem-

onstration of basic numerical methods employed on SUTRA governing equatioms,

because it displays some of the salient aspects of the SUTRA equations: a time

derivative, a non-linear term involving space-derivatives, and a source term.

The simplified fluid mass balance equation is as follows:

dh . L3
So 3¢ ~ L'(K¥h) = Q
where
x
Q" = (Q/p)
and
So (X,y) (L1
h(x,y,t) {L]
K(x,y) |L/s]
Q*(x,y) s}
Qp(x,y) (M/(L3-5) ]
P [M/L3]

(3.1)

specific storativity

hydraulic head (sum of pressure
head and elevation head)

hydraulic conductivity (assumed for
this example to be isotropic)

volumetric fluid source (volume fluid
injected per time / volume aquifer)
(assumed constant for this example)

fluid mass source (mass fluid injected
per time / volume aquifer) (assumed con~
stant for this example)

fluid density (assumed constant for
this example)

This equation, (3.1), is obtained from the SUTRA fluid mass balance, (2.24),

by assuming saturated conditions, constant concentration and temperature, con-

stant fluid density, and using the definition of hydraulic conductivity,

K = (kp[g])/u, where |g| is the acceleration of gravity, and of hydraulic



head, h = hp + ELEVATION, where pressure head, hp = p/(plgl). For clarity,
hydraulic conductivity is assumed to be isotropic in this example. While (3.1)
may be considered a fully three-dimensional mass balance equation, it is assumed
that flow takes place only areally in a water-table aquifer with a fixed imperme-
able base (at z-position, BASE(x,y)), and a moveable free surface (at z-position,
h(x,y,t)). The z-direction is oriented vertically upward and the fluid is assumed
to be in vertical hydrostatic equilibrium at any (x,y) position (no vertical flow).
Aquifer thickness, B(x,y,t) {L], is measured as the distance along z from the free
surface to the aquifer base, and may change with time. Aquifer transmissivity,

Nx,y,t), is given by:

I = KB = K(h - BASE) (3.2)
(x,y,t) [Lzls] aquifer transmissivity
B(x,y,t) (L1 aquifer thickness
BASE(x,y) L} elevation of aquifer base

The above assumption, in effect, makes (3.1) a two~dimensional mass balance

equation which is applied to a finite thickness aquifer. The two~dimensional
form of (3.1) describing an areal fluid mass balance for water-table aquifers
in terms of a head-dependent transmissivity arises during the basic numerical

analysis of (3.1) in section 3.3, "Integration of Governing Equation in Space."

3.1 Spatial Discretization by Finite Elements

Although SUTRA is a two-dimensional model, the region of space in which

flow and transport is to be simulated may be defined in three space dimensions.

The three-dimensional bounded volume of an aquifer which is to be simulated by
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SUTRA is completely divided up into a single layer of contiguous blocks. These
blocks are called 'finite elements.' The subdivision is not done simply in

a manner which creates one block (element) for each portion of the aquifer
system which has unique hydrogeological characteristics. Each hydrogeologic
unit is in fact divided into many elements giving the subdivided aquifer region
the appearance of a fine net or mesh. Thus, subdivision of the aquifer region
to be simulated into blocks is referred to as 'creating the finite-element mesh
(or finite-element net).

The basic building block of a finite—-element mesh is a finite element. The
type of element employed by SUTRA for two-~dimensional simulation is a quadrilateral
which has a finite thickness in the third space dimension. This type of a quad-
rilateral element and a typical two-dimensional mesh is shown in Figure 3.1.

All twelve edges of the two-dimensional quadrilateral element are perfectly

straight. Four of these edges are parallel to the z-coordinate direction.

The x~y plane (which contains the two coordinate directions of interest) bisects
each of the edges parallel to z, so that the top and bottom surfaces of the
element are mirror images of each other reflected about the central x-y plane in
the element. The mid-point of each z~edge (the point where the x~y plane
intersects) is referred to as a nodal point (or node). Thus, the element has a
three-dimensional shape, but always has only exactly four nodes, each of which
in fact, represents the entire z—edge on which it is located. The nodes mark the
fact that, in this type of element, some aquifer parameters may be assigned a
different value at each z-edge of the element. The lack of nodes outside of the
x-y plane is what makes this element two-dimensional; while some aquifer para-
meters may vary in value from node to node (i.e. from z-edge to z-edge), no

parameters may be assigned varying values in the z-direction.
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Projection of an element

Figure 3.1

Two-dimensional finite-element mesh and quadrilateral

element.
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Within a two-dimensional finite~element mesh there is only a single layer
of elements, the nodes of which lie in the x~y plane. Nodal points are always
shared by the elements adjoining the node. Only nodes at external corners of
the mesh are not contained in more than one element. The top and bottom sur-
faces are at every (x,y) point equidistant from the x~y plane, but the thick-
ness of the mesh, measured in the z-direction, may vary smoothly from point to
point. When projected on the x~y plane, as in Figure 3.1, a finite~element mesh
composed of the type of elements used by SUTRA appears as a mesh of contiguous
quadrilaterals with nodes at the corners. Hence, the term, 'quadrilateral

element'.

3.2 Representation of Coefficients in Space

Aquifer parameters and coefficients which vary from point to point in an
aquifer such as specific storativity, S;, and hydraulic conductivity, K, are
represented in an approximate way in SUTRA. Parameters are either assigned a
particular constant value in each element of a finite-element mesh (elementwise),
or are assigned a particular value at each node in the mesh in two possible ways
(nodewise or cellwise).

In the water~table aquifer, for a simple example, a regular two~dimensional
mesh is used. The steplike appearance of elementwise assignment of K values over
this simple mesh is shown in Figure 3.2. Nodewise assignment for head over
this mesh results in a continuous surface of h values as shown in Figure 3.3,
with linear change in value between adjoining nodes along (projected) element
edges. Cellwise assignment is employed for specific storativity, S,, and the time

derivative, %%. This results in a steplike appearance of the assigned values
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Figure 3.2
Elementwise discretization of coefficient K(x,y).
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over the mesh similar to that of elementwise assignment in Figure 3.2, but each
cell is centered on a node, not on an element. Cell boundaries are half way
between opposite sides of an element and are shown for the regular mesh in
Figure 3.4. Thus the spatial distributions of parameters, K, h and S, are
discretized (i.e., assigned discrete values) in three different ways: K,
elementwise, h, nodewise, and S,, cellwise.

Because the internal program logic depends on the type of discretization,
SUTRA expects certain particular parameters or equation terms to be discretized
elementwise, nodewise, or cellwise. The primary dependent variables of the
SUTRA code p, and T or C, (in this example case, only hydraulic head, h), are
expressed nodewise when used in terms which calculate fluxes of fluid mass,

solute mass or energy.

Elementwise discretization

The equation which gives the values, over the finite element mesh, of
an elementwise parameter, may be expressed for the hydraulic conductivity

of the present example as:

NE

R(x,y) = Z Rp(x,y) (3.3)
L=1

where the elements have been numbered from one to NE (total number of elements
in the mesh), and Ky(x,y) [L/s] has the value of hydraulic conductivity of
element L for (x,y) coordinates within the element, and a value of zero outside
the element. Thus Kp(x,y) is the flat-topped 'box' standing on an element L,

in Figure 3.2, and K(x,y) is represented in a discrete approximate way by the
sum of all the 'boxes'. Note that Ky(x,y) has the same value in the z-direction

from the top to the bottom of each two-dimensional element.
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Figure 3.4
Cells, elements and nodes for a two-dimensional

finite-element mesh composed of quadrilateral
elements.
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Nodewise discretization

The equation which gives the values, over the finite-element mesh, of a
nodewise value, may be expressed for the two~dimensional mesh as:
NN

h(x,y,t) = Z h () ¢ () (3.4)
j=1

where the nodes have been numbered from one to NN (total number of nodes in the
mesh). There are NN coefficients, hj(t), each of which is assigned the value

of head at the coordinates (xj,yj) of node number, 3. These nodal head values
may change with time to represent transient responses of the system. The func~-
tion, ¢j(x,y), is known as the 'basis function'. It is the basis functions which
spread values of head between the nodes when head is defined only at the nodal
points by values of h. There is one basis function ¢j(x,y) defined for each
node, j, of the NN nodes in the mesh. Suffice it to say, at this point, that at
the node j, to which it belongs, the basis ¢j(x,y), has a value of one. At all
other nodes i, i#j, in the mesh, it has a value of zero. It drops linearly in
value from one to zero along each projected element edge to which the node j is
connected. This means that even when all the NN products of hj and ¢j(x,y)

are summed (as in relation (3.4)), if the sum is evaluated at the coordinates
(xj,yj) of node j, then h(x,y) exactly takes on the assigned value, hy.

This is because the basis function belonging to node j has a value of one at
node j, and all other basis functions belonging to other nodes, i, i#j, have a
value zero at node j dropping them from the summation in (3.4). Basis functions

are described mathematically in section 4.1, "Basis and Weighting Functions."
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Cellwise discretization

The equation which gives the values, over the finite-element mesh, of
a cellwise parameter may be expressed for the specific storativity of the

present example as:

NN

So(x,y) = Z Si(x,y) (3.5)
i=]

where Si(x,y) has the value of specific storativity of the cell centered

on node i for (x,y) coordinates within the cell, and a value of zero outside
the cell. Thus, Sy(x,y) is a flat topped 'box' standing on a cell 1 in

Figure 3.4, and S,(x,y) is represented in a discrete approximate way by the sum
of all the 'boxes'. Note Sj(x,y) has the same value in the z-direction from

the top to bottom of each two-dimensional element.

Reviewing the example problem, K is assigned elementwise and both So and %%
are assigned cellwise. Hydrualic head, h(x,y,t), and element thickness,
B(x,y,t), measured in the z~direction, are both discretized nodewise, with

the nodewise expansion for thickness:

NN

B(x,y) = E B, (t)e, (x,y) (3.6)
i-1
The values Bj(t) are the NN particular values which element thickness has

at the nodes, and these values may change with time in the present water-table
example. Relation (3.6) should call to mind.a vision of discretized values

of thickness represeﬁted by a surface similar to that of Figure 3.3. The head
surface of Figure 3.3 may stretch or shrink to move up or down as the head values

at nodes, hj(t), change with time due to stresses on the aquifer system. The
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nodewise discretized surface may be viewed as the water table, and the element

thickness as the thickness of the water-table aquifer.

3.3 Integration of Governing Equation in Space

Approximate governing equation and weighted residuals method

The governing equation for the water-table example may be written in

operator form as:

ah *
O(h) =5 & - V-(K¥h) - Q =0 (3.7)

Certain variables in this equation are approximated through elementwise and
nodewise discretization. Particular terms of the equation are approxiﬂéted
through cellwise discretization. The result is that neither the derivatives,
nor the variables are described exactly. Relation (3.7) no longer exactly

equals zero:

VAN
0o(h) = R(x,y,t) (3.8)

N

where O(h) is the result of approximating the terms of the equation and the

variables, and R(x,y,t) is the residual value of the approximated equation.

When simulating a system with a numerical model based on approximation of the

governing equation, O(h), the residual, R, must be kept small everywhere in the

simulated region and for the entire time of simulation in order to accurately

reproduce the physical behavior predicted by the exact governing equation, (3.7).
In order to achieve a minimum error, a method of weighted residuals is

applied to (3.8). The purpose of the method of weighted residuals is to mini-

mize the error of approximation in particular sub-regions of the spatial domain
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to be simulated. This is done by forcing a weighted average of the residual to
be zero over the sub-regions. This idea is the most abstract of those required
to understand SUTRA methodology. The Galerkin method of weighted residuals

chooses to use the 'basis function', ¢{(x,y), mentioned in the previous section,

as the weighting function for calculation of the average residual:

AN
[O(h) ¢i(x,y) dv = | R(x,y,t) ¢i(x,y) dv = 0 (3.9)
v v i =1,NN
where V is the volume of the region to be modeled. The model volume is com—~

pletely filled by a single layer of quadrilateral finite elements. Relation

(3.9) is actually NN relations, one for each of NN nodes in the finite element

mesh as indicated by the notation, i = 1,NN.
In each relation, the integral sums the residual weighted by the basis

function over a volume of space. Each integrated weighted residual is forced
to zero over the region of space in which ¢i(x,y) is non-zero. This region
includes only elements which contain node i, because of the manner in which the
basis function is defined, as described earlier. Thus, over each of these NN
sub-regions of a mesh, the sum of positive and negative residuals after weighting
is forced to zero by relation (3.9). This, in effect, minimizes the average
error in approximating the governing equation over each sub-~region.

After stating that the integral of weighted residuals must be zero for
each sub-region of the mesh as in (3.9), the derivation of the numerical
methods becomes primarily a job of algebraic manipulation. The process is

begun by substitution of the governing equation for O0(h) in (3.9):
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N A
s 24 (x,y) av - V-(KVh) ) 6. (x,y)av (3.10)
o 9t i xy - = i Xy :

v v

N
.f (q*) b, (x,y) dV = 0
v

i =1,NN

The terms in large parentheses topped by a carat are the approximate discrete
forms of the respective terms in (3.7). These are expanded in the manipulations
that follow. Relation (3.10) is discussed term by term in the following para-

graphs.

Cellwise integration of time-derivative term

The first term involving the volume integral of the time derivative may be
written in terms of the three space dimensions, x, y, and z. Although the gov-
erning equation and parameters vary only in two space dimensions, they apply to

the complete three-dimensional region to be modeled.

f( o 3t ¢i(x,y) dv = [f[( o 8t ¢i(x,y) dz dy dx (3.11)

zyXx

JJBen ]

z

The rearrangement in the final term of (3.11) is possible because no parameter

depends on z. 1In fact, referring to (3.2), the aquifer thickness, B(x,y,t),
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may be defined as:

B(x,y,t) = f dz = h(x,y,t) - BASE(x,y) (3.12)
z(t)

The final term of (3.11) is then:

[f( ° at ¢i(x Y) B(an:t) dx dy (3.13)

Now cellwise discretization is chosen for So and for %%, making these terms
take on a constant value for the region of each cell i. The region of cell i

is the same region over which Si(x,y) is non-zero. Then, for any cell i,

term (3.13) becomes:

doh
Si ati ff ¢i(XQY) B(st9t) dx dy (3‘14)
y x
where S, and ghi are the values tak by S d 3h i 11 41
r 4and e 8 taken by S and 3 in ce .

It can be shown that the volume of cell i, denoted by Vi(t), is, in

fact, the integral in (3.14):

Vi(t) = f[ ¢1(x,y) B(x,y,t) dx dy (3.15)

Yy X

For a particular finite-element mesh, the volume Vi(t) of each cell is
determined by numerical integration of (3.15). Numerical integration by

Gaussian quadrature is discussed in section (4.3), "Gaussian Integration."
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Given the value of the specific storativity of each cell, Sj, the time
derivative of head in each cell, %%i, and given the volume of each cell, Vi(t),
determined numerically, the first term of the weighted residual statement takes

on its discrete approximation in space:

N\
_[(S° %%) 0, (x.y) AV = s, g%i v, (t) (3.16)

\'

Elementwise integration of flux term and origin of boundary fluxes

Manipulation of the second integral in (3.10) begins with the appli-
cation of Green's theorem which is an expanded form of the divergence theorem.
This converts the integral into two terms, one of which is evaluated only at the

surface of the region to be simulated. Green's theorem is:

f(!-y) A dv = [(g.g) A dr -f(g._v_A) v 17,

where A is a scalar and W is a vector quantity. The boundary of volume V is
denoted by I' including both edges and upper and lower surfaces of the aquifer,
and n is a unit outward normal vector to the boundary. Application of (3.17)

to the second term in (3.10) results in:

_[[z(x@)] 6,(x,y) dV = -/[(K@)B] o, ar

v r

A
+ [(K y_h)-y_¢i dv (3.18)

v
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The first term on the right of (3.18) contains a fluid flux given by Darcy's

law:

€ Voyr = = KVh - n (3.19)

where voyr is the outward velocity at the boundary normal to the bounding
surface. Thus the integral gives the total flow out across the bounding

surface, QOUTi’ in the vicinity of a node i on the surface:

QOUT1 = f(CVOUT ¢i) dar (3.20)
r

An inflow would have a negative value of QOUTis and the relation between

an inflow, QINi’ and outflow is: QINi = 'QOUTi' Thus, the first
integral on the right of (3.18) represents flows across boundaries of the

water—-table aquifer model.

The second integral on the right of (3.18) may be expressed in three

spatial coordinates.

f (K’Eh)-!«»i av = [ f f (K’Eh)-zqai dz dy dx

v Xy 2z
(3.21)

- f[(K/_\V_h)-Z¢i [fdz] dy dx = /:[(K/Eh)'zq;i B(x,y,t) dy dx
Xy z XYy

No term varies in the z-direction, allowing the use of (3.12) which defines
aquifer thickness B. Notice that the transmissivity as given by (3.2), 7 = KB

appears in the form of the integral just obtained.
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N\

Now the approximation for the term K Vh is substituted into the integral.
Hydraulic head, h(x,y,t), is approximated in a nodewise manner as given by re-

lation (3.4). The integral of (3.2) becomes:

VAN ~ NN
(K Zh)~V¢. Bdy dx = [K V ¥ h,(t) ¢, (x,y)]'z¢. B dy dx
i j=1 j i
Xy

Xy

NN (3.22)
= 2 h. (t) V¢ Vo, )B dy dx = le hj(t) Iij(t)

j=1

~

where K is the elementwise approximation for K(x,y). The summation and hj(t)

may be factored out of the integral because hj is a value of head at a node and
does not vary with x and y location. The integral is represented by Iij(t) and
depends on time because aquifer thickness, B, is time-dependent. For each node
i, there are apparently j=NN integrals which need to be evaluated. In fact, due
to the way in which basis functions are defined, there are only a few which are
non-zero, because (Y¢j * V¢4) is non-zero only when nodes i and j are in the
same finite element. When nodes i and j are in different elements, then V¢; is
zero in the element containing node i.

The integrals are evaluated numerically by Gaussian integration. This
is accomplished by first breaking up the integral over the whole volume to
be simulated, into a sum of integrals, one each over every finite element

in the mesh:
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I,.(t) = ;((% - Vo )B dvdx= Ng ;((W . Y )B dv dx (323
ij -j -1 y L=1 __j =74 y
*Y YL

There are NE elements in the mesh, L is the element number, and xj and yy,
are the x and y spatial domains of element L. Thus, for a given L, the integral
over xi, and yj, is integrated only over the area of element L.

Now the discrete elementwise approximation for hydraulic conductivity, as
given by (3.3) allows one term for element L in the summation of (3.23) to be

written as:

KL [f(“j . g"i) B dy dx (3.24)
YL

Here, the thickness B is specified to vary nodewise. The formula for B in this
example is obtained by substituting the nodewise expression for head, (3.4), in-
to the definition of B, relation (3.2).

The integral over one element, as given by term (3.24), must be evaluated
numerically. In order to do this, the coordinates of the element L, which has
an arbitrary quadrilateral shape as suggested in Figure 3.3, is transformed to
a new coordinate system in which the element is a two-by-two square. Then,
Gaussian integration is carried out to evaluate the integral. For a given com-
bination of nodes i and j, this transformation and numerical integration is
carried out for all elements in the mesh in which both nodes i and j appear.
(There are 16 i~j combinations evaluated in each quadrilateral element.) The
elementwise pieces of the integral for each i-j combination are then summed

according to (3.23) in order to obtain the value of the integral over the whole
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region. The summation is called the 'assembly' process. This element transfor-
mation, integration of the 16 integrals arising in each element, and summation,
makes up a large part of the computational effort of a finite~element model and
also requires the most complex algorithm in a finite-element model. It is in
“this way that the second term of (3.10) is evaluated. More information on finite-
element integration and assembly may be found in numerical methods texts such as
Wang and Anderson (1982), Pinder and Gray (1977), or Huyakorn and Pinder (1983).
The details of this method as applied in SUTRA are given in Chapter 4, "Numerical

Methods."

Cellwise integration of source term

The last term of (3.10) deals with sources of fluid to the aquifer such as
injection wells. The volume integral may, as before, may be written in x,y,

and z coordinates:

* *
‘fQ (x,y) ¢1(x,y) dv = -ff[Q ¢, dz dy dx

v Xy z

* (3.25)
- - Q 9, B(x,y,t) dy dx

Xy
where thickness B is introduced because Q* and ¢4 do not vary with z. It
is assumed that all fluid entering the aguifer within the region of cell i,
which surrounds node i, enters at node i. If Qf [L3/s] is defined as the
volume of fluid entering cell i per unit time, then Q* [s~1}, which is the
volume of fluid entering the aquifer per unit volume aquifer per unit time,

is given as:
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NN Q
Qx,y) = 3 (—V—i) (3.26)
i=1

*
This is a cellwise discretization for the source term, Q . For cell i:

fo ¢inydx=-—ff¢inydx=-Qi (3.27)

Xy

Thus all recharges within cell i due to areal infiltration, well injection or
other types are allocated to the source at node 1.
This completes the spatial integration of the governing equation for the

example problem.
3.4 Time Discretization of Governing Equation

When the integrated terms of the governing equation are substituted in

(3.10) the following results:

NN

dh *
i \' (t) i + jz I j(t:) hj(t) = Qmi + Qi (3.28)

i =1,NN

These are NN integrated weighted residual approximations of the governing dif~
ferential equation, one at each node i in the mesh. Because of the summation
term in (3.28), the integrated approximate equation for a node, i, may involve
the values of head, hj(t), at all other nodes in the mesh. The other terms
in (3.28) involve only values at node i itself, at which the entire relation

is evaluated.
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All the parameters in (3.28) are no longer functions of the space coordin~-
ates. Each parameter takes on a particular value at each node in the mesh.
Some of these values vary with time and a particular time for evaluation of
these values needs to be specified. Also, the time derivative requires dis-

cretization.

Time steps

Time is broken up into a series of discrete steps, or time steps. The
length of a time step, At, is the difference in time between two discrete
times, at the beginning and end of a time step:

n+l n
Atn+1 =t -t (3.29)

where Atp,;1 is the length of the (n+1)th time step, t! is the actual time
at the beginning of the (n+1)th time step and tn*]l §s the actual time at
the end of this time step. The time steps are chosen to discretize the time
domain before a simulation just as a mesh (or 'spatial steps') is chosen to
discretize space. The time step length may vary from step to step.

The entire spatially integrated governing equation, (3.28), is evaluated at
the end of each time step, t = t"*l,  The time derivative of head in (2.28) is
approximated, using a finite-difference approximation, as the change in head

over a time step, divided by the time step length:

n n
an, hy(e7 4+ Ae ) - h(t7) (3.30)
™ 7 At )

n+l

In order to simplify the notation, the head at the end of the time step,
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hi(tn + Atn+1) is denoted h2+1 , and the head at the beginning of the time step

hi(tn) is denoted hg. Thus,

n+l n
h -~ h
dh i i
-] & ——— (3.31)
dt Atn+l
The parameters that depend on time in (3.28), Vi(t), Iij(t) and hj(t),
are also evaluated at the time, tn*l, at the end of a time step:
hj(t)' = h?+1 (3.32a)
n+l
t
n+l
Vi(t)'tn+1 Vi \ (3.32b)
L
[t (3.32¢)

Iij(t)|tn+1 R

The sources, QINi’ and Qi*, are assumed constant in time for present

example.

Resolution of non~linearities

The variability in time of cell volume, Vi, and the integral, Iij’

depends on the changing thickness of the aquifer with time, B(x,y,t). The
aquifer thickness at node i at the end of a time step, Bi“+1, is not known until
the head at the end of the time step is known giving the water-table elevation.
This typifies a non-linear problem wherein the problem requires values of coef-
ficients in order to be solved, but the values of these coefficients depend on
the, as yet unobtained solution. This circular problem is avoided in this ex-
ample by using estimates of the coefficient values in the solution. An estimate
of the head at the end of the next time step is obtained by a linear projection:
hPTOd .l (E§§il) (h? - hg-l) (3.33)
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where h?roj is the projected or estimated head at the end of the, as yet un-
solved time step, which would have an exact value, h2+1. Actually, in addition
to projection, SUTRA also employs a simple iterative process to resolve non-

linearities. This is described in sections 4.4 and 4.5 under the sub-heading

"Temporal discretization and iteration."”
A projected thickness may then be determined from (3.33) as:

Bn+1 o B?rOJ - hgroj
i i

i BASEi (3.34)

where B2+1 is the value of thickness needed to evaluate V2+1 and szl , Bgro}
1

is the estimated value of B2+ , and BASEi is the value of BASE(x,y) at node i.

Now the spatially integrated equation, (3.28), may be written discretely

in time:

1 n

W - NN

n+l i i n+l _ n+l - ~

Si\:i (———————At . ) + jzl I,. hJ. QIN + Q, (3.35)

where V2+1 and I?;l are evaluated based on projected thickness, Bgroj.
3.5 Boundary Conditions and Solution of Discretized Equation

Matrix equation and solution sequence

The NN relations given by (3.35) may be rearranged and rewritten in

matrix form:
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n+1l ... 7, n+ 1
5,V] 0 0 0 h)
n+1 n+1
0 S,Vs 0 0 hy
1 n+l n+l
(At ) 0 0 S,V3 0 Hh3 S
n+1 - . . L] L] L)
. : T on+l “n+l
i 0 0 0+ - SuVan | Chygy /
B n+l n+l n+l n+l n+l ) n+l
I 42 L Ly oo I hy
n+l n+l n+l n+l
Iy Typ  Ipg hy
n+l n+l n+l n+l
+ |11 132 133 S hy
n+l
I“. . . . . .
n+l n+l n+l
Iyn,a ) Ion,nn | \Max
n+l . n *
S il Ny 9
- n+l . n *
( . ) S2 V2 My rw, ?,
= n+l . n + + * (3.36)
Ater/ €53 V3 By U, Q3
) n+l . n ) "%
Swn Van Pan gy Onn

By adding the two matrices on the left side, and the vectors on the right
side, a matrix equation is obtained which may be solved for the model heads

at the new time level, t“*l, on each time step:
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n+l B
S,V n+l n+l n+l n+l
(K%—l——+1?11 L2 I3 “ I N hy
n+l .
n+l :
n+l S.V
I 2 2 n+l n+l n+l
21 (ZE;:;’*Izz ) Iy3 : hy
n+l n+l ’ n+l
)| I3z ' ) hy
;“*1....:............(E&Inﬂ) .l
i NN, 1 B 41 WNNN) hot
n+l . n *
S5;Vp by ¢ Qm1 Qo
Atn+1
. .n+l n *
- Sy Vy  hy 4 QIN2 *Q
At
n+l
: (3.37)
n+l . n
Syn Vv P % -
At * Oy * Qu
n+l NN

The solution progresses through time as follows: On a given time step, the

n

3

nodal heads at the beginning of the step are known values and are placed in h
on the right hand side vector of (3.37). The thickness-~dependent values are
determined based on the projection of B in (3.34) using projected head of
(3.33). The integrals and volumes are evaluated and the matrix and vector com-
pleted. The nodal heads at the end of the current time step are solved for by
Gaussian elimination for the (banded) matrix on the left of (3.37). The new
heads are then placed on the right side of (3.37) into hn, and a new time

step is begun.
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Specification of boundary conditions

Before solving the matrix equation as described above, information about
boundary conditions must be included. 1In the case of solving for heads, the
boundary conditions take the form of either specified fluid fluxes across
boundaries which are directly entered in the terms, QINi’ or of particular
head values specified at nodal locations. At a point of fixed head in an aquifer,
a particular value of fluid inflow or outflow occurs at that point in order to
keep the head constant when the aquifer is stressed. It is this flux of fluid
which is added to the model aquifer in order to obtain fixed heads at nodes.

Consider the closed system of Figure 3.5 in which head at node i, hy, is
to have a specified value, hpc, for all time. A well is removing water from
the system at an internal node. A core of porous medium with conductance v is
connected to node i. The head outside the core is held at the specified value,
hgc. The head at node i, hj, is calculated by the model. A flow of QBcy
[L3/s] enters through the core at node i in order to balance the rate of fluid
removal at the well. The resulting head at node 1 depends on the conductance
value v of the core. If v is very small, then a large head drop#is required
across the core in order to supply fluid at the rate the pumping well requires.
This results in hj having quite a different value from hpc. If, however, v
is very large, then the value of head at node i, is very close to hpc, as only
a minute head drop across the core supplies the fluid required by the well.
Therefore, by applying flux to a node through a highly conductive core, the out-
side of which is held at a specified head value, the node responds with a head

value nearly equal to that specified. An advantage of specifying head this way
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INFLOW = QBC,‘ =V (hgc—h;)

Figure 3.5
Schematic representation of specified head (or
pressure) boundary condition.
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is that when head at a node in the mesh is fixed, a calculation of the flux
entering the mesh at this node is obtained at the same time.
This flux is defined as follows:
Q. =v[h . -n*h (3.38)
BC BC i
i i
where QBC is the inflow at node i resulting from the specified head boundary
i

condition, v is the conductance of the 'core', and hBCi is the specified

value of head at node i on the boundary.

The matrix equation (3.37) may be written in short form as:

n+1
NN S, V
+1  n+l i i n *
T M}y R = hy + Q. + Q. *+Q (3.39)
& 4 At ., S S (TR Y
i=1,NN

wherein an additional flux QBCi has been added to account for specified

head nodes. At such a node, say node A, the equation is:

n+l
NN s, Vv
+1 . n+l A A n x n+l
z Mn h = (—.—-——.— h o+ Q, +Q PR (‘h - h (3.40)
j=1 Aj i Atn+1 A A INA BCA A

where v is very large, then the last term dominates the equation and (3.40)

becomes:
SR (3.41)
A
Thus the specified head is set at node A, but as thl and hBC are slightly
A

different, a flux may be determined from (3.38).
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Chapter 4

Numerical Methods

In this section, the numerical methods upon which SUTRA is based are presented
in detail. The purpose of this presentation is to provide a complete reference for

the computer code.

4.1 Basis and Weighting Functions

Basis functions, weighting functions and their derivatives are all described
in local element geometry. In a local coordinate system, every element takes the
shape of a two by two square. The local coordinates, £ and n, are showa along
with a generic local finite element in Figure 4.1. The origin of the local
coordinate system is at the center of the element. Local node one always has
local coordinates (£, n) = (-1, -1). The other nodes are numbered counter-
clockwise from the first node as shown in Figure 4.1.

The following one-dimensional basis functions are defined over the region

of the element:

E(E) =3 (1-8) (4.1)

o 1

E,(6) =3 (1+6) (4.2)

H () =2 (1 - (4.3)
1

H,(n) =3 (1 + ) (4.4)

These linear one~dimensional basis functions are continuous in £ and n and
have either a value of zero or one depending on whether { or n have a value
of +1 or -1. The one-dimensional functions are combined to create the bi-

linear basis functions used in SUTRA:
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[\ ! Y
(-1,-1) | (1,-1)
NODE 1 i NODE 2
Figure 4.1

Quadrilateral finite element in local coordinate

system (€,n).
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Q (E,m) = E_H_ (4.5)
Q,(E,m) = B H_ (4.6)
Q(E,m) = E H, (4.7)
Q,(E,m) = B_H (4.8)

The two-dimensional bi-linear basis functions, when defined in the local element
coordinate system are denoted as Qi(E,n), i=21,2,3,4. There is one basis function
defined for each node.

The basis function Qi, defined for node i, has a value of one at the node
and a value of zero at the other nodes. The surface representing Ri(E,n) over
an element is curved due to the product of & and n in equations (4.5) through
(4.8). A trajectory in the surface parallel to an element side, however, is a
perfectly straight line as shown in Figure 4.2. This is born out in the der-
ivatives of the bi-linear basis functions which depend on only one space co-

ordinate:

-g-%l = -%— H_ %%1 =-—-%— 8_ (4.9)
%%2 . % H_ %%2 - - % g, (4.10)
%%3 - . % K, %%3 -+ % E, (4.11)
8 - -3 Sy =wj B (4.12)

Asymmetric weighting functions are defined for use in a Galerkin-Petrov
method (one version of which is described in Huyakorn and Pinder, 1983). These
are not applied for nodewise discretization of parameters, but rather for

weighting in the volume integrals of the governing equation. They may be used

97



Q; 4
1.0
05
0.04node i ¢ andn
(-1.,-1.) (1., 1)
Qi A

Figure 4.2
Perspectives of basis function 24(£,n) at node i.
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to give an 'upstream weighting' to the advective flux term in the transport
equations or to provide 'upstream weighting' to the fluid flux term in the fluid
mass balance when the medium is unsaturated. The asymmetric functions are defined

as follows:

% %
GI(E,n) = (E* - 2 ) (H_ - H ) (4.13)
. X %
o (e = (2, +2%) (v - ") (4.14)
0 - % % 4.15
s = (5, + %) (, + ) (4.15)
- % % *
8,(¢,n) = (:_ - 8 ) (H+ + H ) (4.16)
where:
o 3a,, & & 4.17
e = aE ~ - *-'+ ( . )
* 3 g & 4.18
H = an E_ &, (4.18)
The spatial derivatives are:
36 1 * 9 1 - =X
851 == 3 (1—3a££) (H_ - H ) 3n1 =-3 (I-Bann) (u_ - 8 ) (4.19)
8, L +1( oy 36 1f,_ 5 48
ae2 + 5 (l 3355) (H_ H ) an2 -5 (1 3ann) (u+ + 3 ) (4.20)
a8 1 * 30, _ 1 (,_ o %
863 = + 3 (1—3a££) (H+ + H ) 8n3 = + 3 (1 3ann) (_,+ + B ) (4.21)
90 1 * 90 - =%
354 =-3 (1—3a55) (H+ + H ) Bna = 5 (1—33nn) (u_ - 3 ) (4.22)
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The parameters a6 and an determine the amount of asymmetry (or upstream
weight) in each coordinate direction. When these parameters have a value of
zero, then the basis functions and their derivatives, equivalent to (4.5)
through (4.12) are exactly obtained from (4.13) through (4.22). The values of

a,. and a depend on location in the element:

£
v
(€. = (up) (—— (4.23)
aE ! (lzlocall)
v
, - U —_—T 4,24)
a (£ = (VD) (lllocall) (

where UP is the fractional strength of upstream weighting desired (chosen by the
model user), ve(E.n) and vn(E,n) are the components of fluid velocity given
in terms of local element coordinates, and lzlocal(ﬁ,n)l is the magnitude of
fluid velocity given in terms of local coordinates. Each velocity component may
vary in value throughout the element. A description of the calculation of fluid
velocity is given in section 4.6, "Consistent Evaluation of Fluid Velocity."

Note that the basis functions, weighting functions and their derivatives are

calculated by the SUTRA subroutine 'BASIS2'.

4,2 Coordinate Transformations

During calculations for the finite-element mesh and during integral
evaluations, transformations are required between the global (x,y) coordinate
system in which an element may have an arbitrary size and quadrilateral shape,
and the local (§,n) coordinate system in which each element is a two by two

square. Transformations are required in both directions. The transformation

100



involves a linear remapping in each coordinate direction and employs the basis

functions to provide mapping.

The Jacobian matrix [J] is calculated separately

for each element that requires transformation and may vary from point to point

in an element.

N N
-1 -2
1] "
]9] 1]
anl 3n2

39
2E>

1)

8n3

a9, 1 N1
13 X, ¥

2 2
a8, X3 Y3
on X4 Yy

(4.25)

The numbered subscripts refer to the local element numbering of Figure 4.1.

The Jacobian matrix is used to transform derivatives of basis functions from

the global to the local coordinate systems and the reverse:

X
aQ =
353 R 13
a9, =
anJ n
3.
axJ - [ J-l
a¢d.
ByJ

where:

3y
13

Wi wja
= Ix mlx

¢,
8xJ

¢,

siz sy

(4.26)

(4.27)

(4.28)

The subscript j refers to any one of the four nodes in an element and ¢j refers

to the global basis function as defined for the jth node in an element.

The

same transformations apply to derivatives of the asymmetric weighting functions

which are denoted wj in global coordinates. In (4.27), [J-I] is the inverse

Jacobian matrix defined a

8.
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-1 1 22 12
[ J ] = ( det-7 ) -3 3 (4.29)

where det J is the determinant of the Jacobian given by:

det J = J J

11 (4.30)

22 " J12 I
The determinant may vary bi-linearly over an element.
Differential elements of area, dA, are transformed between local and global
coordinate systems as:
dA = dx dy = (det J) d§ dn (4.31)
Note that the Jacobian matrix, determinant of the Jacobian, and the deri-
vatives of the basis functions in local and global coordinates are calculated

in SUTRA subroutine, 'BASIS2'.
4.3 Gaussian Integration

Gaussian integration is a method by which exact integration of polynomials
may be carried out through a simple summation of point values of the integrand.

The method is:

T=+] NP
f f(t) dt = Z GKG f(tKG) (4.32)
Tm-] KG=1

vhere f(t) is the function to be integrated between T = -1 and © = +1. KG is the
Gauss point number, NP is the total number of Gauss points, Ggg is a constant,
and 1gg 1s the location of the KGth Gauss point. An exact integration is guar-
anteed by the sum in (4.32) if (2n-1) Gauss points are used for a polynomial f(r1)
of order n. For evaluation of integrals which arise in the SUTRA methodology,

only two Gauss points are used in a given coordinate direction as the integrals
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encountered are usually of order three or less. In this case, the constants,

Ggg have a value of one and (4.32) simplifies to:

T = 41 2
[ f(1) d1 = Z f(tKG) (4.33)
T = -1 KG=1

The values of 1xg for Gauss points one and two, are minus and plus 0.577350269189626,
(or * 3“% respectively).

The need to define a two by two element in local coordinates is apparent
here. Gaussian integration is done over a range of two from -1 to +1. In order
to integrate a term of the differential governing equation over an arbitrary
quadrilateral element in the mesh, the limits of the integral must first be
transformed to values of -1 and +1, that is, to local coordinates. When inte-
grating a double integral, both integrals must be transformed to have limits of
-1 and 41, and two Gauss points are needed in each coordinate direction. These
are defined as shown in Figure 4.3.

An example, evaluating the integral of (3.24) follows: The integral to

evaluate is:

Aij = ]' j. (Z¢j . 2¢i) B, dy dx (4.34)
7L
where X and YL indicate that the integral is over the area of an element L in

global coordinates. First, the (x,y) integral is converted to an integral in

local coordinates (&,n) through use of the Jacobian:

+1 +1
Aij = f f (Z¢j~ . y_¢i) Bi (det J) dn d& (4.35)
€=-1 n=-1
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-1,1)

NODE 3
(1,1)

GAUSS POINT 4
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Figure 4.3
Finite element in local coordinate system with Gauss
points.
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The values of V¢ are in global coordinates and are obtained by transformation
of derivatives calculated in local coordinates.

Gaussian integration is applied independently to each integral:

2 2
Ay Z }: [(Y‘”j : Zq,i) B, (det J)kEK . ) (4.36)
KE=1 Kn=l £ n

or equivalently as a single summation:

4

A, = Z [g¢ . 6.) B, (det J) (4.37)
B ( 3 l) ' kEKG‘“KG)

KG=1

where Kg and Ky refer to Gauss point locations in the € and n directions, and
where £gc and ngg refer to the four Gauss points arising in (4.36) as depicted
in Figure 4.3. Thus, in order to evaluate the integral (4.34) over a given
element, only four values of the integral need to be summed as given in (4.37),
with one value determined at each of the four Gauss points.

In the case where an element is a non-rectangular quadrilateral with
variable thickness B, the polynomial to be integrated in (4.35) is of fourth
order as each of the terms may vary linearly in the same direction. Otherwise
it is always of third order or less, and two~point Gauss integration provides
exact results.

Note that the summation indication by (4.37) over the Gauss points is
carried out by SUTRA subroutine 'ELEMEN' for each element in the mesh and for

each integral which requires evaluation.

105




4.4 Numerical Approximation of SUTRA Fluid Mass Balance

The governing equation representing the SUTRA fluid mass balance (2.24), is
modified by the addition of a point source term which is used to insert points
at which pressure is specified. This is done as described in text referring to

relation (3.38).
. 35 ) 3p 3p ) 3U
Op(p,U) (Swpsop + €p ——w) + (eSw ) ot

kko
-¥c [ ( u ) - Bp - °E)] -9 (4.38)

" (pBC - p) =90

The last term is the source term arising from a specified pressure condition,
wherein v, is a 'conductance’ and pgc(t) is the externally specified pressure
boundary condition value. When Vp is set to a sufficiently large value, the
last term becomes much larger than the others in (4.38), and p = ppc, which is
the desired boundary condition. Relation (4.38) is numerically approximated in

the following sections.

Spatial integration

When the equation for Op(p,U) is approximated through nodewise, elementwise
and cellwise discretizations, it no longer exactly equals zero. The approximate
equation, Op(p,U), equals a spatially varying residual, Rp(x,y,t), as shown

in (3.8). A weighted residual formulation may be written as:

106



A
/ Op(p,U) Wi(x,y) dv. = 0 i = 1,NN (4.39)
Vv
where Wj(x,y) is the weighting function in global coordinates chosen to be
either the basis function, ¢$j(x,y) or the asymmetric weighting function,
wi{x,y). depending on the term of the equation. Relation (4.38) is approxi-
A
mated discretely and substituted for Op(p,U) in (4.39). The resulting set of

integral terms is evaluated, one term at a time in the following paragraphs.

The first term is an integral of the pressure derivative:

A

" 35\ ap
js [(Swpsop + ep sgw ) 5t ]:¢i(x,y) dv (4.40)
v

where the term in brackets is discretized cellwise, with one value of the term
for each of the NN cells in the mesh, and the weighting function is chosen to be
the basis function (written in global coordinates) The carat (7) or large
carat {/A) over a term indicates that it has been approximated in one of the
three ways. Because the cellwise-approximated term is constant for a node i, it
is removed from the integral leaving only the basis function to be integrated.
The volume integral of ¢i(x,y) gives the volume Vi of cell i according to

relation (3.15). The term (4.40) becomes:

95 \  9p.
(Swpsop + €p ng)i s Vi (4.41)

The second term of the expanded form of (4.39) is also a time derivative

which is approximated cellwise:

A
T 20y au (e 20} 2T,
j [(esw 50 ) 5t ] ¢i(x,y) dav (ESW i T Vi (4.42)

v
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The third term of expanded relation (4.39) involving the divergence of
fluid flux is weighted with the asymmetric function. The asymmetry is intended
for use only in unsaturated flow problems to maintain solution stability when
the mesh has not been designed fine enough to represent sharp saturation fronts.
In general, the usual symmetric function is used for weighting this flux term
even for unsaturated flow, but the term is developed with the asymmetric function

in order to provide generality. Green's Theorem (3.17) is applied yielding:

) { { Y[(‘.lé-;‘-‘-‘i)/\ (Zp - og): } b, (x,y) dV

= - § krp ~/\ Vp - *nw,(x dr
f (,_______,) (_p og) n e, (x,y)
r

u 4
N (4.43)
W [E IR R B
A

wherein the terms with carats are approximated discretely as described below,
n is the unit outward normal to the three-dimensional surface bounding the
region to be simulated, and I' is the surface of the region. The asymmetric
weighting function in global (rather than local) coordinates is denoted,
mi(x,y). The first term on the right of (4.43) is exactly the fluid mass flux

({see Darcy's law, relation (2.19)) out across the region's boundary at node i,

qOUTgt) in units of [M/s]:
A e o (6.46)
o+ [ )i+ ] (2 (e )]0
T T e
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This term is used to specify fluid flows across boundaries in SUTRA. Note that
an inflow, qINi(t) is aIN; = ~90UTy -

The second term on the right of (4.43) is approximated using a combination
of elementwise and nodewise discretizations. The approximation of (Vp - pg)
requires particular attention and is discussed in section 4.6, "Consistent
Evaluation of Fluid Velocity." The permeability tensor appearing in (4.43) in
general has nine components, however, (Vp - pg) is always zero in the third
spatial direction due to the assumption of a two-dimensional model. Thus only

four components of the permeability tensor are regquired:

L kﬁx ki
k' = L (4.45)
k k
yx yy
wherein k and is discretized elementwise as indicated by 5L. The pressure is
discretized nodewise:
NN
p(x,y,t) = 3 p,(t) ¢,(x,y) (4.46)
i=]

Relative permeability, k,, depends on saturation which, in turn, depends on
pressure. Relative permeabilities are evaluated at each Gauss point during
numerical integration depending on the saturation (and pressure) at the Gauss
point. Viscosity is evaluated at each Gauss point for energy transport as a
function of nodewise discretized temperature, and is constant for solute

transport.
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Density, p, when it appears in the permeability term, is also evaluated at
each Gauss point depending on the nodewise discretized value of U at the Gauss
point. The density appearing in product with the gravity term is expressly
not evaluated in this usual manner. A particular discretization is used which
maintains consistency with the Vp term as described in section 4.6, "Consistent
Evaluation of Fluid Velocity". This consistently-evaluated pg term is denoted

pg, (see relation (4.103)).

The second term on the right of (4.43) is thus approximated as:

jgl Py(®) [ [ {[(g) (k_;i)]'yq’j}'g“’i Blx,y) dy dx (4.47)
[ TE ()] [60] - oy 3 oy o
Xy

A~

L., .. , , , k
where k= indicates an elementwise discretized permeability tensor, ( rp)

i
indicates the value of the term based on nodewise discretized values of p and U,

~%
and (pg) indicates a discretization of (pg) consistent with the discretization
of Vp. The thickness of the mesh, B(x,y), is evaluated at each Gauss point
depending on a nodewise discretization:
NN
B(x,y) = % B, ¢,(x.y) (4.48)
, i
i=1
where Bi is the mesh thickness at node i. Note that mesh thickness is fixed
and may not vary in time as was allowed for illustrative purposes in Chapter 3,
"Fundamentals of Numerical Algorithms."

The last two terms of (4.38) are approximated cellwise with a basis

function for weighting.
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) N
- pr ¢, (x,y) dv - f["p(ch - p)] 0 (x,y) AV = - Q. - "i(chi' pi)
v (4.49)
The cellwise discretizations which are employed in the above evaluations are:
~ NN

Q = 3 (%—) (4.50)

i=1

] - [em-a)] - B I el

where Viis the volume of cell i, Qi(t) [M/s] is the total mass source to cell i,
QPBC [M/L3-s] is the fluid mass source rate due to the specified pressure, and
vi[L-s] is the pressure-based conductance for the specified pressure soufce in
cell 1. The conductance is set to zero for nodes at which pressure is not
specified, and to a high value at nodes where pressure is specified.

By combining and rearranging the evaluations of approximate terms of

(4.39), the following weighted residual relation is obtained:

dp o W
AFi dti + CFi act +j§1 pj(t) BFij t VP o= Qi + vipBCi + qINi + DFi
i = m (4.52)
where:
AF, = S pS + ep Qéw % (4.53)
i w = op op Ji i
; - ap
CF, (esw BU)i vy (4.54)
BF,, = ff{L(gL) (f‘_gﬁ) -g¢j} - Yo, B dy dx (4.55)
. vy w7
A TN ~%
R 1 (TG N (CY) BT R
i [ \= —/ i
Xy M
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The only integrals requiring Gaussian integration are BFij and DFi' Note that

these are evaluated in SUTRA subroutine ELEMEN in an element by element manner.

The other terms except for those involving v, are evaluated cellwise (one for

i
each node). Note that this is done by subroutine NODALB, and the specified

pressure terms are evaluated by subroutine BCB.

Temporal discretization and iteration

The time derivatives in the spatially discretized and integrated equation

are approximated by finite differences. The pressure term is approximated as:

n+l pn

dt Atn+1
where

p; = p (") (4.58a)

n+l n n+l

Py - Pi(t + Atn+l) - pi(t ) (4.58b)
and

At = (o (4.59)

1

+
The new or current time step, At begins at time t" and ends at time t™ .

n+l’
The previous time step for which a solution has already been obtained at time
t" is denoted Atn'

The term in (4.52) involving the time derivative of concentration or temp-
erature, %%, makes only a very small contribution to the fluid mass balance. For

solution over the present time step, At , this derivative is evaluated using

n+l

information from the previous time step, as these values are already known:
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n n-1
LR S S (4.60)
dt dt Atn :

This approximation gives a simple method of accounting for this small
contribution to the fluid mass balance.

All other terms in (4.51) are evaluated at the new time level tn+1 for
solution of the present time step, Atn+l’ except for the density in the
consistently discretized (;g) term. The density is evaluated based on U(t"),
the value of U at the beginning of the present time step. Because coefficients
depend on the, as yet, unknown values of p and U at the end of the time step,
one or more iterations may be used to solve this non-linear problem. On the

first iteration, and when only one iteration per time step is used, coefficents

are based on a projected value of p and U.

proj _ n + Atn+1 n _ n-1 (4.61)
Py Py ae_ ) \Pi 7 Py :
At
proj _ .n n+l n _  n-l
s o+ (S22) (o7 - ) (4.62

These projections estimate the p and U values at a node i, ppro; and Usroj' at

i

the end of the present time step, At based on linear extrapolation of the

n+l1’
two previous values of p and U. All p and U dependent coefficients (except ;E)
in (4.52) through (4.56) are estimated at time level tn+1. These coefficient
values are based on the most recent values of p and U, be they projections or
solutions to the previous iteration. Iterations end when the maximum change in

p and U at any node in the mesh falls below user-specified criteria of absolute

change in p and U.
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The weighted residual relations (4.52) may thus be written in a form which

) +1 ,
allows for solution of pressures at nodes, p? , at the end of the present time

step:
n+l
AF NN
i n+l n+l n+l n+l n+l
(At ) p; * '2 Py BFij + v,y Qi (4.63)
n+l j=1
AFn+1
n+l n+l (n+l)* i n n+l) /dU.\n
* vy P, Ydpy, * D * (At ) Py * (CFi )(dtl)
i i n+l
i = 1,NN

where the superscript involving (n) or (n+l) indicates level of time evaluation.
The term with level (n+1)* indicates that the (;2) term is evaluated at the (n)
time level on the first iteration, and at the most recent level on subsequent
iterations. The other coefficients are evaluated at the (n+l) time level by
projection on the first iteration, and at the most recent level on subsequent

iterations.

Boundary conditions, fluid sources and sinks

Specified pressures are obtained through the cellwise addition of a fluid flux,

(see Figure 3.7), QBC [M/s} with reference to (4.49):
i
n+l n+l n+l
%o, T M (pBCi - p? ) (4.64)

For a cell in which vy is specified as a large number, this flux term dominates

the fluid mass balance and pgzl 2 p2+1, achieving a specified pressure at the
i

node representing cell i. Note that specified pressure may change each time step.
For cells in which pressure is not specified, v, is set at zero, and no fluid
is added to the cell by (4.64).

Both fluid sources, Q2+1, and fluid inflows across region boundaries,

q?&l, are specified cellwise. They directly add fluid mass to the node in
i

114



cell 1. Thus, fluid sources and boundary inflows are indistinguishable in the

model. Fluid sources and flows across boundaries are both accounted for by the

1

vector Qg+ in SUTRA, and are referred to as fluid sources. Thus the term,

n+l

q ’
INi

to include the boundary flows.

in (4.63) may be dropped and the definition of Q2+1 may be generalized

The form of the discretized fluid mass balance implemented in SUTRA is as

follows:
NN
AFy 845 n+l n+l n+l ntl
:E: [ At ) +*BF, ¢ “161j] Py T Q + ViPyg
n+l i
j=1
n+l (4.65)
AF n
(n+l)* i n n+l du —
+ DFi + (At ) Py + (CF1 ) dti) i=1,NN
n+l
wherein Gij is the Kronecker delta:
0 if di4j
Gij - {1 i€ iej (4.65a)

4.5 Numerical Approximation of SUTRA Unified Solute Mass and Energy Balance

The governing equation representing the SUTRA unified energy and solute
mass balance (2.52) is modified by the addition of a point source term which

arises due to fluid inflows and outflows at points of specified pressure:

au
Ou(U) [sswpcw + (1 e)pscs] ot + eswpcwg Vu

-V {pcw[esw(owl + D)+ (l-e)us£] . ZU}

* w s w s
- Qpcw(U - U) - eS o7, U~ (l—e)psv1 U - €S py - (1-6)9870
- QPBch(UBC - U) = 0 (4.66)
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The last term is the solute mass or energy source due to fluid inflow at a point

of specified pressure, [M/L3~s] is the mass fluid source rate given by

QPBC

(4.51), and UB is the concentration or temperature of the flow. For outflow,

C

UBCS U, and the terms goes to zero. Relation (4.66) is numerically approximated

in the following sections.

Spatial integration

When the equation for Ou(U) in (4.66) is approximated through nodewise,
elementwise and cellwise discretizations, it no longer exactly equals zero. The
N

approximate equation, Ou(U)' equals a spatially varying residual, Ru(x,y,t),

as shown in (3.8). A weighted residual formulation may be written as:

N
/‘ Ou(U) Wi(x,y) dv = 0 i = 1,NN (4.67)
\'

where Wi(x,y) is the weighting function, chosen to be either the basis function,
¢i(x,y) or the asymmetric weighting function, wi(x,y), depending on the term

of the equation. Relation (4.66) is discretized and the approximation is
substituted for Ou(U) in (4.67). The resulting set of integral terms is eval-
uated, one term at a time, in the following paragraphs.

The first term is an integral of the temperature or concentration time

derivative:
€S pc + (l-g)p c 3y ¢, (x,y) 4v (4.68)
A S at 12y )
A"

where the term in braces is discretized cellwise, and the weighting function is
the basis function, (written in global coordinates). As the term with a carat
in braces has constant value over a cell, i, the integral contains only the
basis function and equals the cell volume, Vi’ according to (3.15). Thus the

term is:
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v
[eswpcw + (l-e)pscs]i ati Vi (4.69)

The second integral is:

4
/(eswpcwy_-gv) w,(x,y) dv (4.70)
v

where the asymmetric weighting function is chosen to allow the use of 'upstream
weighting' for this term representing advective transport. 'Upstream weighting'
is intended for use only when the finite-element mesh has been designed too
coarse for a particular level of dispersive and advective transport. The
asymmetric function adds dispersion in an amount dependent on element length
in the flow direction. As a result, it changes the parameters and thus changes
the physics of the problem being solved. This term is written in general to
allow upstream weighting, but simplifies to weighting with a basis function when
upstream weight (UP in (4.23) and (4.24)) is set to zero. Thus, in order not to
alter the physics for most simulation problems, this term will have symmetric
weighting.
The coefficients in this term (except velocity) are evaluated at each
Gauss point and are represented depending on nodewise discretization of p and
U. Porosity is discretized nodewise. Nodewise discretizations of € and U
are written:
NN
e(x,y) = c = 2 e, 9,(x,y) (4.71)
i=]
NN
U(x,y,t) = :E: Ui(t) ¢i(x,y) (4.72)
i=]
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The velocity is evaluated at each Gauss point during numerical integration
in a particular way that depends on consistent discretization of Vp and pg terms

%
in Darcy's law. This consistent approximated velocity is denoted v. Thus the

term (4.70) is evaluated as:

NN -~ -~
jzl Uj(t) ff [e (Swo) c, 3* . g%] wi(x,y) B(x,y) dy dx (4.73)
Xy

wherein B(x,y) is the nodewise-discretized mesh thickness (4.47). Specific
heat, c,o is a constant.

The third term of (4.67) is:

- /.g-{pcw[esw (owi + 2) + (l-e)asl]-gv} $,(x,y) dV (4.74)
v

where the basis function weights the integral. Green's Theorem (3.17) is

applied to (4.74) resulting in:

- A -
- f{pc esw(aw.I= + D)+ (1-e)o I 'ZU}'!’. ¢,(x,y) dlf

r L E
[ N i (4.75)
+ ]' pc eSw(uwl + 2) + (l—e)ule VUV, dv
v L

where the carat refers to the entire terms in braces. The first term represents
the diffusive/dispersive flux of solute mass or energy out across a system boundary

in the region of node i. This term is denoted, ¥ An influx would be

OUTi

-¥ or ¥ . The second term is based on nodewise discretization of U.
OUTi INi

The coefficients p and Sw are evaluated at Gauss points based on nodewise dis-
cretization of U and p. Porosity, € is discretized nodewise as in (4.71), and

Cr 9, and v, are constants. The dispersion tensor, D, is evaluated at each
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Gauss point according to equations (2.38) through (2.40b). Velocities used in

this evaluation are the consistent values, v, and dispersivities, aL and uT,

are discretized elementwise except that o is evaluated at each Gauss point

len

for the anisotrtopic media model. The approximated D is denoted, Thus, the

term (4.74) is evaluated as:

- YINi + 3£ U, (t)]‘j‘ pcwles (0 I+ D) + (1- e) g IJ} V¢ B(x,y) dy dx

XYy
(4.76)

The remaining terms in (4.67) are discretized cellwise with the basis

function as the weighting function:

A
- “Qpcw(u -U)J b, (x,y) dV = - Qicw(Ui - Ui) (4.77)
\"2
A
- ].leswpyg UJ ¢,(x,y) dV = - [eswp7YJi UV, (4.78)
Vv
A
“(1 STRR. Jq»i(x,y) av = - [(1-e>psy§ Us_LVi (4.79)
A4

: A
.80
- / [eswpyz + (l-¢) psyzj ¢i(x,y) dv = - [eswpyz + (1~e)psyzjzi (4.80)
v
A
- /thPBCCW(UBC )J ¢ (x,y) dV = - QBC w(UBCi - Ui) (4.81)
v
where:
%, = vi(psc. - pi) (4.82)
i i
and:
. NN ,Q
BC
Qppc = 2 (“?’i) (4.83)
i=] i
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The relation, (4.79), is non-zero only for solute transport and the value of Us
is given for solute trasport by the adsorption isotherms in the form:

Us - Cs = sLC + 8 (4.84)

where L and sp are defined in section 4.7, "Temporal Evaluation of Adsorbate

Mass Balance." In the above cellwise relations, Cyr Pygo yY, and 7: are constant,

and 7:, 7:, 8 » and s, may vary cellwise and with time.

R
By combining and rearranging the evaluations of integrals in (4.67) and the
definition (4.84), the following NN spatially discretized weighted residual re-

lations are obtained:

w W NN
ar, S +j§1 U (e) DT, + j§1 U (e) BTy, = (6T; + GTL) U (&) + Qe U, (t)
+ U.(t) o ¥ ET R 4.85)

QBCicw $(8) = Qe Uy + QBCichBCi M T T G IRy (4.
i =188

where:

ATi = [eSwpcw + (1-—€)pscs]i Vi (4.86)
DT e( vy B dy d (4.87)
13 [e Swp)cwz _¢j] o, y dx .

Xy

~ ~ A (4.88)
BTij = /.j.{pcw[ esw(uwi + 2) + (1-5)085]- Z¢j}'z¢i B dy dx
Xy

w
GTi = (eSw P 71)i Vi (4.89a)
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)
GSTLi = l(l-e)psyl SLJ v (4.89b)

i i
S
GsTRi = l(l-e)psyl SRJ1 Vi (4.89c)
ET, = | €S py" + (1-€)p ¥° v (4.90)
i w0 s'o " i

The only integrals requiring Gaussian integration are DTij and BTij’ Note that
these are evaluated in SUTRA subroutine ELEMEN, in an element by element manner.
The remaining terms that do not involve QBC are evaluated cellwise by SUTRA sub-
routine NODALB. Also note that the flux terms arising from specified pressure

(those with QBC) are evaluated by subroutine BCB.

Temporal discretization and iteration

The time derivative in the spatially discretized and integrated equation

is approximated by finite differences:

n+l n
@, Eizz_:_gi (4.91)
n+l
where:

n n

Ui = Ui(t ) (4.92a)
n+l n n+l

Ut - Ui(t + Atn) = Ui(t ) (4.92b)

All terms in (4.85) are evaluated at the new time level, tn+1, except the
velocity in (4.87) and the dispersion tensor in (4.88) which involves velocity
are lagged on the first iteration. Because coefficients depend on the yet
unknown values of p and U at the end of the time step, one or more iterations
may be used to solve this non-linear problem. On the first iteration, and when

only one iteration per time step is used, coefficients are based on a projected
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value of p and U as given by (4.61) and (4.62). On subsequent iterations
coefficients are based on the most recent value of p and U. Iterations end
when the convergence criteria are satisfied.

On the first iteration, and when only one iteration per time step is used,

n-1 n-1

o n ..
the velocities are evaluated based on pi’ Ui and pl . This is because the

pressure gradient in the velocity calculation, zpn, is based on pressures cal-
culated when the fluid density was on-l. On subsequent iterations velocities

are calculated using the pressure solution for the most recent iteration together
with the densities resulting from the previous iteration upon which the most re-
cent pressure solution was based. No spurious velocities, which arise from mis-~

matched p and p, are generated this way. The flux term, Q arising from the

BC®
specified pressures is evaluated on the first iteration at the beginning of
. , n n , . Do
the time step in terms of Py and Pge On subsequent iterations, it is based
n+l

on the most recent pressure solution and Ppe -

The relations (4.85) may thus be written in a form which allows for solu-

tion of concentration or temperature at nodes, U2+1, at the end of the present
time step:
n+l
AT NN NN
i *
Atl Urix+1 £ 3 U§+1 DT§?+1) £ 3 U?+1 BT?TI + (GT?+1 . GSTL2+1)U2+1
n+1 j=1 ! j=1 ]
n+l n+l (n+1)* n+l _ n+l *n+1 (n+1)* n+l n+l n+l
PO e Uy H e oo Uy T Qg e Uy F Qg ey Upg F ¥y BTy
i i i i
n+l AT1n+1 n —
+ G TR, + U, i=1,NN (4.93)
s 1 Atn+1 i

The (n+1)* level indicates that velocity and QBC are evaluated on the first

iteration at the time step (n) and on subsequent iterations, at the most
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recent level. Other coefficients are evaluated at the (n+l) time level by pro-
jection on the first iteration, and then at the most recent level on subsequent

iterations.

Boundary conditions, energy or solute mass sources and sinks

Specified temperatures or concentrations at nodes are obtained numerically

at the node k by replacing the kth equation in (4.93) by:

n+l n+l

Uk = UBC (4.94)
k
where ngl is the user-specified value of U that node k is to have during time
k

step (n+l). The specified value may change with each time step.
Source boundary conditions for U arise whenever a fluid source Qi is spec-
ified. These may be either point sources of fluid or fluid flows across the bound-~

aries. These fluid inflows must be assigned concentration or temperature values,

*n+
Uin 1, which may change with each time step. Note that these sources are evalu-

ated in SUTRA subroutine NODALB. Outflows of fluid result in the disappearance

+1 n+l

*,
of the source term from the transport equation because (Uin = Ui ) the sink

and aquifer have the same U-value.
Source boundary conditions for U may arise at points of specified pressure
when an inflow QBC occurs at such a point. A value of U must be specified for

1

such fluid inflows as Ug+1

c. These values may change with each time step. This

i
source term for U disappears for outflow at a point of specified pressure. Note
that specified pressure sources are evaluated in SUTRA subroutine BCB.

A source or sink at a boundary due to diffusion or dispersion appears

in (4.75):
N\
wn+1 . n+1l
N, = pc | €S owi + D)+ (1-¢) o, Ipvw ‘n ¢i dr (4.95)
i
r
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where the carat refers to the entire term in braces. For solute transport, this
term may represent molecular diffusion and dispersion of solute mass across a
boundary. For energy transport, this term represents heat conduction and thermal
dispersion across a boundary. This heat or solute flux is a user-specified value
which may change each time step. If the term is set to zero, it implies no dif-
fusion and no dispersion across a boundary for solute transport, or for energy
transport it implies perfect thermal insulation and no dispersion across a boundary
For an open boundary across which fluid flows, this term is not automatically
evaluated by SUTRA. If no user-specified value exists at an open boundary, then
this term is set to zero. This implicitly assumes that the largest part of sol-
ute or energy flux across an open boundary is advectively transported rather
than diffusively or dispersively transported. 1In cases where this assumption
is inappropriate, the code may be modified to evaluate this term at the new
time level depending on the value of UR*tl,

The form of the discretized unified energy and solute mass balance equation

which is implemented in SUTRA is as follows:

NN AT!i1+1 Gi' (n+l)* n+l ntl n+l n+l n i n+l
¥ (-—r——-l)+DT.. + BT, . + |GT "+ G TL +(Q. +Q )c 6, 0 U

. t ij ij i s 1 i BC w ij i
i=1 n+l i

- c (Qn+1 U(n+1)"'\‘+ Qn Un+1 + wn+1+ ETn+1+ G TRn+1 + (ATZ+1) n

w\ ‘1 i BC BC, IN i s 1 i
i i i At
n+l
— (4.96)
i=1 NN

wherein ¢ is the Kronecker delta.
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4.6 Consistent Evaluation of Fluid Velocity

Fluid velocity is defined by equation (2.19) as:

kK,
e (B5) (- )
w

This relation strictly holds true at a point in space. In order for the rela-
tion to hold true when discretized, the terms Vp and pg must be given the same
spatial variability. This avoids generation of spurious velocities which would
be caused by local mismatching of the discretized pressure gradient term and
density-gravity term. For example, in a hydrostatic system where densities vary
spatially, Vp = pg, to yield a zero vertical velocity. However, if Vp and pg do
not locally cancel because of the discretization chosen, then erroneous vertical
velocities would be generated.

Such an error would occur over an element where Vp is allowed only a
single constant value in a vertical section of the element, but where p is allowed
to vary linearly in the vertical direction. This would be the case in a standard
finite~element approximation wherein both p and U vary linearly in the vertical
direction across an element. Linear change in p implies a constant value Vp,
while linear change in U implies a linear change in the value of p according to
(2.3) or (2.4). Thus a gstandard finite-element approximation over a bi-linear
element results in inconsistent approximations in the vertical direction for Vp

and pg: constant Vp and linearly varying p. This inconsistency generates
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spurious vertical velocities especially in regions of sharp vertical changes in
U. A consistent approximation of velocity is one in which Vp and pg are allowed
the same spatial variability, and further, are evaluated at the same time level.

A consistent evaluation of velocity is required by the transport solution
in (4.87) and also required in the evaluation of the dispersion tensor in (4.88),
where velocity is required in each element, in particular, at the Gauss points
for numerical integration. Also a consistent evaluation of the pg term is re-
quired for the fluid mass balance solution in the integral shown in (4.56). The
values are also required at the Gauss points in each element during numerical
evaluation of this integral.

The coefficients for calculation of velocity in (4.97) are discretized as
follows: Permeability, g, is discretized elementwise; porosity, €, is discre-
tized nodewise. Unsaturated flow parameters, k, and Sy, are given values
depending on the nodewise-discretized pressure according to relations (2.8) and
(2.21). Viscosity is either constant for solute transport or is given values
depending on nodewise-discretized temperature according to (2.5).

To complete the discretization of velocity, values in global coordinates
at the Gauss points are required for the term (Vp - pg). A consistent approxi-
mation is presented in the remainder of this section for this term based on the
fact that this term will be discretized in a consistent manner in global coor-
dinates in an arbitrarily oriented quadrilateral element whenever it is dis-
cretized consistently in local element coordinates (£,n). Consistent discretiza-
tion in local coordinates is obtained when the spatial dependence of %g and ng
is the same, and when %ﬁ'and g, have the same spatial dependence. Because the
discretization for p(§,n) has already been chosen to be bi-linear, it is the

discretization of the pg term, in particular, which must be adjusted. First,
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in the following, a discretization of the pg term is presented which is
presented which is consistent with the discretization of Vp in local coor-
dinates, and then both Vp and pg are transformed to global coordinates
while maintaining consistency.

The pressure gradient within an element in local coordinates is defined in

terms of the derivatives with respect to the local coordinates:

4
.@-E = -aiza'
5E (€,n) 151 P; 3¢l (4.98a)
% (g0 = % p. &y (4.98b)
an ? i1 i 9n

The summations may be expanded and written in detail by reference to relations
(4.9) through (4.12) and (4.1) through (4.4).
A local discretization of pg, with a spatial functionality that is con-

sistent with the local pressure derivatives, (4.98a) and (4.98b) is:

4 an

(pg) (E,n) =3 op.g -1 (4.99)
3 ;o1 1085 198
4 3N

(og)n(f,',n) =i§1 pigni PP (4.100)

where the vertical bars indicate absolute value, Py is the value of p at node
i in the element based on the value of U at the node through relation (2.3) or
(2.4), ggiis the £-component of g at node i, and gniis the n-component of g at
node i. The eight gravity vector componenets at the nodes in each element need
be calculated only once for a given mesh and may be saved. This discretization

is robust in that it allows both the density and (the direction and) the magni-

tude of gravity vector components to vary over an element. No particular
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significance should be attached to the absolute values of basis function deriva-
tives, except that these happen to give the desired consistent approximations,
as is shown shortly.

The gravity vector components in local coordinates at a point in the ele-

ment are obtained from the global gravity components as:

-1 g

where [J] is the Jacobian matrix defined by (4.25).

The derivatives of pressure in local coordinates (4.98a) and (4.98b), and
the consistent density-gravity term components in local coordinates, (4.99) and
(4.100), are transformed to global coordinates for use in the evaluation of the

integrals they appear in by:

p p
x 13
- 7]
(4.102)
ap dp
oy an
(pg)X (og)e
-1
g = [J ] (4.103)
(pg)y (og)n

% %
where (pg)x and (pg)y are the consistently discretized density-gravity term

components in global coordinates, and [J]-1 is the inverse Jacobian matrix

defined by (4.29).
The spatial consistency of these approximations may be seen by inspecting

their expansions in local coordinates. For example, the E-components are:
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3k '15[( P = P ) (1‘") * (93 - P, )(1+n)] (4.104)

1 +
(og)E iy [("1861 "2352) (l-n) + (p3g£3+ oagea) (1+n) ] (4.105)

The terms in parentheses preceeding the terms containing n all have a constant
value for the element, and thus the approximations have consistent spatial

dependences.

4.7 Temporal Evaluation of Adsorbate Mass Balance

The terms in the unified energy and solute mass balance equation which
stem from the adsorbate mass balance require particular temporal evaluation be-

cause some are non-linear. The following terms of relation (4.93) are evaluated

here: AT:fl, GT2+1, and ET:+1. For solute transport, the coefficient, Cy in
i
AT‘;+1 (4.86) becomes r?+1, according to (2.52b). The relation which defines 5
i

is given by either (1.34c¢), (1.35¢c), or (1.36c) depending on the sorption iso-~

therm. The variable, U:*l, is expressed in terms of the concentration of adsor-
i
bate, C:+1, in a form given by (4.84). The parameters in (4.84), 8. and 8p)
i

are defined in this section and are based on either (1.34a), (1.35a) and (1.36a)
depending again on the sorption isotherm. The temporal approximations of these
parameters are described below for each isotherm.

For linear sorption, all terms and coefficients related to the adsorbate
mass are linear and are evaluated at the new time level and strictly solved for
at this level:

n+l n+l n+l

U = C =X; P, Ci (4.106a)
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=X, P
8; 11 1 "o (4.106b)
8 = X0, (4.106¢)
sp = 0 (4.1064)

For Fruendlich sorption, the adsorbate concentration is split into a
product of two parts for temporal evaluation. One part is treated as a first
order term as is linear sorption. This part is evaluated strictly at the new
time level and solved for on each iteration or time step. The remaining part
is evaluated as a known quantity, either based on the projected value of Ci at

the end of the time step on the first iteration, or based on the most recent Ci

solution on any subsequent iteration.

(; (=)

X X
Un+1 - Cn+1 - X.p 2 Cproj 2 Cn+1 (4.107a)
s 8 170 i i
i i
Also:
0y (5 gron(72)
°2+1 - r?*l . (_l) poxz (cgroj) Xy (4.107b)
i i X2
;) e
- X proj ( (4.107¢)
L (Xl"o) 2 (Ci ) X2
8R a
where the coefficient, rln+1, is evaluated from the projected or most recent value
i

of Ci’ depending on the iteration.
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Finally, for Langmuir sorption the form used for the temporal evaluation
preserves dependence on a linear relationship to Ci' However, the linear rela-
tionship is appropriate only at low solute concentrations. At high concentrations, |
the adsorbate concentration approaches (xl/xz). Therefore, two temporal approx-
imations are combined, (one for low C, and one for high C) in a manner depending
on the magnitude of concentration. When (xzpoc)<<l, the following temporal

approximation for low values of C, referred to as C:. is employed:

proj
X,p C
¢ = (xlpoc“*l) 1 - 2o — (4.108)
(1 + xpoCp J)

When (xzpC))>1, the following temporal approximation for high C, C: is employed:

X 1
c? = (;l) [1 - — ] (4.109)
2 (1 + xzpoC )
Thus CZ+1 may be defined:

n+l n+l o A ® (4.110)

where the weights Wo and W _, are:

proj
X2 po C
wco = o1 (4.111a)
(1 +x, P, cPrody
W =1-W (4.111b)
(o] @

By substituting (4.108), (4.109), (4.11la), and (4.111b) into (4.110), the

following temporal evaluation of C2+1 is obtained after algebraic manipulation:
i
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n+l proj proj
n+l X164 (g o, G 7)) Oy oy C)
CS = orol 2 +. . (4.112a)
i (1 + Xy P CI ) (1 + Xy P CY )
The coefficient, r?+1, 1s defined as:
i
Xy P
c2+1 - x?+1 - 1o — (4.112b)
i i (1 + Xy P Ci )
Xy P
s, = 1 o, (4.112¢)
L (1 + y.p CPFOI
201
roi 2
(Xl XZXDOCE ’
s. = 4 (4.1124d)
R 1+ x.p cproj
2071

The first term in (4.112a) is solved for on each iteration and the second term is
treated as a known. In the above four relations, Cgro; is based on a projection
for the first iteration on a time step, and is the most recent value of Ci on

subsequent iterations for the time step.
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Chapter 5
Other Methods and Algorithms

5.1 Rotation of Permeability Tensor

The aquifer permeability may be anisotropic (as discussed in section 2.2

]

under the heading "Fluid flow and flow properties,” and may vary in magnitude
and direction from element to element (as shown in (4.45)). The permeability

in each element is completely described by input data values for kygx, kpip

and 8, the principal permeability values and the direction in degrees from the
global +x direction to the maximum direction of permeability. The evaluation

of integrals (4.55) and (4.56) as well as the velocity evaluation (4.97) require
the permeability tensor components in global coordinates as given by (4.45).
Thus a rotation of the tensor is required from principal directions (xp,xm) to

global directions (x,y), as shown in Figure 2.2.

The rotation is given by:

-1
k= g7kl gt (5.1)
- ===p=
where
L
ks | Emax  © (5.2)
=p L
0 k
min
T cos® -sinb
J = (5.3)
sinb cosf

T-l cos® sin@
d = (5.4)

~-3in® cos#
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and &L is given by (4.45). The result is:

k' = k¥ cos’s + k', sin’s (5.5a)
XX max min

k' = k"  sin?e + kX, cose (5.5b)
Yy max min

kL = kL = (k -k ) 8in® cosé (5.5c)
Xy yx max min ’

5.2 Radial Coordinates

SUTRA is written in terms of two-dimensional Cartesian coordinates x and
y. In general, the two-dimensional numerical methods are applied to Cartesian
forms of the governing equations; however, because the mesh thickness, By, is
allowed to vary from node to node, radial coordinates (cylindical coordinates),
r and 2z are an exact alternate coordinate set.

A function, f(r,z), of radius r, and vertical coordinate z, is integrated

over a cylindrical volume as follows:

R af [ / f(r,z) r do dr dz (5.6)
z r ©

Assuming symmetry with respect to angular coordinate 6 (f(r,z) does not depend

on 6), the integral becomes:

Rr = j. /. f(r,z) (2wr) dr d=z (5.7)
z T

This integration may be compared with a general integration of a function

g(x,y) in Cartesian coordinates as it is carried out in SUTRA methodology:

Rc = j' /. g(x,y) B(x,y) dx dy (5.8)
y x
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Integrals Rr and Rc are exactly analogous if: x®r, y®z, and

B(x,y) = 27r (5.9)

Thus, by a simple redefinition of coordinate names, and by setting the mesh
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