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METRIC CONVERSION FACTORS

For the convenience of readers who may want to use the International System of
Units (SI), the data may be converted using the following factors:

Multiply inch-pound units By To obtain SI units
cubic foot per second 0.02832 cubic meter per second
degree 0.01745 radian

foot 0.3048 meter

foot per foot 1.000 meter per meter

foot per mile 0.1894 meter per kilometer
foot per second 0.3048 meter per second

foot per square mile 0.1177 meter per square kilometer
inch 25.40 millimeter

mile 1.609 kilometer

mile per hour 1.609 kilometer per hour
ounce, fluid 29.57 milliliter

pound 0.4536 kilogram

square foot per second 0.09290 square meter per second
square mile 2.590 square kilometer

Degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) by using
the following equation:

°F = 9/5°C + 32

The following term is also used in this report: micrograms per liter.



TRAVELTIME, LONGITUDINAL-DISPERSION, REAERATION, AND BASIN
CHARACTERISTICS OF THE WHITE RIVER, COLORADO AND UTAH

By Jeanne M. Boyle and Norman E. Spahr

ABSTRACT

The White River basin contains extensive energy resource developments
which might affect the quantity and quality of the basin's water resources.
The purpose of this study was to determine traveltime, longitudinal-
dispersion, reaeration, and basin characteristics of the White River which can
be used in making decisions concerning the energy developments.

Traveltime and longitudinal-dispersion characteristics were measured for
the White River using dye tracers. Discharges ranged from 281 to 1,840 cubic
feet per second and velocities ranged from 1.26 to 3.17 miles per hour.
Traveltimes were determined for discharges other than measured discharges by a
graphical method and a linear-regression method. Longitudinal-dispersion
coefficients ranged from 284 square feet per second at a discharge of
539 cubic feet per second to 3,560 square feet per second at a discharge of
1,580 cubic feet per second.

Reaeration was measured using a modified-tracer technique in four reaches
of the White River during a medium-flow period in August 1982. Reaeration
coefficients at 20° Celsius ranged from 5.3 to 25.3 per day. The results of a
comparison with measured reaeration coefficients and reaeration coefficients
predicted using empirical equations showed that the most accurate equations
were by Bennett and Rathbun (1972) and Isaacs and Gaudy (1968).

Basin characteristics were determined using U.S. Geological Survey topo-
graphic maps, precipitation data from the National Weather Service, and aerial
photographs taken on September 11, 1981.

INTRODUCTION

The White River basin contains extensive energy resources consisting of
0oil, natural gas, coal, and oil shale. Existing and planned energy develop-
ment might affect the quantity and quality of the basin's water resources.
This.report is part of a 4-year assessment of the White River basin from water
years 1981 through 1984. The objectives of the assessment were to describe
the existing hydrology of the basin and to evaluate some of the potential
environmental effects of energy-resource development on the quantity and
quality of the water resources in the basin.



A growth in population probably would be associated with an increase in
energy development, causing a possible increase of wastes discharged into
streams (Wentz and Steele, 1980). This increase in wastes might cause water-
quality problems. Information on traveltime, longitudinal-dispersion, reaera-
tion, and basin characteristics may prove useful to State and local officials,
planners, and managers in making decisions concerning energy developments.

The traveltime, longitudinal-dispersion, and reaeration data provide informa-
tion on how fast wastes move downstream, how they are dispersed longitudinally
in streams, and how rapidly streams can assimilate certain forms of treated
wastes. The basin-characteristics data provide information on the land sur-
face, stream channels, and the water available within the basin.

Purpose and Scope

The main purpose of the study was to determine traveltime and longitu-
dinal-dispersion characteristics for streamflow in designated reaches of the
White River for a range of stream-discharge conditions. A second purpose was
to determine the reaeration coefficient (K2) for four reaches on the White
River and to compare them with computed reaeration coefficients using various
empirical equations. Only brief descriptions of traveltime and reaeration
measurement techniques are included in this report. Explanations of these
techniques are described in detail in referenced reports. Basin characteris-
tics were included in this report to provide baseline data on the physical
and climatic conditions of the basin and the channel geometry prior to energy
resource development in the White River basin. A description of the geologic
characteristics in the White River basin was not included in this report, but
is given in Boyle and others (1984).

Study Area

The White River basin is located in northwestern Colorado and northeast-
ern Utah (see fig. 1). The surface area of the basin is 5,120 square miles,
74 percent of which is in Colorado and 26 percent in Utah. The White River
flows to the west and drains into the Green River in Utah. Most of the tribu-
taries, such as the South Fork White River, Piceance Creek, and Yellow Creek,
drain from the south into the White River. An average of 70 percent of the
annual flow of the White River occurs during the spring months as a result of
snowmelt runoff.

The White River basin contains extensive energy resources consisting of
oil, natural gas, coal, and oil shale. Existing energy production within the
basin consists primarily of o0il and natural gas, and some coal. Rio Blanco
County, Colo., containing the Rangely oil and natural gas fields, ranks first
in Colorado for production of these two resources. The most underdeveloped
natural resource in the basin is the extensive oil-shale deposits. A second-
ary land use in the basin is agriculture. The land is used for livestock
production and to grow hay and grain.
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LOCATION AND EXTENT OF STUDY REACHES FOR TRAVELTIME
AND REAERATION MEASUREMENTS

The location of the dye-tracer traveltime study reaches are shown in
figure 1. They extend for 7 miles of the North Fork White River and 6 miles
of the South Fork White River upstream from their confluence and downstream on
the White River for 198 miles to its mouth near Quray, Utah. Tracer studies
were conducted during May 1981; May, April, and August 1982; and July and
September 1983. The May 1981, April and August 1982, and September 1983
discharges were characterized as medium (400 to 1,000 cubic feet per second),
whereas the May 1982 and July 1983 discharges were characterized as high
(greater than 1,000 cubic feet per second). Only one dye-tracer measurement
was made on the section of the White River in Utah, because a low flow (less
than 400 cubic feet per second) did not occur during this study.

Reaeration measurements were made on four reaches of the White River (see
fig. 1). The first reach extends from about 5.5 miles downstream from the
confluence of the North Fork White River and South Fork White River downstream
for 6 miles. The second reach extends from about 3 miles upstream to 5 miles
downstream from Meeker, Colo. The third reach extends from about 1 mile
upstream to 9 miles downstream from Rangely, Colo. The fourth reach extends
from about 0.5 miles downstream from the Colorado-Utah State line downstream
for 2.5 miles. All the reaeration measurements were made during August 1982,
which was characterized as a medium discharge. The injection and sampling
sites at which the measurements were made are listed in table 1 and are shown
in figure 2.

DETERMINATION OF TRAVELTIME AND LONGITUDINAL-DISPERSION CHARACTERISTICS

Traveltime and longitudinal-dispersion characteristics of a stream are
different for various flow conditions. Therefore, measurements of the rate of
movement and dispersion are necessary for a range of flows.



Table 1.--Dye-tracer and gas injection and sampling sites

Site . Distance
Flow Site
(number . 2 from .
) condi- type Station name
in tions! mouth
fig. 2) (miles)
1 H,M I 205.51 North Fork White River 7.03 miles above gage at Buford, Colo.
2 H,M S 202.93 North Fork White River 4.45 miles above gage at Buford, Colo.
3 H,M S 198.31 North Fork White River 0.10 miles below gage at Buford, Colo.
4 M I 192.69 VWhite River 5.79 miles below North Fork gage at Buford, Colo.
5 M S 191.72 White River at Tru Sport Lodge, Colo.
6 M S 190.13 White River 8.35 miles below North Fork gage at Buford, Colo.
7 H,M S 187.59 White River above mouth of Miller Creek, Colo.
8 H,M I,S 181.37 White River at gage above Coal Creek, near Meeker, Colo.
9 H,M 1,8 177.61 White River at gage near Meeker, Colo.
10 M S 176.22 White River 1.39 miles below gage near Meeker, Colo.
11 H,M S 174.53 White River at city park in Meeker, Colo.
12 H,M S 169.52 White River at State Highway 13, Colo.
13 H,M S 158.76 White River at gage below Meeker, Colo.
14 H,M I,s 147.79 White River at Piceance Creek Road, Colo.
15 H,M S 135.59 White River 5.19 miles above mouth of Yellow Creek, Colo.
16 H,M S 130.40 White River above mouth of Yellow Creek, Colo.
17 H,M S 125.89 VWhite River 1.47 miles above mouth of Wolf Creek, Colo.
18 H,M S 117.50 White River at County Road 73, Colo.
19 H,M I,s 106.55 White River at County Road 65, Colo.
20 H,M I1,s 102.00 White River at gage above Rangely, Colo.
21 M I 95.65 White River 0.85 miles above old water treatment plant in
Rangely, Colo.
22 H,M S 94.80 VWhite River at old water treatment plant in Rangely, Colo.
23 H,M S 92.63 White River at White Avenue in Rangely, Colo.
24 H,M I,s 91.00 White River 1.06 miles below State Highway 64, Colo.
25 H,M S 85.38 White River 6.68 miles below State Highway 64, Colo.
26 H,M S 79.43 VWhite River 12.5 miles above gage near the Colorado-Utah
State line, Colo.
27 H,M I,s 73.92 White River 7.02 miles above gage near the Colorado-Utah
State line, Colo.
28 M 1 69.49 White River 2.59 miles above gage near the Colorado-Utah
State line, Utah
29 M S 68.08 White River 1.18 miles above gage near the Colorado-Utah
State line, Utah
30 H,M S 66.90 White River at gage near the Colorado-Utah State line, Utah
31 M S 60.60 White River 2.92 miles above Ignatio Stage Stop, Utah
32 M I,S 57.68 White River at Ignatio Stage Stop, Utah
33 M S 55.54 White River 5.06 miles below Ignatio Stage Stop, Utah
34 M S 49.52 White River at mouth of Southam Canyon, Utah
35 M S 43.50 White River at gage below Asphalt Wash, Utah
36 M S 38.41 White River at mouth of Atchees Wash, Utah
37 M S 30.21 VWhite River below mouth of Bitter Creek, Utah
38 M I,s 20.77 White River at Mount Fuels Bridge, Utah
39 M S 12.30 White River 12.0 miles above gage at mouth, near Ouray, Utah
40 M S 5.39 White River below mouth of Cottonwood Wash, Utah
41 M S .28 White River near gage at mouth, near Ouray, Utah
42 M I 203.89 South Fork White River at South Fork gage near Buford, Colo.
43 M S 200.46 South Fork White River at YZ Ranch, Colo.
44 M S 197.57 South Fork White River at South Fork gage at Buford, Colo.

1H=high flow; M=medium flow.
2]=injection site; S=sampling site.
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Dye-Tracer Technique

The traveltime characteristics were measured by injecting a fluorescent
dye, rhodamine-WI, into the river and monitoring the shape and speed of the
dye cloud as it moved downstream. The injected dye is a solute that mixes
completely with the water and moves in the same manner as the water. Measure-
ment of the movement, concentration, and dispersion of the dye cloud describes
the traveltime characteristics of other soluble contaminants that might be
introduced into the stream. A complete description of the methods, proce-
dures, dyes, and equipment used in such measurements is found in Hubbard and
others (1982). '

The dye was injected at selected locations along the White River and the
resultant dye clouds were measured at sampling sites downstream (see fig. 2).
Water samples were collected at approximately the center of flow whenever pos-
sible. The water samples collected at each site were analyzed using a fluorom-
eter as described in Wilson (1968). A fluorometer is an instrument which
measures the fluorescence of the dye sample. The amount of fluorescence meas-
ured is directly proportional to the concentration of the dye in the sample.

Traveltime

Traveltime is the time it takes a substance, such as dye, to travel from
one point to another. Mean velocity in each subreach was computed using the
traveltimes of the centroids of the dye clouds and the distance between each
adjacent sampling site. This computation could also be done using the
traveltimes of the peak concentrations.

Longitudinal Dispersion

Figure 3 shows a graph and sketch of the downstream movement and disper-
sion of the dye cloud for the May 5, 1982, injection at site 19, which is near
Rangely. Dye clouds disperse as they travel downstream; therefore, they take
a longer time to pass each successive site and the peak concentrations de-
crease. As shown in figure 3, the dye cloud took 0.78 hours to pass site 20;
this time increased to 2.08 hours for the dye cloud to pass site 25. The peak
concentration decreased from 13.5 micrograms per liter at site 20 to 4.65 micro-
grams per liter at site 25.

Figure 3 also shows the lateral and longitudinal mixing patterns of the
dye cloud as it travels downstream. As noted by Bauer and others (1979) and
Hubbard and others (1982), the dispersion of the tracer in the stream takes
place in all three dimensions of the channel. Complete mixing in the vertical
direction normally occurs first. Complete lateral mixing, which depends on
the stream width and variations of velocity, occurs second. Longitudinal dis-
persion, because it has no boundaries, continues indefinitely. The dispersion
of primary interest is the longitudinal dispersion. As shown in the sketch in
figure 3, particles of dye at the center of the stream travel faster than
those near the edges.
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Figure 3.--Downstream movement and dispersion of a dye cloud
resulting from a slug injection of dye, May 5, 1982
(site 21 not measured).



Results of Traveltime Studies

Traveltimes at flow conditions other than conditions measured were esti-
mated using two different methods of prediction: graphical relationship and
linear regression. The graphical relationship method was done to provide a
base from which the linear-regression method could be compared. The linear-
regression method is presented to provide traveltimes for the reaches in Utah
at flows other than the measured flow and because it is more practical for
some applications.

Mean Velocity and Discharge

Data from the dye-tracer measurements, including basic time-concentration
curve characteristics and stream discharge, are given in table 2. Mean
traveltime velocities ranged from 1.26 to 3.17 miles per hour. Measured
velocities of dye clouds between injection sites and the first measurement
site downstream are greater than the actual mean velocity of the water because
the dye goes through a mixing period during which it travels faster than the
water mass. During spring and summer measurements, variations in discharge
between sites 7 and 14 were evident because of withdrawals of water for irri-
gation and return flows. The increase in discharge from sites 14 to 20 of
90 cubic feet per second during the May 1982 measurement is due to snowmelt
runoff. The increase in discharge of 260 cubic feet per second from sites 14
to 15 during the July 1983 measurement is caused by the flow of Piceance Creek
into the White River. For the April 1982 measurement in Utah, sites 30 to 41,
discharge in most of the reaches decreased because of infiltration of water
into the ground and evaporation.

There was a discrepancy in the area of dye curve for the injection on
September 27, 1983, at site 24. Normally, the area of dye curve decreases
downstream, but between sites 26 and 27 the area increased from 8.76 to
10.08 micrograms per liter times hours. This discrepancy was due to an error
in fluorometric technique or errors in sampling.

The percentage recovery (PR) of dye cannot increase and normally
decreases with distance downstream from an injection site. A decrease in
measured dye mass is the result of the following factors: (1) Dye loss as a
result of absorption on bottom and suspended sediments, adsorption on vegeta-
tion and debris, and photochemical decay; (2) dye lag due to a short sampling
period during which the entire dye-concentration versus time curve is not
obtained; and (3) a chemical reaction of the dye with a substance in the water
(for example, chlorine).
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Graphical Analysis of Traveltime Data

Dye-cloud centroid traveltimes were plotted against discharge at index
stations and are shown in figures 4, 5, and 6. This method can only be used
for reaches that have two or more measurements at different flow rates.
Therefore, only the reaches in Colorado, sites 1 to 30, are shown. The
reaches in Colorado were divided into three groups. The groups of reaches
were determined by relating their characteristics with those of the corre-
sponding index-discharge station. Traveltimes from sites 1 to 12 use station
09304500 White River near Meeker, Colo., as an index station; sites 12 to 20
use station 09304800 White River below Meeker, Colo., as an index station;
and sites 20 to 30 use station 09306395 White River near Colorado-Utah State
line, Utah as an index station. This type of analysis is based on the assump-
tion that the traveltime versus index-discharge relationship is usually linear
on log-log paper (Hubbard and others, 1982). There is also an assumption that
there is a relationship between the index discharge of a gaging station and
the discharge in a given stream reach. Diverting water for irrigation, which
usually occurs during the summer months, can significantly affect this rela-
tionship if a large percentage of the flow is diverted under medium- and
low-flow conditions. The lines on the graphs were extended from 100 to
3,000 cubic feet per second, since the discharge will seldom go below
100 cubic feet per second, and the river is at bankfull at about 3,000 cubic
feet per second. The relationships are probably not valid when the river is
higher than bankfull.

To determine the traveltime between two sites, the discharges at the
corresponding index-discharge stations must first be known. The current index
discharges can be obtained by contacting personnel in the U.S. Geological
Survey's offices in Meeker, Colo., for stations 09304500 and 09304800, and in
Vernal, Utah, for station 09306395.

Traveltime Simulations Using Linear-Regression Relationships

Leading-edge and peak-concentration traveltimes of dye clouds were simu-
lated for flows other than measured flows using linear-regression equations
and the data described previously. The traveltimes are linearly related on a
logarithmic scale to the mean discharge of the stream reach and the distance
from the injection site. The linear-regression equations have the following
forms:

Tle=aQbLC (1)

and
Tp=dQeLf, | (2)
where Tle=leading-edge traveltime of dye cloud, in hours;
Tp=peak-concentration traveltime of dye cloud, in hours;
Q=mean discharge, in cubic feet per second;
L=distance from injection site, in miles; and

a,b,c,d,e,f=linear-regression coefficients.
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Linear-regression relationships were developed for each reach in Colorado
separately (sites 1-8, 8-15, 14-20, 19-25, and 24-30), for all the reaches in
Utah together (sites 27-41), and for all the reaches on the White River
together (sites 1-41). The linear-regression coefficients for each rela-
tionship are listed in table 3 along with the corresponding correlation
coefficient (r). The correlation coefficient is a measure of the degree of
closeness of the linear relationship between two variables. Below is an
example computation of traveltime from Meeker, Colo., to Rangely, Colo., using
the linear-regression coefficients for all the reaches on the White River
(sites 1-41). The equations for leading-edge and peak-concentration travel-
times are:

-0.330 1.080

T e=2.986(Q) (L)

1

and

-0.335,.,1.032

Tp=4.016(Q) (L)

Assume the mean discharge is 500 cubic feet per second. The distance from
Meeker (site 11) to Rangely (site 23) is 81.90 miles (see table 1, p. 5).
Therefore,

-0.330 1.080

T1e=2.986(500) (81.90) =44.7 hours

and

-0.335 1.032

Tp=4.016(500) (81.90) =47.2 hours.

Table 3.--Linear~regression coefficients

Value determined by regression

Coefficient Reach as defined by site numbers

1-8 8-15 14-20 19-25 24-30 27-41 1-41

a 2.690 3.031 10.71 16.86 10.21 210.9 2.986

b -.394 -.363 -.499 -.552 -.494 -.905 ~-.330

c 1.191 1.105 1.026 1.073 1.097 .992 1.080
r(Tle) .9959 .9993 .9919 .9983 .9992 -9979  .9729

d 2.621 2.656 15.66 25.28 18.32 94.24 4.016

e -.321 -.301 -.523 -.576 -.546 -.756 -.335

f 1.070 1.063 .994 1.026 1.059 .956  1.032
r(Tp) .9977 .9997 .9939 .9984 .9996 .9982 .9746
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When using equations 1 and 2 to simulate traveltimes, reaches having
large variations in discharge must be divided into subreaches that have nearly
constant discharges. The results of the peak-concentration traveltime simula-
tions made with this method are shown in figures 7, 8, 9, and 10. Figure 7 is
based on injections at site 1; figure 8 is based on injections at site 12;
figure 9 is based on injections at site 20; and figure 10 is based on injec-
tions at site 27.

Longitudinal-Dispersion Coefficients

Longitudinal-dispersion coefficients were computed for all stream reaches
where traveltime measurements were made. The coefficients were therefore com-
puted for medium- and high-flow conditions. Longitudinal-dispersion coeffi-
cients (K ) were calculated using a procedure described by Nordin and Sabol
(1974). fhe equation is as follows:

K =(02/2)d(0,2)/dt, (3)

where Kx=longitudina1-dispersion coefficient, in square feet per second,;
U=mean velocity, in feet per second;
0t2=variance of concentration with respect to time, in seconds?; and

dt=change in time, in seconds.

Equation 3 is a close approximation of the longitudinal-dispersion coefficient
(Fischer, 1973) if:

t > 1.8U,L%/r, (4)

where t=mixing time, in hours;

U,=shear velocity, in feet per second;

ki

L=distance from the point of maximum surface velocity to the farthest
bank, about one-half the stream width, in feet; and

r=hydraulic radius, in feet.

18
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to 12 based on injections from site 1.
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on linear-regression relationships, for sites
22 to 30 based on injections from site 20.
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An example computation of a longitudinal-dispersion coefficient is given
in figure 11. The data in the example are from the April 1982 traveltime
measurement from sites 30 to 33 during medium flow. The required mixing time
from equation 6 is 2.2 hours. The slope is approximated using the upper part
of the curve and has a value of 328 seconds. The slope is used to estimate
d(o_2)/dt for the reach. K_ was then computed to be 1,130 square feet per
second, using equation 3 with a mean velocity of 2.63 feet per second and
d(0,2)/dt. The calculated K_ coefficients along with the discharge and mean
velocity for each stream reath are listed in table 4. In this study, longi-
tudinal dispersion increased with an increase in discharge for reaches 2 to 8,
9 to 15, 15 to 20, and 20 to 25, but for reach 25 to 30, the longitudinal-
dispersion coefficient decreased (table 4). Equation 3 shows that longitudi-
nal dispersion is a function of the mean velocity and the variance of the dye
cloud as it moves downstream. Many factors affect the variance such as the
shape and length of the tail of the time-concentration dye curve, the extent
or existence of dead-water zones along the river banks, and the percent of the
reach length that has pools or riffles. Depending upon the hydraulic charac-
teristics and the analysis of the tail of the time-concentration dye curve of
the reach, the longitudinal-dispersion coefficient as calculated by equation 3
may increase or decrease with changing discharge.

Table 4.--Longitudinal-dispersion coefficients for selected
subreaches and varying streamflow conditions

Subreach Discharge at Longitudinal
as defined Rivermile end of sub- Mean velocity dispersion
by site Start End reach (cubic (feet per second) (square feet
numbers feet per second) per second)
2 - 38 202.93 181.37 502 3.30 512
2 - 8 202.93 181.37 1080 4.03 1000
9 - 15 177.61 135.59 460 2.62 1580
9 - 15 177.61 135.59 1580 3.66 3560
15 - 19 135.59 106.55 575 2.41 531
15 - 20 135.59 102.00 1580 4.07 828
22 - 25 94.80 85.38 539 2.25 284
20 - 25 102.00 85.38 1840 3.93 378
25 - 30 85.38 66.90 566 1.96 647
25 - 30 85.38 66.90 1440 3.46 401
30 - 33 66.90 55.54 820 2.63 1130
33 - 39 55.54 12.30 860 2.87 1220
39 - 41 12.30 0.28 750 2.49 1310
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Figure 11.--Sample computation of the longitudinal-dispersion
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2 2 2
0, 9% (2,63

Kx-(—z—) < T T (328) _
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coefficient for the White River, sites 30 to 33.
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DETERMINATION OF REAERATION COEFFICIENTS
USING A MODIFIED-TRACER TECHNIQUE

Reaeration was measured for four reaches on the White River (fig. 1),
using a modified-tracer technique developed by Rathbun and others (1975),
which is based on the original radioactive-gas technique developed by
Tsivoglou (1967). Ethylene and propane were used as the tracer gases and
rhodamine-WI dye was used as the dispersion and dilution tracer. Only a brief
description of the modified-tracer technique is included in this report. A
complete description is given in Rathbun and others (1975) and in Rathbun and
Grant (1978).

The experimental procedure consists of injecting known quantities of the
tracer gas and dye into the stream and measuring the gas and dye concentra-
tions at various points downstream. A desorption coefficient for the gas is
then determined from the gas concentrations. Using a constant determined in
the laboratory, the desorption coefficients for the tracer gases are then con-
verted to reaeration coefficients for oxygen. Two tracer gases can be used
simultaneously, permitting two measurements of the reaeration coefficient for
oxygen in a single experiment. Dye samples were analyzed using a fluorometer
and standard techniques described by Hubbard and others (1982).

The three assumptions inherent in the modified-tracer technique are as
follows: (1) The ratio of the desorption coefficient for the tracer gas to
the reaeration coefficient is independent of mixing conditions, temperature,
and the presence of pollutants in the range of ambient conditions in streams;
(2) the dispersion and dilution tracer is conservative; and (3) the tracer gas
has the same dispersion and dilution as the conservative tracer and is lost
from the stream only by desorption through the water surface to the
atmosphere.

Peak concentrations of the tracer gases and the conservative tracer are
usually used to compute reaeration coefficients, although the areas under the
gas-tracer concentration versus time curves can be used if sufficient samples
are obtained to define the complete curves. In this study, only the peak-
concentration method was used because the complete gas-tracer concentration
versus time curves were not obtained.

Peak Method

The basic equation for the tracer-gas desorption coefficient (KG) using
the peak method is as follows:

KG=1/(td-tu)ln[(CGU/CDU)/(CGD/CDDJn)]’ (5)

where K .=tracer-gas desorption coefficient, per hour;
CGU,CGD=peak concentration of the tracer gas at the upstream and
downstream ends of the reach, in micrograms per liter;
CiipsChn=peak concentration of the dye at the upstream and
DU’ DD . . .
downstream ends of the reach, in micrograms per liter;
td,tu=traveltime of the peak concentration of the dye at the
downstream and upstream ends of the reach, in hours;
ln=natural logarithm, base e; and
Jn=dye-loss correction factor.
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Since assumption (2) is not entirely correct, that is rhodamine-WT dye is
not completely conservative, the time-concentration curves must be corrected
before the reaeration coefficients are computed. The conservation of mass
shows that:

Q1417Q242=Q3A3=...Q A , (6)

where Q=discharge at each cross section where samples are collected; and
A=corresponding area under the dye-concentration versus time curves
for each sample cross section where samples are collected.

If there is dye loss, then QA will be less than QA;, and Q A will be less
than Q _.A .. The correction procedure is to multiply each point on the dye-
concentratlon versus time curve by a correction factor (J). Therefore,
equation 8 becomes:

Q1A1=QzA202=. . .Q A T, (7)

where J2=Q:A;/Q242; and
J FQ1A1/QA

Calculation of Reaeration Coefficients

The tracer-gas desorption coefficient (K.) is converted to a reaeration
coefficient (K2 -base e logarithmic units) as follows:
K,=RK, (8)
where R=the ratio of the absorption coefficient for oxygen to the desorption
coefficient for the tracer gas (determined in the laboratory).

From laboratory studies by Rathbun and others (1978), the value of R for
ethylene is 1.15 and the value of R for propane is 1.39.

Reaeration coefficients are usually reported at a common temperature of
20°Celsius. Measured reaeration coefficients are adjusted to 20°Celsius by
the following equation (Elmore and West, 1961):

20-t
= 1.0241 9
=reaeration coefficient at 20°Celsius, in units per time;
=measured reaeration coefficient, in units per time; and
=mean reach water temperature, in degrees Celsius.

where K

(20)
§2(t2

Experimental Procedure

The experimental procedure consists of three steps: (1) Injecting the
gas tracers and dye tracer into the stream; (2) sampling the tracers at points
downstream from the injection; and (3) analyzing the samples for concentra-
tions of the tracers. Each step is briefly described in the following
sections, but a complete description is given in Rathbun and others (1975) and
Rathbun and Grant (1978).
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Injection of the Tracers

Ethylene and propane were injected into the stream by bubbling these
gases through porous diffuser plates. The diffusers were placed on the stream
bottom, generally at the center of flow for the stream cross section. The
ethylene and propane were released from high-pressure cylinders through two-
stage regulators, then through rotameters for monitoring the gas flows, and
then through the diffusers into the stream.

The conservative tracer (rhodamine-WT dye) was injected into the stream
at the same point and time as the gas tracers. The dye was continuously
injected using a direct-displacement pump. Gas and dye concentrations and
rates for injection appropriate for the stream discharges were estimated using
equations presented by Rathbun (1979).

Sampling the Tracers

Dye samples were collected in 1.1-fluid ounce bottles with polyseal caps
as a function of time at approximately the center of flow. Two samples were
collected at the same time, one for analysis in the field and one for analysis
in the laboratory.

Water samples were also collected for the determination of tracer-gas
concentrations. Samples were collected from the center of flow in 40-milli-
liter septum-cap vials. The vial was placed in a sampler designed to collect
water samples for dissolved gas. The tracer-gas sample was collected from the
surface to about mid-depth until the bottle was overfilled. To preserve the
sample for later laboratory analysis, 1 milliliter of 37-percent formalin
stock solution was added to each sample.

Sample Analysis

Ethylene and propane concentrations in the water samples were determined
using a stripping and trapping technique in the laboratory. The procedure
consists of: stripping the ethylene and propane from the water sample with
helium gas, trapping the tracer gases in a cold trap, and warming the trap to
flush the tracer gases from the cold trap into a gas chromatograph equipped
with a flame-ionization detector for analysis. A detailed description of the
procedure and methods for storing and preserving a sample are in Shultz and
others (1976).

Computation of Reaeration Coefficients

Reaeration coefficients were determined for four reaches of the White
River during a medium-flow period in August 1982. The four reaches are shown
in figure 1 (p. 3) and the injection and sampling sites are listed in table 1
(p. 5). Basic time-concentration curve characteristics resulting from the
continuous injections for the reaeration measurements are listed in table 5.
Additional characteristics of the dye curves and data from the ethylene and
propane concentration versus time curves are listed in table 6.
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Each group of sites in table 6 corresponds to the continuous injection data in
table 5. Insufficient gas samples were collected during all the measurements

to completely define the tracer gas versus time curves. Therefore, the areas

and centroid traveltimes for the ethylene and propane curves are not shown in

table 6.

Reaeration coefficients were calculated using the data in table 6, equa-
tions 5 and 8, and the procedure previously discussed. The resulting reaera-
tion coefficients are listed in table 7 along with the reaeration coefficients
adjusted to 20° Celsius, which were calculated using equation 9. A large dis-
crepancy between the reaeration coefficients measured with the ethylene and
the propane occurred in many cases. For example, the reaeration coefficient
measured using the ethylene at sites 10 to 11 has a value of 23.5; whereas,
the measured value was 63.9 using the propane. Unknown substances were found
in the gas-tracer samples, making it difficult to determine the gas concentra-
tions, especially the low propane values. Similar problems have occurred in
other reaeration studies (Rathbun, R.E., U.S. Geological Survey, oral commun.,
1984). The most plausible value, considering all the discrepancies, is the
one measured using ethylene. Therefore, only the ethylene values were used in
subsequent analyses.

Comparison of Measured Reaeration Coefficients and Values
Predicted Using Semi-empirical and Empirical Equations

Measured reaeration coefficients were compared with reaeration coeffi-
cients predicted using semi-empirical and empirical equations. These compari-
sons give some measure of the degree of uncertainty inherent in the prediction
equations for the river being studied. The basic components of these two
types of equations are as follows: Semi-empirical equations are those based on
the rate-of-energy dissipation, and in which the reaeration coefficient is
correlated with the longitudinal-dispersion coefficient; and empirical equa-
tions are those based on velocity-depth relationships. The form of the
empirical equations is as follows:

Kp=al’/HC, (10)

where a,b,c=coefficients of a given equation;
=mean velocity of stream; and
H=mean depth of stream.

A complete description of the various semi-empirical and empirical equations
is given by Rathbun (1977).

Hydraulic and energy-dissipation properties for the reaeration subreaches
were calculated for use in the prediction equations to make the comparison and
are listed in table 8. The information needed for these calculations was
obtained from traveltime, discharge, and cross-section measurements and from
7.5-minute topographic maps. Following is a summary of the prediction equa-
tions used.
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Semi-empirical (Energy-Dissipation) Equations
Lau (1972):
K2=0.0126 (U*/T) 3 (T/H), (11)

where Ky=reaeration coefficient, base 10 units, 20°C, in seconds™!;
U,=mean reach shear velocity, in feet per second;
U=mean reach velocity, in feet per second; and

=mean reach stream depth, in feet.
Krenkel and Orlob (1963):

K2=1.141*10'4(ﬁfm5gfm)°-408/H°'66, (12)

where Ky=reaeration coefficient, base 10 units, 20°C, in minutes™!;

Uf =mean stream velocity, in feet per minute;
m
S=slope of energy gradient, in feet per foot; and

gfm=acce1eration of gravity, in feet per minuteZ?.
Parkhurst and Pomeroy (1972):

- 2 2(7§ 0.375
K2=0.96(1+0.17F*)T_ (T S/H ) , (13)

where Ky=reaeration coefficient, base e units, 20°C, in hours™!;

F=Froude number, defined as F=U_ /(g H )?-5;
ms’ “°ms m
Tc0=water-temperature correction factor;
ﬁms=mean reach velocity, in meters per second;
Hm=mean reach stream depth, in meters; and

gms=acceleration of gravity, in meters per second?.
Tsivoglou and Neal (1976):

K2(20)=0.054Hch/tt, (14)

where K =reaeration coefficient, base e units, 20°C, in hours™!;

2(20)

Hch=reach elevation change, in feet; and

tt=reach traveltime, in hours.
Cadwallader and McDonnell (1969):

kp=25.7E%-5/H, (15)
where kp=reaeration coefficient, base 10 units, 20°C, in days™!;
E=Ug, in feet? per second3®; and

g=acceleration of gravity, in feet per second?.
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Bennett and Rathbun (1972):

ky=46.0500-41350.273/[1.408 (16)
Thackston and Krenkel (1969):

k2=10.8(1+F°%-3)U, /H. (17)
Churchill, Elmore, and Buckingham (1962):

k2=1.447ﬁl'049H'2'262f_0°823, (18)
where f=flow-resistance factor, defined as f=8gHS/UZ2.
Dobbins (1965):

O.12Ca(30.081ﬁ)°-375ACoth(BE°~126/C4)
C41’5H

ky= (19)

where Ca=1.0+F2;
Si=slope, in feet per 1,000 feet;
A=9.68+0.054(t-20); where t=water temperature, in degrees Celsius;
Coth=hyperbolic cotangent angle, in radians;
B=0.976+0.0137(30-t)1-5;
E=30.0S,U; and
C4=0.9+F.

Empirical (Velocity-Depth) Equations
Churchill, Elmore, and Buckingham (1962):

kp=5.02600-969/H41.673 (20)
Langbein and Durum (1967): .

kp=3.30/H! .33, (21)
Owens, Edwards, and Gibbs (1964)}:

kp=10.090°-73/H1.75 (equation 1). (22)

kp=9.410°-67/H41.85 (equation 2). (23)
Isaacs and Gaudy (1968):

kp=3.7390/H!-5. (24)

34



Negulescu and Rojanski (1969):

ko=4.74(T/H)0-85, (25)
Bennett and Rathbun (1972):

ky=8.7600.607/|1.689 (26)
0'Connor and Dobbins (1958):

‘k2=127.6(DLﬁ)°-5/H1-5, (27)

where DL=molecular—diffusion coefficient of oxygen in water,
in feet? per day.

Padden and Gloyna (1971):

ko=2.98(U/H1-5)0.703, (28)
Bansal (1973):

k2(25)=0.219ﬁ0-6/H1-4, (29)
where k2(25)=reaeration coefficient, base e units, 25°C, in hours~!.

Results of comparison

Comparisons of the measured reaeration coefficients using the ethylene
tracer gas and the reaeration coefficients predicted using semi-empirical and
empirical equations for each reaeration subreach are presented in tables 9
and 10. The error of estimate (SE) for the various equations is listed in
table 11 and is computed as follows:

SE=(predicted value - measured value)/measured value. (30)

The absolute error of estimate was greatest for the subreach from sites 23 to
24 for 14 of the 19 prediction equations. Results of the error analysis show
that the Bennett and Rathbun (1972) and Isaacs and Gaudy (1968) equations
yielded the most accurate predictions when compared with measured reaeration
coefficients using the ethylene tracer gas.

BASIN CHARACTERISTICS

Ten physical and climatic characteristics were measured using U.S. Geo-
logical Survey topographic maps to provide baseline data on the White River
basin prior to energy-resource development. These characteristics will serve
as valuable data for planners and managers within the basin. Maximum 24-hour
precipitation at six recurrence intervals was measured using data from the
National Weather Service. On September 11, 1981, aerial photographs were taken
of the White River basin. Channel geometry and average stream temperatures
were measured from the photographs. Information from these photographs could
be used by, for example, fisheries researchers to study the spawning areas.
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Characteristics Measured from Topographic Maps

Ten basin characteristics were measured from 7.5-minute topographic maps
for tributary and main-stem stations on the White River. These basin-
characteristics station locations are listed in table 12 with drainage area,
annual mean discharge, and the period of streamflow record. All the selected
basin-characteristics stations were existing or discontinued streamflow-gaging
stations on the tributaries and main stem of the White River. The location of
these stations is shown on figure 12. The basin characteristics (table 13)
measured are: mean basin elevation, mean annual precipitation, main-channel
slope, slope orientation, forest cover, storage area, basin relief, relative
degree of roughness, area above 6,000 feet, and area above 8,000 feet. The
following is a brief description of each basin characteristic and the method
of determination.

Mean basin elevation.--This is the average elevation of the area within the
drainage basin. Mean basin elevation, in feet, was computed from U.S. Geolog-
ical Survey topographic maps by averaging the elevations of equal-spaced grid
points within the basin.

Mean annual precipitation.--Mean annual precipitation of a basin indicates the
amount of water available for potential runoff. The precipitation that infil-
trates the soil is the source of base flow for a stream. The mean annual
precipitation, in inches, was computed from a map of the White River basin
having lines of equal annual precipitation. The annual precipitation data
were collected by the National Climatic Data Center (1980a, 1980b).

Main-channel slope.--Main-channel slope is a characteristic that relates to
the streamflow of a basin. The slope used in this report is the average
slope, in feet per mile, between points 10 percent and 85 percent of the
distance along the channel from the streamflow-gaging station to the drainage-
basin divide.

Slope orientation.--This is a measure of the average direction which the basin
is facing and can indicate the relative amount of sunlight that the basin
receives. Slope orientation, in degrees, was computed by measuring the direc-
tion, from north, perpendicular to the downstream direction of the channel.
The main-stem White River slope orientation was computed by averaging the
slope orientation of the separate basins above the main-stem station.

Forest cover.--Forests affect streamflow in several ways. Their major
influences on low flow are transpiration and the interception of precipitation
before it reaches the ground. Forest cover was computed as the percent of
drainage area covered by forests, as shown on the U.S. Geological Survey
topographic maps.

Storage area.--Storage area is that part of the drainage area occupied by
lakes and marshes. Variations in streamflow can be caused by retention and
release of water from basin storage. Storage area was computed as the percent
of drainage area covered by lakes and marshes, as shown on U.S. Geological
Survey topographic maps.
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Basin relief.--Basin relief is the change in elevation per square mile of the
land within the basin. This affects the time in which it takes surface runoff
to reach the stream channel. Basin relief, in feet per square mile, was com-
puted as the difference between the elevation of the highest point within the
basin and the station location, divided by the drainage area.

Relative degree of roughness.--Relative degree of roughness is an indication
of the contour of the land surface. A small value for the relative degree of
roughness indicates a nearly flat surface, whereas a large value indicates a
large variation in elevation. Relative degree of roughness, in feet, was com-
puted as the standard deviation of elevation about the mean basin elevation,
which is the summation of the squared difference between the elevations used
for the computation and the mean basin elevation, divided by the number of
elevations minus one.

Area above 6,000 and 8,000 feet.--The percentages of area above 6,000 and
8,000 feet are characteristics of the basin that can indicate the weather
conditions associated with the basin, such as air pressure and air tempera-
ture, and possibly indicate the type of stream, such as a mountain or lowland
stream. They were computed as the percents of drainage area covered by land
above 6,000 and 8,000 feet, respectively, as shown on U.S. Geological Survey
topographic maps.

Maximum 24-hour Precipitation

The maximum 24-hour precipitation expected for recurrence intervals of 2,
5, 10, 25, 50, and 100 years was computed for tributary and main-stem stations
on the White River using data found in Miller and others (1973). The stations
used for this computation were the same as those used to measure basin charac-
teristics and are listed in table 12 and are shown in figure 12. The precipi-
tation values are listed in table 14. The maximum 24-hour precipitation for
each recurrence interval generally decreases downstream. This decrease
reflects the change in the White River from a mountain-type climate in the
headwaters to the semi-arid climate in the lower part of the basin. The White
River basin has a strong relationship between precipitation and elevation.
Therefore, the decrease in elevation also reflects the change in elevation
(see table 13) from upstream to downstream.

Characteristics Measured from Aerial Photographs

On September 11, 1981, low-elevation and thermal-infrared color aerial
photographs were taken of the White River. The scale for both types of photo-
graphs is about 1:24,000. The average discharge in the White River was about
300 cubic feet per second, which is considered low (about 90-percent flow
duration). Percent of pools and riffles, average stream width, and average
stream temperature were measured from these photographs. The results of these
measurements are discussed in the following sections.
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Table 14.--Maximum 24-hour precipitation for recurrence
intervals of 2, 5, 10, 25, 50, and 100 years

Site Maximum 24-hour precipition,
number in tenths of inches
on
figure Recurrence interval, in years
12
2 5 10 25 50 100
1 17.2 21.7 26.1 30.7 34.5 37.1
2 16.6 19.7 25.2 30.5 33.8 35.8
3 15.7 19.8 22.8 26.7 29.6 33.6
4 16.0 20.3 24.2 28.7 31.9 34.0
5 16.0 19.9 24.0 28.6 31.4 34.6
6 16.0 19.8 23.7 28.3 31.0 34.1
7 18.1 22.0 26.2 30.5 34.2 38.1
8 18.1 22.0 26.2 30.5 34.2 38.1
9 18.3 22.8 27.1 31.6 34.8 39.8
10 18.2 22.2 26.3 30.7 34.3 38.4
11 17.3 21.4 25.3 29.3 32.9 36.2
12 16.5 20.6 24.3 28.0 31.5 34.7
13 14.6 18.8 21.4 25.4 28.0 30.6
14 14.3 18.5 21.6 26.1 28.8 31.0
15 15.4 19.4 23.0 27.1 30.1 33.0
16 13.5 17.4 20.0 24.0 26.0 28.7
17 13.3 17.1 19.5 23.4 25.4 27.8
18 15.1 19.1 22.5 26.6 29.5 32.2
19 12.6 16.2 18.7 22.5 25.6 27.0
20 14.9 18.8 22.2 26.3 29.2 31.9
21 14.3 18.2 21.3 25.5 28.4 30.7
22 14.0 17.8 20.9 25.1 28.0 30.1
23 13.0 18.8 19.6 26.3 28.6 30.0
24 13.0 17.3 19.6 23.7 26.3 27.9
25 12.9 17.0 19.3 23.4 25.9 27.6
26 12.3 16.0 18.4 22.0 24.6 26.7
27 12.3 16.0 18.4 22.1 24.7 26.6
28 11.8 15.7 18.0 21.1 23.0 25.7
29 12.6 16.7 19.0 22.9 25.3 27.2
30 12.0 16.0 18.0 21.6 23.4 26.0
31 12.4 15.7 18.3 21.7 23.8 26.5
32 12.6 16.5 18.9 22.7 25.0 27.0
33 12.2 15.0 18.1 21.0 23.6 25.9
34 12.4 15.9 18.6 22.0 24.5 26.6
35 12.3 15.9 18.5 21.9 24.3 26.4
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Table 14.--Maximum 24-hour precipitation for recurrence
intervals of 2, 5, 10, 25, 50, and 100 years--Continued

Site Maximum 24-hour precipition,
number in tenths of inches
on
figure Recurrence interval, in years
12
2 5 10 25 50 100

36 12.1 15.8 18.3 21.9 24.2 26.3
37 12.2 15.0 18.0 21.0 23.7 25.9
38 12.4 15.0 18.0 21.0 23.9 26.0
39 12.4 15.0 18.0 21.0 23.9 26.0
40 12.4 15.0 18.0 21.0 23.9 26.0
41 12.1 15.0 17.5 21.0 23.0 25.9
42 11.5 14.8 17.3 21.0 23.3 25.3
43 12.6 16.1 18.2 22.9 25.4 27.4
44 11.4 14.8 17.6 21.0 23.5 25.3
45 12.4 16.0 18.3 22.8 25.3 27.2
46 12.4 16.0 18.3 22.8 25.3 27.2
47 11.0 14.0 16.8 20.3 22.5 24.0
48 11.6 14.8 17.6 20.4 23.0 25.6
49 11.4 14.9 17.3 20.5 22.9 25.2
50 10.0 14.0 16.0 20.0 22.0 24.0
51 11.3 14.8 17.3 20.4 22.9 25.1
52 10.9 14.1 16.3 20.0 22.1 24.0
53 11.2 14.8 17.2 20.4 22.8 25.0
54 12.3 15.9 18.2 22.6 25.1 27.0
55 12.3 15.9 18.2 22.6 25.1 27.0
56 10.0 14.0 16.0 19.0 22.0 24.0
57 10.0 13.4 16.0 19.0 22.0 24.0
58 10.2 13.9 16.2 19.6 22.1 24.0
59 10.2 13.9 16.2 19.6 22.1 24.0
60 12.3 15.8 18.1 22.5 25.0 26.9
61 12.0 15.0 17.0 21.0 23.0 26.0
62 11.5 14.8 17.0 20.9 23.0 25.7
63 11.4 14.7 16.5 20.6 22.8 25.5
64 11.1 14.5 16.4 20.4 22.6 25.2
65 9.8 13.8 16.0 19.2 21.8 23.9
66 9.3 13.1 15.6 18.6 21.3 23.4
67 11.9 15.3 17.5 21.7 24.1 26.1
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Pools and Riffles

The pools and riffles were defined on the low-elevation photographs using
stereoscopes. The stream length of the pools and riffles was then measured
and the average length and percent of pools and riffles was computed. These
values were computed for the traveltime measurement reaches. The sites defin-
ing the reaches are shown on figure 2 and listed in table 1. The results of
the measurements are given in table 15. The length of riffles is greater than
the length of pools from sites 1 to 13; below site 13, the length of pools and
riffles is almost equal. The average pool length generally increases down-
stream, whereas the average riffle length generally decreases until about
site 14, then increases again at about site 34.

Channel Width and Depth

Channel widths were measured from the low-elevation photographs. The
average channel widths of the traveltime reaches were computed and are listed
in table 16 along with the minimum and maximum measured width in the reach.
Channel widths were measured on the photographs at randomly selected points
within a reach and averaged. These average widths will probably remain the
same over a small range of flows. The measured channel widths ranged from
about 45 to 322 feet. The average depth of each reach was also computed using
the average width in the following equation:

D=Q/ (VW), (31)

where D=average reach depth, in feet;
Q=average reach discharge, in cubic feet per second;
V=average reach velocity, in feet per second; and
W=average reach width, in feet.

The average reach discharge was estimated using the discharges recorded at
streamflow-gaging stations nearest the reach. The average velocity of stream-
flow in the reaches in Colorado was estimated from the traveltimes using the
graphical method, and the velocity of streamflow in the reaches in Utah was
estimated from the traveltime simultations using the linear-regression method.
These values are also listed in table 16. The slope of each reach is also
listed in table 16 because velocity and depth are dependent upon slope. If
the slope is increased, the velocity is faster and the depth is shallower.

Stream Temperature

Stream temperatures were estimated from thermal-infrared color aerial
photographs of the entire White River. Ranges of temperatures of selected
reaches in which there were large changes in temperature are shown in
figure 13. Average stream temperatures were 10° Celsius at the headwaters of
the South Fork White River and 14° Celsius at the headwaters of the North Fork
White River and generally increased downstream to 18° Celsius at the mouth of
the White River. Ambient air temperatures also increase from the headwaters
downstream to the mouth of the White River which directly affects the water
temperatures (Boyle and others, 1984). The stream temperatures varied
slightly up and down along the river because of irrigation return flows,
tributaries, and springs.
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Table 15.--Average length and percent of pools and riffles
in traveltime study reaches

Reach as defined Pools in reach Riffles in Average pool Average riffle
by site numbers (percent) reach (percent) 1length (feet) length (feet)
1-2 42 58 220 305
2-3 24 76 174 582
3-7 28 72 217 565
7-8 28 712 194 521
8-9 22 78 163 586
9-11 34 66 282 554
11-12 42 58 270 376
12-13 27 73 281 738
13-14 43 57 267 356
14-15 53 47 322 282
15-16 54 46 295 248
16-17 45 55 250 315
17-18 50 50 394 394
18-19 48 52 362 388
19-20 44 56 353 446
20-22 49 51 418 438
22-23 47 53 315 351
23-24 54 46 394 367
24-25 50 50 285 285
25-26 48 52 314 334
26-27 50 50 294 294
27-30 48 52 364 392
30-31 44 56 261 335
31-32 45 55 214 255
32-33 49 51 232 239
33-34 47 53 266 295
34-35 43 57 420 547
35-36 42 58 373 522
36-37 42 58 396 541
37-38 47 53 429 477
38-39 53 47 498 443
39-40 54 46 524 441
40-41 50 50 502 502
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Table 16.--Average channel width and depth in traveltime study reaches

Reach as Average Minimum Maximum Average Average Slope of
defined by width width width velocity (feet depth reach (feet
site numbers (feet) (feet) (feet) per second) (feet) per mile)
1-2 84 54 109 2.54 0.67 48.4
2-3 81 45 112 2.92 .61 42.2
3-7 88 45 146 3.09 1.00 36.8
7-8 81 45 148 2.92 71 31.4
8-9 114 68 148 2.51 .77 26.1
9-11 105 62 176 2.05 1.26 26.9
11-12 93 62 135 2.51 1.16 20.6
12-13 105 52 218 2.36 1.33 18.7
13-14 97 65 140 2.48 1.37 18.2
14-15 120 79 225 1.94 1.41 11.9
15-16 131 101 180 1.91 1.31 10.0
16-17 106 82 141 1.83 1.65 11.5
17-18 116 60 149 2.28 1.17 8.82
18-19 123 80 159 1.90 1.24 8.22
19-20 131 83 187 1.71 1.20 9.01
20-22 125 96 150 1.59 1.41 7.50
22-23 123 86 171 1.71 1.36 7.84
23-24 108 75 128 2.08 1.31 9.20
24-25 124 96 160 1.91 1.27 5.69
25-26 119 86 182 1.49 1.80 5.88
26-27 119 90 157 1.60 1.78 6.72
27-30 119 101 157 1.32 2.32 5.41
30-31 114 79 146 1.46 2.17 10.0
31-32 106 73 147 1.47 2.29 8.90
32-33 89 63 147 1.36 2.92 8.41
33-34 104 73 157 1.58 2.12 4.32
34-35 118 96 160 1.48 1.96 7.97
35-36 107 86 139 1.41 2.24 5.50
36-37 137 107 223 1.38 1.75 9.14
37-38 141 106 191 1.38 1.65 5.08
38-39 147 117 225 1.38 1.54 2.72
39-40 137 96 172 1.13 1.97 2.89
40-41 171 107 322 1.25 1.42 2.35
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SUMMARY

The White River basin contains extensive energy resources which might
affect the quantity and quality of the basin's water resources. The purpose
of this study was to determine traveltime, longitudinal dispersion, reaera-
tion, and basin characteristics of the White River which can be used in making
decisions concerning energy developments.

Traveltime and longitudinal-dispersion characteristics were determined
for reaches of the White River. Measurements were made during high and medium
flow. The study reaches extended for 7 miles of the North Fork White River
and 6 miles of the South Fork White River upstream from their confluence and
downstream on the White River for 198 miles to its mouth near Ouray, Utah.

For all the traveltime measurements, the discharge ranged from 281 to
1,840 cubic feet per second, and the stream velocity ranged from 1.26 to
3.17 miles per hour.

Traveltimes were determined for discharges other than measured discharges
by a graphical method using index-discharge stations. The index-discharge
stations used were: (1) Station 09304500 White River near Meeker, Colo.;

(2) station 09304800 White River below Meeker, Colo.; (3) station 09306395
White River near Colorado-Utah State line, Utah; and (4) station 09306900
White River at mouth, near Ouray, Utah. Traveltimes also were simulated using
a linear-regression method. Linear-regression relationships were developed
for each reach in Colorado separately (sites 1-8, 8-15, 14-20, 19-25, and
24-30), for all the reaches in Utah together (sites 27-41), and for all the
reaches on the White River together (sites 1-41).

Longitudinal-dispersion coefficients ranged from 284 square feet per
second at a discharge of 539 cubic feet per second to 3,560 square feet per
second at a discharge of 1,580 cubic feet per second.

Reaeration coefficients were determined for four reaches in the White
River during a medium-flow period in August 1982. Measured reaeration coeffi-
cients at 20° Celsius for the reaches ranged from 5.3 to 25.3 per day using
ethylene as the tracer gas. Measured reaeration coefficients were compared
with predicted reaeration coefficients calculated using semi-empirical and
empirical equations. Prediction equations by Bennett and Rathbun (1972) and
Isaacs and Gaudy (1968) gave the most accurate comparison results.

Basin characteristics were computed from U.S. Geological Survey topo-
graphic maps as follows: Mean basin elevation, mean annual precipitation,
main-channel slope, slope orientation, forest cover, storage area, basin
relief, relative degree of roughness, area above 6,000 feet, and area above
8,000 feet. Basin characteristics were also computed using aerial photographs
taken on September 11, 1981. These basin characteristics are pools and
riffles, channel width, and stream temperature.
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