GEOLOGIC SECTIONS
By
Timothy S. Pagano and David B. Terry

EXPLANATION

a1. Altered silt and sand; somewhat resistant to weathering; low permeability.
b1. Limestone and dolomite; bedded; moderate to low permeability.
c1. Sand and gravel; bedded; moderate to high permeability.
d1. Limestone and dolomite; bedded; moderate to low permeability.
e1. Limestone and dolomite; bedded; moderate to low permeability.
f1. Bedrock.
g1. Bedrock.
h1. Sand and gravel; bedded; high permeability.
i1. Sand and gravel; bedded; high permeability.
j1. Sand and gravel; bedded; high permeability.
k1. Sand and gravel; bedded; high permeability.
l1. Sand and gravel; bedded; high permeability.
m1. Sand and gravel; bedded; high permeability.

WATER TABLE

Saturated thickness of aquifer

Well screen - water represents horizontal and elevation after Keswick (1970)

Depth is sea level

Locations of geologic sections shown on sheet 1

Sections are twice the length shown on sheet 1.

NOTE

Geologic sections are based upon well and boring logs from the
New York State Department of Public Works project, O'Brien and
Conn (1997), and unpublished well and boring logs from the New
York State Department of Environmental Conservation. The data
were reviewed by the authors.

Correlation of geologic units between data points is difficult
due to the high variability of the glacial sediments, and the
lack of continuous sedimentary units. Well and boring logs have
been generalized to provide meaningful differences between
hydrogeologic units.

REFERENCES

Keswick, E.L., 1970, Ground-water resources of the eastern
Chenango River basin, New York, New York State Water Resources

O'Brien and Conn, 1997, Oneonta County Public Water Supply
Study, CWP-311. Appendices.