INTRODUCTION
The present and altitude of saline water which contains more than 10,000 milligrams per liter (mg/L) dissolved solids are shown in the maps of the Coastal Plain of the southeastern United States (fig. 1). The saline water is found beneath the base of the Tertiary sediments, and its altitude is controlled by the altitude of the base of these sediments. In general, saline water is not found in the Cretaceous rocks, but it is present in the Upper Cretaceous rocks in southern Georgia and the coastal areas of South Carolina. The saline water is considered a usable resource and, according to the Safe Drinking Water Act (Public Law 93-523), must be protected. Regional Aquifer-System Analysis. Water greater than 10,000 mg/L dissolved solids (as sodium chloride) underlies the top of saline water in Cretaceous rocks. Each sediment deposit indicated by a contour line is at least 20 ft thick. The approximate updip geologic saltwater interface apparently lies eastward, offshore, but the slight increase in altitude of this interface can only be validated by detailed geohydrologic studies. The slight increase in altitude of this interface can only be validated by detailed geohydrologic studies.

DATA ANALYSIS
Data for this map are from published reports. The data include recent data from the State Geological Survey of Alabama, 1981, A synopsis of the techniques used in the Regional Aquifer-System Analysis. Mississippi and Alabama generally contain a gradually deepening saltwater interface beneath the Tertiary sediments. The slight increase in altitude of the saltwater interface apparent in the updip limit (intersection of two planes in space is a line). Water greater than 10,000 mg/L dissolved solids (as sodium chloride) underlies the top of saline water in Cretaceous rocks. Potential sources of error include incomplete flushing of this saltwater-bearing zone, or to subsurface structural features. The slight increase in altitude of the saltwater interface apparent in the updip limit (intersection of two planes in space is a line). Water greater than 10,000 mg/L dissolved solids (as sodium chloride) underlies the top of saline water in Cretaceous rocks. Potential sources of error include incomplete flushing of this saltwater-bearing zone, or to subsurface structural features. The slight increase in altitude of the saltwater interface apparent in the updip limit (intersection of two planes in space is a line). Water greater than 10,000 mg/L dissolved solids (as sodium chloride) underlies the top of saline water in Cretaceous rocks. Potential sources of error include incomplete flushing of this saltwater-bearing zone, or to subsurface structural features. The slight increase in altitude of the saltwater interface apparent in the updip limit (intersection of two planes in space is a line). Water greater than 10,000 mg/L dissolved solids (as sodium chloride) underlies the top of saline water in Cretaceous rocks. Potential sources of error include incomplete flushing of this saltwater-bearing zone, or to subsurface structural features.