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ABBREVIATIONS AND CONVERSION FACTORS

This 'report uses inch-pound units.

The equivalent International

System (SI) units may be obtained using the following factors.

Multiply By

foot (ft) 0.3048
mile (mi) 1.609
square mile (mi2) 2.590
cubic foot per second (ft3/s) 0.02832
foot per mile (ft/mi) 0.18939

iv

Jo obtain
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kilometer (km)
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cubic meter per second (m3/s)
meter per kilometer (m/km)




‘FLOODFLOW FREQUENCY OF STREAMS IN THE

ALLUVIAL PLAIN OF THE LOWER MISSISSIPPI RIVER-
IN MISSISSIPPI, ARKANSAS, AND LOUISIANA ‘

By

M. N. Landers

ABSTRACT

Techniques have been developed for estimating the magnitude and
frequeﬁcy of floods on streams located in the alluvial plain of the
lower Mississippi River. Flood records from 30 representative stream
sites, 6 in Mississippi, 11 in Arkansas, and 13 in Louisiana, were
analyzed in a log-Pearson Type III distribution to determine the pro-
bable flood frequency relation at each site. These relations were
analyzed as a function of primary watershed characteristics for each
stream in a standard linear regression analysis. Basin area, channel
slope, channel length, and probable flood magnitude for the 2-, 5-,
10-, 25-, 50-, and 100-year floods are presented for the 30 stations
analyzed. Regression equations developed for estimating regional
flood-frequency as a function of basin area, channel slope, and chan-

nel length are presented.



INTROBUYCTION

The magnitude and frequency of floods are key factors in the
design of bridges, highway embankments, culverts, levees, dams, and
‘other. structures near streams. Effective flood-plain management and
the determination of flood insurance rates also require information on
the magnitude and frequency of floods.

Flood information is of particular importance in the alluvial
plain of the lower Mississippi River due to the hydrologic effects of
the unique regional geography (fig. 1). The topographic features of
the lower Mississippi region are primarily the result of aggradation
and deposition from streamflow. The topography is a series of aban-
doned meander belts, oxbow lakes, swamps, and flat-sloped watersheds.
Regional drainage characteristics are broad, widely meandering stream
courses with low channel slopes, and large amounts of depression and
channel storage. The topography and hydrology of the lower
Mississippi region also lead to greater flood damage as waters cover a
larger area for a greater length of time for a given magnitude flood
than in surrounding regions. The hydrology of the lower Mississippi
region differs significantly from that of surrounding regions, which
suggests a separate analysis for this region. Wilson and Trotter
(1961) presented this region within for the State of Mississippi as a
separate hydrologic area with a unique flood-frequency relation, as
did Patterson (1964) for the entire lower Mississipi River basin.

-

This report provides techniques for estimating the magnitude of
floods with recurrence intervals from 2 to 100 years for streams in
the lower Mississippi alluvial plain having drainage areas between
0.11 and 1,170 mi2. Statistical estimates of flood magnitude are pre-
sented for 30 streams in the region having at least 10 years of annual
peak streamflow record. Results from a linear regression analysis of
these data are presented for estimating flood-frequency relations on
ungaged streams using watershed characteristics.
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Figure 1.--Location of study area and stream stations in analysis.



This report supplements the 1976 report *Flood Frequency of
Mississippi Streams® (Colson and Hudson), which is superseded by this
report where it applies to the Mississippi River alluvial plain only.
It is provided in response to an immediate need for a consistent and
more accurate method of estimating magnitude and frequency of floods
on ungaged streams in the Mississippi River alluvial plain area of
Mississippi, Arkansas and Louisiana. This report is prepared in
cooperation with the Mississippi State Highway Department.

FLOOD RECORDS

The conclusions in this report are based on analysis of flood
records of annual peak discharge collected and published by the U.S.
Geological Survey and the U.S. Army Corps of Engineers. Flood records
were analyzed from 30 stream-gaging stations in the lower Mississippi
alluvial plain, 6 in Mississippi, 11 in Arkansas, and 13 in Louisiana
(fig. 1). District offices of the U.S. Geological Survey, Water
Resources Division, collect systematic records of peak stage and
discharge. Flood data are available in selected investigative and
data reports, and in computer files of the Water Data Storage and
Retrieval System (WATSTORE). Due to the time constraint imposed by
the current need for the results of this apalysis in Mississippi, sta-
tions used were generally limited to ~those for which flood and
watershed data had been compiled on WATSTORE. Other constraints in
the station selection process included a minimum of 10 years of flood
record, that the watersheds be free from significant urbanization or
manmade regulation, and that they be representative of lower
Mississippi region streams. The selected streams have drainage areas
ranging from 0.11 to 1,170 mi2 (fig. 2), channel slopes from 0.4 to
10.6 feet per mile (table 1), and lengths ranging from 0.5 to 269
miles.

Stations are listed in order of their U.S. Geological Survey
gaging station numbers in the form 07040100. The first two digits
(07) represent Part 7, the lower Mississippi River basin. The
following six digits are the station number, which increases in a
downstream direction. The part numbers have been omitted in figure 1
to conserve space. Flood records of annual peak discharge were ana-
lyzed to determine flood frequency at gaging stations.
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FLOOD-FREQUENCY RELATIONS AT GAGING STATIONS

Floods at a site are a succession of natural occurrences which
form a rather intractable series. A stationary time series is assumed
for the purpose of analysis. The WRC (1981 U.S. Water Resources
Council) recommends the Pearson Type III statistical distribution with
log transformation of the data (log-Pearson Type III)- as the base
method for analyzing annual peak flow data. The log-Pearson Type III
distribution is defined by the mean, the standard deviation, and the
skew of the data set. The WRC weighted skew was used for the stations
in this analysis, except as noted where the generalized skew was more
appropriate. The WRC skew was computed from the generalized and
systematic record (excluding outliers) skew, inversely weighted by
their mean square errors. '

The log-Pearson Type III distribution was fitted to the logarithms
of the annual peaks by the equation;

Log Q@ = X + KS (1)

where; Q

discharge, in cubic feet per second,
for selected probability of exceedance

-

X = mean logarithm

K = a coefficient related to the skew
coefficient and the probability of
exceedance

S = standard deviation of logarithms

Probability of exceedance is the chance that a given flood magnitude
will be equaled or exceeded as the annual peak discharge in any l-year
interval. Recurrence interval is the reciprocal of the probability of
exceedance and is the probable average time in years between exceed-
ances of the corresponding flood magnitude, over a long period of
time. Flood magnitudes with their corresponding recurrence intervals
for a stream station form a flood-frequency relation for that station.
Log-Pearson Type III estimated flood-frequency relations for each of
the analyzed gaging stations are listed in table 1. These relations
were analyzed to develop regional flood-frequency regression
equations.
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REGIONAL FLOOD-FREQUENCY RELATIONS

Flood-frequency relations for natural watersheds in the lower
Mississippi region can be estimated using the regional regression
equations presented and basin characteristics. The observed flood
magnitude for recurrence intervals of 2-, 5-, 10-, 25-, 50-, and
100-years was related to selected basin and climatic characteristics
for 30 stations in this report. The logarithms of both the discharge
and basin characteristics provide an approximately linear relation
which was analyzed in a linear regression analysis (fig. 3). The most
significant characteristics were found to be drainage area, stream
slope, and channel length. In figure 3 the inverse relation of chan-
nel length as a basin shape factor, to flood magnitude is seen when
channel length per square mile is plotted against flood magnitude.
None of the other characteristics were found significant except for
mean basin elevation, which reduced the standard error of the esti-
mates by about 1 percent. Mean basin elevation probably represents an
intraregional factor.

The application of the regression equations from this analysis is
recommended only to natural watersheds in and generally characteristic
of the lower Mississippi region, in Arkansas, Louisiana, and
Mississippi with areas of 0.11 to 1,170 mi2, lengths of 0.5 to 269
miles, and channel slopes of 0.4 to 10.6,feet per mile. Combining a
small drainage area with a very low slope, such as might exist for
some highly uncharacteristic watersheds in this region, will cause
these equations to give unrealistic results.
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Figure 3.—— Basin characteristics plotted against
2-year flood magnitude.
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Floodflow Frequency Regression Equations

Regression equations from this analysis for computing estimated
flood magnitude for the 2-, 5-, 10-, 25-, 50-, and 100-year floods for
lower Mississippi watersheds are presented below;

QL =171 p0.87 g0.25 | -0.52 (2)
Qs =192 A0.93 0.37 | -0.5 (3)
Qup = 205 AO.96 $0.42 | -0.56 @)
Qys5 =224 A0.99 s0.48 | -0.58 (5)
Q-5'0 = 232 al.00 g0.52 | -0.57 (6)
Qoo = 236 Al.00 s0.57 | -0.55 (7)

The variables are defined as follows:

Gt The estimated peak discharge, in cubic feet per second, for a
recurrence interval of t years.

A The basin drainage area, in square miles.

S The channel slope, in feet per mile, defined as the difference
in altitude between points located at 10 and 85 percent of
the main channel length divided by the channel length be-
tween the two points, as determined from topographic maps.

L The main-channel length, in miles, from the point of discharge
to the drainage divide as measured in 0.1 mile increments on
topographic maps. At stream junctions, the branch draining
the largest area is considered the main channel.

18



Standard error of regression can be defined as the range of error
to be- expected about two-thirds of the time from the observed data
(table 2). The standard error is computed from the differences bet-
ween the observed flood discharge from log-Pearson Type III analysis
of station data and the predicted flood discharge from the regional
regression equation. It is an index of the accuracy of the regression
relation but is not a true indication of the accuracy of the estimate
of ungaged sites.

WEIGHTED FLOOD-FREQUENCY ESTIMATES

Independent estimates of flood frequency for a site may be
weighted inversely proportional to their variance (or variance con-
verted to equivalent years) to provide a weighted average with a
variance less than that of either estimate (U.S. Water Resources
Council, 1981). The regional regression estimates are considered
independent from the log-Pearson Type III station estimates in this
report.

Equivalent years of record has been deflned as an estimate of the
number of years of actual streamflow record required at a site to
achieve an accuracy equivalent to the regional flood estimate from a
regression equation (Thomas, 1982). It is used in this report to eva-
luate the relative worth of the station log-Pearson Type III, and the
regional regression flood-frequency estimate. Thomas (1980) demon-
strated equivalent years of record to be a useful weighting procedure,
and equal to the average variance procedure. Both standard error of
estimate and standard error of prediction, used in computing equiva-
lent years, produced the same results in integer years.
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Table 2.--Standard error and equivalent years of record for
regional T-year flood estimates

Recurrence interval 8tandard Error of Regression Equivaient Years
in Yaarse in Percent of Record

2 34 2

5 34 3

10 36 3

25 38 4

50 38 4
100 40 4
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The flood-frequency estimates are weighted using the equation:

Q. - QS(NSJ + Qr (Np) (8)
¥ TN F Np

where.

Qy 1is the weighted average discharge

Qg 1is the station log-Pearson Type III estimate

Q@r 1is the regional regres§ion estimate

Ng is the number of annual peak records used to determine Qg

Ny is the equivalent years of record for the regression esti-
mate for the selected recurrence interval from table 2.

The log-Pearson Type III, regional regression, and weighted
average discharge estimates for the selected recurrence intervals are
shown in table 1 for the stations analyzed. The weighted average
discharge is recommended as the best estimate.

The weighted discharges were computed using discharge in cubic

feet per second which gives an answer equal to or greater than that
using discharge in log units.
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Comparison of Log—Pearson and Regression Estimdtes

In figures 4 and 5, for the 2- and 50-year floods, respectively,
graphical comparisons are made for the log-Pearson and the regression
estimates for the data set. Sites in the lower Mississippi alluvial
plain- in the state of Mississippi are uniquely identified in these
figures.

EXTRAPOLATED FLOOD-FREQUENCY ESTIMATES

Flood freguency estimates for a stream station may be extrapolated
to an ungaged site on the same stream using drainage area ratios.
This extrapolated estimate and the regional regression estimate for
the ungaged site are weighted in the following equation. The weighted
flood frequency estimated is suggested where an ungaged- site has a
drainage area within 50 percent of the drainage area of a gaged site
on the same stream. The equation follows,

2 2 6

AA 0.
Qt =4 Qr + l -4 .SA.A;. .A_U- Q (9)
(w) g
Ag Ag Ag

where,

Qt(w) is the weighted discharge at the ungaged site for the
selected recurrence intervalj

Qg is the weighted gage estimate for the selected
recurrence interval, from table 1;

Qp is the regional regression estimate at the ungaged
site for the selected recurrence interval;

Ay is the drainage area at the ungaged site;

Ag is the drainage area at the gaged site; and

M is the difference between the drainage areas of the

gaged and ungaged sites.

Where the drainage area at an ungaged site on a gaged stream differs
by more than 50 percent from that at the gaged site, the regression
equation results should be used.
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2-YEAR FLOOD, IN CUBIC FEET PER SECOND
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Figure 4.-—Comparison of 2-year flood-frequency estimates.
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50-YEAR FLOOD, IN CUBIC FEET PER SECOND
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Figure 5.-~Comparison of 50-year flood-frequency estimates.
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SUMMARY

The hydrology of the lower Mississippi region warrants a separate
flood-frequency analysis. Flood records from 30 stream stations in
the lower Mississippi, which have drainage areas ranging from 0.11 to
1,770 mi2  and channel slopes from 0.4 to 10.6 feet per mile, were
analyzed using a log-Pearson Type III probability distribution to
determine the probable maximum 2-, 5-, 10-, 25-, 50-, and 100-year
discharges. These values were analyzed as a function of basin charac-
teristics for the streams in a standard multiple linear regression
analysis. The resulting regression equations can be used to estimate
the flood-frequency relation on ungaged streams for recurrence inter-
vals of 2, 5, 10, 25, 50, and 100 years. The application of the
equations 1is appropriate only for streams in the lower Mississippi
River alluvial plain that are free of significant regulation or diver-
sion, that have drainage areas between 0.11 to 1,770 mi2 and channel
slopes less than 10.6 feet per mile. This report supersedes the 1976
report, *Flood Frequency of Mississippi Streams* (Colson and Hudson),
where it applies to the lower Mississippi River alluvial plain.
Technigues are presented for combining a log-Pearson Type III estimate
and a regression estimate to compute weighted average discharge, and
for transferring probable flood values to ungaged sites on gaged
streams, where drainage area varies by less than 50 percent of the
gaged site.

-
-
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