





























Flooding in 1980 and 1983 was caused by precipitation over the entire
Pearl River basin that ranged from 8.6 to 15.0 in. and 4.7 to 18.3 in.,
respectively. Water-surface elevations at the gaging station, Pearl River at
Pearl River, La. (fig. 1), have ranged from 1.5 to 21.1 ft above sea level
during the period of record (October 1899-1985). During the 1980 flood, the
maximum water-surface elevation at the Pearl River gage was 19.7 ft, and it
was 21.0 ft above sea level during the 1983 flood.

Water-surface elevations have ranged fram about 2.0 ft below sea level to
about 8.4 ft above sea level (September 10, 1965) during the 23-year period of
record (1961-85) at the U.S. Army Corps of Engineers gaging station, Pearl
River at Pearlington, Miss. (fig. 1) (Harold Doyle, U.S. Army Corps of
Engineers, written commun., 1982, 1984). The maximum water-surface elevation
at the gage during the 1980 flood was 5.3 ft above sea level and 6.8 ft during
the 1983 flood.

After the 1980 flood, the Geological Survey and the Corps of Engineers
carried out a coordinated flood-frequency analysis for eight gaging stations
on the Pearl River (V. B. Sauer, U.S. Geological Survey, written commun.,
1980). Skew wvalues and historical flood data used in the analysis were
mutually agreed upon by both agencies. On the basis of the peak stage and the
rating curve developed for the West Pearl River at Pearl River gaging station,
the peak discharge for the 1980 flood was 184,000 ft3/s. The recurrence
interval for the 1980 flood at Pearl River was slightly greater than a 50-year
flood. Based on the peak stage and the rating curve developed for the West
Pearl River at Pearl River station as well as measurements made at I-59, I-10,
and U.S. 90, the peak discharge for the 1983 flood was 230,000 ft3/s. The
recurrence interval for the 1983 flood is greater than 200 years. Flood-
frequency information for the West Pearl River at Pearl River is shown in
figure 3.
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Figure 3.--Flood frequency for West Pearl River at Pearl River, Louisiana.
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and the depth-averaged equation of motion in the y-direction is
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Figure 4.--Coordinate system and symbols.



The bottom friction coefficient can be con
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Flow over highway embankments is calculated using the broad-crested weir-

flow equation
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in which Q is the total discharge over a section of embankment of length L, C
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