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CONVERSION FACTORS

The HST3D simulator program performs calculations in metric units.
However, it will accept input and produce output in inch-pound units. The
conversion factors are listed below:

Multiply

kilogram (kg)
meter (m)
millimeter (mm)
second (s)
degree Celsius (°C)
Kelvin (K)
Joule (J) or Watt-
second (W-s)
square meter (m?)
cubic meter (m3)
meter~second (m-s)
Pascal (Pa)

meter per second (m/s)

square meter per second
(m?/s)

cubic meter per second
(m3/s)

liter per second (£/s)

kilogram per second
(kg/s)

Pascal per second
(Pa/s)

cubic meter per cubic
meter-second (m3/m3-s)

kilogram per cubic
meter (kg/m3)

Watt per cubic meter

(W/m3)

Joule per kilogram
(J/kg)

Joule per kilogram
(I/kg)

cubic meter per kilogram
(m3/kg)

cubic meter per square
meter-second (m3/m2-s)

Watt per square meter

(W/m?)

kilogram per square
meter-second (kg/m2-s)

By

2.204622
3.280840
3.937008 x 1072
1.157407 x 1075
T(°F) = 1.8T(°C) + 32
T(°F) = 1.8T(K) - 459.67
9.478170 x 1074

10.76391
35.31466
3.797267 x 1075
1.450377 x 10™4

105
105

2.834646
9.300018

X X

10€

X

3.051187

X

3.051187 x 10%
1.904794 x 105
12.53126
8.6400 x 104
6.242797 x 1072

9.662109 x 1072

4.299226 x 1074

0.3345526

16.01846
2.834646 x 105

0.3169983

1.769611 x 104

vii

To obtain

pound (1b)

foot (ft)

inch (in.)

day (d)

degree Fahrenheit (°F)

degree Fahrenheit (°F)

British Thermal Unit
(BTU)

square foot (ft2)

cubic foot (ft3)

foot-day (ft-d)

pound per square inch
(psi)

foot per day (ft/d)

square foot per day
(ft2/d)

cubic foot per day
(££3/4)

cubic foot per day
(ft3/4d)

pound per day (1b/d)

pound per square inch
per day (1b/in?/d)

cubic foot per cubic
foot-day (ft3/ft3-d)

pound per cubic foot
(1b/ft3)?

British Thermal Unit
per hour-cubic
foot (BTU/h-ft3)

British Thermal Unit
per pound (BTU/1b)

foot-pound force per
pound mass
(ft-1bf/1bm)

cubic foot per pound
(ft3/1b)

cubic foot per square
foot-day (ft3/ft2-4d)

British Thermal Unit
per hour-square foot
(BTU/h-£t?)

pound per fquare
foot-day (1b/ft2?-d)
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cubic meter per meter-second
(m3/m-s)

kilogram per meter-second
(kg/m-s)

Joule per kilogram-meter
(J/kg-m)

Watt per meter-degree

Celsius (W/m-°C)

Watt per square meter-
degree Celsius (W/m2?-°C)

Joule per kilogram-
degree Celsius (J/kg-°C)

Joule per cubic meter-degree
Celsius (J/m3-°C)

cubic meter per second-meter-
Pascal (m3/s-m-Pa)

9.300018 x 10°

1,000

1.310404 x 1074

13.86941

0.1761102

2.388459 x 1074

1.491066 x 105

6.412138 x 10°

1 A weight density rather than a mass density.
2 Not inch-pound but common usage.

viii

cubic foot per foot-day
(ft3/£ft-d)
centipoise (cP)?

British Thermal Unit
per pound-foot
(BTU/1b-ft)

British Thermal Unit
per foot-hour-degree
Fahrenheit
(BTU/ft-h-°F)

British Thermal Unit
per hour-square
foot-degree Fahrenheit
(BTU/h-£ft2-°F)

British Thermal Unit
per pound-degree
Fahrenheit
(BTU/1b-°F)

British Thermal Unit
per cubic foot-degree
Fahrenheit
(BTU/£ft3-°F)

cubic foot per day-
foot-pound-square
inch (ft3/d-ft-psi)




HST3D: A COMPUTER CODE FOR SIMULATION OF HEAT AND SOLUTE TRANSPORT

IN THREE-DIMENSIONAL GROUND-WATER FLOW SYSTEMS

By Kenneth L. Kipp Jr.

ABSTRACT

The Heat- and Solute-Transport Program (HST3D) simulates ground-water
flow and associated heat and solute transport in three dimensions. The HST3D
program may be used for analysis of problems such as those related to sub-
surface-waste injection, landfill leaching, saltwater intrusion, freshwater
recharge and recovery, radioactive-waste disposal, hot-water geothermal
systems, and subsurface-energy storage. The three governing equations are
coupled through the interstitial pore velocity, the dependence of the fluid
density on pressure, temperature, and solute-mass fraction, and the dependence
of the fluid viscosity on temperature and solute-mass fraction. The solute-
transport equation is for only a single, solute species with possible linear-
equilibrium sorption and linear decay. Finite-difference techniques are used
to discretize the governing equations using a point-distributed grid. The
flow-, heat- and solute-transport equations are solved, in turn, after a
partial Gauss-reduction scheme is used to modify them. The modified equations

are more tightly coupled and have better stability for the numerical solutions.

The basic source-sink term represents wells. A complex well-flow model
may be used to simulate specified flow rate and pressure conditions at the
land surface or within the aquifer, with or without pressure and flow-rate
constraints. Boundary-condition types offered include specified value,
specified flux, leakage, heat conduction, an approximate free surface, and two
types of aquifer-influence functions. All boundary conditions can be

functions of time.



Two techniques are available for solution of the finite-difference matrix
equations. One technique is a direct-elimination solver, using equations
reordered by alternating diagonal planes. The other technique is an iterative
solver, using two-line successive overrelaxation. A restart option is
available for storing intermediate results and restarting the simulation at an
intermediate time with modified boundary conditions. This feature also can be

used as protection against computer-system failure.

Data input and output may be in metric (SI) units or inch-pound units.
Output may include tables of dependent variables and parameters, zoned-contour
maps, and plots of the dependent variables versus time. The HST3D program is
a descendant of the Survey Waste Injection Program (SWIP) written for the U.S.

Geological Survey under contract.




1. INTRODUCTION

1.1. OVERVIEW OF THE SIMULATOR

The computer program (HST3D) described in this report simulates heat and
solute transport in three-dimensional saturated ground-water flow systems.
The equations that are solved numerically are: (1) The saturated ground-water
flow equation, formed from the combination of the conservation of total-fluid
mass and Darcy's Law for flow in porous media; (2) the heat-transport equation
from the conservation of enthalpy for the fluid and porous medium; and (3) the
solute-transport equation from the conservation of mass for a single-solute
species, that may decay and may adsorb onto the porous medium. These three
equations are coupled through the dependence of advective transport on the
interstitial fluid-velocity field, the dependence of fluid viscosity on
temperature and solute concentration, and the dependence of fluid density on

pressure, temperature, and solute concentration.

Numerical solutions are obtained for each of the dependent variables:
pressure, temperature, and mass fraction (solute concentration) in turn, using
a set of modified equations that more directly link the original equations
through the velocity-, density-, and viscosity-coupling terms. Finite-
difference techniques are used for the spatial and temporal discretization of
the equations. When supplied with appropriate boundary and initial conditions
and system-parameter distributions, simulation calculations can be performed

to evaluate a wide variety of heat- and solute-transport situations.

The computer code (HST3D) described in this documentation is a descendant
of a computer code for calculating the effects of liquid-waste disposal into
deep, saline aquifers, developed by INTERCOMP Resource Development and
Engineering Inc. 1976) for the U.S. Geological Survey and revised by INTERA
Environmental Consultants Inc. (1979). The parent code, known as the Survey
Waste Injection Program (SWIP), has been completely rewritten with many major
and minor modifications, improvements, and correction of several errors.

Features included in HST3D are briefly described as follows:



10.

11.

12.

Specified-value and specified-flux boundary conditions
are independent of each other and independent of the well
or aquifer-influence-function boundary conditions. The
boundary conditions also may vary with time.

Specified heat- and solute-flux boundary conditions are available.

The leakage boundary conditions are generalized and a river-
leakage boundary condition is available.

Porous-medium thermal properties, dispersivity, and
compressibility, may have spatial variation defined by zones.

A point-distributed, finite-difference grid is employed, rather than
a cell- or block-centered grid, for less truncation error and
easier incorporation of boundary conditiomns.

The heat-conduction boundary condition is generalized to apply
to any cell face.

Global-flow, and heat- and solute-balance calculations are performed
including flux calculations through specified pressure, temper-
ature, and mass-fraction boundaries.

A robust algorithm for the computation of the optimum
overrelaxation factor for the two-line, successive-overrelaxation,
matrix-solution method is used, with a convergence
criterion that includes the matrix spectral-radius estimate.

The code is organized for a logical flow of calculation and a
modular structure. _

The code length is about 12,000 lines, using FORTRAN 77
language constructs for cleaner, more efficient coding than
possible with FORTRAN 66. However, clarity has not been >
sacrificed for ultimate efficiency.

Comments have been included liberally for ease of understanding
the program.

All arrays with lengths depending on the size of the problem are
in two variably-partitioned arrays, integer and real, to facilitate

double-precision arithmetic.
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13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24,
25.

Arrays required for thermal or solute calculations exclusively are
eliminated if only one of these transported quantities is being
simulated, which results in a considerable decrease in computer
storage.

Arrays used for a specific type of boundary condition or source-sink
condition are dimensioned only to the length required.

The allocation of space for the direct-equation solver is
explicitly determined during array-space allocation, rather
than estimated.

Logical variables are used to control the flow of program execution
for ease of option selection.

The input file is in free-format to facilitate input from terminals.

The input file is organized into logical groups for parameter
specifications.

User comments can be freely incorporated into the input file
for rapid identification of the data. An input-file form
is available which the user can fill out at the terminal for a
given simulation.

A read-echo file may be written to aid in locating errors in the
data-input file.

Character plots of the porous-media zones may be created on the
output file to facilitate checking the zonation.

Although the internal calculations of the program are performed in
metric units, the input and output can be chosen to be in
inch-pound units.

The output material is made easily understandable by avoiding
variable names, by logical grouping on the page, and by
including supplementary information.

Error tests are included to catch likely mistakes in data input.

Error messages are printed explicity rather than as code numbers.



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

There is no limit on the number of plots that can be created.
The number of calculated points in time per plot is limited to
three times the total number of grid points, while the number
of observed points in time is limited to two times the number
of grid points. The user can select every nth point to be
plotted, if this number is limiting.

The solute concentration can be chosen to be the mass fraction
or a scaled mass fraction that ranges from 0 to 1. This choice
was available in the SWIP code, but the user was not clearly made
aware of which option was selected.

Two types of restart option are available: a periodic check-point
dump for protection against computer-system failure, and a
specific dump for user review and possible modification of
parameters.

Map-contour intervals can be automatically determined to be a
multiple of 2, 5, or 10, and the contour zones are "zebra striped"
for easier reading.

Initial-pressure conditions can be specified to be other than
hydrostatic. For example, an initial water-table
configuration can be used.

The precipitation-infiltration option is contained in the
distributed flux-boundary conditions.

The conductive-heat-loss to overburden and underburden is a
general, heat-transfer calculation, applicable to any
cell face in the region.

The well-riser, heat-transfer calculation is based on heat
transfer from a known-temperature, cylindrical boundary, and
higher order assymptotic expansions have been used.

The well-riser calculation has been formulated to solve the
total-energy and momentum balance equations simultaneously,
using the Bulirsch-Stoer algorithm for integration of the
ordinary differential equations.

The well-bore equations are implicitly coupled to the system

equations for cases of cylindrical geometry.



36. The well-datum pressure and the well-flow rate allocation
calculations may be performed iteratively in conjunction with
the solution of the flow equation, or explicitly.

37. The full nine-component, or an approximate three-component,

dispersion-coefficient tensor may be used for cross-dispersive

flux calculations.

The purpose of simulation modeling the transport of heat and solute in
ground-water flow systems is to gain a quantitative understanding of how the
sources and sinks, the boundary conditions, and the aquifer parameters
interact to cause ground-water flow patterns and consequent thermal- and
solute-concentration movement in a system under investigation. Of particular
interest are the magnitudes of concentrations and discharges at interfaces
with the environment, for example, in cases of aquifer contamination.
Naturally, the quality or degree of realism of a given simulation is strongly
dependent on the quantity and quality of the parameter distribution, boundary-
condition, and source~sink data. Acquiring this data can be a major task of

the modeling project.

1.2. APPLICABILITY AND LIMITATIONS

The HST3D code is suitable for simulating ground-water flow and the
associated heat and solute transport, in saturated, three-dimensional flow
systems with variable density and viscosity. As such, the code is applicable
to the study of waste injection into saline aquifers, landfill-contaminant
movement, seawater intrusion in coastal regions, brine disposal, fresh-water
storage in saline aquifers, heat storage in aquifers, liquid-phase geothermal
systems, and similar transport situations. If desired, only the ground-water
flow or only the heat- or the solute-transport equation may be solved in
conjunction with ground-water flow. Three-dimensional cartesian or

axisymmetric, cylindrical-coordinate systems are available.

The primary limitation of this code results from the use of finite-

difference techniques for the spatial- and temporal-derivative approximations.



Where longitudinal and transverse dispersivities may be small, cell sizes will
need to be small to minimize numerical dispersion or oscillation. Further-
more, if the region of solute movement is somewhat convoluted and three-
dimensional, the projection of nodal lines from regions of high-nodal density
will cause more nodes than are needed to appear in other regions. These two
factors can combine to cause an excessive number of nodes to be involved for a
given simulation, thus making the simulation prohibitively expensive because
of computer-storage and computation-time requirements. In such cases, a
simple model of the system, useful for investigating mechanisms and testing

hypotheses, may be all that is practical.

Another limitation results from a phenomenon called grid-orientation
effect (Aziz and Settari, 1979, p. 332), whereby numerical simulations of
miscible displacement converge to two separate solutions, as the mesh size is
refined, depending on whether the major velocity vectors are parallel to one
of the coordinate directions or are diagonally oriented. The effect is more
pronounced for conditions of little dispersion or piston-like displacement of
the solute, and for conditions of the viscosity of the displacing fluid much
less than the viscosity of the displaced fluid. The effect virtually is
absent if the two viscosities are nearly equal, or if the dispersion
coefficient is large. The primary cause of the grid-orientation effect
appears to be the use of a seven-point difference formula for the three-
dimensional-flow and solute-transport equations, because this formula
restricts transport in the diagonmal directions. Use of a grid where the major
velocity vectors are oriented parallel to one of the céordinate directions,
has been found to give more realistic simulation results (Aziz and Settari,
1979, p. 336). To completely eliminate this problem, a higher-order
differencing scheme, or curvilinear coordinates need to be used, but these

modifications are beyond the scope of the present version of HST3D.

There is a limitation on which boundary conditions can be used with a
tilted coordinate system. The free surface and leakage boundary conditions

require that the z-axis be oriented in the vertical direction.




A limitation that is secondary for most ground-water flow and transport
modeling is that two types of tramsport phenomena exist that this type of
numerical simulation has difficulty in representing quantitatively. The first
phenomenon, viscous-fingering instabilities, may occur during the displacement
of a resident fluid by an injected fluid with significantly less viscosity.
The injected fluid forms channels or fingers through the resident fluid, as
described by Aronofsky (1952), Saffman and Taylor (1958), and Sheidegger
(1960). The second phenomenon may occur in the situation where a fluid of
greater density overlies one of lesser density. Rayleigh-Taylor convective
cells are formed that mix the two fluids (Wooding, 1959). Numerical
simulation tends to predict these transport instabilities later than they
occur in laboratory-scale experiments. When perturbations are present to
initiate the instabilities, the general magnitudes often are calculated to be
less than those that actually occur (Scheidegger and Johnson, 1963; and
Dougherty, 1963). However, laboratory-scale viscous fingering and convective-
cell formation may be much more unstable than the corresponding field-scale
phenomenon, because of the smaller dispersivity at the laboratory scale.
Therefore, at the field scale, numerical simulation may not be so much in
error in representing these instabilities. Nevertheless, these limitations
need to be be kept in mind when simulating fluid flow with large viscosity or

density contrasts.

Another secondary limitation is that this is a rather general computer
code. The variety of discretization, boundary-condition, and source-sink
options make this code not as computationally efficient as a simulation code
designed specifically for a given system being investigated. This limitation
is compensated by the ability of the HST3D simulator to represent a wide

variety of physical situatioms.

1.3. PURPOSE AND SCOPE

The purpose of this documentation is to provide the user with information
on the theory, assumptions, and equations being numerically solved, the

numerical-solution methods employed, and the various program options avail-



able. The sets of verification test problems are presented and two example
problems are described in detail with input and output files. Sections on the
code organization, input information, and output information, as well as a
list of variable-definitions and a cross-reference map are provided. The
documentation is intended to be sufficiently complete and understandable so
the user easily can obtain successful simulations, diagnose most computational
problems, develop remedies, and incorporate minor program additions or

modifications to suit specific modeling needs.

Each release of the HST3D program code is identified by a release number.
This documentation is for release 1.0, and this number will change as modifi-
cations, corrections, and additions are made to the program. Updates to the

documentation will be keyed to the release number.
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2. THEORY

2.1. FLOW AND TRANSPORT EQUATIONS

Derivation of the saturated ground-water flow and heat- and solute-
transport equations solved by this program can be found in references such as
Bear (1972) or Huyakorn and Pinder (1983). Only the assumptions leading to
these equations will be presented here. Explanations of the notation will
appear after the first usage. A complete table of notation appears in
chapter 9. In the report, all variables will be given with metric (SI) units

of measure.

2.1.1. Ground-Water Flow Equation

The partial-differential equation of ground-water flow is based on the

following assumptions:

[ ]

Ground water fully saturates the porous medium within the region of
ground-water flow.

® Ground-water flow is described by Darcy's Law.

® The porous medium is compressible.

® The fluid is compressible.

® The porosity and permeability are functions of space.

® The coordinate system is chosen to be alined with the principal
directions of the permeability tensor so that this tensor is
diagonal for anisotropic media.

® The coordinate system is orthogonal as are the principal directions of
the permeability tensor.

® The coordinate system is right-handed with the z-axis pointing
vertically upward. '

® The fluid viscosity is a function of space and time through dependence
on temperature and solute concentration.

® Density-gradient diffusive fluxes of the bulk fluid are neglected

relative to advective-mass fluxes.
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® Dispersive-mass fluxes of the bulk fluid from spatial-velocity

fluctuations are not included.

® Contributions to the total fluid-mass balance from pure-solute-

mass sources within the region are not included.

Pressure is chosen as the dependent variable for fluid flow, because no
potentiometric-head function exists for density fields that depend on
temperature and solute concentration. All pressures denoted by p are
expressed relative to atmospheric pressure. Absolute pressures are denoted by
p. The flow equation is based on the conservation of total fluid mass in a
volume element, coupled with Darcy's Law for flow through a porous medium.
Thus:

k
8&9) =V -p “ﬁ_(v" + pg) + qp* ; (2.1.1.1a)

where

is the fluid pressure (Pa);

is the time (s);
is the effective porosity (-);
is the fluid density (kg/m3);

T M e

is the density of a fluid source (kg/m3);

he)
B3

is the porous-medium permeability tensor (m2?);
is the fluid viscosity (kg/m-s);

is the gravitational constant (m/s2?); and

e T

is the fluid-source flow-rate intensity (m3/m3-s); (positive

is into the region).

Equation 2.1.1.1a relates the rate of change of total mass in the fluid
phase to net fluid-inflow rate, and source fluid-and-solute flow rate. Note

that the density of the fluid source is p* for g>0, and p for q<0.
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The interstitial or pore velocity, v is obtained from Darcy's Law as:

(Vp + pg) ; (2.1.1.1b)

1<

1}

!
ml [
T

where

v is the interstitial-velocity vector (m/s).

2.1.2. Heat-Transport Equation

The thermal-energy-balance equation, used for heat transport, is based on

the following assumptions:

Fluid kinetic energy is negligible.

® Thermal-dispersive transport takes place with a mechanism analogous to
solute-dispersive transport.

® Thermal conduction occurs through the fluid and porous medium in
parallel.

® Radiant-energy transfer is neglected.

® Thermal effects of chemical reactions are neglected.

® Changes in gravitational energy from diffusive and dispersive fluxes
of solute species are neglected.

® Heating from viscous dissipation is neglected.

® Heat capacities are not a function of temperature or solute
concentration.

® Thermal conductivities are not functions of temperature or solute
concentration.

® Thermal equilibrium exists between the fluid and solid phases.

® Energy transport by a diffusive flux of solute is neglected.

® Only a single fluid phase exists.

® Pressure equilibrium exists between the fluid and porous-medium
phases.

® Changes in fluid enthalpy with pressure, that is, pressure volume work,

reversible work, or flow work, as a parcel of fluid moves are

neglected.

13



® The velocity of the porous medium during compression or expansion is

neglected.

® Enthalpy dependence on solute concentration is accounted for by a

heat-capacity adjustment.

® The thermal expansion of the porous medium is neglected.

The energy equation is based upon the conservation of enthalpy in both
the fluid and solid or porous-medium phases of a volume

Enthalpy is a derived property containing both internal

energy. Temperature

9
ot

where

ET

n o
w

is the heat

(J/kg-°C);
c¢_is the heat
(J/kg-°C);

h

is the dependent variable. Thus:

(apcf + (1-s)pscs)T = V-(sKf + (l-s)KS); vT

+ VeeD, VT - V~apcng

+ qH

is the fluid and porous-medium temperature (°C);
is the temperature of the fluid source (°C);

is the density of the solid phase (kg/m3);

capacity of the fluid phase at constant pressure

capacity of the solid phase at constant pressure

K, is the thermal conductivity of the fluid phase (W/m-°C);

is the thermal conductivity of the solid phase (W/m-°C);

K
s
QH is the thermo-mechanical dispersion tensor (W/m-°C);

Equation 2.1.2.1 relates the rate of change of fluid and porous-medium

enthalpy to the net conductive-enthalpy flux, to the net dispersive enthalpy

is the heat-source rate intensity (W/m3); and

1 is the identity matrix of rank 3 (-).

14

of the region.

energy and flow

+ qp*ch* ; (2.1.2.1)




flux, to the net advective-enthalpy flux, to the heat source, and to the fluid
source at a given temperature. It is written for a unit volume of fluid and
solid phase together; that is, a unit volume of saturated, porous medium.

Heat is injected at temperature, T*, and density, p*, by a fluid source; but
heat is withdrawn at temperature, T, and density, p by a fluid sink. A

detailed derivation of equation 2.1.2.1 is given in Faust and Mercer (1977).

2.1.3. Solute~-Transport Equation

The equation for conservation of a single solute species is based on the

following assumptions:

® Thermal diffusion is neglected.

® Pressure diffusion is neglected.

® Solute transport by local, interstitial, velocity-field fluctuations
and mixing at pore junctions is described by a hydrodynamic-

dispersion coefficient.

[ ]

Forced diffusion by gravitational, electrical, and other fields is

neglected.

The only reaction mechanism is linear decay or disappearance of solute.

[ ]

The only solute, porous-medium, interaction mechanism is linear-
equilibrium sorption.

® No pure solute sources occur in the fluid or solid phases.

The solute mass fraction is taken to be the dependent variable because
the density field is variable. It is an amount per unit mass of fluid, that
is, a mass-based concentration. The more widely used concentration term is an
amount per unit volume of fluid; that is, a volume-based concentration. But
volume-based concentration is not conserved in a variable-density system. The
term "solute concentration," used in this report, will refer to the mass-based
concentration or mass fraction. The conservation equation for the solute in

the fluid phase can be written:
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QL%%E) = V+gpDVw + VegpD IVw - V-epvw - Aepw

-prfs + gpiwr (2.1.3.1a)

where

w is the mass fraction of solute in the fluid phase (-);

w* is the mass fraction of solute in the fluid source (-);

QS is the mechanical-dispersion-coefficient tensor (m2/s);

D is the effective-molecular diffusivity of the solute (m?/s);
A is the linear-decay rate constant (s71);

R, is the transfer rate of solute from fluid to solid phase per

unit mass of solid phase (kg solute/s*kg solid phase); and

p,, is the bulk density of the porous medium (kg/m3).

A similar conservation equation can be written for the solute in the

solid phase:

d(p, w)
b7 _ _ _
3¢ prfS Apbw , (2.1.3.1b)

where

w is the mass fraction of solute on the solid phase (-).

The solute is immobile when it is on the solid phase. Under the
assumption of linear-equilibrium sorption, the fluid-phase and solid-phase

concentrations can be related by an equilibrium-distribution coefficient:
W= dew ; (2.1.3.1¢c)

where

Kd is the equilibrium-distribution coefficient (m3/kg).

By combining equations 2.1.3.la-c, we obtain the final solute-

conservation equation:
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9
5t (8 + p Kj)pw = Veep[Dy + D L1Vw-Veepyw - A(e+p K,)pw

+qpFwr (2.1.3.2)

Equation 2.1.3.2 relates the rate-of-change of solute in the fluid phase
to the net dispersive and diffusive flux, the net advective flux, the solute-
source rate, the solute-injection rate with a fluid source, and the solute-
decay rate. The equation is written for a unit volume of fluid and solid
phase together; that is, a unit volume of saturated porous medium. Note that
solute is injected into the sytem at concentration, w*, and density, p*, by a
fluid source; but that solute is withdrawn at concentration w, and density p,

by a fluid sink; that is, w* = w, if q<0.

2.2. PROPERTY FUNCTIONS AND TRANSPORT COEFFICIENTS

Before the three conservation equations can be solved, information about
the fluid properties, porous-matrix properties, and transport coefficients
need to be obtained. The fluid properties are density, viscosity, heat
capacity, thermal conductivity, and reference-state enthalpy. The porous-
matrix properties are porosity, compressibility, permeability, heat capacity,
thermal conductivity, and reference-state enthalpy. The transport
coefficients are heat- and solute-dispersion tensors, and the effective
molecular diffusivity, decay and sorption coefficients of the solute. 1In the
HST3D simulator, density, viscosity, and porosity are functions of the
dependent variables: pressure, temperature, and solute-mass fraction. The
heat- and solute-dispersion tensors are functions of space and the inter-
stitial velocity. The other parameters are either uniform or functions of

space within the simulation region.
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2.2.1. Fluid-Density Function

Fluid density is assumed to be a function of pressure, temperature, and
solute concentration. For fluids such as water, a3 linear-density function is
usually adequate over the ranges of pressures, temperatures, and solute
concentrations encountered. Thus, the fluid-density function incorporated

into this simulation code is:

_ 9p - 3p -
p(p,T,w) = p(Po’To’wo) * dp o(p Po) ¥ oT o(T To)

9p w )
+ S o(w wo) ; (2.2.1.1a)
or
p(p,T,w) = p_ + pOBp(p-po) = P By (T-T ) + p B (w-w ) ; (2.2.1.1b)
where
po is the fluid density at a reference pressure, po, temperature, To’

and mass fraction, w , (kg/m3);
B_ is the fluid compressibility (Pa~1);
By is the fluid coefficient of thermal expansion (°c™1); and
is the slope of the fluid density as a function of mass fraction

divided by the reference fluid density (-).

Now pon is given by:

p s - (2.2.1.1C)
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where
wmin is the minimum solute-mass fraction (-); and
w is the maximum solute-mass fraction (-).

max
The user needs to specify Woin and Viax along with p(wmin) and p(wmax)° The
minimum solute-mass fraction usually will be determined by the initial
conditions. If linear decay is present, Woin must be zero. The maximum
solute-mass fraction usually will be determined by source or boundary
conditions because none of the transport processes incorporated in the HST3D
simulator will concentrate solute in the fluid phase. For simplicity, wp is

taken to be equal to w_,
min

The option is available in HST3D to use a scaled, solute, mass fraction
defined by:

v wmin
w' = v ow ) (2.2.1.2)
max min
where

w' is the scaled solute-mass fraction (-);

The scaled solute-mass fraction also is dimensionless and ranges from 0 to 1.

Commonly, for input and output of mass-fraction data, it is more convenient to

deal with a scaled solute-mass fraction rather than an absolute value. With a

scaled solute-mass fraction, equation 2.2.1.1b becomes:

'y = - - - "'
p(p,T,w') = Py * pon(p po) pOBT(T To) + pon w', (2.2.1.3a3)
where

pOBw' = p(wmax) - p(wmin) . (2.2.1.3b)

The errors caused by assuming constant values for fluid compressibility,
coefficient of thermal expansion, and variation of density with solute con-
centration can be assessed by looking at a density table for salt brines

(Perry and others, 1963, p. 3-77).
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Over a temperature range of about 100 °C and a solute-mass fraction range of
20 percent, the coefficient of thermal expansion varies by 60 percent and the
density-concentration coefficient, Bw, varies by about 10 percent (Perry and
others, 1963, p. 3-77). The variation of the fluid compressibility could
not be checked because of lack of data. However, the density dependence on
pressure for nearly incompressible fluids like water is much less than the
density dependence on temperature or solute concentration. Therefore, some
error will be introduced into the simulations by the linear-density function

where large variations in temperature and solute concentration are involved.

The relative importance of pressure, temperature, and solute con-
centration for density variation can be seen from the salt-brine density table
given in Perry and others (1963) and the compressibility of water. A change
in pressure of 10® Pa results in a density change of about 0.04 percent,
whereas a change in temperature of 100 °C results in a density change of about
4 percent, but a change in solute-mass fraction of 0.25 results a density
change of about 20 percent. Thus, the salt concentration has the greatest

effect on the density for typical ranges of the variables.

2.2.2. Fluid-Viscosity Function

Fluid viscosity is strongly dependent on temperature, and, to a lesser
extent, on solute concentration. The viscosity dependence on pressure is
neglected. The viscosity as a function of temperature and scaled-solute

concentration is written as:

3
M(T,w") =10 p (Tov,w') exp [(Bow' + Bi(1-w")) (% - %ovi] , (2.2.2.1)

where
p(Tov,w') is the fluid viscosity at the reference temperature (kg/m-s);
Bo, B1 are parameters describing the temperature dependence of
viscosity at the concentration extremes (°C); and

Tov is the reference temperature for viscosity (°C).
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The scaled solute-mass fraction of equation 2.2.1.2 is used in the
viscosity function as well as the density function. The parameters By and By
are obtained from a least-squares fit of viscosity versus temperature data.
If data are available only at a single temperature, the generalized viscosity
versus temperature graph of Lewis and Squire as given in Perry and others
(1963, p. 3-228) is used.

The concentration extremes are chosen to be the same minimum and maximum
mass fractions described in section 2.2.1. The variation of viscosity with
solute-mass fraction is specified in tabular form by the user. If viscosity
data at only the minimum and maximum mass-fraction values are available, the
equation used for viscosity as a function of concentration at a given

temperature is:

»

pw’) = ul(Tov)w uo(Tov)l‘w , (2.2.2.2)

where
Ho is the viscosity at the minimum-mass fraction or scaled
concentration of zero (kg/m-s); and
M1 is the viscosity of the maximum-mass fraction or scaled

concentration of one (kg/m-s).

Equation 2.2.2.2 is used with equation 2.2.2.1 or alone in the case of iso-

thermal simulation.

The viscosity versus temperature and concentration data that could be
available may be divided into three classes. Class 1 is the greatest amount
available, namely p(T) at Voin and Voax and p(w) fpr a range of w fromw_. to

min

Woax” Class 2 is viscosity versus temperature, H(T), at only Voin and Voax
Class 3 is the least amount of data required, namely two viscosity points at

a given temperature at w ., and w .
min max

An evaluation of the accuracy of viscosity functions given in equations

2.2.2.1 and 2.2.2.2 was presented by INTERCOMP Resource Development and
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Engineering, Inc. (1976). They found errors ranging from 5 to 14 percent over
the temperature range from freezing to boiling for pure water. For a solution
of sodium chloride with a mass fraction ranging from 0.0 to 0.24, the
different amounts of data available resulted in errors from 5 to 18 percent at
a temperature of 65 °C. A sucrose solution with mass fractions ranging from
0.0 to 0.5 showed a maximum viscosity error of 30 percent. Other viscosity
functions of temperature and solute concentration may be more suitable for

certain situations.

2.2.3. Fluid Enthalpy

Fluid-phase enthalpy is a function of pressure, temperature, and solute
concentration. The present version of the HST3D code uses the enthalpy of
pure water obtained from the steam tables of Keenan and others (1969, p. 2-7
and 104-107), which can be described as:

~ A ﬁ 1 A T
H(,T) = H(B,,,0) + fﬁsat 5 [l-TﬁT]dp + J, cgodT; (2.2.3.1a)
where
H is the specific enthalpy of the fluid phase (J/kg);
p is the absolute pressure (Pa);
ﬁsat is the absolute pressure at saturation (Pa); and

T is the absolute temperature (K).
is the heat capacity of pure water at constant pressure (J/kg-°C).

The reference state for the enthalpy tables is saturated liquid water at
0 °C where the reference enthalpy is taken to be zero (Van Wylen, 1959,
p. 80). The variation of enthalpy with solute concentration is treated in an
approximate fashion, by adjusting the pure-water enthalpy by a factor that is
the ratio of the heat capacity of the solution to the heat capacity of pure
water at 0 °C, and by using an average heat capacity for the range of solute
concentrations to be simulated. The heat capacity is assumed independent of

temperature and pressure.

22




Thus,

H(p,T,w) = H(p,T,0) (cg(w)/cg ) (2.2.3.1b)
where
cf(w) is an average heat capacity (J/kg-°C).

During the simulations, the enthalpy is calculated as a variation from a
reference state described by a pressure, Pone and a temperature, ToH’
selected by the user. The reference state is pure water so the reference

mass fraction, LR is always zero. Thus, the enthalpy equation becomes:

[ - d T —
H(p,T,w) = H(P y» T ;s0) (cg/ce ) + f§ [1-TB] 59 + ITO cdT 3 (2.2.3.1c)

oH H

where
PoH is a reference pressure for enthalpy (Pa);

P is the corresponding absolute pressure (Pa); and

TOH is a reference temperature for enthalpy (°C).

The TBT term may be neglected for temperatures less than 100 °C (373 KX)
and density may be regarded as constant for pressure changes less than 10% Pa.
The chosen reference pressure and temperature needs to be within the range to
be calculated during the simulation. The heat capacity of the fluid needs to
be an average value over the solute-concentration range to be simulated. More
sophisticated treatments of the enthalpy of fluid mixtures are available in

the literature; for example, Hougen and others (1959, p. 879).
2.2.4. Porous-Medium Enthalpy

Enthalpy of the porous medium is taken to be a function of only temper-

ature in the following form:
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Hs = HS(TOH) + cs(T-ToH) ; (2.2.4.1)

where
HS is the specific enthalpy of the solid phase (porous matrix) (J/kg);
and '

Cg is the heat capacity of the solid phase (porous matrix) (J/kg-°C).

Often, the enthalpy of the porous matrix is taken to be zero at a

reference state of 0 °C.

2.2.5. Porous~Medium Compressibility

Many types of compressibility for porous media have been defined (Bear,
1972, p. 52, 203-213; Thomas, 1982, p. 34, 40). The porous-medium bulk
compressibility, oy (Pa~1), is defined on a volumetric basis (Bear, 1972,

p. 56; Eagleson, 1970, p. 268), assuming confined-aquifer conditions, and
one-dimensional, vertical consolidation of the porous matrix, as:
1 8Vb
o = ; (2.2.5.1)

b Vbap

where
Vb is the bulk or total volume of a fixed mass of porous medium,
that is, fluid plus porous matrix (m3).

Petroleum-reservoir engineers use the term rock compressibility, o

(Pa"1), defined as (Thomas, 1982, p. 34):

(2.2.5.2)

=3

]
M |
GDIQ?
oim
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Rock compressibility directly expresses the variation of porosity with

pressure. It is related to bulk compressibility by:

o = 48 . (2.2.5.3a)

for the case of a nondeforming control volume, where more porous medium enters

the control volume, as compression takes place. It is related by:
a = — (2.2.5.3b)

for the case of a deforming control volume, or where impermeable medium enters

a nondeforming control volume, as compression takes place.

By combining equations 2.2.5.2 and 2.2.5.3b we obtain:

gﬁ =a (2.2.5.4)
Py

which relates bulk compressibility to changes in porosity with changes in

pressure.

Thus we have allowed the control volume to deform as the porous matrix
and the fluid specific volumes expand or contract with changes in pressure.
However, we neglect the velocity of deformation, so that the interstitial-pore

velocity is calculated with respect to the fixed-coordinate system.

The specific storage is related to the compressibilities of the fluid and

porous medium by (Eagleson, 1970, P. 270):
So = pg(ab + eﬁp) (2.2.5.5)

where

So is the specific storage (m-l).

25



However, it is more convenient for our purposes to employ the com-

pressibility parameters, because of the variable density.

2.2.6. Dispersion Coefficients

2.2.6.1. Solute Dispersion

Hydrodynamic dispersion is the name for the group of mixing mechanisms
that occur on the micro or pore scale that cause the irreversible spreading of
a solute tracer that is observed at the macro or field scale for the system.
As described by Bear (1972, p. 580-581), flow within the porous-medium
structure has variations in local flow velocity, because of the velocity
profile across the pore and mixing at pore junctions. The macroscopic effect
is mechanical dispersion of a tracer. Molecular diffusion also is present
where solute-tracer concentration gradients exist. However, diffusion in
liquids is a relatively slow process, producing significant transport rates
only at very slow ground-water flow velocities. In a laminar flow regime
within the pores, diffusion of solute from one flow path to another
contributes to the dispersion, so the separation of dispersion into a
mechanical and diffusive mechanisms is somewhat artificial. For an extensive
discussion of dispersion theory and a review of previous work, see Bear (1972,
ch. 10).

%
The form of the hydrodynamic-dispersion-coefficient tensor DSij (m2/s)

for the heat- and solute-transport simulation model is assumed to be, in

component form:

D.*¥, =D,.. +D 5., ; (2.2.6.1.1)

where
DSij is the mechanical-dispersion-tensor component (m?/s);
Dm is the effective molecular-diffusion coefficient (m?/s); and
aij is the Kronecker delta function.
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The effective molecular-diffusion coefficient is the liquid-phase
molecular diffusivity multiplied by an attenuation factor that accounts for
the effect of the tortuosity of the porous medium. The form of the
mechanical-dispersion coefficient is taken from the work of Scheidegger (1961)
and Bear (1961) as presented by Konikow and Grove (1977) and Bear (1972,
ch. 10). For an isotropic porous medium, two parameters describe the
mechanical-dispersion tensor, the longitudinal dispersivity, o (m), and the
transverse dispersivity, o (m). Then the nine components of the mechanical-
dispersion tensor are given by:

\AAL

= - 1] .
DSij (aL uT) - + o vbij ; (2.2.6.1.2)

where
v, is the component of interstitial velocity in the ith direction
(m/s);
2 2 2 %
and v=(v +v +v) ; (2.2.6.1.3)
1 2 3
where

v is the magnitude of the velocity vector (m/s).

In general, the subscript 1 is associated with the x direction; the
subscript 2 is associated with the y direction; and the subscript 3 is
associated with the z direction. Field data have shown that longitudinal
dispersivity usually is 3 to 10 times larger than transverse dispersivity
(Freeze and Cherry, 1979, p. 396; Anderson, 1979), and that their magnitudes
are dependent on the scale of observation distance over which the tracer is

transported in the system.
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Note that while flow in the porous medium may be governed by an
anisotropic-permeability temsor, dispersion for heat and solute transport is
assumed to be described by a dispersion tensor that applies to an isotropic-
porous medium. This assumption is made because it is not feasible to obtain
all the dispersivity parameters for an anisotropic medium. If dispersive
transport is a second-order effect, relative to advective transport, this
inconsistency should not introduce serious errors. In most cases, the errors
should be less than those introduced by uncertainties in the dispersion

parameters themselves.

When the longitudinal and transverse dispersivities are not equal,
dispersive transport will cause a solute distribution to enlongate in the
direction of flow, because the longitudinal dispersivity always is greater
than or equal to the transverse dispersivity. Thus, anisotropic spreading of
solute and heat can occur in an isotropic-porous medium, even under conditions

of uniform, unidirectional flow.

2.2.6.2. Thermal Dispersion

A description of thermal dispersion is based on a direct analogy with
solute dispersion. Energy replaces solute mass as the quantity being tran-
sported by mechanical dispersion, and thermal conduction replaces molecular
diffusion. Thus, the thermo-mechanical dispersion tensor is derived from the

mechanical dispersion tensor by:

Dyi: = PeeDg. . (2.2.6.2.1)

Hij Sij
where
DHij is the thermo-mechanical-dispersion tensor component (W/m-°C).
Combining the thermo-mechanical dispersion tensor with the net thermal
conductivity of the fluid and solid phases gives the thermo-hydrodynamic-

*
dispersion coefficient tensor, DHij (W/m-°C), in component form:
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* = -
DHij DHij + [EKf + (1 s)KS]Gij (2.2.6.2.2)

2.3. EXPANDED SYSTEM EQUATIONS

When the density function, equation 2.2.1.1b, and the porous-medium
compressibility relation, equations 2.2.5.3a and 2.2.5.3b are incorporated
into the system governing equations, the following expanded system equations

are obtained:
For ground-water flow:

op o1 ou
&Py 5t T EPBrar t PR, 5t

-a—R - . g * .
*PY% St Vep 5 (Wp 4 pg) +qpF ; (2.3.1a)
For heat transport:
o aT
eponch 5t + &P Bre T 3¢

B o
tep BoeT 5 P o 5¢

oT  _ ap - oT
£ 3t PeSsT 4 3¢ * (1-8dpoy B¢

+ gpc
= V-(aKf + (l-e)KS); VT
+ V°8QH VT - V~$pcng

+ + qp*ch* ; (2.3.1b)

Wy
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For solute transport:

op oT
PoBo(EPpK) W 5 *+ P, Brletp Ky w 5E

d
+ pOBw(s+pbKd) w 5%

ap LA - v-
tpogw et p(e+pbKd) 5t = v sp[_D_s + Dm;]Vw V-epvw

- A(e+pbKd) pw + gpFw¥ . (2.3.1c)

The change in the product of bulk density and equilibrium-distribution
coefficient, pbKd’ with pressure is zero, because these equations were derived
for a fixed mass of porous medium occupying a volume that under-goes slight
deformation with variations in pressure. These three expanded equations show

the implicit coupling that occurs with variable density and porosity.

2.4. SOURCE OR SINK TERMS--THE WELL MODEL

Most of the ground-water flow and heat and solute sources or sinks affect
the simulations through the boundary conditions. However, a line source or
sink term is used to represent injection or withdrawal by a well. Although a
well is treated as a line source or sink for the flow and transport equations,

a well is a finite-radius cylinder for the well-bore model.

The well model for the HST3D simulator is more sophisticated than those
well models used in most ground-water flow simulators. A well can be used for
fluid injection or fluid withdrawal, with associated heat and solute injection
or production. It also can be used simply for observation of aquifer
conditions. In the present code, the well bore can communicate with any
subset of cells along the z-coordinate direction at a given x-y location.

That is, the well may be screened or it may be an open hole over several

intervals of its depth. Several options are available for specifying pressure
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or flow-rate conditions under which the well will operate. A special
technique is used to relate the local pressure field around a well to the
pressures in the cells with which it communicates. Finally, a mathematical
model of the well riser is included to calculate pressure and heat gains and
losses as fluid moves from the land surface to the uppermost screened

interval, or vice versa.

The well can be divided into two parts as shown in figure 2.1. The lower
part, from the bottom of the borehole to the top of the uppermost screened
interval, will be referred to as the well bore; the upper part, from the top
of the screened interval to the land surface, will be referred to as the well
riser. The well-riser interval may or may not have a riser pipe within it,
and the well-bore interval may be an open hole or have cased and screened
sections. A screened section also may be just perforated casing. The term
well-datum level refers to the location at the junction between the well riser

and the well bore, equivalently referred to as the bottom hole.

Focusing attention on the well bore, we shall describe the linking of the
well model to the simulation region as a source or sink, and then describe the
pressure and flow-rate conditions that can be specified as bottom-hole
conditions. The incorporation of the well-riser calculations will then be

discussed.

Cell or nodal pressures represent a spatially averaged condition, when
the simulation region is discretized into finite-difference cells. A well
located in a cell will have a pressure at the screen at the nodal elevation
that is not necessarily the same as the cell pressure. Various analytical
approaches have been used to avoid the computational burden of a finer
finite-difference grid around each well in the region. They are summarized by
Aziz and Settari (1979, sec. 7.7) and are based on steady-state radial flow in
a cylindrical-coordinate system with homogeneous aquifer properties. Another

review may be found in Williamson and Chappelear (1981).
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Figure 2.1.--Sketch of well-model geometry showing the well-bore

and well-riser sections and the well-datum level.

2.4.1. The Well-Bore Model

For three-dimensional cartesian coordinates, the present version of the
HST3D code uses a modification of the well-bore equation derived by Van Poolen
and others (1968). Consider steady-state radial flow from a well into a
homogeneous aquifer with flux across an exterior cylindrical boundary, rg-
This boundary can be regarded as a radius of influence of the well. For a

cartesian-coordinate system, the exterior radius, ro is taken to be the
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radius of a circle that encloses the equivalent area to the x-y horizontal
area of the cell in which the well is located. The average pressure within
the annulus between the well-bore radius and the radius of influence can be
calculated and the flow rate from the well per unit length of well bore can be
expressed as a function of the pressure change from the well-bore pressure to

this average pressure. At any given elevation, z, we have:

2n k. (r?2 - r2) (p. - p.)
q, = v e W W av ; (2.4.1.1)
M [rz 1n (re/rw) - 0.5 (rz - ré)]

where
P, is the pressure at the well bore (Pa);

k is the average permeability between r, and r, (m?);

w

Py is the average pressure between r, and r, (Pa);
r, is the well-bore radius (m);
r, is the radius of influence of the well (m); and

q, is the volumetric flow rate per unit length of well bore

(positive is flow into the aquifer) (m3/m-s).

The time-independent factors that affect flow from a well bore can be
combined into a single term. Departing slightly from petroleum-reservoir-

engineering usage, we define a modified well index as follows:

2n kw (rg - rg)
W, = " " ; (2.4.1.2)
- 2 _
ro 1n (re/rw) 0.5 (re rw)

where

Wy is the well index per unit length of well bore (m2?).

33



The average permeability kw is taken to be:
ko= (kk)?; (2.4.1.3)
v ) 3 4.1,

for cartesian-coordinate systems, where

kx is the permeability in the x-direction (m2?); and

kY is the permeability in the y-direction (m2).

There is presently no provision for accommodating areally heterogeneous

permeability distributions in the vicinity of the well bore.

Equations 2.4.1.1 to 2.4.1.3 will be modified for use with the finite-

difference discretization in the numerical-implementation section 3.3.

For three-dimensional and cylindrical regions, the total specified flow
rate from the well needs to be allocated over the length of well bore that
communicates with the aquifer. This allocation can be done in two ways; by
fluid mobility, or by the product of fluid mobility and the pressure
difference between the aquifer and the well bore. Although there may be zZones
of cased well bore through which there is no communication with the aquifer,
we shall assume for the present discussion that the well bore is screened
throughout its depth. The total well flow rate from the well to the aquifer

is given by:

2U
Q, = I qwdz ; (2.4.1.4a)
2L
By W ®
= J'z -—p—(-ﬁ (pw - pav)d,Q 5 (2.4.1.4b)
L
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where
Q. is the volumetric well flow rate (positive is from the well
to the aquifer) (m3/s);
2 is the distance along the well bore (m);
£L is the lower end of the screened interval (m); and

2U is the upper end of the screened interval (m).

Fluid mobility at the well can be defined as:

(2.4.1.5)

where

Mw is the well mobility per unit length of well bore (m3/s-m-Pa).

Allocation of the specified flow rate by fluid mobility is obtained by
assuming that the pressure difference in equation 2.4.1.4b is independent of
depth. Then

q,(2) = nw(z)/// 12“ M (2) d2 ; (2.4.1.6)
2
L

represents the allocation of the total flow rate over the well-bore length as

a function of fluid mobility.

For wells drilled at an angle, ew, to the vertical or z-axis,

dz = cos 8 d2 ; (2.4.1.7)
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where

Ow is the angle between the vertical and the well bore (degrees).

If the screened interval is not continuous from 2L to 2U’ the mobility is set

to zero over the appropriate subintervals.

The alternative method of flow-rate allocation over the well-bore length
is derived by not regarding the pressure difference in equation 2.4.1.4b as
constant with depth. A hydrostatic-pressure distribution in the well bore is
assumed using an average fluid density. Thus, frictional hydraulic-head

losses in the well bore are neglected. This yields, from equation 2.4.1.4b.

2y

IEL M (2) [p, (2) + p g(z-z ,)]de + Q_

Pyud = ) ; (2.4.1.8)
U

IEL Mw(ﬂ)dﬂ

where
P.d is the bottom-hole or well-datum pressure (Pa);

Z .4 is the elevation of the well datum (m); and

p. is the average fluid density in the well bore (kg/m3).

Then the well flow rate is allocated as follows:

@ =M@ I[p ,+pglz . -2)-p._1; (2.4.1.9)
qw W wd W wd av

This method is referred to as allocation by mobility and pressure
difference. The average pressure, Py » will be related to the grid-cell

pressures in section 3.3.1 on numerical implementation.

36




£EFEN

.

The flow rate can be specified with a bottom-hole pressure-constraint
condition, that may affect the source or sink flow rate applied. Allocation
is by mobility and pressure difference, and equation 2.4.1.8 is used to
calculate a predicted bottom-hole pressure based on the specified flow-rate.
For an injection well, if the predicted pressure is greater than the bottom-
hole constraint pressure, then the well is pressure-limited, and the flow rate
will be less than that specified. The flow rate will be reduced to meet the
pressure constraint. If the predicted bottom-hole pressure is less than that
specified, then the desired flow rate is used. For a production well, if the
predicted bottom-hole pressure is less than the constraint pressure, the well
is pressure limited, and the flow rate will be less than desired. Otherwise,
the pressure constraint is not limiting. In other words, a well bore can
function as either a Dirchlet or a Neumann boundary condition, or it can

switch back and forth.

When bottom-hole (well-datum) pressure is specified, equation 2.4.1.9
gives the flow-rate allocation and equation 2.4.1.4b gives the total flow

rate. No constraints are applied to the calculated flow rate.

After the flow rate has been established and allocated, heat-injection
and solute-injection rates are determined from the bottom-hole pressure,
specified-temperature, and specified solute-mass-fraction values. Heat-
withdrawal and solute-withdrawal rates are determined by the ambient pressure,
temperature, and solute-mass fraction in the aquifer for each cell that

communicates with a well bore.

In the case of cylindrical coordinates with a single well at the radial
origin, the inner radius of the simulation region becomes the well-bore
surface. Thus, a specified flow rate allocated by mobility becomes a
specified-flux boundary condition. Allocation by mobility and pressure
difference using equation 2.4.1.9 is not applicable here, because the
well-bore pressure and the pressure at the inner radius of the region are
identical. Instead, the pressure profile along the well bore is not assumed
to be hydrostatic, but, rather it satisfies a steady-state momentum equation,
that includes frictional pressure losses, but neglects changes in momentum by
flow into or out from the well bore. Then, we have, for a differential-

momentum balance along the well bore:

37



dpw pwvzw
3= ‘P8t Arw fw = 0; (2.4.1.10)

where

fw is the hydraulic-head-loss friction factor (~); and

v is the average velocity across the well bore at a given z-level

(m/s).

The corresponding mass balance is obtained assuming no change in well-

bore storage, thus:

+ =0 ; (2.4.1.11)

where

qp,, is the volumetric flux from the well bore (m3/m2-5).

Equations 2.4.1.10 and 2.4.1.11 can be combined to give:

d 2rw2 dp
PyIrw = az v =t Pg)| s (2.4.1.12)

Equation 2.4.1.12 is combined with the flow equation 2.1.1.1a by assuming
that the aquifer pressure and well-bore pressure are equal at the well-bore

radius. The flow equation at the inner radius of the region becomes:
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2r 2

%ep _ g .,k 9 w ap .
St Vepo(Vptes) + oo e (e +pwg), (2.4.1.13)

for the parts of the inner radius that are screened. A fluid-flux boundary

condition of zero applies over the cased-off intervals.

Thus, the flow equation is still in its original form, but the co-
efficients of pressure gradient in the z-direction, and of the gravity term,
are augmented. The flow rate to or from the well is implicitly incorporated.
When the equation is converted to discrete form, the flow rate to or from the
well will arise naturally at the upper boundary of the screened interval. The
friction-head-loss factor is calculated as described in the well-riser model,
section 2.4.2. The magnitude of the friction head-loss factor often may be

very small but it needs to be non-zero, for flow to occur in the well bore.

The total flow rate to or from the well always is satisfied by this
calculation method, and the pressure at the top of the screened interval in
the aquifer is identical to the well-datum-level pressure. Recall that these
pressures are not necessarily equal in the line-source approach used with the
cartesian coordinate system. An examination of the relative magnitudes of the
terms for advective momentum and frictional head-loss in the full momentum-
balance equation shows that, for a producing well with uniform inflow per unit
length, the advective-momentum term dominates near the bottom of the screen.
The frictional head-loss term dominates at distances above the bottom of the
screen that are greater than about 1,000 times the well radius. Thus, a
significant region exists in which both the momentum and frictional terms are
of similar magnitude. However, a more rigorous development, retaining the
momentum term, is beyond the scope of this work. The present development
follows that of Aziz and Settari (1979, p. 337-341).
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2.4.2. The Well-Riser Model

When flow rate or pressure is specified at the land surface for a given
well, the well-riser calculation needs to be performed in conjunction with the
well bore flow-rate allocation described above. This calculation consists of
a simultaneous solution of the macroscopic equations of total energy, momentum
and mass (Bird and others, 1960, p. 209-212) for the change in pressure and

temperature over the well-riser length.

The total-energy or enthalpy equation is written for steady flow either

up or down the well riser as a rate of change with distance along the riser,

dH dv

r r _ .
T + g cos(-)r + Vr az = QHr(Q), (2.4.2.1)

where

is the specific enthalpy of fluid in the riser (J/kg);

v_is the average velocity across the riser at a given £-location
(m/s);

0 _ is the angle between the well riser and vertical (degrees);

is the heat transfered per unit mass per unit length to the

fluid in the riser (J/kg-m); and

£ is the distance along the well-riser casing (m).

Energy loss by viscous dissipation has been neglected. All quantities are

averages across the riser-pipe cross section at a given level.

The equation for momentum along the well-riser axis also is written for

steady flow as a differential balance along the well riser:

dv dp_ prvr2

r -0 -
2pr v.gg ¢ P, 8 cosBr + az F er fr =0 ; (2.4.2.2)
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where
is the fluid density in the riser (kg/m3);

P

p_ is the pressure in the riser (Pa);

r is the internal radius of the well riser (m); and
f

is the hydraulic-head-loss friction factor (-).

Finally, the macroscopic-mass balance, written in differential form as a

rate of change along the riser, is:

PV, = O, /T2 (2.4.2.3a)

where

QFr is the total mass-flow rate in the riser (kg/s).

Differentiation with respect to length yields:

dvr dpr

P 3@ TV, iz - 0. (2.4.2.3b)
To solve equations 2.4.2.1, 2.4.2.2, 2.4.2.3a, and 2.4.2.3b, the enthalpy

tables (Keenan and others, 1969, p. 2-7 and 104-107) are used for Hr(p’T)’
equation 2.7a is used for the density equation of state, and the Fanning
friction factor, using the Moody correlation (Perry and others, 1963,
p. 5-20), is used to calculate fr as a function of velocity. The enthalpy for
pure water is adjusted for other fluid mixtures according to equation
2.2.3.1b. For turbulent flow, the friction factor is a function of pipe
roughness. The user needs to supply a value for pipe roughness, and some
typical values for pipe roughness from Shames (1962, p. 300) are given in
table 2.1. Changes in viscosity with temperature along the riser are

neglected.
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Table 2.1.--Pipe-roughness values

Pipe Pipe roughness

type (millimeters)

Drawn tubing x 1074
Steel or wrought iron 3.8 x 1073
Galvanized iron X 1072
Cast iron 2.2 x 1072

The heat transferred to the fluid in the riser must pass from the
surrounding medium to the riser pipe, then from the riser pipe to the fluid.

The heat transferred per unit mass of fluid per unit length of riser is then:

2nr
r

QFr

Q (2 = UL(T, () - T_(2)) ; (2.4.2.4)

where
Tr is the fluid temperature in the well riser (°C);
Ta is the ambient temperature in the medium adjacent to the
riser (°C);
U, is the overall heat-transfer coefficient for the fluid, riser

T
pipe and surrounding medium (W/m2-°C).

The overall heat-transfer coefficient is given by:

= + + : (2.4.2.5)
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where
Arr is the wall thickness of the riser pipe (m);
FCJ(t) is the dimensionless part of the Carslaw and Jaeger (1959,
p. 336) solution for heat flux to an infinite medium from
a constant-temperature cylindrical source (-);
h_is the local heat-transfer coefficient from the fluid to the

riser pipe (W/m2-°C);

K__ is the thermal conductivity of the medium surrounding the riser
pipe (W/m-°C); and

K_ is the thermal conductivity of the riser pipe (W/m-°C).

Equation 2.4.2.5 is a simplification of the relation for the overall heat
transfer coefficient for conduction through cylindrical walls (Bird and
others, 1960, p. 288) combined with the Carslaw-Jaeger solution for heat flux
to an infinite medium from a cylindrical source (Carslaw and Jaeger, 1959,

p. 336). It is valid for wall thicknesses that are small relative to the

riser-pipe radius.

The dimensionless heat-flux function, FCJ(t), can be approximated by the

following two series:

(1) For short time, t, (Carslaw and Jaegar, 1959, p. 336):

~p S
Foy2F. 3 for 1<l (2.4.2.6a)
where
S = % -xHE L I
Fop2@u) “+% - %)%+ 33 (2.4.2.6b)
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and where

T is the dimensionless time defined by:

DHrmt
t = (r + Ar )2 y (2.4.2.6C)
r r
and where
D is the thermal diffusivity of the medium surrounding the well

Hrm
riser (m2/s).

(2) For long times, the asymptotic expansion was derived by Ritchie and
Sakakura (1956):

FCJ ] FEJ ; for t >3.6 ; (2.4.2.7a)

where

F.Y o= 200 v M 1-.5772080 )" - 1.3118(2en x) "2

cJ
+.2520 (20 x)™2 + 3.9969 (£n x) *
-5
+ 5.0637 (£n %) 7]
+ —%; (t2n ) M en ¥ -1.1544(2n x) 2]
e
-2 v 1(2n x)'3 ; (2.4.2.7b)
X = ﬁ% ; (2.4.2.7¢)
o2Y
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and where

Yy is Euler's constant: £ 0.5772.

In equation 2.4.2.7b, terms of higher order than (£n x)_6 and t-l(ﬂn X)-3
have been dropped. Carslaw and Jaeger (1959, p. 336) present a lower-order
version of equation 2.4.2.7b that is accurate for dimensionless time much
greater than 3.6. The estimated error is on the order of 10 percent for
dimensionless time, 1, greater than 3.6. For a typical rock medium, this
truncation means that the time must be greater than about 3.6 X 10% s, or
about 0.4 d. The short-time approximation, equation 2.4.2.6b, is good for
time less than about 0.1 d. For intermediate time, the heat-transfer function

5 evaluated at t=1 and FL

is estimated by linear interpolation between FCJ cJ

evaluated at 1=3.6.

Note that the heat-flux function in equation 2.4.2.5 is a function of
time; whereas, the mechanical and thermal-energy balances are at steady-state.
This is a consistent approximation, provided it is assumed that the heat
transfer from the fluid to the riser pipe and through to its outer boundary is
rapid, relative to rates of change in temperature at the fluid-inlet end of
the riser pipe; and, that changes in the fluid-temperature profile within the
riser pipe re-equilibriate quickly, relative to induced temperature changes in
the adjacent medium. This approach parallels that of Ramey (1962), with the
difference being that the heat-flux solution from a cylinder at constant
temperature is used, instead of the temperature solution for the constant
heat-flux case. The former solution is considered to more accurately describe

the physical situation.

Values for the local heat-transfer coefficient, hr in equation 2.4.2.5,
can be determined from correlations, such as those of McAdams (1954, p.
241-243) or Sieder and Tate (given in Bird and others, 1960, p. 399), between
the Nusselt number, the Prandtl number, and the Reynolds number for forced

convection in tubes.
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The correlation from McAdams (1954, p. 219) that is valid for turbulent flow

in the well-riser pipe is:

2r h p.v ’ CeH

L = p.023 ==L X ; (2.4.2.8)

where

H. is the viscosity of the fluid in the riser pipe (kg/m-s).

The well-riser calculation is developed by combining equations
2.4.2.1-2.4.2.3b with equation 2.2.1.1b and the derivative of equation

2.2.3.1a for the enthalpy function. The resulting equations are:

2f
v:Zp - 1 v: B dp, _ Ve'r (2.4.2.9)
r'p pr r'T TR = | g cos er + er
2
oH| 1. oH EEE 27[rrUT T -1 ) +vrfr
B apIT [ aTlp i} _.dj?,-d i QFr a'r er ]

Using the thermodynamic relationships:

50 1
§§| S U ; (2.4.2.10a)
apIT P, aT P
and
oH| _ .
o= ce s (2.4.2.10b)
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we can reduce equation 2.4.2.9 to two simultaneous ordinary differential
equations:

[ -

dpj

r - c _BV2

de f Tr

dTr

- - 2 .

de BT Tr/pr B,V 1/pr
L - L _

2 .
g cos Gr + ve fr/2rr

1 r 1 -1
[ + + =——=— ] (T -T ) + v3f /2r
QF rh rrK KreFCJ(t) a'r rr r

-1 -
2 . - 2,2
[Eprr l/pr)cf TrBTvr/p{] . (2.4.2.11)
These equations are coupled through the density, velocity, and
temperature terms. The boundary conditions are known at one end of the riser.

For injection:

at z =2z p*= pinj; T = Tinj ; (2.4.2.12a)
For withdrawal:
at z =2z .3 P =P g T = de ; (2.4.2.12b)
where
z 4 is the elevation of the well datum (m); and
Zg is the elevation of the land surface (m).

Equations 2.4.2.6a-c and 2.4.2.7a-c are used to evaluate the heat-transfer

function FCJ'
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The mass, enthalpy, and mechanical-energy-balance equations are solved
either up or down along the well riser, depending on the direction of fluid
flow, to obtain the pressure and temperature at the riser bottom for injection
conditions, or at the riser top for production conditions. Coupling this
.well-riser calculation to the well-bore model enables specified pressure,
temperature, and solute concentration, or specified flow-rate conditions at

the land surface, to be employed.

When the flow rate at the land surface is specified as an injection, the
surface temperature and solute concentration also need to be specified. The
well-riser calculation will give the necessary surface pressure to achieve the
specified flow rate. If a production or withdrawal flow rate is specified,
the surface pressure, temperature, and solute concentration are determined by

the well-bore and well-riser calculations.

When the surface pressure is specified, the well-bore and well-riser
calculations determine the flow rate, surface temperature, and solute
concentration for a production well. Surface temperature and solute
concentration also need to be specified in the case of an injection well. The
ambient-temperature profile with depth along the well riser is specified by

the user.

A flow rate and pressure constraint at the surface can be specified and
the slower of the specified flow rate or the flow rate that results from the
specified-pressure constraint will be applied to the aquifer and apportioned

as described previously.

A well also can be used as an observation well. In this case, none of
the well-bore or well-riser calculations are necessary. The purpose of an
observation well is to record dependent variable data (pressure, temperature,
solute-mass fraction) for plotting versus time at the conclusion of the
simulation. The recorded data are the aquifer values at the well-datum level,

which is at the top of the uppermost screened interval.
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In summary, a well can be a production well, an injection well, or an
observation well. The flow rate can be specified with or without a pressure
constraint, or the pressure can be specified either at the land surface or at
the well-datum level. For three-dimensional cartesian coordinates, the
allocation of the flow to each layer can be determined by the relative
mobility of the layer, or by the product of the mobility times the pressure
difference. For cylindrical coordinates, the allocation is determined by the
product of the mobility times pressure difference, with allowance for
gravitational effects, because the well-bore equations are solved
simultaneously with the ground-water flow equations for the region adjacent to
the screened intervals. Application of the well-flow terms for each layer to
the ground-water flow equation can be explicit or semi-implicit in time for
three-dimensional cartesian coordinates; it is fully implicit for cylindrical

coordinates.

2.5. BOUNDARY CONDITIONS

2.5.1. Specified Pressure, Temperature, and Solute~Mass Fraction

The first type of boundary condition, known as a Dirchlet boundary
condition, is a specified pressure condition for the ground-water flow
equation, a specified temperature condition for the energy-transport equation,
and a specified-mass fraction for the solute-transport equation. These
conditions can be specified independently as functions of location and they

also can vary independently with time. Mathematically, we have:
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P =py (x,t), for x on 8 ; (2.5.1.1a)

3
i
3

on 8! ; and (2.5.1.1b)

(x,t), for 1

]

(x,t), for x on S; ; (2.5.1.1c)

where

is the pressure at the specified boundary (Pa);

T, is the temperature at the specified boundary (°C);

is the mass fraction at the specified boundary (-);

S! is the part of the boundary with specified pressure;

Sl is the part of the boundary with specified temperature; and

S! is the part of the boundary with specified mass fraction.

Care needs to be used in specifying the temperature and mass fraction at
fluid-outflow boundaries, because, on boundary surfaces across which fluid
flow occurs, the advective transport of heat and solute is assumed to dominate
over any diffusive or dispersive transport. Thus, it is physically
unrealistic to specify a temperature or solute concentration at an outflow
boundary because the ambient fluid will determine the temperature, and solute

concentration there.

2.5.2. Specified-Flux Boundary Conditions

The default boundary condition for the numerical model is no fluid, heat,
or solute flux across the boundary surfaces. Normal fluxes of fluid, heat,
and solute, known as Neumann boundary conditions, can be specified over parts

of the boundary as functions of time and location. However, they cannot be
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specified independently, because, on boundary surfaces where a specified fluid
flux exists, the advective transport of heat and solute is assumed to dominate
over any specified diffusive or dispersive flux of these quantities. This
assumption means that, on fluid-inflow boundaries, the temperature and mass
fraction of the inflowing fluid needs to be specified. These specifications
determine the heat and solute fluxes. At fluid-outflow boundaries, the
temperature and mass fraction are determined by the ambient fluid values in
the region, thus giving the heat and solute fluxes. Therefore, it is not
physically realistic to specify temperatures and mass fractions at outflow
boundaries. On boundary surfaces where no fluid flux is given, heat and
solute fluxes may be specified. Heat fluxes represent thermal conduction and

solute fluxes represent solute diffusion.

For the reasons discussed in section 2.5.1, it also is not physically
realistic to specify dispersive heat or solute fluxes across boundary surfaces
that have specified pressures. However, total heat or solute fluxes may be
specified for inflow boundaries. These fluxes are the advective fluxes
approaching the boundary from outside the region, and they are equal to the
advective plus the dispersive fluxes leaving the boundary and entering the
region. For <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>