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EVALUATION OF THE MATRIX EXPONENTIAL FOR USE 

IN GROUND-WATER-FLOW AND SOLUTE-TRANSPORT

SIMULATIONS: THEORETICAL FRAMEWORK 

By Amjad M. J. Umari and Steven M. Gorelick

ABSTRACT

It is possible to obtain analytic solutions to the ground-water-flow and 

solute-transport equations if space variables are discretized but time is left 

continuous. From these solutions, hydraulic-head and concentration fields for 

any future time can be obtained without "marching" through intermediate time 

steps. This analytical approach involves matrix exponentiation and is 

referred to here as the Matrix Exponential Time Advancement (META) method. 

Two algorithms are presented for the META method, one for symmetric and the 

other for non-symmetric exponent matrices. A numerical accuracy indicator, 

referred to as the matrix condition number, is defined and is used to 

determine the maximum number of significant figures that may be lost in the 

META method computations.

The relative computational and storage requirements of the META method 

with respect to the time-marching method are shown to increase with the number 

of nodes in the discretized problem. The potential greater accuracy of the 

META method and the associated greater reliability through use of the matrix 

condition number have to be weighed against this approach's increased relative 

computational and storage requirements as the number of nodes becomes large. 

For a particular number of nodes, the META method may be computationally more 

efficient than the time-marching method, depending on the size of time steps 

used in the latter. A numerical example is given to illustrate application of 

the META method to a sample ground-water-flow problem.



INTRODUCTION

The standard approach to obtain transient solutions for the ground-water- 

flow and solute-transport equations is to discretize space and time variables 

and then advance the solution one step at a time. An alternate approach to 

this time-marching method is to discretize space variables but leave the time 

variable continuous in the flow and solute-transport equations. It is then 

possible to use matrix exponentiation to obtain analytic solutions to these 

spatially discretized equations. These analytic solutions give hydraulic-head 

and solute-concentration fields for any future time without the need to 

"march" through intermediate times.

This approach has been applied to cases where hydraulic-head and solute- 

concentration fields are needed either explicitly (as in direct problems) or 

implicitly (as in optimization problems) for a future time, but not for 

intermediate times. Kuiper (1973), for example, used the matrix exponential, 

allied with finite-element spatial discretization, to obtain a direct solution 

to a transient-flow problem. Willis (1979) used the matrix exponential to 

obtain analytic response equations to use as constraints in a ground-water- 

quality management model.

It is the objective of this report to investigate the accuracy and 

reliability of this analytic approach based on matrix exponentiation and to 

compare its computational and storage requirements to those of the 

conventional time-marching method. This project was funded by the 

U.S. Geological Survey, Office of Hazardous Waste Hydrology. The authors are 

grateful to Dr. Cleve Moler, INTEL Scientific Computers, for valuable 

discussions regarding the mathematics of the report.



Problem Formulation

After spatial discretization has been carried out, but before the time 

variable is discretized, the ground-water-flow and solute-transport equations 

can be written in the form:

[A] + [B] h + F = 0 (1) 
dt      

[E] 4& + [G] c_ + £ = 0_ (2) 
dt

Equations 1 and 2 may be obtained from the original flow and solute-transport 

partial differential equations by either finite differences or the Galerkin 

method (see "Supplemental information"). In the above equations, [A], [B], 

[E], and [G] are square coefficient matrices of order n (the number of nodes 

in the spatial discretization grid), whereas _F and Q are column vectors of 

order n representing boundary conditions and mass/solute sources or sinks. _h_ 

and c_ are vectors of nodal hydraulic heads and concentrations, respectively. 

The coefficient matrix [G] depends on flow velocities, which depend on the 

vector of hydraulic heads, _h, as determined by equation 1.

To obtain h( t) or ^(t) for a future time t, the time derivatives in 

equations 1 and 2 may be written in the form:

db = h^ 1 - hk 

dt At

dc 
dt At

(3)

where the superscript indicates the time step. This formulation, or another 

version of it, can be used to obtain Mt) and c( t) from equations 1 and 2 for 

any time in the future by simply "marching" through time and setting k = 1, 2, 

3, ....(see "Supplemental information").



An alternative approach for obtaining jh( t) or jc_( t) is to use the analytic 

solutions for equations 1 and 2 (Bellman, I960), which, after simplifying, can 

be written as:

h( t ) = e"^ M^( Jk + [B]" 1 I ) - [B]" 1 £ (4) 

c_( t ) = e -t N^( ^ + [G]" 1 £ ) - [G]' 1 £ (5)

where [M] = [A]' 1 [B] , [N] = [E]" 1 [G] , and ^ and c^ are the initial 

condition vectors. The implicit requirement that JF and (£ be constant in time 

can be overcome by superposing the solutions obtained from each pumping 

period. The other requirement, that of a constant [G], restricts equation 5 

to a steady flow pattern.

To satisfactorily compute jh( t) and jc_( t) from the vector-matrix equations 

4 and 5, an accurate and reliable method has to be employed to evaluate the 

matrix-exponential terras e""- ' t and e""- '*". The method of obtaining _h( t) and 

c(t) by use of equations 4 and 5 is referred to here as the Matrix Exponential 

Time Advancement method, or the META method.

The matrix exponential e"- J of an n x n matrix [P] is an n x n matrix 

defined by the convergent Taylor power series:

el p ] = [I] + [P] + JL_ [P] 2 + j_ [P] 3 +..... (6)
2! 3!

where [I] is the identity matrix. Equation 6 should be considered only as a 

definition for the matrix exponential not as a process to compute e*- J .

Purpose and Approach

The purpose of this report is to: (1) Present two reliable algorithms 

for computing the matrix-exponential terms of equations 4 and 5; and 

(2) through presentation of these two algorithms, examine the reliability and



accuracy of the META method, and compare its computational efficiency and 

computer-storage requirements with those of the conventional time-marching 

approach. One of these algorithms is specifically suitable for computing the 

matrix-exponential term in equation 4, whereas the other is specifically 

suitable for computing the matrix-exponential term in equation 5. Equations 4 

and 5 require different algorithms due to the different structures of their 

coefficient matrices [M] and [N],

A MATRIX-EXPONENTIAL ALGORITHM FOR THE 
GROUND-WATER-FLOW EQUATION

Rather than use the spatially discretized flow equation in the form of 

equation 1 and its analytic solution as given by equation 4 where the 

coefficient matrix [M] to be exponentiated is generally not symmetric, 

equation 1 is transformed into an equivalent one for which the analytic 

solution involves the exponential of a symmetric matrix. This is done because 

the process of exponentiating a matrix is facilitated and strengthened when 

the matrix is symmetric. The steps of the proposed algorithm, which involves 

the above transformation, are presented below.

Algorithm Steps

(a) Assume that [A] is diagonal and positive and that [B] is symmetric (as 

would result from a finite-difference spatial approximation for 

example). Transform the system of first order, ordinary differential

equations represented by the vector-matrix equation 1 into an equivalent
9 system by defining a matrix [U] such that [U] = [A], Then:

4 + [R]z_ + S_ = £ (7)

-1 -1 
where [ R] = [U] [B] [U] and is symmetric, z = [U] h and is the new-1 ~ ~ 

dependent variable, and S = [U] F. The analytic solution of equation 7



comparable to equation 4 is given by:

_z(t) = e'l 1^ ( £Q + [R]" 1 s) - [R]' 1 ^ (8)

(b) Because [R] is symmetric, a specialized EISPACK (Eigensystem Package) 

subroutine, namely BANDR (Garbow and others, 1977), can be efficiently 

used to decompose [R] as follows:

[R] = [V] [D] [V]"1 (9)

where [V] is a matrix whose columns are the eigenvectors of [R], and [D] 

is a diagonal matrix with diagonal elements being the real eigenvalues of 

[R].

(c) Once [ R] is decomposed in the form of equation 9 the following can be 

written (Van Loan, 1975; Moler and Van Loan, 1978):

e~Wt = [ V ] e't 0^ [V]" 1 (10)

 r Dit        ~ i ^ .where e L  * is a diagonal matrix with the components e ( i =* 1 , 

2,...,n). The quantities X[ are eigenvalues of [ R] and constitute the
 r RI tdiagonal of [D]. Therefore, e L J is computed from equation 10 and 

substituted into equation 8 to obtain z( t).

(d) The inverse of the transformation employed in step (a) is used to obtain 

M t) from £( t) .

The transformation described under (a) can also be employed for the more 

general case of a symmetric and positive [A] as would result from a 

finite-element spatial discretization. In this case [U] = [A]* is given 

by:

[U] = [V 1 ] [D ( p [V'] T (11)

where [v' ] and [D 1 ] are the matrix of eigenvectors and the matrix of 

eigenvectors of [A].

6



Decomposition of [R] by BANDR

In addition to being symmetric, [ R] of equation 7 is banded because [B] 

of equation 1, which is used in constructing [R], is banded. Because [R] is 

symmetric and banded, it can be stored efficiently by computers, and due to 

its special structure can be decomposed efficiently, as indicated in equation 

9, by EISPACK's subroutine BANDR (Garbow and others, 1977). This subroutine 

is written specifically to obtain eigenvalues and eigenvectors of banded, 

symmetric, real matrices.

An important advantage of [ R] being symmetric, beyond computer-storage

economy and computational efficiency, is that it has an orthogonal set of

eigenvectors (the columns of [V]) and real eigenvalues (the diagonal elements

of [D]). Because the columns of [V] are orthogonal, [V] is an orthogonal
T matrix and, therefore, its transpose [V] is equal to its inverse. But

T
because [V] is easy to compute, there is a computational advantage to using 

it in equation 9 instead of [V] , which is costly to compute. A further

advantage of orthogonality of the eigenvectors is that it leads to maximum
  F Rl t accuracy when equation 10 is used to compute the matrix exponential e L J and

consequently to maximum accuracy in computing M t) (see "Accuracy, 

reliability, and the matrix condition number" beginning on page 14).



A MATRIX-EXPONENTIAL 
ALGORITHM FOR THE SOLUTE-TRANSPORT EQUATION

An overview of the algorithm (Moler and Van Loan, 1978) is presented 

below. (Details of steps a and b are shown later in this section.)

(a) Matrix [N] of equation 5 is decomposed primarily through use of 

EISPACK'S subroutine HQR2 (Smith and others, 1974) as follows:

[N] = [V x ] (^] [V^"1 (12)

In equation 12, [Vi] is a matrix whose columns are the eigenvectors of 

[N] , and [Di] is a quasi-diagonal matrix of eigenvalues. [Di] is not 

quite diagonal like its counterpart [D] in the ground-water-flow 

algorithm (see equation 9), because, unlike [ R] , [N] is not symmetric and 

may have complex as well as real eigenvalues (this is discussed further 

below). The two steps of (1) forming [N] from [E] and [G], and (2) 

obtaining the eigensystem of [N] may be combined into one step. This is

done by use of the QZ algorithm (Golub and Van Loan, 1983), which uses
-1 

[E] and [G] directly to obtain the eigensystem of [N] = [E] [G] without

explicitly forming [N].

(b) Based on the decomposition represented by equation 12, the following can 

be written:

-[N]t = -[I>l]t -1

" D l t . . , - -TDK   where e is not as simple to compute as its counterpart e l J in

the ground-water-flow algorithm because [ D, ] is quasi-diagonal rather 

than diagonal.

(c) Once e "  ^ is computed using equation 13, it can be substituted into 

equation 5 to obtain c(t).



Decomposition of [N] by HQR2

Given the non-symmetric, real matrix [N], EISPACK'S subroutine HQR2 and 

its associated routines ORTRAN and ORTHES may be modified to produce the 

orthogonal matrix [Qi], the upper quasi-triangular matrix [Ri ], and the quasi- 

diagonal matrix [Di], such that:

[N] =
-1

(12)

where

(14)

The structure of upper quasi-triangular [ Ri ] and quasi-diagonal [Di] for a 

4x4 case is shown in figure 1 .
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0
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0

0

0
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Figure 1.--Structure of an upper quasi-triangular matrix [R ] and a quasi 

diagonal matrix [Di].



[Di] has scalar (1x1) elements along its diagonal that are the real

eigenvalues of [N] (like X and , in figure 1), and 2x2 blocks

corresponding to complex conjugate pairs of eigenvalues of [N] (like the

submatrix -c
b c,

b | in figure 1). The complex conjugate pair of eigenvalues of
l~b c~ 

[N] associated with the 2x2 submatrix _c ^ are b + ci and b - ci, where

i = y~l. (b + ci and b - ci are not only eigenvalues of [N] but also of
-i 

b c
the submatrix -c br

Similarly, [Ri] would be upper triangular if it were not for 2x2

blocks along its diagonal (like the 2x2 submatrix I
m

in figure 1) that

protrude into the lower triangle of the matrix making it not quite upper 

triangular but upper quasi-triangular. Associated with the 2x2 submatrix

m
-I m are the complex conjugate pair of eigenvectors 1 » + im( anc*

m + it m -
-I - im

which are the eigenvectors of jj > tne 2x2 submatrix along the diagonal

of [D,]. By employing the definition relating an eigenvalue X and an

eigenvector v of a matrix [w], namely [w]v = Xv, the following can be written:

m + 
-£ + m

= (b -f ci) { * + i 
[-£, + im

(15)

and

b c 
-c b

m - it 
-I - im = (b - ci)

m - 
-I - im (16)

This ends the discussion on the content and structure of [D, ] and [R, ].

To complete the decomposition of [N] as presented by equations 12 and 14, 

[Vi] has to be computed. From equation 14, it can be seen that:

(17)

10



But because [Qi], which HQR2 may be modified to produce, is orthogonal, its 

transpose is equal to its inverse. Therefore, the decomposition of [N] as 

presented by equations 12 and 14 can be restated as follows:

[N] =
-1

(12)

where

(14)

and

[V,]" 1 = RI'" 1 ^ll T (18)

i
In equation 18, the computation of [Qi] is simple (the rows of [Qi]

T .  1 .... 
become columns of [Qi] ), and the computation of [ Ri ] is simplified due to

the upper quasi-triangular structure of [R, ] .

Computation of e and e

Now, e"'- J can be expressed in terms of the components of [N] by

equation 13. As previously mentioned, [Di] is quasi-diagonal due to the
-[Dllt . 

asymmetry of [N]. Computing e , therefore, involves exponentiation of

the 2x2 blocks along the diagonal of [Di], as illustrated in figure 2, that

is :

[s] =

G G

s l S 2

s 3 s4 ^

-

= e
-[T]t

= e (19)

11



\ l o

0 b

0 -c 

0 0

[s] =

0

c

0

0

b 0 

0 \

s l S 2

S 3 S4

= e

-[D^t 
e

b c 
-c b

e l 0 0 0

0 s l S 2 °

0 s 3 s^ 0 

0 0 0 e ^

fc -[T]t
= e

Figure 2.--Exponentiat ion of quasi-diagonal matrix for k x k case,

Because of the specific structure and size of [T], the following analytic 

solution (Cleve Moler, INTEL Scientific Computers, written commun., 1985) may 

be derived:

[s] = e
-[T]t

-bt 
e Cos (-ct)

-bt 
e Sin (-ct)

-bt -bt 
 e Sin (-ct) e Cos (-ct)

s l S 2

(20)

along theSubstituting e"~L J as computed above for [s] = 

diagonal of e (as illustrated in fig. 2), and doing the same thing for 

other locations along the diagonal of e corresponding to 2 x 2 blocks 

along the diagonal of [D,], e will be determined.

12



. 
Having determined e , it is substituted into equation 13

.-lH]t. [T , e-^l" [v j-1

where

(14)

and

(18)

to obtain e". If equation 13 is written as: [X] [Vj] = [ S 1 ] where [X] =

-[N]t -[Djt 
e and [Si] = [V-, ] e , this system can be solved directly for the

-[N]t 
unknown [X] = e without explicitly inverting [V,].

An alternative to the exponentiation of the 2x2 matrices along the 

diagonal of [Di] is to use complex arithmetic, making the entries along the 

diagonal of [D,] complex scalar entries (Hwang and others, 1984). An 

advantage of this approach is that an equation similar to equation 2 can be 

separated into n equations one for each c^( t) , and only the ones for which 

c-(t) is desired are solved. A disadvantage of the approach is the costly 

complex arithmetic.

13



ACCURACY, RELIABILITY, AND THE MATRIX CONDITION NUMBER

If the matrix to be exponentiated is symmetric like [R] of equation 8, 

its eigenvectors can be chosen to be orthogonal (the ultimate in linear 

independence) as noted under "Decomposition of [R] by BANDR." This "well 

conditioned" eigensystem contributes to maximum accuracy in computing e""- ^ 

by equation 10 and consequently to maximum accuracy in computing z( t) by 

equation 8. This accuracy dependence on the "condition" of the exponentiated 

matrix's eigensystem can be quantified and made precise by definition of the 

"condition number" of the matrix of eigenvectors:

Cond(V) = llvll . II V' 1 !! (21)

This number can be estimated without inverting [V] (Dongarra and others, 

1979). If expressed as a power of 10 (for example, 10 for the present 

symmetric exponent matrix [R])> the condition number of the eigensystem 

indicates through its exponent (zero in this case), the maximum number of 

significant figures that may be lost in the digital floating-point computation 

of e'L J and z( t) by equations 10 and 8.

The condition number can be thought of as the "degree of defectiveness" 

of a particular matrix. In pure mathematics, there is either a defective 

matrix (one with an incomplete set of linearly independent eigenvectors, that 

is, a defective eigensystem), or a non-defective matrix (one with a complete 

set of linearly independent eigenvectors, that is, a non-defective 

eigensystem). In computational mathematics, the realm of the present 

analysis, there are matrices in the gray area between the defective and non- 

defective extremes, which are referred to as "nearly defective" matrices, and 

the condition number as defined by equation 21 can be used as an indicator of 

the location of a particular matrix in this continuum. If Cond(V) is 

expressed as a power of 10, say 10n , it denotes a degree of defectiveness of 

order n.

When the matrix to be exponentiated is symmetric (like [R] of equation 8) 

and consequently has an orthogonal system of eigenvectors, the condition 

number of its matrix of eigenvectors is 10 (indicating a degree of 

defectiveness of order 0, non-defective matrix), and no significant figures

14



are lost in computing h(t). Furthermore, because the matrix of eigenvectors 

of [R], namely [V], is orthogonal (the ultimate in linear independence), it is 

also invertible (non-singular), and so [V] can be evaluated and computations 

represented by equation 10 to obtain e *     become feasible.

If the matrix to be exponentiated is not symmetric, like [N] in 

equation 5, the eigensystem may not be well conditioned, which causes the 

matrix to be nearly defective. The condition number of its matrix of 

eigenvectors, [Vi] of equation 12, should then be computed to establish the 

degree of defectiveness of [N] and the possible loss of accuracy resulting 

from it. Cond(Vi) may, for example, be 10 indicating that [N] has a degree 

of defectiveness of order 4. This results in a maximum possible loss of four 

significant figures in floating-point computations when e    ' is computed by 

equation 13 and _c_( t) by equation 5. This may be acceptable if double- 

precision computations are used, which provide sixteen significant digits of 

accuracy, because losing four leaves twelve significant figures. If single 

precision is used, which only provides eight significant figures of accuracy, 

losing four of them may be intolerable. The potential problem of accuracy 

loss (when the matrix to be exponentiated is not symmetric) is an insidious 

one because, although the matrix [N] may be nearly defective, [Vi] can be 

invertible, so calculation of e""-    according to equation 13 and _c_( t) 

according to equation 5 become feasible but will not give any indication that 

a loss of accuracy may have taken place.

A computer model that uses matrix exponentiation of a non-symmetric 

matrix, whether it is through implementation of the algorithm presented under 

"A matrix-exponential algorithm for the solute-transport equation" or any 

other algorithm, needs to be provided with a flag to be triggered whenever the 

matrix condition number indicates the possibility of excessive loss of 

accuracy.

15



COMPUTATIONAL AND STORAGE REQUIREMENTS 
OF THE META METHOD

The computational requirements of a process can be quantified by 

indicating the number (in order of magnitude only) of floating point 

operations (or "flops") needed by the process, to which cost of the process is 

proportional :

[Process I] = fdij, n2 ,...) (22)

This expression means that the number of flops needed by Process I is 

proportional to some function f ( n, , n~ ,...), where n, , n~ , . . . are process 

parameters .

The computational requirements of the time-marching method, which will be 

the basis for evaluating the relative requirements of the META method, will 

now be obtained. For flow, the time-marching approach involves repeated 

solution of a system of linear algebraic equations of the form of equation A5 

(developed in "Supplemental information"):

[AA] _h = _FF (A5)

The matrix [AA] is given in terms of the coefficient matrices of the spatially 

discretized flow equation 1 as:

[AA] = 1 [A] + [B] (A6) 
At

For solute transport, the equations corresponding to equations A5 and A6 would 

be:

[EE]

[EE] = 1 [E] + [G] (24) 
At

where [E] and [G] are coefficient matrices of the spatially discretized

16



solute-transport equation 2.

Because [A], [B], [E], and [G] are banded, it follows that [AA] and [EE] 

as defined by equations A6 (developed in "Supplemental information") and 24 

are also banded. Assuming that the band width of [AA] and [EE] is d, the 

amount of work involved in solving equations A5 or 23 once, when the time-
. . . 0

marching (TM) method is used, is proportional to d n where n is the number of 

nodes in the spatial discretization grid. Using the notation of equation 22, 

the following can be written:

[TM] = d 2 n for one time step (25)

This estimate does not take into consideration some efficiency measures that 

may be incorporated into a time-marching algorithm. One such measure is use 

of iterative, rather than direct, techniques for solving linear systems. 

Another is use of a single matrix factorization for a sequence of equal time 

steps when direct solution techniques are used.

To simplify the following discussion of the computational requirements of 

the META method relative to those of the time-marching approach, the 

discussion is restricted to square, two-dimensional, physical grids with 

V^n by V^ nodes. This implies that if the nodes are numbered 

sequentially parallel to either of the coordinate axes of the grid, the band 

width of the resulting coefficient matrices, when spatial discretization is 

carried out, is given by:

d = 2 V"" + 1 (26)

Computational requirements of the algorithm presented under "A matrix- 

exponential algorithm for the ground-water-flow equation," and referred to 

here as the META-1 method, are obtained by considering the component processes 

that involve a large number of flops. The major component processes (and the

17



associated number of flops) for the META-1 method are those involving 

computation of:

(1) [V] of equation 9 by BANDR, dn2 ;

(2) [D] of equation 9 by BANDR, d2 n;

(3) [V]e~l -I of equation 10 by matrix multiplication where e"~'- D J t is
o

diagonal, n ;

-1°]* -1 i
(4) [V]e [V] of equation 10 by matrix multiplication, nj ;

(5) [R] _S of equation 8 by solving the banded system of equations 

[R]x_ = J5 for jc = [R] -1 _S, d 2 n; and

(6) e"^^ ( Z Q + [R]" 1 _S ) of equation 8 by vector-matrix
    9 multiplication, n .

Summing up the number of flops required for the above six major component 

processes, and using the notation of equation 22, the following can be 

written:

[META-1] = 2d 2 n + (2+d)n2 + n3 (27)

Similarly, the major component processes (and the associated number of 

flops) for the META-2 method as presented under "A matrix-exponential 

algorithm for the solute-transport equation," are those involving the 

computation of:

(1) [N] = [E]~* [G] for use in equation 5 by solving the n banded

systems of equations [E]_Xj = G_p [E].*2 = $2 » * * * w^ere £1 > £2 ' * * " 

are the columns of [G] , and j^i , x* , . . . will form the columns of 

[N], d 2 n + n(2dn);

(2) [V^, [Vj]", and [D^ by HQR2 , as indicated by equations 12, 14,
 5

and 18, n ;

t ...
(3) [Vi]e of equation 13 by matrix multiplication where e is

2 almost diagonal, n ;

-[D]]t i o
(4) [Vi]e L [Vi] of equation 13 by matrix multiplication, nj ;

18



(5) [G] Q of equation 5 by solving the banded system of equations
-1 9 = 0 for x = [G] 0, d^n; and

(6) e~l- N J t: (CQ + [G] Q ) °f equation 5 by vector-matrix multiplication, 

in

Summing up the number of flops required for the above six major component 

processes, and using the notation of equation 22, the following can be 

written:

[META-2] = 2d 2 n + 2(l+d)n2 + 2n3 (28)

The relative computational requirements of the META-1 and the META-2 

methods with respect to the time-marching (TM) method are:

K( META-1) = [META-1]/[TM] (29) 

K(META-2) = [META-2]/[TM] (30)

where the computational requirements [META-1], [META-2], and [TM] are given by 

equations 27, 28, and 25, respectively. Because equation 25 gives the 

computational requirements for only one time step of the time-marching method, 

K(META-l) as given by equation 29 represents the "break-even" point for the 

META-1 method, or the number of time steps of the time-marching method at 

which its computational requirements (or cost) "break even" with those of the 

META-1 method. Similarly, K(META-2) represents the number of time steps of 

the time-marching method at which its computational requirements break even 

with those of the META-2 method.
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If the expressions for [ TM] , [META-1], and [META-2] (equations 25, 27, 

28) are substituted into the definitions for K(META-l) and K(META-2) as given 

by equations 29 and 30, and because d   2 y^n" ( equation 26), the following can 

be written:

K( META-1) = 2| + i Vn~+ n/4 (31) 

K(META-2) = 2i + /n + n/2 (32)

Typical values based on equations 31 and 32 are K( META-1) = 32^, K(META- 

2) = 62i for n = 100; and K( META-1) = 74i, K( META-2) = 146i for n = 256.

It is seen from equations 31 and 32 that as the number of nodes ( n) in 

the spatially discretized grid increases, it takes a proportionally increasing 

number of steps of the time-marching method for its cost to break even with 

that of the META-1 and META-2 methods. So equations 31 and 32 indicate that 

from a computational-efficiency standpoint, the META method (in general) 

becomes less attractive   compared to the time-marching method   as the size of 

the discretized problem, namely n, increases. For a specific size n, the META 

method may be computationally more efficient than the time-marching method 

depending on the size of the time steps used for the latter, as discussed in 

the following paragraph.

From K( META-1) and K( META-2) given by equations 31 and 32 for a 

particular grid size n, and the size of the time steps used in the time- 

marching method, the actual simulation time at which the break-even point is 

reached (the actual break-even simulation time) can be obtained. Although 

K( META-1) and K( META-2) may appear large for a particular n, the size of the 

time steps used in the time-marching method may be small enough (due to 

numerical stability restrictions) that the actual break-even simulation time 

may not be large. If that is the case, and the actual break-even simulation 

time is smaller than the required simulation time for the particular 

application, the META-1 and META-2 methods would be computationally more 

efficient than the time-marching approach for the grid size n in question.
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The terms n/4 of equation 31 and n/2 of equation 32 are the major 

contributors to the increase in relative computational requirements ( or 

diminishing relative efficiency) of the META method with increasing n. The 

first term, n/4 of equation 31, reflects work associated with performing the 

full matrix multiplication of [V] e~«- J t [V] in the META-1 method, which is
O

the cause of the n term in equation 27. The second term, n/2 of equation 32,

reflects work in the META-2 method of: (1) Computing the eigenvalues and

eigenvectors of [N] by EISPACK'S HQR2 as indicated by equation 12, which
o o

contributes an n to the 2nJ term of equation 28; and (2) performing the full

-[Di]t _i . . Q 
matrix multiplication of [Vi]e [V-, ] , which contributes the other n to

o
the 2nJ term of equation 28.

Matrix multiplication of full matrices and eigensystem computations by 

EISPACK'S HQR2 are the two major reasons for the increasing relative 

computational requirements (or diminishing relative efficiency) of the META 

method with increasing n. The first of these processes, that of matrix 

multiplication of full matrices, can be improved in efficiency by use of array 

processors: electronic hardware equipment that can be made to interface with 

whatever machine is being used to do the computations.

As for computation of the eigensystem for [N] of equation 5 by EISPACK'S 

HQR2 in the META-2 method, the core of the inefficiency is that HQR2 considers 

the matrix for which it seeks to compute eigenvalues and eigenvectors as a 

general one and does not take advantage of structural features of the matrix 

(such as the bandedness in [N]). If EISPACK, or any other eigensystem 

package, acquires the capability of taking advantage of matrix bandedness as 

it is now possible to take advantage of banded symmetry through use of 

EISPACK'S BANDR   computational requirements of obtaining the eigensystem of 

[N] in the META-2 method will be greatly reduced. Also, utilization of the QZ 

algorithm, which uses [E] and [G] to obtain the eigensystem of [N] = [E] [G] 

without explicitly forming [N], would make the META-2 algorithm more 

efficient.

21



For minimum storage requirements, the following number of locations are 

needed for the time-marching ( TM) , META-1 , and META-2 methods:

TM: (3+2d)n locations (33)

META-1: (6| + lid)n + 2n2 locations (34)

META-2: (7i + l£d)n + 3n2 locations (35)

Expression 33 assumes use of direct solution techniques. If iterative 

techniques are used, storage requirements of the time-marching approach would 

be less than indicated.

Use of high-speed scientific computers, such as the CDC 6600, CDC 7600, 

STAR-100, CYBER-203, and CRAY-1, would reduce the absolute computing time for 

the META method to such an extent that considerations regarding its relative 

computational requirements (or relative computing time) with respect to the 

time-marching method become irrelevant. Also, such computers have very large 

memories and can easily handle the greater storage requirements of the META 

method indicated by equations 34 and 35. Choice between the two methods might 

then depend on superior accuracy as discussed below.

As shown under "Accuracy, reliability, and the matrix condition number," 

the accuracy in temporal computations associated with the META method can be 

quantified by use of the condition number of the matrix of eigenvectors. With 

it, the maximum number of significant figures that may be lost in the 

computations can be predicted. For a symmetric exponent matrix (as is the 

case in the algorithm presented under "A matrix-exponential algorithm for the 

ground-water-flow equation"), the matrix of eigenvectors is orthogonal, 

leading to maximum possible accuracy and no loss in significant figures. 

There is no comparable process by which the accuracy in temporal computations 

associated with the time-marching method can be quantified, given a particular 

time discretization scheme and stepping strategy.

22



NUMERICAL EXAMPLE

In this section, the procedures presented in this report are applied to a 

ground-water-flow problem where the spatial discretization is done by the 

finite-element method (Galerkin Formulation). These procedures have been also 

applied by the authors to a solute-transport problem (Umari and Gorelick, 

1986).

The areal layout of the ground-water-flow problem, modified from Willis 

and Newman (1977) and shown in figure 3, has a well field of five wells 

(circles) adjacent to a river (two lines connecting three triangles at top of 

figure). The aquifer from which the wells are pumping is semi-confined. The 

physical domain is discretized into twenty triangular elements and sixteen 

nodal points. Every element has a three-component row vector associated with 

it; the first component indicates the element number, the second the property 

zone, and the third the recharge zone. For example (19, 4, 2) indicates that 

element 19 is in property zone 4 and recharge zone 2. The characteristics of 

the four property zones defined for this problem are presented in table 1. 

Note that no units are shown; any consistent set of units (hereafter referred 

to as "dimensionless") is acceptable for the parameters and variables of this 

problem.

Table 1, Dimensionless x conductivity (Kx), y conductivity (K ), and 

storage coefficient (S) for the four property zones

Zone

1

2

3

4

Kx
J\.

1.45

144.80

0.14

72.39

VKy

0.36

36.07

0.04

9.02

S

0.01

0.01

0.01

0.01
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EXPL.ANATI ON

2 NODE NUMBER

A CONSTANT-HEAD RIVER NODE 

  WELL NODE

(19,4,2) ROW VECTOR (ELEMENT NUMBER. PROPERTY ZONE. RECHARGE ZONES) 

NOTE. ALL THE DISTANCES ARE DIMENSIONLESS .

15

Figure 3.--Physical layout of the numerical example.
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Recharge zone 1 represents the leaky part of the semi-confined aquifer, 

which is overlain by a confining bed for which the dimensionless vertical

hydraulic conductivity divided by the thickness (K,/ Az) is 0.0000223 and inz

which the hydraulic head is held constant at 60.96. Recharge zone 2 

represents the totally confined part of the semi-confined aquifer.

The five wells are located at nodes 4, 6, 7, 12, and 14 below the river, 

which is represented by line segments connecting nodes 1, 2, and 5 and forms 

the upper boundary of the grid. The hydraulic head at the river nodes is held 

at the constant value of 60.96, which is also the initial value for heads at 

all the nodes in the grid. Apart from these constant-head river nodes, heads 

at all other nodes are allowed to change. The five wells are pumped at the 

same constant rate of 60.00 dimensionless units. It is desired to obtain the 

piezometric surfaces at some specific future time by the conventional time- 

marching approach and the META method and to compare these surfaces.

The spatial discretization of the flow equation to obtain equation 1 for 

use of both methods is done by using the triangular-finite-element computer 

code of Wiggert (1974). For the time-marching approach, the Crank-Nicolson 

approximation of the time derivative (rather than the simpler forward- 

difference approximation represented by the set of equations 3) is used, based 

on Wiggert's program.

An arbitrary time of 14.25 is chosen to compare results of the two 

methods. The results are presented in table 2. As shown in table 2, results 

obtained by the two methods are practically identical.

For the time-marching solution, 29 time steps were used, the first of 

length 0.25 and the remaining of length 0.50 dimensionless time units. The 

computations, which were performed on an IBM 370/168, took 1 second of Central 

Processing Uni£ (CPU) time, 1 second of Input/Output (I/O) time, and required 

80 kilobytes (80K) of memory for an execution charge of $0.34. For the META 

method, the CPU time was 3 seconds, the I/O time 3 seconds, and the memory 

requirement 170K for an execution charge of $1.63. The cost differential is 

actually less severe because the time-marching program was already compiled at 

the beginning of the execution sessions, whereas the META program was not.
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Table 2. The piezometric surface at time 14.25 as obtained by the 

conventional time-marching approach and the META method

Node

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Time-marching 

approach

60.96

60.96

60.96

60.84

60.96

60.82

60.81

60.97

60.97

60.93

61.01

60.56

61.12

60.66

60.90

60.97

META algorithm

60.9600

60.9600

60.9583

60.8495

60.9600

60.8235

60.8136

60.9767

60.9726

60.9367

61.0104

60.5640

61.1187

60.6643

60.8956

60.9674

Boundary 

conditions

Dirichlet

Dirichlet

Dirichlet
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SUMMARY AND CONCLUSIONS

Two algorithms to obtain analytic solutions for _h( t) and c_( t) of the 

spatially discretized flow and solute-transport equations 1 and 2 have been 

presented. These analytic solutions involve obtaining the exponential of a 

matrix, which in both algorithms is done by manipulating the eigensystem of 

the matrix to be exponentiated.

The first algorithm, especially suited for the flow problem when spatial 

discretization has been carried out by the finite-difference method, employs a 

transformation that makes the matrix to be exponentiated symmetric. This 

symmetry leads to an orthogonal system of eigenvectors and maximum accuracy. 

Because the matrix to be exponentiated is banded and symmetric, EISPACK'S 

efficient BANDR routine can be used to obtain its eigensystem. Because of 

symmetry, the eigenvalues are all real, thereby simplifying the matrix- 

exponentiation process.

The second algorithm, especially suited for exponentiating non-symmetric 

matrices (like the ones that arise in the solute-transport problem), obtains 

the necessary matrix decomposition (which involves the eigensystem) by use of 

EISPACK'S HQR2 routine. Due to non-symmetry of the matrix to be 

exponentiated, some eigenvalues may be complex, which makes it necessary to 

exponentiate 2x2 matrices that represent conjugate pairs of these complex 

eigenvalues. The exponentiation of these 2x2 matrices is done by using an 

analytic solution derived especially for them.

The accuracy of the method of obtaining analytic solutions for _h( t) and 

_c_( t) of equations 1 and 2 through the process of exponentiating a matrix is 

quantified by use of the matrix condition number. This number indicates the 

maximum number of significant figures that can be lost in the computations. 

Use of the matrix condition number gives the META method a high degree of 

reliability in that the user can ascertain ahead of time the degree of 

accuracy in temporal computations associated with the final solution for _h(t) 

and _c_(t). There is no counterpart to the matrix condition number in the 

conventional time-marching method.
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The relative computational and storage requirements of the META method, 

with respect to the time-marching method, were found to increase with the 

number of nodes in the spatial-discretization grid. It is suggested that the 

potential higher accuracy of the META method and its reliability acquired 

through use of the matrix condition number should be weighed against its 

increasing relative computational and storage requirements compared to the 

time-marching method when a choice between the two methods is made. For a 

particular grid size, the META method may be computationally more efficient 

than the time-marching method, depending on the size of the time steps used in 

the latter.

A numerical example is given in which a ground-water-flow problem is 

spatially discretized by the finite-element method. The solution for M t) 

obtained by the META method and that obtained by the time-marching method are 

compared for a specific future time t. The two solutions are found to be 

practically identical.
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SUPPLEMENTAL INFORMATION 

Flow and Solute-Transport Equations

Based on the principle of conservation of mass, Jacob (1950) derived an 

equation for ground-water flow, which, for two dimensional (areal) problems, 

can be written as follows:

vh) ± P = S L (A1)

where v is the del operator ( v = d _i_ + d j_> where _i and J_ are the
c?x dy

unit vectors in the x and y directions); 

"." indicates a dot product;
9T_ is the transmissivity tensor, L /T; 

h is the hydraulic head, L ; 

+P is the total recharge rate while (-P) would be the total

pumping rate, Lr/T; and 

S is the storage coefficient (confined aquifer) or the specific

yield (unconfined aquifer), L .

Equation Al, which was derived for a confined aquifer, can be also used for an 

unconfined aquifer, if the assumption is made that drawdown in the hydraulic 

head is small relative to the saturated thickness of the aquifer. This 

assumption would be valid for a regional analysis but not for near-well 

studies.

Similarly, based on the principle of conservation of a certain 

constituent's mass, the two-dimensional (areal) solute-transport equation for 

a conservative constituent can be written as follows (after Bear, 1972):

V.(Dvc) - v. (c q) + Q = - (A2) 
=   dt
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o
where J) is the hydrodynamic dispersion tensor, L /T;

~~ ^ o
c is the dissolved concentration of the constituent, M/L ;

<^ is the flux of ground-water flow as given by Darcy's law, L/T; and

Q is the mass source rate through injection, M/T.

j^ is related to the gradient of the hydraulic head, Vh, by Darcy's 

equation:

$ = -k Vh (A3) 

where k is the hydraulic conductivity tensor.

Time-Marching Approach

Substituting the finite difference approximation given by equation 3 for

.2== in equation 1. one can write: 
dt H '

_ _. 
L ____ i + [B] h + _F = 0. (M)
A t

Using _h (rather than Ji ) for _h in the term [B]_h makes this an implicit

approach, in which a set of simultaneous linear equations has to be solved at

each time step. Equation A4 can be re-written as:

[AA] hk+1 = FF (A5)

where

[AA] = J- [A] + [B] (A6) 
At
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and

FF = -1 [A] hk - F (A7) 
   At - -

Solution of equation A5 at each time step produces a sequence of solutions _h ,
7 _h , ... corresponding to the sequence of time steps employed. The process

stops when the desired time level has been reached.

The process of marching through time using the spatially discretized
00

solute-transport equation 2 and obtaining the sequence of solutions c_ , cf, 

c ,..., is exactly analogous to that presented above for the flow equation, 

and will not be presented here.
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