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CONVERSION FACTORS

The Lagrangian Transport Model is capable of receiving input in either
English or Metric (SI) units, so both unit systems are used in this report.
The following conversion factors may be used to convert the units of

measurement in this report.

MULTIPLY BY
feet 0.3048
mile(mi) 1.609
square feet (ft?) 0.0929
cubic feet (ft3) 0.02832
feet per second (ft/s) 0.3048
feet per hour (ft/hr) 0.3048
miles per hour (mi/h) 1.609
squage feet per second 0.0929
(ft7/s)
cubig feet per second 0.02832
(£t7/s)
kilopascal (kpa) 10.00
inches of mercury (in Hg) 33.864
milligrams per day per foot 3.2808
(mg/day-£ft)
Langley 1.0000

Temperature Conversion: °F = 1.8°C + 32
°C = (°F - 32)/1.8

TO OBTAIN
meters (m)

kilometers (km)
square meters (m2)
cubic meters (m3)

meters per second

(m/s)

meters per hour

(m/hr)

kilometers per hour

(km/hr)

square meEers per
second (m" /s)

cubic metegs per
second (m”/s)

millibars (mb)
millibars (mb)

milligrams per day
per meter (mg/day-m)

calories per square
centimeter



USERS MANUAL FOR A ONE-DIMENSIONAL
LAGRANGIAN TRANSPORT MODEL

By David H. Schoellhamer and Harvey E. Jobson

ABSTRACT

A one-dimensional Lagrangian transport model for simulating water-
quality constituents such as temperature, dissolved oxygen, and suspended
sediment in rivers is presented in this Users Manual. One-dimensional
transport modeling theory and capabilities, restrictions, techniques, and
optional capabilities of the model are briefly presented and the application
of the model is thoroughly discussed. Appendices present input and output
file formats and three example applications.

INTRODUCTION

A one-dimensional transport model can be a useful tool for predicting
the fate of water-quality constituents in rivers. Such a model simulates
the longitudinal movement of constituents as they are transported
downstream. Direct modeling of secondary currents, stratification,
transverse mixing, and other multi-dimensional phenomena are excluded. For
example, the effect of a power plant discharge on water temperature is
modeled by assuming that the outflow immediately mixes uniformly across the
river cross section and is transported by the cross-sectionally averaged
flow velocity. The primary factor in transport modeling is the flow of the
river, called convection, which moves the constituents downstream. As
convection occurs, the constituents tend to disperse in the longitudinal
direction. Other factors may include the mixing of both point and non-point
sources and the decay of constituents with time.

Simulation of these processes is accomplished by solving the
convection-dispersion equation. This equation is derived by considering the
principle of conservation of mass and must be solved by numerical
approximation. Most solution techniques use an Eulerian reference frame
that fixes the computational nodes in space. Although Eulerian modeling is
easy to conceptualize, the computations are fairly difficult and the results
can be inaccurate, oscillatory, and unstable. The alternative is a
Lagrangian reference frame which eliminates many of the Eulerian
difficulties.

Lagrangian transport modeling moves the computational nodes, which are
in reality parcels of water, with the flow of the river. Even though the
tracking of parcels requires much bookkeeping, the troublesome convection
term is eliminated from the convection-dispersion equation. As parcels pass
both point and non-point sources, the inflow is mixed and new parcel



concentrations are computed. In addition, decay is computed within each
parcel during each simulation time step.

A one-dimensional Lagrangian transport model, called the LTM, for
simulating water-quality constituents such as temperature, dissolved oxygen,
and suspended sediment in rivers is presented in this Users Manual. One-
dimensional transport modeling theory and Lagrangian modeling techniques are
briefly presented and the application of the model is thoroughly discussed.
A companion document serves as a Programmers Manual for the LTM
(Schoellhamer and Jobson, 1986). The Programmers Manual describes how the
LTM works in detail and lists program codes.

The LTM can simulate both steady and unsteady streamflow in addition to
variable boundary conditions and solute loads. Time-dependent data can be
input from the data base of the Time-Dependent Data System (TDDS, Krug and
others, written commun., 1983). Input may be in either English or metric
units. Output options include storing output either with the TDDS or in
direct access files, calculating a root-mean-squared error, calling a user-
written plotting subroutine, and writing decay coefficients. The output
includes grid concentration, initial parcel concentration, travel time, and
change in concentration due to decay, dispersion, lateral inflows, and
tributary inflows.

Decay and constituent reactions are modeled by determining decay
coefficients in a subroutine that may be written by the user to suit his
particular needs. Examples of three different decay-coefficient subroutines
are presented in this Users Manual and listed in the LTM Programmers Manual
(Schoellhamer and Jobson, 1986). One of these subroutines uses the reaction
kinetics of the QUAL II water-quality model (Roesner and others, 1977a,
1977b), thus providing the advantages of unsteady Lagrangian calculations
and the QUAL II reaction kinetics. The user, however, should not use any of
the example kinetics if they do not apply to his particular problem. The
LTM Programmers Manual (Schoellhamer and Jobson, 1986) describes how to
write a decay-coefficient subroutine if the existing routines are not
satisfactory.

This Users Manual describes one-dimensional transport theory, the LIM,
"and how to apply the model. Appendices A thru E list input file formats.
Appendices F, G, and H contain example applications of the LTIM.

ONE-DIMENSIONAL TRANSPORT THEORY

The convection-dispersion equation first will be derived for a
conservative substance in the Eulerian reference frame and then the
Lagrangian equivalent will be presented. The Eulerian reference frame is
stationary while the Lagrangian reference frame moves with the river flow.
For example, an observer standing on a bridge views a river from the
Eulerian reference frame while an observer in a drifting boat views the



river from the Lagrangian reference frame. After the equations are derived,
the solution techniques for the convection-dispersion equation will be
discussed.

Derivation of the Convection-Dispersion Equation

Figure 1 shows a non-moving (Eulerian) incremental control volume of
cross-sectional area, Aa, and incremental longitudinal length, Ax. U is the
mean cross-sectional velocity and u is the local deviation from U. Thus
the conservation of mass, which states that the accumulation of mass in the
incremental control volume equals the difference between the mass entering
and the mass leaving, gives

d(c Ax da) - ) d(c(U + u)da)
at c(U + u) da [ c(U + u) da + 7% Ax (L)

in which ¢ is the concentration of the transported constituent, t is time,
and the incremental cross-sectional area is written with the differential
expression da. Equation 1 neglects molecular and turbulent diffusion which
are usually small relative to differential convection. Simplification gives

d(c da) - -3(c(U + u)da) (2)
at ox

Integration over the entire cross-sectional area yields
g; fA c da = - g; fA c Uda - g; fA c uda (3)

Evaluating the first two integrals and noting that U is not a function of
da, one derives the transport equation for the cross section

C -3dAUC A
Q%; - ax g; f ¢ u da 4)

in which C is the average cross-sectional concentration and A is the cross-
sectional area. Application of the differentiation product rule produces

8A , ,8C _ L 3AU , L 3C 3 A |
Cor t+Age = Cay -AUZ axf c uda (5)

Equation 5 can be simplified with the continuity equation for the
control volume, which is
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dbxda) - @+ v da - [(u +wda+ (e u)daMX] (&)

Simplification, integration over the cross-sectional area, and the fact that
the integral of u over the cross-sectional area is zero gives

aa _ _ aaU )

at ax

Substitution of equation 7 into equation 5 and simplification gives

A%%-=-AJ% i—f cuda (8)

The integral in equation 8 is the dispersion term. This term primarily
accounts for the reduction of a three-dimensional phenomenon to one
dimension. The integral is approximated with the Boussinesq assumption
wherein the local deviation from the mean velocity is considered analogous
to a turbulent velocity fluctuation such that

1A p 8¢
A f uc da Dx ax% (92)

where D is the longitudinal dispersion coefficient. Finally, equation 9 is
substitlited into equation 8 and A is assumed to be independent of x. This
assumption is relatively minor by comparison with the Boussinesq assumption.
The result is

4c¢ 8c 8 4c
at U ax = dx [ Dx ax ] (10

Equation 10 is the Eulerian one-dimensional transport equation for a
conservative substance, also called the convection-dispersion equation. The
first term on the right hand side is the convective term which accounts for
the downstream movement of mass in the river. This term is the most
troublesome term for nonanalytical numerical solutions of the transport
equation because it can cause numerical dispersion, overshoot, undershoot,
negative concentrations, oscillations, and instabilities (Cunge, and others,
1980, Gray and Pinder, 1976, Grenney and others, 1978, Gresho and Lee, 1981,
Jobson, 1980, Sobey, 1984, van Genuchten and Gray, 1978, and Varoglu and
Finn, 1978). The second term is the dispersion term which accounts for the
reduction of a three-dimensional problem to one dimension (Jobson, 1981).

The Lagrangian one-dimensional transport equation is derived similarly
with the important exception that the incremental control volume is assumed



to be moving at the mean cross-sectional velocity U. Thus the Lagrangian
equivalent of equation 10 is found by setting U equal to zero in equation 1.
The derivation is then identical to the Eulerian derivation. The resulting
one-dimensional Lagrangian transport equation for a conservative substance
is

ac Q_[D QQ] (11)

at ~ ax X Jx

Equation 11 is identical to equation 10 with the exception that the
troublesome convective term is eliminated.

Solution Techniques For the Convection-Dispersion Equation

With the one-dimensional transport equation developed, a solution
technique has to be chosen. Due to the complexity of both the Eulerian and
Lagrangian forms of the equation, an exact solution is not available for
natural rivers so a numerical approximation must be developed. The three
principal factors that contribute to all numerical solution techniques are
the reference frame, the order of continuity enforced in the system, and the
source of the flow field.

Transport problems are most commonly solved within an Eulerian
reference frame because it is relatively convenient. The river is
discretized by grid points at which equation 10 is solved. But, as
previously mentioned, the troublesome convective term in the Eulerian
transport equation can cause inaccuracies, oscillations, and instabilities.
These problems are reduced by complex solution schemes (Holly and
Preissmann, 1977, and Pinder and Shapiro, 1979) that have relatively high
computational costs.

Combined Eulerian-Lagrangian methods (ELM, also called moving
coordinate systems) have recently been developed in an effort to eliminate
these problems in both one and two dimensions (Casulli, 1985, Cheng and
others, 1984, Douglas and Russell, 1982, Holly and Usseglio-Polatera, 1984,
Neumann, 1981, O'Neill, 1981, Sobey, 1983, Thomson and others, 1984, Varoglu
and Finn, 1978, and Varoglu and Finn, 1980). Basically, for every time step
and grid point, the EIM uses the flow field to determine the initial
location of the particle that will conclude the present time step at a grid
point. The concentration at this initial particle location is determined by
interpolation from the Eularian grid values, thus solving the convection
term. The change in concentration of this particle due to dispersion is
calculated using either an Eulerian or a Lagrangian reference frame. The
basic disadvantage of the ELM is that the pure Lagrangian transport equation
is not fully utilized because particle concentrations must be interpolated
with higher order schemes that, although an improvement, are still
susceptible to Eulerian numerical difficulties (Casulli, 1985).



A pure Lagrangian reference frame tracks particles or ’'parcels’ of
water by moving them with the flow field. This is identical to the control
volume movement used to derive the Lagrangian transport equation.
Elimination of the convective term without the need for interpolation
outweighs the disadvantage of increased bookkeeping needed to track the
parcels (Jobson, 1980). In addition, parcel tracking can be eliminated for
steady nonuniform flows (McBride and Rutherford, 1984).

The second factor that contributes to the numerical solution of the
transport equation is the order of continuity of the concentration enforced
in the system. As shown in Figure 2, no continuity means that
discontinuities exist in the longitudinal concentration profile, zero order
continuity enforces continuity of concentration, and first order enforces
continuity of the first derivative (clope) of concentration. Sobey (1984)
shows that higher order solution schemes can improve Eulerian solutions and
that a zero order Lagrangian scheme (Sobey’s 1983 fractional step algorithm
or FSA) is more accurate than a first order Eulerian scheme. But for
Lagrangian schemes Schoellhamer (1985) shows that non-enforcement of
continuity (as used in the LTM) is almost as accurate as zero order
continuity (i.e. the FSA). Thus the selection of a Lagrangian reference
frame is more important than the use of higher order continuity and the most
cost-effective solution appears to be a noncontinuous Lagrangian scheme.

The third primary factor in developing a numerical solution is the
source of the flow field. The flow field is either solved simultaneously
with the transport equation or it is solved separately and input to the flow
model. The advantage of solving the flow and transport equations in tandem
is that any interactions between flow and concentration (as with highly
concentrated sediment flows) can be modeled. The disadvantage is that if
the hydraulics and transport are independent, as is usually the case, the
same flow field must be re-solved for each desired solution of the transport
equation. Seperate solution of the system hydraulics and transport allows
one flow field to be used for as many transport solutions as needed to
calibrate a transport model.

The most desirable factors to incorporate into a one-dimensional
transport model are a Lagrangian reference frame combined with non-
enforcement of nodal continuity and an externally solved flow field. The
Lagrangian Transport Model has these key attributes.

THE LAGRANGIAN TRANSPORT MODEL

The capabilities and restrictions of the LTM will be presented and the
techniques used by the model to simulate physical processes will be
discussed briefly. These techniques are presented more completely in the
LTM Programmers Manual (Schoellhamer and Jobson, 1986). The optional
capablilities of the LTM are also discussed.
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Capabilities and Restrictions

The LTM can model the longitudinal movement and fate of up to ten
water-quality constituents in a riverine environment. The restrictions of
the model include one-dimensionality, unidirectional flow, and fixed channel
geometry. The LTM does not perform hydraulic calculations. The flow field
at fixed grid points, including discharge, cross-sectional area, and
possibly top width, must be provided by the user. The flow can either be
constant with time (steady) or vary with time (unsteady). The physical
processes of dispersion and decay are simulated by the LTM. The effect of
tributaries and lateral inflows can also be simulated.

The user can define the constituents and the constituents' reaction
kinetics by writing the necessary FORTRAN computer code in a subroutine.
Instructions on how to write the decay-coefficient subroutine are given in
the LTM Programmers Manual. Preparation of this subroutine is not difficult
and may be necessary depending upon the specific needs of the user. This
document presents three different sets of reaction kinetics in the
Appendices for a conservative constituent model, a four constituent oxygen
model, and a ten constituent water-quality model that uses the reaction
kinetics of the QUAL II water-quality model. This hybrid LTM/QUAL II model
can mimic the QUAL II model results and provide the significant benefit of
Lagrangian calculations (Schoellhamer, in press).

echniques

The five physical process that are directly modeled by the LTM are
convection, dispersion, constituent decay, tributary or point source mixing,
and lateral inflow mixing. The modeling techniques used by the LIM are
outlined here and presented in detail in the LTM Programmers Manual
(Schoellhamer and Jobson, 1986).

Convection is the movement of water-quality constituents with the river
flow. For example, when dye is dumped in a river the dye will move
downstream. The LTM computes convection by tracking the movement of parcels
of water that are identical to the control volumes previously introduced.
The river reach being modeled may contain from a few to several hundred
parcels, each with a known volume of water and known concentrations of each
constituent. Lagrangian calculations are performed by moving each parcel at
the average flow velocity of the river reach containing the parcel. The
user discretizes the river with non-uniformly spaced fixed (Eulerian) grid
points at which the flow field (steady or unsteady) is provided to the LTM.
Thus the user has the convenience of defining the system in a Eulerian
reference frame and the advantage of Lagrangian calculations. The
concentration of every constituent is specified at the upstream boundary
where a new parcel is introduced every time step. Therefore the chosen
simulation time step controls the number of computational elements (parcels)
and thus the accuracy of the solution. All other parcels are moved a



distance downstream that depends on the flow velocity and simulation time
step. Parcels are numbered from the upstream boundary in ascending order
and each parcel contains a volume of water that is changed only when the
parcel passes either a point or a non-point source or sink of water. The
change in parcel concentrations due to dispersion, decay, tributary inflows,
and lateral inflows is also tracked.

As a slug of dye moves downstream it will spread out in the
longitudinal direction because of dispersion. Dispersion is calculated by
the LTM based on an exchange flow between neighboring parcels. The boundary
between neighboring parcels is moved at the mean flow velocity, but in
reality a velocity profile exists at the boundary so water near the bed is
moving slower than water near the surface as shown in Figure 3. Faster
moving water that flows from a parcel into its adjacent downstream parcel is
replaced with slower moving water from that adjacent parcel. The parcel
volumes do not change, but each parcel has inflows from and discharges to
its two neighboring parcels. The inter-parcel discharge is a user-defined
fraction of the river discharge. Schoellhamer and Jobson (1986) show that
for steady flow

D
X

bR =5 (12)
U™ At

where DQQ is the ratio of inter-parcel discharge to river discharge and At
is the simulation time step. The change in parcel concentrations due to
dispersion are calculated with a basic mixing equation. Instabilities could
result if the exchanged volume is greater than or equal to half the parcel
volume so the simulation time step is subdivided if needed to insure
unconditional stability.

Constituents may react with each other, grow, or decay. For each
constituent modeled, the decay in each parcel during each time step is

N
ACL - [SL + 221 XKL,I (Cz - CRL,}Z)] At | (13)

where L is the constituent number, £ is a counter, N is the total number of
constituents modeled, XK is an exchange coefficient, CR is an equilibrium
concentration, and S is a source flux of constituent L. The coeffiecients
XK, CR, and S are calculated in the decay-coefficient subroutine and they
can be functions of any LTM variable or of any value read from a file. Thus
the user can easily define the reaction kinetics that best simulate the
actual physical system being modeled. Readers should refer to the LTM
Programmers Manual if they are interested in defining their own reaction

10
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kinetics. This Users Manual presents examples of the three different sets
of reaction kinetics that are provided with the model.

The effect of both tributaries (point sources) and lateral inflows on
the river can also be modeled. The user must provide both discharges
(steady or unsteady) and concentrations of these inflows. Point and
nonpoint withdrawals can also be simulated by specifying a negative inflow.
Inflows are mixed with a basic mixing equation. Point sources must be
located at a grid point used to define the flow field and lateral inflows
must be inclusively located between two grid points. Dispersion upstream
from either a point source or the upstream boundary of a lateral inflow is
not permitted in order to prevent the effect of the inflow from propagating
upstream. In addition, point sources are assumed to be located just
downstream from a grid point and the upstream boundary of a lateral inflow
is also located just downstream from a grid point so neither has an effect
at the grid point where their location is specified.

Optional Capabilities

The optional capabilities available within the LTM include input in
either English or metric units, simulation in steady or unsteady flow, use
of a time-dependent data system for data management, root-mean-squared error
calculation, storage of results in direct access files, a call to a user-
written subroutine PLOT for additional output, and printing of the decay
coefficients.

The input data is read in the unit system selected by the input
variable METRIC. 1If English units are used the unit of length is feet
(cubic feet per second, square feet, etc.) except for the locations of grid
points which are in river miles. If metric units are used the unit of
length is meters (cubic meters per second, square meters, etc.) except for
the locations of grid points which are in river kilometers. The program
performs calculations with metric units so the initial conditions are always
listed in metric units.

The steady/unsteady option is chosen with the input variable IUNSTD.
For steady flow, the discharge at the upstream boundary (grid number one),
point and non-point inflows, cross-sectional areas, and top widths are read
at the beginning of the simulation. Average velocities at grids and in
reaches are calculated from the input values and all of this hydraulic data
is used throughout the simulation. Note that, even though the hydraulics
are steady, meteorological conditions, upstream concentration, and inflow
concentrations can change at every time step.

For simulation of transport in unsteady flow, the flow field must be
read from an external source because the LTM does not compute the flow
field., Either of two sources can be used, the external file UNSTEADY.DATA
or a time-dependent data system. The file UNSTEADY.DATA contains the flow

12



field information at every grid point at the end of every time step
(including the initial conditions at time step zero). The flow field
information is velocity, cross-sectional area, top width, point source
inflow just downstream from each grid point, and lateral inflow in the reach
downstream from each grid point. The specific file format is given in
Appendix C. All values should be for a particular grid point at the end of
a particular time step because the program computes reach and time averaged
values.

A Time-Dependent Data System (TDDS) has been developed by Krug and
others (written commun., 1983) for the U.S. Geological Survey’s BRANCH
unsteady flow model (Schaffranek and others, 1981). The TDDS is a useful
tool for handling large amounts of time-dependent data that, for example,
may be needed in an unsteady simulation with several constituents. Data is
stored in a direct access file by the TDDS for specific data types, grid
points, and times. With the TDDS, data can be read from several different
sources, summarized, deleted, printed, plotted, and modified.

A TDDS interface subroutine links the LTM to the TDDS (Schoellhamer and
Jobson, 1986). Either the flow field (discharge, area, top width, tributary
inflow, and lateral inflow), boundary conditions (upstream concentration,
inflow concentrations, meteorological conditions, and measured river
concentrations for the error calculation), or both can be read from the
TDDS. Output can also be stored with the TDDS.

First, the user must select the scope of the TDDS data management with
the input variable IUNSTD. Then the number of data types to be input and
output and the value of the TDDS variable LIST is read by the TDDS interface
subroutine. The beginning and ending times of the simulation (year, month,
day, hour, and minute) and the TDDS station identification number for each
LTM grid point must be provided. In addition, each data type to be
input/output must be specified along with the readings per day (input only),
number of grids at which input/output is needed, and the LTM grid numbers.
The available data types and their units are listed in Table 1. Data is
read from the TDDS every ten LTM simulation time steps to optimize both core
storage and I/0 requirements. The beginning and ending times of each data
acquisition are calculated, the data is retrieved, and this data is
converted by linear interpolation from the TDDS time step to the LTM time
step. The only compatability requirement of the two time steps is that a
TDDS data point must fall on every tenth (0, 10, 20, ...) LTM time step.
Figure 4, which is a chart of common time steps and their compatability,
shows that this is not a severe restriction if both data sets start at the
same time (time step zero). Finally, the desired output values, which are
temporarily stored in file GRID.DATA (described shortly), are sent to the
TDDS at the end of the simulation.

To expedite model calibration, an optional root-mean-squared (RMS)

error calculation is included in the LTM. The simulation concentrations are
compared to measured concentrations and the RMS error is

13



Name
> A<
AP
AT

> B<

M#

> <

>QL<

>QT<
RA
RS

T#

WS

*%*NOTE:

D I I e T T I R N il it

Cross-sectional area [square feet or meters]
Atmospheric pressure [kilopascals]

Atmospheric temperature [Celcius]

Top width [feet or meters]

Concentration of constituent #, where #=1 to NEQ (10=0)

Concentration of constituent # of lateral inflows, where
#=1 to NEQ (10=0)

Measured river concentration of constituent #, where
#=1 to NEQ (10=0)

Flow rate [cubic feet or meters per second]

Lateral flow rate [square feet or meters per second]
Tributary flow rate [cubic feet or meters per second]
Incoming atmospheric radiation [cal per sq cm per hour]
Incoming solar radiation [cal per sq cm per hour]

Concentration of constituent # for tributary inflows,
where #=1 to NEQ (10=0)

Wind speed [meters per second]

>DATA TYPE< denotes hydraulic data, all other data types
are boundary condition data.

Table 1.--Time-Dependent Data System data types

14



Time-Dependent Data System Time Step, in minutes

1 5 6 10 15 30 60
1 X X X
5 X X X
Lagrangian 6 X X X X X X X
Transport Model
Time Step, in 10 X X X
minutes
15 X X X X X X X
30 X X X X X X X
60 X X X X X X X

X Compatible Time Steps

Figure 4.--Lagrangian Transport Model/Time-Dependent Data System Compatible
Time Steps For the Same Initial Time

15



n
i Z (GT

- TACT£)2 (14)
£=1

2

where GT is a computed grid concentration, TACT is an actual concentration,
and n is the number of RMS calculations made. If the actual concentration
is less that zero, then no RMS calculation is performed for that data point.

The variable IRMS controls whether an RMS calculation will be
performed, the time interval at which the error is calculated, and the
source of the actual values, either the external file TOBS.INPUT or the
TDDS. The error will be calculated every |IRMS| time steps, so if |IRMS| is
one the RMS error will be calculated every time step and if |IRMS| is two
the RMS error will be calculated every other time step. If TOBS.INPUT is
used, the RMS calculation will be performed for every constituent at the
requested output grids (NGOUT), and if the TDDS is used, the error will be
calculated for every comnstituent and grid requested with the TDDS input.

The RMS errors are printed at the end of the output file. Model calibration
will be discussed later.

The input variable IPLOT controls the options for storing the
simulation results in direct access files. The first option is to store the
grid concentrations at every time step in the direct access file GRID.DATA.
Data from up to 199 time steps, including the initial conditions at time
step zero, can be stored. The second storage option is to store parcel
concentrations and locations in the direct access file PARCEL.DATA. At the
conclusion of every time step the concentrations and location of every
parcel are written. The formats of these storage files are given in
Appendicies D and E. The input variable IPLOT also controls whether a user-
written subroutine PLOT will be called at the end of the simulation. PLOT is
intended to be a plotting routine or a post-processor that uses data stored
in the direct access files.

Tables of the decay coefficients S, XK, and CR can be included in the
output. The number of specified coefficient outputs (NCO, maximum of
twenty) is given for the simulation along with both a time and a grid output
control value for each specified output. The output time control is
accomplished with IPT. If IPT is greater than zero then output will occur
at time step IPT, provided IPT is a multiple of IOUT, and if IPT is zero
then output will occur at every normal output time step. Similarly, if the
output grid control IPG is positive, and contained in NGOUT, output will
occur for grid IPG and if IPG equals zero output will occur for all grids.
Thus output can be specified for a particular time and grid, all times at
one grid, one time at all grids, or all times at all grids.
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APPLYING THE LAGRANGIAN TRANSPORT MODEL

This section discusses how to apply the LTM to practical problems. The
model must be installed, all required input files must be prepared, the
model run, and the output checked. Note that in order to run the LTM a
decay-coefficient subroutine must be linked to the main program. Finally,
the hydraulics, dispersion, and decay as defined by the model must be
calibrated.

Availability of the lagrangian Transport Model

The main LTM program, subroutines, documentation, installation
instructions, and the example input and output files presented in this
document are available from the U.S. Geological Survey Gulf Coast
Hydroscience Center. The main program and the subroutines are listed in the
LTM Programmers Manual (Schoellhamer and Jobson, 1986).

Input Files

At least one and possibly several input files may be needed by the LTM.
These files are summarized in Table 2. The file L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>