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CONVERSION FACTORS

For those readers interested in using the International System of Units
(SI), the following table may be used to convert inch-pound units of measurement
used in this report to SI units:

Multiply Inch-pound unit By To obtain SI unit
foot (ft) 0.3048 meter
foot per mile (ft/mi) 0.1894 meter per kilometer
foot per foot (ft/ft) 1.0000 meter per meter
foot per second (ft/s) 0.3048 meter per second
foot squared per second (ft?/s) 0.0929 meter squared per day
cubic foot per second (ft3/s) 0.02832 cubic meter per second

iv



A FINITE-ELEMENT MODEL FOR SIMULATING

HYDRAULIC INTERCHANGE OF SURFACE AND GROUND WATER

By Kent C. Glover

ABSTRACT

A model that is useful for predicting changes in streamflow as a
result of ground-water pumping has been developed. The stream-aquifer
model 1is especially wuseful for simulating streams that flow
intermittently due to leakage to the aquifer or diversion for
irrigation or become perched due to declining hydraulic head in the
aquifer. The model couples the equation of two-dimensional
ground-water flow with the kinematic equations of one-dimensional
open~channel flow. Darcy's law for vertical flow through a semi-
permeable streambed is used to couple the ground-water flow and
streamflow equations. The equations of flow are approximated
numerically by the finite-element method. A listing of the Fortran
program that solves the equations of flow, and a description of
data-input formats are given in the report. The program can simulate
a variety of hydrologic characteristics including perched streams,
streamflow diversions, springs, recharge from irrigated acreage, and
evapotranspiration from the water table and phreatophytes. Time-
dependent boundary conditions can be simulated. The program can be
modified easily to simulate unconfined aquifers and aquifers with
variable directions of anisotropy.

The stream-aquifer model was evaluated for numerical accuracy by
comparing model results with results from an analytical method. Model
results compared favorably with results obtained by the analytical
solution technique. A case study of the stream-aquifer system in the
Bear River valley of western Wyoming showed that stream-aquifer
leakage is more accurately calculated when using the kinematic
equations to simulate streamflow than when using only the continuity
equation.

INTRODUCTION

Water managers and hydrologists commonly are faced with the problem of
evaluating the effects of ground-water pumpage on streamflow. The entire flow
of many streams is allocated to numerous users, and during low-flow periods,
regulation of diversions is common. Withdrawals from large-yield wells com-
pleted in alluvium and associated bedrock aquifers can reduce streamflow by
inducing leakage or by capturing water that otherwise would discharge to the
stream. During periods of above average streamflow, this effect rarely causes
problems; but during low flow, well pumpage may decrease the already limited
quantity of streamflow available to meet the demand. Because streamflow can
continue to be affected after pumping stops, regulating the use of wells only
during droughts can have limited benefit.



Purpose and Scope

This report documents a model that couples two-dimensional ground-water
flow with the kinematic equations of one-dimensional open-channel flow. The
kinematic equations are solved with considerably less computational effort than
the complete dynamic equations. The model is intended primarily for studying
the effects of ground-water pumpage on streamflow. The model was developed in
cooperation with the Wyoming State Engineer.

The stream-aquifer model described in this report was developed to more
accurately simulate a particular hydrologic system--the Bear River, in western
Wyoming. Because many hydrologic characteristics of this stream-aquifer system
are similar to characteristics of other systems in the western United States,
this model could have wide application. Coupled stream-aquifer models are
especially useful for simulating streams that flow intermittently owing to
leakage to the aquifer or diversion for irrigation, or for streams that become
perched owing to a declining hydraulic head in the aquifer. The use of the
model also is appropriate when streamflow and stage vary significantly from
initial conditions.

The ground-water system in the coupled stream-aquifer model is simulated
using the two-dimensional equation for flow in porous media. Aquifer trans-
missivity is assumed to be unchanged by changes in head. The model may be
applied to problems where transmissivity changes in response to changes in
aquifer head by following procedures outlined in this report. The model may be
extended to unconfined-flow problems by following the procedures outlined in
this report. The aquifer may be simulated as anisotropic with respect to
transmissivity, and heterogeneous with respect to transmissivity and storage
coefficient. Boundary conditions include both specified flux and hydraulic
head. All boundary conditions may vary during a simulation. Pumping or
injecting wells may be simulated but are assumed to fully penetrate the aquifer.
Options within the model allow for simulating evapotranspiration from the water
table and linking distributed aquifer recharge to streamflow diversions and
consumptive use of crops.

Streamflow is simulated with the kinematic equations of one-dimensional
open-channel flow. Diversion of water to irrigation canals may also be simu-~
lated. Stream-aquifer leakage is simulated using Darcy's law for flow through a
semipermeable streambed. The model can simulate stream-aquifer leakage when the
stream is perched above the water table as well as when it is hydraulically
connected. In addition, transitions between hydraulically connected and perched
streams may occur with time at a given point. By combining stream-aquifer
leakage with kinematic routing, it is possible to simulate intermittent streams.



Previous Investigations

Digital models of hydraulic interchange between ground water and surface
water have been used to evaluate the effects of pumping wells on streamflow. The
models tend to fall into two categories: GCround-water-flow models that give
inadequate consideration to stream hydraulics, and ground-water-flow models
coupled with open-channel flow, which were developed for dam-break problems and
other flood studies. The latter category of models uses the dynamic-wave
equations of streamflow to simulate the flood wave. These coupled models, when
used to simulate large distributed-parameter systems, can prove to be computa-
tionally laborious.

One of the more widely applied techniques for evaluating the effects of
pumping wells on streamflow is described by Jenkins (1968). This method
computes the rate and volume of streamflow depletion by assuming that the
aquifer is isotropic, homogeneous, and semi-infinite in areal extent. Other
simplifying assumptions are that a stream fully penetrates the aquifer and that
a stream and aquifer are always hydraulically connected. Jenkins (1968) also
suggests that digital models can be used with the method to evaluate the effects
of different kinds of hydrologic boundaries on streamflow depletion. Taylor and
Luckey (1974) used Jenkins' streamflow-depletion method to simulate the conjunc-
tive use of ground water and surface water along the Arkansas River in Colorado.

Digital models of ground-water flow, such as those developed by Trescott
and others (1976) and McDonald and Harbaugh (1984), can be used to simulate
stream-aquifer systems. Several of the assumptions needed for the streamflow-
depletion method are mot necessary when using these models. Anisotropic,
heterogeneous aquifers with irregular boundaries can be simulated. Partially
penetrating streams separated from the aquifer by a streambed with small
permeability also can be simulated. The McDonald and Harbaugh (1984) model
simulates stream-aquifer leakage when the material adjacent to the streambed is
either saturated or unsaturated.

The streamflow-depletion method and digital models of ground-water flow do
not explicitly simulate streamflow. As a result, the methods incorrectly
estimate the effects of pumpage when streamflow and stream depth change signif-
icantly. One model that attempts to solve this problem is described by Hoxie
(1977). In that model, streamflow is routed through the model area while
accounting for diversions and tributaries. The model is based on the assumption
that momentum of water in the stream channels can be ignored. The velocity
distribution is held constant throughout the simulation, and stream depth is
varied to ensure continuity of mass within the stream system. A model used by
Barker and others (1983) and documented by Dunlap and others (1984) follows a
streamflow routing procedure similar to the procedure of Hoxie (1977) but treats
stream depth as a user-supplied function of streamflow.

Investigators of surface-water flow have long recognized that stream
momentum cannot be ignored for most applications. Consequently, Pinder and
Sauer (1971), Zitta and Wiggert (1971), and Cunningham (1977) have developed
models that simultaneously solve the differential equation of ground-water flow
and the two equations of open~-channel flow. The computational effort involved
in these models is large but needed for studies of dam breaks and floods. When
studying the effects of ground~water pumpage on streamflow, the effort rarely is
Justified.



THEORETICAL CONCEPTS

Differential Equations of Surface- and Ground-Water Flow

Streamflow is simulated with the kinematic equations of one-dimensional
open-channel flow. The stream channel is assumed to be rectangular in cross
section. Diversion of water to irrigation canals also may be simulated. Although
accurate simulation of unsteady flow conditions using the kinematic equations is
possible, Miller (1984) describes limitations to the approach in detail. He
concludes that errors resulting from the kinematic models may be masked by large
lateral inflow to the stream channel and the overall computational strategy. In
general, kinematic models are appropriate for water movement that is governed
primarily by the law of conservation of mass and only secondarily by momentum.
Kinematic waves only propogate in a downstream direction; whereas, flood waves
described by the complete dynamic equations may propogate upstream as well.
When investigating the effects of ground-water withdrawals on streamflow, the
gquantity of stream-aquifer leakage often is large and the limitations of the
kinematic equations typically will not be significant.

The kinematic equations of open-channel flow are obtained from the complete
dynamic equations by assuming that the effects of acceleration are negligible.
Terms in the equation of motion related to friction and channel slope are
retained. Manning's formula is used to model the energy lost as a result of
channel friction. Miller and Cunge (1975, p. 189) indicate that the friction of
the channel bottom seldom can be neglected in studies of streamflow. The
resulting equations of open-channel flow, written for unit width of a rectangu-
lar channel, are

3 3
Yow = It (d) + a% (ud) ,and (1)
1 2
/ 7 )
u = 1.486 s, d (2)
where Yo is a stream-aquifer leakage, positive for leakage from stream

to aquifer, in feet per second;
t is time, in seconds;
d is stream depth, in feet;
r is stream length, in feet;
u is Manning's coefficient of roughness, dimensionless; and
Sy is channel slope, dimensionless.

The form of Manning's formula given in equation 2 is based on an assumption that
the width of the stream is quite large relative to the depth.



Initial and boundary conditions are required to solve equations 1 and 2.
The initial conditions used in this model are the depth and velocity of flow in
the channel. The boundary condition is a description of discharge throughout
the simulation at the upstream boundary. When specifying initial conditions,
care must be taken to ensure that the stream velocity and stream depth are
consistent with coefficients used in equation 2. The program described later in
this report checks initial conditions for consistency but makes no attempt to
resolve conflicting data.

A flood wave is not completely simulated by equations 1 and 2 because the
calculated flood wave neither lengthens nor disperses, nor does it subside as it
moves downstream. Backwater effects also cannot be simulated by equations 1
and 2. Numerical methods, such as finite-difference or finite-element approxi-
mations in conjunction with kinematic-wave theory, can introduce numerical
dispersion. Although the effects of numerical dispersion are similar to actual
dispersion occurring in water waves, there is no channel characteristic that can
be used as a calibration parameter to control how much dispersion and
attenuation occurs.

The governing equation of ground-water flow in two dimensions is

-g-;i (Tij g—::.j -qu=S%%+Q i,j = 1,2 (3)
where Tij is the transmissivity tensor, in feet squared per second;
Xy and x, are the Cartesian coordinates, in feet;
h is the hydraulic head of the aquifer, in feet;
Uy is the stream-aquifer leakage, positive for leakage from stream
to aquifer, in feet per second;
S is the storage coefficient, dimensionless;
t is time, in seconds; and
Q is the source-sink term, positive for a source, in feet per

second.

Boundary conditions that apply to this equation are known specific discharge
normal to the boundary, known hydraulic head, or a mixture of the two.

The equation of ground-water flow used in this model simulates a simplified
form of the three-dimensional flow pattern that can develop in an aquifer.
The simplification to two dimensions is justified in cases where the vertical
component of flow in an aquifer is negligible and in unconfined aquifers where
changes in hydraulic head are small relative to the initial saturated thickness.
In many situations, the error caused by treating transmissivity as a constant is
small compared to other errors, such as inaccurately estimating aquifer
properties.



To couple equations 1, 2, and 3, an expression describing the movement of
water between the stream and aquifer system is needed. Darcy's law for vertical
flow through a semipermeable streambed is used. The form of Darcy's law used in
the model is

K
z
dgy = = (dty - h) (4)
wvhere Uy is the stream-aquifer leakage, positive for leakage from stream
to aquifer, in feet per second;
K is the vertical hydraulic conductivity of the streambed,

in feet per second;

m is the thickness of the streambed, in feet;
d is the stream depth, in feet;
y is the altitude of the top of the streambed, in feet; and

h is the hydraulic head of the aquifer, in feet.

Model options, described later in this report, are available to use an appropri-
ately modified form of equation 4 when aquifer head drops below the bottom of
the streambed.

Numerical Approximations

The equations of flow in a stream-aquifer system cannot be solved
analytically for the complex set of boundary conditions that usually occur in
practical studies. Therefore, the differential equations are of necessity
approximated numerically by an equivalent set of linear algebraic equations.
Finite-element approximations are used with Galerkin's method of weighted
residuals (Zienkiewicz, 1971; Pinder and Gray, 1977).

Numerical approximation of the flow equations begins by dividing the
stream—aquifer system into separate finite elements. Triangular elements with
linear sides are used to approximate the aquifer while one dimensional linear
elements located along the sides of aquifer elements are used to approximate the
stream network. Aquifer nodes are located at corners of the triangular elements
and stream nodes are located at ends of the linear elements.



Stream depth, stream velocity, and aquifer head are approximated throughout
the stream-aquifer system by piecewise linear functions of nodal values.
Piecewise linear means that stream depth, stream velocity, and aquifer head vary
elements and are continuous between adjacent elements. For a
increasing the number of nodes would make it
possible to approximate increasingly complex distributions of stream depth,
Algebraically the piecewise linear functions

linearly within

given stream-aquifer system,

stream velocity, and aquifer head.

are written as

>

where d is
ns is

ms is

di(t) is

s
Mi(&) is

4 is an approximation of stream velocity;
ui(t) is the time dependent value of stream velocity at node i;
; is an approximation of aquifer head;
na is the number of aquifer elements;
ma is the number of aquifer nodes;
hj(t) is the time dependent value of aquifer head at node j;
N?(x,y) is the linear basis function associated with aquifer node j in

ns ms
S
Z Z 4, (ML)
s=1  i=l
ns ms
s
Y Y oo
s=1 i=1
na ma
h (%,
Z Z J'(t) J(x y)
a=1 j=1

an approximation of stream depth;

the number of stream elements;

the number of stream nodes;

the time dependent value of stream depth at node i;

the linear basis function associated with stream node i in

stream element s;

aquifer element a.

(5)



If the approximations for stream depth, stream velocity, and aquifer head
are substituted in the governing differential equations (eq. 1-3) the resulting
equations will be approximate. In each case a residual can be defined as the
amount by which the approximating equation varies from the exact equation. If
an approximation is exact, the residual would be zero. Residuals for the
continuity equation of open-channel flow (Rg) and the equation of ground-water
flow (R,) are

~n

3 - ]
R = Yy (d) + — (ud) -

s oL ow
(6)
3 3h 3h .
R, = ax, (Ti5 9% ~ %w ~ S 3¢ ~ @ i3, = 1,2.

Galerkin's method of weighted residuals requires that the weighted average
residual of the approximate solution be zero. Galerkin's method used the
finite-element basis functions as weighting functions. The weighted residual
equations corresponding to equations 6 are

[ R M. ds = 0 (i =1,2,3,...ms)

(7)
fxzfleadedexz =0 (j =1,2,3,...ma).

Substituting the approximate differential equations into the weighted residual
equations results in a set of algebraic equations equal to the number of nodes.

Before writing weighted residval equations_for a gtream—aquifer system it
is convenient to describe the basis functions (M; and Nj). Basis functions are
defined for each node in each element such that (1) the sum of all basis
functions at any point with an element is one, (2) each basis function has a
value only over the element for which it is defined and is zero over all other
elements, and (3) each basis function has a value of one at the node for which
it is defined and decreases linearly to zero at all other nodes associated with
the element. For a linear stream element with node 1 located at the origin of a
local coordinate system and node 2 separated from node 1 by a distance A, the
basis functions are

N @

M= - My = & (8)



The linear basis functions for a triangular aquifer element with nodes 1, 2, and
3 numbered counterclockwise, node 1 located at the origin of a local coordinate
system, and area A are

(y; = yu)x (x; - x,)y

L R Tu e TR
a Y3 X3 9
Ny = lgg = - g v (9
Y2 X2
a
Npo= [5g x - vl

The weighted residual equation corresponding to the continuity equation of
open—-channel flow may be written in matrix form as

. a(d,)
Z f MM, MM, at e
- MM, MM, 3¢d,)
s=1 s 3t
aM, aM, o,
M —— M,
9s 3s ds - (10)
aM, aM,
— — u,d,
s M as M, 3s
q
/IMIMZI{G‘“ ds ) =0
s qGW

Because shape functions are dimensionless, the units of each integral expression
are square feet per second. This equation is written as a summation over all
stream elements of terms integrated within individual elements. By routine
algebraic manipulation, the equation also can be written as a series of equa-
tions equal to the number of stream nodes. The above form of the equation is
given because it most closely corresponds to the procedure used in the computer
program.



The notation for equation 10 within a single element can be simplified as

o 58]+ 1 o] < o

MM, MM,
where [D} = /~ ds
A LS TNATH

a(d,)
vt e,
ot a(d,)
at
oM, oM,
(21 = [ B WEs |,
M, aM,

2 3s

fo - £

{ch} i} ,![M‘le {:Z:;} as-

10

(11)



Finite~difference approximation is used to eliminate the derivative of
stream depth with respect to time. Within a time step At beginning at time t
and ending at time t+At,

a(d) 1 { } { }
- d - <d and
t At t+At t

[~ 5]

(12)

]

{Q-o)tual, + otudt !

o

where ¢ may range from 0 to 1,

and the notation { }t indicates that the enclosed quantity is evaluated at

time t. Substituting these approximations into equation 11 gives

e (D1 {dh,,,, + @ [E] {ud}

t+At t+At =

(13)

foged + 3 19) (), - (=) [B] {ud} .

Equation 13 is formed sequentially for each element moving downstream from
a boundary with known stream depth and velocity. For any element, stream depth
and velocity are known for time t at both upstream and downstream nodes, and for
time t+At at the upstream node. The fact that stream depth and velocity for
time t+At is known at the upstream node is derived from the fact that kinematic
water waves only propagate in a downstream direction. Therefore, solution for
stream depth and velocity can be obtained in a sequential manner, moving
downstream an element at a time, with the downstream node of one element
becoming the upstream node of the next element.

11



Even with the sequential solution algorithm made possible by kinematic
routing, numerical approximation to the continuity equation for open-channel
flow (eq. 13) involves two unknowns (depth and velocity) for each algebraic
equation. Either the number of unknowns must be reduced or the number of
algebraic equations increased before solutions can be obtained. One approach
would be to apply Galerkin's method of weighted residuals to Manning's equation
(eq. 2); doubling the number of equations without increasing the number of
unknowns. However, the resulting set of algebraic equations would be nonlinear.

To reduce the number of unknowns, a procedure is used in this model that is
analogous to one used in rainfall-runoff modeling (Dawdy and others, 1978).
This procedure generally is stable for most ratios of element length to time
step.

The procedure begins by modifying the definition of the [D] matrix as
MM, MM,
{D]=f v e ] as (14)
MM, MM

*
where M, = 2¢M,

*
Mz = 2(1"'@)}{2 .

The modification is such that the element mass associated with [D] is unchanged
for values of ¢ between O and 1.

Depending on the value of ¢ selected, the modified definition of [D]
reduces the number of unknowns in equation 13 to equal the number of equations.
If a value ¢ = 1 is selected for an element, the only unknown in equation 13 is
stream depth at the downstream node (d,). If a value ¢ = 0 is selected, the

unknown is stream velocity at the downstream node (u,). In either case,
Manning's equation is used to solve for the remaining unknown. The decision to
use ¢ = 1 or ¢ = 0 is based on the average velocity at the upstream node during

the time step and the ratio of element length to time step. If the water wave
would travel through the entire element, ¢ is set equal to 1. If the water wave
would not travel through the element, ¢ is set equal to Q.

12



The weighted residual equation corresponding to the governing equation of
ground-water flow may be obtained by substituting the approximate differential
6) into equation 7 with aquifer head defined by equation 5 and
basis functions defined by equation 9.
weighted residual equation may be written in matrix form as

equation (egq.

na
a=] X,

where

/

-
2
a N,

2
9x,

2
2
9x,

2
3 N,

After algebraic manipulation, the
2
9 N,
2

9x,

2 T . . . N |
9 N, X;X; X)X, N, N, N, ‘

2 T h, »dx,dx,
9x, XXy  XpX, N, N, N; h
3

2

R 2

.

(15)
ah:\
NN, NN, it Q,
N,N, N,N, 2§i >>dxldx2 +<Q, 2=0
t

N,N, N,N Q

3Ny N3fNj ah, 3

)

= nodal values of source and sink terms including

stream leakage, i

n cubic feet per second.

Because shape functions are dimensionless, the units of each integral expression
in equation 15 are cubic feet per second.

13



Because basis functions are linear, the second derivative is not defined,
and the first integral expression in equation 15 cannot be evaluated directly.
To avoid this problem, Green's theorem is used. In addition to avoiding second
derivatives of basis functions, the application of Green's theorem also
introduces flux-boundary conditions--used to approximate stream leakage. The
resulting weighted residual equation is

f(m - 4Ll 5 o-qa)-o (16)
a=]

aN, aN,

Ix; 3x,

T T 9N, aN, 9N,
.f f aN, 2N, X, %) X)X, 3%, 3%, 9%,

where (k] e Ae dx;dx
3%, Bx, Te,x, Tx,x 3N, 9N, 3N e
X, X, 2%y 2 X2 i 2 ON3
oN, 9%, dx, 9x, Ix,
ax, 9x, —
h,
{h} = hz
h,

NN, NN, NN,

[c] -/ f s |n,N NN, NN, | dx,dx,
Xy X N3N, N3N, N3N,

w q
k+1 ka+1

Q 3 g
{Qt =< Q, >+ Z f E«,MZI«» kG ds
Q, k=1 =

where w = stream width at node k.

14



Finite-difference approximation is used to eliminate the derivative of
aquifer head with respect to time. Within a time step At

{ g—}: } - h—tlz ({h}t+At - {h}t)

(17)

O IR A N

where © may range from 0 for an explicit solution to 1 for an implicit solutien,
and the notation { }, indicates that the enclosed gquantity is evaluated at
time t. Substituting these approximations into equation 16 gives

na
> ([i; [c] + e {x}] (0} pe ) -

a=1

(18)

na

Z({Q} o +[ el - -0 ] “‘*tm)

a=]

The numerical approximation given in equation 18 can be manipulated
algebraically to form a system of ma linear equations with ma unknown values of
aquifer head, where ma is the number of aquifer nodes. The final matrix
equation is written as

{LHS] {h} = {RHS} (19)

t+At

where [LHS] is formed from the matrices on the left-hand side of equation 18 and
{RHS} is formed from the matrices and column vectors on the right-hand side.
Solution of equation 19 for unknown values {h} 4ay 1is obtained by direct
methods.

15



The numerical approximations for stream-aquifer leakage used in eguations
10 through 19 also can be written in terms of stream depth and aquifer head.
The approximation is obtained by integrating along stream elements as

K MM, MM, d,+y,-hy 4 o
{ch} ) j. ‘i MM, MM, d, +yz —h, > (20)

]

This is equivalent to

{ch} = [R] (21)

K| MM M,
where [R] =f - ds.

Solution Procedure

The iterative procedure of Pinder and Sauer (1971) is used for solving the
equations in the coupled stream-aquifer model. As a first step in the iterative
procedure, a steady-state solution to the kinematic-wave equations (eq. 13) can
be obtained if no leakage is assumed. The steady-state distribution of stream
depth is used to solve the steady-state equation of ground-water flow (eq. 19)
and to calculate a nonzero leakage distribution. The kinematic equations are
solved using the new leakage distribution (eq. 21). Iteration continues between
equation 13, and equations 19 and 21 until the difference in calculated leakage
is less than a predetermined error tolerance. The final steady-state solution
is used as the initial condition for transient simulations in which the itera-
tive procedure described above is repeated for each time step.

Experience with the model has shown that convergence usually is rapid,
typically in less than 10 iterations. However, large changes in boundary
conditions can cause slow convergence. The effort required to solve the
kinematic equations is much less than required to solve the complete dynamic
equations. At the same time, the computational effort needed to solve the
kinematic equations is not significantly greater than needed to solve a problem
using only the continuity equation.
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COMPUTER PROGRAM FOR SIMULATING
HYDRAULIC INTERCHANGE OF SURFACE AND GROUND WATER

A listing of the Fortran program that solves the equations of flow in a
stream-aquifer system is given in table 1 (at the end of the report). The
program uses ANSI standard Fortran 77 and should easily operate on many
computers. Data-input formats are described in table 2 (at the end of the
report). Input and output for a sample simulation are given in tables 3 and 4
(at the end of the report), respectively.

Program Design

The design of a finite-element grid is the first step in most model
applications. The program listed in table 1 uses two-dimensional triangular
elements, with nodes located at each vertex, to simulate the aquifer system. The
stream system is simulated by one-dimensional elements located along the sides
of the aquifer elements.

Although data entry into a finite-element program typically is more
cumbersome than for finite-difference programs, the increased data-entry time
usually 1s more than compensated by increased flexibility in locating nodes.
With a finite-element model, nodes can be accurately located at observation or
pumping wells. In general, fewer nodes are needed to accurately model stream
and aquifer geometry when using a finite-element model.

Data entry into a finite-element program is more cumbersome because of the
need to identify the relationships among all nodes and elements. As a result,
all nodes and elements must be numbered, the Cartesian coordinates of all nodes
must be coded, and the nodes associated with each element must be designated.
The relationship between stream and aquifer nodes also must be indicated.
Figure 1 shows a finite-element grid with nodes and elements for both stream and
aquifer systems. As a general practice, interior angles of triangular elements
probably should be no greater than 90 degrees (Narasimhan and others, 1978).

The system used to number aquifer nodes and elements has a significant
impact on the efficiency and size of the computer program. The coefficient
matrices [C] and [K], developed in equation 7 represent the largest block of
computer storage used by the program. The solution technique is more efficient,
in terms of time and storage requirements, if the size of these coefficient
matrices is minimized. Storage requirements of the coefficient matrices are
directly related to the largest difference between two node numbers in an
aquifer element. Therefore, efficient nodal ordering minimizes this difference
and improves the efficiency of the solution.
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The model procedure used to enter aquifer properties (such as transmissiv-
ity or distributed recharge from precipitation}) and stream-channel properties
(such as slope) is both flexible and easy to use. Aquifer elements are grouped
into a number of user-defined aquifer zones, and stream elements are grouped
into stream zones. An aquifer property, transmissivity for example, is simu-
lated as the product of an element value and a zonal factor. Because transmis-
sivity may be anisotropic, a separate zonal multiplication factor is used for
each of the two principal directions. By using unique factors for each aquifer
zone, it is possible to simulate varying degrees of anisotropy throughout the
aquifer. Stream-channel properties also are simulated as the precduct of element
and zonal values.

Describing aquifer properties and stream-channel properties as the products
of zonal factors and element values has proven useful in model applications when
extensive model calibration is required. Although there are many possibilities
for using zonal factors and element values, the following guidelines may be
useful. Zonal factors could be used to represent relative magnitudes of aquifer
properties and stream-channel properties that are varied during the calibration
process. Element values could be used to represent the distribution of proper-
ties within each zone. Such an approach to using zonal factors can greatly
reduce the tedium of coding and recoding input data; particularly when a
majority of time required to calibrate a model is spent varying relative
magnitudes of calibration parameters, without changing distributions locally.
One possible drawback to the approach is that a hydrologist rarely would change
zonal boundaries in any significant way. Fortunately, it often is possible to
identify zonal boundaries accurately on the basis of climatic or geologic
conditions.

An example of using zonal factors in conjunction with element values can
be given by considering areally distributed recharge to a water-table aquifer.
While it may not be possible to conduct a detailed investigation of recharge
rates through the unsaturated zone, it may be possible as a first approximation
to relate recharge to the rate of precipitation, soil type, and vegetative
cover. Zonal boundaries based on soil type and vegetative cover probably could
be identified accurately on the basis of field reconnaissance. Assuming that
sufficient precipitation-measurement stations are present in the modeled region,
the distribution of precipitation could be mapped and used as element values of
recharge. Model calibration would concentrate on finding appropriate zonal
factors to translate precipitation into recharge. Within each soil type and
vegetative cover, the distribution of recharge would be similar to the distribu-
tion of precipitation.

Transient conditions are solved by dividing the total period being simu-
lated into a number of pumping periods. Boundary conditions, such as specified
hydraulic head in the aquifer, discharge, and well pumping rates may be changed
at the beginning of each pumping period. Information about stream diversions
also may be changed each pumping period. Each pumping period is divided into a
number of time steps to ensure that the differential equations of flow are
approximated accurately. The length of the first time step during a pumping
period usually is small, typically one hour or less. Each successive time step
is lengthened by a multiplication factor.

19



Simulation results may be printed several times during the course of a
pumping period, but the distribution of hydraulic head or drawdown may be
plotted only at the end of a pumping period. Subroutine TOPO produces a
contour-plot file by using plotting routines that are available with many
plotters. The subroutine was tested successfully with Calcomp and Zeta
plotters.1 Minor program modifications may be needed if the program is used
with other plotters.

Program Options

Several options were added to the program. Some of the options allow users
to simulate perched streams, springs, and streamflow diversions. Other options
allow users to: (1) Calculate aquifer recharge distributed to nodes represent-
ing distributed aquifer recharge over irrigated acreage when diverted streamflow
exceeds crop consumptive use; (2) calculate ground-water withdrawals from wells
with supplemental water rights when diverted streamflow does not meet con-
sumptive-use requirements, and (3) simulate evapotranspiration from the water
table and from phreatophytes. P

The model can be‘used to simulate perched and dry stréam; by modifying the
expression for stream-aquifer leakage. When a stream is perched above the water
table, the streambed remains saturated, and the expression for leakage through
the streambed is obtained from Darcy's law as

K

qu = —;z; (d+m). (22)

Any water infiltrating into the unsaturated zone beneath the streambed is
assumed to percolate to the water table. This assumption is reasonable in
strongly coupled stream-aquifer systems where vertical hydraulic conductivity of
the unsaturated zone is greater than the vertical hydraulic conductivity of the
saturated streambed. In many cases the moisture content of the unsaturated zone
will be greater than or equal to field capacity, and the vertical hydraulic
conductivity of the unsaturated materials will not be sufficiently small to
restrict vertical movement. Weekly coupled systems, where vertical hydraulic
conductivity of the unsaturated zone is significantly smaller than the vertical
hydraulic conductivity of the saturated streambed, should be simulated by models
such as the model of the fluid flow in variably saturated porous media
developed by Lappala and others (1987).

Use of brand names in this report is for identification purposes only and
does not constitute endorsement by the U.S. Geological Survey.
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Spring discharge and evapotranspiration are simulated as head-dependent
sinks in the equation of ground-water flow. The major difference in the model
between spring discharge and evapotranspiration is that leakage to springs that
flow into a stream is included as a boundary flux for the stream system;
however, evapotranspiration is not. Spring discharge, in feet per second, from
the aquifer is computed by

q=0, if h<y; (23)

K
qa=Z2(h-y), if y<h

where h is the hydraulic trend in the aquifer;
y is the altitude of the spring bottom;

Kz is the vertical hydraulic conductivity of the spring bottom; and
m is the thickness of the spring bottom.

For evapotranspiration, discharge, in feet per second, from the aquifer is
computed by

q =0, if h £ Zmin; (24)
q = c¢(h - Zmin), if 2Zmin < h < Zmax; or (25)
q = c(Zmax - Zmin), if Zmax < h (26)
where h is the hydraulic head in the aquifer;
Zmin is the altitude below which evapotranspiration from the water

table is zero;
Zmax is the land surface altitude; and
c is the maximum rate of evapotranspiration divided by the

effective depth of evapotranspiration.

21



The program calculates streamflow-diversion rates on the basis of water-
right priorities. The right to divert streamflow in much of the western United
States depends upon the availability of water and the priority date of the water
rights. Diversion of water is not permitted unless the needs of downstream
users with earlier priority dates can be met. Therefore, realistically,
streamflow must exceed some minimum rate at a specified downstream location
before water can be diverted by any user except for the one with the first
priority. As streamflow increases, the rate of diverted water may also in-
crease. However, diversion rights usually are limited to some maximum flow
rate. The program calculates diversion rates for each diversion during each
iteration of a simulation using streamflow information from the previous
iteration. Data entered into the program are the point of diversion, the
minimum streamflow required before diversion can begin, the nodal location where
the minimum streamflow occurs, and the maximum rate of diversion.

The quantity of water diverted to a field for irrigation usually exceeds
the consumptive-use requirements of the crop, particularly when the field is
flood irrigated. Water not consumptively used by the crops may percolate to the
ground-water system or may flow from the field as return flow. The model
accounts for recharge from irrigation by calculating the diversion flow rate
where the diversion enters the field, distributing the water uniformly over the
irrigated acreage, subtracting the consumptive-use requirement of the crop, and
treating the remainder as recharge to the aquifer. No corrections are made for
surface runoff from irrigated lands, canal leakage, or loss of water to storage
in the unsaturated zone.

The model simulates supplemental ground-water rights by pumping designated
wells when the diverted surface water is not sufficient to meet the consump-
tive-use requirements of the crop. In areas where streamflow-diversion rights
exist that have a junior priority date, regulation limiting the quantity of
water available for irrigation is common. Typically, regulation occurs during
the peak growing season, July and August. To compensate for the lack of surface
water, irrigators often obtain water by pumping wells. The ground-water right
is considered to be supplemental to the original surface-water right. The well
pumpage can be simulated as the quantity required to eliminate the water deficit
over all or part of the irrigated acreage.

Program Modification for Unconfined Aquifers

The equations of ground-water flow used in the model calculate the distri-
bution of hydraulic head in a confined aquifer but also can be used to calculate
the hydraulic head in an unconfined aquifer. When an aquifer exists under
water-table conditions, the transmissivity is a function of hydraulic head and,
in a strict sense, the equations do not apply. However, if changes of hydraulic
head are small, only a small error in the calculated head results and is caused
by treating transmissivity as a constant. Usually, errors in calculated results
caused by treating transmissivity as a constant are smaller than errors caused
by inaccurately estimating aquifer properties and boundary conditions. The
storage property of the aquifer entered as storage coefficient ought to be the
specific yield value for an unconfined aquifer.
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If changes in hydraulic head are large, the program can be modified to
calculate transmissivity as a function of hydraulic head. These modifications
are outlined as follows:

1.
1.

Dimeﬁsivﬁ’ﬁﬂﬁegrarray, called BOTTOM, to represent the altitude of
the base of the aquifer. The size of the array must be greater than
number of aquifer nodes.

Add statements to read values of the altitude of the base of the aqui-
fer at each node. The BOTTOM array can be read with values of nodal
locations (XORD and YORD) and initial hydraulic head (PHI) if desired.
Enter hydraulic-conductivity estimates in the transmissivity (TRAN)
array.

Initialize BOTOMJ to 0.0 at the beginning of DO loop 340.

Include the following statement before label 310.

BOTOMJ BOTOMJ+SF(1,K,J)*BOTTOM(NPK).

Replace statements within DO loop 329 that calculate the values of
transmissivity at each quadrature point. The new statements should
calculate transmissivity as

RXJ = TRAN(I)*RX(MATI)*(PHIJ-BOTOMJ), and

RYJ = TRAN(I)*RY(MATI)¥*(PHIJ-BOTOMJ).

Check that RXJ and RYJ are greater than zero. If they are not, print
a message, and either set RXJ and RYJ to small positive values or
stop the simulation.

Within SUBROUTINE SHAFAC, delete the first IF statement and replace
the statement labeled 360 by

360 CONTINUE.

The changes within SHAFAC ensure that integration of the flow
equations will be exact.

When simulating a stream-aquifer system with the changes for water~table
conditions, the user should increase the maximum number of iterations allowed
per time step.

Program Modifications for Variable Directions of Anisotropy

The program listed in table 1 can be modified to simulate flow in an
aguifer where the principal directions of anisotropy vary from zone to zone.
These modifications are outlined below:

1.

Dimension a new array, called AROT, to represent the angle of rotation
for the principal directions of anisotropy. The size of the array must
be greater than the number of aquifer zones.

Add statements to read values of AROT for each aquifer zone. The angle
should be read in radians of rotation from the positive x axis. The
AROT array can be read with values of other zonal factors (RX, RY, RC,
and QXY) if desired.

Add the following as the second statement of DO loop 390.

AROTI = AROT(MATI)

Add the following as the second and third statements in DO loop 310.

XE = XORD(NPK)*COS(AROTI)+YORD(NPK)*SIN(AROTI)

YE = YORD(NPK)*COS(AROTI)+YORD(NPK)*SIN(AROTI)

Replace XORD(NPK) with XE, and YORD(NPK) with YE in all other
statements of DO loop 310.
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MODEL EVALUATION

Comparison with Analytical Solution for
Streamflow Depletion Due to Ground-Water Pumpage

The stream—aquifer model was evaluated by comparing model results with
those obtained by the streamflow depletion method of Jenkins (1968). 1In order
to compare model results with the analytical solution for streamflow depletion,
the simplifying assumptions of the analytical method were reproduced in the
model. The assumptions of homogeneity and isotropy were reproduced in the model
with relative ease. The assumptions of a stream that fully penetrated the
aquifer, no streambed confining unit, and a stream depth that did not vary with
time were simulated by treating all stream nodes as a boundary of constant head
and setting the vertical hydraulic conductivity of the streambed to an artifi-
cially large value.

A finite-element grid with uniform node spacing of 50 ft was used for
comparing results. Modeled pumpage was 1.0 ft®/s from a well 250 ft from the
stream. The assumed ratio of transmissivity to storage coefficient was 0.025
ft?/s. The lateral aquifer boundaries were sufficiently distant from the
pumping well to have no effect on the drawdown distribution.

The comparison between model-calculated streamflow depletion and streamflow
depletion calculated by the analytical method is quite good (fig. 2). Differ-
ences in the two curves probably can be attributed to the small differences in
assumptions of the two methods. During the early time steps of the simulation,
the difference between curves also is the result of relatively large cumulative
errors in the numerical approximations for the equation of ground-water flow.

Evaluation of Numerical Dispersion in the Streamflow Model

Numerical dispersion in the streamflow model was evaluated after the
streamflow model was uncoupled from the model of ground-water flow. 1In the
evaluation, all ground-water nodes were modeled as boundaries of known head and
variables used in the streamflow model were given the following values: Vertical
hydraulic conductivity of the streambed, an artificially small value of
1 x 107%% ft/s; stream discharge, initially 100 ft3/s; channel width, 50 ft;
Manning's coefficient of roughness, 0.025, a value indicating a smooth stream
channel; and channel slope, 0.001 ft/ft. Equation 2 was used to calculate
initial values of stream depth.

The dispersion of a flood wave approximated by the model was used to
evaluate the numerical dispersion by using different time steps and nodal
spacings. Figures 3 and 4 show the dispersion of the calculated flood wave 1
day after stream discharge at the upstream boundary was increased to 250 ft3/s.
The model-calculated flood waves shown in figure 3 were obtained by using 5-,
10~, and 20-minute time steps with a uniform nodal spacing of 5,400 ft. Using
time steps of 10 minutes or less, numerical dispersion in the solution is
similar for 5- and 10-minute time steps. A 20-minute time step results in the
calculated flood wave moving downstream with little dispersion. Model--
calculated flood waves shown in figure 4 were obtained by using nodal spacings
2,700, 5,400, and 8,400 ft and a uniform time step of 5 minutes. Decreasing
the nodal spacing will decrease numerical dispersion.
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RATE OF STREAMFLOW DEPLETION,
IN CUBIC FEET PER SECOND

1.0
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/ ANALYTICAL SOLUTION
0.01 // -—@—-  MODEL RESULTS 7]
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a2S/Tt, DIMENSIONLESS

Figure 2.-—~Comparison of model results with Jenkins’
analytical solution for stream depletion (t is time,
S is storage coefficient, a is distance from the
pumping well to the stream, and T is
transmissivity).
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Simulation results shown in figures 3 and 4 indicate that numerical
dispersion decreases as the ratio of nodal spacing to time increment approaches
kinematic-wave celerity. Wave celerity is the derivative of stream discharge
with respect to cross-sectional area. For the simulation results shown in
figures 3 and 4, wave celerity is approximately 4 ft/s. Therefore, in figure 3
with uniform nodal spacing 5,400 ft minimum numerical dispersion should occur
with a time step of approximately 22 minutes. In figure 4 with 5-minute time
steps, minimum numerical dispersion should occur with nodal spacing of approxi~
mately 1,200 ft.

The effects of numerical dispersion on a flood wave (figs. 3 and 4) can be
significant and in some cases produce results similar to those caused by
physically-based dispersion. However, no recommendations can be given regarding
lengths of time steps or nodal spacings that will produce reasonable attenuation
and dispersion of flood waves. In many stream-aquifer applications, it is not
as important to accurately simulate dispersion as it is to simulate stream-
aquifer leakage rates. If accurate simulation of flood-wave attenuation and
dispersion is important, then a model based on the complete dynamic equations of
open-channel flow may be more appropriate than the model described in this
report.

Bear River Valley Case Study

The northern Bear River valley in Wyoming is a good example of a stream-
aquifer system where ground-water development could affect or deplete stream-
flow. Also, because the velocity of water in the Bear River is relatively small
during low flow, the stream-aquifer system represents a useful test of the need
for kinematic routing. The Bear River originates in the Uinta Mountains of Utah
and flows northward along the Utah-Wyoming border. Turning west into Idaho and
then south into Utah, the river finally discharges into the Great Salt Lake. The
stream reach of interest in this simulation is shown in figure 5. Average
channel slope is 2.1 ft/mi, and the mean annual streamflow is 422 ft¥/s at the
downstream Idaho-Wyoming border. The total thickness of alluvium along the Bear
River has not been determined but is known to exceed 450 ft. Bedrock aquifers
underlying the alluvium have small permeability.

The Bear River study reach is typical of many stream-aquifer systems in the
western United States. Potentiometric-surface maps indicate that the principal
discharge from the aquifer occurs along the main river stem and that recharge to
the aquifer occurs along the tributaries. During the irrigation season, diver-
sions of surface water result in additional recharge. Streamflow increases as
much as an order of magnitude during spring snowmelt, but returns to approxi-
mately the same base flow of 210 ft?/s during October through February. Water
levels in the alluvium rise and decline in response to changes in depth of the
stream and irrigation recharge, but generally return to the same levels each
winter.

The coupled model of stream-aquifer flow was used to simulate stream-
aquifer conditions along the Bear River during the 1980 and 1981 irrigation
seasons. The flow system was divided into nine agquifer zones and nine stream
zones. Streamflow diversions and recharge to ground water from surface irriga-
tion were simulated. Effects of ground-water pumping and evapotranspiration
from the water table and phreatophytes also were simulated.
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Two simulations, made during the course of model development, illustrate
the difference between streamflow calculated by the kinematic equations and by
the continuity equation. The first simulation used the kinematic equations
(egs. 1 and 2). A value of 0.025 was used for Manning's coefficient of rough-
ness. Channel slope was estimated from topographic maps, and initial stream
velocity and head distribution were calculated from equation 2. The second
simulation used only the continuity equation (eq. 1) to route water through the
stream channel and was conceptually the same as a simulation using the model
described by Hoxie (1977). The depth of water in the channel varied throughout
the simulation period in response to changes in streamflow and was calculated by
holding the velocity distribution constant.

The simulation results are compared to streamflow measured at the down-
stream model boundary (fig. 6). The hydrograph of streamflow calculated using
the kinematic equations reproduces the hydrograph of measured streamflow fairly
well, but the hydrograph calculated using only the continuity equation does not.
The slope of the recession curve is much too gradual; in fact, streamflow
calculated by the continuity equation does not return to initial conditions
during the winter of 1980 and 1981.

The difference between hydrographs is the result of different calculated
distributions of stream head. In turn, this causes different rates of stream-
aquifer leakage. The ability to solve for both stream depth and velocity, using
the kinematic equations, has resulted in a calculated stream-depth distribution
that is similar to the actual depth distribution during the peak runoff period
(April to July). The stream-depth distribution calculated by the continuity
equation is too large. Overestimating stream depth means that the quantity of
water leaving the stream channel as bank storage is calculated accurately by the
kinematic equations but is grossly overestimated by the continuity equation.
When demand for irrigation water is greatest (July to October), the kinematic
equations accurately simulate the movement of water from bank storage into the
channel while the continuity equation overestimates stream discharge.

The Bear River valley case study illustrates the need for using kinematic-
wave theory in models of stream-aquifer systems. The kinematic equations give
reasonably accurate estimates of streamflow without significantly increasing
computational effort over that required for models using only the continuity
equation. The ability of models using kinematic equations to accurately
simulate declining limbs of hydrographs and low-flow periods means that water
managers can more accurately evaluate the effects of ground-water pumpage or
streamflow. If a model using only the continuity equation was used by water
managers, the quantity of water available during periods of declining streamflow
would be overestimated. Consequently, any effects of ground-water pumpage on
streamflow could be masked by overestimates of streamflow.

Selected model input and output data for the simulation using kinematic
equations are presented in this report as an aid to future users of the program.
Data-input formats are given in table 2. The input data used for the kinematic
simulation are given in table 3 and model output for a single time step are
given in table 4.
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Figure 6.-—-Measured streamflow in the Bear River
at Border, Wyoming and streamflow calculated
by the model using the kinematic and
continuity equations.
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SUMMARY

Water managers and hydrologists often are faced with the problem of
evaluating the effects of ground-water pumpage on streamflow. This report
documents a model that is useful for predicting changes in streamflow as a
result of ground-water pumpage and that was developed to simulate the hydrologic
system of the Bear River in western Wyoming. The stream-aquifer model is
especially useful for simulating streams that flow intermittently due to leakage
to the aquifer or diversion for irrigation or become perched due to declining
hydraulic head in the aquifer. Previous models of hydraulic interchange between
ground water and surface water either have given inadequate consideration to
stream hydraulics or have simulated streamflow in such detail as to be computa-
tionally cumbersome when applied to large heterogeneous aquifers.

The model couples the equation describing two-dimensional ground-water flow
with the kinematic equations of one-dimensional open-channel flow. Darcy's law
for vertical flow through a semipermeable streambed is used to couple the
ground-water flow and streamflow equations. The equations of flow in the
stream-aquifer system are approximated numerically by the finite-element method.
The Fortran program that solves the equations of flow is listed in the report.
Data-input formats are described, and input and output for a sample simulation
are given as an aid to model users. A description of the program design also is
given to help model users plan a finite-element grid. The model procedure used
to enter aquifer and stream-channel properties is flexible.

Several options were added to the program to simulate a variety of hydro-
logic features. These features include perched streams, streamflow diversions,
springs, recharge from irrigated acreage, and evapotranspiration from the water
table and from phreatophytes. Time-dependent boundary conditions can be
simulated. Program modifications for simulating unconfined aquifers and
aquifers with variable directions of anisotropy also are described.

The stream-aquifer model was evaluated for numerical accuracy by comparing
model results with results from an analytical method. Model results for a simu-
lation of streamflow depletion due to pumping nearby wells compared favorably
with results obtained by an analytical solution technique. Simulations using
various stream-node spacings and time steps showed that numerical dispersion can
be significant when modeling streamflow. A case study of the stream-aquifer
system in the Bear River valley of western Wyoming showed that stream-aquifer
leakage is more accurately calculated when using kinematic equations to simu-
late streamflow than when using the continuity equation. A simulation using the
kinematic equations more accurately reproduced stream-aquifer leakage during
periods of base flow as well as periods of large streamflow.
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Table 1.--Program listing

A FINITE ELEMENT PROGRAM FOR THE SOLUTION OF TRANSIENT FLOW
OF GROUND WATER COUPLED WITH KINEMATIC SURFACE-WATER FLOW.
GROUND-WATER FLOW IS TWO-DIMENSIONAL,CONFINED WITH

STREAM LEAKAGE. SURFACE-WATER FLOW IS ONE-DIMENSIONAL WITH
TRIBUTARIES, DIVERSIONS, AND IRRIGATION RECHARGE. STREAMS
MAY BE MODELED AS HYDRAULICLY CONNECTED TO THE GROUND
WATER, PERCHED, DRY, OR A COMBINATION.

GUIDELINES FOR DIMENSIONS OF ARRAYS
ISW(NUMNP) ,NPBC( NUMNP) , XORD( NUMNP) , YORD(NUMKP) , PHI(NUMNP) ,
ISWARR(NSWELM,3), PHITMP(NUMNP) , Q(NUMNP) ,

IDFLD(NUMEL) ,MAT(NUMEL) , TRAN(NUMEL) , STOR(NUMEL) ,QRE(NUMEL) ,
IDSTM(NUMSN) ,UI(NUMSN), YBED(NUMSN), SLOPE(NSWELM) ,
TOP{NSWELM) ,RMAN(NSWELM) , RLEAK(NSWELM) ,H(NUMSN) ,HTMP(NUMSN) ,

SWFAC(NUMSN), QS (NUMSN) ,GRND(NUMNP) ,NODELU(NUMSN) , QSOLD(NUMSN)

RX(NUMAT) ,RY(NUMAT) ,RC(NUMAT) ,QXY(NUMAT),

SLP(NUMCHN) , TP(NUMCHN) , RM(NUMCHN) , RS(NUMCHN) ,
RHSFAC(NUMNP) , THICK(NUMCHN) , IDACT(NUMCHN),
IHEAD(NDIV),ISNDN(NDIV),QADJ(NDIV),QMIN(NDIV),ISMIN(NDIV),
TOTARE(NFLD) , IFLDAC(NFLD) , IDIVND(NFLD) , ICJUN(NJUNC) ,
QFLD(NFLD) ,CURATE(NFLD) ,QEND(NFLD),

DNDX(3) ,DNDY(KNPE) ,QE(NNPE) ,C(NNPE,NNPE),

S(3,NNPE) ,RE(NNPE,NNPE),

QSAVE(NUMSN) ,NP(NUMEL,3),TITLE(20),
RJAC(2,2),RJACI(2,2),WT(2,1),SF(5,3,1),NUMQPT(2),
SK(IDIM,JDIM),DQ(IDIM),

NSPFLD(NFLD) , QPUMP(NFLD)
QGW(NSWELM,3/3+1 ) ,NODSUP(NFLD,NSUP) , PERSUP(NFLD,NSUP)

CURRENT DIMENSIONS ARE :
NUMNP=320,NUMEL=535,NUMSN=100 ,NUMAT=10 ,NUMCHN=10,NDIV=20,
NSWELM=100,NFLD=20,IDIM=320,JDIM=50,NSUP=10,NJUNC=20

DIMENSION
ISW(320),NPBC(320),XORD(320),YORD(320),PHI(320),STRT(320),
PHITMP(320),Q(320),

IDFLD(535) ,MAT(535), TRAN(535) ,STOR(535) ,QRE(535),
IDST¥M(100),H(100),VI(100),YBED(100),SLOPE(100),
QSAVE(100),TOP(100),RMAN(100) ,RLEAK(100),HTMP(100),
SWFAC(100),Qs(100),GRND(320) ,NODELU(100),QSOLD(100),
RX(10),RY(10),RC(10),QXY(10),
sLp(10),TP(10),RM(10),RS(10),
RHSFAC(100),THICR(10),IDACT(10),
IEEAD(20),ISNDN(20),QADJ(20),QMIN(20),ISMIN(20),
TOTARE(20),IFLDAC(20),IDIVND(20),ICJUN(20),
QGW(100,2) ,NODSUP(20,10),PERSUP(20,10),NSPFLD(20),QPUMP(20),
QFLD(20),CURATE(20),QEND(20),TITLE(20),
DNDX(3),DNDY(3),QE(3),C(3,3),
RE(3,3),5(3,3),
NP(535,3),ISWARR(100,3),
JAC(2,2),RJACI(2,2),WwT(2,1),8F(5,3,1),NUMQPT(2)
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Table 1.--Program listing--Continued

REAL*8 SK,DQ
COMMON /LDUBLK/SK(320,35),DQ(320)

SET IDIM>NUMNP, JDIM>BAND WIDTH OF GW MATRIX (IB), KDIM>NUMEL

ITOL IS

THE CLOSURE CRITERIUM, IN FEET.

IDIM=320

JDIM=35

KDIM=535
TOL=0.01

OPEN DATA INPUT AND PRINT FILES

OPEN (UNIT=5,FILE="SAMPLE.DATA",STATUS="0LD")
OPEN (UNIT=6,FILE="PRTFILE")

FORMATS

FORMAT
$
FORMAT
FORMAT
$
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
$
FORMAT
FORMAT
$
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
$
$
FORMAT
FORMAT

$
FORMAT

(1 #EL #NP #SE {SN #MAT #CHN #JUN NFLD #PP ITMAX",
“IPUNCH")

(1115)

(“ONODE 1ISW NPBC XORD YORD PHI Q’,
‘ GRND”)

(315,5F10.2)

(0 EL IDFLD NP ARRAY")

(815)

(0 EL MAT TRAN STOR QRE")

(215,3G10.3)

(0 SN HI vI YBED ‘)

(15,3F10.3)

("0 MAT RX RY RC QXY”)

(15,4G10.3)

(“0ICHN SLP TP RM RS”,
‘ THICK")

(15,5G10.3)

(“1PUMPING PERIOD INPUT DATA’/” NTS TIMAX DTIME”,
‘ DELTA NN NDIV INCPR IPLT SCALE CONINT”)

(15,3G610.3,415,26G610.3)

(0 NP NPBC Q PHI Qs”)

(215,36G10.3)

(“0ACTIVE STREAM ARRAY")

(1615)

(© ISN IHEAD ISNDN QADJ QMIN ISMIN”)

(315,2G10.3,15)

( NP IFLDAC IDIVND CURATE NSPFLD”)

(315,610.3,15)

(“1SOLUTION AT TIME =-,G12.5,° DAYS =°,Gl12.5/” NODE”,
‘ XORD YORD PHI DRAWDOWN“,
° STREAM HEAD STREAMFLOW®)

(15,2E12.5,4(1X,F11.4))

(“ WARNING! DETERMINATE FOR ELEMENT”,15,°, QUADRATURE ~,
“POINT”,15,° IS “,Gl2.5)

(* AVERAGE SLOPE FOR STREAM NODE”,15,° SHOULD BE ~,E14.7)
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Table 1.--Program listing--Continued

FORMAT (~ SUPPLIMENTAL PUMPING RATES”/” FIELD RATE

$ “RECHARGE”)

FORMAT (15,2El4.7)

FORMAT (°01B=",1I5)

FORMAT (“0SOLUTION FAILED TO CONVERGE AT TIME STEP”,I5)
FORMAT (2G10.0)

FORMAT (° THETA = °,F5.2,° ETDEEP = °,F5.2)

FORMAT (“0OISWEL ISWARR ARRAY IDSTRM SLOPE TOP”,
$ ‘ RMAN RLEAK”)

FORMAT (515,4G10.3)

FORMAT (“ODIVERSION-,IS5, FLOW RATE °,Gl12.5)

FORMAT (“ INITIAL HEAD OR VELOCITY AT STREAM NODE”,IS5,

$ 1S ZERO.”/5X,” NO CHECK OF CHANNEL CHARACTERISTICS IS
$ “POSSIBLE.”)

FORMAT (~ SUPPLIMENTAL PUMPING”/“ NFLD NSUP NODE PERCENT")
FORMAT (315,Gl10.3)

FORMAT (20A4)

FORMAT (° ETMAX = “,El4.7)

FORMAT (-~ SOLUTION AT TIME STEP”,15,° CONVERGED IN”,IS5,

$  ITERATIONS”)

FORMAT (“ STREAM JUNCTION NODES”)

INPUT DATA

DO 102 1I=1,3

READ (5,41) TITLE

WRITE (6,41) TITLE

CONTINUE

WRITE(6,1)
READ(5,2)NUMEL,NUMNP ,NSWELM ,NUMSN,NUMAT ,NUMCHN, ,NJUNC ,NFLD,NUMPP,
$ ITMAX , IPUNCH

WRITE(6,2)NUMEL,NUMNP ,NSWELM,NUMSN,NUMAT,NUMCHN ,NJUNC ,NFLD,NUMPP,
$ ITMAX, IPUNCH

READ (5,33) THETA,ETDEEP

WRITE (6,34) THETA,ETDEEP

IF (ITMAX.LE.0) ITMAX=1

WRITE(6,3)

READ(5,4) (I,ISw(I),NPBC(I),XORD(I),YORD(I),PHI(I),Q(I),GRND(I),
$ 11=1,NUMNP)

WRITE (6,4)(I,ISW(I),NPBC(I),XORD(I),YORD(I),PHI(I),Q(I),GRND(I),
$ I=1,NUMNP)

WRITE(6,5)

DO 110 Il=1,NUMEL

READ (5,6) I,IDFLD(I),(NP(I,J),J=1,3)

WRITE (6,6)I,IDFLD(1),(NP(I,J),J=1,3)
CONTINUE

WRITE (6,7)

DO 112 11=1,NUMEL

READ (5,8) I,MAT(I),TRAN(I),STOR(I),QRE(I)
WRITE (6,8) I,MAT(I),TRAN(I),STOR(I),QRE(I)
CONTINUE

WRITE (6,9)

READ (5,10) (I,H(I),UI(I),YBED(I),Il=1,NUMSN)
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Table 1.--Program listing--Continued

WRITE (6,10) (I,H(I),UI(I),YBED(I),I=1,NUMSN)

READ (5,20) (ICJUN(I),I=1,NJUNC)

WRITE (6,44)

WRITE (6,20) (ICJUN(I),I=1,NJUNC)

WRITE (6,35)

READ (5,36) (I,ISWARR(I,1),ISWARR(I,2),ISWARR(I,3),

$ IDSTM( 1) ,SLOPE(I),TOP(I),RMAN(I),RLEAK(1),I1=1,NSWELM)
WRITE (6,36) (I,ISWARR(I,1),ISWARR(I,2),ISWARR(I,3),
$ 1DSTM(I),SLOPE(1),TOP(I),RMAN(I),RLEAK(I),I=1,NSWELM)

WRITE (6,11)

READ (5,12) (I,RX(I),RY(I),RC(1),QXY(I),I1=1,NUMAT)

WRITE (6,12)(I,RX(I),RY(I),RC(I),QXY(I), I=1,NUMAT)

WRITE (6,13)

READ (5,14) (I,SLP(I),TP(I),RM(I),RS(I),THICK(1),I1=1,NUMCHN)
WRITE (6,14)(1,SLP(I),TP(1),RM(1),RS(1),THICK(1), I=1,NUMCHK)

CALL SHAFAC(SF,WT,NUMQPT)

J1=3/3+1

DO 120 I=1,NUMSN

TPK=0.0

DO 118 J=1,NSWELM

ISMAT=1IDSTM(J)

DO 116 K=2,3

NPS=1SWARR(J,K)

NPS=ISW(NPS)

IF (NPS.NE.I) GO TO 116

IF (TOP(J)*TP(ISMAT).LE.TPK) GO TO 116
RMK=RMAN(J)*RM( ISMAT)

TPK=TOP(J)*TP( ISMAT)
SLPK=SLOPE(J)*SLP( ISMAT)

CONTINUE

DO 117 JJ=1,J1

QGw(J,JJ)=0.0

CONTINUE

CONTINUE

HTMP(1)=H(I)

IF (IPUNCH.EQ.-1) QS(I)=UI(I)

IF (IPUNCH.NE.-1) QS(I)=UI(I)*H(I)*TPK
IF (UI(1).EQ.0.0.0R.H(I).EQ.0.0) GO TO 119
IF (IPUNCH.EQ.-1) UI(I)=UI(I)/H(I1)/TPK
RHSFAC(1)=UI(I)*TPK/H(I)**(2.0/3.0)
SLPK=(RHSFAC(I)/TPRK*RMK/1.486)*%2
WRITE (6,28) I,SLPK

GO TO 120
RHSFAC(1)=1.486*SLPK**0Q,5*TPK/RMK
WRITE (6,38) I

CONTINUE

DO 122 1=1,NUMNP

PHITMP(I)=PHI(I)

STRT(1)=PHI(I)

CONTINUE

1B=0
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Table 1.--Program listIing--Continued

NNM1=3-1

DO 123 I=1,NUMEL

DO 123 J=1,NNMl

JPl=J+1

NPJ=NP(I,J)

DO 123 K=JP1,3

NPK=NP(I,K)

J1=NPK-NPJ

J1=IABS(J1)

IF (J1.GT.IB) IB=Jl
123  CONTINUE

IB=1B+l

IDIAG=1

WRITE (6,31) IB

IF (IB.GT.JDIM) STOP

NUMEQ=NUMNP

TIME=0.0

1PP=0
c
c COMPUTE TOTAL AREA OF EACH IRRIGATION FIELD
c

IF (NFLD.LE.O) GO TO 130
DO 124 I=1,NFLD
TOTARE(I)=0.0
124  CONTINUE
DO 129 I=1,NUMEL
IF (IDFLD(I).LE.0) GO TO 129
IDF=IDFLD(1I)
AREA=0.0
JEND=KUMQPT(1)
DO 128 J=1,JEND
RJAC(1,1)=0.0
RJAC(1,2)=0.0
RJAC(2,1)=0.0
RJAC(2,2)=0.0
DO 126 K=1,3
NPK=IABS(NP(I,K))
RJAC(1,1)=RJAC(1,1)+SF(2,K,J)*XORD(NPK)
RJAC(1,2)=RJAC(1,2)+SF(3,K,J)*XORD(NPK)
RJAC(2,1)=RJAC(2,1)+SF(2,K,J)*YORD(NPK)
RJAC(2,2)=RJAC(2,2)+SF(3,K,J)*YORD(NPK)
126  CONTINUE
DETJ=RJAC(1,1)*RJAC(2,2)-RJAC(2,1)*RJAC(1,2)
IF (DETJ.LE.0.0) GO TO 7001
DO 127 K=1,3
DO 127 L=1,3
AREA=AREA+WT(1,J)*SF(1,K,J)*SF(1,L,J)*DETJ
127  CONTINUE
128 CONTINUE
TOTARE( IDF)=TOTARE( IDF)+AREA
129  CONTINUE
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Table 1.--Program l1isting--Continued

c BEGIN NEW PUMPING PERIOD

130 WRITE (6,15)
READ (5,16)NTS,TIMAX,DTIME,DELTA,NN,NDIV,INCPR,IPLT,SCALE,CONINT
DT=DTIME
T™=0.0
DO 137 I=1,NTS
TM=TM+DT
IF (TM.GE.TIMAX) GO TO 138
DT=DT*DELTA
137  CONTINUE
GO TO 139
138  DTIME=TIMAX/TM*DTIME
NTS=1
139 WRITE(6,16)NTS,TIMAX,DTIME,DELTA,NN,NDIV,INCPR,IPLT,SCALE,CONINT
READ (5,33) ETMAX
WRITE (6,42) ETMAX
DO 131 I=1,NUMSN
QSAVE(1)=0.0
NODELU(I)=0
131  CONTINUE
IF (NN.LE.O) GO TO 133
WRITE (6,17)
DO 132 Il=1,NN
READ (5,18) I,NPBC(I),Q(I),TMP,TMP1
IF (ISW(I).LE.0) WRITE (6,18) I,NPBC(I),Q(I),TMP
IF (ISW(I).GT.0) WRITE (6,18) I,NPBC(I),Q(I),TMP,TMPI
IF (NPBC(I).EQ.-1) PHI(I)=TMP
IF (ISW(I).LE.0) GO TO 132
NPS=1ISW(1I)
QSAVE(NPS)=TMP1
132  CONTINUE
133  DTIME=DTIME/DELTA
INCR=0
1TS=0
IPP=1IPP+1
LU=1

READ FLAGS FOR ACTIVE STREAMS

OO0

WRITE (6,19)
READ (5,20) (IDACT(I),I=1,NUMCHN)
WRITE (6,20)(IDACT(I),I=1,NUMCHN)

READ DIVERSION DATA

e NeoNe]

IF (NDIV.LE.O) GO TO 134

WRITE (6,21)
READ(5,22)(I,IHEAD(I),ISNDN(I),QADJ(I),QMIN(I),ISMIN(I),I1=1,NDIV)
WRITE(6,22)(I,IHEAD(I),ISNDN(I),QADJ(I),QMIN(I),ISMIN(I),I=1,NDIV)

(@]

READ IRRIGATION FIELD DATA
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Table 1.--Program listing--Continued

IF (NFLD.LE.O) GO TO 250

WRITE (6,23)

READ (5,24) (1,IFLDAC(I),IDIVND(I),CURATE(I),NSPFLD(I)
$ ,I11=1 ,NFLD)

WRITE(6,24) (I,IFLDAC(I),IDIVND(I),CURATE(I),NSPFLD(I)
$ ,I=1 ,NFLD)

NSUP=0

DO 136 I=1,NFLD

NSUP=NSUP+NSPFLD(I)

CONTINUE

IF (NSUP.EQ.0) GO TO 250

WRITE (6,39)

READ (5,40) (I1,J,NODSUP(I,J),PERSUP(I,J),K=1,NSUP)
WRITE (6,40) (I,J,NODSUP(I,J),PERSUP(I,J),K=1,NSUP)

BEGIN NEW TIME STEP
CONTINUE

DTIME=DTIME*DELTA
ITS=1TS+1

DO 252 I=1,NUMSN
QSOLD(1)=Qs(1)
CONTINUE

DO 450 ITER=1,ITMAX
ITSTOP=0

IF (IPP.EQ.1.AND.ITS.EQ.1.AND.ITER.EQ.1) GO TO 162
DO 254 I=1,NUMSN
QS(I)=QSAVE(I)
CONTINUE

ROUTE STREAMFLOW

DO 160 I=1,NUMSN

DO 158 J=1,NSWELM

J1=IDSTM(J)

THK=THICK(J1)

TPK=TOP(J)*TP(J1)

IF (IDACT(J1).EQ.0) GO TO 158

DO 156 K=2,3

NPK=ISWARR(J,K)

KPSK=ISW(NPK)

IF (I.NE.NPSK) GO TO 156

DO 154 L=2,3

IF (K.EQ.L) GO TO 154

NPL=ISWARE(J,L)

KPSL=ISW(NPL)

IF (NPSL.LE.NPSK) GO TO 154

GW LEAKAGE

GWTMP=0.C
HK=YBED(NPSK}+(1.0-TKETA) *H(NPSK) + THETA*HTMP(NPSK)
EL=YBED(NPSL)+(1.0-THETA)*H(NPSL)+TEETA*HTMP(NPSL)
PHIK=PHI(NPK)*(1.0~THKETA)+PHITMP(NPK)*THETA

43



142

143

144

145

140

141
148

1456

147

Table 1.--Program listing--Continued

PHIL=PHI(NPL)*(1.0-THETA)+PHITMP(NPL)*THETA

IF (PHIK.GE.YBED(NPSK).AND.HK.GT.YBED(NPSK)) GO TO 142
IF (PHIK.LT.YBED(NPSK)-THK) PHIK=YBED(NPSK)-THK

IF (NODELU(NPSK).EQ.0) LU=l

NODELU(NPSK)=1

IF (HK.EQ.YBED(NPSK).AND.PHIK.LT.YBED(NPSK)) HK=PHIK
GO TO 143

IF (NODELU(NPSK).EQ.1) LU=l

NCDELU(NPSK)=0

IF (PHIL.GE.YBED(NPSL).AND.HL.GT.YBED(NPSL)) GO TO 144
IF (PHIL.LT.YBED(NPSL)-THK) PHIL=YBED(NPSL)-THK

IF (NODELU(NPSL).EQ.0) LU=l

NODELU(NPSL)=1

IF (HL.EQ.YBED(NPSL).AND.PHIL.LT.YBED(NPSL)) HL=PHIL
GO TO 145

IF (NODELU(NPSL).EQ.1) LU=1

NODELU(NPSL)=0

KMl =K-1

LMl=L-1

GWTMP=GWTMP+QGW(J ,KM1 ) *( PHIK-HK)
GWTMP=GWTMP+QGW(J ,LM1 ) *( PHIL-HL)

SOLVE FOR STREAM DISCHARGE

RLENG=( ( XORD(NPK)-XORD(NPL) ) **2+( YORD(NPK)-YORD(NPL) ) ¥*2)**0,5
DECIDE=0.0

IF (H(NPSL).GT.0.0) DECIDE=(5.0/3.0)*(DTIME/RLENG)*QSOLD(NPSL)
$ /H(NPSL)/TPK

CJFACK=1.0

DO 141 KK=1,NJUNC

I1CJ=ICJUN(KK)

IF (IABS(ICJ).NE.NPSK) GO TO 140

DECIDE=2.0

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>