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CONVERSION TABLE

For the convenience of readers who may prefer to use metric (International
System) units rather than the inch-pound units used in this report, values may
be converted by using the following factors:

Multiply inch-pound units by To obtain metric units
inch 25.40 millimeter

foot 0.3048 meter

mile 1.609 kilometer

square mile 2.590 square kilometer

cubic foot per second 0.02832 cubic meter per second
foot per mile 0.1894 meter per kilometer
gallion per day 0.003785 cubic meter per day
square foot 0.09294 square meter
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TECHNIQUES FOR ESTIMATING FLOOD-PEAK DISCHARGES FROM
URBAN BASINS IN MISSOURI

By
Lawrence D. Becker
ABSTRACT

Techniques are defined for estimating the magnitude and frequency of future
flood-peak discharges of rainfall-induced runoff from small urban basins in
Missouri. These techniques were developed from an initial analysis of flood
records of 96 gaged sites in Missouri and adjacent states. Final regression
equations are based on a balanced, representative sampling of 37 gaged sites in
Missouri. This sample included 9 statewide urban study sites, 18 urban sites in
St. Louis County, and 10 predominately rural sites statewide. For these sites,
short-term records were extended on the basis of long-term climatic records and
use of a rainfall-runoff model. Linear least-squares regression analyses were
used with log-transformed variables to relate flood magnitudes of selected
recurrence intervals (dependent variables) to selected drainage basin indexes
(independent variables).

For gaged urban study sites within the State, the flood-peak estimates are
from the frequency curves defined from the synthesized Ilong-term discharge
records. Flood-frequency estimates are made for ungaged sites by using
regression equations that require determination of the drainage-basin size and
either the percentage of impervious area or a basin development factor.
Alternative sets of equations are given for the 2-, 5-, 10-, 25-, 50-, and
100-year recurrence interval floods. The average standard errors of estimate
range from about 33 percent for the 2-year flood to 26 percent for the [00-year
flood.

The techniques are applicable to floodflows that are not significantly
affected by storage caused by manmade activities. Flood-peak discharge
estimating equations are considered applicable for sites on basins draining
approximately 0.25 to 40 square miles.

INTRODUCTION

Floodflows from urban and rural basins need to be considered in the design
of street and highway structures, such as bridges and culverts, in land-use
planning, 1in establishing rates for flood insurance, and in formulating
emergency evacuation plans for flood-prone areas. Urbanizing a natural drainage
basin results in changes in floodflow charcteristics from the drainage basin.
These changes usually include increased peak discharges, because of increased
impervious area in the basin and decreased basin response times, for watersheds
¥hic? do not have significant in-channel or detention storage (Sauer and others,

983).

The most reliable estimates of floods of specified probability of
occurrence at gaged sites are based on frequency analyses of streamflow-gaging
station records. Estimates of flood magnitude at ungaged sites usually are
based on interpretive studies of hydrologic data using statistical approaches



(Becker, 1985). For example, a study of wurban basins has provided
flood-estimating procedures for St. Louis County, Missouri (Spencer and
Alexander, 1978), and a study of rural basins (Hauth, 1974b) has provided
statewide estimating relations for peak discharges. Magnitudes of floods of
given frequency are related to basin descriptors and climatic variables for both
rural and urban settings.

A report by Sauer and others (1983) provides flood-peak estimating
equations for urban settings on a nationwide basis. A data base of 269 gaged
basins in 56 cities and 31 states containing a variety of topographic and
climatic characteristics, land-use variables, indices of urbanization, and
flood data was used to develop the nationwide urban flood-estimating method
(Sauer and others, 1983). Twenty-five of these gaged basins were among those
used earlier by Spencer and Alexander (1978) in defining flood-estimating
relations for St. Louis County.

In reponse to the need to determine floodflow characteristics of urban
drainage basins, the U.S. Geological Survey, in cooperation with the Missouri
Highway and Transportation Commission, conducted an investigation to: (1)
Determine the magnitude and frequency of flood peaks for gaged urban drainage
basins, and (2) to develop techniques for estimating peak discharges at ungaged
locations.

The objective of this study was to develop simple, reliable flood-peak
estimating techniques based on basin characteristic factors for small urban
drainage basins in Missouri. The study required investigation of the
transferability of flood data from gaged sites to ungaged sites for urban areas
within Missouri.  Further, the study was dependent on determination of
independent variables (basin characteristics, physical characteristics, or other
dimensionless factors) that will adequately define floodflows from small urban
areas of Missouri.

The approach of this study was to analyze flood-peak data from a sample of
streams draining urban basins with areas generally less than 40 square miles.
Data collected at nine sites during this study were augmented by peak-flow data
from urban studies conducted in St. Louis County, Missouri (Spencer and
Alexander, 1978), and in adjacent states (Perry and Hart, 1984; Neely, 1984;
Sauer and others, 1983) and from a statewide rural study in Missouri (Hauth,
1974a). For the analysis of urban sites in this study, selected small rural
sites were included and considered as urban sites wherein there is little or no
effect of urbanization.

These analyses included defining flood-frequency relations for both urban
and rural gaged sites at which relatively short-term records were collected.
Reliability of the frequency relations increases with record length, therefore,
rainfall-runoff models were used to synthesize long-term flood records from
available 1long-term climatological records. Multiple-regression analysis
subsequently was used to define equations for estimating flood-peak magnitudes
for given frequencies at ungaged sites.

This is the final vreport that results from the investigation of
urban-streams flood frequency and supplements earlier reports that provide rural
(Hauth, 1974b) and wurban (Spencer and Alexander, 1978) flood-estimating
techniques in Missouri. The report presents flood-frequency information at
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gaged sites and simple, practical techniques for estimating flood peaks at
ungaged sites. Brief documentations of the available data and of the procedures
used in the data analyses, including aspects of rainfall-runoff modeling,
flood-frequency analysis, and regression analysis, are presented. These topics
are followed by the estimating equations, descriptions of their accuracy and
limitations, and examples of their use.

ANALYTICAL PROCEDURES

Small-streams Data Collection and Analyses

The U.S. Geological Survey began collecting streamflow data in Missouri as
early as 1922. During the first 20 years, only drainage areas of 50 square
miles or greater were gaged. In 1948, the U.S. Geological Survey, in
cooperation with the Missouri Highway Commission (now Missouri Highway and
Transportation Commission), began collecting hydrologic data statewide on rural
streams smaller than 10 square miles. Until 1974, the greater part of the
effort was directed toward data collection with Tlimited time and funding
available for data analysis. A research study in cooperation with the Missouri
Highway and Transportation Commission was initiated in 1974 to analyze these
small-streams data. Hauth (1974a) wused vrainfall-runoff data from 43
streamflow-gaging stations to calibrate a rainfall-runoff model and extend
streamflow records in time. These synthesized Tong-term records were included
in a statewide flood-frequency analysis (Hauth, 1974b) of rural streams. An
evaluation of the small-streams network (Hauth, 1980) determined that further
data collection on small rural streams in Missouri would not appreciably improve
the predictive capability of available regression models.

In 1970, the U.S. Geological Survey, in cooperation with the County of St.
Louis, Missouri, began to collect and analyze data necessary to define the
effects of urban development on surface runoff from 30 small drainage basins in
?t. L?uis County. Results of that study were reported by Spencer and Alexander

1978).

In 1976, the small-streams program was adjusted to change the
continuous-recording data-collection emphasis from the rural to the urban areas
of Missouri. At that time, 11 streamflow-gaging stations were established that
concurrently sampled rainfall on and runoff from urban basins. The data
collected at these gaged sites and at gaged sites of previous studies (figs. 1
and 2) provide the basis for transferability of flood data to ungaged urban
basins statewide.

Rainfall-Runoff Modeling

Two distinct procedures are required in using rainfall-runoff modeling to
extend flood records. First, the model needs to be calibrated for a given site
using representative rainfall and runoff data for the site. The calibrated
model is then used with available Tong-term climatological records to synthesize
long-term flood records at that site.
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Model Description

The parametric rainfall-runoff model described by Dawdy, Lichty, and
Bergmann (1972) was used with point-rainfall data and data on potential
evapotranspiration to synthesize flood hydrographs from urban drainage basins in
Missouri. The model consists of a series of mathematical equations presented in
the form of computer programs (Carrigan, 1973) that describe antecedent
moisture, infiltration, and surface runoff. The model uses 10 parameters (table
1) in making approximations to the physical laws governing infiltration,
soil-moisture accretion and depietion, and surface streamfliow. Values for these
parameters, applicable to modeling streamflow at a particular site, are
determined by a process of calibration using the concurrent rainfall and runoff
data that have been collected at the site. Initial parameter values are assumed
for the calibration process and from these the model determines optimum values
based on an iterative comparison of predicted and observed runoff. Final
parameter values determined for a particular site are the basis for the model
with which flood peaks and runoff volumes may be simulated from long-term
rainfall records. These simulated flood peaks and volumes may be used to extend
the Tength of streamflow records at given sites which, in turn, are used in the
analysis of flood magnitude and frequency.

Model Calibration

In calibrating the model, the 10 parameters usually are evaluated by the
iterative optimization routine. Ideally, about 15 to 20 significant storms
representative of a range of antecedent and rainfall conditions are desired for
each site. Comparison of results of model calibration in this and other areas
(Hauth, 1974a; Lichty and Liscum, 1978; and Becker, 1980) has indicated that a
more meager calibration procedure is feasible and may be dictated to arrive at
reasonable results. Spencer and Alexander (1978) determined that satisfactory
calibration of urban sites in St. Louis County, Missouri, depended on a careful
selection of the smaller storms (T.W. Alexander, U.S. Geological Survey, oral
commun., 1985) such that adequate significance could be given to the more
extreme storms. These extreme storms, though much fewer in number, tend to
produce much larger peak discharges. However, sufficient numbers of the smaller
storms were retained in the modeling process to ensure that proper calibrations
of infiltration parameters (PSP, KSAT, and RGF) were obtained and that adequate
ranges of antecedent conditions were sampled. Therefore, a fewer number of
storms, but of generally larger magnitude, were used in calibration of the urban
sites statewide in Missouri.

In this study, values for certain model parameters were not varied after
being either assumed, based on results from prior use of the model (Hauth,
1974a; Spencer and Alexander, 1978; Becker, 1980), or measured from hydrographs.
In this manner, 6 parameters (EVC, RR, DRN, KSW, TC, and TP/TC) of the 10 model
parameters were directly determined, thereby leaving only 4 parameters (BMSM,
PSP, KSAT, and RGF) to be determined by optimization. The practical advantage
gained was that significantly fewer storms were required at a particular site
for the number of storms to exceed the number of parameters being optimized.
This approach proved especially significant as nine study sites were
successfully modeled as shown in table 2. The validity of parameter values
obtained for these sites was judged by comparing these values with parameter
¥g]u§s determined for 30 sites in St. Louis County (Spencer and Alexander,

78).



Table 1.--Description of parameters used in the modeling process

Parameter Units Definition and Application
Antecedent-moisture component

EVC - Coefficient to convert pan evaporation to
potential evaportranspiration.

RR -— Proportion of daily rainfall that infiltrates
the soil.

BMSM Inches Soil-moisture storage volume at field
capacity.

DRN Inches per Drainage parameter for redistribution of soil

hour moisture.
Infiltration component

PSP Inches Product of moisture deficit and suction at
the wetted front for soil moisture at field
capacity.

KSAT Inches per The minimum (saturated) hydraulic conductivity

hour used to determine infiltration rates.

RGF - Ratio of the product of moisture deficit and
suction at the wetted front for soil
moisture at wilting point to that at field
capacity.

Surface-runoff component (routing)

KSW Hours Time characteristic for linear reservoir
routing.

TC Minutes Length of the time base (duration) of the
triangular translation hydrograph.

TP/TC --- Ratio of time to peak of triangular

translation hydrograph to duration of
translation hydrograph.
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Initial calibrations indicated that the model was not satisfactorily
accounting for actual hydrologic conditions. Initially, optimum percentage of
impervious area was determined as part of the model calibration procedure. This
resulted in model parameters for each basin that were unreasonable. Markedly
improved calibrations resulted when additional considerations were applied to
the modeling process. Standard errors were greatly decreased and bias was
removed by: (1) Subtraction of appropriate base flows from recorded hydrographs
to obtain the best estimate of direct runoff, (2) extensive screening of data,
and (3) initial introduction of values for effective impervious areas into the
calibrations based on measured or estimated impervious areas in basins.
Percentages of impervious area used in the individual calibrations are shown in
table 2.

Long-term records of rainfall and evaporation in Missouri were used to
generate the long-term series of synthesized floods required to improve the
flood-frequency curves at short-term streamflow-gaging sites. Long-term daily
and unit-precipitation (5-minute incremental rainfall for storm periods) data
for St. Louis, Columbia, Kansas City, and Springfield, Missouri were obtained
from the National Climatic Data Center, Asheville, N.C. These records, which
ranged from 73 to 84 years in length, provided the rainfall data for model
input.

The most suitable long-term evaporation record available in Missouri is for
the National Weather Service pan-evaporation gage (Lakeside) located at Lake of
the Ozarks in the central part of the State (fig. 2) where operation began in
1948. A procedure described by Carrigan and others (1977) was used to fit a
harmonic (sine-cosine) function to this 36-year evaporation record and then
generate a synthetic, daily evaporation record for 1893 through 1983. This
single, partly synthesized, evaporation record was considered adequate for flood
synthesis at all modeled sites.

Optimum parameter values (table 2) determined during the calibration
process were used in the model along with long-term daily rainfall, daily
evaporation, and unit rainfall to produce two or more long-term series of floods
at each of the nine modeled sites. The synthesized flood record based on
rainfall from long-term station nearest to the site was used for seven sites.
For two sites, frequency curves from flood records, based on the Springfield and
Columbia, Missouri, rainfall records, were combined because of modeled site
location. A simple averaging of frequency data from both synthesized flood
record was determined to be adequate.

Flood-Frequency Analysis

Analysis of station data was based on the log-Pearson Type III method for
fitting flood-frequency curves. Details of the log-Pearson Type III method and
calculations are given by the U.S. Water Resources Council (1981). Frequency
analyses of gaged data generally are the most reliable estimators of future
floods and form the basis for regression relations that transfer information to
ungaged sites. '

The nine modeled sites for which simulated long-term peak-discharge data
are available and for which flood-frequency computations have been made are
shown in figure 1. Flood characteristics derived from these data are listed in
table 3.
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Flood-peak data for the 9 modeled stations were considered with urban data
from 30 sites 1in St. Louis County (Spencer and Alexander, 1978) in the
regression analysis. Climatic and basin conditions in St. Louis County were
considered sufficiently representative of conditions found elsewhere in the
state to allow inclusion of these data. Also, data from a representative,
statewide, sampling of 25 rural sites (Hauth, 1974a) were considered, assuming
a minimum impervious area of 1 percent, to increase sample size and to extend
the applicability of estimating equations developed. Alternative selections of
St. Louis County and rural sites were tested in the regionalization process to
assure that comparable equations would be obtained and that the data were not
biased. Final regressions are based on synthesized data for 9 modeled, 18 St.
Louis County, and 10 rural stations to achieve a balanced urban data base for
statewide regionalization. These selected stations are listed in tables 3 and
4,

Regionalization by Regression Analysis

The regional analysis of synthesized flood records by regression technique
provides the means of transferring the hydrologic information available at
individual gaged sites to most ungaged sites within the region where estimates
may be required.

Regionalization of the flood-frequency data was based on
multiple-regression methods. The relations of flood peaks to drainage basin and
c]imaEic chgracteristics were determined from a regression model of the form
Q=a A° B® DY ..., where the dependent variable (Q) is the peak discharge and the
independent variables (A, B, and C) are basin or climatic characteristics. In
the equation, the constant and coefficients of regression are indicated
respectively by "a" and by "b", "c", and "d". The regression constant and
regression coefficients are defined, the statistical significance of each basin
or climatic characteristic is evaluated, and a standard error of estimate is
determined using regression-analysis techniques.

Rural basins were included in the regional analysis to extend the
gaged-data sample in areal coverage. It is reasonable to consider a rural site
as representing an urban site wherein the effects of urbanization are
nonexistent or approach zero. However, most rural basins will have some
effective impervious area. Therefore, a small percentage of impervious area,
based on roads, ponds, and so forth, was determined or assumed for each rural
basin used in the regression analyses. Final estimating relations for urban
peak discharge were based on regression analyses using data from 37 gaged sites.

Numerous basin and climatic characteristics were considered in the
regression models; however, only those of both statistical and hydrologic
significance were retained in the estimating relations. To further simplify
estimating relations, maintain consistency between estimating relations, and
facilitate their use, uniform sets of variables were used for all flood
equations defined. Variables defined as drainage area (A), basin development
factor (BDF), and percentage of impervious area (I) proved most significant
(95-percent confidence level) in estimating floods at ungaged urban sites in
Missouri. Other independent variables considered were stream length, main
channel slope, area of 1lakes and ponds, forested area, mean-annual
precipitation, and precipitation intensity of the 100-year, 24-hour storm.
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These variables, however, were not statistically significant and were not
included in the final equations. Significant basin characteristics
(contributing drainage area, basin development factor, and percentage of
impervious area) and flood characteristics are listed for selected stations in
tables 3 and 4. Main~channel slope also is listed because slope is useful as a
1limiting variable of hydrologic significance.

Either basin development factor or percentage of impervious area will
describe the effects of urbanization equally well in regression equations as
shown by comparison of standard errors of estimate. Also, this equivalency of
accuracy is shown by comparison of estimates of 100-year peak discharge (Q 0 )
using basin development factor (BDF) and percentage of impervious area (I} On
figure 3.

ESTIMATING FLOOD-PEAK DISCHARGES

Peak discharges at ungaged urban sites can be estimated using one of two
sets of equations relating flow magnitude to basin characteristics. Forms of
the equations are:

Q, = a AP BDF® (1)
t
and
o = da®1f | (2)
where Q = peak discharge, in cubic feet per second;
t = recurrence interval, in years;
a and d = regression constants;
b, ¢, e, and f = regression coefficients;
A = contributing drainage area upstream from site, in square miles;
BDF = basin development factor; and
I = percentage of impervious area.

These alternative solutions provide the basin planners a choice of methods
for flood-peak prediction. Depending on basin type and location, it may be
easier to determine a basin development factor (BDF) than to determine the
percentage of impervious area (I) or, conversely, the opposite may be the case.

Values for A, I, and BDF in equations 1 and 2 may be determined as
follows:

(1) The contributing drainage area (A), in square miles, for any ungaged
rural or urban site may be determined by delineating the drainage basin on
the best available topographic maps and planimetering the area within the
outline or by laying a transparent grid, having squares of known area, over
a map and counting the number of squares within the basin outline. Because
of the assumption that the topographic boundary actually represents the
total contributing drainage area, significant diversions from or into the
drainage basin will need to be accounted for by an adjustment to the
drainage area. Otherwise, basin-to-basin diversions, because of storm
drains going across the topographic divide, will not be reflected in
estimated flows. Some field checks may be needed to determine the actual
drainage boundary and area.
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(2) The percentage of impervious area (I), is the effective part of the
contributing drainage area that is nonpervious because of buildings,
streets and roads, parking lots, and other impervious areas within an
urban basin. The variable, I, was determined from best available maps or
aerial photographs showing impervious surfaces. Field inspections to
supplement the maps were useful. Percentages of impervious area for this
study were computed by various methods including a grid-overlay method. A
procedure for determining percentage of impervious area was described by
Spencer and Alexander (1978) as follows:
"Aerial photomaps made in 1970 at a scale of 1:8,400 were obtained
from the Wastewater Division of St. Louis County. Overlays of the
drainage areas delineated on 7%-minute quadrangle topographic maps
were enlarged to 1:8,400, then placed over the photomaps, and areas
of similar imperviousness were outlined in color. Macroscopes
equipped with scalar reticules were used to measure the roof, drive,
street, and sidewalk areas on several randomly selected lots in
residential areas or developments having consistent patterns. The
average percentage of imperviousness was computed and assigned to the
area outlined in a given color. The color outlines were planimetered
and summed for the entire basin. Total imperviousness was determined
from the relation of these subareas to the total."
A reasonable estimate of the effective impervious area in an urban basin in
Missouri may be obtained using 7.5-minute topographic maps and application
of an estimating equation, based on an alternative basin characteristic,
developed by R.E. Southard (in press).

(3) The basin development factor (BDF) may be determined by using the
methods described in the following exerpt from Sauer and others (1983) and
the example shown in figure 4 (from Sauer and others, 1983, fig. 2, p. 7).
“The most significant index of urbanization that resulted from
this study is a basin development factor (BDF), which provides a
measure of the efficiency of the drainage system. This
parameter***can be easily determined from drainage maps and field
inspections of the drainage basin. The basin is first divided into
thirds***, Then, within each third, four aspects of the drainage
system are evaluated and each assigned a code as follows:

1. Channel  improvements.--If channel  improvements such as
straightening, enlarging, deepening, and clearing are prevalent for
the main drainage channels and principal tributaries (those that drain
directly into the main channel), then a code of 1 is assigned. Any or
all of these improvements would qualify for a code of 1. To be
considered prevalent, at Tleast 50 percent of the main drainage
channels and principal tributaries must be improved to some degree
over natural conditions. If channel improvements are not prevalent,
then a code of zero is assigned.

2. Channel 1inings.--If more than 50 percent of the length of the
main drainage channels and principal tributaries has been lined with
an impervious material, such as concrete, then a code of 1 is assigned
to this aspect. If Tess than 50 percent of these channels is lined,
then a code of zero is assigned. The presence of channel linings
would obviously indicate the presence of channel improvements as well.
Therefore, this is an added factor and indicates a more highly
developed drainage system.
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Figure 4 ——Schematic of typical drainage basin shapes ond subdivision into basin
thirds. Note that stream-channel distonces within any given third of a basin
in the examples are approximately equal, but between basin thirds the
distances are not equal, to compensate for relative basin width of the thirds
(from Sauer and others, 1983 fig. 2, p. 7).



3. Storm drains, or storm sewers.--Storm drains are defined as
enclosed drainage structures (usually pipes), frequently used on the
secondary tributaries where the drainage is received directly from
streets or parking lots. Many of these drains empty into open
channels; however, in some basins they empty into channels enclosed as
box or pipe culverts. When more than 50 percent of the secondary
tributaries within a subarea (third) consists of storm drains, then a
code of 1 is assigned to this aspect; if less than 50 percent of the
secondary tributaries consists of storm drains, then a code of zero is
assigned. It should be noted that if 50 percent or more of the main
drainage channels and principal tributaries are enclosed, then the
aspects of channel improvements and channel linings would also be
assigned a code of 1.

4. Curb-and-gutter streets.--If more than 50 percent of a subarea
(third) is urbanized (covered by residential, commercial, and/or
industrial development), and if more than 50 percent of the streets
and highways in the subarea are constructed with curbs and gutters,
then a code of 1 would be assigned to this aspect. Otherwise, it
would receive a code of zero. Drainage from curb-and-gutter streets
frequently empties into storm drains.

The above guidelines for determining the various drainage-system
codes are not intended to be precise measurements. A certain amount
of subjectivity will necessarily be involved. Field checking should
be performed to obtain the best estimate. The basin development
factor (BDF) 1is the sum of the assigned codes; therefore, with three
subareas (thirds) per basin, and four drainage aspects to which codes
are assigned in each subarea, the maximum value for a fully developed
drainage system would be 12. Conversely, if the drainage system were
totally undeveloped, then a BDF of zero would result. Such a
condition does not necessarily mean that the basin is unaffected by
urbanization. In fact, a basin could be partially urbanized, have
some impervious area, have some improvement of secondary tributaries,
and still have an assigned BDF of zero. ***such a condition still
frequently causes peak discharges to increase.

The BDF is a fairly easy index to estimate for an existing urban
basin. The 50-percent guideline will usually not be difficult to
evaluate because many urban areas tend to use the same design
criteria, and therefore have similar drainage aspects, throughout.
Also, the BDF 1is convenient for projecting future development.
Obviously, full development and maximum urban effects on peaks would
occur when BDF = 12, Projections of full development or intermediate
stages of development can usually be obtained from city engineers."

Flood-Frequency Equations and Accuracy of Estimates

Estimates of peak discharges for the 2-, 5-, 10-, 25-, 50-, and 100-year
recurrence interval floods can be computed for urban sites in Missouri by using
one or the other of the following sets of equations. Alternative sets of
equations of approximately equal accuracy are provided for convenience of the
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Reliability of flood estimates at ungaged sites is indirectly indicated by

the standard errors of estimate of the regression equations.

Generally, this

error is the result of time-sampling errors in the actual records and model

error in the synthetic records used in the regression analysis.

between the estimated and the actual
estimates will be within plus or minus one standard error of estimate.

The difference
peak discharge for two-thirds of the

Equations for peak discharges based on basin development factor (BDF) and
standard errors of estimate for these equations (equations 3-8) are:

Standard error of estimate

Peak discharge (percent) Equation
equation Average Range number
o, =801 A%7% (13 - poF)70-400 32.9 38.2, -27.6  (3)
05 = 1,150 A7 (13 - goF)0-318 29.4 +33.6, -25.2  (4)
0y, = 1,440 A%-7%5 (13 . gpF)~0-300 28.4 +32.4, -24.4  (5)
0y = 1,920 A27% (13 - BoF)0-37 27.3 +31.0, -23.6  (6)
Qg = 2,350 A%773 (13 - goF)70-319 26.5 +30.0, -23.0  (7)
Qyqo = 2,820 A%78 (13 - BoF)0-330 26.4 +29.8, -23.0  (8)
Alternative equations for peak discharges based on percentage of impervious
area (I) and standard errors of estimate for those equations (equations 9-14)
are:
Standard error of estimate
Peak discharge (percent) Equation
equation Average Range number
q, =224 %793 0-175 32.3 37,4, -27.2 (9)
0 = 424 0784 (0.131 29.5 +33.8, -25.2 (10)
0y, = 560 A%-791 10-124 28.6 +32.6, -24.6 (11)
0y = 729 A0-800 10131 27.2 +30.8, -23.6 (12)
05, = 855 A2-%10 (013 26.1 +29.5, -22.7 (13)
Qygp = 986 AC-B21 10-144 25.9 +29.2, -22.6 (14)




Peak-discharge estimates for recurrence intervals between 2- and 100-
years, other than those for which equations are given, may be obtained by
interpolation from a frequency curve which is a plot of discharge versus
recurrence interval. Discharges needed for the frequency curve are computed
using equations 3 through 8 or 9 through 14,

For St. Louis County, Missouri, peak discharge equations given by Spencer
and Alexander (1978) are applicable. However, use of the preceding equations
will provide virtually the same results for sites located in St. Louis County.

There always is a chance that an extremely large flood will occur during
any specified period on any small stream, rural or urban. For example, in
documenting the August 12-13, 1982, floods in Kansas City, Missouri and
vicinity, Becker and others (1983, p. 10) stated that "Rock Creek has been
subjected to two floods exceeding the 100-year recurrence interval (at Northern
Boulevard) in just less than 5 years***, The fact that two 100-year floods have
occurred in a 5-year time period is not contradictory***", The probability of
one or more floods exceeding a flood of given return interval (the T-year flood)
within a given period of years can be estimated. Procedures for making these
risk estimates are given by the U.S. Water Resources Council (1981).

Limitations of Estimating Equations

Limitations of estimating equations are based on a general requirement for
equivalence of the ungaged site and the data sample used in regression analysis.
Basin descriptors ranged as follows in the regression equations tested: -

Variable Range of data
Contributing drainage area 0.28 to 38.9 square miles
Basin development factor 0 to 11
Percentage of impervious area 1 to 34 percent
Main-channel slope 8.7 to 120 feet per mile

Therefore, the following limitations are applicable to the estimating equations
(equations 3 through 14):

(1) The equations are applicable only to sites where floodflows are
relatively unaffected by storage or diversions. Therefore, they are not
applicable where peak discharge is significantly affected by major manmade
works, such as dams or intra-basin diversions importing or exporting flows.
The applicability of the estimating equations needs to be judged by the
possible effect expected on hydrograph magnitude and shape caused by such
features.

(2) Estimating equations for peak discharge are considered applicable to
contributing drainage areas ranging from about 0.25 to about 40 square
miles. Acceptable values for basin development factor may range from 0 to
12. Values for percentage of impervious area reasonably may range from 1

21



to about 40 percent. Using estimating equations given herein for basins
having main-channel slopes smaller or larger than the sampled range (8.7 to
120 feet per mile) may not provide reliable estimates.

(3) Peak-flow data have been collected throughout the year at gaged urban
sites in Missouri. Also, synthesized peak-flow data used in the analyses
are based on largest storms occurring during annual rather than seasonal
periods in the 1long-term rainfall records. Consequently, estimating
equations for peak discharge are applicable to all seasons. However,
snowmelt-affected peak flows cannot be estimated on the basis of these
equations because these conditions were not modeled when the records were
extended.

Estimating Procedures and Examples

The procedures for making flood estimates include: (1) A search for flood
data for gaged sites in tables 3 and 4 or in other publications (Spencer and
Alexander, 1978; Sauer and others, 1983) or, if needed, (2) computation of
required variables and use of regression equations to estimate needed flood
information for sites where gaged records are unavailable.

Graphical solutions for the peak-discharge estimating equations (equations
3 through 14) are given in figures 5 through 16. Figures 5 through 10 are for
solutions based on A and BDF and figures 11 through 16 are for solutions based
on A and I.

To illustrate use of estimating equations the following examples are given.
Example 1.--Estimate peak discharges for 25-year and 100-year floods on a small,
developed basin in a city where the effects of urbanization are great. Assume
contributing drainage area (A) is 3.00 square miles and that a detailed map or
field reconnaissance has determined that a value of 9 1is appropriate for the
basin development factor (BDF).

Solution:

(1) Relations for peak discharge based on BDF are given by equations 3
through 8.

(2) For this example, use A = 3.00 and BDF = 9 in applicable equations.
(3) Compute Q) and Q]OO by substitution in equations 6 and 8.

%s = 1,920 A%+ 76% (13.-ppF)~0-307 (6)
Qps = 1,920 (3.00)%7%% (13 - 9)70-397 = 2,900 cubic feet per second
0100 = 2820 A%+783 (13-gDF)70-330 (8)
Qygg = 2,820 (3.00)0‘783 (13 - 9)'0‘330 = 4,220 cubic feet per second
(4) gigi}gr results may be obtained from curves given in figures 8
nd 10.
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Example 2.--Determine the 50-year flood to be expected on a small basin
following a planned urban development. Assume that, for a total contributing
drainage area of 5.00 square miles, the percentage of impervious area (I) is 28
percent.

Solution:

(1) Relations for peak discharge based on percentage of impervious area
(I) are given by equations 9 through 14,

(2) For this example, use A = 5.00 and I = 28 to determine peak discharge.

(3) Compute 50-year flood using equation 13.

g, - 855 20-810 ;0.137 (13)

I

0.810 (28.0

)0.137

855 (5.00) = 4,970 cubic feet per second.

Q50
(4) A graphical solution is shown in figure 15.

SUMMARY

This study was directed toward definition of flood characteristics of small
urban basins in Missouri. The information is needed for planning and designing
drainage structures, for establishing equitable land-use regulations, and for
many other uses.

Sufficient new and additional rainfall-runoff and peak-flow data were
collected to provide reliable modeling of the rainfall-runoff process at nine
gaged sites operated during this urban study. The rainfall-runoff model was
calibrated and used with long-term climatological data to synthesize long-term
flood records at each site. Analyses of data from this study and of additional
data from 28 gaged sites operated as part of other studies in Missouri provided
simple, accurate, and practical techniques for estimating flood characteristics
at ungaged sites located in small urban drainage basins.

Flood-frequency data, developed from analyses of synthesized flood-peak
records, and drainage-basin characteristics were used in multiple-regression
analyses to develop regional flood-frequency equations. These equations can be
used to estimate flood magnitudes for recurrence intervals of 2-, 5-, 10-, 25-,
50-, and 100-years. The standard errors of estimate range from 26 to 33
percent. These analyses have provided: (1) Flood peak-frequency data for gaged
sites that can be used for further analyses F;uch as a volume-frequency
analysis), and (2) regional regression equations for estimating flood-peak
discharges using alternative estimators of urbanization effects at ungaged
sites, statewide in Missouri.
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GLOSSARY

Cubjc feet per second.--The rate of discharge; 1 cubic foot per second is the
rate of discharge of a stream having a cross-sectional area of 1 square
foot and an average velocity of 1 foot per second:

1 cubic foot per second=0.646 million U.S. gallons per day,
28.32 liters per second, or 0.02832 cubic meter per second.

Flood frequency.--The relation between return period or recurrence interval, in
years, and flood-peak magnitude, in cubic feet per second.

Flood hydrograph.--A graphical representation of a stream's fluctuation in flow
(in cubic feet per second) with respect to time.

Flood peak.--The highest value of the stage or discharge attained by a flood.

Flood volume.--The total runoff, in acre-feet, computed from the area under the
flood hydrograph.

Main-channel slope.--Main-channel slope, in feet per mile, is the average slope
between points 10 and 85 percent of the distance along the main-stream
channel from the site to the basin divide.

N-year precipitation (rain).--A precipitation quantity that can be expected to
occur, on the average, once every N years.

Recurrence interval.--As applied to floods, recurrence interval is the average
number of years within which a given flood peak will be equaled or exceeded
once. For example, a 100-year flood discharge will be exceeded on the
average of once in 100 years. In terms of probability, there is a
1-percent chance that such a flood will occur in any year.

Streamflow-gaging station.--A gaging station where a record of discharge of a
stream is obtained.
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