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PREFACE

This report describes a computer model that combines ground-water flow
simulation with mathematical optimization in order to develop and evaluate aquifer
management strategies. The computer program is intended for general application
and may have to be modified by the user for specific field problems. Although the
program will produce reliable calculations for a wide variety of problems, the user is
cautioned that in some cases the accuracy of management solutions can be
significantly affected by user discretion during implementation.

The user is requested to kindly notify the originating office of any errors
found in this report or in the computer program. Updates may occasionally be made
to both the report and the computer program. Users who wish to be added to the
mailing list to receive updates, if any, may send a request to the following address:

AQMAN
U.S. Geological Survey
345 Middlefield Road, MS-421
Menlo Park, CA 94025

Copies of the computer program on tape are available at cost of
processing from:

U.S. Geological Survey
WATSTORE Program Office
437 National Center
Reston, VA 22092
Telephone: (703) 648-5686

The use of computer and software brand names in this report is for identification
purposes only and does not imply endorsement by the U. S. Geological Survey.
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CONVERSION FACTORS

For convenience of readers who prefer to use metric (International System)
units, conversion factors for inch-pound units used in this report are listed below:

Multiply_inch- I . By To_obtai . .
foot (ft) 0.3048 meter (m)
cubic feet 0.02832 cubic meter
per second per second
(ft*/s) (m*/s)



ABSTRACT

A FORTRAN-77 computer program code that helps solve a variety of aquifer
management problems involving the control of ground-water hydraulics is presented. It
is intended for use with any standard mathematical programming package that uses
Mathematical Programming System input format. The computer program creates the
input files to be used by the optimization program. These files contain all the
hydrologic information and management objectives needed to solve the management
problem.

Used in conjunction with a mathematical programming code, the computer
program identifies the pumping or recharge strategy that achieves a user’s
management objective while maintaining ground-water hydraulic conditions within
desired limits. The objective may be linear or quadratic, and may involve the
minimization of pumping and recharge rates or of variable pumping costs. The
problem may contain constraints on ground-water heads, gradients, and velocities for
a complex, transient hydrologic system.

Linear superposition of solutions to the transient, two-dimensional ground-water
flow equation is used by the computer program in conjunction with the response
matrix optimization method. A wunit stress is applied at each decision well and
transient responses at all control locations are computed using a modified version of
the U.S. Geological Survey two dimensional aquifer simulation model. The program
also computes discounted cost coefficients for the objective function and accounts for
transient aquifer conditions.



INTRODUCTION

Numerical simulation models have become essential tools for hydrogeologists.
Often models are utilized for evaluating different ground-water management
strategies. Such strategies may be needed for aquifer management problems that
involve:

contaminant plume stabilization and removal

coastal aquifer protection

maximization of aquifer yields

design of surface excavation dewatering systems

development of policies for conjunctive use of surface and ground waters
inspection of the impacts of water use regulation.

The difficulty with trying to use simulation models to study these problems is that
potential strategies can be tested only on a trial and error basis. There is no
guarantee that the best alternatives will be discovered. Simulation by itself is
valuable for understanding system behavior and in some cases for predicting future
responses, but it is far less valuable as a tool for discovering optimal aquifer
management strategies. In order to effectively determine viable and efficient aquifer
management plans, simulation can be combined with optimization procedures of
operations research. Operations research is a general field of applied mathematics
that is concerned with optimal decision making.

AQMAN is a FORTRAN-77 computer code that provides a link between ground-
water simulation and two widely used technmiques developed in operations research:
linear programming and quadratic programming. These techniques provide a
mathematical framework and efficient computational algorithms to determine the
optimal allocation of scarce resources. Water, its cost of extraction, and the costs
required to maintain its quality are the scarce resources of interest to the hydrologist.
Combined simulation-management models can be used to identify pumping and
recharge schedules that achieve some goal, such as minimizing ground-water
production costs, while simultaneously protecting water quality and satisfying water
demands. This procedure is known as aquifer management modeling.

Aquifer management modeling is concerned with the best selection of well
locations and pumping and recharge rates that achieves certain goals with regard to
aquifer yields, drawdowns, hydraulic heads, hydraulic gradients, and ground-water
velocities. It also can involve recharge through streambeds, ground-water flow to
streams and lakes, maintenance of surface-water levels, and other interactions between
surface water and ground water. Aquifer management modeling is a a multistaged
procedure. First, a simulation model is developed for a particular field site. The
hydrologic behavior of the site should be well understood. Second, a management
problem is formulated. Third, the simulation model is used to generate a compact
simulator -called a response matrix. Fourth, a special data file is created that
contains the response matrix and represents the management formulation in a format
that is required for solution by any of a number of available optimization codes.
Fifth, a standard linear or quadratic programming code reads the special file and
determines the optimal solution. Sixth, the effect of the pumping and recharge
schedules prescribed by the optimal solution is verified using the original simulation
model. Seventh, the sensitivity of the solution to uncertainties is explored.



The AQMAN program performs stages three and four: generation of the response
matrix and construction of the optimization data file. It is also useful in stage
seven, sensitivity analysis.

Given a field area for which a simulation model has been developed and for
which a management problem has been formulated, AQMAN can be used to evaluate
alternative management strategies. It is applicable to problems for which
two-dimensional confined aquifer simulation models are appropriate. AQMAN uses the
code of Trescott and others (1976) to simulate the set of system responses to pumping
or recharge, as well as other system stresses. It then converts this information into a
response matrix and creates the optimization data file. From that point on an
optimization code is employed to solve the linear or quadratic programming problem.

The use of AQMAN for aquifer management modelling requires a thorough
understanding of aquifer simulation and the principle of linear superposition.
Experience with the optimization methods of linear and quadratic programming is
helpful, but not essential. The user should be familiar with aquifer flow simulation
and should be able to use the code of Trescott and others (1976) for the problem of
interestt AQMAN’s programming logic is quite genmeral for aquifer management
modelling, so that with appropriate modifications other ground-water flow simulators
may be linked with AQMAN. However, this may require several changes in both the
flow simulator and in the AQMAN code. These changes should be performed only
by experienced ground-water modellers. In its current form, AQMAN is fully linked
only with the Trescott code.

Aquifer simulation must be performed for systems that show a linear drawdown
response to pumping and are sufficiently described by the equation that governs
two-dimensional ground-water flow:

3 8H 3H
el il Y i i o= 1, 1
5, | Tii a; S = + W, Li = 1,2 (1)

where H = hydraulic head [L},
T;; = transmissivity tensor [LZ/T],
S "= storage coefficient [L°),
W = source (recharge) or sink (pumping) per unit area [L/T},
t = time [T),
X; Xj = spatial coordinates [L].



GROUND- WATER MANAGEMENT MODELING
Background

Ground-water management modeling is a relatively new discipline in hydrology.
Over the past 25 years, two types of management models have been developed:
lumped parameter and distributed parameter models. Lumped parameter models have
been used to study economic and policy matters that involve ground-water resources.
They do not explicitly consider the governing equations of ground-water flow, but
rather conceptualize aquifers with simple water mass balances. Examples of lumped
parameter models are those of Chaudhry and others (1974), Anderson and others
(1983), and Khepar and Chaturvedi (1982). Distributed paramcter management models
join aquifer simulation with optimization methods and explicitly solve the partial
differential equation that governs flow. Gorelick (1983) discusses and critically
evaluates the methods and applications of these models. They have been used to
manage well fields, to evaluate efficient conjunctive use of stream-aquifer systems,
and to inspect the impacts of water-resource policies upon the hydrology and
economics of ground-water use. AQMAN is a tool that helps solve distributed
parameter aquifer management problems.

AQMAN links a distributed parameter ground-water simulation model with
mathematical optimization methods using a technique known as the response matrix
approach (see Gorelick, 1983). This approach was initially developed for optimizing
profits from oil production, and was presented in the petroleum engineering literature
by Lee and Aronofsky (1958). During the 1970°s the technique was expanded and
brought into the hydrologic literature, principally by Wattenbarger (1970), Maddock
(1972), Rosenwald and Green (1974), and Schwarz (1976). Applications of the
response matrix approach have been presented by Larson and others (1977) and by
Heidari (1982) to determine "safe yield" of aquifers; by Willis (1983) to determine the
optimal pumping scheme to meet agricultural water demands; by Danskin and
Gorelick (1985) to evaluate the efficiency of a surface-water recharge program; and
by Colarullo and others (1984), Atwood and Gorelick (1985), Gorelick and Wagner
(1986), and Lefkoff and Gorelick (1985; 1986) to contain plumes of contaminated
ground water and design aquifer restoration systems.

The Responsc Matrix Mecthod

The key idea behind the response matrix method is that because a ground-
water system described by equation (1) is linear, the influence of each source or sink
may be calculated separately and then superposed to compute the complete
distribution of hydraulic heads over space and time under any pattern of pumping
and recharge. The method fully accounts for the effects of initial conditions, which
may vary over space, and the effects of boundary conditions, which may change over
time.

A response matrix is an assemblage of coefficients, each of which relates
pumping at one location to drawdown at another location. In order to see how a
response matrix is developed using a simulation model, consider an example where
head is to be controlled at a location P during two months by managing pumping at
two wells, A and B. By use of a unit pumping rate, drawdown is calculated at the
end of each month at location P.
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Specifically,

(1) Reference-head at P is computed by a transient simulation with no pumping.

(2) A convenient unit pumping rate, 1.0 ft3/s, is selected.

(3) A transient simulation is performed with only well A pumping at the unit rate
during the first month and not pumping during the second month. Calculated
head at P is subtracted from the reference head to obtain a drawdown for each

month. For example, say that drawdown is 0.75 feet at the end of the first
month and 0.20 feet at the end of the second month.

(4) Step (3) is repeated for well B. Say that the calculated drawdown at P from
the reference head is 0.40 feet at the end of the first month and 0.25 feet at
the end of the second month.

Because the system is linear, total drawdown at P induced by managed pumping
during each month equals the sum of the drawdowns due to the two wells:

sy = 0.75 QA,] + 0.40 QB,l
$) = 0.20 QA,l + 0.25 QB,l + 0.75 QA,2 + 0.40 QB,2

where s = total drawdown [feet] from the reference head at location P at the end of
month 1 or 2 due to managed pumping,

Q= pumping rate [fts/s] at well A or B during month 1 or 2.

These two equations can be expressed in matrix form:

Qa1
511 o [.75 40 0 o]
S9 20 25 .75 .40 Qg,1
Q4,2
Qg2
vector of vector of
drawdowns = response matrix X pumping rates

Response coefficients (0.75, 0.40, 0.20, 0.25) are stored in a matrix, thus the
name response matrix method. Through matrix algebra, a large number of responses
can conveniently be added over time and space. For any given set of initial and
boundary conditions, total drawdown at a given location will be a linear function of
pumping and recharge at all wells during all management periods.

The small example above demonstrates two general features of response
matrices. First, the matrix contains zero clements in the upper triangular portion
because pumping or recharge in some management period can never affect drawdowns
in an earlier period. Second, matrix clements are repeated systematically. This is

i1



because the response to a unit of pumping depends only on the time since pumping
began. That is, the response to a unit pumping rate that begins today is the same as
the response to a unit pumping rate that begins next month, except that the responses
are lagged by one month. The matrix in the example above has the following
general structure:

drawdown response |
in month 1 to unit | Zero response
pumping in month 1 |

drawdown response | drawdown response
in month 2 to unit | in month 2 to unit
pumping in month 1 | pumping in month 2

(same as upper left)

When generating the response matrix, the number of computations performed in
AQMAN is reduced by taking advantage of this matrix structure.

12



GENERAL PROBLEM FORMULATION FOR LINEAR AND QUADRATIC
PROGRAMS

The process of solving a linear or quadratic programming problem begins with
the formulation of a management problem as a mathematical model. As with all
models, the mathematical formulation extracts the essence of the real-world system
and does not consider every detail. Problem formulation may reveal inadequacies in
the data. It may also happen that the formulation process, which is often avoided
during trial and error simulation, will lead directly to a highly simplified
management model, or even to an apparent solution.

Problem formulation is certainly the most important and often the most
difficult part of management modelling. A management model consists of an
objective function (or goal) which to be minimized or maximized, and a series of
linear constraints (or restrictions) that must be obeyed. Decision variables are the
unkown quantities of concern that can be controlled in a managed system. For our
purposes, these are pumping and recharge rates at specific locations.

Li { Ouadratic Obiecti

Linear programming is used for cases in which the objective function, whose
value is F, is linear with respect to the decision variables. For example, one might
maximize the sum of pumping rates, Q; , at five wells (index i) during eight time
periods (index n): ’

8 5
Maximize F =% [ Qin (2)
n=] i=l ?

Quadratic programming is used for cases in which the objective is a quadratic
function of the decision variables. For example, one might minimize the, sum of
squared differences between pumping rates and ideal target pumping rates, Qi,n:

8§ 5
Minimize F= I I (Qin- Qp)? (3)
n=| j=I ’ ’

Typical objective functions are:

Minimize the cost of pumping

Minimize total pumpage

Maximize total pumpage

Minimize the maximum pumping rate

Maximize total recharge

Minimize the maximum drawdown

Maximize the minimum hydraulic head

Minimize the sum of squared deviations from target heads, hydraulic
gradients, velocities, drawdowns, or pumping rates

Minimize the sum of the absolute value of deviations from target heads,
hydraulic gradients, velocities, drawdowns, or pumping rates

13



Objectives may also involve fixed costs, such as well installation or capital
investment in pumping capacity. Further, it is possible to formulate problems with
multiple objectives. Aguado and Remson (1980) describe the fixed cost problem, and
Cohon and Marks (1975) provide an excellent review of multi-objective analysis.
AQMAN does not automatically generate fixed cost objectives nor multiple objective
functions, but is nonetheless useful for solving such problems.

. . 18 Lineari

Constraints derive from the physical, economic, or social mechanisms operating
in the managed system. Typical ground-water constraints might involve

® definition of drawdowns as a linear function of system stresses using a
response matrix

® definition of hydraulic heads, velocities, and gradients as a function
of system stresses

® limitations on local drawdowns, hydraulic gradients, velocities or heads

® restrictions on local hydraulic gradients or velocities to certain magnitudes
and directions

@ limitations on pumping rates at individual or groups of wells

® restrictions on changes in pumping rates, drawdowns, or hydraulic heads
over time

@ balances between total pumping and total recharge

Constraints may be represented by placing simple bounds on individual decision
variables, by inequalities or equalities placed on groups of decision variables, or by
restrictions on hydraulic conditions. In all cases, a specified limit appears on the
right-hand side. For example, the pumping rate Q at well 2 during period 3 must not
exceed 1.5 ftd/s:

Q3 < 15 4)
Total pumpage for three wells must supply at least 5.0 ft3/s during period 1:
Q1 + Q1 + Q31 2 30 €)
Pumping rates at well 1 must be the same for periods 3 and 4:
Q,3-Qae=0 (6)

Hydraulic head H at location 3 must not exceed 50 feet during period I:
H3’1 < 50 )

During period 4, the hydraulic gradient between locations 1 and 2 must not be less
than 5 percent (L is the distance between the two locations):

Hia - Hyg > 0.05 ®)
L

14



The seepage velocity V at location 2 must be at least 0.03 ft/s during period 5:
V2,5 > 0.03 9)

At location 3 during period 1, the x-component of the seepage velocity must be
at least twice the y-component:

X y
V3’l - 2V3,l > 0 (10)

In both linear and quadratic programming problem formulations all constraints
must be linecar. This means that the ground-water system must respond linearly to
management decisions. The hydraulics of a confined aquifer can be managed
successfully using linear or quadratic programming, since ground-water flow is
governed by equation (1), which contains a linear relation between head changes and
well pumpages.

AQMAN is useful only for linear management problems. Nonlinear constraints
cannot be imposed. For example, nonlinearities resulting from dewatering of
unconfined aquifers cannot be rigorously handled by AQMAN. However, in some
cases it may be possible to linearize such systems if drawdown is small compared to
saturated thickness, or by solving sequential linear problems where the saturated
thickness is given by the last iterate (Danskin and Gorelick, 1985). There is a
certain art in formulating problems to avoid nonlinearities. For instance, the absolute
value function, which is in fact nonlinear, has a linear equivalent that can be easily
incorporated into linear programming problems. The problem and methods for
deriving linear formulations is discussed in various operations research text books
such as Dantzig (1963), Hillier and Lieberman (1974), and Wagner (1975).

Advanced techniques are now available to manage nonlinear systems (Gorelick and
others, 1984). Nonlinear management modelling problems are not restricted to aquifer
hydraulics. They involve the solution of governing equations which are not linear
with respect to management decisions. For instance, a problem which calls for the
management of solute concentrations when those concentrations are affected by
pumping and recharge decisions is nonlinear.

Time Parameters

Three time parameters are used in management modelling. The planning
horizon is the total length of time over which a system is being managed. It consists
of one or more management periods or planning periods, which define the time
during which a particular decision variable is constant or a particular set of
constraints applies. For instance, we may define a one-year planning horizon
consisting of 12 one-month management periods. A separate decision variable would
be defined for each well during each month, and a constraint that relates pumpage
to drawdown would be formulated for ecach month. AQMAme_mn_aﬂ
management periods are egual in length. The third time parameter is the numerical

time step used in the finite-difference simulation procedure.
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Stress and Response
Drawdowns

Use of the response matrix method for ground-water management modeling
relies on the concept of linear response to system stress. A stress is an excitation
that induces a change in aquifer heads. An unmanaged stress is one that cannot be
controlled due to physical limitations or social demands. Examples might be
boundary conditions and pre-determined pumpage or recharge rates given for
unmanaged wells. Managed stresses are those described by the decision variables:
pumpage and recharge at managed wells, where management decisions must be made.
In this context, "well" refers to any source or sink. In addition to actual pumping or
injection wells, the term includes stresses such as recharge from a lake or from a
river where flow is controlled. In order to strictly maintain system linearity, the
flux through a managed well can not be head-dependent. Unstressed heads or
unmanaged heads are those that would occur if no managed stresses were applied to
the system (Figure 1). Managecable drawdown is the difference between unmanaged
head and any limit on head imposed by the user. For example, suppose that head at
a location must always be greater than 88.0 feet, and that the unmanaged head there
is 93.8 feet in the first management period, and 92.4 feet in the second period. Then
the manageable drawdown in the two periods are +5.8 feet and +4.4 feet, respectively.

A unit stress is a convenient quantity of managed stress, such as 0.1 ft%/s or
1.0 ft%/s. For each separate managed well, AQMAN applies a unit stress at the well
during the first management period and then applies no managed stresses during
subsequent periods. The transient ground-water flow equation (1) is solved to obtain
hydraulic head at every control location during every period. The drawdown
response is the difference between this head and unmanaged head. Every response
appears in the management formulation as a respomse coefficient. The coefficient
measures the hydraulic relation between stress at a particular managed well and
drawdown at a particular control location. Through the use of linear superposition,
the product of the response coefficient and the actual managed stress gives the actual
drawdown at the control location induced by pumping or recharge at the managed
well. Total drawdown equals the sum of the individual drawdowns caused by each
managed well, plus the drawdown caused by initial and boundary conditions and
unmanaged pumping and recharge. Total drawdown must be contained within the
limits imposed by the manageable drawdown.

G l. | I v ! .l.

A control pair is defined by two control locations across which a gradient or
hydraulic ground-water velocity is being constrained. In order to define a gradient
or a velocity, the difference-in-drawdown response is used in a manner similar to
drawdown response. Each difference-in-drawdown response also appears in the
management formulation as a response coefficient. The coefficient measures the
hydraulic relation between stress at a decision well and the difference-in-drawdown
within a control pair. The response coefficient multiplied by the managed pumping
and recharge rates gives the difference in drawdown. The total difference-in-
drawdown equals the sum of the influences due to managed stress, unmanaged stress,
and initial and boundary conditions. This total difference is linearly proportional to
the gradient and to the velocity at the control pair.

The total difference-in-drawdown must be contained within the limits imposed

16






by the manageable gradient or manageable velocity for the control pair. The
manageable gradient is the difference between the gradient due to unmanaged heads
and any limit on the gradient imposed by the user. The manageable velocity is the
difference between the velocity under the unmanaged gradient and any limit on
velocity imposed by the user. In both cases, the user’s limit on gradient or velocity
is multiplied by a factor that converts it to a head difference. For example, say
that control pair 2 is defined by control location 4 and 7 (These are indicated below

by the subscripts "2", "4", and "7"). Ignoring the time dimension for the sake of
clarity,

Gy = Hy- Hy-Gy (Ly) (11)
- |22
Vo = - Hy -V
2= H 7" V2 |5 (12)
where G = manageable gradient within the control pair [L],

V = manageable velocity within the control pair [L},
H = unmanaged head at a control location [L],

- )
G = limit on gradient imposed by the user [L ],

V = limit on velocity imposed by the user [L/T],

L = distance between the two locations of the control pair [L},
€ = effective porosity within the control pair [LO],

K = hydraulic conductivity within the control pair [L/T].

The conversion factor L or (eL/K) is read as input by AQMAN.

Head i { velocity definiti

Ground-water management problems are wusually formulated in terms of
drawdown or difference-in-drawdown. AQMAN also allows for head definition,
gradient definition, or velocity definition at any control location or control pair as a
supplement to drawdown information. The use of definitions may serve two
purposes. First, the management solution will directly contain the heads, gradients, or
velocities that result in response to optimal pumping and recharge rates. This helps
the user characterize the optimal management strategy. Second, the difference
between two gradients or two velocities can be easily controlled. This is particularly
useful in comparing the magnitude of the two vector components of the gradient or
velocity at a pair of control locations.

Definitions can be specified for head at a single control location or for
difference-in-head within a control pair. In the first case, AQMAN automatically
introduces a new decision variable and sets it equal to the difference between
unmanaged head and total drawdown. In the second case, the new decision variable

18



is set equal to the difference between: (1) the difference in unmanaged heads and
(2) the total difference-in-drawdown. The wuser can then impose additional
constraints on the new head, gradient, or velocity variables.

The MPS Fil i the Soluti

AQMAN creates a data file that defines the objective and all constraint
functions and contains all of the response coefficients and manageable drawdowns,
gradients, and velocities. The file is written in MPS (Mathematical Programming
System) format, which is required by most standard linear and quadratic
programming packages. The optimization package reads this MPS file as input, and
computes a solution to the management problem.,

A management solution consists of a set of values for the decision variables. A
solution is either infeasible, optimal, or unbounded. An infeasible solution violates
one or more of the constraints. A feasible solution is optimal if it produces the best
(maximum or minimum) possible value of the objective function. An optimal solution
is usually what we hope to find! A problem may have more than one optimal
solution, where several management strategies satisfy the constraints and produce the
same optimal value for the objective. A solution is unbounded if the optimal value
of the objective function goes to positive or negative infinity without violating any
of the constraints.

19



PROBLEM FORMULATION WITH AQMAN

This section describes the general procedures required to utilize AQMAN,
including manual changes to the MPS file. Detailed instructions for AQMAN input
files are given in Appendix II

Objective Funeti
Li biectiv

AQMAN is written to handle either a linear or a quadratic objective function.
If the linear option is in effect, AQMAN assumes that the linear objective is to
minimize or maximize total pumping:

N I

r I Ci,n Qi,n (13)
n=1 i=l

where I = total number of managed wells,
N = total number of management periods,
Qi,n = pumping rate at well i during period n [LS /T),
Ci,n = cost coefficient for well i during period n [I.?].

All cost coefficients are assumed to equal +1.0. These are automatically scaled by
multiplying by the negative of the unit stress pumping or recharge rate. (See the
sub-section below on "The Unit Stress and Scaling".) If no scaling is required and all
unit stresses are either -1.0 (pumping) or +1.0 (recharge), cost coefficients will be +1.0
for pumping wells and -1.0 for recharge wells. These are written by AQMAN to the
MPS file. Both pumping and recharge rates are non-negative by default in the MPS
file.

If a linear objective other than (13) is desired, the user can make changes
directly to the MPS file. For instance, say that the problem contains two decision
wells, and management criteria specify that pumpage at the first well should be
weighted twice as much as pumpage at the second well. Cost coefficients become
weights, and the objective would be to optimize

T2t Q) (14

n=1

The cost coefficient written by AQMAN to the MPS file for Q; should be manually
changed to twice its value for each management period n.

Ouadratic obiectiv

If the quadratic option is specified, AQMAN assumes that the objective is to
minimize the present value of variable pumping costs. These are the costs associated
with the energy required to operate pumps, and do not include capital (fixed) costs
of well installation or pumping capacity. Variable pumping costs are a quadratic

20



function of pumping decisions. This is because costs vary with pumping rates and
pumping lifts, and lifts depend on pumping rates:

N 1
P=X L C; i,n Zi,n Qi,n (15)
n=1 i=l

where P = total variable pumping cost [$],
zi,n = total lift at well i during period n [L],

Cin

= ynit cost of pumping per unit lift at well i during period n
[$/(L%/T)/L}.

The total lift is a function of pumping during period n and during all_ previous
periods at all wells. It consists of two parts (Figure 2). One part, Z, is the
unmanaged lift, which is the distance from the land surface down to the transient
potentiometric surface that would occur if there was no managed stress applied to
the aquifer. The second part, Z, is the managed lift, which is induced by pumping
at all wells during the current period and during all previous periods. Both parts
of Z are fully computed by AQMAN. That is,

Zin = Zin + Ziy (16a)
and
n I
Z;q 'kfl jfl Ti,5:(0-k)Qj,k (16b)

where r;; (- is the drawdown response at well i during period n induced by
pumping a unit rate at well j during period k. If j is a recharge well, the response
r will be negative.

Substitution of (16) into (15) gives

N I - n I (17
P=I I I1CGnZiaQpn *+ I I Cinrijmk)YcUn
n=] i=} k=1 ] =1
f 1
cost due to cost due to
linear component quadratic component

The first set of terms is linear, while the second set is quadratic with respect to the
decision variables Q.

When the user specifies that the objective is quadratic, AQMAN uses equation
(17) as the function to be minimjzed. For the cost duc to unmanaged lift,
undiscounted unit cost coefficients C; . are read as input data and are scaled and
discounted for each management penod The value of Z. in during each period is
computed, and the scaled product C; nzxn is written into the usual objective rows of
the MPS file. For each management period, unit costs are discounted according to the
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number of whole months between the start of the planning horizon and the end of
the period:

Ci n
C:p. = (18)
Lo (1+r)™
where r = monthly discount rate [L°] = (annual discount rate/12.0),

m = number of whole months between the start of the planning horizon
and the end of period n.

Discounting adjusts future costs to the present, so that costs incurred at different
times can be compared directly. Pumping costs are discounted monthly because the
electricity required to operate pumps usually must be purchased on a monthly basis.
Discounting is performed monthly regardless of the number of days in every manage-
ment period, as specified by the user. Note that discounting monthly will decrease the
present value of future costs slightly more than discounting annually. For instance,
if the annual discount rate is 0.08, the first year of pumping cost will be discounted
at an effective annual rate of 0.086988.

The quadratic portion of (17) is handled separately. The TESPONSEs rj i (n k) are
written to a new output file. When a quadratic programming code is cméloyed a
special subroutine must be included that reads from this file, discounts unit cost
coefficients, and computes the value of the objective function at each iteration of the
optimization algorithm. Subroutine FUNOBJ, described in Appendix III, is supplied
for this purpose.

Constraint Set
P . I l .
‘Several types of constraints may be imposed directly on the decision variables.

A bound constraint limits the value of an individual pumping or recharge decision.
For instance,

Q41 =< 30 (19a)
Qz’z > 1.2 (19b)
Q3; = 074 (19¢)

This type of constraint must be manually entered into the MPS file (in the BOUNDS
or COLUMNS section) by the user. See the section in this document that
describes MPS format conventions.

Demand constraints and capacity constraints limit the sum of pumping or
recharge. For instance, a minimum total demand may have to be met in period 3:

I
r Qi,3 > 10.5 (208)

i=1 -
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There may be a limit on total pumping capacity during each period:

I
I Qjn < 221 n=1,.N (20b)

1=

Balance constraints compare pumping flow rates with recharge flow rates.
Perhaps a pumping and injection system must be designed so that the total recharge
at wells k never exceeds total pumping at wells i:

I K
I Qg - I Qgn =2 00 n=1,.N 1)
i=1 ? k=1 ?

Where I and K are the total number of pumping and recharge wells, respectively.

For each demand, capacity, or balance constraint, the user must create a new
row and enter its name into the ROWS section of the MPS file. (See the section
below on "the MPS file” for a description of MPS format conventions.) In the
COLUMNS section, a coefficient of +1.0 must be entered for each pumping decision
that appears in these constraints. For balance constraints such as (21), recharge
decisions are given a coefficient of -1.0. Values for the right-hand side of these
constraints must be entered in the RHS section of the MPS file.

Head constraints

Hydraulic constraints on aquifer heads, gradients, or velocities are more
complicated, since these depend on complex hydrogeologic phenomena and require
simulation to obtain the appropriate response coefficients. AQMAN does most of the
work, calculating coefficients and transforming the user’s constraints into MPS format.

Consider the following problem. Decisions are made during one management
period at two pumping wells, Q; and Q;. Head H is constrained at three control
locations, and only pumping is allowed:

H < 700 (22a)
Hy, < 900 (22b)
Hy > 500 (22¢)
Q. QQ =2 00 (224d)

The user provides AQMAN with the three control locations, the constraining values
70.0, 90.0, and 50.0 (feet), and the direction of the inequalities. As explained above,
pumping constraints such as (22d) are entered directly into the MPS file. (Most
optimization codes assume non-negativity for all decision variables unless stated
otherwise in the MPS file) AQMAN performs a series of calculations for the first
three constraints:

(1) Compute the transient heads that would occur if there were no managed stresses
on the system, that is Q;=Qp=0. These heads are shown in column 1 of Table I.
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(1) (2) (3) HEAD WITH UNIT RESPONSE
CONTROL UNMANAGED USER'S MANAGEABLE STRESS APPLIED AT: COEFFICIENT
LOCATION HEAD CONSTRAINT| DRAWDOWN Well 1 Well 2 |  Well 1 Well 2
ON HEAD [(1) - (2)] (4a) (ab) [(1)-(4a)] | [(1)-(4b}]
1 80 <70 _+10 78 76 2 4
2 82 <90 -8 79 75 3 7
3 75 >50 +25 69 73 6 2

Table 1. Sample computations of manageable drawdown, and response coefficients.
The last two columns form the response matrix.
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(2) Subtract the wuser’s constraints from unmanaged heads to obtain manageable
drawdowns. See column 3 of Table 1.

(3) Compute the heads that occur in response to a unit rate of pumping at
each well. In this example, the unit rate is 1.0 ft3/sec. Example values of
computed heads are shown in Table 1, columns 4a and 4b.

(4) Subtract these heads from unmanaged heads to obtain the drawdown
responses. In this example, a unit rate of pumping at well 1 causes draw-
downs of 2.0, 3.0, and 6.0 feet, while the same rate at well 2 induces draw-
downs of 4.0, 7.0, and 2.0. These values appear in the last two columns of
Table 1, and form the response matrix.

AQMAN transforms the first three constraints to:

2Q; +4Q = +100 (23a)
3Q+7Q 2 -80 (23b)
6 Qi+ 2 Q < +250 (23¢)

The constraint on head at each control location is now expressed implicitly as a
linear function of the pumping decisions. The non-negativity constraint will be
assumed by the linear programming code:

Q . Q 2 00 (23d)

The MPS file shown in Figure 3a is written by AQMAN. Note that response
coefficients appear in the COLUMNS section and manageable drawdowns appear in
the RHS section.

Gradi 1 veloci .

Another type of hydraulic constraint limits the gradient or the seepage velocity
between two control locations. Using the above example, the user defines control
pair 1 as control locations 1 and 2, and restricts seepage velocity V from location 2
to location 1 to be greater than or equal to 0.01 ft/sec (Figure 2).

vy 2 o001 24
Velocity is related to the difference in head.
K(H; - Hy)

vV, = (25a)
¢ L

For the sake of simplicity of presentation, assume that the hydraulic conductivity K
and effective porosity ¢ do not vary between the two locations. Head at each location
is equal to the difference between unmanaged head H and drawdown s:
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NAME
ROWS

G DR010001
G DR010002
L DR010003
N OBJ

COLUMNS

QP1001
QP1001
QP1001
QP1002
QP1002
QP1002

RHS

RHS
RHS

ENDATA

Figure 3a.

EXAMPLE

OBJ
DR010001
DR010003
OBJ
DR010001
DR010003

DR010001
DR010003

1.0
0.20000E+01
0.60000E+01

1.0
0.40000E+01
0.20000E+01

0.10000E+02
0.25000E+02

DR010002

DR010002

DR010002

0.30000E+01

0.70000E+01

-0.80000E+01

MPS file written by AQMAN for the data shown in Table 1. There are
three control locations, two decision wells, and one management period.
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NAME EXAMPLE
ROWS
E DR0O10001
G DR010002
L DR010003
N OBJ
COLUMNS
QP1001  OBJ 1.0
QP1001  DRO10001  0.20000E+01  DRO10002  0.30000E+01
QP1001  DRO10003  0.60000E+01
QP1002  OBJ 1.0
QP1002  DRO10001  0.40000E+01  DRO10002  0.70000E+01
QP1002  DRO10003  0.20000E+01
HO10001 DRO10001  0.10000E+01

RHS
RHS DR010001  0.80000E+02 DR010002 -0.80000E+01
RHS DR010003  0.25000E+02

ENDATA

Figure 3b. Head definition is substituted at control location 1.
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NAME

E DRO10001
G DRO10002
L DRO10003
L H010001
N OBJ
COLUMNS
QP1001
QP1001
QP1001
QP1002
QP1002
QP1002
H010001
H010001

RHS

RHS

RHS
ENDATA

Figure 3c.

EXAMPLE

OBJ
DR0O10001
DR010003
OBJ
DR010001
DR0O10003
DR010001
HO010001

DR010001
DR010003
H010001

1.0
0.20000E+01
0.60000E+01

1.0
0.40000E+01
0.20000E+01
0.10000E+01

0.10000E+01

0.80000E+02

0.25000E+02
0.700000E+02

29

DR010002

DR0O10002

DR010002

0.30000E+01

0.70000E+01

-0.80000E+01

Head constraint at location 1 is manually inserted.



H; = H; - 5 (25b)

Hy = Hy - 59 (25¢)
Substitution of (25) into (24a) gives

s;-s; < Hj - Hy- 001 (eL/K) (24b)
The user supplies three types of input data to AQMAN:
(1) the location of the velocity-control pair,
(2) the minimum (in other problems, maximum) velocity, e.g., 0.01 ft/sec,
(3) the factor (eL/K) that converts the minimum seepage velocity to a difference in
head. For this example, we assume (¢L/K) equals 90.0 seconds.

AQMAN does the rest. Using the response information from Table 2 and the

unmanaged heads from Table 1, the constraint (24b). is transformed for the
optimization procedure:

51 ) -ﬁl ﬁz (eL/K)
{ { { i i
2Q +4Q)-(3Q +7 Qy) < 800 - 820 - (0.01) (90.0) (24¢)
- Ql -3 Q2 < -29 (244d)

With the addition of the velocity constraint, AQMAN writes the expanded MPS file
shown in Figure 4a to include inequality (24d).

Note that if the user wishes to control the hydraulic gradient rather than the
velocity, the distance L should be substituted for the factor (eL/K).

A ground-water management problem may involve a plume of contamination. If
hydrodynamic dispersion is negligible and linear sorption can be assumed, movement
of a contaminant front will be retarded relative to the bulk fluid flow (Freeze and
Cherry, 1979). Under these conditions, AQMAN can be used to prescribe pumping
and recharge rates that would control movement of the plume (Lefkoff and Gorelick,
1986). The user should incorporate a retardation factor R into the factor (eL/K)
that converts seepage velocity to a difference in head. The retarded seepage velocity
would then be controlled. In the above example, equation (24b) would become

eLR

o
where R = retardation factor [L }.
Head i velocity definiti
A head definition can be used to obtain additional management information in

the final solution. Again referring to the above example, the user now wishes to
know the optimal head at location 1. The variable KDEFHD is set equal to I, and
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NAME
ROWS
L DIF01001
G DRO10001
G DRO10002
L DRO10003
N OBJ
COLUMNS
QP1001
QP1001
QP1001
QP1001
QP1002
QP1002
QP1002
QP1002

RHS

RHS

RHS
ENDATA

EXAMPLE

OBJ

DIF01001
DR010001
DR010003
OBJ

DIF01001
DR010001
DR0O10003

DIF01001
DR010001
DR010003

Figure 4a. MPS file written by
velocity control added at control pair 1.

1.0

-0.10000E+01

0.20000E+01 DR010002  0.30000E+01
0.60000E+01

1.0

-0.30000E+01

0.40000E+01  DR0O10002 0.70000E+01
0.20000E+01

-0.29000E+01
0.10000E+02  DR010002 -0.80000E+01
0.25000E+02

AQMAN for the data shown in Table 1 with
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NAME
ROWS

Zroomm

DIF01001
DIF01002
DR010001
DR010002
DR010003
OBJ

COLUMNS

QP1001
QP1001
QP1001
QP1001
QP1002
QP1002
QP1002
QP1002
G01001
601002

RHS
RHS
RHS

ENDATA

EXAMPLE

OBJ

DIF01001
DR010001
DRO10003
OBJ

DIF01001
DRO10001
DRO10003
DIF01001
DIF01002

DIF01001
DR010001
DRO10003

1.0

-0.10000E+01

1

0.
0.
.0
.30000E+01
.40000E+01
.20000E+01
.10000E+01
.10000E+01

OCOO0OQCO

[=NeNe]

20000E+01
60000E+01

.20000E+01
.10000E+02
.25000E+02
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DIF01002
DRO10002

DIF01002
DR010002

DIF01001
DR010002

-0.
.80000E+01

-0

.30000E+01
.30000E+01

.50000E+01
.70000E+01

70000E+01

Figure 4b. Head defiqition is specified at velocity control pair 1 and 2.



NAME

ROWS

Zoorroomm

DIF01001
DIF01002
DR010001
DR010002
DR010003
G01001
G01002
OBJ

COLUMNS

QP1001
QP1001
QP1001
QP1001
QP1002
QP1002
QP1002
QP1002
G01001
G01001
G01002

RHS
RHS
RHS
RHS

ENDATA

Figure 4c.

EXAMPLE

OBJ
DIF01001
DR010001
DR010003
OBJ
DIF01001
DR010001
DR010003
DIF01001
G01002
DIF01002

DIF01001
DR010001
DR010003
G01001

1.0

-0.
0.
0.

[ecNeNeNeNe N

-0.
0.
0.
0.

1.0
-0.30000E+01
.40000E+01
.20000E+01
.10000E+01
.57700E+00
.10000E+01

10000E+01
20000E+01
60000E+01

20000E+01
10000E+02
25000E+02
90000E+00
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DIF01002
DR010002

DIF01002
DR010002
G01001
G01002

DIF01001
DR010002

G01002

-0.
-0.

0

.30000E+01
.30000E+01

.50000E+01
.70000E+01
.10000E+01

.10000E+01

70000E+01
80000E+01

.00000E+00

Velocity constraint at control pair 1 is manually inserted.



AQMAN will substitute
2Q); +4Qy + H} = 80.0 27

for inequality (23a). The right side of this equation is the unmanaged head shown
in column 1 of Table 1. AQMAN now writes the MPS file shown in Figure 3b
rather than 3a. A value of H; will now appear in the management solution. In
order to include the original constraint (22a), the user manually adds a row, a
column entry, and a right-hand side into the MPS file. This is shown in Figure 3c.
(See the section below on MPS formats.)

A velocity definition can be used to control the difference between two
velocities. For example, the user defines control pair 2 as control locations 2 and 3,
and restricts the vector sum of seepage velocities V; and V, to remain within 30° of
the direction of Vy (Figure 5). That is

\f)
tan 30° > —— (2
an > v, (28a)

0577V -V, 20 (28b)

The user now supplies as input data to AQMAN only the locations of the two
velocities control pairs, with KDEFGR set equal to 1. The following equations
replace (24b):

s -sp +V; = Hy-H, (29a)
S3 - 8 + Vz = ﬁ3 - ﬁz (29b)

AQMAN now writes the MPS file shown in Figure 4b rather than 4a. In order to
include the original constraint (24a) and the new constraint (28b), the user manually
adds two rows, three column entries, and two right-hand sides into the MPS file.
This is shown in Figure 4c.

AQMAN uses the Trescott code to solve the ground-water flow equation (1),
which contains a linear relation between heads and well pumpages. The user may
introduce some nonlinearities into the simulated system by specifying unconfined
conditions or head-dependent leakage or evapotranspiration (Trescott and others, 1976,
pp. 2-8). In these cases, AQMAN will write a warning message, but otherwise will
operate normally, as if the system behaved linearly. The user must judge whether
the consequent error in the linear programming solution is acceptable. For instance,
if an unconfined aquifer is thick and highly conductive, transmissivity will not be a
strong function of head, and linear treatment of the system may provide an
acceptable management solution.

Time Parameters

The user must also select appropriate time parameters for the problem. Pumping
periods in the Trescott code are synonymous with management periods in AQMAN, so
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Figure 5. The vector sum V of velocity controls 1 and 2.
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that management decisions are made for each pumping period specified. Hydraulic
responses to applied stresses are written to the MPS file for the time corresponding
to the end of each period. The response matrix formulation that AQMAN uses
requires that all pumping periods have the same length. This assures that the time
difference between implementation and effect of a decision is independent of
pumping period. For instance, a decision for period 4 will cause an additional
drawdown during period 6. The same decision in period 1 will cause the same
additional drawdown during period 3. Transient responses are added over time. This
fully utilizes the computational advantages of linear programming with response
matrices.

For transient simulations, finite-difference computations are performed by time
step within each pumping period. This is the numerical time step used in the
finite-difference approximation, and should not be confused with the length of
pumping periods. The numerical time step may have a variable length. Short time
steps should be used while heads are rapidly recovering from the unit stress applied
during the first period. Longer time steps may be used for later pumping periods in
order to save computer time. The length of the initial time step within each period
is read as the variable TIMINC. Subsequent time steps within a period are increased
by a multiplying factor, CDELT. Time steps are automatically adjusted so that the
end of each pumping period corresponds to the end of a time step.

n 1i

The value of the umit stress is read by AQMAN as the variable UNITQ. Its
sign indicates whether the stress is a (-) sink (pumping) or a (+) source (recharge).
AQMAN input follows the convention used in the Trescott code: negative for
pumping, positive for recharge. AQMAN converts signs so that pumping and recharge
rates are positive in the MPS file.

Many optimization codes automatically constrain decision variables to
non-negative values. This is useful if each well is restricted to either pumping or
recharge. In the input files for AQMAN, the user should specify a uniform positive
unit stress at recharge wells and an equal negative stress at pumping wells. The
management solution obtained with the optimization code will contain positive rates
for both recharge and pumping.

Rather than place a restriction on the decision wells, the user may want to let
the optimization code determine whether each well should pump or recharge. To
accomplish this, assign a positive unit stress for all wells in AQMAN. Before
executing the optimization code, override the automatic non<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>