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METRIC CONVERSION FACTORS

The International System of Units (SI) used in this report may be

converted to inch-pound units by the following conversion factors:

Multiply By
millimeter (mm) .03937
meter (m) 3.281
meter per hour (m/h) 3.281
cubic meter per hour (m3/h) 35.32
centimeter per cubic centimeter (cm/cm3) 6.542
liter per hour (L/h) 0.2642

To obtain
inch
foot
foot per hour
cubic foot per hour
inch per cubic inch

gallon per hour



SIMULATION OF TRICKLE IRRIGATION, AN EXTENSION
TO THE U.S. GEOLOGICAL SURVEY'S COMPUTER PROGRAM VS2D

By R. W. Healy

ABSTRACT

A method is presented for simulating water movement through
unsaturated porous media in response to a constant rate of application from
a surface source. Because the rate at which water can be absorbed by soil
is limited, the water will pond; therefore, the actual surface area over
which the water is applied may change with time and in general will not be
known beforehand. An iterative method is used to determine the size of
this ponded area at any time.. This method will be most useful for
simulating trickle irrigation, but also may be of value for simulating
movement of water in soils as the result of an accidental spill.

The method is an extension to the finite-difference computer program
VS2D developed by the U.S. Geological Survey, which simulates water
movement through variably saturated porous media. The simulated region can
be a vertical, 2-dimensional cross section for treatment of a surface line
source or an axially symmetric, 3-dimensional cylinder for a point source.
Five test problems, obtained from the literature, are used to demonstrate
the ability of the method to accurately match analytical and experimental

results.



INTRODUCTION

Trickle irrigation is a method of applying water to fields at slow
rates at selected points or lines. Mechanical emitters can be set to
discharge at any desired rate. The primary advantage of trickle irrigation
compared to flood or sprinkle irrigation is a greatly improved water-use
efficiency, consequently, the method is used mainly in areas where water is
scarce or expensive. The popularity of trickle irrigation has increased
continuously, since its modern-day inception in Israel in the early 1960's
(Bucks and others, 1982). The United States has more land under trickle
irrigation than any other country. McNeill (1980) estimated that there
were 175,000 hectares in the United States under trickle irrigation during
1980. Frazier (1977) predicted that the acreage could be 1 million
hectares by 1990.

Trickle Irrigation System

Schematic plan and section diagrams of a point trickle-irrigation
system are shown in figure 1. Water flows from the point emitter at a
constant rate. Because that rate generally is faster than the rate at
which the soil immediately beneath the emitter can absorb water, there is
some surface ponding. This results in a circular area of the land surface
becoming saturated. The wetted radius of that area, p(t), is a function of
time. Under a constant application rate, p(t) increases with time until a
maximum, steady-state value is attained. At that constant value, the
irrigation rate is equal to the flow from the circular area. For a line
trickle-irrigation system, the wetted surface has a length of 2 p(t) when
viewed from a 2-dimensional vertical cross section perpendicular to the
irrigation line. The rate of expansion of p(t) generally decreases with
time (Bresler, 1978, p. 7). In general, it is not possible to exactly
determine the value of p(t) beforehand, although Warrick (1985) has derived

an equation to define p(t) at steady state under special conditions.
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Figure 1.-- Schematic plan and sectional diagrams of a point trickle-
irrigition system.



An understanding of the soil-water regime in the vicinity of an
emitter could be used to improve the performance of a trickle irrigation
system. Knowledge of the rate at which wetting fronts move, both
horizontally and vertically, can aid in determining optimal application
rates, frequency of application, and spacing between emitters. Although
there has been much work done in studying water movement through partially
saturated soils, relatively little has been done in the area of trickle
irrigation. This is probably true because the flow field is 3-dimensional
for a point source and 2-dimensional for a line source, and the surface
boundary condition is quite complex. Both numerical and analytical
solutions have been proposed for the solution of the water-flow equation in
the vicinity of an emitter. Brandt and others (1971) presented a finite-
difference technique for a single emitter both for a point-source (3-
dimensional with axial symmetry) and a line-source (vertical 2-dimensional
cross section). Taghavi and others (1984) developed a finite element
program to accomplish the same goals as Brandt and others (1971). However,
that code is somewhat limited in that the wetted radius must be known
beforehand. Wooding (1968) presented an analytical solution to the
linearized steady-state flow of water from a circular disk of fixed radius.
Bresler (1978) used Wooding's (1968) solution to determine the required
spacing between emitters to insure a specified pressure head at the soil
surface midway between the emitters. Warrick (1974) developed a time-
dependent linearized solution to the water-flow equation, which could be
used to estimate wetting-front location for single or multiple emitters.

However, this method could not account for saturation at the soil surface.

Purpose and Scope

The purpose of this report is to describe a model for simulating the
movement of soil-water under trickle irrigation. The technique actually is
an extension to U.S. Geological Survey'’s computer program VS2D (Lappala and
others, 1987), which simulates water movement through variably saturated
porous media. The extension consists of a new subroutine (TRICKLE) and
slight modifications to existing routines. Five test problems are
presented to check the ability of this code to match experimental data,
theory, and a previously published simulation. Subroutine TRICKLE and the

required modifications to program VS2D are listed in Attachment I. A flow
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chart of the revised computer program is shown in Attachment II.
Explanations of data-entry requirements are listed in Attachment III. An
example of data entry and program results is listed in Attachment IV.
Attachments I-1IV are listed at the back of the report.

Computer program VS2D uses a finite-difference approximation to the
nonlinear water-flow equation (based on total hydraulic head). It can
simulate problems in 1, 2 (vertical cross section), or 3-dimensions
(axially symmetric). The porous media may be heterogeneous and
anisotropic, but principal directions must coincide with vertical and
horizontal axes. Boundary conditions can take the form of fixed pressure
heads, infiltration with ponding, evaporation from the soil surface or
plant transpiration. Seepage faces also may be simulated by program VS2D;
however, because of program structure, seepage faces and trickle-irrigation
boundaries are not allowed in the same simulation. The program also allows
for some flexibility in selecting the pressure-head moisture-content and
pressure-head relative hydraulic-conductivity relations. These data can be
entered in tabular form or by functional relations, such as given by
Brooks and Corey (1964) or van Genuchten (1980). Potential users need to
obtain a copy of Lappala and others (1987) for more detail on the use of

computer program VS2D.
THEORY

The partial differential equation that governs the flow of water

through variably saturated porous medium can be written as:

C(h)dh/ot = Vv « (K(h)VH) + ¢ (1)
where C(h) = specific water capacity, (L'l);

h = pressure head, (L);

H = h - z or hydraulic head, (L);

z = depth (reference at land surface), (L);

t = time, (T);

K(h) = hydraulic conductivity, (LT'l);

q = source (or sink) term, (T_l); and

v = vector gradient operator, (L-l).



Computer program VS2D solves the finite-difference equations equivalent to
equation 1. The domain to be simulated is divided into a grid of cells
(fig. 2). Nodes are located at the center of each cell. At each node,
equation 1 is approximated by a finite-difference equation. The finite-
difference equations for all nodes are then solved simultaneously. The
reader is referred to Lappala and others (1987) for details on the
derivation of the finite-difference approximations as well as assumptions
inherent in this approach. The only item to be discussed here is the
manner in which the trickle-irrigation boundary condition is implemented.

Formally, the trickle-irrigation boundary at the land surface may be
defined by:

h(x,z) =0, 0 s x<p(t), 0<t=<T,z=0 (2)

dH(x,z)/8z = 0, p(t) < x=<X, 0

A
t
IA
H

z =20 (3)

2x[2 (0 [k(h)VH(x,2) ]xdx = Q. 0 < ¢

IA

T, z = 0 (point source) (4a)

fg(t)K(h)VH(x,z)dx =Q/20<t=<T, z=0 (line source) (4b)
where Q = emitter flow rate, (L3T'1 or L2T-1);
T = maximum simulation time, (T); and

X

radial extent of domain, (L).

Equations 2 to 4 state that at time greater than O the land surface is
saturated at distances equal to or less than p(t) from the origin and that
there is no vertical flow across land surface at distances greater than
p(t). This second condition is not required, as evaporation or plant
transpiration could be allowed to occur from that area. Also these
equations are based on the assumption that the emitter is located at the
origin; that is, the leftmost node that represents land surface. Because
of radial symmetry this must be true when a point source is simulated;
hence, only a single point source can be included in any simulation.
‘Symmetry also is assumed when a line source is simulated. That is the
reason that the emitter flow rate (Q) in equation 4b has been divided by 2.
Either 1 or 2 line sources can be represented in a simulation, but because

of symmetry they must be located at either the leftmost or the rightmost
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node that represents land surface. Although equations 2 to 4, and some
following equations are written for the emitter located at the origin, the
same form of equations can be used to describe an emitter located at the
rightmost node representing the land surface.

The value of p(t) needs to be determined at every time step. Because
of the discrete nature of the finite-difference grid, it is not possible to
represent equations 2-4 exactly. This is true because p(t) is a continuous
variable and, therefore, can have values that are different than the
spacing between adjacent nodes. In practice, equations 2-4 need to be
modified to account for this discretization. The finite difference grid in
the vicinity of the trickle-irrigation boundary that is shown in figure 2
helps to illustrate the algorithm. For convenience, nodal locations are
indexed by j and k, so that H(j,k) refers to total hydraulic head at the
node located at radial or horizontal distance xj and vertical distance Z)
from the origin. Similarly, the boundary between two adjacent finite-
difference nodes, say (j,k) and (j,k+l), is indicated by (j,k+1/2).

The actual boundary conditions used are as follows.

h(j,1) =0, 0<j=1i, 0<t=xT (5)
0H(j,1/2)/8z = 0 i< j<NCOL, 0=<t=<T (6)
- 1.2 2
Q. =n ¥ K(h)VH(Z,13)(x,,1 - x, 1), 0 <t <T (point source) (7a)
i =1 243 £-3
i 1
= X K(h)VH(E,l;)(x2+l - X, 1), 0<t =T (line source) (7b)
2=1 2 2
qQ(i+1,1) = Q - Q (8)
where 1 = colum index such that X; < p(t) < xi+1, and Qi < Q< Qi+l;

NCOL = total number of columns within the grid; and

4(j,k) = a specified flux at mode j,k (LT or L2171y,



. EXPLANATION

X3 -
Xy ————— (1,2)
2 e NODE AND NUMBER
Xy = ——— CELL BOUNDARY
X) — ‘ . ) j  COLUMN INDEX
23 23 2y, 24 j=1 i=2 i=3 j=4 Land surface kK ROW INDEX
Lol 12 13 (14) X, HORIZONTAL OR RADIAL DISTANCE
k=1 . . ) FROM ORIGIN TO NODE (1,1)
Emitter X1y, HORIZONTAL OR RADIAL DISTANCE
FROM ORIGIN TO CELL BOUNDARY
2,1) BETWEEN NODES (1,1) AND (1,2)
k=2 o i d o z;  VERTICAL DISTANCE FROM LAND
SURFACE TO NODE (1,1)
zp,  VERTICAL DISTANCE FROM LAND
' (3.1) 2 SURFACE TO CELL BOUNDARY
k=3 e ) ° ° BETWEEN NODES (1,1} AND (1,2)

Figure 2.--Sketch showing finite-difference grid at trickle-irrigation
boundary.

Equations 5 to 8 simply state that surface nodes between the origin
and p(t) are treéted as contant head or Dirichlet nodes with pressure head
equal to 0. The node at (i,l) represents the furthest node from the origin
that still remains within the wetted radius. The flow from all of nodes
between the origin and (i,l) is summed. This sum is then subtracted from
the specified application rate and the resulting excess is treated as a
specified flux to node (i+l,1). Although the exact value of p(t) is not
required, the value of i needs to be determined at each time step. Because
this value can change between time steps, an iterative method is used to
determine it at each time step.

The entire algorithm can be given as:

1. Begin simulation by setting

i =0 and
a(1,1) = Q.
Advance to next time step.
Solve finite-difference equations for all nodes.
4 If h(i+l,1) > 0 then
Increase wetted radius
q(i+l,1) =0



h(i+1l,1) = O becomes a fixed head
i=1i+1
q(i+l,1) = oQ
Go to step 6.
5. Ca}culate Qi from equation 7
Q=Q-q
Q=1- [Q+ q(i+l,1)]/Q
If |Q| =< € then
Solution has been reached for current time step
Gg to step 2.
If Q < 0 then
Decrease wetted radius
q(i+1,1) =0
i=-1i-1
h(i+1l,1)  is no longer a fixed head
q(i+1,1) = (Q - Q) (1-0)
Gg to step 6.
If Q > 0 then
Reset specified flux
q(i+l,1) = (1+0)Q.
6. Reset all heads (except fixed heads) to values at end of previous
time step
Go to step 3.
End algorithm.
In the algorithm:
€ = user-defined closure criterion for inner iteration loop
(generally set at 0.03 to 0.05). Small values improve the
agreement between the specified application rate and the rate
actually used in the simulator but may require excessive computer
time; and
o = user-defined relaxation parameter, may be taken to be 0, but
experience has indicated that small numbers improve convergence
rate (must be less in magnitude than €).

Steps 4 and 5 are repeated if a second trickle-irrigation source is
being simulated. In order to avoid excessive computer time, the program
permits steps 4 and 5 of the algorithm to be performed a maximum of user-
defined MITR times per time step, after which the simulation advances to

9



the next time step. Values of MITR OF 4 or 5 have been determined to be
sufficient for most applications.
Although the computer program does not calculate values of p(t), an

estimate of p(t) at any time can be obtained as follows:

+ (x

14172~ Xis1/2) ]

P(E) = X441 ,2
where q is the flux that would be expected from node (i+l,1) if that node
was fully saturated. A value of q  can be determined from Darcy’s Law by
assuming that h(i+l,1) = O.

VERIFICATION PROBLEMS

Five test problems are presented in order to check the accuracy of the
new simulator. Two of the problems have analytical solutions, two problems
contain experimental data, and one problem contains results of a published
simulation. All of the problems involve infiltration from a point source,
and so an axially symmetric, 3-dimensional grid was used for each. No

line-source problems were found in the literature.

Steady infiltration from a ecircular pond

The analytical solution for this problem was developed by Wooding
(1968), using the linearized diffusion equation of Philip (1968). This
requires that the hydraulic conductivity be of the form:

K(h) = Ksatexp(ah) (10)

where Ksat = the saturated hydraulic conductivity (LT'I); and

a = a scaling coefficient (L'l).

The media was assumed to have uniform properties and initial conditions.
The region was semi-infinite and the radius of the pond was constant.
Radial symmetry was assumed.

Although Wooding’'s (1968) solution is strictly for steady state, the
problem is simulated here for times prior to steady state. The simulation
region was 3.60 m in depth, with a radius of 1.94 m. The grid spacing was

10



variable ranging from 0.03 m near the trickle source to 0.40 m at the
distal boundaries. The moisture-retention curve of the Nahal Sinai sandy
soil, given by Bresler and others (1971, p. 685), was fit to the equation
of van Genuchten (1980):

6 =6+ (8, - 6)/[1+ ' |n))™™ (11)
where
§ = volumetric moisture content, dimensionless;

§ = residual moisture content, dimensionless,

= 0.02;
§ = porosity, dimensionless,
= 0.26;
= shape parameter, in inverse meters,
-2.10m’1;
= pressure head, in meters;
= curve fitting parameter, dimensionless; and
1 - 1/n,
0.73.

Values of a = 3.33 m"! and K ae = 0.120 m/h were used. Wooding's (1968)
calculated irrigation rate for a radius of 0.06 m for these values is:
0.01037 m3/h. Therefore, this irrigation rate was used in the simulation
and the wetted radius was allowed to vary. Initial pressure heads were
everywhere assumed to be equal to -3.00 m [corresponding to #(h) = 0.022
and K(h) =7 x 10'7 m/h]. For convenience, the data used for this and all
other verification problems are listed in table 1.

Results in terms of relative hydraulic conductivity (Wooding, 1968)
are shown for 4 times in figure 3. The lengths in that figure are scaled
by 1/p*, where p* = 0.06 m is the steady-state wetted radius for this
problem. Also shown is the steady-state solution of Wooding (1968).
Steady-state was reached within the plotted region at about 45 hours. The
simulated results show excellent agreement with those of Wooding (1968).
The wetted radius calculated in this simulation was 0.04 m, which is
noticably different from Wooding’'s (1968) value. Brandt and others (1971)
noted that this value is difficult to accurately determine, and is highly

dependent on the grid spacing that is used.
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Figure 3.--Points of equal relative hydraulic conductivity, Kr’ for
infiltration from a circular pond--Verification problem 1. Theoretical
steady state and simulated at A) 1 hour; B) 10 hours; C) 45 hours; and
D) 55 hours.

12



Non-steady Linearized Infiltration from a Buried Point Source

Warrick (1974) extended previous analytical solutions of linearized
steady-state infiltration (Philip, 1968, 1969; Wooding, 1968; and Raats,
1971) to the non-steady case. His solution required the hydraulic
conductivity to be of the form given in equation 10. It also required that

the slope of hydraulic-conductivity moisture-content curve be constant;
dK(h)/df = k | (12)
where k = constant.

This is equivalent to specifying a constant diffusivity.

For this simulation, the vertical and horizontal grid spacings were
constant (AxX = 30 mm, Az = 60 mm). Radial symmetry was assumed. The point"
source was located at a depth of 30 mm below land surface (that is, it was
located in the uppermost row of cells). The irrigation rate was 0.000546
m3/h which was not large enough to cause ponding, so the trickle boundary
condition was actually not required. However, this example is included
because Warrick’s (1974) solution has been applied in the past to trickle-
irrigation problems (Bucks and others, 1982). The hypothetical soil column
was 1,920 mm deep (32 rows) with a radius of 900 mm (30 columns). It was

assumed that k = Ksat/a = 0.39 m/h. The other pertinent variables are

sat
listed in table 1.
Analytical and simulated results after 5 hours of infiltration are
shown in figure 4. The results are again in terms of relative hydraulic
conductivity and lengths are scaled by a = 10.0 m-1 for easy comparison
with Warrick’s (1974) solution. The results are almost identical at all

points.
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Figure 4.--Analytical and simulated points of equal relative hydraulic
conductivity, K _, after 5 hours of infiltration from a buried point
source --Verification problem 2.

Trickle-irrigation experiment

This problem involves simulation of experiments conducted by Angelakis
(1977) and simulated by Taghavi and others (1984). A clay-loam soil was
packed into a square tank 0.50 m on each side and 1.00 m deep. The point
source was located over one of the corners to take account of radial
symmetry. The initial moisture content of the soil was 0.044; the
hydraulic conductivity was represented by equation 10 (a = 2.80 m'l, Ksat =
0.0085 m/h); and moisture content was assumed to be linearly related to

pressure head by Taghavi and others (1984):
g(h) = 05 + 0.0013 h (13)

where GS = 0.53; and

h = pressure head in centimeters.

Two infiltration experiments were simulated, one for 77.78 hours at
the rate of 0.0021 m°/h and the other for 58.17 hours at the rate of 0.0033

14



m3/h. The simulated region was 1.00 m deep, with a radius of 0.52 m. Grid
spacing was uniform (Ax = Az = 0.04 m). Experimental and simulated results
for several different times are depicted in figure 5. The wetting front is
defined as the set of points where # = 0.144. 1In general, experimental and
simulated results were similar at early times. However, as time increased,
the difference between the experimental and simulated the wetting fronts
also increased. The reason for this is not apparent, although the
simulation by Taghavi and others (1984) had similar discrepancies. At the
higher rate, the simulated wetting front was much wider and deeper than the
data indicated at 31.03 hours. It is obvious that by this time the no-flow
radial boundary had a substantial effect on the simulated results, yet it
seems to have had no effect on the experimental results. At the end of the
simulation for the slower irrigation rate, the wetted radius was determined
to be 0.09 m, which is similar to the fixed value of 0.08 m that was used
by Taghavi and others (1984) in their simulation. The final value of the
wetted radius at the higher irrigation rate was 0.14 m. Taghavi and others

(1984) used a wetted radius of 0.10 m for their simulation.

01

0.2 ~2.83 hours
0.3 1—9.83 hours

0.4

DEPTH, IN METERS

0.5

0.6 * - *

. —— EXPERIMENTAL .
. e SIMULATED .
gl L 111 I B R B
70 01 02 03 04 05 060 01 02 03 04 05 06
RADIUS, IN METERS

Figure 5.--Experimental and simulated wetting fronts (6 = 0.144) for tank
experiments--Verification problem 3. A) irrigation rate of 2.1 x 10.3

cubic meters per hour; and B) irrigation rate of 3.3 x 10'3 cubic meters
per hour.
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Comparison with a previous simulation

In this example, an attempt was made to reproduce results of a
simulation made by Bresler (1978) using the computer program described by
Brandt and others (1971). The problem involved infiltration to the Nahal
Sinai sandy soil at the rate of 0.004 m3/h for 4 hours. Values of the
pertinent data are included in table 1. Actually, several different
simulations of this problem were performed due to some ambiguity in the
data values presented by Bresler (1978). The moisture-retention curve was
represented exactly as described in Verification problem 1 (eq. 11).
¢ of 0.0828 m/h and for a of 6.50

m ~. However, use of these values produced results markedly different from

Bresler (1978, p. 8) gave values for Ksa
those of Bresler (1978). This simulation indicated the wetted volume to be
much wider and shallower than that shown in figure 4 of Bresler (1978, p.
9). Two possible explanations for this are that the parameters of the
moisture-content function or the initial moisture content of the sand were
incorrectly estimated. In an attempt to better match Bresler’s (1978)
results, the a’ variable of the moisture-content function (eq. 1ll) was
varied. Results when a value of a’' = 4.10 m was used are shown in figure
6. The simulated results are fairly similar to those of Bresler (1978).
However, the resulting moisture-retention curve is somewhat different than

that in Bresler and others (1971).

Constant-flux infiltration from a hemispherical cavity

Infiltration experiments, described by Clothier and Scotter (1982),
were conducted in a cube 200 mm by 200 mm in cross section and 300 mm in
depth. The box was packed with Manawatu fine sandy loam at a uniform
initial moisture content of 0.055. Hydraulic conductivity was defined by
equation 10 with KSat = 0.004 m/h and a = 2.80 m-l. The moisture-retention
curve (given by Clothier and Scotter, 1982, fig. 1) was approximated by
equation 11. A relatively small flux of 0.00036 m3/h was applied over one
of the corners of the box, thus taking advantage of radial symmetry. This
created a cavity of about 4 mm radius that remained filled with water
throughout the experiment. The experiment was simulated for 9.67 hours.

Uniform grid spacing was used (Az = Ax = 20mm).
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Figure 6.--Wetting fronts during infiltration to Nahal Sinai sandy soil--
Verification problem 4.

The location of experimental and simulated wetting fronts at different
times is shown in figure 7. For this simulation, the wetting front was
defined as the points where § = 0.118. There is good agreement between
results at early time steps. However, as time increased, the differences
between experimental and simulated results also increased. Experimental
results were of less radial extent than simulated results. The reasons for
this are not apparent. At larger times the simulated values obviously were
affected by the no-flow radial boundary, as indicated by the shape of the
wetting front near that boundary at 6 hours. Clothier and Scotter (1982)
presented results at 9.67 hours, however, the simulated results at that
time indicated that the moisture content was greater than 0.118 at all
points within the domain and, therefore, a wetting front could not be
delineated.
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Figure 7.--Experimental and simulated (f# = 0.118) wetting fronts during
infiltration to Manawatu fine sandy loam--Verification problem 5.

SUMMARY

A method has been developed and tested for the simulation of water
movement through variably saturated porous media in response to the
application of water at land surface at a constant rate. This method
should be useful for simulating the effects of trickle irrigation.
Estimates of rates of wetting-front movement obtained with this method
could possibly be used to optimize application rates and spacing between
emitters. The method also may be of use in simulating the movement of
water in soils as the result of an accidental spill on land surface. Point
sources (3-dimensional axially-symmetric grid) or line sources (2-
dimensional vertical cross section) can be simulated. The method involves
use of the finite-difference computer program VS2D developed by the U.S.
Geological Survey along with the subroutine TRICKLE presented in this
report.

Five problems, obtained from the literature, were used to verify the
method. Excellent results were obtained for the two problems for which
analytical solutions exist. Results for the problems that involved
experimental data were not as good. This should be expected because of two
reasons. First, experiments of this kind are extremely difficult to
conduct because of the need to accurately measure moisture content or

pressure head at precise locations and times within small tanks. Second,

18



assumptions made in modeling the infiltration, such as uniform material
properties and initial moisture contents, were doubtlessly over-
simplifications of the real systems. Nevertheless, the method can be a
valuable tool to the study of water movement through soils in response to
surface application. Included in attachments are a listing of subroutine
TRICKLE and required modifications to program VS2D, a flow chart of the
revised computer program, a description of data-entry requirements, and a

listing of data used and results for an example problem.
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ATTACHMENT I
Listing of subroutine TRICKLE and required changes to program VS2D.

SUBROUTINE TRICKLE(IFET) 350000

c* 350100
C* ROUTINE TO SET BOUNDARY CONDITIONS FOR SIMULATION 350200
C* OF A TRICKLE IRRIGATION SYSTEM. 350300
c* 350400
IMPLICIT DOUBLE PRECISION (A-H,P-Z) 350500
COMMON/RSPAC/DELZ(100),DZZ(100),DXR(100),RX(100),DELY,PI2 350600
COMMON/ISPAC/NLY,NLYY,NXR, NXRR, NNODES 350700
COMMON,/KCON/HX (0900) ,NTYP(0900) 350800
COMMON /PRESS /P (0900) , PXXX(0900) 350900
COMMON/DISCH/Q(0900),0Q(0900),ETOUT, ETOUT1 , RHOZ 351000
COMMON /HCON/HCND (0900 ) , HKLL(0900) , HKTT(0900) 351100
COMMON/SPFC/JSPX(3,25,4) ,NFC(4) ,JLAST(4),NFCS 351200
COMMON /PND/POND 351300
COMMON /WGT /WUS , WDS 351400
COMMON/TCON/STIM,DSMAX,KTIM,NIT,KP 351500
COMMON/QTR/ITR,MITR,QTRICK(2),ERQ,SIG,QSA(2),INA(2) 351600
DIMENSION II(2) 351700

SAVE II 351800
QSA(1)=0. 351900
QSA(2)=0. 352000
IF(IFET.NE.0) GO TO 10 352100
II(1)=0 352200
II(2)=0 352300

10 IFET=0 352400

DO 180 K=1,NFCS 352500

C 352600
C CALCULATE TOTAL FLOW THROUGH FIXED HEAD NODES. 352700
o 352800
SUM1=0 352900

DO 100 J=1,NFC(K) 353000
IN=JSPX(1,J,K) 353100
IF(NTYP(IN).NE.1) GO TO 110 353200
JP1=IN+1 353300
IF(WUS.NE.0)GO TO 20 353400
DD=HKTT (JP1)*DSQRT (HCND(JP1)*HCND(IN)) 353500

GO TO 30 353600

20 DD=(HCND(IN)*WUS+HCND(JPL)*WDS)*HKTT(JP1) 353700

30 D1=DD*(P(IN)-P(JPl)) 353800
IM1=IN+NLY 353900
IF(HX(IM1).EQ.0.OR.NTYP(IM1).EQ.1) GO TO 60 354000

IF (WUS.NE.O) GO TO 40 354100
CC=HKLL (IM1)*DSQRT (HCND(IM1)*HCND(IN)) 354200

GO TO 50 354300

40 CC=(HCND(IN)*WUS+HCND(IM1)*WDS)*HKLL (IM1) 354400

50 IF(P(IN).GT.P(IM1))D1=D1+CC*(P(IN)-P(IMl)) 354500

60 IM1=IN-NLY 354600
IF(HX(IM1).EQ.0.OR.NTYP(IM1).EQ.1) GO TO 90 354700
IF(WUS.NE.O) GO TO 70 354800
CC=HKLL (IN)*DSQRT ( HCND( IM1 ) *HCND (IN)) 354900

GO TO 80 . 355000

70 CC=HKLL(IN)*(HCND(IN)*WUS+HCND(IML)*WDS) 355100
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Listing of subroutine TRICKLE and

C*
C*
C*

C*
C*
Cx*

C*
C*
C*
C*

C*
C*
C*
C*

C*
C*
C*

80
90

100

ALL NODES ON TRICKLE BOUNDARY ARE PONDED. SIMULATION TERMINATED.

110

ATTACHMENT I

IF(P(IN).GT.P(IM1))D1=D1+CC*(P(IN)~-P(IMl))
SUM1=SUM1+D1
QS1=(SUM1-QTRICK(K))/QTRICK(K)

IF (QS1.GT.ERQ) GO TO 120

CONTINUE

WRITE(6,1000)
JSTOP=1
RETURN
JJ=JSPX(2,J,K)

CHECK FOR PONDING AT FLUX NODE.

P1=POND~DZZ (JJ)

QS=SUM1+QQ(IN)

QE=(1+ERQ)*QTRICK(K)
IF(P(IN).LE.P1.0OR.(QS.GT.QE.AND.ITR.LT.MITR)) GO TO 150

PONDING OCCURRED. CHANGE NODE TO FIXED HEAD.
ESTIMATE FLUX FOR NEXT NODE ON TRICKLE FACE.

120

IF(II(K).EQ.10) GO TO 160
II(K)=5

IFET=1

P(IN)=P1

NTYP(IN)=1

QQ(IN)=0
IN=JSPX(1,J+1,K)
QQ(IN)=QTRICK(K)*SIG
NTYP(IN)=2
WRITE(6,1200) J

GO TO 160
SUM2=SUM1-D1

TOO MUCH FLUX THRU FIXED HEADS. REMOVE FIXED
HEAD FROM CURRENT NODE AND ESTIMATE FLUX.

130

140

150

IF(II(K).EQ.5) GO TO 130
NTYP(IN)=2

WRITE(6,1100) J
QQ(IN)=(QTRICK(K)-SUM2)*(1-SIG)
II(K)=10

IFET=1

DO 140 J2=J+1,NFC(K)
IN=JSPX(1,J2,K)
QQ(IN)=0.

NTYP(IN)=3

GO TO 160

CONTINUE

CHECK TO SEE IF ACTUAL FLUX IS CLOSE ENOUGH
TO PRESCRIBED TRICKLE FLUX.

24

required changes to program VS2D--Continued.

355200
355300
355400
355500
355600
355700
355800
355900
356000
356100
356200
356300
356400
356500
356600
356700
356800
356900
357000
357100
357200
357300
357400
357500
357600
357700
357800
357900
358000
358100
358200
358300
358400
358500
358600
358700
358800
358900
359000
359100
359200
359300
359400
359500
359600
359700
359800
359900
360000
360100
360200
360300
360400
360500



ATTACHMENT I
Listing of subroutine TRICKLE and required changes to program VS2D--Continued.

C* 360600
QSA(K)=QTRICK(K)-QS 360700
QS1=DABS(QSA(K)) 360800
INA(K)=IN 360900
IF(QS1.LE.ERQ*QTRICK(K))GO TO 160 361000
IFET=1 361100
QQ(IN)=(QTRICK(K)-SUM1)*(1+SIG) 361200

160 CONTINUE 361300
IF(IFET.EQ.0) GO TO 180 361400

c* 361500

C* RESET HEADS TO VALUES AT END OF PREVIOUS TIME STEP 361600

c* 361700
NIT=0 361800
DO 170 KK=NLY,NNODES 361900
IF(NTYP(KK).EQ.1.OR.HX(KK).EQ.0.) GO TO 170 - 362000
P (KK)=PXXX (KK) 362100

170 CONTINUE 362200
180 CONTINUE 362300
RETURN 362400
1000 FORMAT(' ALL NODES ON TRICKLE BOUNDARY ARE PONDED. ', 362500
1' SIMULATION TERMINATED. IRRIGATION RATE MUST BE REDUCED' 362600
2' OR NUMBER OF NODES ON TRICKLE BOUNDARY INCREASED.') 362700
1100 FORMAT(' UNPONDING AT NODE ',I8) 362800
1200 FORMAT(' PONDING AT NODE ',I8) 362900
END 363000

25



ATTACHMENT I
Listing of subroutine TRICKLE and required changes to program VS2D--Continued.

Modifications to routine VSEXEC

COMMON/QTR/ITR,MITR,QTRICK(2),ERQ,SIG,QSA(2),INA(2) 6710
ITR=0 22410
IF(KTIM.GT.1) THEN 22420
DO 225 M=1,NFCS 22430
IM=INA(M) 22440
QQ(IM)=0Q(IM)+QSA(M) 22450
IF (QQ(IM).LT.0)QQ(IM)=0 22460
225 CONTINUE , 22470
END IF 22480
ITR=ITR+1 22510
CALL VSCOEF 22910
IF(ITR.LE.MITR) CALL TRICKLE(IFET) 22920
IF(IFET.NE.0.AND.ITR.LE.MITR)GO TO 230 23310
WRITE(6,4180) ITR ‘ 23320
4180 FORMAT(' NUMBER OF PASSES THROUGH TRICKLE LOOP = ',I4) 30110

CALL VSPOND(IFET,IFET1,IFET2) 22900
IF(IFET.NE.O) GO TO 230 23300
CALL VSCOEF 23800

Modifications to routine VSTMER

COMMON/QTR/ITR,MITR,QTRICK(2),ERQ,SIG,QQA(2),INA(2) 64110
READ(5,*) JJ,MITR,QTRICK(K),ERQ,SIG 68810
IF(MITR.LE.0) MITR=8 68820
IF(J.NE.1) GO TO 40 70010
QQ(N2)=QTRICK(K) 70020
NTYP (N2)=2 70030
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ATTACHMENT I

Listing of subroutine TRICKLE and required changes to program VS2D--Continued.

READ(S,*) JJ,JLAST(K) 68800
IF(J.LE.JLAST(K)) GO TO 30 69800
GO TO 40 70000
30 NTYP(N2)=1 70100
P(N2)=-DZZ(J1) 70200
Modifications to routine VSMGEN
Delete statement
IF (SEEP) CALL VSSFAC 93800
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Attachment i

Flow chart of revised computer program

Begin simulation
Input data
Initialize variables

]
>y

Advance to next time step
ITR=0

|
Y
Setup and solve finite -
difference equations

ITR =ITR+1

Node (K,1)
constant head

DD = Flow through node (K1)
SUM1 =SUM1 +DD

No

Yes

All nodes ponded on trickle
face: terminate simulation

SUM1 =SUM1- DD
For J = 1 to NFCI(K)
q{K,J}=0 and remove

IFET =5

constant head from node (K,J)
q(K,) = (1-8)¢[QTRICK(K) -SUM1]

(=)
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Attachment I

Flow chart of revised computer program --Continued

alK,l)+ SUM1=
{1+ €)»QTRICK(K)

Yes

¢

Y

h{K,)=0
Set node (K,|) to be constant head
qiK.)=0
_ 1=1+1
QTRICK(K) IFET =10

= €

(=9

a(K,1) =1+ 8)¢[QTRICK(K) ~ SUM1]
IFET =1

(=9
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ATTACHMENT III
Description of input instructions

The trickle-boundary condition replaces the seepage-face boundary in
program VS2D. Therefore, without program modification these two boundaries
cannot be used in the same simulation. 1In addition, infiltration can not
be simulated at nodes that are not located on a trickle boundary. A
complete list of data-entry instructions follows, for more details on any
particular variable, the reader is referred to Lappala and others (1987).
The variables that apply for the trickle-boundary option are marked with an

asterisk.
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ATTACHMENT III
Description of input instructions

Card Variable Description
[Line group A read by VSEXEC]
A-1 TITL 80-character problem description
(formatted read, 20A4).
A-2 TMAX Maximum simulation time, T.
STIM Initial time (usually set to 0), T.
A-3 ZUNIT Units used for length (A4).
TUNIT Units used for time (A4).
CUNX Units used for mass (A4).
Note: Line A-3 is read in 3A4 format, so the unit designations must occur
in columns 1-4, 5-8, 9-12, respectively.
A-4 NXR Number of cells in horizontal or radial
direction.
NLY Number of cells in vertical direction.
A-5 NRECH Number of recharge periods.
NUMT- Maximum number of time steps.
A-6 RAD Logical variable = T if radial
coordinates are used; otherwise = F.
ITSTOP ‘Logical variable = T if simulation is
to terminate after ITMAX iterations in
one time step; otherwise = F.
A-7 F11P Logical variable = T if head,

moisture content, and saturation
at selected observation points are
to be written to file 11 at end of
each time step; otherwise = F.

F7P Logical variable = T if head changes
for each iteration in every time
step are to be written in file 7;
otherwise = F.

F8P Logical variable = T if output of
pressure heads to file 8 is desired
at selected observation times; other-
wise = F.

FIP Logical variable = T if one-line mass
balance summary for each time steps
to be written to file 9; otherwise
= F.

F6P Logical variable = T if mass balance
is to be written to file 6 for each
time step; = F if mass balance is to
be written to file 6 only at obser-
vation times and ends of recharge
periods.
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ATTACHMENT III
Description of input instructions--Continued

Card Variable Description

A-8 THPT Logical variable = T if volumetric
moisture contents are to be written to
file 6; otherwise = F.

SPNT Logical variable = T if saturations are
to be written to file 6; otherwise =
F.

PPNT Logical variable = T if pressure heads
are to be written to file 6; other-
wise = F.

HPNT Logical variable = T if total heads are
to be written to file 6; otherwise =
F.

A-9 IFAC = 0 if grid spacing in horizontal (or
radial) direction is to be read in for
each column and multiplied by FACX.

= 1 if all horizontal grid spacing is
to be constant and equal to FACX.

= 2 if horizontal grid spacing is
variable, with spacing for the first
two columns equal to FACX and the
spacing for each subsequent column
equal to XMULT times the spacing of
the previous column, until the spacing
equals XMAX, whereupon spacing becomes
constant at XMAX.

FACX Constant grid spacing in horizontal (or
radial) direction (if IFAC=1);
constant multiplier for a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>