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CONVERSION FACTORS

For readers who prefer to use metric (International
System) units, conversion factors for inch-pound units in
this report are 1listed below. Constituent concentrations
are given in mg/L (milligrams per liter) or ug/L (micrograms
per liter), which are equal to parts per million or parts
per billion.

Multiply inch-pound unit By To obtain metric unit

acre 4,047 square meter

cubic foot per second 0.02832 cubic meter per
(£t3 /s) second

foot (ft) 0.3048 meter

gallon (gal) 0.06309 liter

inch (in.) 25.40 meter

microsiemens per centi- 1.000 micromhos per centi-
meter at 25 degrees meter at 25 degrees
Celsius (uS/cm) Celsius

mile (mi) - 1.609 kilometer

square mile (miz) 2.590 square kilometer

Temperature in °C (degrees Celsius) can be converted to
°F (degrees Fahrenheit) as follows:

°F = (1.8)(°C) + 32

Sea level: In this report, "sea level" refers to the
National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a
geodetic datum derived from a general adjustment of the
first-order level nets of both the United States and Canada,
formerly called "mean sea level of 1929."



HYDROGEOLOGY AND WATER QUALITY OF AREAS WITH PERSISTENT
GROUND-WATER CONTAMINATION NEAR BLACKFOOT, BINGHAM

COUNTY, IDAHO

By

D.J. Parliman

ABSTRACT

The Groveland-Collins area near Blackfoot, Idaho, has a
history of either periodic or persistent localized ground-
water contamination. Water users in the area report offen-
sive smell, metallic taste, rust deposits, and bacteria in
water supplies. During 1984 and 1985, data were collected
to define regional and local geologic, hydrologic, and
ground-water quality conditions and to identify factors
that may have affected local ground-water quality.

Well-construction, geologic, and water-level data
were compiled for 163 wells in the Groveland-Collins and
surrounding areas, and water samples from 54 sites were
collected periodically and analyzed for chemical constitu-
ents.

Regional geologic features consist of basalt of the
Snake River Group overlain by variably thick deposits of
sediment. The ground-water system is in basalt or sedimen-
tary interbeds, but water perched or moving through unsatu-
rated rock adjacent to the Snake River is an important
component of area hydrology. Infiltration or 1leakage of
irrigation water is the major source of ground-water
recharge, and water levels may fluctuate 15 feet or more
during the irrigation season. Ground-water movement
is generally northwestward.

Ground water contains predominantly calcium, magnesium,
and bicarbonate ions and characteristically has more than
200 mg/L (milligrams per liter) hardness. Ground water near
the Groveland-Collins area may be contaminated from one or
more sources, including infiltration of sewage effluent,
gasoline or liquid fertilizer spillage, or land application
of food-processing wastewater.



Contamination from various sources may be sporadic or
continuous and generally is limited in areal extent.
Concentrations are highest immediately after ground thaw
in many areas. Contamination is most frequent during spring
and summer months and least frequent during winter months.
Rising water levels during the irrigation season flush
contaminants from previously unsaturated rock to water-
yielding zones. Locally, well structure or construction may
provide routes for movement of contaminants from 1land
surface and unsaturated rock to the ground-water system.
Subsurface basalt ridges impede lateral movement of water in
localized areas. Ground water pools temporarily behind
these ridges and anomalously high water levels result.

Maximum concentrations or values of constituents that
indicate contamination were 1,450 microsiemens per centi-
meter specific conductance, 630 mg/L bicarbonate (as HCO,),
11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L
ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L
dissolved organic carbon, 7,000 yg/L (micrograms per liter)
dissolved iron, 5,100 pg/L dissolved manganese, and 320 ug/L
dissolved zinc. Dissolved~oxygen concentrations ranged from
8.9 mg/L in uncontaminated areas to 0 mg/L in areas where
food-processing wastewater is applied to the land surface.

Stable-isotope analyses may be useful in differentiat-
ing between contamination from potato-processing wastewater
and whey in areas where both are applied to the 1land
surface.

Development of a ground-water model to evaluate effects
of land application of organic wastewater and organic
solute loading rates on subsurface water quality is not
feasible at this time.

INTRODUCTION

Ground-water contamination! has been reported for
wells within 2 to 6 mi of Groveland, Collins, and Wadsworth
Island near Blackfoot, Idaho (fig. 1l; hereafter referred to
as the Groveland-Collins or study area), since the 1950's

1 For purposes of this report, ground water is defined as
water in saturated rock (Heath, 1983, p. 4). Contaminants
are defined as chemical components that are introduced
into the hydrologic environment as a result of land- or
water-use activities and that may limit the water's suit-
ability for use or may result in significant degradation of
water quality.
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(Bingham County, 1981, p. 143). Complaints of either
periodic or persistent localized ground-water contamination
in these areas became noticeably more frequent in about
1974, Water users commonly reported (1) swampy or foul
odor; (2) metallic taste; (3) rust clogging appliances or
plumbing and staining clothes, plumbing fixtures, or build-
ing exteriors; (4) a black, stringy, algae-like growth in
plumbing fixtures; and (5) health problems, particularly
those affecting the digestive tract. Reported contamination
problems were most noticeable in early spring, particularly
after ground thaw, and in late summer.

Between 1974 and 1983, parts of areas near Groveland
and Collins were included in at least six ground-water
studies by county, State, or private agencies. Analyses of
ground-water samples collected for these studies defined a
few of the contaminants, including total coliform bacteria,
dissolved iron or dissolved manganese, and a few anomalous
concentrations of dissolved zinc or nutrients (nitrogen
and phosphorus compounds). Although some contaminants
were generally described in these studies, specific sources
of contamination were not identified. Contamination sources
suggested by the studies included: (1) Inadequate well
construction; (2) improper or inadequate construction of
subsurface sewage-disposal systems; (3) increased density of
subsurface sewage-disposal systems; (4) inadequate filtering
capacities of soils; (5) leakage from manufacturing or
sewage wastewater 1lagoons; (6) leachates from historical
landfill sites; (7) leachates from historical disposal of
so0lid organic wastes in trenches, gravel pits, and dry river
channels; or (8) infiltration of relatively large volumes of
food-processing wastewater used for irrigation (Bingham
County, 1981; Forsgren-Perkins Engineering, 1982; Stewart,
1983).

In 1983, the U.S. Geological Survey, in cooperation
with the Idaho Department of Health and Welfare, Division of
Environment, began a 2-year study to determine the causes of
ground-water contamination in the Groveland-Collins area.
Results of the study are described in this report. Data
collected in support of the hydrologic and water-quality
components of this study were compiled and presented in a
separate report (Parliman, 1986).

Purpose and Scope

The primary purposes of this 2-year study were to
describe (1) hydrogeology and water quality in the area near
Groveland and Collins; (2) extent and degree of areal and
vertical ground-water contamination and seasonal changes in



concentrations of selected chemical constituents; and (3)
most probable sources and causes of the contamination, with
consideration for the mechanisms of reaction between soil or
rock and manufacturing effluent or other percolates. A
secondary purpose of this study was to determine the feasi-
bility of constructing a solute-transport model for use by
the Idaho Department of Health and Welfare to evaluate
effects of land application of organic wastewater and
solute-loading rates on the quality of water in both the
saturated and unsaturated rocks.

The scope of the first year of study included (1)
compiling existing geologic, hydrologic, and water-quality
data; (2) inventorying wells; (3) obtaining periodic
onsite measurements of depth to water, pH, specific conduc-
tance, dissolved oxygen, alkalinity, and water temper-
ature from selected wells; (4) constructing water-level
contour maps and hydrogeologic cross sections to define
areal hydrology; (5) obtaining water samples from selected
wells at determined intervals and analyzing the samples for
selected cations, anions, nutrients, organic constituents,
and trace elements; (6) defining areal extent and degree of
ground-water contamination and seasonal changes in concen-
trations of selected constituents; (7) determining the
most probable sources and causes for localized ground-water
contamination; and (8) determining chemical mechanisms
involved in release and transport of contaminants in the
ground water.

The scope of the second year of study included (1)
defining hydrology near Jensen Grove Lake (fig. 1), with
emphasis on the general direction of ground-water movement
and seasonal water-quality trends; (2) defining surface- and
ground-water relations in an area used for perennial dis-
posal of potato-processing wastewater (hereafter referred to
as the potato wastewater field); (3) installing several
monitoring wells near Jensen Grove Lake and the potato
wastewater field; (4) estimating hydraulic properties of
unsaturated rock and defining water quality in the potato
wastewater field; and (5) evaluating the feasibility of
constructing a solute-transport model for use by the Idaho
Department of Health and Welfare.

Methods

Well-construction, geologic, water-level, and water-
chemistry data were compiled for 70 wells in the Groveland-
Collins area. Comparable data were collected for an addi-
tional 81 wells in the surrounding area to provide back-
ground data. Twelve monitoring wells were installed in
1985, and locations of all 163 wells are shown in figure 2
(back of report).



Selection of wells was based on the following consider-
ations: (1) Availability of well-construction and 1litho-
logic log information, (2) availability of pre-1984 water-
level or water-quality data, (3) proximity of a well to
areas with reported water-quality problems, (4) accessi-
bility of well for water-level measurements, (5) distance
from the well to water-sampling point, (6) visible condition
of the well casing, and (7) well-owner permission for
long~-term monitoring. Well-inventory data (onsite and
drillers' log information about well location, construction,
lithology, use, and water-yielding zones) for these wells
were compiled in a separate report (Parliman, 1986).

From January to November 1984, water-level measurements
were made about bimonthly in 58 wells in the Groveland-
Collins area and 81 wells in the surrounding area. In 1985,
water-level measurements were made periodically in 50 wells
in the Groveland-Collins area and 3 wells in the surround-
ing area. Because topographic maps have not been revised
since 1971, all wells used for water-level monitoring near
Groveland, Collins, and Jensen Grove Lake were surveyed
with level lines to provide a comparative land-surface
altitude base. Land-surface altitudes for wells in the
surrounding area were interpolated from available U.S.
Geological Survey topographic maps.

Pre-1984 water-quality data were compiled for 51
wells in the Groveland-Collins area. During 1984 and 1985,
water—-quality data consisting of onsite and laboratory
analyses were collected from 54 inventoried sites. Methods
used for sample collection, preservation, and analysis were
described in a separate report (Parliman, 1986, p. 5).
Onsite analyses included specific conductance, water temper-
ature, pH, dissolved oxygen, and carbonate-bicarbonate
determinations. Laboratory analyses included specific major
cations, major anions, nutrients, trace elements, and
dissolved organic carbon. A few samples were analyzed for
methylene blue active substance, carbamate insecticides
(specifically aldicarb compounds), and selected stable
isotopes. Locations of wells for which water-quality data
are available are shown in figure 3. Selected 1984-85
data are summarized and discussed in this report. Pre-1984
and 1984-85 water-level and water-quality data were compiled
in a separate report (Parliman, 1986).

Reliability of available data is an important consider-
ation when comparing analyses. Some apparent variation in
water-quality characteristics may be based on inaccuracies
in data, the result of changes in sample collection tech-
niques or onsite and laboratory analytical methods, or
perhaps errors in data transcription or recording. Accuracy
of data used in this report was checked by several quality
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assurance techniques, 1including cation-anion balance,
specific conductance to dissolved-solids ratio, and compari-
son of characteristic concentrations (to detect possible
gross reporting errors). Cation-anion balance and values of
conductance-solids ratios for 1984-85 data are 1listed
in a separate report. Most pre-1984 analyses, however,
lacked one or more components necessary to perform these
quality assurance techniques.

Data for estimating surface- and subsurface-water
relations were compiled from (1) low-flow discharge measure-
ments made at three locations on the Snake River adjacent to
the potato wastewater field, (2) mean daily water-surface
altitudes recorded at the U.S. Geological Survey gage on the
Snake River at Blackfoot (fig. 3), (3) daily discharge
records for irrigation canals in the Blackfoot area, and (4)
periodic water-level measurements in Jensen Grove Lake (fig.
3) and selected canals. Water-surface altitude of Jensen
Grove Lake at the outlet gate was established by level-line
survey.

Information on historical land use, river channel
alterations, and areas of possible ground-water contamina-
tion was provided by residents, aerial photographs, and
local, county, or State agency personnel, Some additional
historical information was obtained from unpublished
records.
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DESCRIPTION OF THE STUDY AREA

The Groveland-Collins area in Bingham County com-
prises about 7 mi? adjacent to the Snake River near Black-
foot (fig. 1), and includes lands near the towns of Grove-
land and Collins, Wadsworth Island, and the Blackfoot
municipal recreation park (Jensen Grove Lake, Jensen
Grove Park, and Blackfoot airport and golf course). Land-
surface altitudes in the study area range from 4,500 ft
above sea level near Groveland to 4,460 ft near Wadsworth
Island. The land slopes generally southwestward and is
nearly level in many places but, in some parts of the area,
extensive changes were made to the land surface during the
1960's and 1970's, particularly during construction of
Interstate Highway 15.

Climate is semiarid, characterized by cold, wet winters
and hot, dry summers. Mean annual precipitation between
1970 and 1984 was about 10 in.; precipitation is greatest
during winter and spring and least during summer, particu-
larly July and August. The mean annual air temperature is
about 47 °F (8.5 °C). Highest mean temperatures are re-
corded most often in July, and lowest, most often in January
(National Oceanic and Atmospheric Administration, 1970-84).
Large daily ranges in air temperature are common and,
during winter months, extended periods of extreme cold
occasionally cause ice dams to form, which may result in
localized flooding along the Snake River.

Soils in Bingham County are varied and complex.
Salzmann and Harwood (1973) provided a detailed description
of regional soils and soil properties, and generalized
information is available in reports by Bingham County (1981)
and Forsgren-Perkins Engineering (1982). Soil frost infor-
mation is particularly important to the discussion of
ground-water contamination problems. The following descrip-
tion of soil frost conditions was provided by Chad McGrath
(U.S. Soil Conservation Service, Pocatello, written commun.,
1985): (1) The soil surface begins to freeze and thaw daily
in late October, (2) soil frost reaches its maximum depth in
late January, (3) daily freeze-thaw cycles in the spring
begin about mid-March, and (4) soil frost usually is gone by
mid-April.

About 32 percent of Bingham County's population growth
from 1970 to 1980 was in the Groveland-Collins and surround-
ing areas. Census population figures are not tabulated for
the small communities in these areas, but estimates of 1980



population are 600 in Groveland, 800 in Collins, 1,400 in
Moreland, 900 in Riverside, and 1,700 in rural areas
(Forsgren-Perkins Engineering, 1982, p. 24-25). The
1980 census for Blackfoot showed a population of 10,065
(Allan Porter, Idaho Department of Commerce, oral commun.,
1985).

The economy of Bingham County is based on agricultural
production and food processing, energy research, wholesale
and retail trade, recreation, and tourism. About 900 people
are employed at potato-processing companies in Collins, but
most jobs are in Blackfoot, at the Idaho National Engineer-
ing Laboratory (50 mi northwest of Blackfoot), or are
related to agriculture.

Four major types of land use are single-family resi-
dences, commercial and manufacturing development, irrigated
agriculture, and municipal recreation or services. Single-
family residences are in and near small communities or along
county roads. Most rural residences are on small acreages,
but community, subdivision, and mobile home parks may be
clustered; some locations may support 20 to 30 houses or
mobile homes per 40 acres. Most residences have individual
wells for water supply and a septic-tank soil-percolation
(drain field or seepage pit) system for sewage and waste-
water disposal. Mobile home parks generally have a com-
munity well and a wastewater lagoon.

Land in and near Collins is used primarily for food
processing, manufacturing, and commercial development.
Most businesses are associated with agricultural equipment
and supply, including bulk liquid fertilizer and dry chem-
ical storage. Both solid and liquid wastes from potato- and
cheese-processing businesses are used 1locally for animal
feed supplements or are applied to land, principally through
flood or sprinkler irrigation. Large volumes of potato-
processing wastewater initially are screened to reduce
organic solids, then piped to company-owned spray fields to
irrigate pasture and forage crops. Whey (cheese-processing
wastewater) is most commonly applied to pasture for fertil-
izer.

Relatively small acreages in the Groveland-Collins area
and most land in the surrounding areas support irrigated
agriculture and animal production. A complex system of
canals and ditches provides water from the Snake River for
crop and pasture irrigation. Domestic water supplies and
some stock or irrigation water supplies are from individual
wells., Individual businesses have wells for water supply
and septic-tank soil-percolation systems or lagoons for
sewage and wastewater disposal. Some seepage pits are used
to dispose of runoff from parking lots and business yards.
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Selected land-use features are shown in figure 4.
More detailed information about housing densities and sewage
and wastewater disposal is given in reports by Bingham
County (1981) and Forsgren-Perkins Engineering (1982).

GEOLOGIC AND HYDROLOGIC FRAMEWORK

Below land surface, water moves through soil and
rock. Soil is the layer of material that supports plant
growth, and rock is the naturally formed consolidated or
unconsolidated material that generally underlies soil.
Direction of water movement through soil and rock is
defined by physical forces such as gravity or atmospheric
and hydraulic pressure. Paths and rates of movement,
volumes of water, and most water-quality characteristics are
strongly influenced by spatial distribution, physical and
hydrologic characteristics, and mineral composition of the
rocks through which water moves. A study of subsurface
water, particularly water quality, requires an understanding
of rock distribution and characteristics.

Geology

Description of the geologic framework of the Groveland-
Collins and surrounding areas in this report will be
brief. Detailed discussions of area geology and geologic
history are included in reports by Robinette and Matzner
(1980), Bingham County (1981, p. 5-13), Scott (1981), and
Greeley (1982).

Principal rock units include modern Snake River
flood-plain deposits, older Snake River terrace deposits and
glacial fill, windblown sand and loess deposits, lake and
playa deposits, and basalt of the Quaternary Snake River
Group. Surface distribution of these rock units is shown in
figure 5, and their generalized physical and hydrologic
characteristics are summarized in table 1.

Unconsolidated sand, gravel, and silt or clay are the
predominant sediments. Silt or clay 0.5 ft or more thick
overlies basalt in each monitoring well completed in basalt,
but reports of fine-grained sediment beds or lenses over-
lying basalt are sporadic in most other areas. The inter-
mittence of drillers' log reports of clay and silt may
indicate that fine-grained sediments were deposited in local
depressions on the basalt surface or are areally widespread
but are thin units (less than 1 ft thick) that are not
easily detected. These fine-grained sediments are particu-
larly important to the movement of subsurface water.

11
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Basalt and associated interbeds underlie the entire

area. Spatial, physical, and hydrologic characteris-
tics of basalt of the Snake River Group are extremely
diverse. Basalt surfaces, exposed north and west of the

area, are described as "hummocky," with as much as 35 ft of
local relief, and are characterized as having collapse
depressions, pressure ridges, pressure plateaus, flow
ridges, and lava toes (Greeley, 1982, p. 2705). Structural
contours of the basalt surface shown in figure 6 illustrate
the irregqular, hummocky character of the basalt.

Individual basalt flows or basalt flow units may be
highly fractured and jointed or massive (unfractured,
unjointed). Interbeds vary areally and with depth but
may include volcanic cinders, rubbly basalt, or sedimentary
materials.

Electrical resistivity studies by Robinette and
Matzner (1980, p. 20-23) provide geologic information to
depths of about 1,500 ft below land surface near Blackfoot.
Data from an east-west resistivity profile about 1 mi north
of Riverside show multiple basalt flows extending from near
land surface to the bottom of the geoelectrical model.

Data from a resistivity profile extending southeast-
ward through Collins to Blackfoot indicate that, northwest
of Collins, basalt of the Snake River Group is about 1,300
ft thick and, beneath Blackfoot, is 630 ft thick and over-
lies a layer of saturated sand and gravel. Wells about 400
ft deep in the Groveland-Collins area do not extend through
the full thickness of the basalt. Southeast of Blackfoot,
an 868-ft well (section 2, township 3 south, range 35 east)
penetrates about 230 ft of unconsolidated sediment, 312 ft
of clayey basalt (Snake River Group), 185 ft of consolidated
sediment, and 141 ft of saturated silicic volcanic rocks
(older than basalt of the Snake River Group). This informa-
tion indicates a rapid thinning or pinching out of basalt
beneath the Blackfoot area.

Data from a north-south resistivity profile beginning
east of the Blackfoot golf course indicate about 600 ft of
basalt underlain by a thick sequence of clay, then by
saturated sand and gravel. The basalt thins and the clay
thickens toward the northeast.

Many of the subsurface lithologic features of the
Groveland-Collins area are described in figures 7B-7F.
Lines of sections are shown in figure 7A. Sections pre-
sented in these figures (particularly figs. 7D, 7E, and
7F) were chosen to define geologic and hydrologic conditions
in section 33, township 2 south, range 35 east; specifi-
cally, the configuration of the basalt surface (fig.
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6), character and relation of sediment overlying the
basalt, relation of changing water levels to rock type, and
relation of well construction to geology and water levels.
Figures 7B-7D represent the lithology underlying nearly
every type of land use in the Groveland-Collins area except
solid-waste landfill operations (fig. 4).

Figure 7B (section A-A') shows the lithology of
selected wells that are in a line nearly parallel to the
Snake River but that are neither adjacent to the river nor
within the historical flood channel. Land surface and the
top of the basalt slope southwestward. No clay beds
overlie the basalt.

Reported lithology of selected wells adjacent to the
Snake River within the historical flood channel is pre-
sented in figures 7C-7D (sections B-B' and B'-B'"').
These sections show a 1level or southwestward-sloping
land surface underlain by varying thicknesses of sediment, a
southwestward-sloping basalt surface in B-B', and an undu-
lating basalt surface in B'-B'', Beds of clay or silt 1 to
4 ft thick immediately overlie basalt at all sites except
well 97 in section B-B' but are less common and at erratic
intervals in places along section B'-B'"',

Sections C-C' and D-D' in figures 7E-7F represent
lithology under and on both sides of the Snake River in the
Groveland-Collins area. In section C-C', land-surface
altitudes decrease toward the Snake River, clay beds overlie
basalt at Blackfoot city well 2 and well 56, and a prominent
ridge of basalt peaks at well 97 and declines steeply toward
Blackfoot. In section D-D', land-surface altitudes decrease
toward the Snake River, clay overlies basalt at well 107,
and the undulating basalt surface is highest beneath the
Snake River (well 1l1l1) and lowest beneath Collins (between
wells 108 and 109).

Surface Water

Major surface-water features in the Groveland-Collins
and surrounding areas are the Snake River, Jensen Grove
Lake, and an extensive network of irrigation canals.
Leakage and infiltration of water from these sources,
applied irrigation water, and precipitation contribute
significant amounts of recharge to the ground-water system.

The Snake River flows generally southwestward at a
gradient of about 13 ft/mi. Its channel is wide, is rela-
tively shallow, and braids around many small islands.
During construction of Interstate Highway 15 in the early
1960's, about 2 mi of channel upstream from the U.S. Highway
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26 bridge at Collins was straightened and the banks were
diked to accommodate a 500-year flood (U.S. Department of
Housing and Urban Development, 1979, p. 7-9).

Former flood plains and river channels northwest of
the straightened channel were filled and leveled periodi-
cally during the 1970's and currently are used for disposal
of potato-processing wastewater. Prior to development of
Jensen Grove Park and the Blackfoot golf course (fig. 1),
historical flood plains and river channels southeast of the
straightened channel were landfill sites (fig. 4). Jensen
Grove Lake was formed by excavating the former site of a
large bend in the Snake River channel to obtain sand
and gravel fill for construction of the interstate highway.
The excavation depression later was contoured and presently
is filled with excess canal water during late spring and
summer months. Differences between pre-1960 and 1985
channels of the Snake River in the Groveland-Collins
area are illustrated in figure 8.

Except for the June 1976 flood resulting from the Teton
Dam failure, there have been no major floods of the Snake
River at Blackfoot since the 1956 completion of Pali-
sades Dam upstream near the Idaho-Wyoming border. Lowlands
adjacent to the river are flooded occasionally during
periods of spring snowmelt runoff or heavy winter ice
conditions. Along diked reaches of the river, high water
levels during spring runoff cause boggy conditions in the
interstate right-of-way and Jensen Grove Park but have
little or no effect on land northwest of the river. High
water resulting from winter ice dams on the river may cause
local flooding on both sides of the diked reach if water
breaches a part of the dike or backs up into relatively
shallow irrigation canals, drains, and ditches.

Discharge records from the Snake River at Blackfoot
gage (0.25 mi downstream from U.S. Highway 26 bridge)
indicate that maximum river discharge is in May or June and
minimum discharge is in September or October. The highest
dlscharge recorded from August 1978 to 1985 was 28,600
£t /s (1 £l /s = 7.48 gal/s) on May 18, 1984; minimum
discharge recorded was 92 fta/s on October 2, 1980; and
average discharge for the period 1978-84 was 6,301 ft3/s.

From October 1983 through September 1985, maximum
discharge was 28, 600 ft®/s on May 18, 1984, and minimum
discharge was 672 ft* /s on July 4, 1985. Water—surface
altitudes of the Snake River at the gaging station on these
days were 4,472 ft and 4,465 ft (fig. 9). The hydrographs
show highest and lowest altitudes for each year, total
monthly precipitation, periods of ice damming, snowmelt or
spring precipitation, and irrigation water withdrawals.
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Millions of gallons of water for irrigation are di-
verted from the Snake River each year into a complex network
of canals, ditches, and sloughs (fig. 10). Watermaster
records show that measurable discharge in the canals begins
in late April or early May, peaks in June or July, and ends
in late October or early November (Carlson, 1980-82).
Approximate peak discharges in a few larger canals in the
Groveland-Collins and surrounding areas during 1985 were (1)
1,180 ft® /s, Aberdeen-Springfield Canal; (2) 230 ft3/s,
Danskin Canal; and (3) 260 ft® /s, Corbett Canal (R.C.
Carlson, Water District 01, written commun., 1985).
Irrigation water supplied by canal networks or, to a minor
extent, by ground water, is used on nearly all land in the
Groveland-Collins and surrounding areas. Flood or sprinkler
irrigation begins as soon as water is available in the
spring and continues as long as water is available in the
fall. Excess irrigation water returns to the Snake River by
means of ditches and drains.

Movement of Water Through Unsaturated Rock

Much of the water moving through the first few feet of
soil evaporates or 1is transpired by plants. Some of the
water moves into unsaturated rock and adheres to grain
surfaces; the remaining water continues to move downward and
ultimately recharges the ground-water system. Water moving
downward may encounter strata of clay or other fine-grained
sediment of 1low hydraulic conductivity and may form satu-
rated zones perched above the ground-water system. In
general, perched water moves laterally along the upper
surface of the fine-grained sediment until it is pumped from
wells, is discharged as springs or to surface water sources,
or, reaching the 1limits of the inhibiting strata, infil-
trates to saturated rock.

Movement of water through so0il and unsaturated rock
is the primary means by which contaminants are introduced
into water-yielding zones in the ground-water system.
Idealized paths of water movement in unsaturated and satu-
rated rock are shown in figure 11.

In 1980, the Snake River from Shelley 23.5 mi down-
stream to Blackfoot had an estimated net 1loss of 110,000
acre-ft of water (1 acre-ft = about 326,000 gal) to the
ground-water system (L.C. Kjelstrom, U.S. Geological Survey,
written commun., 1986). Prior to 1985, however, specific
water loss or gain in the Snake River near Groveland and
Collins had not been measured. The river was reported to be
above the ground-water system, and the riverbed was reported
to be tightly cemented or sealed, permitting little or no
leakage (Bingham County, 1981, p. 14-17).
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Figure 10.--Locations of selected canals, ditches, and sloughs.
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On July 29, 1985, two discharge measurements were
made at each of three sites on the Snake River upstream from
the U.S. Highway 26 bridge at Blackfoot: (1) Upper site,
1.95 mi upstream; (2) middle site, 1.15 mi upstream; and (3)
lower site, 0.3 mi upstream. During the measurements, no
river water was diverted from and no surface water was
discharged to the reach. Both wading and boat measurements
were made.

Time, Time,

first second Average

measure- measure- discharge

ment Discharge ment Discharge measurement
Site (p.m.) (£t%/s) (p.m.) (£t3/s) (rounded)
Upper 12:50-2:30 1,410 1:00-2:30 1,370 1,390
Middle 3:26-4:18 1,430 3:30-4:18 1,400 1,415
Lower 12:30-1:32 1,570 12:40-1:42 1,520 1,545

These figures show a net gain of about 160 ft3 /s
(on the basis of the average measurement per site) between
upper and lower sites but do not take into consideration
individual measurement errors or evaporation losses. Even
if figures could be adjusted to reflect all possible sources
of error, some net gain in discharge from the upper to the
lower site would remain.

The following observations about the relations between
surface and subsurface water in the Groveland-Collins area
are based on the July 1985 discharge measurements, litho-
logic information from drillers' logs, and ground-water
level measurements made during 1984 and 1985:

1. The Snake River near Blackfoot is above the ground-water
system but loses water to and gains water from perched
water adjacent to the river. Water probably is ex-
changed through banks of the channel rather than through
the streambed. Perched water moves northwestward
laterally through historical river channel deposits.
Losses and gains probably are relatively small, are
localized in the channel, and change with varying
water-surface altitudes. Net gain measured in the
1.95-mi reach above Blackfoot on July 29, 1985, was
about 160 fti3/s.
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