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CONVERSION FACTORS

Inch-pound units of measurement in this report may be converted to metric
(International System) units using the following conversion factors:

Multiply By To obtain

inch (in.) 25.4 millimeter (mm)

foot (ft) 0.3048 meter (m)

mile (mi) 1.609 kilometer (km)

square mile (miz) 2.590 square kilometer (kmz)

foot per day (ft/d) 0.3048 meter per day (m/d)

square foot per day (ft2/d) 0.09294 square meter per day (m2/d)
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
foot per mile (ft/mi) 0.06308 meter per kilometer (m/km)
gallon per minute (gal/min) 0.06308 liter per second (L/s)
million gallons per day (Mgal/d) 0.04381 cubic meter per second (m3/s)
inch per year (in/yr) 25.4 millimeter per year (mm/yr)

Sea level: In this report "sea level" refers to the National Geodetic Vertical
Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjust-
ment of the first-order level nets of both the United States and Canada, for-
merly called "Mean Sea Level of 1929."



HYDROGEOLOGY AND ANALYSIS OF THE GROUND-WATER FLOW SYSTEM

IN THE COASTAL PLAIN OF SOUTHEASTERN VIRGINIA

By Pixie A. Hamilton and Jerry D. Larson

ABSTRACT

Hydrogeology and the ground-water flow system in the Coastal Plain
physiographic province of southeastern Virginia were analyzed, and the
continued reliability of ground water as a resource was assessed,. Since the
early 1900's, steadily increasing pumpage has resulted in declining water
levels, extensive cones of depression that expand from supply wells in
industrial and population centers, and the potential for water-quality
degradation as a result of saltwater encroachment. The study primarily
focused on hydrogeologic characteristics of the multiaquifer system, develop-
ment and refinement of a digital, ground-water flow model, and analysis of
future hydrologic conditions resulting from potential injection or increased
pumpage.

The Coastal Plain physiographic province of southeastern Virginia is
underlain by wunconsolidated sediments consisting primarily of sand, clay,
silt, and gravel with variable amounts of shell material. These sediments
dip and thicken eastward and lie directly upon granitic basement. On the basis
of lithologic and hydrologic analysis of the sediments, a hydrogeologic frame-
work consisting of a water-table aquifer and seven confined aquifers and

intervening confining units was identified. Values for transmissivity, wver-
tical 1leakance, and storage which describe the ability of sediments to
transmit, store, or release water were defined. The three lowermost aquifers

(lower, middle, and upper Potomac) are the thickest, most transmissive, and
most productive aquifers in the framework.

The ground-water flow system is bounded by granitic basement, the
Fall Line to the west, and the freshwater-saltwater interface to the east.
Ground-water flow under prepumping and pumping conditions was conceptualized
from known hydrogeologic information and from water-level observations that
began in the late 1800's. Under prepumping conditions, which were assumed to
have existed prior to 1891, water presumably moved regionally from the Fall
Line to Chesapeake Bay and the Atlantic Ocean and locally to streams, swamps,
and bays. A hydraulic equilibrium prevailed, with recharge to the ground-
water system approximating discharge to surface water. Under pumping con-
ditions, pumpage from the confined system lowered water levels and resulted in
extensive cones of depression and flow toward major pumping centers.

To provide a more detailed analysis of water-level decline and ground-
water flow, a three-dimensional, digital, ground-water flow model, which
incorporated hydrogeologic characteristics of the aquifers and confining
units, was developed to simulate prepumping and pumping conditions. The model
area extended beyond southeastern Virginia into the York-James Peninsula and
northern part of North Carolina to include ground-water users affecting



flow in southeastern Virginia. Pumping conditions were simulated from 1891,
when estimated pumpage from the model area was less than 10 Mgal/d (million
gallons per day), through 1983, when estimated pumpage was approximately 87
Mgal/d. The model was used to assess net effects of historic pumpage and
potential injection or increased pumpage on regional water levels, ground-
water flow, water budgets, and surface-water/ground-water relations.

Model results for prepumping conditions were consistent with known water-
level data and the previously conceptualized ground-water flow pattern. Model
results for pumping conditions also were consistent with known water-level
data, including a significant decline greater than 250 feet that occurred in
the lower and middle Potomac aquifers in the Franklin area. The model also
described changes in ground-water flow from prepumping conditions, pri-
marily in the vicinity of production wells.

In the simulated prepumping water budget, recharge to the ground-water
system approximated discharge to surface water. Under pumping conditions,
discharge to surface water was reduced because of increased movement from the
water-table aquifer into the confined system to replace pumpage from the
deeper aquifers. In some areas, surface water recharged the ground-water
system. The reduced discharge to surface water and induced recharge from sur-
face water accounted for approximately 86 percent of the water pumped from the
model area in the 1last pumping period analyzed (1981-83). The remaining
pumpage was accounted for by a decrease in lateral outflow and an increase in
lateral inflow across model boundaries and by water released from storage. 1In
this period, water released from storage was minimal, suggesting that steady-
state conditions were being approached.

The model was used to project the response of the ground-water flow system
to potential injection or increased pumpage in southeastern Virginia. Seven
scenarios were run, each representing an increase in pumpage or injection
above average pumpage conditions simulated in the final pumping period

(1981-83). The first scenario involved increased pumpage of 54.4 Mgal/d
(141.0 Mgal/d total) resulting from continuous use of 18 emergency-supply
wells, generally used in times of drought. The second scenario involved

increased pumpage of 19.8 Mgal/d (106.4 Mgal/d total) resulting from
continuous use of selected industrial wells at respective permitted 1limits.
Both scenarios were run using a steady-state solution to the ground-water flow
equation. Water-level decline from simulated 1983 water 1levels would be
substantial in both scenarios; however, water levels would remain well above the
top of aquifers throughout most of the model area. The major consequences would
be considerable well interference among ground-water users and potential
degradation of water quality.

Scenarios 3 through 7 involved injection into or pumpage from 5 Virginia
Beach emergency-supply wells located in the city of Suffolk, Isle of Wight

County, and Southampton County. These wells which primarily penetrate the
middle Potomac aquifer were designed to be pumped during dry periods,
allowing for water-level recovery during wetter periods. On the basis of this

original well design, scenario 3 involved increased pumpage at a rate of 4
Mgal/d from each of the wells during July, August, and September for 5 years.
Scenarios 4 through 7 presented other potential uses for the wells. Modeled
water levels in the vicinity of the wells in the middle Potomac aquifer were



projected for a 5-year period (1984-88) and used to assess benefits derived
from injection and impacts from increased pumpage. Increased pumpage during
3 months at design capacity (4 Mgal/d) from each well followed by 9 months
with no increased pumpage would result in a maximum 35.5-foot water-level
decline during the 5-year period. The water level would rise during the
9-month recovery period following maximum decline to within about 6 feet of
the simulated 1983 water level. Improvement in water-level recovery resulting
from injection during wetter periods (at a rate of 1 Mgal/d into each well
during January, February, March, and April) would be minimal. Injection would
increase water levels during the month of maximum decline by only about 3.4
feet. Maximum water-level decline resulting from year-round pumpage at a rate
of 1 Mgal/d for 5 years would be approximately 12 feet. The water levels
would generally be lower throughout the 5-year period (maximum 7 feet) than
those resulting from pumping an equivalent volume of water during 3 months of
the year at a higher rate of 4 Mgal/d. However, water 1levels would be
approximately 24 feet higher in September each year--the time corresponding to
the end of 3-month pumpage. Year-round pumpage at a lower rate would, there-
fore, prevent periods of extreme water-level decline. Water levels would
decline by approximately 58.8 feet after 5 years if the wells were pumped
year-round at design capacity (4 Mgal/d). The water levels would be signifi-
cantly lower throughout the 5-year period than those resulting from pumping
only during dry periods at design capacity. A 9-month recovery period would,
therefore, play an important role in restoring water levels in the area.



INTRODUCTION

Ground water is an important resource in southeastern Virginia, supplying
approximately 55 Mgal/d (million gallons per day) for industrial, municipal,
and commercial use in 1983, Since the early 1900's, steadily increasing
pumpage has resulted in water-level decline, extensive cones of depression
that expand from industrial and population centers, and potential con-
tamination by saltwater encroachment. As a measure to protect the ground-
water resource, approximately 3,000 mi?2 (square miles) of southeastern Virginia
were designated a Ground Water Management Area In February 1976 under the
Groundwater Act of 1973. The area includes the five counties of Surry, Sussex,
Isle of Wight, Prince George, and Southampton, and the cities of Virginia Beach,
Suffolk, Chesapeake, Portsmouth, Norfolk, Hopewell, and Franklin. Under the
management-area designation, industrial, municipal, or commercial use of ground
water exceeding 300,000 gallons per month requires a permit.

Continued population growth, combined with increasing industrial and agri-
cultural demand, will 4inevitably result in continued water-level decline,
greater well interference, and diminished water quality. The reliability of
ground water as a viable resource to meet future water needs in southeastern
Virginia is therefore in question. The Virginia Water Control Board (VWCB)
is concerned about the effects that population growth and development and
increased pumpage will have on an already sensitive ground-water system. In
July 1984, the VWCB and the U.S. Geological Survey began a cooperative investi-
gation of the area to (1) better understand the hydrogeology and ground-water
flow system and (2) develop a tool that would aid in assessing ground-water
resources and future hydrologic conditions resulting from potential injection or
increased pumpage.

Purpose and Scope

The purpose of this report is to describe the hydrogeology and ground-
water flow system in southeastern Virginia. The report provides a technical
discussion of (1) hydrogeologic characteristics of aquifers and confining
units, (2) development and refinement of a three-dimensional, digital, ground-
water flow model, and (3) analysis of future hydrologic conditions resulting
from potential injection or increased pumpage. The report is intended for the
scientifically informed public and, specifically, for Federal, State and local
officials who may use the results to formulate water-supply decisions.

Hydrogeologic characteristics were defined for a water-table aquifer and
seven confined aquifers and intervening confining wunits in southeastern
Virginia. These hydrogeologic characteristics were 1incorporated into a
digital, ground-water flow model that was used to simulate existing water-
level data for prepumping (prior to 1891) and pumping conditions (1891-1983),
and to describe water-level decline, direction and magnitude of ground-water
flow, and surface-water/ground-water relations. The model also was used to
project the response of the ground-water flow system to seven potential
scenarios involving injection or increased pumpage in southeastern Virginia.
The scenarios provide examples of the ability of the model to assess the
continued reliability of ground water as a resource in southeastern Virginia.
Historic and projected pumpage is primarily from the confined aquifers and,
therefore, the primary focus of the study was on the seven confined aquifers,



without a detailed analysis of the water-table aquifer. Because of the size
of the study area (approximately 3,800 miz), all model analyses in the study
were regional, with results calculated for 3-square-mile units.

The model area was extended beyond the northern and southern limits of the
study area to incorporate pumpage that could affect ground-water £flow in
southeastern Virginia. The southern model boundary extended across the
Virginia State line into North Carolina. Available geologic and hydrologic
data were obtained from North Carolina agencies and incorporated to maintain
continuity across the State border; however, analysis and description of the
ground-water flow system in northeastern North Carolina were not within the
scope of this study.

Description of Study and Model Areas

The study area (fig. 1) <comprises approximately 3,800 mi2 within
the Coastal Plain physiographic province of southeastern Virginia. It is
bounded on the north by the James River, on the east by the Atlantic Ocean, on
the south by the Virginia-North Carolina border, and on the west by the Fall
Line, which separates the Coastal Plain physiographic province £from the
Piedmont physiographic province. The model area (fig. 1) extends beyond the
northern 1limit of the study area to the York River, and beyond the southern
limit of the study area to Albemarle Sound in northeastern North Carolina
to incorporate pumpage that may affect ground-water flow in southeastern
Virginia. It covers approximately 9,200 mi2.

Previous Studies

A literature search was conducted for all previous studies associated with
water use, water levels, hydrogeology, and ground-water resources in south-
eastern Virginia. A major contribution to the literature on water use in the
Virginia Coastal Plain is Kull and Laczniak (1987). Meng and Harsh (1984)
describe the hydrogeologic framework in the Virginia Coastal Plain. Harsh and
Laczniak (1986) describe the conceptualization of ground-water flow in the
multiaquifer system and provide a regional model of the Virginia Coastal
Plain. Sanford (1913), Cederstrom (1945), Virginia Water Control Board
(1974), and Geraghty and Miller (1978b) describe the geology and ground-water
resources throughout southeastern Virginia. Geraghty and Miller (1967), Sinnot
(1967), Brown and Cosner (1974), and Cosner (1975) describe ground-water resour-
ces in and near Franklin, Virginia. Geraghty and Miller (1978a; 1979a; 1979b),
Converse and others (1981), and Faust and others (1981) describe ground-water
resources for the city of Virginia Beach. Siudyla and others (198l1) describe a
comprehensive study of ground-water resources for the Four Cities area (Norfolk,
Virginia Beach, Portsmouth, and Chesapeake). Meisler (1986) documents the
occurrence and distribution of salty ground water in the northern Atlantic
Coastal Plain aquifer system. Larson (1981) describes the occurrence of saline
ground water in the Coastal Plain aquifers of Virginia. Cosner (1975), Bal
(1978), and Layne-Western Company (1983) describe ground-water movement in
selected areas in the Virginia Coastal Plain using digital or analog models.

Methods of Investigation

The basis for the hydrogeologic framework was provided by Meng and Harsh
(1984). Additional hydrogeologic data were obtained during the ;tudy to
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refine the framework. Geophysical 1logs provided by local well drillers and
the VWCB and water-level and water-quality data were analyzed to revise the
extent and thickness of each hydrogeologic unit. Three research stations were

drilled and developed by VWCB. Each station consists of five or six wells
that penetrate different aquifers. Geologic and geophysical data were
gathered during drilling. Continuous water-level data were collected at the

research stations for approximately 6 months to assess vertical variations of
water levels within the multiaquifer system.

Synoptic water-level data were collected quarterly at approximately 60
wells located throughout the study area. Historic water-level data through
1983 for approximately 150 wells were reviewed for errors and entered into the
U.S. Geological Survey data base. Hydrographs of these data were used in
model calibration. The U.S. Geological Survey water-use data base, containing
pumpage records for large industrial and municipal water-supply and small
commercial and public-supply systems in the Coastal Plain physiographic pro-
vince of Virginia, was updated to 1983. Aquifer-test data collected by VWCB
and local well drillers were analyzed to revise values for transmissivity and
storage coefficient.

A three-dimensional, digital, ground-water flow model was developed and
calibrated to simulate water 1levels and ground-water flow for prepumping
(prior to 1891) and pumping conditions (1891-1983). The model was then used
to project effects of injection or increased pumpage on water levels and the
direction and magnitude of ground-water flow under seven proposed pumping
scenarios. Conceptualization of ground-water flow used in model development
was provided by Harsh and Laczniak (1986) who describe a regional model of
the entire Virginia Coastal Plain.
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HYDROGEOLOGY

This section of the report describes the hydrogeology of the multiaquifer
system in southeastern Virginia. It includes a discussion of the geologic
history of sediment deposition; stratigraphy and areal extent of aquifers and
confining units; hydraulic characteristics of aquifers; and occurrence, move-
ment, and use of ground water.

Geologic History of Sediment Deposition

The Coastal Plain physiographic province of southeastern Virginia |is
underlain by unconsolidated sediments ranging from early Cretaceous to
Holocene age. The sediments, dipping and thickening eastward, consist pri-



marily of sand, clay, silt, and gravel with variable amounts of shell
material. The sediments 1lie directly upon Precambrian granitic and meta-
morphic or Mesozoic sedimentary rock, commonly referred to as "basement." The
westernmost extent of Coastal Plain sediments is at the Fall Line, beyond
which the igneous and metamorphic rocks of the Piedmont physiographic province
occur. Sediment thickness in southeastern Virginia ranges from near zero feet
at the Fall Line to 2,472 feet at Moore's Bridge Treatment Plant near the city
of Norfolk. Thickness may exceed 3,500 feet in the Back Bay area of the city
of Virginia Beach.

The depositional patterns of the Coastal Plain sediments are complex and
are presented in detail by Meng and Harsh (1984). About 70 percent of the
sediments are early Cretaceous age, generally consisting of interbedded arko-
sic quartz sand and clay. These deposits are of continental origin and con-
sist of alternating channel sand deposits and interchannel clayey sediments.
Weathered material was transported by high-gradient streams from the highlands
and deposited in the lowlands in stream beds, along the shore, and in shallow
bays. Sediments accumulated eastward and large delta lobes formed. Within
the deltas, fluvial conditions produced a variety of interfingering continen-
tal material ranging from clay and silty clay to sand and gravel. Because of
the fluvial-deltaic manner of deposition, the Cretaceous sediments vary
laterally, and may thicken, thin, or pinch out over short distances. Upper
Cretaceous sediments are of marine origin, resulting from inundations of the
seas over the deltas.

Tertiary sediments, deposited in seas that extended inland at least as far
as the Fall Line, generally consist of a layered sequence of sand, clay, marl,
and some shells. Because of the relatively constant and widespread condition
of the transgressing seas, these sediments are more homogeneous and uniform
throughout the Coastal Plain than are Cretaceous sediments.

Pleistocene sediments were deposited as channel fills and fluvial-marine
terraces during periods of wvariable sea level. Changes in sea level occurred
repeatedly in the last few million years as a result of glacial formation and
melting associated with climatic changes. During drops in sea level, Coastal
Plain sediments were eroded and incised by streams. During rises, the deeply
incised stream valleys were flooded and headlands were eroded. This process
produced drowned river valleys and broad terrace landforms. Peat, silty clay,
and sand were deposited in stream valleys, and gravel, sand, and clay were
deposited on the terraces. Marly strata were deposited on easternmost terraces.

A thin layer of Holocene deposits overlie Pleistocene sediments in the

eastern part of the Coastal Plain. The Holocene sediments were deposited in
lagoons, beaches, tidal flats, and barrier islands during rising sea levels
since the Pleistocene. These deposits are considered hydrogeologically part

of the Pleistocene sediments in this report.

A major feature affecting the study area is the Chesapeake Bay estuary
formed by flooding of the lower Susquehanna River when sea level rose during
the retreat of the last ice age. Lower areas of the James and York Rivers in
the model area also flooded at this time. The flooding allowed finer-grained
material to settle out, thereby covering older deposits of sand and gravel
with sandy silt (Hack, 1957).



Stratigraphy and Areal Extent of Aquifers and Confining Units

The hydrogeologic framework for the study area is a series of aquifers and
intervening confining units defined on the basis of lithologic and hydrologic
properties of the unconsolidated Coastal Plain sediments. One water-table and
seven confined aquifers, separated by intervening confining wunits, were
identified for the study area. One other confined aquifer (Peedee) and inter-
vening confining unit (Peedee confining unit) located in northeastern North
Carolina, as well as a confining unit (St. Marys confining unit) located north
of the James River, were included in the model framework for hydrologic

analysis. Table 1 summarizes relations between the hydrogeologic units and
geologic formations and ages and corresponding hydrogeologic names used in
previous investigations. Lower Cretaceous sediments include the 1lower and

middle Potomac aquifers and confining wunits; Upper Cretaceous sediments
include the upper Potomac, Virginia Beach, and Peedee aquifers and confining
units; Tertiary sediments include the Aquia, Chickahominy-Piney Point, and
Yorktown-Eastover aquifers, and Nanjemoy-Marlboro, Calvert, St. Marys, and
Yorktown confining wunits; and Quaternary sediments comprise the Columbia
aquifer.

A brief discussion of the nine aquifers and intervening confining units
used in model analysis is presented. The reader is referred to Meng and Harsh
(1984) for a more detailed description of age, lithologic characteristics, and
stratigraphy of each aquifer and confining wunit, This report follows the
basic framework outlined by Meng and Harsh; however, the areal extent and
thickness of several aquifers and confining units were revised after analyzing
geophysical logs and water-level data collected during this study (A.A. Meng,
U.S. Geological Survey, written commun., 1986). Figure 2 shows locations of
wells used in the hydrogeologic framework analysis. Figures 3 through 10
illustrate tops of each aquifer relative to sea level and areal extent, and
figures 11 through 19 illustrate thickness and areal extent of confining
units. Figure 20 illustrates general depth of aquifers, confining units, and
basement from the Fall Line through southeastern Virginia. Table 2 describes
general hydrogeologic characteristics and well yields for individual
aquifers in the model area.

The lower Potomac aquifer in the lower part of the Potomac Formation is
the lowermost confined aquifer in the hydrogeologic framework and lies
entirely on basement. This aquifer is thinnest along its western limit near
the Fall Line and thickens seaward. Thickness in the study area ranges from
near zero at the Fall Line to 882 feet at well 61Cl in the city of Norfolk.
The aquifer predominantly consists of thick interbedded sequences of medium-
to very coarse-grained sand, clayey sand, and clay with interbedded gravel.
It is capable of supplying large quantities of water but generally lies too
deep to be affordable for all but large industrial users. Elevated chloride
concentrations in the east restrict its use as a potable source of water. The
lower Potomac aquifer is overlain by the 1lower Potomac confining unit
throughout its extent. The confining unit is composed of sequences of brown,
gray, or dark-green carbonaceous clay, interbedded with thin, sandy clay. The
clay beds are not continuous or areally extensive but, instead, are a series of
interlensing clayey deposits. Because of this depositional pattern, the con-
fining unit varies considerably in thickness, ranging from a thin edge in the
western part of the study area to approximately 80 feet in the city of
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Table 2.--Description of aquifers and well yields in model area

[Values 1n gallons per minute]

Well Yield
Common May
Aquifer name and description range exceed General remarks
Columbia aquifer: Sand and gravel, commonly 5-30 40 Generally unconfined, semi-confined locailly.
clayey; interbedded with siit and ciay. Most productive in eastern areas, very thin
Fluvial to marine in origin; deposition to missing in central and western areas.
resulted in terrace-type deposits from Water is very hard, calcium-bicarbonate type.
varying Piefstocene sea levels. Highly susceptible to pollutants from surface
contamination. High concentrations of iron
and nitrate in some areas. Possibiiity of
salty water in coastal regions.
Yorktown-Eastover aquifer: Sand, commonly 5-80 200 Muitiaquifer unit. Mostly confined, uncon-
shelly; interbedded with silt, clay, shell fined updip in outcrop areas. Thickness
beds, and gravel. Shallow, embayed marine dependent on altitude of land surface.
in origin; deposition resulted in inter- Highest yields in eastern areas, thin to
fingering near-shore deposits from marine missing in western areas. Water is hard,
transgressions. sodium-calcium-bicarbonate type. Salty
water in lower part of aquifer in eastern
areas.
Chickahominy-Piney Point aquifer: Sand, 10-110 200 Generally confined, except where i1t crops out
moderately glauconitic, shelly; {inter- along major stream valleys in the west.
bedded with siit, clay, and thin, Important aquifer in central parts of Coastal
indurated shell beds. Shallow, inner Plain. Yields moderate to abundant supplies
marine shelf in origin; deposition result to domestic, small industrial, and municipal
of marine transgression. wells. Aquifer m1ssin? in western areas. Water
{s soft to hard, calclum-sodium-bicarbonate
type and generally of good quality.
Aquia aquifer: Sand, glauconitic, shelly; 15-210 350 Generally confined, except where 1t crops out
interbedded with thin, indurated shell along major stream valleys in the west.
beds and silty clay intervals. Shallow, Important aquifer in northern two-thirds of
inner to middle marine shelf in origin; Coastal Plain. Yields moderate suppliies to
deposition result of marine transgression. domestic, small industrial, and municipal
wells. Aquifer missin? in eastern areas.
Water i1s soft sodium-bicarbonate type, with
high iron, sulfide, and hardness locally.
Peedee aquifer: Sand, glauconitic and 5-40 50 Restricted to North Carolina Coastal Plain;
shelly; interbedded with dark, micaceous not extensivel¥ developed. Yields small to
silt and clay. Near-shore marine in moderate supplies to primarily domestic
origin; deposition resulted from Late wells. Water is soft, sodium-bicarbonate
Cretaceous marine transgression. type, with high chlorides in eastern areas.
Vir?1nia Beach aquifer: Sand, fine- to 20-200 500 Multiaquifer unit. Restricted to south-
medium-grained, glauconitic, micaceous, eastern Virginia and North Carolina Coastal
and lignitic; interbedded with thin clay Plain. Yields moderate to abundant supplies
layers and indurated zones. Shallow, to domestic and industrial wells. Water is
inner marine shelf in origin; deposition soft, sodium-bicarbonate type, with high
result of marine transgression. chlorides in eastern areas and areas of high
fluoride and dissolved solids.
Upper Potomac aquifer: Sand, very fine to 20-400 1000 Multiaquifer unit. Confined, restricted to
medium, micaceous, lignitic, and clayey; central and eastern areas. Yields second
interbedded with silty clay. Shallow, largest supply of water in Coastal Plain. Water
estuarine and marginal marine in origin; is soft, sodium-chloride-bicarbonate type, with
sediments result of first major marine high chlorides in eastern areas.
inundation of Cretaceous deltas.
Middle Potomac aquifer: Sand, fine to 20-160 700 Multiaquifer unit. Generally confined, uncon-

coarse, occasional gravel; interbedded
with silty clay. Fluvial 1n origin;
sediments result of deltaic deposition.

Lower Potomac aquifer: Sand, medium

o ver¥ coarse, and gravel, clayey.
Tuvial in origin; sediments result of
deltaic deposition.

100-800 1,500

fined in outcrop areas of northwestern Coastal
Plain and major stream valleys near Fall Line.
Yields second largest supply of water in Coastal
Plain. Water is moderately hard, sodium-chloride
-bicarbonate t{pe, with high chlorides in eastern
half of Coastal Plain.

Multiaquifer unit. Generally confined, uncon-
fined {n outcrop areas of northwestern area of
Coastal Plain. Yijelds third largest supply of
water in Coastal Plain. Water {is soft to very
hard, and of sodium-bicarbonate to sodium-
chloride type, with high chlorides in eastern
half of Coastal Plain.



Virginia Beach (fig. 11). It is overlain by the middle Potomac aquifer
throughout its extent.

The middle Potomac aquifer in the middle part of the Potomac Formation is
the second thickest confined aquifer. It is present throughout the study
area. It ranges in thickness in the study area from a thin edge along the
Fall Line to approximately 500 feet in the city of Norfolk (well 61Cl). The
aquifer is composed of interlensing clay, silt, and fine- to coarse-grained

sand, with interbedded gravel. The aquifer is capable of supplying large
quantities of water and is wutilized by most large industrial and municipal
users throughout the western and central part of the study area. However, as

with the underlying aquifer, high chloride concentrations are present in the
eastern part of this aquifer, restricting its use as a potable source of
water. The middle Potomac aquifer is overlain by the middle Potomac confining
unit throughout its extent. As with the lower Potomac confining unit, this
confining wunit is highly wvariable in thickness throughout the study area,
ranging from a featheredge in the west to 132 feet in the city of Chesapeake -
(well 60B3, fig. 12). It is overlain by the upper Potomac aquifer in the
central and eastern part of the study area and the Aquia aquifer in the
western part.

The upper Potomac aquifer in the upper part of the Potomac Formation is
composed of Upper Cretaceous sediments and is the thinnest of the three
Potomac aquifers. The aquifer is present in the eastern two-thirds of the
study area and 1is confined throughout its extent. The sands thicken to the
east, ranging from a thin edge at the updip limit to approximately 280 feet in
the city of Virginia Beach (well 63Cl). It 1is composed of very fine- to
medium-grained, thickly-bedded sand interlayered with silty, thin clay.
Gravel and coarse-grained sands are rare. The aquifer is capable of producing
large quantities of generally good quality water and is a principal source of
ground water for municipal and industrial use throughout the central part of

the study area. Water quality degrades somewhat in the east because of
increasing chloride and fluoride concentrations. The upper Potomac aquifer is
overlain by the upper Potomac confining unit. The confining unit 1is rela-

tively thick, attaining its maximum thickness of 192 feet in southeastern
Virginia (well 61B2, fig. 13). It is overlain by the Aquia aquifer, except
in the southeastern part of the study area and northeastern North Carolina
where it is overlain by the Virginia Beach aquifer, and in the northeastern
part of the study area where it is overlain by the Chickahominy-Piney Point
aquifer.

The Virginia Beach aquifer is composed of unnamed Upper Cretaceous sedi-
ments. It is present only in southeastern Virginia and is equivalent to the
Black Creek Formation in northeastern North Carolina. The aquifer is named
for the city of Virginia Beach for the purpose of this report. It is confined
throughout 1its extent. The sediments in the study area range in thickness
from near zero at the updip limit to approximately 110 feet in the city of
Chesapeake (well 61B2). They predominantly consist of fine- to medium-grained
glauconitic sand, interbedded with thin clay 1layers and indurated zones.
Shell material is common. The aquifer is capable of producing moderate to
abundant quantities of generally good (quality water for domestic and
industrial use. The aquifer is overlain entirely by the Virginia Beach con-
fining unit. This unit consists of a series of clay, silty clay, and sandy
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clay beds and ranges in thickness within the study area from less than 10 feet
near their updip limit to 29 feet in the city of Virginia Beach (well 61A2,
fig. 14). The confining wunit is overlain by the Aquia aquifer, except in
northeastern North Carolina where it is overlain by the Peedee aquifer, and in
the northeastern part of the study area where it is overlain by the
Chickahominy-Piney Point aquifer.

The Peedee aquifer in the Peedee Formation is restricted to the North

Carolina Coastal Plain and is not present in the study area. However, it is
described here because it is included in the model framework for hydrologic
analysis. It is confined throughout its extent. The sediments range from a

featheredge at their western limit to about 300 feet along the Atlantic Coast
(M.D. Winner, U.S. Geological Survey, written commun., 1984), and predominantly
consist of glauconitic and shelly sand, interbedded with dark, micaceous
silt and clay. The aquifer is not extensively developed and primarily yields
small to moderate supplies to domestic users. It is entirely overlain by the
Peedee confining unit. Confining unit sediments are composed of clay, silty
clay, and sandy clay and range in thickness from a thin edge at the updip
limit to approximately 100 feet beneath eastern Albemarle Sound (fig. 15).
The confining unit is overlain by the Aquia aquifer.

The Aquia aquifer in the Aquia Formation is the deepest Tertiary aquifer
in the framework. It is present throughout the study area, except in a band
along the Fall Line, in the Chesapeake Bay region, and in a band along the
coast. The aquifer is confined throughout its extent, except where it crops
out along major stream valleys in the west. The aquifer is thickest in
the central part of the study area (approximately 65 feet at well 55F20) and
thins to a featheredge along both the updip and downdip limits. The updip
limit is erosional and the downdip limit is gradational where the sandy sedi-
ments change facies to clay. The sediments, deposited in shallow marine
waters, are typically fine- to medium-grained glauconitic sand, interbedded
with silt, clay, and thin, indurated shell beds. The aquifer is an important
ground-water resource, particularly in the central part of the study area
where it yields moderate supplies to domestic, small industrial, and municipal
wells. The Aquia aquifer is overlain by the Nanjemoy-Marlboro confining unit.
This unit is fairly uniform in thickness throughout the study area, ranging
from a thin edge at its western limit to approximately 62 feet in the central
part (well 57F26, fig. 16). It is overlain by the Chickahominy-Piney Point
aquifer.

The Chickahominy-Piney Point aquifer in the Chickahominy and Piney Point
Formations is the middle Tertiary aquifer and is present throughout the study
area, except in a band along the Fall Line. It is confined throughout its
extent, except where it crops out along major stream valleys in the west. The
aquifer 1is generally wedge-shaped in cross section, ranging from near zero
along its western limit to approximately 160 feet in the city of Virginia
Beach (well 63Cl). It is lenticular-shaped north of the James River from the
updip limit to the eastern part of Williamsburg, thinning to a featheredge at
its updip limit, thickening to 82 feet at well 55H6, and thinning to 30 feet
in central York County (well 58F18). The aquifer then becomes wedge-shaped as
it thickens eastward. The sediments, deposited in a shallow marine environ-
ment, are typically medium- to coarse-grained glauconitic sand, interbedded
with silt, clay, and thin, indurated shell beds. The aquifer is an important
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ground-water resource in the central part of the study area and yields
moderate to abundant supplies to domestic, small industrial, and municipal
users. The Chickahominy-Piney Point aquifer is overlain by the Calvert con-
fining unit in the Calvert Formation. The confining unit forms an eastward-
thickening wedge of dark-green clay interbedded with sandy clay and marl. It
attains a maximum thickness in the study area of 460 feet in the city of
Virginia Beach (well 63Cl, fig. 17). It is overlain by the Yorktown-Eastover
aquifer throughout the study area. In the north-central part of the model
area, it is overlain by the St. Marys confining unit.

The St. Marys confining unit in the St. Marys Formation and basal part of
the overlying Eastover Formation is present only in the north-central part of
the model area and consists of shelly to laminated clay interbedded with
very fine-grained sand. It ranges in thickness from near zero at its southern
limit to approximately 88 feet in the northern part of the model area (well
S58H4, fig. 18). It is overlain by the Yorktown-Eastover aquifer.

The Yorktown-Eastover aquifer in the lower part of the Yorktown Formation
and upper part of the underlying Eastover Formation is the uppermost Tertiary
aquifer. It is present throughout the study area, except in the middle and
upper reaches of major stream valleys where it has been removed by erosion.
The aquifer is unconfined in a broad area parallel to the Fall Line in the
western part of the study area, and is confined in the central and eastern
parts (fig. 10). It forms an eastward-thickening wedge of shelly, very fine-
to coarse-grained sand, interbedded with silt, clay, shell beds, and gravel.
Thickness in the study area ranges from near zero at its western and eroded
limits to approximately 280 feet in the city of Virginia Beach (well 63Cl).
The aquifer is an important ground-water resource in southeastern Virginia for
domestic, commercial, and light industrial use. It is an important source of
recharge to the underlying confined system in the western part of the study
area where it is unconfined. The Yorktown-Eastover aquifer is overlain by the

Yorktown confining unit in the upper part of the Yorktown Formation. This
unit consists of massive, well-bedded clay and silty clay, containing shells
and fine-grained sand. It ranges in thickness in the study area from a

featheredge at its western 1limit to approximately 56 feet in the city of
Virginia Beach (well 63Cl, fig. 19). Along its western limit, the confining
unit is highly dissected. The unit is overlain by the Columbia aquifer in the
eastern part of the study area.

The Columbia aquifer is the uppermost aquifer and is unconfined throughout

its extent. It is present only in the central and eastern parts of the study
area. The aquifer contains the youngest sediments of the Virginia Coastal
Plain, consisting of interbedded gravel, sand, silt, and clay. The sediments

range in thickness from 10 to 80 feet and represent Holocene sediments and
terrace-type deposits laid down during Pleistocene time when sea levels fluc-
tuated considerably. The aquifer is an important ground-water resource for
rural and domestic users. It is also a major source of recharge to the
underlying aquifer system.

Hydraulic Characteristics of Aquifers

Hydraulic characteristics describe the ability of an aquifer to transmit,
store, or release water. The ability to transmit water is described in terms
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of its transmissivity or its hydraulic conductivityl. Transmissivity of an
aquifer is the rate at which water will flow horizontally through a vertical
strip l-foot wide extending through the full saturated thickness. It is the
product of the horizontal hydraulic conductivity and saturated thickness.
Hydraulic conductivity involves the water-transmitting properties of the sedi-
ment, which depend on such things as the size and arrangement of pores. Water
flows more freely in coarse-grained sediment, such as gravel, than in
fine-grained sediment, such as silt and clay. The ability of an aquifer to
store or release water is described by its storage coefficient. Storage coef-
ficient is the volume of water released from or taken into storage per unit of
surface area of the aquifer per unit change in hydraulic head. The relative
magnitude of the storage coefficient depends on whether the aquifer is confined
or unconfined. In unconfined aquifers, water is released from storage pri-
marily because of gravity drainage of sediments. Values for storage in uncon-
fined aquifers range from 1x10-2 to 3xlo-! (Freeze and Cherry, 1979). In
confined aquifers, water is released from compression of the aquifer and expan-
sion of water. Values for confined aquifers generally range from 1x1072 to
1x10-3 (Lobman, 1972).

Transmissivity and storage coefficient were estimated for confined
aquifers within the model area and later wused in model development.
These estimates were derived from analyses of aquifer- and specific-capacity-

test data. The aquifer tests involved collection of time-drawdown data at a
pumping well and at one or more observation wells. Water-level decline was
monitored in all wells throughout the pumping period. Specific-capacity tests
involved one pumping well. Specific capacity is the ratio of the rate at
which water is withdrawn to water-level decline in a well. Aquifer-test and
specific-capacity-test data were collected from local drillers, private firms,
and State and 1local agencies. The method of data collection and length of

record and pumpage vary with each test and, therefore, data may be quite
variable.

Methods developed by Theis (1935), Cooper-Jacob (1946), and Hantush
(1960) were used to analyze aquifer-test data. The Theis and Cooper-Jacob
methods assume that the only source of water to a pumping well is from the
penetrated aquifer--no water is derived from the overlying or underlying con-
fining wunits. These methods commonly are referred to as "non-leaky" solu-
tions. The Hantush method includes vertical leakage through confining units
as a source of water to a pumping well and is known as a "leaky" solution.
Transmissivity wvalues obtained by the Hantush method are lower than those
computed by the non-leaky methods because of the contribution of vertical
leakage. This method is considered to be the most appropriate of the three
methods for analysis of aquifer-test data in Coastal Plain aquifers because
confining units contribute a significant amount of water. Values for aquifer
transmissivity and storage coefficient for individual aquifers in the model
area that were derived from aquifer-test data are summarized by method in table
3. The values were determined as part of this study using the three methods
described above where field data were obtainable. Where field data were not
available, the values were obtained from State and local agencies who used one,
two, or all of the above methods. No distinction is made in table 3 on the
source.

Hydraulic conductivity referred to in this report is in a horizontal direction
unless specifically discussed to the contrary.
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Table 3.--Statistical summary of transmissivity and storage coefficient for individual aquifers in the

model area derived from Hantush, Theis, and Cooper-Jacob analytical methods?

[fté/d 1s square feet per day; a dash indicates no value]

Analytical method

Leaky Nonleaky Nonleaky
type curve type curve straight line
(Hantush) (Theis) (Cooper-Jacob)
Storage Storage Storage
Transmissivity coefficient Transmisstvity coefficient Transmissivity coefficient
Aquifer (ftzld) (dimensionless) (ft2/d) (dimensionless) (ftzld) (dimensionless)
Yorktown- Max 5,750 6.3x10-3 8,820 - 8,820 l.3x10‘2
Eastover Min 330 1.4x10™4 210 --- 30 1.0x10-4
Median 3,070 1.1x10-3 2,470 --- 2,160 2.5x104
Mean 3,020 1.7x10-3 2,750 1.1x10-4 1,900 2.6x10-3
Number of tests 6 6 14 1 32 10
Chicka- Max ——- ——- 11,300 ——- 16,100 ——-
hominy- Min -——- -~ 3,710 -—— 130 ——-
Piney Median --- - 5,530 -—- 4,790 -—-
Point Mean --- --- 6,960 --- 6,740 3.1x10-2
Number of tests --- ——- 7 —— 7 1
Aquia Max - - - . 8,010 -
Min ——— - -— -—— 2,780 -——
Median - - -—- - “—- ---
Mean ——— ——— 8,680 -——- -——- ——-
Number of tests --- -—— 1 - 2 -——-
Upper Max 8,750 2.4x10™4 13,200 6.7x10-4 15,000 -——-
Potomac Min 1,850 4.1x10'5 4,410 1.4x10-4 2,360 .-
Median --- --- 9,350 2.6x1074 8,300 -
Mean - --- 9,390 3.6x10-4 9,230 5.0x10-4
Number of tests 2 2 8 3 11 1
Middle Max -— -— 38,000 9.3)(10"'3 56,800 1.4x10'3
Potomac  Min - - 950 1.6x10-6 425 1.6x10-8
Median - --- 4,920 - 2,540 2.2x10"3
Mean 5,960 —- 9,130 - 8,870 3.2x1074
Number of tests 1 -— 10 2 15 7
Lower Max -—- -—- - -—— 3,540 2.2x10-4
Potomac  Min -——- ——— - - 1,370 2.0x10-4
Median -——- --- -—- --- - -
Mean 2,630 3.5x10-4 3,260 1.5x10-4 - —-
Number of tests 1 1 1 1 2 2

ANo data available for Virginia Beach and Peedee aquifers
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Table 4 summarizes well yield, specific capacity, transmissivity, and
hydraulic conductivity for individual aquifers in the model area that were
derived from specific-capacity tests. Specific capacity most often is used to
determine the ability of a well to yield water, however, it also is used to
estimate transmissivity and hydraulic conductivity. Transmissivity was
derived using a solution developed by Brown (1963) and Theis (1963) where it
is a function of specific capacity, time, and storage. Storage was assumed to
be 1.5x10"! for unconfined aquifers and 1.0x10"% for confined aquifers in this
solution. Hydraulic conductivity was computed by dividing transmissivity by
saturated thickness. The table also gives values for specific capacity,
transmissivity, and hydraulic conductivity that were adjusted for partial
penetration of the well into the aquifer. These hydraulic characteristics were
adjusted using a solution by Turcan (1963). Transmissivity derived from
specific-capacity tests compare reasonably well with those obtained in the same
areas from aquifer tests. Specific-capacity data, generally easier to obtain,
may therefore be appropriate for general evaluation of aquifers in areas lacking
aquifer-test data.

Occurrence and Movement of Ground Water

Following is a discussion of standard hydrological concepts as applied to

the ground-water system in southeastern Virginia. These are integrated with
the known hydrogeology described earlier and with water-level data from the
past 100 years. This description served as the basic conceptualization

necessary for model development.

Major flow boundaries are the Fall Line to the west (which separates
relatively impervious, metamorphic rocks of the Piedmont physiographic pro-
vince from the relatively permeable, unconsolidated sediments of the Coastal
Plain physiographic province), the freshwater-saltwater interface to the east,
and granitic basement. The system is part of the global hydrologic cycle
(£ig. 21), and depends on precipitation as its primary source of water. In
southeastern Virginia about half of the precipitation returns relatively quickly
to the atmosphere through evapotranspiration (water vaporization from land, sur-
face water, and plants). The remainder either becomes overland flow or
infiltrates into the ground. Infiltration first replaces soil moisture near the
surface and then recharges the water-table aquifer. Ground-water movement
predominantly is lateral through this aquifer. Some movement occurs vertically
through confining units into deeper aquifers and 1laterally through these
aquifers. Discharge ultimately occurs at a variety of points, including
springs, streams, lakes, Chesapeake Bay, and the Atlantic Ocean.

The rate of movement within an aquifer depends on the hydraulic conductivity
and hydraulic gradient. Hydraulic gradient is the change in total head (water
level) per unit distance; water moves from higher to lower head. Total head
involves two components: elevation and hydraulic pressure. In a water-table
aquifer the water is at atmospheric pressure; therefore, the water level in a
nonpumping well tapping only the water table would be the same as that of the
water table. In deeper, confined aquifers the hydraulic pressure is greater
than atmospheric pressure; therefore, the level in a nonpumping well tapping a
confined aquifer would be some distance above the top of the aquifer.

Confining units generally have hydraulic conductivities that are much
smaller than those of aquifers. As a result, most ground-water flow is
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Table 4.--Statistical summary .of well yield, specific capacity, transmissivity, and hydraulic conductivity
for individual aéuifars in Eﬁé'ﬁsagl'aféi'aérivea!from specific-capacity ¥es£§a

LGal/min 1s gallons per minute; gai/min/Tt 1s gallons per minute per Toot;

fte/d 1s square feet per day; ft/d is feet per day]
Horizontal
Well Specific capacity Transmissivity hydraulic conductivity
e
yleld Unadjusted Adjusted® Unadjusted Adgustecp Unadjusted Adjusted®
Aquifer (gal/min) (gal/min/ft) (fté/day (ft/d)
Columbia Max 100 16.7 35.5 3,790 8,500 92.7 170.0
Min 3 .2 1.7 21 328 1.7 6.4
Median 30 1.2 6.1 223 1,070 8.3 28.7
Mean 33 3.4 8.3 760 1,730 30.0 52.1
Number of tests 12 12 9 9 9 9 9
Yorktown- Max 450 31.6 123.0 10,100 44,200 156.0 353.0
Eastover Min 1 .1 .2 23 42 .1 .7
: Median 46 1.5 8.1 523 2,460 4.1 23.1
Mean 78 3.9 18.6 1,300 6,200 11.8 50.4
Number of tests 77 79 72 73 72 72 72
Chicka- Max 316 48.0 126.0 16,600 42,100 331.0 701.0
hominy- Min 5 .2 .2 54 67 1.2 1.5
Piney Median 77 3.0 9.6 1,100 2,950 22.4 64.0
Point Mean 103 7.4 15.8 2,580 5,270 57.2 103.7
Number of tests 42 43 38 40 38 38 38
Aquia Max 550 21.6 102.0 6,980 34,700 189.0 301.0
Min 5 .2 .2 46 40 .7 1.8
Median 80 2.2 5.7 640 1,670 16.6 35.1
Mean 140 3.8 10.3 1,140 3,320 33.9 60.3
Number of tests 30 30 30 30 30 30 30
Upper Max 2,100 83.3 68.0 24,300 24,700 385.5 344.0
Potomac Min 20 .6 .7 170 194 2.8 4.0
Median 240 6.7 11.6 2,200 3,630 35.6 59.2
Mean 403 11.1 16.5 3,560 5,380 56.7 80.3
Number of tests 117 117 113 114 113 113 113
Middle Max 3,000 53.1 201.0 17,500 76,300 76.7 347.0
Potomac Min 3 .1 .2 20 60 2 .
Median 120 2.7 9.3 790 3,350 6.1 22.3
Mean 257 7.8 26.7 2,540 9,230 14.0 46.3
Number of tests 123 133 126 126 123 123 123
Lower Max 2,000 11.5 11.6 3,550 3,560 50.7 50.7
Potomac Min 100 .5 .5 120 120 3.4 3.4
Median 554 5.9 7.4 1,990 2,250 15.9 18.0
Mean 802 5.6 6.7 1,950 2,040 20.2 21.0
Number of tests 6 7 6 6 6 6 6
Multiple- Max 3,000 55.0 -—- 18,900 -— --- -—-
aquifer Min 5 .1 —— 23 -—- - -—-
wells Median 602 13.4 ——— 3,830 -—— -— -—-
Mean 943 19.1 ——— 6,230 ——— —_—— -—
Number of tests 65 66 ——— 53 ——— -— -

aNo data available for Virginia Beach and Peedee aquifers
bAdjusted for effects of partial penetration
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lateral through aquifers. A small amount of vertical flow through confining
units occurs, controlled by the vertical hydraulic conductivity and unit
thickness. Because confining wunits extend over large areas, the total
contribution to aquifer budgets from such vertical flow may be significant.
Lateral flow through confining units is negligible,.

The presence of deep river channels in southeastern Virginia, incised
during the Pleistocene, significantly affects ground-water flow through
aquifers and confining units. Aquifers and confining units were partially or
completely eroded and replaced by material more permeable than the confining
units but less permeable than the aquifers. Vertical flow through confining
units in the Chesapeake Bay area and river channels is enhanced; lateral flow
through aquifers in these areas 1is decreased. Approximate depths of the
incised rivers in the Virginia Coastal Plain are presented in Harsh and
Laczniak (1986) and discussed in Hack (1957).

Prior to the development of wells in southeastern Virginia, a hydraulic
equilibrium existed in the multiaquifer system. Recharge to the total system
balanced discharge to surface waters. The downward movement of water into the
confined aquifers primarily occurred along a narrow band approximately
parallel to the Fall Line and in higher elevations between major river
valleys. Lateral movement within aquifers primarily was from the Fall Line
eastward to Chesapeake Bay and the Atlantic Ocean and from interfluves toward
major river valleys. In the east, ground water that encountered the denser
saltwater was forced upward through the confining units before discharging to
the Bay or Ocean (fig. 22).

The development of wells imposed new discharges on the previously stable

system. Before 1920, most withdrawal was from wells that were under suf-
ficient pressure so that water flowed to the 1land surface. With more
drilling, water levels dropped below land surface. Pumps became necessary to

maintain supplies.

In any well, pumpage 1is first balanced by a reduction in ground-water
storage in the immediate vicinity, which results in a lower water level and a
surrounding cone of depression. This in turn may affect natural flow pat-
terns. In southeastern Virginia, the major pumpage centers (which have
correspondingly large cones of depression) caused decreases or reversals in
discharge to surface waters. Although the details vary depending on the spe-
cific well and its relation to discharge points, a general scenario for this
kind of change is presented in figure 23 for a water-table well in the vici-

nity of a stream. With no pumpage, water in a fully-screened well would be
the same as that of the water table, and ground water would discharge at a
given rate to the stream which is at a lower level (fig. 23.2). As pumpage

begins, water is removed from storage, resulting in a cone of depression
(fig. 23.3). As pumpage continues, the hydraulic gradient between the ground
water and the stream would be reduced and discharge to the stream would

decrease; less water is removed from storage (fig. 23.4). A new equilibrium
might be reached at some point (no water is removed from storage) so that
discharge to the stream continues, but at a new, lower rate. However, if

pumpage is high enough so that the ground-water head falls below the stream,
ground-water discharge to the stream will cease completely and water will
move from the stream into the ground-water system (fig. 23.5). Thus the
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Figure 22.--Conceptualized ground-water flow in the model area for
prepumping conditions.
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Figure 23.1--Ground-water flow for prepumping conditions; ground water discharging

Figure 23.2--Ground-water flow for nonpumping conditions; ground water discharging

Figure 23.3--Ground-water flow for pumping conditions; reduction in storage equals

Figure 23.4--Ground-water flow as pumping continues; reduction in storage and

reduction in ground-water discharge to stream equals pumpage

Figure 23.5--Ground-water flow as pumping continues; reduction in ground-water

Figure 23.--Direction of ground-water flow for prepumping and
conditions and sources of water derived from a well (modified

Heath, 1983).
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stream, originally a discharge point for ground water, becomes a recharge
source. Any reduction in ground-water flow to a stream, of course, lowers the
stream level. The lowering of the stream level may or may not be significant
depending on the flow rate in the stream relative to the rate of ground-water
flow to the stream. Overall, these kinds of changes involving reduction or
reversal of the natural flow of ground water to surface water are present in
southeastern Virginia.

Ground-Water Use

As described above, the development of wells affected the natural flow of
ground water in southeastern Virginia. Ground-water use began in southeastern
Virginia in the late 1800's (Sanford, 1913) and has increased steadily since
that time, Withdrawals, which include naturally flowing and pumping wells
and which represent an aggregate of commercial, industrial, and municipal
usage, increased from less than 10 Mgal/d in 1891 to about 55 Mgal/d in 1983
(Kull and Laczniak, 1987) in the study area. Water use within the model area,
which includes wusers outside the study area affecting ground-water flow

in southeastern Virginia, was approximately 87 Mgal/d in 1983, Figure 24
shows estimated annual commercial, industrial, and municipal withdrawal for
the model area from 1891 through 1983. Domestic use was not included because

it was assumed to represent only a small percentage of non-returned flow.
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Figure 24.--Estimated annual ground-water withdrawal, 1891-1983.
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Major pumpage centers affecting flow in southeastern Virginia are located
near the towns of West Point and Smithfield and the cities of Williamsburg,
Franklin, Newport News, and Suffolk (fig. 25). These pumpage centers account
for about 71 Mgal/d (8! percent) of the total 1983 ground-water pumpage in the
model area. The largest pumpage center occurs near Franklin where average
pumpage was about 38 Mgal/d.

Figure 26 shows estimated annual ground-water withdrawal in the model area
from individual aquifers from 1891 through 1983. Principal sources of ground
water in the model area have been the middle and upper Potomac aquifers.
These aquifers provided approximately 76 percent of the total water in 1983
and primarily serve large industrial and municipal needs throughout the model
area. The lower Potomac aquifer provided approximately 16 percent of the total
water in 1983. Other significant sources are the Aquia and Chickahominy-Piney
Point aquifers, which primarily serve light industrial and municipal needs in
the central part of the model area. The Yorktown-Eastover aquifer is important
in meeting light industrial and municipal needs in the eastern part of the model
area. Additional information on locations, trends, and amounts of ground-water
withdrawals in the Virginia Coastal Plain is provided in Kull and Laczniak
(1987).

ANALYSIS OF THE GROUND-WATER FLOW SYSTEM

This section of the report discusses a three-dimensional, digital, ground-
water flow model wused to describe ground-water flow in the Coastal Plain
hydrogeologic system in southeastern Virginia. The digital, ground-water flow
model is a mathematical description of the natural ground-water system. The
section includes discussions of (1) model development, which involves sgpatial
discretization of the model area into a grid, specification of boundary con-
ditions, and identification of input parameters reflecting aquifer and con-
fining unit characteristics; (2) model calibration, which involves comparison
of simulated to measured water levels; (3) model simulation of ground-water
flow under prepumping and pumping conditions; (4) model projection of future
hydrologic conditions resulting from injection or increased pumpage; (5) model
sensitivity, which involves testing the response of the calibrated model to
changes in hydraulic characteristics; and (6) model limitations.

Approach
Flow in a multiaquifer system is three dimensional. The digital model
used in this study incorporates a quasi-three-dimensional approach. This

approach involves a layered sequence of two-dimensional aquifers where inter-
vening confining units are not represented as layers but as vertical conduc-
tors of flow between adjacent aquifers and are defined by leakance values.
Four assumptions are involved in this approach: (1) water released from con-
fining-unit storage is negligible because simulation time is long enough to
minimize its effect (Harsh and Laczniak, 1986); (2) vertical flow is assumed
to be controlled by intervening confining units because the vertical hydraulic
conductivity of confining units is sufficiently lower than that of aquifers
(Neuman and Witherspoon, 1969); (3) horizontal flow mostly occurs within the
aquifers and is directly proportional to transmissivity; and (4) horizontal
flow in confining units is assumed to be insignificant because of the low
hydraulic conductivity associated with fine-grained sediments.
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Figure 26.--Estimated annual ground-water withdrawal from

individual aquifers (1891-1983).

Description of the Three-Dimensional Model

The equation for three-dimensional flow of ground water in a porous medium
may be described by the partial-differential equation:

8

Ox

where

(Kyx oh) +

(Kyy Oh) + 0
d

3 (Kyy 8h
x ay By 9,

(Kz QE) - W=35g Qﬁ
9, ot

(1)

x, ¥y, and z are cartesian coordinates aligned along the major

components of the hydraulic conductivity tensor Kxx, Kyy, and Kzz,

h is the hydraulic head, in length (L) units;

W is the volumetric flux per unit volume of porous medium per

unit time and represents a source-sink term,
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units (1/t);
Ss is the specific storage, in inverse length units (1/L); and
t is the time, in time units (t).

Flow is along the horizontal x and y axes, which are oriented in the plane
of the aquifers, and the vertical z-axis, which is orthogonal to the aquifers.
The ground-water flow equation describes flow under nonequilibrium conditions
in a heterogeneous and anisotropic medium; Ss, Kxx, Kyy, and Kzz may be func-
tions of space, and h and W may be functions of both space and time (McDonald
and Harbaugh, 1984). The equation, together with head conditions for aquifer
boundaries and initial-head conditions, constitutes a mathematical model of
the ground-water system. The solution to the equation can be obtained using a
finite-difference method in which the continuous system is replaced by a
finite set of points in space and time, and the partial derivatives are
replaced by differences between functional values at these points. Specific
details about the solution algorithm are provided in the computer program
documentation (McDonald and Harbaugh, 1984).

Model Grid

A three-dimensional grid of nodal blocks (1.75 miles per side) was
superimposed over the model area. This spatial discretization incorporates
the physical 1l1limits of each of the aquifers and the spatial variation of
hydraulic properties within the system. A two-dimensional representation of
the grid is shown in figure 27. The grid lies approximately northwest to
southeast and is comprised of 92 rows by 52 columns, totaling 4,784 3-square-
mile blocks. Three thousand and eighty-five of these blocks are located
within model boundaries and are considered active blocks. A similar grid was
used for each of the nine aquifers (described in section, "Stratigraphy and
Areal Extent of Aquifers and Confining Units"), forming a three-dimensional,
nine-layered representation of the system. Each block was assigned values
representative of average aquifer characteristics; the continuous physical
properties of the porous medium (the ability to store and transmit water) are,
therefore, assumed to be uniform within each block. The selected grid orien-
tation is consistent with a regional ground-water flow model of the Virginia
Coastal Plain (Harsh and Laczniak, 1986).

Model Boundaries

The western, eastern, lower, and upper model boundaries were selected to
approximate natural hydrologic boundaries acting on the flow system (fig. 27).
The western model boundary coincides with the Fall Line and is considered
impermeable to flow. This assumption is supported by the large difference in
permeability between the igneous and metamorphic rocks of the Piedmont
physiographic province and the unconsolidated sediments of. the Coastal Plain
physiographic province. The eastern boundary represents an assumed freshwater-
saltwater interface located where the ground water contains concentrations of
chloride of 10,000 mg/L (milligrams per liter) (Meisler, 1986). The boundary
is considered a stationary no-flow boundary (Larson, 1981; Leahy and Martin,
1986). The location of the 10,000 mg/L chloride concentration is different
for each aquifer because of its wedge-shaped nature. Figure 27 represents the
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easternmost position of the 10,000 mg/L chloride concentration (freshwater-
saltwater interface) within the modeled system. Variations in salinity and
their effects on the ground-water system, as well as the potential movement of
the freshwater-saltwater interface under natural or pumping conditions, are
not considered in this model boundary condition. Sensitivity simulations,
conducted with the regional Atlantic Coastal Plain ground-water flow model,
showed that transmissivities are relatively 1low in the vicinity of the
freshwater-saltwater interface because of density variations resulting from
salinity changes (P.P. Leahy, U.S. Geological Survey, written commun., 1987).
On the basis of Leahy's findings, the eastern no-flow boundary in this model
represents a first approximation of the eastern limits of the fresh ground-water
system where transmissivities equal zero. This approximation results in maxi-
mum water-level decline. Sensitivity simulations were conducted with this model
in which the position of the boundary was moved seaward to test the effect of
locating a stationary boundary at the 10,000 mg/L chloride concentration within
each aquifer. Simulated water levels and rates of ground-water flow were not
sensitive to the position of the stationary boundary for the model simulations
presented in this report (described in detail in section "Sensitivity
Analysis"). The lower boundary coincides with the contact between the lower
Potomac aquifer and the underlying granitic basement and is considered a no-flow
boundary. This assumption is supported by the large difference in permeability
between the two rock types. The upper boundary is simulated as a constant-head
boundary condition and is the average altitude of surface-water bodies within
each block (Harsh and Laczniak, 1986; Leahy and Martin, 1986). Average altitude
of surface water was estimated from U.S. Geological Survey 7.5-minute
topographic maps. This boundary condition is used to approximate recharge-
discharge relations between surface water and the water-table aquifer.
Estimates of streambed leakance, which controls the amount of ground water
flowing between the water-table aquifer and surface water, were obtained from
stream baseflow values, ground-water recharge rates, and water-table and
surface-water levels (details provided in section, "Streambed Leakance"). The
relative consistency in water levels within surface-water bodies over the time
and scale of simulation supports the use of this boundary condition.

Because aquifers extend beyond the northern and southern 1limits of the
study area, model boundaries were extended to include ground-water wusers
that may affect ground-water flow within the study area (fig. 27). Continuity
of the aquifers across lateral model boundaries to the north and south was
simulated with boundary fluxes. Details  -on the calculation of boundary fluxes
are provided in section, "Lateral Boundary Flow".

Properties of Aquifers and Confining Units

Ground-water flow is controlled by the transmissivity and storage coef-
ficient of the aquifers and vertical leakance of the intervening confining
units. Field wvalues for transmissivity, storage coefficient, and vertical
leakance were not available for each grid block; block values were
estimated from physical and hydrologic properties defining these charac-
teristics and later refined and verified wusing field, 1laboratory, and
literature values (tables 3 and 4). Values for each block are stored in com-
puter files at the Virginia Office of the U.S. Geological Survey in Richmond.
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Transmissivity

Transmissivity controls lateral ground-water flow within each aquifer.
Hydraulic conductivity, a measure of the capacity of an aquifer to transmit
water, was multiplied by average sand thickness to compute transmissivity.
Average sand thickness was determined for each block from maps of aquifer tops
and confining-unit thicknesses (figs. 3 through 19) and from a map delineating
basement top (Meng and Harsh, 1984). Initial estimates of hydraulic conduc-
tivity were based on values used in a regional model of the Virginia Coastal
Plain (Harsh and Laczniak, 1986). These 1initial estimates were adjusted
slightly during steady-state model development. Finalized estimates of
hydraulic conductivity used in model analysis are summarized by aquifer in
table 5.

Table 5.--Estimated values for horizontal hydraulic conductivity
used in model analysis
[Values in feet per day]

Aquifer Estimated hydraulic conductivity
Columbia 18.1
Yorktown-Eastover 14.7
Chickahominy-Piney Point 12.1
Aquia 15.1
Peedee 23.3
Virginia Beach 43.2
Upper Potomac 64.8
Middie Potomac 51.8
Lower Potomac 41.5

Maps representing finalized estimates of transmissivity for all aquifers
are presented in figures 28 through 36. Low transmissivities are present in
areas with thin aquifer sediment or with sediment deposited in a low-energy
marine environment. A low-energy marine environment generally results in
finer-grained sediment and a decrease in sediment permeability. Higher
transmissivities are present in areas of thick aquifer sediment and in areas
where sediment was deposited in a continental or high-energy marine environ-

ment. As shown in the figures, transmissivity generally increases eastward
(downdip) from the western limit of each aquifer. This is because of an
increase in sediment thickness. Sediment thickness is greatest in the lower,

middle, and upper Potomac aquifers, resulting in the highest transmissivity in
the model area. Transmissivity begins to decrease toward the eastern limit of
each aquifer because of changes in the depositional environment. For example,
lower transmissivities are present in the eastern part of the lower, middle,
and upper Potomac aquifers where the depositional environment changed from
continental to marine, and in the eastern part of the Aquia, Chickahominy-
Piney Point, and Yorktown-Eastover aquifers where the depositional environment
changed from high- to low-energy marine. Relatively low transmissivities also
are present along the freshwater-saltwater interface of the aquifers because
of a decrease in thickness of aquifer containing freshwater. Low transmissivi-
ties also are present along major river valleys and Chesapeake Bay where ori-
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ginal aquifer material was eroded and replaced with 1less permeable river
deposits.

Storage coefficient

Storage coefficient was computed by multiplying specific storage by average
sand thickness. Specific storage was estimated from literature to be about
1x10-6 per foot of thickness (Lohman, 1979). Higher values, representing
specific yield and equal to 1.5x10‘1, were used to approximate water-table
conditions within an aquifer. Initial estimates for storage coefficient were
adjusted slightly during the transient model development. Maps showing areal
distributions of storage coefficient are not shown but closely parallel trends
in transmissivity because both are functions of sediment thickness. The range
of finalized estimates for storage coefficient used in model analysis is
summarized by aquifer in table 6.

Table 6.--Estimated minimum and maximum values for storage coefficient
used in model analysis
[vValues are dimensionless]

Estimated Estimated
minimum storage maximum storage
Aquifer coefficient coefficient
Columbia 1.50x10-1 1.50x10-1
Yorktown-Eastover 7.00x10-6 1.50x10-1
Chickahominy-Piney Point 6.00x10-6 2.60x10-4
Aquia 9.99x10-6 8.50x10-5
Peedee 5.00x10-6 5.50x10~2
Virginia Beach 5.00x10-6 8.50x10-3
Upper Potomac 1.50x10-5 1.22x10-4
Middle Potomac 1.00x10-5 3.40x10-4
Lower Potomac 8.00x10-6 2.50x10-4
Vertical leakance
Vertical 1leakance controls vertical flow between aquifers. Vertical

leakance is dependent on physical properties of the confining unit and is the
vertical hydraulic conductivity divided by confining unit thickness. Confining
unit thicknesses were approximated for each block from maps (figs. 11 through
19). 1Initial estimates for vertical hydraulic conductivity were based on values
used in the Virginia Coastal Plain regional model (Harsh and Laczniak, 1986).
Initial estimates were adjusted slightly during steady-state model development.
Finalized estimates for vertical hydraulic conductivity used in model analysis
are summarized by confining unit in table 7. Finalized estimates of maximum and
minimum vertical leakance used in model analysis are presented by confining unit
in table 8.
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Table 7.--Estimated values for vertical hydraulic conductivity
used in model analysis
[Values in feet per day]

Estimated vertical

Confining unit hydraulic conductivity
Yorktown 8.64x10-4
St. Marys 4.15x10-4
Calvert 3.89x10-5
Nanjemoy-Mar1iboro 6.48x10°3
Peedee 6.91X10-3
Virginia Beach 7.34x1079
Upper Potomac 6.05x10-3
Middle Potomac 6.48x10-5
Lower Potomac 4,32x10-5

Table 8.--Estimated minimum and maximum values for vertical leakance
used in model analysis
[Values per day]

Estimated minimum Estimated maximum
Confining unit vertical leakance vertical leakance
Yorktown 1.88x10-5 9.60x10-3
St. Marys 6.10x10-6 4.15x10-3
Calvert 5.40x10-8 7.78x10-4
Nanjemoy-Mariboro 1.16x10-7 5.89x10-4
Peedee 6.91x10-7 9.87x10-6
Virginia Beach 1.10x10-6 2.29x10-5
Upper Potomac 6.06x10-8 1.89x10-4
Middle Potomac 3.24x10-7 ‘ 5.40x10-4
Lower Potomac 3.93x10-7 5.40x10-6

Values for vertical leakance generally decrease from west to east because
of increased thickness of the confining unit (figs. 11 through 19) and decreased
vertical hydraulic conductivity of the sediment. The deeper confining units
are characterized by 1lower vertical leakance. Relatively high vertical
leakance resulting from high wvertical conductivity is present along major
river valleys and Chesapeake Bay where original confining unit sediment was
eroded and replaced with more permeable river deposits.
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Ground-Water Recharge

Average annual precipitation in the model area is about 43 in/yr (inches
per year) (Cushing and others, 1973; National Oceanic and Atmospheric
Administration, 1980). Approximately one-half of this precipitation is lost to
evapotranspiration, and the remaining occurs as surface runoff and ground-water
recharge. Approximately 10 to 15 inches are estimated to recharge the water-
table aquifer throughout the Virginia Coastal Plain (Harsh, 1980; Geraghty and
Miller, 1978b; Johnston, 1977). An average annual recharge rate of 12 in/yr
(4,780.8 Mgal/d) was used in model analysis and assigned to all grid blocks that
simulate water-table conditions. The recharge rate is assumed to be constant
throughout time and space; data are lacking to define any spatial variations
that may occur in the model area. Sensitivity analyses were conducted using 10
and 15 in/yr as recharge rates. Simulated water levels were not sensitive to
changes in this parameter within this range, particularly in the confined
aquifers which were the primary focus of this study.

Recharge to the confined aquifers occurs as water moves downward from the

water-table aquifer through confining units. This recharge is not constant
throughout time and space but is a function of vertical leakance of the con-
fining units and pumpage from the aquifers. Simulated recharge to the con-

fined aquifers is discussed in detail in sections on simulated ground-water
flow using the steady-state and transient models.

Streambed Leakance

Streambed leakance controls the rate of water flowing through a streambed

into and out of the water-table aquifer from and to a stream. It is defined
as the vertical hydraulic conductivity of streambed sediment divided by sedi-
ment thickness. Data for streambed conductivity are scarce; therefore, this
parameter was estimated on the basis of its relation to stream baseflow which
is ground water flowing into a stream. Stream baseflow is the product of
streambed leakance and the difference between water levels in the water-table
aquifer and stream (hydraulic gradient). Stream baseflow was first calculated

for each block using a prepumping water-budget analysis, where baseflow equals
recharge to the water-table aquifer plus or minus flow into or out of the
underlying confined aquifer system (Harsh and Laczniak, 1986; Leahy and Martin,
1986):

BF= QRE * DP (2)
where

BF = baseflow per unit area, in feet per second;

QRE = volumetric rate of ground-water recharge to water-table aquifer
per unit area, in feet per second; and

DP = deep percolation or volumetric rate of flow into or out of the
underlying confined aquifer system per wunit area, in feet per

second.

Streambed leakance was then calculated by dividing stream baseflow by the
hydraulic gradient. . Streambed leakance 1is assumed to remain constant
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throughout the simulated period of ground-water development. Further detail
on calculation of streambed leakance is provided in Harsh and Laczniak (1986).

Lateral Boundary Flow

The continuity of aquifers across lateral model boundaries to the north
and south was simulated with boundary fluxes. The fluxes represent movement
of water into and out of the modeled area. The use of these lateral boun-
daries reduced the size of the model by eliminating parts of aquifers outside

the area of interest. Flux values were calculated for each pumping period by
means of Darcy's Law and were based on the simulated head gradient and
transmissivity across lateral boundaries. Head gradients were generated from

a regional model of the Virginia Coastal Plain (Harsh and Laczniak, 1986).
The fluxes were incorporated into the model as recharge and discharge wells
placed along the boundaries.

Steady-State-Model Simulation of Prepumping Conditions

Prepumping conditions were modeled using a steady-state solution to the

ground-water flow equation. The period prior to 1891 was chosen to represent
prepumping conditions because ground-water withdrawals at that time are con-
sidered insignificant. A steady-state solution implies that flow into the

system approximates flow out of the system and no significant change in
ground-water storage or water levels occurs over time.

Calibration

Accuracy of the prepumping simulation was evaluated by comparing simulated
to measured water levels. The model is considered accurate, or calibrated,
when a reasonable correlation between measured and simulated 1levels is
obtained and when estimates of aquifer hydraulic properties are consistent

with known values. Some adjustments to transmissivity and vertical leakance
were necessary to obtain satisfactory agreement between simulated and measured
water-level values. (Contours of calibrated transmissivities are shown in

figures 28 through 36, and calibrated estimates of vertical leakance are sum-
marized in table 8.) Contours of simulated and measured water levels in wells
prior to 1891 are shown in figures 37 through 43. Results only are shown for
those aquifers present within the study area; results for the Peedee aquifer
are, therefore, not included. The maps show simulated water levels to be con-
sistent with measured values, Because prepumping measured water levels are
sparse, simulated prepumping water 1levels also were compared to maps
describing prepumping conditions published in Siudyla and others (1977),
Bal (1978), and Harsh and Laczniak (1986). Simulated contours and flow
directions are in agreement with the maps.

Results of Simulation
Simulated water levels (figs. 37 through 43) show agreement with the con-
ceptualization of ground-water flow in the multiaquifer system--water moved
regionally from the Fall Line toward Chesapeake Bay and the Atlantic Ocean

and locally to streams, swamps, and bays.

The simulated ground-water budget, describing sources and discharges of
water in the aquifer system, is illustrated in figure 44. The modeled values
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Figure 44.--Simulated ground-water budget for prepumping conditions.

presented in the text, figures, and tables are not intended to imply accuracy
to the precision shown. Water-budget sources include recharge from precipita-
tion and 1lateral inflow across the northern and southern model boundaries.
Water-budget discharges include lateral outflow and discharge to surface water.
Lateral inflow and outflow across the northern and southern model boundaries are
summarized for each aquifer in table 9. Under prepumping conditions, a
hydraulic equilibrium prevailed in the multiaquifer system--average areal
recharge (4,780.8 Mgal/d or 12 in/yr) to the water-table aquifer approximated
ground-water discharge to surface water (about 4,775.8 Mgal/d). This discharge
is composed of (1) ground water that directly discharged from the water-table
aquifer to surface water or (2) ground water that had recharged the confined
system, ultimately moving upward along the freshwater-saltwater interface and
major river valleys to surface water. The small difference between recharge and
discharge was attributed to lateral inflow and outflow across the northern and
southern model boundaries in the water-table and confined aquifers. The
complete water budget for prepumping conditions, resulting in less than 0.03
percent error in mass balance, is given in table 10.

Recharge to the confined aquifers occurred as water moved downward from
the water-table aquifer through confining units. Areas of simulated vertical
recharge to and discharge from each confined aquifer through the overlying
confining unit are shown in figures 45 through 51 and summarized in table 1ll.
The maps define the direction of flow across major confining units. The
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Table 10.--Simulated ground-water budgets for prepumping and 1983 conditions
[Modeled values, in million gallons per day, are reported to tenths
and are not intended to imply accuracy to the precision shown]

Change from
Prepumping 1983 prepumping to
1983 conditions

Sources

Water released from

aquifer storage 0.0 0.4 0.4
Lateral boundary inflow 1.9 12.2 10.3
Recharge from

precipitation 4,780.8 4,780.8 .0
Surface-water infiltration to

the ground-water system .0 .8 .8
Total 4,782.7 4,794.2 11.5

Discharges

Water taken into aquifer storage .0 1.0 -1.0
Lateral boundary outflow 8.3 5.7 2.6
Ground-water withdrawal

from wells .0 86.6 -86.6
Ground-water discharge to

surface water 4,775.8 4,702.2 73.6
Total 4,784.1 4,795.5 -11.4

Footnote: The small error between sources and discharges is due to numerical
truncation in digital simulation.
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general direction of flow was downward in the western part of the model area
and upward in the eastern part into Chesapeake Bay and the Atlantic Ocean. In
the shallower aquifers (Aquia, Chickahominy-Piney Point, and Yorktown-
Eastover) flow also was influenced by major river systems--downward flow
occurred between and wupward flow occurred along and under major river
valleys. Amounts of vertical recharge to and discharge from each confined
aquifer through the overlying confining unit are given in table 11.

Transient-Model Simulation of Pumping Conditions

Pumping conditions from 1891 through 1983 were modeled using a transient
solution to the ground-water flow equation. Transient analysis was done by
adding pumpage, time, and storage to the steady-state model simulating pre-
pumping conditions. Water levels generated by the steady-state model were
used as initial water levels in the transient analysis so that resulting
changes would be caused entirely by simulated withdrawals. Transient analysis
of pumping conditions provides a measure of the ability of the model to simu-
late the response of the ground-water flow system to pumpage.

Time Discretization and Pumpage

Eleven pumping periods, spanning 93 years, were used in the transient-
calibration phase. These periods were 1891-1920, 1921-39, 1940-46, 1947-52,
1953-57, 1958-64, 1965-68, 1969-72, 1973-77, 1978-80, and 1981-83. Maps of
aquifer tops and confining-unit thicknesses (figs. 3 through 19) were corre-
lated with the depth of water intake for each well (screened or opened) to
identify the aquifer from which withdrawal occurred. For multiaquifer wells,
withdrawal was apportioned to aquifers by percentage of total screen present
in each aquifer. Simulated withdrawal from individual aquifers for each
pumping period is given in table 12. The majority of water withdrawn from the
model area occurred in the Potomac aquifers (91.4 percent in the final pumping
period). The rate of ground-water withdrawal was averaged uniformly over each
pumping period for each node containing a pumping well. Figure 52 illustrates
simulated and estimated annual withdrawal from 1891 through 1983. The length
and number of pumping periods are consistent with those used in the regional
model of the Virginia Coastal Plain (Harsh and Laczniak, 1986) to simplify the
calculation of lateral boundary inflow and outflow.

Calibration

Accuracy of the transient simulation. was evaluated by comparing simulated
and measured water levels. Slight adjustments to storage coefficient were
necessary during transient calibration to improve agreement between simulated
and measured water levels. Simulated and measured change in water levels for
the period of ground-water development at 21 selected observation wells |is
shown in figures 53 through 58. Hydrographs for two to four wells distri-
buted throughout the model area were selected for each aquifer. These wells
generally represent the longest available records. The hydrographs show close
agreement between measured and simulated water levels throughout the period of
record. Hydrographs for 113 other observation wells are not shown but indi-
cate similar agreement with simulated results. Measured water levels in
observation wells in 1983 and contours of simulated water levels generated
with the transient model are shown in figures 59 through 65. Measured water
levels are included to show the close agreement with simulated levels.
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Figure 52.--Estimated annual withdrawal and average withdrawal for
simulated pumping periods.

Results of Simulation

Simulation of pumping conditions from 1891 through 1983 demonstrates a
significant decline in water levels from prepumping conditions (comparison
made between figures 37 through 43 and figures 59 through 65), resulting in
regionally-extensive cones of depression around major pumpage centers.
Lowering of water levels affected the prepumping ground-water movement,
diverting flow toward production wells. Simulated maximum water-level decline
and locations of maximum decline for each aquifer are given in table 13.
Maximum decline (greater than 250 feet) occurred in the 1lower and middle
Potomac aquifers in the Franklin area. Substantial decline (greater than 90
feet) also occurred in these aquifers in the West Point area, with declines of
at least 30 feet occurring in most other areas. Water-level decline (greater
than 100 feet) occurred in the upper Potomac aquifer in the West Point,
Williamsburg, Smithfield, and Suffolk areas. Decline greater than 20 feet
occurred throughout most of this aquifer.

Although the majority of pumpage was from the Potomac aquifers (91.4
percent), significant. water-level decline also occurred in the overlying
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Table 13.--Simulated maximum water-level decline since prepumping conditions
and locations of maximum decline for individual aquifers, 1983
[Values in feet]

Maximum

water-level Location of maximum
Agquifer decline water-level decline
Yorktown-Eastover 17 Fall Line
Chickahominy-Piney Point 144 West Point
Aquia 130 Williamsburg
Virginia Beach 21 Virginia Beach
Upper Potomac 134 West Point
Middle Potomac 262 Franklin
Lower Potomac 275 Franklin

aquifers. Greater than a 100-foot decline occurred in the West Point and

Williamsburg areas in the Aquia aquifer. The Chickahominy-Piney Point aquifer
also was affected in the West Point area (greater than 140-foot decline) and

along Chesapeake Bay (greater than 20-foot decline). Decline greater than
10 feet occurred in areas in the Yorktown-Eastover aquifer along the Fall
Line. Minimal water-level decline (1-3 feet) occurred throughout the

remainder of the Yorktown-Eastover aquifer.

Simulated water-level maps were compared to maps delineating tops of
confined aquifers to identify areas where water levels were approaching the
top of an aquifer. A decline in water level below the top of a confined aquifer
would induce unconfined (water-table) conditions and result in dewatering of
the aquifer. Dewatering could cause compaction of aquifer sediment and contri-
bute to subsidence in the area. [Compaction of sediment in the system
historically has been minimal on the basis of data collected at two subsidence
research stations in Suffolk and Franklin (D.C. Hayes, U.S. Geological Survey,
written commun., 1987).] Water levels were well above the top of the aquifers
throughout most of the model area. One exception occurred 1in the
Chickahominy-Piney Point aquifer near the town of West Point where water levels
were within 100 feet of the top of the aquifer.

Simulated ground-water budgets were evaluated for all pumping periods.
The modeled values presented in the text, figures, and tables are not intended
to imply accuracy to the precision shown. Water-budget sources include
recharge from precipitation, lateral inflow across the northern and southern
model boundaries, water released from aquifer storage, and surface-water
infiltration to ground water. Water-budget discharges include pumpage, lateral
outflow, water taken into aquifer storage, and ground-water discharge to sur-
face water. Lateral inflow and outflow across northern and southern model
boundaries are summarized for each aquifer in table 9. As indicated in the
table, lateral inflow generally increased and lateral outflow decreased with
each pumping period. Exceptions to this trend were caused by pumpage outside
the model area.
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The remaining water-budget components (water released from or taken into
storage, ground-water discharge to surface water, and infiltration from sur-
face water) are summarized in table 14 for each pumping period. The maximum
amount of water released from aquifer storage (approximately 5.9 Mgal/d)
occurred in the seventh pumping period (1965-68) when a significant increase
in pumpage occurred (table 1l4a). The maximum amount of water taken into
aquifer storage occurred in the final pumping period (approximately 1.0
Mgal/d) because of stabilization of pumpage. Water-budget analysis demonstrates
that water released from aquifer storage was minimal at the end of the model
simulation (approximately 0.4 Mgal/d), suggesting that steady-state conditions
were being approached. Under these near steady-state conditions, water pumped
from the confined aquifers was primarily replaced by increased ground-water flow
from the water-table aquifer to the confined system. This, in turn, resulted in
reduced ground-water discharge to surface water from the water-table aquifer
(table 14b). Discharge to the surface was reduced mostly in incised stream
valleys in the western part of the model area, in areas of major pumpage centers
such as Franklin and West Point, and in areas of pumpage centers in the east
that penetrate the upper confined aquifer (Yorktown-Eastover aquifer). Figure
66 shows areas where discharge to surface water was reduced by more than 0.25
in/yr. Reduced discharge to surface water as calculated in this regional analy-
sis is negligible relative to total quantity of surface-water flow. However, a
more refined modeling analysis, involving finer grid spacing and shorter time
time intervals, may indicate local problems with surface-water losses, espe-
cially under dry or drought conditions.

Pumpage from the confined system also induced some movement of surface
water into the ground-water system. Induced infiltration of surface water
into the ground-water system began in the fifth pumping period (1953-57) and
continued to the eleventh pumping period (table lé&4c). The area of surface-
water infiltration was about 77 mi2 in the fifth pumping period and was
approximately 533 mi2 in the final pumping period. It primarily occurred in
the Atlantic Ocean and Chesapeake Bay and its major tributaries (fig. 66).
The surface water generally is saline and has the potential for degrading the
water quality of underlying aquifers; however, this water entered the ground-
water system in areas generally not used for freshwater supply.

The 1983 simulated ground-water budget of the multiaquifer system is
illustrated in figure 67 and summarized in table 10. The average areal
recharge to the water-table aquifer was estimated to be the same as under pre-
pumping conditions (about 4,780.8 Mgal/d). About 4,702.2 Mgal/d discharged to
surface water--a decrease of 73.6 Mgal/d from prepumping conditions. Reduced
discharge to the surface accounted for about 85 percent (73.6 of the 86.6
Mgal/d) of the pumpage in the final pumping period. Induced infiltration of
surface water into the ground-water system accounted for approximately 0.9
percent or 0.8 of the 86.6 Mgal/d. The remaining pumpage was accounted for
by (1) a decrease in lateral outflow across the boundaries of the model by
approximately 2.6 Mgal/d, (2) an increase in lateral inflow of approximately
10.3 Mgal/d, and (3) water released from storage (approximately 0.4 Mgal/d).
The water budget resulted in less than 0.03 percent error in mass balance
(table 10).
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Figure 67.--Simulated ground-water budget, 1983.

Simulated areas of vertical recharge to and discharge from each confined
aquifer through the overlying confining unit in 1983 are shown in figures 68
through 74 and table 11. Significant changes occurred since prepumping
conditions--areas of recharge to the aquifers increased and areas of discharge
decreased because of pumpage. Areas of recharge no longer were confined to the
westernmost part of the model area as during prepumping conditions, but
occurred throughout most of the model area. Discharge from the aquifers
generally occurred under major pumpage centers and along major river valleys
in the shallow aquifers (Aquia, Chickahominy-Piney Point, and Yorktown-
Eastover). For example, figure 69 indicates that water discharged from the
middle Potomac to the upper Potomac aquifer in the Smithfield, Williamsburg,
and West Point areas; major pumpage occurred in these areas in the upper
Potomac aquifer and induced flow from the lower aquifer.

Simulated vertical ground-water flow can be used to identify
potential vertical saltwater contamination from deeper aquifers, assuming
solute movement is consistent with fresh ground-water flow. For example,
water-quality samples showing elevated chloride concentration that are located
in a vertical discharge area would suggest potential movement of saltwater
into the overlying aquifer.
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Amounts of simulated 1983 vertical recharge to and discharge from each
confined aquifer through the overlying confining unit and change in vertical
recharge and discharge since prepumping conditions are summarized in table 11.
Vertical recharge to aquifers increased and vertical discharge from aquifers
decreased, particularly to and from the Potomac aquifers in which most pumpage
occurred. Water-budget analysis for individual aquifers indicates that net
vertical flow into an aquifer through the overlying and underlying confining
units (calculated from table 11) contributed the bulk of pumpage. Net flow
across lateral boundaries (calculated from table 9) replaced most of the
remaining pumpage. A small percentage of the water was replaced by aquifer
storage. For example, net vertical flow into the middle Potomac aquifer in
1983 was 46.5 Mgal/dz. Net lateral flow was 2.8 Mgal/d3. Total net gain was
49.3 Mgal/d. Pumpage from the middle Potomac aquifer was 49.8 Mgal/d. The
small difference was attributed to aquifer storage and roundoff error.

Application of the Model as a Predictive Tool

The use of the transient model as a predictive tool is based on the pre-
mise that if historic conditions can be approximated then so can future con-
ditions. It is assumed that the model conceptualization is an accurate
representation of the flow system and that the model can be used to project
the response of the ground-water flow system to potential injection or
increased pumpage in southeastern Virginia. Seven scenarios were designed in
cooperation with VWCB. The scenarios were not designed to represent future
injection or pumpage rates accurately, but rather to provide insight into
regional water levels and ground-water flow. The scenarios also provide
examples of the ability of the model to assess the continued reliability of
ground water as a resource in southeastern Virginia.

Steady-State-Model Simulations of Increased Pumpage from
Emergency-Supply and Industrial Wells

Two pumpage scenarios were run using a steady-state solution to the
ground-water flow equation. A steady-state solution means that no change in
storage or water levels occurs over time. The steady-state solution, therefore,
provided maximum water-level decline that would result from increased pumpage.
Both scenarios represented an increase in pumpage above average pumpage con-
ditions in the final pumping period (1981-83).

Scenario 1

Scenario 1 involved increased pumpage of 54.4 Mgal/d (141.0 Mgal/d total)
resulting from continuous use of 18 emergency-supply wells, generally used in
times of drought or emergency. Approximately 86 percent of the additional pum-
page would come from the middle Potomac aquifer (46.9 Mgal/d). The remaining
7.5 Mgal/d would be pumped from the lower Potomac aquifer (1.8 Mgal/d or 3 per

2 Calculated from values in table 1llb as follows: 64.6 - 5.5 = 59.1 Mgal/d net
gain from overlying unit; 13.0 - 0.4 = 12.6 Mgal/d net loss to underlying unit;
59.1 - 12.6 = 46.5 Mgal/d total net gain.

3 Calculated from values in table 9 as follows: 4.33 - 1.56 = 2.77 Mgal/d net
gain across lateral boundaries.
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cent) and the upper Potomac aquifer (5.7 Mgal/d or 1l percent). Locations of
the emergency-supply wells are shown in figure 75. The wells primarily are
located in or near the city of Suffolk. Latitudes, longitudes, State iden-
tification codes, design capacity of the wells, and aquifers penetrated by the
wells are summarized in table 15.

Modeled water-level decline from simulated 1983 water levels in individual
aquifers is shown in figures 76 through 82, Maximum water-level decline in
individual aquifers is summarized in table 16. Maximum decline of approximately
204 feet would occur in the middle Potomac aquifer in the Suffolk area. Water-
level decline greater than 40 feet would occur throughout most of the aquifer.
Water-level decline greater than 20 feet also would occur throughout most of the
lower and upper Potomac aquifers.

Although the pumpage would be from the Potomac aquifers, lowered water
levels also would occur in the overlying aquifers,. Greater than a 50-foot
decline would occur in the Williamsburg and Smithfield areas and nearly a
20-foot decline would occur in the town of West Point and city of Franklin in
the Aquia aquifer. As indicated in figure 80, the center of maximum water-level
decline would not overlie the «city of Suffolk as might be expected,
This can be explained by relatively thick and impermeable confining-unit sedi-
ment separating the Aquia and upper Potomac aquifers in and east of the Suffolk
area. The Chickahominy-Piney Point aquifer would be primarily affected along the
coast and Chesapeake Bay where original confining-unit sediment was eroded and
replaced with more permeable material, allowing for considerable downward flow
from the aquifer to underlying units.

Contours of distances between modeled water levels and the tops of the
middle and upper Potomac, Aquia, and Chickahominy-Piney Point aquifers are
presented in figures 83 through 86. A decline in water level below the top of
a confined aquifer would induce unconfined (water-table) conditions and result
in dewatering of an aquifer and compaction of aquifer sediment. The contours
are accurate only within 50 feet and should be interpreted for trends rather
than absolute values. Water levels would be approximately 200 to 350 feet
above the top of the middle Potomac aquifer in and near the city of Suffolk
where maximum water-level decline would occur. In the same area, water levels
would be between 150 and 250 feet above the tops of the upper Potomac and
overlying Aquia and Chickahominy-Piney Point aquifers. Water levels would be
between 0 and 100 feet above the top of the Chickahominy-Piney Point aquifer in
the town of West Point and the top of the middle and upper Potomac, Aquia, and
Chickahominy-Piney Point aquifers in and near the city of Franklin.

The modeled ground-water budget is illustrated in figure 87 and summarized

in table 17, The modeled values are not intended to imply accuracy to the
precision shown. Water-budget sources include recharge from precipitation,
surface-water infiltration, and lateral inflow across northern and southern
boundaries. Water-budget discharges include pumpage, lateral outflow, and
discharge to surface water. Table 18 summarizes lateral flow across northern
and southern model boundaries for individual aquifers. The average areal

recharge to the water-table aquifer was estimated to be the same as in 1983
(4,780.8 Mgal/d). Of this recharge, about 4,659.4 Mgal/d would discharge to
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Table 16.--Modeled maximum water-level decline from simulated
1983 water levels for individual aquifers, scenario 1
fvalues in feet]

Maximum
Aquifer water-level
decline
Yorktown-Eastover 3
Chickahominy-Piney Point 48
Aquia 71
Virginia Beach 20
Upper Potomac 144
Middle Potomac 204
Lower Potomac 121

Average recharge from precipitation

|

v
)
< , ;
4,659.4 surface-water infiltration Pumpage 141.0
) to the ground-water system lh A
Ground-water discharge 2.8 R
to surface water ‘

CONFINED SYSTEM

»;I’\’\‘/V\'/ Storage loss 0 Y
[P I KN o7
' BEDROCK - e.,“/
Juatn Q\/’
L v s 21.2 .
NOT TO SCALE
& @ \Q\\OJ
0\\0 \G \\
v & v 0 NOTE: All values in million gallons per day
5.7

Figure 87.--Modeled ground-water budget, scenario 1.
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Table 17.--Modeled ground-water budget, scenario 1

[Modeled values, in million gallons per day, are reported to tenths
and are not intended to imply accuracy to the precision shown]

Change from

Change from prepumping

Scenario 1 1983 conditions
Sources
Water released from
aquifer storage 0.0 -0.4 0.0
Lateral boundary inflow 21.2 9.0 19.3
Recharge from
precipitation 4,780.8 .0 .0
Surface-water infiltration to
the ground-water system 2.8 2.0 2.8
Total 4,804.8 10.6 22.1
Discharges
Water taken into aquifer storage .0 1.0 .0
Lateral boundary outflow 5.7 .0 2.6
Ground-water withdrawal
from wells 141.0 -54.4 -141.0
Ground-water discharge
to surface water 4,659.4 42.8 116.4
Total 4,806.1 -10.6 -22.0

Footnote: The small error between sources and discharges is due to numerical
truncation in digital simulation.
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Table 18.--Lateral flow across northern and southern boundaries of the
model area, scenarios 1 and 2
[Modeled values, in million gallons per day, are reported to hundredths
and are not intended to imply accuracy to the precision shown]

Scenario 1 Scenario 2
Aquifer Infiow Outflow Inflow Qutflow
Columbia 0.39 0.59 0.39 0.59
Yorktown-Eastover 1.11 1.15 1.09 1.16
Chickahominy-Piney Point .63 .44 .56 .40
Aquia .35 .45 .29 .41
Peedee .00 .00 .00 .00
Virginia Beach .00 .27 .00 .20
Upper Potomac 6.02 .53 3.86 .69
Middle Potomac 7.87 1.57 5.41 1.54
Lower Potomac 4.86 .65 3.26 .60
Total 21.23 5.65 14.86 5.59

surface water--a decrease of 42.8 Mgal/d from 1983 and decrease of 116.4 Mgal/d
from prepumping conditions. Reduced flow to the surface would be because of
greater downward movement from the water-table aquifer to the confined system
caused by the increased pumpage in the deeper aquifers and would account for
82.5 percent of the pumpage. Approximately 2.8 Mgal/d of surface water would be
induced into the ground-water system. Induced surface water would account for
2.0 percent of the pumpage. The area of surface-water infiltration
would be about 769 mi?--an increase of 236 mi2 since 1983. The addi-
tional area primarily would occur along the James River, Chesapeake Bay, and
Atlantic Ocean. The remaining pumpage would be accounted for by (1) an
increase in lateral inflow across the northern and southern model boundaries
by approximately 19.3 Mgal/d and (2) a decrease in lateral outflow across the
northern and southern boundaries of the model by approximately 2.6 Mgal/d.
The water budget resulted in less than 0.03 percent error in mass balance
(table 17).

Areas of modeled vertical recharge to and discharge from each confined
aquifer through the overlying confining unit are given in table 19. Area of
recharge would increase and area of discharge would decrease from simulated 1983
conditions because of increased pumpage. An exception would occur in the lower
Potomac aquifer where the area of discharge to the middle Potomac aquifer would
increase by approximately 704 mi2 because of increased pumpage in the middle
Potomac aquifer (fig. 88). This increase could contribute to water-quality
degradation in the overlying aquifer because water is generally more saline in
the lower Potomac aquifer. Amounts of vertical recharge and discharge for
individual aquifers and change in vertical recharge and discharge since simu-
lated 1983 conditions are given in table 19. Vertical recharge would be a
major flow component for the aquifers, particularly to the Potomac aquifers
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where it would contribute the bulk of water for the increased pumpage.
Scenario 2

Scenario 2 1involved continuous use of 51 selected industrial wells at
respective permitted limits, increasing pumpage by 19.8 Mgal/d (106.4 Mgal/d
total). Approximately 58.2 percent of the additional pumpage would be from
the middle Potomac aquifer (11.6 Mgal/d); about 20.6 percent from the upper
Potomac aquifer (4.1 Mgal/d); about 15.2 percent from the lower Potomac
aquifer (3.0 Mgal/d); and the remaining 6.0 percent from the overlying Virginia

Beach, Aquia, Chickahominy-Piney Point, Yorktown-Eastover, and Columbia
aquifers (1.2 Mgal/d) (table 20). Locations of the industrial wells are shown
in figure 89. Latitudes, 1longitudes, State identification codes, permitted

pumpage, and aquifers penetrated by the wells are summarized in table 21.

Table 20.--Pumpage and modeled maximum water-level decline from
simulated 1983 water levels for individual aquifers, scenario 2
LMgal/d is million gallons per day; ft is feet]

Maximum
Pumpage water-level
Aquifer (Mgal/d) decline (ft)
Yorktown-Eastover 0.58 3
Chickahominy-Piney Point .04 17
Aquia .31 28
Virginia Beach .23 8
Upper Potomac 4,09 45
Middle Potomac 11.55 76
Lower Potomac 3.01 77

Modeled water-level decline from simulated 1983 water levels in individual
aquifers is shown in figures 90 through 96. Maximum water-level decline in
individual aquifers is given in table 20. Maximum decline of approximately 75
feet would occur in the lower and middle Potomac aquifers in the Franklin
area. Water-level decline greater than 10 feet would occur throughout most of
these aquifers. Water-level decline greater than 30 feet would occur in the
upper Potomac aquifer in the Smithfield, Portsmouth, and Chesapeake areas.

Although the majority of pumpage would be from the lower aquifers, lowered
water levels would occur in the overlying aquifers. Water-level decline greater
than 20 feet would occur in the Aquia aquifer in and near the Smithfield area.
The Chickahominy-Piney Point aquifer primarily would be affected in the
southeastern cities of Portsmouth, Chesapeake, and Norfolk (5-15 feet) and along
Chesapeake Bay. Minimal water-level decline (1-3 feet) would occur in the
Yorktown-Eastover aquifer in southeastern Virginia.
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Table 21.--Industrial wells simulated in scenario 2
[MgaT7d 1s miTTion gallons per day]

Virginia Water
Control Board

Ma identification Permitted pumpage
Name numberd number Latitude Longitude (Mgal/d) Aquifers penetrated
Allied Colloids 1 161-004 36 46 42 76 32 29 0.30 Middle and upper Potomac
Boykins Narrow Fab 2 187-005 36 35 08 77 12 15 .45 Middle Potomac
187-132 36 35 08 77 12 14
Gwaltney 3 146-109 36 59 43 76 37 51 1.45 Upper Potomac
146-110 36 59 43 76 37 52
146-111 36 59 52 76 37 47
146-112 36 59 52 76 37 48
H.P. Beale 4 187-116 36 47 54 77 02 07 .25 Middle and upper Potomac
187-135 36 47 54 77 02 07
187-136 36 47 54 77 02 07
187-143 36 47 55 77 02 03
Hercules 5 187-001 36 39 01 76 59 57 7.92 Lower and middle Potomac
187-003 36 39 29 77 00 25
187-004 36 39 15 77 00 12
J.H. Miles 6 217-064 36 51 33 76 18 29 1.00 Upper Potomac
Murro Chemical 7 220-010 36 49 36 76 19 12 .60 Upper Potomac
220-013 36 49 36 76 19 12
N & W Railroad 8 217-067 36 52 38 76 19 34 .12 Upper Potomac and
Chickahominy-Piney Point
Planters Peanuts 9 161-267 36 43 32 76 34 51 .40 Upper and middle Potomac
161-268 36 43 15 76 34 59
ShgrediHospital 10 220-024 36 48 11 76 22 39 .10 Upper Potomac
ervices
Sheller Globe 11 217-021 36 56 02 76 19 07 .19 Yorktown-Eastover
217-022 36 56 02 76 19 01
Smith-Douglass 12 234-009 36 46 19 76 17 30 .12 Yorktown-Eastover
234-010 36 46 18 76 17 31
234-149 36 46 18 76 17 31
Smithfield Packing 13 146-115 36 59 37 76 37 56 2.81 Upper Potomac and Aquia
146-116 36 59 32 76 37 54
146-119 36 59 28 76 37 58
146-198 36 59 30 76 37 59
Smithfield Pk.Plant 14 161-241 36 44 29 76 33 33 Middle Potomac
Southland Corp. 15 234-078 36 49 58 76 14 42 .13 Yorktown-Eastover
Tidewater Chemical 16 234-015 36 36 27 76 12 07 .23 Virginia Beach
234-076 36 46 18 76 17 31
234-079 36 36 27 76 12 07
Tidewater Linen 17 228-300 36 53 15 76 10 41 .06 Columbia
Virginia Chemical 18 220-001 36 51 45 76 20 44 1.81 Upper Potomac, Aquia, and
) 220-002 36 51 49 76 20 50 Yorktown-Eastover
220-003 36 51 49 76 20 39
220-009 36 51 39 76 20 34
Weaver Fertilizer 19 234-081 36 46 17 76 17 52 .06 Yorktown-Eastover
Union Camp Corp. 20 146-197 36 39 25 76 53 58 43.32 Middle and lower Potomac
146-129 36 39 12 76 53 50
146-131 36 38 48 76 53 42
146-122 36 40 49 76 54 53
146-124 36 40 24 76 54 40
146-126 36 40 02 76 54 37
146-127 36 39 41 76 54 20
146-128 36 39 26 76 54 02
146-133 36 41 52 76 54 39

AL ocations shown on figure 89.
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Contours of distances between modeled water levels and the tops of the
middle and upper Potomac, Aquia, and Chickahominy-Piney Point aquifers are

presented in figures 97 through 100. As indicated in scenario 1, these maps
are accurate only within 50 feet and should be interpreted for trends rather
than absolute values. Water levels would remain well above the tops of the

aquifers except in the West Point and Franklin areas where water levels would
be between 0 and 100 feet above the aquifer tops.

The modeled ground-water budget is illustrated in figure 101 and sum-
marized in table 22, Modeled values presented in the text, figures, and
tables are not intended to imply accuracy to the precision shown. Water-budget
sources include recharge from precipitation, surface-water infiltration, and
lateral inflow across northern and southern boundaries. Water-budget discharges
include pumpage, lateral outflow, and discharge to surface water. Table 18
summarizes lateral flow across northern and southern boundaries for individual
aquifers. The average areal recharge to the water-table aquifer was estimated
to be the same as in 1983 (4,780.8 Mgal/d). Of this recharge, about 4,686.1
Mgal/d would discharge to surface water--a decrease of 16.1 Mgal/d from 1983
and decrease of 89.7 Mgal/d since prepumping conditions. Reduced flow to the
surface would be because of greater downward movement from the water-table
aquifer to the confined system caused by the increased pumpage in the deeper
aquifers and would account for 84.2 percent of the pumpage. Approximately 1.3
Mgal/d of surface water would be induced into the ground-water system.
Induced surface-water infiltration would account for 1.2 percent of the pump-
age. The area of surface-water infiltration to the ground-water system would
be about 637 mi2--an increase of about 104 mi2 since 1983. The additional
area primarily would occur along the James River, Chesapeake Bay, and Atlantic
Ocean. The remaining pumpage would be accounted for by (l) an increase in
lateral inflow across the northern and southern model boundaries by approxi-
mately 13.0 Mgal/d and (2) a decrease in lateral outflow across the northern
and southern boundaries of the model by approximately 2.7 Mgal/d. The water
budget resulted in less than 0.03 percent error in mass balance (table 22).

Areas of modeled vertical recharge to and discharge from each confined
aquifer through the overlying confining unit are given in table 23. Area of
recharge would increase and area of discharge would decrease from simulated 1983
conditions because of increased pumpage. As seen in scenario 1, an exception
would occur in the lower Potomac aquifer where the area of discharge to the
middle Potomac aquifer would increase (approximately 95 mi2) (fig. 102),

allowing discharge of saline water into the overlying aquifer. Area of
discharge from the middle Potomac to the upper Potomac aquifer would decrease;
however, its location would shift to the east (fig. 103). A smaller area of

discharge would occur north of the James River and a new area would occur nearer
to the cities of Portsmouth and Norfolk. This shift in location potentially
could contribute to water-quality degradation in the overlying aquifer because
water is generally more saline in the eastern parts of the middle Potomac

aquifer. Amounts of vertical recharge and discharge for each confined
aquifer and change in vertical recharge and discharge since simulated 1983
conditions are given in table 23. Vertical recharge would be a major flow

component for the aquifers, contributing the bulk of the increased pumpage.
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Average recharge from precipitation

Surtace-water infiltration
’ to the ground-v;ater system

!

4,780.8

Pumpage 106.4
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1.3

Ground-water discharge
to surface water
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Figure 101.--Modeled ground-water budget, scenario 2.

144



Table 22.--Modeled ground-water budget, scenario 2
{Modeled values, in million gallons per day, are reported to tenths
and are not intended to imply accuracy to the precision shown]

Change from
Scenario Change from prepumping

2 1983 conditions
Sources
Water released from
aquifer storage 0.0 -0.4 0.0
Lateral boundary inflow 14.9 2.7 13.0
Recharge from
precipitation 4,780.8 .0 .0
Surface-water infiltration
to the ground-water system 1.3 .5 1.3
Total 4,797.0 2.8 14.3
Discharges
Water taken into aquifer storage .0 1.0 .0
Lateral boundary outflow 5.6 .1 2.7
Ground-water withdrawal
from wells 106.4 -19.8 -106.4
Ground-water discharge
to surface water 4,686.1 16.1 89.7

Total 4,798.1 -2.6 -14.0

Footnote: The small error between sources and discharges is due to numerical
truncation in digital simulation.
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Discussion

Scenarios 1 and 2 indicated that water-level decline throughout south-
eastern Virginia would be substantial because of increased pumpage. The major
consequence of increased pumpage would be considerable interference among
ground-water users and would result in increased pumpage costs (costs could

involve replacement of burned-out pumps or lowering of pumps). Another con-
sequence would involve potential degradation of water quality from surface-water
infiltration and upward flow from deeper aquifers. Induced surface-water

infiltration to the ground-water system generally would occur in saltwater
areas. Fortunately, these areas are not used heavily for freshwater supply, and
the rate of infiltration would be relatively slow. Water quality also could
degrade in those confined aquifers wunderlain by deeper aquifers containing
saltwater. This could occur in the eastern part of the study area where water
is discharging vertically from the lower Potomac to the middle Potomac aquifer
and from the middle Potomac to the upper Potomac aquifer. The model cannot be
used to project the degree and rate of water-quality degradation; however, it
can be used to identify potential areas where water-quality problems could
occur.

One potential consequence of increased scenario pumpage would be compac-
tion of fine-grained materials in the system. The system potentially could
move from the elastic (recoverable) to the inelastic range when sediment is
subjected to stresses greater than previously experienced. On the basis of sub-
sidence data collected in the cities of Suffolk and Franklin from 1978 to 1987
(which includes significant increases in pumpage in the Suffolk area during 1986
drought conditions), the system most likely would remain in the elastic mode of
deformation and compaction consequences would be minimal (D.C. Hayes, U.S.
Geological Survey, written commun., 1987).

Water levels would remain well above the tops of confined aquifers throughout
most of the model area, indicating that sufficient recharge from the water-table
aquifer and lateral boundary flow was available to replace the increased pumpage
from the confined aquifers. West Point and Franklin are two areas where water
levels could begin to approach the tops of aquifers (modeled water levels were
within 100 feet of the tops). If water levels decline below the tops, uncon-
fined (water-table) conditions would occur and would result in dewatering of the
aquifers. Dewatering would contribute to compaction of aquifer sediment and
subsidence in the areas. Aquifers in the West Point and Franklin areas are more
vulnerable to induced unconfined conditions than other areas because the
aquifers lie relatively close to the surface (the areas are in the updip parts
of the aquifers) and pumpage is heavy.

Transient;Model Simulations of Injection into and Pumpage from
Virginia Beach Emergency-Supply Wells

Five scenarios involving injection into and pumpage from five Virginia Beach
emergency-supply wells located in the city of Suffolk, Isle of Wight County, and
Southampton County were run. The scenarios were run using a transient solution
to the ground-water flow equation and represented injection or increased pum-
page for 5 years above average pumpage conditions in the final pumping period
(1981-83). Several of the scenarios were run using shorter time intervals
(months) than used in the transient model simulating 1891-1983 conditions.
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Actual monthly pumpage for the final pumping period was not incorporated into the
scenario runs; average pumpage for the period was used to represent each month.
The shorter periods may not be long enough to minimize the effects of transient
storage from confining units (as assumed in the transient model simulating
1891-1983 conditions). Model simulations that include water released from
confining-unit storage would result in higher water levels than in model simula-
tions that neglect water released from storage. Confining-unit storage was not
simulated in the scenarios involving shorter periods. Modeled results for these
scenarios would, therefore, represent maximum water-level change resulting from
increases in pumpage or injection.

Locations of these wells are shown in figure 104, Latitudes, longitudes,
State identification codes, design capacity of the wells, and aquifers
penetrated by the wells are summarized in table 15, The wells primarily
penetrate the middle Potomac aquifer. The wells were designed to be pumped
during dry periods, allowing for recovery during wetter periods. Scenario 3
approximates this original well design and involves pumping the wells for 3
dry months each year for 5 years. Scenarios 4 through 7 present other pumpage

or injection schemes as described below:

1) Scenario 3: Water was pumped from each well during July, August,
and September for 5 years at design capacity (4 Mgal/d). This
scenario demonstrates impacts of pumping the wells at design capacity
during dry periods, allowing the wells to recover during wetter
periods.

2) Scenario 4: Water was injected into each well during January,
February, March, and April for 5 years at a rate of 1 Mgal/d. This

scenario demonstrates benefits from injection on simulated 1983
water levels in the vicinity of the wells.

3) Scenario 5: Water was injected into each well during January,
February, March, and April at a rate of 1 Mgal/d and pumped from
the wells during July, August, and September at a rate of 4 Mgal/d
for 5 years. This scenario demonstrates impacts of pumping the
wells at design capacity during dry periods and improving water-level
recovery with injection during wetter periods.

4) Scenario 6: Water was pumped year-round from each well for 5 years
at a rate of 1 Mgal/d. The scenario demonstrates impacts of pumping
an equal volume of water as in scenario 3 but at a lower rate and
over a l-year period instead of 3 months.

5) Scenario 7:  Water was pumped year-round from each well for 5 years
at design capacity (4 Mgal/d). This scenario demonstrates impacts
of pumping the wells for continuous supply rather than for emergency
use (dry periods) only.

Modeled water levels located in the middle Potomac aquifer in a node
central to the five Virginia Beach wells (fig. 104) were assessed for the five
scenarios. The results are described below, followed by a discussion of bene-
fits derived from injection and impacts from 3-month and year-round pumpage.
The modeled results presented in the text, figures, and tables are not
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intended to imply accuracy to the precision shown. Water levels in all
scenarios would begin to stabilize after the simulated S5-year period, indi-
cating that steady-state conditions were being approached.

Scenario 3

Modeled water levels for scenario 3 are presented in table 24 and figure
105. The projected water level, 78.4 feet below sea level at the end of 1983,
would drop to approximately 109.0 feet in September 1984 after 3 months of
pumpage. Following 9 months of no increased pumpage (June 1985), the water
level would rise to approximately 82.5 feet, resulting in a water-level
decline from 1983 of about 4.1 feet. The 1lowest water level would follow
pumpage in the fifth year (September 1988) and equal approximately 113.9 feet,
resulting in a maximum 35.5 feet water-level decline during the 5-year period.
The 9-month recovery period following this decline extends into a sixth year
and was not simulated. Because near steady-state conditions would exist, the
water level following recovery (June 1989) would be similar to June 1988--
approximately 84.4 feet. Water-level decline after five pumpage/recovery
cycles would, therefore, be about 6.0 feet from 1983.

Table 24.--Modeled water levels, scenario 3
[Modeled values, in feet, are reported to tenths and are not intended
to imply accuracy to the precision shown; datum is sea level]

January February March April May  June July August September October November December

1983 -78.4
1984 -78.4 -78.4 -78.4 -78.4 -78.4 -78.3 -98.1 -105.0 -109.0 -92.1 -87.5 -85.3
1985 -84.1 -83.3 -83.0 -82.8 -82.6 -82.5 -101.8 -108.5 -112.1 -95.0 -90.2 -87.8
1986 -86.4 -85.5 -84.7 -84.1 -83.6 -83.5 -102.8 -109.5 -113.1 -95.9 -91.1 -88.7
1987 -87.3 -86.3 -85.5 -84.8 -84.3 -84.1 -103.5 -110.1 -113.7 -96.5 -81.6 -89.2
1988 -87.7 -86.8 -85.9 -85.3 -84.7 -84.4 -103.7 -110.3 -113.9 -96.7 -91.8 -89.4

Scenario 4

Modeled water levels for scenario 4 are presented in table 25 and figure
106. The projected water level, 78.4 feet below sea level at the end of 1983,
would rise to approximately 69.8 feet in April 1984. Following 8 months with
no injection, the water level would drop to 76.1 feet, resulting in a gain of
2.3 feet after | year. The greatest rise would occur following injection in
the fifth year (April 1988), equalling approximately 67.0 feet and resulting in
a maximum rise of 11.4 feet from the 1983 water level. The overall increase
in water level after 5 years (December 1988) would be 4.6 feet.

Scenario 5

Modeled water levels for scenario 5 are presented in table 26. The pro-
jected water level, 78.4 feet below sea level at the end of 1983, would rise
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Figure 105.--Modeled water levels in the middle Potomac aquifer, scenario 3.

Table 25.--Modeled water levels, scenario 4
[Modeled values, in feet, are reported in tenths and are not intended
to imply accuracy to the precision shown; datum is sea level]

January February March April May June July August September October November December

1983 : -78.4
1984 -73.4 -71.7 -70.6 -69.8 -74.1 -75.3 -75.6 -75.8 -75.9 -76.0 -76.1 -76.1
1985 -71.4 -69.9 -68.9 -68.5 -72.9 -74.1 -74.5 -74.6 -74.8 -74.9 -75.0 -75.1
1986 -70.4 -68.9 -68.0 -67.8 -72.2 -73.5 -73.9 -74.1 -74.2 -74.3 -74.4 -74.5
1987 -69.9 -68.4 -67.5 -67.3 -71.7 -73.0 -73.5 -73.7 -73.8 -73.9 -74.0 -74.1
1988 -69.5 -68.0 -67.2 -67.0 -71.4 -72.7 -73.2 -73.4 -73.5 -73.6 -73.7 -73.8
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Figure 106.--Modeled water levels in the middle Potomac aquifer, scenario 4.

Table 26.--Modeled water levels, scenario 5
[Modeled values, in feet, are reported in tenths and are not intended
imply accuracy to the precision shown; datum is sea level]

January February March April May June July August September October November December
33 : -78.4
34 -73.3 -71.7 -70.6 -69.8 -74.1 -75.3 -95.7 -103.0 -107.1 -90.4 -86.0 -83.9
35 -77.8 -75.5 -73.9 ~-72.8 -76.8 -77.7 -97.9 -105.0 -109.0 -92.1 -87.6 -85.5
36 -79.3 -76.9 -75.2 -73.9 -77.9 -78.8 -98.8 -105.9 -109.9 -93.0 -88.4 -86.2
37 -80.0 -77.5 -75.8 -74.5 -78.4 -79.3 -99.3 -106.4 -110.3 -93.4 -88.8 -86.6
38 -80.3 -77.9 -76.1 -74.8 -78.7 -79.6 -99.6 -106.6 -110.5 -93.6 -89.0 -86.8
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to about 69.8 feet in April 1984 following injection and drop to approximately
107.1 feet in September 1984 following pumpage. The water level would then
rise to about 77.7 feet after a 9-month recovery period (including 4 months of
injection), resulting in an increase of 0.7 feet above the 1983 water level.
The 1lowest water 1level would follow pumpage in the fifth year (September
1988) and equal about 110.5 feet, resulting in a maximum 32.1 feet water-
level decline for the 5-year simulation. The 9-month recovery period following
this decline extends into a sixth year and was not simulated. Because near
steady-state conditions would exist, the water 1level following recovery
(June 1989) would be similar to June 1988--approximately 79.6 feet. Water-
level decline after five pumpage/recovery cycles would, therefore, be about 1.2
feet from 1983.

Scenario 6

Modeled water levels for scenario 6 are presented in figure 107. The pro-
jected water level, 78.4 feet at the end of 1983, would drop to about 90.4
feet at the end of 1988, resulting in a total water-level decline of about
12,0 feet over the 5-year period.

Scenario 7

Modeled water levels for scenario 7 are presented in figure 107. The pro-
jected water level, 78.4 feet at the end of 1983, would drop to about 137.2
feet at the end of 1988, resulting in a total water-level decline of about
58.8 feet over the 5-year period.
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Figure 107.--Modeled water levels in the middle Potomac aquifer,
scenarios 6 and 7.
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Discussion

Modeled water levels were used to assess benefits derived from injection
into and impacts due to 3-month and year-round pumpage from 5 Virginia Beach
emergency-supply wells. As discussed previously, modeled results for scenarios
3 through 5 represent maximum water-level changes resulting from increased
pumpage or injection because water released from confining-unit storage was not
included in the simulations. Increases in water levels because of injection
would be minimal, as shown in scenarios 4 and 5. The overall increase above
simulated 1983 conditions after 5 years would be 4.6 feet (scenario 4).
Improvement in water levels due to 4-month injection during a 9-month recovery
period is shown in table 27 and figure 108 (comparison made between scenarios 3
and 5). During the month of maximum water-level decline (September 1988),
injection would only increase water levels by 3.4 feet. Water levels after the
9-month recovery period following this decline would only be improved by 4.8
feet (approximated by June 1988 value).

Table 27.--Increase in modeled water levels as a result of injection
[Modeled values, in feet, are reported in tenths and are not intended
to imply accuracy to the precision shown; datum is sea level]

January February March April May June July August September October November December

1984
1985
1986
1987
1988

5.1 6.7 7.8 8.6 4.3 3.0 2.4 2.0 1.9 1.7 1.5 1.4
6.3 7.8 9.1 10.0 5.8 4.8 3.9 3.5 3.1 2.9 2.3 2.3
7.1 8.6 9.5 10.2 5.7 4.7 4.0 3.6 3.2 2.9 2.7 2.5
7.3 8.8 9.7 10.3 5.9 4.8 4.2 3.7 3.4 3.1 2.8 2.6
7.4 8.9 9.8 10.5 6.0 4.8 4.1 3.7 3.4 3.1 2.8 2.6

Maximum water-level decline that would result from year-round pumpage at a
rate of 1 Mgal/d for 5 years would be approximately 12.0 feet. The water
levels generally would be lower (maximum of 7.0 feet) throughout the 5-year
period than those resulting from pumping an equivalent volume of water during
3 months of the year at a higher rate of 4 Mgal/d (fig. 109). However, water
levels would be approximately 24 feet higher in September each year--the time

corresponding to the end of the 3-month pumpage in scenario 3. Year-round
pumpage at a lowér rate would, therefore, prevent periods of extreme water-level
decline during which other users might be adversely affected. It would,

however, requirehfacilities for storing the ground water throughout the year
if the water were to be used only for dry periods. This could be quite
costly.

Water levels would decline by approximately 58.8 feet after 5 years if the
wells were pumped year-round at design capacity. Water levels would be signi-
ficantly lower throughout a 5-year period if the wells were pumped for con-
tinuous supply rather than emergency supply (dry periods) only (fig. 110). A
9-month recovery period would, therefore, play an important role in restoring
water levels in the area.

156



07T 77T 1T T T T T T T T T T T T 7T
SCENARIO THREE -- 3-month pumpage with no injection
d SCENARIO FIVE -- 3-month pumpage with 4.month injection
> 70 - -
T8}
-l
<
»
80
2
o
-
W
o]
= -
o 90
w
w
z
)
o 100
w B
w
-l
@
ul-J 110
<
=
D171 J M IS IS Y S ST Y T N SN TS TN R Y SN TN T N N M |
J AJ O J A J O J A J O J A J O J A Y O J A J O
1983 1984 1985 1986 1987 1988

Figure 108.--Comparison between modeled water levels in scenarios 3 and 5.
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Figure 109.--Comparison between modeled water levels in scenarios 3 and 6.
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Figure 110.--Comparison between modeled water levels in scenarios 3 and 7.

Sensitivity Analysis

A sensitivity simulation was conducted to test the effect of locating the
stationary eastern no-~flow boundary at the 10,000 mg/L chloride concentration
within each aquifer. The position of this boundary potentially could affect
water levels and rates of ground-water flow when pumpage is increased or the
spatial distribution of pumpers, particularly in the eastern part of the study
area, is changed. In the sensitivity simulation, the extent of the freshwater
system was expanded eastward by moving the eastern no-flow boundary in all
aquifers seaward to a position representing the 10,000 mg/L chloride
concentration in the uppermost confined aquifer (fig. 27). The simulation
involved scenario 1 pumping conditions because scenario | represents the
heaviest pumpage and the largest increases in pumpage near the eastern part of
the model that were simulated in this report.

Water levels resulting from the sensitivity simulation were in general
agreement with those resulting from scenario 1 throughout all aquifers.
Slightly higher water 1levels did result in the eastern part of the lower,
middle, and upper Potomac aquifers in the sensitivity simulation because of
the additional flow of water from the east.

Water~level gradients were assessed, and rates of lateral ground-water
flow were calculated by means of Darcy's Law on the basis of modeled head
gradients and an assumed porosity of 0.4, Figure 111 illustrates rates of
lateral ground-water flow in the middle and upper Potomac aquifers in the
eastern part of the model area assuming a seaward position of the eastern no-
flow boundary. The figure suggests that water would move at a rate of about
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10 to 30 ft/yr (feet per year) in the vicinity of the original position of the
eastern no-flow boundary, taking about 300 to 900 years to move the
distance of one grid block. Effects of saline water within the expanded model
area were not considered when calculating rates of lateral flow; however, saline
water would impede lateral flow and, therefore, the assumption of fresh-
water within the expanded area would result in maximum flow rates (P.P. Leahy,
U.S. Geological Survey, written commun., 1987). These findings indicate that
lateral flow of water in the vicinity of the original eastern no-flow boundary
approximated at the 10,000 mg/L chloride concentration within each aquifer would
be negligible under scenario ]l pumping conditions, considering the spatial and
temporal discretization of the model. The model is, therefore, not sensitive to
the stationary no-flow boundary at the 10,000 mg/L chloride concentration for
the pumping conditions presented in this report.

Sensitivity analysis also is used to test the response of a calibrated model
to changes in hydraulic characteristics. An individual characteristic is
increased or decreased within its expected range while all other charac-
teristics remain unchanged and resulting water-level changes are assessed.
Significant changes in water levels indicate that a model is sensitive to a par-
ticular characteristic. Results from sensitivity analyses done by Harsh and
Laczniak (1986) were used as the basis for sensitivity analysis in this study
because model conceptualization of the ground-water flow system and model para-
meters were similar. Many variations to hydraulic characteristics were used in

Harsh and Laczniak to test model sensitivity. Variations were made to
transmissivity and storage coefficient of confined aquifers and vertical
leakance of confining wunits. The sensitivity analyses showed that simu-

lated water levels were more sensitive to decreases in selected values of
transmissivity and vertical leakance than to increases. Analyses also showed
that changes to values for transmissivity and vertical leakance in the middle
Potomac aquifer and confining unit, respectively, had the greatest effect on
water levels throughout the ground-water system. Analyses for storage coef-
ficient showed that the system was sensitive to an increase in storage
coefficient by one order of magnitude and insensitive to a decrease of one
order of magnitude.

On the basis of Harsh and Laczniak results, values for transmissivity and
vertical leakance of the middle Potomac aquifer and confining unit, respec-
tively, were varied to demonstrate the effect of the sensitivity of this model
on scenario | results. Scenario 1 was selected because pumpage, primarily from
the middle Potomac aquifer, significantly affected water levels throughout the
ground-water system. No sensitivity analysis was done for storage coefficient
because scenario l1-was a steady-state simulatiom. Table 28 summarizes water
levels in five nodes in the middle Potomac aquifer resulting from a 50-percent
decrease and increase in transmissivity and vertical leakance. Locations of
these five nodes are shown in figure 112. Node 1 is located central to scenario
1 pumpage and the remaining 4 nodes are located at increased distances from
the pumpage. Sensitivity analysis showed that the model was more sensitive to
changes in transmissivity than to vertical leakance near the pumpage. For
example, in node 1, a 50-percent reduction in transmissivity resulted in a
4].4-percent decrease in water level from scenario 1 results (a decrease of
approximately 116.2 feet) and a 50-percent reduction in vertical leakance only
resulted in a ll.9-percent decrease in water level (a decrease of about 33.5
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Table 28.--Modeled water levels resulting from sensitivity runs at selected nodes

[Modeled values,

in the middle Potomac aquifer

in feet, are reported in tenths and are not intended to imply accuracy
to the precision shown; datum is sea level]

Node 12
g;ggggﬁnce i Vatfr Tevel Percent, increase or
Water level an sens?g?v?{y run decrease in wager level
Scenario 1 -280.8
;v9gcrease in -397.0 -116.2 41.4-percent decrease
ra sm gg}v1gcrease in -223.2 57.6 20.5-percent increase
C?n}ed ggggse in -314.3 -33.5 11.9-percent decrease
ver ?n$eaggﬁggse in -267.5 13.3 4.7-percent increase
Node 22
B;g&ggﬁnce Ly Yatfr level Percent, increase or
Water level an sensff?v?{y run decrease in wa%er 1ével
Scenario 1 -135.5
%v?gcrease in -163.9 -28.4 21.0-percent decrease
gﬁ gg¥v1gcrease in -115.0 20.5 15.1-percent increase
vergfgg?nfegﬁgﬁggse in -164.8 -29.3 21.6-percent decrease
r%?g ?n¥eggggggse in -124.2 11.3 8.3-percent increase
Node 3a
gég gggn e An Yatfr level ercent.increase or
Water level and sens %?v?{ decrease in w ger 1evel
Scenario 1 -201.3
?v?gcrease in -245.8 -44.5 22.1-percent decrease
gﬁ §2¥v1gcrease in -170.4 30.9 15.4-percent increase
ver c?n}ed %ES%” In -234.0 -32.7 16.2-percent decrease
ver ?n?eaﬂggggse in -189.0 12.3 6.1-percent increase
Node 42
B;gzgggnce in Yatfr level Percent,increase or
Water level an Sensig? ?gy run decrease in wa%er level
Scenario 1 -83.1
%95 ?vqgcrease tn -97.3 -14.2 17.1-percent decrease
sm ss¥v1 grease 1n -71.7 11.4 13.7-percent increase
verg?gg?n$eg gaggse in -108.9 -25.8 31.0-percent decrease
32;€$£§?n$eguggggse In -73.3 9.8 11.8-percent increase
} Node 52
ifference in yater level
uator 1ove1 SR SRRTERRLY L aeBRESEN" G E8E Qe
Scenario 1 -36.1
gﬁ gg?vqgcrease in -38.7 -2.6 7.2-percent decrease
?v1gcrease in -32.2 3.9 10.8-percent increase
ver c?n?ed gﬁggse in -58.2 =22.1 61.2-percent decrease
ver ?n?e1 gﬁggse 1n -27.8 8.3 23.0-percent increase

aLocation of node on figure

112.
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feet) (table 28). The same trend occurred when the characteristics were
increased by 50 percent--a 50-percent increase in transmissivity resulted in a
20.5-percent increase in water level (an increase of approximately 57.6 feet)
and a 50-percent increase in vertical leakance only resulted in a 4.7-percent
increase in water level (an increase of 13.3 feet).

The model is less sensitive to changes in transmissivity and more sensitive
to changes in vertical leakance away from the pumpage center. For example,
water levels in nodes 2 and 3, located approximately 20 miles west and east of
the pumpage, decreased by about 21 to 22 percent when transmissivity was reduced
by 50 percent and decreased by approximately 16 to 22 percent when vertical
leakance was reduced by 50 percent (table 28). Approximately 40 miles away from
the pumpage (node 5), the model was very sensitive to vertical leakance. Water
levels decreased by 61.2 percent with a 50-percent reduction in vertical
leakance and only decreased by about 7.2 percent with a 50-percent reduction in
transmissivity (table 28). Water levels resulting from the sensitivity analyses
for nodes 1, 2, and 5 are presented in figure 113.

As shown in Harsh and Laczniak (1986) and as indicated in table 28 and
figure 113, the model generally is more sensitive to decreases than increases
in these characteristics. This trend is particularly apparent in node 1 where
the model is very sensitive to decreases in transmissivity, and in node 5
where the model is sensitive to decreases in vertical leakance.

Figure 114 and table 29 summarize water-level changes in the lower,
middle, and upper Potomac aquifers at node 1 as a result of changes of
hydraulic characteristics in the middle Potomac aquifer. - Similar trends are
seen in these underlying and overlying aquifers--the model is more sensitive
to transmissivity than vertical leakance in the area of pumpage and is more
sensitive to decreases in hydraulic characteristics than to increases.

Model Limitations

The model incorporated hydrogeologic characteristics of the aquifers and
confining units to determine net effects of pumpage on a regional scale.
Definition of well interference, water levels, water budgets, and surface-
water losses and gains on a smaller scale would require a more refined model
with finer grid spacing and shorter time intervals. In addition, data on
streambed leakance, baseflows, and pumpage within the water-table aquifer
would be necessary to improve accuracy of simulated flow between the ground-
water and surface-water systems.

Pumpage primarily occurs in the confined system and, therefore, the model
primarily was used to analyze ground-water flow within confined aquifers.
Average altitude of surface water was incorporated into the model as an upper
boundary condition and wused to approximate regional recharge-discharge
relations between surface water and the water-table aquifer. Detailed
analysis of flow within the water-table aquifer would require better defini-
tion of flow between this aquifer and surface water and better definition of
pumpage within the water-table aquifer.

The model can be used to identify areas where water levels approach the

tops of aquifers; however, it was not developed to simulate an actual conver-
sion from confined to unconfined conditions. If future pumpage increases so
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Figure 113.--Modeled water levels resulting from sensitivity analysis in the middle
Potomac aquifer at three selected nodes.
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increase in vertical leakance

Simulated water level, 50 percent
decrease in vertical leakance

Figure 114.--Modeled water levels resulting from sensitivity analysis in the lower,
middle, and upper Potomac aquifers at a node central to pumpage.
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Table 29.--Modeled water levels resulting from sensitivity analysis at a representative node

In the Tower, middle, and upper Potomac aquifers
[Modeled values, in Teet, are reported n Eenfﬁs and are not intended to imply accuracy

to the precision shown; datum is sea level]

Middle Potomac aquifer - Node 13

Ditfference 1n water Tevel

between scenario 1 Percent increase or
Water level and sensitivity run decrease in water level

Scenario 1 -280.8
50-percent decrease in
transmissivity -397.0 -116.2 41.4-percent decrease
50-percent increase in
transmissivity -223.2 57.6 20.5-percent increase
50-percent decrease in
vertical leakance -314.3 -33.5 11.9-percent decrease
50-percent increase in
vertical leakance -267.5 13.3 4.7-percent increase

Lower Potomac aquifer - Node 1

Ditrerence 1n water level

between scenario 1 Percent increase or
Water level and sensitivity run decrease in water level

Scenario 1 -195.8
50-percent decrease in
transmissivity -244.0 -48.2 24.6-percent decrease
50-percent increase in
transmissivity -165.9 29.9 15.3-percent increase
50-percent decrease in
vertical leakance -227.0 -31.2 15.9-percent decrease
50-percent increase in
vertical leakance -183.7 12.1 6.2-percent increase

Upper Potomac aquifer - Node 1

Difference 1n water level

between scenario 1 Percent increase or
Water level and sensitivity run decrease in water level

Scenario 1 -209.6
50-percent decrease in
transmissivity -256.9 -47.3 22.6-percent decrease
50-percent increase in -
transmissivity -181.3 28.3 13.5-percent increase
50-percent decrease in
vertical leakance -202.7 6.9 3.3-percent increase
50-percent increase in
vertical leakance -212.9 -3.3 1.6-percent decrease

8Location of node on figure 112,
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that measured water levels drop below the tops of aquifers, the model would
need modification and additional input such as elevations of the bottom of
each confined aquifer.

The eastern boundary within each aquifer represents an assumed freshwater-
saltwater interface located where the ground water contains concentrations of
chloride of 10,000 mg/L. It is assumed to be a stationary no-flow boundary.
Variations in salinity and their effects on the ground-water flow system, as
well as the potential movement of the freshwater-saltwater interface under
natural or pumping conditions, are not considered in this model. Sensitivity
analysis showed that a stationary no-flow boundary at the 10,000 mg/L chloride
concentration was reasonable for the pumping conditions simulated in this
report. However, these assumptions could limit use of the model when pumpage
is significantly increased or the spatial distribution of pumpage is changed,
particularly in the eastern part of the model. Modifications should be made
in the model to (1) include variations in salinity (incorporating density
effects) and (2) track the movement of the freshwater-saltwater interface
through time. Additional data are necessary to define salinity variations and
the movement of the interface, such as time-dependent chloride concentrations
and a large-scale pump test in southeastern Virginia. This ground-water flow
model provides a foundation for understanding the ground-water flow system in
southeastern Virginia; however, because of the nearby presence of saltwater,
it is critical that this eastern boundary condition be studied further before
the model has unlimited applicability.

The model does not simulate water released from confining-unit storage.
Confining-unit storage 1is assumed negligible because simulation periods are
generally long enough (greater than 3 years) to minimize its effect (Harsh and
Laczniak, 1986). Modeled results for simulations involving shorter time
periods, such as those simulated in scenarios 3 and 5, represent lower water
levels than what might actually occur. Simulation of confining-unit storage
would require modification to the model based on additional data defining
confining-unit characteristics.

SUMMARY AND CONCLUSIONS

Hydrogeology and the ground-water flow system in the Coastal Plain
physiographic province of southeastern Virginia were analyzed, and the
continued reliability of ground water as a resource was assessed. The study
primarily focused on hydrogeologic characteristics of the multiaquifer system,
development and refinement of a digital, ground-water flow model, and analysis
of future conditions resulting from potential injection or increased pumpage.

Ground water is an important resource in southeastern Virginia. Since the
early 1900's, steadily increasing pumpage has resulted in declining water
levels, major cones of depression that expand from industrial and population
centers, and potential contamination by saltwater encroachment. Commercial,
industrial, and municipal withdrawals in southeastern Virginia increased from
less than 10 Mgal/d in 1891 to about 55 Mgal/d in 1983. Major pumpage centers
are the town of Smithfield and the cities of Franklin, Newport News, and
Suffolk.
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The Coastal Plain physiographic province of southeastern Virginia is

underlain by unconsolidated sediments, dipping and thickening eastward. The
sediments primarily consist of sand, clay, silt, and gravel with variable
amounts of shell material lying directly upon granitic basement. On the basis

of lithologic and hydrologic analysis of the sediments, a hydrogeologic frame-
work consisting of a water-table aquifer and seven confined aquifers and
intervening confining units was identified. Values for transmissivity, ver-
tical 1leakance, and storage which describe the ability of an aquifer to
transmit, store, or release water were defined. Transmissivity generally
increases eastward (downdip) from the western limit of an aquifer and begins
to decrease toward its eastern limit. Transmissivity is highest in the
Potomac aquifers. Vertical leakance generally decreases from west to east.
Deeper confining units are characterized by relatively low vertical leakance.
Relatively high values occur within a confining unit where original sediment
was eroded and replaced with more permeable river material.

The ground-water flow system 1is bounded by granitic basement, the
Fall Line to the west, and the freshwater-saltwater interface to the east.
Ground-water flow was conceptualized from known hydrogeology and water-level
observations beginning in the late 1800's. Under prepumping conditions,
assumed to have existed prior to 1891, a hydraulic equilibrium prevailed in
the multiaquifer system. Water recharged the water-table aquifer, moved
laterally in the direction of decreasing water levels, and ultimately dis-
charged to streams, swamps, Chesapeake Bay, and the Atlantic Ocean. Some
water also moved vertically from the water-table aquifer through confining
units to recharge the confined system. Downward movement occurred along a
narrow band running parallel to the Fall Line and in higher elevations between
major river wvalleys. Lateral movement predominantly occurred within the con-
fined aquifers from the Fall Line toward Chesapeake Bay and the Atlantic
Ocean and from interfluves toward major river valleys. The laterally-flowing
fresh ground water eventually encountered saltwater beneath the eastern parts
of the study area, moved upward through confining wunits, and ultimately
discharged to Chesapeake Bay and the Atlantic Ocean. Vertical flow through
the confining units was enhanced by channel incision in Chesapeake Bay and
adjoining tributaries where confining units were partially or completely
eroded and replaced by more permeable material. Under pumping conditionms,
pumpage from the confined system lowered water levels, resulting in extensive
cones of depression and flow toward major pumpage centers.

To provide a more detailed analysis of water-level decline and ground-
water flow, a three-dimensional, digital, ground-water flow model which
incorporated hydrogeologic characteristics of the aquifers and confining
units was developed for prepumping and pumping conditions. The model area
extended into the York-James Peninsula and northern part of North Carolina to
include ground-water users affecting flow in southeastern Virginia, such
as the town of West Point and the city of Williamsburg. Pumping conditions
were simulated from 1891, when estimated pumpage from the model area was less
than 10 Mgal/d, through 1983 when estimated pumpage was approximately 87
Mgal/d. The model was used to determine net effects of historic pumpage and
potential injection or increased pumpage on regional water levels, ground-
water flow, water budgets, and surface-water/ground-water relations.

Model results for prepumping conditions were consistent with known water-
level data and the previously conceptualized ground-water flow pattern. Water
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moved regionally from the Fall Line toward Chesapeake Bay and the Atlantic
Ocean and 1locally to streams, swamps, and bays. Under prepumping conditionms,
a hydraulic equilibrium prevailed in the multiaquifer system--simulated
recharge to the water-table aquifer (about 4,780.8 Mgal/d) approximated
ground-water discharge to surface water (about 4,775.8 Mgal/d). The small
difference in recharge and discharge was attributed to lateral flow across the
northern and southern boundaries of the model area.

Model results for pumping conditions also were consistent with known
water-level data, including a significant water-level decline greater than 250
feet that occurred in the lower and middle Potomac aquifers in the Franklin

area. Substantial water-level decline (greater than 90 feet) also occurred in
these aquifers in the West Point area, with declines of at 1least 30 feet
occurring in most other areas. Water-level decline (greater than 100 feet)
occurred in the upper Potomac aquifer in the West Point, Williamsburg,
Smithfield, and Suffolk areas. Decline greater than 20 feet occurred
throughout most of this aquifer. Greater than a 100-foot decline occurred in

the West Point and Williamsburg areas in the Aquia aquifer. The Chickahominy-
Piney Point aquifer also was affected in the West Point area (greater than 140
feet) and along Chesapeake Bay (greater than 20 feet).

Water-budget analysis for pumping conditions demonstrated that discharge
to surface water no longer approximated recharge to the water-table aquifer,
as shown under prepumping conditioms. Discharge to surface water was reduced
because of increased movement from the water-table aquifer to the confined
system to replace pumpage from the deeper aquifers. In 1983, reduced
discharge to the surface accounted for about 85.0 percent of the 86.6 Mgal/d
withdrawn from the model area. Reduced discharge to the surface was greatest
in incised stream valleys in the western part of the model area, in areas of
major pumpage centers such as Franklin and West Point, and in areas of
pumpage centers in the east that penetrate shallow aquifers.

Water-budget analysis also demonstrated that in some areas surface water
recharged the ground-water system because of increased pumpage. Induced
infiltration of surface water began in the fifth pumping period (1953-57). It
primarily occurred in the Atlantic Ocean and Chesapeake Bay and its major tri-
butaries. The surface-water infiltration is saline and has the potential for
degrading the water quality of wunderlying aquifers; however, this water
entered the ground-water system in areas generally not used for freshwater
supply. In 1983, surface-water infiltration accounted for approximately 0.9
percent of the 86.6 Mgal/d withdrawn from the model area.

Reduced discharge to the surface and induced infiltration from the surface
accounted for approximately 86 percent of the water pumped. The remaining
pumpage was accounted for by a decrease in lateral outflow and an increase in
lateral inflow across the northern and southern boundaries of the model and
water released from storage. Water released from storage was minimal at the
end of the model simulation (approximately 0.4 Mgal/d), suggesting that
steady-state conditions were being approached. Water levels would, therefore,
remain relatively stable if pumpage continued in the model area as simulated
in the final pumping period (1981-83).
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The model also was used to project the response of the ground-water flow
system to potential injection or increased pumpage in southeastern Virginia.
Seven scenarios were run, each representing an increase in pumpage or injec-
tion above average conditions in the final pumping period (1981-83). The
scenarios were not designed to represent future injection or pumpage rates
accurately, but rather to provide insight into regional water-level decline
and ground-water flow. The scenarios also provide examples of the ability of
the model to assess the continued reliability of ground water as a resource in
southeastern Virginia.

Scenarios 1 and 2 were run using a steady-state solution to the ground-
water flow equation so that no change in storage or water levels would occur
over time. The steady-state solutions provided maximum water-level decline
resulting from projected increased pumpage. The first scenario involved
increased pumpage of 54.4 Mgal/d (141.0 Mgal/d total) resulting from continuous
use of 18 emergency-supply wells, generally used in times of drought.
Approximately 86 percent of the additional pumpage would come from the middle
Potomac aquifer. The second scenario involved continuous use of selected
industrial wells at their permitted limit, increasing pumpage by 19.8 Mgal/d
(106.4 Mgal/d total). Approximately 79 percent of the additional pumpage would
be pumped from the middle and upper Potomac aquifers. In both scenarios, water-
level decline from simulated 1983 conditions would be substantial. The major
consequence from the increased pumpage would be considerable interference
among ground-water users, resulting in increased pumping costs. Another con-
sequence would involve potential water-quality degradation from surface-water
infiltration and upward flow of saltwater from deeper aquifers. In both sce-
narios, water levels would remain well above the tops of aquifers throughout
most of the model area, indicating that sufficient recharge from the water-table
aquifer and across lateral boundaries was available to replace the increased
pumpage from the confined aquifers. West Point and Franklin are two areas where
water levels could begin to approach the tops of aquifers (modeled water levels
were within 100 feet of the tops). These areas are more vulnerable than other
areas because the aquifers lie relatively close to the surface (the areas are in
the updip parts of the aquifers) and pumpage is heavy. If water levels declined
below the tops, unconfined (water-table) conditions would occur and result in
dewatering of aquifers. Dewatering would contribute to compaction of aquifer
sediment and subsidence in the area.

Scenarios 3 through 7 involved injection into or pumpage from 5 Virginia
Beach emergency-supply wells located in the city of Suffolk, Isle of Wight
County, and Southampton County. The scenarios were run using a transient
solution to the ground-water flow equation. Water levels were projected for a
5-year period (1984-88). The wells which penetrate the middle Potomac
aquifer were originally designed to be pumped during dry periods, allowing
for water-level recovery during wetter periods. On the basis of this original
well design, scenario 3 involved increased pumpage at a rate of 4 Mgal/d from
each well during July, August, and September for 5 years. Scenarios 4 through 7
presented other potential pumpage or injection schemes. Modeled water levels,
located in the vicinity of the wells in the middle Potomac aquifer, were used to
assess benefits derived from injection and impacts from increased pumpage.

Increased pumpage during 3 months at a rate of 4 Mgal/d followed by 9
months with no increased pumpage would result in a maximum 35.5-foot water-
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level decline during the 5-year period (1984-88)., The water level would rise
during the 9-month recovery period following maximum decline to within about
6.0 feet of the simulated 1983 water level. Improvement in water-level reco-
very due to injection during wetter periods (at a rate of 1 Mgal/d into each
well during January, February, March, and April) would be minimal. Injection
would only increase water levels during the month of maximum decline by about
3.4 feet. Maximum water-level decline that would result from year-round pum-
page at a rate of 1 Mgal/d for 5 years would be approximately 12.0 feet. The
water levels would generally be lower throughout the 5-year period (maximum
7.0 feet) than those resulting from pumping an equivalent volume of water
during 3 months of the year at a higher rate of 4 Mgal/d. However, water
levels would be approximately 24 feet higher in September each year--the time
corresponding to the end of 3-month pumpage. Year-round pumpage at a lower
rate would, therefore, prevent periods of extreme water-level decline during
which other users might be adversely affected. Water levels would decline by
approximately 58.8 feet after 5 years if the wells were pumped year-round at
design capacity (4 Mgal/d). The water levels would be significantly lower
throughout the 5-year period than those resulting from pumping at design capa-
city only during dry periods. A 9-month recovery period would, therefore, play
an important role in restoring water levels in the area.

Use of the model is limited in 5 aspects: (1) The model is adequate in
simulating impacts of historic and projected pumpage and injection on a
regional scale; simulation of well interference, water levels, and surface-
water losses and gains on a smaller scale requires a detailed analysis
involving a more refined model with finer grid spacing and shorter time

intervals. Additional data on streambed leakance, baseflows, and pumpage
within the water-table aquifer are needed to assess local surface-water losses
and gains. (2) Pumpage primarily occurs in the confined system and, there-
fore, the model is wused to analyze ground-water flow within the confined
aquifers. Detailed analysis of flow within the water-table aquifer requires

better definition of flow between this aquifer and surface water and better
definition of pumpage within the water-table aquifer. (3) The model can be
used to identify areas where water 1levels approach the tops of aquifers;
however, it was not developed to simulate an actual conversion from confined
to unconfined conditions. If future pumpage increases so that measured water
levels drop below the tops of aquifers, modification of the model Iis
necessary. (4) The model does not simulate water released from confining-unit
storage which may be relevant in time periods less than 3 years. (5) The
model does not simulate effects of saltwater or the movement of saltwater
under natural or pumping conditions.
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